
Oracle® Database
Graph Developer's Guide for Property Graph

21.1
F31321-02
March 2021

Oracle Database Graph Developer's Guide for Property Graph, 21.1

F31321-02

Copyright © 2016, 2021, Oracle and/or its affiliates.

Primary Author: Lavanya Jayapalan

Contributors: Prashant Kannan, Chuck Murray, Melliyal Annamalai, Korbinian Schmid, Jorge Barba, Oskar
van Rest, Ana Estrada, Steve Serra, Bill Beauregard, Hector Briseno, Hassan Chafi, Eugene Chong,
Souripriya Das, Juan Garcia, Florian Gratzer, Zazhil Herena, Sungpack Hong, Roberto Infante, Hugo Labra,
Gabriela Montiel-Moreno, Eduardo Pacheco, Joao Paiva, Matthew Perry, Diego Ramirez, Siva Ravada,
Carlos Reyes, Jane Tao, Edgar Vazquez, Zhe (Alan) Wu

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xv

Documentation Accessibility xv

Related Documents xv

Conventions xv

 Changes in This Release for This Guide

1 Property Graph Support Overview

1.1 About the Property Graph Feature of Oracle Database 1-2

1.2 Property Graph Prerequisites 1-2

1.3 Property Graph Features 1-10

1.3.1 Property Graph Sizing Recommendations 1-11

1.4 Security Best Practices with Graph Data 1-11

1.5 Interactive Graph Shell 1-12

1.6 Using Graph Server Functionality as a Library 1-14

1.7 Storing Graphs in Oracle Database and Loading Graphs into Memory 1-14

1.7.1 Two-Tier Mode 1-15

1.7.2 Three-Tier Mode 1-15

1.8 Using Oracle Graph with the Autonomous Database 1-15

1.8.1 Two-Tier Deployments of Oracle Graph with Autonomous Database 1-16

1.8.2 Three-Tier Deployments of Oracle Graph with Autonomous Database 1-16

1.9 Migrating Property Graph Applications from Before Release 21c 1-19

1.10 Upgrading From Graph Server and Client 20.4.x to 21.1.0 1-21

1.11 Quick Start: Interactively Analyze Graph Data 1-24

1.11.1 Quick Start: Create, Query, and Analyze a Graph in In-Memory Graph
Server (PGX) 1-24

1.11.2 Quick Start: Create and Query a Graph in the Database, Load into In-
Memory Graph Server (PGX) for Analytics 1-29

1.11.2.1 Create and Query a Graph in the Database 1-30

1.11.2.2 Load the Graph into Memory and Run Graph Analytics 1-34

iii

1.11.3 Quick Start: Executing PGQL Queries in SQLcl 1-37

1.12 Managing Property Graphs With Python Client 1-37

1.12.1 Installing the Python Client 1-37

1.12.2 Using the Python Client 1-38

1.12.2.1 Interactive Mode Using Python Shell 1-38

1.12.2.2 Module Mode 1-40

1.12.3 Troubleshooting the Python Client 1-42

1.12.4 Uninstalling the Python Client 1-42

2 Using Property Graphs in an Oracle Database Environment

2.1 About Property Graphs 2-2

2.1.1 What Are Property Graphs? 2-2

2.1.2 What Is Oracle Database Support for Property Graphs? 2-3

2.1.2.1 In-Memory Graph Server (PGX) 2-3

2.1.2.2 Data Access Layer 2-4

2.1.2.3 Options for Property Graph Architecture 2-4

2.2 Property Graph Views on Oracle Database Tables 2-5

2.3 Property Graph Schema Objects for Oracle Database 2-9

2.3.1 Property Graph Tables (Detailed Information) 2-10

2.3.2 Default Indexes on Vertex (VT$) and Edge (GE$) Tables 2-14

2.3.3 Flexibility in the Property Graph Schema 2-14

2.4 Getting Started with Property Graphs 2-15

2.4.1 Required Privileges for Database Users 2-15

2.5 Using Java APIs for Property Graph Data 2-15

2.5.1 Overview of the Java APIs 2-16

2.5.1.1 Oracle Graph Property Graph Java APIs 2-16

2.5.1.2 Oracle Database Property Graph Java APIs 2-16

2.5.2 Parallel Loading of Graph Data 2-17

2.5.2.1 JDBC-Based Data Loading 2-17

2.5.2.2 External Table-Based Data Loading 2-26

2.5.2.3 SQL*Loader-Based Data Loading 2-30

2.5.3 Parallel Retrieval of Graph Data 2-33

2.5.4 Using an Element Filter Callback for Subgraph Extraction 2-35

2.5.5 Using Optimization Flags on Reads over Property Graph Data 2-38

2.5.6 Adding and Removing Attributes of a Property Graph Subgraph 2-40

2.5.7 Getting Property Graph Metadata 2-45

2.5.8 Merging New Data into an Existing Property Graph 2-46

2.5.9 Opening and Closing a Property Graph Instance 2-49

2.5.10 Creating Vertices 2-50

2.5.11 Creating Edges 2-50

iv

2.5.12 Deleting Vertices and Edges 2-51

2.5.13 Reading a Graph from a Database into an Embedded In-Memory
Analyst 2-51

2.5.14 Specifying Labels for Vertices 2-52

2.5.15 Building an In-Memory Graph 2-53

2.5.16 Dropping a Property Graph 2-54

2.5.17 Executing PGQL Queries 2-54

2.6 Managing Text Indexing for Property Graph Data 2-54

2.6.1 Configuring a Text Index for Property Graph Data 2-55

2.6.1.1 Configuring Text Indexes Using Oracle Text 2-55

2.6.2 Using Automatic Indexes for Property Graph Data 2-58

2.6.3 Using Manual Indexes for Property Graph Data 2-59

2.6.4 Executing Search Queries Over a Property Graph’s Text Indexes 2-60

2.6.4.1 Executing Search Queries Over a Text Index Using Oracle Text 2-60

2.6.5 Handling Data Types 2-61

2.6.5.1 Handling Data Types on Oracle Text 2-61

2.6.6 Updating Configuration Settings on Text Indexes for Property Graph
Data 2-62

2.6.7 Using Parallel Query on Text Indexes for Property Graph Data 2-62

2.6.7.1 Parallel Text Search Using Oracle Text 2-63

2.7 Access Control for Property Graph Data (Graph-Level and OLS) 2-64

2.7.1 Applying Oracle Label Security (OLS) on Property Graph Data 2-65

2.8 Using the Groovy-Based Shell with Property Graph Data 2-70

2.9 Using the Graph Zeppelin Interpreter Client 2-72

2.10 Creating Property Graph Views on an RDF Graph 2-74

2.11 Oracle Flat File Format Definition 2-77

2.11.1 About the Property Graph Description Files 2-78

2.11.2 Edge File 2-78

2.11.3 Vertex File 2-80

2.11.4 Encoding Special Characters 2-82

2.11.5 Example Property Graph in Oracle Flat File Format 2-82

2.11.6 Converting an Oracle Database Table to an Oracle-Defined Property
Graph Flat File 2-83

2.11.7 Converting CSV Files for Vertices and Edges to Oracle-Defined
Property Graph Flat Files 2-86

3 Using the In-Memory Graph Server (PGX)

3.1 Overview of the In-Memory Graph Server (PGX) 3-2

3.1.1 Connecting to the In-Memory Graph Server (PGX) 3-2

3.2 User Authentication and Authorization 3-3

3.2.1 Prepare the Graph Server for Database Authentication 3-5

v

3.2.2 Connect to the Server from JShell with Database Authentication 3-6

3.2.3 Read Data from the Database 3-7

3.2.4 Store the Database Password in a Keystore 3-9

3.2.5 Token Expiration 3-15

3.2.6 Advanced Access Configuration 3-15

3.2.6.1 Customizing Roles and Permissions 3-16

3.2.7 Revoking Access to the Graph Server 3-17

3.2.8 Examples of Custom Authorization Rules 3-17

3.3 Keeping the Graph in Oracle Database Synchronized with the Graph Server 3-20

3.3.1 Example of Synchronizing 3-21

3.4 Configuring the In-Memory Analyst 3-24

3.4.1 Specifying the Configuration File to the In-Memory Analyst 3-35

3.5 Storing a Graph Snapshot on Disk 3-36

3.6 Executing Built-in Algorithms 3-37

3.6.1 About the In-Memory Analyst 3-38

3.6.2 Running the Triangle Counting Algorithm 3-39

3.6.3 Running the PageRank Algorithm 3-39

3.7 Using Custom PGX Graph Algorithms 3-40

3.7.1 Writing a Custom PGX Algorithm 3-40

3.7.1.1 Collections 3-41

3.7.1.2 Iteration 3-42

3.7.1.3 Reductions 3-42

3.7.2 Compiling and Running a PGX Algorithm 3-43

3.7.3 Example Custom PGX Algorithm: PageRank 3-44

3.8 Creating Subgraphs 3-44

3.8.1 About Filter Expressions 3-45

3.8.2 Using a Simple Filter to Create a Subgraph 3-46

3.8.3 Using a Complex Filter to Create a Subgraph 3-46

3.8.4 Using a Vertex Set to Create a Bipartite Subgraph 3-47

3.9 Using Automatic Delta Refresh to Handle Database Changes 3-49

3.9.1 Configuring the In-Memory Server for Auto-Refresh 3-49

3.9.2 Configuring Basic Auto-Refresh 3-50

3.9.3 Reading the Graph Using the In-Memory Analyst or a Java Application 3-50

3.9.4 Checking Out a Specific Snapshot of the Graph 3-51

3.9.5 Advanced Auto-Refresh Configuration 3-52

3.10 Starting the In-Memory Analyst Server 3-53

3.10.1 Configuring the In-Memory Analyst Server 3-53

3.11 Deploying to Apache Tomcat 3-55

3.11.1 About the Authentication Mechanism 3-56

3.12 Deploying to Oracle WebLogic Server 3-56

3.12.1 Installing Oracle WebLogic Server 3-57

vi

3.13 Connecting to the In-Memory Analyst Server 3-57

3.13.1 Connecting with the In-Memory Analyst Shell 3-57

3.13.1.1 About Logging HTTP Requests 3-57

3.13.2 Connecting with Java 3-58

3.13.3 Connecting with the PGX REST API 3-58

3.14 Managing Property Graph Snapshots 3-64

3.15 User-Defined Functions (UDFs) in PGX 3-66

4 SQL-Based Property Graph Query and Analytics

4.1 Simple Property Graph Queries 4-2

4.2 Text Queries on Property Graphs 4-5

4.3 Navigation and Graph Pattern Matching 4-9

4.4 Navigation Options: CONNECT BY and Parallel Recursion 4-14

4.5 Pivot 4-18

4.6 SQL-Based Property Graph Analytics 4-19

4.6.1 Shortest Path Examples 4-19

4.6.2 Collaborative Filtering Overview and Examples 4-23

5 Property Graph Query Language (PGQL)

5.1 Creating a Property Graph using PGQL 5-1

5.2 Creating Property Graph Views Using PGQL 5-3

5.3 Pattern Matching with PGQL 5-3

5.4 Edge Patterns Have a Direction with PGQL 5-4

5.5 Vertex and Edge Labels with PGQL 5-5

5.6 Variable-Length Paths with PGQL 5-5

5.7 Aggregation and Sorting with PGQL 5-5

5.8 Executing PGQL Queries Against the In-Memory Graph Server (PGX) 5-6

5.8.1 Getting Started with PGQL 5-6

5.8.2 Supported PGQL Features 5-8

5.8.2.1 Limitations on Quantifiers 5-8

5.8.2.2 Limitations on WHERE and COST Clauses in Quantified Patterns 5-8

5.8.3 Java APIs for Executing CREATE PROPERTY GRAPH Statements 5-9

5.8.4 Java APIs for Executing SELECT Queries 5-9

5.8.4.1 Executing SELECT Queries Against a Graph in the In-memory
Graph Server (PGX) 5-10

5.8.4.2 Executing SELECT Queries Against a PGX Session 5-10

5.8.4.3 Iterating Through a Result Set 5-10

5.8.4.4 Printing a Result Set 5-12

5.8.5 Java APIs for Executing UPDATE Queries 5-13

vii

5.8.5.1 Executing UPDATE Queries against a Graph in the in-memory
Graph Server (PGX) 5-14

5.8.5.2 Executing UPDATE Queries Against a PGX Session 5-15

5.8.5.3 Updatability of Graphs Through PGQL 5-15

5.8.5.4 Altering the Underlying Schema of a Graph 5-15

5.8.6 Security Tools for Executing PGQL Queries 5-16

5.8.6.1 Using Bind Variables 5-16

5.8.6.2 Using Identifiers in a Safe Manner 5-18

5.8.7 Best Practices for Tuning PGQL Queries 5-18

5.8.7.1 Memory Allocation 5-19

5.8.7.2 Parallelism 5-19

5.8.7.3 Query Plan Explaining 5-19

5.9 Executing PGQL Queries Directly Against Oracle Database 5-20

5.9.1 PGQL Features Supported 5-21

5.9.1.1 Temporal Types 5-22

5.9.1.2 Type Casting 5-22

5.9.1.3 CONTAINS Built-in Function 5-23

5.9.2 Creating Property Graphs through CREATE PROPERTY GRAPH
Statements 5-24

5.9.3 Dropping Property Graphs through DROP PROPERTY GRAPH
Statements 5-30

5.9.4 Using the oracle.pg.rdbms.pgql Java Package to Execute PGQL
Queries 5-31

5.9.4.1 Basic Query Execution 5-34

5.9.4.2 Security Techniques for PGQL Queries 5-43

5.9.4.3 Using a Text Index with PGQL Queries 5-49

5.9.4.4 Obtaining the SQL Translation for a PGQL Query 5-52

5.9.4.5 Additional Options for PGQL Translation and Execution 5-60

5.9.4.6 Querying Another User’s Property Graph 5-79

5.9.4.7 Using Query Optimizer Hints with PGQL 5-81

5.9.5 Modifying Property Graphs through INSERT, UPDATE, and DELETE
Statements 5-85

5.9.5.1 Additional Options for PGQL Statement Execution 5-93

5.9.6 Performance Considerations for PGQL Queries 5-97

6 Graph Visualization Application

6.1 About the Graph Visualization Application 6-1

6.2 How does the Graph Visualization Application Work 6-1

6.3 Deploying Graph Visualization Application 6-2

6.3.1 How to Deploy the Graph Visualization Application 6-2

6.3.2 Deploying Graph Visualization Application in Oracle WebLogic Server 6-4

6.4 Using GraphViz 6-5

viii

6.4.1 GraphViz Modes 6-6

6.4.2 GraphViz Settings 6-6

6.4.3 Using Live Search 6-9

6.4.4 Using URL Parameters to Control GraphViz 6-10

7 Using the Machine Learning Library (PgxML) for Graphs

7.1 Using the DeepWalk Algorithm 7-1

7.1.1 Loading a Graph 7-2

7.1.2 Building a Minimal DeepWalk Model 7-3

7.1.3 Building a Customized DeepWalk Model 7-3

7.1.4 Training a DeepWalk Model 7-4

7.1.5 Getting the Loss Value For a DeepWalk Model 7-4

7.1.6 Computing Similar Vertices for a Given Vertex 7-5

7.1.7 Computing Similar Vertices for a Vertex Batch 7-5

7.1.8 Storing a Trained DeepWalk Model 7-6

7.1.8.1 Storing a Trained Model in Another Database 7-7

7.1.9 Loading a Pre-Trained DeepWalk Model 7-8

7.1.9.1 Loading a Pre-Trained Model From Another Database 7-8

7.1.10 Destroying a DeepWalk Model 7-9

7.2 Using the Supervised GraphWise Algorithm 7-10

7.2.1 Loading a Graph 7-10

7.2.2 Building a Minimal GraphWise Model 7-11

7.2.3 Advanced Hyperparameter Customization 7-12

7.2.4 Training a Supervised GraphWise Model 7-13

7.2.5 Getting the Loss Value For a Supervised GraphWise Model 7-13

7.2.6 Inferring the Vertex Labels for a Supervised GraphWise Model 7-13

7.2.7 Evaluating the Supervised GraphWise Model Performance 7-14

7.2.8 Inferring Embeddings for a Supervised GraphWise Model 7-14

7.2.9 Storing a Trained Supervised GraphWise Model 7-15

7.2.10 Loading a Pre-Trained Supervised GraphWise Model 7-16

7.2.11 Destroying a Supervised GraphWise Model 7-16

7.3 Using the Pg2vec Algorithm 7-17

7.3.1 Loading a Graph 7-18

7.3.2 Building a Minimal Pg2vec Model 7-18

7.3.3 Building a Customized Pg2vec Model 7-19

7.3.4 Training a Pg2vec Model 7-20

7.3.5 Getting the Loss Value For a Pg2vec Model 7-21

7.3.6 Computing Similar Graphlets for a Given Graphlet 7-21

7.3.7 Computing Similars for a Graphlet Batch 7-22

7.3.8 Inferring a Graphlet Vector 7-23

ix

7.3.9 Inferring Vectors for a Graphlet Batch 7-24

7.3.10 Storing a Trained Pg2vec Model 7-24

7.3.11 Loading a Pre-Trained Pg2vec Model 7-25

7.3.12 Destroying a Pg2vec Model 7-25

8 Spatial Support in Property Graphs

8.1 Representing Spatial Data in a Property Graph 8-1

8.2 Creating a Spatial Index on Property Graph Data 8-3

8.3 Querying Spatial Data in a Property Graph 8-4

9 OPG_APIS Package Subprograms

9.1 OPG_APIS.ANALYZE_PG 9-2

9.2 OPG_APIS.CF 9-4

9.3 OPG_APIS.CF_CLEANUP 9-7

9.4 OPG_APIS.CF_PREP 9-9

9.5 OPG_APIS.CLEAR_PG 9-10

9.6 OPG_APIS.CLEAR_PG_INDICES 9-11

9.7 OPG_APIS.CLONE_GRAPH 9-11

9.8 OPG_APIS.COUNT_TRIANGLE 9-12

9.9 OPG_APIS.COUNT_TRIANGLE_CLEANUP 9-13

9.10 OPG_APIS.COUNT_TRIANGLE_PREP 9-14

9.11 OPG_APIS.COUNT_TRIANGLE_RENUM 9-16

9.12 OPG_APIS.CREATE_EDGES_TEXT_IDX 9-17

9.13 OPG_APIS.CREATE_PG 9-18

9.14 OPG_APIS.CREATE_PG_SNAPSHOT_TAB 9-19

9.15 OPG_APIS.CREATE_PG_TEXTIDX_TAB 9-21

9.16 OPG_APIS.CREATE_STAT_TABLE 9-22

9.17 OPG_APIS.CREATE_SUB_GRAPH 9-23

9.18 OPG_APIS.CREATE_VERTICES_TEXT_IDX 9-24

9.19 OPG_APIS.DROP_EDGES_TEXT_IDX 9-26

9.20 OPG_APIS.DROP_PG 9-26

9.21 OPG_APIS.DROP_PG_VIEW 9-27

9.22 OPG_APIS.DROP_VERTICES_TEXT_IDX 9-27

9.23 OPG_APIS.ESTIMATE_TRIANGLE_RENUM 9-28

9.24 OPG_APIS.EXP_EDGE_TAB_STATS 9-30

9.25 OPG_APIS.EXP_VERTEX_TAB_STATS 9-31

9.26 OPG_APIS.FIND_CC_MAPPING_BASED 9-32

9.27 OPG_APIS.FIND_CLUSTERS_CLEANUP 9-33

9.28 OPG_APIS.FIND_CLUSTERS_PREP 9-34

x

9.29 OPG_APIS.FIND_SP 9-36

9.30 OPG_APIS.FIND_SP_CLEANUP 9-37

9.31 OPG_APIS.FIND_SP_PREP 9-38

9.32 OPG_APIS.GET_BUILD_ID 9-39

9.33 OPG_APIS.GET_GEOMETRY_FROM_V_COL 9-39

9.34 OPG_APIS.GET_GEOMETRY_FROM_V_T_COLS 9-41

9.35 OPG_APIS.GET_LATLONG_FROM_V_COL 9-42

9.36 OPG_APIS.GET_LATLONG_FROM_V_T_COLS 9-43

9.37 OPG_APIS.GET_LONG_LAT_GEOMETRY 9-44

9.38 OPG_APIS.GET_LATLONG_FROM_V_COL 9-45

9.39 OPG_APIS.GET_LONGLAT_FROM_V_T_COLS 9-46

9.40 OPG_APIS.GET_SCN 9-47

9.41 OPG_APIS.GET_VERSION 9-47

9.42 OPG_APIS.GET_WKTGEOMETRY_FROM_V_COL 9-48

9.43 OPG_APIS.GET_WKTGEOMETRY_FROM_V_T_COLS 9-49

9.44 OPG_APIS.GRANT_ACCESS 9-50

9.45 OPG_APIS.IMP_EDGE_TAB_STATS 9-51

9.46 OPG_APIS.IMP_VERTEX_TAB_STATS 9-52

9.47 OPG_APIS.PR 9-54

9.48 OPG_APIS.PR_CLEANUP 9-56

9.49 OPG_APIS.PR_PREP 9-57

9.50 OPG_APIS.PREPARE_TEXT_INDEX 9-58

9.51 OPG_APIS.RENAME_PG 9-59

9.52 OPG_APIS.SPARSIFY_GRAPH 9-59

9.53 OPG_APIS.SPARSIFY_GRAPH_CLEANUP 9-61

9.54 OPG_APIS.SPARSIFY_GRAPH_PREP 9-62

10

OPG_GRAPHOP Package Subprograms

10.1 OPG_GRAPHOP.POPULATE_SKELETON_TAB 10-1

Part I Supplementary Information for Property Graph Support

A Handling Property Graphs Using a Two-Tables Schema

A.1 Preparing the Two-Tables Schema A-2

A.2 Storing Data in a Property Graph Using a Two-Tables Schema A-4

A.3 Reading Data from a Property Graph Using a Two-Tables Schema A-8

xi

B About Property Graph Data Formats

B.1 GraphSON Data Format B-1

B.2 GraphML Data Format B-2

B.3 GML Data Format B-4

B.4 Oracle Flat File Format B-5

C Mapping Graph Server Roles to Default Privileges

D Disabling Transport Layer Security (TLS) in Graph Server

Index

xii

List of Figures

2-1 Simple Property Graph Example 2-2

2-2 Three-Tier Property Graph Architecture 2-5

2-3 Two-Tier Property Graph Architecture 2-5

3-1 Edges Matching src.prop == 10 3-45

3-2 Graph Created by the Simple Filter 3-46

3-3 Edges Matching the outDegree Filter 3-47

3-4 Graph Created by the outDegree Filter 3-47

4-1 Phones Graph for Collaborative Filtering 4-24

5-1 PGQL on Oracle Database (RDBMS) 5-20

6-1 Query Visualization 6-5

6-2 GraphViz Settings Window 6-7

6-3 Highlights Options for Vertices 6-8

7-1 Pg2vec - Visualization of Two Similar Graphlets 7-22

xiii

List of Tables

1-1 Components in the Oracle Graph Server and Client Deployment 1-3

1-2 Property Graph Sizing Recommendations 1-11

2-1 Metadata Tables for PG Views 2-6

2-2 Edge File Record Format 2-78

2-3 Vertex File Record Format 2-80

2-4 Special Character Codes in the Oracle Flat File Format 2-82

3-1 Advanced Access Configuration Options 3-15

3-2 Configuration Parameters for the In-Memory Analyst 3-25

3-3 Overview of Built-In Algorithms 3-38

3-4 Configuration Options for In-Memory Analyst Server 3-53

3-5 Fields for Each UDF 3-68

5-1 Type Casting Support in PGQL (From and To Types) 5-23

5-2 PGQL Translation and Execution Options 5-60

5-3 PGQL Statement Modification Options 5-93

6-1 Available URL Parameters 6-10

C-1 Mapping Graph Server Roles to Default Privileges C-1

xiv

Preface

This document provides conceptual and usage information about Oracle Database
support for working with property graph data.

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This document is intended for database and application developers in an Oracle
Database environment.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information, see the following documents:

• Oracle Spatial Developer's Guide

• Oracle Database Graph Developer's Guide for RDF Graph

• Oracle Spatial GeoRaster Developer's Guide

• Oracle Spatial Topology and Network Data Model Developer's Guide

• Oracle Big Data Spatial and Graph User's Guide and Reference

Conventions
The following text conventions are used in this document:

xv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xvi

Changes in This Release for This Guide

The following changes apply to property graph support that is shipped with Oracle
Graph Server and Client.

Oracle Graph Server and Client is required for using the property graph feature of
Oracle Database (see section 1.2), and is released four times a year.

New Features

Significant New Features in Oracle Graph Server and Client 21.1

• PgxML Library: Support for new graph-based machine learning algorithms:

– DeepWalk, Supervised GraphWise and Pg2vec

– Ability to store trained models and embeddings in the Oracle Database

See Using the Machine Learning Library (PgxML) for Graphs for more information.

• Define property graph views on Oracle Database tables and query them using
PGQL.
See Property Graph Views on Oracle Database Tables for more information.

• Enhanced graph server authentication security and user experience:

– Better auditability of authorization changes by storing graph server permission
mappings in the Oracle Database

– Auto-renewal of authentication tokens with automatic re-authentication upon
renewal

– Added API to easily re-authenticate when maximum amount of auto-renewals
is reached

See User Authentication and Authorization for more information.

See Upgrading From Graph Server and Client 20.4.x to 21.1.0 for more
information on migrating authorization rules if you are migrating from Graph Server
and Client 20.4.x to 21.1.0.

• Secured communication between graph server (PGX) and client is enforced using
TLS.
See Self-signed TLS certificate now generated upon RPM installation for more
details.

Significant New Features in Oracle Graph Server and Client 20.4

• Use CREATE PROPERTY GRAPH statement to create a graph from tables in the
database and make it available in the in-memory graph server (PGX)

• Python client for the in-memory graph server (PGX)

• Zeppelin 0.9 (Zeppelin 0.8 is no longer supported)

• Use database credentials to log into graph visualization tool

xvii

Significant new features in earlier Oracle Graph Server and Client releases
include:

• Graph Visualization tool: Lightweight, single-page web application to visualize
graphs.

• In-memory graph representation optimization for reduced memory usage and
faster performance.

• User-defined functions (UDFs), for creating custom graph algorithms and
extending product graph algorithms with Java or JavaScript syntax.

• Support for Autonomous Database.

• Graph server authentication and authorization based on Oracle Database users
and roles.

• New Synchronizer API to keep partitioned graphs up-to-date with changes in the
Oracle Database.

• PGQL features:

– Added a CREATE PROPERTY GRAPH statement to both PGQL on Oracle
Database and PGQL on PGX for creating property graphs from existing tables

– Added support for CHEAPEST and TOP k CHEAPEST path queries to PGQL on
Graph Server (PGX).

Note:

This support does not apply for PGQL queries executed directly
against graph in Oracle Database.

– Implemented the PGQL 1.3 language specification, which can be found at
https://pgql-lang.org/

– Added support for INSERT, UPDATE, and DELETE queries

– Added support for MATCH inside FROM, and optional ON clauses

– Added support for case insensitivity

– Added support for quoted identifiers

– Added support for subqueries after GROUP BY

– Added a PGQL plugin for SQLcl

– New built-in algorithms:

* Compute High Degree Vertices

* Create Distance Index

* Limited Shortest Path (Hop Distance)

* All Reachable Vertices/Edges

* Louvain (community detection)

* Python client for PGX

Changes in This Release for This Guide

xviii

https://pgql-lang.org/

Migrating Property Graph Applications to Oracle Database 21c

From Release 21c onwards, Oracle Graph Server and Client must be installed
separately. It is recommended to remove the older property graph libraries
from $ORACLE_HOME. See Uninstalling Previous Versions of Property Graph Libraries
for more details.

Deprecated Features

• PL/SQL API OPG_APIS.GET_SCN Function
The PL/SQL API OPG_APIS.GET_SCN function is deprecated. Instead,
to retrieve the current SCN (system change number), use the
DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER function:

SELECT dbms_flashback.get_system_change_number FROM DUAL;

• Two-Table Support
Support for the two-table format described in Handling Property Graphs Using
a Two-Tables Schema was deprecated in 19c and will be removed in a future
release.

• Apache Tinkerpop API Support
Apache Tinkerpop API support for Oracle Database was deprecated in 19c and is
scheduled to be removed in a future release.

• OraclePgqlResultSet
The oracle.pg.rdbms.OraclePgqlResultSet interface was deprecated in 19c and
will be removed in a future release. Instead, use the standardized interface
oracle.pgql.lang.ResultSet to retrieve values from a PGQL result set.

Desupported Features

• Graph property text search based on Apache Solr/Lucene is desupported. Instead,
use Oracle Text or PGQL query expressions.

• The PGX property type DATE is desupported. Instead, use LOCAL_DATE or
TIMESTAMP.

• Support for the Apache Groovy-based shell was deprecated in 19c and is now
desupported.

Changes in This Release for This Guide

xix

1
Property Graph Support Overview

This chapter provides an overview of Oracle Graph support for property graph
features.

• About the Property Graph Feature of Oracle Database
The Property Graph feature delivers advanced graph query and analytics
capabilities in Oracle Database.

• Property Graph Prerequisites
The requirements for using the Property Graph feature of Oracle Database are the
following.

• Property Graph Features
Graphs manage networks of linked data as vertices, edges, and properties of the
vertices and edges.

• Security Best Practices with Graph Data
Several security-related best practices apply when working with graph data.

• Interactive Graph Shell
Both the Oracle Graph server and client packages contain an interactive
command-line application for interacting with all the Java APIs of the product,
locally or on remote computers.

• Using Graph Server Functionality as a Library

• Storing Graphs in Oracle Database and Loading Graphs into Memory
You can work with graphs in two-tier mode (graph client connects directly to
Oracle Database), or three-tier mode (graph client connects to the graph server
(PGX) on the middle-tier, which then connects to Oracle Database).

• Using Oracle Graph with the Autonomous Database
Oracle Graph Server and Client supports the family of Oracle Autonomous
Database.

• Migrating Property Graph Applications from Before Release 21c
If you are migrating from a previous version of Oracle Spatial and Graph to
Release 21c, you may need to make some changes to existing property graph-
related applications.

• Upgrading From Graph Server and Client 20.4.x to 21.1.0
If you are upgrading from Graph Server and Client 20.4.x to 21.1.0 version, you
may need to create new roles in database and migrate authorization rules from
pgx.conf file to the database. Also, starting from Graph Server and Client Release
21.1.0, TLS is enforced at the time of the RPM file installation.

• Quick Start: Interactively Analyze Graph Data
This tutorial shows how you can quickly get started using property graph data.

• Managing Property Graphs With Python Client
This section describes how to install Python Client and how to use the Python
Client to work with Property Graphs.

1-1

1.1 About the Property Graph Feature of Oracle Database
The Property Graph feature delivers advanced graph query and analytics capabilities
in Oracle Database.

This feature supports graph operations, indexing, queries, search, and in-memory
analytics.

1.2 Property Graph Prerequisites
The requirements for using the Property Graph feature of Oracle Database are the
following.

• Oracle Graph Server and Client must be installed, as described later in this topic.

This is required to use the Property Graph feature of Oracle Database and is
supported for Oracle Database 12.2 and higher.

• AL16UTF16 (instead of UTF8) must be specified as the
NLS_NCHAR_CHARACTERSET.

AL32UTF8 (UTF8) should be the default character set, but AL16UTF16 must be the
NLS_NCHAR_CHARACTERSET.

Subtopics:

• Download Oracle Graph Server and Client

• Installation of PL/SQL Packages in Oracle Database

• Graph Server Installation

• Set up Transport Layer Security

• Add Permissions to Publish the Graph

• Graph Server Upgrade

• Graph Server Uninstallation

• Graph Client Installation

• Database Compatibility and Restrictions

Download Oracle Graph Server and Client

You can download Oracle Graph Server and Client from Oracle Software Delivery
Cloud.

Table 1-1 summarizes all the files contained in the Oracle Graph Server and Client
deployment.

<ver> denoted in the file name in the Table 1-1 reflects the downloaded Oracle Graph
Server and Client version.

Chapter 1
About the Property Graph Feature of Oracle Database

1-2

https://edelivery.oracle.com
https://edelivery.oracle.com

Table 1-1 Components in the Oracle Graph Server and Client Deployment

File Component Description

oracle-graph-<ver>.rpm Oracle Graph Server An rpm file to deploy
Oracle Graph Server.

oracle-graph-client-<ver>.zip Oracle Graph Client A zip file containing
Oracle Graph Client.

oracle-graph-zeppelin-
interpreter-<ver>.zip

Oracle Graph Apache
Zeppelin Client

A zip file containing
libraries to use
Apache Zeppelin to
work with Oracle
Graph.

oracle-graph-hdfs-connector-
<ver>.zip

Oracle Graph HDFS
Connector

A zip file containing
libraries to connect
Oracle Graph Server
with the Apache
Hadoop Distributed
Filesystem (HDFS).

oracle-graph-sqlcl-plugin-
<ver>.zip

Oracle Graph PGQL Plugin
for SQLcl

A plugin for SQLcl to
run PGQL queries in
SQLcl.

oracle-graph-webapps-<ver>.zip Oracle Graph Web
Applications

A zip file
containing .war files
for deploying graph
servers in an
application server.

oracle-graph-plsql-<ver>.zip Oracle Graph PL/SQL
Patch

A zip file containing
PL/SQL packages. It
is recommended to
update the PL/SQL
Graph packages
in your database
with these packages.
Instructions are in the
README file.

Installation of PL/SQL Packages in Oracle Database

Oracle Graph Server and Client will work with Oracle Database 12.2 onward.
However, you must install the updated PL/SQL packages that are part of the Oracle
Graph Server and Client download.

1. Download the Oracle Graph PL/SQL Patch component, which is a part of the
Oracle Graph Server and Client download from Oracle Software Delivery Cloud.

2. Unzip the file oracle-graph-plsql-<ver>.zip into a directory of your choice.
<ver> denotes the version downloaded for the Oracle Graph PL/SQL Patch for
PL/SQL.

3. Install the PL/SQL packages:

a. There are two directories, one for users with Oracle Database 18c or below,
and one for users with Oracle Database 19c or above. As a database user
with DBA privilges, follow the instructions in the README.md file in the

Chapter 1
Property Graph Prerequisites

1-3

https://edelivery.oracle.com/

appropriate directory (that matches your database version). This has to be
done for every PDB you will use the graph feature in. For example,

-- Connect as SYSDBA
SQL> alter session set container=<YOUR_PDB_NAME>;
SQL> @opgremov.sql
SQL> @catopg.sql

4. Create a database user in the database for working with graphs:

a. As a database user with DBA privileges, create a user <graphuser>, and grant
the necessary privileges.

i. If you plan to use a three-tier architecture (graph queries and analytics
executed in the in-memory graph server (PGX), then grant privileges as
described in the following command:

SQL> GRANT CREATE SESSION, CREATE TABLE, CREATE VIEW TO <graphuser>

ii. If you plan to use a two-tier architecture and run graph queries in the
database, then grant privileges as described in Required Privileges for
Database Users:

SQL> GRANT CREATE SESSION, ALTER SESSION, CREATE TABLE,
CREATE PROCEDURE, CREATE TYPE, CREATE SEQUENCE, CREATE VIEW,
CREATE TRIGGER TO <graphuser>

b. As a <graphuser> in the database, check that the PL/SQL update is
successful:

SQL> connect <graphuser>/<password>
SQL> select opg_apis.get_opg_version() from dual;
 -- Should return 20.4 if you are using
 -- Graph Server and Client 20.4

5. Grant the appropriate roles (GRAPH_DEVELOPER or GRAPH_ADMINISTRATOR), to the
database user created in step 4 for working with the graphs.

Note:

• See User Authentication and Authorization for more information on
authorization rules for Graph Server (PGX) and Client 21.1.

• See Upgrading From Graph Server and Client 20.4.x to 21.1.0 for
more information if you are migrating to Graph Server (PGX) and
Client 21.1 from an earlier version.

SQL> GRANT GRAPH_DEVELOPER to <graphuser>
SQL> GRANT GRAPH_ADMINISTRATOR to <adminuser>

Chapter 1
Property Graph Prerequisites

1-4

Graph Server Installation

Oracle Graph Server is available as a separate downloadable package, and is
required to use the Property Graph feature of Oracle Database. Do not use the
libraries available in $ORACLE_HOME/md/property_graph, as these will be removed.

For installing the Graph server, the prerequisites are:

• Oracle Linux 6 or 7 x64 or a similar Linux distribution such as RedHat (Using the
Machine Learning Library (PgxML) for Graphs requires Oracle Linux 7)

• Oracle JDK 8 or JDK 11

Graph server can run standalone, or in Oracle WebLogic Server, or Apache Tomcat.
For instructions to deploy Graph server in Oracle WebLogic Server or Apache Tomcat,
see:

• Deploying to Oracle WebLogic Server

• Deploying to Apache Tomcat

The installation steps for installing Graph server in standalone mode are:

1. As a root user or using sudo, install the RPM file using the rpm command line
utility:

sudo rpm -i oracle-graph-<version>.rpm

Where <version> reflects the version that you downloaded. (For example:
oracle-graph-20.4.0.0.0.x86_64.rpm)

The .rpm file is the graph server.

Note:

• Self-signed TLS certificates are automatically generated upon RPM
file installation.

• You can also choose to configure and set up transport layer security
(TLS) in graph server. See Set up Transport Layer Security for more
details.

• For demonstration purposes, if you wish to disable transport layer
security (TLS) in graph server, see Disabling Transport Layer
Security (TLS) in Graph Server for more details.

2. As root, add operating system users allowed to use the server installation to the
operating system group oraclegraph. For example:

usermod -a -G oraclegraph <graphuser>

This adds the specified graph user to the group oraclegraph.

Note that <graphuser> must log out and log in again for this to take effect.

Chapter 1
Property Graph Prerequisites

1-5

3. As <graphuser>, configure the server by modifying the files under /etc/oracle/
graph by following the steps under Prepare the Graph Server for Database
Authentication.

4. Ensure that authentication is enabled for database users that will connect to the
graph server, as explained in User Authentication and Authorization.

5. As a root user or using sudo, start the PGX server by executing the following
command:

sudo systemctl start pgx

The PGX server is now ready to accept requests. Log files can be found in /var/log/
oracle/graph.

Additional installation operations are required for specific use cases, such as:

• Analyze property graphs using Python (see Managing Property Graphs With
Python Client).

• Deploy the graph server as a web application with Oracle WebLogic Server (see
Deploying to Oracle WebLogic Server).

• Deploy GraphViz in Oracle WebLogic Server (see Deploying Graph Visualization
Application in Oracle WebLogic Server).

• Deploy the graph server as a web application with Apache Tomcat (see Deploying
to Apache Tomcat).

Set up Transport Layer Security

The graph server, by default, allows only encrypted connections using Transport Layer
Security (TLS). TLS requires the server to present a server certificate to the client and
the client must be configured to trust the issuer of that certificate.

Starting with Graph Server and Client Release 21.1, the RPM file installation
generates a self-signed certificate into /etc/oracle/graph, which the server uses to
enable TLS by default. If self-signed certificates are sufficient for you to get started
and if your connections are only to localhost, you can skip to Configuring the client to
trust the self-signed certificate .

Configure the graph server

Note:

If you deploy the graph server into your web server using the web
applications download package, then this section does not apply. Please
refer to the manual of your web server for instructions on how to configure
TLS.

Edit the file at /etc/oracle/graph/server.conf, and specify the paths to the server
certificate and the server's private key in PEM format. For example:

{
 "port": 7007,
 "enable_tls": true,

Chapter 1
Property Graph Prerequisites

1-6

 "server_private_key": "/etc/oracle/graph/server_key.pem",
 "server_cert": "/etc/oracle/graph/server_certificate.pem",
 "enable_client_authentication": false,
 "working_dir": "/opt/oracle/graph/pgx/tmp_data"
}

Restart the server.

Note:

• You should use a certificate issued by a certificate authority (CA) which
is trusted by your organization. If you do not have a CA certificate, you
can temporarily create a self-signed certificate and get started.

• Always use a valid certificate trusted by your organization. We do
not recommend the usage of self-signed certificates for production
environments.

Generate self-signed certificates

The following example shows how to generate a self-signed certificate:

cd /etc/oracle/graph
openssl req -new -newkey rsa:2048 -days 365 -nodes -x509 -subj "/C=US/
ST=MyState/L=MyTown/O=MyOrganization/CN=ROOT" -keyout ca_key.pem -out
ca_certificate.pem
openssl genrsa -out server_key_traditional.pem 2048
openssl pkcs8 -topk8 -in server_key_traditional.pem -inform pem -out
server_key.pem -outform pem -nocrypt
openssl req -new -subj "/C=US/ST=MyState/L=MyTown/O=MyOrganization/
CN=localhost" -key server_key.pem -out server.csr
chmod 600 server_key.pem
openssl x509 -req -CA ca_certificate.pem -CAkey ca_key.pem -in
server.csr -out server_certificate.pem -days 365 -CAcreateserial

Note:

• The certificate mentioned in the above example will only work for the
host localhost. If you have a different domain, you must replace
localhost with your domain name.

• The above self-signed certificate is valid only for 365 days.

Configuring a client to trust the self-signed certificate

Trusting a self-signed certificate when using a Java client

To configure a Java client (including JShell) to trust the self-signed certificate, the root
certificate must be imported to your Java installation local trust store. Therefore, you
must import the root certificate to the Java installation used by the JShell client.

Chapter 1
Property Graph Prerequisites

1-7

To do so, execute the following command as a root user or with sudo and make sure
that JAVA_HOME is set:

Note:

The JShell client requires Java 11.

sudo keytool -import -trustcacerts -keystore $JAVA_HOME/jre/lib/
security/cacerts -storepass changeit -alias pgx -file /etc/oracle/graph/
ca_certificate.pem -noprompt

where changeit is the sample keystore password. You can change this password to
a password of your choice. Be sure to remember this password as you will need it to
modify the certificate.

If you are upgrading the graph server from a previous release, you must first delete the
certificate by excecuting the following command appropriate to your Java version. You
must run the command using sudo or as a root user:

sudo keytool -delete -alias pgx -keystore $JAVA_HOME/jre/lib/security/
cacerts

And then import the new certificate.

Trusting a self-signed certificate when using a Python client

To configure a Python client to trust the self-signed certificate, you need to set the
SSL_CERT_FILE environment variable pointing to the root certificate, before you start
the Python application.

Consider the following example:

export SSL_CERT_FILE=/etc/oracle/graph/ca_certificate.pem

Trusting a self-signed certificate when using the Graph Visualization Application

The following are the configuration steps when using the Graph Visualization
Application to trust the self-signed certificate:

1. Import the root certificate to the Java installation used by the graph server (PGX).
To do so, execute the following command (that matches your Java version) as a
root user or with sudo:

• Java 8 (make sure JAVA_HOME is set):

sudo keytool -import -trustcacerts -keystore $JAVA_HOME/jre/lib/
security/cacerts -storepass changeit -alias pgx -file /etc/
oracle/graph/ca_certificate.pem -noprompt

Chapter 1
Property Graph Prerequisites

1-8

• Java 11 (make sure JAVA11_HOME is set):

sudo keytool -import -trustcacerts -keystore $JAVA11_HOME/lib/
security/cacerts -storepass changeit -alias pgx -file /etc/
oracle/graph/ca_certificate.pem -noprompt

where changeit is the sample keystore password. You can change this password
to a password of your choice. Be sure to remember this password as you will need
it to modify the certificate.

2. Connect to your browser for running the Graph Visualization application.
One of the following messages might appear:

• Your connection is not private

• Your connection is not secure

3. Click the Continue or Accept button to proceed.

Add Permissions to Publish the Graph

Any graph in your Graph Server session must be published to be viewable in the
graph visualization tool accessed in your browser, as that can be a different session.
Grant PGX_SESSION_ADD_PUBLISHED_GRAPH permission to the GRAPH_DEVELOPER user in
the database as shown in the following statement:

GRANT PGX_SESSION_ADD_PUBLISHED_GRAPH TO GRAPH_DEVELOPER

Note:

• See User Authentication and Authorization for more information on
authorization rules for Graph Server (PGX) and Client 21.1.

• See Upgrading From Graph Server and Client 20.4.x to 21.1.0 for more
information if you are migrating to Graph Server (PGX) and Client 21.1
from an earlier version.

Graph Server Upgrade

To upgrade the graph server, make sure the graph server is shut down, then execute
the following command with the newer RPM file as an argument. You must run the
command as a root user or with sudo. For example:

sudo rpm -U oracle-graph-20.2.0.0.0.x86_64.rpm

Graph Server Uninstallation

To uninstall the graph server, make sure the graph server is shut down. Then run the
following command as a root user or with sudo:

sudo rpm -e oracle-graph

Chapter 1
Property Graph Prerequisites

1-9

Graph Client Installation

For installing the Graph client, the prerequisites are:

• A Unix-based operation system (such as Linux) or macOS or Microsoft Windows

• Oracle JDK 11

The base installation steps for the Graph client are:

1. Download Oracle Graph Client 20.1 from Oracle Software Cloud.

2. Unzip the file into a directory of your choice.

3. Connect to a PGX server using JShell. For example:

cd
 <client-install-dir>./bin/opg-jshell --base_url https://
<host>:7007

Additional installation operations are required for specific use cases, such as:

• Install the client into Apache Zeppelin.

Database Compatibility and Restrictions

Oracle Graph Server and Client will work with Oracle Database 12.2 onward. This
includes working with the family of Oracle Autonomous Database -- all versions
of Oracle Autonomous Data Warehouse (shared), Oracle Autonomous Database
(shared), and Oracle Autonomous Database (dedicated).

For details, including any limitations and actions you should take to address them, see
"Database Compatibility Matrix for Oracle Graph Server and Client".

1.3 Property Graph Features
Graphs manage networks of linked data as vertices, edges, and properties of the
vertices and edges.

Graphs are commonly used to model, store, and analyze relationships found in social
networks, cybersecurity, utilities and telecommunications, life sciences and clinical
data, and knowledge networks.

Typical graph analyses encompass graph traversal, recommendations, finding
communities and influencers, and pattern matching. Industries including
telecommunications, life sciences and healthcare, security, media, and publishing can
benefit from graphs.

The property graph features of Oracle Special and Graph support those use cases
with the following capabilities:

• A scalable graph database

• Developer-based APIs based upon PGQL and Java graph APIs

• Text search and query through integration with Oracle Text

• A parallel, in-memory graph server (PGX) for running graph queries and graph
analytics

Chapter 1
Property Graph Features

1-10

https://edelivery.oracle.com
https://blogs.oracle.com/oraclespatial/database-compatibility-matrix-for-oracle-graph-server-and-client

• A fast, scalable suite of social network analysis functions that include ranking,
centrality, recommender, community detection, and path finding

• Parallel bulk load and export of property graph data in Oracle-defined flat files
format

• A powerful Graph Visualization (GraphViz) application

• Notebook support through integration with Apache Zeppelin

• Property Graph Sizing Recommendations

1.3.1 Property Graph Sizing Recommendations
The following are recommendations for property graph installation.

Table 1-2 Property Graph Sizing Recommendations

Graph Size Recommended Physical
Memory to be Dedicated

Recommended Number of CPU
Processors

10 to 100M
edges

Up to 14 GB RAM 2 to 4 processors, and up to 16
processors for more compute-intensive
workloads

100M to 1B
edges

14 GB to 100 GB RAM 4 to 12 processors, and up to 16 to 32
processors for more compute-intensive
workloads

Over 1B edges Over 100 GB RAM 12 to 32 processors, or more for
especially compute-intensive workloads

1.4 Security Best Practices with Graph Data
Several security-related best practices apply when working with graph data.

Sensitive Information

Graph data can contain sensitive information and should therefore be treated with the
same care as any other type of data. Oracle recommends the following considerations
when using a graph product:

• Avoid storing sensitive information in your graph if that information is not required
for analysis. If you have existing data, only model the relevant subset you need for
analysis as a graph, either by applying a preprocessing step or by using subgraph
and filtering techniques that are part of graph product.

• Model your graph in a way that vertex and edge identifiers are not considered
sensitive information.

• Do not deploy the product into untrusted environments or in a way that gives
access to untrusted client connections.

• Make sure all communication channels are encrypted and that authentication is
always enabled, even if running within a trusted network.

Least Privilege Accounts

The database user account that is being used by the in-memory analyst (PGX) to read
data should be a low-privilege, read-only account. PGX is an in-memory accelerator

Chapter 1
Security Best Practices with Graph Data

1-11

that acts as a read-only cache on top of the database, and it does not write any data
back to the database.

If your application requires writing graph data and later analyzing it using PGX, make
sure you use two different database user accounts for each component.

1.5 Interactive Graph Shell
Both the Oracle Graph server and client packages contain an interactive command-
line application for interacting with all the Java APIs of the product, locally or on
remote computers.

This interactive graph shell dynamically interprets command-line inputs from the user,
executes them by invoking the underlying functionality, and can print results or process
them further. The graph shell provides a lightweight and interactive way of exercising
graph functionality without creating a Java application.

The graph shell is especially helpful if want to do any of the following:

• Quickly run a "one-off" graph analysis on a specific data set, rather than creating a
large application

• Run getting started examples and create demos on a sample data set

• Explore the data set, trying different graph analyses on the data set interactively

• Learn how to use the product and develop a sense of what the built-in algorithms
are good for

• Develop and test custom graph analytics algorithms

This graph shell is implemented on top of the Java Shell tool (JShell). As such, it
inherits all features provided by JShell such as tab-completion, history, reverse search,
semicolon inference, script files, and internal variables.

The graph shell connects to a graph server (PGX) specified by the --base_url
parameter. When the --base_url parameter is not specified, the graph shell creates a
local PGX instances, to run graph functions in the same JVM as the shell. See Storing
Graphs in Oracle Database and Loading Graphs into Memory for more details.

Starting the Graph Shell

The Graph Shell uses JShell, which means the shell needs to run on Java 11 or later.

After installation, the shell executables are found in /opt/oracle/graph/bin after
server installation, and <CLIENT_INSTALL_DIR>/bin after the client installation. To
launch the graph shell and connect to a graph server (PGX) enter the following in
your terminal:

./bin/opg-jshell --base_url https://myserver.com:7007

When the shell has started, the following command line prompt appears:

opg-jshell>

Chapter 1
Interactive Graph Shell

1-12

If you have multiple versions of Java installed, you can easily switch between
installations by setting the JAVA_HOME variable before starting the shell. For
example:

export JAVA_HOME=/usr/lib/jvm/java-11-oracle

Command-line Options

To view the list of available command-line options, add --help to the opg-jshell
command:

./bin/opg-jshell --help

Batch Execution of Scripts

The graph shell can execute a script by passing the path(s) to the script(s) to the
opg-jshell command. For example:

./bin/opg-jshell /path/to/script.jsh

Predefined Functions

The graph shell provides the following utility functions:

• println(String): A shorthand for System.out.println(String).

• loglevel(String loggerName, String levelName): A convenient function to set
the loglevel.

The loglevel function allows you to set the log level for a logger. For example,
loglevel("ROOT", "INFO") sets the level of the root logger to INFO. This causes all
logs of INFO and higher (WARN, ERROR, FATAL) to be printed to the console.

Script Arguments

You can provide parameters to the script. For example:

./bin/opg-jshell /path/to/script.jsh script-arg-1 script-arg-2

In this example, the script /path/to/script.jsh can access the arguments via the
scriptArgs system property. For example:

println(System.getProperty("scriptArgs"))// Prints: script-arg-1 script-
arg-2

Staying in Interactive Mode

By default, the graph shell exits after it finishes execution. To stay in interactive mode
after the script finishes successfully, pass the --keep_running flag to the shell. For
example:

./bin/opg-jshell -b https://myserver.com:7007/ /path/to/script.jsh --
keep_running

Chapter 1
Interactive Graph Shell

1-13

1.6 Using Graph Server Functionality as a Library
The graph functions available with the graph server (PGX) can be used as a library in
your application.

For such use cases, development and testing can be done using the interactive graph
shell in embedded (local) mode. This means a local PGX instance is created and runs
in the same JVM as the client. If you start the shell without any parameters it will start
a local PGX instance and run in embedded mode.

Starting the graph shell to use the graph server in embedded mode is only supported
in graph shell executables available with the Graph Server installation. You can launch
the graph shell using the following commands:

cd /opt/oracle/graph/bin
./bin/opg-jshell

The following shows the response from the graph shell :

opg-jshell>

The local PGX instance will try to load a PGX configuration file from:

/etc/oracle/graph/pgx.conf

You can change the location of the configuration file by passing the --pgx_conf
command-line option followed by the path to the configuration file:

start local PGX instance with custom config
./bin/opg-jshell --pgx_conf <path_to_pgx.conf>

1.7 Storing Graphs in Oracle Database and Loading Graphs
into Memory

You can work with graphs in two-tier mode (graph client connects directly to Oracle
Database), or three-tier mode (graph client connects to the graph server (PGX) on
the middle-tier, which then connects to Oracle Database).

Both modes for connecting to Oracle Database can be used regardless of whether the
database is autonomous or not autonomous.

The database schema storing the graph must have the privileges listed in Required
Privileges for Database Users.

If you are using the Oracle Autonomous Database, see also Using Oracle Graph with
the Autonomous Database for information about two-tier and three-tier deployments.

• Two-Tier Mode
In two-tier mode, the client graph application connects directly to Oracle Database.

Chapter 1
Using Graph Server Functionality as a Library

1-14

• Three-Tier Mode
In three-tier mode, the client graph application connects to the graph server (PGX)
in the middle tier, and the graph server connects to Oracle Database.

1.7.1 Two-Tier Mode
In two-tier mode, the client graph application connects directly to Oracle Database.

The graph is stored in the property graph schema (see Property Graph Schema
Objects for Oracle Database).

You can use the PGQL DDL statement CREATE PROPERTY GRAPH to create a
graph from database tables and store it in the property graph schema. You can then
run PGQL queries on this graph from JShell shell, Java application, or the graph
visualization tool.

The graph can be loaded from the property graph schema into memory in the graph
server for faster processing and for using the analytics API.

1.7.2 Three-Tier Mode
In three-tier mode, the client graph application connects to the graph server (PGX) in
the middle tier, and the graph server connects to Oracle Database.

The graph can be loaded from the property graph schema into the graph server, or
directly from database tables into the graph server.

• Loading a Graph from Property Graph Schema:

Loading a graph from the property graph schema into memory in the graph server
is the same as in the two-tier mode.

• Loading a Graph Directly from Database Tables:

When you load the graph from database tables into memory in the graph server,
you create the graph in memory by directly reading data from the database tables.
You do not create a graph in the property graph schema.

For more information about loading a graph from database tables into memory,
see Store the Database Password in a Keystore.

After the graph is loaded into memory, you can run PGQL queries on this graph
from JShell shell, Java application, or the graph visualization tool. You can run graph
analytics API from JShell shell or Java application, and visualize the results in the
graph visualization application (GraphViz).

1.8 Using Oracle Graph with the Autonomous Database
Oracle Graph Server and Client supports the family of Oracle Autonomous Database.

This includes all versions of Oracle Autonomous Data Warehouse (shared), Oracle
Autonomous Database (shared), and Oracle Autonomous Database (dedicated).

You can connect in two-tier mode (connect directly to Autonomous Database) or three-
tier mode (connect to PGX on the middle tier, which then connects to Autonomous
Database). (For basic information about two-tier and three-tier connection modes, see
Storing Graphs in Oracle Database and Loading Graphs into Memory.)

Chapter 1
Using Oracle Graph with the Autonomous Database

1-15

The database schema storing the graph must have the privileges listed in Required
Privileges for Database Users.

• Two-Tier Deployments of Oracle Graph with Autonomous Database
In two-tier deployments, the client graph application connects directly to the
Autonomous Database.

• Three-Tier Deployments of Oracle Graph with Autonomous Database
In three-tier deployments, the client graph application connects to PGX in a middle
tier, and PGX connects to the Autonomous Database.

1.8.1 Two-Tier Deployments of Oracle Graph with Autonomous
Database

In two-tier deployments, the client graph application connects directly to the
Autonomous Database.

1. Install Oracle Graph Server, as explained in Property Graph Prerequisites.

2. Establish a JDBC connection, as described in the Oracle Autonomous Warehouse
documentation.
Note that the Oracle Graph Server installation already contains all the necessary
JDBC client libraries for connecting to Autonomous Databases. You do not have
to install them yourself. You only have to download the wallet, unzip it to a secure
location, and then reference it when establishing the connection.

For example:

opg-jshell-rdbms> var jdbcUrl =
"jdbc:oracle:thin:@db201901151442_low?TNS_ADMIN=/etc/wallet"
opg-jshell-rdbms> var user = "hr"
opg-jshell-rdbms> var pass = "ChangeMe1234#_"
opg-jshell-rdbms> var conn = DriverManager.getConnection(jdbcUrl,
user, pass)
conn ==> oracle.jdbc.driver.T4CConnection@57e6cb01

3. Use the connection in your graph application.

1.8.2 Three-Tier Deployments of Oracle Graph with Autonomous
Database

In three-tier deployments, the client graph application connects to PGX in a middle tier,
and PGX connects to the Autonomous Database.

The wallets downloaded from the Oracle Cloud Console are mainly routing wallets,
meaning they are used to route the connection to the right database and to encrypt
the connection. In most cases, they are not auto-login wallets, so they do not contain
the password for the actual connection. The password usually needs to be provided
separately to the wallet location.

The graph server does not support a wallet stored on the client file system or provided
directly by remote users. The high level implications of this are:

• The server administrator provides the wallet and stores the wallet securely on the
server's file system.

Chapter 1
Using Oracle Graph with the Autonomous Database

1-16

https://docs.oracle.com/en/cloud/paas/autonomous-data-warehouse-cloud/user/connect-jdbc-thin-wallet.html#GUID-5ED3C08C-1A84-4E5A-B07A-A5114951AA9E
https://docs.oracle.com/en/cloud/paas/autonomous-data-warehouse-cloud/user/connect-jdbc-thin-wallet.html#GUID-5ED3C08C-1A84-4E5A-B07A-A5114951AA9E

• Similar to Java EE connection pools, remote users will use that wallet when
connecting. This means the server administrator trusts all remote users to use the
wallet. As with any production deployments, the PGX server must be configured to
enforce authentication and authorization to establish that trust.

• Remote users still need to provide a user name and password when sending a
graph read request, just as with non-autonomous databases.

• You can only configure one wallet for each PGX server.

Having the same PGX server connecting to multiple Autonomous Databases is not
supported. If you have that use case, start one PGX server for each Autonomous
Database.

Pre-loaded graphs

To read a graph from Autonomous Database into PGX at server startup, follow the
steps described in Store the Database Password in a Keystore to:

1. Create a Java Keystore containing the database password

2. Create a PGX graph configuration file describing the location and properties of the
graph to be loaded

3. Update the /opt/oracle/graph/pgx.conf file to reference the graph configuration
file

As root user, edit the service file at /etc/systemd/system/pgx.service and specify
the environment variable under the [Service] directive:

Environment="JAVA_OPTS=-Doracle.net.tns_admin=/etc/oracle/graph/wallets"

Make sure that the directory (/etc/oracle/graph/wallets in the preceding code) is
readable by the Oracle Graph user, which is the user that starts up the PGX server
when using systemd.

In addition, edit the ExecStart command to specify the location of the keystore
containing the password:

ExecStart=/bin/bash start-server --secret-store /etc/keystore.p12

Note:

Please note that /etc/keystore.p12 must not be password protected for
this to work. Instead protect the file via file system permission that is only
readable by oraclegraph user.

After the file is edited, reload the changes using:

systemctl daemon-reload

Chapter 1
Using Oracle Graph with the Autonomous Database

1-17

Finally start the server:

sudo systemctl start pgx

On-demand graph loading

To allow remote users of PGX to read from the Autonomous Database on demand,
you can choose from two approaches:

• Provide the path to the wallet at server startup time via the oracle.net.tns_admin
system property. Remote users have to provide the TNS address name, username
and keystore alias (password) in their graph configuration files. The wallet is
stored securely on the graph server's file system, and the server administrator
trusts all remote users to use the wallet to connect to an Autonomous Database.

For example, the server administrator edits the service file at /etc/systemd/
system/pgx.service and specifies the environment variable the under the
[Service] directive:

Environment="JAVA_OPTS=-Doracle.net.tns_admin=/etc/oracle/graph/
wallets"

and then start the server using

systemctl start pgx

The /etc/oracle/graph/wallets/tnsnames.ora file contains an address as
follows:

sombrero_medium = (description= (retry_count=20)(retry_delay=3)
(address=(protocol=tcps)(port=1522)(host=adb.us-
ashburn-1.oraclecloud.com))
(connect_data=(service_name=l8lgholga0ujxsa_sombrero_medium.adwc.ora
clecloud.com))(security=(ssl_server_cert_dn="CN=adwc.uscom-
east-1.oraclecloud.com,OU=Oracle BMCS US,O=Oracle
Corporation,L=Redwood City,ST=California,C=US")))

Now remote users can read data into the server by sending a graph configuration
file with the following connection properties:

{
 ...
 "jdbc_url": "jdbc:oracle:thin:@sombrero_medium",
 "username": "hr",
 "keystore_alias": "database1",
 ...
}

Note that the keystore still lives on the client side and should contain the password
for the hr user referenced in the config object, as explained in Store the Database
Password in a Keystore. A similar approach works for Tomcat or WebLogic Server
deployments.

Chapter 1
Using Oracle Graph with the Autonomous Database

1-18

• Use Java EE connection pools in your web application server. Remote users only
have to provide the name of the datasource in their graph configuration files. The
wallet and the connection credentials are stored securely in the web application
server's file system, and the server administrator trusts all remote users to use a
connection from the pool to connect to an Autonomous Database.

You can find instructions how to set up such a data source at the following
locations:

– WebLogic Server: Configuring a WebLogic Data Source to use ATP

– Tomcat: https://www.oracle.com/technetwork/database/application-
development/jdbc/documentation/atp-5073445.html#Tomcat

If you gave the data source the name adb_ds, you can the reference them by
sending a graph configuration file with the following connection properties:

{
 ...
 "datasource_id": "adb_ds",
 ...
}

1.9 Migrating Property Graph Applications from Before
Release 21c

If you are migrating from a previous version of Oracle Spatial and Graph to Release
21c, you may need to make some changes to existing property graph-related
applications.

Also note that Oracle Graph Server and Client is required for property graph
applications. This can be downloaded from Oracle Software Delivery Cloud or from
Oracle Downloads page.

Security-Related Changes

The Property Graph feature contains a series of enhancements to further strengthen
the security of the property graph component of product. The following enhancements
may require manual changes to existing graph applications so that they continue to
work properly.

• Graph configuration files now require sensitive information such as
passwords to be stored in Java Keystore files
If you use graph configuration files you are required to use Java Keystore files
to store sensitive information such as passwords. (See Store the Database
Password in a Keystore for how to create and reference such a keystore.)

All existing graph configuration files with secrets in them must be migrated to the
keystore-based approach.

• In a three-tier deployment, access to the PGX server file system requires a
directories allowlist
By default, the PGX server does not allow remote access to the local file system.
This can be explicitly allowed, though, in /etc/oracle/graph/pgx.conf by setting
allow_local_filesystem to true. If you set allow_local_filesystem to true,

Chapter 1
Migrating Property Graph Applications from Before Release 21c

1-19

https://blogs.oracle.com/weblogicserver/atp-database-use-with-weblogic-server-v2
https://www.oracle.com/technetwork/database/application-development/jdbc/documentation/atp-5073445.html#Tomcat
https://www.oracle.com/technetwork/database/application-development/jdbc/documentation/atp-5073445.html#Tomcat
https://edelivery.oracle.com/osdc/faces/Home.jspx;jsessionid=vkBw18Qn2e8sD-qiMKBhvTE1KGzdAecEuVRxNVq-qYyUUUJsW5gO!-1637381810
https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client.html

you must also specify a list of directories that are allowed to be accessed, by
setting datasource_dir_whitelist. For example:

"allow_local_filesystem": true,
"datasource_dir_whitelist": ["/scratch/data1", "/scratch/data2"]

This will allow remote users to read and write data on the server's file-system from
and into /scratch/data1 and /scratch/data2.

• In a three-tier deployment, reading from remote locations into PGX is no
longer allowed by default
Previously, PGX allowed graph data to be read from remote locations over FTP
or HTTP. This is no longer allowed by default and requires explicit opt-in by the
server administrator. To opt-in, specify the allowed_remote_loading_locations
configuration option in /etc/oracle/graph/pgx.conf. For example:

allowed_remote_loading_locations: ["*"]

In addition:

– The ftp and http protocols are no longer supported for loading or storing data
because they are unencrypted and thus insecure.

– Configuration files can no longer be loaded from remote locations, but must be
loaded from the local file system.

• Removed shell command line options
The following command line options of the Groovy-based opg shell have been
removed and will no longer work:

– --attach - the shell no longer supports attaching to existing sessions via
command line

– --password - the shell will prompt now for the password

Also note that the Groovy-based shell has been deprecated, and you are
encourage to use the new JShell-based shell instead (see Interactive Graph
Shell).

• Changes to PGX APIs
The following APIs no longer return graph configuration information:

– ServerInstance#getGraphInfo()

– ServerInstance#getGraphInfos()

– ServerInstance#getServerState()

The REST API now identifies collections, graphs, and properties by UUID instead
of a name.

The namespaces for graphs and properties are session private by default now.
This implies that some operations that would previously throw an exception due to
a naming conflict could succeed now.

PgxGraph#publish() throws an exception now if a graph with the given name has
been published before.

Chapter 1
Migrating Property Graph Applications from Before Release 21c

1-20

Migrating Data to a New Database Version

Oracle Graph Server and Client works with older database versions. (See the
"Database Compatibility and Restrictions" subtopic in Property Graph Prerequisites for
information.) If as part of your upgrade you also upgraded your Oracle Database, you
can migrate your existing graph data that was stored using the Oracle Property Graph
format by invoking the following helper script in your database after the upgrade:

sqlplus> execute mdsys.opg.migrate_pg_to_current(graph_name=>'mygraph');

The preceding example migrates the property graph mygraph to the current database
version.

Uninstalling Previous Versions of Property Graph Libraries

This is only necessary if you are using Oracle Database versions 12.2, 18c, or 19c.

Use of the Property Graph feature of Oracle Database now requires Oracle Graph
Server and Client that is installed separately. After you have completed the Graph
Server and Client installation, complete the preceding migration steps (if needed),
and confirmed that everything is working well, it is recommended that you remove
the binaries of older graph installations from your Oracle Database installation by
performing the following un-install steps:

1. Make sure the Property Graph mid-tier components are not in use on the
target database host. For example, ensure that there is no application running
which uses any files under $ORACLE_HOME/md/property_graph. Examples of such
an application are a running PGX server on the same host as the database
or a client application that references the JAR files under $ORACLE_HOME/md/
property_graph/lib.

It is not necessary to shut down the database to perform the uninstall. The Oracle
database itself does not reference or use any files under $ORACLE_HOME/md/
property_graph.

2. Remove the files under $ORACLE_HOME/md/property_graph on your database host.
On Linux, you can copy the following helper script to your database host and run it
with as the DBA operating system user: /opt/oracle/graph/scripts/patch-opg-
oracle-home.sh

1.10 Upgrading From Graph Server and Client 20.4.x to
21.1.0

If you are upgrading from Graph Server and Client 20.4.x to 21.1.0 version, you may
need to create new roles in database and migrate authorization rules from pgx.conf
file to the database. Also, starting from Graph Server and Client Release 21.1.0, TLS
is enforced at the time of the RPM file installation.

One of the main enhancements of Graph Server and Client Release 21.1.0 is moving
the graph access permissions from the pgx.conf file to the database. A new set of
graph roles with default permissions are created automatically in the database, at the
time of the PL/SQL packages installation. See Table C-1 in the appendix for more
details on the default mappings.

Chapter 1
Upgrading From Graph Server and Client 20.4.x to 21.1.0

1-21

In order to comply with this feature you must perform the database actions explained
in the following sections:

Creating additional roles in the database

The roles in the database with additional privileges are created when you install the
21.1.0 PL/SQL packages in your database as part of the upgrade. If you are not
able to install the PL/SQL packages, for example if you are using an Autonomous
Database, see User Authentication and Authorization for more information on
manually creating these roles in the database with the default set of privileges.

Migrating authorization rules

You must execute database GRANTS for user-added mappings contained in the
pgx.conf file when upgrading to 21.1.

The following examples explain the various scenarios where migration of authorization
rules may or may not apply.

Example 1-1 Migrating user-added mappings to database

To migrate the following user-added mappings in pgx.conf file:

...
"authorization": [{
 "pgx_role": "GRAPH_DEVELOPER",
 "pgx_permissions": [{
 "grant": "PGX_SESSION_ADD_PUBLISHED_GRAPH"
 },
...

GRANT

GRANT PGX_SESSION_ADD_PUBLISHED_GRAPH TO GRAPH_DEVELOPER

Example 1-2 Migrating user-added file system authorization rules to database

To migrate the following user-added file system authorization rules in pgx.conf file:

...
"file_locations": [{
 "name": "my_hdfs_graph_data",
 "location": "hdfs:/data/graphs"
}],
"authorization": [{
 "pgx_role": "GRAPH_DEVELOPER",
 "pgx_permissions": [{
 "file_location": "my_hdfs_graph_data",
 "grant": "read"
 },
...

Chapter 1
Upgrading From Graph Server and Client 20.4.x to 21.1.0

1-22

GRANT

CREATE OR REPLACE DIRECTORY my_hdfs_graph_data AS 'hdfs:/data/graphs'
GRANT READ ON DIRECTORY my_hdfs_graph_data TO GRAPH_DEVELOPER

Example 1-3 User-added graph authorization rules for preloaded graphs

Note:

No migration required for user-added graph authorization rules for
preloaded graphs.

You must not migrate user-added graph authorization rules for preloaded graphs (as
shown in the following code) as these rules continue to be configured in pgx.conf file.

"preload_graphs": [{
 "path": "/data/my-graph.json",
 "name": "global_graph"
}],
"authorization": [{
 "pgx_role": "GRAPH_DEVELOPER",
 "pgx_permissions": [{
 "preloaded_graph": "global_graph",
 "grant": "read"
 },
...

Self-signed TLS certificate now generated upon RPM installation

In Graph Server and Client 21.1 the RPM installation generates a self-signed
certificate into /etc/oracle/graph, which the server uses to enable TLS by default.

According to security best practices, access to the certificate is restricted to the
oraclegraph operating system user. The implication of this is that you no longer can
start the graph server via the /opt/oracle/graph/pgx/bin/start-server script, even
if your user is part of the oraclegraph group. Instead, manage the lifecycle of the
graph server via systemctl commands. For example:

sudo systemctl start pgx

Another possible option is to change the ownership of the certificate as shown:

sudo chown <youruser> /etc/oracle/graph/server_key.pem

Turning off TLS is not recommended as it reduces the security of your connection.
However, if you must do so, see Disabling Transport Layer Security (TLS) in Graph
Server for more details.

Chapter 1
Upgrading From Graph Server and Client 20.4.x to 21.1.0

1-23

1.11 Quick Start: Interactively Analyze Graph Data
This tutorial shows how you can quickly get started using property graph data.

You will learn how to:

• Convert existing relational data into a graph.

• Query that data using PGQL.

• Run graph algorithms on that data and display results.

The tutorials in this section are:

• Quick Start: Create, Query, and Analyze a Graph in In-Memory Graph Server
(PGX)
This tutorial shows how you can quickly get started using property graph data
when using the in-memory graph server (PGX).

• Quick Start: Create and Query a Graph in the Database, Load into In-Memory
Graph Server (PGX) for Analytics
In Section 1.9.2.1, this tutorial shows how you can get started using property
graph data when you create a graph and persist it in the database. The graph can
be queried in the database. This tutorial uses the JShell client.

• Quick Start: Executing PGQL Queries in SQLcl

1.11.1 Quick Start: Create, Query, and Analyze a Graph in In-Memory
Graph Server (PGX)

This tutorial shows how you can quickly get started using property graph data when
using the in-memory graph server (PGX).

This is for use cases where the graph is available as long as the in-memory graph
server (PGX) session is active. The graph is not persisted in the database.

• Create a graph in the in-memory graph server (PGX), directly from existing
relational data

• Query this graph using PGQL in the in-memory graph server (PGX)

• Run graph algorithms in the in-memory graph server (PGX) on this graph and
display results

Prerequisites for the following quickstart are:

• An installation of Oracle Graph server (this is PGX, the in-memory graph server).

See Property Graph Prerequisites for information to download Oracle Graph
Server and Client.

• An installation of Oracle Graph client.

You will authenticate yourself as the database user to the in-memory graph server,
and these database credentials are used to access the database tables and create
a graph.

• Java 11

– The in-memory graph server can work with Java 8 or Java 11.

Chapter 1
Quick Start: Interactively Analyze Graph Data

1-24

– The JShell client used in this example requires Java 11.

For Java downloads, see https://www.oracle.com/technetwork/java/javase/
overview/index.html.

Major tasks for this tutorial:

• Set up the example data

• Start the shell

• Write and execute the graph creation statement

• Run a few PGQL queries

• Execute algorithms and query the algorithm results

• Share the Graph with Other Sessions

Set up the example data

This example uses the HR (human resources) sample dataset.

• For instructions how to import that data into a user managed database, see:
https://github.com/oracle/db-sample-schemas

• If you are using Autonomous Database, see: https://www.thatjeffsmith.com/
archive/2019/07/creating-hr-in-oracle-autonomous-database-w-sql-developer-web/

Note that the database schema storing the graph must have the privileges listed in
Required Privileges for Database Users.

Start the shell

On the system where Oracle Graph client is installed, start the shell as follows. This is
an example of starting a shell in remote mode and connecting to the in-memory graph
server (PGX):

./bin/opg-jshell --base_url https://<graph server host>:7007 --username
<graphuser>

<graphuser> is the database user you will use to for the PGX server authentication.
You will be prompted for the database password.

Note:

For demo purposes only, if you have set enable_tls to false in the /etc/
oracle/graph/server.conf file you can use an http instead of https
connection.

./bin/opg-jshell --base_url http://<graph server host>:7007 --username
<graphuser>

This starts the shell and makes a connection to the graph server.

Chapter 1
Quick Start: Interactively Analyze Graph Data

1-25

https://www.oracle.com/technetwork/java/javase/overview/index.html
https://www.oracle.com/technetwork/java/javase/overview/index.html
https://github.com/oracle/db-sample-schemas
https://www.thatjeffsmith.com/archive/2019/07/creating-hr-in-oracle-autonomous-database-w-sql-developer-web/
https://www.thatjeffsmith.com/archive/2019/07/creating-hr-in-oracle-autonomous-database-w-sql-developer-web/

Note that, JAVA_HOME should be set to Java 11 before you start the shell. For example:

export JAVA_HOME=/usr/lib/jvm/java-11-oracle

See Interactive Graph Shell for details about the shell.

Write and execute the graph creation statement

Create a graph with employees, departments, and “employee works at department”,
by executing a CREATE PROPERTY GRAPH statement. The following statement creates a
graph in the in-memory graph server (PGX):

opg-jshell> String statement =
 "CREATE PROPERTY GRAPH hr_simplified "
 + " VERTEX TABLES ("
 + " hr.employees LABEL employee "
 + " PROPERTIES ARE ALL COLUMNS EXCEPT (job_id, manager_id,
department_id), "
 + " hr.departments LABEL department "
 + " PROPERTIES (department_id, department_name) "
 + ") "
 + " EDGE TABLES ("
 + " hr.employees AS works_at "
 + " SOURCE KEY (employee_id) REFERENCES employees "
 + " DESTINATION departments "
 + " PROPERTIES (employee_id) "
 + ")";
opg-jshell> session.executePgql(statement);

To get a handle to the graph, execute:

opg-jshell> PgxGraph g = session.getGraph("HR_SIMPLIFIED");

Run a few PGQL queries

You can use this handle to run PGQL queries on this graph. For example, to find the
department that “Nandita Sarchand” works for, execute:

opg-jshell> String query =
 "SELECT dep.department_name "
 + "FROM MATCH (emp:Employee) -[:works_at]-> (dep:Department) "
 + "WHERE emp.first_name = 'Nandita' AND emp.last_name = 'Sarchand' "
 + "ORDER BY 1";
opg-jshell> PgqlResultSet resultSet = g.queryPgql(query);
opg-jshell> resultSet.print();
+-----------------+
| department_name |
+-----------------+
| Shipping |
+-----------------+

Chapter 1
Quick Start: Interactively Analyze Graph Data

1-26

To get an overview of the types of vertices and their frequencies, execute:

opg-jshell> String query =
 "SELECT label(n), COUNT(*) "
 + "FROM MATCH (n) "
 + "GROUP BY label(n) "
 + "ORDER BY COUNT(*) DESC";
opg-jshell> PgqlResultSet resultSet = g.queryPgql(query);
opg-jshell> resultSet.print();

+-----------------------+
| label(n) | COUNT(*) |
+-----------------------+
| EMPLOYEE | 107 |
| DEPARTMENT | 27 |
+-----------------------+

To get an overview of the types of edges and their frequencies, execute:

opg-jshell> String query =
 "SELECT label(n) AS srcLbl, label(e) AS edgeLbl, label(m) AS
dstLbl, COUNT(*) "
 + "FROM MATCH (n) -[e]-> (m) "
 + "GROUP BY srcLbl, edgeLbl, dstLbl "
 + "ORDER BY COUNT(*) DESC";
opg-jshell> PgqlResultSet resultSet = g.queryPgql(query);
opg-jshell> resultSet.print();

+---+
| srcLbl | edgeLbl | dstLbl | COUNT(*) |
+---+
| EMPLOYEE | WORKS_AT | DEPARTMENT | 106 |
+---+

Execute algorithms and query the algorithm results

Now that you have the graph in memory, you can run each built-in algorithms using a
single API invocation. For example, for pagerank:

opg-jshell> analyst.pagerank(g)
$31==> VertexProperty[name=pagerank,type=double,graph=hr]

As you can see from the preceding outputs, each algorithm created a new vertex
property on the graph holding the output of the algorithm. To print the most important
people in the graph (according to pagerank), you can run the following query:

opg-jshell> session.queryPgql("select m.FIRST_NAME, m.LAST_NAME,
m.pagerank from HR_SIMPLIFIED match (m:EMPLOYEE) where m.FIRST_NAME =
‘Nandita’ “).print().close()
+---+
| m.FIRST_NAME | m.LAST_NAME | m.pagerank |
+---+

Chapter 1
Quick Start: Interactively Analyze Graph Data

1-27

| Nandita | Sarchand | 0.001119402985074627 |
+---+

In the following example, we order departments by their pagerank value. Departments
with higher pagerank values have more employees.

opg-jshell> session.queryPgql("select m.DEPARTMENT_NAME, m.pagerank
from HR_SIMPLIFIED match (m:DEPARTMENT) order by m.pagerank
").print().close();

+--+
| m.DEPARTMENT_NAME | m.pagerank |
+--+
Manufacturing	0.001119402985074627
Construction	0.001119402985074627
Contracting	0.001119402985074627
Operations	0.001119402985074627
IT Support	0.001119402985074627
NOC	0.001119402985074627
IT Helpdesk	0.001119402985074627
Government Sales	0.001119402985074627
Retail Sales	0.001119402985074627
Recruiting	0.001119402985074627
Payroll	0.001119402985074627
Treasury	0.001119402985074627
Corporate Tax	0.001119402985074627
Control And Credit	0.001119402985074627
Shareholder Services	0.001119402985074627
Benefits	0.001119402985074627
Human Resources	0.0020708955223880596
Administration	0.0020708955223880596
Public Relations	0.0020708955223880596
Marketing	0.003022388059701493
Accounting	0.003022388059701493
Executive	0.003973880597014925
IT	0.005876865671641792
Purchasing	0.006828358208955224
Finance	0.006828358208955224
Sales	0.03347014925373134
Shipping	0.043936567164179076
+--+

Share the Graph with Other Sessions

After you load the graph into the server, you can use the publish() API to make the
graph visible to other sessions, such as the graph visualization session. For example:

opg-jshell> graph.publish(VertexProperty.ALL, EdgeProperty.ALL)

The published graph will include any new properties you add to the graph by calling
functions, such as pagerank.

Chapter 1
Quick Start: Interactively Analyze Graph Data

1-28

Ensure that the logged-in user has the privilege to publish graphs. You can do this
by adding the privilege PGX_SESSION_ADD_PUBLISHED_GRAPH to the GRAPH_DEVELOPER
role as explained in Add Permissions to Publish the Graph. We had given the
GRAPH_DEVELOPER role to the database user in Installation of PL/SQL Packages in
Oracle Database .

You can use the Graph Visualization Application by navigating to <my-server-
name>:7007/ui/ in your browser.

You can connect to a particular client session by providing the session ID when you
log into the Graph Visualization Application. You will then be able to visualize all
graphs in the session, even if they have not been published.

opg-jshell> session
session ==> PgxSession[ID=5adf83ab-31b1-4a0e-8c08-
d6a95ba63ee0,source=pgxShell]

The session id is 5adf83ab-31b1-4a0e-8c08-d6a95ba63ee0.

Note:

You must create a server certificate to connect to the in-memory graph
server (PGX) from the Graph Visualization Application. See Set up Transport
Layer Security for more details.

1.11.2 Quick Start: Create and Query a Graph in the Database, Load
into In-Memory Graph Server (PGX) for Analytics

In Section 1.9.2.1, this tutorial shows how you can get started using property graph
data when you create a graph and persist it in the database. The graph can be queried
in the database. This tutorial uses the JShell client.

• Convert existing relational data into a graph in the database.

• Query this graph using PGQL.

In Section 1.9.2.2, you will run graph algorithms after loading the graph into the
in-memory graph server (PGX).

• Load the graph into the in-memory graph server (PGX), run graph algorithms on
this graph, and visualize results.

Prerequisites for the following quickstart are:

• An installation of Oracle Graph server (this is PGX, the in-memory graph server).

See Property Graph Prerequisites for information to download Oracle Graph
Server and Client.

• An installation of Oracle Graph client

• Java 11

– The in-memory graph server can work with Java 8 or Java 11.

– The JShell client used in this example requires Java 11.

Chapter 1
Quick Start: Interactively Analyze Graph Data

1-29

For Java downloads, see https://www.oracle.com/technetwork/java/javase/
overview/index.html.

• Connection details your Oracle Database. See Database Compatibility and
Restrictions to identify any limitations. The Property Graph feature is supported
for Oracle Database versions 12.2 and later.

• Basic knowledge about how to run commands on Oracle Database (for example,
using SQL*Plus or SQL Developer).

Set up the example data

This example uses the HR (human resources) sample dataset.

• For instructions how to import that data into a user managed database, see:
https://github.com/oracle/db-sample-schemas

• If you are using Autonomous Database, see: https://www.thatjeffsmith.com/
archive/2019/07/creating-hr-in-oracle-autonomous-database-w-sql-developer-web/

Note that the database schema storing the graph must have the privileges listed in
Required Privileges for Database Users.

• Create and Query a Graph in the Database
In this section, you will use the Oracle Graph client to create a graph from
relational tables and store it in the property graph schema in the database.

• Load the Graph into Memory and Run Graph Analytics

1.11.2.1 Create and Query a Graph in the Database
In this section, you will use the Oracle Graph client to create a graph from relational
tables and store it in the property graph schema in the database.

Major tasks for this tutorial:

• Start the shell

• Open a JDBC database connection

• Create a PGQL connection

• Write and execute the graph creation statement

• Run a few PGQL queries

Start the shell

On the system where Oracle Graph client is installed, start the shell by as follows:

cd <client-install-dir>
./bin/opg-jshell --noconnect

<graphuser> is the database user you will use to for the PGX server authentication.
You will be prompted for the database password.

The --noconnect option indicates that you are not connecting to the in-memory graph
server (PGX). You will only be connecting to the database in this example.

Chapter 1
Quick Start: Interactively Analyze Graph Data

1-30

https://www.oracle.com/technetwork/java/javase/overview/index.html
https://www.oracle.com/technetwork/java/javase/overview/index.html
https://github.com/oracle/db-sample-schemas
https://www.thatjeffsmith.com/archive/2019/07/creating-hr-in-oracle-autonomous-database-w-sql-developer-web/
https://www.thatjeffsmith.com/archive/2019/07/creating-hr-in-oracle-autonomous-database-w-sql-developer-web/

Note that JAVA_HOME should be set to Java 11 before you start the shell. For example:

export JAVA_HOME=/usr/lib/jvm/java-11-oracle

See Interactive Graph Shell for details about the shell.

Open a JDBC database connection

Inside the shell prompt, use the standard JDBC Java API to obtain a database
connection object. For example:

opg-jshell> var jdbcUrl = "<jdbc-url>" // for example:
jdbc:oracle:thin:@myhost:1521/myservice
opg-jshell> var user = "<db-user>" // for example: hr
opg-jshell> var pass = "<db-pass>"
opg-jshell> var conn = DriverManager.getConnection(jdbcUrl, user, pass)
conn ==> oracle.jdbc.driver.T4CConnection@57e6cb01

Connecting to an Autonomous Database works the same way: provide a JDBC URL
that points to the local wallet. See Using Oracle Graph with the Autonomous Database
for an example.

Create a PGQL connection

Convert the JDBC connection into a PGQL connection object. For example:

opg-jshell> conn.setAutoCommit(false)
opg-jshell> var pgql = PgqlConnection.getConnection(conn)
pgql ==> oracle.pg.rdbms.pgql.PgqlConnection@6fb3d3bb

Write and execute the graph creation statement

Using a text editor, write a CREATE PROPERTY GRAPH statement that describes
how the HR sample data should be converted into a graph. Save this file as
create.pgql at a location of your choice. For example:

CREATE PROPERTY GRAPH hr
 VERTEX TABLES (
 employees LABEL employee
 PROPERTIES ARE ALL COLUMNS EXCEPT (job_id, manager_id,
department_id),
 departments LABEL department
 PROPERTIES (department_id, department_name),
 jobs LABEL job
 PROPERTIES ARE ALL COLUMNS,
 job_history
 PROPERTIES (start_date, end_date),
 locations LABEL location
 PROPERTIES ARE ALL COLUMNS EXCEPT (country_id),
 countries LABEL country
 PROPERTIES ARE ALL COLUMNS EXCEPT (region_id),
 regions LABEL region
)
 EDGE TABLES (

Chapter 1
Quick Start: Interactively Analyze Graph Data

1-31

 employees AS works_for
 SOURCE employees
 DESTINATION KEY (manager_id) REFERENCES employees
 NO PROPERTIES,
 employees AS works_at
 SOURCE employees
 DESTINATION departments
 NO PROPERTIES,
 employees AS works_as
 SOURCE employees
 DESTINATION jobs
 NO PROPERTIES,
 departments AS managed_by
 SOURCE departments
 DESTINATION employees
 NO PROPERTIES,
 job_history AS for_employee
 SOURCE job_history
 DESTINATION employees
 LABEL for
 NO PROPERTIES,
 job_history AS for_department
 SOURCE job_history
 DESTINATION departments
 LABEL for
 NO PROPERTIES,
 job_history AS for_job
 SOURCE job_history
 DESTINATION jobs
 LABEL for
 NO PROPERTIES,
 departments AS department_located_in
 SOURCE departments
 DESTINATION locations
 LABEL located_in
 NO PROPERTIES,
 locations AS location_located_in
 SOURCE locations
 DESTINATION countries
 LABEL located_in
 NO PROPERTIES,
 countries AS country_located_in
 SOURCE countries
 DESTINATION regions
 LABEL located_in
 NO PROPERTIES
)

Chapter 1
Quick Start: Interactively Analyze Graph Data

1-32

Then, back in your graph shell, execute the CREATE PROPERTY GRAPH statement by
sending it to your PGQL connection. Replace <path> with the path to the directory
containing the create.pgql file:

opg-jshell> pgql.prepareStatement(Files.readString(Paths.get("<path>/
create.pgql"))).execute()
$16 ==> false

Run a few PGQL queries

Now that you have a graph named hr, you can use PGQL to run a few queries against
it directly on the database. For example:

// define a little helper function that executes the query, prints the
results and properly closes the statement
opg-jshell> Consumer<String> query = q -> { try(var s =
pgql.prepareStatement(q)) { s.execute(); s.getResultSet().print(); }
catch(Exception e) { throw new RuntimeException(e); } }
query ==> $Lambda$605/0x0000000100ae6440@6c9e7af2

// print the number of vertices in the graph
opg-jshell> query.accept("select count(v) from hr match (v)")
+----------+
| count(v) |
+----------+
| 215 |
+----------+

// print the number of edges in the graph
opg-jshell> query.accept("select count(e) from hr match ()-[e]->()")
+----------+
| count(e) |
+----------+
| 433 |
+----------+

// find the highest earning managers
opg-jshell> query.accept("select distinct m.FIRST_NAME, m.LAST_NAME,
m.SALARY from hr match (v:EMPLOYEE)-[:WORKS_FOR]->(m:EMPLOYEE) order by
m.SALARY desc")
+---------------------------------------+
| m.FIRST_NAME | m.LAST_NAME | m.SALARY |
+---------------------------------------+
Steven	King	24000.0
Lex	De Haan	17000.0
Neena	Kochhar	17000.0
John	Russell	14000.0
Karen	Partners	13500.0
Michael	Hartstein	13000.0
Alberto	Errazuriz	12000.0
Shelley	Higgins	12000.0
Nancy	Greenberg	12000.0
Den	Raphaely	11000.0
Gerald	Cambrault	11000.0

Chapter 1
Quick Start: Interactively Analyze Graph Data

1-33

Eleni	Zlotkey	10500.0
Alexander	Hunold	9000.0
Adam	Fripp	8200.0
Matthew	Weiss	8000.0
Payam	Kaufling	7900.0
Shanta	Vollman	6500.0
Kevin	Mourgos	5800.0
+---------------------------------------+

// find the average salary of accountants in the Americas
opg-jshell> query.accept("select avg(e.SALARY) from hr match
(e:EMPLOYEE) -[h:WORKS_AT]-> (d:DEPARTMENT) -[:LOCATED_IN]->
(:LOCATION) -[:LOCATED_IN]-> (:COUNTRY) -[:LOCATED_IN]-> (r:REGION)
where r.REGION_NAME = 'Americas' and d.DEPARTMENT_NAME = 'Accounting'")
+---------------+
| avg(e.SALARY) |
+---------------+
| 14500.0 |
+---------------+

1.11.2.2 Load the Graph into Memory and Run Graph Analytics
Major tasks for this tutorial:

• Load the graph from the property graph schema into memory

• Execute algorithms and query the algorithm results

• Share the Graph with Other Sessions

Load the graph from the property graph schema into memory

In this section of the quickstart, you will load the graph stored in the Property Graphs
schema in the database into the in-memory graph server (PGX). This will enable you
to run a variety of different built-in algorithms on the graph and will also improve query
performance for larger graphs.

First, start the JShell client and connect to the in-memory graph server (PGX):

./bin/opg-jshell --base_url https://<graph server host>:7007 --username
<graphuser>

<graphuser> is the database user you will use to for the PGX server authentication.
You will be prompted for the database password.

Note:

For demo purposes only, if you have set enable_tls to false in the /etc/
oracle/graph/server.conf file you can use an http instead of https
connection.

./bin/opg-jshell --base_url http://<graph server host>:7007 --username
<graphuser>

Chapter 1
Quick Start: Interactively Analyze Graph Data

1-34

This starts the shell and makes a connection to the graph server.

Note:

Always use low-privilege read-only database user accounts for PGX, as
explained in Security Best Practices with Graph Data.

Next load the graph into memory in this server.

To load the graph into memory, create a PGX graph config object, using the PGX
graph config builder API to do this directly in the shell.

The following example creates a PGX graph config object. It lists the properties to
load into memory so that you can exclude other properties, thus reducing memory
consumption.

Supplier<GraphConfig> pgxConfig = () -> { return
GraphConfigBuilder.forPropertyGraphRdbms()
.setName("hr")
 .addVertexProperty("COUNTRY_NAME", PropertyType.STRING)
 .addVertexProperty("DEPARTMENT_NAME", PropertyType.STRING)
 .addVertexProperty("FIRST_NAME", PropertyType.STRING)
 .addVertexProperty("LAST_NAME", PropertyType.STRING)
 .addVertexProperty("EMAIL", PropertyType.STRING)
 .addVertexProperty("PHONE_NUMBER", PropertyType.STRING)
 .addVertexProperty("SALARY", PropertyType.DOUBLE)
 .addVertexProperty("MIN_SALARY", PropertyType.DOUBLE)
 .addVertexProperty("MAX_SALARY", PropertyType.DOUBLE)
 .addVertexProperty("STREET_ADDRESS", PropertyType.STRING)
 .addVertexProperty("POSTAL_CODE", PropertyType.STRING)
 .addVertexProperty("CITY", PropertyType.STRING)
 .addVertexProperty("STATE_PROVINCE", PropertyType.STRING)
 .addVertexProperty("REGION_NAME", PropertyType.STRING)
 .setPartitionWhileLoading(PartitionWhileLoading.BY_LABEL)
 .setLoadVertexLabels(true)
 .setLoadEdgeLabel(true)
 .build(); }

Now that you have a graph config object, use the following API to read the graph into
PGX:

opg-jshell> var graph = session.readGraphWithProperties(pgxConfig.get())
graph ==> PgxGraph[name=hr,N=215,E=433,created=1586996113457]

The session object is created for you automatically.

Chapter 1
Quick Start: Interactively Analyze Graph Data

1-35

Execute algorithms and query the algorithm results

Now that you have the graph in memory, you can run any built-in algorithm using a
single API invocation. For example, for pagerank:

opg-jshell> analyst.pagerank(graph)
$31==> VertexProperty[name=pagerank,type=double,graph=hr]

As you can see from the preceding outputs, each algorithm created a new vertex
property on the graph holding the output of the algorithm. To print the most important
people in the graph (according to pagerank), you can run the following query:

opg-jshell> session.queryPgql("select m.FIRST_NAME, m.LAST_NAME,
m.pagerank from hr match (m:EMPLOYEE) order by m.pagerank desc limit
10").print().close()
+--+
| m.FIRST_NAME | m.LAST_NAME | m.pagerank |
+--+
Adam	Fripp	0.002959240305566317
John	Russell	0.0028810951120575284
Michael	Hartstein	0.002181365227465801
Alexander	Hunold	0.002082616009054747
Den	Raphaely	0.0020378615199327507
Shelley	Higgins	0.002028946863425767
Nancy	Greenberg	0.0017419394483596667
Steven	King	0.0016622985848193119
Neena	Kochhar	0.0015252785582170803
Jennifer	Whalen	0.0014263044976976823
+--+

Share the Graph with Other Sessions

After you load the graph into the in-memory graph server, you can use the publish()
API to make the graph visible to other sessions, such as the graph visualization
session. For example:

opg-jshell> graph.publish(VertexProperty.ALL, EdgeProperty.ALL)

The published graph will include any new properties you add to the graph by calling
functions, such as pagerank.

You can use the Graph Visualization Application by navigating to <my-server-
name>:7007/ui/ in your browser.

You can connect to a particular client session by providing the session ID when you
log into the Graph Visualization Application. You will then be able to visualize all
graphs in the session, even if they have not been published.

opg-jshell> session
session ==> PgxSession[ID=5adf83ab-31b1-4a0e-8c08-
d6a95ba63ee0,source=pgxShell]

The session id is 5adf83ab-31b1-4a0e-8c08-d6a95ba63ee0.

Chapter 1
Quick Start: Interactively Analyze Graph Data

1-36

Note:

You must create a server certificate to connect to the in-memory graph
server (PGX) from the Graph Visualization Application. See Set up Transport
Layer Security for more details.

1.11.3 Quick Start: Executing PGQL Queries in SQLcl
You can execute PGQL queries in SQLcl with a plugin that is available with Oracle
Graph Server and Client.

See Execute PGQL Queries in SQLcl for more details.

You can also refer to PGQL Plug-in for SQLclPGQL Plug-in for SQLcl section in the
SQLcl documentation.

1.12 Managing Property Graphs With Python Client
This section describes how to install Python Client and how to use the Python Client to
work with Property Graphs.

• Installing the Python Client

• Using the Python Client
You can use the Python client in an interactive mode (through Python shell) or as a
module used by a Python program.

• Troubleshooting the Python Client
This section helps you to troubleshoot issues on installing or using the Python
client.

• Uninstalling the Python Client
This section describes how to uninstall the Python client.

1.12.1 Installing the Python Client
Make sure that the following softwares are installed on the system before you install
the Python client:

• Oracle JDK 8 or later

• Python 3.5 or later

Note:

Python 2.x is not supported.
For more information on installing Python 3 on Oracle Linux, see Python for
Oracle Linux.

To install the Python client:

1. Download the Oracle Graph Client zip file.

Chapter 1
Managing Property Graphs With Python Client

1-37

https://blogs.oracle.com/oraclespatial/executing-property-graph-pgql-queries-in-sqlcl
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/sql-developer-command-line/20.3&id=GUID-E0EFA43F-003F-4C8C-8056-54E9A428B8B7
https://yum.oracle.com/oracle-linux-python.html
https://yum.oracle.com/oracle-linux-python.html

For example, oracle-graph-client-20.4.0.zip.

2. Install the client through pip.

For example,

pip3 --user install oracle-graph-client-20.4.0.zip

1.12.2 Using the Python Client
You can use the Python client in an interactive mode (through Python shell) or as a
module used by a Python program.

In either of those two modes, you can connect to a graph server running on a different
host (remote server) or in the client process (embedded server).

• Interactive Mode Using Python Shell
This section describes how you can use the Python client interactively using the
Python shell.

• Module Mode
This section describes how to use the Python client as a module in Python
applications.

1.12.2.1 Interactive Mode Using Python Shell
This section describes how you can use the Python client interactively using the
Python shell.

Embedded Server

The python client can be used in embedded mode, which means that the graph server
is running inside the client process as a library.

Note:

For this mode, the Python client and the Graph Server RPM package must
be installed on the same machine.

1. Start the Python shell.

cd /opt/oracle/graph/
./bin/opgpy

2. When the shell is running, you can see the following prompt on your screen

Oracle Graph Server Shell 20.4.0
>>>

Remote Server

You can use the Python client can be used to connect to a running graph server
instance, by following these instructions:

1. Unzip the client package.

unzip oracle-graph-client-20.4.0.zip
cd oracle-graph-client-20.4.0

Chapter 1
Managing Property Graphs With Python Client

1-38

2. Start the shell by running one of the following commands:

a. To connect to the PGX server instance located at https://localhost:7007
using login credentials:

./bin/opgpy --base_url https://localhost:7007 --username scott

You are prompted to enter your password.

b. If you have an existing authentication token for the graph server, do the
following to connect the graph server:

./bin/opgpy --base_url https://localhost:7007

You will be prompted to enter your authentication token.

c. To start the client shell, and to avoid establishing a connection to any graph
server:

./bin/opgpy --no_connect

3. When the shell is running, you will see the following appear in your screen:

Oracle Graph Client Shell 20.4.0
>>>

Shell Example

After the shell starts up successfully, the variables session, instance, analyst are
already pre-defined and ready to use as illustrated in the following example:

Oracle Graph Server Shell 20.4.0
>>> instance
ServerInstance(embedded: True, version: <oracle.pgx.common.VersionInfo
at 0x7f7cfb5ee200 jclass=oracle/pgx/common/VersionInfo jself=<LocalRef
obj=0x3692a48 at 0x7f7d04084570>>)
>>> graph = session.create_graph_builder().add_edge(1, 2).add_edge(2,
3).build("my_graph")
>>> analyst.pagerank(graph)
VertexProperty(name: pagerank, type: double, graph: my_graph)
>>> rs = session.query_pgql("select id(x), x.pagerank from match (x) on
my_graph")
>>> rs.print()
+-----------------------------+
| id(x) | pagerank |
+-----------------------------+
| 1 | 0.05000000000000001 |
| 2 | 0.09250000000000003 |
| 3 | 0.12862500000000002 |
+-----------------------------+

Note:

To view the complete set of available Python APIs, see Pypgx API.

Chapter 1
Managing Property Graphs With Python Client

1-39

https://docs.oracle.com/en/database/oracle/oracle-database/20/pypgx/html/api/api.html

1.12.2.2 Module Mode
This section describes how to use the Python client as a module in Python
applications.

Embedded Server

you can use the python client as a module as illustrated in the following example.

Note:

For this mode, the Python client and the Graph Server RPM package must
be installed on the same machine.

import os
os.environ["PGX_CLASSPATH"] = "/opt/oracle/graph/lib/*"

import pypgx

session = pypgx.get_session()
graph = session.create_graph_builder().add_edge(1, 2).add_edge(2,
3).build("my_graph")
analyst = session.create_analyst()
analyst.pagerank(graph)
rs = session.query_pgql("select id(x), x.pagerank from match (x) on
my_graph")
rs.print()

To execute, save the above program into a file named program.py and run the
following command.

python3 program.py

You will see the following output:

+-----------------------------+
| id(x) | pagerank |
+-----------------------------+
1	0.05000000000000001
2	0.09250000000000003
3	0.12862500000000002
+-----------------------------+

Note:

To view the complete set of available Python APIs, see Pypgx API.

Chapter 1
Managing Property Graphs With Python Client

1-40

https://docs.oracle.com/en/database/oracle/oracle-database/20/pypgx/html/api/api.html

Remote Server

For this mode, all you need is the Python client to be installed. In your Python
program, you must authenticate with the remote server before you can create a
session as illustrated in the following example.

Note:

Replace the base_url, username, and password with values to match your
environment details.

import json
import os
import platform
import sys
from urllib.request import Request, urlopen
from urllib.error import HTTPError
import pypgx as pgx

base_url = "https://localhost:7007"
username = "scott"
password = "tiger"

def generateToken():
 body = json.dumps({ 'username': username, 'password':
password }).encode('utf8')
 headers = { 'content-type': 'application/json' }
 request = Request(base_url + '/auth/token', data=body,
headers=headers)
 try:
 response = urlopen(request).read().decode('utf-8')
 return json.loads(response).get('access_token')
 except HTTPError as err:
 if err.code == 400:
 print('Authentication failed no username/password given')
 elif err.code == 401:
 print('Authentication failed invalid username/password')
 else:
 print("Server returned HTTP response code: {} for URL:
{}".format(err.code, err.url))
 os._exit(1)

session = pgx.get_session(base_url=base_url, token=generateToken())
print(session)

To execute, save the above program into a file named program.py and run the
following command:

python3 program.py

Chapter 1
Managing Property Graphs With Python Client

1-41

After successful login, you'll see the following message indicating a PGX session was
created:

PgxSession(id: 0bdd4828-c3cc-4cef-92c8-0fcd105416f0, name:
python_pgx_client)

Note:

To view the complete set of available Python APIs, see Pypgx API.

1.12.3 Troubleshooting the Python Client
This section helps you to troubleshoot issues on installing or using the Python client.

Verifying your Python client version

The Python client installation relies on python3 pointing to Python 3.5 or later
version.To verify you are using the right version of the Python client, run the following
command:

$> python3 --version
Python 3.6.1

Missing modules after installation

In some cases, the Python client installation might fail to install some required
dependencies, and you might see the following error message when running the shell:

ImportError: No module named 'jnius_config'

To fix this, you can manually install the required dependencies by following these
steps:

1. Navigate to your Oracle Graph Client installation directory.

2. Run the following commands in the same order:

python3 -m pip install python/Cython-0.29.17.zip
python3 -m pip install python/six-1.14.0.zip
python3 -m pip install python/pyjnius-1.3.0.zip

1.12.4 Uninstalling the Python Client
This section describes how to uninstall the Python client.

To uninstall the Python client, run the following command:

pip3 uninstall pypgx

Chapter 1
Managing Property Graphs With Python Client

1-42

https://docs.oracle.com/en/database/oracle/oracle-database/20/pypgx/html/api/api.html

2
Using Property Graphs in an Oracle
Database Environment

This chapter provides conceptual and usage information about creating, storing, and
working with property graph data in an Oracle Database environment.

• About Property Graphs
Property graphs give you a different way of looking at your data.

• Property Graph Views on Oracle Database Tables
You can create property graph views over data stored in Oracle Database. You
can perform various graph analytics operations using PGQL on these views.

• Property Graph Schema Objects for Oracle Database
The property graph PL/SQL and Java APIs use special Oracle Database schema
objects.

• Getting Started with Property Graphs
Follow these steps to get started with property graphs.

• Using Java APIs for Property Graph Data
Creating a property graph involves using the Java APIs to create the property
graph and objects in it.

• Managing Text Indexing for Property Graph Data
Indexes in Oracle Spatial and Graph property graph support allow fast retrieval
of elements by a particular key/value or key/text pair. These indexes are created
based on an element type (vertices or edges), a set of keys (and values), and an
index type.

• Access Control for Property Graph Data (Graph-Level and OLS)
Oracle Graph supports two access control and security models: graph level
access control, and fine-grained security through integration with Oracle Label
Security (OLS).

• Using the Groovy-Based Shell with Property Graph Data
The Oracle Graph property graph support includes a built-in Groovy-based shell
(based on the original Gremlin Groovy shell script). With this command-line shell
interface, you can explore the Java APIs.

• Using the Graph Zeppelin Interpreter Client
Oracle Graph provides an interpreter client implementation for Apache Zeppelin.
This tutorial topic explains how to install the graph interpreter into your local
Zeppelin installation and to perform simple operations.

• Creating Property Graph Views on an RDF Graph
With Oracle Graph, you can view RDF data as a property graph to execute graph
analytics operations by creating property graph views over an RDF graph stored in
Oracle Database.

• Oracle Flat File Format Definition
A property graph can be defined in two flat files, specifically description files for the
vertices and edges.

2-1

2.1 About Property Graphs
Property graphs give you a different way of looking at your data.

You can model your data as a graph by making data entities vertices in the graph, and
relationships between them as edges in the graph. For example, in a bank customer
accounts can be vertices, and cash transfer relationships between them can be edges.

When you view your data as a graph, you can analyze your data based on the
connections and relationships between them. You can run graph analytics algorithms
like PageRank to measure the relative importance of data entities based on the
relationships between them, for example, links between webpages.

• What Are Property Graphs?

• What Is Oracle Database Support for Property Graphs?

2.1.1 What Are Property Graphs?
A property graph consists of a set of objects or vertices, and a set of arrows or edges
connecting the objects. Vertices and edges can have multiple properties, which are
represented as key-value pairs.

Each vertex has a unique identifier and can have:

• A set of outgoing edges

• A set of incoming edges

• A collection of properties

Each edge has a unique identifier and can have:

• An outgoing vertex

• An incoming vertex

• A text label that describes the relationship between the two vertices

• A collection of properties

For vertices and edges, each property is identified with a unique name.

The following figure illustrates a very simple property graph with two vertices and one
edge. The two vertices have identifiers 1 and 2. Both vertices have properties name
and age. The edge is from the outgoing vertex 1 to the incoming vertex 2. The edge
has a text label knows and a property type identifying the type of relationship between
vertices 1 and 2.

Figure 2-1 Simple Property Graph Example

Chapter 2
About Property Graphs

2-2

A property graph can have self-edges (that is, an edge whose source and destination
vertex are the same), as well as multiple edges between the same source and
destination vertices.

A property graph can also have different types of vertices and edges in the same
graph. For example a graph can have a set of vertices with label Person and a set
of vertices with label Place, with different properties relevant to these two sets of
vertices.

The property graph data model is similar to the W3C standards-based Resource
Description Framework (RDF) graph data model; however, the property graph data
model is simpler and less precise than RDF.

The property graph data model features and analytic APIs make property graphs a
good candidate for use cases such as these:

• Identifying influencers in a social network

• Predicting trends and customer behavior

• Discovering relationships based on pattern matching

• Identifying clusters to customize campaigns

Note:

The property graph data model that Oracle supports at the database side
does not allow labels for vertices. However, you can treat the value of a
designated vertex property as one or more labels.

Related Topics

• Specifying Labels for Vertices

2.1.2 What Is Oracle Database Support for Property Graphs?
Property graphs are supported in Oracle Database, in addition to being supported for
Big Data in Hadoop. This support consists of in-database graph queries, in-memory
graph server for graph queries and analytics, and graph client components.

• In-Memory Graph Server (PGX)

• Data Access Layer

• Options for Property Graph Architecture

2.1.2.1 In-Memory Graph Server (PGX)
The in-memory graph server layer enables you to analyze property graphs using
parallel in-memory execution. It provides over 50 analytic functions. Examples of the
categories and specific functions include:

• Centrality - Degree Centrality, Eigenvector Centrality, PageRank, Betweenness
Centrality, Closedness Centrality

• Component and Community - Strongly Connected Components (Tarjan's and
Kosaraju's). Weakly Connected Components

Chapter 2
About Property Graphs

2-3

• Twitter's Who-To-Follow, Label Propagation.

• Path Finding - Single source all destination (Bellman-Ford), Dijsktra's shortest
path, Hop Distance (Breadth-first search)

• Community Evaluation - Coefficient (Triangle Counting), Conductance, Modularity,
Adamic-Adar counter.

See Using the In-Memory Graph Server (PGX) for more information on the in-memory
graph server (PGX).

2.1.2.2 Data Access Layer
The data access layer provides a set of Java APIs that you can use to create and drop
property graphs, add and remove vertices and edges, search for vertices and edges
using key-value pairs, create text indexes, and perform other manipulations.

For more information, see:

• Managing Text Indexing for Property Graph Data

• Using Java APIs for Property Graph Data

• Property Graph Schema Objects for Oracle Database (PL/SQL and Java APIs)
and OPG_APIS Package Subprograms (PL/SQL API).

2.1.2.3 Options for Property Graph Architecture
You have two architecture options when using the property graph feature of Oracle
Database:

• Run Graph Query and Analytics in the In-Memory Graph Server (PGX) (3-Tier)

• Load the Graph into Oracle Database (2-Tier)

Both options let you use the Property Graph Query Language (PGQL).

Run Graph Query and Analytics in the In-Memory Graph Server (PGX) (3-Tier)

You can load your property graph into the in-memory graph server, which has a
specialized architecture for graph computations. All query and analytics operations on
this graph can be executed in-memory in the graph server. This graph can be created
directly from relational tables or loaded from the property graph schema that stores the
graph in the database. You can modify the graph in memory (insert, update, and delete
vertices and edges, and create new properties for results of executing an algorithm).
The graph server does not write the modifications back to the relational tables.

The in-memory graph server (PGX) typically in a server separate from the database,
and can run standalone, or in a container like Oracle WebLogic Server or Apache
Tomcat. This approach (load your property graph into the in-memory graph server)
uses a three-tier architecture, as shown in the following figure.

Chapter 2
About Property Graphs

2-4

Figure 2-2 Three-Tier Property Graph Architecture

Load the Graph into Oracle Database (2-Tier)

If you do not need to load the graph into the in-memory graph server, you can use
another approach: create a property graph from data in relational tables, and store it in
the property graph schema (VT$ and GE$ tables). You can then run PGQL queries on
this graph.

You can load this graph into memory for running analytics algorithms and PGQL
queries not supported in the database. You can configure the in-memory graph server
to periodically fetch updates from the data automatically in the graph to keep the data
synchronized.

This approach uses a two-tier architecture, as shown in the following figure.

Figure 2-3 Two-Tier Property Graph Architecture

2.2 Property Graph Views on Oracle Database Tables
You can create property graph views over data stored in Oracle Database. You can
perform various graph analytics operations using PGQL on these views.

Chapter 2
Property Graph Views on Oracle Database Tables

2-5

The CREATE PROPERTY GRAPH statement in PGQL can be used to create a view-like
object that contains metadata about the graph. This graph can be queried using
PGQL.

The property graph views are created directly over data that exists in the relational
database tables. Since the graph is stored in the database tables it has a schema.
This is unlike the graphs created with a flexible schema, where the data is copied from
the source tables to property graph schema tables as described in Property Graph
Schema Objects for Oracle Database.

One of the main benefits of property graph views, is that all updates to the database
tables are immediately reflected in the graph.

Metadata Tables for PG Views

Each time a CREATE PROPERTY GRAPH statement is executed, metadata tables are
created in the user's own schema.

The following table describes the set of metadata tables that are created for each
graph on executing CREATE PROPERTY GRAPH statement.

All columns shown underlined in the Table 2-1 are part of the primary key of the table.
Also all columns have a NOT NULL constraint.

Table 2-1 Metadata Tables for PG Views

Table Name Description

graphName_ELEM_
TABLE$

Metadata for graph element (vertex/edge) tables (one row per element
table):
• ET_NAME: the name of the element table (the "alias")
• ET_TYPE: either "VERTEX" or "EDGE"
• SCHEMA_NAME: the name of the schema of the underlying table
• TABLE_NAME: the name of underlying table

graphName_LABEL
$

Metadata on labels of element tables (one row per label; one label per
element table):
• LABEL_NAME: the name of the label
• ET_NAME: the name of the element table (the "alias")
• ET_TYPE: either "VERTEX" or "EDGE"

graphName_PROPE
RTY$

Metadata describing the columns that are exposed through a label (one
row per property)

• PROPERTY_NAME: the name of the property
• ET_NAME: the name of the element table (the "alias")
• ET_TYPE: either "VERTEX" or "EDGE"
• LABEL_NAME: the name of the label that this property belongs to
• COLUMN_NAME: the name of the column (initially, only the case where

property names equal column names is allowed)

graphName_KEY$ Metadata describing a vertex/edge key (one row per column in the key)

• COLUMN_NAME: the name of the column in the key
• COLUMN_NUMBER: the number of the column in the key

For example, in KEY (a, b, c), "a" has number 1, "b" has number 2
and "c" has number 3.

• KEY_TYPE: either "VERTEX" or "EDGE"
• ET_NAME: the name of the element table (the "alias")

Chapter 2
Property Graph Views on Oracle Database Tables

2-6

Table 2-1 (Cont.) Metadata Tables for PG Views

Table Name Description

graphName_SRC_D
ST_KEY$

Metadata describing the edge source/destination keys (one row per
column of a key):

• ET_NAME: the name of the element table (the "alias"), which is
always an edge table

• VT_NAME: the name of the vertex table
• KEY_TYPE: either "EDGE_SOURCE" or "EDGE_DESTINATION"
• ET_COLUMN_NAME: the name of the key column
• ET_COLUMN_NUMBER: the number of the column in the key.

For example, in KEY (a, b, c), "a" has number 1, "b" has number 2
and "c" has number 3.

Note:

Currently, support is only for SOURCE KEY
(...) REFERENCES T1. So only the
edge source/destination key is stored.

Example 2-1 To create a Property Graph View

Consider the following CREATE PROPERTY GRAPH statement:

CREATE PROPERTY GRAPH student_network
 VERTEX TABLES(
 person
 KEY (id)
 LABEL student
 PROPERTIES(name),
 university
 KEY (id)
 PROPERTIES(name)
)
 EDGE TABLES(
 knows
 key (person1, person2)
 SOURCE KEY (person1) REFERENCES person
 DESTINATION KEY (person2) REFERENCES person
 NO PROPERTIES,
 person AS studentOf
 key (id, university)
 SOURCE KEY (id) REFERENCES person
 DESTINATION KEY (university) REFERENCES university
 NO PROPERTIES
)

You can create a property graph view using PG_VIEW=T flag in options parameter of
execute method:

Chapter 2
Property Graph Views on Oracle Database Tables

2-7

Note:

• You can create property graph views only using the RDBMS Java API.

• Creation of property graph views is not supported when using SQLcl.
However, once created, you can query property graph views with PGQL
SELECT statements in SQLcl.

• Both creation and querying of property graph views are not supported
when using Python API, or the graph visualization tool.

stmt.execute("CREATE PROPERTY GRAPH student_network ...", null,
"PG_VIEW=T");

This results in the creation of the following metadata tables:

SQL> select * from STUDENT_NETWORK_ELEM_TABLE$;

ET_NAME ET_TYPE SCHEMA_NAME TABLE_NAME
--------------- ---------- --------------- ---------------
PERSON VERTEX SCOTT PERSON
UNIVERSITY VERTEX SCOTT UNIVERSITY
KNOWS EDGE SCOTT KNOWS
STUDENTOF EDGE SCOTT PERSON

SQL> select * from STUDENT_NETWORK_LABEL$;

LABEL_NAME ET_NAME ET_TYPE
--------------- --------------- ----------
STUDENT PERSON VERTEX
UNIVERSITY UNIVERSITY VERTEX
KNOWS KNOWS EDGE
STUDENTOF STUDENTOF EDGE

SQL> select * from STUDENT_NETWORK_PROPERTY$;

PROPERTY_NAME ET_NAME ET_TYPE LABEL_NAME COLUMN_NAME
--------------- --------------- ---------- ---------------

NAME PERSON VERTEX STUDENT NAME
NAME UNIVERSITY VERTEX UNIVERSITY NAME

SQL> select * from STUDENT_NETWORK_KEY$;

COLUMN_NAME COLUMN_NUMBER KEY_TY ET_NAME
--------------- ------------- ------ ---------------
ID 1 VERTEX PERSON
ID 1 VERTEX UNIVERSITY
PERSON1 1 EDGE KNOWS
PERSON2 2 EDGE KNOWS
ID 1 EDGE STUDENTOF

Chapter 2
Property Graph Views on Oracle Database Tables

2-8

UNIVERSITY 2 EDGE STUDENTOF

SQL> select * from STUDENT_NETWORK_SRC_DST_KEY$;

ET_NAME VT_NAME KEY_TYPE ET_COLUMN_NAME
ET_COLUMN_NUMBER
--------------- ---------- ---------------- ---------------

KNOWS PERSON EDGE_SOURCE
PERSON1 1
KNOWS PERSON EDGE_DESTINATION
PERSON2 1
STUDENTOF PERSON EDGE_SOURCE
ID 1
STUDENTOF UNIVERSITY EDGE_DESTINATION
UNIVERSITY 1

You can now run PGQL queries on the property graph view student_network.

2.3 Property Graph Schema Objects for Oracle Database
The property graph PL/SQL and Java APIs use special Oracle Database schema
objects.

This topic describes objects related to the property graph schema approach to working
with graph data. It is a more flexible approach than the deprecated two-tables schema
approach described in Handling Property Graphs Using a Two-Tables Schema, which
has limitations.

Oracle Spatial and Graph lets you store, query, manipulate, and query property graph
data in Oracle Database. For example, to create a property graph named myGraph,
you can use either the Java APIs (oracle.pg.rdbms.OraclePropertyGraph) or the
PL/SQL APIs (MDSYS.OPG_APIS package).

With the PL/SQL API:

BEGIN
 opg_apis.create_pg(
 'myGraph',
 dop => 4, -- degree of parallelism
 num_hash_ptns => 8, -- number of hash partitions used to
store the graph
 tbs => 'USERS', -- tablespace
 options => 'COMPRESS=T'
);
END;
/

With the Java API:

 cfg = GraphConfigBuilder
 .forPropertyGraphRdbms()

Chapter 2
Property Graph Schema Objects for Oracle Database

2-9

 .setJdbcUrl("jdbc:oracle:thin:@127.0.0.1:1521:orcl")
 .setUsername("<your_user_name>")
 .setPassword("<your_password>")
 .setName("myGraph")
 .setMaxNumConnections(8)
 .setLoadEdgeLabel(false)
 .build();

 OraclePropertyGraph opg = OraclePropertyGraph.getInstance(cfg);

• Property Graph Tables (Detailed Information)

• Default Indexes on Vertex (VT$) and Edge (GE$) Tables

• Flexibility in the Property Graph Schema

2.3.1 Property Graph Tables (Detailed Information)
After a property graph is established in the database, several tables are created
automatically in the user's schema, with the graph name as the prefix and VT$ or GE$
as the suffix. For example, for a graph named myGraph, table myGraphVT$ is created
to store vertices and their properties (K/V pairs), and table myGraphGE$ is created to
store edges and their properties.

Additional internal tables are created with IT$ and GT$ suffixes, to store text index
metadata and graph skeleton (topological structure).

The definitions of tables myGraphVT$ and myGraphGE$ are as follows. They are
important for SQL-based analytics and SQL-based property graph query. In both the
VT$ and GE$ tables, VTS, VTE, and FE are reserved columns; column SL is for the
security label; and columns K, T, V, VN, and VT together store all information about
a property (K/V pair) of a graph element. In the VT$ table, VID is a long integer
for storing the vertex ID. In the GE$ table, EID, SVID, and DVID are long integer
columns for storing edge ID, source (from) vertex ID, and destination (to) vertex ID,
respectively.

SQL> describe myGraphVT$
 Name Null? Type
 --- --------

 VID NOT NULL NUMBER
 K NVARCHAR2(3100)
 T NUMBER(38)
 V NVARCHAR2(15000)
 VN NUMBER
 VT TIMESTAMP(6) WITH TIME ZONE
 SL NUMBER
 VTS DATE
 VTE DATE
 FE NVARCHAR2(4000)

SQL> describe myGraphGE$
 Name Null? Type
 --- --------

Chapter 2
Property Graph Schema Objects for Oracle Database

2-10

 EID NOT NULL NUMBER
 SVID NOT NULL NUMBER
 DVID NOT NULL NUMBER
 EL NVARCHAR2(3100)
 K NVARCHAR2(3100)
 T NUMBER(38)
 V NVARCHAR2(15000)
 VN NUMBER
 VT TIMESTAMP(6) WITH TIME ZONE
 SL NUMBER
 VTS DATE
 VTE DATE
 FE NVARCHAR2(4000)

For simplicity, only simple graph names are allowed, and they are case insensitive.

In both the VT$ and GE$ tables, Columns K, T, V, VN, VT together store all information
about a property (K/V pair) of a graph element, while SL is used for security label, and
VTS, VTE, FE are reserved columns.

In the property graph schema design, a property value is stored in the VN column
if the value has numeric data type (long, int, double, float, and so on), in the VT
column if the value is a timestamp, or in the V column for Strings, boolean and other
serializable data types. For better Oracle Text query support, a literal representation
of the property value is saved in the V column even if the data type is numeric or
timestamp. To differentiate all the supported data types, an integer ID is saved in the
T column. (The possible T column integer ID values are those listed for the value_type
field in the table in Vertex File.)

The K column in both VT$ and GE$ tables stores the property key. Each edge must
have a label of String type, and the labels are stored in the EL column of the GE$
table.

The T column in both VT$ and GE$ tables is a number representing the data type
of the value of the property it describes. For example 1 means the value is a string,
2 means the value is an integer, and so on. Some T column possible values and
associated data types are as follows:

• 1: STRING

• 2: INTEGER

• 3: FLOAT

• 4: DOUBLE

• 5: DATE

• 6: BOOLEAN

• 7: LONG

• 8: SHORT

• 9: BYTE

• 10: CHAR

• 20: Spatial data (see Representing Spatial Data in a Property Graph)

To support international characters, NVARCHAR columns are used in VT$ and GE$
tables. Oracle highly recommends UTF8 as the default database character set. In

Chapter 2
Property Graph Schema Objects for Oracle Database

2-11

addition, the V column has a size of 15000, which requires the enabling of 32K
VARCHAR (MAX_STRING_SIZE = EXTENDED).

The VT$ table schema for storing vertices contains these columns:

• VID, a long column denoting the ID of the vertex.

• VL, a string column denoting the label of the vertex.

• K, a string column denoting the name of the property. If there is no property
associated to the vertex, the value of this column should be a whitespace.

• T, a long column denoting the type of the property.

• V, a string column denoting the value of the property as a String. If the property
type is numeric, a String format version of the value is stored in this column.
Similarly, if the property is timestamp based, a String format version of the value is
stored.

• VN, a numeric column denoting the value of a numeric property. This column
stores the property value only if the property type is numeric.

• VT, a timestamp with time zone column storing the value of a date time property.
This column stores the property value only if the property type is timestamp based.

• SL, a numeric column reserved for the security label set using Oracle Label
Security (for further details on using Security Labels, see Access Control for
Property Graph Data (Graph-Level and OLS)).

• VTS, a timestamp with time zone column reserved for future extensions.

• VTE, a timestamp with time zone column reserved for future extensions.

• FE, a string column reserved for future extensions.

The following example inserts rows into a table named CONNECTIONSVT$. It
includes T column values 1 through 10 (representing various data types).

INSERT INTO connectionsvt$(vid,k,t,v,vn,vt) VALUES (2001, '1-STRING',
1, 'Some String', NULL, NULL);
INSERT INTO connectionsvt$(vid,k,t,v,vn,vt) VALUES (2001, '2-INTEGER',
2, NULL, 21, NULL);
INSERT INTO connectionsvt$(vid,k,t,v,vn,vt) VALUES (2001, '3-FLOAT', 3,
NULL, 21.5, NULL);
INSERT INTO connectionsvt$(vid,k,t,v,vn,vt) VALUES (2001, '4-DOUBLE',
4, NULL, 21.5, NULL);
INSERT INTO connectionsvt$(vid,k,t,v,vn,vt) VALUES (2001, '5-DATE', 5,
NULL, NULL, timestamp'2018-07-20 15:32:53.991000');
INSERT INTO connectionsvt$(vid,k,t,v,vn,vt) VALUES (2001, '6-BOOLEAN',
6, 'Y', NULL, NULL);
INSERT INTO connectionsvt$(vid,k,t,v,vn,vt) VALUES (2001, '7-LONG', 7,
NULL, 42, NULL);
INSERT INTO connectionsvt$(vid,k,t,v,vn,vt) VALUES (2001, '8-SHORT', 8,
NULL, 10, NULL);
INSERT INTO connectionsvt$(vid,k,t,v,vn,vt) VALUES (2001, '9-BYTE', 9,
NULL, 10, NULL);
INSERT INTO connectionsvt$(vid,k,t,v,vn,vt) VALUES (2001, '10-CHAR',
10, 'A', NULL, NULL);
...
UPDATE connectionsVT$ SET V = coalesce(v,to_nchar(vn),to_nchar(vt))

Chapter 2
Property Graph Schema Objects for Oracle Database

2-12

WHERE vid=2001;
COMMIT;

The GE$ table schema for storing edges contains these columns:

• EID, a long column denoting the ID of the edge.

• SVID, a long column denoting the ID of the outgoing (origin) vertex.

• DVID, a long column denoting the ID of the incoming (destination) vertex.

• EL, a string column denoting the label of the edge.

• K, a string column denoting the name of the property. If there is no property
associated to the vertex, the value of this column should be a whitespace.

• T, a long column denoting the type of the property.

• V, a string column denoting the value of the property as a String. If the property
type is numeric, a String format version of the value is stored in this column.
Similarly, if the property is timestamp based, a String format version of the value is
stored.

• VN, a numeric column denoting the value of a numeric property. This column
stores the property value only if the property type is numeric.

• VT, a timestamp with time zone column storing the value of a date time property.
This column stores the property value only if the property type is timestamp based.

• SL, a numeric column reserved for the security label set using Oracle Label
Security (for further details on using Security Labels, see Access Control for
Property Graph Data (Graph-Level and OLS)).

• VTS, a timestamp with time zone column column reserved for future extensions.

• VTE, a timestamp with time zone column reserved for future extensionss.

• FE, a string column reserved for future extensions.

In addition to the VT$ and GE$ tables, Oracle Spatial and Graph maintains other
internal tables.

An internal graph skeleton table, defined with the GT$ suffix, is used to store the
topological structure of a graph, and contains these columns:

• EID, a long column denoting the ID of the edge.

• EL, a string column denoting the label of the edge.

• SVID, a long column denoting the ID of the outgoing (origin) vertex.

• DVID, a long column denoting the ID of the incoming (destination) vertex.

• ELH, a raw column specifying the hash value of an edge label.

• ELS, a integer column specifying the edge label size with respect to total of
characters.

An internal text index metadata table, created with IT$ suffix, is used to store
metadata information on text indexes created using the Oracle Text search engine.
It is automatically populated based on the text indexes created. The IT$ table includes
the following columns for general information about a text index:

• EIN, a string column denoting the name of the text index.

Chapter 2
Property Graph Schema Objects for Oracle Database

2-13

• ET, a numeric column denoting the entities used to build the text index, if it is a
vertex (1) or edge (2) text index.

• IT, a numeric column denoting the type of the text index, if it is an automatic (1) or
manual (2) text index.

• SE, a numeric column denoting the search engine used to index the entities
properties (2 indicates Oracle Text).

• K, a string column denoting the property name used for text indexing.

For Oracle Text-based indexes, the following columns are used to describe the
configuration of the text index (for further details on building an Oracle Text-based
index, see Configuring Text Indexes Using Oracle Text):

• PO, a column denoting the preferred owner for the text index configuration
settings. By default, the package owner is set to MDSYS.

• DS, a string column specifying the data store used to build the text index.

• FIL, a string column specifying the filter used to build the text index.

• STR, a string column specifying the storage property used to build the text index.

• WL, a string column specifying the word list used when building the text index.

• SL, a string column specifying the stop list used to build the text index.

• LXR, a string column specifying the lexer used by Oracle Text during text indexing.

• OPTS, a string column specifying additional configuration options.

An internal table, defined with the SS$ suffix, is created for Oracle internal use only.

2.3.2 Default Indexes on Vertex (VT$) and Edge (GE$) Tables
For query performance, several indexes on property graph tables are created by
default. The index names follow the same convention as the table names, including
using the graph name as the prefix. For example, for the property graph myGraph, the
following local (partitioned) indexes are created:

• A unique index myGraphXQV$ on myGraphVT$(VID, K)

• A unique index myGraphXQE$ on myGraphGE$(EID, K)

• An index myGraphXSE$ on myGraphGE$(SVID, DVID, EID, VN)

• An index myGraphXDE$ on myGraphGE$(DVID, SVID, EID, VN)

2.3.3 Flexibility in the Property Graph Schema
The property graph schema design does not use a catalog or centralized repository
of any kind. Each property graph is separately stored and managed by a schema of
user's choice. A user's schema may have one or more property graphs.

This design provides considerable flexibility to users. For example:

• Users can create additional indexes as desired.

• Different property graphs can have a different set of indexes or compression
options for the base tables.

• Different property graphs can have different numbers of hash partitions.

Chapter 2
Property Graph Schema Objects for Oracle Database

2-14

• You can even drop the XSE$ or XDE$ index for a property graph; however, for
integrity you should keep the unique constraints.

2.4 Getting Started with Property Graphs
Follow these steps to get started with property graphs.

1. The first time you use property graphs, ensure that the software is installed and
operational.

2. Interact with a graph using one or more of the following options:

• Use Java APIs in your Java application. The Java APIs can also be run in the
JShell Command line interface for prototype and demo purposes.

• Run PGQL queries:

– In the Java application, or

– In the Graph visualization interface, or

– In the SQLcl client

• Run PGQL queries and execute Java APIs in the Apache Zeppelin interpreter

• Required Privileges for Database Users
The database schema that contains the graph tables (either Property Graph
schema objects or relational tables that will be directly loaded as a graph in
memory) requires certain privileges.

Related Topics

• Using Java APIs for Property Graph Data
Creating a property graph involves using the Java APIs to create the property
graph and objects in it.

2.4.1 Required Privileges for Database Users
The database schema that contains the graph tables (either Property Graph schema
objects or relational tables that will be directly loaded as a graph in memory) requires
certain privileges.

ALTER SESSION
CREATE PROCEDURE
CREATE SEQUENCE
CREATE SESSION
CREATE TABLE
CREATE TRIGGER
CREATE TYPE
CREATE VIEW

2.5 Using Java APIs for Property Graph Data
Creating a property graph involves using the Java APIs to create the property graph
and objects in it.

• Overview of the Java APIs

Chapter 2
Getting Started with Property Graphs

2-15

• Parallel Loading of Graph Data

• Parallel Retrieval of Graph Data

• Using an Element Filter Callback for Subgraph Extraction

• Using Optimization Flags on Reads over Property Graph Data

• Adding and Removing Attributes of a Property Graph Subgraph

• Getting Property Graph Metadata

• Merging New Data into an Existing Property Graph

• Opening and Closing a Property Graph Instance

• Creating Vertices

• Creating Edges

• Deleting Vertices and Edges

• Reading a Graph from a Database into an Embedded In-Memory Analyst

• Specifying Labels for Vertices

• Building an In-Memory Graph

• Dropping a Property Graph

• Executing PGQL Queries

2.5.1 Overview of the Java APIs
The Java APIs that you can use for property graphs include the following:

• Oracle Graph Property Graph Java APIs

• Oracle Database Property Graph Java APIs

2.5.1.1 Oracle Graph Property Graph Java APIs
Oracle Graph property graph support provides database-specific APIs for Oracle
Database.

To use the Oracle Spatial and Graph API, import the classes into your Java program:

import oracle.pg.common.*;
import oracle.pg.text.*;
import oracle.pg.rdbms.*;
import oracle.pgx.config.*;
import oracle.pgx.common.types.*;

2.5.1.2 Oracle Database Property Graph Java APIs
The Oracle Database property graph Java APIs enable you to create and populate a
property graph stored in Oracle Database.

To use these Java APIs, import the classes into your Java program. For example:

import oracle.pg.rdbms.*;
import java.sql.*;

Chapter 2
Using Java APIs for Property Graph Data

2-16

2.5.2 Parallel Loading of Graph Data
A Java API is provided for performing parallel loading of graph data.

Oracle Spatial and Graph supports loading graph data into Oracle Database. Graph
data can be loaded into the property graph using the following approaches:

• Vertices and/or edges can be added incrementally using the
graph.addVertex(Object id)/graph.addEdge(Object id) APIs.

• Graph data can be loaded from a file in Oracle flat-File format in parallel using the
OraclePropertyGraphDataLoader API.

• A property graph in GraphML, GML, or GraphSON can be loaded using
GMLReader, GraphMLReader, and GraphSONReader, respectively.

This topic focuses on the parallel loading of a property graph in Oracle-defined flat file
format.

Parallel data loading provides an optimized solution to data loading where the vertices
(or edges) input streams are split into multiple chunks and loaded into Oracle
Database in parallel. This operation involves two main overlapping phases:

• Splitting. The vertices and edges input streams are split into multiple chunks and
saved into a temporary input stream. The number of chunks is determined by the
degree of parallelism specified

• Graph loading. For each chunk, a loader thread is created to process information
about the vertices (or edges) information and to load the data into the property
graph tables.

OraclePropertyGraphDataLoader supports parallel data loading using several different
options:

• JDBC-Based Data Loading

• External Table-Based Data Loading

• SQL*Loader-Based Data Loading

2.5.2.1 JDBC-Based Data Loading
JDBC-based data loading uses Java Database Connectivity (JDBC) APIs to load the
graph data into Oracle Database. In this option, the vertices (or edges) in the given
input stream will be spread among multiple chunks by the splitter thread. Each chunk
will be processed by a different loader thread that inserts all the elements in the chunk
into a temporary work table using JDBC batching. The number of splitter and loader
threads used is determined by the degree of parallelism (DOP) specified by the user.

After all the graph data is loaded into the temporary work tables, all the data stored in
the temporary work tables is loaded into the property graph VT$ and GE$ tables.

The following example loads the graph data from a vertex and edge files in Oracle-
defined flat-file format using a JDBC-based parallel data loading with a degree of
parallelism of 48.

 String szOPVFile = "../../data/connections.opv";
 String szOPEFile = "../../data/connections.ope";
 OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,

Chapter 2
Using Java APIs for Property Graph Data

2-17

szGraphName);
 opgdl = OraclePropertyGraphDataLoader.getInstance();
 opgdl.loadData(opg, szOPVFile, szOPEFile, 48 /* DOP */, 1000 /*
batch size */, true /* rebuild index flag */, "pddl=t,pdml=t" /*
options */);
);

To optimize the performance of the data loading operations, a set of flags and hints
can be specified when calling the JDBC-based data loading. These hints include:

• DOP: The degree of parallelism to use when loading the data. This parameter
determines the number of chunks to generate when splitting the file as well as the
number of loader threads to use when loading the data into the property graph
VT$ and GE$ tables.

• Batch Size: An integer specifying the batch size to use for Oracle update
statements in batching mode. The default batch size used in the JDBC-based
data loading is 1000.

• Rebuild index: If this flag is set to true, the data loader will disable all the indexes
and constraints defined over the property graph where the data will be loaded.
After all the data is loaded into the property graph, all the indexes and constraints
will be rebuilt.

• Load options: An option (or multiple options delimited by commas) to optimize
the data loading operations. These options include:

– NO_DUP=T: Assumes the input data does not have invalid duplicates. In a
valid property graph, each vertex (edge) can at most have one value for a
given property key. In an invalid property graph, a vertex (edge) may have
two or more values for a particular key. As an example, a vertex, v, has two
key/value pairs: name/"John" and name/"Johnny" and they share the same
key.

– PDML=T: Enables parallel execution for DML operations for the database
session used in the data loader. This hint is used to improve the performance
of long-running batching jobs.

– PDDL=T: Enables parallel execution for DDL operations for the database
session used in the data loader. This hint is used to improve the performance
of long-running batching jobs.

– KEEP_WORK_TABS=T: Skips cleaning and deleting the working tables after
the data loading is complete. This is for debugging use only.

– KEEP_TMP_FILES=T: Skips removing the temporary splitter files after the
data loading is complete. This is for debug only.

• Splitter Flag: An integer value defining the type of files or streams used in the
splitting phase to generate the data chunks used in the graph loading phase. The
temporary files can be created as regular files (0), named pipes (1), or piped
streams (2). By default, JDBC-based data loading uses

Piped streams to handle intermediate data chunksPiped streams are for JDBC-
based loader only. They are purely in-memory and efficient, and do not require any
files created on the operating system.

Regular files consume space on the local operating system, while named pipes
appear as empty files on the local operating system. Note that not every operating
system has support for named pipes.

Chapter 2
Using Java APIs for Property Graph Data

2-18

• Split File Prefix: The prefix used for the temporary files or pipes created when the
splitting phase is generating the data chunks for the graph loading. By default, the
prefix “OPG_Chunk” is used for regular files and “OPG_Pipe” is used for named
pipes.

• Tablespace: The name of the tablespace where all the temporary work tables will
be created.

Subtopics:

• JDBC-Based Data Loading with Multiple Files

• JDBC-Based Data Loading with Partitions

• JDBC-based Parallel Data Loading Using Fine-Tuning

JDBC-Based Data Loading with Multiple Files

JDBC-based data loading also supports loading vertices and edges from multiple files
or input streams into the database. The following code fragment loads multiple vertex
and edge files using the parallel data loading APIs. In the example, two string arrays
szOPVFiles and szOPEFiles are used to hold the input files.

 String[] szOPVFiles = new String[] {"../../data/connections-
p1.opv",
 "../../data/connections-
p2.opv"};
 String[] szOPEFiles = new String[] {"../../data/connections-
p1.ope",
 "../../data/connections-
p2.ope"};
 OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
szGraphName);
 opgdl = OraclePropertyGraphDataLoader.getInstance();
 opgdl.loadData(opg, szOPVFiles, szOPEFiles, 48 /* DOP */,
 1000 /* batch size */,
 true /* rebuild index flag */,
 "pddl=t,pdml=t" /* options */);

JDBC-Based Data Loading with Partitions

When dealing with graph data from thousands to hundreds of thousands elements, the
JDBC-based data loading API allows loading the graph data in Oracle Flat file format
into Oracle Database using logical partitioning.

Each partition represents a subset of vertices (or edges) in the graph data file of size
is approximately the number of distinct element IDs in the file divided by the number
of partitions. Each partition is identified by an integer ID in the range of [0, Number of
partitions – 1].

To use parallel data loading with partitions, you must specify the total number of
logical partitions to use and the partition offset (start ID) in addition to the base
parameters used in the loadData API. To fully load a graph data file or input stream
into the database, you must execute the data loading operation as many times as the
defined number of partitions. For example, to load the graph data from a file using two
partitions, there should be two data loading API calls using an offset of 0 and 1. Each
call to the data loader can be processed using multiple threads or a separate Java
client on a single system or multiple systems.

Chapter 2
Using Java APIs for Property Graph Data

2-19

Note that this approach is intended to be used with a single vertex file (or input stream)
and a single edge file (or input stream). Additionally, this option requires disabling the
indices and constraints on vertices and edges. These indices and constraints must be
rebuilt after all partitions have been loaded.

The following example loads the graph data using two partitions. Each partition is
loaded by one Java process DataLoaderWorker. To coordinate multiple workers, a
coordinator process named DataLoaderCoordinator is used. This example does the
following

1. Disables all indexes and constraints,

2. Creates a temporary working table, loaderProgress, that records the data
loading progress (that is, how many workers have finished their work. All
DataLoaderWorker processes start loading data after the working table is created.

3. Increments the progress by 1.

4. Keeps polling (using the DataLoaderCoordinator process) the progress until all
DataLoaderWorker processes are done.

5. Rebuilds all indexes and constraints.

Note: In DataLoaderWorker, the flag SKIP_INDEX should be set to true and the flag
rebuildIndx should be set to false.

// start DataLoaderCoordinator, set dop = 8 and number of partitions = 2
java DataLoaderCoordinator jdbcUrl user password pg 8 2
// start the first DataLoaderWorker, set dop = 8, number of partitions
= 2, partition offset = 0
java DataLoaderWorker jdbcUrl user password pg 8 2 0
// start the first DataLoaderWorker, set dop = 8, number of partitions
= 2, partition offset = 1
java DataLoaderWorker jdbcUrl user password pg 8 2 1

The DataLoaderCoordinator first disables all indexes and constraints. It then creates
a table named loaderProgress and inserts one row with column progress = 0.

public class DataLoaderCoordinator {
 public static void main(String[] szArgs) {
 String jdbcUrl = szArgs[0];
 String user = szArgs[1];
 String password = szArgs[2];
 String graphName = szArgs[3];
 int dop = Integer.parseInt(szArgs[4]);
 int numLoaders = Integer.parseInt(szArgs[5]);

 Oracle oracle = null;
 OraclePropertyGraph opg = null;
 try {
 oracle = new Oracle(jdbcUrl, user, password);
 OraclePropertyGraphUtils.dropPropertyGraph(oracle,
graphName);
 opg = OraclePropertyGraph.getInstance(oracle, graphName);

 List<String> vIndices = opg.disableVertexTableIndices();
 List<String> vConstraints =

Chapter 2
Using Java APIs for Property Graph Data

2-20

opg.disableVertexTableConstraints();
 List<String> eIndices = opg.disableEdgeTableIndices();
 List<String> eConstraints =
opg.disableEdgeTableConstraints();

 String szStmt = null;
 try {
 szStmt = "drop table loaderProgress";
 opg.getOracle().executeUpdate(szStmt);
 }
 catch (SQLException ex) {
 if (ex.getErrorCode() == 942) {
 // table does not exist. ignore
 }
 else {
 throw new OraclePropertyGraphException(ex);
 }
 }

 szStmt = "create table loaderProgress (progress integer)";
 opg.getOracle().executeUpdate(szStmt);
 szStmt = "insert into loaderProgress (progress) values (0)";
 opg.getOracle().executeUpdate(szStmt);
 opg.getOracle().getConnection().commit();
 while (true) {
 if (checkLoaderProgress(oracle) == numLoaders) {
 break;
 } else {
 Thread.sleep(1000);
 }
 }

 opg.rebuildVertexTableIndices(vIndices, dop, null);
 opg.rebuildVertexTableConstraints(vConstraints, dop, null);
 opg.rebuildEdgeTableIndices(eIndices, dop, null);
 opg.rebuildEdgeTableConstraints(eConstraints, dop, null);
 }
 catch (IOException ex) {
 throw new OraclePropertyGraphException(ex);
 }
 catch (SQLException ex) {
 throw new OraclePropertyGraphException(ex);
 }
 catch (InterruptedException ex) {
 throw new OraclePropertyGraphException(ex);
 }
 catch (Exception ex) {
 throw new OraclePropertyGraphException(ex);
 }
 finally {
 try {
 if (opg != null) {
 opg.shutdown();
 }
 if (oracle != null) {

Chapter 2
Using Java APIs for Property Graph Data

2-21

 oracle.dispose();
 }
 }
 catch (Throwable t) {
 System.out.println(t);
 }
 }

 }

 private static int checkLoaderProgress(Oracle oracle) {
 int result = 0;
 ResultSet rs = null;

 try {
 String szStmt = "select progress from loaderProgress";
 rs = oracle.executeQuery(szStmt);
 if (rs.next()) {
 result = rs.getInt(1);
 }

 }
 catch (Exception ex) {
 throw new OraclePropertyGraphException(ex);
 }
 finally {
 try {
 if (rs != null) {
 rs.close();
 }
 }
 catch (Throwable t) {
 System.out.println(t);
 }
 }
 return result;
 }
}

public class DataLoaderWorker {

 public static void main(String[] szArgs) {
 String jdbcUrl = szArgs[0];
 String user = szArgs[1];
 String password = szArgs[2];
 String graphName = szArgs[3];
 int dop = Integer.parseInt(szArgs[4]);
 int numLoaders = Integer.parseInt(szArgs[5]);
 int offset = Integer.parseInt(szArgs[6]);

 Oracle oracle = null;
 OraclePropertyGraph opg = null;

 try {
 oracle = new Oracle(jdbcUrl, user, password);

Chapter 2
Using Java APIs for Property Graph Data

2-22

 opg = OraclePropertyGraph.getInstance(oracle, graphName, 8,
dop, null/*tbs*/, ",SKIP_INDEX=T,");
 OraclePropertyGraphDataLoader opgdal =
OraclePropertyGraphDataLoader.getInstance();

 while (true) {
 if (checkLoaderProgress(oracle) == 1) {
 break;
 } else {
 Thread.sleep(1000);
 }
 }

 String opvFile = "../../../data/connections.opv";
 String opeFile = "../../../data/connections.ope";
 opgdal.loadData(opg, opvFile, opeFile, dop, numLoaders,
offset, 1000, false, null, "pddl=t,pdml=t");

 updateLoaderProgress(oracle);
 }
 catch (SQLException ex) {
 throw new OraclePropertyGraphException(ex);
 }
 catch (InterruptedException ex) {
 throw new OraclePropertyGraphException(ex);
 }
 finally {
 try {
 if (opg != null) {
 opg.shutdown();
 }
 if (oracle != null) {
 oracle.dispose();
 }
 }
 catch (Throwable t) {
 System.out.println(t);
 }
 }
 }

 private static int checkLoaderProgress(Oracle oracle) {
 int result = 0;
 ResultSet rs = null;

 try {
 String szStmt = "select count(*) from loaderProgress";
 rs = oracle.executeQuery(szStmt);
 if (rs.next()) {
 result = rs.getInt(1);
 }
 }
 catch (SQLException ex) {
 if (ex.getErrorCode() == 942) {
 // table does not exist. ignore

Chapter 2
Using Java APIs for Property Graph Data

2-23

 } else {
 throw new OraclePropertyGraphException(ex);
 }
 }
 finally {
 try {
 if (rs != null) {
 rs.close();
 }
 }
 catch (Throwable t) {
 System.out.println(t);
 }
 }
 return result;
 }

 private static void updateLoaderProgress(Oracle oracle) {
 ResultSet rs = null;

 try {
 String szStmt = "update loaderProgress set progress =
progress + 1";
 oracle.executeUpdate(szStmt);
 oracle.getConnection().commit();
 }
 catch (Exception ex) {
 throw new OraclePropertyGraphException(ex);
 }
 finally {
 try {
 if (rs != null) {
 rs.close();
 }
 }
 catch (Throwable t) {
 System.out.println(t);
 }
 }
 }
}

JDBC-based Parallel Data Loading Using Fine-Tuning

JDBC-based data loading supports fine-tuning the subset of data from a line to be
loaded, as well as the ID offset to use when loading the elements into the property
graph instance. You can specify the subset of data to load from a file by specifying
the maximum number of lines to read from the file and the offset line number (start
position) for both vertices and edges. This way, data will be loaded from the offset
line number until the maximum number of lines has been read. IIf the maximum line
number is -1, the loading process will scan the data until reaching the end of file.

Because multiple graph data files may have some ID collisions or overlap, the JDBC-
based data loading allows you to define a vertex and edge ID offset. This way, the ID
of each loaded vertex will be the sum of the original vertex ID and the given vertex

Chapter 2
Using Java APIs for Property Graph Data

2-24

ID offset. Similarly, the ID of each loaded edge will be generated from the sum of the
original edge ID and the given edge ID offset. Note that the vertices and edge files
must be correlated, because the in/out vertex ID for the loaded edges will be modified
with respect to the specified vertex ID offset. This operation is supported only in data
loading using a single logical partition.

The following code fragment loads the first 100 vertices and edges lines from the
given graph data file. In this example, an ID offset 0 is used, which indicates no ID
adjustment is performed.

 String szOPVFile = "../../data/connections.opv";
 String szOPEFile = "../../data/connections.ope";
 // Run the data loading using fine tuning
 long lVertexOffsetlines = 0;
 long lEdgeOffsetlines = 0;
 long lVertexMaxlines = 100;
 long lEdgeMaxlines = 100;
 long lVIDOffset = 0;
 long lEIDOffset = 0;
 OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
szGraphName);
 OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();

 opgdl.loadData(opg, szOPVFile, szOPEFile,
 lVertexOffsetlines /* offset of lines to start
loading from
 partition, default 0 */,
 lEdgeOffsetlines /* offset of lines to start loading
from
 partition, default 0 */,
 lVertexMaxlines /* maximum number of lines to start loading from
 partition, default -1 (all lines in partition)
*/,
 lEdgeMaxlines /* maximum number of lines to start loading from
 partition, default -1 (all lines in partition)
*/,
 lVIDOffset /* vertex ID offset: the vertex ID will be original
 vertex ID + offset, default 0 */,
 lEIDOffset /* edge ID offset: the edge ID will be original edge
ID
 + offset, default 0 */,
 4 /* DOP */,
 1 /* Total number of partitions, default 1 */,
 0 /* Partition to load: from 0 to totalPartitions - 1, default 0
*/,
 OraclePropertyGraphDataLoader.PIPEDSTREAM /* splitter flag */,
 "chunkPrefix" /* prefix: the prefix used to generate split chunks
 for regular files or named pipes */,
 1000 /* batch size: batch size of Oracle update in batching mode.
 Default value is 1000 */,
 true /* rebuild index */,
 null /* table space name*/,
 "pddl=t,pdml=t" /* options: enable parallel DDL and DML */);

Chapter 2
Using Java APIs for Property Graph Data

2-25

2.5.2.2 External Table-Based Data Loading
External table-based data loading uses an external table to load the graph data into
Oracle Database. External table loading allows users to access the data in external
sources as if it were in a regular relational table in the database. In this case, the
vertices (or edges) in the given input stream will be spread among multiple chunks by
the splitter thread. Each chunk will be processed by a different loader thread that is
in charge of passing all the elements in the chunk to Oracle Database. The number
of splitter and loader threads used is determined by the degree of parallelism (DOP)
specified by the user.

After the external tables are automatically created by the data loading logic, the loader
will read from the external tables and load all the data into the property graph schema
tables (VT$ and GE$).

External-table based data loading requires a directory object where the files read
by the external tables will be stored. This directory can be created by running the
following scripts in a SQL*Plus environment:

create or replace directory tmp_dir as '/tmppath/';
grant read, write on directory tmp_dir to public;

The following code fragment loads the graph data from a vertex and edge files
in Oracle Flat-file format using an external table-based parallel data loading with a
degree of parallelism of 48.

 String szOPVFile = "../../data/connections.opv";
 String szOPEFile = "../../data/connections.ope";
 String szExtDir = "tmp_dir";
 OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
szGraphName);
 opgdl = OraclePropertyGraphDataLoader.getInstance();
 opgdl.loadDataWithExtTab(opg, szOPVFile, szOPEFile, 48 /*DOP*/,
 true /*named pipe flag: setting the flag
to true will use
 named pipe based splitting;
otherwise, regular file
 based splitting would be used*/,
 szExtDir /* database directory object */,
 true /*rebuild index */,
 "pddl=t,pdml=t,NO_DUP=T" /*options */);

To optimize the performance of the data loading operations, a set of flags and hints
can be specified when calling the External table-based data loading. These hints
include:

• DOP: The degree of parallelism to use when loading the data. This parameter
determines the number of chunks to generate when splitting the file, as well as
the number of loader threads to use when loading the data into the property graph
VT$ and GE$ tables.

• Rebuild index: If this flag is set to true, the data loader will disable all the indexes
and constraints defined over the property graph where the data will be loaded.

Chapter 2
Using Java APIs for Property Graph Data

2-26

After all the data is loaded into the property graph, all the indexes and constraints
will be rebuilt.

• Load options: An option (or multiple options delimited by commas) to optimize
the data loading operations. These options include:

– NO_DUP=T: Chooses a faster way to load the data into the property graph
tables as no validation for duplicate Key/value pairs will be conducted.

– PDML=T: Enables parallel execution for DML operations for the database
session used in the data loader. This hint is used to improve the performance
of long-running batching jobs.

– PDDL=T: Enables parallel execution for DDL operations for the database
session used in the data loader. This hint is used to improve the performance
of long-running batching jobs.

– KEEP_WORK_TABS=T: Skips cleaning and deleting the working tables after
the data loading is complete. This is for debugging use only.

– KEEP_TMP_FILES=T: Skips removing the temporary splitter files after the
data loading is complete. This is for debugging use only.

• Splitter Flag: An integer value defining the type of files or streams used in the
splitting phase to generate the data chunks used in the graph loading phase. The
temporary files can be created as regular files (0) or named pipes (1).

By default, External table-based data loading uses regular files to handle
temporary files for data chunks. Named pipes can only be used on operating
system that supports them. It is generally a good practice to use regular files
together with DBFS.

• Split File Prefix: The prefix used for the temporary files or pipes created when the
splitting phase is generating the data chunks for the graph loading. By default, the
prefix “Chunk” is used for regular files and “Pipe” is used for named pipes.

• Tablespace: The name of the tablespace where all the temporary work tables will
be created.

As with the JDBC-based data loading, external table-based data loading supports
parallel data loading using a single file, multiple files, partitions, and fine-tuning.

Subtopics:

• External Table-Based Data Loading with Multiple Files

• External table-based Data Loading with Partitions

• External Table-Based Parallel Data Loading Using Fine-Tuning

External Table-Based Data Loading with Multiple Files

External table-based data loading also supports loading vertices and edges from
multiple files or input streams into the database. The following code fragment loads
multiple vertex and edge files using the parallel data loading APIs. In the example, two
string arrays szOPVFiles and szOPEFiles are used to hold the input files.

 String szOPVFile = "../../data/connections.opv";
 String szOPEFile = "../../data/connections.ope";
 String szExtDir = "tmp_dir";
 OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
szGraphName);

Chapter 2
Using Java APIs for Property Graph Data

2-27

 opgdl = OraclePropertyGraphDataLoader.getInstance();
 opgdl.loadDataWithExtTab(opg, szOPVFile, szOPEFile, 48 /* DOP */,
 true /* named pipe flag */,
 szExtDir /* database directory object */,
 true /* rebuild index flag */,
 "pddl=t,pdml=t" /* options */);

External table-based Data Loading with Partitions

When dealing with a very large property graph, the external table-based data loading
API allows loading the graph data in Oracle flat file format into Oracle Database using
logical partitioning. Each partition represents a subset of vertices (or edges) in the
graph data file of size that is approximately the number of distinct element IDs in the
file divided by the number of partitions. Each partition is identified by an integer ID in
the range of [0, Number of partitions – 1].

To use parallel data loading with partitions, you must specify the total number of
partitions to use and the partition offset besides the base parameters used in the
loadDataWithExtTab API. To fully load a graph data file or input stream into the
database, you must execute the data loading operation as many times as the defined
number of partitions. For example, to load the graph data from a file using two
partitions, there should be two data loading API calls using an offset of 0 and 1. Each
call to the data loader can be processed using multiple threads or a separate Java
client on a single system or multiple systems.

Note that this approach is intended to be used with a single vertex file (or input stream)
and a single edge file (or input stream). Additionally, this option requires disabling the
indexes and constraints on vertices and edges. These indices and constraints must be
rebuilt after all partitions have been loaded.

The example for JDBC-based data loading with partitions can be easily migrated to
work as external-table based loading with partitions. The only needed changes are to
replace API loadData() with loadDataWithExtTab(), and supply some additional input
parameters such as the database directory object.

External Table-Based Parallel Data Loading Using Fine-Tuning

External table-based data loading also supports fine-tuning the subset of data from
a line to be loaded, as well as the ID offset to use when loading the elements into
the property graph instance. You can specify the subset of data to load from a file
by specifying the maximum number of lines to read from the file as well as the offset
line number for both vertices and edges. This way, data will be loaded from the offset
line number until the maximum number of lines has been read. If the maximum line
number is -1, the loading process will scan the data until reaching the end of file.

Because graph data files may have some ID collisions, the external table-based data
loading allows you to define a vertex and edge ID offset. This way, the ID of each
loaded vertex will be obtained from the sum of the original vertex ID with the given
vertex ID offset. Similarly, the ID of each loaded edge will be generated from the sum
of the original edge ID with the given edge ID offset. Note that the vertices and edge
files must be correlated, because the in/out vertex ID for the loaded edges will be
modified with respect to the specified vertex ID offset. This operation is supported only
in a data loading using a single partition.

Chapter 2
Using Java APIs for Property Graph Data

2-28

The following code fragment loads the first 100 vertices and edges from the given
graph data file. In this example, no ID offset is provided.

 String szOPVFile = "../../data/connections.opv";
 String szOPEFile = "../../data/connections.ope";

 // Run the data loading using fine tuning
 long lVertexOffsetlines = 0;
 long lEdgeOffsetlines = 0;
 long lVertexMaxlines = 100;
 long lEdgeMaxlines = 100;
 long lVIDOffset = 0;
 long lEIDOffset = 0;
 String szExtDir = "tmp_dir";

 OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
szGraphName);
 OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();

 opgdl.loadDataWithExtTab(opg, szOPVFile, szOPEFile,
 lVertexOffsetlines /* offset of lines to
start loading
 from partition,
default 0 */,
 lEdgeOffsetlines /* offset of lines to
start loading from
 partition, default 0
*/,
 lVertexMaxlines /* maximum number of lines
to start
 loading from partition,
default -1
 (all lines in partition)
*/,
 lEdgeMaxlines /* maximum number of lines
to start loading
 from partition, default
-1 (all lines in
 partition) */,
 lVIDOffset /* vertex ID offset: the vertex
ID will be
 original vertex ID + offset,
default 0 */,
 lEIDOffset /* edge ID offset: the edge ID
will be
 original edge ID + offset,
default 0 */,
 4 /* DOP */,
 1 /* Total number of partitions, default 1
*/,
 0 /* Partition to load (from 0 to
totalPartitions - 1,
 default 0) */,
 OraclePropertyGraphDataLoader.NAMEDPIPE

Chapter 2
Using Java APIs for Property Graph Data

2-29

 /* splitter flag */,
 "chunkPrefix" /* prefix */,
 szExtDir /* database directory object */,
 true /* rebuild index flag */,
 "pddl=t,pdml=t" /* options */);

2.5.2.3 SQL*Loader-Based Data Loading
SQL*Loader-based data loading uses Oracle SQL*Loader to load the graph data into
Oracle Database. SQL*Loader loads data from external files into Oracle Database
tables. In this case, the vertices (or edges) in the given input stream will be spread
among multiple chunks by the splitter thread. Each chunk will be processed by a
different loader thread that inserts all the elements in the chunk into a temporary work
table using SQL*Loader. The number of splitter and loader threads used is determined
by the degree of parallelism (DOP) specified by the user.

After all the graph data is loaded into the temporary work table, the graph loader will
load all the data stored in the temporary work tables into the property graph VT$ and
GE$ tables.

The following code fragment loads the graph data from a vertex and edge files
in Oracle flat-file format using a SQL-based parallel data loading with a degree of
parallelism of 48. To use the APIs, the path to the SQL*Loader must be specified.

 String szUser = "username";
 String szPassword = "password";
 String szDbId = "db18c"; /*service name of the database*/
 String szOPVFile = "../../data/connections.opv";
 String szOPEFile = "../../data/connections.ope";
 String szSQLLoaderPath = "<YOUR_ORACLE_HOME>/bin/sqlldr";
 OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
szGraphName);

 opgdl = OraclePropertyGraphDataLoader.getInstance();
 opgdl.loadDataWithSqlLdr(opg, szUser, szPassword, szDbId,
 szOPVFile, szOPEFile,
 48 /* DOP */,
 true /*named pipe flag */,
 szSQLLoaderPath /* SQL*Loader path: the
path to
 bin/sqlldr*/,
 true /*rebuild index */,
 "pddl=t,pdml=t" /* options */);

As with JDBC-based data loading, SQL*Loader-based data loading supports parallel
data loading using a single file, multiple files, partitions, and fine-tuning.

Subtopics:

• SQL*Loader-Based Data Loading with Multiple Files

• SQL*Loader-Based Data Loading with Partitions

• SQL*Loader-Based Parallel Data Loading Using Fine-Tuning

Chapter 2
Using Java APIs for Property Graph Data

2-30

SQL*Loader-Based Data Loading with Multiple Files

SQL*Loader-based data loading supports loading vertices and edges from multiple
files or input streams into the database. The following code fragment loads multiple
vertex and edge files using the parallel data loading APIs. In the example, two string
arrays szOPVFiles and szOPEFiles are used to hold the input files.

 String szUser = "username";
 String szPassword = "password";
 String szDbId = "db18c"; /*service name of the database*/
 String[] szOPVFiles = new String[] {"../../data/connections-
p1.opv",
 "../../data/connections-
p2.opv"};
 String[] szOPEFiles = new String[] {"../../data/connections-
p1.ope",
 "../../data/connections-
p2.ope"};
 String szSQLLoaderPath = "../../../dbhome_1/bin/sqlldr";
 OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
szGraphName);

 opgdl = OraclePropertyGraphDataLoader.getInstance();
 opgdl. loadDataWithSqlLdr (opg, szUser, szPassword, szDbId,
 szOPVFiles, szOPEFiles,
 48 /* DOP */,
 true /* named pipe flag */,
 szSQLLoaderPath /* SQL*Loader path */,
 true /* rebuild index flag */,
 "pddl=t,pdml=t" /* options */);

SQL*Loader-Based Data Loading with Partitions

When dealing with a large property graph, the SQL*Loader-based data loading API
allows loading the graph data in Oracle flat-file format into Oracle Database using
logical partitioning. Each partition represents a subset of vertices (or edges) in the
graph data file of size that is approximately the number of distinct element IDs in the
file divided by the number of partitions. Each partition is identified by an integer ID in
the range of [0, Number of partitions – 1].

To use parallel data loading with partitions, you must specify the total number of
partitions to use and the partition offset, in addition to the base parameters used
in the loadDataWithSqlLdr API. To fully load a graph data file or input stream into
the database, you must execute the data loading operation as many times as the
defined number of partitions. For example, to load the graph data from a file using two
partitions, there should be two data loading API calls using an offset of 0 and 1. Each
call to the data loader can be processed using multiple threads or a separate Java
client on a single system or multiple systems.

Note that this approach is intended to be used with a single vertex file (or input stream)
and a single edge file (or input stream). Additionally, this option requires disabling the
indexes and constraints on vertices and edges. These indexes and constraints must
be rebuilt after all partitions have been loaded.

Chapter 2
Using Java APIs for Property Graph Data

2-31

The example for JDBC-based data loading with partitions can be easily migrated to
work as SQL*Loader- based loading with partitions. The only changes needed are to
replace API loadData() with loadDataWithSqlLdr(), and supply some additional input
parameters such as the location of SQL*Loader.

SQL*Loader-Based Parallel Data Loading Using Fine-Tuning

SQL Loader-based data loading supports fine-tuning the subset of data from a line to
be loaded, as well as the ID offset to use when loading the elements into the property
graph instance. You can specify the subset of data to load from a file by specifying
the maximum number of lines to read from the file and the offset line number for both
vertices and edges. This way, data will be loaded from the offset line number until
the maximum number of lines has been read. If the maximum line number is -1, the
loading process will scan the data until reaching the end of file.

Because graph data files may have some ID collisions, the SQL Loader-based data
loading allows you to define a vertex and edge ID offset. This way, the ID of each
loaded vertex will be obtained from the sum of the original vertex ID with the given
vertex ID offset. Similarly, the ID of each loaded edge will be generated from the sum
of the original edge ID with the given edge ID offset. Note that the vertices and edge
files must be correlated, because the in/out vertex ID for the loaded edges will be
modified with respect to the specified vertex ID offset. This operation is supported only
in a data loading using a single partition.

The following code fragment loads the first 100 vertices and edges from the given
graph data file. In this example, no ID offset is provided.

 String szUser = "username";
 String szPassword = "password";
 String szDbId = "db18c"; /* service name of the database */
 String szOPVFile = "../../data/connections.opv";
 String szOPEFile = "../../data/connections.ope";
 String szSQLLoaderPath = "../../../dbhome_1/bin/sqlldr";

 // Run the data loading using fine tuning
 long lVertexOffsetlines = 0;
 long lEdgeOffsetlines = 0;
 long lVertexMaxlines = 100;
 long lEdgeMaxlines = 100;
 long lVIDOffset = 0;
 long lEIDOffset = 0;
 OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
szGraphName);
 OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();

 opgdl.loadDataWithSqlLdr(opg, szUser, szPassword, szDbId,
 szOPVFile, szOPEFile,
 lVertexOffsetlines /* offset of lines to
start loading
 from partition,
default 0*/,
 lEdgeOffsetlines /* offset of lines to
start loading from
 partition, default
0*/,

Chapter 2
Using Java APIs for Property Graph Data

2-32

 lVertexMaxlines /* maximum number of lines
to start
 loading from partition,
default -1
 (all lines in
partition)*/,
 lEdgeMaxlines /* maximum number of lines
to start loading
 from partition, default
-1 (all lines in
 partition) */,
 lVIDOffset /* vertex ID offset: the vertex
ID will be
 original vertex ID + offset,
default 0 */,
 lEIDOffset /* edge ID offset: the edge ID
will be
 original edge ID + offset,
default 0 */,
 48 /* DOP */,
 1 /* Total number of partitions, default 1
*/,
 0 /* Partition to load (from 0 to
totalPartitions - 1,
 default 0) */,
 OraclePropertyGraphDataLoader.NAMEDPIPE
 /* splitter flag */,
 "chunkPrefix" /* prefix */,
 szSQLLoaderPath /* SQL*Loader path: the
path to
 bin/sqlldr*/,
 true /* rebuild index */,
 "pddl=t,pdml=t" /* options */);

2.5.3 Parallel Retrieval of Graph Data
The parallel property graph query provides a simple Java API to perform parallel scans
on vertices (or edges). Parallel retrieval is an optimized solution taking advantage of
the distribution of the data across table partitions, so each partition is queried using a
separate database connection.

Parallel retrieval will produce an array where each element holds all the vertices (or
edges) from a specific partition (split). The subset of shards queried will be separated
by the given start split ID and the size of the connections array provided. This way, the
subset will consider splits in the range of [start, start - 1 + size of connections array].
Note that an integer ID (in the range of [0, N - 1]) is assigned to all the splits in the
vertex table with N splits.

The following code loads a property graph, opens an array of connections,
and executes a parallel query to retrieve all vertices and edges using the
opened connections. The number of calls to the getVerticesPartitioned

Chapter 2
Using Java APIs for Property Graph Data

2-33

(getEdgesPartitioned) method is controlled by the total number of splits and the
number of connections used.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
szGraphName);

// Clear existing vertices/edges in the property graph
opg.clearRepository();

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// This object will handle parallel data loading
OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

// Create connections used in parallel query
Oracle[] oracleConns = new Oracle[dop];
Connection[] conns = new Connection[dop];
for (int i = 0; i < dop; i++) {
 oracleConns[i] = opg.getOracle().clone();
 conns[i] = oracleConns[i].getConnection();
}

long lCountV = 0;
// Iterate over all the vertices’ partitionIDs to count all the vertices
for (int partitionID = 0; partitionID <
opg.getVertexPartitionsNumber();
 partitionID += dop) {
 Iterable<Vertex>[] iterables
 = opg.getVerticesPartitioned(conns /* Connection array */,
 true /* skip store to cache */,
 partitionID /* starting partition
*/);
 lCountV += consumeIterables(iterables); /* consume iterables using
 threads */
}

// Count all vertices
System.out.println("Vertices found using parallel query: " + lCountV);

long lCountE = 0;
// Iterate over all the edges’ partitionIDs to count all the edges
for (int partitionID = 0; partitionID < opg.getEdgeTablePartitionIDs();
 partitionID += dop) {
 Iterable<Edge>[] iterables
 = opg.getEdgesPartitioned(conns /* Connection array */,
 true /* skip store to cache */,
 partitionID /* starting partitionID
*/);
 lCountE += consumeIterables(iterables); /* consume iterables using
 threads */
}

Chapter 2
Using Java APIs for Property Graph Data

2-34

// Count all edges
System.out.println("Edges found using parallel query: " + lCountE);

// Close the connections to the database after completed
for (int idx = 0; idx < conns.length; idx++) {
 conns[idx].close();
}

2.5.4 Using an Element Filter Callback for Subgraph Extraction
Oracle Spatial and Graph provides support for an easy subgraph extraction
using user-defined element filter callbacks. An element filter callback defines a
set of conditions that a vertex (or an edge) must meet in order to keep it in
the subgraph. Users can define their own element filtering by implementing the
VertexFilterCallback and EdgeFilterCallback API interfaces.

The following code fragment implements a VertexFilterCallback that validates if a
vertex does not have a political role and its origin is the United States.

/**
* VertexFilterCallback to retrieve a vertex from the United States
* that does not have a political role
*/
private static class NonPoliticianFilterCallback
implements VertexFilterCallback
{
@Override
public boolean keepVertex(OracleVertexBase vertex)
{
String country = vertex.getProperty("country");
String role = vertex.getProperty("role");

if (country != null && country.equals("United States")) {
if (role == null || !role.toLowerCase().contains("political")) {
return true;
}
}

return false;
}

public static NonPoliticianFilterCallback getInstance()
{
return new NonPoliticianFilterCallback();
}
}

The following code fragment implements an EdgeFilterCallback that uses the
VertexFilterCallback to keep only edges connected to the given input vertex, and
whose connections are not politicians and come from the United States.

/**
 * EdgeFilterCallback to retrieve all edges connected to an input
 * vertex with "collaborates" label, and whose vertex is from the
 * United States with a role different than political
*/
private static class CollaboratorsFilterCallback
implements EdgeFilterCallback
{

Chapter 2
Using Java APIs for Property Graph Data

2-35

private VertexFilterCallback m_vfc;
private Vertex m_startV;

public CollaboratorsFilterCallback(VertexFilterCallback vfc,
 Vertex v)
{
m_vfc = vfc;
m_startV = v;
}

@Override
public boolean keepEdge(OracleEdgeBase edge)
{
if ("collaborates".equals(edge.getLabel())) {
if (edge.getVertex(Direction.IN).equals(m_startV) &&
m_vfc.keepVertex((OracleVertex)
edge.getVertex(Direction.OUT))) {
return true;
}
else if (edge.getVertex(Direction.OUT).equals(m_startV) &&
 m_vfc.keepVertex((OracleVertex)
edge.getVertex(Direction.IN))) {
return true;
}
}

return false;
}

public static CollaboratorsFilterCallback
getInstance(VertexFilterCallback vfc, Vertex v)
{
return new CollaboratorsFilterCallback(vfc, v);
}

}

Using the filter callbacks previously defined, the following code fragment loads a
property graph, creates an instance of the filter callbacks and later gets all of Robert
Smith’s collaborators who are not politicians and come from the United States.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(
 args, szGraphName);

// Clear existing vertices/edges in the property graph
opg.clearRepository();

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// This object will handle parallel data loading
OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

// VertexFilterCallback to retrieve all people from the United States // who are
not politicians
NonPoliticianFilterCallback npvfc = NonPoliticianFilterCallback.getInstance();

// Initial vertex: Robert Smith
Vertex v = opg.getVertices("name", "Robert Smith").iterator().next();

Chapter 2
Using Java APIs for Property Graph Data

2-36

// EdgeFilterCallback to retrieve all collaborators of Robert Smith
// from the United States who are not politicians
CollaboratorsFilterCallback cefc =
CollaboratorsFilterCallback.getInstance(npvfc, v);

Iterable<<Edge> smithCollabs = opg.getEdges((String[])null /* Match any
of the properties */,
cefc /* Match the
EdgeFilterCallback */
);
Iterator<<Edge> iter = smithCollabs.iterator();

System.out.println("\n\n--------Collaborators of Robert Smith from " +
 " the US and non-politician\n\n");
long countV = 0;
while (iter.hasNext()) {
Edge edge = iter.next(); // get the edge
// check if smith is the IN vertex
if (edge.getVertex(Direction.IN).equals(v)) {
 System.out.println(edge.getVertex(Direction.OUT) + "(Edge ID: " +
 edge.getId() + ")"); // get out vertex
}
else {
System.out.println(edge.getVertex(Direction.IN)+ "(Edge ID: " +
 edge.getId() + ")"); // get in vertex
}

countV++;
}

By default, all reading operations such as get all vertices, get all edges
(and parallel approaches) will use the filter callbacks associated with the
property graph using the methods opg.setVertexFilterCallback(vfc) and
opg.setEdgeFilterCallback(efc). If there is no filter callback set, then all the vertices
(or edges) and edges will be retrieved.

The following code fragment uses the default edge filter callback set on the property
graph to retrieve the edges.

// VertexFilterCallback to retrieve all people from the United States // who are
not politicians
NonPoliticianFilterCallback npvfc = NonPoliticianFilterCallback.getInstance();

// Initial vertex: Robert Smith
Vertex v = opg.getVertices("name", "Robert Smith").iterator().next();

// EdgeFilterCallback to retrieve all collaborators of Robert Smith
// from the United States who are not politicians
CollaboratorsFilterCallback cefc =
CollaboratorsFilterCallback.getInstance(npvfc, v);

opg.setEdgeFilterCallback(cefc);

Iterable<Edge> smithCollabs = opg.getEdges();
Iterator<Edge> iter = smithCollabs.iterator();

System.out.println("\n\n--------Collaborators of Robert Smith from " +
 " the US and non-politician\n\n");
long countV = 0;
while (iter.hasNext()) {

Chapter 2
Using Java APIs for Property Graph Data

2-37

Edge edge = iter.next(); // get the edge
// check if smith is the IN vertex
if (edge.getVertex(Direction.IN).equals(v)) {
 System.out.println(edge.getVertex(Direction.OUT) + "(Edge ID: " +
 edge.getId() + ")"); // get out vertex
}
else {
System.out.println(edge.getVertex(Direction.IN)+ "(Edge ID: " +
 edge.getId() + ")"); // get in vertex
}

countV++;
}

2.5.5 Using Optimization Flags on Reads over Property Graph Data
Oracle Spatial and Graph provides support for optimization flags to improve graph
iteration performance. Optimization flags allow processing vertices (or edges) as
objects with none or minimal information, such as ID, label, and/or incoming/outgoing
vertices. This way, the time required to process each vertex (or edge) during iteration
is reduced.

The following table shows the optimization flags available when processing vertices (or
edges) in a property graph.

Optimization Flag Description

DO_NOT_CREATE_OBJ
ECT

Use a predefined constant object when processing vertices or
edges.

JUST_EDGE_ID Construct edge objects with ID only when processing edges.

JUST_LABEL_EDGE_ID Construct edge objects with ID and label only when processing
edges.

JUST_LABEL_VERTEX
_EDGE_ID

Construct edge objects with ID, label, and in/out vertex IDs only
when processing edges

JUST_VERTEX_EDGE_
ID

Construct edge objects with just ID and in/out vertex IDs when
processing edges.

JUST_VERTEX_ID Construct vertex objects with ID only when processing vertices.

The following code fragment uses a set of optimization flags to retrieve only all the IDs
from the vertices and edges in the property graph. The objects retrieved by reading all
vertices and edges will include only the IDs and no Key/Value properties or additional
information.

import oracle.pg.common.OraclePropertyGraphBase.OptimizationFlag;
OraclePropertyGraph opg = OraclePropertyGraph.getInstance(
 args, szGraphName);

// Clear existing vertices/edges in the property graph
opg.clearRepository();

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// This object will handle parallel data loading
OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

Chapter 2
Using Java APIs for Property Graph Data

2-38

// Optimization flag to retrieve only vertices IDs
OptimizationFlag optFlagVertex = OptimizationFlag.JUST_VERTEX_ID;

// Optimization flag to retrieve only edges IDs
OptimizationFlag optFlagEdge = OptimizationFlag.JUST_EDGE_ID;

// Print all vertices
Iterator<Vertex> vertices =
opg.getVertices((String[])null /* Match any of the
properties */,
null /* Match the VertexFilterCallback */,
optFlagVertex /* optimization flag */
).iterator();

System.out.println("----- Vertices IDs----");
long vCount = 0;
while (vertices.hasNext()) {
OracleVertex v = vertices.next();
System.out.println((Long) v.getId());
vCount++;
}
System.out.println("Vertices found: " + vCount);

// Print all edges
Iterator<Edge> edges =
opg.getEdges((String[])null /* Match any of the properties */,
null /* Match the EdgeFilterCallback */,
optFlagEdge /* optimization flag */
).iterator();

System.out.println("----- Edges ----");
long eCount = 0;
while (edges.hasNext()) {
Edge e = edges.next();
System.out.println((Long) e.getId());
eCount++;
}
System.out.println("Edges found: " + eCount);

By default, all reading operations such as get all vertices, get all edges
(and parallel approaches) will use the optimization flag associated with the
property graph using the method opg.setDefaultVertexOptFlag(optFlagVertex) and
opg.setDefaultEdgeOptFlag(optFlagEdge). If the optimization flags for processing
vertices and edges are not defined, then all the information about the vertices and
edges will be retrieved.

The following code fragment uses the default optimization flags set on the property
graph to retrieve only all the IDs from its vertices and edges.

import oracle.pg.common.OraclePropertyGraphBase.OptimizationFlag;

// Optimization flag to retrieve only vertices IDs
OptimizationFlag optFlagVertex = OptimizationFlag.JUST_VERTEX_ID;

// Optimization flag to retrieve only edges IDs
OptimizationFlag optFlagEdge = OptimizationFlag.JUST_EDGE_ID;

opg.setDefaultVertexOptFlag(optFlagVertex);
opg.setDefaultEdgeOptFlag(optFlagEdge);

Chapter 2
Using Java APIs for Property Graph Data

2-39

Iterator<Vertex> vertices = opg.getVertices().iterator();
System.out.println("----- Vertices IDs----");
long vCount = 0;
while (vertices.hasNext()) {
OracleVertex v = vertices.next();
System.out.println((Long) v.getId());
vCount++;
}
System.out.println("Vertices found: " + vCount);

// Print all edges
Iterator<Edge> edges = opg.getEdges().iterator();
System.out.println("----- Edges ----");
long eCount = 0;
while (edges.hasNext()) {
Edge e = edges.next();
System.out.println((Long) e.getId());
eCount++;
}
System.out.println("Edges found: " + eCount);

2.5.6 Adding and Removing Attributes of a Property Graph Subgraph
Oracle Spatial and Graph supports updating attributes (key/value pairs) to a subgraph
of vertices and/or edges by using a user-customized operation callback. An operation
callback defines a set of conditions that a vertex (or an edge) must meet in order to
update it (either add or remove the given attribute and value).

You can define your own attribute operations by implementing the VertexOpCallback
and EdgeOpCallback API interfaces. You must override the needOp method, which
defines the conditions to be satisfied by the vertices (or edges) to be included in the
update operation, as well as the getAttributeKeyName and getAttributeKeyValue
methods, which return the key name and value, respectively, to be used when
updating the elements.

The following code fragment implements a VertexOpCallback that operates over the
smithCollaborator attribute associated only with Robert Smith collaborators. The
value of this property is specified based on the role of the collaborators.

private static class CollaboratorsVertexOpCallback
implements VertexOpCallback
{
private OracleVertexBase m_smith;
private List<Vertex> m_smithCollaborators;

public CollaboratorsVertexOpCallback(OraclePropertyGraph opg)
{
// Get a list of Robert Smith'sCollaborators
m_smith = (OracleVertexBase) opg.getVertices("name",
 "Robert Smith")
.iterator().next();

Iterable<Vertex> iter = m_smith.getVertices(Direction.BOTH,
"collaborates");
m_smithCollaborators = OraclePropertyGraphUtils.listify(iter);
}

public static CollaboratorsVertexOpCallback

Chapter 2
Using Java APIs for Property Graph Data

2-40

getInstance(OraclePropertyGraph opg)
{
return new CollaboratorsVertexOpCallback(opg);
}

/**
 * Add attribute if and only if the vertex is a collaborator of Robert
 * Smith
*/
@Override
public boolean needOp(OracleVertexBase v)
{
return m_smithCollaborators != null &&
 m_smithCollaborators.contains(v);
}

@Override
public String getAttributeKeyName(OracleVertexBase v)
{
return "smithCollaborator";
}

/**
 * Define the property's value based on the vertex role
 */
@Override
public Object getAttributeKeyValue(OracleVertexBase v)
{
String role = v.getProperty("role");
role = role.toLowerCase();
if (role.contains("political")) {
return "political";
}
else if (role.contains("actor") || role.contains("singer") ||
 role.contains("actress") || role.contains("writer") ||
 role.contains("producer") || role.contains("director")) {
return "arts";
}
else if (role.contains("player")) {
return "sports";
}
else if (role.contains("journalist")) {
return "journalism";
}
else if (role.contains("business") || role.contains("economist")) {
return "business";
}
else if (role.contains("philanthropist")) {
return "philanthropy";
}
return " ";
}
}

The following code fragment implements an EdgeOpCallback that operates over
the smithFeud attribute associated only with Robert Smith feuds. The value of this
property is specified based on the role of the collaborators.

private static class FeudsEdgeOpCallback
implements EdgeOpCallback
{

Chapter 2
Using Java APIs for Property Graph Data

2-41

private OracleVertexBase m_smith;
private List<Edge> m_smithFeuds;

public FeudsEdgeOpCallback(OraclePropertyGraph opg)
{
// Get a list of Robert Smith's feuds
m_smith = (OracleVertexBase) opg.getVertices("name",
 "Robert Smith")
.iterator().next();

Iterable<Vertex> iter = m_smith.getVertices(Direction.BOTH,
"feuds");
m_smithFeuds = OraclePropertyGraphUtils.listify(iter);
}

public static FeudsEdgeOpCallback getInstance(OraclePropertyGraph opg)
{
return new FeudsEdgeOpCallback(opg);
}

/**
 * Add attribute if and only if the edge is in the list of Robert Smith's
 * feuds
*/
@Override
public boolean needOp(OracleEdgeBase e)
{
return m_smithFeuds != null && m_smithFeuds.contains(e);
}

@Override
public String getAttributeKeyName(OracleEdgeBase e)
{
return "smithFeud";
}

/**
 * Define the property's value based on the in/out vertex role
 */
@Override
public Object getAttributeKeyValue(OracleEdgeBase e)
{
OracleVertexBase v = (OracleVertexBase) e.getVertex(Direction.IN);
if (m_smith.equals(v)) {
v = (OracleVertexBase) e.getVertex(Direction.OUT);
}
String role = v.getProperty("role");
role = role.toLowerCase();

if (role.contains("political")) {
return "political";
}
else if (role.contains("actor") || role.contains("singer") ||
 role.contains("actress") || role.contains("writer") ||
 role.contains("producer") || role.contains("director")) {
return "arts";
}
else if (role.contains("journalist")) {
return "journalism";
}
else if (role.contains("player")) {

Chapter 2
Using Java APIs for Property Graph Data

2-42

return "sports";
}
else if (role.contains("business") || role.contains("economist")) {
return "business";
}
else if (role.contains("philanthropist")) {
return "philanthropy";
}
return " ";
}
}

Using the operations callbacks defined previously, the following code fragment loads
a property graph, creates an instance of the operation callbacks, and later adds the
attributes into the pertinent vertices and edges using the addAttributeToAllVertices
and addAttributeToAllEdges methods in OraclePropertyGraph.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(
 args, szGraphName);

// Clear existing vertices/edges in the property graph
opg.clearRepository();

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// This object will handle parallel data loading
OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

// Create the vertex operation callback
CollaboratorsVertexOpCallback cvoc =
CollaboratorsVertexOpCallback.getInstance(opg);

// Add attribute to all people collaborating with Smith based on their role
opg.addAttributeToAllVertices(cvoc, true /** Skip store to Cache */, dop);

// Look up for all collaborators of Smith
Iterable<Vertex> collaborators = opg.getVertices("smithCollaborator",
"political");
System.out.println("Political collaborators of Robert Smith " +
getVerticesAsString(collaborators));

collaborators = opg.getVertices("smithCollaborator", "business");
System.out.println("Business collaborators of Robert Smith " +
getVerticesAsString(collaborators));

// Add an attribute to all people having a feud with Robert Smith to set
// the type of relation they have
FeudsEdgeOpCallback feoc = FeudsEdgeOpCallback.getInstance(opg);
opg.addAttributeToAllEdges(feoc, true /** Skip store to Cache */, dop);

// Look up for all feuds of Smith
Iterable<Edge> feuds = opg.getEdges("smithFeud", "political");
System.out.println("\n\nPolitical feuds of Robert Smith " +
getEdgesAsString(feuds));

feuds = opg.getEdges("smithFeud", "business");
System.out.println("Business feuds of Robert Smith " +
getEdgesAsString(feuds));

Chapter 2
Using Java APIs for Property Graph Data

2-43

The following code fragment defines an implementation of VertexOpCallback that can
be used to remove vertices having value philanthropy for attribute smithCollaborator,
then call the API removeAttributeFromAllVertices; It also defines an implementation
of EdgeOpCallback that can be used to remove edges having value business for
attribute smithFeud, then call the API removeAttributeFromAllEdges.

System.out.println("\n\nRemove 'smithCollaborator' property from all the" +
 "philanthropy collaborators");
PhilanthropyCollaboratorsVertexOpCallback pvoc =
PhilanthropyCollaboratorsVertexOpCallback.getInstance();

opg.removeAttributeFromAllVertices(pvoc);

System.out.println("\n\nRemove 'smithFeud' property from all the" + "business
feuds");
BusinessFeudsEdgeOpCallback beoc = BusinessFeudsEdgeOpCallback.getInstance();

opg.removeAttributeFromAllEdges(beoc);

/**
 * Implementation of a EdgeOpCallback to remove the "smithCollaborators"
 * property from all people collaborating with Robert Smith that have a
 * philanthropy role
 */
private static class PhilanthropyCollaboratorsVertexOpCallback implements
VertexOpCallback
{
 public static PhilanthropyCollaboratorsVertexOpCallback getInstance()
 {
 return new PhilanthropyCollaboratorsVertexOpCallback();
 }

 /**
 * Remove attribute if and only if the property value for
 * smithCollaborator is Philanthropy
 */
 @Override
 public boolean needOp(OracleVertexBase v)
 {
 String type = v.getProperty("smithCollaborator");
 return type != null && type.equals("philanthropy");
 }

 @Override
 public String getAttributeKeyName(OracleVertexBase v)
 {
 return "smithCollaborator";
 }

 /**
 * Define the property's value. In this case can be empty
 */
 @Override
 public Object getAttributeKeyValue(OracleVertexBase v)
 {
 return " ";
 }
}

/**
 * Implementation of a EdgeOpCallback to remove the "smithFeud" property

Chapter 2
Using Java APIs for Property Graph Data

2-44

 * from all connections in a feud with Robert Smith that have a business role
 */
private static class BusinessFeudsEdgeOpCallback implements EdgeOpCallback
{
 public static BusinessFeudsEdgeOpCallback getInstance()
 {
 return new BusinessFeudsEdgeOpCallback();
 }

 /**
 * Remove attribute if and only if the property value for smithFeud is
 * business
 */
 @Override
 public boolean needOp(OracleEdgeBase e)
 {
 String type = e.getProperty("smithFeud");
 return type != null && type.equals("business");
 }

 @Override
 public String getAttributeKeyName(OracleEdgeBase e)
 {
 return "smithFeud";
 }

 /**
 * Define the property's value. In this case can be empty
 */
 @Override
 public Object getAttributeKeyValue(OracleEdgeBase e)
 {
 return " ";
 }
}

2.5.7 Getting Property Graph Metadata
You can get graph metadata and statistics, such as all graph names in the database;
for each graph, getting the minimum/maximum vertex ID, the minimum/maximum edge
ID, vertex property names, edge property names, number of splits in graph vertex, and
the edge table that supports parallel table scans.

The following code fragment gets the metadata and statistics of the existing property
graphs stored in an Oracle database.

// Get all graph names in the database
List<String> graphNames = OraclePropertyGraphUtils.getGraphNames(dbArgs);

for (String graphName : graphNames) {
OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
graphName);

System.err.println("\n Graph name: " + graphName);
System.err.println(" Total vertices: " +
 opg.countVertices(dop));

System.err.println(" Minimum Vertex ID: " +
 opg.getMinVertexID(dop));
System.err.println(" Maximum Vertex ID: " +

Chapter 2
Using Java APIs for Property Graph Data

2-45

 opg.getMaxVertexID(dop));

Set<String> propertyNamesV = new HashSet<String>();
opg.getVertexPropertyNames(dop, 0 /* timeout,0 no timeout */,
 propertyNamesV);

System.err.println(" Vertices property names: " +
getPropertyNamesAsString(propertyNamesV));

System.err.println("\n\n Total edges: " + opg.countEdges(dop));
System.err.println(" Minimum Edge ID: " + opg.getMinEdgeID(dop));
System.err.println(" Maximum Edge ID: " + opg.getMaxEdgeID(dop));

Set<String> propertyNamesE = new HashSet<String>();
opg.getEdgePropertyNames(dop, 0 /* timeout,0 no timeout */,
 propertyNamesE);

System.err.println(" Edge property names: " +
getPropertyNamesAsString(propertyNamesE));

System.err.println("\n\n Table Information: ");
System.err.println("Vertex table number of splits: " +
 (opg.getVertexPartitionsNumber()));
System.err.println("Edge table number of splits: " +
 (opg.getEdgePartitionsNumber()));
}

2.5.8 Merging New Data into an Existing Property Graph
In addition to loading graph data into an empty property graph in Oracle Database,
you can merge new graph data into an existing (empty or non-empty) graph. As with
data loading, data merging splits the input vertices and edges into multiple chunks and
merges them with the existing graph in database in parallel.

When doing the merging, the flows are different depends on whether there is an
overlap between new graph data and existing graph data. Overlap here means that
the same key of a graph element may have different values in the new and existing
graph data. For example, key weight of the vertex with ID 1 may have value 0.8 in the
new graph data and value 0.5 in the existing graph data. In this case, you must specify
whether the new value or the existing value should be used for the key.

The following options are available for graph data merging: JDB-based, external table-
based, and SQL loader-based merging.

• JDBC-Based Graph Data Merging

• External Table-Based Data Merging

• SQL Loader-Based Data Merging

JDBC-Based Graph Data Merging

JDBC-based data merging uses Java Database Connectivity (JDBC) APIs to load the
new graph data into Oracle Database and then merge the new graph data into an
existing graph.

The following example merges the new graph data from vertex and edge files
szOPVFile and szOPEFile in Oracle-defined Flat-file format with an existing graph

Chapter 2
Using Java APIs for Property Graph Data

2-46

named opg, using a JDBC-based data merging with a DOP (degree of parallelism) of
48, batch size of 1000, and specified data merging options.

String szOPVFile = "../../data/connectionsNew.opv";
String szOPEFile = "../../data/connectionsNew.ope";
OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();
opgdl.mergeData(opg, szOPVFile, szOPEFile,
 48 /*DOP*/,
 1000 /*Batch Size*/,
 true /*Rebuild index*/,
 "pdml=t, pddl=t, no_dup=t, use_new_val_for_dup_key=t" /*Merge
options*/);

To optimize the performance of the data merging operations, a set of flags and hints
can be specified in the merging options parameter when calling the JDBC-based data
merging. These hints include:

• DOP: The degree of parallelism to use when merging the data. This parameter
determines the number of chunks to generate when splitting the file, as well as the
number of loader threads to use when merging the data into the property graph
VT$ and GE$ tables.

• Batch Size: An integer specifying the batch size to use for Oracle JDBC
statements in batching mode.

• Rebuild index: If set to true, the data loader will disable all the indexes and
constraints defined over the property graph into which the data will be loaded.
After all the data is merged into the property graph, all the original indexes and
constraints will be rebuilt and enabled.

• Merge options: An option (or multiple options separated by commas) to optimize
the data merging operations. These options include:

– PDML=T: enables parallel execution for DML operations for the database
session used in the data loader. This hint is used to improve the performance
of long-running batching jobs.

– PDDL=T: enables parallel execution for DDL operations for the database
session used in the data loader. This hint is used to improve the performance
of long-running batching jobs.

– NO_DUP=T: assumes the input new graph data does not have invalid
duplicates. In a valid property graph, each vertex (or edge) can at most have
one value for a given property key. In an invalid property graph, a vertex (or
edge) may have two or more values for a particular key. As an example, a
vertex, v, has two key/value pairs: name/"John" and name/"Johnny", and they
share the same key.

– OVERLAP=F: assumes there is no overlap between new graph data and
existing graph data. That is, there is no key with multiple distinct values in the
new and existing graph data.

– USE_NEW_VAL_FOR_DUP_KEY=T: if there is overlap between new graph
data and existing graph data, use the value in the new graph data; otherwise,
use the value in the existing graph data.

Chapter 2
Using Java APIs for Property Graph Data

2-47

External Table-Based Data Merging

External table-based data merging uses an external table to load new graph data into
Oracle Database and then merge the new graph data into an existing graph.

External-table based data merging requires a directory object, where the files read by
the external tables will be stored. This directory can be created using the following
SQL*Plus statements:

create or replace directory tmp_dir as '/tmppath/';
grant read, write on directory tmp_dir to public;

The following example merges the new graph data from a vertex and edge files
szOPVFile and szOPEFile in Oracle flat-file format with an existing graph opg using an
external table-based data merging, a DOP (degree of parallelism) of 48, and specified
merging options.

String szOPVFile = "../../data/connectionsNew.opv";
String szOPEFile = "../../data/connectionsNew.ope";
String szExtDir = "tmp_dir";
OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();
opgdl.mergeDataWithExtTab(opg, szOPVFile, szOPEFile,
 48 /*DOP*/,
 true /*Use Named Pipe for splitting*/,
 szExtDir /*database directory object*/,
 true /*Rebuild index*/,
 "pdml=t, pddl=t, no_dup=t, use_new_val_for_dup_key=t" /*Merge
options*/);

SQL Loader-Based Data Merging

SQL loader-based data merging uses Oracle SQL*Loader to load the new graph data
into Oracle Database and then merge the new graph data into an existing graph.

The following example merges the new graph data from a vertex and edge files
szOPVFile and szOPEFile in Oracle Flat-file format with an existing graph opg using
an SQL loader -based data merging with a DOP (degree of parallelism) of 48 and the
specified merging options. To use the APIs, the path to the SQL*Loader needs to be
specified.

String szUser = "username";
String szPassword = "password";
String szDbId = "db18c"; /*service name of the database*/
String szOPVFile = "../../data/connectionsNew.opv"; 0
String szOPEFile = "../../data/connectionsNew.ope";
String szSQLLoaderPath = "<YOUR_ORACLE_HOME>/bin/sqlldr";
OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();
opgdl.mergeDataWithSqlLdr(opg, szUser, szPassword, szDbId, szOPVFile,
szOPEFile,
 48 /*DOP*/,
 true /*Use Named Pipe for splitting*/,
 szSQLLoaderPath /* SQL*Loader path: the path to bin/sqlldr */,

Chapter 2
Using Java APIs for Property Graph Data

2-48

 true /*Rebuild index*/,
 "pdml=t, pddl=t, no_dup=t, use_new_val_for_dup_key=t" /*Merge
options*/);

2.5.9 Opening and Closing a Property Graph Instance
When describing a property graph, use these Oracle Property Graph classes to open
and close the property graph instance properly:

• OraclePropertyGraph.getInstance: Opens an instance of an Oracle property
graph. This method has two parameters, the connection information and the graph
name. The format of the connection information depends on whether you use
HBase or Oracle NoSQL Database as the backend database.

• OraclePropertyGraph.clearRepository: Removes all vertices and edges from
the property graph instance.

• OraclePropertyGraph.shutdown: Closes the graph instance.

For Oracle Database, the OraclePropertyGraph.getInstance method uses an Oracle
instance to manage the database connection. OraclePropertyGraph has a set of
constructors that let you set the graph name, number of hash partitions, degree of
parallelism, tablespace, and options for storage (such as compression). For example:

import oracle.pg.rdbms.*;
Oracle oracle = new Oracle(jdbcURL, username, password);

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(oracle,
graphName);
opg.clearRepository();
// .
// . Graph description
// .
// Close the graph instance
opg.shutdown();

If the in-memory analyst functions are required for an application, you
should use GraphConfigBuilder to create a graph for Oracle Database,
and instantiate OraclePropertyGraph with that graph name as an argument.
For example, the following code snippet constructs a graph config, gets
an OraclePropertyGraph instance, loads some data into that graph, and gets an
in-memory analyst.

import oracle.pgx.config.*;
import oracle.pgx.api.*;
import oracle.pgx.common.types.*;

...

PgNosqlGraphConfig cfg = GraphConfigBuilder. forPropertyGraphRdbms ()
 .setJdbcUrl("jdbc:oracle:thin:@<hostname>:1521:<sid>")
 .setUsername("<username>").setPassword("<password>")
 .setName(szGraphName)
 .setMaxNumConnections(8)
 .addEdgeProperty("lbl", PropertyType.STRING, "lbl")

Chapter 2
Using Java APIs for Property Graph Data

2-49

 .addEdgeProperty("weight", PropertyType.DOUBLE, "1000000")
 .build();

 OraclePropertyGraph opg = OraclePropertyGraph.getInstance(cfg);

 String szOPVFile = "../../data/connections.opv";
 String szOPEFile = "../../data/connections.ope";

 // perform a parallel data load
 OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();
 opgdl.loadData(opg, szOPVFile, szOPEFile, 2 /* dop */, 1000, true,
"PDML=T,PDDL=T,NO_DUP=T,");

 ...
 PgxSession session = Pgx.createSession("session-id-1");
 PgxGraph g = session.readGraphWithProperties(cfg);

 Analyst analyst = session.createAnalyst();
 ...

2.5.10 Creating Vertices
To create a vertex, use these Oracle Property Graph methods:

• OraclePropertyGraph.addVertex: Adds a vertex instance to a graph.

• OracleVertex.setProperty: Assigns a key-value property to a vertex.

• OraclePropertyGraph.commit: Saves all changes to the property graph instance.

The following code fragment creates two vertices named V1 and V2, with properties
for age, name, weight, height, and sex in the opg property graph instance. The v1
properties set the data types explicitly.

// Create vertex v1 and assign it properties as key-value pairs
Vertex v1 = opg.addVertex(1l);
 v1.setProperty("age", Integer.valueOf(31));
 v1.setProperty("name", "Alice");
 v1.setProperty("weight", Float.valueOf(135.0f));
 v1.setProperty("height", Double.valueOf(64.5d));
 v1.setProperty("female", Boolean.TRUE);

Vertex v2 = opg.addVertex(2l);
 v2.setProperty("age", 27);
 v2.setProperty("name", "Bob");
 v2.setProperty("weight", Float.valueOf(156.0f));
 v2.setProperty("height", Double.valueOf(69.5d));
 v2.setProperty("female", Boolean.FALSE);

2.5.11 Creating Edges
To create an edge, use these Oracle Property Graph methods:

• OraclePropertyGraph.addEdge: Adds an edge instance to a graph.

• OracleEdge.setProperty: Assigns a key-value property to an edge.

Chapter 2
Using Java APIs for Property Graph Data

2-50

The following code fragment creates two vertices (v1 and v2) and one edge (e1).

// Add vertices v1 and v2
Vertex v1 = opg.addVertex(1l);
v1.setProperty("name", "Alice");
v1.setProperty("age", 31);

Vertex v2 = opg.addVertex(2l);
v2.setProperty("name", "Bob");
v2.setProperty("age", 27);

// Add edge e1
Edge e1 = opg.addEdge(1l, v1, v2, "knows");
e1.setProperty("type", "friends");

2.5.12 Deleting Vertices and Edges
You can remove vertex and edge instances individually, or all of them simultaneously.
Use these methods:

• OraclePropertyGraph.removeEdge: Removes the specified edge from the graph.

• OraclePropertyGraph.removeVertex: Removes the specified vertex from the
graph.

• OraclePropertyGraph.clearRepository: Removes all vertices and edges from
the property graph instance.

The following code fragment removes edge e1 and vertex v1 from the graph instance.
The adjacent edges will also be deleted from the graph when removing a vertex. This
is because every edge must have an beginning and ending vertex. After removing the
beginning or ending vertex, the edge is no longer a valid edge.

// Remove edge e1
opg.removeEdge(e1);

// Remove vertex v1
opg.removeVertex(v1);

The OraclePropertyGraph.clearRepository method can be used to remove all
contents from an OraclePropertyGraph instance. However, use it with care because
this action cannot be reversed.

2.5.13 Reading a Graph from a Database into an Embedded In-
Memory Analyst

You can read a graph from Oracle Database into an in-memory analyst that is
embedded in the same client Java application (a single JVM). For the following
example, a correct java.io.tmpdir setting is required.

int dop = 8; // need customization
Map<PgxConfig.Field, Object> confPgx = new HashMap<PgxConfig.Field,
Object>();
confPgx.put(PgxConfig.Field.ENABLE_GM_COMPILER, false);
confPgx.put(PgxConfig.Field.NUM_WORKERS_IO, dop); //
confPgx.put(PgxConfig.Field.NUM_WORKERS_ANALYSIS, dop); // <= # of
physical cores

Chapter 2
Using Java APIs for Property Graph Data

2-51

confPgx.put(PgxConfig.Field.NUM_WORKERS_FAST_TRACK_ANALYSIS, 2);
confPgx.put(PgxConfig.Field.SESSION_TASK_TIMEOUT_SECS, 0); // no
timeout set
confPgx.put(PgxConfig.Field.SESSION_IDLE_TIMEOUT_SECS, 0); // no
timeout set

PgRdbmsGraphConfig cfg =
GraphConfigBuilder.forPropertyGraphRdbms().setJdbcUrl("jdbc:oracle:thin:
@<your_db_host>:<db_port>:<db_sid>")
 .setUsername("<username>")
 .setPassword("<password>")
 .setName("<graph_name>")
 .setMaxNumConnections(8)
 .setLoadEdgeLabel(false)
 .build();
OraclePropertyGraph opg = OraclePropertyGraph.getInstance(cfg);
ServerInstance localInstance = Pgx.getInstance();
localInstance.startEngine(confPgx);
PgxSession session = localInstance.createSession("session-id-1"); //
Put your session description here.

Analyst analyst = session.createAnalyst();

// The following call will trigger a read of graph data from the
database
PgxGraph pgxGraph = session.readGraphWithProperties(opg.getConfig());

long triangles = analyst.countTriangles(pgxGraph, false);
System.out.println("triangles " + triangles);

// Remove edge e1
opg.removeEdge(e1);

// Remove vertex v1
opg.removeVertex(v1);

2.5.14 Specifying Labels for Vertices
The database and data access layer do not provide labels for vertices; however, you
can treat the value of a designated vertex property as one or more labels. Such a
transformation is relevant only to the in-memory analyst.

In the following example, a property "country" is specified in a call to
setUseVertexPropertyValueAsLabel(), and the comma delimiter "," is specified in
a call to setPropertyValueDelimiter(). These two together imply that values of the
country vertex property will be treated as vertex labels separated by a comma. For
example, if vertex X has a string value "US" for its country property, then its vertex
label will be US; and if vertex Y has a string value "UK,CN", then it will have two labels:
UK and CN.

GraphConfigBuilder.forPropertyGraph...
 .setName("<your_graph_name>")
 ...
 .setUseVertexPropertyValueAsLabel("country")

Chapter 2
Using Java APIs for Property Graph Data

2-52

 .setPropertyValueDelimiter(",")
 .setLoadVertexLabels(true)
 .build();

Related Topics

• What Are Property Graphs?

2.5.15 Building an In-Memory Graph
In addition to Store the Database Password in a Keystore, you can create an in-
memory graph programmatically. This can simplify development when the size of
graph is small or when the content of the graph is highly dynamic. The key Java
class is GraphBuilder, which can accumulate a set of vertices and edges added with
the addVertex and addEdge APIs. After all changes are made, an in-memory graph
instance (PgxGraph) can be created by the GraphBuilder.

The following Java code snippet illustrates a graph construction flow. Note that there
are no explicit calls to addVertex, because any vertex that does not already exist will
be added dynamically as its adjacent edges are created.

import oracle.pgx.api.*;

PgxSession session = Pgx.createSession("example");
GraphBuilder<Integer> builder = session.newGraphBuilder();

builder.addEdge(0, 1, 2);
builder.addEdge(1, 2, 3);
builder.addEdge(2, 2, 4);
builder.addEdge(3, 3, 4);
builder.addEdge(4, 4, 2);

PgxGraph graph = builder.build();

To construct a graph with vertex properties, you can use setProperty against the
vertex objects created.

PgxSession session = Pgx.createSession("example");
GraphBuilder<Integer> builder = session.newGraphBuilder();

builder.addVertex(1).setProperty("double-prop", 0.1);
builder.addVertex(2).setProperty("double-prop", 2.0);
builder.addVertex(3).setProperty("double-prop", 0.3);
builder.addVertex(4).setProperty("double-prop", 4.56789);

builder.addEdge(0, 1, 2);
builder.addEdge(1, 2, 3);
builder.addEdge(2, 2, 4);
builder.addEdge(3, 3, 4);
builder.addEdge(4, 4, 2);

PgxGraph graph = builder.build();

Chapter 2
Using Java APIs for Property Graph Data

2-53

To use long integers as vertex and edge identifiers, specify IdType.LONG when getting
a new instance of GraphBuilder. For example:

import oracle.pgx.common.types.IdType;
GraphBuilder<Long> builder = session.newGraphBuilder(IdType.LONG);

During edge construction, you can directly use vertex objects that were previously
created in a call to addEdge.

v1 = builder.addVertex(1l).setProperty("double-prop", 0.5)
v2 = builder.addVertex(2l).setProperty("double-prop", 2.0)

builder.addEdge(0, v1, v2)

As with vertices, edges can have properties. The following example sets the edge
label by using setLabel:

builder.addEdge(4, v4, v2).setProperty("edge-prop",
"edge_prop_4_2").setLabel("label")

2.5.16 Dropping a Property Graph
To drop a property graph from the database, use the
OraclePropertyGraphUtils.dropPropertyGraph method. This method has two
parameters, the connection information and the graph name. For example:

// Drop the graph
Oracle oracle = new Oracle(jdbcUrl, username, password);
OraclePropertyGraphUtils.dropPropertyGraph(oracle, graphName);

You can also drop a property graph using the PL/SQL API. For example:

EXECUTE opg_apis.drop_pg('my_graph_name');

2.5.17 Executing PGQL Queries
You can execute PGQL queries directly against Oracle Database with the
PgqlStatement and PgqlPreparedStatement interfaces. See Executing PGQL Queries
Directly Against Oracle Database for details.

2.6 Managing Text Indexing for Property Graph Data
Indexes in Oracle Spatial and Graph property graph support allow fast retrieval of
elements by a particular key/value or key/text pair. These indexes are created based
on an element type (vertices or edges), a set of keys (and values), and an index type.

Oracle Spatial and Graph supports the use of the Oracle Text indexing technology,
which is a feature of Oracle Database.

Two types of indexing structures are supported.

Chapter 2
Managing Text Indexing for Property Graph Data

2-54

• Automatic text indexes provide automatic indexing of vertices or edges by a set of
property keys. Their main purpose is to enhance query performance on vertices
and edges based on particular key/value pairs.

• Manual text indexes enable you to define multiple indexes over a designated set of
vertices and edges of a property graph. You must specify what graph elements go
into the index.

Oracle Spatial and Graph provides APIs to create manual and automatic text indexes
over property graphs stored in Oracle Database. Indexes are managed using Oracle
Text, a proprietary search and analysis engine. The rest of this section focuses on how
to create text indexes using the property graph capabilities of the Data Access Layer.

• Configuring a Text Index for Property Graph Data

• Using Automatic Indexes for Property Graph Data

• Using Manual Indexes for Property Graph Data

• Executing Search Queries Over a Property Graph’s Text Indexes

• Handling Data Types

• Updating Configuration Settings on Text Indexes for Property Graph Data
Oracle's property graph support manages manual and automatic text indexes
through integration with Oracle Text.

• Using Parallel Query on Text Indexes for Property Graph Data

2.6.1 Configuring a Text Index for Property Graph Data
The configuration of a text index is defined using an OracleIndexParameters object.
This object includes information about the index such as search engine, location,
number of directories (or shards), and degree of parallelism.

By default, text indexes are configured based on
the OracleIndexParameters associated with the property graph using the
method opg.setDefaultIndexParameters(indexParams). The initial creation of the
automatic index delimits the configuration and text search engine for future indexed
keys.

Indexes can also be created by specifying a different set of parameters. The following
code fragment creates an automatic text index over an existing property graph using a
Lucene engine with a physical directory.

// Create an OracleIndexParameters object to get Index configuration (search
engine, etc).
OracleIndexParameters indexParams = OracleIndexParameters.buildFS(args)

// Create auto indexing on above properties for all vertices
opg.createKeyIndex("name", Vertex.class, indexParams.getParameters());

Any index configuration operations cause updates to be made to the IT$ table, which
is explained in Property Graph Tables (Detailed Information).

• Configuring Text Indexes Using Oracle Text

2.6.1.1 Configuring Text Indexes Using Oracle Text
Oracle Spatial and Graph supports automatic text indexes using Oracle Text. Oracle
Text uses standard SQL to index, search, and analyze text values stored in the V

Chapter 2
Managing Text Indexing for Property Graph Data

2-55

column of the vertices (or edges) table. Because Oracle Text indexes all the existing
K/V pairs of the vertices (or edges) in the property graph, this option can be used
only with automatic text indexes and must use a wildcard ("*") indexed key parameter
during the index creation.

Because the property graph feature uses an NVARCHAR typed column for a better
support of Unicode, it is highly recommended that UTF8 (AL32UTF8) be used as the
database character set.

To create an Oracle Text index on the vertices table (or edges table), the ALTER
SESSION privilege is required. The following example grants the privilege.

SQL> grant alter session to <YOUR_USER_SCHEMA_HERE>;

If customization is required, grant EXECUTE on CTX_DDL, as in the following
example.

SQL> grant execute on ctx_ddl to <YOUR_USER_SCHEMA_HERE>;

A text index using Oracle Text uses an OracleTextIndexParameters object. The
configuration parameters for indexes using a Oracle Text include:

• Preference owner: the owner of the preference.

• Data store: the datastore preference specifying how the text values are stored.
A datastore preference can be created using ctx_ddl.create_preference API as
follows:

SQL> -- The following requires access privilege to CTX_DDL
SQL> exec ctx_ddl.create_preference('SCOTT.OPG_DATASTORE',
'DIRECT_DATASTORE');

If the value is set to NULL, then the index will be created with
CTXSYS.DEFAULT_DATASORE. This preference uses a DIRECT_DATASTORE
type.

• Filter: the filter preference determining how text is filtered for indexing. A filter
preference can be created using ctx_ddl.create_preference, as follows:

SQL> -- The following requires access privilege to CTX_DDL
SQL> exec ctx_ddl.create_preference('SCOTT.OPG_FILTER',
'AUTO_FILTER');

If the value is set to NULL, then the index will be created with
CTXSYS.NULL_FILTER. This preference uses a NULL_FILTER type.

• Storage: the storage preference specifying table space and creation parameters
for tables associated with a Text index. A storage preference can be created using
ctx_ddl.create_preference, as follows:

SQL> -- The following requires access privilege to CTX_DDL
SQL> exec ctx_ddl.create_preference('SCOTT.OPG_STORAGE',
'BASIC_STORAGE');

Chapter 2
Managing Text Indexing for Property Graph Data

2-56

If the value is set to NULL, then the index will be created with
CTXSYS.DEFAULT_STORAGE. This preference uses a BASIC_STORAGE type.

• Word list: the word list preference specifying the enabled query options.
These query options may include stemming, fuzzy matching, substring,
and prefix indexing. A data store preference can be created using
ctx_ddl.create_preference, as follows:

SQL> -- The following example enables stemming and fuzzy matching
for English.
SQL> exec ctx_ddl.create_preference('SCOTT.OPG_WORDLIST',
'BASIC_WORDLIST');

If the value is set to NULL, then the index will be created with
CTXSYS.DEFAULT_WORDLIST. This preference uses the language stemmer for
your database language.

• Stop list: the stop list preference specifying the list of words that are
not meant to be indexed. A stop list preference can be created using
ctx_ddl.create_stoplist .

If the value is set to NULL, then the index will be created with
CTXSYS.DEFAULT_STOPLIST. This preference uses the stoplist of your
database language.

• Lexer: the lexer preference specifying the language of the text to be indexed. A
lexer preference can be created using ctx_ddl.create_preference, as follows:

SQL> -- The following requires access privilege to CTX_DDL
SQL> exec ctx_ddl.create_preference('SCOTT.OPG_AUTO_LEXER',
'AUTO_LEXER');

If the value is set to NULL, then the index will be created with
CTXSYS.DEFAULT_LEXER. This preference uses a BASIC_LEXER type with
additional options based on the language used at installation time.

The following code fragment creates the configuration for a text index using Oracle
Text with default options and OPG_AUTO_LEXER.

String prefOwner = "scott";
String datastore = (String) null;
String filter = (String) null;
String storage = (String) null;
String wordlist = (String) null;
String stoplist = (String) null;
String lexer = "OPG_AUTO_LEXER";
String options = (String) null;

OracleIndexParameters params
 =
OracleTextIndexParameters.buildOracleText(prefOwner,
 datastore,
 filter,
 storage,
 wordlist,
 stoplist,
 lexer,

Chapter 2
Managing Text Indexing for Property Graph Data

2-57

 dop,
 options);

2.6.2 Using Automatic Indexes for Property Graph Data
An automatic text index provides automatic indexing of vertices or edges by a set of
property keys. Its main purpose is to increase the speed of lookups over vertices and
edges based on particular key/value pair. If an automatic index for the given key is
enabled, then key/value pair lookups will be performed as a text search against the
index instead of as a database lookup.

When specifying an automatic index over a property graph, use the following methods
to create, remove, and manipulate an automatic index:

• OraclePropertyGraph.createKeyIndex(String key, Class elementClass,
Parameter[] parameters): Creates an automatic index for all elements of type
elementClass by the given property key. The index is configured based on the
specified parameters.

• OraclePropertyGraph.createKeyIndex(String[] keys, Class elementClass,
Parameter[] parameters): Creates an automatic index for all elements of type
elementClass by using a set of property keys. The index is configured based on
the specified parameters.

• OraclePropertyGraph.dropKeyIndex(String key, Class elementClass): Drops
the automatic index for all elements of type elementClass for the given property
key.

• OraclePropertyGraph.dropKeyIndex(String[] keys, Class elementClass):
Drops the automatic index for all elements of type elementClass for the given
set of property keys.

• OraclePropertyGraph.getAutoIndex(Class elementClass): Gets an index
instance of the automatic index for type elementClass.

• OraclePropertyGraph.getIndexedKeys(Class elementClass): Gets the set of
indexed keys currently used in an automatic index for all elements of type
elementClass.

By default, indexes are configured based on the OracleIndexParameters
associated with the property graph using the method
opg.setDefaultIndexParameters(indexParams).

Indexes can also be created by specifying a different set of parameters. This is shown
in the following code snippet.

// Create an OracleIndexParameters object to get Index configuration (search
engine, etc).
OracleIndexParameters indexParams = OracleIndexParameters.buildFS(args)

// Create auto indexing on above properties for all vertices
opg.createKeyIndex("name", Vertex.class, indexParams.getParameters());

The code fragment in the next example executes a query over all vertices to find
all matching vertices with the key/value pair name:Robert Smith. This operation will
execute a lookup into the text index.

Additionally, wildcard searches are supported by specifying the parameter
useWildCards in the getVertices API call. Wildcard search is only supported when
automatic indexes are enabled for the specified property key.

Chapter 2
Managing Text Indexing for Property Graph Data

2-58

// Find all vertices with name Robert Smith.
 Iterator<Vertices> vertices = opg.getVertices("name", "Robert
Smith").iterator();
 System.out.println("----- Vertices with name Robert Smith -----");
 countV = 0;
 while (vertices.hasNext()) {
 System.out.println(vertices.next());
 countV++;
 }
 System.out.println("Vertices found: " + countV);

 // Find all vertices with name including keyword "Smith"
 // Wildcard searching is supported.
 boolean useWildcard = true;
 Iterator<Vertices> vertices = opg.getVertices("name", "*Smith*").iterator();
 System.out.println("----- Vertices with name *Smith* -----");
 countV = 0;
 while (vertices.hasNext()) {
 System.out.println(vertices.next());
 countV++;
 }
 System.out.println("Vertices found: " + countV);

The preceding code example produces output like the following:

----- Vertices with name Robert Smith-----
Vertex ID 1 {name:str:Robert Smith, role:str:political authority,
occupation:str:CEO of Example Corporation, country:str:United States, political
party:str:Bipartisan, religion:str:Unknown}
Vertices found: 1

----- Vertices with name *Smith* -----
Vertex ID 1 {name:str:Robert Smith, role:str:political authority,
occupation:str:CEO of Example Corporation, country:str:United States, political
party:str:Bipartisan, religion:str:Unknown}
Vertices found: 1

2.6.3 Using Manual Indexes for Property Graph Data
Manual indexes support the definition of multiple indexes over the vertices and edges
of a property graph. A manual index requires that you manually put, get, and remove
elements from the index.

When describing a manual index over a property graph, use the following methods to
add, remove, and manipulate a manual index:

• OraclePropertyGraph.createIndex(String name, Class elementClass,
Parameter[] parameters): Creates a manual index with the specified name for
all elements of type elementClass.

• OraclePropertyGraph.dropIndex(String name): Drops the given manual index.

• OraclePropertyGraph.getIndex(String name, Class elementClass): Gets an
index instance of the given manual index for type elementClass.

• OraclePropertyGraph.getIndices(): Gets an array of index instances for all
manual indexes created in the property graph.

Chapter 2
Managing Text Indexing for Property Graph Data

2-59

2.6.4 Executing Search Queries Over a Property Graph’s Text Indexes
Oracle Spatial and Graph provides a set of utilities to execute text search queries
over automatic and manual text indexes. These utilities vary from querying based on a
particular key/value pair, to executing a text search over a single or multiple keys (with
extended query options such as wildcards, fuzzy searches, and range queries).

• Executing Search Queries Over a Text Index Using Oracle Text

2.6.4.1 Executing Search Queries Over a Text Index Using Oracle Text
Text search queries on Oracle Text are translated into SELECT SQL queries with a
"contains"clause including a score range and ordering, and score ID. Oracle’s property
graph includes an utility called OracleTextQueryObject, which lets you execute text
search queries over an Oracle Text index.

The following code fragment creates an automatic index using Oracle Text, and
executes a query over the text index by specifying a particular key/value pair.

String prefOwner = "scott";
String datastore = (String) null;
String filter = (String) null;
String storage = (String) null;
String wordlist = (String) null;
String stoplist = (String) null;
String lexer = "OPG_AUTO_LEXER";
String options = (String) null;

OracleIndexParameters params
 =
OracleTextIndexParameters.buildOracleText(prefOwner,
 datastore,
 filter,
 storage,
 wordlist,
 stoplist,
 lexer,
 dop,
 options);

opg.setDefaultIndexParameters(indexParams);

// Create auto indexing on all existing properties, use wildcard for all
opg.createKeyIndex(("*", Vertex.class);

// Get the auto index object
OracleIndex<Vertex> index = ((OracleIndex<Vertex>)
opg.getAutoIndex(Vertex.class);

// Create the text query object for Oracle Text
OracleTextQueryObject otqo
 = OracleTextQueryObject.getInstance("Smith" /* query body */,
 1 /* score */,
 ScoreRange.POSITIVE /* Score
range */,
 Direction.ASC /* order by
direction*/);

Chapter 2
Managing Text Indexing for Property Graph Data

2-60

Iterator<Vertex> vertices = index.get("name", otqo).iterator();
System.out.println("----- Vertices with query: " + otqo.toString() + " -----");
countV = 0;
while (vertices.hasNext()) {
 System.out.println(vertices.next());
 countV++;
}
System.out.println("Vertices found: "+ countV);

You can filter the date type of the matching key/value pairs by specifying the data type
class to execute the query against. The following code fragment executes a query over
the text index to retrieve all properties with a String value including the word Smith.

// Create the text query object for Oracle Text
OracleTextQueryObject otqo
 = OracleTextQueryObject.getInstance("Smith" /* query body */,
 1 /* score */,
 ScoreRange.POSITIVE
 /* Score range */,
 Direction.ASC
 /* order by direction*/,
 "name",
 String.class);

Iterator<Vertex> vertices = index.get("name", otqo).iterator();
System.out.println("----- Vertices with query: " + otqo.toString() + " -----");
countV = 0;
while (vertices.hasNext()) {
 System.out.println(vertices.next());
 countV++;
}
System.out.println("Vertices found: "+ countV);

2.6.5 Handling Data Types
Oracle's property graph support indexes and stores an element's Key/Value pairs
based on the value data type. The main purpose of handling data types is to provide
extensive query support like numeric and date range queries.

By default, searches over a specific key/value pair are matched up to a query
expression based on the value's data type. For example, to find vertices with the
key/value pair age:30, a query is executed over all age fields with a data type integer.
If the value is a query expression, you can also specify the data type class of the value
to find by calling the API get(String key, Object value, Class dtClass, Boolean
useWildcards). If no data type is specified, the query expression will be matched to all
possible data types.

When dealing with Boolean operators, each subsequent key/value pair must append
the data type's prefix/suffix so the query can find proper matches.

• Handling Data Types on Oracle Text

2.6.5.1 Handling Data Types on Oracle Text
Text indexes using Oracle Text are created over the K and V text columns of the
property graph tables. In order to provide text indexing capabilities on all available data

Chapter 2
Managing Text Indexing for Property Graph Data

2-61

types, Oracle populates the V column with a string representation of numeric, spatial,
and date time key/value pairs.

To specify the date time and numeric formats used when populating the
V column, you can use the methods setNumberToCharSqlFormatString and
setTimeToCharSqlFormatString. The following code snippet shows how to set the
date time and numeric formats in a property graph instance.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
 szGraphName);
opg.setNumberToCharSqlFormatString("TM9");
opg.setTimeToCharSqlFormatString("SYYYY-MM-DD\"T\"HH24:MI:SS.FF9TZH:TZM");

When executing a text search query over a numeric or date time value, you
should use a text expression using the format associated to the property graph.
OraclePropertyGraph includes a utility API opg.parseValueToCharSQLFormatString
that lets you parse a numeric or date time object into format used in the V column
storage. The following code snippet calls this function with a date value and creates a
text query object out of the retrieved text.

Date d = new java.util.Date(100l);
String szDate = opg.parseValueToCharSQLFormatString(d);

// Create the text query object for Oracle Text
OracleTextQueryObject otqo
 = OracleTextQueryObject.getInstance(szDate /* query body */,
 1 /* score */,
 ScoreRange.POSITIVE /* Score
range */,
 Direction.ASC /* order by
direction);

2.6.6 Updating Configuration Settings on Text Indexes for Property
Graph Data

Oracle's property graph support manages manual and automatic text indexes through
integration with Oracle Text.

At creation time, you must create an OracleIndexParameters object specifying the
search engine and other configuration settings to be used by the text index. After
a text index for property graph is created, these configuration settings cannot be
changed.

For automatic indexes, all vertex index keys are managed by a single text index, and
all edge index keys are managed by a different text index using the configuration
specified when the first vertex or edge key is indexed.

If you need to change the configuration settings, you must first disable the current
index and create it again using a new OracleIndexParameters object.

2.6.7 Using Parallel Query on Text Indexes for Property Graph Data
Text indexes in Oracle Spatial and Graph allow executing text queries over millions
of vertices and edges by a particular key/value or key/text pair using parallel query
execution.

Chapter 2
Managing Text Indexing for Property Graph Data

2-62

Parallel text query will produce an array where each element holds all the vertices
(or edges) with an attribute matching the given K/V pair from a shard. The subset of
shards queried will be delimited by the given start sub-directory ID and the size of the
connections array provided. This way, the subset will consider shards in the range of
[start, start - 1 + size of connections array]. Note that an integer ID (in the range of [0,
N - 1]) is assigned to all the shards in index with N shards.

• Parallel Text Search Using Oracle Text

2.6.7.1 Parallel Text Search Using Oracle Text
You can use parallel text query using Oracle Text by calling the
method getPartitioned in OracleTextAutoIndex, specifying an array of connections
to Oracle Text (Connection objects), the key/value pair to search, and the starting
partition ID.

The following code fragment generates an automatic text index using Oracle Text and
executes a parallel text query. The number of calls to the getPartitioned method in
the OracleTextAutoIndex class is controlled by the total number of partitions in the
VT$ (or GE$ tables) and the number of connections used.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(…);
String prefOwner = "scott";
String datastore = (String) null;
String filter = (String) null;
String storage = (String) null;
String wordlist = (String) null;
String stoplist = (String) null;
String lexer = "OPG_AUTO_LEXER";
String options = (String) null;

OracleIndexParameters params
 =
OracleTextIndexParameters.buildOracleText(prefOwner,
 datastore,
 filter,
 storage,
 wordlist,
 stoplist,
 lexer,
 dop,
 options);

opg.setDefaultIndexParameters(indexParams);

// Create auto indexing on all existing properties, use wildcard for all
opg.createKeyIndex(("*", Vertex.class);

// Create the text query object for Oracle Text
OracleTextQueryObject otqo
 = OracleTextQueryObject.getInstance("Smith" /* query body */,
 1 /* score */,
 ScoreRange.POSITIVE /* Score
range */,
 Direction.ASC /* order by
direction*/);

// Get the Connection object

Chapter 2
Managing Text Indexing for Property Graph Data

2-63

Connection[] conns = new Connection[dop];
for (int idx = 0; idx < conns.length; idx++) {
conns[idx] = opg.getOracle().clone().getConnection();
}

// Get the auto index object
OracleIndex<Vertex> index = ((OracleIndex<Vertex>)
opg.getAutoIndex(Vertex.class);

// Iterate to cover all the partitions in the index
long lCount = 0;
for (int split = 0; split < index.getTotalShards();
 split += conns.length) {
 // Gets elements from split to split + conns.length
Iterable<Vertex>[] iterAr = index.getPartitioned(conns /* connections */,
 "name"/* key */,
 otqo,
 true /* wildcards */,
 split /* start split ID */);

lCount = countFromIterables(iterAr); /* Consume iterables in parallel */
}

// Close the connections
for (int idx = 0; idx < conns.length; idx++) {
conns[idx].dispose();
}

// Count results
System.out.println("Vertices found using parallel query: " + lCount);

2.7 Access Control for Property Graph Data (Graph-Level
and OLS)

Oracle Graph supports two access control and security models: graph level access
control, and fine-grained security through integration with Oracle Label Security (OLS).

• Graph-level access control relies on grant/revoke to allow/disallow users other
than the owner to access a property graph.

• OLS for property graph data allows sensitivity labels to be associated with
individual vertex or edge stored in a property graph.

The default control of access to property graph data stored in an Oracle Database is at
the graph level: the owner of a graph can grant read, insert, delete, update and select
privileges on the graph to other users.

However, for applications with stringent security requirements, you can enforce a fine-
grained access control mechanism by using the Oracle Label Security option of Oracle
Database. With OLS, for each query, access to specific elements (vertices or edges) is
granted by comparing their labels with the user's labels. (For information about using
OLS, see Oracle Label Security Administrator's Guide .)

With Oracle Label Security enabled, elements (vertices or edges) may not be inserted
in the graph if the same elements exist in the database with a stronger sensitivity
label. For example, assume that you have a vertex with a very sensitive label, such
as: (Vertex ID 1 {name:str:v1} "SENSITIVE"). This actually prevents a low-
privileged (PUBLIC) user from updating the vertex: (Vertex ID 1 {name:str:v1}

Chapter 2
Access Control for Property Graph Data (Graph-Level and OLS)

2-64

"PUBLIC"). On the other hand, if a high-privileged user overwrites a vertex or an
edge that had been created with a low-level security label, the newer label with higher
security will be assigned to the vertex or edge, and the low-privileged user will not be
able to see it anymore.

• Applying Oracle Label Security (OLS) on Property Graph Data
This topic presents an example illustrating how to apply OLS to property graph
data.

2.7.1 Applying Oracle Label Security (OLS) on Property Graph Data
This topic presents an example illustrating how to apply OLS to property graph data.

Because the property graph is stored in regular relational tables, this example is no
different from applying OLS on a regular relational table. The following shows how to
configure and enable OLS, create a security policy with security labels, and apply it
to a property graph. The code examples are very simplified, and do not necessarily
reflect recommended practices regarding user names and passwords.

1. As SYSDBA, create database users named userP, userP2, userS, userTS,
userTS2 and pgAdmin.

CONNECT / as sysdba;

CREATE USER userP IDENTIFIED BY userPpass;
GRANT connect, resource, create table, create view, create any
index TO userP;
GRANT unlimited TABLESPACE to userP;

CREATE USER userP2 IDENTIFIED BY userP2pass;
GRANT connect, resource, create table, create view, create any
index TO userP2;
GRANT unlimited TABLESPACE to userP2;

CREATE USER userS IDENTIFIED BY userSpass;
GRANT connect, resource, create table, create view, create any
index TO userS;
GRANT unlimited TABLESPACE to userS;

CREATE USER userTS IDENTIFIED BY userTSpass;
GRANT connect, resource, create table, create view, create any
index TO userTS;
GRANT unlimited TABLESPACE to userTS;

CREATE USER userTS2 IDENTIFIED BY userTS2pass;
GRANT connect, resource, create table, create view, create any
index TO userTS2;
GRANT unlimited TABLESPACE to userTS2;

CREATE USER pgAdmin IDENTIFIED BY pgAdminpass;
GRANT connect, resource, create table, create view, create any
index TO pgAdmin;
GRANT unlimited TABLESPACE to pgAdmin;

Chapter 2
Access Control for Property Graph Data (Graph-Level and OLS)

2-65

2. As SYSDBA, configure and enable Oracle Label Security.

ALTER USER lbacsys IDENTIFIED BY lbacsys ACCOUNT UNLOCK;
EXEC LBACSYS.CONFIGURE_OLS;
EXEC LBACSYS.OLS_ENFORCEMENT.ENABLE_OLS;

3. As SYSTEM, grant privileges to sec_admin and hr_sec.

CONNECT system/<system-password>
GRANT connect, create any index to sec_admin IDENTIFIED BY password;
GRANT connect, create user, drop user, create role, drop any role
TO hr_sec IDENTIFIED BY password;

4. As LBACSYS, create the security policy.

CONNECT lbacsys/<lbacsys-password>

BEGIN
SA_SYSDBA.CREATE_POLICY (
 policy_name => 'DEFENSE',
 column_name => 'SL',
 default_options => 'READ_CONTROL,LABEL_DEFAULT,HIDE');
END;
/

5. As LBACSYS , grant DEFENSE_DBA and execute to sec_admin and hr_sec
users.

GRANT DEFENSE_DBA to sec_admin;
GRANT DEFENSE_DBA to hr_sec;

GRANT execute on SA_COMPONENTS to sec_admin;
GRANT execute on SA_USER_ADMIN to hr_sec;

6. As SEC_ADMIN, create three security levels (For simplicity, compartments and
groups are omitted here.)

CONNECT sec_admin/<sec_admin-password>;

BEGIN
SA_COMPONENTS.CREATE_LEVEL (
 policy_name => 'DEFENSE',
 level_num => 1000,
 short_name => 'PUB',
 long_name => 'PUBLIC');
END;
/
EXECUTE
SA_COMPONENTS.CREATE_LEVEL('DEFENSE',2000,'CONF','CONFIDENTIAL');
EXECUTE
SA_COMPONENTS.CREATE_LEVEL('DEFENSE',3000,'SENS','SENSITIVE');

Chapter 2
Access Control for Property Graph Data (Graph-Level and OLS)

2-66

7. Create three labels.

EXECUTE SA_LABEL_ADMIN.CREATE_LABEL('DEFENSE',1000,'PUB');
EXECUTE SA_LABEL_ADMIN.CREATE_LABEL('DEFENSE',2000,'CONF');
EXECUTE SA_LABEL_ADMIN.CREATE_LABEL('DEFENSE',3000,'SENS');

8. As HR_SEC, assign labels and privileges.

CONNECT hr_sec/<hr_sec-password>;

BEGIN
SA_USER_ADMIN.SET_USER_LABELS (
 policy_name => 'DEFENSE',
 user_name => 'UT',
 max_read_label => 'SENS',
 max_write_label => 'SENS',
 min_write_label => 'CONF',
 def_label => 'SENS',
 row_label => 'SENS');
END;
/

EXECUTE SA_USER_ADMIN.SET_USER_LABELS('DEFENSE', 'userTS', 'SENS');
EXECUTE SA_USER_ADMIN.SET_USER_LABELS('DEFENSE','userTS2','SENS');
EXECUTE SA_USER_ADMIN.SET_USER_LABELS('DEFENSE', 'userS', 'CONF');
EXECUTE SA_USER_ADMIN.SET_USER_LABELS ('DEFENSE', userP', 'PUB',
'PUB', 'PUB', 'PUB', 'PUB');
EXECUTE SA_USER_ADMIN.SET_USER_LABELS ('DEFENSE', 'userP2', 'PUB',
'PUB', 'PUB', 'PUB', 'PUB');
EXECUTE SA_USER_ADMIN.SET_USER_PRIVS ('DEFENSE', 'pgAdmin', 'FULL');

9. As SEC_ADMIN, apply the security policies to the desired property graph. Assume
a property graph with the name OLSEXAMPLE with userP as the graph owner. To
apply OLS security, execute the following statements.

CONNECT sec_admin/<password>;

EXECUTE SA_POLICY_ADMIN.APPLY_TABLE_POLICY ('DEFENSE', 'userP',
'OLSEXAMPLEVT$');
EXECUTE SA_POLICY_ADMIN.APPLY_TABLE_POLICY ('DEFENSE', 'userP',
'OLSEXAMPLEGE$');
EXECUTE SA_POLICY_ADMIN.APPLY_TABLE_POLICY ('DEFENSE', 'userP',
'OLSEXAMPLEGT$');
EXECUTE SA_POLICY_ADMIN.APPLY_TABLE_POLICY ('DEFENSE', 'userP',
'OLSEXAMPLESS$');

Now Oracle Label Security has sensitivity labels to be associated with individual
vertices or edges stored in the property graph.

The following example shows how to create a property graph with name
OLSEXAMPLE, and an example flow to demonstrate the behavior when different
users with different security labels create, read, and write graph elements.

// Create Oracle Property Graph
String graphName = "OLSEXAMPLE";

Chapter 2
Access Control for Property Graph Data (Graph-Level and OLS)

2-67

Oracle connPub = new Oracle("jdbc:oracle:thin:@host:port:SID",
"userP", "userPpass");
OraclePropertyGraph graphPub = OraclePropertyGraph.getInstance(connPub,
graphName, 48);

// Grant access to other users
graphPub.grantAccess("userP2", "RSIUD"); // Read, Select, Insert,
Update, Delete (RSIUD)
graphPub.grantAccess("userS", "RSIUD");
graphPub.grantAccess("userTS", "RSIUD");
graphPub.grantAccess("userTS2", "RSIUD");

// Load data
OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();
String vfile = "../../data/connections.opv";
String efile = "../../data/connections.ope";
graphPub.clearRepository();
opgdl.loadData(graphPub, vfile, efile, 48, 1000, true, null);
System.out.println("Vertices with user userP and PUBLIC LABEL: " +
graphPub.countVertices()); // 78
System.out.println("Vertices with user userP and PUBLIC LABEL: " +
graphPub.countEdges()); // 164

// Second user with a higher level
Oracle connTS = new Oracle("jdbc:oracle:thin:@host:port:SID", "userTS",
"userTpassS");
OraclePropertyGraph graphTS = OraclePropertyGraph.getInstance(connTS,
"USERP", graphName, 8, 48, null, null);
System.out.println("Vertices with user userTS and SENSITIVE LABEL: " +
graphTS.countVertices()); // 78
System.out.println("Vertices with user userTS and SENSITIVE LABEL: " +
graphTS.countEdges()); // 164

// Add vertices and edges with the second user
long lMaxVertexID = graphTS.getMaxVertexID();
long lMaxEdgeID = graphTS.getMaxEdgeID();
long size = 10;
System.out.println("\nAdd " + size + " vertices and edges with user
userTS and SENSITIVE LABEL\n");
for (long idx = 1; idx <= size; idx++) {
 Vertex v = graphTS.addVertex(idx + lMaxVertexID);
 v.setProperty("name", "v_" + (idx + lMaxVertexID));
 Edge e = graphTS.addEdge(idx + lMaxEdgeID, v, graphTS.getVertex(idx),
"edge_" + (idx + lMaxEdgeID));
}
graphTS.commit();

// User userP with a lower level only sees the original vertices and
edges, user userTS can see more
System.out.println("Vertices with user userP and PUBLIC LABEL: " +
graphPub.countVertices()); // 78
System.out.println("Vertices with user userP and PUBLIC LABEL: " +
graphPub.countEdges()); // 164
System.out.println("Vertices with user userTS and SENSITIVE LABEL: " +

Chapter 2
Access Control for Property Graph Data (Graph-Level and OLS)

2-68

graphTS.countVertices()); // 88
System.out.println("Vertices with user userTS and SENSITIVE LABEL: " +
graphTS.countEdges()); // 174

// Third user with a higher level
Oracle connTS2 = new Oracle("jdbc:oracle:thin:@host:port:SID",
"userTS2", "userTS2pass");
OraclePropertyGraph graphTS2 = OraclePropertyGraph.getInstance(connTS2,
"USERP", graphName, 8, 48, null, null);
System.out.println("Vertices with user userTS2 and SENSITIVE LABEL: " +
graphTS2.countVertices()); // 88
System.out.println("Vertices with user userTS2 and SENSITIVE LABEL: " +
graphTS2.countEdges()); // 174

// Fourth user with a intermediate level
Oracle connS = new Oracle("jdbc:oracle:thin:@host:port:SID", "userS",
"userSpass");
OraclePropertyGraph graphS = OraclePropertyGraph.getInstance(connS,
"USERP", graphName, 8, 48, null, null);
System.out.println("Vertices with user userS and CONFIDENTIAL LABEL: "
+ graphS.countVertices()); // 78
System.out.println("Vertices with user userS and CONFIDENTIAL LABEL: "
+ graphS.countEdges()); // 164

// Modify vertices with the fourth user
System.out.println("\nModify " + size + " vertices with user userS and
CONFIDENTIAL LABEL\n");
for (long idx = 1; idx <= size; idx++) {
 Vertex v = graphS.getVertex(idx);
 v.setProperty("security_label", "CONFIDENTIAL");
}
graphS.commit();

// User userP with a lower level that userS cannot see the new vertices
// Users userS and userTS can see them
System.out.println("Vertices with user userP
with property security_label: " +
OraclePropertyGraphUtils.size(graphPub.getVertices("security_label",
"CONFIDENTIAL"))); // 0
System.out.println("Vertices with user userS
with property security_label: " +
OraclePropertyGraphUtils.size(graphS.getVertices("security_label",
"CONFIDENTIAL"))); // 10
System.out.println("Vertices with user userTS
with property security_label: " +
OraclePropertyGraphUtils.size(graphTS.getVertices("security_label",
"CONFIDENTIAL"))); // 10
System.out.println("Vertices with user userP and PUBLIC LABEL: " +
graphPub.countVertices()); // 68
System.out.println("Vertices with user userTS and SENSITIVE LABEL: " +
graphTS.countVertices()); // 88

The preceding example should produce the following output.

Chapter 2
Access Control for Property Graph Data (Graph-Level and OLS)

2-69

Vertices with user userP and PUBLIC LABEL: 78
Vertices with user userP and PUBLIC LABEL: 164
Vertices with user userTS and SENSITIVE LABEL: 78
Vertices with user userTS and SENSITIVE LABEL: 164

Add 10 vertices and edges with user userTS and SENSITIVE LABEL

Vertices with user userP and PUBLIC LABEL: 78
Vertices with user userP and PUBLIC LABEL: 164
Vertices with user userTS and SENSITIVE LABEL: 88
Vertices with user userTS and SENSITIVE LABEL: 174
Vertices with user userTS2 and SENSITIVE LABEL: 88
Vertices with user userTS2 and SENSITIVE LABEL: 174
Vertices with user userS and CONFIDENTIAL LABEL: 78
Vertices with user userS and CONFIDENTIAL LABEL: 164

Modify 10 vertices with user userS and CONFIDENTIAL LABEL

Vertices with user userP with property security_label: 0
Vertices with user userS with property security_label: 10
Vertices with user userTS with property security_label: 10
Vertices with user userP and PUBLIC LABEL: 68
Vertices with user userTS and SENSITIVE LABEL: 88

2.8 Using the Groovy-Based Shell with Property Graph Data
The Oracle Graph property graph support includes a built-in Groovy-based shell
(based on the original Gremlin Groovy shell script). With this command-line shell
interface, you can explore the Java APIs.

To use this shell, you must first separately download and install Apache Groovy.

To start the shell, go to the <graph client home>/bin/ directory. Included is the script
opg-groovy.

The following example connects to an Oracle database, gets an instance of
OraclePropertyGraph with graph name myGraph, loads some example graph data,
and gets the list of vertices and edges.

$ sh ./opg-groovy

opg-rdbms> cfg =
cfg = GraphConfigBuilder.forPropertyGraphRdbms() \
.setJdbcUrl("jdbc:oracle:thin:@127.0.0.1:1521:orcl")\
.setUsername("scott").setPassword("<password>") \
.setName("connections") .setMaxNumConnections(2)\
.setLoadEdgeLabel(false) \
.addEdgeProperty("weight", PropertyType.DOUBLE, "1000000") \
.build();

opg-rdbms> opg = OraclePropertyGraph.getInstance(cfg);
==>oraclepropertygraph with name myGraph

opg-rdbms> opgdl = OraclePropertyGraphDataLoader.getInstance();
==>oracle.pg.nosql.OraclePropertyGraphDataLoader@576f1cad

opg-rdbms> opgdl.loadData(opg, new FileInputStream("../../data/
connections.opv"), new FileInputStream("../../data/connections.ope"), 4/*dop*/,
1000/*iBatchSize*/, true /*rebuildIndex*/, null /*szOptions*/); ==>null

Chapter 2
Using the Groovy-Based Shell with Property Graph Data

2-70

opg-rdbms> opg.getVertices();
==>Vertex ID 5 {country:str:Italy, name:str:Pope Francis, occupation:str:pope,
religion:str:Catholicism, role:str:Catholic religion authority}
[... other output lines omitted for brevity ...]

opg-rdbms> opg.getEdges();
==>Edge ID 1139 from Vertex ID 64 {country:str:United States, name:str:Jeff
Bezos, occupation:str:business man} =[leads]=> Vertex ID 37 {country:str:United
States, name:str:Amazon, type:str:online retailing} edgeKV[{weight:flo:1.0}]
[... other output lines omitted for brevity ...]

The following example customizes several configuration parameters for in-
memory analytics. It connects to an Oracle database, gets an instance of
OraclePropertyGraph with graph name myGraph, loads some example graph data,
gets the list of vertices and edges, gets an in-memory analyst, and executes one of the
built-in analytics, triangle counting.

$ sh ./opg-groovy
opg-rdbms>
opg-rdbms> dop=2; // degree of parallelism
==>2
opg-rdbms> confPgx = new HashMap<PgxConfig.Field, Object>();
opg-rdbms> confPgx.put(PgxConfig.Field.ENABLE_GM_COMPILER, false);
==>null
opg-rdbms> confPgx.put(PgxConfig.Field.NUM_WORKERS_IO, dop);
==>null
opg-rdbms> confPgx.put(PgxConfig.Field.NUM_WORKERS_ANALYSIS, 3);
==>null
opg-rdbms> confPgx.put(PgxConfig.Field.NUM_WORKERS_FAST_TRACK_ANALYSIS, 2);
==>null
opg-rdbms> confPgx.put(PgxConfig.Field.SESSION_TASK_TIMEOUT_SECS, 0);
==>null
opg-rdbms> confPgx.put(PgxConfig.Field.SESSION_IDLE_TIMEOUT_SECS, 0);
==>null
opg-rdbms> instance = Pgx.getInstance()
==>null
opg-rdbms> instance.startEngine(confPgx)
==>null

opg-rdbms>
cfg = GraphConfigBuilder.forPropertyGraphRdbms() \
.setJdbcUrl("jdbc:oracle:thin:@127.0.0.1:1521:orcl")\
.setUsername("scott").setPassword("<password>") \
.setName("connections") .setMaxNumConnections(2)\
.setLoadEdgeLabel(false) \
.addEdgeProperty("weight", PropertyType.DOUBLE, "1000000") \
.build();
opg-rdbms> opg = OraclePropertyGraph.getInstance(cfg);
==>oraclepropertygraph with name myGraph

opg-rdbms> opgdl = OraclePropertyGraphDataLoader.getInstance();
==>oracle.pg.hbase.OraclePropertyGraphDataLoader@3451289b

opg-rdbms> opgdl.loadData(opg, "../../data/connections.opv", "../../data/
connections.ope", 4/*dop*/, 1000/*iBatchSize*/, true /*rebuildIndex*/, null /
szOptions/);
==>null

opg-rdbms> opg.getVertices();
==>Vertex ID 78 {country:str:United States, name:str:Hosain Rahman,
occupation:str:CEO of Jawbone}

Chapter 2
Using the Groovy-Based Shell with Property Graph Data

2-71

...

opg-rdbms> opg.getEdges();
==>Edge ID 1139 from Vertex ID 64 {country:str:United States, name:str:Jeff
Bezos, occupation:str:business man} =[leads]=> Vertex ID 37 {country:str:United
States, name:str:Amazon, type:str:online retailing} edgeKV[{weight:flo:1.0}]
[... other output lines omitted for brevity ...]

opg-rdbms> session = Pgx.createSession("session-id-1");
opg-rdbms> g = session.readGraphWithProperties(cfg);
opg-rdbms> analyst = session.createAnalyst();

opg-rdbms> triangles = analyst.countTriangles(false).get();
==>22

For detailed information about the Java APIs, see the Javadoc reference information.

2.9 Using the Graph Zeppelin Interpreter Client
Oracle Graph provides an interpreter client implementation for Apache Zeppelin. This
tutorial topic explains how to install the graph interpreter into your local Zeppelin
installation and to perform simple operations.

Installing the Interpreter

The following steps were tested with Zeppelin version 0.9, and might have to be
modified with newer versions.

1. If you have not already done so, download and install Apache Zeppelin.

Note:

Apache Zeppelin requires Java 8.

2. If you have not already done so, download and install Apache Groovy 2.4.x.

3. Copy libraries:

• Copy the libraries from the Oracle Graph Client for Apache Zeppelin package
into $ZEPPELIN_HOME/interpreter/pgx. For example:

unzip oracle-graph-zeppelin-interpreter-20.4.0.zip -d
$ZEPPELIN_HOME/interpreter/pgx

• Copy the libraries inside $GROOVY_HOME/lib into $ZEPPELIN_HOME/
interpreter/pgx. For example:

cp $GROOVY_HOME/lib/* $ZEPPELIN_HOME/interpreter/pgx

4. Restart Zeppelin.

Using the Interpreter

If you named the graph interpreter pgx, you can send paragraphs to the graph server
by starting the paragraphs with the %pgx directive, just as with any other interpreter.

Chapter 2
Using the Graph Zeppelin Interpreter Client

2-72

http://zeppelin.apache.org/download.html
http://groovy-lang.org/download.html

The interpreter acts like a client that talks to a remote graph server. You cannot run
a graph server instance embedded inside the Zeppelin interpreter. You must provide
the graph server base URL and connection information as illustrated in the following
example:

%pgx
import oracle.pgx.api.*
import groovy.json.*

baseUrl = '<base-url>'
username = '<username>'
password = '<password>'

conn = new URL("$baseUrl/auth/token").openConnection()
conn.setRequestProperty('Content-Type', 'application/json')
token = conn.with {
 doOutput = true
 requestMethod = 'POST'
 outputStream.withWriter { writer ->
 writer << JsonOutput.toJson([username: username, password:
password])
 }
 return new JsonSlurper().parseText(content.text).access_token
}

instance = Pgx.getInstance(baseUrl, token)
session = instance.createSession("my-session")

The in-memory analyst Zeppelin interpreter evaluates paragraphs in the same way
that the in-memory analyst shell does, and returns the output. Therefore, any valid
in-memory analyst shell script will run in the in-memory analyst interpreter, as in the
following example:

%pgx
g_brands = session.readGraphWithProperties("/opt/data/exommerce/
brand_cat.json")
g_brands.getNumVertices()
rank = analyst.pagerank(g_brands, 0.001, 0.85, 100)
rank.getTopKValues(10)

The following figure shows the results of that query after you click the icon to execute
it.

Chapter 2
Using the Graph Zeppelin Interpreter Client

2-73

As you can see in the preceding figure, the Zeppelin interpreter automatically renders
the values returned by rank.getTopKValues(10) as a Zeppelin table, to make it more
convenient for you to browse results.

Besides the property values (getTopKValues(), getBottomKValues(), and
getValues()), the following return types are automatically rendered as table also if
they are returned from a paragraph:

• PgqlResultSet - the object returned by the queryPgql("...") method of the
PgxGraph class.

• MapIterable - the object returned by the entries() method of the PgxMap class

All other return types and errors are returned as normal strings, just as the in-memory
analyst shell does.

For more information about Zeppelin, see the official Zeppelin documentation.

2.10 Creating Property Graph Views on an RDF Graph
With Oracle Graph, you can view RDF data as a property graph to execute graph
analytics operations by creating property graph views over an RDF graph stored in
Oracle Database.

Given an RDF model (or a virtual model), the property graph feature creates two
views, a <graph_name>VT$ view for vertices and a <graph_name>GE$ view for
edges.

The PGUtils.createPropertyGraphViewOnRDF method lets you customize a property
graph view over RDF data:

public static void createPropertyGraphViewOnRDF(Connection conn /* a Connection
instance to Oracle database */,
 String pgGraphName /* the name of the property graph to be created */,
 String rdfModelName /* the name of the RDF model */,
 boolean virtualModel /* a flag represents if the RDF model
 is virtual model or not;
 true – virtual mode, false – normal model*/,
 RDFPredicate[] predListForVertexAttrs /* an array of RDFPredicate objects
specifying how to create vertex view using these predicates; each RDFPredicate
includes two fields: an URL of the RDF predicate, the corresponding name of
vertex key in the Property Graph. The mapping from RDF predicates to vertex keys
will be created based on this parameter. */,
 RDFPredicate[] predListForEdges /* an array of RDFPredicate specifying how

Chapter 2
Creating Property Graph Views on an RDF Graph

2-74

https://zeppelin.apache.org/

to create edge view using these predicates; each RDFPredicate includes two (or
three) fields: an URL of the RDF predicate, the edge label in the Property
Graph, the weight of the edge (optional). The mapping from RDF predicates to
edges will be created based on this parameter. */)

This operation requires the name of the property graph, the name of the RDF Model
used to generate the Property Graph view, and a set of mappings determining how
triples will be parsed into vertices or edges. The createPropertyGraphViewOnRDF
method requires a key/value mapping array specifying how RDF predicates are
mapped to Key/Value properties for vertices, and an edge mapping array specifying
how RDF predicates are mapped to edges. The PGUtils.RDFPredicate API lets you
create a map from RDF assertions to vertices/edges.

Vertices are created based on the triples matching at least one of the RDF predicates
in the key/value mappings. Each triple satisfying one of the RDF predicates defined in
the mapping array is parsed into a vertex with ID based on the internal RDF resource
ID of the subject of the triple, and a key/value pair whose key is defined by the
mapping itself and whose value is obtained from the object of the triple.

The following example defines a key/value mapping of the RDF predicate URI
http://purl.org/dc/elements/1.1/title to the key/value property with property
name title.

String titleURL = "http://purl.org/dc/elements/1.1/title";
// create an RDFPredicate to specify how to map the RDF predicate to vertex keys
RDFPredicate titleRDFPredicate
 = RDFPredicate.getInstance(titleURL /* RDF Predicate URI */ ,
 "title" /* property name */);

Edges are created based on the triples matching at least one of the RDF predicates
in the edge mapping array. Each triple satisfying the RDF predicate defined in the
mapping array is parsed into an edge with ID based on the row number, an edge label
defined by the mapping itself, a source vertex obtained from the RDF Resource ID of
the subject of the triple, and a destination vertex obtained from the RDF Resource ID
of the object of the triple. For each triple parsed here, two vertices will be created if
they were not generated from the key/value mapping.

The following example defines an edge mapping of the RDF predicate URI http://
purl.org/dc/elements/1.1/reference to an edge with a label references and a
weight of 0.5d.

String referencesURL = "http://purl.org/dc/terms/references";
// create an RDFPredicate to specify how to map the RDF predicate to edges
RDFPredicate referencesRDFPredicate
 = RDFPredicate.getInstance(referencesURL, "references",
0.5d);

The following example creates a property graph view over the RDF model articles
describing different publications, their authors, and references. The generated property
graph will include vertices with some key/value properties that may include title and
creator. The edges in the property graph will be determined by the references among
publications.

Oracle oracle = null;
Connection conn = null;
OraclePropertyGraph pggraph = null;
try {
 // create the connection instance to Oracle database
 OracleDataSource ds = new oracle.jdbc.pool.OracleDataSource();

Chapter 2
Creating Property Graph Views on an RDF Graph

2-75

 ds.setURL(jdbcUrl);
 conn = (OracleConnection) ds.getConnection(user, password);

 // define some string variables for RDF predicates
 String titleURL = "http://purl.org/dc/elements/1.1/title";
 String creatorURL = "http://purl.org/dc/elements/1.1/creator";
 String serialnumberURL = "http://purl.org/dc/elements/1.1/serialnumber";
 String widthURL = "http://purl.org/dc/elements/1.1/width";
 String weightURL = "http://purl.org/dc/elements/1.1/weight";
 String onsaleURL = "http://purl.org/dc/elements/1.1/onsale";
 String publicationDateURL = "http://purl.org/dc/elements/1.1/publicationDate";
 String publicationTimeURL = "http://purl.org/dc/elements/1.1/publicationTime";
 String referencesURL = "http://purl.org/dc/terms/references";

 // create RDFPredicate[] predsForVertexAttrs to specify how to map
 // RDF predicate to vertex keys
 RDFPredicate[] predsForVertexAttrs = new RDFPredicate[8];
 predsForVertexAttrs[0] = RDFPredicate.getInstance(titleURL, "title");
 predsForVertexAttrs[1] = RDFPredicate.getInstance(creatorURL, "creator");
 predsForVertexAttrs[2] = RDFPredicate.getInstance(serialnumberURL,
 "serialnumber");
 predsForVertexAttrs[3] = RDFPredicate.getInstance(widthURL, "width");
 predsForVertexAttrs[4] = RDFPredicate.getInstance(weightURL, "weight");
 predsForVertexAttrs[5] = RDFPredicate.getInstance(onsaleURL, "onsale");
 predsForVertexAttrs[6] = RDFPredicate.getInstance(publicationDateURL,
 "publicationDate");
 predsForVertexAttrs[7] = RDFPredicate.getInstance(publicationTimeURL,
 "publicationTime");

 // create RDFPredicate[] predsForEdges to specify how to map RDF predicates to
 // edges
 RDFPredicate[] predsForEdges = new RDFPredicate[1];
 predsForEdges[0] = RDFPredicate.getInstance(referencesURL, "references", 0.5d);

 // create PG view on RDF model
 PGUtils.createPropertyGraphViewOnRDF(conn, "articles", "articles", false,
 predsForVertexAttrs, predsForEdges);

 // get the Property Graph instance
 oracle = new Oracle(jdbcUrl, user, password);
 pggraph = OraclePropertyGraph.getInstance(oracle, "articles", 24);

 System.err.println("------ Vertices from property graph view ------");
 pggraph.getVertices();
 System.err.println("------ Edges from property graph view ------");
 pggraph.getEdges();
}
finally {
 pggraph.shutdown();
 oracle.dispose();
 conn.close();
}

Given the following triples in the articles RDF model (11 triples), the output property
graph will include two vertices, one for <http://nature.example.com/Article1> (v1)
and another one for <http://nature.example.com/Article2> (v2). For vertex v1,
it has eight properties, whose values are the same as their RDF predicates. For
example, v1’s title is “All about XYZ”. Similarly for vertex v2, it has two properties:
title and creator. The output property graph will include a single edge (eid:1) from
vertex v1 to vertex v2 with an edge label “references” and a weight of 0.5d.

Chapter 2
Creating Property Graph Views on an RDF Graph

2-76

<http://nature.example.com/Article1> <http://purl.org/dc/elements/1.1/title>
“All about XYZ”^^xsd:string.
<http://nature.example.com/Article1> <http://purl.org/dc/elements/1.1/creator>
“Jane Smith”^^xsd:string.
<http://nature.example.com/Article1> <http://purl.org/dc/elements/1.1/
serialnumber> “123456”^^xsd:integer.
<http://nature.example.com/Article1> <http://purl.org/dc/elements/1.1/width>
“10.5”^^xsd:float.
<http://nature.example.com/Article1> <http://purl.org/dc/elements/1.1/weight>
“1.08”^^xsd:double.
<http://nature.example.com/Article1> <http://purl.org/dc/elements/1.1/onsale>
“false”^^xsd:boolean.
<http://nature.example.com/Article1> <http://purl.org/dc/elements/1.1/
publicationDate> “2016-03-08”^^xsd:date)
<http://nature.example.com/Article1> <http://purl.org/dc/elements/1.1/
publicationTime> “2016-03-08T10:10:10”^^xsd:dateTime)
<http://nature.example.com/Article2> <http://purl.org/dc/elements/1.1/title> “A
review of ABC”^^xsd:string.
<http://nature.example.com/Article2> <http://purl.org/dc/elements/1.1/creator>
“Joe Bloggs”^^xsd:string.
<http://nature.example.com/Article1> <http://purl.org/dc/terms/references>
<http://nature.example.com/Article2>.

The preceding code will produce an output similar as the following. Note that the
internal RDF resource ID values may vary across different Oracle databases.

------ Vertices from property graph view ------
Vertex ID 7299961478807817799 {creator:str:Jane Smith, onsale:bol:false,
publicationDate:dat:Mon Mar 07 16:00:00 PST 2016, publicationTime:dat:Tue Mar
08 02:10:10 PST 2016, serialnumber:dbl:123456.0, title:str:All about XYZ,
weight:dbl:1.08, width:flo:10.5}
Vertex ID 7074365724528867041 {creator:str:Joe Bloggs, title:str:A review of ABC}
------ Edges from property graph view ------
Edge ID 1 from Vertex ID 7299961478807817799 {creator:str:Jane Smith,
onsale:bol:false, publicationDate:dat:Mon Mar 07 16:00:00 PST 2016,
publicationTime:dat:Tue Mar 08 02:10:10 PST 2016, serialnumber:dbl:123456.0,
title:str:All about XYZ, weight:dbl:1.08, width:flo:10.5} =[references]=> Vertex
ID 7074365724528867041 {creator:str:Joe Bloggs, title:str:A review of ABC}
edgeKV[{weight:dbl:0.5}]

2.11 Oracle Flat File Format Definition
A property graph can be defined in two flat files, specifically description files for the
vertices and edges.

• About the Property Graph Description Files

• Edge File

• Vertex File

• Encoding Special Characters

• Example Property Graph in Oracle Flat File Format

• Converting an Oracle Database Table to an Oracle-Defined Property Graph Flat
File

• Converting CSV Files for Vertices and Edges to Oracle-Defined Property Graph
Flat Files

Chapter 2
Oracle Flat File Format Definition

2-77

2.11.1 About the Property Graph Description Files
A pair of files describe a property graph:

• Vertex file: Describes the vertices of the property graph. This file has an .opv file
name extension.

• Edge file: Describes the edges of the property graph. This file has an .ope file
name extension.

It is recommended that these two files share the same base name. For example,
simple.opv and simple.ope define a property graph.

2.11.2 Edge File
Each line in an edge file is a record that describes an edge of the property graph. A
record can describe one key-value property of an edge, thus multiple records are used
to describe an edge with multiple properties.

A record contains nine fields separated by commas. Each record must contain eight
commas to delimit all fields, whether or not they have values:

edge_ID, source_vertex_ID, destination_vertex_ID, edge_label, key_name,
value_type, value, value, value

The following table describes the fields composing an edge file record.

Table 2-2 Edge File Record Format

Field
Number

Name Description

1 edge_ID An integer that uniquely identifies the edge

2 source_vertex_ID The vertex_ID of the outgoing tail of the edge.

3 destination_vertex_ID The vertex_ID of the incoming head of the edge.

4 edge_label The encoded label of the edge, which describes the
relationship between the two vertices

5 key_name The encoded name of the key in a key-value pair

If the edge has no properties, then enter a space
(%20). This example describes edge 100 with no
properties:

100,1,2,likes,%20,,,,

Chapter 2
Oracle Flat File Format Definition

2-78

Table 2-2 (Cont.) Edge File Record Format

Field
Number

Name Description

6 value_type An integer that represents the data type of the value
in the key-value pair:

1 String
2 Integer
3 Float
4 Double
5 Timestamp (date)
6 Boolean
7 Long integer
8 Short integer
9 Byte
10 Char
20 Spatial
101 Serializable Java object

7 value The encoded, nonnull value of key_name when it is
neither numeric nor timestamp (date)

8 value The encoded, nonnull value of key_name when it is
numeric

9 value The encoded, nonnull value of key_name when it is
a timestamp (date)

Use the Java SimpleDateFormat class
to identify the format of the date. This
example describes the date format of
2015-03-26Th00:00:00.000-05:00:

SimpleDateFormat sdf
= new SimpleDateFormat("yyyy-
MM-dd'T'HH:mm:ss.SSSXXX");
encode(sdf.format((java.util.Date) value));

Required Grouping of Edges: An edge can have multiple properties, and the edge
file includes a record (represented by a single line of text in the flat file) for each
combination of an edge ID and a property for that edge. In the edge file, all records
for each edge must be grouped together (that is, not have any intervening records
for other edges. You can accomplish this any way you want, but a convenient way is
to sort the edge file records in ascending (or descending) order by edge ID. (Note,
however, an edge file is not required to have all records sorted by edge ID; this is
merely one way to achieve the grouping requirement.)

When building an edge file in Oracle flat file format, it is important to verify
that the edge property name and value fields are correctly encoded (see
especially Encoding Special Characters). To simplify the encoding, you can use the
OraclePropertyGraphUtils.escape Java API.

You can use the OraclePropertyGraphUtils.outputEdgeRecord(os, eid, svid,
dvid, label, key, value) utility method to serialize an edge record directly in Oracle
flat file format. With this method, you no longer need to worry about encoding of

Chapter 2
Oracle Flat File Format Definition

2-79

special characters. The method writes a new line of text in the given output stream
describing the key/value property of the given edge identified by eid.

Example 2-2 Using OraclePropertyGraphUtils.outputEdgeRecord

This example uses OraclePropertyGraphUtils.outputEdgeRecord to write two new
lines for edge 100 between vertices 1 and 2 with label friendOf.

OutputStream os = new FileOutputStream("./example.ope");
int sinceYear = 2009;
long eid = 100;
long svid = 1;
long dvid = 2;
OraclePropertyGraphUtils.outputEdgeRecord(os, eid, svid, dvid,
"friendOf", "since (year)", sinceYear);
OraclePropertyGraphUtils.outputEdgeRecord(os, eid, svid, dvid,
"friendOf", "weight", 1);
os.flush();
os.close();

The first line in the generated output file describes the property “since (year)" with
value 2009, and the second line and the next line sets the edge weight to 1.

% cat example.ope
100,1,2,friendOf,since%20(year),2,,2009,
100,1,2,friendOf,weight,2,,1,

2.11.3 Vertex File
Each line in a vertex file is a record that describes a vertex of the property graph. A
record can describe one key-value property of a vertex, thus multiple records/lines are
used to describe a vertex with multiple properties.

A record contains fields separated by commas. Each record must contain five commas
to delimit first six fields, whether or not they have values. An optional seventh field can
be added (delimited from the sixth field by a comma) to define a vertex label:

vertex_ID, key_name, value_type, value, value, value, vertex_label

The following table describes the fields composing a vertex file record.

Table 2-3 Vertex File Record Format

Field
Number

Name Description

1 vertex_ID An integer that uniquely identifies the vertex

2 key_name The name of the key in the key-value pair

If the vertex has no properties, then enter a space
(%20). This example describes vertex 1 with no
properties:

1,%20,,,,

Chapter 2
Oracle Flat File Format Definition

2-80

Table 2-3 (Cont.) Vertex File Record Format

Field
Number

Name Description

3 value_type An integer that represents the data type of the value in
the key-value pair:

1 String
2 Integer
3 Float
4 Double
5 Timestamp (date)
6 Boolean
7 Long integer
8 Short integer
9 Byte
10 Char
20 Spatial data, which can be geospatial
coordinates, lines, polygons, or Well-Known Text
(WKT) literals
101 Serializable Java object

4 value The encoded, nonnull value of key_name when it is
neither numeric nor date

5 value The encoded, nonnull value of key_name when it is
numeric

6 value The encoded, nonnull value of key_name when it is a
timestamp (date)

Use the Java SimpleDateFormat class to identify the
format of the date. This example describes the date
format of 2015-03-26T00:00:00.000-05:00:

SimpleDateFormat sdf
= new SimpleDateFormat("yyyy-
MM-dd'T'HH:mm:ss.SSSXXX");
encode(sdf.format((java.util.Date) value));

7 vertex_label The optional encoded label of the vertex, which can be
used to describe the type or category of the vertex.

Required Grouping of Vertices: A vertex can have multiple properties, and the vertex
file includes a record (represented by a single line of text in the flat file) for each
combination of a vertex ID and a property for that vertex. In the vertex file, all records
for each vertex must be grouped together (that is, not have any intervening records
for other vertices. You can accomplish this any way you want, but a convenient way is
to sort the vertex file records in ascending (or descending) order by vertex ID. (Note,
however, a vertex file is not required to have all records sorted by vertex ID; this is
merely one way to achieve the grouping requirement.)

When building an edge file in Oracle flat file format, it is important to verify
that the vertex property name and value fields are correctly encoded (see
especially Encoding Special Characters). To simplify the encoding, you can use the
OraclePropertyGraphUtils.escape Java API.

Chapter 2
Oracle Flat File Format Definition

2-81

You can use the OraclePropertyGraphUtils.outputVertexRecord(os, vid, key,
value) utility method to serialize a vertex record directly in Oracle flat file format. With
this method, you no longer need to worry about encoding of special characters. The
method writes a new line of text in the given output stream describing the key/value
property of the given vertex identified by vid.

Example 2-3 Using OraclePropertyGraphUtils.outputVertexRecord

This example uses OraclePropertyGraphUtils.outputVertexRecord to write two new
lines for vertex 1.

OutputStream os = new FileOutputStream("./example.opv");
long vid = 1;
String label = "person";
OraclePropertyGraphUtils.outputVertexRecord(os, vid, label, "name",
"Robert Smith");
OraclePropertyGraphUtils.outputVertexRecord(os, vid, label, "birth
year", 1961);
os.flush();
os.close();

The first line in the generated output file describes the property name with value
"Robert Smith", and the second line describes his birth year of 1961.

% cat example.opv
1,name,1,Robert%20OSmith,,,person
1,birth%20year,2,,1961,,person

2.11.4 Encoding Special Characters
The encoding is UTF-8 for the vertex and edge files. The following table lists the
special characters that must be encoded as strings when they appear in a vertex or
edge property (key-value pair) or an edge label. No other characters require encoding.

Table 2-4 Special Character Codes in the Oracle Flat File Format

Special Character String Encoding Description

% %25 Percent

\t %09 Tab

(space) %20 Space

\n %0A New line

\r %0D Return

, %2C Comma

2.11.5 Example Property Graph in Oracle Flat File Format
An example property graph in Oracle flat file format is as follows. In this example,
there are two vertices (John and Mary), and a single edge denoting that John is a
friend of Mary.

%cat simple.opv
1,age,2,,10,

Chapter 2
Oracle Flat File Format Definition

2-82

1,name,1,John,,
2,name,1,Mary,,
2,hobby,1,soccer,,

%cat simple.ope
100,1,2,friendOf,%20,,,,

2.11.6 Converting an Oracle Database Table to an Oracle-Defined
Property Graph Flat File

You can convert Oracle Database tables that represent the vertices and edges of a
graph into an Oracle-defined flat file format (.opv and .ope file extensions).

If you have graph data stored in Oracle Database tables, you can use Java API
methods to convert that data into flat files, and later load the tables into Oracle
Database as a property graph. This eliminates the need to take some other manual
approach to generating the flat files from existing Oracle Database tables.

Converting a Table Storing Graph Vertices to an .opv File

You can convert an Oracle Database table that contains entities (that can be
represented as vertices of a graph) to a property graph flat file in .opv format.

For example, assume the following relational table: EmployeeTab (empID integer not
null, hasName varchar(255), hasAge integer, hasSalary number)

Assume that this table has the following data:

101, Jean, 20, 120.0
102, Mary, 21, 50.0
103, Jack, 22, 110.0
……

Each employee can be viewed as a vertex in the graph. The vertex ID could be
the value of employeeID or an ID generated using some heuristics like hashing. The
columns hasName, hasAge, and hasSalary can be viewed as attributes.

The Java method OraclePropertyGraphUtils.convertRDBMSTable2OPV and its
Javadoc information are as follows:

/**
* conn: is an connect instance to the Oracle relational database
* rdbmsTableName: name of the RDBMS table to be converted
* vidColName is the name of an column in RDBMS table to be treated as vertex ID
* lVIDOffset is the offset will be applied to the vertex ID
* ctams defines how to map columns in the RDBMS table to the attributes
* dop degree of parallelism
* dcl an instance of DataConverterListener to report the progress and control
the behavior when errors happen
*/
OraclePropertyGraphUtils.convertRDBMSTable2OPV(
 Connection conn,
 String rdbmsTableName,
 String vidColName,
 long lVIDOffset,
 ColumnToAttrMapping[] ctams,
 int dop,
 OutputStream opvOS,
 DataConverterListener dcl);

Chapter 2
Oracle Flat File Format Definition

2-83

The following code snippet converts this table into an Oracle-defined vertex file (.opv):

// location of the output file
String opv = "./EmployeeTab.opv";
OutputStream opvOS = new FileOutputStream(opv);
// an array of ColumnToAttrMapping objects; each object defines how to
map a column in the RDBMS table to an attribute of the vertex in an
Oracle Property Graph.
ColumnToAttrMapping[] ctams = new ColumnToAttrMapping[3];
// map column "hasName" to attribute "name" of type String
ctams[0] = ColumnToAttrMapping.getInstance("hasName", "name",
String.class);
// map column "hasAge" to attribute "age" of type Integer
ctams[1] = ColumnToAttrMapping.getInstance("hasAge", "age",
Integer.class);
// map column "hasSalary" to attribute "salary" of type Double
ctams[2] = ColumnToAttrMapping.getInstance("hasSalary",
"salary",Double.class);
// convert RDBMS table "EmployeeTab" into opv file "./EmployeeTab.opv",
column "empID" is the vertex ID column, offset 1000l will be applied to
vertex ID, use ctams to map RDBMS columns to attributes, set DOP to 8
OraclePropertyGraphUtils.convertRDBMSTable2OPV(conn, "EmployeeTab",
"empID", 1000l, ctams, 8, opvOS, (DataConverterListener) null);

Note:

The lowercase letter "l" as the last character in the offset value 1000l
denotes that the value before it is a long integer.

The conversion result is as follows:

1101,name,1,Jean,,
1101,age,2,,20,
1101,salary,4,,120.0,
1102,name,1,Mary,,
1102,age,2,,21,
1102,salary,4,,50.0,
1103,name,1,Jack,,
1103,age,2,,22,
1103,salary,4,,110.0,

In this case, each row in table EmployeeTab is converted to one vertex with three
attributes. For example, the row with data "101, Jean, 20, 120.0" is converted to a
vertex with ID 1101 with attributes name/"Jean", age/20, salary/120.0. There is an
offset between original empID 101 and vertex ID 1101 because an offset 1000l is
applied. An offset is useful to avoid collision in ID values of graph elements.

Converting a Table Storing Graph Edges to an .ope File

You can convert an Oracle Database table that contains entity relationships (that can
be represented as edges of a graph) to a property graph flat filein .ope format.

Chapter 2
Oracle Flat File Format Definition

2-84

For example, assume the following relational table: EmpRelationTab (relationID
integer not null, source integer not null, destination integer not null,
relationType varchar(255), startDate date)

Assume that this table has the following data:

90001, 101, 102, manage, 10-May-2015
90002, 101, 103, manage, 11-Jan-2015
90003, 102, 103, colleague, 11-Jan-2015
……

Each relation (row) can be viewed as an edge in a graph. Specifically, edge ID could
be the same as relationID or an ID generated using some heuristics like hashing. The
column relationType can be used to define edge labels, and the column startDate can
be treated as an edge attribute.

The Java method OraclePropertyGraphUtils.convertRDBMSTable2OPE and its
Javadoc information are as follows:

/**
* conn: is an connect instance to the Oracle relational database
* rdbmsTableName: name of the RDBMS table to be converted
* eidColName is the name of an column in RDBMS table to be treated as edge ID
* lEIDOffset is the offset will be applied to the edge ID
* svidColName is the name of an column in RDBMS table to be treated as source
vertex ID of the edge
* dvidColName is the name of an column in RDBMS table to be treated as
destination vertex ID of the edge
* lVIDOffset is the offset will be applied to the vertex ID
* bHasEdgeLabelCol a Boolean flag represents if the given RDBMS table has a
column for edge labels; if true, use value of column elColName as the edge
label; otherwise, use the constant string elColName as the edge label
* elColName is the name of an column in RDBMS table to be treated as edge labels
* ctams defines how to map columns in the RDBMS table to the attributes
* dop degree of parallelism
* dcl an instance of DataConverterListener to report the progress and control
the behavior when errors happen
*/
OraclePropertyGraphUtils.convertRDBMSTable2OPE(
 Connection conn,
 String rdbmsTableName,
 String eidColName,
 long lEIDOffset,
 String svidColName,
 String dvidColName,
 long lVIDOffset,
 boolean bHasEdgeLabelCol,
 String elColName,
 ColumnToAttrMapping[] ctams,
 int dop,
 OutputStream opeOS,
 DataConverterListener dcl);

The following code snippet converts this table into an Oracle-defined edge file (.ope):

// location of the output file
String ope = "./EmpRelationTab.ope";
OutputStream opeOS = new FileOutputStream(ope);
// an array of ColumnToAttrMapping objects; each object defines how to
map a column in the RDBMS table to an attribute of the edge in an

Chapter 2
Oracle Flat File Format Definition

2-85

Oracle Property Graph.
ColumnToAttrMapping[] ctams = new ColumnToAttrMapping[1];
// map column "startDate" to attribute "since" of type Date
ctams[0] = ColumnToAttrMapping.getInstance(“startDate",
“since",Date.class);
// convert RDBMS table “EmpRelationTab" into ope file “./
EmpRelationTab.opv", column “relationID" is the edge ID column, offset
10000l will be applied to edge ID, the source and destination vertices
of the edge are defined by columns “source" and “destination", offset
1000l will be applied to vertex ID, the RDBMS table has an column
“relationType" to be treated as edge labels, use ctams to map RDBMS
columns to edge attributes, set DOP to 8
OraclePropertyGraphUtils.convertRDBMSTable2OPE(conn, “EmpRelationTab",
“relationID", 10000l, “source", “destination", 1000l, true,
“relationType", ctams, 8, opeOS, (DataConverterListener) null);

Note:

The lowercase letter “l" as the last character in the offset value 10000l
denotes that the value before it is a long integer.

The conversion result is as follows:

100001,1101,1102,manage,since,5,,,2015-05-10T00:00:00.000-07:00
100002,1101,1103,manage,since,5,,,2015-01-11T00:00:00.000-07:00
100003,1102,1103,colleague,since,5,,,2015-01-11T00:00:00.000-07:00

In this case, each row in table EmpRelationTab is converted to a distinct edge with
the attribute since. For example, the row with data “90001, 101, 102, manage, 10-
May-2015" is converted to an edge with ID 100001 linking vertex 1101 to vertex 1102.
This edge has attribute since/“2015-05-10T00:00:00.000-07:00". There is an offset
between original relationID “90001" and edge ID “100001" because an offset 10000l is
applied. Similarly, an offset 1000l is applied to the source and destination vertex IDs.

2.11.7 Converting CSV Files for Vertices and Edges to Oracle-Defined
Property Graph Flat Files

Some applications use CSV (comma-separated value) format to encode vertices and
edges of a graph. In this format, each record of the CSV file represents a single vertex
or edge, with all its properties. You can convert a CSV file representing the vertices of
a graph to Oracle-defined flat file format definition (.opv for vertices, .ope for edges).

The CSV file to be converted may include a header line specifying the column name
and the type of the attribute that the column represents. If the header includes only the
attribute names, then the converter will assume that the data type of the values will be
String.

The Java APIs to convert CSV to OPV or OPE receive an InputStream from which
they read the vertices or edges (from CSV), and write them in the .opv or .ope format
to an OutputStream. The converter APIs also allow customization of the conversion
process.

Chapter 2
Oracle Flat File Format Definition

2-86

The following subtopics provide instructions for converting vertices and edges:

• Vertices: Converting a CSV File to Oracle-Defined Flat File Format (.opv)

• Edges: Converting a CSV File to Oracle-Defined Flat File Format (.ope)

The instructions for both are very similar, but with differences specific to vertices and
edges.

Vertices: Converting a CSV File to Oracle-Defined Flat File Format (.opv)

If the CSV file does not include a header, you must specify a ColumnToAttrMapping
array describing all the attribute names (mapped to its values data types) in the same
order in which they appear in the CSV file. Additionally, the entire columns from the
CSV file must be described in the array, including special columns such as the ID for
the vertices. If you want to specify the headers for the column in the first line of the
same CSV file, then this parameter must be set to null.

To convert a CSV file representing vertices, you can use one of the convertCSV2OPV
APIs. The simplest of these APIs requires:

• An InputStream to read vertices from a CSV file

• The name of the column that is representing the vertex ID (this column must
appear in the CSV file)

• An integer offset to add to the VID (an offset is useful to avoid collision in ID values
of graph elements)

• A ColumnToAttrMapping array (which must be null if the headers are specified in
the file)

• Degree of parallelism (DOP)

• An integer denoting offset (number of vertex records to skip) before converting

• An OutputStream in which the vertex flat file (.opv) will be written

• An optional DataConverterListener that can be used to keep track of the
conversion progress and decide what to do if an error occurs

Additional parameters can be used to specify a different format of the CSV file:

• The delimiter character, which is used to separate tokens in a record. The default
is the comma character ',’.

• The quotation character, which is used to quote String values so they can contain
special characters, for example, commas. If a quotation character appears in the
value of the String itself, it must be escaped either by duplication or by placing a
backslash character '\' before it. Some examples are:

– """Hello, world"", the screen showed…"

– "But Vader replied: \"No, I am your father.\""

• The Date format, which will be used to parse the date values. For the CSV
conversion, this parameter can be null, but it is recommended to be specified
if the CSV has a specific date format. Providing a specific date format helps
performance, because that format will be used as the first option when trying to
parse date values. Some example date formats are:

– "yyyy-MM-dd'T'HH:mm:ss.SSSXXX"

– "MM/dd/yyyy HH:mm:ss"

Chapter 2
Oracle Flat File Format Definition

2-87

– "ddd, dd MMM yyyy HH':'mm':'ss 'GMT'"

– "dddd, dd MMMM yyyy hh:mm:ss"

– "yyyy-MM-dd"

– "MM/dd/yyyy"

• A flag indicating if the CSV file contains String values with new line characters.
If this parameter is set to true, all the Strings in the file that contain new lines or
quotation characters as values must be quoted.

– "The first lines of Don Quixote are:""In a village of La Mancha, the name of
which I have no desire to call to mind""."

The following code fragment shows how to create a ColumnToAttrMapping array and
use the API to convert a CSV file into an .opv file.

 String inputCSV = "/path/mygraph-vertices.csv";
 String outputOPV = "/path/mygraph.opv";
 ColumnToAttrMapping[] ctams = new ColumnToAttrMapping[4];
 ctams[0] =
ColumnToAttrMapping.getInstance("VID", Long.class);
 ctams[1] =
ColumnToAttrMapping.getInstance("name", String.class);
 ctams[2] =
ColumnToAttrMapping.getInstance("score", Double.class);
 ctams[3] =
ColumnToAttrMapping.getInstance("age", Integer.class);
 String vidColumn = "VID";

 isCSV = new FileInputStream(inputCSV);
 osOPV = new FileOutputStream(new File(outputOPV));

 // Convert Vertices
 OraclePropertyGraphUtilsBase.convertCSV2OPV(isCSV, vidColumn, 0,
ctams, 1, 0, osOPV, null);
 isOPV.close();
 osOPV.close();

In this example, the CSV file to be converted must not include the header and contain
four columns (the vertex ID, name, score, and age). An example CVS is as follows:

1,John,4.2,30
2,Mary,4.3,32
3,"Skywalker, Anakin",5.0,46
4,"Darth Vader",5.0,46
5,"Skywalker, Luke",5.0,53

The resulting .opv file is as follows:

1,name,1,John,,
1,score,4,,4.2,
1,age,2,,30,
2,name,1,Mary,,
2,score,4,,4.3,
2,age,2,,32,
3,name,1,Skywalker%2C%20Anakin,,
3,score,4,,5.0,

Chapter 2
Oracle Flat File Format Definition

2-88

3,age,2,,46,
4,name,1,Darth%20Vader,,
4,score,4,,5.0,
4,age,2,,46,
5,name,1,Skywalker%2C%20Luke,,
5,score,4,,5.0,
5,age,2,,53,

Edges: Converting a CSV File to Oracle-Defined Flat File Format (.ope)

If the CSV file does not include a header, you must specify a ColumnToAttrMapping
array describing all the attribute names (mapped to its values data types) in the same
order in which they appear in the CSV file. Additionally, the entire columns from the
CSV file must be described in the array, including special columns such as the ID for
the edges if it applies, and the START_ID, END_ID, and TYPE, which are required. If
you want to specify the headers for the column in the first line of the same CSV file,
then this parameter must be set to null.

To convert a CSV file representing vertices, you can use one of the convertCSV2OPE
APIs. The simplest of these APIs requires:

• An InputStream to read vertices from a CSV file

• The name of the column that is representing the edge ID (this is optional in the
CSV file; if it is not present, the line number will be used as the ID)

• An integer offset to add to the EID (an offset is useful to avoid collision in ID values
of graph elements)

• Name of the column that is representing the source vertex ID (this column must
appear in the CSV file)

• Name of the column that is representing the destination vertex ID (this column
must appear in the CSV file)

• Offset to the VID (lOffsetVID). This offset will be added on top of the original
SVID and DVID values. (A variation of this API takes in two arguments
(lOffsetSVID and lOffsetDVID): one offset for SVID, the other offset for DVID.)

• A boolean flag indicating if the edge label column is present in the CSV file.

• Name of the column that is representing the edge label (if this column is not
present in the CSV file, then this parameter will be used as a constant for all edge
labels)

• A ColumnToAttrMapping array (which must be null if the headers are specified in
the file)

• Degree of parallelism (DOP)

• An integer denoting offset (number of edge records to skip) before converting

• An OutputStream in which the edge flat file (.ope) will be written

• An optional DataConverterListener that can be used to keep track of the
conversion progress and decide what to do if an error occurs.

Additional parameters can be used to specify a different format of the CSV file:

• The delimiter character, which is used to separate tokens in a record. The default
is the comma character ',’.

• The quotation character, which is used to quote String values so they can contain
special characters, for example, commas. If a quotation character appears in the

Chapter 2
Oracle Flat File Format Definition

2-89

value of the String itself, it must be escaped either by duplication or by placing a
backslash character '\' before it. Some examples are:

– """Hello, world"", the screen showed…"

– "But Vader replied: \"No, I am your father.\""

• The Date format, which will be used to parse the date values. For the CSV
conversion, this parameter can be null, but it is recommended to be specified
if the CSV has a specific date format. Providing a specific date format helps
performance, because that format will be used as the first option when trying to
parse date values. Some example date formats are:

– "yyyy-MM-dd'T'HH:mm:ss.SSSXXX"

– "MM/dd/yyyy HH:mm:ss"

– "ddd, dd MMM yyyy HH':'mm':'ss 'GMT'"

– "dddd, dd MMMM yyyy hh:mm:ss"

– "yyyy-MM-dd"

– "MM/dd/yyyy"

• A flag indicating if the CSV file contains String values with new line characters.
If this parameter is set to true, all the Strings in the file that contain new lines or
quotation characters as values must be quoted.

– "The first lines of Don Quixote are:""In a village of La Mancha, the name of
which I have no desire to call to mind""."

The following code fragment shows how to use the API to convert a CSV file into
an .ope file with a null ColumnToAttrMapping array.

 String inputOPE = "/path/mygraph-edges.csv";
 String outputOPE = "/path/mygraph.ope";
 String eidColumn = null; // null implies that an
integer sequence will be used
 String svidColumn = "START_ID";
 String dvidColumn = "END_ID";
 boolean hasLabel = true;
 String labelColumn = "TYPE";

 isOPE = new FileInputStream(inputOPE);
 osOPE = new FileOutputStream(new File(outputOPE));

 // Convert Edges
 OraclePropertyGraphUtilsBase.convertCSV2OPE(isOPE, eidColumn, 0,
svidColumn, dvidColumn, hasLabel, labelColumn, null, 1, 0, osOPE, null);

An input CSV that uses the former example to be converted should include the header
specifying the columns name and their type. An example CSV file is as follows.

START_ID:long,weight:float,END_ID:long,:TYPE
1,1.0,2,loves
1,1.0,5,admires
2,0.9,1,loves
1,0.5,3,likes
2,0.0,4,likes
4,1.0,5,is the dad of

Chapter 2
Oracle Flat File Format Definition

2-90

3,1.0,4,turns to
5,1.0,3,saves from the dark side

The resulting .ope file is as follows.

1,1,2,loves,weight,3,,1.0,
2,1,5,admires,weight,3,,1.0,
3,2,1,loves,weight,3,,0.9,
4,1,3,likes,weight,3,,0.5,
5,2,4,likes,weight,3,,0.0,
6,4,5,is%20the%20dad%20of,weight,3,,1.0,
7,3,4,turns%20to,weight,3,,1.0,
8,5,3,saves%20from%20the%20dark%20side,weight,3,,1.0,

Chapter 2
Oracle Flat File Format Definition

2-91

3
Using the In-Memory Graph Server (PGX)

The in-memory Graph server of Oracle Graph supports a set of analytical functions.

This chapter provides examples using the in-memory Graph Server (also referred
to as Property Graph In-Memory Analytics, and often abbreviated as PGX in the
Javadoc, command line, path descriptions, error messages, and examples). It contains
the following major topics.

• Overview of the In-Memory Graph Server (PGX)
The In-Memory Graph Server (PGX) is an in-memory graph server for fast, parallel
graph query and analytics. The server uses light-weight in-memory data structures
to enable fast execution of graph algorithms.

• User Authentication and Authorization
The Oracle Graph server (PGX) uses an Oracle Database as identity manager.

• Keeping the Graph in Oracle Database Synchronized with the Graph Server
You can use the FlashbackSynchronizer API to automatically apply changes
made to graph in the database to the corresponding PgxGraph object in memory,
thus keeping both synchronized.

• Configuring the In-Memory Analyst
You can configure the in-memory analyst engine and its run-time behavior by
assigning a single JSON file to the in-memory analyst at startup.

• Storing a Graph Snapshot on Disk
After reading a graph into memory using either Java or the Shell, if you make
some changes to the graph such as running the PageRank algorithm and storing
the values as vertex properties, you can store this snapshot of the graph on disk.

• Executing Built-in Algorithms
The in-memory graph server (PGX) contains a set of built-in algorithms that are
available as Java APIs.

• Using Custom PGX Graph Algorithms
A custom PGX graph algorithm allows you to write a graph algorithm in Java and
have it automatically compiled to an efficient parallel implementation.

• Creating Subgraphs
You can create subgraphs based on a graph that has been loaded into memory.
You can use filter expressions or create bipartite subgraphs based on a vertex
(node) collection that specifies the left set of the bipartite graph.

• Using Automatic Delta Refresh to Handle Database Changes
You can automatically refresh (auto-refresh) graphs periodically to keep the in-
memory graph synchronized with changes to the property graph stored in the
property graph tables in Oracle Database (VT$ and GE$ tables).

• Starting the In-Memory Analyst Server
A preconfigured version of Apache Tomcat is bundled, which allows you to start
the in-memory analyst server by running a script.

3-1

• Deploying to Apache Tomcat
The example in this topic shows how to deploy the graph server as a web
application with Apache Tomcat.

• Deploying to Oracle WebLogic Server
The example in this topic shows how to deploy the graph server as a web
application with Oracle WebLogic Server.

• Connecting to the In-Memory Analyst Server
After the property graph in-memory analyst is installed in a computer running
Oracle Database -- or on a client system without Oracle Database server software
as a web application on Apache Tomcat or Oracle WebLogic Server -- you can
connect to the in-memory analyst server.

• Managing Property Graph Snapshots
You can manage property graph snapshots.

• User-Defined Functions (UDFs) in PGX
User-defined functions (UDFs) allow users of PGX to add custom logic to their
PGQL queries or custom graph algorithms, to complement built-in functions with
custom requirements.

3.1 Overview of the In-Memory Graph Server (PGX)
The In-Memory Graph Server (PGX) is an in-memory graph server for fast, parallel
graph query and analytics. The server uses light-weight in-memory data structures to
enable fast execution of graph algorithms.

The In-Memory Graph Server (PGX) is an in-memory graph server for fast, parallel
graph query and analytics. The server uses light-weight in-memory data structures to
enable fast execution of graph algorithms.

There are multiple options to load a graph into the graph server either from Oracle
Database or from files.

The graph server can be deployed standalone (it includes an embedded Apache
Tomcat instance), or deployed in Oracle WebLogic Server or Apache Tomcat.

• Connecting to the In-Memory Graph Server (PGX)

3.1.1 Connecting to the In-Memory Graph Server (PGX)
Multiple graph clients can connect to the in-memory graph server at the same time.
The client request are processed by the graph server asynchronously. The client
requests are queued up first and processed later, when resources are available. The
client can poll the server to check if a request has been finished. Internally, the server
maintains its own engine (thread pools) for running parallel graph algorithms. The
engine tries to process each analytics request concurrently with as many threads as
possible.

Each client has its own private workspace, called session. Sessions are isolated from
each other. Each client can load a graph instance into its own session, independently
from other clients.

Chapter 3
Overview of the In-Memory Graph Server (PGX)

3-2

Note:

• If multiple clients load the same graph instance the graph server can
share one graph instance between multiple clients under the hood.

• Each client can add additional vertex or edge properties to a loaded
graph in its own session. Such properties are transient properties, and
are private to each session and not visible to another session. If a client
creates mutated version of a graph, the graph server will create a private
graph instance for that client.

3.2 User Authentication and Authorization
The Oracle Graph server (PGX) uses an Oracle Database as identity manager.

This means that you log into the graph server using existing Oracle Database
credentials (user name and password), and the actions which you are allowed to do
on the graph server are determined by the roles that have been granted to you in the
Oracle database.

Basic Steps for Using an Oracle Database for Authentication

1. Use an Oracle Database version that is supported by Oracle Graph Server and
Client: version 12.2 or later, including Autonomous Database.

2. Be sure that you have ADMIN access (or SYSDBA access for non-autonomous
databases) to grant and revoke users access to the graph server (PGX).

3. Be sure that all existing users to which you plan to grant access to the graph
server have at least the CREATE SESSION privilege granted.

4. Be sure that the database is accessible via JDBC from the host where the Graph
Server runs.

5. As ADMIN (or SYSDBA on non-autonomous databases), run the following
procedure to create the roles required by the graph server:

Note:

If you install the PL/SQL packages of the Oracle Graph Server and
Client distribution on the target Oracle Database, this step is not
necessary. All the roles shown in the following code are created as part
of the PL/SQL installation automatically. You cannot install the PL/SQL
packages on Autonomous Database, so if you use the graph server
with Autonomous Database, it is recommended to execute the following
statements using SQL Developer Web.

DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION;
 role_exists EXCEPTION;
 PRAGMA EXCEPTION_INIT(role_exists, -01921);

Chapter 3
User Authentication and Authorization

3-3

 TYPE graph_roles_table IS TABLE OF VARCHAR2(50);
 graph_roles graph_roles_table;
BEGIN
 graph_roles := graph_roles_table(
 'GRAPH_DEVELOPER',
 'GRAPH_ADMINISTRATOR',
 'PGX_SESSION_CREATE',
 'PGX_SERVER_GET_INFO',
 'PGX_SERVER_MANAGE',
 'PGX_SESSION_READ_MODEL',
 'PGX_SESSION_MODIFY_MODEL',
 'PGX_SESSION_NEW_GRAPH',
 'PGX_SESSION_GET_PUBLISHED_GRAPH',
 'PGX_SESSION_COMPILE_ALGORITHM',
 'PGX_SESSION_ADD_PUBLISHED_GRAPH');
 FOR elem IN 1 .. graph_roles.count LOOP
 BEGIN
 dbms_output.put_line('create_graph_roles: ' || elem || ':
CREATE ROLE ' || graph_roles(elem));
 EXECUTE IMMEDIATE 'CREATE ROLE ' || graph_roles(elem);
 EXCEPTION
 WHEN role_exists THEN
 dbms_output.put_line('create_graph_roles: role already
exists. continue');
 WHEN OTHERS THEN
 RAISE;
 END;
 END LOOP;
EXCEPTION
 when others then
 dbms_output.put_line('create_graph_roles: hit error ');
 raise;
END;
/

6. Assign default permissions to the roles GRAPH_DEVELOPER and
GRAPH_ADMINISTRATOR to group multiple permissions together.

Note:

If you install the PL/SQL packages of the Oracle Graph Server and
Client distribution on the target Oracle Database, this step is not
necessary. All the grants shown in the following code are executed
as part of the PL/SQL installation automatically. You cannot install the
PL/SQL packages on Autonomous Database, so if you use the graph
server with Autonomous Database, it is recommended to execute the
following statements using SQL Developer Web.

GRANT PGX_SESSION_CREATE TO GRAPH_ADMINISTRATOR;
GRANT PGX_SERVER_GET_INFO TO GRAPH_ADMINISTRATOR;
GRANT PGX_SERVER_MANAGE TO GRAPH_ADMINISTRATOR;
GRANT PGX_SESSION_CREATE TO GRAPH_DEVELOPER;

Chapter 3
User Authentication and Authorization

3-4

GRANT PGX_SESSION_NEW_GRAPH TO GRAPH_DEVELOPER;
GRANT PGX_SESSION_GET_PUBLISHED_GRAPH TO GRAPH_DEVELOPER;
GRANT PGX_SESSION_MODIFY_MODEL TO GRAPH_DEVELOPER;
GRANT PGX_SESSION_READ_MODEL TO GRAPH_DEVELOPER;

7. Assign roles to all the database developers who should have access the graph
server (PGX). For example:

GRANT graph_developer TO <graphuser>

where <graphuser> is a user in the database. You can also assign individual
permissions (roles prefixed with PGX_) to users directly.

8. Assign the administrator role to users who should have administrative access. For
example:

GRANT graph_administrator to <administratoruser>

where <administratoruser> is a user in the database.

• Prepare the Graph Server for Database Authentication
Locate the pgx.conf file of your installation.

• Connect to the Server from JShell with Database Authentication
You can use the JShell client to connect to the server in remote mode, using
database authentication.

• Read Data from the Database
Once logged in, you can now read data from the database into the graph server
without specifying any connection information in the graph configuration.

• Store the Database Password in a Keystore

• Token Expiration
By default, tokens are valid for 1 hour.

• Advanced Access Configuration
You can customize the following fields in pgx.conf realm options to customize
login behavior.

• Revoking Access to the Graph Server
To revoke a user's ability to access the graph server, either drop the user from the
database or revoke the corresponding roles from the user, depending on how you
defined the access rules in your pgx.conf file.

• Examples of Custom Authorization Rules
You can define custom authorization rules for developers.

3.2.1 Prepare the Graph Server for Database Authentication
Locate the pgx.conf file of your installation.

If you installed the graph server via RPM, the file is located at: /etc/oracle/graph/
pgx.conf

If you use the webapps package to deploy into Tomcat or WebLogic Server, the
pgx.conf file is located inside the web application archive file (WAR file) at: WEB-INF/
classes/pgx.conf

Chapter 3
User Authentication and Authorization

3-5

Tip: On Linux, you can use vim to edit the file directly inside the WAR file without
unzipping it first. For example: vim pgx-webapp-21.1.0.war

Inside the pgx.conf file, locate the jdbc_url line of the realm options:

...
"pgx_realm": {
 "implementation": "oracle.pg.identity.DatabaseRealm",
 "options": {
 "jdbc_url": "<REPLACE-WITH-DATABASE-URL-TO-USE-FOR-AUTHENTICATION>",
 "token_expiration_seconds": 3600,
...

Replace the text with the JDBC URL pointing to your database that you configured in
the previous step. For example:

...
"pgx_realm": {
 "implementation": "oracle.pg.identity.DatabaseRealm",
 "options": {
 "jdbc_url": "jdbc:oracle:thin:@myhost:1521/myservice",
 "token_expiration_seconds": 3600,
...

If you are using an Autonomous Database, specify the JDBC URL like this:

...
"pgx_realm": {
 "implementation": "oracle.pg.identity.DatabaseRealm",
 "options": {
 "jdbc_url": "jdbc:oracle:thin:@my_identifier_low?TNS_ADMIN=/etc/
oracle/graph/wallet",
 "token_expiration_seconds": 3600,
...

where /etc/oracle/graph/wallet is an example path to the unzipped wallet
file that you downloaded from your Autonomous Database service console, and
my_identifier_low is one of the connect identifiers specified in /etc/oracle/graph/
wallet/tnsnames.ora.

Now, start the graph server. If you installed via RPM, execute the following command
as a root user or with sudo:

sudo systemctl start pgx

3.2.2 Connect to the Server from JShell with Database Authentication
You can use the JShell client to connect to the server in remote mode, using database
authentication.

Chapter 3
User Authentication and Authorization

3-6

To connect to the server in remote mode:

./bin/opg-jshell --base_url https://localhost:7007 --username
<database_user>

You will be prompted for the database password.

If you are using a Java client program, you can connect to the server as shown in the
following example:

import oracle.pg.rdbms.*
import oracle.pgx.api.*

...

ServerInstance instance = GraphServer.getInstance("https://
localhost:7007", "<database user>", "<database password>");
PgxSession session = instance.createSession("my-session");

...

Internally, users are authenticated with the graph server using JSON Web Tokens
(JWT). See Token Expiration for more details about token expiration.

3.2.3 Read Data from the Database
Once logged in, you can now read data from the database into the graph server
without specifying any connection information in the graph configuration.

Your database user must exist and have read access on the graph data in the
database.

For example, the following graph configuration will read a property graph named
hr into memory, authenticating as <database user>/<database password> with the
database:

GraphConfig config = GraphConfigBuilder.forPropertyGraphRdbms()
 .setName("hr")
 .addVertexProperty("FIRST_NAME", PropertyType.STRING)
 .addVertexProperty("LAST_NAME", PropertyType.STRING)
 .addVertexProperty("EMAIL", PropertyType.STRING)
 .addVertexProperty("CITY", PropertyType.STRING)
 .setPartitionWhileLoading(PartitionWhileLoading.BY_LABEL)
 .setLoadVertexLabels(true)
 .setLoadEdgeLabel(true)
 .build();
PgxGraph hr = session.readGraphWithProperties(config);

Chapter 3
User Authentication and Authorization

3-7

The following example is a graph configuration in JSON format that reads from
relational tables into the graph server, without any connection information being
provided in the configuration file itself:

{
 "name":"hr",
 "vertex_id_strategy":"no_ids",
 "vertex_providers":[
 {
 "name":"Employees",
 "format":"rdbms",
 "database_table_name":"EMPLOYEES",
 "key_column":"EMPLOYEE_ID",
 "key_type":"string",
 "props":[
 {
 "name":"FIRST_NAME",
 "type":"string"
 },
 {
 "name":"LAST_NAME",
 "type":"string"
 }
]
 },
 {
 "name":"Departments",
 "format":"rdbms",
 "database_table_name":"DEPARTMENTS",
 "key_column":"DEPARTMENT_ID",
 "key_type":"string",
 "props":[
 {
 "name":"DEPARTMENT_NAME",
 "type":"string"
 }
]
 }
],
 "edge_providers":[
 {
 "name":"WorksFor",
 "format":"rdbms",
 "database_table_name":"EMPLOYEES",
 "key_column":"EMPLOYEE_ID",
 "source_column":"EMPLOYEE_ID",
 "destination_column":"EMPLOYEE_ID",
 "source_vertex_provider":"Employees",
 "destination_vertex_provider":"Employees"
 },
 {
 "name":"WorksAs",
 "format":"rdbms",
 "database_table_name":"EMPLOYEES",
 "key_column":"EMPLOYEE_ID",

Chapter 3
User Authentication and Authorization

3-8

 "source_column":"EMPLOYEE_ID",
 "destination_column":"JOB_ID",
 "source_vertex_provider":"Employees",
 "destination_vertex_provider":"Jobs"
 }
]
}

For more information about how to read data from the database into the graph server,
see Store the Database Password in a Keystore.

3.2.4 Store the Database Password in a Keystore
PGX requires a database account to read data from the database into memory. The
account should be a low-privilege account (see Security Best Practices with Graph
Data).

As described in Read Data from the Database, you can read data from the database
into the graph server without specifying additional authentication as long as the token
is valid for that database user. But if you want to access a graph from a different user,
you can do so, as long as that user's password is stored in a Java Keystore file for
protection.

You can use the keytool command that is bundled together with the JDK to generate
such a keystore file on the command line. See the following script as an example:

Add a password for the 'database1' connection
keytool -importpass -alias database1 -keystore keystore.p12
1. Enter the password for the keystore
2. Enter the password for the database

Add another password (for the 'database2' connection)
keytool -importpass -alias database2 -keystore keystore.p12

List what's in the keystore using the keytool
keytool -list -keystore keystore.p12

If you are using Java version 8 or lower, you should pass the additional parameter
-storetype pkcs12 to the keytool commands in the preceding example.

You can store more than one password into a single keystore file. Each password can
be referenced using the alias name provided.

• Either, Write the PGX graph configuration file to load from the property graph
schema

• Or, Write the PGX graph configuration file to load a graph directly from relational
tables

• Read the data

• Secure coding tips for graph client applications

Chapter 3
User Authentication and Authorization

3-9

Either, Write the PGX graph configuration file to load from the property graph
schema

Next write a PGX graph configuration file in JSON format. The file tells PGX where to
load the data from, how the data looks like and the keystore alias to use. The following
example shows a graph configuration to read data stored in the Oracle property graph
format.

{
 "format": "pg",
 "db_engine": "rdbms",
 "name": "hr",
 "jdbc_url": "jdbc:oracle:thin:@myhost:1521/orcl",
 "username": "hr",
 "keystore_alias": "database1",
 "vertex_props": [{
 "name": "COUNTRY_NAME",
 "type": "string"
 }, {
 "name": "DEPARTMENT_NAME",
 "type": "string"
 }, {
 "name": "SALARY",
 "type": "double"
 }],
 "partition_while_loading": "by_label",
 "loading": {
 "load_vertex_labels": true,
 "load_edge_label": true
 }
}

(For the full list of available configuration fields, including their meanings and default
values, see https://docs.oracle.com/cd/E56133_01/latest/reference/loader/database/
pg-format.html.)

Or, Write the PGX graph configuration file to load a graph directly from relational
tables

The following example loads a subset of the HR sample data from relational tables
directly into PGX as a graph. The configuration file specifies a mapping from relational
to graph format by using the concept of vertex and edge providers.

Note:

Specifying the vertex_providers and edge_providers properties loads the
data into an optimized representation of the graph.

{
 "name":"hr",
 "jdbc_url":"jdbc:oracle:thin:@myhost:1521/orcl",

Chapter 3
User Authentication and Authorization

3-10

https://docs.oracle.com/cd/E56133_01/latest/reference/loader/database/pg-format.html
https://docs.oracle.com/cd/E56133_01/latest/reference/loader/database/pg-format.html

 "username":"hr",
 "keystore_alias":"database1",
 "vertex_id_strategy": "no_ids",
 "vertex_providers":[
 {
 "name":"Employees",
 "format":"rdbms",
 "database_table_name":"EMPLOYEES",
 "key_column":"EMPLOYEE_ID",
 "key_type": "string",
 "props":[
 {
 "name":"FIRST_NAME",
 "type":"string"
 },
 {
 "name":"LAST_NAME",
 "type":"string"
 },
 {
 "name":"EMAIL",
 "type":"string"
 },
 {
 "name":"SALARY",
 "type":"long"
 }
]
 },
 {
 "name":"Jobs",
 "format":"rdbms",
 "database_table_name":"JOBS",
 "key_column":"JOB_ID",
 "key_type": "string",
 "props":[
 {
 "name":"JOB_TITLE",
 "type":"string"
 }
]
 },
 {
 "name":"Departments",
 "format":"rdbms",
 "database_table_name":"DEPARTMENTS",
 "key_column":"DEPARTMENT_ID",
 "key_type": "string",
 "props":[
 {
 "name":"DEPARTMENT_NAME",
 "type":"string"
 }
]
 }

Chapter 3
User Authentication and Authorization

3-11

],
 "edge_providers":[
 {
 "name":"WorksFor",
 "format":"rdbms",
 "database_table_name":"EMPLOYEES",
 "key_column":"EMPLOYEE_ID",
 "source_column":"EMPLOYEE_ID",
 "destination_column":"EMPLOYEE_ID",
 "source_vertex_provider":"Employees",
 "destination_vertex_provider":"Employees"
 },
 {
 "name":"WorksAs",
 "format":"rdbms",
 "database_table_name":"EMPLOYEES",
 "key_column":"EMPLOYEE_ID",
 "source_column":"EMPLOYEE_ID",
 "destination_column":"JOB_ID",
 "source_vertex_provider":"Employees",
 "destination_vertex_provider":"Jobs"
 },
 {
 "name":"WorkedAt",
 "format":"rdbms",
 "database_table_name":"JOB_HISTORY",
 "key_column":"EMPLOYEE_ID",
 "source_column":"EMPLOYEE_ID",
 "destination_column":"DEPARTMENT_ID",
 "source_vertex_provider":"Employees",
 "destination_vertex_provider":"Departments",
 "props":[
 {
 "name":"START_DATE",
 "type":"local_date"
 },
 {
 "name":"END_DATE",
 "type":"local_date"
 }
]
 }
]
}

Note about vertex and edge IDs:

PGX enforces by default the existence of a unique identifier for each vertex and edge
in a graph, so that they can be retrieved by using PgxGraph.getVertex(ID id) and
PgxGraph.getEdge(ID id) or by PGQL queries using the built-in id() method.

The default strategy to generate the vertex IDs is to use the keys provided during
loading of the graph. In that case, each vertex should have a vertex key that is unique
across all the types of vertices. For edges, by default no keys are required in the edge
data, and edge IDs will be automatically generated by PGX. Note that the generation

Chapter 3
User Authentication and Authorization

3-12

of edge IDs is not guaranteed to be deterministic. If required, it is also possible to load
edge keys as IDs.

However, because it may cumbersome for partitioned graphs to define such identifiers,
it is possible to disable that requirement for the vertices and/or edges by setting the
vertex_id_strategy and edge_id_strategy graph configuration fields to the value
no_ids as shown in the preceding example. When disabling vertex (resp. edge) IDs,
the implication is that PGX will forbid the call to APIs using vertex (resp. edge) IDs,
including the ones indicated previously.

If you want to call those APIs but do not have globally unique IDs in your relational
tables, you can specify the unstable_generated_ids generation strategy, which
generates new IDs for you. As the name suggests, there is no correlation to the
original IDs in your input tables and there is no guarantee that those IDs are stable.
Same as with the edge IDs, it is possible that loading the same input tables twice
yields two different generated IDs for the same vertex.

Read the data

Now you can instruct PGX to connect to the database and read the data by passing
in both the keystore and the configuration file to PGX, using one of the following
approaches:

• Interactively in the graph shell
If you are using the graph shell, start it with the --secret_store option. It will
prompt you for the keystore password and then attach the keystore to your current
session. For example:

cd /opt/oracle/graph
./bin/opg-jshell --secret_store /etc/my-secrets/keystore.p12

 enter password for keystore /etc/my-secrets/keystore.p12:

Inside the shell, you can then use normal PGX APIs to read the
graph into memory by passing the JSON file you just wrote into the
readGraphWithProperties API:

opg-jshell-rdbms> var graph =
session.readGraphWithProperties("config.json")
graph ==> PgxGraph[name=hr,N=215,E=415,created=1576882388130]

• As a PGX preloaded graph
As a server administrator, you can instruct PGX to load graphs into memory upon
server startup. To do so, modify the PGX configuration file at /etc/oracle/graph/
pgx.conf and add the path the graph configuration file to the preload_graphs
section. For example:

{
 ...
 "preload_graphs": [{
 "name": "hr",
 "path": "/path/to/config.json"
 }],
 ...
}

Chapter 3
User Authentication and Authorization

3-13

As root user, edit the service file at /etc/systemd/system/pgx.service and
change the ExecStart command to specify the location of the keystore containing
the password:

ExecStart=/bin/bash start-server --secret-store /etc/keystore.p12

Note:

Please note that /etc/keystore.p12 must not be password protected for
this to work. Instead protect the file via file system permission that is only
readable by oraclegraph user.

After the file is edited, reload the changes using:

sudo systemctl daemon-reload

Finally start the server:

sudo systemctl start pgx

• In a Java application
To register a keystore in a Java application, use the registerKeystore() API on
the PgxSession object. For example:

import oracle.pgx.api.*;

class Main {

 public static void main(String[] args) throws Exception {
 String baseUrl = args[0];
 String keystorePath = "/etc/my-secrets/keystore.p12";
 char[] keystorePassword = args[1].toCharArray();
 String graphConfigPath = args[2];
 ServerInstance instance = Pgx.getInstance(baseUrl);
 try (PgxSession session = instance.createSession("my-session"))
{
 session.registerKeystore(keystorePath, keystorePassword);
 PgxGraph graph =
session.readGraphWithProperties(graphConfigPath);
 System.out.println("N = " + graph.getNumVertices() + " E = "
+ graph.getNumEdges());
 }
 }
}

You can compile and run the preceding sample program using the Oracle Graph
Client package. For example:

cd $GRAPH_CLIENT
// create Main.java with above contents

Chapter 3
User Authentication and Authorization

3-14

javac -cp 'lib/*' Main.java
java -cp '.:conf:lib/*' Main http://myhost:7007 MyKeystorePassword
path/to/config.json

Secure coding tips for graph client applications

When writing graph client applications, make sure to never store any passwords or
other secrets in clear text in any files or in any of your code.

Do not accept passwords or other secrets through command line arguments either.
Instead, use Console.html#readPassword() from the JDK.

3.2.5 Token Expiration
By default, tokens are valid for 1 hour.

Internally, the graph client automatically renews tokens which are about to expire in
less than 30 minutes. This is also configurable by re-authenticating your credentials
with the database. By default, tokens can only be automatically renewed for up to 24
times, then you need to login again.

If the maximum amount of auto-renewals is reached, you can log in again
without losing any of your session data by using the GraphServer#reauthenticate
(instance, "<user>", "<password>") API. For example:

opg> var graph = session.readGraphWithProperties(config) // fails
because token cannot be renewed anymore
opg> GraphServer.reauthenticate(instance, "<user>", "<password>") //
log in again
opg> var graph = session.readGraphWithProperties(config) //
works now

3.2.6 Advanced Access Configuration
You can customize the following fields in pgx.conf realm options to customize login
behavior.

Table 3-1 Advanced Access Configuration Options

Field Name Explanation Default

token_expiration_second
s

After how many seconds the
generated bearer token will
expire.

3600 (1 hour)

connect_timeout_millise
conds

After how many milliseconds
an connection attempt to the
specified JDBC URL will time
out, resulting in the login
attempt being rejected.

10000

Chapter 3
User Authentication and Authorization

3-15

Table 3-1 (Cont.) Advanced Access Configuration Options

Field Name Explanation Default

max_pool_size Maximum number of JDBC
connections allowed per user.
If the number is reached,
attempts to read from the
database will fail for the
current user.

64

max_num_users Maximum number of active,
signed in users to allow. If
this number is reached, the
graph server will reject login
attempts.

512

max_num_token_refresh Maximum amount of times a
token can be automatically
refreshed before requiring a
login again.

24

To configure the refresh time on the client side before token expiration, use the
following API to login:

int refreshTimeBeforeTokenExpiry = 900; // in seconds, default is 1800 (30
minutes)
ServerInstance instance = GraphServer.getInstance("https://localhost:7007",
"<database user>", "<database password>",
 refreshTimeBeforeTokenExpiry);

Note:

The preceding options work only if the realm implementation is configured to
be oracle.pg.identity.DatabaseRealm.

• Customizing Roles and Permissions
You can fully customize the permissions to roles mapping by adding and removing
roles and specifying permissions for a role. You can also authorize individual users
instead of roles.

3.2.6.1 Customizing Roles and Permissions
You can fully customize the permissions to roles mapping by adding and removing
roles and specifying permissions for a role. You can also authorize individual users
instead of roles.

This topic includes examples of how to customize the permission mapping.

• Adding and Removing Roles
You can add new role permission mappings or remove existing mappings by
modifying the authorization list.

• Defining Permissions for Individual Users
In addition to defining permissions for roles, you can define permissions for
individual users.

Chapter 3
User Authentication and Authorization

3-16

3.2.6.1.1 Adding and Removing Roles
You can add new role permission mappings or remove existing mappings by modifying
the authorization list.

For example:

CREATE ROLE MY_CUSTOM_ROLE_1
GRANT PGX_SESSION_CREATE TO MY_CUSTOM_ROLE1
GRANT PGX_SERVER_GET_INFO TO MY_CUSTOM_ROLE1
GRANT MY_CUSTOM_ROLE1 TO SCOTT

3.2.6.1.2 Defining Permissions for Individual Users
In addition to defining permissions for roles, you can define permissions for individual
users.

For example:

GRANT PGX_SESSION_CREATE TO SCOTT
GRANT PGX_SERVER_GET_INFO TO SCOTT

3.2.7 Revoking Access to the Graph Server
To revoke a user's ability to access the graph server, either drop the user from the
database or revoke the corresponding roles from the user, depending on how you
defined the access rules in your pgx.conf file.

For example:

REVOKE graph_developer FROM scott

Revoking Graph Permissions

If you have the MANAGE permission on a graph, you can revoke graph access from
users or roles using the PgxGraph#revokePermission API. For example:

PgxGraph g = ...
g.revokePermission(new PgxRole("GRAPH_DEVELOPER")) // revokes
previously granted role access
g.revokePermission(new PgxUser("SCOTT")) // revokes previously granted
user access

3.2.8 Examples of Custom Authorization Rules
You can define custom authorization rules for developers.

• Example 3-1

• Example 3-2

• Example 3-3

Chapter 3
User Authentication and Authorization

3-17

• Example 3-4

Example 3-1 Allowing Developers to Use Custom Graph Algorithms

To allow developers to compile custom graph algorithms (see Using Custom PGX
Graph Algorithms), add the following static permission to the list of permissions:

GRANT PGX_SESSION_COMPILE_ALGORITHM TO GRAPH_DEVELOPER

Example 3-2 Allowing Developers to Publish Graphs

Allowing graph server users to publish graphs or share graphs with other users which
originate from the Oracle Database breaks the database authorization model. If you
work with graphs in the database, use GRANT statements in the database instead.
See the OPG_APIS.GRANT_ACCESS API for examples how to do this for PG graphs.
When reading from relational tables, use normal GRANT READ statements on tables.

To allow developers to publish graphs, add the following static permission to the list of
permissions:

GRANT PGX_SESSION_ADD_PUBLISHED_GRAPH TO GRAPH_DEVELOPER

Publishing graphs alone does not give others access to the graph. You must also
specify the type of access. There are three levels of permissions for graphs:

1. READ: allows to read the graph data via the PGX API or in PGQL queries, run
Analyst or custom algorithms on a graph and create a subgraph or clone the given
graph

2. EXPORT: export the graph via the PgxGraph#store() APIs. Includes READ
permission. Please note that in addition to the EXPORT permission, users also
need WRITE permission on a file system in order to export the graph.

3. MANAGE: publish the graph or snapshot, grant or revoke permissions on the
graph. Includes the EXPORT permission.

The creator of the graph automatically gets the MANAGE permission granted on the
graph. If you have the MANAGE permission, you can grant other roles or users READ
or EXPORT permission on the graph. You cannot grant MANAGE on a graph. The
following example of a user named userA shows how:

import oracle.pgx.api.*
import oracle.pgx.common.auth.*

PgxSession session = GraphServer.getInstance("<base-url>", "<userA>",
"<password-of-userA").createSession("userA")
PgxGraph g = session.readGraphWithProperties("examples/sample-
graph.json", "sample-graph")
g.grantPermission(new PgxRole("GRAPH_DEVELOPER"),
PgxResourcePermission.READ)
g.publish()

Chapter 3
User Authentication and Authorization

3-18

Now other users with the GRAPH_DEVELOPER role can access this graph and have
READ access on it, as shown in the following example of userB:

PgxSession session = GraphServer.getInstance("<base-url>", "<userB>",
"<password-of-userB").createSession("userB")
PgxGraph g = session.getGraph("sample-graph")
g.queryPgql("select count(*) from match (v)").print().close()

Similarly, graphs can be shared with individual users instead of roles, as shown in the
following example:

g.grantPermission(new PgxUser("OTHER_USER"),
PgxResourcePermission.EXPORT)

where OTHER_USER is the user name of the user that will receive the EXPORT
permission on graph g.

Example 3-3 Allowing Developers to Access Preloaded Graphs

To allow developers to access preloaded graphs (graphs loaded during graph server
startup), grant the read permission on the preloaded graph in the pgx.conf file. For
example:

"preload_graphs": [{
 "path": "/data/my-graph.json",
 "name": "global_graph"
}],
"authorization": [{
 "pgx_role": "GRAPH_DEVELOPER",
 "pgx_permissions": [{
 "preloaded_graph": "global_graph"
 "grant": "read"
 },
...

You can grant READ, EXPORT, or MANAGE permission.

Example 3-4 Allowing Developers Access to the Hadoop Distributed
Filesystem (HDFS) or the Local File System

To allow developers to read files from HDFS, you must first declare the HDFS directory
and then map it to a read or write permission. For example:

CREATE OR REPLACE DIRECTORY pgx_file_location AS 'hdfs:/data/graphs'
GRANT READ ON DIRECTORY pgx_file_location TO GRAPH_DEVELOPER

Similarly, you can add another permission with GRANT WRITE to allow write access.
Such a write access is required in order to export graphs.

Chapter 3
User Authentication and Authorization

3-19

Access to the local file system (where the graph server runs) can be granted the same
way. The only difference is that location would be an absolute file path without the
hdfs: prefix. For example:

CREATE OR REPLACE DIRECTORY pgx_file_location AS '/opt/oracle/graph/
data'

Note that in addition to the preceding configuration, the operating system user that
runs the graph server process must have the corresponding directory privileges to
actually read or write into those directories.

3.3 Keeping the Graph in Oracle Database Synchronized
with the Graph Server

You can use the FlashbackSynchronizer API to automatically apply changes made to
graph in the database to the corresponding PgxGraph object in memory, thus keeping
both synchronized.

This API uses Oracle's Flashback Technology to fetch the changes in the database
since the last fetch and then push those changes into the graph server using
the ChangeSet API. After the changes are applied, the usual snapshot semantics
of the graph server apply: each delta fetch application creates a new in-memory
snapshot. Any queries or algorithms that are executing concurrently to snapshot
creation are unaffected by the changes until the corresponding session refreshes
its PgxGraph object to the latest state by calling the session.setSnapshot(graph,
PgxSession.LATEST_SNAPSHOT) procedure.

For detailed information about Oracle Flashback technology, see the Database
Development Guide.

Prerequisites for Synchronizing

The Oracle database must have Flashback enabled and the database user that you
use to perform synchronization must have:

• Read access to all tables which need to kept synchornized.

• Permission to use flashback APIs. For example:

grant execute on dbms_flashback to <user>

The database must also be configured to retain changes for the amount of time
needed by your use case.

Limitations for Synchronizing

The synchronizer API currently has the following limitations

• Only partitioned graph configurations with all providers being database tables are
supported.

• Both the vertex and edge ID strategy must be set as follows:

"vertex_id_strategy": "keys_as_ids",
"edge_id_strategy": "keys_as_ids"

Chapter 3
Keeping the Graph in Oracle Database Synchronized with the Graph Server

3-20

• Each edge/vertex provider must be configured to create a key mapping. In each
provider block of the graph configuration, add the following loading section:

"loading": {
 "create_key_mapping": true
}

This implies that vertices and edges must have globally unique ID columns.

• Each edge/vertex provider must specify the owner of the table by setting the
username field. For example, if user SCOTT owns the table, then set the
username accordingly in the provider block of that table:

"username": "scott"

• In the root loading block, the snapshot source must be set to change_set:

"loading": {
 "snapshots_source": "change_set"
}

For a detailed example, including some options, see the following topic.

• Example of Synchronizing
As an example of performing synchronization, assume you have the following
Oracle Database tables, PERSONS and FRIENDSHIPS.

3.3.1 Example of Synchronizing
As an example of performing synchronization, assume you have the following Oracle
Database tables, PERSONS and FRIENDSHIPS.

CREATE TABLE PERSONS (
 PERSON_ID NUMBER GENERATED ALWAYS AS IDENTITY (START WITH 1 INCREMENT
BY 1),
 NAME VARCHAR2(200),
 BIRTHDATE DATE,
 HEIGHT FLOAT DEFAULT ON NULL 0,
 INT_PROP INT DEFAULT ON NULL 0,
 CONSTRAINT person_pk PRIMARY KEY (PERSON_ID)
);

CREATE TABLE FRIENDSHIPS (
 FRIENDSHIP_ID NUMBER GENERATED ALWAYS AS IDENTITY (START WITH 1
INCREMENT BY 1),
 PERSON_A NUMBER,
 PERSON_B NUMBER,
 MEETING_DATE DATE,
 TS_PROP TIMESTAMP,
 CONSTRAINT fk_PERSON_A_ID FOREIGN KEY (PERSON_A) REFERENCES
persons(PERSON_ID),
 CONSTRAINT fk_PERSON_B_ID FOREIGN KEY (PERSON_B) REFERENCES
persons(PERSON_ID)
);

Chapter 3
Keeping the Graph in Oracle Database Synchronized with the Graph Server

3-21

You add some sample data into these tables:

INSERT INTO PERSONS (NAME, HEIGHT, BIRTHDATE) VALUES ('John', 1.80,
to_date('13/06/1963', 'DD/MM/YYYY'));
INSERT INTO PERSONS (NAME, HEIGHT, BIRTHDATE) VALUES ('Mary', 1.65,
to_date('25/09/1982', 'DD/MM/YYYY'));
INSERT INTO PERSONS (NAME, HEIGHT, BIRTHDATE) VALUES ('Bob', 1.75,
to_date('11/03/1966', 'DD/MM/YYYY'));
INSERT INTO PERSONS (NAME, HEIGHT, BIRTHDATE) VALUES ('Alice', 1.70,
to_date('01/02/1987', 'DD/MM/YYYY'));

INSERT INTO FRIENDSHIPS (PERSON_A, PERSON_B, MEETING_DATE) VALUES (1,
3, to_date('01/09/1972', 'DD/MM/YYYY'));
INSERT INTO FRIENDSHIPS (PERSON_A, PERSON_B, MEETING_DATE) VALUES (2,
4, to_date('19/09/1992', 'DD/MM/YYYY'));
INSERT INTO FRIENDSHIPS (PERSON_A, PERSON_B, MEETING_DATE) VALUES (4,
2, to_date('19/09/1992', 'DD/MM/YYYY'));
INSERT INTO FRIENDSHIPS (PERSON_A, PERSON_B, MEETING_DATE) VALUES (3,
2, to_date('10/07/2001', 'DD/MM/YYYY'));

Synchronizing Using Connection Information in the Graph Configuration

You then want to synchronize using connection information in the graph configuration.
You have the following sample graph configuration (KeystoreGraphConfigExample),
which reads those tables as a graph:

{
 "name": "PeopleFriendships",
 "optimized_for": "updates",
 "edge_id_strategy": "keys_as_ids",
 "edge_id_type": "long",
 "vertex_id_type": "long",
 "jdbc_url": "<jdbc_url>",
 "username": "<username>",
 "keystore_alias": "<keystore_alias>",
 "vertex_providers": [
 {
 "format": "rdbms",
 "username": "<username>",
 "key_type": "long",
 "name": "person",
 "database_table_name": "PERSONS",
 "key_column": "PERSON_ID",
 "props": [
 ...
],
 "loading": {
 "create_key_mapping": true
 }
 }
],
 "edge_providers": [
 {
 "format": "rdbms",

Chapter 3
Keeping the Graph in Oracle Database Synchronized with the Graph Server

3-22

 "username": "<username>",
 "name": "friendOf",
 "source_vertex_provider": "person",
 "destination_vertex_provider": "person",
 "database_table_name": "FRIENDSHIPS",
 "source_column": "PERSON_A",
 "destination_column": "PERSON_B",
 "key_column": "FRIENDSHIP_ID",
 "key_type":"long",
 "props": [
 ...
],
 "loading": {
 "create_key_mapping": true
 }
 }
],
 "loading": {
 "snapshots_source": "change_set"
 }
}

(In the preceding example, replace the values <jdbc_url>, <username>, and
<keystore_alias> with the values for connecting to your database.)

Open the Oracle Property Graph JShell (be sure to register the keystore containing the
database password when starting it), and load the graph into memory:

var pgxGraph = session.readGraphWithProperties("persons_graph.json");

The following output line shows that the example graph has four vertices and four
edges:

pgxGraph ==> PgxGraph[name=PeopleFriendships,N=4,E=4,created=1594754376861]

Now, back in the database, insert a few new rows:

INSERT INTO PERSONS (NAME, BIRTHDATE, HEIGHT) VALUES
('Mariana',to_date('21/08/1996','DD/MM/YYYY'),1.65);
INSERT INTO PERSONS (NAME, BIRTHDATE, HEIGHT) VALUES
('Francisco',to_date('13/06/1963','DD/MM/YYYY'),1.75);
INSERT INTO FRIENDSHIPS (PERSON_A, PERSON_B, MEETING_DATE) VALUES (1,
6, to_date('13/06/2013','DD/MM/YYYY'));
COMMIT;

Back in JShell, you can now use the FlashbackSynchronizer API to automatically
fetch and apply those changes:

var synchronizer = new
Synchronizer.Builder<FlashbackSynchronizer>().setType(FlashbackSynchroni
zer.class).setGraph(pgxGraph).build()
pgxGraph = synchronizer.sync()

Chapter 3
Keeping the Graph in Oracle Database Synchronized with the Graph Server

3-23

As you can see from the output, the new vertices and edges have been applied:

pgxGraph ==> PgxGraph[name=PeopleFriendships,N=6,E=5,created=1594754376861]

Note that pgxGraph = synchronizer.sync() is equivalent to calling the following:

synchronizer.sync()
session.setSnapshot(pgxGraph, PgxSession.LATEST_SNAPSHOT)

Splitting the Fetching and Applying of Changes

The synchronizer.sync() invocation fetches the changes and applies them in one
call. However, you can encode a more complex update logic by splitting this process
into separate fetch() and apply() invocations. For example:

synchronizer.fetch() // fetches changes from the database
if (synchronizer.getGraphDelta().getTotalNumberOfChanges() > 100) {
 // only create snapshot if there have been more than 100 changes
 synchronizer.apply()
}

Synchronizing Using an Explicit Oracle Connection

The synchronizer API fetches the changes on the client side. That means the client
needs to connect to the database. In the preceding example, it did that by reading
the connection information available in the graph configuration of the loaded PgxGraph
object. However, there can be situations in which connection information cannot be
obtained from the PgxGraph object, such as when:

• The associated graph configuration does not contain any database connection
information, and the graph was loaded using credentials of a logged in user; or

• The associated graph configuration contains a datasource ID corresponding to a
connection stored on the server side.

In these cases, you can pass in an Oracle connection object building the synchronizer
object to be used to fetch changes. For example (ExampleGraphConfig.json):

String jdbcUrl = "<JDBC URL>";
String username = "<USERNAME>";
String password = "<PASSWORD>";
Connection connection = DriverManager.getConnection(jdbcUrl, username,
password)
Synchronizer synchronizer = new
Synchronizer.Builder<FlashbackSynchronizer>()
 .setType(FlashbackSynchronizer.class)
 .setGraph(pgxGraph)
 .setConnection(connection)
 .build();

3.4 Configuring the In-Memory Analyst
You can configure the in-memory analyst engine and its run-time behavior by
assigning a single JSON file to the in-memory analyst at startup.

Chapter 3
Configuring the In-Memory Analyst

3-24

This file can include the parameters shown in the following table. Some examples
follow the table.

To specify the configuration file, see Specifying the Configuration File to the In-Memory
Analyst.

Note:

• Relative paths in parameter values are always resolved relative to the
parent directory of the configuration file in which they are specified.
For example, if the configuration file is /pgx/conf/pgx.conf, then the
file path graph-configs/my-graph.bin.json inside that file would be
resolved to /pgx/conf/graph-configs/my-graph.bin.json.

• The parameter default values are optimized to deliver the best
performance across a wide set of algorithms. Depending on your
workload. you may be able to improve performance further by
experimenting with different strategies, sizes, and thresholds.

Table 3-2 Configuration Parameters for the In-Memory Analyst

Parameter Type Description Default

admin_request_cache_ti
meout

integer After how many seconds
admin request results get
removed from the cache.
Requests which are not
done or not yet consumed
are excluded from this
timeout. Note: This is only
relevant if PGX is deployed
as a webapp.

60

allow_idle_timeout_over
write

boolean If true, sessions can
overwrite the default idle
timeout.

true

allow_local_filesystem boolean Allow loading from the local
file system in client/server
mode. Default is false. If set
to true, additionally specify
the property
datasource_dir_whiteli
st to list the directories. The
server can only read from
the directories that are listed
here.

false

allow_override_scheduli
ng_information

boolean If true, allow all users
to override scheduling
information like task weight,
task priority, and number of
threads

true

Chapter 3
Configuring the In-Memory Analyst

3-25

Table 3-2 (Cont.) Configuration Parameters for the In-Memory Analyst

Parameter Type Description Default

allowed_remote_loading
_locations

array of string Allow loading of graphs
into the PGX engine from
remote locations (http, https,
ftp, ftps, s3, hdfs). Default
is empty. Value supported
is “*” (asterisk), meaning
that all remote locations
will be allowed. Note
that pre-loaded graphs are
loaded from any location,
regardless of the value
of this setting. WARNING:
Specifying * (asterisk)
should be done only if you
want to explicitly allow users
of the PGX remote interface
to access files on the local
file system.

[]

allow_task_timeout_over
write

boolean If true, sessions can
overwrite the default task
timeout.

true

allow_user_auto_refresh boolean If true, users may enable
auto refresh for graphs
they load. If false, only
graphs mentioned
in preload_graphs can
have auto refresh enabled.

false

allowed_remote_loading
_locations

array of string (This option may reduce
security; use it only if you
know what you are doing!)
Allow loading graphs into
the PGX engine from remote
locations (http, https, ftp,
ftps, s3, hdfs). If empty,
as by default, no remote
location is allowed. If "*"
is specified in the array,
all remote locations are
allowed. Only the value "*"
is currently supported. Note
that pre-loaded graphs are
loaded from any location,
regardless of the value of
this setting.

[]

basic_scheduler_config object Configuration parameters for
the fork join pool backend.

null

bfs_iterate_que_task_si
ze

integer Task size for BFS iterate
QUE phase.

128

bfs_threshold_parent_re
ad_based

number Threshold of BFS traversal
level items to switch to
parent-read-based visiting
strategy.

0.05

Chapter 3
Configuring the In-Memory Analyst

3-26

Table 3-2 (Cont.) Configuration Parameters for the In-Memory Analyst

Parameter Type Description Default

bfs_threshold_read_bas
ed

integer Threshold of BFS traversal
level items to switch to read-
based visiting strategy.

1024

bfs_threshold_single_thr
eaded

integer Until what number of BFS
traversal level items vertices
are visited single-threaded.

128

character_set string Standard character set
to use throughout PGX.
UTF-8 is the default. Note:
Some formats may not be
compatible.

utf-8

cni_diff_factor_default integer Default diff factor value used
in the common neighbor
iterator implementations.

8

cni_small_default integer Default value used in the
common neighbor iterator
implementations, to indicate
below which threshold a
subarray is considered
small.

128

cni_stop_recursion_defa
ult

integer Default value used in the
common neighbor iterator
implementations, to indicate
the minimum size where the
binary search approach is
applied.

96

datasource_dir_whitelist array of string If
allow_local_filesystem
is set, the list of directories
from which it is allowed to
read files.

[]

dfs_threshold_large integer Value that determines
at which number of
visited vertices the DFS
implementation will switch
to data structures that are
optimized for larger numbers
of vertices.

4096

enable_csrf_token_chec
ks

boolean If true, the PGX webapp
will verify the Cross-Site
Request Forgery (CSRF)
token cookie and request
parameters sent by the
client exist and match. This
is to prevent CSRF attacks.

true

enable_gm_compiler boolean [relevant when profiling
with solaris studio] When
enabled, label experiments
using the 'er_label'
command.

false

Chapter 3
Configuring the In-Memory Analyst

3-27

Table 3-2 (Cont.) Configuration Parameters for the In-Memory Analyst

Parameter Type Description Default

enable_shutdown_clean
up_hook

boolean If true, PGX will add a
JVM shutdown hook that will
automatically shutdown PGX
at JVM shutdown. Notice:
Having the shutdown hook
deactivated and not explicitly
shutting down PGX may
result in pollution of your
temp directory.

true

enterprise_scheduler_co
nfig

object Configuration parameters for
the enterprise scheduler.

null

enterprise_scheduler_fla
gs

object [relevant
for enterprise_scheduler]
Enterprise scheduler-
specific settings.

null

explicit_spin_locks boolean true means spin explicitly in
a loop until lock becomes
available. false means using
JDK locks which rely on
the JVM to decide whether
to context switch or spin.
Setting this value to true
usually results in better
performance.

true

graph_algorithm_langua
ge

enum[GM_LEGA
CY, GM, JAVA]

Front-end compiler to use. gm

graph_validation_lever enum[low, high] Level of validation performed
on newly loaded or created
graphs.

low

ignore_incompatible_ba
ckend_operations

boolean If true, only log when
encountering incompatible
operations and configuration
values in RTS or FJ pool. If
false, throw exceptions.

false

in_place_update_consist
ency

enum[ALLLOW_I
NCONSISTENCIE
S,
CANCEL_TASKS]

Consistency model used
when in-place updates
occur. Only relevant if in-
place updates are enabled.
Currently updates are only
applied in place if the
updates are not structural
(Only modifies properties).
Two models are currently
implemented: one only
delays new tasks when an
update occurs, the other
also delays running tasks.

allow_inconsistenc
ies

init_pgql_on_startup boolean If true PGQL is directly
initialized on start-up of
PGX. Otherwise, it is
initialized during the first use
of PGQL.

true

Chapter 3
Configuring the In-Memory Analyst

3-28

Table 3-2 (Cont.) Configuration Parameters for the In-Memory Analyst

Parameter Type Description Default

interval_to_poll_max integer Exponential backoff upper
bound (in ms) to which -
once reached, the job status
polling interval is fixed

1000

java_home_dir string The path to Java's home
directory. If set to <system-
java-home-dir>, use the
java.home system property.

null

large_array_threshold integer Threshold when the size
of an array is too big
to use a normal Java
array. This depends on
the used JVM. (Defaults to
Integer.MAX_VALUE - 3)

2147483644

max_active_sessions integer Maximum number of
sessions allowed to be
active at a time.

1024

max_distinct_strings_pe
r_pool

integer [only relevant if
string_pooling_strategy is
indexed] Number of distinct
strings per property after
which to stop pooling. If
the limit is reached, an
exception is thrown.

65536

max_off_heap_size integer Maximum amount of
off-heap memory (in
megabytes) that PGX is
allowed to allocate before
an OutOfMemoryError will
be thrown. Note: this
limit is not guaranteed
to never be exceeded,
because of rounding and
synchronization trade-offs. It
only serves as threshold
when PGX starts to reject
new memory allocation
requests.

<available-
physical-memory>

max_queue_size_per_s
ession

integer The maximum number of
pending tasks allowed to be
in the queue, per session.
If a session reaches the
maximum, new incoming
requests of that sesssion get
rejected. A negative value
means no limit.

-1

Chapter 3
Configuring the In-Memory Analyst

3-29

Table 3-2 (Cont.) Configuration Parameters for the In-Memory Analyst

Parameter Type Description Default

max_snapshot_count integer Number of snapshots that
may be loaded in the engine
at the same time. New
snapshots can be created
via auto or forced update.
If the number of snapshots
of a graph reaches this
threshold, no more auto-
updates will be performed,
and a forced update will
result in an exception until
one or more snapshots are
removed from memory. A
value of zero indicates to
support an unlimited amount
of snapshots.

0

memory_allocator enum[basic_alloc
ator,
enterprise_allocat
or]

The memory allocator to
use.

basic_allocator

memory_cleanup_interv
al

integer Memory cleanup interval in
seconds.

600

ms_bfs_frontier_type_str
ategy

enum[auto_grow,
short, int]

The type strategy to use for
MS-BFS frontiers.

auto_grow

num_spin_locks integer Number of spin locks each
generated app will create
at instantiation. Trade-off:
a small number implies
less memory consumption; a
large number implies faster
execution (if algorithm uses
spin locks).

1024

parallelism integer Number of worker threads
to be used in thread pool.
Note: If the caller thread is
part of another thread-pool,
this value is ignored and
the parallelism of the parent
pool is used.

<number-of-cpus>

pattern_matching_super
node_cache_threshold

integer Minimum number of a
node's neighbor to be a
supernode. This is for the
pattern matching engine.

1000

pooling_factor number [only relevant if
string_pooling_strategy is
on_heap] This value
prevents the string pool to
grow as big as the property
size, which could render the
pooling ineffective.

0.25

Chapter 3
Configuring the In-Memory Analyst

3-30

Table 3-2 (Cont.) Configuration Parameters for the In-Memory Analyst

Parameter Type Description Default

preload_graphs array of object List of graph configs to be
registered at start-up. Each
item includes path to a
graph config, the name of
the graph and whether it
should be published.

[]

random_generator_strat
egy

enum[non_determ
inistic,
deterministic]

Method of generating
random numbers in PGX.

non_deterministic

random_seed long [relevant
for deterministic random
number generator
only] Seed for the
deterministic random
number generator used
in the in-memory
analyst. The default is
-24466691093057031.

-24466691093057
031

release_memory_thresh
old

double Threshold percentage
(decimal fraction) of used
memory after which the
engine starts freeing unused
graphs. Examples: A value
of 0.0 means graphs get
freed as soon as their
reference count becomes
zero. That is, all sessions
which loaded that graph
were destroyed/timed out.
A value of 1.0 means
graphs never get freed,
and the engine will
throw OutOfMemoryErrors
as soon as a graph is
needed which does not fit in
memory anymore. A value
of 0.7 means the engine
keeps all graphs in memory
as long as total memory
consumption is below 70%
of total available memory,
even if there is currently no
session using them. When
consumption exceeds 70%
and another graph needs to
get loaded, unused graphs
get freed until memory
consumption is below 70%
again.

0.85

revisit_threshold integer Maximum number of
matched results from a node
to be reached.

4096

Chapter 3
Configuring the In-Memory Analyst

3-31

Table 3-2 (Cont.) Configuration Parameters for the In-Memory Analyst

Parameter Type Description Default

scheduler enum[basic_sche
duler,
enterprise_sched
uler]

The scheduler to
use. basic_scheduler
uses a scheduler
with basic features.
enterprise_scheduler
uses a scheduler
with advanced enterprise
features for running
multiple tasks concurrently
and providing better
performance.

advanced_schedul
er

session_idle_timeout_se
cs

integer Timeout of idling sessions in
seconds. Zero (0) means no
timeout

0

session_task_timeout_s
ecs

integer Timeout in seconds to
interrupt long-running tasks
submitted by sessions
(algorithms, I/O tasks). Zero
(0) means no timeout.

0

small_task_length integer Task length if the total
amount of work is smaller
than default task length (only
relevant for task-stealing
strategies).

128

spark_streams_interface string The name of an interface
will be used for spark data
communication.

null

strict_mode boolean If true, exceptions are
thrown and logged
with ERROR level whenever
the engine encounters
configuration problems, such
as invalid keys, mismatches,
and other potential errors.
If false, the engine
logs problems with ERROR/
WARN level (depending on
severity) and makes best
guesses and uses sensible
defaults instead of throwing
exceptions.

true

string_pooling_strategy enum[indexed,
on_heap, none]

[only relevant if
use_string_pool is enabled]
The string pooling strategy
to use.

on_heap

Chapter 3
Configuring the In-Memory Analyst

3-32

Table 3-2 (Cont.) Configuration Parameters for the In-Memory Analyst

Parameter Type Description Default

task_length integer Default task length (only
relevant for task-stealing
strategies). Should be
between 100 and 10000.
Trade-off: a small number
implies more fine-grained
tasks are generated, higher
stealing throughput; a
large number implies less
memory consumption and
GC activity.

4096

tmp_dir string Temporary directory to store
compilation artifacts and
other temporary data. If set
to <system-tmp-dir>, uses
the standard tmp directory
of the underlying system
(/tmp on Linux).

<system-tmp-dir>

udf_config_directory string Directory path containing
UDF files.

null

use_memory_mapper_f
or_reading_pgb

boolean If true, use memory mapped
files for reading graphs in
PGB format if possible; if
false, always use a stream-
based implementation.

true

use_memory_mapper_f
or_storing_pgb

boolean If true, use memory mapped
files for storing graphs in
PGB format if possible; if
false, always use a stream-
based implementation.

true

Enterprise Scheduler Parameters

The following parameters are relevant only if the advanced scheduler is used. (They
are ignored if the basic scheduler is used.)

• analysis_task_config

Configuration for analysis tasks. Type: object. Default:
prioritymediummax_threads<no-of-CPUs>weight<no-of-CPUs>

• fast_analysis_task_config

Configuration for fast analysis tasks. Type: object. Default:
priorityhighmax_threads<no-of-CPUs>weight1

• maxnum_concurrent_io_tasks

Maximum number of concurrent tasks. Type: integer. Default: 3

• num_io_threads_per_task

Configuration for fast analysis tasks. Type: object. Default: <no-of-cpus>

Chapter 3
Configuring the In-Memory Analyst

3-33

Basic Scheduler Parameters

The following parameters are relevant only if the basic scheduler is used. (They are
ignored if the advanced scheduler is used.)

• num_workers_analysis

Number of worker threads to use for analysis tasks. Type: integer. Default: <no-
of-CPUs>

• num_workers_fast_track_analysis

Number of worker threads to use for fast-track analysis tasks. Type: integer.
Default: 1

• num_workers_io

Number of worker threads to use for I/O tasks (load/refresh/write from/to disk).
This value will not affect file-based loaders, because they are always single-
threaded. Database loaders will open a new connection for each I/O worker.
Default: <no-of-CPUs>

Example 3-5 Minimal In-Memory Analyst Configuration

The following example causes the in-memory analyst to initialize its analysis thread
pool with 32 workers. (Default values are used for all other parameters.)

{
 "enterprise_scheduler_config": {
 "analysis_task_config": {
 "max_threads": 32
 }
 }
}

Example 3-6 Two Pre-loaded Graphs

sets more fields and specifies two fixed graphs for loading into memory during PGX
startup.

{
 "enterprise_scheduler_config": {
 "analysis_task_config": {
 "max_threads": 32
 },
 "fast_analysis_task_config": {
 "max_threads": 32
 }
 },
 "memory_cleanup_interval": 600,
 "max_active_sessions": 1,
 "release_memory_threshold": 0.2,
 "preload_graphs": [
 {
 "path": "graph-configs/my-graph.bin.json",
 "name": "my-graph"
 },
 {
 "path": "graph-configs/my-other-graph.adj.json",
 "name": "my-other-graph",
 "publish": false
 }

Chapter 3
Configuring the In-Memory Analyst

3-34

]
}

• Specifying the Configuration File to the In-Memory Analyst

3.4.1 Specifying the Configuration File to the In-Memory Analyst
The in-memory analyst configuration file is parsed by the in-memory analyst at startup-
time whenever ServerInstance#startEngine (or any of its variants) is called. You
can write the path to your configuration file to the in-memory analyst or specify it
programmatically. This topic identifies several ways to specify the file

Programmatically

All configuration fields exist as Java enums. Example:

Map<PgxConfig.Field, Object> pgxCfg = new HashMap<>();
pgxCfg.put(PgxConfig.Field.MEMORY_CLEANUP_INTERVAL, 600);

ServerInstance instance = ...
instance.startEngine(pgxCfg);

All parameters not explicitly set will get default values.

Explicitly Using a File

Instead of a map, you can write the path to an in-memory analyst configuration JSON
file. Example:

instance.startEngine("path/to/pgx.conf"); // file on local file system
instance.startEngine("classpath:/path/to/pgx.conf"); // file on current classpath

For all other protocols, you can write directly in the input stream to a JSON file.
Example:

InputStream is = ...
instance.startEngine(is);

Implicitly Using a File

If startEngine() is called without an argument, the in-memory analyst looks for a
configuration file at the following places, stopping when it finds the file:

• File path found in the Java system property pgx_conf. Example: java -
Dpgx_conf=conf/my.pgx.config.json ...

• A file named pgx.conf in the root directory of the current classpath

• A file named pgx.conf in the root directory relative to the
current System.getProperty("user.dir") directory

Note: Providing a configuration is optional. A default value for each field will be used
if the field cannot be found in the given configuration file, or if no configuration file is
provided.

Using the Local Shell

To change how the shell configures the local in-memory analyst instance,
edit $PGX_HOME/conf/pgx.conf. Changes will be reflected the next time you
invoke $PGX_HOME/bin/pgx.

Chapter 3
Configuring the In-Memory Analyst

3-35

You can also change the location of the configuration file as in the following example:

./bin/opg --pgx_conf path/to/my/other/pgx.conf

Setting System Properties

Any parameter can be set using Java system properties by writing -
Dpgx.<FIELD>=<VALUE> arguments to the JVM that the in-memory analyst is running
on. Note that setting system properties will overwrite any other configuration. The
following example sets the maximum off-heap size to 256 GB, regardless of what any
other configuration says:

java -Dpgx.max_off_heap_size=256000 ...

Setting Environment Variables

Any parameter can also be set using environment variables by adding 'PGX_' to
the environment variable for the JVM in which the in-memory analyst is executed.
Note that setting environment variables will overwrite any other configuration; but if
a system property and an environment variable are set for the same parameter, the
system property value is used. The following example sets the maximum off-heap size
to 256 GB using an environment variable:

PGX_MAX_OFF_HEAP_SIZE=256000 java ...

3.5 Storing a Graph Snapshot on Disk
After reading a graph into memory using either Java or the Shell, if you make some
changes to the graph such as running the PageRank algorithm and storing the values
as vertex properties, you can store this snapshot of the graph on disk.

This is helpful if you want to save the state of the graph in memory, such as if you must
shut down the in-memory analyst server to migrate to a newer version, or if you must
shut it down for some other reason.

(Storing graphs over HTTP/REST is currently not supported.)

A snapshot of a graph can be saved as a file in a binary format (called a PGB file) if
you want to save the state of the graph in memory, such as if you must shut down the
in-memory analyst server to migrate to a newer version, or if you must shut it down for
some other reason.

In general, we recommend that you store the graph queries and analytics APIs that
had been executed, and that after the in-memory analyst has been restarted, you
reload and re-execute the APIs. But if you must save the state of the graph, you can
use the logic in the following example to save the graph snapshot from the shell.

In a three-tier deployment, the file is written on the server-side file system. You must
also ensure that the file location to write is specified in the in-memory analyst server.
(As explained in Three-Tier Deployments of Oracle Graph with Autonomous Database,
in a three-tier deployment, access to the PGX server file system requires a list of
allowed locations to be specified.)

opg-jshell> var graph =
session.createGraphBuilder().addVertex(1).addVertex(2).addVertex(3).addE
dge(1,2).addEdge(2,3).addEdge(3, 1).build()
graph ==> PgxGraph[name=anonymous_graph_1,N=3,E=3,created=1581623669674]

Chapter 3
Storing a Graph Snapshot on Disk

3-36

opg-jshell> analyst.pagerank(graph)
$3 ==> VertexProperty[name=pagerank,type=double,graph=anonymous_graph_1]

// Now save the state of this graph

opg-jshell> g.store(Format.PGB, "/tmp/snapshot.pgb")
$4 ==> {"edge_props":[],"vertex_uris":["/tmp/snapshot.pgb"],"loading":
{},"attributes":{},"edge_uris":[],"vertex_props":
[{"name":"pagerank","dimension":0,"type":"double"}],"error_handling":
{},"vertex_id_type":"integer","format":"pgb"}

// reload from disk
opg-jshell> var graphFromDisk = session.readGraphFile("/tmp/
snapshot.pgb")
graphFromDisk ==> PgxGraph[name=snapshot,N=3,E=3,created=1581623739395]

// previously computed properties are still part of the graph and can
be queried
opg-jshell> graphFromDisk.queryPgql("select x.pagerank match
(x)").print().close()

The following example is essentially the same as the preceding one, but it uses
partitioned graphs. Note that in the case of partitioned graphs, multiple PGB files are
being generated, one for each vertex/edge partition in the graph.

-jshell> analyst.pagerank(graph)
$3 ==>
VertexProperty[name=pagerank,type=double,graph=anonymous_graph_1]//
store graph including all props to disk
// Now save the state of this graph
opg-jshell> var storedPgbConfig = g.store(ProviderFormat.PGB, "/tmp/
snapshot")
$4 ==> {"edge_props":[],"vertex_uris":["/tmp/snapshot.pgb"],"loading":
{},"attributes":{},"edge_uris":[],"vertex_props":
[{"name":"pagerank","dimension":0,"type":"double"}],"error_handling":
{},"vertex_id_type":"integer","format":"pgb"}
// Reload from disk
opg-jshell> var graphFromDisk =
session.readGraphWithProperties(storedPgbConfig)
graphFromDisk ==> PgxGraph[name=snapshot,N=3,E=3,created=1581623739395]
// Previously computed properties
are still part of the graph and can be queried
opg-jshell> graphFromDisk.queryPgql("select x.pagerank
match (x)").print().close()

3.6 Executing Built-in Algorithms
The in-memory graph server (PGX) contains a set of built-in algorithms that are
available as Java APIs.

The following table provides an overview of the available algorithms, grouped by
category.

Chapter 3
Executing Built-in Algorithms

3-37

Note:

These algorithms can be invoked through the Analyst interface. See the
Analyst Class in Javadoc for more details.

Table 3-3 Overview of Built-In Algorithms

Category Algorithms

Classic graph algorithms Prim's Algorithm

Community detection Conductance Minimization (Soman and Narang Algorithm),
Infomap, Label Propagation, Louvain

Connected components Strongly Connected Components, Weakly Connected
Components (WCC)

Link predition WTF (Whom To Follow) Algorithm

Matrix factorization Matrix Factorization

Other Graph Traversal Algorithms

Path finding All Vertices and Edges on Filtered Path, Bellman-Ford Algorithms,
Bidirectional Dijkstra Algorithms, Compute Distance Index,
Compute High-Degree Vertices, Dijkstra Algorithms, Enumerate
Simple Paths, Fast Path Finding, Fattest Path, Filtered Fast Path
Finding, Hop Distance Algorithms

Ranking and walking Closeness Centrality Algorithms, Degree Centrality Algorithms,
Eigenvector Centrality, Hyperlink-Induced Topic Search (HITS),
PageRank Algorithms, Random Walk with Restart, Stochastic
Approach for Link-Structure Analysis (SALSA) Algorithms, Vertex
Betweenness Centrality Algorithms

Structure evaluation Adamic-Adar index, Bipartite Check, Conductance, Cycle
Detection Algorithms, Degree Distribution Algorithms, Eccentricity
Algorithms, K-Core, Local Clustering Coefficient (LCC),
Modularity, Partition Conductance, Reachability Algorithms,
Topological Ordering Algorithms, Triangle Counting Algorithms

This following topics describe the use of the in-memory graph server (PGX) using
Triangle Counting and PageRank analytics as examples.

• About the In-Memory Analyst

• Running the Triangle Counting Algorithm

• Running the PageRank Algorithm

3.6.1 About the In-Memory Analyst
The in-memory analyst contains a set of built-in algorithms that are available as Java
APIs. The details of the APIs are documented in the Javadoc that is included in
the product documentation library. Specifically, see the BuiltinAlgorithms interface
Method Summary for a list of the supported in-memory analyst methods.

For example, this is the PageRank procedure signature:

/**
 * Classic pagerank algorithm. Time complexity: O(E * K) with E = number of
edges, K is a given constant (max
 * iterations)

Chapter 3
Executing Built-in Algorithms

3-38

https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/Analyst.html

 *
 * @param graph
 * graph
 * @param e
 * maximum error for terminating the iteration
 * @param d
 * damping factor
 * @param max
 * maximum number of iterations
 * @return Vertex Property holding the result as a double
 */
 public <ID extends Comparable<ID>> VertexProperty<ID, Double>
pagerank(PgxGraph graph, double e, double d, int max);

3.6.2 Running the Triangle Counting Algorithm
For triangle counting, the sortByDegree boolean parameter of countTriangles()
allows you to control whether the graph should first be sorted by degree (true) or not
(false). If true, more memory will be used, but the algorithm will run faster; however,
if your graph is very large, you might want to turn this optimization off to avoid running
out of memory.

Using the Shell to Run Triangle Counting

opg> analyst.countTriangles(graph, true)
==> 1

Using Java to Run Triangle Counting

import oracle.pgx.api.*;

Analyst analyst = session.createAnalyst();
long triangles = analyst.countTriangles(graph, true);

The algorithm finds one triangle in the sample graph.

Tip:

When using the in-memory analyst shell, you can increase the amount of log
output during execution by changing the logging level. See information about
the :loglevel command with :h :loglevel.

3.6.3 Running the PageRank Algorithm
PageRank computes a rank value between 0 and 1 for each vertex (node) in the graph
and stores the values in a double property. The algorithm therefore creates a vertex
property of type double for the output.

In the in-memory analyst, there are two types of vertex and edge properties:

• Persistent Properties: Properties that are loaded with the graph from a data
source are fixed, in-memory copies of the data on disk, and are therefore
persistent. Persistent properties are read-only, immutable and shared between
sessions.

Chapter 3
Executing Built-in Algorithms

3-39

• Transient Properties: Values can only be written to transient properties,
which are private to a session. You can create transient properties by calling
createVertexProperty and createEdgeProperty on PgxGraph objects, or by
copying existing properties using clone() on Property objects.

Transient properties hold the results of computation by algorithms. For example,
the PageRank algorithm computes a rank value between 0 and 1 for each vertex
in the graph and stores these values in a transient property named pg_rank.
Transient properties are destroyed when the Analyst object is destroyed.

This example obtains the top three vertices with the highest PageRank values. It uses
a transient vertex property of type double to hold the computed PageRank values. The
PageRank algorithm uses the following default values for the input parameters: error
(tolerance = 0.001), damping factor = 0.85, and maximum number of iterations = 100.

Using the Shell to Run PageRank

opg> rank = analyst.pagerank(graph, 0.001, 0.85, 100);
==> ...
opg> rank.getTopKValues(3)
==> 128=0.1402019732468347
==> 333=0.12002296283541904
==> 99=0.09708583862990475

Using Java to Run PageRank

import java.util.Map.Entry;
import oracle.pgx.api.*;

Analyst analyst = session.createAnalyst();
VertexProperty<Integer, Double> rank = analyst.pagerank(graph, 0.001, 0.85, 100);
for (Entry<Integer, Double> entry : rank.getTopKValues(3)) {
 System.out.println(entry.getKey() + "=" + entry.getValue());
}

3.7 Using Custom PGX Graph Algorithms
A custom PGX graph algorithm allows you to write a graph algorithm in Java and have
it automatically compiled to an efficient parallel implementation.

For more detailed information than appears in the following subtopics, see
the PGX Algorithm specification at https://docs.oracle.com/cd/E56133_01/latest/
PGX_Algorithm_Language_Specification.pdf.

• Writing a Custom PGX Algorithm

• Compiling and Running a PGX Algorithm

• Example Custom PGX Algorithm: PageRank

3.7.1 Writing a Custom PGX Algorithm
A PGX algorithm is a regular .java file with a single class definition that is annotated
with @graphAlgorithm. For example:

import oracle.pgx.algorithm.annotations.GraphAlgorithm;

@GraphAlgorithm

Chapter 3
Using Custom PGX Graph Algorithms

3-40

https://docs.oracle.com/cd/E56133_01/latest/PGX_Algorithm_Language_Specification.pdf
https://docs.oracle.com/cd/E56133_01/latest/PGX_Algorithm_Language_Specification.pdf

public class MyAlgorithm {
 ...
}

A PGX algorithm class must contain exactly one public method which will be used as
entry point. For example:

import oracle.pgx.algorithm.PgxGraph;
import oracle.pgx.algorithm.VertexProperty;
import oracle.pgx.algorithm.annotations.GraphAlgorithm;
import oracle.pgx.algorithm.annotations.Out;

@GraphAlgorithm
public class MyAlgorithm {
 public int myAlgorithm(PgxGraph g, @Out VertexProperty<Integer>
distance) {
 System.out.println("My first PGX Algorithm program!");

 return 42;
 }
}

As with normal Java methods, a PGX algorithm method can return a value (an
integer in this example). More interesting is the @Out annotation, which marks the
vertex property distance as output parameter. The caller passes output parameters
by reference. This way, the caller has a reference to the modified property after the
algorithm terminates.

• Collections

• Iteration

• Reductions

3.7.1.1 Collections
To create a collection you call the .create() function. For example, a
VertexProperty<Integer> is created as follows:

VertexProperty<Integer> distance = VertexProperty.create();

To get the value of a property at a certain vertex v:

distance.get(v);

Similarly, to set the property of a certain vertex v to a value e:

distance.set(v, e);

You can even create properties of collections:

VertexProperty<VertexSequence> path = VertexProperty.create();

Chapter 3
Using Custom PGX Graph Algorithms

3-41

However, PGX Algorithm assignments are always by value (as opposed to by
reference). To make this explicit, you must call .clone() when assigning a collection:

VertexSequence sequence = path.get(v).clone();

Another consequence of values being passed by value is that you can check for
equality using the == operator instead of the Java method .equals(). For example:

PgxVertex v1 = G.getRandomVertex();
PgxVertex v2 = G.getRandomVertex();
System.out.println(v1 == v2);

3.7.1.2 Iteration
The most common operations in PGX algorithms are iterations (such as looping over
all vertices, and looping over a vertex's neighbors) and graph traversal (such as
breath-first/depth-first). All collections expose a forEach and forSequential method
by which you can iterate over the collection in parallel and in sequence, respectively.

For example:

• To iterate over a graph's vertices in parallel:

G.getVertices().forEach(v -> {
 ...
});

• To iterate over a graph's vertices in sequence:

G.getVertices().forSequential(v -> {
 ...
});

• To traverse a graph's vertices from r in breadth-first order:

import oracle.pgx.algorithm.Traversal;

Traversal.inBFS(G, r).forward(n -> {
 ...
});

Inside the forward (or backward) lambda you can access the current level of the
BFS (or DFS) traversal by calling currentLevel().

3.7.1.3 Reductions
Within these parallel blocks it is common to atomically update, or reduce to, a variable
defined outside the lambda. These atomic reductions are available as methods on

Chapter 3
Using Custom PGX Graph Algorithms

3-42

Scalar<T>: reduceAdd, reduceMul, reduceAnd, and so on. For example, to count
the number of vertices in a graph:

public int countVertices() {
 Scalar<Integer> count = Scalar.create(0);

 G.getVertices().forEach(n -> {
 count.reduceAdd(1);
 });

 return count.get();
}

Sometimes you want to update multiple values atomically. For example, you might
want to find the smallest property value as well as the vertex whose property value
attains this smallest value. Due to the parallel execution, two separate reduction
statements might get you in an inconsistent state.

To solve this problem the Reductions class provides argMin and argMax functions. The
first argument to argMin is the current value and the second argument is the potential
new minimum. Additionally, you can chain andUpdate calls on the ArgMinMax object to
indicate other variables and the values that they should be updated to (atomically). For
example:

VertexProperty<Integer> rank = VertexProperty.create();
int minRank = Integer.MAX_VALUE;
PgxVertex minVertex = PgxVertex.NONE;

G.getVertices().forEach(n ->
 argMin(minRank, rank.get(n)).andUpdate(minVertex, n)
);

3.7.2 Compiling and Running a PGX Algorithm
To be able to compile and run a custom PGX algorithm, you must perform several
actions:

1. Set two configuration parameters in the conf/pgx.conf file:

• Set the graph_algorithm_language option to JAVA.

• Set the java_home_dir option to the path to your Java home (use <system-
java-home-dir> to have PGX infer Java home from the system properties).

2. Create a session (either implicitly in the shell or explicitly in Java). For example:

cd $PGX_HOME
./bin/opg

3. Compile a PGX Algorithm. For example:

myAlgorithm = session.compileProgram("/path/to/MyAlgorithm.java")

Chapter 3
Using Custom PGX Graph Algorithms

3-43

4. Run the algorithm. For example:

graph = session.readGraphWithProperties("/path/to/config.edge.json")
property = graph.createVertexProperty(PropertyType.INTEGER)
myAlgorithm.run(graph, property)

3.7.3 Example Custom PGX Algorithm: PageRank
The following is an implementation of pagerank as a PGX algorithm:

import oracle.pgx.algorithm.PgxGraph;
import oracle.pgx.algorithm.Scalar;
import oracle.pgx.algorithm.VertexProperty;
import oracle.pgx.algorithm.annotations.GraphAlgorithm;
import oracle.pgx.algorithm.annotations.Out;

@GraphAlgorithm
public class Pagerank {
 public void pagerank(PgxGraph G, double tol, double damp, int
max_iter, boolean norm, @Out VertexProperty<Double> rank) {
 Scalar<Double> diff = Scalar.create();
 int cnt = 0;
 double N = G.getNumVertices();

 rank.setAll(1 / N);
 do {
 diff.set(0.0);
 Scalar<Double> dangling_factor = Scalar.create(0d);

 if (norm) {
 dangling_factor.set(damp / N * G.getVertices().filter(v ->
v.getOutDegree() == 0).sum(rank::get));
 }

 G.getVertices().forEach(t -> {
 double in_sum = t.getInNeighbors().sum(w -> rank.get(w) /
w.getOutDegree());
 double val = (1 - damp) / N + damp * in_sum +
dangling_factor.get();
 diff.reduceAdd(Math.abs(val - rank.get(t)));
 rank.setDeferred(t, val);
 });
 cnt++;
 } while (diff.get() > tol && cnt < max_iter);
 }
}

3.8 Creating Subgraphs
You can create subgraphs based on a graph that has been loaded into memory. You
can use filter expressions or create bipartite subgraphs based on a vertex (node)
collection that specifies the left set of the bipartite graph.

Chapter 3
Creating Subgraphs

3-44

For information about reading a graph into memory, see Store the Database Password
in a Keystore.

• About Filter Expressions

• Using a Simple Filter to Create a Subgraph

• Using a Complex Filter to Create a Subgraph

• Using a Vertex Set to Create a Bipartite Subgraph

3.8.1 About Filter Expressions
Filter expressions are expressions that are evaluated for each edge. The expression
can define predicates that an edge must fulfil to be contained in the result, in this case
a subgraph.

Consider an example graph that consists of four vertices (nodes) and four edges.
For an edge to match the filter expression src.prop == 10, the source vertex prop
property must equal 10. Two edges match that filter expression, as shown in the
following figure.

Figure 3-1 Edges Matching src.prop == 10

The following figure shows the graph that results when the filter is applied. The filter
excludes the edges associated with vertex 333, and the vertex itself.

Chapter 3
Creating Subgraphs

3-45

Figure 3-2 Graph Created by the Simple Filter

Using filter expressions to select a single vertex or a set of vertices is difficult. For
example, selecting only the vertex with the property value 10 is impossible, because
the only way to match the vertex is to match an edge where 10 is either the source
or destination property value. However, when you match an edge you automatically
include the source vertex, destination vertex, and the edge itself in the result.

3.8.2 Using a Simple Filter to Create a Subgraph
The following examples create the subgraph described in About Filter Expressions.

Using the Shell to Create a Subgraph

subgraph = graph.filter(new VertexFilter("vertex.prop == 10"))

Using Java to Create a Subgraph

import oracle.pgx.api.*;
import oracle.pgx.api.filter.*;

PgxGraph graph = session.readGraphWithProperties(...);
PgxGraph subgraph = graph.filter(new VertexFilter("vertex.prop == 10"));

3.8.3 Using a Complex Filter to Create a Subgraph
This example uses a slightly more complex filter. It uses the outDegree function, which
calculates the number of outgoing edges for an identifier (source src or destination
dst). The following filter expression matches all edges with a cost property value
greater than 50 and a destination vertex (node) with an outDegree greater than 1.

dst.outDegree() > 1 && edge.cost > 50

One edge in the sample graph matches this filter expression, as shown in the following
figure.

Chapter 3
Creating Subgraphs

3-46

Figure 3-3 Edges Matching the outDegree Filter

The following figure shows the graph that results when the filter is applied. The filter
excludes the edges associated with vertixes 99 and 1908, and so excludes those
vertices also.

Figure 3-4 Graph Created by the outDegree Filter

3.8.4 Using a Vertex Set to Create a Bipartite Subgraph
You can create a bipartite subgraph by specifying a set of vertices (nodes), which
are used as the left side. A bipartite subgraph has edges only between the left set of
vertices and the right set of vertices. There are no edges within those sets, such as
between two nodes on the left side. In the in-memory analyst, vertices that are isolated
because all incoming and outgoing edges were deleted are not part of the bipartite
subgraph.

Chapter 3
Creating Subgraphs

3-47

The following figure shows a bipartite subgraph. No properties are shown.

The following examples create a bipartite subgraph from the simple graph shown in
About Filter Expressions. They create a vertex collection and fill it with the vertices for
the left side.

Using the Shell to Create a Bipartite Subgraph

opg> s = graph.createVertexSet()
==> ...
opg> s.addAll([graph.getVertex(333), graph.getVertex(99)])
==> ...
opg> s.size()
==> 2
opg> bGraph = graph.bipartiteSubGraphFromLeftSet(s)
==> PGX Bipartite Graph named sample-sub-graph-4

Using Java to Create a Bipartite Subgraph

import oracle.pgx.api.*;

VertexSet<Integer> s = graph.createVertexSet();
s.addAll(graph.getVertex(333), graph.getVertex(99));
BipartiteGraph bGraph = graph.bipartiteSubGraphFromLeftSet(s);

When you create a subgraph, the in-memory analyst automatically creates a Boolean
vertex (node) property that indicates whether the vertex is on the left side. You can
specify a unique name for the property.

The resulting bipartite subgraph looks like this:

Chapter 3
Creating Subgraphs

3-48

Vertex 1908 is excluded from the bipartite subgraph. The only edge that connected
that vertex extended from 128 to 1908. The edge was removed, because it violated
the bipartite properties of the subgraph. Vertex 1908 had no other edges, and so was
removed also.

3.9 Using Automatic Delta Refresh to Handle Database
Changes

You can automatically refresh (auto-refresh) graphs periodically to keep the in-memory
graph synchronized with changes to the property graph stored in the property graph
tables in Oracle Database (VT$ and GE$ tables).

Note that the auto-refresh feature is not supported when loading a graph into PGX in
memory directly from relational tables.

• Configuring the In-Memory Server for Auto-Refresh

• Configuring Basic Auto-Refresh

• Reading the Graph Using the In-Memory Analyst or a Java Application

• Checking Out a Specific Snapshot of the Graph

• Advanced Auto-Refresh Configuration

3.9.1 Configuring the In-Memory Server for Auto-Refresh
Because auto-refresh can create many snapshots and therefore may lead to a high
memory usage, by default the option to enable auto-refresh for graphs is available only
to administrators.

To allow all users to auto-refresh graphs, you must include the following
line into the in-memory analyst configuration file (located in $ORACLE_HOME/md/
property_graph/pgx/conf/pgx.conf):

{
 "allow_user_auto_refresh": true
}

Chapter 3
Using Automatic Delta Refresh to Handle Database Changes

3-49

3.9.2 Configuring Basic Auto-Refresh
Auto-refresh is configured in the loading section of the graph configuration. The
example in this topic sets up auto-refresh to check for updates every minute, and
to create a new snapshot when the data source has changed.

The following block (JSON format) enables the auto-refresh feature in the
configuration file of the sample graph:

{
 "format": "pg",
 "jdbc_url": "jdbc:oracle:thin:@mydatabaseserver:1521/dbName",
 "username": "scott",
 "password": "<password>",
 "name": "my_graph",
 "vertex_props": [{
 "name": "prop",
 "type": "integer"
 }],
 "edge_props": [{
 "name": "cost",
 "type": "double"
 }],
 "separator": " ",
 "loading": {
 "auto_refresh": true,
 "update_interval_sec": 60
 },
}

Notice the additional loading section containing the auto-refresh settings. You can
also use the Java APIs to construct the same graph configuration programmatically:

GraphConfig config = GraphConfigBuilder.forPropertyGraphRdbms()
 .setJdbcUrl("jdbc:oracle:thin:@mydatabaseserver:1521/dbName")
 .setUsername("scott")
 .setPassword("<password>")
 .setName("my_graph")
 .addVertexProperty("prop", PropertyType.INTEGER)
 .addEdgeProperty("cost", PropertyType.DOUBLE)
 .setAutoRefresh(true)
 .setUpdateIntervalSec(60)
 .build();

3.9.3 Reading the Graph Using the In-Memory Analyst or a Java
Application

After creating the graph configuration, you can load the graph into the in-memory
analyst using the regular APIs.

opg> G = session.readGraphWithProperties("graphs/my-config.pg.json")

Chapter 3
Using Automatic Delta Refresh to Handle Database Changes

3-50

After the graph is loaded, a background task is started automatically, and it periodically
checks the data source for updates.

3.9.4 Checking Out a Specific Snapshot of the Graph
The database is queried every minute for updates. If the graph has changed in the
database after the time interval passed, the graph is reloaded and a new snapshot is
created in-memory automatically.

You can "check out" (move a pointer to a different version of) the available in-memory
snapshots of the graph using the getAvailableSnapshots() method of PgxSession.
Example output is as follows:

opg> session.getAvailableSnapshots(G)
==> GraphMetaData [getNumVertices()=4, getNumEdges()=4, memoryMb=0,
dataSourceVersion=1453315103000, creationRequestTimestamp=1453315122669
(2016-01-20 10:38:42.669), creationTimestamp=1453315122685 (2016-01-20
10:38:42.685), vertexIdType=integer, edgeIdType=long]
==> GraphMetaData [getNumVertices()=5, getNumEdges()=5, memoryMb=3,
dataSourceVersion=1452083654000, creationRequestTimestamp=1453314938744
(2016-01-20 10:35:38.744), creationTimestamp=1453314938833 (2016-01-20
10:35:38.833), vertexIdType=integer, edgeIdType=long]

The preceding example output contains two entries, one for the originally loaded graph
with 4 vertices and 4 edges, and one for the graph created by auto-refresh with 5
vertices and 5 edges.

To check out out a specific snapshot of the graph, use the setSnapshot() methods
of PgxSession and give it the creationTimestamp of the snapshot you want to load.

For example, if G is pointing to the newer graph with 5 vertices and 5 edges, but
you want to analyze the older version of the graph, you need to set the snapshot
to 1453315122685. In the in-memory analyst shell:

opg> G.getNumVertices()
==> 5
opg> G.getNumEdges()
==> 5

opg> session.setSnapshot(G, 1453315122685)
==> null

opg> G.getNumVertices()
==> 4
opg> G.getNumEdges()
==> 4

You can also load a specific snapshot of a graph directly using
the readGraphAsOf() method of PgxSession. This is a shortcut for loading a graph
with readGraphWithProperty() followed by a setSnapshot(). For example:

opg> G = session.readGraphAsOf(config, 1453315122685)

Chapter 3
Using Automatic Delta Refresh to Handle Database Changes

3-51

If you do not know or care about what snapshots are currently available in-memory,
you can also specify a time span of how “old” a snapshot is acceptable by specifying
a maximum allowed age. For example, to specify a maximum snapshot age of 60
minutes, you can use the following:

opg> G = session.readGraphWithProperties(config, 60l,
TimeUnit.MINUTES)

If there are one or more snapshots in memory younger (newer) than the specified
maximum age, the youngest (newest) of those snapshots will be returned. If all the
available snapshots are older than the specified maximum age, or if there is no
snapshot available at all, then a new snapshot will be created automatically.

3.9.5 Advanced Auto-Refresh Configuration
You can specify advanced options for auto-refresh configuration.

Internally, the in-memory analyst fetches the changes since the last check from the
database and creates a new snapshot by applying the delta (changes) to the previous
snapshot. There are two timers: one for fetching and caching the deltas from the
database, the other for actually applying the deltas and creating a new snapshot.

Additionally, you can specify a threshold for the number of cached deltas. If the
number of cached changes grows above this threshold, a new snapshot is created
automatically. The number of cached changes is a simple sum of the number of vertex
changes plus the number of edge changes.

The deltas are fetched periodically and cached on the in-memory analyst server for
two reasons:

• To speed up the actual snapshot creation process

• To account for the case that the database can "forget" changes after a while

You can specify both a threshold and an update timer, which means that both
conditions will be checked before new snapshot is created. At least one of these
parameters (threshold or update timer) must be specified to prevent the delta cache
from becoming too large. The interval at which the source is queried for changes must
not be omitted.

The following parameters show a configuration where the data source is queried for
new deltas every 5 minutes. New snapshots are created every 20 minutes or if the
cached deltas reach a size of 1000 changes.

{
 "format": "pg",
 "jdbc_url": "jdbc:oracle:thin:@mydatabaseserver:1521/dbName",
 "username": "scott",
 "password": "<your_password>",
 "name": "my_graph",

 "loading": {
 "auto_refresh": true,
 "fetch_interval_sec": 300,
 "update_interval_sec": 1200,
 "update_threshold": 1000,

Chapter 3
Using Automatic Delta Refresh to Handle Database Changes

3-52

 "create_edge_id_index": true,
 "create_edge_id_mapping": true
 }
}

3.10 Starting the In-Memory Analyst Server
A preconfigured version of Apache Tomcat is bundled, which allows you to start the
in-memory analyst server by running a script.

If you need to configure the server before starting it, see Configuring the In-Memory
Analyst Server.

PGX is integrated with systemd to run it as a Linux service in the background.

To start the PGX server as a daemon process, run the following command as a root
user or with sudo:

sudo systemctl start pgx

To stop the server, run the following command as a root user or with sudo:

sudo systemctl stop pgx

If the server does not start up, you can see if there are any errors by running:

journalctl -u pgx.service

For more information about how to interact with systemd on Oracle Linux, see the
Oracle Linux administrator's documentation.

• Configuring the In-Memory Analyst Server

3.10.1 Configuring the In-Memory Analyst Server
You can configure the in-memory analyst server by modifying the /etc/oracle/graph/
server.conf file. The following table shows the valid configuration options, which can
be specified in JSON format.

Table 3-4 Configuration Options for In-Memory Analyst Server

Option Type Description Default

authorization string File that maps clients to
roles for authorization.

server.auth.conf

ca_certs array
of
string

List of trusted certificates
(PEM format). If
'enable_tls' is set to false,
this option has no effect.

[See information after this
table.]

Chapter 3
Starting the In-Memory Analyst Server

3-53

Table 3-4 (Cont.) Configuration Options for In-Memory Analyst Server

Option Type Description Default

enable_client_authentic
ation

boolea
n

If true, the client is
authenticated during TLS
handshake. See the TLS
protocol for details. This
flag does not have any
effect if 'enable_tls' is false.

true

enable_tls boolea
n

If true, the server enables
transport layer security
(TLS).

true

port integer Port that the PGX server
should listen on

7007

server_cert string The path to the server
certificate to be presented
to TLS clients (PEM
format). If 'enable_tls' is set
to false, this option has no
effect

null

server_private_key string the private key of the
server (PKCS#8, PEM
format). If 'enable_tls' is set
to false, this option has no
effect

null

The in-memory analyst web server enables two-way SSL/TLS (Transport Layer
Security) by default. The server enforces TLS 1.2 and disables certain cipher suites
known to be vulnerable to attacks. Upon a TLS handshake, both the server and the
client present certificates to each other, which are used to validate the authenticity of
the other party. Client certificates are also used to authorize client applications.

The following is an example server.conf configuration file:

{
 "port": 7007,
 "server_cert": "certificates/server_certificate.pem",
 "server_private_key": "certificates/server_key.pem",
 "ca_certs": ["certificates/ca_certificate.pem"],
 "authorization": "auth/server.auth.conf",
 "enable_tls": true,
 "enable_client_authentication": true
}

The following is an example server.auth.conf configuration file: mapping client
(applications) identified by their certificate DN string to roles:

{
 "authorization": [{
 "dn": "CN=Client, OU=Development, O=Oracle, L=Belmont, ST=California, C=US",
 "admin": false
 }, {
 "dn": "CN=Admin, OU=Development, O=Oracle, L=Belmont, ST=California, C=US",
 "admin": true
 }]
}

Chapter 3
Starting the In-Memory Analyst Server

3-54

You can turn off client-side authentication or SSL/TLS authentication entirely in the
server configuration. However, we recommend having two-way SSL/TLS enabled for
any production usage.

3.11 Deploying to Apache Tomcat
The example in this topic shows how to deploy the graph server as a web application
with Apache Tomcat.

The graph server will work with Apache Tomcat 9.0.x and higher.

1. Download the Oracle Graph Webapps zip file from Oracle Software Delivery
Cloud. This file contains ready-to-deploy Java web application archives (.war files).
The file name will be similar to this: oracle-graph-webapps-<version>.zip

2. Unzip the file into a directory of your choice.

3. Locate the .war file for Tomcat. It follows the naming pattern: graph-server-
<version>-pgx<version>-tomcat.war

4. Configure the graph server.

a. Modify authentication and other server settings by modifying the WEB-INF/
classes/pgx.conf file inside the web application archive.

b. Optionally, change logging settings by modifying the WEB-INF/classes/
log4j2.xml file inside the web application archive.

c. Optionally, change other servlet specific deployment descriptors by modifying
the WEB-INF/web.xml file inside the web application archive.

5. Copy the .war file into the Tomcat webapps directory. For example:

cp graph-server-<version>-pgx<version>-tomcat.war $CATALINA_HOME/
webapps/pgx.war

6. Configure Tomcat specific settings, like the correct use of TLS/encryption

7. Ensure that port 8080 is not already in use.

8. Start Tomcat:

cd $CATALINA_HOME
./bin/startup.sh

The graph server will now listen on localhost:8080/pgx.

You can connect to the server from JShell by running the following command:

$ <client_install_dir>/bin/opg-jshell --base_url https://localhost:8080/pgx
-u <graphuser>

• About the Authentication Mechanism

Related Topics

• The Tomcat documentation (select desired version)

Chapter 3
Deploying to Apache Tomcat

3-55

https://edelivery.oracle.com/
https://edelivery.oracle.com/
http://tomcat.apache.org/

3.11.1 About the Authentication Mechanism
The in-memory analyst web deployment uses BASIC Auth by default. You should
change to a more secure authentication mechanism for a production deployment.

To change the authentication mechanism, modify the security-constraint element of
the web.xml deployment descriptor in the web application archive (WAR) file.

3.12 Deploying to Oracle WebLogic Server
The example in this topic shows how to deploy the graph server as a web application
with Oracle WebLogic Server.

This example shows how to deploy the graph server with Oracle WebLogic Server.
Graph server supports WebLogic Server version 12.1.x and 12.2.x.

1. Download the Oracle Graph Webapps zip file from Oracle Software Delivery
Cloud. This file contains ready-to-deploy Java web application archives (.war files).
The file name will be similar to this: oracle-graph-webapps-<version>.zip

2. Unzip the file into a directory of your choice

3. Locate the .war file for Weblogic server.

a. For Weblogic Server version 12.1.x, use this web application archive: graph-
server-<version>-pgx<version>-wls121x.war

b. For Weblogic Server version 12.2.x, use this web application archive: graph-
server-<version>-pgx<version>-wls122x.war

4. Configure the graph server.

a. Modify authentication and other server settings by modifying the WEB-INF/
classes/pgx.conf file inside the web application archive.

b. Optionally, change logging settings by modifying the WEB-INF/classes/
log4j2.xml file inside the web application archive.

c. Optionally, change other servlet specific deployment descriptors by modifying
the WEB-INF/web.xml file inside the web application archive.

d. Optionally, change WebLogic Server-specific deployment descriptors by
modifying the WEB-INF/weblogic.xml file inside the web application archive.

5. Configure WebLogic specific settings, like the correct use of TLS/encryption.

6. Deploy the .war file to WebLogic Server. The following example shows how to do
this from the command line:

. $MW_HOME/user_projects/domains/mydomain/bin/setDomainEnv.sh

. $MW_HOME/wlserver/server/bin/setWLSEnv.sh
java weblogic.Deployer -adminurl http://localhost:7001 -username
<username> -password <password> -deploy -source <path-to-war-file>

• Installing Oracle WebLogic Server

Chapter 3
Deploying to Oracle WebLogic Server

3-56

https://edelivery.oracle.com/
https://edelivery.oracle.com/

3.12.1 Installing Oracle WebLogic Server
To download and install the latest version of Oracle WebLogic Server, see

http://www.oracle.com/technetwork/middleware/weblogic/documentation/
index.html

3.13 Connecting to the In-Memory Analyst Server
After the property graph in-memory analyst is installed in a computer running Oracle
Database -- or on a client system without Oracle Database server software as a web
application on Apache Tomcat or Oracle WebLogic Server -- you can connect to the
in-memory analyst server.

• Connecting with the In-Memory Analyst Shell

• Connecting with Java

• Connecting with the PGX REST API

3.13.1 Connecting with the In-Memory Analyst Shell
The simplest way to connect to an in-memory analyst instance is to specify the base
URL of the server. The following base URL can connect the SCOTT user to the local
instance listening on port 8080:

http://scott:<password>@localhost:8080/pgx

To start the in-memory analyst shell with this base URL, you use the --base_url
command line argument

cd $PGX_HOME
./bin/opg-jshell --base_url http://scott:<password>@localhost:8080/pgx

You can connect to a remote instance the same way. However, the in-memory analyst
currently does not provide remote support for the Control API.

• About Logging HTTP Requests

3.13.1.1 About Logging HTTP Requests
The in-memory analyst shell suppresses all debugging messages by default. To see
which HTTP requests are executed, set the log level for oracle.pgx to DEBUG, as
shown in this example:

opg> /loglevel oracle.pgx DEBUG
===> log level of oracle.pgx logger set to DEBUG
opg> session.readGraphWithProperties("sample_http.adj.json", "sample")
10:24:25,056 [main] DEBUG RemoteUtils - Requesting POST http://
scott:<password>@localhost:8080/pgx/core/session/session-shell-6nqg5dd/graph
HTTP/1.1 with payload {"graphName":"sample","graphConfig":{"uri":"http://
path.to.some.server/pgx/sample.adj","separator":" ","edge_props":
[{"type":"double","name":"cost"}],"node_props":
[{"type":"integer","name":"prop"}],"format":"adj_list"}}
10:24:25,088 [main] DEBUG RemoteUtils - received HTTP status 201
10:24:25,089 [main] DEBUG RemoteUtils - {"futureId":"87d54bed-bdf9-4601-98b7-
ef632ce31463"}

Chapter 3
Connecting to the In-Memory Analyst Server

3-57

http://www.oracle.com/technetwork/middleware/weblogic/documentation/index.html
http://www.oracle.com/technetwork/middleware/weblogic/documentation/index.html

10:24:25,091 [pool-1-thread-3] DEBUG PgxRemoteFuture$1 - Requesting GET http://
scott:<password>@localhost:8080/pgx/future/session/session-shell-6nqg5dd/result/
87d54bed-bdf9-4601-98b7-ef632ce31463 HTTP/1.1
10:24:25,300 [pool-1-thread-3] DEBUG RemoteUtils - received HTTP status 200
10:24:25,301 [pool-1-thread-3] DEBUG RemoteUtils - {"stats":
{"loadingTimeMillis":0,"estimatedMemoryMegabytes":0,"numEdges":4,"numNodes":4},"g
raphName":"sample","nodeProperties":{"prop":"integer"},"edgeProperties":
{"cost":"double"}}

This example requires that the graph URI points to a file that the in-memory analyst
server can access using HTTP or HDFS.

3.13.2 Connecting with Java
You can specify the base URL when you initialize the in-memory analyst using Java.
An example is as follows. A URL to an in-memory analyst server is provided to the
getInMemAnalyst API call.

import oracle.pg.rdbms.*;
import oracle.pgx.api.*;

PgRdbmsGraphConfigcfg =
GraphConfigBuilder.forPropertyGraphRdbms().setJdbcUrl("jdbc:oracle:thin:@127.0.0.
1:1521:orcl")
 .setUsername("scott").setPassword("<password>") .setName("mygraph")
 .setMaxNumConnections(2) .setLoadEdgeLabel(false)
 .addVertexProperty("name", PropertyType.STRING, "default_name")
 .addEdgeProperty("weight", PropertyType.DOUBLE, "1000000")
 .build();OraclePropertyGraph opg = OraclePropertyGraph.getInstance(cfg);
ServerInstance remoteInstance = Pgx.getInstance("http://
scott:<password>@hostname:port/pgx");
PgxSession session = remoteInstance.createSession("my-session");

PgxGraph graph = session.readGraphWithProperties(opg.getConfig());

3.13.3 Connecting with the PGX REST API
You can connect to an in-memory analyst instance using the REST API PGX
endpoints. This enables you to interact with the in-memory analyst in a language other
than Java to implement your own client.

The examples in this topic assume that:

• Linux with curl is installed. curl is a simple command-line utility to interact with
REST endpoints.)

• The PGX server is up and running on http://localhost:7007.

• The PGX server has authentication/authorization disabled; that
is, $ORACLE_HOME/md/property_graph/pgx/conf/server.conf contains
"enable_tls": false. (This is a non-default setting and not recommended for
production).

• PGX allows reading graphs from the local file system; that is, $ORACLE_HOME/md/
property_graph/pgx/conf/pgx.conf contains "allow_local_filesystem": true.
(This is a non-default setting and not recommended for production).

For the Swagger specification, you can see a full list of supported endpoints in JSON
by opening http://localhost:7007/swagger.json in your browser.

Chapter 3
Connecting to the In-Memory Analyst Server

3-58

https://curl.haxx.se/download.html

• Step 1: Obtain a CSRF token

• Step 2: Create a session

• Step 3: Read a graph

• Step 4: Create a property

• Step 5: Run the PageRank algorithm on the loaded graph

• Step 6: Execute a PGQL query

Step 1: Obtain a CSRF token

Request a CSRF token:

curl -v http://localhost:7007/token

The response will look like this:

* Trying 127.0.0.1...
* Connected to localhost (127.0.0.1) port 7007 (#0)
> GET /token HTTP/1.1
> Host: localhost:7007
> User-Agent: curl/7.47.0
> Accept: */*
>
< HTTP/1.1 201
< SET-COOKIE: _csrf_token=9bf51c8f-1c75-455e-9b57-ec3ca1c63cc0;Version=1;
HttpOnly
< Content-Length: 0

As you can see in the response, this will set a cookie _csrf_token to a token
value. 9bf51c8f-1c75-455e-9b57-ec3ca1c63cc0 is used as an example token for the
following requests. For any write requests, PGX server requires the same token to be
present in both cookie and payload.

Step 2: Create a session

To create a new session, send a JSON payload:

curl -v --cookie '_csrf_token=9bf51c8f-1c75-455e-9b57-ec3ca1c63cc0'
-H 'content-type: application/json' -X POST http://
localhost:7007/core/v1/sessions -d '{"source":"my-application",
"idleTimeout":0, "taskTimeout":0, "timeUnitName":"MILLISECONDS",
"_csrf_token":"9bf51c8f-1c75-455e-9b57-ec3ca1c63cc0"}'

Replace my-application with a value describing the application that you are running.
This value can be used by server administrators to map sessions to their applications.
Setting idle and task timeouts to 0 means the server will determine when the session
and submitted tasks time out. You must provide the same CSRF token in both the
cookie header and the JSON payload.

The response will look similar to the following:

* Trying 127.0.0.1...
* Connected to localhost (127.0.0.1) port 7007 (#0)
> POST /core/v1/sessions HTTP/1.1
> Host: localhost:7007

Chapter 3
Connecting to the In-Memory Analyst Server

3-59

> User-Agent: curl/7.47.0
> Accept: */*
> Cookie: _csrf_token=9bf51c8f-1c75-455e-9b57-ec3ca1c63cc0
> content-type: application/json
> Content-Length: 159
>
* upload completely sent off: 159 out of 159 bytes
< HTTP/1.1 201
< SET-COOKIE: SID=abae2811-6dd2-48b0-93a8-8436e078907d;Version=1; HttpOnly
< Content-Length: 0

The response sets a cookie to the session ID value that was created for us. Session
ID abae2811-6dd2-48b0-93a8-8436e078907d is used as an example for subsequent
requests.

Step 3: Read a graph

Note:

if you want to analyze a pre-loaded graph or a graph that is already
published by another session, you can skip this step. All you need to access
pre-loaded or published graphs is the name of the graph.

To read a graph, send the graph configuration as JSON to the server as shown in the
following example (replace <graph-config> with the JSON representation of an actual
PGX graph config).

curl -v -X POST --cookie '_csrf_token=9bf51c8f-1c75-455e-9b57-
ec3ca1c63cc0;SID=abae2811-6dd2-48b0-93a8-8436e078907d' http://
localhost:7007/core/v1/loadGraph -H 'content-type:
application/json' -d '{"graphConfig":<graph-
config>,"graphName":null,"csrf_token":"9bf51c8f-1c75-455e-9b57-
ec3ca1c63cc0"}'

Here an example of a graph config that reads a property graph from the Oracle
database:

{
 "format": "pg",
 "db_engine": "RDBMS",
 "jdbc_url":"jdbc:oracle:thin:@127.0.0.1:1521:orcl122",
 "username":"scott",
 "password":"tiger",
 "max_num_connections": 8,
 "name": "connections",
 "vertex_props": [
 {"name":"name", "type":"string"},
 {"name":"role", "type":"string"},
 {"name":"occupation", "type":"string"},
 {"name":"country", "type":"string"},
 {"name":"political party", "type":"string"},
 {"name":"religion", "type":"string"}
],

Chapter 3
Connecting to the In-Memory Analyst Server

3-60

 "edge_props": [
 {"name":"weight", "type":"double", "default":"1"}
],
 "edge_label": true,
 "loading": {
 "load_edge_label": true
 }
}

Passing "graphName": null tells the server to generate a name.

The server will reply something like the following:

* upload completely sent off: 315 out of 315 bytes
< HTTP/1.1 202
< Location: http://localhost:7007/core/v1/futures/8a46ef65-01a9-4bd0-87d3-
ffe9dfd2ce3c/status
< Content-Type: application/json;charset=utf-8
< Content-Length: 51
< Date: Mon, 05 Nov 2018 17:22:22 GMT
<
* Connection #0 to host localhost left intact
{"futureId":"8a46ef65-01a9-4bd0-87d3-ffe9dfd2ce3c"}

About Asynchronous Requests

Most of the PGX REST endpoints are asynchronous. Instead of keeping the
connection open until the result is ready, PGX server submits as task and immediately
returns a future ID with status code 200, which then can be used by the client to
periodically request the status of the task or request the result value once done.

From the preceding response, you can request the future status like this:

curl -v --cookie
'SID=abae2811-6dd2-48b0-93a8-8436e078907d' http://localhost:7007/
core/v1/futures/8a46ef65-01a9-4bd0-87d3-ffe9dfd2ce3c/status

Which will return something like:

< HTTP/1.1 200
< Content-Type: application/json;charset=utf-8
< Content-Length: 730
< Date: Mon, 05 Nov 2018 17:35:19 GMT
<
* Connection #0 to host localhost left intact
{"id":"eb17f75b-e4c1-4a66-81a0-4ff0f8b4cb92","links":[{"href":"http://
localhost:7007/core/v1/futures/eb17f75b-e4c1-4a66-81a0-4ff0f8b4cb92/
status","rel":"self","method":"GET","interaction":["async-
polling"]},{"href":"http://localhost:7007/core/v1/futures/eb17f75b-
e4c1-4a66-81a0-4ff0f8b4cb92","rel":"abort","method":"DELETE","interaction":
["async-polling"]},{"href":"http://localhost:7007/
core/v1/futures/eb17f75b-e4c1-4a66-81a0-4ff0f8b4cb92/
status","rel":"canonical","method":"GET","interaction":["async-
polling"]},{"href":"http://localhost:7007/core/v1/futures/eb17f75b-
e4c1-4a66-81a0-4ff0f8b4cb92/value","rel":"related","method":"GET","interaction":
["async-polling"]}],"progress":"succeeded","completed":true,"intervalToPoll":1}

Chapter 3
Connecting to the In-Memory Analyst Server

3-61

Besides the status (succeeded in this case), this output also includes links to cancel
the task (DELETE) and to retrieve the result of the task once completed (GET <future-
id>/value):

curl -X GET --cookie
'SID=abae2811-6dd2-48b0-93a8-8436e078907d' http://localhost:7007/
core/v1/futures/cdc15a38-3422-42a1-baf4-343c140cf95d/value

Which will return details about the loaded graph, including the name that was
generated by the server (sample):

{"id":"sample","links":[{"href":"http://localhost:7007/core/v1/graphs/
sample","rel":"self","method":"GET","interaction":["async-polling"]},
{"href":"http://localhost:7007/core/v1/graphs/
sample","rel":"canonical","method":"GET","interaction":["async-
polling"]}],"nodeProperties":{"prop1":{"id":"prop1","links":[{"href":"http://
localhost:7007/core/v1/graphs/sample/properties/
prop1","rel":"self","method":"GET","interaction":["async-polling"]},
{"href":"http://localhost:7007/core/v1/graphs/sample/properties/
prop1","rel":"canonical","method":"GET","interaction":["async-
polling"]}],"dimension":0,"name":"prop1","entityType":"vertex","type":"integer","
transient":false}},"vertexLabels":null,"edgeLabel":null,"metaData":
{"id":null,"links":null,"numVertices":4,"numEdges":4,"memoryMb":0,"dataSourceVers
ion":"1536029578000","config":{"format":"adj_list","separator":" ","edge_props":
[{"type":"double","name":"cost"}],"error_handling":{},"vertex_props":
[{"type":"integer","name":"prop1"}],"vertex_uris":
["PATH_TO_FILE"],"vertex_id_type":"integer","loading":
{}},"creationRequestTimestamp":1541242100335,"creationTimestamp":1541242100774,"v
ertexIdType":"integer","edgeIdType":"long","directed":true},"graphName":"sample",
"edgeProperties":{"cost":{"id":"cost","links":[{"href":"http://localhost:7007/
core/v1/graphs/sample/properties/cost","rel":"self","method":"GET","interaction":
["async-polling"]},{"href":"http://localhost:7007/core/v1/graphs/sample/
properties/cost","rel":"canonical","method":"GET","interaction":["async-
polling"]}],"dimension":0,"name":"cost","entityType":"edge","type":"double","tran
sient":false}},"ageMs":0,"transient":false}

For simplicity, the remaining steps omit the additional requests to request the status or
value of asynchronous tasks.

Step 4: Create a property

Before you can run the PageRank algorithm on the loaded graph, you must create a
vertex property of type DOUBLE on the graph, which can hold the computed ranking
values:

curl -v -X POST --cookie '_csrf_token=9bf51c8f-1c75-455e-9b57-
ec3ca1c63cc0;SID=abae2811-6dd2-48b0-93a8-8436e078907d' http://
localhost:7007/core/v1/graphs/sample/properties -H
'content-type: application/json' -d
'{"entityType":"vertex","type":"double","name":"pagerank",
"hardName":false,"dimension":0,"_csrf_token":"9bf51c8f-1c75-455e-9b57-
ec3ca1c63cc0"}'

Requesting the result of the returned future will return something like:

{"id":"pagerank","links":[{"href":"http://localhost:7007/core/v1/graphs/sample/
properties/pagerank","rel":"self","method":"GET","interaction":["async-

Chapter 3
Connecting to the In-Memory Analyst Server

3-62

polling"]},{"href":"http://localhost:7007/core/v1/graphs/sample/properties/
pagerank","rel":"canonical","method":"GET","interaction":["async-
polling"]}],"dimension":0,"name":"pagerank","entityType":"vertex","type":"double"
,"transient":true}

Step 5: Run the PageRank algorithm on the loaded graph

The following example shows how to run an algorithm (PageRank in this case). The
algorithm ID is part of the URL, and the parameters to be passed into the algorithm are
part of the JSON payload:

curl -v -X POST --cookie '_csrf_token=9bf51c8f-1c75-455e-9b57-
ec3ca1c63cc0;SID=abae2811-6dd2-48b0-93a8-8436e078907d' http://
localhost:7007/core/v1/analyses/pgx_builtin_k1a_pagerank/run -H
'content-type: application/json' -d '{"args":
[{"type":"GRAPH","value":"sample"},{"type":"DOUBLE_IN","value":0.001},
{"type":"DOUBLE_IN","value":0.85},{"type":"INT_IN","value":100},
{"type":"BOOL_IN","value":true},
{"type":"NODE_PROPERTY","value":"pagerank"}],"expectedReturnType":"void"
,"workloadCharacteristics":
["PARALLELISM.PARALLEL"],"_csrf_token":"9bf51c8f-1c75-455e-9b57-
ec3ca1c63cc0"}'

Once the future is completed, the result will look something like this:

{"success":true,"canceled":false,"exception":null,"returnValue":null,"executionTi
meMs":50}

Step 6: Execute a PGQL query

To query the results of the PageRank algorithm, you can run a PGQL query as shown
in the following example:

curl -v -X POST --cookie '_csrf_token=9bf51c8f-1c75-455e-9b57-
ec3ca1c63cc0;SID=abae2811-6dd2-48b0-93a8-8436e078907d' http://
localhost:7007/core/v1/pgql/run -H 'content-type: application/json'
-d '{"pgqlQuery":"SELECT x.pagerank MATCH (x) WHERE
x.pagerank > 0","semantic":"HOMOMORPHISM", "schemaStrictnessMode":true,
"graphName" : "sample", "_csrf_token":"9bf51c8f-1c75-455e-9b57-
ec3ca1c63cc0"}'

The result is a set of links you can use to interact with the result set of the query:

{"id":"pgql_1","links":[{"href":"http://localhost:7007/core/v1/pgqlProxies/
pgql_1","rel":"self","method":"GET","interaction":["sync"]},{"href":"http://
localhost:7007/core/v1/pgqlResultProxies/pgql_1/
elements","rel":"related","method":"GET","interaction":["sync"]},{"href":"http://
localhost:7007/core/v1/pgqlResultProxies/pgql_1/
results","rel":"related","method":"GET","interaction":["sync"]},{"href":"http://
localhost:7007/core/v1/pgqlProxies/
pgql_1","rel":"canonical","method":"GET","interaction":["async-
polling"]}],"exists":true,"graphName":"sample","resultSetId":"pgql_1","numResults
":4}

Chapter 3
Connecting to the In-Memory Analyst Server

3-63

To request the first 2048 elements of the result set, send:

curl -X GET --cookie 'SID=abae2811-6dd2-48b0-93a8-8436e078907d' http://
localhost:7007/core/v1/pgqlProxies/pgql_1/results?size=2048

The response looks something like this:

{"id":"/pgx/core/v1/pgqlProxies/pgql_1/results","links":[{"href":"http://
localhost:7007/core/v1/pgqlProxies/pgql_1/
results","rel":"self","method":"GET","interaction":["sync"]},{"href":"http://
localhost:7007/core/v1/pgqlProxies/pgql_1/
results","rel":"canonical","method":"GET","interaction":["async-
polling"]}],"count":4,"totalItems":4,"items":[[0.3081206521195582],
[0.21367103988538017],[0.21367103988538017],
[0.2645372681096815]],"hasMore":false,"offset":0,"limit":4,"showTotalResults":tru
e}

3.14 Managing Property Graph Snapshots
You can manage property graph snapshots.

Note:

Managing property graph snapshots is intended for advanced users.

You can persist different versions of a property graph as binary snapshots in the
database. The binary snapshots represent a subgraph of graph data computed at
runtime that may be needed for a future use. The snapshots can be read back later
as input for the in-memory analytics, or as an output stream that can be used by the
parallel property graph data loader.

You can store binary snapshots in the <graph_name>SS$ table of the property graph
using the Java API OraclePropertyGraphUtils.storeBinaryInMemoryGraphSnapshot.
This operation requires a connection to the Oracle database holding the property
graph instance, the name of the graph and its owner, the ID of the snapshot, and an
input stream from which the binary snapshot can be read. You can also specify the
time stamp of the snapshot and the degree of parallelism to be used when storing the
snapshot in the table.

You can read a stored binary snapshot using
oraclePropertyGraphUtils.readBinaryInMemGraphSnapshot. This operation requires
a connection to the Oracle database holding the property graph instance, the name
of the graph and its owner, the ID of the snapshot to read, and an output stream
where the binary file snapshot will be written into. You can also specify the degree of
parallelism to be used when reading the snapshot binary-file from the table.

The following code snippet creates a property graph from the data file in Oracle
Flat-file format, adds a new vertex, and exports the graph into an output stream using
GraphML format. This output stream represents a binary file snapshot, and it is stored

Chapter 3
Managing Property Graph Snapshots

3-64

in the property graph snapshot table. Finally, this example reads back the file from the
snapshot table and creates a second graph from its contents.

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";
OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
szGraphName);
opgdl = OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, 2 /* dop */, 1000, true,
 "PDML=T,PDDL=T,NO_DUP=T,");

// Add a new vertex
Vertex v = opg.addVertex(Long.valueOf("1000"));
v.setProperty("name", "Alice");
opg.commit();

System.out.pritnln("Graph " + szGraphName + " total vertices: " +
 opg.countVertices(dop));
System.out.pritnln("Graph " + szGraphName + " total edges: " +
 opg.countEdges(dop));

// Get a snapshot of the current graph as a file in graphML format.
OutputStream os = new ByteArrayOutputStream();
OraclePropertyGraphUtils.exportGraphML(opg,
 os /* output stream */,
 System.out /* stream to show
progress */);

// Save the snapshot into the SS$ table
InputStream is = new ByteArrayInputStream(os.toByteArray());
OraclePropertyGraphUtils.storeBinaryInMemGraphSnapshot(szGraphName,
 szGraphOwner /*
owner of the

property graph */,
 conn /* database
connection */,
 is,
 (long) 1 /*
snapshot ID */,
 1 /* dop */);
os.close();
is.close();

// Read the snapshot back from the SS$ table
OutputStream snapshotOS = new ByteArrayOutputStream();
OraclePropertyGraphUtils.readBinaryInMemGraphSnapshot(szGraphName,
 szGraphOwner /*
owner of the

property graph */,
 conn /* database
connection */,
 new OutputStream[]

Chapter 3
Managing Property Graph Snapshots

3-65

{snapshotOS},
 (long) 1 /*
snapshot ID */,
 1 /* dop */);

InputStream snapshotIS = new
ByteArrayInputStream(snapshotOS.toByteArray());
String szGraphNameSnapshot = szGraphName + "_snap";
OraclePropertyGraph opg =
OraclePropertyGraph.getInstance(args,szGraphNameSnapshot);

OraclePropertyGraphUtils.importGraphML(opg,
 snapshotIS /* input stream */,
 System.out /* stream to show
progress */);

snapshotOS.close();
snapshotIS.close();

System.out.pritnln("Graph " + szGraphNameSnapshot + " total vertices: "
+
 opg.countVertices(dop));
System.out.pritnln("Graph " + szGraphNameSnapshot + " total edges: " +
 opg.countEdges(dop));

The preceding example will produce output similar as the following:

Graph test total vertices: 79
Graph test total edges: 164
Graph test_snap total vertices: 79
Graph test_snap total edges: 164

3.15 User-Defined Functions (UDFs) in PGX
User-defined functions (UDFs) allow users of PGX to add custom logic to their PGQL
queries or custom graph algorithms, to complement built-in functions with custom
requirements.

Caution:

UDFs enable the running arbitrary code in the PGX server, possibly
accessing sensitive data. Additionally, any PGX session can invoke any of
the UDFs that are enabled on the PGX server. The application administrator
who enables UDFs is responsible for checking the following:

• All the UDF code can be trusted.

• The UDFs are stored in a secure location that cannot be tampered with.

Chapter 3
User-Defined Functions (UDFs) in PGX

3-66

How to Use UDFs

The following simple example shows how to register a UDF at the PGX server and
invoke it.

1. Create a class with a public static method. For example:

package my.udfs;

public class MyUdfs {
 public static String concat(String a, String b) {
 return a + b;
 }
}

2. Compile the class and compress into a JAR file. For example:

mkdir ./target
javac -d ./target *.java
cd target
jar cvf MyUdfs.jar *

3. Copy the JAR file into /opt/oracle/graph/pgx/server/lib.

4. Create a UDF JSON configuration file. For example, assume that /path/to/my/
udfs/dir/my_udfs.json contains the following:

{
 "user_defined_functions": [
 {
 "namespace": "my",
 "language": "java",
 "implementation_reference": "my.package.MyUdfs",
 "function_name": "concat",
 "return_type": "string",
 "arguments": [
 {
 "name": "a",
 "type": "string"
 },
 {
 "name": "b",
 "type": "string"
 }
]
 }
]
}

5. Point to the directory containing the UDF configuration file in /etc/oracle/graph/
pgx.conf. For example:

"udf_config_directory": "/path/to/my/udfs/dir/"

Chapter 3
User-Defined Functions (UDFs) in PGX

3-67

6. Restart the PGX server. For example:

sudo systemctl restart pgx

7. Try to invoke the UDF from within a PGQL query. For example:

graph.queryPgql("SELECT my.concat(my.concat(n.firstName, ' '),
n.lastName) FROM MATCH (n:Person)")

8. Try to invoke the UDF from within a PGX algorithm. For example:

import oracle.pgx.algorithm.annotations.Udf;
....

@GraphAlgorithm
public class MyAlogrithm {
 public void bomAlgorithm(PgxGraph g, VertexProperty<String>
firstName, VertexProperty<String> lastName, @Out
VertexProperty<String> fullName) {

 ... fullName.set(v, concat(firstName.get(v),
lastName.get(v))); ...

 }

 @Udf(namespace = "my")
 abstract String concat(String a, String b);
}

UDF Configuration File Information

A UDF configuration file is a JSON file containing an array of
user_defined_functions. (An example of such a file is in the step to "Create a UDF
JSON configuration file" in the preceding "How to Use UDFs" subsection.)

Each user-defined function supports the fields shown in the following table.

Table 3-5 Fields for Each UDF

Field Data Type Description Required?

function_name string Name of the function used
as identifier in PGX

Required

language enum[java, javascript] Source language for
he function (java or
javascript)

Required

return_type enum[boolean, integer,
long, float, double, string]

Return type of the function Required

arguments array of object Array of arguments. For
each argument: type,
argument name, required?

[]

implementation_reference string Reference to the function
name on the classpath

null

Chapter 3
User-Defined Functions (UDFs) in PGX

3-68

Table 3-5 (Cont.) Fields for Each UDF

Field Data Type Description Required?

namespace string Namespace of the function
in PGX

null

source_function_name string Name of the function in the
source language

null

source_location string Local file path to the
function's source code

null

All configured UDFs must be unique with regard to the combination of the following
fields:

• namespace

• function_name

• arguments

Chapter 3
User-Defined Functions (UDFs) in PGX

3-69

4
SQL-Based Property Graph Query and
Analytics

You can use SQL to query property graph data in Oracle Spatial and Graph.

For the property graph support in Oracle Spatial and Graph, all the vertices and edges
data are persisted in relational form in Oracle Database. For detailed information about
the Oracle Spatial and Graph property graph schema objects, see Property Graph
Schema Objects for Oracle Database.

This chapter provides examples of typical graph queries implemented using SQL.
The audience includes DBAs as well as application developers who understand SQL
syntax and property graph schema objects.

The benefits of querying directly property graph using SQL include:

• There is no need to bring data outside Oracle Database.

• You can leverage the industry-proven SQL engine provided by Oracle Database.

• You can easily join or integrate property graph data with other data types
(relational, JSON, XML, and so on).

• You can take advantage of existing Oracle SQL tuning and database management
tools and user interface.

The examples assume that there is a property graph named connections in the
current schema. The SQL queries and example output are for illustration purpose only,
and your output may be different depending on the data in your connections graph. In
some examples, the output is reformatted for readability.

• Simple Property Graph Queries
The examples in this topic query vertices, edges, and properties of the graph.

• Text Queries on Property Graphs
If values of a property (vertex property or edge property) contain free text, then it
might help performance to create an Oracle Text index on the V column.

• Navigation and Graph Pattern Matching
A key benefit of using a graph data model is that you can easily navigate across
entities (people, movies, products, services, events, and so on) that are modeled
as vertices, following links and relationships modeled as edges. In addition,
graph matching templates can be defined to do such things as detect patterns,
aggregate individuals, and analyze trends.

• Navigation Options: CONNECT BY and Parallel Recursion
The CONNECT BY clause and parallel recursion provide options for advanced
navigation and querying.

• Pivot
The PIVOT clause lets you dynamically add columns to a table to create a new
table.

4-1

• SQL-Based Property Graph Analytics
In addition to the analytical functions offered by the in-memory analyst, the
property graph feature in Oracle Spatial and Graph supports several native, SQL-
based property graph analytics.

4.1 Simple Property Graph Queries
The examples in this topic query vertices, edges, and properties of the graph.

Example 4-1 Find a Vertex with a Specified Vertex ID

This example find the vertex with vertex ID 1 in the connections graph.

SQL> select vid, k, v, vn, vt
 from connectionsVT$
 where vid=1;

The output might be as follows:

 1 country United States
 1 name Robert Smith
 1 occupation CEO of Example Corporation
 ...

Example 4-2 Find an Edge with a Specified Edge ID

This example find the edge with edge ID 100 in the connections graph.

SQL> select eid,svid,dvid,k,t,v,vn,vt
 from connectionsGE$
 where eid=1000;

The output might be as follows:

 1000 1 2 weight 3 1 1

In the preceding output, the K of the edge property is "weight" and the type ID of the
value is 3, indicating a float value.

Example 4-3 Perform Simple Counting

This example performs simple counting in the connections graph.

SQL> -- Get the total number of K/V pairs of all the vertices
SQL> select /*+ parallel */ count(1)
 from connectionsVT$;

 299

SQL> -- Get the total number of K/V pairs of all the edges
SQL> select /*+ parallel(8) */ count(1)
 from connectionsGE$;
 164

SQL> -- Get the total number of vertices
SQL> select /*+ parallel */ count(distinct vid)

Chapter 4
Simple Property Graph Queries

4-2

 from connectionsVT$;

 78

SQL> -- Get the total number of edges
SQL> select /*+ parallel */ count(distinct eid)
 from connectionsGE$;

 164

Example 4-4 Get the Set of Property Keys Used

This example gets the set of property keys used for the vertices n the connections
graph.

SQL> select /*+ parallel */ distinct k
 from connectionsVT$;

company
show
occupation
type
team
religion
criminal charge
music genre
genre
name
role
political party
country

13 rows selected.

SQL> -- get the set of property keys used for edges
SQL> select /*+ parallel */ distinct k
 from connectionsGE$;

weight

Example 4-5 Find Vertices with a Value

This example finds vertices with a value (of any property) that is of String type, and
where and the value contains two adjacent occurrences of a, e, i, o, or u, regardless of
case.n the connections graph.

SQL> select vid, t, k, v
 from connectionsVT$
 where t=1
 and regexp_like(v, '([aeiou])\1', 'i');

 6 1 name Jordan Peele
 6 1 show Key and Peele

Chapter 4
Simple Property Graph Queries

4-3

 54 1 name John Green
 ...

It is usually hard to leverage a B-Tree index for the preceding kind of query because it
is difficult to know beforehand what kind of regular expression is going to be used. For
the above query, you might get the following execution plan. Note that full table scan is
chosen by the optimizer.

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
Time | Pstart| Pstop | TQ |IN-OUT| PQ Distrib |

| 0 | SELECT STATEMENT | | 15 | 795 | 28 (0)|
00:00:01 | | | | | |
1	PX COORDINATOR				
2	PX SEND QC (RANDOM)	:TQ10000	15	795	28 (0)
00:00:01			Q1,00	P->S	QC (RAND)
3	PX BLOCK ITERATOR		15	795	28 (0)
00:00:01	1	8	Q1,00	PCWC	
* 4	TABLE ACCESS FULL	CONNECTIONSVT$	15	795	28 (0)
00:00:01 | 1 | 8 | Q1,00 | PCWP | |

Predicate Information (identified by operation id):

 4 - filter(INTERNAL_FUNCTION("V") AND REGEXP_LIKE ("V",U'([aeiou])
\005C1','i') AND "T"=1 AND INTERNAL_FUNCTION("K"))
Note

 - Degree of Parallelism is 2 because of table property

If the Oracle Database In-Memory option is available and memory is sufficient, it can
help performance to place the table (full table or a set of relevant columns) in memory.
One way to achieve that is as follows:

SQL> alter table connectionsVT$ inmemory;
Table altered.

Now, entering the same SQL containing the regular expression shows a plan that
performs a "TABLE ACCESS INMEMORY FULL".

| Id | Operation | Name | Rows | Bytes | Cost
(%CPU) | Time | Pstart| Pstop | TQ |IN-OUT| PQ Distrib |

--
| 0 | SELECT STATEMENT | | 15 | 795 |
28 (0)| 00:00:01 | | | | | |
1	PX COORDINATOR					
2	PX SEND QC (RANDOM)	:TQ10000	15	795		
28 (0)	00:00:01			Q1,00	P->S	QC (RAND)
3	PX BLOCK ITERATOR		15	795		
28 (0)	00:00:01	1	8	Q1,00	PCWC	
* 4	TABLE ACCESS INMEMORY FULL	CONNECTIONSVT$	15	795		

Chapter 4
Simple Property Graph Queries

4-4

28 (0)| 00:00:01 | 1 | 8 | Q1,00 | PCWP | |

--
Predicate Information (identified by operation id):

 4 - filter(INTERNAL_FUNCTION("V") AND REGEXP_LIKE ("V",U'([aeiou])
\005C1','i') AND "T"=1 AND INTERNAL_FUNCTION("K"))
Note

 - Degree of Parallelism is 2 because of table property

4.2 Text Queries on Property Graphs
If values of a property (vertex property or edge property) contain free text, then it might
help performance to create an Oracle Text index on the V column.

Oracle Text can process text that is directly stored in the database. The text can be
short strings (such as names or addresses), or it can be full-length documents. These
documents can be in a variety of textual format.

The text can also be in many different languages. Oracle Text can handle any
space-separated languages (including character sets such as Greek or Cyrillic). In
addition, Oracle Text is able to handle the Chinese, Japanese and Korean pictographic
languages)

Because the property graph feature uses NVARCHAR typed column for better support
of Unicode, it is highly recommended that UTF8 (AL32UTF8) be used as the
database character set.

To create an Oracle Text index on the vertices table (or edges table), the ALTER
SESSION privilege is required. For example:

SQL> grant alter session to <YOUR_USER_SCHEMA_HERE>;

If customization is required, also grant the EXECUTE privilege on CTX_DDL:

SQL> grant execute on ctx_ddl to <YOUR_USER_SCHEMA_HERE>;

The following shows some example statements for granting these privileges to
SCOTT.

SQL> conn / as sysdba
Connected.
SQL> -- This is a PDB setup --
SQL> alter session set container=orcl;
Session altered.

SQL> grant execute on ctx_ddl to scott;
Grant succeeded.

SQL> grant alter session to scott;
Grant succeeded.

Chapter 4
Text Queries on Property Graphs

4-5

Example 4-6 Create a Text Index

This example creates an Oracle Text index on the vertices table (V column) of the
connections graph in the SCOTT schema. Note that the Oracle Text index created
here is for all property keys, not just one or a subset of property keys. In addition, if a
new property is added to the graph and the property value is of String data type, then it
will automatically be included in the same text index.

The example uses the OPG_AUTO_LEXER lexer owned by MDSYS.

SQL> execute opg_apis.create_vertices_text_idx('scott', 'connections',
pref_owner=>'MDSYS', lexer=>'OPG_AUTO_LEXER', dop=>2);

If customization is desired, you can use the ctx_ddl.create_preference API. For
example:

SQL> -- The following requires access privilege to CTX_DDL
SQL> exec ctx_ddl.create_preference('SCOTT.OPG_AUTO_LEXER',
'AUTO_LEXER');

PL/SQL procedure successfully completed.

SQL> execute opg_apis.create_vertices_text_idx('scott', 'connections',
pref_owner=>'scott', lexer=>'OPG_AUTO_LEXER', dop=>2);

PL/SQL procedure successfully completed.

You can now use a rich set of functions provided by Oracle Text to perform queries
against graph elements.

Note:

If you no longer need an Oracle Text index, you can use the
drop_vertices_text_idx or opg_apis.drop_edges_text_idx API to drop it. The
following statements drop the text indexes on the vertices and edges of a
graph named connections owned by SCOTT:

SQL> exec opg_apis.drop_vertices_text_Idx('scott',
'connections');
SQL> exec opg_apis.drop_edges_text_Idx('scott', 'connections');

Example 4-7 Find a Vertex that Has a Property Value

The following example find a vertex that has a property value (of string type)
containing the keyword "Smith".

SQL> select vid, k, t, v
 from connectionsVT$
 where t=1
 and contains(v, 'Smith', 1) > 0

Chapter 4
Text Queries on Property Graphs

4-6

 order by score(1) desc
 ;

The output and SQL execution plan from the preceding statement may appear as
follows. Note that DOMAIN INDEX appears as an operation in the execution plan.

 1 name 1 Robert Smith

Execution Plan
--
Plan hash value: 1619508090

| Id | Operation | Name | Rows | Bytes |
Cost (%CPU) | Time | Pstart| Pstop |

| 0 | SELECT STATEMENT | | 1 | 56
| 5 (20) | 00:00:01 | | |
| 1 | SORT ORDER BY | | 1 | 56
| 5 (20) | 00:00:01 | | |
|* 2 | TABLE ACCESS BY GLOBAL INDEX ROWID| CONNECTIONSVT$ | 1 | 56
4 (0)	00:00:01	ROWID	ROWID
* 3	DOMAIN INDEX	CONNECTIONSXTV$	
4 (0)	00:00:01		

Predicate Information (identified by operation id):

 2 - filter("T"=1 AND INTERNAL_FUNCTION("K") AND INTERNAL_FUNCTION("V"))
 3 - access("CTXSYS"."CONTAINS"("V",'Smith',1)>0)

Example 4-8 Fuzzy Match

The following example finds a vertex that has a property value (of string type)
containing variants of "ameriian" (a deliberate misspelling for this example) Fuzzy
match is used.

SQL> select vid, k, t, v
 from connectionsVT$
 where contains(v, 'fuzzy(ameriian,,,weight)', 1) > 0
 order by score(1) desc;

The output and SQL execution plan from the preceding statement may appear as
follows.

 8 role 1 american business man
 9 role 1 american business man
 4 role 1 american economist
 6 role 1 american comedian actor
 7 role 1 american comedian actor
 1 occupation 1 44th president of United States of America

6 rows selected.

Execution Plan

Chapter 4
Text Queries on Property Graphs

4-7

--
Plan hash value: 1619508090

| Id | Operation | Name | Rows | Bytes |
Cost (%CPU)| Time | Pstart| Pstop |

| 0 | SELECT STATEMENT | | 1 | 56
| 5 (20)| 00:00:01 | | |
| 1 | SORT ORDER BY | | 1 | 56
| 5 (20)| 00:00:01 | | |
|* 2 | TABLE ACCESS BY GLOBAL INDEX ROWID| CONNECTIONSVT$ | 1 | 56
4 (0)	00:00:01	ROWID	ROWID
* 3	DOMAIN INDEX	CONNECTIONSXTV$	
4 (0)	00:00:01		

Predicate Information (identified by operation id):

 2 - filter(INTERNAL_FUNCTION("K") AND INTERNAL_FUNCTION("V"))

Example 4-9 Query Relaxation

The following example is a sophisticated Oracle Text query that implements query
relaxation, which enables you to execute the most restrictive version of a query first,
progressively relaxing the query until the required number of matches is obtained.
Using query relaxation with queries that contain multiple strings, you can provide
guidance for determining the “best” matches, so that these appear earlier in the results
than other potential matches.

This example searchs for "american actor" with a query relaxation sequence.

SQL> select vid, k, t, v
 from connectionsVT$
 where CONTAINS (v,
 '<query>
 <textquery lang="ENGLISH" grammar="CONTEXT">
 <progression>
 <seq>{american} {actor}</seq>
 <seq>{american} NEAR {actor}</seq>
 <seq>{american} AND {actor}</seq>
 <seq>{american} ACCUM {actor}</seq>
 </progression>
 </textquery>
 <score datatype="INTEGER" algorithm="COUNT"/>
 </query>') > 0;

The output and SQL execution plan from the preceding statement may appear as
follows.

 7 role 1 american comedian actor
 6 role 1 american comedian actor
 44 occupation 1 actor
 8 role 1 american business man

Chapter 4
Text Queries on Property Graphs

4-8

 53 occupation 1 actor film producer
 52 occupation 1 actor
 4 role 1 american economist
 47 occupation 1 actor
 9 role 1 american business man

9 rows selected.

Execution Plan
--
Plan hash value: 2158361449

| Id | Operation | Name | Rows | Bytes | Cost
(%CPU)| Time | Pstart| Pstop |

| 0 | SELECT STATEMENT | | 1 | 56
| 4 (0)| 00:00:01 | | |
|* 1 | TABLE ACCESS BY GLOBAL INDEX ROWID| CONNECTIONSVT$ | 1 | 56
4 (0)	00:00:01	ROWID	ROWID
* 2	DOMAIN INDEX	CONNECTIONSXTV$	
4 (0)	00:00:01		

Predicate Information (identified by operation id):

 1 - filter(INTERNAL_FUNCTION("K") AND INTERNAL_FUNCTION("V"))
 2 - access("CTXSYS"."CONTAINS"("V",'<query> <textquery lang="ENGLISH"
grammar="CONTEXT">
 <progression> <seq>{american} {actor}</seq> <seq>{american}
NEAR {actor}</seq>
 <seq>{american} AND {actor}</seq> <seq>{american} ACCUM
{actor}</seq> </progression>
 </textquery> <score datatype="INTEGER" algorithm="COUNT"/> </
query>')>0)

Example 4-10 Find an Edge

Just as with vertices, you can create an Oracle Text index on the V column
of the edges table (GE$) of a property graph. The following example uses the
OPG_AUTO_LEXER lexer owned by MDSYS.

SQL> exec opg_apis.create_edges_text_idx('scott', 'connections',
pref_owner=>'mdsys', lexer=>'OPG_AUTO_LEXER', dop=>4);

If customization is required, use the ctx_ddl.create_preference API.

4.3 Navigation and Graph Pattern Matching
A key benefit of using a graph data model is that you can easily navigate across
entities (people, movies, products, services, events, and so on) that are modeled
as vertices, following links and relationships modeled as edges. In addition, graph

Chapter 4
Navigation and Graph Pattern Matching

4-9

matching templates can be defined to do such things as detect patterns, aggregate
individuals, and analyze trends.

This topic provides graph navigation and pattern matching examples using the
example property graph named connections. Most of the SQL statements are
relatively simple, but they can be used as building blocks to implement requirements
that are more sophisticated. It is generally best to start from something simple, and
progressively add complexity.

Example 4-11 Who Are a Person's Collaborators?

The following SQL ststement finds all entities that a vertex with ID 1 collaborates with.
For simplicity, it considers only outgoing relationships.

SQL> select dvid, el, k, vn, v
 from connectionsGE$
 where svid=1
 and el='collaborates';

Note:

To find the specific vertex ID of interest, you can perform a text query on the
property graph using keywords or fuzzy matching. (For details and examples,
see Text Queries on Property Graphs.)

The preceding example's output and execution plan may be as follows.

 2 collaborates weight 1 1
 21 collaborates weight 1 1
 22 collaborates weight 1 1

 26 collaborates weight 1 1

10 rows selected.

--
| Id | Operation | Name | Rows |
Bytes | Cost (%CPU)| Time | Pstart| Pstop | TQ |IN-OUT| PQ Distrib |

--
| 0 | SELECT STATEMENT | | 10
460	2 (0)	00:00:01					
1	PX COORDINATOR						
2	PX SEND QC (RANDOM)	:TQ10000	10				
460	2 (0)	00:00:01			Q1,00	P->S	QC (RAND)
3	PX PARTITION HASH ALL		10				
460	2 (0)	00:00:01	1	8	Q1,00	PCWC	
* 4	TABLE ACCESS BY LOCAL INDEX ROWID BATCHED	CONNECTIONSGE$	10				
460	2 (0)	00:00:01	1	8	Q1,00	PCWP	
* 5	INDEX RANGE SCAN	CONNECTIONSXSE$	20				
	1 (0)	00:00:01	1	8	Q1,00	PCWP	

Chapter 4
Navigation and Graph Pattern Matching

4-10

--

Predicate Information (identified by operation id):

 4 - filter(INTERNAL_FUNCTION("EL") AND "EL"=U'collaborates' AND
INTERNAL_FUNCTION("K") AND INTERNAL_FUNCTION("V"))
 5 - access("SVID"=1)

Example 4-12 Who Are a Person's Collaborators and What are Their
Occupations?

The following SQL statement finds collaborators of the vertex with ID 1, and the
occupation of each collaborator. A join with the vertices table (VT$) is required.

SQL> select dvid, vertices.v
 from connectionsGE$, connectionsVT$ vertices
 where svid=1
 and el='collaborates'
 and dvid=vertices.vid
 and vertices.k='occupation';

The preceding example's output and execution plan may be as follows.

 21 67th United States Secretary of State
 22 68th United States Secretary of State
 23 chancellor
 28 7th president of Iran
 19 junior United States Senator from New York
...

| Id | Operation | Name | Rows
| Bytes | Cost (%CPU)| Time | Pstart| Pstop | TQ |IN-OUT| PQ Distrib |

| 0 | SELECT STATEMENT | | 7
525	7 (0)	00:00:01					
1	PX COORDINATOR						
2	PX SEND QC (RANDOM)	:TQ10000	7				
525	7 (0)	00:00:01			Q1,00	P->S	QC (RAND)
3	NESTED LOOPS		7				
525	7 (0)	00:00:01			Q1,00	PCWP	
4	PX PARTITION HASH ALL		10				
250	2 (0)	00:00:01	1	8	Q1,00	PCWC	
* 5	TABLE ACCESS BY LOCAL INDEX ROWID BATCHED	CONNECTIONSGE$	10				
250	2 (0)	00:00:01	1	8	Q1,00	PCWP	
* 6	INDEX RANGE SCAN	CONNECTIONSXSE$	20				
	1 (0)	00:00:01	1	8	Q1,00	PCWP	
7	PARTITION HASH ITERATOR		1				
	0 (0)	00:00:01	KEY	KEY	Q1,00	PCWP	
* 8	TABLE ACCESS BY LOCAL INDEX ROWID	CONNECTIONSVT$					
			KEY	KEY	Q1,00	PCWP	
* 9	INDEX UNIQUE SCAN	CONNECTIONSXQV$	1				
	0 (0)	00:00:01	KEY	KEY	Q1,00	PCWP	

Chapter 4
Navigation and Graph Pattern Matching

4-11

Predicate Information (identified by operation id):

 5 - filter(INTERNAL_FUNCTION("EL") AND "EL"=U'collaborates')
 6 - access("SVID"=1)
 8 - filter(INTERNAL_FUNCTION("VERTICES"."V"))
 9 - access("DVID"="VERTICES"."VID" AND "VERTICES"."K"=U'occupation')
 filter(INTERNAL_FUNCTION("VERTICES"."K"))

Example 4-13 Find a Person's Enemies and Aggregate Them by Their Country

The following SQL statement finds enemies (that is, those with the feuds relationship)
of the vertex with ID 1, and aggregates them by their countries. A join with the vertices
table (VT$) is required.

SQL> select vertices.v, count(1)
 from connectionsGE$, connectionsVT$ vertices
 where svid=1
 and el='feuds'
 and dvid=vertices.vid
 and vertices.k='country'
 group by vertices.v;

The example's output and execution plan may be as follows. In this case, the vertex
with ID 1 has 3 enemies in the United States and 1 in Russia.

United States 3
Russia 1

| Id | Operation | Name | Rows
| Bytes | Cost (%CPU)| Time | Pstart| Pstop | TQ |IN-OUT| PQ Distrib |

| 0 | SELECT STATEMENT | | 5
375	5 (20)	00:00:01					
1	PX COORDINATOR						
2	PX SEND QC (RANDOM)	:TQ10001	5				
375	5 (20)	00:00:01			Q1,01	P->S	QC (RAND)
3	HASH GROUP BY		5				
375	5 (20)	00:00:01			Q1,01	PCWP	
4	PX RECEIVE		5				
375	5 (20)	00:00:01			Q1,01	PCWP	
5	PX SEND HASH	:TQ10000	5				
375	5 (20)	00:00:01			Q1,00	P->P	HASH
6	HASH GROUP BY		5				
375	5 (20)	00:00:01			Q1,00	PCWP	
7	NESTED LOOPS		5				
375	4 (0)	00:00:01			Q1,00	PCWP	
8	PX PARTITION HASH ALL		5				
125	2 (0)	00:00:01	1	8	Q1,00	PCWC	
* 9	TABLE ACCESS BY LOCAL INDEX ROWID BATCHED	CONNECTIONSGE$	5				
125	2 (0)	00:00:01	1	8	Q1,00	PCWP	
* 10	INDEX RANGE SCAN	CONNECTIONSXSE$	20				

Chapter 4
Navigation and Graph Pattern Matching

4-12

| | 1 (0)| 00:00:01 | 1 | 8 | Q1,00 | PCWP | |
| 11 | PARTITION HASH ITERATOR | | 1
	0 (0)	00:00:01	KEY	KEY	Q1,00	PCWP	
* 12	TABLE ACCESS BY LOCAL INDEX ROWID	CONNECTIONSVT$					
			KEY	KEY	Q1,00	PCWP	
* 13	INDEX UNIQUE SCAN	CONNECTIONSXQV$	1				
	0 (0)	00:00:01	KEY	KEY	Q1,00	PCWP	

Predicate Information (identified by operation id):

 9 - filter(INTERNAL_FUNCTION("EL") AND "EL"=U'feuds')
 10 - access("SVID"=1)
 12 - filter(INTERNAL_FUNCTION("VERTICES"."V"))
 13 - access("DVID"="VERTICES"."VID" AND "VERTICES"."K"=U'country')
 filter(INTERNAL_FUNCTION("VERTICES"."K"))

Example 4-14 Find a Person's Collaborators, and aggregate and sort them

The following SQL statement finds the collaborators of the vertex with ID 1,
aggregates them by their country, and sorts them in ascending order.

SQL> select vertices.v, count(1)
 from connectionsGE$, connectionsVT$ vertices
 where svid=1
 and el='collaborates'
 and dvid=vertices.vid
 and vertices.k='country'
 group by vertices.v
 order by count(1) asc;

The example output and execution plan may be as follows. In this case, the vertex with
ID 1 has the most collaborators in the United States.

Germany 1
Japan 1
Iran 1
United States 7

| Id | Operation | Name |
Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop | TQ |IN-OUT| PQ
Distrib

| 0 | SELECT STATEMENT | |
10 | 750 | 9 (23)| 00:00:01 | | | | | |
| 1 | PX COORDINATOR |
| | | | | | | |
| |
| 2 | PX SEND QC (ORDER) | :TQ10002 |
10 | 750 | 9 (23)| 00:00:01 | | | Q1,02 | P->S | QC
(ORDER) |

Chapter 4
Navigation and Graph Pattern Matching

4-13

| 3 | SORT ORDER BY | |
10 | 750 | 9 (23)| 00:00:01 | | | Q1,02 | PCWP | |
| 4 | PX RECEIVE | |
10 | 750 | 9 (23)| 00:00:01 | | | Q1,02 | PCWP | |
| 5 | PX SEND RANGE | :TQ10001 |
10 | 750 | 9 (23)| 00:00:01 | | | Q1,01 | P->P | RANGE |
| 6 | HASH GROUP BY | |
10 | 750 | 9 (23)| 00:00:01 | | | Q1,01 | PCWP | |
| 7 | PX RECEIVE | |
10 | 750 | 9 (23)| 00:00:01 | | | Q1,01 | PCWP | |
| 8 | PX SEND HASH | :TQ10000 |
10 | 750 | 9 (23)| 00:00:01 | | | Q1,00 | P->P | HASH |
| 9 | HASH GROUP BY | |
10 | 750 | 9 (23)| 00:00:01 | | | Q1,00 | PCWP | |
| 10 | NESTED LOOPS | |
10 | 750 | 7 (0)| 00:00:01 | | | Q1,00 | PCWP | |
| 11 | PX PARTITION HASH ALL | |
10 | 250 | 2 (0)| 00:00:01 | 1 | 8 | Q1,00 | PCWC | |
|* 12 | TABLE ACCESS BY LOCAL INDEX ROWID BATCHED | CONNECTIONSGE$ |
10 | 250 | 2 (0)| 00:00:01 | 1 | 8 | Q1,00 | PCWP | |
|* 13 | INDEX RANGE SCAN | CONNECTIONSXSE$ |
20 | | 1 (0)| 00:00:01 | 1 | 8 | Q1,00 | PCWP | |
| 14 | PARTITION HASH ITERATOR |
| 1 | | 0 (0)| 00:00:01 | KEY | KEY | Q1,00 | PCWP
| |
|* 15 | TABLE ACCESS BY LOCAL INDEX ROWID | CONNECTIONSVT$
| | | | | KEY | KEY | Q1,00 | PCWP
| |
|* 16 | INDEX UNIQUE SCAN | CONNECTIONSXQV$
| 1 | | 0 (0)| 00:00:01 | KEY | KEY | Q1,00 | PCWP

Predicate Information (identified by operation id):

 12 - filter(INTERNAL_FUNCTION("EL") AND "EL"=U'collaborates')
 13 - access("SVID"=1)
 15 - filter(INTERNAL_FUNCTION("VERTICES"."V"))
 16 - access("DVID"="VERTICES"."VID" AND "VERTICES"."K"=U'country')
 filter(INTERNAL_FUNCTION("VERTICES"."K"))

4.4 Navigation Options: CONNECT BY and Parallel
Recursion

The CONNECT BY clause and parallel recursion provide options for advanced
navigation and querying.

• CONNECT BY lets you navigate and find matches in a hierarchical order. To follow
outgoing edges, you can use prior dvid = svid to guide the navigation.

• Parallel recursion lets you perform navigation up to a specified number of hops
away.

The examples use a property graph named connections.

Chapter 4
Navigation Options: CONNECT BY and Parallel Recursion

4-14

Example 4-15 CONNECT WITH

The following SQL statement follows the outgoing edges by 1 hop.

SQL> select G.dvid
 from connectionsGE$ G
 start with svid = 1
 connect by nocycle prior dvid = svid and level <= 1;

The preceding example's output and execution plan may be as follows.

 2
 3
 4
 5
 6
 7
 8
 9
 10
 ...

| Id | Operation | Name | Rows | Bytes | Cost
(%CPU)| Time | Pstart| Pstop | TQ |IN-OUT| PQ Distrib |

| 0 | SELECT STATEMENT | | 7 | 273 | 3
(67)| 00:00:01 | | | | | |
* 1	CONNECT BY WITH FILTERING				
2	PX COORDINATOR				
3	PX SEND QC (RANDOM)	:TQ10000	2	12	0
(0)	00:00:01			Q1,00	P->S
4	PX PARTITION HASH ALL		2	12	0
(0)	00:00:01	1	8	Q1,00	PCWC
* 5	INDEX RANGE SCAN	CONNECTIONSXSE$	2	12	0
(0)	00:00:01	1	8	Q1,00	PCWP
* 6	FILTER				
7	NESTED LOOPS		5	95	1
(0)	00:00:01				
8	CONNECT BY PUMP				
9	PARTITION HASH ALL		2	12	0
(0)	00:00:01	1	8		
* 10	INDEX RANGE SCAN	CONNECTIONSXSE$	2	12	0
(0)| 00:00:01 | 1 | 8 | | | |

Predicate Information (identified by operation id):

 1 - access("SVID"=PRIOR "DVID")
 filter(LEVEL<=2)
 5 - access("SVID"=1)
 6 - filter(LEVEL<=2)
 10 - access("connect$_by$_pump$_002"."prior dvid "="SVID")

Chapter 4
Navigation Options: CONNECT BY and Parallel Recursion

4-15

To extend from 1 hop to multiple hops, change 1 in the preceding example to another
integer. For example, to change it to 2 hops, specify: level <= 2

Example 4-16 Parallel Recursion

The following SQL statement uses recursion within the WITH clause to perform
navigation up to 4 hops away, a using recursively defined graph expansion: g_exp
references g_exp in the query, and that defines the recursion. The example also uses
the PARALLEL optimizer hint for parallel execution.

SQL> WITH g_exp(svid, dvid, depth) as
 (
 select svid as svid, dvid as dvid, 0 as depth
 from connectionsGE$
 where svid=1
 union all
 select g2.svid, g1.dvid, g2.depth + 1
 from g_exp g2, connectionsGE$ g1
 where g2.dvid=g1.svid
 and g2.depth <= 3
)
select /*+ parallel(4) */ dvid, depth
 from g_exp
 where svid=1
;

The example's output and execution plan may be as follows. Note that CURSOR
DURATION MEMORY is chosen in the execution, which indicates the graph expansion
stores the intermediate data in memory.

 22 4
 25 4
 24 4
 1 4

 23 4
 33 4
 22 4
 22 4

Execution Plan

| Id | Operation |
Name | Rows | Bytes | Cost (%CPU)| Time | Pstart|
Pstop | TQ |IN-OUT| PQ Distrib |

| 0 | SELECT STATEMENT
| | 801 | 31239 | 147 (0)| 00:00:01 |
| | | | |
| 1 | TEMP TABLE TRANSFORMATION
| | | | | |
| | | | |

Chapter 4
Navigation Options: CONNECT BY and Parallel Recursion

4-16

| 2 | LOAD AS SELECT (CURSOR DURATION MEMORY) |
SYS_TEMP_0FD9D6614_11CB2D2 | | | | |
| | | | |
| 3 | UNION ALL (RECURSIVE WITH) BREADTH FIRST
| | | | | |
| | | | |
| 4 | PX COORDINATOR
| | | | | |
| | | | |
| 5 | PX SEND QC (RANDOM)
:TQ20000	2	12	0 (0)	00:00:01
	Q2,00	P->S	QC (RAND)	
6	LOAD AS SELECT (CURSOR DURATION MEMORY)			
SYS_TEMP_0FD9D6614_11CB2D2				
	Q2,00	PCWP		
7	PX PARTITION HASH ALL			
	2	12	0 (0)	00:00:01
8	Q2,00	PCWC		
* 8	INDEX RANGE SCAN			
CONNECTIONSXSE$	2	12	0 (0)	00:00:01
8	Q2,00	PCWP		
9	PX COORDINATOR			
10	PX SEND QC (RANDOM)			
:TQ10000	799	12M	12 (0)	00:00:01
	Q1,00	P->S	QC (RAND)	
11	LOAD AS SELECT (CURSOR DURATION MEMORY)			
SYS_TEMP_0FD9D6614_11CB2D2				
	Q1,00	PCWP		
* 12	HASH JOIN			
	799	12M	12 (0)	00:00:01
	Q1,00	PCWP		
13	BUFFER SORT (REUSE)			
	Q1,00	PCWP		
14	PARTITION HASH ALL			
	164	984	2 (0)	00:00:01
8	Q1,00	PCWC		
15	INDEX FAST FULL SCAN			
CONNECTIONSXDE$	164	984	2 (0)	00:00:01
8	Q1,00	PCWP		
16	PX BLOCK ITERATOR			
	Q1,00	PCWC		
* 17	TABLE ACCESS FULL			
SYS_TEMP_0FD9D6614_11CB2D2				
	Q1,00	PCWP		
18	PX COORDINATOR			
19	PX SEND QC (RANDOM)			
:TQ30000	801	31239	135 (0)	00:00:01
	Q3,00	P->S	QC (RAND)	
* 20	VIEW			
	801	31239	135 (0)	00:00:01
	Q3,00	PCWP		
21	PX BLOCK ITERATOR			
	801	12M	135 (0)	00:00:01
	Q3,00	PCWC		
22	TABLE ACCESS FULL			

Chapter 4
Navigation Options: CONNECT BY and Parallel Recursion

4-17

SYS_TEMP_0FD9D6614_11CB2D2 | 801 | 12M| 135 (0)| 00:00:01 |
| | Q3,00 | PCWP | |

Predicate Information (identified by operation id):

 8 - access("SVID"=1)
 12 - access("G2"."DVID"="G1"."SVID")
 17 - filter("G2"."INTERNAL_ITERS$"=LEVEL AND "G2"."DEPTH"<=3)
 20 - filter("SVID"=1)

4.5 Pivot
The PIVOT clause lets you dynamically add columns to a table to create a new table.

The schema design (VT$ and GE$) of the property graph is narrow ("skinny") rather
than wide ("fat"). This means that if a vertex or edge has multiple properties, those
property keys, values, data types, and so on will be stored using multiple rows instead
of multiple columns. Such a design is very flexible in the sense that you can add
properties dynamically without having to worry about adding too many columns or
even reaching the physical maximum limit of number of columns a table may have.
However, for some applications you may prefer to have a wide table if the properties
are somewhat homogeneous.

Example 4-17 Pivot

The following CREATE TABLE ... AS SELECT statement uses PIVOT to add four
columns: ‘company’,’ occupation’,’ name’, and ‘religion’.

SQL> CREATE TABLE table pg_wide
as
 with G AS (select vid, k, t, v
 from connectionsVT$
)
 select *
 from G
 pivot (
 min(v) for k in ('company', 'occupation', 'name', 'religion')
);

Table created.

The following DESCRIBE statement shows the definition of the new table, including
the four added columns. (The output is reformatted for readability.)

SQL> DESCRIBE pg_wide;
 Name Null? Type
--- --------

 VID NOT NULL NUMBER
 T
NUMBER(38)
 'company'

Chapter 4
Pivot

4-18

NVARCHAR2(15000)
 'occupation'
NVARCHAR2(15000)
 'name'
NVARCHAR2(15000)
 'religion'
NVARCHAR2(15000)

4.6 SQL-Based Property Graph Analytics
In addition to the analytical functions offered by the in-memory analyst, the property
graph feature in Oracle Spatial and Graph supports several native, SQL-based
property graph analytics.

The benefits of SQL-based analytics are:

• Easier analysis of larger graphs that do not fit in physical memory

• Cheaper analysis since no graph data is transferred outside the database

• Better analysis using the current state of a property graph database

• Simpler analysis by eliminating the step of synchronizing an in-memory graph with
the latest updates from the graph database

However, when a graph (or a subgraph) fits in memory, then running analytics
provided by the in-memory analyst usually provides better performance than using
SQL-based analytics.

Because many of the analytics implementation require using intermediate data
structures, most SQL- (and PL/SQL-) based analytics APIs have parameters for
working tables (wt). A typical flow has the following steps:

1. Prepare the working table or tables.

2. Perform analytics (one or multiple calls).

3. Perform cleanup

The following subtopics provide SQL-based examples of some popular types of
property graph analytics.

• Shortest Path Examples

• Collaborative Filtering Overview and Examples

4.6.1 Shortest Path Examples
The following examples demonstrate SQL-based shortest path analytics.

Example 4-18 Shortest Path Setup and Computation

Consider shortest path, for example. Internally, Oracle Database uses the bidirectional
Dijkstra algorithm. The following code snippet shows an entire prepare, perform, and
cleanup workflow.

set serveroutput on

DECLARE

Chapter 4
SQL-Based Property Graph Analytics

4-19

 wt1 varchar2(100); -- intermediate working tables
 n number;
 path varchar2(1000);
 weights varchar2(1000);
BEGIN
 -- prepare
 opg_apis.find_sp_prep('connectionsGE$', wt1);
 dbms_output.put_line('working table name ' || wt1);

 -- compute
 opg_apis.find_sp(
 'connectionsGE$',
 1, -- start vertex ID
 53, -- destination vertex ID
 wt1, -- working table (for Dijkstra
expansion)
 dop => 1, -- degree of parallelism
 stats_freq=>1000, -- frequency to collect statistics
 path_output => path, -- shortest path (a sequence of
vertices)
 weights_output => weights, -- edge weights
 options => null
);
 dbms_output.put_line('path ' || path);
 dbms_output.put_line('weights ' || weights);

 -- cleanup (commented out here; see text after the example)
 -- opg_apis.find_sp_cleanup('connectionsGE$', wt1);
END;
/

This example may produce the following output. Note that if no working table name is
provided, the preparation step will automatically generate a temporary table name and
create it. Because the temporary working table name uses the session ID, your output
will probably be different.

working table name "CONNECTIONSGE$$TWFS12"
path 1 3 52 53
weights 4 3 1 1 1

PL/SQL procedure successfully completed.

If you want to know the definition of the working table or tables, then skip the
cleanup phase (as shown in the preceding example that comments out the call to
find_sp_cleanup). After the computation is done, you can describe the working table
or tables.

SQL> describe "CONNECTIONSGE$$TWFS12"
 Name Null? Type
 --------- -------- ----------------------------
 NID NUMBER
 D2S NUMBER
 P2S NUMBER
 D2T NUMBER
 P2T NUMBER

Chapter 4
SQL-Based Property Graph Analytics

4-20

 F NUMBER(38)
 B NUMBER(38)

For advanced users who want to try different table creation options, such as using
in-memory or advanced compression, you can pre-create the preceding working table
and pass the name in.

Example 4-19 Shortest Path: Create Working Table and Perform Analytics

The following statements show some advanced options, first creating a working table
with the same column structure and basic compression enabled, then passing it to the
SQL-based computation. The code optimizes the intermediate table for computations
with CREATE TABLE compression and in-memory options.

create table connections$MY_EXP(
 NID NUMBER,
 D2S NUMBER,
 P2S NUMBER,
 D2T NUMBER,
 P2T NUMBER,
 F NUMBER(38),
 B NUMBER(38)
) compress nologging;

DECLARE
 wt1 varchar2(100) := 'connections$MY_EXP';
 n number;
 path varchar2(1000);
 weights varchar2(1000);
BEGIN
 dbms_output.put_line('working table name ' || wt1);

 -- compute
 opg_apis.find_sp(
 'connectionsGE$',
 1,
 53,
 wt1,
 dop => 1,
 stats_freq=>1000,
 path_output => path,
 weights_output => weights,
 options => null
);
 dbms_output.put_line('path ' || path);
 dbms_output.put_line('weights ' || weights);

 -- cleanup
 -- opg_apis.find_sp_cleanup('connectionsGE$', wt1);
END;
/

Chapter 4
SQL-Based Property Graph Analytics

4-21

At the end of the computation, if the working table has not been dropped or truncated,
you can check the content of the working table, as follows. Note that the working table
structure may vary between releases.

SQL> select * from connections$MY_EXP;
 NID D2S P2S D2T P2T
F B
---------- ---------- ---------- ---------- ---------- ----------

 1 0 1.000E+100
1 -1
 53 1.000E+100 0
-1 1
 54 1.000E+100 1 53
-1 1
 52 1.000E+100 1 53
-1 1
 5 1 1 1.000E+100
0 -1
 26 1 1 1.000E+100
0 -1
 8 1000 1 1.000E+100
0 -1
 3 1 1 2 52
0 0
 15 1 1 1.000E+100
0 -1
 21 1 1 1.000E+100
0 -1
 19 1 1 1.000E+100
0 -1
 ...

Example 4-20 Shortest Path: Perform Multiple Calls to Same Graph

To perform multiple calls to the same graph, only a single call to the preparation step is
needed. The following shows an example of computing shortest path for multiple pairs
of vertices in the same graph.

DECLARE
 wt1 varchar2(100); -- intermediate working tables
 n number;
 path varchar2(1000);
 weights varchar2(1000);
BEGIN
 -- prepare
 opg_apis.find_sp_prep('connectionsGE$', wt1);
 dbms_output.put_line('working table name ' || wt1);

 -- find shortest path from vertex 1 to vertex 53
 opg_apis.find_sp('connectionsGE$', 1, 53,
 wt1, dop => 1, stats_freq=>1000, path_output => path,
weights_output => weights, options => null);
 dbms_output.put_line('path ' || path);
 dbms_output.put_line('weights ' || weights);

Chapter 4
SQL-Based Property Graph Analytics

4-22

 -- find shortest path from vertex 2 to vertex 36
 opg_apis.find_sp('connectionsGE$', 2, 36,
 wt1, dop => 1, stats_freq=>1000, path_output => path,
weights_output => weights, options => null);
 dbms_output.put_line('path ' || path);
 dbms_output.put_line('weights ' || weights);

 -- find shortest path from vertex 30 to vertex 4
 opg_apis.find_sp('connectionsGE$', 30, 4,
 wt1, dop => 1, stats_freq=>1000, path_output => path,
weights_output => weights, options => null);
 dbms_output.put_line('path ' || path);
 dbms_output.put_line('weights ' || weights);

 -- cleanup
 opg_apis.find_sp_cleanup('connectionsGE$', wt1);
END;
/

The example's output may be as follows: three shortest paths have been found for the
multiple pairs of vertices provided.

working table name "CONNECTIONSGE$$TWFS12"
path 1 3 52 53
weights 4 3 1 1 1
path 2 36
weights 2 1 1
path 30 21 1 4
weights 4 3 1 1 1

PL/SQL procedure successfully completed.

4.6.2 Collaborative Filtering Overview and Examples
Collaborative filtering, also referred to as social filtering, filters information by using the
recommendations of other people. Collaborative filtering is widely used in systems that
recommend purchases based on purchases by others with similar preferences.

The following examples demonstrate SQL-based collaborative filtering analytics.

Example 4-21 Collaborative Filtering Setup and Computation

This example shows how to use SQL-based collaborative filtering, specifically using
matrix factorization to recommend telephone brands to customers. This example
assumes there exists a graph called "PHONES" in the database. This example graph
contains customer and item vertices, and edges with a 'rating' label linking some
customer vertices to other some item vertices. The rating labels have a numeric value
corresponding to the rating that a specific customer (edge OUT vertex) assigned to the
specified product (edge IN vertex).

The following figure shows this graph.

Chapter 4
SQL-Based Property Graph Analytics

4-23

http://recommender-systems.org/collaborative-filtering/

Figure 4-1 Phones Graph for Collaborative Filtering

set serveroutput on

DECLARE
 wt_l varchar2(32); -- working tables
 wt_r varchar2(32);
 wt_l1 varchar2(32);
 wt_r1 varchar2(32);
 wt_i varchar2(32);
 wt_ld varchar2(32);
 wt_rd varchar2(32);
 edge_tab_name varchar2(32) := 'phonesge$';
 edge_label varchar2(32) := 'rating';
 rating_property varchar2(32) := '';
 iterations integer := 100;
 min_error number := 0.001;
 k integer := 5;
 learning_rate number := 0.001;
 decrease_rate number := 0.95;
 regularization number := 0.02;
 dop number := 2;
 tablespace varchar2(32) := null;
 options varchar2(32) := null;
BEGIN

 -- prepare

opg_apis.cf_prep(edge_tab_name,wt_l,wt_r,wt_l1,wt_r1,wt_i,wt_ld,wt_rd);
 dbms_output.put_line('working table wt_l ' || wt_l);
 dbms_output.put_line('working table wt_r ' || wt_r);
 dbms_output.put_line('working table wt_l1 ' || wt_l1);
 dbms_output.put_line('working table wt_r1 ' || wt_r1);
 dbms_output.put_line('working table wt_i ' || wt_i);
 dbms_output.put_line('working table wt_ld ' || wt_ld);
 dbms_output.put_line('working table wt_rd ' || wt_rd);

 -- compute

Chapter 4
SQL-Based Property Graph Analytics

4-24

 opg_apis.cf(edge_tab_name,edge_label,rating_property,iterations,

min_error,k,learning_rate,decrease_rate,regularization,dop,

wt_l,wt_r,wt_l1,wt_r1,wt_i,wt_ld,wt_rd,tablespace,options);
END;
/

no

working table wt_l "PHONESGE$$CFL57"
working table wt_r "PHONESGE$$CFR57"
working table wt_l1 "PHONESGE$$CFL157"
working table wt_r1 "PHONESGE$$CFR157"
working table wt_i "PHONESGE$$CFI57"
working table wt_ld "PHONESGE$$CFLD57"
working table wt_rd "PHONESGE$$CFRD57"

PL/SQL procedure successfully completed.

Example 4-22 Collaborative Filtering: Validating the Intermediate Error

At the end of every computation, you can check the current error of the algorithm with
the following query as long as the data in the working tables has not been already
deleted. The following SQL query illustrates how to get the intermediate error of a
current run of the collaborative filtering algorithm.

SELECT /*+ parallel(48) */ SQRT(SUM((w1-w2)*(w1-w2) +
 <regularization>/2 * (err_reg_l+err_reg_r))) AS err
 FROM <wt_i>;

Note that the regularization parameter and the working table name (parameter wt_i)
should be replaced according to the values used when running the OPG_APIS.CF
algorithm. In the preceding previous example, replace <regularization> with 0.02
and <wt_i> with "PHONESGE$$CFI149" as follows:

SELECT /*+ parallel(48) */ SQRT(SUM((w1-w2)*(w1-w2) + 0.02/2 *
(err_reg_l+err_reg_r))) AS err
 FROM "PHONESGE$$CFI149";

This query may produce the following output.

 ERR

4.82163662

f the value of the current error is too high or if the predictions obtained from the
matrix factorization results of the collaborative filtering are not yet useful, you can run
more iterations of the algorithm, by reusing the working tables and the progress made
so far. The following example shows how to make predictions using the SQL-based
collaborative filtering.

Chapter 4
SQL-Based Property Graph Analytics

4-25

Example 4-23 Collaborative Filtering: Making Predictions

The result of the collaborative filtering algorithm is stored in the tables wt_l and wt_r,
which are the two factors of a matrix product. These matrix factors should be used
when making the predictions of the collaborative filtering.

In a typical flow of the algorithm, the two matrix factors can be used to make
the predictions before calling the OPG_APIS.CF_CLEANUP procedure, or they can
be copied and persisted into other tables for later use. The following example
demonstrates the latter case:

DECLARE
 wt_l varchar2(32); -- working tables
 wt_r varchar2(32);
 wt_l1 varchar2(32);
 wt_r1 varchar2(32);
 wt_i varchar2(32);
 wt_ld varchar2(32);
 wt_rd varchar2(32);
 edge_tab_name varchar2(32) := 'phonesge$';
 edge_label varchar2(32) := 'rating';
 rating_property varchar2(32) := '';
 iterations integer := 100;
 min_error number := 0.001;
 k integer := 5;
 learning_rate number := 0.001;
 decrease_rate number := 0.95;
 regularization number := 0.02;
 dop number := 2;
 tablespace varchar2(32) := null;
 options varchar2(32) := null;
BEGIN

 -- prepare

opg_apis.cf_prep(edge_tab_name,wt_l,wt_r,wt_l1,wt_r1,wt_i,wt_ld,wt_rd);

 -- compute
 opg_apis.cf(edge_tab_name,edge_label,rating_property,iterations,

min_error,k,learning_rate,decrease_rate,regularization,dop,

wt_l,wt_r,wt_l1,wt_r1,wt_i,wt_ld,wt_rd,tablespace,options);

 -- save only these two tables for later predictions
 EXECUTE IMMEDIATE 'CREATE TABLE customer_mat AS SELECT * FROM ' ||
wt_l;
 EXECUTE IMMEDIATE 'CREATE TABLE item_mat AS SELECT * FROM ' || wt_r;

 -- cleanup

opg_apis.cf_cleanup('phonesge$',wt_l,wt_r,wt_l1,wt_r1,wt_i,wt_ld,wt_rd);
END;
/

Chapter 4
SQL-Based Property Graph Analytics

4-26

This example will produce the only the following output.

PL/SQL procedure successfully completed.

Now that the matrix factors are saved in the tables customer_mat and item_mat,
you can use the following query to check the "error" (difference) between the real
values (those values that previously existed in the graph as 'ratings') and the estimated
predictions (the result of the matrix multiplication in a certain customer row and item
column).

Note that the following query is customized with a join on the vertex table in order
return an NVARCHAR property of the vertices (for example, the name property)
instead of a numeric ID. This query will return all the predictions for every single
customer vertex to every item vertex in the graph.

SELECT /*+ parallel(48) */ MIN(vertex1.v) AS customer,
 MIN(vertex2.v) AS item,
 MIN(edges.vn) AS real,
 SUM(l.v * r.v) AS predicted
FROM PHONESGE$ edges,
 CUSTOMER_MAT l,
 ITEM_MAT r,
 PHONESVT$ vertex1,
 PHONESVT$ vertex2
WHERE l.k = r.k
 AND l.c = edges.svid(+)
 AND r.p = edges.dvid(+)
 AND l.c = vertex1.vid
 AND r.p = vertex2.vid
GROUP BY l.c, r.p
ORDER BY l.c, r.p -- This order by clause is optional
;

This query may produce an output similar to the following (some rows are omitted for
brevity).

CUSTOMER ITEM REAL PREDICTED
--
Adam Apple 5 3.67375703
Adam Blackberry 3.66079652
Adam Danger 2.77049596
Adam Ericsson 4.21764858
Adam Figo 3.10631337
Adam Google 4 4.42429022
Adam Huawei 3 3.4289115
Ben Apple 2.82127589
Ben Blackberry 2 2.81132282
Ben Danger 3 2.12761307
Ben Ericsson 3 3.2389595
Ben Figo 2.38550534
Ben Google 3.39765075
Ben Huawei 2.63324582
...
Don Apple 1.3777496
Don Blackberry 1 1.37288909
Don Danger 1 1.03900439
Don Ericsson 1.58172236
Don Figo 1 1.16494421

Chapter 4
SQL-Based Property Graph Analytics

4-27

Don Google 1.65921807
Don Huawei 1 1.28592648
Erik Apple 3 2.80809351
Erik Blackberry 3 2.79818695
Erik Danger 2.11767182
Erik Ericsson 3 3.2238255
Erik Figo 2.3743591
Erik Google 3 3.38177526
Erik Huawei 3 2.62094201

If you want to check only some rows to decide whether the prediction results are ready
or more iterations of the algorithm should be run, the previous query can be wrapped
in an outer query. The following example will select only the first 11 results.

SELECT /*+ parallel(48) */ * FROM (
SELECT /*+ parallel(48) */ MIN(vertex1.v) AS customer,
 MIN(vertex2.v) AS item,
 MIN(edges.vn) AS real,
 SUM(l.v * r.v) AS predicted
FROM PHONESGE$ edges,
 CUSTOMER_MAT l,
 ITEM_MAT r,
 PHONESVT$ vertex1,
 PHONESVT$ vertex2
WHERE l.k = r.k
 AND l.c = edges.svid(+)
 AND r.p = edges.dvid(+)
 AND l.c = vertex1.vid
 AND r.p = vertex2.vid
GROUP BY l.c, r.p
ORDER BY l.c, r.p
) WHERE rownum <= 11;

This query may produce an output similar to the following.

CUSTOMER ITEM REAL PREDICTED
--
Adam Apple 5 3.67375703
Adam Blackberry 3.66079652
Adam Danger 2.77049596
Adam Ericsson 4.21764858
Adam Figo 3.10631337
Adam Google 4 4.42429022
Adam Huawei 3 3.4289115
Ben Apple 2.82127589
Ben Blackberry 2 2.81132282
Ben Danger 3 2.12761307
Ben Ericsson 3 3.2389595

To get a prediction for a specific vertex (customer, item, or both) the query can be
restricted with the desired ID values. For example, to get the predicted value of vertex
1 (customer) and vertex 105 (item), you can use the following query.

SELECT /*+ parallel(48) */ MIN(vertex1.v) AS customer,
 MIN(vertex2.v) AS item,
 MIN(edges.vn) AS real,
 SUM(l.v * r.v) AS predicted

Chapter 4
SQL-Based Property Graph Analytics

4-28

FROM PHONESGE$ edges,
 CUSTOMER_MAT l,
 ITEM_MAT r,
 PHONESVT$ vertex1,
 PHONESVT$ vertex2
WHERE l.k = r.k
 AND l.c = edges.svid(+)
 AND r.p = edges.dvid(+)
 AND l.c = vertex1.vid
 AND vertex1.vid = 1 /* Remove to get all predictions for item 105 */
 AND r.p = vertex2.vid
 AND vertex2.vid = 105 /* Remove to get all predictions for customer 1
*/
 /* Remove both lines to get all predictions */
GROUP BY l.c, r.p
ORDER BY l.c, r.p;

This query may produce an output similar to the following.

CUSTOMER ITEM REAL PREDICTED
--
Adam Ericsson 4.21764858

Chapter 4
SQL-Based Property Graph Analytics

4-29

5
Property Graph Query Language (PGQL)

PGQL is a SQL-like query language for property graph data structures that consist
of vertices that are connected to other vertices by edges, each of which can have
key-value pairs (properties) associated with them.

The language is based on the concept of graph pattern matching, which allows you to
specify patterns that are matched against vertices and edges in a data graph.

The property graph support provides two ways to execute Property Graph Query
Language (PGQL) queries through Java APIs:

• Use the oracle.pgx.api Java package to query an in-memory snapshot of a
graph that has been loaded into the in-memory analyst (PGX), as described in
Using the In-Memory Graph Server (PGX).

• Use the oracle.pg.rdbms.pgql Java package to directly query graph data stored
in Oracle Database, as described in Executing PGQL Queries Directly Against
Oracle Database.

For more information about PGQL, see https://pgql-lang.org.

• Creating a Property Graph using PGQL

• Creating Property Graph Views Using PGQL

• Pattern Matching with PGQL

• Edge Patterns Have a Direction with PGQL

• Vertex and Edge Labels with PGQL

• Variable-Length Paths with PGQL

• Aggregation and Sorting with PGQL

• Executing PGQL Queries Against the In-Memory Graph Server (PGX)
This section describes the Java APIs that are used to execute PGQL queries in
the In-Memory graph server (PGX).

• Executing PGQL Queries Directly Against Oracle Database
This topic explains how you can execute PGQL queries directly against the graph
in Oracle Database (as opposed to in-memory).

5.1 Creating a Property Graph using PGQL
CREATE PROPERTY GRAPH is a PGQL DDL statement to create a graph from
database tables. The graph is stored in the property graph schema.

The CREATE PROPERTY GRAPH statement starts with the name you give the graph,
followed by a set of vertex tables and edge tables. The graph can have no vertex
tables or edge tables (an empty graph), or vertex tables and no edge tables (a graph
with only vertices and no edges), or both vertex tables and edge tables (a graph with
vertices and edges). However, a graph cannot be specified with only edge tables and
no vertex tables.

5-1

https://pgql-lang.org

Consider the following example:

• PERSONS is a table with columns ID, NAME, and ACCOUNT_NUMBER. A row is
added to this table for every person who has an account.

• TRANSACTIONS is a table with columns FROM_ACCOUNT, TO_ACCOUNT,
DATE, and AMOUNT. A row is added into this table in the database every time
money is transferred from a FROM_ACCOUNT to a TO_ACCOUNT.

A straightforward mapping of tables to graphs is as follows. The graph concepts
mapped are: vertices, edges, labels, properties.

• Vertex tables: A table that contains data entities is a vertex table.

– Each row in the vertex table is a vertex.

– The columns in the vertex table are properties of the vertex.

– The name of the vertex table is the default label for this set of vertices.
Alternatively, you can specify a label name as part of the CREATE
PROPERTY GRAPH statement.

• Edge tables: An edge table can be any table that links two vertex tables, or a
table that has data that indicates an action from a source entity to a target entity.
For example, a transfer of money from FROM_ACCOUNT to TO_ACCOUNT is a
natural edge.

– Foreign key relationships can give guidance on what links are relevant in
your data. CREATE PROPERTY GRAPH will default to using foreign key
relationships to identify edges.

– Some of the properties of an edge table can be the properties of the edge.
For example, an edge from FROM_ACCOUNT to TO_ACCOUNT can have
properties DATE and AMOUNT.

– The name of an edge table is the default label for this set of edges.
Alternatively, you can specify a label name as part of the CREATE
PROPERTY GRAPH statement.

• Keys:

– Keys in a vertex table: The key of a vertex table identifies a unique vertex
in the graph. The key can be specified in the CREATE PROPERTY GRAPH
statement; otherwise, it defaults to the primary key of the table. If there are
duplicate rows in the table, the CREATE PROPERTY GRAPH statement will
return an error.

– Key in an edge table: The key of an edge table uniquely identifies an edge
in the graph. The KEY clause when specifying source and destination vertices
uniquely identifies the source and destination vertices.

The following is an example CREATE PROPERTY GRAPH statement for the
tables PERSONS and TRANSACTIONS.

CREATE PROPERTY GRAPH bank_transfers
 VERTEX TABLES (persons KEY(account_number))
 EDGE TABLES(
 transactions KEY (from_acct, to_acct, date,
amount)
 SOURCE KEY (from_account) REFERENCES persons
 DESTINATION KEY (to_account) REFERENCES persons

Chapter 5
Creating a Property Graph using PGQL

5-2

 PROPERTIES (date, amount)
)

• Table aliases: Vertex and edge tables must have unique names. If you need
to identify multiple vertex tables from the same relational table, or multiple edge
tables from the same relational table, you must use aliases. For example, you can
create two vertex tables PERSONS and PERSONS_ID from one table PERSONS,
as in the following example.

CREATE PROPERTY GRAPH bank_transfers
 VERTEX TABLES (persons KEY(account_number)
 persons_id AS persons KEY(id))

• REFERENCES clause: This connects the source and destination vertices of an
edge to the corresponding vertex tables.

For more details, see: https://pgql-lang.org/spec/latest/#creating-a-property-graph.

5.2 Creating Property Graph Views Using PGQL
You can create property graphs views on relational database tables.

The CREATE PROPERTY GRAPH statement in PGQL is used to create the property graph
views.

See Example 2-1 for an example of a CREATE PROPERTY GRAPH statement used to
create a property graph view.

The Java API in oracle.pg.rdbms.pgql package provides support for executing
PGQL queries with a few exceptions.

Creation of property graph views is not supported when using SQLcl. However, once
created, you can query property graph views with PGQL SELECT statements in SQLcl.
Both creation and querying of property graph views are not supported when using
Python API, or the graph visualization tool.

Also, the following PGQL SELECT features are not supported:

• Recursive queries

• Subqueries

• in_degree and out_degree functions

• Bind variables

5.3 Pattern Matching with PGQL
Pattern matching is done by specifying one or more path patterns in the MATCH
clause. A single path pattern matches a linear path of vertices and edges, while more
complex patterns can be matched by combining multiple path patterns, separated
by comma. Value expressions (similar to their SQL equivalents) are specified in the
WHERE clause and let you filter out matches, typically by specifying constraints on the
properties of the vertices and edges

Chapter 5
Creating Property Graph Views Using PGQL

5-3

https://pgql-lang.org/spec/latest/#creating-a-property-graph

For example, assume a graph of TCP/IP connections on a computer network, and
you want to detect cases where someone logged into one machine, from there into
another, and from there into yet another. You would query for that pattern like this:

SELECT id(host1) AS id1, id(host2) AS id2, id(host3) AS id3 /*
choose what to return */
FROM MATCH
 (host1) -[connection1]-> (host2) -[connection2]-> (host3) /*
single linear path pattern to match */
WHERE
 connection1.toPort = 22 AND connection1.opened = true AND
 connection2.toPort = 22 AND connection2.opened = true AND
 connection1.bytes > 300 AND /*
meaningful amount of data was exchanged */
 connection2.bytes > 300 AND
 connection1.start < connection2.start AND /*
second connection within time-frame of first */
 connection2.start + connection2.duration < connection1.start +
connection1.duration
GROUP BY id1, id2, id3 /*
aggregate multiple matching connections */

For more examples of pattern matching, see the relevant section of the PGQL
specification.

5.4 Edge Patterns Have a Direction with PGQL
An edge pattern has a direction, as edges in graphs do. Thus, (a) <-[]-
(b) specifies a case where b has an edge pointing at a, whereas (a) -[]-> (b) looks
for an edge in the opposite direction.

The following example finds common friends of April and Chris who are older than
both of them.

SELECT friend.name, friend.dob
FROM MATCH /* note the arrow directions below */
 (p1:person) -[:likes]-> (friend) <-[:likes]- (p2:person)
WHERE
 p1.name = 'April' AND p2.name ='Chris' AND
 friend.dob > p1.dob AND friend.dob > p2.dob
ORDER BY friend.dob DESC

For more examples of edge patterns, see the relevant section of the PGQL
specification here.

Chapter 5
Edge Patterns Have a Direction with PGQL

5-4

https://pgql-lang.org/spec/latest/#writing-simple-queries
https://pgql-lang.org/spec/latest/#writing-simple-queries
http://pgql-lang.org/spec/latest/#edge-patterns

5.5 Vertex and Edge Labels with PGQL
Labels are a way of attaching type information to edges and nodes in a graph, and
can be used in constraints in graphs where not all nodes represent the same thing. For
example:

SELECT p.name
FROM MATCH (p:person) -[e1:likes]-> (m1:movie),
 MATCH (p) -[e2:likes]-> (m2:movie)
WHERE m1.title = 'Star Wars'
 AND m2.title = 'Avatar'

For more examples of label expressions, see the relevant section of the PGQL
specification here.

5.6 Variable-Length Paths with PGQL
Variable-length path patterns have a quantifier like * to match a variable number of
vertices and edges. Using a PATH macro, you can specify a named path pattern at the
start of a query that can be embedded into the MATCH clause any number of times,
by referencing its name. The following example finds all of the common ancestors of
Mario and Luigi.

PATH has_parent AS () -[:has_father|has_mother]-> ()
SELECT ancestor.name
FROM MATCH (p1:Person) -/:has_parent*/-> (ancestor:Person)
 , MATCH (p2:Person) -/:has_parent*/-> (ancestor)
WHERE
 p1.name = 'Mario' AND
 p2.name = 'Luigi'

The preceding path specification also shows the use of anonymous constraints,
because there is no need to define names for intermediate edges or nodes that will
not be used in additional constraints or query results. Anonymous elements can have
constraints, such as [:has_father|has_mother] -- the edge does not get a variable
name (because it will not be referenced elsewhere), but it is constrained.

For more examples of variable-length path pattern matching, see the relevant section
of the PGQL specification here.

5.7 Aggregation and Sorting with PGQL
Like SQL, PGQL has support for the following:

• GROUP BY to create groups of solutions

• MIN, MAX, SUM, and AVG aggregations

• ORDER BY to sort results

And for many other familiar SQL constructs.

Chapter 5
Vertex and Edge Labels with PGQL

5-5

http://pgql-lang.org/spec/latest/#label-expressions
http://pgql-lang.org/spec/latest/#reachability

For GROUP BY and aggregation, see the relevant section of the PGQL specification
here. For ORDER BY, see the relevant section of the PGQL specification here.

5.8 Executing PGQL Queries Against the In-Memory Graph
Server (PGX)

This section describes the Java APIs that are used to execute PGQL queries in the
In-Memory graph server (PGX).

• Getting Started with PGQL

• Supported PGQL Features
The In-Memory graph server (PGX) supports all PGQL features except DROP
PROPERTY GRAPH.

• Java APIs for Executing CREATE PROPERTY GRAPH Statements

• Java APIs for Executing SELECT Queries
This section describes the APIs to execute SELECT queries in the In-Memory graph
server (PGX).

• Java APIs for Executing UPDATE Queries
The UPDATE queries make changes to existing graphs using the INSERT, UPDATE,
and DELETE operations as detailed in the section Graph Modification of the PGQL
1.3 specification.

• Security Tools for Executing PGQL Queries
To safeguard against query injection, bind variables can be used in place of literals
while printIdentifier(String identifier) can be used in place of identifiers
like graph names, labels, and property names.

• Best Practices for Tuning PGQL Queries
This section describes best practices regarding memory allocation, parallelism,
and query planning.

5.8.1 Getting Started with PGQL
This section provides an example on how to get started with PGQL. It assumes a
database realm that has been previously set up (follow the steps in 3.1.1 Prepare the
Graph Server for Database Authentication). It also assumes that the user has read
access to the HR schema.

First, create a graph with employees, departments, and employee works at
department, by executing a CREATE PROPERTY GRAPH statement.

Example 5-1 Creating a graph in the in-memory graph server (PGX)

The following statement creates a graph in the in-memory graph server (PGX)

String statement =
 "CREATE PROPERTY GRAPH hr_simplified "
 + " VERTEX TABLES ("
 + " hr.employees LABEL employee "
 + " PROPERTIES ARE ALL COLUMNS EXCEPT (job_id, manager_id,
department_id), "
 + " hr.departments LABEL department "
 + " PROPERTIES (department_id, department_name) "

Chapter 5
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

5-6

http://pgql-lang.org/spec/latest/#grouping-and-aggregation
http://pgql-lang.org/spec/latest/#sorting-and-row-limiting

 + ") "
 + " EDGE TABLES ("
 + " hr.employees AS works_at "
 + " SOURCE KEY (employee_id) REFERENCES employees "
 + " DESTINATION departments "
 + " PROPERTIES (employee_id) "
 + ")";
session.executePgql(statement);

/**
 * To get a handle to the graph, execute:
 */
PgxGraph g = session.getGraph("HR_SIMPLIFIED");

/**
 * You can use this handle to run PGQL queries on this graph.
 * For example, to find the department that “Nandita Sarchand” works
for, execute:
 */
String query =
 "SELECT dep.department_name "
 + "FROM MATCH (emp:Employee) -[:works_at]-> (dep:Department) "
 + "WHERE emp.first_name = 'Nandita' AND emp.last_name = 'Sarchand' "
 + "ORDER BY 1";
PgqlResultSet resultSet = g.queryPgql(query);
resultSet.print();
+-----------------+
| department_name |
+-----------------+
| Shipping |
+-----------------+

/**
 * To get an overview of the types of vertices and their frequencies,
execute:
 */
String query =
 "SELECT label(n), COUNT(*) "
 + "FROM MATCH (n) "
 + "GROUP BY label(n) "
 + "ORDER BY COUNT(*) DESC";
PgqlResultSet resultSet = g.queryPgql(query);
resultSet.print();

+-----------------------+
| label(n) | COUNT(*) |
+-----------------------+
| EMPLOYEE | 107 |
| DEPARTMENT | 27 |
+-----------------------+

/**
 *To get an overview of the types of edges and their frequencies,
execute:
 */

Chapter 5
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

5-7

 String query =
 "SELECT label(n) AS srcLbl, label(e) AS edgeLbl, label(m) AS
dstLbl, COUNT(*) "
 + "FROM MATCH (n) -[e]-> (m) "
 + "GROUP BY srcLbl, edgeLbl, dstLbl "
 + "ORDER BY COUNT(*) DESC";
PgqlResultSet resultSet = g.queryPgql(query);
resultSet.print();

+---+
| srcLbl | edgeLbl | dstLbl | COUNT(*) |
+---+
| EMPLOYEE | WORKS_AT | DEPARTMENT | 106 |
+---+

5.8.2 Supported PGQL Features
The In-Memory graph server (PGX) supports all PGQL features except DROP PROPERTY
GRAPH.

Few features have certain limitations that are described below.

• Limitations on Quantifiers
Although all quantifiers such as *, +, and {1,4} are supported for reachability
patterns, the only quantifier that is supported for shortest and cheapest path
patterns is * (zero or more).

• Limitations on WHERE and COST Clauses in Quantified Patterns

5.8.2.1 Limitations on Quantifiers
Although all quantifiers such as *, +, and {1,4} are supported for reachability patterns,
the only quantifier that is supported for shortest and cheapest path patterns is * (zero
or more).

5.8.2.2 Limitations on WHERE and COST Clauses in Quantified Patterns
The WHERE and COST clauses in quantified patterns, such as reachability patterns or
shortest and cheapest path patterns, are limited to referencing a single variable only.

The following are examples of queries that are not supported because the WHERE or
COST clauses reference two variables e and x instead of zero or one:

... PATH p AS (n) –[e]-> (m) WHERE e.prop > m.prop ...

... SHORTEST ((n) (-[e]-> (x) WHERE e.prop + x.prop > 10)* (m)) ...

... CHEAPEST ((n) (-[e]-> (x) COST e.prop + x.prop)* (m)) ...

Chapter 5
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

5-8

The following query is supported because the subquery only references a single
variable a from the outer scope, while the variable c does not count since it is newly
introduced in the subquery:

... PATH p AS (a) -> (b)
 WHERE EXISTS (SELECT * FROM MATCH (a) -> (c)) ...

5.8.3 Java APIs for Executing CREATE PROPERTY GRAPH
Statements

The easiest way to execute a CREATE PROPERTY GRAPH statement is through the
PgxSession.executePgql(String statement) method.

Example 5-2 Executing a CREATE PROPERTY GRAPH statement

String statement =
 "CREATE PROPERTY GRAPH hr_simplified "
 + " VERTEX TABLES ("
 + " hr.employees LABEL employee "
 + " PROPERTIES ARE ALL COLUMNS EXCEPT (job_id, manager_id,
department_id), "
 + " hr.departments LABEL department "
 + " PROPERTIES (department_id, department_name) "
 + ") "
 + " EDGE TABLES ("
 + " hr.employees AS works_at "
 + " SOURCE KEY (employee_id) REFERENCES employees "
 + " DESTINATION departments "
 + " PROPERTIES (employee_id) "
 + ")";
session.executePgql(statement);
PgxGraph g = session.getGraph("HR_SIMPLIFIED");

/**
 * Alternatively, one can use the prepared statement API, for example:
 */

PgxPreparedStatement stmnt = session.preparePgql(statement);
stmnt.execute();
stmnt.close();
PgxGraph g = session.getGraph("HR_SIMPLIFIED");

5.8.4 Java APIs for Executing SELECT Queries
This section describes the APIs to execute SELECT queries in the In-Memory graph
server (PGX).

• Executing SELECT Queries Against a Graph in the In-memory Graph Server
(PGX)
The PgxGraph.queryPgql(String query) method executes the query in the
session that was used to create the PgxGraph. The method returns a
PgqlResultSet.

Chapter 5
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

5-9

• Executing SELECT Queries Against a PGX Session
The PgxSession.queryPgql(String query) method executes the given query in
the session and returns a PgqlResultSet.

• Iterating Through a Result Set
There are two ways to iterate through a result set: in a JDBC-like manner or using
the Java Iterator interface.

• Printing a Result Set
The following methods of PgqlResultSet (package oracle.pgx.api) are used to
print a result set:

5.8.4.1 Executing SELECT Queries Against a Graph in the In-memory Graph
Server (PGX)

The PgxGraph.queryPgql(String query) method executes the query in the session
that was used to create the PgxGraph. The method returns a PgqlResultSet.

The ON clauses inside the MATCH clauses can be omitted since the query is executed
directly against a PGX graph. For the same reason, the INTO clauses inside the INSERT
clauses can be omitted. However, if you want to explicitly specify graph names in the
ON and INTO clauses, then those graph names have to match the actual name of the
graph (PgxGraph.getName()).

5.8.4.2 Executing SELECT Queries Against a PGX Session
The PgxSession.queryPgql(String query) method executes the given query in the
session and returns a PgqlResultSet.

The ON clauses inside the MATCH clauses, and the INTO clauses inside the INSERT
clauses, must be specified and cannot be omitted. At this moment, all the ON and INTO
clauses of a query need to reference the same graph since joining data from multiple
graphs in a single query is not yet supported.

5.8.4.3 Iterating Through a Result Set
There are two ways to iterate through a result set: in a JDBC-like manner or using the
Java Iterator interface.

For JDBC-like iterations, the methods in PgqlResultSet (package oracle.pgx.api)
are similar to the ones in java.sql.ResultSet. A noteworthy difference is that PGQL's
result set interface is based on the new date and time library that was introduced in
Java 8, while java.sql.ResultSet is based on the legacy java.util.Date. To bridge
the gap, PGQL's result set provides getLegacyDate(..) for applications that still use
java.util.Date.

A PgqlResultSet has a cursor that is initially set before the first row. Then, the
following methods are available to reposition the cursor:

• next() : boolean

• previous() : boolean

• beforeFirst()

• afterLast()

• first() : boolean

Chapter 5
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

5-10

• last() : boolean

• absolute(long row) : boolean

• relative(long rows) : boolean

Above methods are documented in more detail here.

After the cursor is positioned at the desired row, the following getters are used to
obtain values:

• getObject(int columnIdx) : Object

• getObject(String columnName) : Object

• getString(int columnIdx) : String

• getString(String columnName) : String

• getInteger(int columnIdx) : Integer

• getInteger(String columnName) : Integer

• getLong(int columnIdx) : Long

• getLong(String columnName) : Long

• getFloat(int columnIdx) : Float

• getFloat(String columnName) : Float

• getDouble(int columnIdx) : Double

• getDouble(String columnName) : Double

• getBoolean(int columnIdx) : Boolean

• getBoolean(String columnName) : Boolean

• getVertexLabels(int columnIdx) : Set<String>

• getVertexLabels(String columnName) : Set<String>

• getDate(int columnIdx) : LocalDate

• getDate(String columnName) : LocalDate

• getTime(int columnIdx) : LocalTime

• getTime(String columnName) : LocalTime

• getTimestamp(int columnIdx) : LocalDateTime

• getTimestamp(String columnName) : LocalDateTime

• getTimeWithTimezone(int columnIdx) : OffsetTime

• getTimeWithTimezone(String columnName) : OffsetTime

• getTimestampWithTimezone(int columnIdx) : OffsetDateTime

• getTimestampWithTimezone(String columnName) : OffsetDateTime

• getLegacyDate(int columnIdx) : java.util.Date

• getLegacyDate(String columnName) : java.util.Date

• getList(int columnIdx) : List<T>

• getList(String columnName) : List<T>

Chapter 5
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

5-11

https://docs.oracle.com/en/database/oracle/oracle-database/20/spgjv/oracle/pg/rdbms/pgql/PgqlResultSetImpl.html

Above methods are documented in more detail here.

Finally, there is a PgqlResultSet.close() which releases the result set’s resources,
and there is a PgqlResultSet.getMetaData() through which the column names and
column count can be retrieved.

An example for result set iteration is as follows:

PgqlResultSet resultSet = g.queryPgql(
 " SELECT owner.name AS account_holder, SUM(t.amount) AS
total_transacted_with_Nikita "
 + " FROM MATCH (p:Person) -[:ownerOf]-> (account1:Account) "
 + " , MATCH (account1) -[t:transaction]- (account2) "
 + " , MATCH (account2:Account) <-[:ownerOf]- (owner:Person|
Company) "
 + " WHERE p.name = 'Nikita' "
 + " GROUP BY owner");

while (resultSet.next()) {
 String accountHolder = resultSet.getString(1);
 long totalTransacted = resultSet.getLong(2);
 System.out.println(accountHolder + ": " + totalTransacted);
}

resultSet.close();

The output of the above example will look like:

Oracle: 4501
Camille: 1000

In addition, the PgqlResultSet is also iterable via the Java Iterator interface. An
example of a “for each loop” over the result set is as follows:

for (PgxResult result : resultSet) {
 String accountHolder = result.getString(1);
 long totalTransacted = result.getLong(2);
 System.out.println(accountHolder + ": " + totalTransacted);
}

The output of the above example will look like:

Oracle: 4501
Camille: 1000

Note that the same getters that are available for PgqlResultSet are also available for
PgxResult.

5.8.4.4 Printing a Result Set
The following methods of PgqlResultSet (package oracle.pgx.api) are used to
print a result set:

Chapter 5
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

5-12

https://docs.oracle.com/en/database/oracle/oracle-database/20/spgjv/oracle/pg/rdbms/pgql/PgqlResultSetImpl.html

• print() : PgqlResultSet

• print(long numResults) : PgqlResultSet

• print(long numResults, int from) : PgqlResultSet

• print(PrintStream printStream, long numResults, int from) :
PgqlResultSet

For example:

g.queryPgql("SELECT COUNT(*) AS numPersons FROM MATCH
(n:Person)").print().close()
+------------+
| numPersons |
+------------+
| 3 |
+------------+

Another example:

PgqlResultSet resultSet = g.queryPgql(
 " SELECT owner.name AS account_holder, SUM(t.amount) AS
total_transacted_with_Nikita "
 + " FROM MATCH (p:Person) -[:ownerOf]-> (account1:Account) "
 + " , MATCH (account1) -[t:transaction]- (account2) "
 + " , MATCH (account2:Account) <-[:ownerOf]- (owner:Person|
Company) "
 + " WHERE p.name = 'Nikita' "
 + " GROUP BY owner")

resultSet.print().close()
+---+
| account_holder | total_transacted_with_Nikita |
+---+
| Camille | 1000.0 |
| Oracle | 4501.0 |
+---+

5.8.5 Java APIs for Executing UPDATE Queries
The UPDATE queries make changes to existing graphs using the INSERT, UPDATE, and
DELETE operations as detailed in the section Graph Modification of the PGQL 1.3
specification.

Note that INSERT allows you to insert new vertices and edges into a graph, UPDATE
allows you to update existing vertices and edges by setting their properties to new
values, and DELETE allows you to delete vertices and edges from a graph.

• Executing UPDATE Queries against a Graph in the in-memory Graph Server
(PGX)
To execute UPDATE queries against a graph, use the
PgxGraph.executePgql(String query) method.

Chapter 5
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

5-13

• Executing UPDATE Queries Against a PGX Session
For now, there is no support for executing UPDATE queries against a PgxSession
and therefore, updates always have to be executed against a PgxGraph. To
obtain a graph from a session, use the PgxSession.getGraph(String graphName)
method.

• Updatability of Graphs Through PGQL
Graph data that is loaded from the Oracle RDBMS or from CSV files into the PGX
is not updatable through PGQL right away.

• Altering the Underlying Schema of a Graph
The INSERT operations can only insert vertices and edges with known labels and
properties. Similarly, UPDATE operations can only set values of known properties.
Thus, new data must always conform to the existing schema of the graph.

5.8.5.1 Executing UPDATE Queries against a Graph in the in-memory Graph
Server (PGX)

To execute UPDATE queries against a graph, use the PgxGraph.executePgql(String
query) method.

The following is an example of INSERT query:

g.executePgql("INSERT VERTEX v " +
 " LABELS (Person) " +
 " PROPERTIES (v.firstName = 'Camille', " +
 " v.lastName = ' Mullins') ");

Note that the INTO clause of the INSERT can be omitted. If you use an INTO clause,
the graph name in the INTO clause must correspond to the name of the PGX graph
(PgxGraph.getName()) that the query is executed against.

The following is an example of UPDATE query:

// set the date of birth of Camille to 2014-11-15
g.executePgql("UPDATE v SET (v.dob = DATE '2014-11-14') " +
 "FROM MATCH (v:Person) " +
 "WHERE v.firstName = 'Camille' AND v.lastName = '
Mullins' ");

The following is an example of DELETE query:

// delete Camille from the graph
g.executePgql("DELETE v " +
 "FROM MATCH (v:Person) " +
 "WHERE v.firstName = 'Camille' AND v.lastName = 'Mullins'
");

Chapter 5
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

5-14

5.8.5.2 Executing UPDATE Queries Against a PGX Session
For now, there is no support for executing UPDATE queries against a PgxSession and
therefore, updates always have to be executed against a PgxGraph. To obtain a graph
from a session, use the PgxSession.getGraph(String graphName) method.

5.8.5.3 Updatability of Graphs Through PGQL
Graph data that is loaded from the Oracle RDBMS or from CSV files into the PGX is
not updatable through PGQL right away.

First, you need to create a copy of the data through the PgxGraph.clone() method.
The resulting graph is fully updatable.

Consider the following example:

// load a graph from the RDBMS or from CSV
PgxGraph g1 = session.readGraphWithProperties("path/to/
graph_config.json");

// create an updatable copy of the graph
PgxGraph g2 = g1.clone("new_graph_name");

// insert an additional vertex into the graph
g2.executePgql("INSERT VERTEX v " +
 " LABELS (Person) " +
 " PROPERTIES (v.firstName = 'Camille', " +
 " v.lastName = ' Mullins')");

Additionally, there is also a PgxGraph.cloneAndExecutePgql(String query, String
graphName) method that combines the last two steps from above example into a single
step:

// create an updatable copy of the graph while inserting a new vertex
PgxGraph g2_copy = g1.cloneAndExecutePgql(
 "INSERT VERTEX v " +
 " LABELS (Person) " +
 " PROPERTIES (v.firstName = 'Camille', " +
 " v.lastName = ' Mullins') "
 , "new_graph_name");

Note that graphs that are created through PgxGraph.clone() are local to the session.
However, they can be shared with other sessions through the PgxGraph.publish(..)
methods but then they are no longer updatable through PGQL. Only session-local
graphs are updatable but persistent graphs are not.

5.8.5.4 Altering the Underlying Schema of a Graph
The INSERT operations can only insert vertices and edges with known labels and
properties. Similarly, UPDATE operations can only set values of known properties. Thus,
new data must always conform to the existing schema of the graph.

Chapter 5
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

5-15

However, some PGX APIs exist for updating the schema of a graph: while
no APIs exist for adding new labels, new properties can be added through
the PgxGraph.createVertexProperty(PropertyType type, String name) and
PgxGraph.createEdgeProperty(PropertyType type, String name) methods. The
new properties are attached to each vertex/edge in the graph, irrespective of their
labels. Initially the properties are assigned a default value but then the values can be
updated through the UPDATE statements.

Consider the following example:

// load a graph from the RDBMS or from CSV
PgxGraph g = session.readGraphWithProperties("path/to/
graph_config.json");

// add a new property to the graph
g.createVertexProperty(PropertyType.LOCAL_DATE, "dob");

// set the date of birth of Camille to 2014-11-15
g.executePgql("UPDATE v SET (v.dob = DATE '2014-11-14') " +
 "FROM MATCH (v:Person) " +
 "WHERE v.firstName = 'Camille' AND v.lastName = '
Mullins' ");

5.8.6 Security Tools for Executing PGQL Queries
To safeguard against query injection, bind variables can be used in place of literals
while printIdentifier(String identifier) can be used in place of identifiers like
graph names, labels, and property names.

• Using Bind Variables
There are two reasons for using bind variables:

• Using Identifiers in a Safe Manner
When you create a query through string concatenation, not only literals
in queries pose a security risk, but also identifiers like graph names,
labels, and property names do. The only problem is that bind variables
are not supported for such identifier. Therefore, if these identifiers
are variable from the application's perspective, then it is recommended
to protect against query injection by passing the identifier through
the oracle.pgql.lang.ir.PgqlUtils.printIdentifier(String identifier)
method.

5.8.6.1 Using Bind Variables
There are two reasons for using bind variables:

• It protects against query injection.

• It speeds up query execution because the same bind variables can be set multiple
times without requiring recompilation of the query.

To create a prepared statement, use one of the following two methods:

• PgxGraph.preparePgql(String query) : PgxPreparedStatement

• PgxSession.preparePgql(String query) : PgxPreparedStatement

Chapter 5
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

5-16

The PgxPreparedStatement (package oracle.pgx.api) returned from these methods
have setter methods for binding the bind variables to values of the designated data
type.

PreparedStatement stmnt = g.preparePgql(
 "SELECT v.id, v.dob " +
 "FROM MATCH (v) " +
 "WHERE v.firstName = ? AND v.lastName = ?");
stmnt.setString(1, "Camille");
stmnt.setString(2, "Mullins");
ResultSet rs = stmnt.executeQuery();

Each bind variable in the query needs to be set to a value using one of the following
setters of PgxPreparedStatement:

• setBoolean(int parameterIndex, boolean x)

• setDouble(int parameterIndex, double x)

• setFloat(int parameterIndex, float x)

• setInt(int parameterIndex, int x)

• setLong(int parameterIndex, long x)

• setDate(int parameterIndex, LocalDate x)

• setTime(int parameterIndex, LocalTime x)

• setTimestamp(int parameterIndex, LocalDateTime x)

• setTimeWithTimezone(int parameterIndex, OffsetTime x)

• setTimestampWithTimezone(int parameterIndex, OffsetDateTime x)

• setArray(int parameterIndex, List<?> x)

Once all the bind variables are set, the statement can be executed through:

• PgxPreparedStatement.executeQuery()

– For SELECT queries only

– Returns a ResultSet

• PgxPreparedStatement.execute()

– For any type of statement

– Returns a Boolean to indicate the form of the result: true in case of a SELECT
query, false otherwise

– In case of SELECT, the ResultSet can afterwards be accessed through
PgxPreparedStatement.getResultSet()

In PGQL, bind variables can be used in place of literals of any data type, including
array literals. An example query with a bind variable to is set to an instance of a String
array is:

List<String> countryNames = new ArrayList<String>();
countryNames.add("Scotland");
countryNames.add("Tanzania");

Chapter 5
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

5-17

countryNames.add("Serbia");

PreparedStatement stmnt = g.preparePgql(
 "SELECT n.name, n.population " +
 "FROM MATCH (c:Country) " +
 "WHERE c.name IN ?");

ResultSet rs = stmnt.executeQuery();

Finally, if a prepared statement is no longer needed, it is closed through
PgxPreparedStatement.close() to free up resources.

5.8.6.2 Using Identifiers in a Safe Manner
When you create a query through string concatenation, not only literals in queries
pose a security risk, but also identifiers like graph names, labels, and property names
do. The only problem is that bind variables are not supported for such identifier.
Therefore, if these identifiers are variable from the application's perspective, then it is
recommended to protect against query injection by passing the identifier through the
oracle.pgql.lang.ir.PgqlUtils.printIdentifier(String identifier) method.

Given an identifier string, the method automatically adds double quotes to the start
and end of the identifier and escapes the characters in the identifier appropriately.

Consider the following example:

String graphNamePrinted = printIdentifier("my graph name with \"
special % characters ");
PreparedStatement stmnt = g.preparePgql(
 "SELECT COUNT(*) AS numVertices FROM MATCH (v) ON " +
graphNamePrinted);

5.8.7 Best Practices for Tuning PGQL Queries
This section describes best practices regarding memory allocation, parallelism, and
query planning.

• Memory Allocation
The In-Memory Analyst (PGX) has on-heap and off-heap memory, the earlier
being the standard JVM heap while the latter being a separate heap that is
managed by PGX. Just like graph data, intermediate and final results of PGQL
queries are partially stored on-heap and partially off-heap. Therefore, both heaps
are needed.

• Parallelism
By default, all available processor threads are used to process PGQL queries.
However, if needed, the number of threads can be limited by setting the
parallelism option of the In-Memory Analyst (PGX).

• Query Plan Explaining
The PgxGraph.explainPgql(String query) method is used to get insight into the
query plan of the query. The method returns an instance of Operation (package
oracle.pgx.api) which has the following methods:

Chapter 5
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

5-18

5.8.7.1 Memory Allocation
The In-Memory Analyst (PGX) has on-heap and off-heap memory, the earlier being
the standard JVM heap while the latter being a separate heap that is managed by
PGX. Just like graph data, intermediate and final results of PGQL queries are partially
stored on-heap and partially off-heap. Therefore, both heaps are needed.

In case of the on-heap memory, the default maximum is chosen upon startup of the
JVM, but it can be overwritten through the -Xmx option.

In case of the off-heap, there is no maximum set by default and the off-heap
memory usage, therefore, keeps increasing automatically until it depletes the system
resources, in which case the operation is cancelled, it's memory is released, and an
appropriate exception is passed to the user. If needed, a maximum off-heap size can
be configured through the max_off_heap_size option of PGX.

A ratio of 1:1 for on-heap vs. off-heap is recommended as a good starting point
to allow for the largest possible graphs to be loaded and queried. For example, if
you have 256 GB of memory available on your machine, then setting the maximum
on-heap to 125 GB will make sure that there is a similar amount of memory available
for off-heap:

export JAVA_OPTS="-Xmx125g"

5.8.7.2 Parallelism
By default, all available processor threads are used to process PGQL queries.
However, if needed, the number of threads can be limited by setting the parallelism
option of the In-Memory Analyst (PGX).

5.8.7.3 Query Plan Explaining
The PgxGraph.explainPgql(String query) method is used to get insight into the
query plan of the query. The method returns an instance of Operation (package
oracle.pgx.api) which has the following methods:

• print(): for printing the operation and its child operations

• getOperationType(): for getting the type of the operation

• getPatternInfo(): for getting a string representation of the operation

• getCostEstimate(): for getting the cost of the operation

• getTotalCostEstimate(): for getting the cost of the operations and its child
operations

• getCardinatlityEstimate(): for getting the expected number of result rows

• getChildren(): for accessing the child operations

Consider the following example:

g.explainPgql("SELECT COUNT(*) FROM MATCH (n) -[e1]-> (m) -[e2]->
(o)").print()
\--- GROUP BY GroupBy {"cardinality":"42", "cost":"42",
"accumulatedCost":"58.1"}
 \--- (m) -[e2]-> (o) NeighborMatch {"cardinality":"3.12",

Chapter 5
Executing PGQL Queries Against the In-Memory Graph Server (PGX)

5-19

"cost":"3.12", "accumulatedCost":"16.1"}
 \--- (n) -[e1]-> (m) NeighborMatch {"cardinality":"5",
"cost":"5", "accumulatedCost":"13"}
 \--- (n) RootVertexMatch {"cardinality":"8", "cost":"8",
"accumulatedCost":"8"}

In the above example, the print() method is used to print the query plan.

If a query plan is not optimal, it is often possible to rewrite the query to improve its
performance. For example, a SELECT query may be split into an UPDATE and a SELECT
query as a way to improve the total runtime.

Note that the In-Memory Analyst (PGX) does not provide a hint mechanism.

5.9 Executing PGQL Queries Directly Against Oracle
Database

This topic explains how you can execute PGQL queries directly against the graph in
Oracle Database (as opposed to in-memory).

Property Graph Query Language (PGQL) queries can be executed against disk-
resident property graph data stored in Oracle Database. PGQL on Oracle Database
(RDBMS) provides a Java API for executing PGQL queries. Logic in PGQL on
RDBMS translates a submitted PGQL query into an equivalent SQL query, and the
resulting SQL is executed on the database server. PGQL on RDBMS then wraps the
SQL query results with a convenient PGQL result set API.

This PGQL query execution flow is shown in the following figure.

Figure 5-1 PGQL on Oracle Database (RDBMS)

The basic execution flow is:

1. The PGQL query is submitted to PGQL on RDBMS through a Java API.

2. The PGQL query is translated to SQL.

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-20

3. The translated SQL is submitted to Oracle Database by JDBC.

4. The SQL result set is wrapped as a PGQL result set and returned to the caller.

The ability to execute PGQL queries directly against property graph data stored in
Oracle Database provides several benefits.

• PGQL provides a more natural way to express graph queries than SQL manually
written to query schema tables, including VT$, VD$, GE$, and GT$.

• PGQL queries can be executed without the need to load a snapshot of your graph
data into PGX, so there is no need to worry about staleness of frequently updated
graph data.

• PGQL queries can be executed against graph data that is too large to fit in
memory.

• The robust and scalable Oracle SQL engine can be used to execute PGQL
queries.

• Mature tools for management, monitoring and tuning of Oracle Database can be
used to tune and monitor PGQL queries.

• PGQL Features Supported

• Creating Property Graphs through CREATE PROPERTY GRAPH Statements

• Dropping Property Graphs through DROP PROPERTY GRAPH Statements

• Using the oracle.pg.rdbms.pgql Java Package to Execute PGQL Queries

• Modifying Property Graphs through INSERT, UPDATE, and DELETE Statements

• Performance Considerations for PGQL Queries

5.9.1 PGQL Features Supported
PGQL is a SQL-like query language for querying property graph data. It is based on
the concept of graph pattern matching and allows you to specify, among other things,
topology constraints, paths, filters, sorting and aggregation.

The Java API for PGQL defined in the oracle.pg.rdbms.pgql package supports the
PGQL specification with a few exceptions. (The PGQL specification can be found at
https://pgql-lang.org).

The following features of PGQL are not supported.

• Shortest path

• ARRAY_AGG aggregation

• IN and NOT IN predicates

• Single CHEAPEST path and TOP-K CHEAPEST path using COST functions

• Case-insensitive matching of uppercased references to labels and properties

In addition, the following features of PGQL require special consideration.

• Temporal Types

• Type Casting

• CONTAINS Built-in Function

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-21

https://pgql-lang.org

5.9.1.1 Temporal Types
The temporal types DATE, TIMESTAMP and TIMESTAMP WITH TIMEZONE are
supported in PGQL queries.

All of these value types are represented internally using the Oracle SQL TIMESTAMP
WITH TIME ZONE type. DATE values are automatically converted to TIMESTAMP
WITH TIME ZONE by assuming the earliest time in UTC+0 timezone (for
example, 2000-01-01 becomes 2000-01-01 00:00:00.00+00:00). TIMESTAMP values
are automatically converted to TIMESTAMP WITH TIME ZONE by assuming
UTC+0 timezone (for example, 2000-01-01 12:00:00.00 becomes 2000-01-01
12:00:00.00+00:00).

Temporal constants are written in PGQL queries as follows.

• DATE 'YYYY-MM-DD'

• TIMESTAMP 'YYYY-MM-DD HH24:MI:SS.FF'

• TIMESTAMP WITH TIMEZONE 'YYYY-MM-DD HH24:MI:SS.FFTZH:TZM'

Some examples are DATE '2000-01-01', TIMESTAMP '2000-01-01 14:01:45.23',
TIMESTAMP WITH TIMEZONE '2000-01-01 13:00:00.00-05:00', and TIMESTAMP
WITH TIMEZONE '2000-01-01 13:00:00.00+01:00'.

In addition, temporal values can be obtained by casting string values to a temporal
type. The supported string formats are:

• DATE 'YYYY-MM-DD'

• TIMESTAMP 'YYYY-MM-DD HH24:MI:SS.FF' and 'YYYY-MM-
DD"T"HH24:MI:SS.FF'

• TIMESTAMP WITH TIMEZONE 'YYYY-MM-DD HH24:MI:SS.FFTZH:TZM' and
'YYYY-MM-DD"T"HH24:MI:SS.FFTZH:TZM'.

Some examples are CAST ('2005-02-04' AS DATE), CAST ('1990-01-01 12:00:00.00'
AS TIMESTAMP), CAST ('1985-01-01T14:05:05.00-08:00' AS TIMESTAMP WITH
TIMEZONE).

When consuming results from a PgqlResultSet object, getObject returns a
java.sql.Timestamp object for temporal types.

Bind variables can only be used for the TIMESTAMP WITH TIMEZONE temporal
type in PGQL, and a setTimestamp method that takes a java.sql.Timestamp
object as input is used to set the bind value. As a simpler alternative, you
can use a string bind variable in a CAST statement to bind temporal values
(for example, CAST (? AS TIMESTAMP WITH TIMEZONE) followed by setString(1,
"1985-01-01T14:05:05.00-08:00")). See also Using Bind Variables in PGQL Queries
for more information about bind variables.

5.9.1.2 Type Casting
Type casting is supported in PGQL with a SQL-style CAST (VALUE AS
DATATYPE) syntax, for example CAST('25' AS INT), CAST (10 AS STRING), CAST
('2005-02-04' AS DATE), CAST(e.weight AS STRING). Supported casting operations
are summarized in the following table. Y indicates that the conversion is supported,
and N indicates that it is not supported. Casting operations on invalid values (for

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-22

example, CAST('xyz' AS INT)) or unsupported conversions (for example, CAST (10 AS
TIMESTAMP)) return NULL instead of raising a SQL exception.

Table 5-1 Type Casting Support in PGQL (From and To Types)

“to” type from
STRIN
G

from
INT

from
LON
G

from
FLOA
T

from
DOUB
LE

from
BOOLE
AN

from
DAT
E

from
TIMESTA
MP

from
TIMESTA
MP WITH
TIMEZON
E

to STRING Y Y Y Y Y Y Y Y Y

to INT Y Y Y Y Y Y N N N

to LONG Y Y Y Y Y Y N N N

to FLOAT Y Y Y Y Y Y N N N

to
DOUBLE

Y Y Y Y Y Y N N N

to
BOOLEAN

Y Y Y Y Y Y N N N

to DATE Y N N N N N Y Y Y

to
TIMESTA
MP

Y N N N N N Y Y Y

to
TIMESTA
MP WITH
TIMEZON
E

Y N N N N N Y Y Y

An example query that uses type casting is:

SELECT e.name, CAST (e.birthDate AS STRING) AS dob
FROM MATCH (e)
WHERE e.birthDate < CAST ('1980-01-01' AS DATE)

5.9.1.3 CONTAINS Built-in Function
A CONTAINS built-in function is supported. It is used in conjunction with an Oracle
Text index on vertex and edge properties. CONTAINS returns true if a value matches
an Oracle Text search string and false if it does not match.

An example query is:

SELECT v.name
FROM MATCH (v)
WHERE CONTAINS(v.abstract, 'Oracle')

See also Using a Text Index with PGQL Queries for more information about using full
text indexes with PGQL.

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-23

5.9.2 Creating Property Graphs through CREATE PROPERTY
GRAPH Statements

You can use PGQL to create property graphs from relational database tables. A
CREATE PROPERTY GRAPH statement defines a set of vertex tables that are
transformed into vertices and a set of edge tables that are transformed into edges. For
each table a key, a label and a set of column properties can be specified. The column
types CHAR, NCHAR, VARCHAR, VARCHAR2, NVARCHAR2 , NUMBER, LONG,
FLOAT, DATE, TIMESTAMP and TIMESTAMP WITH TIMEZONE are supported for
CREATE PROPERTY GRAPH column properties.

When a CREATE PROPERTY GRAPH statement is called, a property graph schema
for the graph is created, and the data is copied from the source tables into the
property graph schema tables. The graph is created as a one-time copy and is not
automatically kept in sync with the source data.

Example 5-3 PgqlCreateExample1.java

This example shows how to create a property graph from a set of relational tables.
Notice that the example creates tables Person, Hobby, and Hobbies, so they should
not exist before running the example. The example also shows how to execute a query
against a property graph.

import java.sql.Connection;
import java.sql.Statement;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to create a Property Graph from relational
 * data stored in Oracle Database executing a PGQL create statement.
 */
public class PgqlCreateExample1
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 Statement stmt = null;
 PgqlStatement pgqlStmt = null;
 PgqlResultSet rs = null;

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-24

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();
 conn.setAutoCommit(false);

 // Create relational data
 stmt = conn.createStatement();

 //Table Person
 stmt.executeUpdate(
 "create table Person(" +
 " id NUMBER, " +
 " name VARCHAR2(20), " +
 " dob TIMESTAMP " +
 ")");

 // Insert some data
 stmt.executeUpdate("insert into Person values(1,'Alan', DATE
'1995-05-26')");
 stmt.executeUpdate("insert into Person values(2,'Ben', DATE
'2007-02-15')");
 stmt.executeUpdate("insert into Person values(3,'Claire', DATE
'1967-11-30')");

 // Table Hobby
 stmt.executeUpdate(
 "create table Hobby(" +
 " id NUMBER, " +
 " name VARCHAR2(20) " +
 ")");

 // Insert some data
 stmt.executeUpdate("insert into Hobby values(1, 'Sports')");
 stmt.executeUpdate("insert into Hobby values(2, 'Music')");

 // Table Hobbies
 stmt.executeUpdate(
 "create table Hobbies("+
 " person NUMBER, "+
 " hobby NUMBER, "+
 " strength NUMBER "+
 ")");

 // Insert some data
 stmt.executeUpdate("insert into Hobbies values(1, 1, 20)");
 stmt.executeUpdate("insert into Hobbies values(1, 2, 30)");
 stmt.executeUpdate("insert into Hobbies values(2, 1, 10)");

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-25

 stmt.executeUpdate("insert into Hobbies values(3, 2, 20)");

 //Commit changes
 conn.commit();

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);

 // Create a PgqlStatement
 pgqlStmt = pgqlConn.createStatement();

 // Execute PGQL to create property graph
 String pgql =
 "Create Property Graph " + graph + " " +
 "VERTEX TABLES (" +
 " Person " +
 " Key(id) " +
 " Label \"people\" +
 " PROPERTIES(name AS \"first_name\", dob AS \"birthday\")," +
 " Hobby " +
 " Key(id) Label \"hobby\" PROPERTIES(name AS \"name\")" +
 ")" +
 "EDGE TABLES (" +
 " Hobbies" +
 " SOURCE KEY(person) REFERENCES Person " +
 " DESTINATION KEY(hobby) REFERENCES Hobby " +
 " LABEL \"likes\" PROPERTIES (strength AS \"score\")" +
 ")";
 pgqlStmt.execute(pgql);

 // Execute a PGQL query to verify Graph creation
 pgql =
 "SELECT p.\"first_name\", p.\"birthday\", h.\"name\",
e.\"score\" " +
 "FROM MATCH (p:\"people\")-[e:\"likes\"]->(h:\"hobby\") ON " +
graph;
 rs = pgqlStmt.executeQuery(pgql, "");

 // Print the results
 rs.print();
 }
 finally {
 // close the sql statment
 if (stmt != null) {
 stmt.close();
 }
 // close the result set
 if (rs != null) {
 rs.close();
 }
 // close the statement
 if (pgqlStmt != null) {
 pgqlStmt.close();
 }
 // close the connection

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-26

 if (conn != null) {
 conn.close();
 }
 }
 }
}

The output for PgqlCreateExample1.java is:

+---+
| first_name | birthday | name | score |
+---+
Alan	1995-05-25 17:00:00.0	Music	30.0
Claire	1967-11-29 16:00:00.0	Music	20.0
Ben	2007-02-14 16:00:00.0	Sports	10.0
Alan	1995-05-25 17:00:00.0	Sports	20.0
+---+

Example 5-4 PgqlCreateExample2.java

This example shows how a create property graph statement without specifying any
keys. Notice that the example creates tables Person, Hobby, and Hobbies, so they
should not exist before running the example.

import java.sql.Connection;
import java.sql.Statement;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to create a Property Graph from relational
 * data stored in Oracle Database executing a PGQL create statement.
 */
public class PgqlCreateExample2
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 Statement stmt = null;
 PgqlStatement pgqlStmt = null;
 PgqlResultSet rs = null;

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-27

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();
 conn.setAutoCommit(false);

 // Create relational data
 stmt = conn.createStatement();

 //Table Person
 stmt.executeUpdate(
 "create table Person(" +
 " id NUMBER, " +
 " name VARCHAR2(20), " +
 " dob TIMESTAMP, " +
 " CONSTRAINT pk_person PRIMARY KEY(id)" +
 ")");

 // Insert some data
 stmt.executeUpdate("insert into Person values(1,'Alan', DATE
'1995-05-26')");
 stmt.executeUpdate("insert into Person values(2,'Ben', DATE
'2007-02-15')");
 stmt.executeUpdate("insert into Person values(3,'Claire', DATE
'1967-11-30')");

 // Table Hobby
 stmt.executeUpdate(
 "create table Hobby(" +
 " id NUMBER, " +
 " name VARCHAR2(20), " +
 " CONSTRAINT pk_hobby PRIMARY KEY(id)" +
 ")");

 // Insert some data
 stmt.executeUpdate("insert into Hobby values(1, 'Sports')");
 stmt.executeUpdate("insert into Hobby values(2, 'Music')");

 // Table Hobbies
 stmt.executeUpdate(
 "create table Hobbies("+
 " person NUMBER, "+
 " hobby NUMBER, "+
 " strength NUMBER, "+
 " CONSTRAINT fk_hobbies1 FOREIGN KEY (person) REFERENCES
Person(id), "+
 " CONSTRAINT fk_hobbies2 FOREIGN KEY (hobby) REFERENCES
Hobby(id)"+
 ")");

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-28

 // Insert some data
 stmt.executeUpdate("insert into Hobbies values(1, 1, 20)");
 stmt.executeUpdate("insert into Hobbies values(1, 2, 30)");
 stmt.executeUpdate("insert into Hobbies values(2, 1, 10)");
 stmt.executeUpdate("insert into Hobbies values(3, 2, 20)");

 //Commit changes
 conn.commit();

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);

 // Create a PgqlStatement
 pgqlStmt = pgqlConn.createStatement();

 // Execute PGQL to create property graph
 String pgql =
 "Create Property Graph " + graph + " " +
 "VERTEX TABLES (" +
 " Person " +
 " Label people +
 " PROPERTIES ALL COLUMNS," +
 " Hobby " +
 " Label hobby PROPERTIES ALL COLUMNS EXCEPT(id)" +
 ")" +
 "EDGE TABLES (" +
 " Hobbies" +
 " SOURCE Person DESTINATION Hobby " +
 " LABEL likes NO PROPERTIES" +
 ")";
 pgqlStmt.execute(pgql);

 // Execute a PGQL query to verify Graph creation
 pgql =
 "SELECT p.NAME AS person, p.DOB, h.NAME AS hobby " +
 "FROM MATCH (p:people)-[e:likes]->(h:hobby) ON " + graph;
 rs = pgqlStmt.executeQuery(pgql, "");

 // Print the results
 rs.print();
 }
 finally {
 // close the sql statment
 if (stmt != null) {
 stmt.close();
 }
 // close the result set
 if (rs != null) {
 rs.close();
 }
 // close the statement
 if (pgqlStmt != null) {
 pgqlStmt.close();
 }

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-29

 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

The output for PgqlCreateExample2.java is:

+---+
| PERSON | DOB | HOBBY |
+---+
Alan	1995-05-25 17:00:00.0	Music
Claire	1967-11-29 16:00:00.0	Music
Ben	2007-02-14 16:00:00.0	Sports
Alan	1995-05-25 17:00:00.0	Sports
+---+

5.9.3 Dropping Property Graphs through DROP PROPERTY GRAPH
Statements

You can use PGQL to drop property graphs. When a DROP PROPERTY GRAPH
statement is called, all the property graph schema tables of the graph are dropped.

Example 5-5 PgqlDropExample1.java

This example shows how to drop a property graph.

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to drop a Property executing a PGQL drop
statement.
 */
public class PgqlDropExample1
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-30

 PgqlStatement pgqlStmt = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();
 conn.setAutoCommit(false);

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);

 // Create a PgqlStatement
 pgqlStmt = pgqlConn.createStatement();

 // Execute PGQL to drop property graph
 String pgql = "Drop Property Graph " + graph;
 pgqlStmt.execute(pgql);

 }
 finally {
 // close the statement
 if (pgqlStmt != null) {
 pgqlStmt.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

5.9.4 Using the oracle.pg.rdbms.pgql Java Package to Execute PGQL
Queries

The Java API in the oracle.pg.rdbms.pgql package provides support for executing
PGQL queries against Oracle Database. This topic explains how to use the Java API
through a series of examples.

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-31

Note:

Effective with Release 21c, the following classes in the oracle.pg.rdbms
package are deprecated:

oracle.pg.rdbms.OraclePgqlColumnDescriptorImpl
oracle.pg.rdbms.OraclePgqlColumnDescriptor
oracle.pg.rdbms.OraclePgqlExecutionFactory
oracle.pg.rdbms.OraclePgqlExecution
oracle.pg.rdbms.PgqlPreparedStatement
oracle.pg.rdbms.OraclePgqlResultElementImpl
oracle.pg.rdbms.OraclePgqlResultElement
oracle.pg.rdbms.OraclePgqlResultImpl
oracle.pg.rdbms.OraclePgqlResultIterable
oracle.pg.rdbms.OraclePgqlResultIteratorImpl
oracle.pg.rdbms.OraclePgqlResult
oracle.pg.rdbms.OraclePgqlResultSetImpl
oracle.pg.rdbms.OraclePgqlResultSet
oracle.pg.rdbms.OraclePgqlResultSetMetaDataImpl
oracle.pg.rdbms.OraclePgqlResultSetMetaData
oracle.pg.rdbms.PgqlSqlQueryTransImpl
oracle.pg.rdbms.PgqlSqlQueryTrans
oracle.pg.rdbms.PgqlStatement

You should instead use equivalent classes in oracle.pg.rdbms.pgql:

oracle.pg.rdbms.pgql.PgqlColumnDescriptorImpl
oracle.pg.rdbms.pgql.PgqlColumnDescriptor
oracle.pg.rdbms.pgql.PgqlConnection
oracle.pg.rdbms.pgql.PgqlExecution
oracle.pg.rdbms.pgql.PgqlPreparedStatement
oracle.pg.rdbms.pgql.PgqlResultElementImpl
oracle.pg.rdbms.pgql.PgqlResultElement
oracle.pg.rdbms.pgql.PgqlResultSetImpl
oracle.pg.rdbms.pgql.PgqlResultSet
oracle.pg.rdbms.pgql.PgqlResultSetMetaDataImpl
oracle.pg.rdbms.pgql.PgqlSqlTransImpl
oracle.pg.rdbms.pgql.PgqlSqlTrans
oracle.pg.rdbms.pgql.PgqlStatement

One difference between oracle.pg.rdbms.OraclePgqlResultSet
and oracle.pg.rdbms.pgql.PgqlResultSet is that
oracle.pg.rdbms.pgql.PgqlResultSet does not provide APIs to retrieve vertex
and edge objects. Existing code using those interfaces should be changed
to project IDs rather than OracleVertex and OracleEdge objects. You can
obtain an OracleVertex or OracleEdge object from the projected ID values
by calling OracleVertex.getInstance() or OracleEdge.getInstance(). (For
an example, see Example 5-20.)

The following test_graph data set in Oracle flat file format will be used in the
examples in subtopics that follow. The data set includes a vertex file (test_graph.opv)
and an edge file (test_graph.ope).

test_graph.opv:

2,fname,1,Ray,,,person
2,lname,1,Green,,,person

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-32

2,mval,5,,,1985-01-01T12:00:00.000Z,person
2,age,2,,41,,person
0,bval,6,Y,,,person
0,fname,1,Bill,,,person
0,lname,1,Brown,,,person
0,mval,1,y,,,person
0,age,2,,40,,person
1,bval,6,Y,,,person
1,fname,1,John,,,person
1,lname,1,Black,,,person
1,mval,2,,27,,person
1,age,2,,30,,person
3,bval,6,N,,,person
3,fname,1,Susan,,,person
3,lname,1,Blue,,,person
3,mval,6,N,,,person
3,age,2,,35,,person

test_graph.ope:

4,0,1,knows,mval,1,Y,,
4,0,1,knows,firstMetIn,1,MI,,
4,0,1,knows,since,5,,,1990-01-01T12:00:00.000Z
16,0,1,friendOf,strength,2,,6,
7,1,0,knows,mval,5,,,2003-01-01T12:00:00.000Z
7,1,0,knows,firstMetIn,1,GA,,
7,1,0,knows,since,5,,,2000-01-01T12:00:00.000Z
17,1,0,friendOf,strength,2,,7,
9,1,3,knows,mval,6,N,,
9,1,3,knows,firstMetIn,1,SC,,
9,1,3,knows,since,5,,,2005-01-01T12:00:00.000Z
10,2,0,knows,mval,1,N,,
10,2,0,knows,firstMetIn,1,TX,,
10,2,0,knows,since,5,,,1997-01-01T12:00:00.000Z
12,2,3,knows,mval,3,,342.5,
12,2,3,knows,firstMetIn,1,TX,,
12,2,3,knows,since,5,,,2011-01-01T12:00:00.000Z
19,2,3,friendOf,strength,2,,4,
14,3,1,knows,mval,1,a,,
14,3,1,knows,firstMetIn,1,CA,,
14,3,1,knows,since,5,,,2010-01-01T12:00:00.000Z
15,3,2,knows,mval,1,z,,
15,3,2,knows,firstMetIn,1,CA,,
15,3,2,knows,since,5,,,2004-01-01T12:00:00.000Z
5,0,2,knows,mval,2,,23,
5,0,2,knows,firstMetIn,1,OH,,
5,0,2,knows,since,5,,,2002-01-01T12:00:00.000Z
6,0,3,knows,mval,3,,159.7,
6,0,3,knows,firstMetIn,1,IN,,
6,0,3,knows,since,5,,,1994-01-01T12:00:00.000Z
8,1,2,knows,mval,6,Y,,
8,1,2,knows,firstMetIn,1,FL,,
8,1,2,knows,since,5,,,1999-01-01T12:00:00.000Z
18,1,3,friendOf,strength,2,,5,
11,2,1,knows,mval,2,,1001,
11,2,1,knows,firstMetIn,1,OK,,
11,2,1,knows,since,5,,,2003-01-01T12:00:00.000Z
13,3,0,knows,mval,5,,,2001-01-01T12:00:00.000Z
13,3,0,knows,firstMetIn,1,CA,,
13,3,0,knows,since,5,,,2006-01-01T12:00:00.000Z
20,3,1,friendOf,strength,2,,3,

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-33

• Basic Query Execution

• Security Techniques for PGQL Queries

• Using a Text Index with PGQL Queries

• Obtaining the SQL Translation for a PGQL Query

• Additional Options for PGQL Translation and Execution

• Querying Another User’s Property Graph

• Using Query Optimizer Hints with PGQL

5.9.4.1 Basic Query Execution
Two main Java Interfaces, PgqlStatement and PgqlResultSet, are used for PGQL
execution. This topic includes several examples of basic query execution.

Example 5-6 GraphLoaderExample.java

GraphLoaderExample.java loads some Oracle property graph data that will be used in
subsequent examples in this topic.

import oracle.pg.rdbms.Oracle;
import oracle.pg.rdbms.OraclePropertyGraph;
import oracle.pg.rdbms.OraclePropertyGraphDataLoader;

/**
 * This example shows how to create an Oracle Property Graph
 * and load data into it from vertex and edge flat files.
 */
public class GraphLoaderExample
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];
 String vertexFile = args[idx++];
 String edgeFile = args[idx++];

 Oracle oracle = null;
 OraclePropertyGraph opg = null;

 try {
 // Create a connection to Oracle
 oracle = new Oracle("jdbc:oracle:thin:@"+host+":"+port +":"+sid,
user, password);

 // Create a property graph
 opg = OraclePropertyGraph.getInstance(oracle, graph);

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-34

 // Clear any existing data
 opg.clearRepository();

 // Load data from opv and ope files
 OraclePropertyGraphDataLoader opgLoader =
OraclePropertyGraphDataLoader.getInstance();
 opgLoader.loadData(opg, vertexFile, edgeFile, 1);

 System.out.println("Vertices loaded:" + opg.countVertices());
 System.out.println("Edges loaded:" + opg.countEdges());

 }
 finally {
 // close the property graph
 if (opg != null) {
 opg.close();
 }
 // close oracle
 if (oracle != null) {
 oracle.dispose();
 }
 }
 }
}

GraphLoaderExample.java gives the following output for test_graph.

Vertices loaded:4
Edges loaded:17

Example 5-7 PgqlExample1.java

PgqlExample1.java executes a PGQL query and prints the query result.
PgqlConnection is used to obtain a PgqlStatement. Next, it calls the executeQuery
method of PgqlStatement, which returns a PgqlResultSet object. PgqlResultSet
provides a print() method, which shows results in a tabular mode.

The PgqlResultSet and PgqlStatement objects should be closed after consuming the
query result.

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to execute a basic PGQL query against disk-
resident
 * PG data stored in Oracle Database and iterate through the result.
 */
public class PgqlExample1

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-35

{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;
 PgqlResultSet rs = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();

 // Execute query to get a PgqlResultSet object
 String pgql =
 "SELECT v.\"fname\" AS fname, v.\"lname\" AS lname, v.\"mval\"
AS mval "+
 "FROM MATCH (v)";
 rs = ps.executeQuery(pgql, /* query string */
 "" /* options */);

 // Print the results
 rs.print();
 }
 finally {
 // close the result set
 if (rs != null) {
 rs.close();
 }
 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-36

 if (conn != null) {
 conn.close();
 }
 }
 }
}

PgqlExample1.java gives the following output for test_graph (which can be loaded
using GraphLoaderExample.java code).

+---------------------------------------+
| FNAME | LNAME | MVAL |
+---------------------------------------+
Susan	Blue	false
Bill	Brown	y
Ray	Green	1985-01-01 04:00:00.0
John	Black	27
+---------------------------------------+

Example 5-8 PgqlExample2.java

PgqlExample2.java shows a PGQL query with a temporal filter on an edge property.

• PgqlResultSet provides an interface for consuming the query result that is very
similar to the java.sql.ResultSet interface.

• A next() method allows moving through the query result, and a close() method
allows releasing resources after the application is fiished reading the query result.

• In addition, PgqlResultSet provides getters for String, Integer, Long, Float,
Double, Boolean, LocalDateTime, and OffsetDateTime, and it provides a generic
getObject() method for values of any type.

import java.sql.Connection;

import java.text.SimpleDateFormat;

import java.util.Date;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.pgql.lang.ResultSet;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to execute a PGQL query with a temporal edge
 * property filter against disk-resident PG data stored in Oracle
Database
 * and iterate through the result.
 */
public class PgqlExample2
{

 public static void main(String[] args) throws Exception

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-37

 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;
 ResultSet rs = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();

 // Create a Pgql connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();

 // Execute query to get a ResultSet object
 String pgql =
 "SELECT v.\"fname\" AS n1, v2.\"fname\" AS n2, e.\"firstMetIn\"
AS loc "+
 "FROM MATCH (v)-[e:\"knows\"]->(v2) "+
 "WHERE e.\"since\" > TIMESTAMP '2000-01-01 00:00:00.00+00:00'";
 rs = ps.executeQuery(pgql, "");

 // Print results
 printResults(rs);
 }
 finally {
 // close the result set
 if (rs != null) {
 rs.close();
 }
 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-38

 }
 }

 /**
 * Prints a PGQL ResultSet
 */
 static void printResults(ResultSet rs) throws Exception
 {
 StringBuffer buff = new StringBuffer("");
 SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-
dd'T'HH:mm:ss.SSSXXX");
 while (rs.next()) {
 buff.append("[");
 for (int i = 1; i <= rs.getMetaData().getColumnCount(); i++) {
 // use generic getObject to handle all types
 Object mval = rs.getObject(i);
 String mStr = "";
 if (mval instanceof java.lang.String) {
 mStr = "STRING: "+mval.toString();
 }
 else if (mval instanceof java.lang.Integer) {
 mStr = "INTEGER: "+mval.toString();
 }
 else if (mval instanceof java.lang.Long) {
 mStr = "LONG: "+mval.toString();
 }
 else if (mval instanceof java.lang.Float) {
 mStr = "FLOAT: "+mval.toString();
 }
 else if (mval instanceof java.lang.Double) {
 mStr = "DOUBLE: "+mval.toString();
 }
 else if (mval instanceof java.sql.Timestamp) {
 mStr = "DATE: "+sdf.format((Date)mval);
 }
 else if (mval instanceof java.lang.Boolean) {
 mStr = "BOOLEAN: "+mval.toString();
 }
 if (i > 1) {
 buff.append(",\t");
 }
 buff.append(mStr);
 }
 buff.append("]\n");
 }
 System.out.println(buff.toString());
 }
}

PgqlExample2.java gives the following output for test_graph (which can be loaded
using GraphLoaderExample.java code).

[STRING: Susan, STRING: Bill, STRING: CA]
[STRING: Susan, STRING: John, STRING: CA]
[STRING: Susan, STRING: Ray, STRING: CA]

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-39

[STRING: Bill, STRING: Ray, STRING: OH]
[STRING: Ray, STRING: John, STRING: OK]
[STRING: Ray, STRING: Susan, STRING: TX]
[STRING: John, STRING: Susan, STRING: SC]
[STRING: John, STRING: Bill, STRING: GA]

Example 5-9 PgqlExample3.java

PgqlExample3.java shows a PGQL query with grouping and aggregation.

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to execute a PGQL query with aggregation
 * against disk-resident PG data stored in Oracle Database and iterate
 * through the result.
 */
public class PgqlExample3
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;
 PgqlResultSet rs = null;

 try {
 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();

 // Create a Pgql connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Create a PgqlStatement

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-40

 ps = pgqlConn.createStatement();

 // Execute query to get a ResultSet object
 String pgql =
 "SELECT v.\"fname\" AS \"fname\", COUNT(v2) AS \"friendCnt\" "+
 "FROM MATCH (v)-[e:\"friendOf\"]->(v2) "+
 "GROUP BY v "+
 "ORDER BY \"friendCnt\" DESC";
 rs = ps.executeQuery(pgql, "");

 // Print results
 rs.print();
 }
 finally {
 // close the result set
 if (rs != null) {
 rs.close();
 }
 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

PgqlExample3.java gives the following output for test_graph (which can be loaded
using GraphLoaderExample.java code).

+-------------------+
| fname | friendCnt |
+-------------------+
John	2
Bill	1
Ray	1
Susan	1
+-------------------+

Example 5-10 PgqlExample4.java

PgqlExample4.java shows a PGQL path query.

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-41

 * This example shows how to execute a path query in PGQL against
 * disk-resident PG data stored in Oracle Database and iterate
 * through the result.
 */
public class PgqlExample4
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;
 PgqlResultSet rs = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();

 // Create a Pgql connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();

 // Execute query to get a ResultSet object
 String pgql =
 "PATH fof AS ()-[:\"friendOf\"|\"knows\"]->() "+
 "SELECT v2.\"fname\" AS friend "+
 "FROM MATCH (v)-/:fof*/->(v2) "+
 "WHERE v.\"fname\" = 'John' AND v != v2";
 rs = ps.executeQuery(pgql, "");

 // Print results
 rs.print();
 }
 finally {
 // close the result set
 if (rs != null) {
 rs.close();
 }

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-42

 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

PgqlExample4.java gives the following output for test_graph(which can be loaded
using GraphLoaderExample.java code).

+--------+
| FRIEND |
+--------+
| Susan |
| Bill |
| Ray |
+--------+

5.9.4.2 Security Techniques for PGQL Queries
Programs executing dynamic queries might be subject to injection attacks that could
compromise integrity and functioning of the applications.

This topic presents some techniques that can be used to prevent injection attacks
when building PGQL queries using string concatenation.

• Using Bind Variables in PGQL Queries

• Verifying PGQL Identifiers

5.9.4.2.1 Using Bind Variables in PGQL Queries
Bind variables can be used in PGQL queries for better performance and increased
security. Constant scalar values in PGQL queries can be replaced with bind variables.
Bind variables are denoted by a '?' (question mark). Consider the following two queries
that select people who are older than a constant age value.

// people older than 30
SELECT v.fname AS fname, v.lname AS lname, v.age AS age
FROM MATCH (v)
WHERE v.age > 30

// people older than 40
SELECT v.fname AS fname, v.lname AS lname, v.age AS age
FROM MATCH (v)
WHERE v.age > 40

The SQL translations for these queries would use the constants 30 and 40 in a similar
way for the age filter. The database would perform a hard parse for each of these
queries. This hard parse time can often exceed the execution time for simple queries.

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-43

You could replace the constant in each query with a bind variable as follows.

SELECT v.fname AS fname, v.lname AS lname, v.age AS age
FROM MATCH (v)
WHERE v.age > ?

This will allow the SQL engine to create a generic cursor for this query, which can
be reused for different age values. As a result, a hard parse is no longer required to
execute this query for different age values, and the parse time for each query will be
drastically reduced.

In addition, applications that use bind variables in PGQL queries are less vulnerable to
injection attacks than those that use string concatenation to embed constant values in
PGQL queries.

See also Oracle Database SQL Tuning Guide for more information on cursor sharing
and bind variables.

The PgqlPreparedStatement interface can be used to execute queries with bind
variables as shown in PgqlExample5.java. PgqlPreparedStatement provides several
set methods for different value types that can be used to set values for query
execution.

There are a few limitations with bind variables in PGQL. Bind variables can only be
used for constant property values. That is, vertices and edges cannot be replaced
with bind variables. Also, once a particular bind variable has been set to a type,
it cannot be set to a different type. For example, if setInt(1, 30) is executed
for an PgqlPreparedStatement, you cannot call setString(1, "abc") on that same
PgqlPreparedStatement.

Example 5-11 PgqlExample5.java

PgqlExample5.java shows how to use bind variables with a PGQL query.

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlPreparedStatement;
import oracle.pg.rdbms.pgql.PgqlResultSet;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to use bind variables with a PGQL query.
 */
public class PgqlExample5
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-44

 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlPreparedStatement pps = null;
 PgqlResultSet rs = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();

 // Create a Pgql connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Query string with a bind variable (denoted by ?)
 String pgql =
 "SELECT v.\"fname\" AS fname, v.\"lname\" AS lname, v.\"age\"
AS age "+
 "FROM MATCH (v) "+
 "WHERE v.\"age\" > ?";

 // Create a PgqlPreparedStatement
 pps = pgqlConn.prepareStatement(pgql);

 // Set filter value to 30
 pps.setInt(1, 30);

 // execute query
 rs = pps.executeQuery();

 // Print query results
 System.out.println("-- Values for v.\"age\" > 30 --");
 rs.print();
 // close result set
 rs.close();

 // set filter value to 40
 pps.setInt(1, 40);

 // execute query
 rs = pps.executeQuery();

 // Print query results
 System.out.println("-- Values for v.\"age\" > 40 --");
 rs.print();
 // close result set
 rs.close();

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-45

 }
 finally {
 // close the result set
 if (rs != null) {
 rs.close();
 }
 // close the statement
 if (pps != null) {
 pps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

PgqlExample5.java has the following output for test_graph (which can be loaded
using GraphLoaderExample.java code).

-- Values for v.age > 30 --
+---------------------+
| fname | lname | age |
+---------------------+
Susan	Blue	35
Bill	Brown	40
Ray	Green	41
+---------------------+		
-- Values for v.age > 40 --		
+---------------------+		
fname	lname	age
+---------------------+		
Ray	Green	41
+---------------------+

Example 5-12 PgqlExample6.java

PgqlExample6.java shows a query with two bind variables: one String variable and
one Timestamp variable.

import java.sql.Connection;
import java.sql.Timestamp;

import java.time.OffsetDateTime;
import java.time.ZoneOffset;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlPreparedStatement;
import oracle.pg.rdbms.pgql.PgqlResultSet;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to use multiple bind variables with a PGQL

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-46

query.
 */
public class PgqlExample6
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlPreparedStatement pps = null;
 PgqlResultSet rs = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();

 // Create a Pgql connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Query string with multiple bind variables
 String pgql =
 "SELECT v1.\"fname\" AS fname1, v2.\"fname\" AS fname2 "+
 "FROM MATCH (v1)-[e:\"knows\"]->(v2) "+
 "WHERE e.\"since\" < ? AND e.\"firstMetIn\" = ?";

 // Create a PgqlPreparedStatement
 pps = pgqlConn.prepareStatement(pgql);

 // Set e.since < 2006-01-01T12:00:00.00Z
 Timestamp t =
Timestamp.valueOf(OffsetDateTime.parse("2006-01-01T12:00:01.00Z").atZone
SameInstant(ZoneOffset.UTC).toLocalDateTime());
 pps.setTimestamp(1, t);
 // Set e.firstMetIn = 'CA'
 pps.setString(2, "CA");

 // execute query
 rs = pps.executeQuery();

 // Print query results

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-47

 System.out.println("-- Values for e.\"since\" <
2006-01-01T12:00:01.00Z AND e.\"firstMetIn\" = 'CA' --");
 rs.print();
 // close result set
 rs.close();

 // Set e.since < 2000-01-01T12:00:00.00Z
 t =
Timestamp.valueOf(OffsetDateTime.parse("2000-01-01T12:00:00.00Z").atZone
SameInstant(ZoneOffset.UTC).toLocalDateTime());
 pps.setTimestamp(1, t);
 // Set e.firstMetIn = 'TX'
 pps.setString(2, "TX");

 // execute query
 rs = pps.executeQuery();

 // Print query results
 System.out.println("-- Values for e.\"since\" <
2000-01-01T12:00:00.00Z AND e.\"firstMetIn\" = 'TX' --");
 rs.print();
 // close result set
 rs.close();
 }
 finally {
 // close the result set
 if (rs != null) {
 rs.close();
 }
 // close the statement
 if (pps != null) {
 pps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

PgqlExample6.java gives the following output for test_graph (which can be loaded
using GraphLoaderExample.java code).

-- Values for e."since" < 2006-01-01T12:00:01.00Z AND e."firstMetIn" = 'CA' --
+-----------------+
| FNAME1 | FNAME2 |
+-----------------+
| Susan | Bill |
| Susan | Ray |
+-----------------+
-- Values for e."since" < 2000-01-01T12:00:00.00Z AND e."firstMetIn" = 'TX' --
+-----------------+
| FNAME1 | FNAME2 |
+-----------------+

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-48

| Ray | Bill |
+-----------------+

5.9.4.2.2 Verifying PGQL Identifiers
For some parts of a PGQL query the parser does not allow use of bind variables. In
such cases, the input can be verified using the printIdentifier method in package
oracle.pgql.lang.ir.PgqlUtils.

Consider the following query execution that concatenates the graph against which the
graph pattern will be matched:

stmt.executeQuery("SELECT n.name FROM MATCH (n) ON " + graphName, "");

In order to avoid injection, the identifier graphName should be verified as follows:

stmt.executeQuery("SELECT n.name FROM MATCH (n) ON " +
PgqlUtils.printIdentifier(graphName), "");

5.9.4.3 Using a Text Index with PGQL Queries
PGQL queries executed against Oracle Database can use Oracle Text indexes
created for vertex and edge properties. After creating a text index, you can use the
CONTAINS operator to perform a full text search. CONTAINS has two arguments:
a vertex or edge property, and an Oracle Text search string. Any valid Oracle Text
search string can be used, including advanced features such as wildcards, stemming,
and soundex.

Example 5-13 PgqlExample7.java

PgqlExample7.java shows how to execute a CONTAINS query.

import java.sql.CallableStatement;
import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to use an Oracle Text index with a PGQL query.
 */
public class PgqlExample7
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-49

 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;
 PgqlResultSet rs = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();

 // Create text index with SQL API
 CallableStatement cs = null;
 // text index on vertices
 cs = conn.prepareCall(
 "begin opg_apis.create_vertices_text_idx(:1,:2); end;"
);
 cs.setString(1,user);
 cs.setString(2,graph);
 cs.execute();
 cs.close();
 // text index on edges
 cs = conn.prepareCall(
 "begin opg_apis.create_edges_text_idx(:1,:2); end;"
);
 cs.setString(1,user);
 cs.setString(2,graph);
 cs.execute();
 cs.close();

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();

 // Query using CONTAINS text search operator on vertex property
 // Find all vertices with an lname property value that starts
with 'B'
 String pgql =
 "SELECT v.\"fname\" AS fname, v.\"lname\" AS lname "+
 "FROM MATCH (v) "+
 "WHERE CONTAINS(v.\"lname\",'B%')";

 // execute query
 rs = ps.executeQuery(pgql, "");

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-50

 // print results
 System.out.println("-- Vertex Property Query --");
 rs.print();

 // close result set
 rs.close();

 // Query using CONTAINS text search operator on edge property
 // Find all knows edges with a firstMetIn property value that
ends with 'A'
 pgql =
 "SELECT v1.\"fname\" AS fname1, v2.\"fname\" AS fname2,
e.\"firstMetIn\" AS loc "+
 "FROM MATCH (v1)-[e:\"knows\"]->(v2) "+
 "WHERE CONTAINS(e.\"firstMetIn\",'%A')";

 // execute query
 rs = ps.executeQuery(pgql, "");

 // print results
 System.out.println("-- Edge Property Query --");
 rs.print();

 }
 finally {
 // close the result set
 if (rs != null) {
 rs.close();
 }
 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

PgqlExample7.java has the following output for test_graph (which can be loaded
using GraphLoaderExample.java code).

-- Vertex Property Query --
+---------------+
| FNAME | LNAME |
+---------------+
Susan	Blue
Bill	Brown
John	Black
+---------------+	
-- Edge Property Query --	
+-----------------------+	
FNAME1	FNAME1

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-51

+-----------------------+
Susan	Bill	CA
John	Bill	GA
Susan	John	CA
Susan	Ray	CA
+-----------------------+

5.9.4.4 Obtaining the SQL Translation for a PGQL Query
You can obtain the SQL translation for a PGQL query through methods in
PgqlStatement and PgqlPreparedStatement. The raw SQL for a PGQL query can
be useful for several reasons:

• You can execute the SQL directly against the database with other SQL-based
tools or interfaces (for example, SQL*Plus or SQL Developer).

• You can customize and tune the generated SQL to optimize performance or to
satisfy a particular requirement of your application.

• You can build a larger SQL query that joins a PGQL subquery with other data
stored in Oracle Database (such as relational tables, spatial data, and JSON
data).

Example 5-14 PgqlExample8.java

PgqlExample8.java shows how to obtain the raw SQL translation for a PGQL query.
The translateQuery method of PgqlStatement returns an PgqlSqlQueryTrans object
that contains information about return columns from the query and the SQL translation
itself.

The translated SQL returns different columns depending on the type of "logical" object
or value projected from the PGQL query. A vertex or edge projected in PGQL has two
corresponding columns projected in the translated SQL:

• $IT : id type – NVARCHAR(1): 'V' for vertex or 'E' for edge

• $ID : vertex or edge identifier – NUMBER: same content as VID or EID columns in
VT$ and GE$ tables

A property value or constant scalar value projected in PGQL has four corresponding
columns projected in the translated SQL:

• $T : value type – NUMBER: same content as T column in VT$ and GE$ tables

• $V: value – NVARCHAR2(15000): same content as V column in VT$ and GE$
tables

• $VN: number value – NUMBER: same content as VN column in VT$ and GE$
tables

• $VT: temporal value – TIMESTAMP WITH TIME ZONE: same content as VT
column in VT$ and GE$ tables

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlColumnDescriptor;
import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlStatement;
import oracle.pg.rdbms.pgql.PgqlSqlQueryTrans;

import oracle.ucp.jdbc.PoolDataSourceFactory;

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-52

import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to obtain the SQL translation for a PGQL
query.
 */
public class PgqlExample8
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();

 // Create a Pgql connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // PGQL query to be translated
 String pgql =
 "SELECT v1, v1.\"fname\" AS fname1, e, e.\"since\" AS since "+
 "FROM MATCH (v1)-[e:\"knows\"]->(v2)";

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();

 // Get the SQL translation
 PgqlSqlQueryTrans sqlTrans = ps.translateQuery(pgql,"");

 // Get the return column descriptions
 PgqlColumnDescriptor[] cols = sqlTrans.getReturnTypes();

 // Print column descriptions
 System.out.println("-- Return Columns -----------------------");
 printReturnCols(cols);

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-53

 // Print SQL translation
 System.out.println("-- SQL Translation ----------------------");
 System.out.println(sqlTrans.getSqlTranslation());
 }
 finally {
 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }

 /**
 * Prints return columns for a SQL translation
 */
 static void printReturnCols(PgqlColumnDescriptor[] cols) throws
Exception
 {
 StringBuffer buff = new StringBuffer("");

 for (int i = 0; i < cols.length; i++) {

 String colName = cols[i].getColName();
 PgqlColumnDescriptor.Type colType = cols[i].getColType();
 int offset = cols[i].getSqlOffset();

 String readableType = "";
 switch(colType) {
 case VERTEX:
 readableType = "VERTEX";
 break;
 case EDGE:
 readableType = "EDGE";
 break;
 case VALUE:
 readableType = "VALUE";
 break;
 }

 buff.append("colName=["+colName+"] colType=["+readableType+"]
offset=["+offset+"]\n");
 }
 System.out.println(buff.toString());
 }
}

PgqlExample8.java has the following output for test_graph (which can be loaded
using GraphLoaderExample.java code).

-- Return Columns -----------------------
colName=[v1] colType=[VERTEX] offset=[1]

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-54

colName=[fname1] colType=[VALUE] offset=[3]
colName=[e] colType=[EDGE] offset=[7]
colName=[since] colType=[VALUE] offset=[9]
-- SQL Translation ----------------------
SELECT n'V' AS "V1$IT",
T0$0.SVID AS "V1$ID",
T0$1.T AS "FNAME1$T",
T0$1.V AS "FNAME1$V",
T0$1.VN AS "FNAME1$VN",
T0$1.VT AS "FNAME1$VT",
n'E' AS "E$IT",
T0$0.EID AS "E$ID",
T0$0.T AS "SINCE$T",
T0$0.V AS "SINCE$V",
T0$0.VN AS "SINCE$VN",
T0$0.VT AS "SINCE$VT"
FROM (SELECT L.EID, L.SVID, L.DVID, L.EL, R.K, R.T, R.V, R.VN, R.VT
 FROM "SCOTT".TEST_GRAPHGT$ L,
 (SELECT * FROM "SCOTT".TEST_GRAPHGE$ WHERE K=n'since') R
 WHERE L.EID = R.EID(+)
) T0$0,
(SELECT L.VID, L.VL, R.K, R.T, R.V, R.VN, R.VT
 FROM "SCOTT".TEST_GRAPHVD$ L,
 (SELECT * FROM "SCOTT".TEST_GRAPHVT$ WHERE K=n'fname') R
 WHERE L.VID = R.VID(+)
) T0$1
WHERE T0$0.SVID=T0$1.VID AND
(T0$0.EL = n'knows' AND T0$0.EL IS NOT NULL)

Example 5-15 PgqlExample9.java

You can also obtain the SQL translation for PGQL queries with bind variables. In
this case, the corresponding SQL translation will also contain bind variables. The
PgqlSqlQueryTrans interface has a getSqlBvList method that returns an ordered List
of Java Objects that should be bound to the SQL query (the first Object on the list
should be set at position 1, and the second should be set at position 2, and so on).

PgqlExample9.java shows how to get and execute the SQL for a PGQL query with
bind variables.

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.Timestamp;

import java.util.List;

import oracle.pg.rdbms.pgql.PgqlColumnDescriptor;
import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlPreparedStatement;
import oracle.pg.rdbms.pgql.PgqlSqlQueryTrans;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to obtain and execute the SQL translation for
a

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-55

 * PGQL query that uses bind variables.
 */
public class PgqlExample9
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlPreparedStatement pgqlPs = null;

 PreparedStatement sqlPs = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();

 // Create a Pgql connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Execute query to get a ResultSet object
 String pgql =
 "SELECT v1, v1.\"fname\" AS fname1, v1.\"age\" AS age, ? as
constVal "+
 "FROM MATCH (v1) "+
 "WHERE v1.\"fname\" = ? OR v1.\"age\" < ?";

 // Create a PgqlStatement
 pgqlPs = pgqlConn.prepareStatement(pgql);

 // set bind values
 pgqlPs.setDouble(1, 2.05d);
 pgqlPs.setString(2, "Bill");
 pgqlPs.setInt(3, 35);

 // Get the SQL translation
 PgqlSqlQueryTrans sqlTrans = pgqlPs.translateQuery("");

 // Get the SQL String

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-56

 String sqlStr = sqlTrans.getSqlTranslation();

 // Get the return column descriptions
 PgqlColumnDescriptor[] cols = sqlTrans.getReturnTypes();

 // Get the bind values
 List<Object> bindVals = sqlTrans.getSqlBvList();

 // Print column descriptions
 System.out.println("-- Return Columns -----------------------");
 printReturnCols(cols);

 // Print SQL translation
 System.out.println("-- SQL Translation ----------------------");
 System.out.println(sqlStr);

 // Print Bind Values
 System.out.println("\n-- Bind Values --------------------------");
 for (Object obj : bindVals) {
 System.out.println(obj.toString());
 }

 // Execute Query
 // Get PreparedStatement
 sqlPs = conn.prepareStatement("SELECT COUNT(*) FROM
("+sqlStr+")");
 // Set bind values and execute the PreparedStatement
 executePs(sqlPs, bindVals);

 // Set new bind values in the PGQL PreparedStatement
 pgqlPs.setDouble(1, 3.02d);
 pgqlPs.setString(2, "Ray");
 pgqlPs.setInt(3, 30);

 // Print Bind Values
 bindVals = sqlTrans.getSqlBvList();
 System.out.println("\n-- Bind Values --------------------------");
 for (Object obj : bindVals) {
 System.out.println(obj.toString());
 }

 // Execute the PreparedStatement with new bind values
 executePs(sqlPs, bindVals);
 }
 finally {
 // close the SQL statement
 if (sqlPs != null) {
 sqlPs.close();
 }
 // close the statement
 if (pgqlPs != null) {
 pgqlPs.close();
 }
 // close the connection
 if (conn != null) {

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-57

 conn.close();
 }
 }
 }

 /**
 * Executes a SQL PreparedStatement with the input bind values
 */
 static void executePs(PreparedStatement ps, List<Object> bindVals)
throws Exception
 {
 ResultSet rs = null;
 try {
 // Set bind values
 for (int idx = 0; idx < bindVals.size(); idx++) {
 Object o = bindVals.get(idx);
 // String
 if (o instanceof java.lang.String) {
 ps.setNString(idx + 1, (String)o);
 }
 // Int
 else if (o instanceof java.lang.Integer) {
 ps.setInt(idx + 1, ((Integer)o).intValue());
 }
 // Long
 else if (o instanceof java.lang.Long) {
 ps.setLong(idx + 1, ((Long)o).longValue());
 }
 // Float
 else if (o instanceof java.lang.Float) {
 ps.setFloat(idx + 1, ((Float)o).floatValue());
 }
 // Double
 else if (o instanceof java.lang.Double) {
 ps.setDouble(idx + 1, ((Double)o).doubleValue());
 }
 // Timestamp
 else if (o instanceof java.sql.Timestamp) {
 ps.setTimestamp(idx + 1, (Timestamp)o);
 }
 else {
 ps.setString(idx + 1, bindVals.get(idx).toString());
 }
 }

 // Execute query
 rs = ps.executeQuery();
 if (rs.next()) {
 System.out.println("\n-- Execute Query: Result has
"+rs.getInt(1)+" rows --");
 }
 }
 finally {
 // close the SQL ResultSet
 if (rs != null) {

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-58

 rs.close();
 }
 }
 }

 /**
 * Prints return columns for a SQL translation
 */
 static void printReturnCols(PgqlColumnDescriptor[] cols) throws
Exception
 {
 StringBuffer buff = new StringBuffer("");

 for (int i = 0; i < cols.length; i++) {

 String colName = cols[i].getColName();
 PgqlColumnDescriptor.Type colType = cols[i].getColType();
 int offset = cols[i].getSqlOffset();

 String readableType = "";
 switch(colType) {
 case VERTEX:
 readableType = "VERTEX";
 break;
 case EDGE:
 readableType = "EDGE";
 break;
 case VALUE:
 readableType = "VALUE";
 break;
 }

 buff.append("colName=["+colName+"] colType=["+readableType+"]
offset=["+offset+"]\n");
 }
 System.out.println(buff.toString());
 }
}

PgqlExample9.java has the following output for test_graph (which can be loaded
using GraphLoaderExample.java code).

–-- Return Columns -----------------------
colName=[v1] colType=[VERTEX] offset=[1]
colName=[fname1] colType=[VALUE] offset=[3]
colName=[age] colType=[VALUE] offset=[7]
colName=[constVal] colType=[VALUE] offset=[11]
-- SQL Translation ----------------------
SELECT n'V' AS "V1$IT",
T0$0.VID AS "V1$ID",
T0$0.T AS "FNAME1$T",
T0$0.V AS "FNAME1$V",
T0$0.VN AS "FNAME1$VN",
T0$0.VT AS "FNAME1$VT",
T0$1.T AS "AGE$T",
T0$1.V AS "AGE$V",

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-59

T0$1.VN AS "AGE$VN",
T0$1.VT AS "AGE$VT",
4 AS "CONSTVAL$T",
to_nchar(?,'TM9','NLS_Numeric_Characters=''.,''') AS "CONSTVAL$V",
? AS "CONSTVAL$VN",
to_timestamp_tz(null) AS "CONSTVAL$VT"
FROM (SELECT L.VID, L.VL, R.K, R.T, R.V, R.VN, R.VT
 FROM "SCOTT".TEST_GRAPHVD$ L,
 (SELECT * FROM "SCOTT".TEST_GRAPHVT$ WHERE K=n'fname') R
 WHERE L.VID = R.VID(+)
) T0$0,
(SELECT L.VID, L.VL, R.K, R.T, R.V, R.VN, R.VT
 FROM "SCOTT".TEST_GRAPHVD$ L,
 (SELECT * FROM "SCOTT".TEST_GRAPHVT$ WHERE K=n'age') R
 WHERE L.VID = R.VID(+)
) T0$1
WHERE T0$0.VID=T0$1.VID AND
((T0$0.T = 1 AND T0$0.V = ?) OR T0$1.VN < ?)

-- Bind Values --------------------------
2.05
2.05
Bill
35
-- Execute Query: Result has 2 rows --

-- Bind Values --------------------------
3.02
3.02
Ray
30
-- Execute Query: Result has 1 rows --

5.9.4.5 Additional Options for PGQL Translation and Execution
Several options are available to influence PGQL query translation and execution. The
following are the main ways to set query options:

• Through explicit arguments to executeQuery and translateQuery

• Through flags in the options string argument of executeQuery and
translateQuery

• Through Java JVM arguments.

The following table summarizes the available query arguments for PGQL translation
and execution.

Table 5-2 PGQL Translation and Execution Options

Option Default Explict
Argument

Options Flag JVM Argument

Degree of
parallelis
m

0 parallel none none

Timeout unlimite
d

timeout none none

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-60

Table 5-2 (Cont.) PGQL Translation and Execution Options

Option Default Explict
Argument

Options Flag JVM Argument

Dynamic
sampling

2 dynamicSampli
ng

none none

Maximum
number
of results

unlimite
d

maxResults none none

GT$ table
usage

on none USE_GT_TAB=F -
Doracle.pg.rdbms.pgql.useGtTab=fal
se

CONNEC
T BY
usage

off none USE_RW=F -
Doracle.pg.rdbms.pgql.useRW=false

Distinct
recursive
WITH
usage

off none USE_DIST_RW=T -
Doracle.pg.rdbms.pgql.useDistRW=t
rue

Maximum
path
length

unlimite
d

none MAX_PATH_LEN=
n

-
Doracle.pg.rdbms.pgql.maxPathLen
=n

Set
partial

false none EDGE_SET_PART
IAL=T

-
Doracle.pg.rdbms.pgql.edgeSetParti
al=true

Project
null
propertie
s

true none PROJ_NULL_PRO
PS=F

-
Doracle.pg.rdbms.pgql.projNullProp
s=false

VT$ VL
column
usage

on none USE_VL_COL=F -
Doracle.pg.rdbms.pgql.useVLCol=fa
lse

• Query Options Controlled by Explicit Arguments

• Using the GT$ Skeleton Table

• Path Query Options

• Options for Partial Object Construction

5.9.4.5.1 Query Options Controlled by Explicit Arguments
Some query options are controlled by explicit arguments to methods in the Java API.

• The executeQuery method of PgqlStatement has explicit arguments for timeout
in seconds, degree of parallelism, optimizer dynamic sampling, and maximum
number of results.

• The translateQuery method has explicit arguments for degree of
parallelism, optimizer dynamic sampling, and maximum number of results.
PgqlPreparedStatement also provides those same additional arguments for
executeQuery and translateQuery.

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-61

Example 5-16 PgqlExample10.java

PgqlExample10.java shows PGQL query execution with additional options controlled
by explicit arguments.

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to execute a PGQL query with various options.
 */
public class PgqlExample10
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;
 PgqlResultSet rs = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();

 // Execute query to get a ResultSet object
 String pgql =
 "SELECT v1.\"fname\" AS fname1, v2.\"fname\" AS fname2 "+

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-62

 "FROM MATCH (v1)-[:\"friendOf\"]->(v2)";
 rs = ps.executeQuery(pgql /* query string */,
 100 /* timeout (sec): 0 is default and
implies no timeout */,
 2 /* parallel: 1 is default */,
 6 /* dynamic sampling: 2 is default */,
 50 /* max results: -1 is default and
implies no limit */,
 "" /* options */);

 // Print query results
 rs.print();
 }
 finally {
 // close the result set
 if (rs != null) {
 rs.close();
 }
 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

PgqlExample10.java gives the following output for test_graph (which can be loaded
using GraphLoaderExample.java code).

+-----------------+
| FNAME1 | FNAME2 |
+-----------------+
Ray	Susan
John	Susan
Bill	John
Susan	John
John	Bill
+-----------------+

5.9.4.5.2 Using the GT$ Skeleton Table
The property graph relational schema defines a GT$ skeleton table that stores a
single row for each edge in the graph, no matter how many properties an edge has.
This skeleton table is populated by default so that PGQL query execution can take
advantage of the GT$ table and avoid sorting operations on the GE$ table in many
cases, which gives a significant performance improvement.

You can add "USE_GT_TAB=F" to the options argument of executeQuery and
translateQuery or use -Doracle.pg.rdbms.pgql.useGtTab=false in the Java
command line to turn off GT$ table usage.

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-63

Example 5-17 PgqlExample11.java

PgqlExample11.java shows a query that uses the GT$ skeleton table.

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlSqlQueryTrans;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to avoid using the GT$ skeleton table for
 * PGQL query execution.
 */
public class PgqlExample11
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();

 // Execute query to get a ResultSet object
 String pgql =
 "SELECT id(v1), id(v2) "+
 "FROM MATCH (v1)-[knows]->(v2)";

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-64

 // Get the SQL translation with GT table
 PgqlSqlQueryTrans sqlTrans = ps.translateQuery(pgql,"");

 // Print SQL translation
 System.out.println("-- SQL Translation with GT Table
----------------------");
 System.out.println(sqlTrans.getSqlTranslation());

 // Get the SQL translation without GT table
 sqlTrans = ps.translateQuery(pgql,"USE_GT_TAB=F");

 // Print SQL translation
 System.out.println("-- SQL Translation without GT Table
-------------------------");
 System.out.println(sqlTrans.getSqlTranslation());

 }
 finally {
 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

PgqlExample11.java gives the following output for test_graph (which can be loaded
using GraphLoaderExample.java code).

-- SQL Translation with GT Table ----------------------
SELECT 7 AS "id(v1)$T",
to_nchar(T0$0.SVID,'TM9','NLS_Numeric_Characters=''.,''') AS "id(v1)$V",
T0$0.SVID AS "id(v1)$VN",
to_timestamp_tz(null) AS "id(v1)$VT",
7 AS "id(v2)$T",
to_nchar(T0$0.DVID,'TM9','NLS_Numeric_Characters=''.,''') AS "id(v2)$V",
T0$0.DVID AS "id(v2)$VN",
to_timestamp_tz(null) AS "id(v2)$VT"
FROM "SCOTT".TEST_GRAPHGT$ T0$0
-- SQL Translation without GT Table -------------------------
SELECT 7 AS "id(v1)$T",
to_nchar(T0$0.SVID,'TM9','NLS_Numeric_Characters=''.,''') AS "id(v1)$V",
T0$0.SVID AS "id(v1)$VN",
to_timestamp_tz(null) AS "id(v1)$VT",
7 AS "id(v2)$T",
to_nchar(T0$0.DVID,'TM9','NLS_Numeric_Characters=''.,''') AS "id(v2)$V",
T0$0.DVID AS "id(v2)$VN",
to_timestamp_tz(null) AS "id(v2)$VT"
FROM (SELECT DISTINCT EID, SVID, DVID,EL FROM "SCOTT".TEST_GRAPHGE$) T0$0

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-65

5.9.4.5.3 Path Query Options
A few options are available for executing path queries in PGQL. There are two
basic evaluation methods available in Oracle SQL: CONNECT BY or recursive WITH
clauses. Recursive WITH is the default evaluation method. In addition, you can further
modify the recursive WITH evaluation method to include a DISTINCT modifier during
the recursive step of query evaluation. Computing distinct vertices at each step
helps prevent a combinatorial explosion in highly connected graphs. The DISTINCT
modifier is not added by default because it requires a specific parameter setting in the
database ("_recursive_with_control"=8).

You can also control the maximum length of paths searched. Path length in this case
is defined as the number of repetitions allowed when evaluating the * and + operators.
The default maximum length is unlimited.

Path evaluation options are summarized as follows.

• CONNECT BY: To use CONNECT BY, specify 'USE_RW=F' in the options
argument or specify -Doracle.pg.rdbms.pgql.useRW=false in the Java command
line.

• Distinct Modifier in Recursive WITH: To use the DISTINCT modifier in
the recursive step, first set "_recursive_with_control"=8 in your database
session, then specify 'USE_DIST_RW=T' in the options argument or specify -
Doracle.pg.rdbms.pgql.useDistRW=true in the Java command line. You will
encounter ORA-32486: unsupported operation in recursive branch of recursive
WITH clause if "_recursive_with_control" has not been set to 8 in your session.

• Path Length Restriction: To limit maximum number of repetitions when
evaluating * and + to n, specify 'MAX_PATH_LEN=n' in the query options argument
or specify -Doracle.pg.rdbms.pgql.maxPathLen=n in the Java command line.

Example 5-18 PgqlExample12.java

PgqlExample12.java shows path query translations under various options.

import java.sql.Connection;
import java.sql.Statement;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlSqlQueryTrans;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to use various options with PGQL path queries.
 */
public class PgqlExample12
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-66

 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();

 // Set "_recursive_with_control"=8 to enable distinct optimization
 // optimization for recursive with
 Statement stmt = conn.createStatement();
 stmt.executeUpdate("alter session set
\"_recursive_with_control\"=8");
 stmt.close();

 // Path Query to illustrate options
 String pgql =
 "PATH fof AS ()-[:\"friendOf\"]->() "+
 "SELECT id(v1), id(v2) "+
 "FROM MATCH (v1)-/:fof*/->(v2) "+
 "WHERE id(v1) = 2";

 // get SQL translation with defaults - Non-distinct Recursive WITH
 PgqlSqlQueryTrans sqlTrans =
 ps.translateQuery(pgql /* query string */,
 2 /* parallel: default is 1 */,
 2 /* dynamic sampling: default is 2 */,
 -1 /* max results: -1 implies no limit */,
 "" /* options */);
 System.out.println("-- Default Path Translation
--------------------");
 System.out.println(sqlTrans.getSqlTranslation()+"\n");

 // get SQL translation with DISTINCT reachability optimization
 sqlTrans =

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-67

 ps.translateQuery(pgql /* query string */,
 2 /* parallel: default is 1 */,
 2 /* dynamic sampling: default is 2 */,
 -1 /* max results: -1 implies no limit */,
 " USE_DIST_RW=T " /* options */);
 System.out.println("-- DISTINCT RW Path Translation
--------------------");
 System.out.println(sqlTrans.getSqlTranslation()+"\n");

 // get SQL translation with CONNECT BY
 sqlTrans =
 ps.translateQuery(pgql /* query string */,
 2 /* parallel: default is 1 */,
 2 /* dynamic sampling: default is 2 */,
 -1 /* max results: -1 implies no limit */,
 " USE_RW=F " /* options */);
 System.out.println("-- CONNECT BY Path Translation
--------------------");
 System.out.println(sqlTrans.getSqlTranslation()+"\n");
 }
 finally {
 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

PgqlExample12.java gives the following output for test_graph (which can be loaded
using GraphLoaderExample.java code).

-- Default Path Translation --------------------
SELECT /*+ parallel(2) */ * FROM(SELECT 7 AS "id(v1)$T",
to_nchar(T0$0.SVID,'TM9','NLS_Numeric_Characters=''.,''') AS "id(v1)$V",
T0$0.SVID AS "id(v1)$VN",
to_timestamp_tz(null) AS "id(v1)$VT",
7 AS "id(v2)$T",
to_nchar(T0$0.DVID,'TM9','NLS_Numeric_Characters=''.,''') AS "id(v2)$V",
T0$0.DVID AS "id(v2)$VN",
to_timestamp_tz(null) AS "id(v2)$VT"
FROM (/*Path[*/SELECT DISTINCT SVID, DVID
FROM (
SELECT 2 AS SVID, 2 AS DVID
FROM SYS.DUAL
WHERE EXISTS(
SELECT 1
FROM "SCOTT".TEST_GRAPHVT$
WHERE VID = 2)
UNION ALL
SELECT SVID,DVID FROM
(WITH RW (ROOT, DVID) AS
(SELECT ROOT, DVID FROM

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-68

(SELECT SVID ROOT, DVID
FROM (SELECT T0$0.SVID AS SVID,
T0$0.DVID AS DVID
FROM "SCOTT".TEST_GRAPHGT$ T0$0
WHERE T0$0.SVID = 2 AND
(T0$0.EL = n'friendOf' AND T0$0.EL IS NOT NULL))
) UNION ALL
SELECT RW.ROOT, R.DVID
FROM (SELECT T0$0.SVID AS SVID,
T0$0.DVID AS DVID
FROM "SCOTT".TEST_GRAPHGT$ T0$0
WHERE (T0$0.EL = n'friendOf' AND T0$0.EL IS NOT NULL)) R, RW
WHERE RW.DVID = R.SVID)
CYCLE DVID SET cycle_col TO 1 DEFAULT 0
SELECT ROOT SVID, DVID FROM RW))/*]Path*/) T0$0
WHERE T0$0.SVID = 2)

-- DISTINCT RW Path Translation --------------------
SELECT /*+ parallel(2) */ * FROM(SELECT 7 AS "id(v1)$T",
to_nchar(T0$0.SVID,'TM9','NLS_Numeric_Characters=''.,''') AS "id(v1)$V",
T0$0.SVID AS "id(v1)$VN",
to_timestamp_tz(null) AS "id(v1)$VT",
7 AS "id(v2)$T",
to_nchar(T0$0.DVID,'TM9','NLS_Numeric_Characters=''.,''') AS "id(v2)$V",
T0$0.DVID AS "id(v2)$VN",
to_timestamp_tz(null) AS "id(v2)$VT"
FROM (/*Path[*/SELECT DISTINCT SVID, DVID
FROM (
SELECT 2 AS SVID, 2 AS DVID
FROM SYS.DUAL
WHERE EXISTS(
SELECT 1
FROM "SCOTT".TEST_GRAPHVT$
WHERE VID = 2)
UNION ALL
SELECT SVID,DVID FROM
(WITH RW (ROOT, DVID) AS
(SELECT ROOT, DVID FROM
(SELECT SVID ROOT, DVID
FROM (SELECT T0$0.SVID AS SVID,
T0$0.DVID AS DVID
FROM "SCOTT".TEST_GRAPHGT$ T0$0
WHERE T0$0.SVID = 2 AND
(T0$0.EL = n'friendOf' AND T0$0.EL IS NOT NULL))
) UNION ALL
SELECT DISTINCT RW.ROOT, R.DVID
FROM (SELECT T0$0.SVID AS SVID,
T0$0.DVID AS DVID
FROM "SCOTT".TEST_GRAPHGT$ T0$0
WHERE (T0$0.EL = n'friendOf' AND T0$0.EL IS NOT NULL)) R, RW
WHERE RW.DVID = R.SVID)
CYCLE DVID SET cycle_col TO 1 DEFAULT 0
SELECT ROOT SVID, DVID FROM RW))/*]Path*/) T0$0
WHERE T0$0.SVID = 2)

-- CONNECT BY Path Translation --------------------
SELECT /*+ parallel(2) */ * FROM(SELECT 7 AS "id(v1)$T",
to_nchar(T0$0.SVID,'TM9','NLS_Numeric_Characters=''.,''') AS "id(v1)$V",
T0$0.SVID AS "id(v1)$VN",
to_timestamp_tz(null) AS "id(v1)$VT",
7 AS "id(v2)$T",

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-69

to_nchar(T0$0.DVID,'TM9','NLS_Numeric_Characters=''.,''') AS "id(v2)$V",
T0$0.DVID AS "id(v2)$VN",
to_timestamp_tz(null) AS "id(v2)$VT"
FROM (/*Path[*/SELECT DISTINCT SVID, DVID
FROM (
SELECT 2 AS SVID, 2 AS DVID
FROM SYS.DUAL
WHERE EXISTS(
SELECT 1
FROM "SCOTT".TEST_GRAPHVT$
WHERE VID = 2)
UNION ALL
SELECT SVID, DVID
FROM
(SELECT CONNECT_BY_ROOT T0$0.SVID AS SVID, T0$0.DVID AS DVID
FROM(
SELECT T0$0.SVID AS SVID,
T0$0.DVID AS DVID
FROM "SCOTT".TEST_GRAPHGT$ T0$0
WHERE (T0$0.EL = n'friendOf' AND T0$0.EL IS NOT NULL)) T0$0
START WITH T0$0.SVID = 2
CONNECT BY NOCYCLE PRIOR DVID = SVID))/*]Path*/) T0$0
WHERE T0$0.SVID = 2)

The query plan for the first query with the default recursive WITH strategy should look
similar to the following.

-- default RW

| Id | Operation |
Name

| 0 | SELECT STATEMENT
| |
| 1 | TEMP TABLE TRANSFORMATION
| |
| 2 | LOAD AS SELECT (CURSOR DURATION MEMORY) |
SYS_TEMP_0FD9D6662_37AA44 |
| 3 | UNION ALL (RECURSIVE WITH) BREADTH FIRST
| |
| 4 | PX COORDINATOR
| |
| 5 | PX SEND QC (RANDOM)
| :TQ20000 |
| 6 | LOAD AS SELECT (CURSOR DURATION MEMORY) |
SYS_TEMP_0FD9D6662_37AA44 |
| 7 | PX PARTITION HASH ALL
| |
|* 8 | TABLE ACCESS BY LOCAL INDEX ROWID BATCHED |
TEST_GRAPHGT$ |
|* 9 | INDEX RANGE SCAN |
TEST_GRAPHXSG$ |
| 10 | PX COORDINATOR
| |
| 11 | PX SEND QC (RANDOM)
| :TQ10000 |
| 12 | LOAD AS SELECT (CURSOR DURATION MEMORY) |
SYS_TEMP_0FD9D6662_37AA44 |
| 13 | NESTED LOOPS

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-70

| |
| 14 | PX BLOCK ITERATOR
| |
|* 15 | TABLE ACCESS FULL |
SYS_TEMP_0FD9D6662_37AA44 |
| 16 | PARTITION HASH ALL
| |
|* 17 | TABLE ACCESS BY LOCAL INDEX ROWID BATCHED |
TEST_GRAPHGT$ |
|* 18 | INDEX RANGE SCAN |
TEST_GRAPHXSG$ |
| 19 | PX COORDINATOR
| |
| 20 | PX SEND QC (RANDOM)
| :TQ30001 |
| 21 | VIEW
| |
| 22 | HASH UNIQUE
| |
| 23 | PX RECEIVE
| |
| 24 | PX SEND HASH
| :TQ30000 |
| 25 | HASH UNIQUE
| |
| 26 | VIEW
| |
| 27 | UNION-ALL
| |
| 28 | PX SELECTOR
| |
|* 29 | FILTER
| |
| 30 | FAST DUAL
| |
| 31 | PARTITION HASH SINGLE
| |
|* 32 | INDEX SKIP SCAN |
TEST_GRAPHXQV$ |
| 33 | VIEW
| |
|* 34 | VIEW
| |
| 35 | PX BLOCK ITERATOR
| |
| 36 | TABLE ACCESS FULL |
SYS_TEMP_0FD9D6662_37AA44

The query plan for the second query that adds a DISTINCT modifier in the recursive
step should look similar to the following.

| Id | Operation |
Name

| 0 | SELECT STATEMENT
| |

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-71

| 1 | TEMP TABLE TRANSFORMATION
| |
| 2 | LOAD AS SELECT (CURSOR DURATION MEMORY) |
SYS_TEMP_0FD9D6669_37AA44 |
| 3 | UNION ALL (RECURSIVE WITH) BREADTH FIRST
| |
| 4 | PX COORDINATOR
| |
| 5 | PX SEND QC (RANDOM)
| :TQ20000 |
| 6 | LOAD AS SELECT (CURSOR DURATION MEMORY) |
SYS_TEMP_0FD9D6669_37AA44 |
| 7 | PX PARTITION HASH ALL
| |
|* 8 | TABLE ACCESS BY LOCAL INDEX ROWID BATCHED |
TEST_GRAPHGT$ |
|* 9 | INDEX RANGE SCAN |
TEST_GRAPHXSG$ |
| 10 | PX COORDINATOR
| |
| 11 | PX SEND QC (RANDOM)
| :TQ10001 |
| 12 | LOAD AS SELECT (CURSOR DURATION MEMORY) |
SYS_TEMP_0FD9D6669_37AA44 |
| 13 | SORT GROUP BY
| |
| 14 | PX RECEIVE
| |
| 15 | PX SEND HASH
| :TQ10000 |
| 16 | SORT GROUP BY
| |
| 17 | NESTED LOOPS
| |
| 18 | PX BLOCK ITERATOR
| |
|* 19 | TABLE ACCESS FULL |
SYS_TEMP_0FD9D6669_37AA44 |
| 20 | PARTITION HASH ALL
| |
|* 21 | TABLE ACCESS BY LOCAL INDEX ROWID BATCHED |
TEST_GRAPHGT$ |
|* 22 | INDEX RANGE SCAN |
TEST_GRAPHXSG$ |
| 23 | PX COORDINATOR
| |
| 24 | PX SEND QC (RANDOM)
| :TQ30001 |
| 25 | VIEW
| |
| 26 | HASH UNIQUE
| |
| 27 | PX RECEIVE
| |
| 28 | PX SEND HASH
| :TQ30000 |
| 29 | HASH UNIQUE
| |
| 30 | VIEW
| |
| 31 | UNION-ALL

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-72

| |
| 32 | PX SELECTOR
| |
|* 33 | FILTER
| |
| 34 | FAST DUAL
| |
| 35 | PARTITION HASH SINGLE
| |
|* 36 | INDEX SKIP SCAN |
TEST_GRAPHXQV$ |
| 37 | VIEW
| |
|* 38 | VIEW
| |
| 39 | PX BLOCK ITERATOR
| |
| 40 | TABLE ACCESS FULL |
SYS_TEMP_0FD9D6669_37AA44

The query plan for the third query that uses CONNECTY BY should look similar to the
following.

| Id | Operation | Name |

0	SELECT STATEMENT	
1	VIEW	
2	HASH UNIQUE	
3	VIEW	
4	UNION-ALL	
* 5	FILTER	
6	FAST DUAL	
7	PARTITION HASH SINGLE	
* 8	INDEX SKIP SCAN	TEST_GRAPHXQV$
* 9	VIEW	
* 10	CONNECT BY WITH FILTERING	
11	PX COORDINATOR	
12	PX SEND QC (RANDOM)	:TQ10000
13	PX PARTITION HASH ALL	
* 14	TABLE ACCESS BY LOCAL INDEX ROWID BATCHED	TEST_GRAPHGT$
* 15	INDEX RANGE SCAN	TEST_GRAPHXSG$
16	NESTED LOOPS	
17	CONNECT BY PUMP	
18	PARTITION HASH ALL	
* 19	TABLE ACCESS BY LOCAL INDEX ROWID BATCHED	TEST_GRAPHGT$
* 20	INDEX RANGE SCAN	TEST_GRAPHXSG$

Example 5-19 PgqlExample13.java

PgqlExample13.java shows how to set length restrictions during path query
evaluation.

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlResultSet;

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-73

import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to use the maximum path length option for
 * PGQL path queries.
 */
public class PgqlExample13
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;
 PgqlResultSet rs = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();

 // Path Query to illustrate options
 String pgql =
 "PATH fof AS ()-[:\"friendOf\"]->() "+
 "SELECT v1.\"fname\" AS fname1, v2.\"fname\" AS fname2 "+
 "FROM MATCH (v1)-/:fof*/->(v2) "+
 "WHERE v1.\"fname\" = 'Ray'";

 // execute query for 1-hop
 rs = ps.executeQuery(pgql, " MAX_PATH_LEN=1 ");

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-74

 // print results
 System.out.println("-- Results for 1-hop ----------------");
 rs.print();

 // close result set
 rs.close();

 // execute query for 2-hop
 rs = ps.executeQuery(pgql, " MAX_PATH_LEN=2 ");

 // print results
 System.out.println("-- Results for 2-hop ----------------");
 rs.print();

 // close result set
 rs.close();

 // execute query for 3-hop
 rs = ps.executeQuery(pgql, " MAX_PATH_LEN=3 ");

 // print results
 System.out.println("-- Results for 3-hop ----------------");
 rs.print();

 // close result set
 rs.close();

 }
 finally {
 // close the result set
 if (rs != null) {
 rs.close();
 }
 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

PgqlExample13.java has the following output for test_graph (which can be loaded
using GraphLoaderExample.java code).

-- Results for 1-hop ----------------
+-----------------+
| FNAME1 | FNAME2 |
+-----------------+
| Ray | Ray |
| Ray | Susan |
+-----------------+
-- Results for 2-hop ----------------

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-75

+-----------------+
| FNAME1 | FNAME2 |
+-----------------+
Ray	Susan
Ray	Ray
Ray	John
+-----------------+	
-- Results for 3-hop ----------------	
+-----------------+	
FNAME1	FNAME2
+-----------------+	
Ray	Susan
Ray	Bill
Ray	Ray
Ray	John
+-----------------+

5.9.4.5.4 Options for Partial Object Construction
When reading edges from a query result, there are two possible behaviors when
adding the start and end vertex to any local caches:

• Add only the vertex ID, which is available from the edge itself. This option is the
default, for efficiency.

• Add the vertex ID, and retrieve all properties for the start and end vertex.
For this behavior, you can call setPartial(true) on each OracleVertex object
constructed from your PGQL query result set.

Example 5-20 PgqlExample14.java

PgqlExample14.java illustrates this difference in behavior. This program first executes
a query to retrieve all edges, which causes the incident vertices to be added to a
local cache. The second query retrieves all vertices. The program then prints each
OracleVertex object to show which properties have been loaded.

import java.sql.Connection;

import oracle.pg.rdbms.Oracle;
import oracle.pg.rdbms.OraclePropertyGraph;
import oracle.pg.rdbms.OracleVertex;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows the behavior of setPartial(true) for OracleVertex
objects
 * created from PGQL query results.
 */
public class PgqlExample14
{

 public static void main(String[] args) throws Exception

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-76

 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 Oracle oracle = null;
 OraclePropertyGraph opg = null;
 PgqlStatement ps = null;
 PgqlResultSet rs = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();

 // Query to illustrate set partial
 String pgql =
 "SELECT id(e), label(e) "+
 "FROM MATCH (v1)-[e:\"knows\"]->(v2)";

 // execute query
 rs = ps.executeQuery(pgql, " ");

 // print results
 System.out.println("-- Results for edge query -----------------");
 rs.print();

 // close result set
 rs.close();

 // Create an Oracle Property Graph instance
 oracle = new Oracle(conn);
 opg = OraclePropertyGraph.getInstance(oracle,graph);

 // Query to retrieve vertices
 pgql =
 "SELECT id(v) "+

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-77

 "FROM MATCH (v)";

 // Get each vertex object in result and print with toString()
 rs = ps.executeQuery(pgql, " ");

 // iterate through result
 System.out.println("-- Vertex objects retrieved from vertex query
--");
 while (rs.next()) {
 Long vid = rs.getLong(1);
 OracleVertex v = OracleVertex.getInstance(opg, vid);
 System.out.println(v.toString());
 }
 // close result set
 rs.close();

 // Execute the same query but call setPartial(true) for each
vertex
 rs = ps.executeQuery(pgql, " ");
 System.out.println("-- Vertex objects retrieved from vertex query
with setPartial(true) --");
 while (rs.next()) {
 Long vid = rs.getLong(1);
 OracleVertex v = OracleVertex.getInstance(opg, vid);
 v.setPartial(true);
 System.out.println(v.toString());
 }
 // close result set
 rs.close();
 }
 finally {
 // close the result set
 if (rs != null) {
 rs.close();
 }
 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 // close the property graph
 if (opg != null) {
 opg.close();
 }
 // close oracle
 if (oracle != null) {
 oracle.dispose();
 }
 }
 }
}

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-78

The output for PgqlExample14.java (which can be loaded using
GraphLoaderExample.java code) is:

-- Results for edge query -----------------
+------------------+
| id(e) | label(e) |
+------------------+
6	knows
11	knows
10	knows
5	knows
4	knows
13	knows
9	knows
12	knows
8	knows
7	knows
14	knows
15	knows
+------------------+
-- Vertex objects retrieved from vertex query --
Vertex ID 3 [NULL] {}
Vertex ID 0 [NULL] {}
Vertex ID 2 [NULL] {}
Vertex ID 1 [NULL] {}
-- Vertex objects retrieved from vertex query with setPartial(true) --
Vertex ID 3 [NULL] {bval:bol:false, fname:str:Susan, lname:str:Blue,
mval:bol:false, age:int:35}
Vertex ID 0 [NULL] {bval:bol:true, fname:str:Bill, lname:str:Brown, mval:str:y,
age:int:40}
Vertex ID 2 [NULL] {fname:str:Ray, lname:str:Green, mval:dat:1985-01-01
04:00:00.0, age:int:41}
Vertex ID 1 [NULL] {bval:bol:true, fname:str:John, lname:str:Black, mval:int:27,
age:int:30}

5.9.4.6 Querying Another User’s Property Graph
You can query another user’s property graph data if you have been granted
the appropriate privileges in the database. For example, to query GRAPH1
in SCOTT’s schema, you must have READ privilege on SCOTT.GRAPH1GE$,
SCOTT.GRAPH1VT$, SCOTT.GRAPH1GT$, and SCOTT.GRAPH1VD$.

Example 5-21 PgqlExample15.java

PgqlExample15.java shows how another user can query a graph in SCOTT’s schema.

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to query a property graph located in another
user's
 * schema. READ privilege on GE$, VT$, GT$ and VD$ tables for the other

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-79

user's
 * property graph are required to avoid ORA-00942: table or view does
not exist.
 */
public class PgqlExample15
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;
 PgqlResultSet rs = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Set schema so that we can query Scott's graph
 pgqlConn.setSchema("SCOTT");

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();

 // Execute query to get a ResultSet object
 String pgql =
 "SELECT v.\"fname\" AS fname, v.\"lname\" AS lname "+
 "FROM MATCH (v)";
 rs = ps.executeQuery(pgql, "");

 // Print query results
 rs.print();
 }
 finally {
 // close the result set
 if (rs != null) {

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-80

 rs.close();
 }
 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

The following SQL statements create database user USER2 and grant the necessary
privileges. You can also use the OraclePropertyGraph.grantAccess Java API to
achieve the same effect.

SQL> grant connect, resource, unlimited tablespace to user2 identified by user2;

Grant succeeded.

SQL> grant read on scott.test_graphvt$ to user2;

Grant succeeded.

SQL> grant read on scott.test_graphge$ to user2;

Grant succeeded.

SQL> grant read on scott.test_graphgt$ to user2;

Grant succeeded.

SQL> grant read on scott.test_graphvd$ to user2;

Grant succeeded.

The output for PgqlExample15.java for the test_graph data set when connected to
the database as USER2 is as follows. Note that test_graph should have already been
loaded (using GraphLoaderExample.java code) as GRAPH1 by user SCOTT before
running PgqlExample15.

+---------------+
| FNAME | LNAME |
+---------------+
Susan	Blue
Bill	Brown
Ray	Green
John	Black
+---------------+

5.9.4.7 Using Query Optimizer Hints with PGQL
The Java API allows query optimizer hints that influence the join type when executing
PGQL queries. The executeQuery and translateQuery methods in PgqlStatement
and PgqlPreparedStatement accept the following strings in the options argument to
influence the query plan for the corresponding SQL query.

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-81

• ALL_EDGE_NL – Use Nested Loop join for all joins that involve the $GE and $GT
tables.

• ALL_EDGE_HASH – Use HASH join for all joins that involve the $GE and $GT
tables.

• ALL_VERTEX_NL – Use Nested Loop join for all joins that involve the $VT table.

• ALL_VERTEX_HASH – Use HASH join for all joins that involve the $VT table.

Example 5-22 PgqlExample16.java

PgqlExample16.java shows how to use optimizer hints to influence the joins used for a
graph traversal.

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlSqlQueryTrans;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to use query optimizer hints with PGQL
queries.
 */
public class PgqlExample16
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-82

 pgqlConn.setGraph(graph);

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();
 // Query to illustrate join hints
 String pgql =
 "SELECT id(v1), id(v4) "+
 "FROM MATCH (v1)-[:\"friendOf\"]->(v2)-[:\"friendOf\"]-
>(v3)-[:\"friendOf\"]->(v4)";

 // get SQL translation with hash join hint
 PgqlSqlQueryTrans sqlTrans =
 ps.translateQuery(pgql /* query string */,
 " ALL_EDGE_HASH " /* options */);
 // print SQL translation
 System.out.println("-- Query with ALL_EDGE_HASH
--------------------");
 System.out.println(sqlTrans.getSqlTranslation()+"\n");

 // get SQL translation with nested loop join hint
 sqlTrans =
 ps.translateQuery(pgql /* query string */,
 " ALL_EDGE_NL " /* options */);
 // print SQL translation
 System.out.println("-- Query with ALL_EDGE_NL
---------------------");
 System.out.println(sqlTrans.getSqlTranslation()+"\n");
 }
 finally {
 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

The output for PgqlExample16.java for test_graph (which can be loaded using
GraphLoaderExample.java code) is:

-- Query with ALL_EDGE_HASH --------------------
SELECT /*+ USE_HASH(T0$0 T0$1 T0$2) */ 7 AS "id(v1)$T",
to_nchar(T0$0.SVID,'TM9','NLS_Numeric_Characters=''.,''') AS "id(v1)$V",
T0$0.SVID AS "id(v1)$VN",
to_timestamp_tz(null) AS "id(v1)$VT",
7 AS "id(v4)$T",
to_nchar(T0$2.DVID,'TM9','NLS_Numeric_Characters=''.,''') AS "id(v4)$V",
T0$2.DVID AS "id(v4)$VN",
to_timestamp_tz(null) AS "id(v4)$VT"
FROM "SCOTT".TEST_GRAPHGT$ T0$0,
"SCOTT".TEST_GRAPHGT$ T0$1,

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-83

"SCOTT".TEST_GRAPHGT$ T0$2
WHERE T0$0.DVID=T0$1.SVID AND
T0$1.DVID=T0$2.SVID AND
(T0$0.EL = n'friendOf' AND T0$0.EL IS NOT NULL) AND
(T0$1.EL = n'friendOf' AND T0$1.EL IS NOT NULL) AND
(T0$2.EL = n'friendOf' AND T0$2.EL IS NOT NULL)

-- Query with ALL_EDGE_NL ---------------------
SELECT /*+ USE_NL(T0$0 T0$1 T0$2) */ 7 AS "id(v1)$T",
to_nchar(T0$0.SVID,'TM9','NLS_Numeric_Characters=''.,''') AS "id(v1)$V",
T0$0.SVID AS "id(v1)$VN",
to_timestamp_tz(null) AS "id(v1)$VT",
7 AS "id(v4)$T",
to_nchar(T0$2.DVID,'TM9','NLS_Numeric_Characters=''.,''') AS "id(v4)$V",
T0$2.DVID AS "id(v4)$VN",
to_timestamp_tz(null) AS "id(v4)$VT"
FROM "SCOTT".TEST_GRAPHGT$ T0$0,
"SCOTT".TEST_GRAPHGT$ T0$1,
"SCOTT".TEST_GRAPHGT$ T0$2
WHERE T0$0.DVID=T0$1.SVID AND
T0$1.DVID=T0$2.SVID AND
(T0$0.EL = n'friendOf' AND T0$0.EL IS NOT NULL) AND
(T0$1.EL = n'friendOf' AND T0$1.EL IS NOT NULL) AND
(T0$2.EL = n'friendOf' AND T0$2.EL IS NOT NULL)

The query plan for the first query that uses ALL_EDGE_HASH should look similar to
the following.

| Id | Operation | Name |

0	SELECT STATEMENT	
* 1	HASH JOIN	
* 2	HASH JOIN	
3	PARTITION HASH ALL	
* 4	TABLE ACCESS FULL	TEST_GRAPHGT$
5	PARTITION HASH ALL	
* 6	TABLE ACCESS FULL	TEST_GRAPHGT$
7	PARTITION HASH ALL	
* 8	TABLE ACCESS FULL	TEST_GRAPHGT$

The query plan for the second query that uses ALL_EDGE_NL should look similar to
the following.

| Id | Operation | Name |

0	SELECT STATEMENT	
1	NESTED LOOPS	
2	NESTED LOOPS	
3	PARTITION HASH ALL	
* 4	TABLE ACCESS FULL	TEST_GRAPHGT$
5	PARTITION HASH ALL	
* 6	TABLE ACCESS BY LOCAL INDEX ROWID BATCHED	TEST_GRAPHGT$
* 7	INDEX RANGE SCAN	TEST_GRAPHXSG$
8	PARTITION HASH ALL	
* 9	TABLE ACCESS BY LOCAL INDEX ROWID BATCHED	TEST_GRAPHGT$
* 10	INDEX RANGE SCAN	TEST_GRAPHXSG$

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-84

5.9.5 Modifying Property Graphs through INSERT, UPDATE, and
DELETE Statements

PGQL supports INSERT, UPDATE, and DELETE operations on Property Graphs. The
method execute in PgqlStatement lets you execute such DML operations. This topic
provides several examples of such operations.

Note:

JDBC connection autocommit must be off in order to be able to execute
INSERT, UPDATE, and DELETE statements.

Example 5-23 PgqlExample17.java (Insert)

PgqlExample17.java inserts several vertices and edges into a graph. Notice that the
special property _ora_id is used to define ID values of vertices and edges. If the
property _ora_id is omitted, a unique ID is generated for each new vertex or edge that
is inserted into the graph.

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to execute a PGQL INSERT operation.
 */
public class PgqlExample17
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;
 PgqlResultSet rs = null;

 try {

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-85

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();
 conn.setAutoCommit(false);

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();

 // Execute insert statement
 String pgql =
 "INSERT VERTEX p1 LABELS (person) PROPERTIES (p1.\"_ora_id\" =
1, p1.fname = 'Jake') "+
 " , VERTEX p2 LABELS (person) PROPERTIES (p2.\"_ora_id\" =
2, p2.fname = 'Amy') "+
 " , VERTEX p3 LABELS (person) PROPERTIES (p3.\"_ora_id\" =
3, p3.fname = 'Erik') "+
 " , VERTEX p4 LABELS (person) PROPERTIES (p4.\"_ora_id\" =
4, p4.fname = 'Jane') "+
 " , EDGE e1 BETWEEN p1 AND p2 LABELS (knows) PROPERTIES
(e1.\"_ora_id\" = 1, e1.since = DATE '2003-04-21') "+
 " , EDGE e2 BETWEEN p1 AND p3 LABELS (knows) PROPERTIES
(e2.\"_ora_id\" = 2, e2.since = DATE '2010-02-10') "+
 " , EDGE e3 BETWEEN p3 AND p4 LABELS (knows) PROPERTIES
(e3.\"_ora_id\" = 3, e3.since = DATE '1999-01-03') ";
 ps.execute(pgql, /* query string */
 "", /* query options */
 "" /* modify options */);

 // Execute a query to verify insertion
 pgql =
 " SELECT id(p1) AS id1, p1.fname AS person1, id(p2) as id2,
p2.fname AS person2, id(e) as e, e.since "+
 " FROM MATCH (p1)-[e:knows]->(p2) "+
 "ORDER BY id1, id2";
 rs = ps.executeQuery(pgql, "");

 // Print the results
 rs.print();
 }
 finally {
 // close the result set
 if (rs != null) {
 rs.close();
 }
 // close the statement
 if (ps != null) {

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-86

 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

The output for PgqlExample17.java is:

+---+
| ID1 | PERSON1 | ID2 | PERSON2 | E | SINCE |
+---+
1	Jake	2	Amy	1	2003-04-20 17:00:00.0
1	Jake	3	Erik	2	2010-02-09 16:00:00.0
3	Erik	4	Jane	3	1999-01-02 16:00:00.0
+---+

For more examples of INSERT statement, see the relevant section of the PGQL
specification here.

Example 5-24 PgqlExample18.java (Update)

PgqlExample18.java updates several properties of vertices and edges that are
matched in the FROM clause of an UPDATE statement.

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to execute a PGQL UPDATE operation.
 */
public class PgqlExample18
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;
 PgqlResultSet rs = null;

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-87

http://pgql-lang.org/spec/1.3/#insert

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();
 conn.setAutoCommit(false);

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();

 // Execute update statement
 String pgql =
 "UPDATE p1 SET (p1.age = 47, p1.lname = 'Red'), "+
 " p2 SET (p2.age = 29, p2.lname = 'White'), "+
 " e SET (e.strength = 100) "+
 "FROM MATCH (p1) -[e:knows]-> (p2) "+
 "WHERE p1.fname = 'Jake' AND p2.fname = 'Amy'";
 ps.execute(pgql, /* query string */
 "", /* query options */
 "" /* modify options */);

 // Execute a query to verify update
 pgql =
 "SELECT p1.fname AS fname1, p1.lname AS lname1, p1.age AS
age1, "+
 " p2.fname AS fname2, p2.lname AS lname2, p2.age AS
age2, e.strength "+
 "FROM MATCH (p1) -[e:knows]-> (p2)";
 rs = ps.executeQuery(pgql, "");

 // Print the results
 rs.print();
 }
 finally {
 // close the result set
 if (rs != null) {
 rs.close();
 }
 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-88

 }
 }
 }
}

The output for PgqlExample18.java applied on a graph where PgqlExample17.java
has been previously executed is:

+--+
| FNAME1 | LNAME1 | AGE1 | FNAME2 | LNAME2 | AGE2 | STRENGTH |
+--+
Jake	Red	47	Amy	White	29	100
Jake	Red	47	Erik	<null>	<null>	<null>
Erik	<null>	<null>	Jane	<null>	<null>	<null>
+--+

For more examples of UPDATE statement, see the relevant section of the PGQL
specification here.

Example 5-25 PgqlExample19.java (Delete)

PgqlExample19.java deletes edges that are matched in the FROM clause of a
DELETE statement.

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to execute a PGQL DELETE operation.
 */
public class PgqlExample19
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;
 PgqlResultSet rs = null;

 try {

 //Get a jdbc connection

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-89

http://pgql-lang.org/spec/1.3/#update

 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();
 conn.setAutoCommit(false);

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();

 // Execute delete statement
 String pgql =
 "DELETE e "+
 " FROM MATCH (p1) -[e:knows]-> (p2) "+
 " WHERE p1.fname = 'Jake'";
 ps.execute(pgql, /* query string */
 "", /* query options */
 "" /* modify options */);

 // Execute a query to verify delete
 pgql =
 "SELECT p1.fname AS fname1, p2.fname AS fname2 "+
 " FROM MATCH (p1) -[e:knows]-> (p2)";
 rs = ps.executeQuery(pgql, "");

 // Print the results
 rs.print();
 }
 finally {
 // close the result set
 if (rs != null) {
 rs.close();
 }
 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

The output for PgqlExample19.java applied on a graph where PgqlExample18.java
has been previously executed is:

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-90

+-----------------+
| FNAME1 | FNAME2 |
+-----------------+
| Erik | Jane |
+-----------------+

For more examples of DELETE statement, see the relevant section of the PGQL
specification here.

Example 5-26 PgqlExample20.java (Multiple Modifications)

PgqlExample20.java executes multiple modifications in the same statement: an edge
is inserted, vertex properties are updated, and another edge is deleted.

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows how to execute a PGQL
 * INSERT/UPDATE/DELETE operation.
 */
public class PgqlExample20
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;
 PgqlResultSet rs = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();
 conn.setAutoCommit(false);

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-91

http://pgql-lang.org/spec/1.3/#delete

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();

 // Execute INSERT/UPDATE/DELETE statement
 String pgql =
 "INSERT EDGE f BETWEEN p2 AND p1 LABELS (knows) PROPERTIES
(f.since = e.since) "+
 "UPDATE p1 SET (p1.age = 30) "+
 " , p2 SET (p2.age = 25) "+
 "DELETE e "+
 " FROM MATCH (p1) -[e:knows]-> (p2) "+
 " WHERE p1.fname = 'Erik'";
 ps.execute(pgql, /* query string */
 "", /* query options */
 "" /* modify options */);

 // Execute a query to verify INSERT/UPDATE/DELETE
 pgql =
 "SELECT p1.fname AS fname1, p1.age AS age1, "+
 " p2.fname AS fname2, p2.age AS age2, e.since "+
 " FROM MATCH (p1) -[e:knows]-> (p2)";
 rs = ps.executeQuery(pgql, "");

 // Print the results
 rs.print();
 }
 finally {
 // close the result set
 if (rs != null) {
 rs.close();
 }
 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }

The output for PgqlExample20.java applied on a graph where PgqlExample19.java
has been previously executed is:

+---+
| FNAME1 | AGE1 | FNAME2 | AGE2 | SINCE |
+---+
| Jane | 25 | Erik | 30 | 1999-01-02 16:00:00.0 |
+---+

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-92

For more examples of INSERT/UPDATE/DELETE statements, see the relevant section
of the PGQL specification here.

• Additional Options for PGQL Statement Execution

5.9.5.1 Additional Options for PGQL Statement Execution
Several options are available to influence PGQL statement execution. The following
are the main ways to set query options:

• Through flags in the modify options string argument of execute

• Through Java JVM arguments.

The following table summarizes the main options for modifying PGQL statement
execution.

Table 5-3 PGQL Statement Modification Options

Option Default Options Flag JVM Argument

Auto commit true if JDBC auto commit
is off, false if JDBC auto
commit is on

AUTO_COMMIT=F -
Doracle.pg.rdbms.pgql.auto
Commit=false

Delete cascade true DELETE_CASCADE=F -
Doracle.pg.rdbms.pgql.dele
teCascade=false

• Turning Off PGQL Auto Commit

• Turning Off Cascading Deletion

5.9.5.1.1 Turning Off PGQL Auto Commit
When an INSERT, UPDATE, or DELETE operation is executed, a commit is performed
automatically at the end of the PGQL execution so that changes are persisted on the
RDBMS side.

The flag AUTO_COMMIT=F can be added to the options argument of execute or the
flag Doracle.pg.rdbms.pgql.autoCommit=false can be set in the Java command line
to turn off auto commit. Notice that when auto commit is off, you must perform any
necessary commits or rollbacks on the JDBC connection in order to persist or cancel
graph modifications.

Example 5-27 Turn Off Auto Commit and Roll Back Changes

PgqlExample21.java turns off auto commit and performs a rollback of the changes.

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pg.rdbms.pgql.PgqlStatement;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-93

http://pgql-lang.org/spec/1.3/#mixing-insert-update-and-delete

 * This example shows how to modify a PGQL graph
 * with auto commit off.
 */
public class PgqlExample21
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;
 PgqlResultSet rs = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();
 conn.setAutoCommit(false);

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();

 // Delete all the edges in the graph
 String pgql =
 "DELETE e "+
 " FROM MATCH () -[e]-> ()";
 ps.execute(pgql, /* query string */
 "", /* query options */
 "AUTO_COMMIT=F" /* modify options */);

 // Execute a query to verify deletion
 pgql =
 "SELECT COUNT(e) "+
 " FROM MATCH () -[e]-> ()";
 rs = ps.executeQuery(pgql, "");

 // Print the results
 System.out.println("Number of edges after deletion:");

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-94

 rs.print();
 rs.close();

 // Rollback the changes. This is possible because
 // AUTO_COMMIT=F flag was used in execute
 conn.rollback();

 // Execute a query to verify rollback
 pgql =
 "SELECT COUNT(e) "+
 " FROM MATCH () -[e]-> ()";
 rs = ps.executeQuery(pgql, "");

 // Print the results
 System.out.println("Number of edges after rollback:");
 rs.print();
 }
 finally {
 // close the result set
 if (rs != null) {
 rs.close();
 }
 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

PgqlExample21.java gives the following output for a graph with one edge:

Number of edges after deletion:
+----------+
| COUNT(e) |
+----------+
| 0 |
+----------+
Number of edges after rollback:
+----------+
| COUNT(e) |
+----------+
| 1 |
+----------+

5.9.5.1.2 Turning Off Cascading Deletion
When a vertex is deleted from a graph, all its input and output edges are also deleted
automatically.

Using the flag DELETE_CASCADE=F in the options argument of execute of setting
the flag or setting the flag Doracle.pg.rdbms.pgql.autoCommit=false in the Java

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-95

command line lets you turn off cascading deletion. When a vertex with input or output
edges is deleted and cascading deletion is off, an error is thrown to warn about the
unsafe operation that you are trying to perform.

Example 5-28 Turn Off Cascading Deletion

PgqlExample22.java attempts to delete a vertex with an output edge when cascading
deletion is off.

import java.sql.Connection;

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlStatement;
import oracle.pg.rdbms.pgql.PgqlToSqlException;

import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/**
 * This example shows the use of DELETE_CASCADE flag.
 */
public class PgqlExample22
{

 public static void main(String[] args) throws Exception
 {
 int idx=0;
 String host = args[idx++];
 String port = args[idx++];
 String sid = args[idx++];
 String user = args[idx++];
 String password = args[idx++];
 String graph = args[idx++];

 Connection conn = null;
 PgqlStatement ps = null;

 try {

 //Get a jdbc connection
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@"+host+":"+port +":"+sid);
 pds.setUser(user);
 pds.setPassword(password);
 conn = pds.getConnection();
 conn.setAutoCommit(false);

 // Get a PGQL connection
 PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
 pgqlConn.setGraph(graph);

 // Create a PgqlStatement
 ps = pgqlConn.createStatement();

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-96

 // Delete all the vertices with output edges
 // This will throw an error
 String pgql =
 "DELETE v "+
 " FROM MATCH (v) -[e]-> ()";
 ps.execute(pgql, /* query string */
 "", /* query options */
 "DELETE_CASCADE=F" /* modify options */);
 }
 catch (PgqlToSqlException ex){
 System.out.println("Error in execution: " + ex.getMessage());
 }
 finally {
 // close the statement
 if (ps != null) {
 ps.close();
 }
 // close the connection
 if (conn != null) {
 conn.close();
 }
 }
 }
}

PgqlExample22.java gives the following output for a graph with at least one edge:

Error in execution: Attempting to delete vertices with incoming/outgoing edges.
Drop edges first or turn on DELETE_CASCADE option

5.9.6 Performance Considerations for PGQL Queries
Many factors affect the performance of PGQL queries in Oracle Database. The
following are some recommended practices for query performance.

• Query Optimizer Statistics

• Parallel Query Execution

• Optimizer Dynamic Sampling

• Bind Variables

• Path Queries

Query Optimizer Statistics

Good, up-to-date query optimizer statistics are critical for query performance. Ensure
that you run OPG_APIS.ANALYZE_PG after any significant updates to your property
graph data.

Parallel Query Execution

Use parallel query execution to take advantage of Oracle’s parallel SQL engine.
Parallel execution often gives a significant speedup versus serial execution. Parallel
execution is especially critical for path queries evaluated using the recursive WITH
strategy.

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-97

See also the Oracle Database VLDB and Partitioning Guide for more information
about parallel query execution.

Optimizer Dynamic Sampling

Due to the inherent flexibility of the graph data model, static information may not
always produce optimal query plans. In such cases, dynamic sampling can be used
by the query optimizer to sample data at run time for better query plans. The amount
of data sampled is controlled by the dynamic sampling level used. Dynamic sampling
levels range from 0 to 11. The best level to use depends on a particular dataset and
workload, but levels of 2 (default), 6, or 11 often give good results.

See also Supplemental Dynamic Statistics in the Oracle Database SQL Tuning Guide.

Bind Variables

Use bind variables for constants whenever possible. The use of bind variables
gives a very large reduction in query compilation time, which dramatically increases
throughput for query workloads with queries that differ only in the constant values
used. In addition, queries with bind variables are less vulnerable to injection attacks.

Path Queries

Path queries in PGQL that use the + (plus sign) or * (asterisk) operator to
search for arbitrary length paths require special consideration because of their high
computational complexity. You should use parallel execution and use the DISTINCT
option for Recursive WITH (USE_DIST_RW=T) for the best performance. Also, for
large, highly connected graphs, it is a good idea to use MAX_PATH_LEN=n to limit the
number of repetitions of the recursive step to a reasonable number. A good strategy
can be to start with a small repetition limit, and iteratively increase the limit to find more
and more results.

Chapter 5
Executing PGQL Queries Directly Against Oracle Database

5-98

6
Graph Visualization Application

The Graph Visualization application enables interactive exploration and visualization of
property graphs. It can also visualize graphs stored in the database.

• About the Graph Visualization Application
The Graph Visualization application is a single-page web application that works
with the in-memory graph server (PGX).

• How does the Graph Visualization Application Work
The Graph Visualization application exposes its own web interface and REST
endpoint and can execute PGQL queries against the in-memory graph server
(PGX) or the Oracle Database (PGQL on RDBMS).

• Deploying Graph Visualization Application
This section describes the various methods to deploy the Graph Visualization
Application.

• Using GraphViz
The principal points of entry for the GraphViz application are the query editor and
the graph lists.

6.1 About the Graph Visualization Application
The Graph Visualization application is a single-page web application that works with
the in-memory graph server (PGX).

The in-memory graph analytics server can be deployed in embedded mode or in
Apache Tomcat or Oracle Weblogic Server. Graph Visualization application takes
PGQL queries as an input and renders the result visually. A rich set of client-side
exploration and visualization features can reveal new insights into your graph data.

Graph Visualization application works with the in-memory analytics server. It can
visualize graphs that are have been loaded into the in-memory analytics server, either
preloaded when the in-memory analytics server is started, or loaded at run-time by a
client application and made available through the graph.publish() API.

6.2 How does the Graph Visualization Application Work
The Graph Visualization application exposes its own web interface and REST endpoint
and can execute PGQL queries against the in-memory graph server (PGX) or the
Oracle Database (PGQL on RDBMS).

By default, it uses PGX and therefore requires a running PGX server to function.
Alternatively, you can configure Graph Visualization application to directly talk to the
database via PGQL on RDBMS. Graph Visualization application does not have any UI
to create graphs, it can only visualize graphs which are already loaded into PGX or
Oracle Database. There are two ways you can use the Graph Visualization application:

• Standalone mode

6-1

If you install the Graph Server rpm file, the Graph Visualization application starts
up by default when you start the PGX server and is reachable at https://
localhost:7007/ui.

• Custom web container mode
You can download the Graph Webapps package which contains a web application
archive (WAR) file. You can deploy this file into your Oracle Weblogic 12.2 (or later)
or Apache Tomcat (9.x or later) web containers.

6.3 Deploying Graph Visualization Application
This section describes the various methods to deploy the Graph Visualization
Application.

• How to Deploy the Graph Visualization Application
You can use the instructions in this section to deploy the Graph Visualization
application.

• Deploying Graph Visualization Application in Oracle WebLogic Server
The following instructions are for deploying Graph Visualization application in
Oracle WebLogic Server 12.2.1.3. You might need to make slight modifications,
as appropriate, for different versions of the Weblogic Server.

6.3.1 How to Deploy the Graph Visualization Application
You can use the instructions in this section to deploy the Graph Visualization
application.

To change the PGQL execution mode, modify the WEB-INF/web.xml file inside of the
Graph Visualization application WAR file named graphviz-<version>-pgviz<graphviz-
version>.war.

If you have installed the RPM file, the WAR file is located inside the /opt/oracle/graph/
graphviz directory.

If you have downloaded the Oracle Graph Webapps package, the WAR file is located in
the root directory of that webapps package.

• To extract the WAR file and directly modify the file contents, run the following
command:
unzip graphviz-*.war -d /tmp/pgviz/

• Edit the web.xml descriptor using any file editor of your choice:
nano /tmp/pgviz/WEB-INF/web.xml

To configure Graph Visualization application to communicate with a PGX
deployment (PGQL on PGX)

1. Locate the graphviz.driver.class context parameter. If applicable, set the value
to oracle.pgx.graphviz.driver.PgxDriver (this is the default value):

<context-param>
 <param-name>graphviz.driver.class</param-name>
 <param-value>oracle.pgx.graphviz.driver.PgxDriver</param-value>
</context-param>

Chapter 6
Deploying Graph Visualization Application

6-2

2. Locate the pgx.base_url context parameter. Modify the value to match your
secure PGX deployment endpoint. Use the correct FQDN or IP address, along
with the correct port. For example,

<context-param>
 <param-name>pgx.base_url</param-name>
 <param-value>https://myhost:7007</param-value>
</context-param>

Note:

This step does not have any effect if you use Graph Visualization
in standalone mode (RPM installation). The PGX base URL is set
automatically to point to the local PGX server.

When Graph Visualization application is using PGQL on PGX the application will use
your Oracle Database as identity manager by default. This means that you log into the
application using existing Oracle Database credentials (username and password), and
the actions which you are allowed to do on the graph server are determined by the
roles that have been granted to you in the Oracle Database.

To configure Graph Visualization application to communicate with Oracle
Database (PGQL on RDBMS)

1. Locate the graphviz.driver.class context parameter. If applicable, set the value to
oracle.pg.rdbms.PgqlDriver:

<context-param>
 <param-name>graphviz.driver.class</param-name>
 <param-value>oracle.pg.rdbms.PgqlDriver</param-value>
</context-param>

2. Set the context parameter graphviz.driver.rdbms.jdbc_url referencing the
JDBC URL of your Oracle Database. For example:

<context-param>
 <param-name>graphviz.driver.rdbms.jdbc_url</param-name>
 <param-value>jdbc:oracle:thin:@myhost:1521/myService</param-
value>
</context-param>

Note:

Replace above URL with the JDBC URL that you want to use for user
authentication.

When Graph Visualization application is using PGQL on RDBMS, the application
displays a custom login page and the user can use their Oracle Database credentials
for user authentication, using the Oracle Database set mentioned in step 2. After
logging in, you can see the graphs that you are granted to see on the Oracle
Database.

Chapter 6
Deploying Graph Visualization Application

6-3

Repackage the WAR file

cd /tmp/pgviz/
jar -cvf graphviz-<version>-pgviz<graphviz-version>.war *

For the standalone deployment mode, copy the updated WAR file back into /opt/
oracle/graph/graphviz and then start the server as usual.

6.3.2 Deploying Graph Visualization Application in Oracle WebLogic
Server

The following instructions are for deploying Graph Visualization application in
Oracle WebLogic Server 12.2.1.3. You might need to make slight modifications, as
appropriate, for different versions of the Weblogic Server.

1. Start WebLogic Server.

Start Server
cd $MW_HOME/user_projects/domains/base_domain
./bin/startWebLogic.sh

2. Enable tunneling.
In order to be able to deploy the Graph Visualization application WAR file over
HTTP, you must enable tunneling first. Go to the WebLogic admin console (by
default on http://localhost:7001/console). Select Environment (left panel) >
Servers (left panel). Click the server that will run graph visualization (main panel).
Select (top tab bar), check Enable Tunneling, and click Save.

3. Deploy the WAR File
To deploy the repackaged WAR file to WebLogic Server, use the following
command, replacing the <<...>> markers with values matching your installation:

cd $MW_HOME/user_projects/domains/base_domain
source bin/setDomainEnv.sh
java weblogic.Deployer -adminurl <<admin-console-url>> -username
<<admin-user>> -password <<admin-password>> -deploy -upload <<path/
to>>/graphviz-<<version>>-pgviz<<graphviz-version>>.war

To undeploy, you can use the following command:

java weblogic.Deployer -adminurl <<admin-console-url>> -username
<<admin-user>> -password <<admin-password>> -name <<path/to>>/
graphviz-<<version>>-pgviz<<graphviz-version>>.war -undeploy

To test the deployment, navigate using your browser to: https://<<fqdn-
ip>>:<<port>>/ui.

The browser prompts for your credentials (user name and password). After you log
in, the Graph Visualization user interface (UI) appears and the graphs from PGX is
retrieved.

Chapter 6
Deploying Graph Visualization Application

6-4

6.4 Using GraphViz
The principal points of entry for the GraphViz application are the query editor and the
graph lists.

When you start GraphViz, the graph list will be populated with the graphs loaded in
PGX. To run queries against a graph, select that graph. The query lets you write PGQL
queries that can be visualized. (PGQL is the SQL-like query language supported by
GraphViz.)

Once the query is ready and the desired graph is selected, click the Run icon to
execute the query. The following figure shows a query visualization identifying all
edges that are directed edges from any vertex in the graph to any other vertex.

Figure 6-1 Query Visualization

When a query is successful, the graph visualization is displayed, including nodes
and their connections. You can right-click a node or connection to display tooltip
information, and you can drag the nodes around.

• GraphViz Modes
The buttons on the right let you switch between two modes: Graph Manipulation
and Zoom/Move.

• GraphViz Settings
You can click the Settings gear icon to display the GraphViz settings window.

• Using Live Search
Live Search lets you to search the displayed graph and add live fuzzy search
score to each item, so you can create a Highlight which visually shows the results
of the search in the graph immediately.

• Using URL Parameters to Control GraphViz
You can provide GraphViz input data through URL parameters instead of using the
form fields of the user interface.

Chapter 6
Using GraphViz

6-5

6.4.1 GraphViz Modes
The buttons on the right let you switch between two modes: Graph Manipulation and
Zoom/Move.

• Graph Manipulation mode lets you execute actions that modify the visualization.
These actions include:

– Drop removes selected vertices from visualization. Can also be executed from
the tooltip.

– Group selects multiple vertices and collapses them into a single one.

– Ungroup selects a group of collapsed vertices and ungroups them.

– Expand retrieves a configurable number of neighbors (hops) of selected
vertices. Can also be executed from the tooltip.

– Focus, like Expand, retrieves a configurable number of neighbors, but also
drops all other vertices. Can also be executed from the tooltip.

– Undo undoes the last action.

– Redo redoes the last action.

– Reset resets the visualization to the original state after the query.

• Zoom/Move mode lets you zoom in and out, as well as to move to another part of
the visualization. The Pan to Center button resets the zoom and returns the view
to the original one.

An additional mode, called Sticky mode, lets you cancel the action of dragging the
nodes around.

6.4.2 GraphViz Settings
You can click the Settings gear icon to display the GraphViz settings window.

The settings window lets you modify some parameters for the visualization, and it has
tabs for General, Visualization, and Highlights. The following figure shows this window,
with the Visualization tab selected.

Chapter 6
Using GraphViz

6-6

Figure 6-2 GraphViz Settings Window

The General tab includes the following:

• Number of hops: The configurable number of hops for the expand and focus
actions.

• Truncate label: Truncates the label if it exceeds the maximum length.

• Max. visible label length: Maximum length before truncating.

• Show Label On Hover: Controls whether the label is shown on hover.

• Display the graph legend: Controls whether the legend is displayed.

The Visualization tab includes the following:

• Theme: Select a light or dark mode.

• Edge Style: Select straight or curved edges.

• Edge Marker: Select arrows or no edge marker. This only applies to directed
edges.

• Similar Edges: Select keep or collect.

• Page Size: Specify how many vertices and edges are displayed per page.

• Layouts: Select between different layouts (random, grid, circle, concentric, ...).

• Vertex Label: Select which property to use as the vertex label.

• Vertex Label Orientation: Select the relative position of the vertex label.

Chapter 6
Using GraphViz

6-7

• Edge Label: Select which property to use as the edge label.

The Highlights tab includes customization options that let you modify the appearance
of edges and vertices. Highlighting can be applied based on conditions (filters) on
single or multiple elements. The following figure shows a condition (country = United
States) and visual highlight options for vertices.

Figure 6-3 Highlights Options for Vertices

A filter for highlights can contain multiple conditions on any property of the element.
The following conditions are supported.

• = (equal to)

• < (less than)

• <= (less than or equal to)

• > (greater than)

• >= (greater than or equal to)

• != (not equal to)

• ~ (filter is a regular expression)

• * (any: like a wildcard, can match to anything)

The visual highlight customization options include:

Chapter 6
Using GraphViz

6-8

• Edges:

– Width

– Color

– Label

– Style

– Animations

• Vertices:

– Size

– Color

– Icon

– Label

– Image

– Animations

You can export and import highlight options by clicking the Save and Import buttons in
the main window. Save lets you persist the highlight options, and Load lets you apply
previously saved highlight options.

When you click Save, a file is saved containing a JSON object with the highlights
configuration. Later, you can load that file to restore the highlights of the saved
session.

6.4.3 Using Live Search
Live Search lets you to search the displayed graph and add live fuzzy search score to
each item, so you can create a Highlight which visually shows the results of the search
in the graph immediately.

If you run a query, and a graph is displayed, you can add the live search, which is on
the settings dialog. On the bottom of the General tab, you will see these options.

• Enable Live Search: Enables the Live Search feature, adds the search input to
the visualization, and lets you further customize the search.

• Enable Search In: You can select whether you want to search the properties of
Vertices, Edges, or both.

• Properties To Search: Based on what you selected for Enable Search In, you can
set one or more properties to search in. For example, if you disable the search
for edges but you had a property from edges selected, it will be stored and added
back when you enable search for the edges again. (This also works for vertices.)

• Advanced Settings: You can fine-tune the search even more. Each of the
advanced options is documented with context help, visible upon enabling.

– Location: Determines approximately where in the text the pattern is expected
to be found.

– Distance: Determines how close the match must be to the fuzzy location
(specified by location). An exact letter match which is distance characters
away from the fuzzy location would score as a complete mismatch. A distance
of 0 requires the match be at the exact location specified, a distance of 1000

Chapter 6
Using GraphViz

6-9

would require a perfect match to be within 800 characters of the location to be
found using a threshold of 0.8.

– Maximum Pattern Length: The maximum length of the pattern. The longer
the pattern (that is, the search query), the more intensive the search operation
will be. Whenever the pattern exceeds this value, an error will be thrown.

– Min Char Match: The minimum length of the pattern. Whenever the pattern
length is below this value, an error will be thrown.

When the search is enabled, the input will be displayed in the top left part of the Graph
Visualization component. If you start typing, the search will add a score to every vertex
or edge, based on the settings and the search match.

To be able to see the results visually, you have to add a Highlight with interpolation
set to a Live Search score and other settings based on the desired visual change.

6.4.4 Using URL Parameters to Control GraphViz
You can provide GraphViz input data through URL parameters instead of using the
form fields of the user interface.

If you supply the parameters in the URL, the GraphViz application automatically
executes the specified query and hides the input form fields from the screen, so
only the resulting visualization output is visible. This feature is useful if you want to
embed the resulting graph visualization into an existing application, such as through
an iframe.

The following table specifies the available URL parameters:

Table 6-1 Available URL Parameters

Parameter Name Value (must be URL
encoded)

Type Optional?

graph Graph name string No

parallelism Degree of parallelism
desired

number Yes (defaults to server-side
default parallelism)

query PQL query string No

The following URL shows an example of visualizing the PGQL query SELECT v, e
MATCH (v) -[e]-> () LIMIT 10 on graph myGraph with parallelism 4:

https://myhost:7007/ui/?query=SELECT%20v%2C%20e%20MATCH%20%28v%29%20-
%5Be%5D-%3E%20%28%29%20LIMIT%2010&graph=myGraph¶llelism=4

Chapter 6
Using GraphViz

6-10

7
Using the Machine Learning Library
(PgxML) for Graphs

The in-memory graph server (PGX) provides a machine learning library
oracle.pgx.api.mllib, which supports graph-empowered machine learning
algorithms.

The following machine learning algorithms are currently supported:

• Using the DeepWalk Algorithm
DeepWalk is a widely employed vertex representation learning algorithm used in
industry.

• Using the Supervised GraphWise Algorithm
Supervised GraphWise is an inductive vertex representation learning algorithm
which is able to leverage vertex feature information. It can be applied to a wide
variety of tasks, including vertex classification and link prediction.

• Using the Pg2vec Algorithm
Pg2vec learns representations of graphlets (partitions inside a graph) by
employing edges as the principal learning units and thereby packing more
information in each learning unit (as compared to employing vertices as learning
units) for the representation learning task.

7.1 Using the DeepWalk Algorithm
DeepWalk is a widely employed vertex representation learning algorithm used in
industry.

It consists of two main steps:

1. First, the random walk generation step computes random walks for each vertex
(with a pre-defined walk length and a pre-defined number of walks per vertex).

2. Second, these generated walks are fed to a Word2vec algorithm to generate the
vector representation for each vertex (which is the word in the input provided to
the Word2vec algorithm). See KDD paper for more details on DeepWalk algorithm.

DeepWalk creates vertex embeddings for a specific graph and cannot be updated
to incorporate modifications on the graph. Instead, a new DeepWalk model should
be trained on this modified graph. Lastly, it is important to note that the memory
consumption of the DeepWalk model is O(2n*d) where n is the number of vertices in
the graph and d is the embedding length.

The following describes the usage of the main functionalities of DeepWalk in in-
memory PGX using DBpedia graph as an example with 8,637,721 vertices and
165,049,964 edges:

• Loading a Graph

• Building a Minimal DeepWalk Model

• Building a Customized DeepWalk Model

7-1

https://dl.acm.org/citation.cfm?id=2623732
https://wiki.dbpedia.org/

• Training a DeepWalk Model

• Getting the Loss Value For a DeepWalk Model

• Computing Similar Vertices for a Given Vertex

• Computing Similar Vertices for a Vertex Batch

• Storing a Trained DeepWalk Model

• Loading a Pre-Trained DeepWalk Model

• Destroying a DeepWalk Model

7.1.1 Loading a Graph
The following describes the steps for loading a graph:

1. Create a Session and an Analyst.
Creating a Session and an Analyst Using JShell

cd /opt/oracle/graph/
./bin/opg-jshell
// starting the shell will create an implicit session and analyst

Creating a Session and an Analyst Using Java

import oracle.pgx.api.*;
import oracle.pgx.api.mllib.DeepWalkModel;
import oracle.pgx.api.frames.*;
...
PgxSession session = Pgx.createSession("my-session");
Analyst analyst = session.createAnalyst();

Creating a Session and an Analyst Using Python

session = pypgx.get_session(session_name="my-session")
analyst = session.create_analyst()

2. Load the graph.

Note:

Though the DeepWalk algorithm implementation can be applied to
directed or undirected graphs, currently only undirected random walks
are considered.

Loading a graph using JShell

opg-jshell> var graph = session.readGraphWithProperties("<path>/
<graph.json>")

Loading a graph using Java

PgxGraph graph = session.readGraphWithProperties("<path>/<graph.json>");

Loading a graph using Python

Chapter 7
Using the DeepWalk Algorithm

7-2

graph = session.read_graph_with_properties("<path>/<graph.json>")

7.1.2 Building a Minimal DeepWalk Model
You can build a DeepWalk model using the minimal configuration and default hyper-
parameters as described in the following code:

Building a Minimal DeepWalk Model Using JShell

opg-jshell> var model = analyst.deepWalkModelBuilder()
 .setWindowSize(3)
 .setWalksPerVertex(6)
 .setWalkLength(4)
 .build()

Building a Minimal DeepWalk Model Using Java

DeepWalkModel model = analyst.deepWalkModelBuilder()
 .setWindowSize(3)
 .setWalksPerVertex(6)
 .setWalkLength(4)
 .build()

Building a Minimal DeepWalk Model Using Python

model = analyst.deepwalk_builder(window_size=3,walks_per_vertex=6,walk_length=4)

7.1.3 Building a Customized DeepWalk Model
You can build a DeepWalk model using cusomized hyper-parameters as described in
the following code:

Building a Customized DeepWalk model Using JShell

opg-jshell> var model = analyst.deepWalkModelBuilder()
 .setMinWordFrequency(1)
 .setBatchSize(512)
 .setNumEpochs(1)
 .setLayerSize(100)
 .setLearningRate(0.05)
 .setMinLearningRate(0.0001)
 .setWindowSize(3)
 .setWalksPerVertex(6)
 .setWalkLength(4)
 .setSampleRate(0.00001)
 .setNegativeSample(2)
 .setValidationFraction(0.01)
 .build()

Building a Customized DeepWalk model Using Java

DeepWalkModel model= analyst.deepWalkModelBuilder()
 .setMinWordFrequency(1)
 .setBatchSize(512)
 .setNumEpochs(1)
 .setLayerSize(100)
 .setLearningRate(0.05)

Chapter 7
Using the DeepWalk Algorithm

7-3

 .setMinLearningRate(0.0001)
 .setWindowSize(3)
 .setWalksPerVertex(6)
 .setWalkLength(4)
 .setSampleRate(0.00001)
 .setNegativeSample(2)
 .setValidationFraction(0.01)
 .build()

Building a Customized DeepWalk model Using Python

model = analyst.deepwalk_builder(min_word_frequency=1,
 batch_size=512,num_epochs=1,
 layer_size=100,
 learning_rate=0.05,
 min_learning_rate=0.0001,
 window_size=3,
 walks_per_vertex=6,
 walk_length=4,
 sample_rate=0.00001,
 negative_sample=2,
 validation_fraction=0.01)

See DeepWalkModelBuilder in Javadoc for more explanation for each builder
operation along with the default values.

7.1.4 Training a DeepWalk Model
You can train a DeepWalk model with the specified default or customized settings as
described in the following code:

Training a DeepWalk model Using JShell

opg-jshell> model.fit(graph)

Training a DeepWalk model Using Java

model.fit(graph)

Training a DeepWalk model Using Python

model.fit(graph)

7.1.5 Getting the Loss Value For a DeepWalk Model
You can fetch the loss value on a specified fraction of training data, that is set in
builder using setValidationFraction as described in the following code:

Getting the Loss Value Using JShell

opg-jshell> var loss = model.getLoss()

Getting the Loss Value Using Java

double loss = model.getLoss();

Chapter 7
Using the DeepWalk Algorithm

7-4

https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/mllib/DeepWalkModelBuilder.html

Getting the Loss Value Using Python

loss = model.loss

7.1.6 Computing Similar Vertices for a Given Vertex
You can fetch the k most similar vertices for a given vertex as described in the
following code:

Computing Similar Vertices for Given Vertex Using JShell

opg-jshell> var similars = model.computeSimilars("Albert_Einstein", 10)
opg-jshell> similars.print()

Computing Similar Vertices for Given Vertex Using Java

PgxFrame similars = model.computeSimilars("Albert_Einstein", 10)
similars.print()

Computing Similar Vertices for Given Vertex Using Python

similars = model.compute_similars("Albert_Einstein",10)
similars.print()

Searching for similar vertices for Albert_Einstein using the trained model, will result in
the following output:

+---+
| dstVertex | similarity |
+---+
Albert_Einstein	1.0000001192092896
Physics	0.8664291501045227
Werner_Heisenberg	0.8625140190124512
Richard_Feynman	0.8496938943862915
List_of_physicists	0.8415523767471313
Physicist	0.8384397625923157
Max_Planck	0.8370327353477478
Niels_Bohr	0.8340970873832703
Quantum_mechanics	0.8331197500228882
Special_relativity	0.8280861973762512
+---+

7.1.7 Computing Similar Vertices for a Vertex Batch
You can fetch the k most similar vertices for a list of input vertices as described in the
following code:

Computing Similar Vertices for a Vertex Batch Using JShell

opg-jshell> var vertices = new ArrayList()
opg-jshell> vertices.add("Machine_learning")
opg-jshell> vertices.add("Albert_Einstein")
opg-jshell> batchedSimilars = model.computeSimilars(vertices, 10)
opg-jshell> batchedSimilars.print()

Computing Similar Vertices for a Vertex Batch Using Java

Chapter 7
Using the DeepWalk Algorithm

7-5

http://dbpedia.org/page/Albert_Einstein

List vertices = Arrays.asList("Machine_learning","Albert_Einstein");
PgxFrame batchedSimilars = model.computeSimilars(vertices,10);
batchedSimilars.print();

Computing Similar Vertices for a Vertex Batch Using Python

vertices = ["Machine_learning","Albert_Einstein"]
batched_similars = model.compute_similars(vertices,10)
batched_similars.print()

The following describes the output result:

+---+
| srcVertex | dstVertex | similarity |
+---+
Machine_learning	Machine_learning	1.0000001192092896
Machine_learning	Data_mining	0.9070799350738525
Machine_learning	Computer_science	0.8963605165481567
Machine_learning	Unsupervised_learning	0.8828719854354858
Machine_learning	R_(programming_language)	0.8821185827255249
Machine_learning	Algorithm	0.8819515705108643
Machine_learning	Artificial_neural_network	0.8773092031478882
Machine_learning	Data_analysis	0.8758628368377686
Machine_learning	List_of_algorithms	0.8737979531288147
Machine_learning	K-means_clustering	0.8715602159500122
Albert_Einstein	Albert_Einstein	1.0000001192092896
Albert_Einstein	Physics	0.8664291501045227
Albert_Einstein	Werner_Heisenberg	0.8625140190124512
Albert_Einstein	Richard_Feynman	0.8496938943862915
Albert_Einstein	List_of_physicists	0.8415523767471313
Albert_Einstein	Physicist	0.8384397625923157
Albert_Einstein	Max_Planck	0.8370327353477478
Albert_Einstein	Niels_Bohr	0.8340970873832703
Albert_Einstein	Quantum_mechanics	0.8331197500228882
Albert_Einstein	Special_relativity	0.8280861973762512
+---+

7.1.8 Storing a Trained DeepWalk Model
You can store models in database. The models get stored as a row inside a model
store table.

The following code shows how to store a trained DeepWalk model in database in a
specific model store table:

Storing a Trained DeepWalk Model Using JShell

opg-jshell> model.export().db()
 .modelstore("modelstoretablename") // name of the model store
table
 .modelname("model") // model name (primary key of
model store table)
 .description("a model description") // description to store
alongside the model
 .store();

Storing a Trained DeepWalk Model Using Java

Chapter 7
Using the DeepWalk Algorithm

7-6

model.export().db()
 .modelstore("modelstoretablename") // name of the model store table
 .modelname("model") // model name (primary key of model
store table)
 .description("a model description") // description to store alongside the
model
 .store();

Storing a Trained DeepWalk Model Using Python

model.export().db(model_store="modelstoretablename",
 model_name="model")

Note:

All the above examples assume that you are storing the model in the current
logged in database. If you must store the model in a different database then
refer to the examples in Storing a Trained Model in Another Database.

• Storing a Trained Model in Another Database

7.1.8.1 Storing a Trained Model in Another Database
You can store models in a different database other than the one used for login.

The following code shows how to store a trained model in a different database:

Storing a Trained Model Using JShell

opg-jshell> model.export().db()
 .username("user") // DB user to use for storing
the model
 .password("password") // password of the DB user
 .jdbcUrl("jdbcUrl") // jdbc url to the DB
 .modelstore("modelstoretablename") // name of the model store
table
 .modelname("model") // model name (primary key of
model store table)
 .description("a model description") // description to store
alongside the model
 .store();

Storing a Trained Model Using Java

model.export().db()
 .username("user") // DB user to use for storing the model
 .password("password") // password of the DB user
 .jdbcUrl("jdbcUrl") // jdbc url to the DB
 .modelstore("modelstoretablename") // name of the model store table
 .modelname("model") // model name (primary key of model
store table)
 .description("a model description") // description to store alongside the
model
 .store();

Chapter 7
Using the DeepWalk Algorithm

7-7

Storing a Trained Model Using Python

model.export().db(username="user",
 password="password",
 model_store="modelstoretablename",
 model_name="model",
 jdbc_url="jdbc_url")

7.1.9 Loading a Pre-Trained DeepWalk Model
You can load models from a database.

You can load a pre-trained DeepWalk model from a model store table in database as
described in the following code:

Loading a Pre-Trained DeepWalk Model Using JShell

opg-jshell> var model = analyst.loadDeepWalkModel().db()
 .modelstore("modeltablename") // name of the model store table
 .modelname("model") // model name (primary key of
model store table)
 .load();

Loading a Pre-Trained DeepWalk Model Using Java

DeepWalkModelmodel = analyst.loadDeepWalkModel().db()
 .modelstore("modeltablename") // name of the model store table
 .modelname("model") // model name (primary key of model store
table)
 .load();

Loading a Pre-Trained DeepWalk Model Using Python

analyst.get_deepwalk_model_loader().db(model_store="modelstoretablename",
 model_name="model")

Note:

All the above examples assume that you are loading the model from the
current logged in database. If you must load the model from a different
database then refer to the examples in Loading a Pre-Trained Model From
Another Database.

• Loading a Pre-Trained Model From Another Database

7.1.9.1 Loading a Pre-Trained Model From Another Database
You can load models from a different database other than the one used for login.

You can load a pre-trained model from a model store table in database as described in
the following code:

Loading a Pre-Trained Model Using JShell

opg-jshell> var model = analyst.<modelLoader>.db()

Chapter 7
Using the DeepWalk Algorithm

7-8

 .username("user") // DB user to use for storing the
model
 .password("password") // password of the DB user
 .jdbcUrl("jdbcUrl") // jdbc url to the DB
 .modelstore("modeltablename") // name of the model store table
 .modelname("model") // model name (primary key of
model store table)
 .load();

where <modelLoader> applies as follows:

• loadDeepWalkModel(): Loads a Deepwalk model

• loadSupervisedGraphWiseModel(): Loads a GraphWise model

• loadPg2vecModel(): Loads a Pg2vec model

Loading a Pre-Trained DeepWalk Model Using Java

DeepWalkModelmodel = analyst.<modelLoader>.db()
 .username("user") // DB user to use for storing the model
 .password("password") // password of the DB user
 .jdbcUrl("jdbcUrl") // jdbc url to the DB
 .modelstore("modeltablename") // name of the model store table
 .modelname("model") // model name (primary key of model store
table)
 .load();

where <modelLoader> applies as follows:

• loadDeepWalkModel(): Loads a Deepwalk model

• loadSupervisedGraphWiseModel(): Loads a GraphWise model

• loadPg2vecModel(): Loads a Pg2vec model

Loading a Pre-Trained DeepWalk Model Using Python

analyst.<modelLoader>.db(username="user",
 password="password",
 model_store="modelstoretablename",
 model_name="model",
 jdbc_url="jdbc_url")

where <modelLoader> applies as follows:

• get_deepwalk_model_loader(): Loads a Deepwalk model

• get_pg2vec_model_loader(): Loads a Pg2vec model

7.1.10 Destroying a DeepWalk Model
You can destroy a DeepWalk model as described in the following code:

Destroying a DeepWalk Model Using JShell

opg-jshell> model.destroy()

Destroying a DeepWalk Model Using Java

model.destroy();

Chapter 7
Using the DeepWalk Algorithm

7-9

Destroying a DeepWalk Model Using Python

model.destroy()

7.2 Using the Supervised GraphWise Algorithm
Supervised GraphWise is an inductive vertex representation learning algorithm which
is able to leverage vertex feature information. It can be applied to a wide variety of
tasks, including vertex classification and link prediction.

Supervised GraphWise is based on GraphSAGE by Hamilton et al.

Model Structure

A Supervised GraphWise model consists of two graph convolutional layers followed by
several prediction layers.

The forward pass through a convolutional layer for a vertex proceeds as follows:

1. A set of neighbors of the vertex is sampled.

2. The previous layer representations of the neighbors are mean-aggregated, and
the aggregated features are concatenated with the previous layer representation
of the vertex.

3. This concatenated vector is multiplied with weights, and a bias vector is added.

4. The result is normalized to such that the layer output has unit norm.

The prediction layers are standard neural network layers.

The following describes the usage of the main functionalities of the implementation of
GraphSAGE in PGX using the Cora graph as an example:

• Loading a Graph

• Building a Minimal GraphWise Model

• Advanced Hyperparameter Customization

• Training a Supervised GraphWise Model

• Getting the Loss Value For a Supervised GraphWise Model

• Inferring the Vertex Labels for a Supervised GraphWise Model

• Evaluating the Supervised GraphWise Model Performance

• Inferring Embeddings for a Supervised GraphWise Model

• Storing a Trained Supervised GraphWise Model

• Loading a Pre-Trained Supervised GraphWise Model

• Destroying a Supervised GraphWise Model

7.2.1 Loading a Graph
The following describes the steps for loading a graph:

1. Create a Session and an Analyst.
Creating a Session and an Analyst Using JShell

Chapter 7
Using the Supervised GraphWise Algorithm

7-10

https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf
https://relational.fit.cvut.cz/dataset/CORA

cd /opt/oracle/graph/
./bin/opg-jshell
// starting the shell will create an implicit session and analyst

Creating a Session and an Analyst Using Java

import oracle.pgx.api.*;
import oracle.pgx.api.mllib.SupervisedGraphWiseModel;
import oracle.pgx.api.frames.*;
import oracle.pgx.config.mllib.ActivationFunction;
import oracle.pgx.config.mllib.GraphWiseConvLayerConfig;
import oracle.pgx.config.mllib.GraphWisePredictionLayerConfig;
import oracle.pgx.config.mllib.SupervisedGraphWiseModelConfig;
import oracle.pgx.config.mllib.WeightInitScheme;
PgxSession session = Pgx.createSession("my-session");
Analyst analyst = session.createAnalyst();

2. Load the graph.
Loading a graph using JShell

opg-jshell> var fullGraph = session.readGraphWithProperties("<path>/
<full_graph.json>")
opg-jshell> var trainGraph = session.readGraphWithProperties("<path>/
<train_graph.json>")
opg-jshell> var testVertices = fullGraph.getVertices()
 .stream()
 .filter(v -> !trainGraph.hasVertex(v.getId()))
 .collect(Collectors.toList());

Loading a graph using Java

PgxGraph fullGraph = session.readGraphWithProperties("<path>/
<full_graph.json>");
PgxGraph trainGraph = session.readGraphWithProperties("<path>/
<train_graph.json>");
List<PgxVertex> testVertices = fullGraph.getVertices()
 .stream()
 .filter(v->!trainGraph.hasVertex(v.getId()))
 .collect(Collectors.toList());

7.2.2 Building a Minimal GraphWise Model
You can build a GraphWise model using the minimal configuration and default hyper-
parameters as described in the following code:

Building a Minimal GraphWise Model Using JShell

opg-jshell> var model = analyst.supervisedGraphWiseModelBuilder()
 .setVertexInputPropertyNames("features")
 .setVertexTargetPropertyName("label")
 .build()

Building a Minimal GraphWise Model Using Java

SupervisedGraphWiseModel model = analyst.supervisedGraphWiseModelBuilder()
 .setVertexInputPropertyNames("features")

Chapter 7
Using the Supervised GraphWise Algorithm

7-11

 .setVertexTargetPropertyName("labels")
 .build()

Note:

Even though only one feature property is specified in the above example,
you can specify arbitrarily many.

7.2.3 Advanced Hyperparameter Customization
You can build a GraphWise model using rich hyperparameter customization.

This is done through the following two sub-config classes:

1. GraphWiseConvLayerConfig

2. GraphWisePredictionLayerConfig

The following code describes the implementation of the configuration using the above
classes in GraphWise model:

Building a Customized GraphWise Model Using JShell

opg-jshell> var weightProperty = analyst.pagerank(trainGraph).getName()
opg-jshell> var convLayerConfig = analyst.graphWiseConvLayerConfigBuilder()
 .setNumSampledNeighbors(25)
 .setActivationFunction(ActivationFunction.TANH)
 .setWeightInitScheme(WeightInitScheme.XAVIER)
 .setWeightedAggregationProperty(weightProperty)
 .build()
opg-jshell> var predictionLayerConfig =
analyst.graphWisePredictionLayerConfigBuilder()
 .setHiddenDimension(32)
 .setActivationFunction(ActivationFunction.RELU)
 .setWeightInitScheme(WeightInitScheme.HE)
 .build()
opg-jshell> var model = analyst.supervisedGraphWiseModelBuilder()
 .setVertexInputPropertyNames("features")
 .setVertexTargetPropertyName("labels")
 .setConvLayerConfigs(convLayerConfig)
 .setPredictionLayerConfigs(predictionLayerConfig)
 .build()

Building a Customized GraphWise Model Using Java

String weightProperty = analyst.pagerank(trainGraph).getName()
GraphWiseConvLayerConfig convLayerConfig =
analyst.graphWiseConvLayerConfigBuilder()
 .setNumSampledNeighbors(25)
 .setActivationFunction(ActivationFunction.TANH)
 .setWeightInitScheme(WeightInitScheme.XAVIER)
 .setWeightedAggregationProperty(weightProperty)
 .build();

GraphWisePredictionLayerConfig predictionLayerConfig =
analyst.graphWisePredictionLayerConfigBuilder()
 .setHiddenDimension(32)

Chapter 7
Using the Supervised GraphWise Algorithm

7-12

 .setActivationFunction(ActivationFunction.RELU)
 .setWeightInitScheme(WeightInitScheme.HE)
 .build();

SupervisedGraphWiseModel model = analyst.supervisedGraphWiseModelBuilder()
 .setVertexInputPropertyNames("features")
 .setVertexTargetPropertyName("labels")
 .setConvLayerConfigs(convLayerConfig)
 .setPredictionLayerConfigs(predictionLayerConfig)
 .build();

See SupervisedGraphWiseModelBuilder, GraphWiseConvLayerConfigBuilder and
GraphWisePredictionLayerConfigBuilder in Javadoc for a full description of all
available hyperparameters and their default values.

7.2.4 Training a Supervised GraphWise Model
You can train a Supervised GraphWise model on a graph as described in the following
code:

Training a GraphWise Model Using JShell

opg-jshell> model.fit(trainGraph)

Training a GraphWise Model Using Java

model.fit(trainGraph)

7.2.5 Getting the Loss Value For a Supervised GraphWise Model
You can fetch the training loss value as described in the following code:

Getting the Loss Value Using JShell

opg-jshell> var loss = model.getTrainingLoss()

Getting the Loss Value Using Java

double loss = model.getTrainingLoss();

7.2.6 Inferring the Vertex Labels for a Supervised GraphWise Model
You can infer the labels for vertices on any graph (including vertices or graphs that
were not seen during training) as described in the following code:

Inferring the Vertex Labels Using JShell

opg-jshell> var labels = model.inferLabels(fullGraph, testVertices)
opg-jshell> labels.head().print()

Inferring the Vertex Labels Using Java

PgxFrame labels = model.inferLabels(fullGraph,testVertices);
labels.head().print();

Chapter 7
Using the Supervised GraphWise Algorithm

7-13

https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/mllib/SupervisedGraphWiseModelBuilder.html
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/mllib/GraphWiseConvLayerConfigBuilder.html
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/mllib/GraphWisePredictionLayerConfigBuilder.html

The output will be similar to the following example output:

+----------------------------------+
| vertexId | label |
+----------------------------------+
2	Neural Networks
6	Theory
7	Case Based
22	Rule Learning
30	Theory
34	Neural Networks
47	Case Based
48	Probabalistic Methods
50	Theory
52	Theory
+----------------------------------+

Similarly, you can also get the model confidence for each class by inferring the
prediction logits as described in the following code:

Getting the Model Confidence Using JShell

opg-jshell> var logits = model.inferLogits(fullGraph, testVertices)
opg-jshell> labels.head().print()

Getting the Model Confidence Using Java

PgxFrame logits = model.inferLogits(fullGraph,testVertices);
logits.head().print();

7.2.7 Evaluating the Supervised GraphWise Model Performance
You can evaluate various classification metrics for the model using the
evaluateLabels method as described in the following code:

Evaluating the Supervised GraphWise Model Performance Using JShell

opg-jshell> model.evaluateLabels(fullGraph, testVertices).print()

Evaluating the Supervised GraphWise Model Performance Using Java

model.evaluateLabels(fullGraph,testVertices).print();

The output will be similar to the following example output:

+--+
| Accuracy | Precision | Recall | F1-Score |
+--+
| 0.8488 | 0.8523 | 0.831 | 0.8367 |
+--+

7.2.8 Inferring Embeddings for a Supervised GraphWise Model
You can use a trained model to infer embeddings for unseen nodes and store in the
database as described in the following code:

Chapter 7
Using the Supervised GraphWise Algorithm

7-14

Inferring Embeddings Using JShell

opg-jshell> var vertexVectors = model.inferEmbeddings(fullGraph,
fullGraph.getVertices()).flattenAll()
opg-jshell> vertexVectors.write()
 .db()
 .username("user") // DB user
 .password("password") // password of the DB user
 .jdbcUrl("jdbcUrl") // jdbc url to the DB
 .name("vertex vectors")
 .tablename("vertexVectors") // indicate the name of the table in which the
data should be stored
 .overwrite(true) // indicate that if there is a table with the
same name, it will be overwritten (truncated)
 .store()

Inferring Embeddings Using Java

PgxFrame vertexVectors =
model.inferEmbeddings(fullGraph,fullGraph.getVertices()).flattenAll();
vertexVectors.write()
 .db()
 .username("user") // DB user
 .password("password") // password of the DB user
 .jdbcUrl("jdbcUrl") // jdbc url to the DB
 .name("vertex vectors")
 .tablename("vertexVectors") // indicate the name of the table in which the
data should be stored
 .overwrite(true) // indicate that if there is a table with the
same name, it will be overwritten (truncated)
 .store();

The schema for the vertexVectors will be as follows without flattening (flattenAll
splits the vector column into separate double-valued columns):

+---+
| vertexId | embedding |
+---+

7.2.9 Storing a Trained Supervised GraphWise Model
You can store models in database. The models get stored as a row inside a model
store table.

The following code shows how to store a trained Supervised GraphWise model in
database in a specific model store table:

Storing a Trained Supervised GraphWise Model Using JShell

opg-jshell> model.export().db()
 .modelstore("modelstoretablename") // name of the model store
table
 .modelname("model") // model name (primary key of
model store table)
 .description("a model description") // description to store
alongside the model
 .store();

Chapter 7
Using the Supervised GraphWise Algorithm

7-15

Storing a Trained Supervised GraphWise Model Using Java

model.export().db()
 .modelstore("modelstoretablename") // name of the model store table
 .modelname("model") // model name (primary key of model
store table)
 .description("a model description") // description to store alongside the
model
 .store();

Note:

All the above examples assume that you are storing the model in the current
logged in database. If you must store the model in a different database then
refer to the examples in Storing a Trained Model in Another Database.

7.2.10 Loading a Pre-Trained Supervised GraphWise Model
You can load models from a database.

You can load a pre-trained Supervised GraphWise model from a model store table in
database as described in the following code:

Loading a Pre-Trained Supervised GraphWise Model Using JShell

opg-jshell> var model = analyst.loadSupervisedGraphWiseModel().db()
 .modelstore("modeltablename") // name of the model store table
 .modelname("model") // model name (primary key of
model store table)
 .load();

Loading a Pre-Trained Supervised GraphWise Model Using Java

SupervisedGraphWiseModelmodel = analyst.loadSupervisedGraphWiseModel().db()
 .modelstore("modeltablename") // name of the model store table
 .modelname("model") // model name (primary key of model store
table)
 .load();

Note:

All the above examples assume that you are loading the model from the
current logged in database. If you must load the model from a different
database then refer to the examples in Loading a Pre-Trained Model From
Another Database.

7.2.11 Destroying a Supervised GraphWise Model
You can destroy a GraphWise model as described in the following code:

Destroying a GraphWise Model Using JShell

Chapter 7
Using the Supervised GraphWise Algorithm

7-16

opg-jshell> model.destroy()

Destroying a GraphWise Model Using Java

model.destroy();

7.3 Using the Pg2vec Algorithm
Pg2vec learns representations of graphlets (partitions inside a graph) by employing
edges as the principal learning units and thereby packing more information in
each learning unit (as compared to employing vertices as learning units) for the
representation learning task.

It consists of three main steps:

1. Random walks for each vertex (with pre-defined length per walk and pre-defined
number of walks per vertex) is generated.

2. Each edge in this random walk is mapped as a property edge-word in the
created document (with the document label as the graph-id) where the property
edge-word is defined as the concatenation of the properties of the source and
destination vertices.

3. The generated documents (with their attached document labels) are fed to a
doc2vec algorithm which generates the vector representation for each document,
which is a graph in this case.

Pg2vec creates graphlet embeddings for a specific set of graphlets and cannot be
updated to incorporate modifications on these graphlets. Instead, a new Pg2vec model
should be trained on these modified graphlets.

The following represents the memory consumption of Pg2vec model.

O(2(n+m)*d)

where:

• n: is the number of vertices in the graph

• m: is the number of graphlets in the graph

• d: is the embedding length

The following describes the usage of the main functionalities of the implementation of
Pg2vec in PGX using NCI109 dataset as an example with 4127 graphs in it:

• Loading a Graph

• Building a Minimal Pg2vec Model

• Building a Customized Pg2vec Model

• Training a Pg2vec Model

• Getting the Loss Value For a Pg2vec Model

• Computing Similar Graphlets for a Given Graphlet

• Computing Similars for a Graphlet Batch

• Inferring a Graphlet Vector

• Inferring Vectors for a Graphlet Batch

Chapter 7
Using the Pg2vec Algorithm

7-17

https://dl.acm.org/citation.cfm?id=3044805.3045025
https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

• Storing a Trained Pg2vec Model

• Loading a Pre-Trained Pg2vec Model

• Destroying a Pg2vec Model

7.3.1 Loading a Graph
The following describes the steps for loading a graph:

1. Create a Session and an Analyst.
Creating a Session and an Analyst Using JShell

cd /opt/oracle/graph/
./bin/opg-jshell
// starting the shell will create an implicit session and analyst

Creating a Session and an Analyst Using Java

import oracle.pgx.api.*;
import oracle.pgx.api.mllib.Pg2vecModel;
import oracle.pgx.api.frames.*;
...
PgxSession session = Pgx.createSession("my-session");
Analyst analyst = session.createAnalyst();

Creating a Session and an Analyst Using Python

session = pypgx.get_session(session_name="my-session")
analyst = session.create_analyst()

2. Load the graph.
Loading a graph using JShell

opg-jshell> var graph = session.readGraphWithProperties("<path>/
<graph.json>")

Loading a graph using Java

PgxGraph graph = session.readGraphWithProperties("<path>/<graph.json>");

Loading a graph using Python

graph = session.read_graph_with_properties("<path>/<graph.json>")

7.3.2 Building a Minimal Pg2vec Model
You can build a Pg2vec model using the minimal configuration and default hyper-
parameters as described in the following code:

Building a Minimal Pg2vec Model Using JShell

opg-jshell> var model = analyst.pg2vecModelBuilder()
 .setGraphLetIdPropertyName("graph_id")
 .setVertexPropertyNames(Arrays.asList("category"))
 .setWindowSize(4)
 .setWalksPerVertex(5)

Chapter 7
Using the Pg2vec Algorithm

7-18

 .setWalkLength(8)
 .build()

Building a Minimal Pg2vec Model Using Java

Pg2vecModel model = analyst.pg2vecModelBuilder()
 .setGraphLetIdPropertyName("graph_id")
 .setVertexPropertyNames(Arrays.asList("category"))
 .setWindowSize(4)
 .setWalksPerVertex(5)
 .setWalkLength(8)
 .build();

Building a Minimal Pg2vec Model Using Python

model = analyst.pg2vec_model_builder(
 graph_let_id_property_name="graph_id",
 vertex_property_names(["category"]),
 window_size=4,
 walks_per_vertex=5,
 walk_length=8)

You can specify the property name to determine each graphlet
using the Pg2vecModelBuilder#setGraphLetIdPropertyName operation and also
employ the vertex properties in Pg2vec which are specified using the
Pg2vecModelBuilder#setVertexPropertyNames operation.

You can also use the weakly connected component (WCC) functionality in PGX to
determine the graphlets in a given graph.

7.3.3 Building a Customized Pg2vec Model
You can build a Pg2vec model using cusomized hyper-parameters as described in the
following code:

Building a Customized Pg2vec model Using JShell

opg-jshell> var model = analyst.pg2vecModelBuilder()
 .setGraphLetIdPropertyName("graph_id")
 .setVertexPropertyNames(Arrays.asList("category"))
 .setMinWordFrequency(1)
 .setBatchSize(128)
 .setNumEpochs(5)
 .setLayerSize(200)
 .setLearningRate(0.04)
 .setMinLearningRate(0.0001)
 .setWindowSize(4)
 .setWalksPerVertex(5)
 .setWalkLength(8)
 .setUseGraphletSize(true)
 .setValidationFraction(0.05)
 .setGraphletSizePropertyName("<propertyName>")
 .build()

Building a Customized Pg2vec model Using Java

Chapter 7
Using the Pg2vec Algorithm

7-19

Pg2vecModel model= analyst.pg2vecModelBuilder()
 .setGraphLetIdPropertyName("graph_id")
 .setVertexPropertyNames(Arrays.asList("category"))
 .setMinWordFrequency(1)
 .setBatchSize(128)
 .setNumEpochs(5)
 .setLayerSize(200)
 .setLearningRate(0.04)
 .setMinLearningRate(0.0001)
 .setWindowSize(4)
 .setWalksPerVertex(5)
 .setWalkLength(8)
 .setUseGraphletSize(true)
 .setValidationFraction(0.05)
 .setGraphletSizePropertyName("<propertyName>")
 .build()

Building a Customized Pg2vec model Using Python

model = analyst.pg2vec_model_builder(
 graph_let_id_property_name = "graph_id",
 vertex_property_names = ["category"],
 min_word_frequency = 1,
 batch_size = 128,
 num_epochs = 5,
 layer_size = 200,
 learning_rate = 0.04,
 min_learning_rate = 0.0001,
 window_size = 4,
 walks_per_vertex = 5,
 walk_length = 8,
 use_graphlet_size = true,
 graphlet_size_property_name = "<property_name>",
 validation_fraction = 0.05)

See Pg2vecModelBuilder in Javadoc for more explanation for each builder operation
along with the default values.

7.3.4 Training a Pg2vec Model
You can train a Pg2vec model with the specified default or customized settings as
described in the following code:

Training a Pg2vec Model Using JShell

opg-jshell> model.fit(graph)

Training a Pg2vec Model Using Java

model.fit(graph);

Training a Pg2vec Model Using Python

model.fit(graph)

Chapter 7
Using the Pg2vec Algorithm

7-20

https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/mllib/Pg2vecModelBuilder.html

7.3.5 Getting the Loss Value For a Pg2vec Model
You can fetch the training loss value on a specified fraction of training data (set in
builder using setValidationFraction) as described in the following code:

Getting the Loss Value Using JShell

opg-jshell> var loss = model.getLoss()

Getting the Loss Value Using Java

double loss = model.getLoss();

Getting the Loss Value Using Python

loss = model.loss

7.3.6 Computing Similar Graphlets for a Given Graphlet
You can fetch the k most similar graphlets for a given graphlet as described in the
following code:

Computing Similar Graphlets for Given Graphlet Using JShell

opg-jshell> var similars = model.computeSimilars(52, 10)

Computing Similar Graphlets for Given Graphlet Using Java

PgxFrame similars = model.computeSimilars(52, 10);

Computing Similar Graphlets for Given Graphlet Using Python

similars = model.compute_similars(52, 10)

Searching for similar vertices for graphlet with ID = 52 using the trained model and
printing it with similars.print(), will result in the following output:

+----------------------------------+
| dstGraphlet | similarity |
+----------------------------------+
52	1.0
10	0.8748674392700195
23	0.8551455140113831
26	0.8493421673774719
47	0.8411962985992432
25	0.8281504511833191
43	0.8202780485153198
24	0.8179885745048523
8	0.796689510345459
9	0.7947834134101868
+----------------------------------+

The following depicts the visualization of two similar graphlets (top: ID = 52 and
bottom: ID = 10):

Chapter 7
Using the Pg2vec Algorithm

7-21

Figure 7-1 Pg2vec - Visualization of Two Similar Graphlets

7.3.7 Computing Similars for a Graphlet Batch
You can fetch the k most similar graphlets for a batch of input graphlets as described
in the following code:

Computing Similar Graphlets for a Graphlet Batch Using JShell

opg-jshell> var graphlets = new ArrayList()
opg-jshell> graphlets.add(52)
opg-jshell> graphlets.add(41)
opg-jshell> var batchedSimilars = model.computeSimilars(graphlets, 10)

Computing Similar Graphlets for a Graphlet Batch Using Java

List graphlets = Arrays.asList(52,41);
PgxFrame batchedSimilars = model.computeSimilars(graphlets,10);

Computing Similar Graphlets for a Graphlet Batch Using Python

batched_similars = model.compute_similars([52,41],10)

Searching for similar vertices for graphlet with ID = 52 and ID = 41 using the trained
model and printing it with batched_similars.print(), will result in the following
output:

+--+
| srcGraphlet | dstGraphlet | similarity |
+--+

Chapter 7
Using the Pg2vec Algorithm

7-22

52	52	1.0
52	10	0.8748674392700195
52	23	0.8551455140113831
52	26	0.8493421673774719
52	47	0.8411962985992432
52	25	0.8281504511833191
52	43	0.8202780485153198
52	24	0.8179885745048523
52	8	0.796689510345459
52	9	0.7947834134101868
41	41	1.0
41	197	0.9653506875038147
41	84	0.9552277326583862
41	157	0.9465565085411072
41	65	0.9287481307983398
41	248	0.9177336096763611
41	315	0.9043129086494446
41	92	0.8998928070068359
41	297	0.8897411227226257
41	50	0.8810243010520935
+--+

7.3.8 Inferring a Graphlet Vector
You can infer the vector representation for a given new graphlet as described in the
following code:

Inferring a Graphlet Vector Using JShell

opg-jshell> var graphlet = session.readGraphWithProperties("<path>/
<graphletConfig.json>")
opg-jshell> inferredVector = model.inferGraphletVector(graphlet)
opg-jshell> inferredVector.print()

Inferring a Graphlet Vector Using Java

PgxGraph graphlet = session.readGraphWithProperties("<path>/
<graphletConfig.json>");
PgxFrame inferredVector = model.inferGraphletVector(graphlet);
inferredVector.print();

Inferring a Graphlet Vector Using Python

PgxGraph graphlet = session.read_graph_with_properties("<path>/
<graphletConfig.json>")
inferredVector = model.infer_graphlet_vector(graphlet)
inferredVector.print()

The schema for the inferredVector will be similar to the following output:

+---+
| graphlet | embedding |
+---+

Chapter 7
Using the Pg2vec Algorithm

7-23

7.3.9 Inferring Vectors for a Graphlet Batch
You can infer the vector representations for multiple graphlets (specified with different
graph-ids in a graph) as described in the following code:

Inferring Vectors for a Graphlet Batch Using JShell

opg-jshell> var graphlet = session.readGraphWithProperties("<path>/
<graphletConfig.json>")
opg-jshell> inferredVectorBatched = model.inferGraphletVectorBatched(graphlets)
opg-jshell> inferredVectorBatched.print()

Inferring Vectors for a Graphlet Batch Using Java

PgxGraph graphlet = session.readGraphWithProperties("<path>/
<graphletConfig.json>");
PgxFrame inferredVectorBatched = model.inferGraphletVectorBatched(graphlets);
inferredVector.print();

Inferring Vectors for a Graphlet Batch Using Python

graphlets = session.read_graph_with_properties("<path>/<graphletConfig.json>")
inferred_vector_batched = model.infer_graphlet_vector_batched(graphlets)
inferred_vector_batched.print()

The schema is same as for inferGraphletVector but with more rows corresponding
to the input graphlets.

7.3.10 Storing a Trained Pg2vec Model
You can store models in database. The models get stored as a row inside a model
store table.

The following code shows how to store a trained Pg2vec model in database in a
specific model store table:

Storing a Trained Pg2vec Model Using JShell

opg-jshell> model.export().db()
 .modelstore("modelstoretablename") // name of the model store
table
 .modelname("model") // model name (primary key of
model store table)
 .description("a model description") // description to store
alongside the model
 .store();

Storing a Trained Pg2vec Model Using Java

model.export().db()
 .modelstore("modelstoretablename") // name of the model store table
 .modelname("model") // model name (primary key of model
store table)
 .description("a model description") // description to store alongside the

Chapter 7
Using the Pg2vec Algorithm

7-24

model
 .store();

Storing a Trained Pg2vec Model Using Python

model.export().db(model_store="modelstoretablename",
 model_name="model")

Note:

All the above examples assume that you are storing the model in the current
logged in database. If you must store the model in a different database then
refer to the examples in Storing a Trained Model in Another Database.

7.3.11 Loading a Pre-Trained Pg2vec Model
You can load models from a database.

You can load a pre-trained Pg2vec model from a model store table in database as
described in the following:

Loading a Pre-Trained Pg2vec Model Using JShell

opg-jshell> var model = analyst.loadPg2vecModel().db()
 .modelstore("modeltablename") // name of the model store table
 .modelname("model") // model name (primary key of
model store table)
 .load();

Loading a Pre-Trained Pg2vec Model Using Java

Pg2vecModelmodel = analyst.loadPg2vecModel().db()
 .modelstore("modeltablename") // name of the model store table
 .modelname("model") // model name (primary key of model store
table)
 .load();

Loading a Pre-Trained Pg2vec Model Using Python

analyst.get_pg2vec_model_loader().db(model_store="modelstoretablename",
 model_name="model")

Note:

All the above examples assume that you are loading the model from the
current logged in database. If you must load the model from a different
database then refer to the examples in Loading a Pre-Trained Model From
Another Database.

7.3.12 Destroying a Pg2vec Model
You can destroy a Pg2vec model as described in the following code:

Chapter 7
Using the Pg2vec Algorithm

7-25

Destroying a Pg2vec Model Using JShell

opg-jshell> model.destroy()

Destroying a Pg2vec Model Using Java

model.destroy();

Destroying a Pg2vec Model Using Python

model.destroy()

Chapter 7
Using the Pg2vec Algorithm

7-26

8
Spatial Support in Property Graphs

The property graph support in the Oracle Spatial and Graph option is integrated with
the spatial support.

The integration has the following aspects: representing spatial data in a property
Graph, creating a spatial index on that spatial data, and querying that spatial data.

• Representing Spatial Data in a Property Graph

• Creating a Spatial Index on Property Graph Data

• Querying Spatial Data in a Property Graph

8.1 Representing Spatial Data in a Property Graph
Spatial data can be used as values of vertex properties and edge properties.

For example, an entity can have a point (longitude/latitude) as the value of a property
named location. As another example, an edge may have a polygon as the value of a
property, and this property can represent the location at which this link (relationship)
was established.

The following shows some example syntax for encoding spatial data in a property
graph.

• Point: '-122.230 37.560'

• Point: 'POINT(-122.241 37.567)'

• Point with SRID specified: 'srid/8307 POINT(-122.246 37.572)'

• Polygon: 'POLYGON((-83.6 34.1, -83.6 34.3, -83.4 34.3, -83.4 34.1,
-83.6 34.1))'

• Polygon with SRID specified: 'srid/8307 POLYGON((-83.6 34.1, -83.6 34.3,
-83.4 34.3, -83.4 34.1, -83.6 34.1))'

• Line string: 'LINESTRING (30 10, 10 30, 40 40)'

• Multiline string: 'MULTILINESTRING ((10 10, 20 20, 10 40), (40 40, 30 30,
40 20, 30 10))'

Assume a test property graph named test. The following statements add a set of
vertices with coordinates (longitude and latitude) spacified for each.

insert into testVT$(vid, k, t, v) values(100, 'geoloc', 20, '-122.230
37.560');
insert into testVT$(vid, k, t, v) values(101, 'geoloc', 20, '-122.231
37.561');
insert into testVT$(vid, k, t, v) values(102, 'geoloc', 20, '-122.236
37.562914');
insert into testVT$(vid, k, t, v) values(103, 'geoloc', 20, '-122.241
37.567');

8-1

insert into testVT$(vid, k, t, v) values(104, 'geoloc', 20, '-122.246
37.572');
insert into testVT$(vid, k, t, v) values(105, 'geoloc', 20, '-122.251
37.577');
insert into testVT$(vid, k, t, v) values(200, 'geoloc', 20, '-122.256
37.582');
insert into testVT$(vid, k, t, v) values(201, 'geoloc', 20, '-122.261
37.587');

The Spatial data in the property graph can be used to construct SDO_GEOMETRY
objects. For example, the OPG_APIS.GET_GEOMETRY_FROM_V_T_COLS function
can be used to read spatial data from the V column for all T of a specified value
(such as 20), and return SDO_GEOMETRY objects. This function attempts to parse
the value as coordinates if the value appears to be two numbers, and it uses the
SDO_GEOMETRY constructor if the value is not a simple point. Finally, if a SRID is
provided, it uses the SDO_CS_TRANSFORM procedure to transform using the given
coordinate system.

The following example uses the OPG_APIS.GET_GEOMETRY_FROM_V_T_COLS
function to get geometries from the test property graph. It includes some of the
output.

SQL> select vid, k, opg_apis.get_geometry_from_v_t_cols
 from testVT$
 order by vid, k;
 . . .
 100 geoloc SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(-122.23,
37.56, NULL), NULL, NULL)
 101 geoloc SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(-122.231,
37.561, NULL), NULL, NULL)
 102 geoloc SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(-122.236,
37.562914, NULL), NULL, NULL)
 103 geoloc SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(-122.241,
37.567, NULL), NULL, NULL)
 . . .

You can generate SDO_GEOMETRY objects from WKT literals. The
following example inserts WKT literals, and then uses the
OPG_APIS.GET_WKTGEOMETRY_FROM_V_T_COLS function to construct
SDO_GEOMETRY objects from the V, T columns.

truncate table testGE$;
truncate table testVT$;
insert into testVT$(vid, k, t, v) values(101, 'geoloc', 20,
'POLYGON((-83.6 34.1, -83.6 34.3, -83.4 34.3, -83.4 34.1, -83.6
34.1))');
insert into testVT$(vid, k, t, v) values(103, 'geoloc', 20,
'POINT(-122.241 37.567)');
insert into testVT$(vid, k, t, v) values(105, 'geoloc', 20,
'POINT(-122.251 37.577)');
insert into testVT$(vid, k, t, v) values(200, 'geoloc', 20,
'MULTILINESTRING ((10 10, 20 20, 10 40), (40 40, 30 30, 40 20, 30
10))');
insert into testVT$(vid, k, t, v) values(201, 'geoloc', 20, 'LINESTRING

Chapter 8
Representing Spatial Data in a Property Graph

8-2

(30 10, 10 30, 40 40)');

prompt show the geometry info
SQL> select vid, k, opg_apis.get_wktgeometry_from_v_t_cols(v,t)
 from testVT$
 order by vid, k;
 . . .
 101 geoloc SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1,
1003, 1), SDO_ORDINATE_ARRAY(-83.6, 34.1, -83.6, 34.3, -83.4, 34.3,
-83.4, 34.1, -83.6, 34.1))
 103 geoloc SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(-122.241,
37.567, NULL), NULL, NULL)
 105 geoloc SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(-122.251,
37.577, NULL), NULL, NULL)
 200 geoloc SDO_GEOMETRY(2006, 8307, NULL, SDO_ELEM_INFO_ARRAY(1,
2, 1, 7, 2, 1), SDO_ORDINATE_ARRAY(10, 10, 20, 20, 10, 40, 40, 40, 30,
30, 40, 20, 30, 10))
 201 geoloc SDO_GEOMETRY(2002, 8307, NULL, SDO_ELEM_INFO_ARRAY(1,
2, 1), SDO_ORDINATE_ARRAY(30, 10, 10, 30, 40, 40))

8.2 Creating a Spatial Index on Property Graph Data
After adding spatial data to a property graph, you can use OPG_APIS package
subprograms to construct SDO_GEOMETRY objects, and then you can create a
function-based spatial index on the vertices (VT$) or the edges (VT$) table.

Using the example property graph named test, the following statements add the
necessary metadata and create a function-based spatial index.

SQL> -- In the schema that owns the property graph TEST:
SQL> --
SQL> insert into user_sdo_geom_metadata values('TESTVT$',
 'mdsys.opg_apis.get_geometry_from_v_t_cols(v,t)',
 sdo_dim_array(
 sdo_dim_element('Longitude', -180, 180, 0.005),
 sdo_dim_element('Latitude', -90, 90, 0.005)), 8307);

commit;

SQL> -- Create a function-based spatial index
SQL> create index testVTXGEO$
 on testVT$(mdsys.opg_apis.get_geometry_from_v_t_cols(v, t))
 indextype is mdsys.spatial_index_v2
 parameters ('tablespace=USERS')
 parallel 4
 local;

(To create a spatial index on your own property graph, replace the graph name test
with the name of your graph.)

If the WKT literals are used in the V
column, then replace mdsys.opg_apis.get_geometry_from_v_t_cols with
mdsys.opg_apis.get_wktgeometry_from_v_t_cols in the preceding two SQL
statements.

Chapter 8
Creating a Spatial Index on Property Graph Data

8-3

Note that the preceding SQL spatial index creation steps are wrapped in convenient
Java methods in the OraclePropertyGraph class defined in the oracle.pg.rdbms
package:

 /**
 * This API creates a default Spatial index on edges. It assumes that
 * the mdsys.opg_apis.get_geometry_from_v_t_cols(v,t) PL/SQL is going to be
used
 * to create a function-based Spatial index. In addition, it adds a predefined
 * value into user_sdo_geom_metadata. To customize, please refer to the dev
 * guide for adding a row to user_sdo_geom_metadata and then creating a
 * Spatial index manually.
 * Note that, a DDL will be executed so expect an implict commit. If you
 * have changes that do not want to be persisted, run a rollback before calling
 * this method.
 * @param dop degree of parallelism used to create the Spatial index
 */
 public void createDefaultSpatialIndexOnEdges(int dop);

 /**
 * This API creates a default Spatial index on vertices. It assumes that
 * the mdsys.opg_apis.get_geometry_from_v_t_cols(v,t) PL/SQL is going to be
used
 * to create a function-based Spatial index. In addition, it adds a predefined
 * value into user_sdo_geom_metadata. To customize, please refer to the dev
 * guide for adding a row to user_sdo_geom_metadata and then creating a
 * Spatial index manually.
 * Note that a DDL will be executed so expect an implict commit. If you
 * have changes that do not want to be persisted, run a rollback before calling
 * this method.
 * @param dop degree of parallelism used to create the Spatial index
 */
 public void createDefaultSpatialIndexOnVertices(int dop);

8.3 Querying Spatial Data in a Property Graph
Oracle Spatial and Graph geospatial query functions can be applied to spatial data in a
property graph. This topic provides some examples.

Note that a query based on spatial information can be combined with navigation and
pattern matching.

The following example finds entities (vertices) that are within a specified distance
(here, 1 mile) of a location (point geometry).

SQL> -- use SDO_WITHIN_DISTANCE to filter vertices
SQL> select vid, k, t, v
 from testvt$
 where
sdo_within_distance(mdsys.opg_apis.get_geometry_from_v_t_cols(v, t),
 mdsys.sdo_geometry(2001, 8307,
mdsys.sdo_point_type(-122.23, 37.56, null), null, null),
 'distance=1 unit=mile') = 'TRUE'
 order by vid, k;

The output and execution plan may include the following. Notice that a newly created
domain indexTESTVTXGEO$ is used in the execution.

Chapter 8
Querying Spatial Data in a Property Graph

8-4

 100 geoloc 20 -122.230 37.560
 101 geoloc 20 -122.231 37.561

| Id | Operation | Name | Rows | Bytes |
Cost (%CPU)| Time | Pstart| Pstop | TQ |IN-OUT| PQ Distrib |

| 0 | SELECT STATEMENT | | 1 | 18176
2 (50)	00:00:01					
1	PX COORDINATOR					
2	PX SEND QC (ORDER)	:TQ10001	1	18176		
2 (50)	00:00:01			Q1,01	P->S	QC (ORDER)
3	SORT ORDER BY		1	18176		
2 (50)	00:00:01			Q1,01	PCWP	
4	PX RECEIVE		1	18176		
1 (0)	00:00:01			Q1,01	PCWP	
5	PX SEND RANGE	:TQ10000	1	18176		
1 (0)	00:00:01			Q1,00	P->P	RANGE
6	PX PARTITION HASH ALL		1	18176		
1 (0)	00:00:01	1	8	Q1,00	PCWC	
* 7	TABLE ACCESS BY LOCAL INDEX ROWID	TESTVT$	1	18176		
1 (0)	00:00:01	1	8	Q1,00	PCWP	
* 8	DOMAIN INDEX (SEL: 0.000000 %)	TESTVTXGEO$				
1 (0)	00:00:01			Q1,00		

Predicate Information (identified by operation id):

 7 - filter(INTERNAL_FUNCTION("K") AND INTERNAL_FUNCTION("V"))
 8 -
access("MDSYS"."SDO_WITHIN_DISTANCE"("OPG_APIS"."GET_GEOMETRY_FROM_V_T_COLS"("V",
"T"),"MDSYS"."SDO_GEOMETRY"(2001,8307,"MDSYS"."SDO_P
 OINT_TYPE"((-122.23),37.56,NULL),NULL,NULL),'distance=1
unit=mile')='TRUE')

The following example sorts entities (vertices) based on their distance from a location.

-- Sort based on distance in miles
SQL> select vid, dist from (
 select vid, k, t, v,

sdo_geom.sdo_distance(mdsys.opg_apis.get_geometry_from_v_t_cols(v, t),
 mdsys.sdo_geometry(2001, 8307,
mdsys.sdo_point_type(-122.23, 37.56, null), null, null), 1.0,
'unit=mile') dist
 from testvt$
 where t = 20
) order by dist asc
;

The output and execution plan may include the following.

Chapter 8
Querying Spatial Data in a Property Graph

8-5

 ...
 101 .088148935
 102 .385863422
 103 .773127682
 104 1.2068052
 105 1.64421947
 200 2.08301065
 ...

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
Pstart| Pstop |

| 0 | SELECT STATEMENT | | 1 | 15062 | 1366 (1)| 00:00:01
| | |
| 1 | SORT ORDER BY | | 1 | 15062 | 1366 (1)| 00:00:01
| | |
| 2 | PARTITION HASH ALL| | 1 | 15062 | 1365 (1)| 00:00:01
| 1 | 8 |
|* 3 | TABLE ACCESS FULL| TESTVT$ | 1 | 15062 | 1365 (1)| 00:00:01
| 1 | 8 |

Predicate Information (identified by operation id):

 3 - filter("T"=20 AND INTERNAL_FUNCTION("V"))

Chapter 8
Querying Spatial Data in a Property Graph

8-6

9
OPG_APIS Package Subprograms

The OPG_APIS package contains subprograms (functions and procedures) for
working with property graphs in an Oracle database.

To use the subprograms in this chapter, you must understand the conceptual and
usage information in earlier chapters of this book.

This chapter provides reference information about the subprograms, in alphabetical
order.

• OPG_APIS.ANALYZE_PG

• OPG_APIS.CF

• OPG_APIS.CF_CLEANUP

• OPG_APIS.CF_PREP

• OPG_APIS.CLEAR_PG

• OPG_APIS.CLEAR_PG_INDICES

• OPG_APIS.CLONE_GRAPH

• OPG_APIS.COUNT_TRIANGLE

• OPG_APIS.COUNT_TRIANGLE_CLEANUP

• OPG_APIS.COUNT_TRIANGLE_PREP

• OPG_APIS.COUNT_TRIANGLE_RENUM

• OPG_APIS.CREATE_EDGES_TEXT_IDX

• OPG_APIS.CREATE_PG

• OPG_APIS.CREATE_PG_SNAPSHOT_TAB

• OPG_APIS.CREATE_PG_TEXTIDX_TAB

• OPG_APIS.CREATE_STAT_TABLE

• OPG_APIS.CREATE_SUB_GRAPH

• OPG_APIS.CREATE_VERTICES_TEXT_IDX

• OPG_APIS.DROP_EDGES_TEXT_IDX

• OPG_APIS.DROP_PG

• OPG_APIS.DROP_PG_VIEW

• OPG_APIS.DROP_VERTICES_TEXT_IDX

• OPG_APIS.ESTIMATE_TRIANGLE_RENUM

• OPG_APIS.EXP_EDGE_TAB_STATS

• OPG_APIS.EXP_VERTEX_TAB_STATS

• OPG_APIS.FIND_CC_MAPPING_BASED

9-1

• OPG_APIS.FIND_CLUSTERS_CLEANUP

• OPG_APIS.FIND_CLUSTERS_PREP

• OPG_APIS.FIND_SP

• OPG_APIS.FIND_SP_CLEANUP

• OPG_APIS.FIND_SP_PREP

• OPG_APIS.GET_BUILD_ID

• OPG_APIS.GET_GEOMETRY_FROM_V_COL

• OPG_APIS.GET_GEOMETRY_FROM_V_T_COLS

• OPG_APIS.GET_LATLONG_FROM_V_COL

• OPG_APIS.GET_LATLONG_FROM_V_T_COLS

• OPG_APIS.GET_LONG_LAT_GEOMETRY

• OPG_APIS.GET_LATLONG_FROM_V_COL

• OPG_APIS.GET_LONGLAT_FROM_V_T_COLS

• OPG_APIS.GET_SCN

• OPG_APIS.GET_VERSION

• OPG_APIS.GET_WKTGEOMETRY_FROM_V_COL

• OPG_APIS.GET_WKTGEOMETRY_FROM_V_T_COLS

• OPG_APIS.GRANT_ACCESS

• OPG_APIS.IMP_EDGE_TAB_STATS

• OPG_APIS.IMP_VERTEX_TAB_STATS

• OPG_APIS.PR

• OPG_APIS.PR_CLEANUP

• OPG_APIS.PR_PREP

• OPG_APIS.PREPARE_TEXT_INDEX

• OPG_APIS.RENAME_PG

• OPG_APIS.SPARSIFY_GRAPH

• OPG_APIS.SPARSIFY_GRAPH_CLEANUP

• OPG_APIS.SPARSIFY_GRAPH_PREP

9.1 OPG_APIS.ANALYZE_PG
Format

OPG_APIS.ANALYZE_PG(
 graph_name IN VARCHAR2,
 estimate_percent IN NUMBER,
 method_opt IN VARCHAR2,
 degree IN NUMBER,
 cascade IN BOOLEAN,
 no_invalidate IN BOOLEAN,
 force IN BOOLEAN DEFAULT FALSE,
 options IN VARCHAR2 DEFAULT NULL);

Chapter 9
OPG_APIS.ANALYZE_PG

9-2

Description

Hathers, for a given property graph, statistics for the VT$, GE$, IT$, and GT$ tables.

Parameters

graph_name
Name of the property graph.

estimate_percent
Percentage of rows to estimate in the schema tables (NULL means compute). The
valid range is [0.000001,100]. Use the constant DBMS_STATS.AUTO_SAMPLE_SIZE to
have Oracle Database determine the appropriate sample size for good statistics. This
is the usual default.

mrthod_opt
Accepts either of the following options, or both in combination, for the internal property
graph schema tables:

• FOR ALL [INDEXED | HIDDEN] COLUMNS [size_clause]

• FOR COLUMNS [size clause] column|attribute [size_clause] [,column|
attribute [size_clause]...]

size_clause is defined as size_clause := SIZE {integer | REPEAT | AUTO |
SKEWONLY}

• integer : Number of histogram buckets. Must be in the range [1,254].

• REPEAT : Collects histograms only on the columns that already have histograms.

• AUTO : Oracle Database determines the columns to collect histograms based on
data distribution and the workload of the columns.

• SKEWONLY : Oracle Database determines the columns to collect histograms based
on the data distribution of the columns

column is defined as column := column_name | (extension)

• column_name : name of a column

• extension: Can be either a column group in the format of
(column_name, column_name [, ...]) or an expression.

The usual default is: FOR ALL COLUMNS SIZE AUTO

degree
Degree of parallelism for the property graph schema tables. The usual default
for degree is NULL, which means use the table default value specified by
the DEGREE clause in the CREATE TABLE or ALTER TABLE statement. Use the
constant DBMS_STATS.DEFAULT_DEGREE to specify the default value based on the
initialization parameters. The AUTO_DEGREE value determines the degree of parallelism
automatically. This is either 1 (serial execution) or DEFAULT_DEGREE (the system
default value based on number of CPUs and initialization parameters) according to
size of the object.

Chapter 9
OPG_APIS.ANALYZE_PG

9-3

cascade
Gathers statistics on the indexes for the property graph schema tables. Use the
constant DBMS_STATS.AUTO_CASCADE to have Oracle Database determine whether
index statistics are to be collected or not. This is the usual default.

no_invalidate
If TRUE, does not invalidate the dependent cursors. If FALSE, invalidates the dependent
cursors immediately. If DBMS_STATS.AUTO_INVALIDATE (the usual default) is in effect,
Oracle Database decides when to invalidate dependent cursors.

force
If TRUE, performs the operation even if one or more underlying tables are locked.

options
(Reserved for future use.)

Usage Notes

Only the owner of the property graph can call this procedure.

Examples

The following example gather statistics for property graph mypg.

EXECUTE OPG_APIS.ANALYZE_PG('mypg', estimate_percent=> 0.001, method_opt=>'FOR
ALL COLUMNS SIZE AUTO', degree=>4, cascade=>true, no_invalidate=>false,
force=>true, options=>NULL);

9.2 OPG_APIS.CF
Format

OPG_APIS.CF(
 edge_tab_name IN VARCHAR2,
 edge_label IN VARCHAR2,
 rating_property IN VARCHAR2,
 iterations IN NUMBER DEFAULT 10,
 min_error IN NUMBER DEFAULT 0.001,
 k IN NUMBER DEFAULT 5,
 learning_rate IN NUMBER DEFAULT 0.0002,
 decrease_rate IN NUMBER DEFAULT 0.95,
 regularization IN NUMBER DEFAULT 0.02,
 dop IN NUMBER DEFAULT 8,
 wt_l IN/OUT VARCHAR2,
 wt_r IN/OUT VARCHAR2,
 wt_l1 IN/OUT VARCHAR2,
 wt_r1 IN/OUT VARCHAR2,
 wt_i IN/OUT VARCHAR2,
 wt_ld IN/OUT VARCHAR2,
 wt_rd IN/OUT VARCHAR2,
 tablespace IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL);

Description

Runs collaborative filtering using matrix factorization on the given graph. The resulting
factors of the matrix product will be stored on the left and right tables.

Chapter 9
OPG_APIS.CF

9-4

Parameters

edge_tab_name
Name of the property graph edge table (GE$).

edge_label
Label of the edges that hold the rating property.

rating_property
(Reserved for future use: Name of the rating property.)

iterations
Maximum number of iterations that should be performed. Default = 10.

min_error
Minimal error to reach. If at some iteration the error value is lower than this value, the
procedure finishes.. Default = 0.001.

k
Number of features for the left and right side products. Default = 5.

learning_rate
Learning rate for the gradient descent. Default = 0.0002.

decrease_rate
(Reserved for future use: Decrease rate if the learning rate is too large for an effective
gradient descent. Default = 0.95.)

regularization
An additional parameter to avoid overfitting. Default = 0.02

dop
Degree of parallelism. Default = 8.

wt_l
Name of the working table that holds the left side of the matrix factorization.

wt_r
Name of the working table that holds the right side of the matrix factorization.

wt_l1
Name of the working table that holds the left side intermediate step in the gradient
descent.

wt_r1
Name of the working table that holds the right side intermediate step in the gradient
descent.

wt_I
Name of the working table that holds intermediate matrix product.

wt_ld
Name of the working table that holds intermediate left side delta in gradient descent.

wt_rd
Name of the working table that holds intermediate right side delta in gradient descent.

Chapter 9
OPG_APIS.CF

9-5

tablespace
Name of the tablespace to use for storing intermediate data.

options
Additional settings for operation. An optional string with one or more (comma-
separated) of the following values:

• 'INMEMORY=T' is an option for creating the schema tables with an 'inmemory'
clause.

• 'IMC_MC_B=T' creates the schema tables with an INMEMORY MEMCOMPRESS
BASIC clause.

Usage Notes

For information about collaborative filtering with RDF data, see SQL-Based Property
Graph Analytics, especially Collaborative Filtering Overview and Examples.

If the working tables already exist, you can specify their names for the working
table-related parameters. In this case, the algorithm can continue the progress of the
previous iterations without recreating the tables.

If the working tables do not exist, or if you do not want to use existing working tables,
you must first call the OPG_APIS.CF_PREP procedure, which creates the necessary
working tables.

The final result of the collaborative filtering algorithm are the working tables wt_l and
wt_r, which are the two factors of a matrix product. These matrix factors should be
used when making predictions for collaborative filtering.

If (and only if) you have no interest in keeping the output matrix factors and the current
progress of the algorithm for future use, you can call the OPG_APIS.CF_CLEANUP
procedure to drop all the working tables that hold intermediate tables and the output
matrix factors.

Examples

The following example calls the OPG_APIS.CF_PREP procedure to create the
working tables, and then the OPG_APIS.CF procedures to run collaborative filtering
on the phones graph using the edges with the rating label.

DECLARE
 wt_l varchar2(32);
 wt_r varchar2(32);
 wt_l1 varchar2(32);
 wt_r1 varchar2(32);
 wt_i varchar2(32);
 wt_ld varchar2(32);
 wt_rd varchar2(32);
 edge_tab_name varchar2(32) := 'phonesge$';
 edge_label varchar2(32) := 'rating';
 rating_property varchar2(32) := '';
 iterations integer := 100;
 min_error number := 0.001;
 k integer := 5;
 learning_rate number := 0.001;
 decrease_rate number := 0.95;
 regularization number := 0.02;
 dop number := 2;
 tablespace varchar2(32) := null;

Chapter 9
OPG_APIS.CF

9-6

 options varchar2(32) := null;
BEGIN
 opg_apis.cf_prep(edge_tab_name,wt_l,wt_r,wt_l1,wt_r1,wt_i,wt_ld,wt_rd);
 opg_apis.cf(edge_tab_name,edge_label,rating_property,iterations,min_error,k,
 learning_rate,decrease_rate,regularization,dop,
 wt_l,wt_r,wt_l1,wt_r1,wt_i,wt_ld,wt_rd,tablespace,options);
END;
/

The following example assumes that OPG_APIS.CF_PREP had been run previously,
and it specifies the various working tables that were created during that run. In
this case, the preceding example automatically assigned suffixes like '$$CFL57' to
the names of the working tables. (The output names can be printed when they are
generated or be user-defined in the call to OPG_APIS.CF_PREP.) Thus, the following
example can run more iterations of the algorithm using OPG_APIS.CF without needing
to call OPG_APIS.CF_PREP first, thereby continuing the progress of the previous run.

DECLARE
 wt_l varchar2(32) = 'phonesge$$CFL57';
 wt_r varchar2(32) = 'phonesge$$CFR57';
 wt_l1 varchar2(32) = 'phonesge$$CFL157';
 wt_r1 varchar2(32) = 'phonesge$$CFR157';
 wt_i varchar2(32) = 'phonesge$$CFI57';
 wt_ld varchar2(32) = 'phonesge$$CFLD57';
 wt_rd varchar2(32) = 'phonesge$$CFRD57';
 edge_tab_name varchar2(32) := 'phonesge$';
 edge_label varchar2(32) := 'rating';
 rating_property varchar2(32) := '';
 iterations integer := 100;
 min_error number := 0.001;
 k integer := 5;
 learning_rate number := 0.001;
 decrease_rate number := 0.95;
 regularization number := 0.02;
 dop number := 2;
 tablespace varchar2(32) := null;
 options varchar2(32) := null;
BEGIN
 opg_apis.cf(edge_tab_name,edge_label,rating_property,iterations,min_error,k,
 learning_rate,decrease_rate,regularization,dop,
 wt_l,wt_r,wt_l1,wt_r1,wt_i,wt_ld,wt_rd,tablespace,options);
END;
/

9.3 OPG_APIS.CF_CLEANUP
Format

OPG_APIS.CF_CLEANUP(
 wt_l IN/OUT VARCHAR2,
 wt_r IN/OUT VARCHAR2,
 wt_l1 IN/OUT VARCHAR2,
 wt_r1 IN/OUT VARCHAR2,
 wt_i IN/OUT VARCHAR2,
 wt_ld IN/OUT VARCHAR2,
 wt_rd IN/OUT VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL);

Chapter 9
OPG_APIS.CF_CLEANUP

9-7

Description

Preforms cleanup work after graph collaborative filtering has been done. All the
working tables that hold intermediate tables and the output matrix factors are dropped.

Parameters

edge_tab_name
Name of the property graph edge table (GE$).

wt_l
Name of the working table that holds the left side of the matrix factorization.

wt_r
Name of the working table that holds the right side of the matrix factorization.

wt_l1
Name of the working table that holds the left side intermediate step in the gradient
descent.

wt_r1
Name of the working table that holds the right side intermediate step in the gradient
descent.

wt_I
Name of the working table that holds intermediate matrix product.

wt_ld
Name of the working table that holds intermediate left side delta in gradient descent.

wt_rd
Name of the working table that holds intermediate right side delta in gradient descent.

options
(Reserved for future use.)

Usage Notes

Call this procedure only when you have no interest in keeping the output matrix factors
and the current progress of the algorithm for future use.

Do not call this procedure if more predictions will be made using the resulting product
factors (wt_l and wt_r tables), unless you have previous made backup copies of these
two tables.

See also the information about the OPG_APIS.CF procedure.

Examples

The following example drops the working tables that were created in the example for
the OPG_APIS.CF_PREP procedure.

DECLARE
 wt_l varchar2(32) = 'phonesge$$CFL57';
 wt_r varchar2(32) = 'phonesge$$CFR57';
 wt_l1 varchar2(32) = 'phonesge$$CFL157';
 wt_r1 varchar2(32) = 'phonesge$$CFR157';
 wt_i varchar2(32) = 'phonesge$$CFI57';

Chapter 9
OPG_APIS.CF_CLEANUP

9-8

 wt_ld varchar2(32) = 'phonesge$$CFLD57';
 wt_rd varchar2(32) = 'phonesge$$CFRD57';
BEGIN
 opg_apis.cf_cleanup('phonesge$',wt_l,wt_r,wt_l1,wt_r1,wt_i,wt_ld,wt_rd);
END;
/

9.4 OPG_APIS.CF_PREP
Format

OPG_APIS.CF_PREP(
 wt_l IN/OUT VARCHAR2.
 wt_r IN/OUT VARCHAR2.
 wt_l1 IN/OUT VARCHAR2.
 wt_r1 IN/OUT VARCHAR2.
 wt_i IN/OUT VARCHAR2.
 wt_ld IN/OUT VARCHAR2.
 wt_rd IN/OUT VARCHAR2.
 options IN VARCHAR2 DEFAULT NULL);

Description

Preforms preparation work, including creating the necessary intermediate tables, for a
later call to the OPG_APIS.CF procedure that will perform collaborative filtering.

Parameters

edge_tab_name
Name of the property graph edge table (GE$).

wt_l
Name of the working table that holds the left side of the matrix factorization.

wt_r
Name of the working table that holds the right side of the matrix factorization.

wt_l1
Name of the working table that holds the left side intermediate step in the gradient
descent.

wt_r1
Name of the working table that holds the right side intermediate step in the gradient
descent.

wt_I
Name of the working table that holds intermediate matrix product.

wt_ld
Name of the working table that holds intermediate left side delta in gradient descent.

wt_rd
Name of the working table that holds intermediate right side delta in gradient descent.

options
Additional settings for operation. An optional string with one or more (comma-
separated) of the following values:

Chapter 9
OPG_APIS.CF_PREP

9-9

• 'INMEMORY=T' is an option for creating the schema tables with an 'inmemory'
clause.

• 'IMC_MC_B=T' creates the schema tables with an INMEMORY MEMCOMPRESS
BASIC clause.

Usage Notes

The names of the working tables can be specified or left as null parameters, If
the name of any working table parameter is not specified, a name is automatically
genenerated and is returned as an OUT parameter. The working table names can
be used when you call the OPG_APIS.CF procedure to run the collaborative filtering
algorithm.

See also the Usage Notes and Examples for OPG_APIS.CF.

Examples

The following example creates the working tables for a graph named phones, and it
prints the names that were automatically generated for the working tables.

DECLARE
 wt_l varchar2(32);
 wt_r varchar2(32);
 wt_l1 varchar2(32);
 wt_r1 varchar2(32);
 wt_i varchar2(32);
 wt_ld varchar2(32);
 wt_rd varchar2(32);
BEGIN
 opg_apis.cf_prep('phonesge$',wt_l,wt_r,wt_l1,wt_r1,wt_i,wt_ld,wt_rd);
 dbms_output.put_line(' wt_l ' || wt_l);
 dbms_output.put_line(' wt_r ' || wt_r);
 dbms_output.put_line(' wt_l1 ' || wt_l1);
 dbms_output.put_line(' wt_r1 ' || wt_r1);
 dbms_output.put_line(' wt_i ' || wt_i);
 dbms_output.put_line(' wt_ld ' || wt_ld);
 dbms_output.put_line(' wt_rd ' || wt_rd);
END;
/

9.5 OPG_APIS.CLEAR_PG
Format

OPG_APIS.CLEAR_PG(
 graph_name IN VARCHAR2);

Description

Clears all data from a property graph.

Parameters

graph_name
Name of the property graph.

Chapter 9
OPG_APIS.CLEAR_PG

9-10

Usage Notes

This procedure removes all data in the property graph by deleting data in the graph
tables (VT$, GE$, and so on).

Examples

The following example removes all data from the property graph named mypg.

EXECUTE OPG_APIS.CLEAR_PG('mypg');

9.6 OPG_APIS.CLEAR_PG_INDICES
Format

OPG_APIS.CLEAR_PG(
 graph_name IN VARCHAR2);

Description

Removes all text index metadata in the IT$ table of the property graph.

Parameters

graph_name
Name of the property graph.

Usage Notes

This procedure does not actually remove text index data

Examples

The following example removes all index metadata of the property graph named mypg.

EXECUTE OPG_APIS.CLEAR_PG_INDICES('mypg');

9.7 OPG_APIS.CLONE_GRAPH
Format

OPG_APIS.CLONE_GRAPH(
 orgGraph IN VARCHAR2,
 newGraph IN VARCHAR2,
 dop IN INTEGER DEFAULT 4,
 num_hash_ptns IN INTEGER DEFAULT 8,
 tbs IN VARCHAR2 DEFAULT NULL);

Description

Makes a clone of the original graph, giving the new graph a new name.

Parameters

orgGraph
Name of the original property graph.

Chapter 9
OPG_APIS.CLEAR_PG_INDICES

9-11

newGraph
Name of the new (clone) property graph.

dop
Degree of parallelism for the operation.

num_hash_ptns
Number of hash partitions used to partition the vertices and edges tables. It is
recommended to use a power of 2 (2, 4, 8, 16, and so on).

tbs
Name of the tablespace to hold all the graph data and index data.

Usage Notes

The original property graph must aleady exist in the database.

Examples

The following example creates a clone graph named mypgclone from the property
graph mypg in the tablespace my_ts using a degree of parallelism of 4 and 8 partitions.

EXECUTE OPG_APIS.CLONE_GRAPH('mypg', 'mypgclone', 4, 8, 'my_ts');

9.8 OPG_APIS.COUNT_TRIANGLE
Format

OPG_APIS.COUNT_TRIANGLE(
 edge_tab_name IN VARCHAR2,
 wt_und IN OUT VARCHAR2,
 num_sub_ptns IN NUMBER DEFAULT 1,
 dop IN INTEGER DEFAULT 1,
 tbs IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

Description

Performs triangle counting in property graph.

Parameters

edge_tab_name
Name of the property graph edge table.

wt_und
A working table holding an undirected version of the graph.

num_sub_ptns
Number of logical subpartitions used in calculating triangles . Must be a positive
integer, power of 2 (1, 2, 4, 8, ...). For a graph with a relatively small maximum
degree, use the value 1 (the default).

dop
Degree of parallelism for the operation. The default is 1.

Chapter 9
OPG_APIS.COUNT_TRIANGLE

9-12

tbs
Name of the tablespace to hold the data stored in working tables.

options
Additional settings for the operation:

• ’PDML=T' enables parallel DML.

Usage Notes

The property graph edge table must exist in the database, and the
OPG_APIS.COUNT_TRIANGLE_PREP. procedure must already have been executed.

Examples

The following example performs triangle counting in the property graph named
connections

set serveroutput on
DECLARE
 wt1 varchar2(100); -- intermediate working table
 wt2 varchar2(100);
 wt3 varchar2(100);
 n number;
BEGIN
 opg_apis.count_triangle_prep('connectionsGE$', wt1, wt2, wt3);
 n := opg_apis.count_triangle(
 'connectionsGE$',
 wt1,
 num_sub_ptns=>1,
 dop=>2,
 tbs => 'MYPG_TS',
 options=>'PDML=T'
);
 dbms_output.put_line('total number of triangles ' || n);
END;
/

9.9 OPG_APIS.COUNT_TRIANGLE_CLEANUP
Format

COUNT_TRIANGLE_CLEANUP(
 edge_tab_name IN VARCHAR2,
 wt_undBM IN VARCHAR2,
 wt_rnmap IN VARCHAR2,
 wt_undAM IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL);

Description

Cleans up and drops the temporary working tables used for triangle counting.

Parameters

edge_tab_name
Name of the property graph edge table.

Chapter 9
OPG_APIS.COUNT_TRIANGLE_CLEANUP

9-13

wt_undBM
A working table holding an undirected version of the original graph (before
renumbering optimization).

wt_rnmap
A working table that is a mapping table for renumbering optimization.

wt_undAM
A working table holding the undirected version of the graph data after applying the
renumbering optimization.

options
Additional settings for operation. An optional string with one or more (comma-
separated) of the following values:

• PDML=T enables parallel DML.

Usage Notes

You should use this procedure to clean up after triangle counting.

The working tables must exist in the database.

Examples

The following example performs triangle counting in the property graph named
connections, and drops the working table after it has finished.

set serveroutput on

DECLARE
 wt1 varchar2(100); -- intermediate working table
 wt2 varchar2(100);
 wt3 varchar2(100);
 n number;
BEGIN
 opg_apis.count_triangle_prep('connectionsGE$', wt1, wt2, wt3);
 n := opg_apis.count_triangle_renum(
 'connectionsGE$',
 wt1,
 wt2,
 wt3,
 num_sub_ptns=>1,
 dop=>2,
 tbs => 'MYPG_TS',
 options=>'PDML=T'
);
 dbms_output.put_line('total number of triangles ' || n);
 opg_apis.count_triangle_cleanup('connectionsGE$', wt1, wt2, wt3);
END;
/

9.10 OPG_APIS.COUNT_TRIANGLE_PREP
Format

OPG_APIS.COUNT_TRIANGLE_PREP(
 edge_tab_name IN VARCHAR2,
 wt_undBM IN OUT VARCHAR2,

Chapter 9
OPG_APIS.COUNT_TRIANGLE_PREP

9-14

 wt_rnmap IN OUT VARCHAR2,
 wt_undAM IN OUT VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL);

Description

Prepares for running triangle counting.

Parameters

edge_tab_name
Name of the property graph edge table.

wt_undBM
A working table holding an undirected version of the original graph (before
renumbering optimization).

wt_rnmap
A working table that is a mapping table for renumbering optimization.

wt_undAM
A working table holding the undirected version of the graph data after applying the
renumbering optimization.

options
Additional settings for operation. An optional string with one or more (comma-
separated) of the following values:

• CREATE_UNDIRECTED=T

• REUSE_UNDIRECTED_TAB=T

Usage Notes

The property graph edge table must exist in the database.

Examples

The following example prepares for triangle counting in a property graph named
connections.

set serveroutput on

DECLARE
 wt1 varchar2(100); -- intermediate working table
 wt2 varchar2(100);
 wt3 varchar2(100);
 n number;
BEGIN
 opg_apis.count_triangle_prep('connectionsGE$', wt1, wt2, wt3);

 n := opg_apis.count_triangle_renum(
 'connectionsGE$',
 wt1,
 wt2,
 wt3,
 num_sub_ptns=>1,
 dop=>2,
 tbs => 'MYPG_TS',
 options=>'CREATE_UNDIRECTED=T,REUSE_UNDIREC_TAB=T'

Chapter 9
OPG_APIS.COUNT_TRIANGLE_PREP

9-15

);
 dbms_output.put_line('total number of triangles ' || n);
END;
/

9.11 OPG_APIS.COUNT_TRIANGLE_RENUM
Format

COUNT_TRIANGLE_RENUM(
 edge_tab_name IN VARCHAR2,
 wt_undBM IN VARCHAR2,
 wt_rnmap IN VARCHAR2,
 wt_undAM IN VARCHAR2,
 num_sub_ptns IN INTEGER DEFAULT 1,
 dop IN INTEGER DEFAULT 1,
 tbs IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

Description

Performs triangle counting in property graph, with the optimization of renumbering the
vertices of the graph by their degree.

Parameters

edge_tab_name
Name of the property graph edge table.

wt_undBM
A working table holding an undirected version of the original graph (before
renumbering optimization).

wt_rnmap
A working table that is a mapping table for renumbering optimization.

wt_undAM
A working table holding the undirected version of the graph data after applying the
renumbering optimization.

num_sub_ptns
Number of logical subpartitions used in calculating triangles . Must be a positive
integer, power of 2 (1, 2, 4, 8, ...). For a graph with a relatively small maximum
degree, use the value 1 (the default).

dop
Degree of parallelism for the operation. The default is 1 (no parallelism).

tbs
Name of the tablespace to hold the data stored in working tables.

options
Additional settings for operation. An optional string with one or more (comma-
separated) of the following values:

Chapter 9
OPG_APIS.COUNT_TRIANGLE_RENUM

9-16

• PDML=T enables parallel DML.

Usage Notes

This function makes the algorithm run faster, but requires more space.

The property graph edge table must exist in the database, and the
OPG_APIS.COUNT_TRIANGLE_PREP procedure must already have been executed.

Examples

The following example performs triangle counting in the property graph named
connections. It does not perform the cleanup after it finishes, so you can count
triangles again on the same graph without calling the preparation procedure.

set serveroutput on

DECLARE
 wt1 varchar2(100); -- intermediate working table
 wt2 varchar2(100);
 wt3 varchar2(100);
 n number;
BEGIN
 opg_apis.count_triangle_prep('connectionsGE$', wt1, wt2, wt3);
 n := opg_apis.count_triangle_renum(
 'connectionsGE$',
 wt1,
 wt2,
 wt3,
 num_sub_ptns=>1,
 dop=>2,
 tbs => 'MYPG_TS',
 options=>'PDML=T'
);
 dbms_output.put_line('total number of triangles ' || n);
END;
/

9.12 OPG_APIS.CREATE_EDGES_TEXT_IDX
Format

OPG_APIS.CREATE_EDGES_TEXT_IDX(
 graph_owner IN VARCHAR2,
 graph_name IN VARCHAR2,
 pref_owner IN VARCHAR2 DEFAULT NULL,
 datastore IN VARCHAR2 DEFAULT NULL,
 filter IN VARCHAR2 DEFAULT NULL,
 storage IN VARCHAR2 DEFAULT NULL,
 wordlist IN VARCHAR2 DEFAULT NULL,
 stoplist IN VARCHAR2 DEFAULT NULL,
 lexer IN VARCHAR2 DEFAULT NULL,
 dop IN INTEGER DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,);

Description

Creates a text index on a property graph edge table.

Chapter 9
OPG_APIS.CREATE_EDGES_TEXT_IDX

9-17

Parameters

graph_owner
Owner of the property graph.

graph_name
Name of the property graph.

pref_owner
Owner of the preference.

datastore
The way that documents are stored.

filter
The way that documents can be converted to plain text.

storage
The way that the index data is stored.

wordlist
The way that stem and fuzzy queries should be expanded

stoplist
The words or themes that are not to be indexed.

lexer
The language used for indexing.

dop
The degree of parallelism used for index creation.

options
Additional settings for index creation.

Usage Notes

The property graph must exist in the database.

You must have the ALTER SESSION privilege to run this procedure.

Examples

The following example creates a text index on the edge table of property graph mypg,
which is owned by user SCOTT, using the lexer OPG_AUTO_LEXER and a degree of
parallelism of 4.

EXECUTE OPG_APIS.CREATE_EDGES_TEXT_IDX('SCOTT', 'mypg', 'MDSYS', null, null,
null, null, null, 'OPG_AUTO_LEXER', 4, null);

9.13 OPG_APIS.CREATE_PG
Format

OPG_APIS.CREATE_PG(
 graph_name IN VARCHAR2,
 dop IN INTEGER DEFAULT NULL,

Chapter 9
OPG_APIS.CREATE_PG

9-18

 num_hash_ptns IN INTEGER DEFAULT 8,
 tbs IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL);

Description

Creates, for a given property graph name, the necessary property graph schema
tables that are necessary to store data about vertices, edges, text indexes, and
snapshots.

Parameters

graph_name
Name of the property graph.

dop
Degree of parallelism for the operation.

num_hash_ptns
Number of hash partitions used to partition the vertices and edges tables. It is
recommended to use a power of 2 (2, 4, 8, 16, and so on).

tbs
Name of the tablespace to hold all the graph data and index data.

options
Options that can be used to customize the creation of indexes on schema tables.
(One or more, comma separated.)

• 'SKIP_INDEX=T' skips the default index creation.

• 'SKIP_ERROR=T 'ignores errors encountered during table/index creation.

• 'INMEMORY=T' creqtes the schema tables with an INMEMORYclause.

• 'IMC_MC_B=T' creates the schema tables with an INMEMORY BASIC clause.

Usage Notes

You must have the CREATE TABLE and CREATE INDEX privileges to call this
procedure.

By default, all the schema tables will be created with basic compression enabled.

Examples

The following example creates a property graph named mypg in the tablespace my_ts
using eight partitions.

EXECUTE OPG_APIS.CREATE_PG('mypg', 4, 8, 'my_ts');

9.14 OPG_APIS.CREATE_PG_SNAPSHOT_TAB
Format

OPG_APIS.CREATE_PG_SNAPSHOT_TAB(
 graph_owner IN VARCHAR2,
 graph_name IN VARCHAR2,
 dop IN INTEGER DEFAULT NULL,

Chapter 9
OPG_APIS.CREATE_PG_SNAPSHOT_TAB

9-19

 tbs IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL);

or

OPG_APIS.CREATE_PG_SNAPSHOT_TAB(
 graph_name IN VARCHAR2,
 dop IN INTEGER DEFAULT NULL,
 tbs IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL);

Description

Creates, for a given property graph name, the necessary property graph schema table
(<graph_name>SS$) that stores data about snapshots for the graph.

Parameters

graph_owner
Name of the owner of the property graph.

graph_name
Name of the property graph.

dop
Degree of parallelism for the operation.

tbs
Name of the tablespace to hold all the graph snapshot data and associated index.

options
Additional settings for the operation:

• 'INMEMORY=T' is an option for creating the schema tables with an 'inmemory'
clause.

• 'IMC_MC_B=T' creates the schema tables with an INMEMORY MEMCOMPRESS
BASIC clause.

Usage Notes

You must have the CREATE TABLE privilege to call this procedure.

The created snapshot table has the following structure, which may change between
releases.

Name Null? Type
 --- -------- ----------------------------
 SSID NOT NULL NUMBER
 CONTENTS BLOB
 SS_FILE BINARY FILE LOB
 TS TIMESTAMP(6) WITH TIME ZONE
 SS_COMMENT VARCHAR2(512)

By default, all schema tables will be created with basic compression enabled.

Examples

The following example creates a snapshot table for property graph mypg in the current
schema, with a degree of parallelism of 4 and using the MY_TS tablespace.

Chapter 9
OPG_APIS.CREATE_PG_SNAPSHOT_TAB

9-20

EXECUTE OPG_APIS.CREATE_PG_SNAPSHOT_TAB('mypg', 4, 'my_ts');

9.15 OPG_APIS.CREATE_PG_TEXTIDX_TAB
Format

OPG_APIS.CREATE_PG_TEXTIDX_TAB(
 graph_owner IN VARCHAR2,
 graph_name IN VARCHAR2,
 dop IN INTEGER DEFAULT NULL,
 tbs IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL);

or

OPG_APIS.CREATE_PG_TEXTIDX_TAB(
 graph_name IN VARCHAR2,
 dop IN INTEGER DEFAULT NULL,
 tbs IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL);

Description

Creates, for a given property graph name, the necessary property graph text index
schema table (<graph_name>IT$) that stores data for managing text index metadata
for the graph.

Parameters

graph_owner
Name of the owner of the property graph.

graph_name
Name of the property graph.

dop
Degree of parallelism for the operation.

tbs
Name of the tablespace to hold all the graph index metadata and associated index.

options
Additional settings for the operation:

• 'INMEMORY=T' is an option for creating the schema tables with an 'inmemory'
clause.

• 'IMC_MC_B=T' creates the schema tables with an INMEMORY MEMCOMPRESS
BASIC clause.

Usage Notes

You must have the CREATE TABLE privilege to call this procedure.

The created index metadata table has the following structure, which may change
between releases.

 (
 EIN nvarchar2(80) not null, -- index name

Chapter 9
OPG_APIS.CREATE_PG_TEXTIDX_TAB

9-21

 ET number, -- entity type 1 - vertex, 2 -edge
 IT number, -- index type 1 - auto 0 - manual
 SE number, -- search engine 1 -solr, 0 -
lucene
 K nvarchar2(3100), -- property key use an empty space
when there is no K/V
 DT number, -- directory type 1 - MMAP, 2 -
FS, 3 - JDBC
 LOC nvarchar2(3100), -- directory location (1, 2)
 NUMDIRS number, -- property key used to index CAN
BE NULL
 VERSION nvarchar2(100), -- lucene version
 USEDT number, -- user data type (1 or 0)
 STOREF number, -- store fields into lucene
 CF nvarchar2(3100), -- configuration name
 SS nvarchar2(3100), -- solr server url
 SA nvarchar2(3100), -- solr server admin url
 ZT number, -- zookeeper timeout
 SH number, -- number of shards
 RF number, -- replication factor
 MS number, -- maximum shards per node
 PO nvarchar2(3100), -- preferred owner oracle text
 DS nvarchar2(3100), -- datastore
 FIL nvarchar2(3100), -- filter
 STR nvarchar2(3100), -- storage
 WL nvarchar2(3100), -- word list
 SL nvarchar2(3100), -- stop list
 LXR nvarchar2(3100), -- lexer
 OPTS nvarchar2(3100), -- options
 primary key (EIN, K, ET)
)

By default, all schema tables will be created with basic compression enabled.

Examples

The following example creates a property graph text index metadata table for property
graph mypg in the current schema, with a degree of parallelism of 4 and using the
MY_TS tablespace.

EXECUTE OPG_APIS.CREATE_PG_TEXTIDX_TAB('mypg', 4, 'my_ts');

9.16 OPG_APIS.CREATE_STAT_TABLE
Format

OPG_APIS.CREATE_STAT_TABLE(
 stattab IN VARCHAR2,
 tblspace IN VARCHAR2 DEFAULT NULL);

Description

Creates a table that can hold property graph statistics.

Parameters

stattab
Name of the table to hold statistics

Chapter 9
OPG_APIS.CREATE_STAT_TABLE

9-22

tblapace
Name of the tablespace to hold the statistics table. If none is specified, then the
statistics table will be created in the user's default tablespace.

Usage Notes

You must have the CREATE TABLE privilege to call this procedure.

The statistics table has the following columns. Note that the columns and their types
may vary between releases.

 Name Null? Type
 --- -------- ----------------------------
 STATID VARCHAR2(128)
 TYPE CHAR(1)
 VERSION NUMBER
 FLAGS NUMBER
 C1 VARCHAR2(128)
 C2 VARCHAR2(128)
 C3 VARCHAR2(128)
 C4 VARCHAR2(128)
 C5 VARCHAR2(128)
 C6 VARCHAR2(128)
 N1 NUMBER
 N2 NUMBER
 N3 NUMBER
 N4 NUMBER
 N5 NUMBER
 N6 NUMBER
 N7 NUMBER
 N8 NUMBER
 N9 NUMBER
 N10 NUMBER
 N11 NUMBER
 N12 NUMBER
 N13 NUMBER
 D1 DATE
 T1 TIMESTAMP(6) WITH TIME ZONE
 R1 RAW(1000)
 R2 RAW(1000)
 R3 RAW(1000)
 CH1 VARCHAR2(1000)
 CL1 CLOB

Examples

The following example creates a statistics table namedmystat .

EXECUTE OPG_APIS.CREATE_STAT_TABLE('mystat',null);

9.17 OPG_APIS.CREATE_SUB_GRAPH
Format

OPG_APIS.CREATE_SUB_GRAPH(
 graph_owner IN VARCHAR2,
 orgGraph IN VARCHAR2,
 newGraph IN VARCHAR2,
 nSrc IN NUMBER,
 depth IN NUMBER);

Chapter 9
OPG_APIS.CREATE_SUB_GRAPH

9-23

Description

Creates a subgraph, which is an expansion from a given vertex. The depth of
expansion is customizable.

Parameters

graph_owner
Owner of the property graph.

orgGraph
Name of the original property graph.

newGraph
Name of the subgraph to be created from the original graph.

nSrc
Vertex ID: the subgraph will be created by expansion from this vertex. For example,
nSrc = 1 starts the expansion from the vertex with ID 1.

depth
Depth of expansion: the expansion, following outgoing edges, will include all vertices
that are within depth hops away from vertex nSrc. For example, depth = 2 causes
the to should include all vertices that are within 2 hops away from vertex nSrc (vertex
ID 1 in the preceding example).

Usage Notes

The original property graph must exist in the database.

Examples

The following example creates a subgraph mypgsub from the property graph mypg
whose owner is SCOTT. The subgraph includes vertex 1 and all vertices that are
reachable from the vertex with ID 1 in 2 hops.

EXECUTE OPG_APIS.CREATE_SUB_GRAPH('SCOTT', 'mypg', 'mypgsub', 1, 2);

9.18 OPG_APIS.CREATE_VERTICES_TEXT_IDX
Format

OPG_APIS.CREATE_VERTICES_TEXT_IDX(
 graph_owner IN VARCHAR2,
 graph_name IN VARCHAR2,
 pref_owner IN VARCHAR2 DEFAULT NULL,
 datastore IN VARCHAR2 DEFAULT NULL,
 filter IN VARCHAR2 DEFAULT NULL,
 storage IN VARCHAR2 DEFAULT NULL,
 wordlist IN VARCHAR2 DEFAULT NULL,
 stoplist IN VARCHAR2 DEFAULT NULL,
 lexer IN VARCHAR2 DEFAULT NULL,
 dop IN INTEGER DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,);

Chapter 9
OPG_APIS.CREATE_VERTICES_TEXT_IDX

9-24

Description

Creates a text index on a property graph vertex table.

Parameters

graph_owner
Owner of the property graph.

graph_name
Name of the property graph.

pref_owner
Owner of the preference.

datastore
The way that documents are stored.

filter
The way that documents can be converted to plain text.

storage
The way that the index data is stored.

wordlist
The way that stem and fuzzy queries should be expanded

stoplist
The words or themes that are not to be indexed.

lexer
The language used for indexing.

dop
The degree of parallelism used for index creation.

options
Additional settings for index creation.

Usage Notes

The original property graph must exist in the database.

You must have the ALTER SESSION privilege to run this procedure.

Examples

The following example creates a text index on the vertex table of property graph mypg,
which is owned by user SCOTT, using the lexer OPG_AUTO_LEXER and a degree of
parallelism of 4.

EXECUTE OPG_APIS.CREATE_VERTICES_TEXT_IDX('SCOTT', 'mypg', null, null, null,
null, null, null, 'OPG_AUTO_LEXER', 4, null);

Chapter 9
OPG_APIS.CREATE_VERTICES_TEXT_IDX

9-25

9.19 OPG_APIS.DROP_EDGES_TEXT_IDX
Format

OPG_APIS.DROP_EDGES_TEXT_IDX(
 graph_owner IN VARCHAR2,
 graph_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL);

Description

Drops a text index on a property graph edge table.

Parameters

graph_owner
Owner of the property graph.

graph_name
Name of the property graph.

options
Additional settings for the operation.

Usage Notes

A text index must already exist on the property graph edge table.

Examples

The following example drops the text index on the edge table of property graph mypg
that is owned by user SCOTT.

EXECUTE OPG_APIS.DROP_EDGES_TEXT_IDX('SCOTT', 'mypg', null);

9.20 OPG_APIS.DROP_PG
Format

OPG_APIS.DROP_PG(
 graph_name IN VARCHAR2);

Description

Drops (deletes) a property graph.

Parameters

graph_name
Name of the property graph.

Usage Notes

All the graph tables (VT$, GE$, and so on) will be dropped from the database.

Chapter 9
OPG_APIS.DROP_EDGES_TEXT_IDX

9-26

Examples

The following example drops the property graph named mypg.

EXECUTE OPG_APIS.DROP_PG('mypg');

9.21 OPG_APIS.DROP_PG_VIEW
Format

OPG_APIS.DROP_PG_VIEW(
 graph_name IN VARCHAR2);
 options IN VARCHAR2);

Description

Drops (deletes) the view definition of a property graph.

Parameters

graph_name
Name of the property graph.

options
(Reserved for future use.)

Usage Notes

Oracle supports creating physical property graphs and property graph views. For
example, given an RDF model, it supports creating property graph views over the
RDF model, so that you can run property graph analytics on top of the RDF graph.

This procedure cannot be undone.

Examples

The following example drops the view definition of the property graph named mypg.

EXECUTE OPG_APIS.DROP_PG_VIEW('mypg');

9.22 OPG_APIS.DROP_VERTICES_TEXT_IDX
Format

OPG_APIS.DROP_VERTICES_TEXT_IDX(
 graph_owner IN VARCHAR2,
 graph_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL);

Description

Drops a text index on a property graph vertex table.

Chapter 9
OPG_APIS.DROP_PG_VIEW

9-27

Parameters

graph_owner
Owner of the property graph.

graph_name
Name of the property graph.

options
Additional settings for the operation.

Usage Notes

A text index must already exist on the property graph vertex table.

Examples

The following example drops the text index on the vertex table of property graph mypg
that is owned by user SCOTT.

EXECUTE OPG_APIS.DROP_VERTICES_TEXT_IDX('SCOTT', 'mypg', null);

9.23 OPG_APIS.ESTIMATE_TRIANGLE_RENUM
Format

COUNT_TRIANGLE_ESTIMATE(
 edge_tab_name IN VARCHAR2,
 wt_undBM IN VARCHAR2,
 wt_rnmap IN VARCHAR2,
 wt_undAM IN VARCHAR2,
 num_sub_ptns IN INTEGER DEFAULT 1,
 chunk_id IN INTEGER DEFAULT 1,
 dop IN INTEGER DEFAULT 1,
 tbs IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

Description

Estimates the number of triangles in a property graph.

Parameters

edge_tab_name
Name of the property graph edge table.

wt_undBM
A working table holding an undirected version of the original graph (before
renumbering optimization).

wt_rnmap
A working table that is a mapping table for renumbering optimization.

Chapter 9
OPG_APIS.ESTIMATE_TRIANGLE_RENUM

9-28

wt_undAM
A working table holding the undirected version of the graph data after applying the
renumbering optimization.

num_sub_ptns
Number of logical subpartitions used in calculating triangles . Must be a positive
integer, power of 2 (1, 2, 4, 8, ...). For a graph with a relatively small maximum
degree, use the value 1 (the default).

chunk_id
The logical subpartition to be used in triangle estimation (Only this partition will be
counted). It must be an integer between 0 and num_sub_ptns*num_sub_ptns-1.

dop
Degree of parallelism for the operation. The default is 1 (no parallelism).

tbs
Name of the tablespace to hold the data stored in working tables.

options
Additional settings for operation. An optional string with one or more (comma-
separated) of the following values:

• PDML=T enables parallel DML.

Usage Notes

This function counts the total triangles in a portion of size 1/
(num_sub_ptns*num_sub_ptns) of the graph; so to estimate the total number of
triangles in the graph, you can multiply the result by num_sub_ptns*num_sub_ptns.

The property graph edge table must exist in the database, and the
OPG_APIS.COUNT_TRIANGLE_PREP procedure must already have been executed.

Examples

The following example estimates the number of triangle in the property graph named
connections. It does not perform the cleanup after it finishes, so you can count
triangles again on the same graph without calling the preparation procedure.

set serveroutput on

DECLARE
 wt1 varchar2(100); -- intermediate working table
 wt2 varchar2(100);
 wt3 varchar2(100);
 n number;
BEGIN
 opg_apis.count_triangle_prep('connectionsGE$', wt1, wt2, wt3);
 n := opg_apis.estimate_triangle_renum(
 'connectionsGE$',
 wt1,
 wt2,
 wt3,
 num_sub_ptns=>64,
 chunk_id=>2048,
 dop=>2,
 tbs => 'MYPG_TS',
 options=>'PDML=T'
);

Chapter 9
OPG_APIS.ESTIMATE_TRIANGLE_RENUM

9-29

 dbms_output.put_line('estimated number of triangles ' || (n * 64 * 64));
END;
/

9.24 OPG_APIS.EXP_EDGE_TAB_STATS
Format

OPG_APIS.EXP_EDGE_TAB_STATS(
 graph_name IN VARCHAR2,
 stattab IN VARCHAR2,
 statid IN VARCHAR2 DEFAULT NULL,
 cascade IN BOOLEAN DEFAULT TRUE,
 statown IN VARCHAR2 DEFAULT NULL,
 stat_category IN VARCHAR2 DEFAULT 'OBJECT_STATS');

Description

Retrieves statistics for the edge table of a given property graph and stores them in the
user-created statistics table.

Parameters

graph_name
Name of the property graph.

stattab
Name of the statistics table.

statid
Optional identifier to associate with these statistics within stattab.

cascade
If TRUE, column and index statistics are exported.

statown
Schema containing stattab.

stat_category
Specifies what statistics to export, using a comma to separate values. The supported
values are 'OBJECT_STATS' (the default: table statistics, column statistics, and
index statistics) and ‘SYNOPSES' (auxiliary statistics created when statistics are
incrementally maintained).

Usage Notes

(None.)

Examples

The following example creates a statistics table, exports into this table the property
graph edge table statistics, and issues a query to count the relevant rows for the newly
created statistics.

EXECUTE OPG_APIS.CREATE_STAT_TABLE('mystat',null);

EXECUTE OPG_APIS.EXP_EDGE_TAB_STATS('mypg', 'mystat', 'edge_stats_id_1', true,
null, 'OBJECT_STATS');

Chapter 9
OPG_APIS.EXP_EDGE_TAB_STATS

9-30

SELECT count(1) FROM mystat WHERE statid='EDGE_STATS_ID_1';

 153

9.25 OPG_APIS.EXP_VERTEX_TAB_STATS
Format

OPG_APIS.EXP_VERTEX_TAB_STATS(
 graph_name IN VARCHAR2,
 stattab IN VARCHAR2,
 statid IN VARCHAR2 DEFAULT NULL,
 cascade IN BOOLEAN DEFAULT TRUE,
 statown IN VARCHAR2 DEFAULT NULL,
 stat_category IN VARCHAR2 DEFAULT 'OBJECT_STATS');

Description

Retrieves statistics for the vertex table of a given property graph and stores them in
the user-created statistics table.

Parameters

graph_name
Name of the property graph.

stattab
Name of the statistics table.

statid
Optional identifier to associate with these statistics within stattab.

cascade
If TRUE, column and index statistics are exported.

statown
Schema containing stattab.

stat_category
Specifies what statistics to export, using a comma to separate values. The supported
values are 'OBJECT_STATS' (the default: table statistics, column statistics, and
index statistics) and ‘SYNOPSES' (auxiliary statistics created when statistics are
incrementally maintained).

Usage Notes

(None.)

Examples

The following example creates a statistics table, exports into this table the property
graph vertex table statistics, and issues a query to count the relevant rows for the
newly created statistics.

EXECUTE OPG_APIS.CREATE_STAT_TABLE('mystat',null);

EXECUTE OPG_APIS.EXP_VERTEX_TAB_STATS('mypg', 'mystat', 'vertex_stats_id_1',

Chapter 9
OPG_APIS.EXP_VERTEX_TAB_STATS

9-31

true, null, 'OBJECT_STATS');

SELECT count(1) FROM mystat WHERE statid='VERTEX_STATS_ID_1';

 108

9.26 OPG_APIS.FIND_CC_MAPPING_BASED
Format

OPG_APIS.FIND_CC_MAPPING_BASED(
 edge_tab_name IN VARCHAR2,
 wt_clusters IN OUT VARCHAR2,
 wt_undir IN OUT VARCHAR2,
 wt_cluas IN OUT VARCHAR2,
 wt_newas IN OUT VARCHAR2,
 wt_delta IN OUT VARCHAR2,
 dop IN INTEGER DEFAULT 4,
 rounds IN INTEGER DEFAULT 0,
 tbs IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL);

Description

Finds connected components in a property graph. All connected components will be
stored in the wt_clusters table. The original graph is treated as undirected.

Parameters

edge_tab_name
Name of the property graph edge table.

wt_clusters
A working table holding the final vertex cluster mappings. This table has two columns
(VID NUMBER, CLUSTER_ID NUMBER). Column VID stores the vertex ID values,
and column CLUSTER_ID stores the corresponding cluster ID values. Cluster ID
values are long integers that can have gaps between them.
If an empty name is specified, a new table will be generated, and its name will be
returned.

wt_undir
A working table holding an undirected version of the graph.

wt_cluas
A working table holding current cluster assignments.

wt_newas
A working table holding updated cluster assignments.

wt_delta
A working table holding changes ("delta") in cluster assignments.

dop
Degree of parallelism for the operation. The default is 4.

Chapter 9
OPG_APIS.FIND_CC_MAPPING_BASED

9-32

rounds
Maximum umber of iterations to perform in searching for connected components. The
default value of 0 (zero) means that computation will continue until all connected
components are found.

tbs
Name of the tablespace to hold the data stored in working tables.

options
Additional settings for the operation.

• 'PDML=T' enables parallel DML.

Usage Notes

The property graph edge table must exist in the database, and the
OPG_APIS.FIND_CLUSTERS_PREP. procedure must already have been executed.

Examples

The following example finds the connected components in a property graph named
mypg.

DECLARE
 wtClusters varchar2(200) := 'mypg_clusters';
 wtUnDir varchar2(200);
 wtCluas varchar2(200);
 wtNewas varchar2(200);
 wtDelta varchar2(200);
BEGIN
 opg_apis.find_clusters_prep('mypgGE$', wtClusters, wtUnDir,
 wtCluas, wtNewas, wtDelta, '');
 dbms_output.put_line('working tables names ' || wtClusters || ' '
|| wtUnDir || ' ' || wtCluas || ' ' || wtNewas || ' '
|| wtDelta);

opg_apis.find_cc_mapping_based(''mypgGE$', wtClusters, wtUnDir,
 wtCluas, wtNewas, wtDelta, 8, 0, 'MYTBS', 'PDML=T');

--
-- logic to consume results in wtClusters
-- e.g.:
-- select /*+ parallel(8) */ count(distinct cluster_id)
-- from mypg_clusters;

-- cleanup all the working tables
 opg_apis.find_clusters_cleanup('mypgGE$', wtClusters, wtUnDir,
 wtCluas, wtNewas, wtDelta, '');

END;
/

9.27 OPG_APIS.FIND_CLUSTERS_CLEANUP
Format

OPG_APIS.FIND_CLUSTERS_CLEANUP(
 edge_tab_name IN VARCHAR2,
 wt_clusters IN OUT VARCHAR2,

Chapter 9
OPG_APIS.FIND_CLUSTERS_CLEANUP

9-33

 wt_undir IN OUT VARCHAR2,
 wt_cluas IN OUT VARCHAR2,
 wt_newas IN OUT VARCHAR2,
 wt_delta IN OUT VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL);

Description

Cleans up after running weakly connected components (WCC) cluster detection.

Parameters

edge_tab_name
Name of the property graph edge table.

wt_clusters
A working table holding the final vertex cluster mappings. This table has two columns
(VID NUMBER, CLUSTER_ID NUMBER). Column VID stores the vertex ID values,
and column CLUSTER_ID stores the corresponding cluster ID values. Cluster ID
values are long integers that can have gaps between them.
If an empty name is specified, a new table will be generated, and its name will be
returned.

wt_undir
A working table holding an undirected version of the graph.

wt_cluas
A working table holding current cluster assignments.

wt_newas
A working table holding updated cluster assignments.

wt_delta
A working table holding changes ("delta") in cluster assignments.

options
(Reserved for future use.)

Usage Notes

The property graph edge table must exist in the database.

Examples

The following example cleans up after performing doing cluster detection in a property
graph named mypg.

EXECUTE OPG_APIS.FIND_CLUSTERS_CLEANUP('mypgGE$', wtClusters, wtUnDir, wtCluas,
wtNewas, wtDelta, null);

9.28 OPG_APIS.FIND_CLUSTERS_PREP
Format

OPG_APIS.FIND_CLUSTERS_PREP(
 edge_tab_name IN VARCHAR2,
 wt_clusters IN OUT VARCHAR2,
 wt_undir IN OUT VARCHAR2,

Chapter 9
OPG_APIS.FIND_CLUSTERS_PREP

9-34

 wt_cluas IN OUT VARCHAR2,
 wt_newas IN OUT VARCHAR2,
 wt_delta IN OUT VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL);

Description

Prepares for running weakly connected components (WCC) cluster detection.

Parameters

edge_tab_name
Name of the property graph edge table.

wt_clusters
A working table holding the final vertex cluster mappings. This table has two columns
(VID NUMBER, CLUSTER_ID NUMBER). Column VID stores the vertex ID values,
and column CLUSTER_ID stores the corresponding cluster ID values. Cluster ID
values are long integers that can have gaps between them.
If an empty name is specified, a new table will be generated, and its name will be
returned.

wt_undir
A working table holding an undirected version of the graph.

wt_cluas
A working table holding current cluster assignments.

wt_newas
A working table holding updated cluster assignments.

wt_delta
A working table holding changes ("delta") in cluster assignments.

options
Additional settings for index creation.

Usage Notes

The property graph edge table must exist in the database.

Examples

The following example prepares for doing cluster detection in a property graph named
mypg.

DECLARE
 wtClusters varchar2(200);
 wtUnDir varchar2(200);
 wtCluas varchar2(200);
 wtNewas varchar2(200);
 wtDelta varchar2(200);
BEGIN
 opg_apis.find_clusters_prep('mypgGE$', wtClusters, wtUnDir,
 wtCluas, wtNewas, wtDelta, '');
 dbms_output.put_line('working tables names ' || wtClusters || ' '
|| wtUnDir || ' ' || wtCluas || ' ' || wtNewas || ' '
|| wtDelta);

Chapter 9
OPG_APIS.FIND_CLUSTERS_PREP

9-35

END;
/

9.29 OPG_APIS.FIND_SP
Format

OPG_APIS.FIND_SP(
 edge_tab_name IN VARCHAR2,
 source IN NUMBER,
 dest IN NUMBER,
 exp_tab IN OUT VARCHAR2,
 dop IN INTEGER,
 stats_freq IN INTEGER DEFAULT 20000,
 path_output OUT VARCHAR2,
 weights_output OUT VARCHAR2,
 edge_tab_name IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 scn IN NUMBER DEFAULT NULL);

Description

Finds the shortest path between given source vertex and destination vertex in the
property graph. It assumes each edge has a numeric weight property. (The actual
edge property name is not significant.)

Parameters

edge_tab_name
Name of the property graph edge table.

source
Source (start) vertex ID.

dest
Destination (end) vertex ID.

exp_tab
Name of the expansion table to be used for shortest path calculations.

dop
Degree of parallelism for the operation.

stats_freq
Frequency for collecting statistics on the table.

path_output
The output shortest path. It consists of IDs of vertices on the shortest path, which are
separated by the space character.

weights_output
The output shortest path weights. It consists of weights of edges on the shortest path,
which are separated by the space character.

options
Additional settings for the operation. An optional string with one or more (comma-
separated) of the following values:

Chapter 9
OPG_APIS.FIND_SP

9-36

• CREATE_UNDIRECTED=T

• REUSE_UNDIRECTED_TAB=T

scn
SCN for the edge table. It can be null.

Usage Notes

The property graph edge table must exist in the database, and the
OPG_APIS.FIND_SP_PREP procedure must have already been called.

Examples

The following example prepares for shortest-path calculation, and then finds the
shortest path from vertex 1 to vertex 35 in a property graph named mypg.

set serveroutput on
DECLARE
 w varchar2(2000);
 wtExp varchar2(2000);
 vPath varchar2(2000);
BEGIN
 opg_apis.find_sp_prep('mypgGE$', wtExp, null);
 opg_apis.find_sp('mypgGE$', 1, 35, wtExp, 1, 200000, vPath, w, null, null);
 dbms_output.put_line('Shortest path ' || vPath);
 dbms_output.put_line('Path weights ' || w);
END;
/

The output will be similar to the following. It shows one shortest path starting from
vertex 1, to vertex 2, and finally to the destination vertex (35).

Shortest path 1 2 35
Path weights 3 2 1 1

9.30 OPG_APIS.FIND_SP_CLEANUP
Format

OPG_APIS.FIND_SP_CLEANUP(
 edge_tab_name IN VARCHAR2,
 exp_tab IN OUT VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL);

Description

Cleans up after running one or more shortest path calculations.

Parameters

edge_tab_name
Name of the property graph edge table.

exp_tab
Name of the expansion table used for shortest path calculations.

Chapter 9
OPG_APIS.FIND_SP_CLEANUP

9-37

options
(Reserved for future use.)

Usage Notes

There is no need to call this procedure after each OPG_APIS.FIND_SP call. You can
run multiple shortest path calculations before calling OPG_APIS.FIND_SP_CLEANUP.

Examples

The following example does cleanup work after doing shortest path calculations in a
property graph named mypg.

EXECUTE OPG_APIS.FIND_SP_CLEANUP('mypgGE$', wtExpTab, null);

9.31 OPG_APIS.FIND_SP_PREP
Format

OPG_APIS.FIND_SP_PREP(
 edge_tab_name IN VARCHAR2,
 exp_tab IN OUT VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL);

Description

Prepares for shortest path calculations.

Parameters

edge_tab_name
Name of the property graph edge table.

exp_tab
Name of the expansion table to be used for shortest path calculations. If it is empty,
an intermediate working table will be created and the table name will be returned in
exp_tab.

options
Additional settings for the operation. An optional string with one or more (comma-
separated) of the following values:

• CREATE_UNDIRECTED=T

• REUSE_UNDIRECTED_TAB=T

Usage Notes

The property graph edge table must exist in the database.

Examples

The following example does preparation work before doing shortest path calculations
in a property graph named mypg

set serveroutput on
DECLARE
 wtExp varchar2(2000); -- name of working table for shortest path calculation
BEGIN

Chapter 9
OPG_APIS.FIND_SP_PREP

9-38

 opg_apis.find_sp_prep('mypgGE$', wtExp, null);
 dbms_output.put_line('Working table name ' || wtExp);
END;
/

The output will be similar to the following. (Your output may be different depending on
the SQL session ID.)

Working table name "MYPGGE$$TWFS277"

9.32 OPG_APIS.GET_BUILD_ID
Format

OPG_APIS.GET_BUILD_ID() RETURN VARCHAR2;

Description

Returns the current build ID of the Oracle Spatial and Graph property graph support, in
YYYYMMDD format.

Parameters

(None.)

Usage Notes

(None.)

Examples

The following example returns the current build ID of the Oracle Spatial and Graph
property graph support.

SQL> SELECT OPG_APIS.GET_BUILD_ID() FROM DUAL;

OPG_APIS.GET_BUILD_ID()
--
20160606

9.33 OPG_APIS.GET_GEOMETRY_FROM_V_COL
Format

OPG_APIS.GET_GEOMETRY_FROM_V_COL(
 v IN NVARCHAR2,
 srid IN NUMBER DEFAULT 8307
) RETURN SDO_GEOMETRY;

Description

Returns an SDO_GEOMETRY object constructed using spatial data and optionally an
SRID value.

Chapter 9
OPG_APIS.GET_BUILD_ID

9-39

Parameters

v
A String containing spatial data in serialized form.

srid
SRID (coordinate system identifier) to be used in the resulting SDO_GEOMETRY
object. The default value is 8307, the Oracle Spatial SRID for the WGS 84 longitude/
latitude coordinate system.

Usage Notes

If there is incorrect syntax or a parsing error, this function returns NULL instead of
generating an exception.

Examples

The following examples show point, line, and polygon geometries.

SQL> select opg_apis.get_geometry_from_v_col('10.0 5.0',8307) from dual;

OPG_APIS.GET_GEOMETRY_FROM_V_COL('10.05.0',8307)(SDO_GTYPE, SDO_SRID,
SDO_POINT(
--

SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(10, 5, NULL), NULL, NULL)

SQL> select opg_apis.get_geometry_from_v_col('LINESTRING(30 10, 10
30, 40 40)',8307) from dual;

OPG_APIS.GET_GEOMETRY_FROM_V_COL('LINESTRING(3010,1030,4040)',8307)
(SDO_GTYPE, S
--

SDO_GEOMETRY(2002, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
SDO_ORDINATE_ARRAY(
30, 10, 10, 30, 40, 40))

SQL> select opg_apis.get_geometry_from_v_col('POLYGON((-83.6 34.1,
-83.6 34.3, -83.4 34.3, -83.4 34.1, -83.6 34.1))', 8307) from dual;

OPG_APIS.GET_GEOMETRY_FROM_V_COL('POLYGON((-83.634.1,-83.634.3,-83.434.3
,-83.434
--

SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1),
SDO_ORDINATE_ARR
AY(-83.6, 34.1, -83.6, 34.3, -83.4, 34.3, -83.4, 34.1, -83.6, 34.1))

Chapter 9
OPG_APIS.GET_GEOMETRY_FROM_V_COL

9-40

9.34 OPG_APIS.GET_GEOMETRY_FROM_V_T_COLS
Format

OPG_APIS.GET_GEOMETRY_FROM_V_T_COLS(
 v IN NVARCHAR2,
 t IN INTEGER,
 srid IN NUMBER DEFAULT 8307
) RETURN SDO_GEOMETRY;

Description

Returns an SDO_GEOMETRY object constructed using spatial data, a type value, and
optionally an SRID value.

Parameters

v
A String containing spatial data in serialized form,

t
Value indicating the type of value represented by the v parameter. Must be 20. (A null
value or any other value besides 20 returns a null SDO_GEOMETRY object.)

srid
SRID (coordinate system identifier) to be used in the resulting SDO_GEOMETRY
object. The default value is 8307, the Oracle Spatial SRID for the WGS 84 longitude/
latitude coordinate system.

Usage Notes

If there is incorrect syntax or a parsing error, this function returns NULL instead of
generating an exception.

Examples

The following examples show point, line, and polygon geometries.

SQL> select opg_apis.get_geometry_from_v_t_cols('10.0 5.0', 20, 8307)
from dual;

OPG_APIS.GET_GEOMETRY_FROM_V_T_COLS('10.05.0',20,8307)(SDO_GTYPE,
SDO_SRID, SDO_
--

SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(10, 5, NULL), NULL, NULL)

SQL> select opg_apis.get_geometry_from_v_t_cols('LINESTRING(30 10, 10
30, 40 40)', 20, 8307) from dual;

OPG_APIS.GET_GEOMETRY_FROM_V_T_COLS('LINESTRING(3010,1030,4040)',20,8307
)(SDO_GT
--

Chapter 9
OPG_APIS.GET_GEOMETRY_FROM_V_T_COLS

9-41

SDO_GEOMETRY(2002, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
SDO_ORDINATE_ARRAY(
30, 10, 10, 30, 40, 40))

SQL> select opg_apis.get_geometry_from_v_t_cols('POLYGON((-83.6 34.1,
-83.6 34.3, -83.4 34.3, -83.4 34.1, -83.6 34.1))', 20, 8307) from dual;

OPG_APIS.GET_GEOMETRY_FROM_V_T_COLS('POLYGON((-83.634.1,-83.634.3,-83.43
4.3,-83.
--

SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1),
SDO_ORDINATE_ARR
AY(-83.6, 34.1, -83.6, 34.3, -83.4, 34.3, -83.4, 34.1, -83.6, 34.1))

9.35 OPG_APIS.GET_LATLONG_FROM_V_COL
Format

OPG_APIS.GET_LATLONG_FROM_V_COL(
 v IN NVARCHAR2,
 srid IN NUMBER DEFAULT 8307
) RETURN SDO_GEOMETRY;

Description

Returns an SDO_GEOMETRY object constructed using spatial data and optionally an
SRID value.

Parameters

v
A String containing spatial data in serialized form.

srid
SRID (coordinate system identifier) to be used in the resulting SDO_GEOMETRY
object. The default value is 8307, the Oracle Spatial SRID for the WGS 84 longitude/
latitude coordinate system.

Usage Notes

This function assumes that for each vertex in the geometry in the v parameter, the first
number is the latitude value and the second number is the longitude value. (This is
the reverse of the order in an SDO_GEOMETRY object definition, where longitude is
first and latitude is second).

If there is incorrect syntax or a parsing error, this function returns NULL instead of
generating an exception.

Chapter 9
OPG_APIS.GET_LATLONG_FROM_V_COL

9-42

Examples

The following example returns a point SDO_GEOMETRY object. Notice that the
coordinate values of the input point are “swapped” in the returned SDO_GEOMETRY
object.

SQL> select opg_apis.get_latlong_from_v_col('5.1 10.0', 8307) from dual;

OPG_APIS.GET_LATLONG_FROM_V_COL('5.110.0',8307)(SDO_GTYPE, SDO_SRID,
SDO_POINT(X
--

SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(10, 5.1, NULL), NULL, NULL)

9.36 OPG_APIS.GET_LATLONG_FROM_V_T_COLS
Format

OPG_APIS.GET_LATLONG_FROM_V_T_COLS(
 v IN NVARCHAR2,
 t IN INTEGER,
 srid IN NUMBER DEFAULT 8307
) RETURN SDO_GEOMETRY;

Description

Returns an SDO_GEOMETRY object constructed using spatial data, a type value, and
optionally an SRID value.

Parameters

v
A String containing spatial data in serialized form.

t
Value indicating the type of value represented by the v parameter. Must be 20. (A null
value or any other value besides 20 returns a null SDO_GEOMETRY object.)

srid
SRID (coordinate system identifier) to be used in the resulting SDO_GEOMETRY
object. The default value is 8307, the Oracle Spatial SRID for the WGS 84 longitude/
latitude coordinate system.

Usage Notes

This function assumes that for each vertex in the geometry in the v parameter, the first
number is the latitude value and the second number is the longitude value. (This is
the reverse of the order in an SDO_GEOMETRY object definition, where longitude is
first and latitude is second).

If there is incorrect syntax or a parsing error, this function returns NULL instead of
generating an exception.

Chapter 9
OPG_APIS.GET_LATLONG_FROM_V_T_COLS

9-43

Examples

The following example returns a point SDO_GEOMETRY object. Notice that the
coordinate values of the input point are “swapped” in the returned SDO_GEOMETRY
object.

SQL> select opg_apis.get_latlong_from_v_t_cols('5.1 10.0',20,8307) from
dual;

OPG_APIS.GET_LATLONG_FROM_V_T_COLS('5.110.0',20,8307)(SDO_GTYPE,
SDO_SRID, SDO_P
--

SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(10, 5.1, NULL), NULL, NULL)

9.37 OPG_APIS.GET_LONG_LAT_GEOMETRY
Format

OPG_APIS.GET_LONG_LAT_GEOMETRY(
 x IN NUMBER,
 y IN NUMBER,
 srid IN NUMBER DEFAULT 8307
) RETURN SDO_GEOMETRY;

Description

Returns an SDO_GEOMETRY object constructed using X and Y point coordinate
values, and optionally an SRID value.

Parameters

x
The X (first coordinate) value in the SDO_POINT_TYPE element of the geometry
definition.

y
The Y (second coordinate) value in the SDO_POINT_TYPE element of the geometry
definition.

srid
SRID (coordinate system identifier) to be used in the resulting SDO_GEOMETRY
object. The default value is 8307, the Oracle Spatial SRID for the WGS 84 longitude/
latitude coordinate system.

Usage Notes

If there is incorrect syntax or a parsing error, this function returns NULL instead of
generating an exception.

Chapter 9
OPG_APIS.GET_LONG_LAT_GEOMETRY

9-44

Examples

The following example returns the geometry object for a point with X, Y coordinates
10.5, 5.0, and it uses 8307 as the SRID in the resulting geometry object.

SQL> select opg_apis.get_long_lat_geometry(10.0, 5.0, 8307) from dual;

OPG_APIS.GET_LONG_LAT_GEOMETRY(10.0,5.0,8307)(SDO_GTYPE, SDO_SRID,
SDO_POINT(X,
--

SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(10, 5, NULL), NULL, NULL)

9.38 OPG_APIS.GET_LATLONG_FROM_V_COL
Format

OPG_APIS.GET_LATLONG_FROM_V_COL(
 v IN NVARCHAR2,
 srid IN NUMBER DEFAULT 8307
) RETURN SDO_GEOMETRY;

Description

Returns an SDO_GEOMETRY object constructed using spatial data and optionally an
SRID value.

Parameters

v
A String containing spatial data in serialized form.

srid
SRID (coordinate system identifier) to be used in the resulting SDO_GEOMETRY
object. The default value is 8307, the Oracle Spatial SRID for the WGS 84 longitude/
latitude coordinate system.

Usage Notes

This function assumes that for each vertex in the geometry in the v parameter, the first
number is the latitude value and the second number is the longitude value. (This is
the reverse of the order in an SDO_GEOMETRY object definition, where longitude is
first and latitude is second).

If there is incorrect syntax or a parsing error, this function returns NULL instead of
generating an exception.

Examples

The following example returns a point SDO_GEOMETRY object. Notice that the
coordinate values of the input point are “swapped” in the returned SDO_GEOMETRY
object.

SQL> select opg_apis.get_latlong_from_v_col('5.1 10.0', 8307) from dual;

Chapter 9
OPG_APIS.GET_LATLONG_FROM_V_COL

9-45

OPG_APIS.GET_LATLONG_FROM_V_COL('5.110.0',8307)(SDO_GTYPE, SDO_SRID,
SDO_POINT(X
--

SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(10, 5.1, NULL), NULL, NULL)

9.39 OPG_APIS.GET_LONGLAT_FROM_V_T_COLS
Format

OPG_APIS.GET_LONGLAT_FROM_V_T_COLS(
 v IN NVARCHAR2,
 t IN INTEGER,
 srid IN NUMBER DEFAULT 8307
) RETURN SDO_GEOMETRY;

Description

Returns an SDO_GEOMETRY object constructed using spatial data, a type value, and
optionally an SRID value.

Parameters

v
A String containing spatial data in serialized form.

t
Value indicating the type of value represented by the v parameter. Must be 20. (A null
value or any other value besides 20 returns a null SDO_GEOMETRY object.)

srid
SRID (coordinate system identifier) to be used in the resulting SDO_GEOMETRY
object. The default value is 8307, the Oracle Spatial SRID for the WGS 84 longitude/
latitude coordinate system.

Usage Notes

If there is incorrect syntax or a parsing error, this function returns NULL instead of
generating an exception.

Examples

This function assumes that for each vertex in the geometry in the v parameter, the first
number is the longitude value and the second number is the latitude value (which is
the order in an SDO_GEOMETRY object definition).

The following example returns a point SDO_GEOMETRY object.

SQL> select opg_apis.get_longlat_from_v_t_cols('5.1 10.0',20,8307) from
dual;

OPG_APIS.GET_LATLONG_FROM_V_T_COLS('5.110.0',20,8307)(SDO_GTYPE,
SDO_SRID, SDO_P
--

Chapter 9
OPG_APIS.GET_LONGLAT_FROM_V_T_COLS

9-46

SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(5.1, 10, NULL), NULL, NULL)

9.40 OPG_APIS.GET_SCN
Format

OPG_APIS.GET_SCN() RETURN NUMBER;

Description

Returns the SCN (system change number) of the Oracle Spatial and Graph property
graph support, in YYYYMMDD format.

Note:

Effective with Release 20.3, the OPG_APIS.GET_SCN function is
deprecated. Instead, to retrieve the current SCN (system change number),
use the DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER function:

SELECT dbms_flashback.get_system_change_number FROM DUAL;

Parameters

(None.)

Usage Notes

The SCN value is incremented after each commit.

Examples

The following example returns the current build ID of the Oracle Spatial and Graph
property graph support.

SQL> SELECT OPG_APIS.GET_SCN() FROM DUAL;

OPG_APIS.GET_SCN()

 1478701

9.41 OPG_APIS.GET_VERSION
Format

OPG_APIS.GET_VERSION() RETURN VARCHAR2;

Description

Returns the current version of the Oracle Spatial and Graph property graph support.

Chapter 9
OPG_APIS.GET_SCN

9-47

Parameters

(None.)

Usage Notes

(None.)

Examples

The following example returns the current version of the Oracle Spatial and Graph
property graph support.

SQL> SELECT OPG_APIS.GET_VERSION() FROM DUAL;

OPG_APIS.GET_VERSION()
--
12.2.0.1 P1

9.42 OPG_APIS.GET_WKTGEOMETRY_FROM_V_COL
Format

OPG_APIS.GET_WKTGEOMETRY_FROM_V_COL(
 v IN NVARCHAR2,
 srid IN NUMBER DEFAULT NULL
) RETURN SDO_GEOMETRY;

Description

Returns an SDO_GEOMETRY object based on a geometry in WKT (well known text)
form and optionally an SRID.

Parameters

v
A String containing spatial data in serialized form.

srid
SRID (coordinate system identifier) to be used in the resulting SDO_GEOMETRY
object. The default value is 8307, the Oracle Spatial SRID for the WGS 84 longitude/
latitude coordinate system.

Usage Notes

If there is incorrect syntax or a parsing error, this function returns NULL instead of
generating an exception.

Examples

The following statements return a point geometry and a line string geometry

SQL> select opg_apis.get_wktgeometry_from_v_col('POINT(10.0 5.1)',
8307) from dual;

OPG_APIS.GET_WKTGEOMETRY_FROM_V_COL('POINT(10.05.1)',8307)(SDO_GTYPE,
SDO_SRID,

Chapter 9
OPG_APIS.GET_WKTGEOMETRY_FROM_V_COL

9-48

--

SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(10, 5.1, NULL), NULL, NULL)

SQL> select opg_apis.get_wktgeometry_from_v_col('LINESTRING(30 10, 10
30, 40 40)',8307) from dual;

OPG_APIS.GET_WKTGEOMETRY_FROM_V_COL('LINESTRING(3010,1030,4040)',8307)
(SDO_GTYPE
--

SDO_GEOMETRY(2002, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
SDO_ORDINATE_ARRAY(
30, 10, 10, 30, 40, 40))

9.43
OPG_APIS.GET_WKTGEOMETRY_FROM_V_T_COLS

Format

OPG_APIS.GET_WKTGEOMETRY_FROM_V_T_COLS(
 v IN NVARCHAR2,
 t IN INTEGER,
 srid IN NUMBER DEFAULT NULL
) RETURN SDO_GEOMETRY;

Description

Returns an SDO_GEOMETRY object based on a geometry in WKT (well known text)
form, a type value, and optionally an SRID.

Parameters

v
A String containing spatial data in serialized form.

t
Value indicating the type of value represented by the v parameter. Must be 20. (A null
value or any other value besides 20 returns a null SDO_GEOMETRY object.)

srid
SRID (coordinate system identifier) to be used in the resulting SDO_GEOMETRY
object. The default value is 8307, the Oracle Spatial SRID for the WGS 84 longitude/
latitude coordinate system.

Usage Notes

If there is incorrect syntax or a parsing error, this function returns NULL instead of
generating an exception.

Chapter 9
OPG_APIS.GET_WKTGEOMETRY_FROM_V_T_COLS

9-49

Examples

The following statements return a point geometry and a polygon geometry

SQL> select opg_apis.get_wktgeometry_from_v_t_cols('POINT(10.0
5.1)',20,8307) from dual;

OPG_APIS.GET_WKTGEOMETRY_FROM_V_T_COLS('POINT(10.05.1)',20,8307)
(SDO_GTYPE, SDO_
--

SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(10, 5.1, NULL), NULL, NULL)

SQL> select opg_apis.get_wktgeometry_from_v_t_cols('POLYGON((-83.6
34.1, -83.6 34.3, -83.4 34.3, -83.4 34.1, -83.6 34.1))',20,8307) from
dual;

OPG_APIS.GET_WKTGEOMETRY_FROM_V_T_COLS('POLYGON((-83.634.1,-83.634.3,-83
.434.3,-
--

SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1),
SDO_ORDINATE_ARR
AY(-83.6, 34.1, -83.6, 34.3, -83.4, 34.3, -83.4, 34.1, -83.6, 34.1))

9.44 OPG_APIS.GRANT_ACCESS
Format

OPG_APIS.GRANT_ACCESS(
 graph_owner IN VARCHAR2,
 graph_name IN VARCHAR2,
 other_user IN VARCHAR2,
 privilege IN VARCHAR2);

Description

Grants access privileges on a property graph to another database user.

Parameters

graph_owner
Owner of the property graph.

graph_name
Name of the property graph.

other_user
Name of the database user to which on e or more access privileges will be granted.

privilege
A string of characters indicating privileges: R for read, S for select, U for update, D for
delete, I for insert, A for all. Do not use commas or any other delimiter.

Chapter 9
OPG_APIS.GRANT_ACCESS

9-50

If you specify A, do not specify any other values because A includes all access
privileges.

Usage Notes

(None.)

Examples

The following example grants read and select (RS) privileges on the mypg property
graph owned by database user SCOTT to database user PGUSR. It then connects as
PGUSR and queries the mypg vertex table in the SCOTT schema.

CONNECT scott/<password>

EXECUTE OPG_APIS.GRANT_ACCESS('scott', 'mypg', 'pgusr', 'RS');

CONNECT pgusr/<password>

SELECT count(1) from scott.mypgVT$;

 17

9.45 OPG_APIS.IMP_EDGE_TAB_STATS
Format

OPG_APIS.IMP_EDGE_TAB_STATS(
 graph_name IN VARCHAR2,
 stattab IN VARCHAR2,
 statid IN VARCHAR2 DEFAULT NULL,
 cascade IN BOOLEAN DEFAULT TRUE,
 statown IN VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT FALSE,
 force BOOLEAN DEFAULT FALSE,
 stat_category IN VARCHAR2 DEFAULT 'OBJECT_STATS');

Description

Retrieves statistics for the given property graph edge table (GE$) from the user
statistics table identified by stattab and stores them in the dictionary. If cascade is
TRUE, all index statistics associated with the specified table are also imported.

Parameters

graph_name
Name of the property graph.

stattab
Name of the statistics table.

statid
Optional identifier to associate with these statistics within stattab.

cascade
If TRUE, column and index statistics are exported.

Chapter 9
OPG_APIS.IMP_EDGE_TAB_STATS

9-51

statown
Schema containing stattab.

no_invalidate
If TRUE, does not invalidate the dependent cursors. If FALSE, invalidates the dependent
cursors immediately. If DBMS_STATS.AUTO_INVALIDATE (the usual default) is in effect,
Oracle Database decides when to invalidate dependent cursors.

force
If TRUE, performs the operation even if the statistics are locked.

stat_category
Specifies what statistics to export, using a comma to separate values. The supported
values are 'OBJECT_STATS' (the default: table statistics, column statistics, and
index statistics) and ‘SYNOPSES' (auxiliary statistics created when statistics are
incrementally maintained).

Usage Notes

(None.)

Examples

The following example creates a statistics table, exports into this table the edge table
statistics, issues a query to count the relevant rows for the newly created statistics,
and finally imports the statistics back.

EXECUTE OPG_APIS.CREATE_STAT_TABLE('mystat',null);

EXECUTE OPG_APIS.EXP_EDGE_TAB_STATS('mypg', 'mystat', 'edge_stats_id_1', true,
null, 'OBJECT_STATS');

SELECT count(1) FROM mystat WHERE statid='EDGE_STATS_ID_1';

 153

EXECUTE OPG_APIS.IMP_EDGE_TAB_STATS('mypg', 'mystat', 'edge_stats_id_1', true,
null, false, true, 'OBJECT_STATS');

9.46 OPG_APIS.IMP_VERTEX_TAB_STATS
Format

OPG_APIS.IMP_VERTEX_TAB_STATS(
 graph_name IN VARCHAR2,
 stattab IN VARCHAR2,
 statid IN VARCHAR2 DEFAULT NULL,
 cascade IN BOOLEAN DEFAULT TRUE,
 statown IN VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT FALSE,
 force BOOLEAN DEFAULT FALSE,
 stat_category IN VARCHAR2 DEFAULT 'OBJECT_STATS');

Description

Retrieves statistics for the given property graph vertex table (VT$) from the user
statistics table identified by stattab and stores them in the dictionary. If cascade is
TRUE, all index statistics associated with the specified table are also imported.

Chapter 9
OPG_APIS.IMP_VERTEX_TAB_STATS

9-52

Parameters

graph_name
Name of the property graph.

stattab
Name of the statistics table.

statid
Optional identifier to associate with these statistics within stattab.

cascade
If TRUE, column and index statistics are exported.

statown
Schema containing stattab.

no_invalidate
If TRUE, does not invalidate the dependent cursors. If FALSE, invalidates the dependent
cursors immediately. If DBMS_STATS.AUTO_INVALIDATE (the usual default) is in effect,
Oracle Database decides when to invalidate dependent cursors.

force
If TRUE, performs the operation even if the statistics are locked.

stat_category
Specifies what statistics to export, using a comma to separate values. The supported
values are 'OBJECT_STATS' (the default: table statistics, column statistics, and
index statistics) and ‘SYNOPSES' (auxiliary statistics created when statistics are
incrementally maintained).

Usage Notes

(None.)

Examples

The following example creates a statistics table, exports into this table the vertex table
statistics, issues a query to count the relevant rows for the newly created statistics,
and finally imports the statistics back.

EXECUTE OPG_APIS.CREATE_STAT_TABLE('mystat',null);

EXECUTE OPG_APIS.EXP_VERTEX_TAB_STATS('mypg', 'mystat', 'vertex_stats_id_1',
true, null, 'OBJECT_STATS');

SELECT count(1) FROM mystat WHERE statid='VERTEX_STATS_ID_1';

 108

EXECUTE OPG_APIS.IMP_VERTEX_TAB_STATS('mypg', 'mystat', 'vertex_stats_id_1',
true, null, false, true, 'OBJECT_STATS');

Chapter 9
OPG_APIS.IMP_VERTEX_TAB_STATS

9-53

9.47 OPG_APIS.PR
Format

OPG_APIS.PR(
 edge_tab_name IN VARCHAR2,
 d IN NUMBER DEFAULT 0.85,
 num_iterations IN NUMBER DEFAULT 10,
 convergence IN NUMBER DEFAULT 0.1,
 dop IN INTEGER DEFAULT 4,
 wt_node_pr IN OUT VARCHAR2,
 wt_node_nextpr IN OUT VARCHAR2,
 wt_edge_tab_deg IN OUT VARCHAR2,
 wt_delta IN OUT VARCHAR2,
 tablespace IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 num_vertices OUT NUMBER);

Description

Prepares for page rank calculations.

Parameters

edge_tab_name
Name of the property graph edge table.

d
Damping factor.

num_iterations
Number of iterations for calculating the page rank values.

convergence
A threshold. If the difference between the page rank value of the current iteration and
next iteration is lower than this threshold, then computation stops.

dop
Degree od parallelism for the operation.

wt_node_pr
Name of the working table to hold the page rank values of the vertices.

wt_node_pr
Name of the working table to hold the page rank values of the vertices.

wt_node_next_pr
Name of the working table to hold the page rank values of the vertices in the next
iteration.

wt_edge_tab_deg
Name of the working table to hold edges and node degree information.

wt_delta
Name of the working table to hold information about some special vertices.

Chapter 9
OPG_APIS.PR

9-54

tablespace
Name of the tablespace to hold all the graph data and index data.

options
Additional settings for the operation. An optional string with one or more (comma-
separated) of the following values:

• CREATE_UNDIRECTED=T

• REUSE_UNDIRECTED_TAB=T

num_vertices
Number of vertices processed by the page rank calculation.

Usage Notes

The property graph edge table must exist in the database, and the
OPG_APIS.PR_PREP procedure must have been called.

Examples

The following example performs preparation, and then calculates the page rank value
of vertices in a property graph named mypg.

set serveroutput on
DECLARE
 wt_pr varchar2(2000); -- name of the table to hold PR value of the current
iteration
 wt_npr varchar2(2000); -- name of the table to hold PR value for the next
iteration
 wt3 varchar2(2000);
 wt4 varchar2(2000);
 wt5 varchar2(2000);
 n_vertices number;
BEGIN
 wt_pr := 'mypgPR';
 opg_apis.pr_prep('mypgGE$', wt_pr, wt_npr, wt3, wt4, null);
 dbms_output.put_line('Working table names ' || wt_pr
 || ', wt_npr ' || wt_npr || ', wt3 ' || wt3 || ', wt4 '|| wt4);
 opg_apis.pr('mypgGE$', 0.85, 10, 0.01, 4, wt_pr, wt_npr, wt3, wt4, 'SYSAUX',
null, n_vertices)
;
END;
/

The output will be similar to the following.

Working table names "MYPGPR", wt_npr "MYPGGE$$TWPRX277", wt3
"MYPGGE$$TWPRE277", wt4 "MYPGGE$$TWPRD277"

The calculated page rank value is stored in the mypgpr table which has the following
definition and data.

SQL> desc mypgpr;
 Name Null? Type
 --- -------- ----------------------------
 NODE NOT NULL NUMBER
 PR NUMBER
 C NUMBER

Chapter 9
OPG_APIS.PR

9-55

SQL> select node, pr from mypgpr;

 NODE PR
---------- ----------
 101 .1925
 201 .2775
 102 .1925
 104 .74383125
 105 .313625
 103 .1925
 100 .15
 200 .15

9.48 OPG_APIS.PR_CLEANUP
Format

OPG_APIS.PR_CLEANUP(
 edge_tab_name IN VARCHAR2,
 wt_node_pr IN OUT VARCHAR2,
 wt_node_nextpr IN OUT VARCHAR2,
 wt_edge_tab_deg IN OUT VARCHAR2,
 wt_delta IN OUT VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL);

Description

Performs cleanup after performing page rank calculations.

Parameters

edge_tab_name
Name of the property graph edge table.

wt_node_pr
Name of the working table to hold the page rank values of the vertices.

wt_node_next_pr
Name of the working table to hold the page rank values of the vertices in the next
iteration.

wt_edge_tab_deg
Name of the working table to hold edges and node degree information.

wt_delta
Name of the working table to hold information about some special vertices.

options
Additional settings for the operation. An optional string with one or more (comma-
separated) of the following values:

• CREATE_UNDIRECTED=T

• REUSE_UNDIRECTED_TAB=T

Chapter 9
OPG_APIS.PR_CLEANUP

9-56

Usage Notes

You do not need to do cleanup after each call to the OPG_APIS.PR procedure. You
can run several page rank calculations before calling the OPG_APIS.PR_CLEANUP
procedure.

Examples

The following example does the cleanup work after running page rank calculations in a
property graph named mypg.

EXECUTE OPG_APIS.PR_CLEANUP('mypgGE$', wt_pr, wt_npr, wt3, wt4, null);

9.49 OPG_APIS.PR_PREP
Format

OPG_APIS.PR_PREP(
 edge_tab_name IN VARCHAR2,
 wt_node_pr IN OUT VARCHAR2,
 wt_node_nextpr IN OUT VARCHAR2,
 wt_edge_tab_deg IN OUT VARCHAR2,
 wt_delta IN OUT VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL);

Description

Prepares for page rank calculations.

Parameters

edge_tab_name
Name of the property graph edge table.

wt_node_pr
Name of the working table to hold the page rank values of the vertices.

wt_node_next_pr
Name of the working table to hold the page rank values of the vertices in the next
iteration.

wt_edge_tab_deg
Name of the working table to hold edges and node degree information.

wt_delta
Name of the working table to hold information about some special vertices.

options
Additional settings for the operation. An optional string with one or more (comma-
separated) of the following values:

• CREATE_UNDIRECTED=T

• REUSE_UNDIRECTED_TAB=T

Usage Notes

The property graph edge table must exist in the database.

Chapter 9
OPG_APIS.PR_PREP

9-57

Examples

The following example does the preparation work before running page rank
calculations in a property graph named mypg.

set serveroutput on
DECLARE
 wt_pr varchar2(2000); -- name of the table to hold PR value of the current
iteration
 wt_npr varchar2(2000); -- name of the table to hold PR value for the next
iteration
 wt3 varchar2(2000);
 wt4 varchar2(2000);
 wt5 varchar2(2000);
BEGIN
 wt_pr := 'mypgPR';
 opg_apis.pr_prep('mypgGE$', wt_pr, wt_npr, wt3, wt4, null);
 dbms_output.put_line('Working table names ' || wt_pr
 || ', wt_npr ' || wt_npr || ', wt3 ' || wt3 || ', wt4 '|| wt4);
END;
/

The output will be similar to the following.

Working table names "MYPGPR", wt_npr "MYPGGE$$TWPRX277", wt3
"MYPGGE$$TWPRE277", wt4 "MYPGGE$$TWPRD277"

9.50 OPG_APIS.PREPARE_TEXT_INDEX
Format

OPG_APIS.PREPARE_TEXT_INDEX();

Description

Performs preparatory work needed before a text index can be created on any
NVARCHAR2 columns.

Parameters

None.

Usage Notes

You must have the ALTER SESSION to run this procedure.

Examples

The following example performs preparatory work needed before a text index can be
created on any NVARCHAR2 columns.

EXECUTE OPG_APIS.PREPARE_TEXT_INDEX();

Chapter 9
OPG_APIS.PREPARE_TEXT_INDEX

9-58

9.51 OPG_APIS.RENAME_PG
Format

OPG_APIS.RENAME_PG(
 graph_name IN VARCHAR2,
 new_graph_name IN VARCHAR2);

Description

Renames a property graph.

Parameters

graph_name
Name of the property graph.

new_graph_name
New name for the property graph.

Usage Notes

The graph_name property graph must exist in the database.

Examples

The following example changes the name of a property graph named mypg to mynewpg.

EXECUTE OPG_APIS.RENAME_PG('mypg', 'mynewpg');

9.52 OPG_APIS.SPARSIFY_GRAPH
Format

OPG_APIS.SPARSIFY_GRAPH(
 edge_tab_name IN VARCHAR2,
 threshold IN NUMBER DEFAULT 0.5,
 min_keep IN INTEGER DEFAULT 1,
 dop IN INTEGER DEFAULT 4,
 wt_out_tab IN OUT VARCHAR2,
 wt_und_tab IN OUT VARCHAR2,
 wt_hsh_tab IN OUT VARCHAR2,
 wt_mch_tab IN OUT VARCHAR2,
 tbs IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL);

Description

Performs sparsification (edge trimming) for a property graph edge table.

Parameters

edge_tab_name
Name of the property graph edge table (GE$).

Chapter 9
OPG_APIS.RENAME_PG

9-59

threshold
A numeric value controlling how much sparsification needs to be performed. The
lower the value, the more edges will be removed. Some typical values are: 0.1,
0.2, ..., 0.5

min_keep
A positive integer indicating at least how many adjacent edges should be kept for
each vertex. A recommended value is 1.

dop
Degree of parallelism for the operation.

wt_out_tab
A working table to hold the output, a sparsified graph.

wt_und_tab
A working table to hold the undirected version of the original graph.

wt_hsh_tab
A working table to hold the min hash values of the graph.

wt_mch_tab
A working table to hold matching count of min hash values.

tbs
A working table to hold the working table data.

options
Additional settings for operation. An optional string with one or more (comma-
separated) of the following values:

• 'INMEMORY=T' is an option for creating the schema tables with an 'inmemory'
clause.

• 'IMC_MC_B=T' creates the schema tables with an INMEMORY MEMCOMPRESS
BASIC clause.

Usage Notes

The CREATE TABLE privilege is required to call this procedure.

The sparsification algorithm used is a min hash based local sparsification. See
"Local graph sparsification for scalable clustering", Proceedings of the 2011 ACM
SIGMOD International Conference on Management of Data: https://cs.uwaterloo.ca/
~tozsu/courses/CS848/W15/presentations/ElbagouryPresentation-2.pdf

Sparsification only involves the topology of a graph. None of the properties (K/V) are
relevant.

Examples

The following example does the preparation work for the edges table of mypg, prints
out the working table names, and runs sparsification. The output, a sparsified graph, is
stored in a table named LEAN_PG, which has two columns, SVID and DVID.

SQL> set serveroutput on
DECLARE
 my_lean_pg varchar2(100) := 'lean_pg'; -- output table
 wt2 varchar2(100);
 wt3 varchar2(100);

Chapter 9
OPG_APIS.SPARSIFY_GRAPH

9-60

https://cs.uwaterloo.ca/~tozsu/courses/CS848/W15/presentations/ElbagouryPresentation-2.pdf
https://cs.uwaterloo.ca/~tozsu/courses/CS848/W15/presentations/ElbagouryPresentation-2.pdf

 wt4 varchar2(100);
BEGIN
 opg_apis.sparsify_graph_prep('mypgGE$', my_lean_pg, wt2, wt3, wt4, null);
 dbms_output.put_line('wt2 ' || wt2 || ', wt3 ' || wt3 || ', wt4 '|| wt4);

 opg_apis.sparsify_graph('mypgGE$', 0.5, 1, 4, my_lean_pg, wt2, wt3, wt4,
'SEMTS', null);
END;
/

wt2 "MYPGGE$$TWSPAU275", wt3 "MYPGGE$$TWSPAH275", wt4 "MYPGGE$$TWSPAM275"

SQL> describe lean_pg;
 Name Null? Type
 --- -------- ----------------------------
 SVID NUMBER
 DVID NUMBER

9.53 OPG_APIS.SPARSIFY_GRAPH_CLEANUP
Format

OPG_APIS.SPARSIFY_GRAPH_CLEANUP(
 edge_tab_name IN VARCHAR2,
 wt_out_tab IN OUT VARCHAR2,
 wt_und_tab IN OUT VARCHAR2,
 wt_hsh_tab IN OUT VARCHAR2,
 wt_mch_tab IN OUT VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL);

Description

Cleans up after sparsification (edge trimming) for a property graph edge table.

Parameters

edge_tab_name
Name of the property graph edge table (GE$).

wt_out_tab
A working table to hold the output, a sparsified graph.

wt_und_tab
A working table to hold the undirected version of the original graph.

wt_hsh_tab
A working table to hold the min hash values of the graph.

wt_mch_tab
A working table to hold matching count of min hash values.

tbs
A working table to hold the working table data

options
(Reserved for future use.)

Chapter 9
OPG_APIS.SPARSIFY_GRAPH_CLEANUP

9-61

Usage Notes

The working tables will be dropped after the operation completes.

Examples

The following example does the preparation work for the edges table of mypg, prints
out the working table names, runs sparsification, and then performs cleanup.

SQL> set serveroutput on
DECLARE
 my_lean_pg varchar2(100) := 'lean_pg';
 wt2 varchar2(100);
 wt3 varchar2(100);
 wt4 varchar2(100);
BEGIN
 opg_apis.sparsify_graph_prep('mypgGE$', my_lean_pg, wt2, wt3, wt4, null);
 dbms_output.put_line('wt2 ' || wt2 || ', wt3 ' || wt3 || ', wt4 '|| wt4);

 opg_apis.sparsify_graph('mypgGE$', 0.5, 1, 4, my_lean_pg, wt2, wt3, wt4,
'SEMTS', null);

 -- Add logic here to consume SVID, DVID in LEAN_PG table
 --

 -- cleanup
 opg_apis.sparsify_graph_cleanup('mypgGE$', my_lean_pg, wt2, wt3, wt4, null);
END;
/

9.54 OPG_APIS.SPARSIFY_GRAPH_PREP
Format

OPG_APIS.SPARSIFY_GRAPH_PREP(
 edge_tab_name IN VARCHAR2,
 wt_out_tab IN OUT VARCHAR2,
 wt_und_tab IN OUT VARCHAR2,
 wt_hsh_tab IN OUT VARCHAR2,
 wt_mch_tab IN OUT VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL);

Description

Prepares working table names that are necessary to run sparsification for a property
graph edge table.

Parameters

edge_tab_name
Name of the property graph edge table (GE$).

wt_out_tab
A working table to hold the output, a sparsified graph.

wt_und_tab
A working table to hold the undirected version of the original graph.

Chapter 9
OPG_APIS.SPARSIFY_GRAPH_PREP

9-62

wt_hsh_tab
A working table to hold the min hash values of the graph.

wt_mch_tab
A working table to hold the matching count of min hash values.

options
Additional settings for operation. An optional string with one or more (comma-
separated) of the following values:

• 'INMEMORY=T' is an option for creating the schema tables with an 'inmemory'
clause.

• 'IMC_MC_B=T' creates the schema tables with an INMEMORY MEMCOMPRESS
BASIC clause.

Usage Notes

The sparsification algorithm used is a min hash based local sparsification. See
"Local graph sparsification for scalable clustering", Proceedings of the 2011 ACM
SIGMOD International Conference on Management of Data: https://cs.uwaterloo.ca/
~tozsu/courses/CS848/W15/presentations/ElbagouryPresentation-2.pdf

Examples

The following example does the preparation work for the edges table of mypg and
prints out the working table names.

set serveroutput on

DECLARE
 my_lean_pg varchar2(100) := 'lean_pg';
 wt2 varchar2(100);
 wt3 varchar2(100);
 wt4 varchar2(100);
BEGIN
 opg_apis.sparsify_graph_prep('mypgGE$', my_lean_pg, wt2, wt3, wt4, null);
 dbms_output.put_line('wt2 ' || wt2 || ', wt3 ' || wt3 || ', wt4 '|| wt4);
END;
/

The output may be similar to the following.

wt2 "MYPGGE$$TWSPAU275", wt3 "MYPGGE$$TWSPAH275", wt4 "MYPGGE$$TWSPAM275"

Chapter 9
OPG_APIS.SPARSIFY_GRAPH_PREP

9-63

https://cs.uwaterloo.ca/~tozsu/courses/CS848/W15/presentations/ElbagouryPresentation-2.pdf
https://cs.uwaterloo.ca/~tozsu/courses/CS848/W15/presentations/ElbagouryPresentation-2.pdf

10
OPG_GRAPHOP Package Subprograms

The OPG_GRAPHOP package contains subprograms for various operations on
property graphs in an Oracle database.

To use the subprograms in this chapter, you must understand the conceptual and
usage information in earlier chapters of this book.

This chapter provides reference information about the subprograms, in alphabetical
order.

• OPG_GRAPHOP.POPULATE_SKELETON_TAB

10.1 OPG_GRAPHOP.POPULATE_SKELETON_TAB
Format

OPG_GRAPHOP.POPULATE_SKELETON_TAB(
 graph IN VARCHAR2,
 dop IN INTEGER DEFAULT 4,
 tbs IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL);

Description

Populates the skeleton table (<graph-name>GT$). By default, any existing content in
the skeleton table is truncated (removed) before the table is populated.

Parameters

graph
Name of the property graph.

dop
Degree of parallelism for the operation.

tbs
Name of the tablespace to hold the index data for the skeleton table.

options
Options that can be used to customize the populating of the skeleton table. (One or
more, comma separated.)

• 'KEEP_DATA=T' causes any existing table not to be removed before the table is
populated. New rows are added after the existing ones.

• 'PDML=T' skips the default index creation.

Usage Notes

You must have the CREATE TABLE and CREATE INDEX privileges to call this
procedure.

10-1

There is a unique index constraint on EID column of the skeleton table (GE$). So if
you specify the KEEP_DATA=T option and if the new data overlaps with existing one,
then the unique key constraint will be violated, resulting in an error.

Examples

The following example populates the skeleton table of the property graph named mypg.

EXECUTE OPG_GRAPHOP.POPULATE_SKELETON_TAB('mypg',4, 'pgts', 'PDML=T');

Chapter 10
OPG_GRAPHOP.POPULATE_SKELETON_TAB

10-2

Supplementary Information for Property
Graph Support

This document has the following appendixes.

• Handling Property Graphs Using a Two-Tables Schema
For property graphs with relatively fixed, simple data structures, where you do
not need the flexibility of <graph_name>VT$ and <graph_name>GE$ key/value data
tables for vertices and edges, you can use a two-tables schema to achieve better
run-time performance.

• About Property Graph Data Formats
Several graph formats are supported for property graph data.

• Mapping Graph Server Roles to Default Privileges

• Disabling Transport Layer Security (TLS) in Graph Server

A
Handling Property Graphs Using a Two-
Tables Schema

For property graphs with relatively fixed, simple data structures, where you do not
need the flexibility of <graph_name>VT$ and <graph_name>GE$ key/value data tables
for vertices and edges, you can use a two-tables schema to achieve better run-time
performance.

Note:

Support for the two-tables schema approach described in this topic has been
deprecated and will probably be removed in a future release.

Instead, you are encouraged use the property graph schema approach to
working with graph data, described in Property Graph Schema Objects for
Oracle Database.

The two-tables schema approach is a deprecated alternative to the recommended
approach of using the property graph schema (described in Property Graph Schema
Objects for Oracle Database).

• The property graph schema approach is designed mainly for heterogeneous
and/or large graphs. When a graph model is used to present a dynamic application
domain in which new relationships and possibly new data types for the same
property name(s) are introduced and added to the graph model on the fly, using
the property graph schema is recommended.

When a graph model is used to present a dynamic application domain in which
new relationships and possibly new data types for the same property name(s) are
introduced and added to the graph model on the fly, using the property graph
schema is recommended.

• The two-tables schema approach is designed for homogenous graphs.

If a graph model represents an application domain where the set of relationships
is already known and the total number of distinct relationships is relatively small
(less than 1000), then the two-tables approach is a potential option. This situation
usually happens when the original data source is from one or a set of existing
relational tables or views.

An example of where the two-tables approach might be useful is if all nodes are
employees of a specific organization, and each employee has a limited and fixed set
of attributes and potential relationships. An example of where the two-tables approach
would not be useful is if the nodes can be any individuals who can have different
attributes and relationships, and where attributes and relationships can be dynamically
added and altered.

In the flexible key/value approach (not two-tables), Oracle Spatial and Graph stores
property graph data with a flexible schema: <graph_name>VT$ for vertices and

A-1

<graph_name>GE$ for edges. In this schema, vertices and edges are stored using
multiple rows where each row represents a key/value property associated with the
vertex (or the edge) with a flexible data type, determined by the attribute T (type).
This schema design can easily accommodate a heterogeneous graph where vertices
(edges) have different set of properties or data types of property values.

On the other hand, for a property graph with a homogeneous structure, you can store
graph data using a two-tables schema. With this approach, each vertex is stored as a
single row in a named vertex table, and each edge as a single row in a named edge
table. This way, each column in the row corresponds to a property with a fixed data
type. The in-memory analyst can then use this approach to construct and manage the
in-memory graphs.

Note:

The two-tables approach is mainly for providing graph data for the in-memory
analyst to existing Blueprints-based Java APIs, and text indexing does not
work with the two-tables approach.

Graph data change tracking is only available when the property graph
schema approach is used.

The following topics focus on how to create a property graph using a two-tables
schema, as well as how to execute read and write operations over this data.

• Preparing the Two-Tables Schema

• Storing Data in a Property Graph Using a Two-Tables Schema

• Reading Data from a Property Graph Using a Two-Tables Schema

A.1 Preparing the Two-Tables Schema
OraclePropertyGraphUtils.prepareTwoTablesGraphVertexTab lets you customize
the schema of a vertex table using a two-tables schema to store all the vertices in
a graph. This operation requires a connection to an Oracle database, the table owner,
the table name, and two arrays specifying the property names and their data types.
By default, the table schema of the generated table includes the attribute VID, which
represents the primary key of the table and is mapped to the vertex ID.

The following code snippet creates a vertex table using a two-tables schema. In
this case, the generated table employeesNodes will include four attributes: name, age,
address, and SSN (Social Security Number). The primary key of the vertex table is the
generated attribute VID.

import oracle.pgx.common.types.PropertyType;
List<String> propertyNames = new ArrayList<String>();
propertyNames.addAll(new String[4]{ "name", "age", "address", "SSN" });

List<PropertyType> = new ArrayList<PropertyType>();
propertyType.add(PropertyType.STRING);
propertyType.add(PropertyType.INTEGER);
propertyType.add(PropertyType.STRING);
propertyType.add(PropertyType.STRING);

Appendix A
Preparing the Two-Tables Schema

A-2

OraclePropertyGraphUtils.prepareTwoTablesGraphVertexTab(conn /*
Connection object */,
 pg /* table owner */,
 "employeesNodes" /* vertex
table name */,
 propertyNames /* property
names */,
 propertyTypes /* property
data types */,
 "pgts" /* table space */,
 null /* storage options */,
 true /* no logging */);

The preceding code produces a table schema as follows:

CREATE TABLE employeenodes
(VID number not null,
 NAME nvarchar2(15000),
 AGE integer,
 ADDRESS nvarchar2(15000),
 SSN nvarchar2(15000),
 CONSTRAINT employenodes_pk PRIMARY KEY (VID)
);

Similarly, OraclePropertyGraphUtils.prepareTwoTablesGraphEdgeTab lets you
customize the schema of an edge table using a two-tables schema to store all the
edges in a graph. This operation requires a connection to an Oracle database, the
table owner, the table name, a two arrays specifying the property names and their
data types. By default, the table schema of the generated table includes the following
attributes: EID, which represents the primary key of the table and is mapped to the
edge ID; EL, which is mapped to the edge label; and SVID and DVID for the source and
destination vertex IDs, respectively.

The following code snippet creates an edge table using a two-tables schema. In this
case, the generated table organizationEdges will include the attribute named weight.
The primary key of the vertex table is the generated attribute EID, which is the default
attribute of the table schema, mapped to the vertices' ID (long value) values.

import oracle.pgx.common.types.PropertyType;
List<String> propertyNames = new ArrayList<String>();
propertyNames.addAll(new String[1]{ "weight" });

List<PropertyType> = new ArrayList<PropertyType>();
propertyType.add(PropertyType.DOUBLE);
OraclePropertyGraphUtils.prepareTwoTablesGraphEdgeTab(conn /*
Connection object */,
 pg /* table owner */,
 organizationEdges" /* edge
table name */,
 propertyNames /* property
names */,
 propertyTypes /* property
data types */,
 "pgts" /* table space */,

Appendix A
Preparing the Two-Tables Schema

A-3

 null /* storage options */,
 true /* no logging */);

The preceding code produces a table structure as follows:

CREATE TABLE organizationedges
(EID number not null,
 SVID number not null,
 DVID number not null,
 EL nvarchar2(3100),
 WEIGHT number,
 CONSTRAINT organizationedges_pk PRIMARY KEY (EID)
);

Note that if the table already exists, both prepareTwoTablesGraphEdgeTab and
prepareTwoTablesGraphEdgeTab will truncate the table contents.

A.2 Storing Data in a Property Graph Using a Two-Tables
Schema

To load a set of vertices into a vertex table using a two-tables schema, you can
use the API OraclePropertyGraphUtils.writeTwoTablesGraphVertexAndProperties.
This operation takes an array of Iterable (or Iterator) of TinkerPop Blueprints Vertex
objects, and reads out the ID and the values for the properties defined in the vertex
table schema. Based on this information, the vertex is later inserted as a new row
in the vertex table. Note that if a vertex does not include a property defined in the
schema, the value for that associated column is set to NULL.

The following code snippet creates a property graph employeesGraphDAL using the
OraclePropertyGraph API, and loads two vertices and an edge. Then, it creates a
vertex table employeesNodes using a two-tables schema and populates it with the data
from the vertices in employeesGraphDAL. Note that the property email in the vertex v1
is not loaded into the employeesNode table because it is not defined in the schema.
Also, the property SSN for vertex v2 is set NULL because it is not defined in the vertex.

// Create employeesGraphDAL
import oracle.pg.rdbms.*;
Oracle oracle = new Oracle(jdbcURL, username, password);
OraclePropertyGraph opgEmployees
 = OraclePropertyGraph.getInstance(oracle,
"employeesGraphDAL");

// Create vertex v1 and assign it properties as key-value pairs
Vertex v1 = opgEmployees.addVertex(1l);
v1.setProperty("age", Integer.valueOf(31));
v1.setProperty("name", "Alice");
v1.setProperty("address", "Main Street 12");
v1.setProperty("email", "alice@mymail.com");
v1.setProperty("SSN", "123456789");

Vertex v2 = opgEmployees.addVertex(2l);
v2.setProperty("age", Integer.valueOf(27));
v2.setProperty("name", "Bob");
v2.setProperty("adress", "Sesame Street 334");

Appendix A
Storing Data in a Property Graph Using a Two-Tables Schema

A-4

// Add edge e1
Edge e1 = opgEmployees.addEdge(1l, v1, v2, "managerOf");
e1.setProperty("weight", 0.5d);

opgEmployees.commit();

// Prepare the vertex table using a Two Tables schema
import oracle.pgx.common.types.PropertyType;
List<String> propertyNames = new ArrayList<String>();
propertyNames.addAll(new String[4]{ "name", "age", "address", "SSN" });

List<PropertyType> = new ArrayList<PropertyType>();
propertyType.add(PropertyType.STRING);
propertyType.add(PropertyType.INTEGER);
propertyType.add(PropertyType.STRING);
propertyType.add(PropertyType.STRING);

Connection conn
 = opgEmployees.getOracle().clone().getConnection(); /* Clone the
connection
 from the
property graph
 instance
*/
OraclePropertyGraphUtils.prepareTwoTablesGraphVertexTab(conn /*
Connection object */,
 pg /* table owner */,
 "employeesNodes" /* vertex
table name */,
 propertyNames /* property
names */,
 propertyTypes /* property
data types */,
 "pgts" /* table space */,
 null /* storage options */,
 true /* no logging */);

// Get the vertices from the employeesDAL graph
Iterable<Vertex> vertices = opgEmployees.getVertices();

// Load the vertices into the vertex table using a Two-Tables schema
Connection[] conns = new Connection[1]; /* the connection array size
defines the
 Degree of parallelism
(multithreading)
 */
conns[1] = conn;
OraclePropertyGraphUtils.writeTwoTablesGraphVertexAndProperties(
 conn /* Connectionobject */,
 pg /* table owner */,
 "employeesNodes" /* vertex
table name */,
 1000 /* batch size*/,
 new Iterable[]

Appendix A
Storing Data in a Property Graph Using a Two-Tables Schema

A-5

{vertices} /* array of
 vertex
iterables */);

To load a set of edges into an edge table using a two-tables schema, you can use
the API OraclePropertyGraphUtils.writeTwoTablesGraphEdgesAndProperties. This
operation takes an array of Iterable (or Iterator) of Blueprints Edge objects, and reads
out the ID, EL, SVID, DVID, and the values for the properties defined in the edge table
schema. Based on this information, the edge is later inserted as a new row in the edge
table. Note that if an edge does not include a property defined in the schema, the
value for that given column is set to NULL.

The following code snippet creates a property graph employeesGraphDAL using the
OraclePropertyGraph API, and loads two vertices and an edge. Then, it creates a
vertex table organizationEdges using a two-tables schema, and populates it with the
data from the edges in employeesGraphDAL.

// Create employeesGraphDAL
import oracle.pg.rdbms.*;
Oracle oracle = new Oracle(jdbcURL, username, password);
OraclePropertyGraph opgEmployees
 = OraclePropertyGraph.getInstance(oracle,
"employeesGraphDAL");

// Create vertex v1 and assign it properties as key-value pairs
Vertex v1 = opgEmployees.addVertex(1l);
v1.setProperty("age", Integer.valueOf(31));
v1.setProperty("name", "Alice");
v1.setProperty("address", "Main Street 12");
v1.setProperty("email", "alice@mymail.com");
v1.setProperty("SSN", "123456789");

Vertex v2 = opgEmployees.addVertex(2l);
v2.setProperty("age", Integer.valueOf(27));
v2.setProperty("name", "Bob");
v2.setProperty("adress", "Sesame Street 334");

// Add edge e1
Edge e1 = opgEmployees.addEdge(1l, v1, v2, "managerOf");
e1.setProperty("weight", 0.5d);

opgEmployees.commit();

// Prepare the edge table using a Two Tables schema
import oracle.pgx.common.types.PropertyType;
 Connection conn
 = opgEmployees.getOracle().clone().getConnection(); /*
Clone the connection
 from
the property graph

instance */
List<String> propertyNames = new ArrayList<String>();
propertyNames.addAll(new String[1]{ "weight" });

Appendix A
Storing Data in a Property Graph Using a Two-Tables Schema

A-6

List<PropertyType> = new ArrayList<PropertyType>();
propertyType.add(PropertyType.DOUBLE);
OraclePropertyGraphUtils.prepareTwoTablesGraphEdgeTab(conn /*
Connection object */,
 pg /* table owner */,
 organizationEdges" /* edge
table name */,
 propertyNames /* property
names */,
 propertyTypes /* property
data types */,
 "pgts" /* table space */,
 null /* storage options */,
 true /* no logging */);

// Get the edges from the employeesDAL graph
Iterator<Edge> edges = opgEmployees.getEdges().iterator();

// Load the edges into the edges table using a Two-Tables schema
Connection[] conns = new Connection[1]; /* the connection array size
defines the
 Degree of parallelism
(multithreading)
 */
conns[1] = conn;
OraclePropertyGraphUtils.writeTwoTablesGraphVertexAndProperties(conn /*
Connection

object */,
 pg /* table owner */,
 "organizationEdges" /* edge
table
 name
*/,
 1000 /* batch size*/,
 new Iterator[] {edges} /*
array of
 iterator of
edges */);

To optimize the performance of the storing operations, you can specify a set of flags
and hints when calling the writeTwoTablesGraph APIs. These hints include:

• DOP: Degree of parallelism. The size of the connection array defines the degree
of parallelism to use when loading the data. This determines the number of chunks
to generate when reading the Iterables as well as the number of loader threads to
use when loading the data into the table.

• Batch Size: An integer specifying the batch size to use for Oracle update
statements in batching mode. A recommended batch size is 1000.

Appendix A
Storing Data in a Property Graph Using a Two-Tables Schema

A-7

A.3 Reading Data from a Property Graph Using a Two-
Tables Schema

To read a subset of vertices from a vertex table using a two-tables schema, you can
use the API OraclePropertyGraphUtils.readTwoTablesGraphVertexAndProperties.
This operation returns an array of ResultSet objects with all the rows found in the
corresponding splits of the vertex table. Each ResultSet object in the array uses one
of the connections provided to fetch the vertex rows from the corresponding split. The
splits are determined by the specified number of total splits.

An integer ID (in the range of [0, N - 1]) is assigned to the splits in the vertex table
with N splits. This way, the subset of splits queried will consist of those splits with ID
value in the range between the start split ID and the start split ID plus the size of the
connection array. If the sum is greater than the total number of splits, then the subset
of splits queried will consist of those splits with ID in the range of [start split ID, N - 1].

The following code reads all vertices from a vertex table using a two-tables schema
using a total of 1 split. Note that you can easily create an array of Blueprints Vertex
Iterables by executing the API on OraclePropertyGraph. The vertices retrieved will
include all the properties defined in the vertex table schema.

ResultSet[] rsAr = readTwoTablesGraphVertexAndProperties(conns,
 "pg" /* table owner */,
 "employeeNodes /*
vertex table
 name
*/,

 1 /* Total Splits*/,
 0 /* Start Split);

Iterable<Vertex>[] vertices = getVerticesPartitioned(rsAr /* ResultSet
array */,
 true /* skip store
to cache */,
 null /* vertex
filter
 callback
*/,
 null /*
optimization flag */);

To optimize reading performance, you can specify the list of property names to retrieve
for each vertex read from the table.

The following code creates a property graph employeesGraphDAL using the
OraclePropertyGraph API, and loads two vertices and an edge. Then, it creates a
vertex table employeNodes using a two-tables schema, and populates it with the data

Appendix A
Reading Data from a Property Graph Using a Two-Tables Schema

A-8

from the vertices in employeesGraphDAL. Finally, it reads the vertices out of the vertex
table using only the name property.

// Create employeesGraphDAL
import oracle.pg.rdbms.*;
Oracle oracle = new Oracle(jdbcURL, username, password);
OraclePropertyGraph opgEmployees
 = OraclePropertyGraph.getInstance(oracle,
"employeesGraphDAL");

// Create vertex v1 and assign it properties as key-value pairs
Vertex v1 = opgEmployees.addVertex(1l);
v1.setProperty("age", Integer.valueOf(31));
v1.setProperty("name", "Alice");
v1.setProperty("address", "Main Street 12");
v1.setProperty("email", "alice@mymail.com");
v1.setProperty("SSN", "123456789");

Vertex v2 = opgEmployees.addVertex(2l);
v2.setProperty("age", Integer.valueOf(27));
v2.setProperty("name", "Bob");
v2.setProperty("adress", "Sesame Street 334");

// Add edge e1
Edge e1 = opgEmployees.addEdge(1l, v1, v2, "managerOf");
e1.setProperty("weight", 0.5d);

opgEmployees.commit();

// Prepare the vertex table using a Two Tables schema
import oracle.pgx.common.types.PropertyType;
List<String> propertyNames = new ArrayList<String>();
propertyNames.addAll(new String[4]{ "name", "age", "address", "SSN" });

List<PropertyType> = new ArrayList<PropertyType>();
propertyType.add(PropertyType.STRING);
propertyType.add(PropertyType.INTEGER);
propertyType.add(PropertyType.STRING);
propertyType.add(PropertyType.STRING);

Connection conn
 = opgEmployees.getOracle().clone().getConnection(); /* Clone the
connection
 from the
property graph
 instance
*/
OraclePropertyGraphUtils.prepareTwoTablesGraphVertexTab(conn /*
Connection object */,
 pg /* table owner */,
 "employeesNodes" /* vertex
table name */,
 propertyNames /* property
names */,
 propertyTypes /* property

Appendix A
Reading Data from a Property Graph Using a Two-Tables Schema

A-9

data types */,
 "pgts" /* table space */,
 null /* storage options */,
 true /* no logging */);

// Get the vertices from the employeesDAL graph
Iterable<Vertex> vertices = opgEmployees.getVertices();

// Load the vertices into the vertex table using a Two Tables schema
Connection[] conns = new Connection[1]; /* the connection array size
defines the
 Degree of parallelism
(multithreading)
 */
conns[1] = conn;
OraclePropertyGraphUtils.writeTwoTablesGraphVertexAndProperties(conn /*
Connection

object */,
 pg /* table owner */,
 "employeesNodes" /* vertex
table name */,
 1000 /* batch size*/,
 new Iterable[]
{vertices} /* array of
 vertex
iterables */);

// Read the vertices (using only name property)
List<String> vPropertyNames = new ArrayList<String>();
vPropertyNames.add("name");
ResultSet[] rsAr = readTwoTablesGraphVertexAndProperties(conns,
 "pg" /* table owner */,
 "employeeNodes /*
vertex table
 name
*/,
 vPropertyNames /* list
of property

names */,
 1 /* Total Splits*/,
 0 /* Start Split);

Iterable<Vertex>[] vertices = getVerticesPartitioned(rsAr /* ResultSet
array */,
 true /* skip store
to cache */,
 null /* vertex
filter
 callback
*/,
 null /*
optimization flag */);

for (int idx = 0; vertices.length; idx++) {

Appendix A
Reading Data from a Property Graph Using a Two-Tables Schema

A-10

 Iterator<Vertex> it = vertices[idx].iterator();
 while (it.hasNext()) {
 System.out.println(it.next());
 }
}

The preceding code produces output similar to the following:

Vertex ID 1 {name:str:Alice}
Vertex ID 2 {name:str:Bob}

To read a subset of edges from an edge table using a two-tables schema, you can use
the API OraclePropertyGraphUtils.readTwoTablesGraphEdgeAndProperties. This
operation returns an array of ResultSet objects with all the rows found in the
corresponding splits of the vertex table. Each ResultSet object in the array uses one
of the connections provided to fetch the vertex rows from the corresponding split. The
splits are determined by the specified number of total splits.

Similar to what is done for reading vertices, an integer ID (in the range of [0, N - 1]) is
assigned to the splits in the vertex table with N splits. The subset of splits queried will
consist of those splits with ID value in the range between the start split ID and the start
split ID plus the size of the connection array.

The following code creates a property graph employeesGraphDAL using the
OraclePropertyGraph API, and loads two vertices and an edge. Then, it creates an
edge table organizationEdges using a two-tables schema, and populates it with the
data from the edges in employeesGraphDAL. Finally, it reads the edges out of table
using only the name weight.

 // Create employeesGraphDAL
 import oracle.pg.rdbms.*;
 Oracle oracle = new Oracle(jdbcURL, username, password);
 OraclePropertyGraph opgEmployees
 = OraclePropertyGraph.getInstance(oracle,
"employeesGraphDAL");

 // Create vertex v1 and assign it properties as key-value pairs
 Vertex v1 = opgEmployees.addVertex(1l);
 v1.setProperty("age", Integer.valueOf(31));
 v1.setProperty("name", "Alice");
 v1.setProperty("address", "Main Street 12");
 v1.setProperty("email", "alice@mymail.com");
 v1.setProperty("SSN", "123456789");

 Vertex v2 = opgEmployees.addVertex(2l);
 v2.setProperty("age", Integer.valueOf(27));
 v2.setProperty("name", "Bob");
 v2.setProperty("adress", "Sesame Street 334");

 // Add edge e1
 Edge e1 = opgEmployees.addEdge(1l, v1, v2, "managerOf");
 e1.setProperty("weight", 0.5d);

 opgEmployees.commit();

Appendix A
Reading Data from a Property Graph Using a Two-Tables Schema

A-11

// Prepare the edge table using a Two Tables schema
import oracle.pgx.common.types.PropertyType;
List<String> propertyNames = new ArrayList<String>();
propertyNames.addAll(new String[4]{ "weight" });

List<PropertyType> = new ArrayList<PropertyType>();
propertyType.add(PropertyType.DOUBLE);

 Connection conn
 = opgEmployees.getOracle().clone().getConnection(); /*
Clone the connection
 from
the property graph

instance */
OraclePropertyGraphUtils.prepareTwoTablesGraphEdgeTab(conn /*
Connection object */,
 pg /* table owner */,
 "organizationEdges" /* edge
table
 name
*/,
 propertyNames /* property
names */,
 propertyTypes /* property
data types */,
 "pgts" /* table space */,
 null /* storage options */,
 true /* no logging */);

// Get the edges from the employeesDAL graph
Iterable<Edge> edges = opgEmployees.getVertices();

// Load the vertices into the vertex table using a Two Tables schema
Connection[] conns = new Connection[1]; /* the connection array size
defines the
 Degree of parallelism
(multithreading)
 */
conns[1] = conn;
OraclePropertyGraphUtils.writeTwoTablesGraphEdgeAndProperties(conn /*
Connection

object */,
 pg /* table owner */,
 organizationEdges" /* edge
table name */,
 1000 /* batch size*/,
 new Iterable[] {edges} /*
array of
 edge
iterables */);

// Read the edges (using only weight property)

Appendix A
Reading Data from a Property Graph Using a Two-Tables Schema

A-12

List<String> ePropertyNames = new ArrayList<String>();
ePropertyNames.add("weight");
ResultSet[] rsAr = readTwoTablesGraphVertexAndProperties(conns,
 "pg" /* table owner */,
 "organizationEdges /*
edge table
 name
*/,
 ePropertyNames /* list
of property

names
*/,

 1 /* Total Splits*/,
 0 /* Start Split);

Iterable<Edge>[] edges = getEdgesPartitioned(rsAr /* ResultSet array */,
 true /* skip store
to cache */,
 null /* edge
filter
 callback
*/,
 null /*
optimization flag */);

for (int idx = 0; edges.length; idx++) {
 Iterator<Edge> it = edges[idx].iterator();
 while (it.hasNext()) {
 System.out.println(it.next());
 }
}

The preceding code produces output similar to the following:

Edge ID 1 from Vertex ID 1 {} =[references]=> Vertex ID 2 {}
edgeKV[{weight:dbl:0.5}]

Appendix A
Reading Data from a Property Graph Using a Two-Tables Schema

A-13

B
About Property Graph Data Formats

Several graph formats are supported for property graph data.

• GraphSON Data Format

• GraphML Data Format

• GML Data Format

• Oracle Flat File Format

B.1 GraphSON Data Format
The GraphSON file format is based on JavaScript Object Notation (JSON) for
describing graphs.

• The first example in this topic shows a GraphSON description of the property
graph shown in What Are Property Graphs?.

• The second example in this topic shows the GraphSON description of the same
graph for Tinkerpop 3.

Example B-1 GraphSON Description of a Simple Property Graph

{
 "graph": {
 "mode":"NORMAL",
 "vertices": [
 {
 "name": "Alice",
 "age": 31,
 "_id": "1",
 "_type": "vertex"
 },
 {
 "name": "Bob",
 "age": 27,
 "_id": "2",
 "_type": "vertex"
 }
],
 "edges": [
 {
 "type": "friends",
 "_id": "3",
 "_type": "edge",
 "_outV": "1",
 "_inV": "2",
 "_label": "knows"
 }
]
 }
}

B-1

Example B-2 GraphSON 3.0 Description of a Simple Property Graph

{"id":{"@type":"g:Int64","@value":1},"label":"person","outE":{"knows":[{"id":
{"@type":"g:Int64","@value":3},"inV":{"@type":"g:Int64","@value":2},"properties":
{"type":"friends"}}]},"properties":{"name":[{"id":
{"@type":"g:Int64","@value":66724076},"value":"Alice"}],"age":[{"id":
{"@type":"g:Int64","@value":96543},"value":{"@type":"g:Int32","@value":31}}]}}
{"id":{"@type":"g:Int64","@value":2},"label":"person","inE":
{"knows":[{"id":{"@type":"g:Int64","@value":3},"outV":
{"@type":"g:Int64","@value":1},"properties":{"type":"friends"}}]},"properties":
{"name":[{"id":{"@type":"g:Int64","@value":3440674},"value":"Bob"}],"age":[{"id":
{"@type":"g:Int64","@value":96540},"value":{"@type":"g:Int32","@value":27}}]}}

Methods are provided to import and export graphs from and into GraphSON format.

The following fragments of code show how to import and export GraphSON data
in Tinkerpop 2 and Tinkerpop 3 versions. Note that the Tinkerpop 3 version has a
“Tinkerpop3” suffix. This is to maintain backward compatibility.

// Get graph instance
OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args, szGraphName);

// Import graph in GraphSON format
String fileName = "./mygraph.graphson";
PrintStream ps = new PrintStream("./output");
OraclePropertyGraphUtils.importGraphSON(opg,fileName,ps);

// Export graph into GraphSON format
String fileName = "./mygraph.graphson";
PrintStream ps = new PrintStream("./output");
OraclePropertyGraphUtils.exportGraphSON(opg,fileName,ps);

// Import graph into Tinkerpop 3 GraphSON format
String fileName = "./mygraphT3.graphson";
PrintStream ps = new PrintStream("./output");
OraclePropertyGraphUtils.importGraphSONTinkerpop3(opg,fileName,ps);

// Export graph into Tinkerpop 3 GraphSON format
String fileName = "./mygraphT3.graphson";
PrintStream ps = new PrintStream("./output");
OraclePropertyGraphUtils.exportGraphSONTinkerpop3(opg,fileName,ps);

Related Topics

• GraphSON Reader and Writer Library

B.2 GraphML Data Format
The GraphML file format uses XML to describe graphs.

• The first example in this topic shows a GraphML description of the property graph
shown in What Are Property Graphs?.

• The second example in this topic shows the GraphML description of the same
graph for Tinkerpop 3. Notice the addition of vertex and edge labels referred as
labelV and labelE, respectively.

Example B-3 GraphML Description of a Simple Property Graph

<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns">

Appendix B
GraphML Data Format

B-2

https://github.com/tinkerpop/blueprints/wiki/GraphSON-Reader-and-Writer-Library

 <key id="name" for="node" attr.name="name" attr.type="string"/>
 <key id="age" for="node" attr.name="age" attr.type="int"/>
 <key id="type" for="edge" attr.name="type" attr.type="string"/>
 <graph id="PG" edgedefault="directed">
 <node id="1">
 <data key="name">Alice</data>
 <data key="age">31</data>
 </node>
 <node id="2">
 <data key="name">Bob</data>
 <data key="age">27</data>
 </node>
 <edge id="3" source="1" target="2" label="knows">
 <data key="type">friends</data>
 </edge>
 </graph>
</graphml>

Example B-4 Tinkerpop 3 GraphML Description of a Simple Property Graph

<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns">
 <key id="labelV" for="node" attr.name="labelV" attr.type="string" />
 <key id="name" for="node" attr.name="name" attr.type="string" />
 <key id="age" for="node" attr.name="age" attr.type="int" />
 <key id="labelE" for="edge" attr.name="labelE" attr.type="string" />
 <key id="type" for="edge" attr.name="type" attr.type="string" />
 <graph id="PG" edgedefault="directed">
 <node id="1">
 <data key="labelV">person</data>
 <data key="name">Alice</data>
 <data key="age">31</data>
 </node>
 <node id="2">
 <data key="labelV">person</data>
 <data key="name">Bob</data>
 <data key="age">27</data>
 </node>
 <edge id="3" source="1" target="2">
 <data key="labelE">knows</data>
 <data key="type">friends</data>
 </edge>
 </graph>
</graphml>

Methods are provided to import and export graphs from and into GraphML format.

The following fragments of code show how to import and export GraphML data in
Tinkerpop 2 and Tinkerpop 3 versions.

// Get graph instance
OraclePropertyGraph opg = OraclePropertyGraph.getInstance(oracle, graphName);

// Import graph in GraphML format
String fileName = "./mygraph.graphml";
PrintStream ps = new PrintStream("./output");
OraclePropertyGraphUtils.importGraphML(opg,fileName,ps);

// Export graph into GraphML format
String fileName = "./mygraph.graphml";
PrintStream ps = new PrintStream("./output");
OraclePropertyGraphUtils.exportGraphML(opg,fileName,ps);

Appendix B
GraphML Data Format

B-3

// Import graph into Tinkerpop 3 GraphML format
String fileName = "./mygraphT3.graphml";
PrintStream ps = new PrintStream("./output");
OraclePropertyGraphUtils.importGraphMLTinkerpop3(opg,fileName,ps);

// Export graph into Tinkerpop 3 GraphML format
String fileName = "./mygraphT3.graphml";
PrintStream ps = new PrintStream("./output");
OraclePropertyGraphUtils.exportGraphMLTinkerpop3(opg,fileName,ps);

Related Topics

• GraphML File Format

B.3 GML Data Format
The Graph Modeling Language (GML) file format uses ASCII to describe graphs.

Note:

GML Data Format is not supported in Tinkerpop 3, and it has been
deprecated in Tinkerpop 2.

The example in this topic shows a GML description of the property graph shown in
What Are Property Graphs?.

Example B-5 GML Description of a Simple Property Graph

graph [
 comment "Simple property graph"
 directed 1
 IsPlanar 1
 node [
 id 1
 label "1"
 name "Alice"
 age 31
]
 node [
 id 2
 label "2"
 name "Bob"
 age 27
]
 edge [
 source 1
 target 2
 label "knows"
 type "friends"
]
]

Methods are provided to import and export graphs from and into GML format.

The following fragments of code show how to import and export GML data. Note that
these methods are deprecated and their use is discouraged:

Appendix B
GML Data Format

B-4

http://graphml.graphdrawing.org/

// Get graph instance
OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args, szGraphName);

// Import graph in GML format
String fileName = "./mygraph.gml";
PrintStream ps = new PrintStream("./output");
OraclePropertyGraphUtils.importGML(opg,fileName,ps);

// Export graph into GML format
String fileName = "./mygraph.gml";
PrintStream ps = new PrintStream("./output");
OraclePropertyGraphUtils.exportGML(opg,fileName,ps);

Related Topics

• GML: A Portable Graph File Format" by Michael Himsolt

B.4 Oracle Flat File Format
The Oracle flat file format exclusively describes property graphs. It is more concise
and provides better data type support than the other file formats. The Oracle flat file
format uses two files for a graph description, one for the vertices and one for edges.
Commas separate the fields of the records.

Example B-6 Oracle Flat File Description of a Simple Property Graph

The following shows the Oracle flat files that describe the simple property graph
example shown in What Are Property Graphs?.

Vertex file:

1,name,1,Alice,,
1,age,2,,31,
2,name,1,Bob,,
2,age,2,,27,

Edge file:

1,1,2,knows,type,1,friends,,

The following shows the flat file description of the same graph for Tinkerpop 3, which
has an additional field for storing the vertex label.

Vertex file:

1,name,1,Alice,,,person
1,age,2,,31,,person
2,name,1,Bob,,,person
2,age,2,,27,,person

Edge file:

3,1,2,knows,type,1,friends,,

Methods are provided tto import and export graphs from and into Flat File format.

The following fragments of code show how to export a graph into Oracle Flat File
Format. To import graphs, see Parallel Loading of Graph Data.

// Get graph instance
OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args, szGraphName);

Appendix B
Oracle Flat File Format

B-5

https://www.semanticscholar.org/paper/GML%3A-A-portable-Graph-File-Format-Himsolt/d0a56b07a59a29b48d6f957763add90e05925c2c

// Export graph into Flat File Format
String vertexFileName = "./mygraph.opv";
String edgeFileName = "./mygraph.ope";
int dop = 2;
Boolean append = false;
OraclePropertyGraphUtils.exportFlatFiles(opg,vertexFileName,edgeFileName,dop,appe
nd);

Related Topics

• Oracle Flat File Format Definition
A property graph can be defined in two flat files, specifically description files for the
vertices and edges.

Appendix B
Oracle Flat File Format

B-6

C
Mapping Graph Server Roles to Default
Privileges

Installing the PL/SQL packages of the Oracle Graph Server and Client distribution on
the target Oracle Database, automatically creates the following roles and assigns the
default permissions as shown in the following table:

Table C-1 Mapping Graph Server Roles to Default Privileges

Table Name Description

GRAPH_ADMINIS
TRATOR

PGX_SESSION_CREATE
PGX_SERVER_GET_INFO
PGX_SERVER_MANAGE

GRAPH_DEVELOP
ER

PGX_SESSION_CREATE
PGX_SESSION_NEW_GRAPH
PGX_SESSION_GET_PUBLISHED_GRAPH
PGX_SESSION_MODIFY_MODEL
PGX_SESSION_READ_MODEL

C-1

D
Disabling Transport Layer Security (TLS) in
Graph Server

For demonstration or evaluation purposes, it is possible to turn off transport layer
security (TLS) of the graph server.

Caution:

This is not recommended for production. In a secure configuration, the
server must always have TLS enabled.

The following instructions only apply if you installed the graph server via the RPM
package.

Note:

If you deployed the graph server into your own web server (e.g Weblogic
or Apache Tomcat), please refer to the manual of your web server for TLS
configuration.

1. Edit /etc/oracle/graph/server.conf to change enable_tls to false.

2. Edit the WEB-INF/web.xml file inside the WAR file in /opt/oracle/graph/graphviz
and configure cookies to be sent over non-secure connections by setting
<secure>false</secure> as follows:

<session-config>
 <tracking-mode>COOKIE</tracking-mode>
 <cookie-config>
 <secure>false</secure>
 </cookie-config>
 ...
</session-config>

3. Additionally, replace `https` with `http` in the `pgx.base_url` property in the
same WEB-INF/web.xml file. For example:

<context-param>
 <param-name>pgx.base_url</param-name>
 <param-value>http://localhost:7007</param-value>
</context-param>

D-1

4. Restart the server.

sudo systemctl restart pgx

The graph server now accepts connections over HTTP instead of HTTPS.

On Oracle Linux 7, you can execute the following script to perform the preceding four
steps all at once:

echo "$(jq '.enable_tls = false' /etc/oracle/graph/server.conf)" > /etc/
oracle/graph/server.conf
WAR=$(find /opt/oracle/graph/graphviz -name '*.war')
TMP=$(mktemp -d)
cd $TMP
unzip $WAR WEB-INF/web.xml
sed -i 's|<secure>true</secure>|<secure>false</secure>|' WEB-INF/web.xml
sed -i 's|https://|http://|' WEB-INF/web.xml
sudo zip $WAR WEB-INF/web.xml
rm -r $TMP
sudo systemctl restart pgx

Appendix D

D-2

Index

A
ANALYZE_PG procedure, 9-2
automatic delta refresh, 3-49

C
CF procedure, 9-4
CF_CLEANUP procedure, 9-7
CF_PREP procedure, 9-9
CLEAR_PG procedure, 9-10
CLEAR_PG_INDICES procedure, 9-11
CLONE_GRAPH procedure, 9-11
collaborative filtering, 9-4, 9-7, 9-9
connected components

finding, 9-32
COUNT_TRIANGLE function, 9-12
COUNT_TRIANGLE_CLEANUP procedure, 9-13
COUNT_TRIANGLE_PREP procedure, 9-14
COUNT_TRIANGLE_RENUM function, 9-16
CREATE_EDGES_TEXT_IDX procedure, 9-17
CREATE_PG procedure, 9-18
CREATE_PG_SNAPSHOT_TAB procedure, 9-19
CREATE_PG_TEXTIDX_TAB procedure, 9-21
CREATE_STAT_TABLE procedure, 9-22
CREATE_SUB_GRAPH procedure, 9-23
CREATE_VERTICES_TEXT_IDX procedure,

9-24

D
DROP_EDGES_TEXT_IDX procedure, 9-26
DROP_PG procedure, 9-26
DROP_PG_VIEW procedure, 9-27
DROP_VERTICES_TEXT_IDX procedure, 9-27

E
edge table statistics

exporting, 9-30
importing, 9-51

ESTIMATE_TRIANGLE_RENUM function, 9-28
EXP_EDGE_TAB_STATS procedure, 9-30
EXP_VERTEX_TAB_STATS procedure, 9-31

F
FIND_CC_MAPPING_BASED procedure, 9-32
FIND_CLUSTERS_CLEANUP procedure, 9-33
FIND_CLUSTERS_PREP procedure, 9-34
FIND_SP procedure, 9-36
FIND_SP_CLEANUP procedure, 9-37
FIND_SP_PREP procedure, 9-38

G
geometries

getting, 9-39, 9-41
getting from longitude and latitude, 9-44
WKT, 9-48, 9-49

GET_BUILD_ID function, 9-39
GET_GEOMETRY_FROM_V_COL function,

9-39
GET_GEOMETRY_FROM_V_T_COLS function,

9-41
GET_LATLONG_FROM_V_COL function, 9-42,

9-45
GET_LATLONG_FROM_V_T_COLS function,

9-43
GET_LONG_LAT_GEOMETRY function, 9-44
GET_LONGLAT_FROM_V_T_COLS function,

9-46
GET_SCN function, 9-47
GET_VERSION function, 9-47
GET_WKTGEOMETRY_FROM_V_COL function,

9-48
GET_WKTGEOMETRY_FROM_V_T_COLS

function, 9-49
GRANT_ACCESS procedure, 9-50

I
IMP_EDGE_TAB_STATS procedure, 9-51
IMP_VERTEX_TAB_STATS procedure, 9-52
in-memory Graph server (PGX), 3-1

Index-1

O
OPG_APIS package

ANALYZE_PG, 9-2
CF, 9-4
CF_CLEANUP, 9-7
CF_PREP, 9-9
CLEAR_PG, 9-10
CLEAR_PG_INDICES, 9-11
CLONE_GRAPH, 9-11
COUNT_TRIANGLE, 9-12
COUNT_TRIANGLE_CLEANUP, 9-13
COUNT_TRIANGLE_PREP, 9-14
COUNT_TRIANGLE_RENUM, 9-16
CREATE_EDGES_TEXT_IDX, 9-17
CREATE_PG, 9-18
CREATE_PG_SNAPSHOT_TAB, 9-19
CREATE_PG_TEXTIDX_TAB, 9-21
CREATE_STAT_TABLE, 9-22
CREATE_SUB_GRAPH, 9-23
CREATE_VERTICES_TEXT_IDX, 9-24
DROP_EDGES_TEXT_IDX, 9-26
DROP_PG, 9-26
DROP_PG_VIEW, 9-27
DROP_VERTICES_TEXT_IDX, 9-27
ESTIMATE_TRIANGLE_RENUM, 9-28
EXP_EDGE_TAB_STATS, 9-30
EXP_VERTEX_TAB_STATS, 9-31
FIND_CC_MAPPING_BASED, 9-32
FIND_CLUSTERS_CLEANUP, 9-33
FIND_CLUSTERS_PREP, 9-34
FIND_SP, 9-36
FIND_SP_CLEANUP, 9-37
FIND_SP_PREP, 9-38
GET_BUILD_ID, 9-39
GET_GEOMETRY_FROM_V_COL, 9-39
GET_GEOMETRY_FROM_V_T_COLS, 9-41
GET_LATLONG_FROM_V_COL, 9-42, 9-45
GET_LATLONG_FROM_V_T_COLS, 9-43
GET_LONG_LAT_GEOMETRY, 9-44
GET_LONGLAT_FROM_V_T_COLS, 9-46
GET_SCN, 9-47
GET_VERSION, 9-47
GET_WKTGEOMETRY_FROM_V_COL,

9-48
GET_WKTGEOMETRY_FROM_V_T_COLS,

9-49
GRANT_ACCESS, 9-50
IMP_EDGE_TAB_STATS, 9-51
IMP_VERTEX_TAB_STATS, 9-52
PR, 9-54
PR_CLEANUP, 9-56
PR_PREP, 9-57
PREPARE_TEXT_INDEX, 9-58
reference information, 9-1

OPG_APIS package (continued)
RENAME_PG, 9-59
SPARSIFY_GRAPH, 9-59
SPARSIFY_GRAPH_CLEANUP, 9-61
SPARSIFY_GRAPH_PREP, 9-62

OPG_GRAPHOP package
POPULATE_SKELETON_TAB, 10-1
reference information, 10-1

P
page rank

calculating, 9-54
cleanup, 9-56
preparing to find, 9-57

PGQL (Property Graph Query Language), 5-1
PGX (in-memory Graph server), 3-1
PgxML for Graphs, 7-1

DeepWalk Algorithm, 7-1
Pg2vec Algorithm, 7-17
Supervised GraphWise Algorithm, 7-10

POPULATE_SKELETON_TAB procedure, 10-1
PR procedure, 9-54
PR_CLEANUP procedure, 9-56
PR_PREP procedure, 9-57
PREPARE_TEXT_INDEX procedure, 9-58
property graph

cleanup after sparsifying, 9-61
clearing (removing data from), 9-10
cloning, 9-11
collaborative filtering, 9-4, 9-7, 9-9
creating, 9-18
dropping, 9-26
dropping view definition, 9-27
preparing to sparsify, 9-62
removing text index metadata, 9-11
renaming, 9-59
sparsifying, 9-59

property graph access privileges
grantnig, 9-50

Property Graph Query Language (PGQL), 5-1
property graph statistics table

creating, 9-22
property graph support

getting build ID, 9-39
getting SCN, 9-47
getting version, 9-47

R
RENAME_PG procedure, 9-59

Index

Index-2

S
shortest path

cleanup, 9-37
finding, 9-36
preparing to find, 9-38

skeleton table
populating, 10-1

snapshot table
creating, 9-19

SPARSIFY_GRAPH procedure, 9-59
SPARSIFY_GRAPH_CLEANUP procedure, 9-61
SPARSIFY_GRAPH_PREP procedure, 9-62
statistics for property graph

analyzing, 9-2
subgraph

creating, 9-23

T
text index

on property graph edge table, 9-17

text index (continued)
on property graph edge table (dropping),

9-26
on property graph vertex table, 9-24
on property graph vertex table (dropping),

9-27
preparing, 9-58

text index table
creating, 9-21

triangles
cleanup after counting, 9-13
counting, 9-12
counting and renumbering vertices, 9-16
estimating the number, 9-28
preparing to count, 9-14

V
vertex cluster mappings

preparing, 9-33, 9-34
vertex table statistics

exporting, 9-31
importing, 9-52

Index

Index-3

	Contents
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for This Guide
	1 Property Graph Support Overview
	1.1 About the Property Graph Feature of Oracle Database
	1.2 Property Graph Prerequisites
	1.3 Property Graph Features
	1.3.1 Property Graph Sizing Recommendations

	1.4 Security Best Practices with Graph Data
	1.5 Interactive Graph Shell
	1.6 Using Graph Server Functionality as a Library
	1.7 Storing Graphs in Oracle Database and Loading Graphs into Memory
	1.7.1 Two-Tier Mode
	1.7.2 Three-Tier Mode

	1.8 Using Oracle Graph with the Autonomous Database
	1.8.1 Two-Tier Deployments of Oracle Graph with Autonomous Database
	1.8.2 Three-Tier Deployments of Oracle Graph with Autonomous Database

	1.9 Migrating Property Graph Applications from Before Release 21c
	1.10 Upgrading From Graph Server and Client 20.4.x to 21.1.0
	1.11 Quick Start: Interactively Analyze Graph Data
	1.11.1 Quick Start: Create, Query, and Analyze a Graph in In-Memory Graph Server (PGX)
	1.11.2 Quick Start: Create and Query a Graph in the Database, Load into In-Memory Graph Server (PGX) for Analytics
	1.11.2.1 Create and Query a Graph in the Database
	1.11.2.2 Load the Graph into Memory and Run Graph Analytics

	1.11.3 Quick Start: Executing PGQL Queries in SQLcl

	1.12 Managing Property Graphs With Python Client
	1.12.1 Installing the Python Client
	1.12.2 Using the Python Client
	1.12.2.1 Interactive Mode Using Python Shell
	1.12.2.2 Module Mode

	1.12.3 Troubleshooting the Python Client
	1.12.4 Uninstalling the Python Client

	2 Using Property Graphs in an Oracle Database Environment
	2.1 About Property Graphs
	2.1.1 What Are Property Graphs?
	2.1.2 What Is Oracle Database Support for Property Graphs?
	2.1.2.1 In-Memory Graph Server (PGX)
	2.1.2.2 Data Access Layer
	2.1.2.3 Options for Property Graph Architecture

	2.2 Property Graph Views on Oracle Database Tables
	2.3 Property Graph Schema Objects for Oracle Database
	2.3.1 Property Graph Tables (Detailed Information)
	2.3.2 Default Indexes on Vertex (VT$) and Edge (GE$) Tables
	2.3.3 Flexibility in the Property Graph Schema

	2.4 Getting Started with Property Graphs
	2.4.1 Required Privileges for Database Users

	2.5 Using Java APIs for Property Graph Data
	2.5.1 Overview of the Java APIs
	2.5.1.1 Oracle Graph Property Graph Java APIs
	2.5.1.2 Oracle Database Property Graph Java APIs

	2.5.2 Parallel Loading of Graph Data
	2.5.2.1 JDBC-Based Data Loading
	2.5.2.2 External Table-Based Data Loading
	2.5.2.3 SQL*Loader-Based Data Loading

	2.5.3 Parallel Retrieval of Graph Data
	2.5.4 Using an Element Filter Callback for Subgraph Extraction
	2.5.5 Using Optimization Flags on Reads over Property Graph Data
	2.5.6 Adding and Removing Attributes of a Property Graph Subgraph
	2.5.7 Getting Property Graph Metadata
	2.5.8 Merging New Data into an Existing Property Graph
	2.5.9 Opening and Closing a Property Graph Instance
	2.5.10 Creating Vertices
	2.5.11 Creating Edges
	2.5.12 Deleting Vertices and Edges
	2.5.13 Reading a Graph from a Database into an Embedded In-Memory Analyst
	2.5.14 Specifying Labels for Vertices
	2.5.15 Building an In-Memory Graph
	2.5.16 Dropping a Property Graph
	2.5.17 Executing PGQL Queries

	2.6 Managing Text Indexing for Property Graph Data
	2.6.1 Configuring a Text Index for Property Graph Data
	2.6.1.1 Configuring Text Indexes Using Oracle Text

	2.6.2 Using Automatic Indexes for Property Graph Data
	2.6.3 Using Manual Indexes for Property Graph Data
	2.6.4 Executing Search Queries Over a Property Graph’s Text Indexes
	2.6.4.1 Executing Search Queries Over a Text Index Using Oracle Text

	2.6.5 Handling Data Types
	2.6.5.1 Handling Data Types on Oracle Text

	2.6.6 Updating Configuration Settings on Text Indexes for Property Graph Data
	2.6.7 Using Parallel Query on Text Indexes for Property Graph Data
	2.6.7.1 Parallel Text Search Using Oracle Text

	2.7 Access Control for Property Graph Data (Graph-Level and OLS)
	2.7.1 Applying Oracle Label Security (OLS) on Property Graph Data

	2.8 Using the Groovy-Based Shell with Property Graph Data
	2.9 Using the Graph Zeppelin Interpreter Client
	2.10 Creating Property Graph Views on an RDF Graph
	2.11 Oracle Flat File Format Definition
	2.11.1 About the Property Graph Description Files
	2.11.2 Edge File
	2.11.3 Vertex File
	2.11.4 Encoding Special Characters
	2.11.5 Example Property Graph in Oracle Flat File Format
	2.11.6 Converting an Oracle Database Table to an Oracle-Defined Property Graph Flat File
	2.11.7 Converting CSV Files for Vertices and Edges to Oracle-Defined Property Graph Flat Files

	3 Using the In-Memory Graph Server (PGX)
	3.1 Overview of the In-Memory Graph Server (PGX)
	3.1.1 Connecting to the In-Memory Graph Server (PGX)

	3.2 User Authentication and Authorization
	3.2.1 Prepare the Graph Server for Database Authentication
	3.2.2 Connect to the Server from JShell with Database Authentication
	3.2.3 Read Data from the Database
	3.2.4 Store the Database Password in a Keystore
	3.2.5 Token Expiration
	3.2.6 Advanced Access Configuration
	3.2.6.1 Customizing Roles and Permissions
	3.2.6.1.1 Adding and Removing Roles
	3.2.6.1.2 Defining Permissions for Individual Users

	3.2.7 Revoking Access to the Graph Server
	3.2.8 Examples of Custom Authorization Rules

	3.3 Keeping the Graph in Oracle Database Synchronized with the Graph Server
	3.3.1 Example of Synchronizing

	3.4 Configuring the In-Memory Analyst
	3.4.1 Specifying the Configuration File to the In-Memory Analyst

	3.5 Storing a Graph Snapshot on Disk
	3.6 Executing Built-in Algorithms
	3.6.1 About the In-Memory Analyst
	3.6.2 Running the Triangle Counting Algorithm
	3.6.3 Running the PageRank Algorithm

	3.7 Using Custom PGX Graph Algorithms
	3.7.1 Writing a Custom PGX Algorithm
	3.7.1.1 Collections
	3.7.1.2 Iteration
	3.7.1.3 Reductions

	3.7.2 Compiling and Running a PGX Algorithm
	3.7.3 Example Custom PGX Algorithm: PageRank

	3.8 Creating Subgraphs
	3.8.1 About Filter Expressions
	3.8.2 Using a Simple Filter to Create a Subgraph
	3.8.3 Using a Complex Filter to Create a Subgraph
	3.8.4 Using a Vertex Set to Create a Bipartite Subgraph

	3.9 Using Automatic Delta Refresh to Handle Database Changes
	3.9.1 Configuring the In-Memory Server for Auto-Refresh
	3.9.2 Configuring Basic Auto-Refresh
	3.9.3 Reading the Graph Using the In-Memory Analyst or a Java Application
	3.9.4 Checking Out a Specific Snapshot of the Graph
	3.9.5 Advanced Auto-Refresh Configuration

	3.10 Starting the In-Memory Analyst Server
	3.10.1 Configuring the In-Memory Analyst Server

	3.11 Deploying to Apache Tomcat
	3.11.1 About the Authentication Mechanism

	3.12 Deploying to Oracle WebLogic Server
	3.12.1 Installing Oracle WebLogic Server

	3.13 Connecting to the In-Memory Analyst Server
	3.13.1 Connecting with the In-Memory Analyst Shell
	3.13.1.1 About Logging HTTP Requests

	3.13.2 Connecting with Java
	3.13.3 Connecting with the PGX REST API

	3.14 Managing Property Graph Snapshots
	3.15 User-Defined Functions (UDFs) in PGX

	4 SQL-Based Property Graph Query and Analytics
	4.1 Simple Property Graph Queries
	4.2 Text Queries on Property Graphs
	4.3 Navigation and Graph Pattern Matching
	4.4 Navigation Options: CONNECT BY and Parallel Recursion
	4.5 Pivot
	4.6 SQL-Based Property Graph Analytics
	4.6.1 Shortest Path Examples
	4.6.2 Collaborative Filtering Overview and Examples

	5 Property Graph Query Language (PGQL)
	5.1 Creating a Property Graph using PGQL
	5.2 Creating Property Graph Views Using PGQL
	5.3 Pattern Matching with PGQL
	5.4 Edge Patterns Have a Direction with PGQL
	5.5 Vertex and Edge Labels with PGQL
	5.6 Variable-Length Paths with PGQL
	5.7 Aggregation and Sorting with PGQL
	5.8 Executing PGQL Queries Against the In-Memory Graph Server (PGX)
	5.8.1 Getting Started with PGQL
	5.8.2 Supported PGQL Features
	5.8.2.1 Limitations on Quantifiers
	5.8.2.2 Limitations on WHERE and COST Clauses in Quantified Patterns

	5.8.3 Java APIs for Executing CREATE PROPERTY GRAPH Statements
	5.8.4 Java APIs for Executing SELECT Queries
	5.8.4.1 Executing SELECT Queries Against a Graph in the In-memory Graph Server (PGX)
	5.8.4.2 Executing SELECT Queries Against a PGX Session
	5.8.4.3 Iterating Through a Result Set
	5.8.4.4 Printing a Result Set

	5.8.5 Java APIs for Executing UPDATE Queries
	5.8.5.1 Executing UPDATE Queries against a Graph in the in-memory Graph Server (PGX)
	5.8.5.2 Executing UPDATE Queries Against a PGX Session
	5.8.5.3 Updatability of Graphs Through PGQL
	5.8.5.4 Altering the Underlying Schema of a Graph

	5.8.6 Security Tools for Executing PGQL Queries
	5.8.6.1 Using Bind Variables
	5.8.6.2 Using Identifiers in a Safe Manner

	5.8.7 Best Practices for Tuning PGQL Queries
	5.8.7.1 Memory Allocation
	5.8.7.2 Parallelism
	5.8.7.3 Query Plan Explaining

	5.9 Executing PGQL Queries Directly Against Oracle Database
	5.9.1 PGQL Features Supported
	5.9.1.1 Temporal Types
	5.9.1.2 Type Casting
	5.9.1.3 CONTAINS Built-in Function

	5.9.2 Creating Property Graphs through CREATE PROPERTY GRAPH Statements
	5.9.3 Dropping Property Graphs through DROP PROPERTY GRAPH Statements
	5.9.4 Using the oracle.pg.rdbms.pgql Java Package to Execute PGQL Queries
	5.9.4.1 Basic Query Execution
	5.9.4.2 Security Techniques for PGQL Queries
	5.9.4.2.1 Using Bind Variables in PGQL Queries
	5.9.4.2.2 Verifying PGQL Identifiers

	5.9.4.3 Using a Text Index with PGQL Queries
	5.9.4.4 Obtaining the SQL Translation for a PGQL Query
	5.9.4.5 Additional Options for PGQL Translation and Execution
	5.9.4.5.1 Query Options Controlled by Explicit Arguments
	5.9.4.5.2 Using the GT$ Skeleton Table
	5.9.4.5.3 Path Query Options
	5.9.4.5.4 Options for Partial Object Construction

	5.9.4.6 Querying Another User’s Property Graph
	5.9.4.7 Using Query Optimizer Hints with PGQL

	5.9.5 Modifying Property Graphs through INSERT, UPDATE, and DELETE Statements
	5.9.5.1 Additional Options for PGQL Statement Execution
	5.9.5.1.1 Turning Off PGQL Auto Commit
	5.9.5.1.2 Turning Off Cascading Deletion

	5.9.6 Performance Considerations for PGQL Queries

	6 Graph Visualization Application
	6.1 About the Graph Visualization Application
	6.2 How does the Graph Visualization Application Work
	6.3 Deploying Graph Visualization Application
	6.3.1 How to Deploy the Graph Visualization Application
	6.3.2 Deploying Graph Visualization Application in Oracle WebLogic Server

	6.4 Using GraphViz
	6.4.1 GraphViz Modes
	6.4.2 GraphViz Settings
	6.4.3 Using Live Search
	6.4.4 Using URL Parameters to Control GraphViz

	7 Using the Machine Learning Library (PgxML) for Graphs
	7.1 Using the DeepWalk Algorithm
	7.1.1 Loading a Graph
	7.1.2 Building a Minimal DeepWalk Model
	7.1.3 Building a Customized DeepWalk Model
	7.1.4 Training a DeepWalk Model
	7.1.5 Getting the Loss Value For a DeepWalk Model
	7.1.6 Computing Similar Vertices for a Given Vertex
	7.1.7 Computing Similar Vertices for a Vertex Batch
	7.1.8 Storing a Trained DeepWalk Model
	7.1.8.1 Storing a Trained Model in Another Database

	7.1.9 Loading a Pre-Trained DeepWalk Model
	7.1.9.1 Loading a Pre-Trained Model From Another Database

	7.1.10 Destroying a DeepWalk Model

	7.2 Using the Supervised GraphWise Algorithm
	7.2.1 Loading a Graph
	7.2.2 Building a Minimal GraphWise Model
	7.2.3 Advanced Hyperparameter Customization
	7.2.4 Training a Supervised GraphWise Model
	7.2.5 Getting the Loss Value For a Supervised GraphWise Model
	7.2.6 Inferring the Vertex Labels for a Supervised GraphWise Model
	7.2.7 Evaluating the Supervised GraphWise Model Performance
	7.2.8 Inferring Embeddings for a Supervised GraphWise Model
	7.2.9 Storing a Trained Supervised GraphWise Model
	7.2.10 Loading a Pre-Trained Supervised GraphWise Model
	7.2.11 Destroying a Supervised GraphWise Model

	7.3 Using the Pg2vec Algorithm
	7.3.1 Loading a Graph
	7.3.2 Building a Minimal Pg2vec Model
	7.3.3 Building a Customized Pg2vec Model
	7.3.4 Training a Pg2vec Model
	7.3.5 Getting the Loss Value For a Pg2vec Model
	7.3.6 Computing Similar Graphlets for a Given Graphlet
	7.3.7 Computing Similars for a Graphlet Batch
	7.3.8 Inferring a Graphlet Vector
	7.3.9 Inferring Vectors for a Graphlet Batch
	7.3.10 Storing a Trained Pg2vec Model
	7.3.11 Loading a Pre-Trained Pg2vec Model
	7.3.12 Destroying a Pg2vec Model

	8 Spatial Support in Property Graphs
	8.1 Representing Spatial Data in a Property Graph
	8.2 Creating a Spatial Index on Property Graph Data
	8.3 Querying Spatial Data in a Property Graph

	9 OPG_APIS Package Subprograms
	9.1 OPG_APIS.ANALYZE_PG
	9.2 OPG_APIS.CF
	9.3 OPG_APIS.CF_CLEANUP
	9.4 OPG_APIS.CF_PREP
	9.5 OPG_APIS.CLEAR_PG
	9.6 OPG_APIS.CLEAR_PG_INDICES
	9.7 OPG_APIS.CLONE_GRAPH
	9.8 OPG_APIS.COUNT_TRIANGLE
	9.9 OPG_APIS.COUNT_TRIANGLE_CLEANUP
	9.10 OPG_APIS.COUNT_TRIANGLE_PREP
	9.11 OPG_APIS.COUNT_TRIANGLE_RENUM
	9.12 OPG_APIS.CREATE_EDGES_TEXT_IDX
	9.13 OPG_APIS.CREATE_PG
	9.14 OPG_APIS.CREATE_PG_SNAPSHOT_TAB
	9.15 OPG_APIS.CREATE_PG_TEXTIDX_TAB
	9.16 OPG_APIS.CREATE_STAT_TABLE
	9.17 OPG_APIS.CREATE_SUB_GRAPH
	9.18 OPG_APIS.CREATE_VERTICES_TEXT_IDX
	9.19 OPG_APIS.DROP_EDGES_TEXT_IDX
	9.20 OPG_APIS.DROP_PG
	9.21 OPG_APIS.DROP_PG_VIEW
	9.22 OPG_APIS.DROP_VERTICES_TEXT_IDX
	9.23 OPG_APIS.ESTIMATE_TRIANGLE_RENUM
	9.24 OPG_APIS.EXP_EDGE_TAB_STATS
	9.25 OPG_APIS.EXP_VERTEX_TAB_STATS
	9.26 OPG_APIS.FIND_CC_MAPPING_BASED
	9.27 OPG_APIS.FIND_CLUSTERS_CLEANUP
	9.28 OPG_APIS.FIND_CLUSTERS_PREP
	9.29 OPG_APIS.FIND_SP
	9.30 OPG_APIS.FIND_SP_CLEANUP
	9.31 OPG_APIS.FIND_SP_PREP
	9.32 OPG_APIS.GET_BUILD_ID
	9.33 OPG_APIS.GET_GEOMETRY_FROM_V_COL
	9.34 OPG_APIS.GET_GEOMETRY_FROM_V_T_COLS
	9.35 OPG_APIS.GET_LATLONG_FROM_V_COL
	9.36 OPG_APIS.GET_LATLONG_FROM_V_T_COLS
	9.37 OPG_APIS.GET_LONG_LAT_GEOMETRY
	9.38 OPG_APIS.GET_LATLONG_FROM_V_COL
	9.39 OPG_APIS.GET_LONGLAT_FROM_V_T_COLS
	9.40 OPG_APIS.GET_SCN
	9.41 OPG_APIS.GET_VERSION
	9.42 OPG_APIS.GET_WKTGEOMETRY_FROM_V_COL
	9.43 OPG_APIS.GET_WKTGEOMETRY_FROM_V_T_COLS
	9.44 OPG_APIS.GRANT_ACCESS
	9.45 OPG_APIS.IMP_EDGE_TAB_STATS
	9.46 OPG_APIS.IMP_VERTEX_TAB_STATS
	9.47 OPG_APIS.PR
	9.48 OPG_APIS.PR_CLEANUP
	9.49 OPG_APIS.PR_PREP
	9.50 OPG_APIS.PREPARE_TEXT_INDEX
	9.51 OPG_APIS.RENAME_PG
	9.52 OPG_APIS.SPARSIFY_GRAPH
	9.53 OPG_APIS.SPARSIFY_GRAPH_CLEANUP
	9.54 OPG_APIS.SPARSIFY_GRAPH_PREP

	10 OPG_GRAPHOP Package Subprograms
	10.1 OPG_GRAPHOP.POPULATE_SKELETON_TAB

	Supplementary Information for Property Graph Support
	A Handling Property Graphs Using a Two-Tables Schema
	A.1 Preparing the Two-Tables Schema
	A.2 Storing Data in a Property Graph Using a Two-Tables Schema
	A.3 Reading Data from a Property Graph Using a Two-Tables Schema

	B About Property Graph Data Formats
	B.1 GraphSON Data Format
	B.2 GraphML Data Format
	B.3 GML Data Format
	B.4 Oracle Flat File Format

	C Mapping Graph Server Roles to Default Privileges
	D Disabling Transport Layer Security (TLS) in Graph Server

	Index

