
Oracle® Database
Graph Developer's Guide for Property Graph

24.3
G10235-02
August 2024



Oracle Database Graph Developer's Guide for Property Graph, 24.3

G10235-02

Copyright © 2016, 2024, Oracle and/or its affiliates.

Primary Author: Lavanya Jayapalan

Contributors: Prashant Kannan, Chuck Murray, Melliyal Annamalai, Korbinian Schmid, Albert Godfrind, Oskar van Rest,
Jorge Barba, Ana Estrada, Steve Serra, Ryota Yamanaka, Bill Beauregard, Hector Briseno, Hassan Chafi, Eugene
Chong, Souripriya Das, Juan Garcia, Florian Gratzer, Zazhil Herena, Sungpack Hong, Roberto Infante, Hugo Labra,
Gabriela Montiel-Moreno, Eduardo Pacheco, Joao Paiva, Matthew Perry, Diego Ramirez, Siva Ravada, Carlos Reyes,
Jane Tao, Edgar Vazquez, Zhe (Alan) Wu

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.



Contents

 Preface

Audience xxv

Documentation Accessibility xxv

Related Documents xxv

Conventions xxv

 Changes in This Release for This Guide

Deprecated Features xxviii

Desupported Features xxx

Part I   Getting Started with Oracle Property Graphs

1   Introduction to Property Graphs

1.1 What Are Property Graphs? 1-1

1.2 About the Property Graph Feature of Oracle Database 1-2

1.3 Overview of Property Graph Architecture 1-3

1.3.1 Architecture Model for Running Graph Queries in the Database 1-3

1.3.2 Architecture Model for Running Graph Analytics 1-4

1.3.3 Developing Applications Using Graph Server Functionality as a Library 1-6

1.4 Learn About the Graph Server (PGX) 1-6

1.4.1 Overview of the Graph Server (PGX) 1-7

1.4.1.1 Design of the Graph Server (PGX) 1-7

1.4.1.2 Usage Modes of the Graph Server (PGX) 1-8

1.5 Security Best Practices with Graph Data 1-9

1.6 About Oracle Graph Server and Client Accessibility 1-10

2   Using Oracle Graph with the Autonomous Database

2.1 Two-Tier Deployments of Oracle Graph with Autonomous Database 2-1

2.2 Three-Tier Deployments of Oracle Graph with Autonomous Database 2-2

iii



Part II   SQL Property Graphs

3   Introduction to SQL Property Graphs

3.1 Quick Start for Working with SQL Property Graphs 3-2

4   SQL DDL Statements for Property Graphs

4.1 Creating a SQL Property Graph 4-1

4.1.1 About Vertex and Edge Graph Element Tables 4-4

4.1.2 About Vertex and Edge Table Keys 4-4

4.1.3 About Labels and Properties 4-6

4.1.4 Using Graph Options to Create SQL Property Graphs 4-8

4.1.5 Granting System and Object Privileges for SQL Property Graphs 4-11

4.1.6 Retrieving Metadata for SQL Property Graphs 4-12

4.1.7 Retrieving SQL Creation DDL Using the DBMS_METADATA Package 4-13

4.1.8 Limitations of Creating a SQL Property Graph 4-14

4.2 Revalidating a SQL Property Graph 4-15

4.3 Renaming a SQL Property Graph 4-15

4.4 Dropping a SQL Property Graph 4-15

4.5 JSON Support in SQL Property Graphs 4-16

5   SQL Graph Queries

5.1 About Graph Pattern 5-2

5.1.1 Graph Element Variables 5-3

5.1.2 Label Expressions 5-4

5.1.3 Accessing Label Properties 5-6

5.2 Variable Length Path Patterns 5-8

5.3 Complex Path Patterns 5-8

5.4 Vertex and Edge Identifiers 5-9

5.5 Using Aggregate Functions in SQL Graph Queries 5-10

5.6 Selecting All Properties in the COLUMNS Clause 5-11

5.7 Using the SOURCE and DESTINATION Predicates 5-12

5.8 Running SQL Graph Queries at a Specific SCN 5-12

5.9 Privileges to Query a SQL Property Graph 5-12

5.10 Examples for SQL Graph Queries 5-13

5.10.1 Setting Up Sample Data in the Database 5-23

5.11 Supported Features and Limitations for Querying a SQL Property Graph 5-25

5.12 Tuning SQL Property Graph Queries 5-26

5.13 Type Compatibility Rules for Determining Property Types 5-28

iv



5.14 Viewing and Querying SQL Property Graphs Using SQL Developer 5-29

6   Loading a SQL Property Graph into the Graph Server (PGX)

6.1 Loading a SQL Property Graph Using the readGraphByName API 6-1

6.1.1 Loading a SQL Property Graph from a Different Schema 6-3

6.1.2 Loading a SQL Property Graph Using Graph Optimization Options 6-4

6.1.3 Loading a SQL Property Graph Using OnMissingVertex Options 6-6

6.2 Loading a Subgraph Using PGQL Queries 6-7

6.3 Expanding a Subgraph 6-9

6.4 Handling Vertex and Edge Identifiers in the Graph Server (PGX) 6-10

6.5 Mapping Oracle Database Types to PGX Types 6-10

6.6 Privileges to Load a SQL Property Graph 6-11

6.7 Restriction on Key Types 6-12

6.8 Loading SQL Property Graphs with Unsupported Key Types 6-12

7   Executing PGQL Queries Against SQL Property Graphs

7.1 Creating a SQL Property Graph Using PGQL 7-2

7.2 Executing PGQL SELECT Queries on a SQL Property Graph 7-4

7.3 Migrating PGQL Property Graphs to SQL Property Graphs 7-6

7.4 Supported PGQL Features and Limitations for SQL Property Graphs 7-7

8   Visualizing SQL Graph Queries Using the APEX Graph Visualization
Plug-in

8.1 About the APEX Graph Visualization Plug-in 8-1

8.2 Getting Started with the APEX Graph Visualization Plug-in 8-2

8.2.1 Importing the Sample Graph Visualizations Application in APEX 8-4

8.3 Configure Attributes for the APEX Graph Visualization Plug-in 8-5

8.3.1 Settings 8-8

8.3.2 Styles 8-8

8.3.3 Expand 8-9

Part III   PGQL Property Graphs

9   About PGQL Property Graphs

9.1 Creating PGQL Property Graphs on Oracle Database Tables 9-1

9.1.1 Retrieving Metadata for PGQL Property Graphs 9-4

9.1.2 Privileges for Working with PGQL Property Graphs 9-8

9.2 Creating a PGQL Property Graph By Importing a GraphSON file 9-9

v



9.2.1 Additional Information on the GraphImporter Parameters 9-12

9.2.2 Mapping GraphSON Types to Oracle Database Data Types 9-14

9.3 Using JSON to Store Vertex and Edge Properties 9-14

10  
 

Loading a PGQL property graph into the Graph Server (PGX)

10.1 Loading a PGQL Property Graph Using the readGraphByName API 10-1

10.1.1 Specifying Options for the readGraphByName API 10-3

10.1.2 Specifying the Schema Name for the readGraphByName API 10-5

10.2 Loading a Graph Using a JSON Configuration File 10-6

10.2.1 Configuring PARALLEL Hint when Loading a Graph 10-8

10.3 Loading a Graph by Defining a Graph Configuration Object 10-8

10.4 Loading a Subgraph from a PGQL Property Graph 10-11

10.4.1 PGQL Based Subgraph Loading 10-11

10.4.2 Prepared PGQL Queries 10-15

10.4.3 Providing Database Connection Credentials 10-16

10.4.4 Dynamically Expanding a Subgraph 10-17

11  
 

Quick Starts for Using PGQL Property Graphs

11.1 Using Sample Data for Graph Analysis 11-1

11.1.1 Importing Data from CSV Files 11-1

11.2 Quick Start: Working with PGQL Property Graphs 11-3

11.3 Quick Start: Using Graph Machine Learning on PGQL Property Graphs 11-10

11.4 Quick Start: Using the Python Client as a Module 11-17

11.5 Oracle LiveLabs Workshops for Graphs 11-19

12  
 

Getting Started with the Client Tools

12.3 Using the Graph Visualization Web Client 12-1

12.4 Using the Jupyter Notebook Interface 12-2

12.1 Interactive Graph Shell CLIs 12-3

12.1.1 Starting the OPG4J Shell 12-4

12.1.2 Starting the OPG4Py Shell 12-6

12.2 Using Autonomous Database Graph Client 12-7

12.2.1 Prerequisites for Using Autonomous Database Graph Client 12-15

12.2.2 Using the PGX JDBC Driver with the AdbGraphClient API 12-17

12.5 Additional Client Tools for Querying PGQL Property Graphs 12-18

12.5.1 Using Oracle SQLcl 12-19

12.5.2 Using SQL Developer with PGQL Property Graphs 12-21

vi



13  
 

Property Graph Query Language (PGQL)

13.1 Creating a Property Graph Using PGQL 13-1

13.1.1 Creating a PGQL Property Graph with the BASE_GRAPHS Clause 13-4

13.1.2 Creating a PGQL Property Graph with Arbitrary Property Expressions 13-7

13.2 Pattern Matching with PGQL 13-8

13.3 Edge Patterns Have a Direction with PGQL 13-9

13.4 Vertex and Edge Labels with PGQL 13-9

13.5 Variable-Length Paths with PGQL 13-10

13.6 Aggregation and Sorting with PGQL 13-10

13.7 Executing PGQL Queries Against PGQL Property Graphs 13-10

13.7.1 Supported PGQL Features and Limitations for PGQL Property Graphs 13-11

13.7.1.1 Additional Information on Supported PGQL Features with Examples 13-14

13.7.2 SQL Translation for a PGQL Query 13-21

13.7.3 Performance Considerations for PGQL Queries 13-21

13.7.3.1 Recursive Queries 13-22

13.7.3.2 Using Query Optimizer Hints 13-24

13.7.3.3 Speed Up Query Translation Using Graph Metadata Cache and
Translation Cache 13-25

13.7.4 Using the Java and Python APIs to Run PGQL Queries 13-25

13.7.4.1 Creating a PGQL Property Graph 13-26

13.7.4.2 Executing PGQL SELECT Queries 13-28

13.7.4.3 Executing PGQL Queries to Modify PGQL Property Graphs 13-38

13.7.4.4 Dropping a PGQL Property Graph 13-41

Part IV   Installing Oracle Graph Server (PGX) and Client

14  
 

Oracle Graph Server and Client Installation

14.1 Before You Begin 14-1

14.1.1 Verifying Database Compatibility 14-2

14.1.2 Downloading Oracle Graph Server and Client 14-2

14.2 Oracle Graph Server Installation 14-2

14.2.1 System Requirements for Installing Oracle Graph Server 14-3

14.2.2 Using the RPM Installation 14-4

14.2.2.1 Prerequisites for Installing Oracle Graph Server 14-4

14.2.2.2 Installing Oracle Graph Server For Linux x86-64 14-4

14.2.2.3 Installing Oracle Graph Server for Linux ARM 14-6

14.2.2.4 Uninstalling Oracle Graph Server 14-7

14.2.2.5 Upgrading Oracle Graph Server 14-7

14.2.3 Deploying Oracle Graph Server to a Web Server 14-8

14.2.3.1 Deploying to Apache Tomcat 14-9

vii



14.2.3.2 Deploying to Oracle WebLogic Server 14-10

14.2.4 User Authentication and Authorization 14-11

14.2.4.1 Basic Steps for Using an Oracle Database for Authentication 14-12

14.2.4.2 Prepare the Graph Server for Database Authentication 14-15

14.2.4.3 Store the Database Password in a Keystore 14-17

14.2.4.4 Adding Permissions to Publish the Graph 14-22

14.2.4.5 Token Expiration 14-22

14.2.4.6 Customizing Roles and Permissions 14-23

14.2.4.7 Revoking Access to the Graph Server 14-26

14.2.4.8 Examples of Custom Authorization Rules 14-27

14.2.4.9 Kerberos Enabled Authentication for the Graph Server (PGX) 14-29

14.3 Oracle Graph Client Installation 14-32

14.3.1 Graph Clients 14-32

14.3.1.1 Oracle Graph Java Client 14-32

14.3.1.2 Oracle Graph Python Client 14-37

14.3.2 Running the Graph Visualization Web Client 14-41

14.4 Setting Up Transport Layer Security 14-42

14.4.1 Using a Self-Signed Server Keystore 14-43

14.4.1.1 Generating a Self-Signed Server Keystore 14-43

14.4.1.2 Configuring the Graph Server (PGX) When Using a Server Keystore 14-44

14.4.1.3 Configuring a Client to Trust the Self-Signed Keystore 14-45

14.4.2 Using a Self-Signed Server Certificate 14-46

14.4.2.1 Generating a Self-Signed Server Certificate 14-46

14.4.2.2 Configuring the Graph Server (PGX) 14-47

14.4.2.3 Configuring a Client to Trust the Self-Signed Certificate 14-48

15  
 

Getting Started with the Graph Server (PGX)

15.1 Starting the Graph Server (PGX) 15-1

15.1.1 Starting and Stopping the Graph Server (PGX) Using the Command Line 15-1

15.1.2 Configuring the Graph Server (PGX) 15-2

15.2 Connecting to the Graph Server (PGX) 15-6

15.2.1 Connecting with the Graph Client CLIs 15-7

15.2.2 Connecting with Java 15-12

15.2.2.1 Starting and Stopping the PGX Engine 15-12

15.2.3 Connecting with Python 15-13

Part V   Using the Graph Server (PGX)

viii



16  
 

Developing Applications with Graph Analytics

16.1 Using the Graph Server Administrator Dashboard 16-2

16.1.1 Memory Usage 16-3

16.1.2 Sessions 16-4

16.1.3 Graphs 16-4

16.2 About Vertex and Edge IDs 16-5

16.3 Graph Management in the Graph Server (PGX) 16-7

16.3.1 Reading Graphs from Oracle Database into the Graph Server (PGX) 16-7

16.3.1.1 Enabling Lazy Loading of Graphs 16-8

16.3.1.2 Reading Entity Providers at the Same SCN 16-10

16.3.1.3 Progress Reporting and Estimation for Graph Loading 16-13

16.3.1.4 Graph Configuration Options 16-14

16.3.1.5 Data Loading Security Best Practices 16-21

16.3.1.6 Data Format Support Matrix 16-22

16.3.1.7 Immutability of Loaded Graphs 16-22

16.3.2 Storing a Graph Snapshot on Disk 16-23

16.3.3 Publishing a Graph 16-24

16.3.4 Deleting a Graph 16-32

16.3.5 Graph Sharing Options and Validating Graph Permissions 16-34

16.4 Keeping the Graph in Oracle Database Synchronized with the Graph Server 16-37

16.4.1 Synchronizing a SQL Property Graph 16-38

16.4.2 Synchronizing a PGQL Property Graph 16-42

16.4.3 Synchronizing a Published Graph 16-46

16.5 Optimizing Graphs for Read Versus Updates in the Graph Server (PGX) 16-52

16.6 Executing Built-in Algorithms 16-53

16.6.1 About Built-In Algorithms in the Graph Server (PGX) 16-54

16.6.2 Getting the Progress of a Running Algorithm 16-54

16.6.3 Centrality Algorithms 16-56

16.6.3.1 Degree Centrality 16-57

16.6.3.2 Closeness Centrality 16-59

16.6.3.3 Harmonic Centrality 16-61

16.6.3.4 Vertex Betweenness Centrality 16-63

16.6.3.5 PageRank 16-64

16.6.4 Running the Triangle Counting Algorithm 16-67

16.7 Using Custom PGX Graph Algorithms 16-67

16.7.1 Writing a Custom PGX Algorithm 16-68

16.7.1.1 Collections 16-68

16.7.1.2 Iteration 16-69

16.7.1.3 Reductions 16-70

16.7.2 Compiling and Running a Custom PGX Algorithm 16-70

16.7.3 Example Custom PGX Algorithm: PageRank 16-73

ix



16.7.4 Tracking the Progress of a Running Custom PGX Graph Algorithm 16-73

16.8 Creating Subgraphs 16-76

16.8.1 About Filter Expressions 16-76

16.8.2 Using a Simple Filter to Create a Subgraph 16-77

16.8.3 Using a Complex Filter to Create a Subgraph 16-78

16.8.4 Using a Vertex Set to Create a Bipartite Subgraph 16-79

16.9 User-Defined Functions (UDFs) in PGX 16-81

16.10 Using Graph Server (PGX) as a Library 16-84

16.10.1 Using the PGX JDBC Driver when Graph Server (PGX) is Utilized as a Library 16-86

17  
 

Using the Machine Learning Library (PgxML) for Graphs

17.1 Using the DeepWalk Algorithm 17-2

17.1.1 Loading a Graph 17-2

17.1.2 Building a Minimal DeepWalk Model 17-4

17.1.3 Building a Customized DeepWalk Model 17-4

17.1.4 Training a DeepWalk Model 17-6

17.1.5 Getting the Loss Value For a DeepWalk Model 17-6

17.1.6 Computing Similar Vertices for a Given Vertex 17-7

17.1.7 Computing Similar Vertices for a Vertex Batch 17-8

17.1.8 Getting All Trained Vertex Vectors 17-9

17.1.9 Storing a Trained DeepWalk Model 17-10

17.1.9.1 Storing a Trained Model in Another Database 17-11

17.1.10 Loading a Pre-Trained DeepWalk Model 17-12

17.1.10.1 Loading a Pre-Trained Model From Another Database 17-13

17.1.11 Destroying a DeepWalk Model 17-15

17.2 Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification) 17-15

17.2.1 Loading a Graph 17-16

17.2.2 Building a Minimal GraphWise Model 17-18

17.2.3 Advanced Hyperparameter Customization 17-19

17.2.4 Building a GraphWise Model Using Partitioned Graphs 17-23

17.2.5 Supported Property Types for Supervised GraphWise Model 17-26

17.2.6 Classification Versus Regression Models on Supervised GraphWise Models 17-28

17.2.7 Setting a Custom Loss Function and Batch Generator (for Anomaly Detection) 17-30

17.2.8 Training a Supervised GraphWise Model 17-31

17.2.9 Getting the Loss Value For a Supervised GraphWise Model 17-33

17.2.10 Getting the Training Log for a Supervised GraphWise Model 17-34

17.2.11 Inferring the Vertex Labels for a Supervised GraphWise Model 17-35

17.2.12 Evaluating the Supervised GraphWise Model Performance 17-36

17.2.13 Inferring Embeddings for a Supervised GraphWise Model 17-37

17.2.13.1 Inferring Embeddings for a Model in Another Database 17-38

17.2.14 Storing a Trained Supervised GraphWise Model 17-39

x



17.2.15 Loading a Pre-Trained Supervised GraphWise Model 17-40

17.2.16 Destroying a Supervised GraphWise Model 17-41

17.2.17 Explaining a Prediction of a Supervised GraphWise Model 17-42

17.3 Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification) 17-46

17.3.1 Loading a Graph 17-47

17.3.2 Building a Minimal Supervised EdgeWise Model 17-49

17.3.3 Advanced Hyperparameter Customization 17-49

17.3.4 Applying EdgeWise for Partitioned Graphs 17-53

17.3.5 Supported Property Types for Supervised EdgeWise Model 17-56

17.3.6 Classification Versus Regression on Supervised EdgeWise Models 17-58

17.3.7 Setting a Custom Loss Function and Batch Generator (for Anomaly Detection) 17-59

17.3.8 Setting the Edge Embedding Production Method 17-61

17.3.9 Training a Supervised EdgeWise Model 17-62

17.3.10 Getting the Loss Value for a Supervised EdgeWise Model 17-65

17.3.11 Getting the Training Log for a Supervised EdgeWise Model 17-65

17.3.12 Inferring Edge Labels for a Supervised EdgeWise Model 17-66

17.3.13 Evaluating Model Performance 17-68

17.3.14 Inferring Embeddings for a Supervised EdgeWise Model 17-70

17.3.15 Storing a Supervised EdgeWise Model 17-71

17.3.16 Loading a Pre-Trained Supervised EdgeWise Model 17-72

17.3.17 Destroying a Supervised EdgeWise Model 17-73

17.3.18 Example: Predicting Ratings on the Movielens Dataset 17-73

17.4 Using the Unsupervised GraphWise Algorithm (Vertex Embeddings) 17-77

17.4.1 Loading a Graph 17-78

17.4.2 Building a Minimal Unsupervised GraphWise Model 17-79

17.4.3 Advanced Hyperparameter Customization 17-80

17.4.4 Supported Property Types for Unsupervised GraphWise Model 17-84

17.4.5 Building an Unsupervised GraphWise Model Using Partitioned Graphs 17-86

17.4.6 Training an Unsupervised GraphWise Model 17-89

17.4.7 Getting the Loss Value for an Unsupervised GraphWise Model 17-91

17.4.8 Getting the Training Log for an Unsupervised GraphWise Model 17-92

17.4.9 Inferring Embeddings for an Unsupervised GraphWise Model 17-93

17.4.10 Classifying the Vertices Using the Obtained Embeddings 17-94

17.4.11 Storing an Unsupervised GraphWise Model 17-95

17.4.12 Loading a Pre-Trained Unsupervised GraphWise Model 17-96

17.4.13 Destroying an Unsupervised GraphWise Model 17-97

17.4.14 Explaining a Prediction for an Unsupervised GraphWise Model 17-97

17.5 Using the Unsupervised EdgeWise Algorithm 17-101

17.5.1 Loading a Graph 17-103

17.5.2 Building a Minimal Unsupervised EdgeWise Model 17-105

17.5.3 Advanced Hyperparameter Customization 17-105

17.5.4 Supported Property Types for Unsupervised EdgeWise Model 17-109

xi



17.5.5 Applying Unsupervised EdgeWise for Partitioned Graphs 17-111

17.5.6 Setting the Edge Combination Production Method 17-114

17.5.7 Training an Unsupervised EdgeWise Model 17-115

17.5.8 Getting the Loss Value for an Unsupervised EdgeWise Model 17-118

17.5.9 Getting the Training Log for an Unsupervised EdgeWise Model 17-118

17.5.10 Inferring Embeddings for an Unsupervised EdgeWise Model 17-119

17.5.11 Classifying the Edges Using the Obtained Embeddings 17-120

17.5.12 Storing an Unsupervised EdgeWise Model 17-121

17.5.13 Loading a Pre-Trained Unsupervised EdgeWise Model 17-122

17.5.14 Destroying an Unsupervised Anomaly Detection GraphWise Model 17-123

17.5.15 Example: Computing Edge Embeddings on the Movielens Dataset 17-123

17.6 Using the Unsupervised Anomaly Detection GraphWise Algorithm (Vertex
Embeddings and Anomaly Scores) 17-126

17.6.1 Loading a Graph 17-127

17.6.2 Building a Minimal Unsupervised Anomaly Detection GraphWise Model 17-128

17.6.3 Advanced Hyperparameter Customization 17-129

17.6.4 Building an Unsupervised Anomaly Detection GraphWise Model Using
Partitioned Graphs 17-132

17.6.5 Training an Unsupervised Anomaly Detection GraphWise Model 17-135

17.6.6 Getting the Loss Value for an Unsupervised Anomaly Detection GraphWise
Model 17-135

17.6.7 Inferring Embeddings for an Unsupervised Anomaly Detection GraphWise
Model 17-136

17.6.8 Inferring Anomalies 17-137

17.6.9 Storing an Unsupervised Anomaly Detection GraphWise Model 17-139

17.6.10 Loading a Pre-Trained Unsupervised Anomaly Detection GraphWise Model 17-140

17.6.11 Destroying an Unsupervised Anomaly Detection GraphWise Model 17-141

17.7 Using the Pg2vec Algorithm 17-142

17.7.1 Loading a Graph 17-143

17.7.2 Building a Minimal Pg2vec Model 17-144

17.7.3 Building a Customized Pg2vec Model 17-145

17.7.4 Training a Pg2vec Model 17-146

17.7.5 Getting the Loss Value For a Pg2vec Model 17-147

17.7.6 Computing Similar Graphlets for a Given Graphlet 17-147

17.7.7 Computing Similars for a Graphlet Batch 17-149

17.7.8 Inferring a Graphlet Vector 17-150

17.7.9 Inferring Vectors for a Graphlet Batch 17-151

17.7.10 Storing a Trained Pg2vec Model 17-152

17.7.11 Loading a Pre-Trained Pg2vec Model 17-153

17.7.12 Destroying a Pg2vec Model 17-154

17.8 Model Repository and Model Stores 17-154

17.8.1 Database-Backed Model Repository 17-155

xii



18  
 

Executing PGQL Queries Against the Graph Server (PGX)

18.1 Getting Started with PGQL 18-1

18.2 Creating Property Graphs Using Options 18-3

18.3 Supported PGQL Features and Limitations on the Graph Server (PGX) 18-5

18.3.1 Support for Selecting All Properties 18-8

18.3.2 Unnesting of Variable-Length Path Queries 18-9

18.3.3 Using INTERVAL Literals in PGQL Queries 18-12

18.3.4 Using Path Modes with PGQL 18-13

18.3.5 Support for PGQL Lateral Subqueries 18-15

18.3.6 Support for PGQL GRAPH_TABLE Operator 18-16

18.3.7 Limitations on Quantifiers 18-17

18.3.8 Limitations on WHERE and COST Clauses in Quantified Patterns 18-17

18.4 Java APIs for Executing CREATE PROPERTY GRAPH Statements 18-18

18.5 Python APIs for Executing CREATE PROPERTY GRAPH Statements 18-19

18.6 Executing PGQL Queries Using the PGX JDBC Driver 18-19

18.6.1 Limitations of the PGX JDBC Driver 18-21

18.6.2 PGX Data Type Compatibility and Casting 18-21

18.7 Java APIs for Executing SELECT Queries 18-23

18.7.1 Executing SELECT Queries Against a Graph in the Graph Server (PGX) 18-24

18.7.2 Executing SELECT Queries Against a PGX Session 18-24

18.7.3 Iterating Through a Result Set 18-24

18.7.4 Printing a Result Set 18-26

18.8 Java APIs for Executing UPDATE Queries 18-27

18.8.1 Updatability of Graphs Through PGQL 18-27

18.8.2 Executing UPDATE Queries Against a Graph in the Graph Server (PGX) 18-28

18.8.3 Executing UPDATE Queries Against a PGX Session 18-29

18.8.4 Altering the Underlying Schema of a Graph 18-29

18.9 Python APIs for Executing UPDATE Queries 18-30

18.10 PGQL Queries with Partitioned IDs 18-33

18.11 Security Tools for Executing PGQL Queries 18-34

18.11.1 Using Bind Variables 18-35

18.11.2 Using Identifiers in a Safe Manner 18-36

18.12 Best Practices for Tuning PGQL Queries 18-36

18.12.1 Memory Allocation 18-37

18.12.2 Parallelism 18-37

18.12.3 Query Plan Explaining 18-37

19  
 

REST Endpoints for the Graph Server

19.1 Graph Server REST API Version 2 19-1

19.1.1 Get an Authentication Token 19-1

xiii



19.1.2 Refresh an Authentication Token 19-2

19.1.3 Get Graphs 19-4

19.1.4 Run a PGQL Query 19-4

19.1.5 Get the Database Version 19-8

19.1.6 Get User 19-9

19.1.7 Asynchronous REST Endpoints 19-9

19.1.7.1 Run an Asynchronous PGQL Query 19-9

19.1.7.2 Check Asynchronous Query Completion 19-11

19.1.7.3 Retrieve Asynchronous Query Result 19-12

19.1.7.4 Cancel an Asynchronous Query Execution 19-14

19.2 Graph Server REST API Version 1 19-14

19.2.1 Login 19-14

19.2.2 Get Graphs 19-15

19.2.3 Run a PGQL Query 19-16

19.2.4 Get User 19-18

19.2.5 Logout 19-19

19.2.6 Asynchronous REST Endpoints 19-19

19.2.6.1 Run an Asynchronous PGQL Query 19-19

19.2.6.2 Check Asynchronous Query Completion 19-20

19.2.6.3 Retrieve Asynchronous Query Result 19-20

19.2.6.4 Cancel an Asynchronous Query Execution 19-23

Part VI   Graph Visualization Application

20  
 

About the Graph Visualization Application

21  
 

Using the Graph Visualization Application

21.1 Visualizing PGQL Queries on Graphs Loaded Into the Graph Server (PGX) 21-2

21.2 Visualizing PGQL Queries on PGQL Property Graphs 21-4

21.3 Visualizing Graph Queries on SQL Property Graphs 21-6

21.4 Graph Visualization Modes and Graph Legend 21-7

21.5 Graph Visualization Settings 21-8

22  
 

Embedding the Graph Visualization Library in a Web Application

xiv



Part VII   Graph Server (PGX) Advanced User Guide

23  
 

Graph Server (PGX) Configuration Options

23.1 Configuration Parameters for the Graph Server (PGX) Engine 23-1

23.2 Configuration Parameters for Connecting to the Graph Server (PGX) 23-13

24  
 

Memory Consumption by the Graph Server (PGX)

24.1 Memory Management 24-1

24.1.1 Configuring On-Heap Limits 24-2

24.1.2 Configuring Off-Heap Limits 24-4

25  
 

Deploying Oracle Graph Server Behind a Load Balancer

25.1 Using HAProxy for PGX Load Balancing and High Availability 25-1

25.2 Deploying Graph Server (PGX) Using OCI Load Balancer 25-3

25.3 Health Check in the Load Balancer 25-6

26  
 

Namespaces and Sharing

26.1 Defining Graph Names 26-1

26.2 Retrieving Graphs by Name 26-1

26.3 Checking Used Names 26-2

26.4 Property Name Resolution and Graph Mutations 26-2

27  
 

PGX Programming Guides

27.1 Design of the Graph Server (PGX) API 27-3

27.2 Data Types and Collections in the Graph Server (PGX) 27-4

27.2.1 Using Collections and Maps 27-6

27.2.1.1 Collection Data Types 27-7

27.2.1.2 Map Data Types 27-12

27.2.2 Using Datetime Data Types 27-17

27.2.2.1 Loading Datetime Data 27-18

27.2.2.2 Specifying Custom Datetime Formats 27-19

27.2.2.3 APIs for Accessing Datetime Data 27-21

27.2.2.4 Querying Datetime Data Using PGQL 27-22

27.2.2.5 Accessing Datetimes from PGQL Result Sets 27-24

27.3 Handling Asynchronous Requests in Graph Server (PGX) 27-25

27.3.1 Blocking Operation 27-26

27.3.2 Chaining Operation 27-26

xv



27.3.3 Cancelling Operation 27-27

27.3.4 Handling Concurrent Asynchronus Operations 27-28

27.4 Graph Client Sessions 27-28

27.4.1 Creating a Session 27-28

27.4.2 Updating Session Idle Timeout 27-29

27.4.3 Destroying a Session 27-31

27.5 Graph Mutation and Subgraphs 27-32

27.5.1 Altering Graphs 27-32

27.5.1.1 Loading Or Removing Additional Vertex or Edge Providers 27-33

27.5.2 Simplifying and Copying Graphs 27-41

27.5.3 Transposing Graphs 27-42

27.5.4 Undirecting Graphs 27-43

27.5.5 Advanced Multi-Edge Handling 27-44

27.5.5.1 Picking 27-45

27.5.5.2 Merging 27-46

27.5.5.3 StrategyBuilder in General 27-47

27.5.6 Creating a Subgraph 27-48

27.5.7 Creating a Bipartite Subgraph 27-48

27.5.8 Creating a Sparsified Subgraph 27-49

27.6 Graph Builder and Graph Change Set 27-50

27.6.1 Building Graphs Using GraphBuilder Interface 27-50

27.6.1.1 Creating a Simple Graph 27-50

27.6.1.2 Adding a Vertex Property 27-52

27.6.1.3 Using Strings as Vertex Identifiers 27-53

27.6.1.4 Referencing a Vertex for Creating Edges 27-55

27.6.1.5 Adding an Edge Property and a Label 27-56

27.6.1.6 Using Graph Builder with Implicit IDs 27-58

27.6.2 Modifying Loaded Graphs Using ChangeSet 27-59

27.6.2.1 Modifying Vertices 27-60

27.6.2.2 Adding Edges 27-61

27.6.2.3 GraphChangeSet with Partitioned IDs 27-62

27.6.2.4 Error Handling when Using a ChangeSet 27-63

27.7 Managing Transient Data 27-64

27.7.1 Managing Transient Properties 27-64

27.7.2 Managing Collections and Scalars 27-66

27.8 Graph Versioning 27-68

27.8.1 Configuring the Snapshots Source 27-68

27.8.2 Creating a Snapshot via Refreshing 27-69

27.8.3 Creating a Snapshot via ChangeSet 27-71

27.8.4 Checking Out the Latest Snapshots of a Graph 27-73

27.8.5 Checking Out Different Snapshots of a Graph 27-74

27.8.6 Directly Loading a Specific Snapshot of a Graph 27-75

xvi



27.9 Labels and Properties 27-77

27.9.1 Setting and Getting Property Values 27-77

27.9.2 Getting Label Values 27-79

27.10 Filter Expressions 27-79

27.10.1 Syntax 27-80

27.10.2 Type System 27-84

27.10.3 Path Finding Filters 27-85

27.10.4 Subgraph Filters 27-85

27.10.5 Operations on Filter Expressions 27-85

27.10.5.1 Defining Filter Expressions 27-86

27.10.5.2 Defining Result Set Filters 27-87

27.10.5.3 Creating a Subgraph from PGQL Result Set 27-88

27.10.5.4 Defining Collection Filters 27-90

27.10.5.5 Creating a Subgraph from Collection Filters 27-92

27.10.5.6 Combining Filter Expressions 27-93

27.10.5.7 Creating a Subgraph Using Filter Expressions with Partitioned IDs 27-95

27.11 Advanced Task Scheduling Using Execution Environments 27-96

27.11.1 Prerequisites for Using the Enterprise Scheduler 27-96

27.11.2 Enabling Enterprise Scheduler Features 27-97

27.11.3 Retrieving and Inspecting the Execution Environment 27-97

27.11.4 Modifying and Submitting Tasks Under an Updated Environment 27-99

27.11.5 Using Lambda Syntax 27-100

27.11.6 Enterprise Scheduler Configuration Guide 27-101

27.12 Admin API 27-103

27.12.1 Get a Server Instance 27-103

27.12.2 Get Inspection Data 27-104

27.12.3 Get Active Sessions 27-105

27.12.4 Get Cached Graphs 27-107

27.12.5 Get Published Graphs 27-108

27.12.6 Get Currently Loading Graphs 27-108

27.12.7 Get Tasks 27-109

27.12.8 Get Available Memories 27-109

27.13 PgxFrames Tabular Data-Structure 27-109

27.13.1 Converting PgqlResultSet to a PgxFrame 27-110

27.13.2 Storing a PgxFrame to a Database 27-111

27.13.3 Storing a PgxFrame to a CSV File 27-113

27.13.4 Union of PGX Frames 27-114

27.13.5 Joining PGX Frames 27-115

27.13.6 Printing the Content of a PgxFrame 27-116

27.13.7 Destroying a PgxFrame 27-117

27.13.8 Loading and Storing Vector Properties 27-117

27.13.9 Flattening Vector Properties 27-119

xvii



27.13.10 PgxFrame Helpers 27-120

27.13.11 Converting a PgxFrame to PgqlResultSet 27-123

27.13.12 PgxFrame to Pandas DataFrame Conversions 27-124

27.13.13 Loading a PgxFrame from a Database 27-124

27.13.14 Loading a PgxFrame from a CSV File 27-127

27.13.15 Loading a PgxFrame from Client-Side Data 27-129

27.13.16 Creating a Graph from Multiple PgxFrame Objects 27-133

28  
 

Working with Files Using the Graph Server (PGX)

28.1 Loading Graph Data from Files 28-1

28.1.1 Graph Configuration for Loading from File 28-3

28.1.2 Specifying the File Path 28-7

28.1.3 Supported File Access Protocols 28-7

28.1.4 Plain Text Formats 28-7

28.1.4.1 Comma-Separated Values (CSV) 28-9

28.1.4.2 Adjacency List (ADJ_LIST) 28-12

28.1.4.3 Edge List (EDGE_LIST) 28-13

28.1.4.4 Two Tables (TWO_TABLES) 28-14

28.1.5 XML File Formats 28-15

28.1.6 Binary File Formats 28-16

28.2 Loading Graph Data in Parallel from Multiple Files 28-22

28.3 Exporting Graphs Into a File 28-24

28.3.1 Exporting a Graph to Disk 28-25

28.4 Exporting a Graph into Multiple Files 28-27

29  
 

Log Management in the Graph Server (PGX)

29.1 Configuring Logback Logging 29-1

Part VIII    Supplementary Information for Property Graph Support

A   Mapping Graph Server Roles to Default Privileges

B   Disabling Transport Layer Security (TLS) in Graph Server

C   Migrating Property Graph Applications from Before Release 21c

xviii



D   Upgrading From Graph Server and Client 20.4.x to 21.x

E   Third-Party License Information for Oracle Graph Server and Client

E.1 Third-Party License Information for Graph Visualization Toolkit E-124

Index

xix



List of Figures

1-1 Simple Property Graph Example 1-2

1-2 Property Graph Architecture for Running Graph Queries 1-4

1-3 Property Graph Architecture for Running Graph Analytics 1-5

1-4 Graph Server (PGX) Design 1-7

1-5 Remote Server Mode 1-8

1-6 PGX as a Library 1-9

1-7 Enabling Accessibility in the Graph Visualization Application 1-11

3-1 Using SQL Developer to Create a SQL Property Graph 3-1

3-2 Visualizing a SQL Graph Query 3-3

4-1 STUDENTS_GRAPH 4-2

5-1 SQL Property Graphs in SQL Developer 5-29

5-2 Running SQL Graph queries in SQL Developer 5-30

7-1 PGQL on SQL Property Graphs in Oracle Database 7-1

8-1 Visualizing a SQL Graph Query in an APEX Application 8-3

8-2 Sample Graph Visualization Home Page 8-4

8-3 Expanding on a Specific Graph Vertex 8-11

9-1 PROPERTY_GRAPH_METADATA Graph Design 9-5

9-2 Financial Transactions Graph 9-15

10-1 Subgraph Visualization 10-13

10-2 Expanding a Subgraph 10-18

12-1 Creating a PGQL property graph in Jupyter Notebook 12-2

12-2 Running Graph Algorithms in Jupyter Notebook 12-3

12-3 PGQL Property Graphs in SQL Developer 12-21

12-4 Create a PGQL property graph 12-22

12-5 Running Multiple PGQL Queries 12-23

12-6 Dropping a PGQL Property Graph 12-23

13-1 Example Schema 13-5

13-2 Graphs Created from the Example Schema 13-6

13-3 Financial_Transactions Graph 13-6

13-4 PGQL on PGQL Property Graphs in Oracle Database 13-11

14-1 Graph Visualization Login 14-42

16-1 Administrator Dashboard Menu 16-2

16-2 Memory Usage Dashboard 16-3

16-3 Sessions 16-4

16-4 Graphs 16-4

16-5 Edges Matching src.prop == 10 16-77

xx



16-6 Graph Created by the Simple Filter 16-77

16-7 Edges Matching the outDegree Filter 16-78

16-8 Graph Created by the outDegree Filter 16-79

17-1 Pg2vec - Visualization of Two Similar Graphlets 17-149

18-1 Visualizing Unnesting of Variable-Length Path Queries 18-10

21-1 Supported Actions 21-1

21-2 Display Formats 21-1

21-3 Creating a Property Graph in the Graph Server Memory 21-2

21-4 List of Database Graphs 21-3

21-5 Loading Graph Into Memory Confirmation 21-3

21-6 Visualizing a PGQL Query 21-4

21-7 Creating a PGQL property graph 21-5

21-8 Updating an Edge in a PGQL property graph 21-5

21-9 Deleting an Edge in a PGQL property graph 21-5

21-10 Querying a PGQL property graph 21-6

21-11 Dropping a PGQL property graph 21-6

21-12 Graph Query on a SQL Property Graph 21-7

21-13 Graph Visualization Toolbar 21-7

21-14 Graph Legend 21-8

21-15 General Tab Configuration 21-9

21-16 Vertex and Edge Syles Configuration 21-10

21-17 Adding a Vertex Style 21-11

25-1 Configuring Load Balancer Details 25-4

25-2 Adding Backends to Load Balancer 25-4

25-3 Configuring a Listener for the Load Balancer 25-5

25-4 Enabling Session Persistence 25-6

27-1 Picking Strategy 27-46

27-2 Merging Strategy 27-47

xxi



List of Tables

1-1 Graph Size Estimator 1-5

4-1 System Privileges for SQL Property Graph Objects 4-11

4-2 Object Privileges for SQL Property Graphs 4-11

4-3 List of Data Dictionary Views to Retrieve Metadata for SQL Property Graphs 4-12

5-1 Arrow Tokens for Edge Patterns 5-3

5-2 Supported Vertex and Edge Label Expressions 5-4

5-3 Quantifier Support for Variable Length Graph Patterns 5-8

6-1 Mapping Oracle Database Types to PGX Types 6-11

7-1 Supported PGQL Functionalities and Limitations for SQL Property Graphs 7-7

9-1 Metadata Tables for PGQL Property Graphs 9-1

9-2 Additional Metadata Tables 9-6

9-3 Database Connection Parameters 9-12

9-4 GraphImporter Configuration Parameters 9-12

9-5 SQL Storage Parameters 9-13

9-6 PGQL Supported Parameters 9-13

9-7 Mapping GraphSON Types to Oracle Database Types 9-14

10-1 Parameters for the readGraphByName method 10-1

10-2 PARALLEL_HINT_DEGREE values 10-8

13-1 CREATE PROPERTY GRAPH Statement Support 13-4

13-2 Supported PGQL Functionalities and Limitations for PGQL Property Graphs 13-12

13-3 Supported Quantifiers in PGQL SELECT Queries 13-15

13-4 PGQL Translation and Execution Options 13-21

14-1 Workflow for Installing Oracle Graph Server and Client 14-1

14-2 Components in the Oracle Graph Server and Client Deployment 14-2

14-3 System Requirements 14-3

14-4 Oracle Database Privileges and Roles Required for Using the Graph Server (PGX) 14-14

14-5 API for Checking Graph Permissions 14-23

14-6 Allowed Permissions 14-27

15-1 Configuration Parameters for the Graph Server (PGX) 15-2

16-1 Valid values for "as_of" Key in Graph Configuration 16-11

16-2 Example Scenario Using "as_of" 16-12

16-3 Asynchronous Graph Loading APIs 16-13

16-4 Graph Config JSON Fields 16-15

16-5 Provider Configuration JSON file Options 16-17

16-6 Property Configuration 16-19

16-7 Loading Configuration 16-20

xxii



16-8 Error Handling Configuration 16-21

16-9 Data Format Support Matrix 16-22

16-10 Graph Sharing Options 16-35

16-11 Overview of Built-In Algorithms 16-53

16-12 Classification of Centrality Algorithms 16-57

16-13 Fields for Each UDF 16-84

18-1 Graph Optimization Options 18-3

18-2 Supported PGQL Functionalities and Limitations on the Graph Server (PGX) 18-5

18-3 Valid values for fields in INTERVAL values 18-12

18-4 Data Type Compatibility 18-21

18-5 Additional Supported Types through Casting 18-22

18-6 Data Type Conversions for setObject Method 18-23

19-1 Request Body Parameters 19-1

19-2 Request Body Parameters 19-3

19-3 Request Body Parameters 19-5

19-4 Parameters 19-15

19-5 Request Query Parameters 19-16

23-1 Runtime Parameters for the Graph Server (PGX) Engine 23-1

23-2 Advanced Access Configuration Options 23-10

23-3 Enterprise Scheduler Parameters 23-11

23-4 Basic Scheduler Parameters 23-11

27-1 PGX API Interface 27-1

27-2 Overview of Data types 27-5

27-3 Overview of Datetime Data Types in PGX 27-17

27-4 Default Property Values 27-53

27-5 Default Temporal Formats 27-81

27-6 Session Information Options 27-106

27-7 Graph Information 27-107

27-8 Mapping between In-Place and Out-Place Operations 27-109

28-1 Loading a Partitioned Graph From File - Additional Graph Configuration Options 28-3

28-2 CSV Specific Options for Partitioned Graphs 28-4

28-3 Type Encoding 28-17

28-4 File Layout 28-17

28-5 Integer Vertex Keys 28-18

28-6 Long Vertex Keys 28-18

28-7 String Vertex Keys 28-18

28-8 String Key Element Layout 28-19

xxiii



28-9 Primitive Type Layout 28-19

28-10 Vector Property Layout 28-19

28-11 String Type Layout 28-20

28-12 String Dictionary Layout 28-20

28-13 String Dictionary Element Layout 28-20

28-14 Vertex Labels Layout 28-20

28-15 Shared Pools Layout 28-21

28-16 Type == Enum 28-21

28-17 Type == Prefix 28-21

28-18 String Table for Shared Pools 28-21

28-19 Property Names Layout 28-22

28-20 Files CompressionScheme 28-24

28-21 Graph Configuration when Exporting Graph into Multiple Files 28-25

A-1 Mapping Graph Server Roles to Default Privileges A-1

xxiv



Preface

This document provides conceptual and usage information about Oracle Database support for
working with property graph data.

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This document is intended for database and application developers in an Oracle Database
environment.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information, see the following documents:

• Oracle Spatial Developer's Guide

• Oracle Database Graph Developer's Guide for RDF Graph

• Oracle Spatial GeoRaster Developer's Guide

• Oracle Spatial Topology and Network Data Model Developer's Guide

• Oracle Big Data Spatial and Graph User's Guide and Reference

Conventions
The following text conventions are used in this document:

xxv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs


Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

xxvi



Changes in This Release for This Guide

The following changes apply to property graph support that is shipped with Oracle Graph
Server and Client.

Oracle Graph Server and Client is required for using the property graph feature of Oracle
Database (see Oracle Graph Server and Client Installation), and is released four times a year.

New Features in Oracle Graph Server and Client 24.3

Features That Work With Oracle Database Release 23ai and Prior Oracle Database
Releases

• Added support for lazy loading of property graphs into the graph server (PGX).
See Enabling Lazy Loading of Graphs for more information.

• Added setSessionIdleTimeout API to allow updating the session idle timeout after
session creation.
See Updating Session Idle Timeout for more information.

• Added the following new built-in graph algorithms:

– Filtered Version of Speaker Listener: This graph algorithm is designed to detect
overlapping communities. The filtered version employs an EdgeFilter to consider only
edges that meet the filter criteria during the listening phase.

– Filtered Weighted Version of Speaker Listener: The weighted filtered version
combines both the weighted and filtered approaches, taking into account both edge
filters and edge weights. Only edges with weights greater than the specified input
weight will be considered.

• Progress tracking support for graph algorithms is extended to include more built-in graph
algorithms.
See Getting the Progress of a Running Algorithm for the list of supported built-in graph
algorithms.

• Added support for a new Graph Visualization application which can be accessed from
https://<server_host>:7007/dash/. The redesigned user interface of the Graph
Visualization application provides a new look and feel, enhancing user experience in
creating and visualizing graphs.
See the following topics for more information:

– Running the Graph Visualization Web Client

– Using the Graph Visualization Application

• Added support for creating property graphs in the Graph Server tab of the Graph
Visualization application.
See Visualizing PGQL Queries on Graphs Loaded Into the Graph Server (PGX) for more
information.

• Added support for loading property graphs from the database into the graph server
memory using the Load graph into memory button in the Graph Server tab of the Graph
Visualization application.

xxvii



See Loading a Database Property Graph into the Graph Server (PGX) Memory for more
information.

• Added support for Oracle JDK 21 for Oracle Graph Server and Client installation.

Feature That Works Only With Oracle Database Release 23ai

• Added PGQL support for migrating PGQL property graphs to SQL property graphs by
calling the migrate_pgql_to_sql() function.
See Migrating PGQL Property Graphs to SQL Property Graphs for more information.

Key Property Graph Features in Oracle Database Release 23ai

• Support for creating SQL property graph objects in Oracle Database.
See Introduction to SQL Property Graphs for more information.

• Support for running graph queries on SQL property graphs.
See SQL Graph Queries for more information.

• Support for using aggregate functions in SQL graph queries.
See Using Aggregate Functions in SQL Graph Queries for more information.

• Support for loading SQL property graphs into the graph server (PGX).
See Loading a SQL Property Graph Using the readGraphByName API for more
information.

• Support for loading a subgraph from a SQL property graph into the graph server (PGX).
See Loading a Subgraph Using PGQL Queries for more information.

• Support for dynamically expanding a subgraph in the graph server (PGX).
See Expanding a Subgraph for more information.

• Support for running PGQL SELECT queries against SQL property graphs.
See Executing PGQL Queries Against SQL Property Graphs for more information.

• Support for selecting all the vertex or edge properties in the COLUMNS clause of a SQL
graph query.
See Selecting All Properties in the COLUMNS Clause for more information.

• Support for determining the direction of edges using the SOURCE and DESTINATION
predicates inside the WHERE or COLUMNS clause of a SQL graph query.
See Using the SOURCE and DESTINATION Predicates for more information.

• Support for visualizing SQL graph queries on graphs in the database using the Graph
Visualization application.
See Visualizing Graph Queries on SQL Property Graphs for more information.

• Support for visualizing SQL graph queries using the APEX Graph Visualization plug-in in
APEX applications.
See Visualizing SQL Graph Queries Using the APEX Graph Visualization Plug-in for more
information.

• Deprecated Features
Review the deprecated features in Oracle Graph Server and Client.

• Desupported Features
Review the desupported features in Oracle Graph Server and Client.

Deprecated Features
Review the deprecated features in Oracle Graph Server and Client.

• Graph Visualization Application

Changes in This Release for This Guide

xxviii



The Graph Visualization application which runs on https://<server_host>:7007/ui/ is
deprecated. Instead, use the new Graph Visualization application by opening the URL
https://<server_host>:7007/dash/ in your browser.

See Using the Graph Visualization Application for more information.

Note that both the old and new Graph Visualization application are supported in this
release.

• PG_VIEW Field
The PG_VIEW constant is deprecated from GraphSource and SourceType. Instead, use
PG_PGQL.

• PgxSession.readSubgraph() methods

– session.readSubgraph().fromPgView() is deprecated. Instead, use
session.readSubgraph().fromPgPgql().

– graph.expandGraph().withPgql().fromPgView() is deprecated. Instead, use
graph.expandGraph().withPgql().fromPgPgql().

• PgxSession.getGraphs() function
The PgxSession.getGraphs() method is deprecated. Instead, use getGraphs(Namespace
namespace).

• PyPGX

– PgxSession.read_subgraph_from_pg_view() is deprecated. Instead, use
PgxSession.read_subgraph_from_pg_pgql().

– The following function signatures are deprecated for PgxGraph:

* get_or_create_edge_property(name, data_type=None, dim=0)
Instead, use get_or_create_edge_property(type, /, name).

* get_or_create_edge_vector_property(data_type, dim, name=None)
Instead, use get_or_create_edge_vector_property(type, dimension, /,
name).

* get_or_create_vertex_property(name, data_type=None, dim=0)
Instead, use get_or_create_vertex_property(type, /, name).

* get_or_create_vertex_vector_property(data_type, dim, name=None)
Instead, use get_or_create_vertex_vector_property(type, dimension, /,
name).

Note the following changes that apply for the new signatures:

* name is no longer optional

* type is the first argument followed by dimension, and name is the final argument

* data_type and dim are deprecated

– DeepWalkModel.validation_fraction, Pg2vecModel.validation_fraction, and the
validation_fraction argument of Analyst.pg2vec_builder() are deprecated.
The loss is computed on all samples.

– The following attributes on Operation are now deprecated: graph_id, operation_type,
cost_estimate, total_cost_estimate, cardinality_estimate, pattern_info, and
children. Instead, use the corresponding getter methods, such as get_graph_id(),
get_operation_type(), and so on.

– The pgx_version attribute in ServerInstance class is deprecated. Instead, use
get_version().

Changes in This Release for This Guide

xxix



– The attribute pg_view_name in PartitionedGraphConfig is deprecated. Instead, use
source_name and source_type.

– set_standarize in GraphWiseModelConfig is deprecated. Instead, use
set_standardize.

– The return value of PgqlResultSet.get_vertex_labels may or may not be a list.

• PgxML

– The methods setValidationFraction and getValidationFraction are deprecated
for DeepWalk and Pg2vec, the loss is now computed on all samples.

– GraphWiseModel.inferAndGetExplanation() is deprecated. Instead, use
GraphWiseModel.gnnExplainer() to obtain a GnnExplainer object for the model and
use GnnExplainer.inferAndExplain().

– Pg2vecModelBuilder.setUseGraphletSize(java.lang.Boolean useGraphletSize)
method in oracle.pgx.api.mllib API is deprecated. Instead, use the
Pg2vecModelBuilder.setUseGraphletSize(boolean useGraphletSize) method.

– SupervisedGraphWiseModelBuilder.setLossFunction(SupervisedGraphWiseModelCo
nfig.LossFunction ...) is deprecated. Instead, use
SupervisedGraphWiseModelBuilder.setLossFunction(LossFunction ...) function.

• GraphServer#getInstance API
The following GraphServer#getInstance APIs are deprecated:

– GraphServer.getInstance(ClientConfig clientConfig, String username, char[]
password, int refreshTimeBeforeTokenExpiry)

– GraphServer.getInstance(String baseUrl, String username, char[] password,
int refreshTimeBeforeTokenExpiry)

– GraphServer.getInstance(String baseUrl, String kerberosTicketPath, int
refreshTimeBeforeTokenExpiry)

Instead, configure the refresh_time_before_token_expiry_seconds parameter in the
pgx.conf file.

• Methods deprecated for PgqlViewGraphExpander
PgqlViewGraphExpander.schema(String) and PgqlViewGraphExpander.owner(String)
are deprecated. Instead, use PgqlViewGraphExpander.fromPgView(String, String).

• Graph Server (PGX) Configuration Fields
The graph server configuration fields, server_cert and server_private_key are
deprecated. Instead, use server_keystore.

• Subgraph Loading
Creating Subgraphs using filter expressions is deprecated. Instead, use Loading a
Subgraph from a PGQL Property Graph.

Desupported Features
Review the desupported features in Oracle Graph Server and Client.

• Oracle JDK 8 is desupported.

• Oracle Graph HDFS connector is desupported.

Changes in This Release for This Guide

xxx



• Creating a property graph in the Oracle database using the property graph schema objects
is desupported. The related OPG_APIS and OPG_GRAPHOP PL/SQL packages for working with
property graph schema objects are also desupported.
Instead, you can create SQL Property Graphs or PGQL Property Graphs.

• Desupported the edge pattern syntax --, -->, and <-- from PGQL 0.9 and PGQL 1.0.
Instead, use -, -> and <- respectively.

• The WHERE clause syntax WHERE n -> m in PGQL 0.9 is desupported.
Instead, use WHERE (n) -> (m).

• pypgx.api.FlashbackSynchronizer is desupported. Instead, use
pypgx.api.Synchronizer.

• The connection parameter in PgxGraph.create_synchronizer() is desupported. Instead,
use jdbc_url, username, and password.
Also, note that the synchronizer_class and invalid_change_policy parameters are now
keyword-only parameters.

• The following classes are desupported in pypgx package. Instead, use pypgx.api.filters
subpackage to access these classes:

– EdgeFilter
– GraphFilter
– VertexFilter
– PathFindingFilter

• Analyst.deepwalk_builder(): the parameter validation_fraction has been removed.
The loss is computed on all samples.

• set_standarize in GraphWiseModelConfig is desupported. Instead, use set_standardize.

• The parameters redirect_stdout and redirect_stderr in pypgx.get_session() are
desupported.

• Apache HDFS on Cloudera CDH6 is desupported.

• Groovy support for using the Java API in Apache Zeppelin client is desupported.

• Oracle Linux 6 is desupported.

• Apache HBase is desupported.

• Support for mixed case string arguments in PyPGX for cases where there are a fixed,
enumerated list of possible values (such as, ['linear', 'tanh', 'relu']) are
desupported. Only lower case arguments are now supported.

• The two-table format is desupported.

• The following Java API classes are desupported:

– oracle.pg.rdbms.OraclePgqlColumnDescriptor.java
– oracle.pg.rdbms.OraclePgqlColumnDescriptorImpl.java
– oracle.pg.rdbms.OraclePgqlExecution.java
– oracle.pg.rdbms.OraclePgqlExecutionFactory.java
– oracle.pg.rdbms.OraclePgqlPreparedStatement.java
– oracle.pg.rdbms.OraclePgqlResult.java
– oracle.pg.rdbms.OraclePgqlResultElement.java

Changes in This Release for This Guide

xxxi



– oracle.pg.rdbms.OraclePgqlResultElementImpl.java
– oracle.pg.rdbms.OraclePgqlResultImpl.java
– oracle.pg.rdbms.OraclePgqlResultIterable.java
– oracle.pg.rdbms.OraclePgqlResultIteratorImpl.java
– oracle.pg.rdbms.OraclePgqlResultSet.java
– oracle.pg.rdbms.OraclePgqlResultSetImpl.java
– oracle.pg.rdbms.OraclePgqlResultSetMetaData.java
– oracle.pg.rdbms.OraclePgqlResultSetMetaDataImpl.java
– oracle.pg.rdbms.OraclePgqlSqlTrans.java
– oracle.pg.rdbms.OraclePgqlSqlTransImpl.java
– oracle.pg.rdbms.OraclePgqlStatement.java

• The following Java API methods, objects and fields in oracle.pgx.api are no longer
supported:
Desupported Methods:

– PgxCollection methods:

* addAllAsync(Collection<E> source)
* removeAllAsync(Collection<E> source)
* addAll(ID...ids)
* removeAll(ID...ids)

– PgqlResultSet methods:

* getResults(): instead, use PgqlResultSet to directly iterate the result set

* destroy()
– User-defined pattern matching semantic methods:

* PgxGraph#queryPgql(String, PatternMatchingSemantic): instead, use
PgxGraph#queryPgql(String)

* PgxSession.setPatternMatchingSemantic(..)
– GraphMetaData constructors and related methods:

* GraphMetaData()
* GraphMetaData(GraphMetaData other, java.net.URI baseUri)
* GraphMetaData(IdType vertexIdType)
* GraphMetaData.setVertexIdType()
* GraphMetaData.setEdgeIdType()

– PgxSession#getAvailableSnapshots(GraphConfig): instead, use
PgxSession#getAvailableSnapshots(PgxGraph)

– All Analyst#filteredBfs and Analyst#filteredDfs methods that accepts filter
parameter: instead, use the navigator parameter

Desupported Objects

Changes in This Release for This Guide

xxxii



– PgqlResult(a result of resultSet.getResults().iterator().next(): instead, use
PgxResult as returned from resultSet.iterator().next()

Desupported Fields

– pattern_matching_semantic configuration field

• The Java API method AbstractGraphConfigBuilder#setNodeIdType in
oracle.pgx.config is desupported. Instead, use
AbstractGraphConfigBuilder#setVertexIdType().

• The following PyPGX classes are desupported in pypgx.api package. Instead, use
pypgx.api.frames subpackage to access these classes:

– PgxCsvFrameReader
– PgxCsvFrameStorer
– PgxDbFrameReader
– PgxDbFrameStorer
– PgxFrame
– PgxFrameBuilder
– PgxFrameColumn
– PgxGenericFrameReader
– PgxGenericFrameStorer
– PgxPgbFrameReader
– PgxPgbFrameStorer

• The following Python API packages are no longer supported:

– common: This internal package is desupported. Few of the classes from this package
are moved to the public package pypgx.api.

– utils: This internal package is renamed to _utils.

• Graph property text search based on Apache Solr/Lucene is desupported. Instead, use
PGQL query expressions.

• The PGX property type DATE is desupported. Instead, use LOCAL_DATE or TIMESTAMP.

• Property Graph support for data stored in Oracle NoSQL Database is desupported.

• Support for Gremlin Groovy shell is desupported.

• Apache Tinkerpop API support for Oracle Database is desupported.

• Support for the Apache Groovy-based shell was deprecated in 19c and is now
desupported.

• Support for Apache HBase and Apache HDFS on Cloudera CDH5 is desupported.

Changes in This Release for This Guide

xxxiii



Part I
Getting Started with Oracle Property Graphs

Part I provides the fundamental information to get you started on the property graph feature of
Oracle Database.

This part covers the following:

• Introduction to Property Graphs
Property graphs give you a different way of looking at your data.

• Using Oracle Graph with the Autonomous Database
Oracle Graph with the Autonomous Database allows you to create property graphs from
data in your Autonomous Database.



1
Introduction to Property Graphs

Property graphs give you a different way of looking at your data.

You can model your data as a graph by making data entities vertices in the graph, and
relationships between them as edges in the graph. For example, in a bank, customer accounts
can be vertices, and cash transfer relationships between them can be edges.

When you view your data as a graph, you can analyze your data based on the connections
and relationships between them. You can run graph analytics algorithms like PageRank to
measure the relative importance of data entities based on the relationships between them (for
instance, links between web pages).

• What Are Property Graphs?
A property graph consists of a set of objects or vertices, and a set of arrows or edges
connecting the objects.

• About the Property Graph Feature of Oracle Database
The Property Graph feature delivers advanced graph query and analytics capabilities in
Oracle Database.

• Overview of Property Graph Architecture
The property graph feature of Oracle Database supports the following architecture models.

• Learn About the Graph Server (PGX)
The in-memory graph server layer enables you to analyze property graphs using parallel
in-memory execution.

• Security Best Practices with Graph Data
Several security-related best practices apply when working with graph data.

• About Oracle Graph Server and Client Accessibility
This section provides information on the accessibility features for Oracle Graph Server and
Client.

1.1 What Are Property Graphs?
A property graph consists of a set of objects or vertices, and a set of arrows or edges
connecting the objects.

Vertices and edges can have multiple properties, which are represented as key-value pairs.

Each vertex has a unique identifier and can have:

• A set of outgoing edges

• A set of incoming edges

• A collection of properties

Each edge has a unique identifier and can have:

• An outgoing vertex

• An incoming vertex

• A text label that describes the relationship between the two vertices

1-1



• A collection of properties

For vertices and edges, each property is identified with a unique name.

The following figure illustrates a very simple property graph with two vertices and one edge.
The two vertices have identifiers 1 and 2. Both vertices have properties name and age. The
edge is from the outgoing vertex 1 to the incoming vertex 2. The edge has a text label knows
and a property type identifying the type of relationship between vertices 1 and 2.

Figure 1-1    Simple Property Graph Example

A property graph can have self-edges (that is, an edge whose source and destination vertex
are the same), as well as multiple edges between the same source and destination vertices.

A property graph can also have different types of vertices and edges in the same graph. For
example a graph can have a set of vertices with label Person and a set of vertices with label
Place, with different properties relevant to these two sets of vertices.

The property graph data model is similar to the W3C standards-based Resource Description
Framework (RDF) graph data model; however, the property graph data model is simpler and
less precise than RDF.

The property graph data model features and analytic APIs make property graphs a good
candidate for use cases such as these:

• Identifying influencers in a social network

• Predicting trends and customer behavior

• Discovering relationships based on pattern matching

• Identifying clusters to customize campaigns

1.2 About the Property Graph Feature of Oracle Database
The Property Graph feature delivers advanced graph query and analytics capabilities in Oracle
Database.

This feature supports graph operations, indexing, queries, search, and in-memory analytics.

Graphs manage networks of linked data as vertices, edges, and properties of the vertices and
edges. Graphs are commonly used to model, store, and analyze relationships found in social
networks, cybersecurity, utilities and telecommunications, life sciences and clinical data, and
knowledge networks.

Typical graph analyses encompass graph traversal, recommendations, finding communities
and influencers, and pattern matching. Industries including telecommunications, life sciences
and healthcare, security, media, and publishing can benefit from graphs.

Chapter 1
About the Property Graph Feature of Oracle Database

1-2



The property graph features of Oracle Database support those use cases with the following
capabilities:

• A scalable graph database

• Developer-based APIs based upon PGQL and Java graph APIs

• A parallel, in-memory graph server (PGX) for running graph queries and graph analytics

• A fast, scalable suite of social network analysis functions that include ranking, centrality,
recommender, community detection, and path finding

• Parallel bulk load and export of property graph data in Oracle-defined flat files format

• A powerful Graph Visualization application

• Notebook support through integration with Jupyter

1.3 Overview of Property Graph Architecture
The property graph feature of Oracle Database supports the following architecture models.

• Architecture Model for Running Graph Queries in the Database
Using any of the supported client tools, you can directly interact with the graph data stored
in the relational tables in the database.

• Architecture Model for Running Graph Analytics
You can load your property graph into the graph server (PGX) in order to perform
specialized graph computations.

• Developing Applications Using Graph Server Functionality as a Library
The graph functions available with the graph server (PGX) can be used as a library in your
application.

1.3.1 Architecture Model for Running Graph Queries in the Database
Using any of the supported client tools, you can directly interact with the graph data stored in
the relational tables in the database.

This approach runs graph queries, as shown in the following figure.

Chapter 1
Overview of Property Graph Architecture

1-3



Figure 1-2    Property Graph Architecture for Running Graph Queries

This model allows you to create a property graph using any one of the following supported
options:

• Create a SQL property graph directly over existing database schema objects using SQL
DDL statement. See SQL Property Graphs for more information.

• Create a PGQL property graph directly over the graph data in the tables. See PGQL
Property Graphs for more information.

You can directly query the graphs, without loading the graphs into the graph server (PGX),
using PGQL. Additionally, you can also run graph pattern matching queries on SQL property
graphs using the GRAPH_TABLE operator. See SQL Graph Queries for more information.

However, if you want to run graph analytics algorithms, then you must load this graph into the
graph server (PGX). You can configure the graph server to periodically fetch data updates from
the database to keep the graph synchronized.

1.3.2 Architecture Model for Running Graph Analytics
You can load your property graph into the graph server (PGX) in order to perform specialized
graph computations.

Chapter 1
Overview of Property Graph Architecture

1-4



Figure 1-3    Property Graph Architecture for Running Graph Analytics

As seen in the preceding architecture design, the graph server (PGX) is a mid-tier server that
can run as a standalone, or in a container like Oracle WebLogic Server or Apache Tomcat.
Using this approach, you can load your property graph into the graph server (PGX). This
allows you to run graph queries and analytical operations in memory in the graph server.

You can create a graph directly from the relational tables in the graph server (PGX). In
addition, you can load a PGQL property graph or a SQL property graph from the database. You
can modify the graph in memory (insert, update, and delete vertices and edges, and create
new properties for results of executing an algorithm). The graph server does not write the
modifications back to the relational tables.

Property Graph Sizing Recommendations

You can compute the memory required by the graph server (PGX) by using this calculator, 
Graph Size Estimator.

For example, the following table shows the memory estimated by the calculator for the given
input:

Table 1-1    Graph Size Estimator

Number
of
vertices

Number
of
Edges

Properties per Vertex Properties per Edge Estimated graph
size

10M 100M • 4 - Integer Type
• 1 - String Type(15

characters)

• 4 - Integer Type
• 1 - String Type(15

characters)

15 GB

100M 1B • 4 - Integer Type
• 1 - String Type(15

characters)

• 4 - Integer Type
• 1 - String Type(15

characters)

140 GB

Chapter 1
Overview of Property Graph Architecture

1-5

https://www.oracle.com/webfolder/assets/graph-size-estimator/index.html


Note:

• Reading a graph into memory can take upto twice the amount of memory needed
to represent it in memory. So when you calculate the memory required for
running PGX it is recommended that you double the amount of memory of the
estimated graph size.

• CPU Processors: The recommended number of CPU processors for a graph
with 10M vertices and 100M edges is 2-4 processors, and up to 16 processors
for more compute-intensive workloads. Increasing CPU processors will improve
performance.

1.3.3 Developing Applications Using Graph Server Functionality as a Library
The graph functions available with the graph server (PGX) can be used as a library in your
application.

After the rpm install of the graph server, all the jar files can be found in /opt/oracle/graph/
lib. In this case, the server installation and the client user application are in the same
machine.

For such use cases, development and testing can be done using the interactive Java shell or
the Python shell in embedded (local) mode. This means a local PGX instance is created and
runs in the same JVM as the client. If you start the shell without any parameters it will start a
local PGX instance and run in embedded mode.

See Using Graph Server (PGX) as a Library for more information to obtain reference to a local
PGX instance.

1.4 Learn About the Graph Server (PGX)
The in-memory graph server layer enables you to analyze property graphs using parallel in-
memory execution.

It provides over 60 analytic functions. Examples of the categories and specific functions
include:

• Centrality - Degree Centrality, Eigenvector Centrality, PageRank, Betweenness Centrality,
Closedness Centrality

• Component and Community - Strongly Connected Components (Tarjan's and Kosaraju's).
Weakly Connected Components

• Twitter's Who-To-Follow, Label Propagation.

• Path Finding - Single source all destination (Bellman-Ford), Dijsktra's shortest path, Hop
Distance (Breadth-first search)

• Community Evaluation - Coefficient (Triangle Counting), Conductance, Modularity, Adamic-
Adar counter.

• Overview of the Graph Server (PGX)
The Graph Server (PGX) is an in-memory accelerator for fast, parallel graph query and
analytics. The server uses light-weight in-memory data structures to enable fast execution
of graph algorithms.

Chapter 1
Learn About the Graph Server (PGX)

1-6



Related Topics

• Installing Oracle Graph Server For Linux x86-64

• Getting Started with the Graph Server (PGX)
Once you have installed the graph server (PGX), you can start and connect to a graph
server instance.

1.4.1 Overview of the Graph Server (PGX)
The Graph Server (PGX) is an in-memory accelerator for fast, parallel graph query and
analytics. The server uses light-weight in-memory data structures to enable fast execution of
graph algorithms.

There are multiple options to load a graph into the graph server either from Oracle Database or
from files.

The graph server can be deployed standalone (it includes an embedded Apache Tomcat
instance), or deployed in Oracle WebLogic Server or Apache Tomcat.

• Design of the Graph Server (PGX)

• Usage Modes of the Graph Server (PGX)

1.4.1.1 Design of the Graph Server (PGX)
The design of the graph server (PGX) is based on a Server-Client usage model. See Usage
Modes of the Graph Server (PGX) for more details on the different graph server (PGX)
execution modes.

The following figure shows the graph server (PGX) design:

Figure 1-4    Graph Server (PGX) Design

The core concepts of the graph server (PGX) design are as follows:

Chapter 1
Learn About the Graph Server (PGX)

1-7



• Multiple graph clients can connect to the graph server at the same time.

• Each client request is processed by the graph server asynchronously. The client requests
are queued up first and processed later, when resources are available. The client can poll
the server to check if a request has been finished.

• Internally, the server maintains its own engine (thread pools) for running parallel graph
algorithms and queries. The engine tries to process each analytics request concurrently
with as many threads as possible.

Isolation Between Concurrent Clients

The graph server (PGX) supports data isolation between concurrent clients. Each client has its
own private workspace, called session. Sessions are isolated from each other. Each client can
load a graph instance into its own session, independently from other clients. Therefore, each
client can load a graph instance (as well as its properties) into its own session, independently
from other clients.

1.4.1.2 Usage Modes of the Graph Server (PGX)
This section presents an overview of the different usage modes of the graph server (PGX). The
graph server can be executed in one of the following usage modes.

Remote Server Mode

In the remote server mode, the main PGX execution engine is deployed as a RESTful
application on a powerful server machine, and you can connect to it remotely from your
machine using graph shell. Also, multiple clients can connect to the same graph server (PGX)
at the same time and therefore the graph server is time-shared among these clients.

See Interactive Graph Shell CLIs for more information on the graph shell.

The following figure shows the graph server (PGX) in a remote execution mode:

Figure 1-5    Remote Server Mode

The remote server mode is useful for the following situations where you want to:

• Perform graph analysis on a large data set with a powerful server-class machine that has
many cores and a large memory.

Chapter 1
Learn About the Graph Server (PGX)

1-8



• The server-class machine is shared by multiple clients.

See Starting the Graph Server (PGX) for instructions on how to start the graph server (PGX) in
remote server mode.

Using Graph Server (PGX) as a Library

You can also include the graph server (PGX) as a normal Java library in your application.

The following figure shows the graph server (PGX) used as a library in an application:

Figure 1-6    PGX as a Library

The embedded mode is useful when you want to build an application having graph analysis as
a part of its functionality.

See Using Graph Server (PGX) as a Library for more information.

Deploying Graph Server (PGX) as Servlet Web Application

You can deploy the graph server (PGX) as a web application using Apache Tomcat or Oracle
WebLogic Server.

See Deploying Oracle Graph Server to a Web Server for instructions to deploy the graph
server (PGX) in Apache Tomcat or Oracle WebLogic Server.

1.5 Security Best Practices with Graph Data
Several security-related best practices apply when working with graph data.

Sensitive Information

Graph data can contain sensitive information and should therefore be treated with the same
care as any other type of data. Oracle recommends the following considerations when using a
graph product:

• Avoid storing sensitive information in your graph if that information is not required for
analysis. If you have existing data, only model the relevant subset you need for analysis as
a graph, either by applying a preprocessing step or by using subgraph and filtering
techniques that are part of graph product.

• Model your graph in a way that vertex and edge identifiers are not considered sensitive
information.

Chapter 1
Security Best Practices with Graph Data

1-9



• Do not deploy the product into untrusted environments or in a way that gives access to
untrusted client connections.

• Make sure all communication channels are encrypted and that authentication is always
enabled, even if running within a trusted network.

Least Privilege Accounts

The database user account that is being used by the graph server (PGX) to read data should
be a low-privilege, read-only account. PGX is an in-memory accelerator that acts as a read-
only cache on top of the database, and it does not write any data back to the database.

If your application requires writing graph data and later analyzing it using PGX, make sure you
use two different database user accounts for each component.

Public Health Endpoint Security

Unless you run multiple graph servers behind a load balancer (Deploying Oracle Graph Server
Behind a Load Balancer), it is a good security practice to disable the public endpoint of the
graph server, which load balancers need to determine the health of the graph servers.

To disable the endpoint:

1. Locate the WAR file of the graph server. If you installed the graph server via RPM, then the
file is located at /opt/oracle/graph/pgx/server/pgx-webapp-<version>.war.

2. Unzip the .war file into a location of your choice and then edit the WEB-INF/web.xml file
inside the unzipped directory with a text editor of your choice.

3. Locate the pgx.auth.exceptions parameter in the file. The list of public endpoints can be
seen as shown:

<init-param>
    <param-name>pgx.auth.exceptions</param-name>
    <param-value>isReady;isRunning;auth/token</param-value>
</init-param>

4. Remove the isReady endpoint from the list of public endpoints as shown:

<init-param>
    <param-name>pgx.auth.exceptions</param-name>
    <param-value>isRunning;auth/token</param-value>
</init-param>

5. Save your changes, repackage the WAR file and redeploy the file to its original location.

6. Restart the graph server.

1.6 About Oracle Graph Server and Client Accessibility
This section provides information on the accessibility features for Oracle Graph Server and
Client.

• For information on addressing accessibility for the Java and Python command line
interfaces, which are installed on Oracle Linux, see Working With Accessibility Features in
Oracle Linux 7.

• For information on keyboard shortcuts for the Java command line interface, which is built
on top of the Java Shell (JShell), see Keyboard Shortcuts for JShell.

Chapter 1
About Oracle Graph Server and Client Accessibility

1-10

https://docs.oracle.com/en/operating-systems/oracle-linux/7/accessibility/accessibility-WorkingWithAccessibilityFeaturesinOracleLinux7.html#access-intro-1
https://docs.oracle.com/en/operating-systems/oracle-linux/7/accessibility/accessibility-WorkingWithAccessibilityFeaturesinOracleLinux7.html#access-intro-1
https://docs.oracle.com/en/java/javase/14/docs/specs/man/jshell.html#input-shortcuts


• For information on addressing accessibility for the Graph Visualization Application, which is
based on Oracle JET, see About Oracle JET and Accessibility.

• You can enable accessibility in the Graph Visualization application by selecting the
Accessibility Mode check box option from the user account drop-down menu on the top-
right of the user interface. Once enabled, the query output is always displayed in a tabular
layout as shown:

Figure 1-7    Enabling Accessibility in the Graph Visualization Application

Chapter 1
About Oracle Graph Server and Client Accessibility

1-11

https://docs.oracle.com/en/middleware/developer-tools/jet/10/develop/oracle-jet-and-accessibility.html#GUID-9E3452C1-2A85-4700-83B1-B266F348C7E5


2
Using Oracle Graph with the Autonomous
Database

Oracle Graph with the Autonomous Database allows you to create property graphs from data
in your Autonomous Database.

When using Autonomous Database Serverless deployment, you can use Graph Studio, a fully
managed service with a powerful user interface for developing applications that use graph
analysis. Using Graph Studio, you can automate the modeling of graphs from tables in
Autonomous Database. You can interactively analyze and visualize the graph queries using
advanced notebooks with multiple visualization options. You can execute over 60 built-in graph
algorithms in Graph Studio to gain useful insights on your graph data. See Using Graph Studio
in Oracle Autonomous Database for more information.

You can also access few Graph Studio features using the Autonomous Database Graph Client
API using the client shell CLIs or through your Java or Python application. See Using
Autonomous Database Graph Client for more information.

Alternatively, you can use any version of Oracle Graph Server and Client with the family of
Oracle Autonomous Database to create and work with property graphs. This includes any
version of Oracle Autonomous Database Serverless or Oracle Autonomous Database
Dedicated. You can always upgrade to the latest version of Graph Server and Client regardless
of the version of your Autonomous Database. Note that the graph server is managed by the
application in this case.

You can connect in two-tier mode (connect directly to Autonomous Database) or three-tier
mode (connect to PGX on the middle tier, which then connects to Autonomous Database).

The database schema storing the graph must have the CREATE SESSION and CREATE TABLE
privileges.

• Two-Tier Deployments of Oracle Graph with Autonomous Database
In two-tier deployments, the client graph application connects directly to the Autonomous
Database.

• Three-Tier Deployments of Oracle Graph with Autonomous Database
In three-tier deployments, the client graph application connects to PGX in a middle tier, and
PGX connects to the Autonomous Database.

Related Topics

• Using Autonomous Database Graph Client
Using the AdbGraphClient API, you can access Graph Studio features in Autonomous
Database programmatically using the Oracle Graph Client or through your Java or Python
application.

2.1 Two-Tier Deployments of Oracle Graph with Autonomous
Database

In two-tier deployments, the client graph application connects directly to the Autonomous
Database.

2-1

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=CSGRU-GUID-D07D855A-9D61-406E-818A-018BE26EACC8
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=CSGRU-GUID-D07D855A-9D61-406E-818A-018BE26EACC8


1. Install Oracle Graph Client, as explained in Installing the Java Client From the Graph
Server and Client Downloads.

2. Establish a JDBC connection, as described in the Oracle Autonomous Warehouse
documentation.
You must download the wallet and unzip it to a secure location. You can then reference it
when establishing the connection as shown in Example 2-1.

3. Start the Java Shell as shown in the code:

/bin/opg4j --no_connect

4. Connect to your database as shown in Example 2-1.

Note:

If you need to use the Graph Visualization Application, you must additionally install
the Oracle Graph Server.

• See Installing Oracle Graph Server for more details.

• See Running the Graph Visualization Web Client for more details.

Example 2-1    Creating a Database Connection in a Two-Tier Graph Deployment with
Autonomous Database

opg4j> var jdbcUrl = "jdbc:oracle:thin:@<tns_alias>?
TNS_ADMIN=<wallet_location>" // jdbc url to the DB
opg4j> var user = "<user>"
opg4j> var pass = "<password>"
opg4j> var conn = DriverManager.getConnection(jdbcUrl, user, pass) // 
connecting to the DB
conn ==> oracle.jdbc.driver.T4CConnection@57e6cb01

In the preceding example:

• <tns_alias>: TNS alias used in tnsnames.ora file

• <wallet_location>: Path to the directory where the wallet is stored

• <user>: Name of the database user

• <password>: Password for the user

2.2 Three-Tier Deployments of Oracle Graph with Autonomous
Database

In three-tier deployments, the client graph application connects to PGX in a middle tier, and
PGX connects to the Autonomous Database.

The wallets downloaded from the Oracle Cloud Console are mainly routing wallets, meaning
they are used to route the connection to the right database and to encrypt the connection. In
most cases, they are not auto-login wallets, so they do not contain the password for the actual
connection. The password usually needs to be provided separately to the wallet location.

Chapter 2
Three-Tier Deployments of Oracle Graph with Autonomous Database

2-2

https://docs.oracle.com/en/cloud/paas/autonomous-data-warehouse-cloud/user/connect-jdbc-thin-wallet.html#GUID-5ED3C08C-1A84-4E5A-B07A-A5114951AA9E
https://docs.oracle.com/en/cloud/paas/autonomous-data-warehouse-cloud/user/connect-jdbc-thin-wallet.html#GUID-5ED3C08C-1A84-4E5A-B07A-A5114951AA9E
https://docs.oracle.com/en/database/oracle/property-graph/21.2/spgdg/installing-oracle-graph-server.html#GUID-AEED18CC-1363-470E-9422-1151204B63A5


The graph server does not support a wallet stored on the client file system or provided directly
by remote users. The high level implications of this are:

• The server administrator provides the wallet and stores the wallet securely on the server's
file system.

• Similar to Java EE connection pools, remote users will use that wallet when connecting.
This means the server administrator trusts all remote users to use the wallet. As with any
production deployments, the PGX server must be configured to enforce authentication and
authorization to establish that trust.

• Remote users still need to provide a user name and password when sending a graph read
request, just as with non-autonomous databases.

• You can only configure one wallet for each PGX server.

Having the same PGX server connecting to multiple Autonomous Databases is not supported.
If you have that use case, start one PGX server for each Autonomous Database.

Pre-loaded graphs

To read a graph from Autonomous Database into PGX at server startup, follow the steps
described in Store the Database Password in a Keystore to:

1. Create a Java Keystore containing the database password

2. Create a PGX graph configuration file describing the location and properties of the graph to
be loaded

3. Update the /opt/oracle/graph/pgx.conf file to reference the graph configuration file

As root user, edit the service file at /etc/systemd/system/pgx.service and specify the
environment variable under the [Service] directive:

Environment="JAVA_OPTS=-Doracle.net.tns_admin=/etc/oracle/graph/wallets"

Make sure that the directory (/etc/oracle/graph/wallets in the preceding code) is readable
by the Oracle Graph user, which is the user that starts up the PGX server when using systemd.

In addition, edit the ExecStart command to specify the location of the keystore containing the
password:

ExecStart=/bin/bash start-server --secret-store /etc/keystore.p12

Note:

Please note that /etc/keystore.p12 must not be password protected for this to
work. Instead protect the file via file system permission that is only readable by
oraclegraph user.

After the file is edited, reload the changes using:

systemctl daemon-reload

Chapter 2
Three-Tier Deployments of Oracle Graph with Autonomous Database

2-3



Finally start the server:

sudo systemctl start pgx

On-demand graph loading

To allow remote users of PGX to read from the Autonomous Database on demand, you can
choose from two approaches:

• Provide the path to the wallet at server startup time via the oracle.net.tns_admin system
property. Remote users have to provide the TNS address name, username and keystore
alias (password) in their graph configuration files. The wallet is stored securely on the
graph server's file system, and the server administrator trusts all remote users to use the
wallet to connect to an Autonomous Database.

For example, the server administrator edits the service file at /etc/systemd/system/
pgx.service and specifies the environment variable the under the [Service] directive:

Environment="JAVA_OPTS=-Doracle.net.tns_admin=/etc/oracle/graph/wallets"

and then start the server using

systemctl start pgx

The /etc/oracle/graph/wallets/tnsnames.ora file contains an address as follows:

sombrero_medium = (description= (retry_count=20)(retry_delay=3)
(address=(protocol=tcps)(port=1522)(host=adb.us-ashburn-1.oraclecloud.com))
(connect_data=(service_name=l8lgholga0ujxsa_sombrero_medium.adwc.oracleclou
d.com))(security=(ssl_server_cert_dn="CN=adwc.uscom-
east-1.oraclecloud.com,OU=Oracle BMCS US,O=Oracle Corporation,L=Redwood 
City,ST=California,C=US")))

Now remote users can read data into the server by sending a graph configuration file with
the following connection properties:

{
  ...
  "jdbc_url": "jdbc:oracle:thin:@sombrero_medium",
  "username": "hr",
  "keystore_alias": "database1",
  ...
}

Note that the keystore still lives on the client side and should contain the password for the
hr user referenced in the config object, as explained in Store the Database Password in a
Keystore. A similar approach works for Tomcat or WebLogic Server deployments.

• Use Java EE connection pools in your web application server. Remote users only have to
provide the name of the datasource in their graph configuration files. The wallet and the
connection credentials are stored securely in the web application server's file system, and
the server administrator trusts all remote users to use a connection from the pool to
connect to an Autonomous Database.

You can find instructions how to set up such a data source at the following locations:

Chapter 2
Three-Tier Deployments of Oracle Graph with Autonomous Database

2-4



– WebLogic Server: Configuring a WebLogic Data Source to use ATP

– Tomcat: https://www.oracle.com/technetwork/database/application-development/jdbc/
documentation/atp-5073445.html#Tomcat

If you gave the data source the name adb_ds, you can the reference them by sending a
graph configuration file with the following connection properties:

{
  ...
  "datasource_id": "adb_ds",
  ...
}

Chapter 2
Three-Tier Deployments of Oracle Graph with Autonomous Database

2-5

https://blogs.oracle.com/weblogicserver/atp-database-use-with-weblogic-server-v2
https://www.oracle.com/technetwork/database/application-development/jdbc/documentation/atp-5073445.html#Tomcat
https://www.oracle.com/technetwork/database/application-development/jdbc/documentation/atp-5073445.html#Tomcat


Part II
SQL Property Graphs

Learn and work with SQL property graphs.

Effective with Oracle Database 23ai, you can create and query SQL property graphs.

The following chapters provide in-depth information on SQL property graphs:

• Introduction to SQL Property Graphs
You can work with SQL property graphs in any SQL based interface (such as SQL
Developer, SQLPLUS, or SQLcl) or from a Java program using JDBC.

• SQL DDL Statements for Property Graphs
You can create, revalidate, rename, and drop SQL property graphs using SQL data
definition language (DDL) statements.

• SQL Graph Queries
You can query a SQL property graph using the GRAPH_TABLE operator to express graph
pattern matching queries.

• Loading a SQL Property Graph into the Graph Server (PGX)
You can load a full SQL property graph or a subgraph into memory in the graph server
(PGX).

• Executing PGQL Queries Against SQL Property Graphs
You can directly run PGQL queries against a SQL property graph in the database.

• Visualizing SQL Graph Queries Using the APEX Graph Visualization Plug-in
You can use the Oracle Application Express (APEX) Graph Visualization plug-in to
visualize and interact with SQL property graphs in an APEX application.



3
Introduction to SQL Property Graphs

You can work with SQL property graphs in any SQL based interface (such as SQL Developer,
SQLPLUS, or SQLcl) or from a Java program using JDBC.

Using SQL statements, you can perform the following:

• Create a SQL property graph from existing database objects in your schema, such as:

– Tables (with some exceptions as listed in Limitations of Creating a SQL Property
Graph)

– Materialized views

– External tables

– Synonyms for any of the preceding database objects

• Create a synonym for a SQL property graph.

• Revalidate a SQL property graph.

• Rename a SQL property graph

• Run graph pattern matching queries on a SQL property graph.

• Drop a SQL property graph.

For example, the following figure shows the creation of a SQL property graph using the SQL
Developer tool.

Figure 3-1    Using SQL Developer to Create a SQL Property Graph

3-1



• Quick Start for Working with SQL Property Graphs
This tutorial helps you get started on creating, querying, and running graph algorithms on a
SQL property graph.

3.1 Quick Start for Working with SQL Property Graphs
This tutorial helps you get started on creating, querying, and running graph algorithms on a
SQL property graph.

In order to try this tutorial, ensure that you meet the following requirements:

• Load the sample bank graph data provided with the graph server installation in the
database tables. See Using Sample Data for Graph Analysis for more information.

• You have the required privileges to create and drop a SQL property graph. See Granting
System and Object Privileges for SQL Property Graphs for more information.

In the following tutorial, the examples in Step 1, Step 2, and Step 7 are performed using the
SQLcl tool. However, you can run these examples using any SQL based interface.

1. Create a SQL property graph using the CREATE PROPERTY GRAPH DDL statement.

SQL> CREATE PROPERTY GRAPH bank_sql_pg
  2    VERTEX TABLES (
  3      bank_accounts
  4      KEY (id)
  5      LABEL account
  6      PROPERTIES ALL COLUMNS
  7    )
  8    EDGE TABLES (
  9      bank_txns
 10        KEY (txn_id)
 11        SOURCE KEY (from_acct_id) REFERENCES bank_accounts (id)
 12        DESTINATION KEY (to_acct_id) REFERENCES bank_accounts (id)
 13        LABEL transfer
 14        PROPERTIES ALL COLUMNS
 15*   );

Property created.

On execution, the bank_sql_pg graph is created in the database. The graph is made up of
one vertex graph element table (bank_accounts) and one edge graph element table
(bank_txns).

See Creating a SQL Property Graph to learn the concepts of graph element tables, keys,
labels and properties.

2. Run a SQL graph query, on the newly created graph, to list all the transactions from the
account with id value 816.

SQL> SELECT * FROM GRAPH_TABLE (bank_sql_pg
  2    MATCH
  3    (a IS account WHERE a.id = 816) -[e IS transfer]-> (b IS account)
  4    COLUMNS (a.id AS acc_a, e.amount AS amount, b.id AS acc_b)
  5* );

   ACC_A    AMOUNT    ACC_B

Chapter 3
Quick Start for Working with SQL Property Graphs

3-2



________ _________ ________
     816      4713      287
     816      8001      590
     816      4186      934
     816      3718      289
     816      4039      812

See SQL Graph Queries for more information.

3. Optionally, if you have installed the graph server (PGX), then you can also visualize the
preceding SQL graph query, using the graph visualization tool.

The only difference is that you must return the vertex and edge IDs in order to visualize the
vertices and edges of the SQL graph query together with their IDs and all their labels and
properties. Note that the COLUMNS clause in the following example uses the VERTEX_ID and
EDGE_ID operators:

Figure 3-2    Visualizing a SQL Graph Query

• See Vertex and Edge Identifiers to learn more about the VERTEX_ID and EDGE_ID
operators.

• See Visualizing Graph Queries on SQL Property Graphs for more details.

4. Load the graph into the graph server (PGX) if you want to run graph algorithms.

• JShell

• Java

• Python

JShell

opg4j> var graph = session.readGraphByName("BANK_SQL_PG", 
GraphSource.PG_SQL)
graph ==> PgxGraph[name=BANK_SQL_PG,N=1000,E=5001,created=1681020302077]

Chapter 3
Quick Start for Working with SQL Property Graphs

3-3



Java

PgxGraph graph = session.readGraphByName("BANK_SQL_PG", 
GraphSource.PG_SQL);

Python

>>> graph = session.read_graph_by_name("BANK_SQL_PG", "pg_sql")
>>> graph
PgxGraph(name: BANK_SQL_PG, v: 1000, e: 5001, directed: True, memory(Mb): 
0)

See Loading a SQL Property Graph into the Graph Server (PGX) for more information.

5. Execute the PageRank algorithm as shown:

• JShell

• Java

• Python

JShell

opg4j> var analyst = session.createAnalyst()
analyst ==> NamedArgumentAnalyst[session=0fb6bea7-
d467-458d-90c3-803d2932df12]
opg4j> analyst.pagerank(graph)
$3 ==> VertexProperty[name=pagerank,type=double,graph=BANK_SQL_PG]

Java

Analyst analyst = session.createAnalyst();
analyst.pagerank(graph);

Python

>>> analyst = session.create_analyst()
>>> analyst.pagerank(graph)
VertexProperty(name: pagerank, type: double, graph: BANK_SQL_PG)

6. Query the graph to list the top 10 accounts by pagerank:

• JShell

Chapter 3
Quick Start for Working with SQL Property Graphs

3-4



• Java

• Python

JShell

opg4j> session.queryPgql("SELECT a.id, a.pagerank FROM MATCH (a) ON 
BANK_SQL_PG ORDER BY a.pagerank DESC LIMIT 5").print()
+-----------------------------+
| id  | pagerank              |
+-----------------------------+
| 387 | 0.007302836252205924  |
| 406 | 0.006734430614559079  |
| 135 | 0.006725965475577353  |
| 934 | 0.006641340764834484  |
| 397 | 0.0057016075312134595 |
+-----------------------------+
$5 ==> PgqlResultSetImpl[graph=BANK_SQL_PG,numResults=5]

Java

session.queryPgql("SELECT a.id, a.pagerank FROM MATCH (a) ON BANK_SQL_PG 
ORDER BY a.pagerank DESC LIMIT 5").print();

Python

>>> session.query_pgql("SELECT a.id, a.pagerank FROM MATCH (a) ON 
BANK_SQL_PG ORDER BY a.pagerank DESC LIMIT 5").print()
+-----------------------------+
| id  | pagerank              |
+-----------------------------+
| 387 | 0.007302836252205924  |
| 406 | 0.006734430614559079  |
| 135 | 0.006725965475577353  |
| 934 | 0.006641340764834484  |
| 397 | 0.0057016075312134595 |
+-----------------------------+

7. Drop the SQL property graph after running the graph queries.

SQL> DROP PROPERTY GRAPH bank_sql_pg;

Property dropped.

Chapter 3
Quick Start for Working with SQL Property Graphs

3-5



4
SQL DDL Statements for Property Graphs

You can create, revalidate, rename, and drop SQL property graphs using SQL data definition
language (DDL) statements.

• Creating a SQL Property Graph
Using the CREATE PROPERTY GRAPH DDL statement, you can create a property graph object
directly in an Oracle Database.

• Revalidating a SQL Property Graph
Using the ALTER PROPERTY GRAPH COMPILE DDL statement, you can revalidate an existing
property graph object in the database.

• Renaming a SQL Property Graph
You can rename an existing SQL property graph using the RENAME DDL statement.

• Dropping a SQL Property Graph
Using the DROP PROPERTY GRAPH DDL statement, you can remove a property graph object
in Oracle Database.

• JSON Support in SQL Property Graphs
When creating a SQL property graph, you can define a label property over a JSON data
type column using simplified dot notation. You can later access this property inside the
SQL graph query.

4.1 Creating a SQL Property Graph
Using the CREATE PROPERTY GRAPH DDL statement, you can create a property graph object
directly in an Oracle Database.

Example 4-1    Creating a SQL Property Graph Using the CREATE PROPERTY GRAPH DDL
Statement

This example creates a SQL property graph, students_graph, using persons, university,
friends, and student_of as the underlying database tables for the graph.

In order to run this example, ensure the following:

1. Set up the sample tables in the database as explained in Setting Up Sample Data in the
Database.

2. See Granting System and Object Privileges for SQL Property Graphs to ensure you have
the required privileges to create a SQL property graph.

The following diagram illustrates the students_graph:

4-1



Figure 4-1    STUDENTS_GRAPH

The corresponding SQL propery graph DDL statement is as shown:

CREATE PROPERTY GRAPH students_graph
  VERTEX TABLES (
    persons KEY (person_id)
      LABEL person
        PROPERTIES (person_id, name, birthdate AS dob)
      LABEL person_ht
        PROPERTIES (height),
    university KEY (id)
  )
  EDGE TABLES (
    friends
      KEY (friendship_id)
      SOURCE KEY (person_a) REFERENCES persons(person_id)
      DESTINATION KEY (person_b) REFERENCES persons(person_id)
      PROPERTIES (friendship_id, meeting_date),
    student_of
      SOURCE KEY (s_person_id) REFERENCES persons(person_id)
      DESTINATION KEY (s_univ_id) REFERENCES university(id)
      PROPERTIES (subject)
  );

On execution, the preceding example creates a SQL property graph object that uses the tables
in your schema to define its graph element tables. Note that the creation of the new SQL
property graph object, results only in the storage of the property graph metadata, and there is
no copying of data from the underlying database objects into the graph element tables. This
implies that when querying a SQL property graph, all the graph queries are performed on the
current graph data in the database. You may also specify another schema to contain the SQL
property graph provided that you have sufficient privileges.

The graph definition in the example creates a graph that comprises:

• Two vertex graph element tables:

Chapter 4
Creating a SQL Property Graph

4-2



– persons: The table has an explicitly defined unique key, person_id, and it is
associated with two labels:

* person: This label exposes person_id, name and birthdate as properties.

* person_ht: This label exposes only the height property.

– university: The label for the table is implicitly inferred and by default all visible
columns of the underlying database table are exposed as properties.

• Two edge graph element tables:

– friends: The edge table references persons as the underlying database table for both
the source and destination vertex tables. The source and destination keys (person_a
and person_b) for the edge table correspond to the unique key of the source and
destination vertex tables respectively. The label for the edge table is automatically
inferred from the name of the graph element table (friends, in this case) and exposes
friendship_id and meeting_date as properties.

– student_of: The edge table references persons and university as the underlying
database tables for the source and destination vertex tables respectively. The source
and destination keys (s_person_id and s_univ_id) for the edge table correspond to
the unique key of the source and destination vertex tables respectively. The label for
the edge table is automatically inferred from the name of the graph element table
(student_of, in this case) and exposes subject as the property.

It is important to note that once a SQL property graph is created, you cannot alter the graph
definition. However, you can redefine a SQL property graph using the OR REPLACE clause in the
CREATE PROPERTY GRAPH DDL statement. You can use this clause to change the definition of an
existing SQL property graph without dropping, re-creating, and regranting object privileges that
were earlier granted on it.

See Also:

CREATE PROPERTY GRAPH in Oracle Database SQL Language Reference

The following sections explain more on the concepts of the graph element tables, keys, labels
and properties:

• About Vertex and Edge Graph Element Tables
The vertices and edges of a SQL property graph defined from the underlying database
objects are stored in the graph element tables.

• About Vertex and Edge Table Keys
Each vertex and edge table used in a SQL property graph definition must have a key in
order to identify a unique vertex or an edge in a SQL property graph.

• About Labels and Properties
Labels can be associated to one or more graph element tables and they enrich the graph
definition. A label can be defined with or without properties.

• Using Graph Options to Create SQL Property Graphs
You can use graph options to control the behavior of a SQL property graph at the time of
its creation.

• Granting System and Object Privileges for SQL Property Graphs
Learn about the new system and object privileges for performing operations on SQL
property graphs.

Chapter 4
Creating a SQL Property Graph

4-3



• Retrieving Metadata for SQL Property Graphs
The metadata of SQL property graphs can be accessed through a series of data dictionary
views.

• Retrieving SQL Creation DDL Using the DBMS_METADATA Package

• Limitations of Creating a SQL Property Graph
This section lists a few restrictions that apply when creating a SQL property graph.

4.1.1 About Vertex and Edge Graph Element Tables
The vertices and edges of a SQL property graph defined from the underlying database objects
are stored in the graph element tables.

A graph element table can either be a vertex table or an edge table.

Refer to the graph definition in Example 4-1 to easily understand the following sections:

Vertex graph element table

• A vertex table is defined using the VERTEX TABLES clause.

• Each row in a vertex table corresponds to a vertex of the graph.

• A vertex graph element table has a name that is independent from the name of the
underlying database object.

• By default, the name of the vertex graph element table is the same as the name of the
underlying database object.

• A vertex table name must be unique for a graph. In case you want to define a SQL
property graph with multiple graph element tables from the same database object, then
you must specify an alternate graph element table name using the AS clause.

Edge graph element table

• An edge table is defined using the EDGE TABLES clause.

• It specifies a direct relationship between the source vertex table and the destination vertex
table using the SOURCE and DESTINATION keywords that REFERENCES the respective vertex
tables.

• Each row in an edge table corresponds to an edge of the graph.

• An edge graph element table has a name that is independent from the name of the
underlying database object.

• By default, the name of the edge graph element table is the same as the name of the
underlying database object.

• The edge table name must be unique for a graph. An edge table name cannot be shared
with a vertex table or another edge table.

4.1.2 About Vertex and Edge Table Keys
Each vertex and edge table used in a SQL property graph definition must have a key in order
to identify a unique vertex or an edge in a SQL property graph.

The key is defined from one or more columns of the underlying table. The key may be implicitly
inferred based on an existing primary key or a unique constraint defined on the underlying
table, or explicitly defined. The key should be unique.

Chapter 4
Creating a SQL Property Graph

4-4



However, note that the uniqueness constraint for the key column is required if you create the
graph in ENFORCED MODE. Otherwise, you can create the graph in TRUSTED MODE using key
columns that do not have a uniqueness constraint. See Using Graph Options to Create SQL
Property Graphs for more information on the different modes that can be applied during graph
creation.

Vertex or edge table keys can be defined for any of the following built-in data type columns:

• VARCHAR2
• NVARCHAR2
• NUMBER
• BINARY_FLOAT
• BINARY_DOUBLE
• CHAR
• NCHAR
• DATE
• INTERVAL (both YEAR TO MONTH and DAY TO SECOND)

• TIMESTAMP
Note that the TIMESTAMP WITH TIME ZONE data type is not supported.

Refer to the SQL property graph definition in Example 4-1 to easily understand the following
sections:

Vertex Table Key

• By default, the key for a vertex table is automatically identified from a single PRIMARY KEY
or UNIQUE key constraint on the underlying database object. If both exist, then the PRIMARY
KEY constraint takes precedence over the UNIQUE key constraint.

• If the vertex table key is automatically inferred based on a single UNIQUE key, then the set
of columns in that UNIQUE key must also be NOT NULL.

• If the underlying database object does not contain a unique constraint to enforce
uniqueness, then you must explicitly define the KEY subclause in the VERTEX TABLES
clause, to identify the columns that define a unique key for the vertex table. Note that the
column names must match the column names of the underlying database object.

• Composite vertex table keys are also supported.

Edge Table Key

• By default, the key for an edge table is automatically identified from a single PRIMARY KEY
or UNIQUE key constraint on the underlying database object. If both exist, then the PRIMARY
KEY constraint takes precedence over the UNIQUE key constraint.

• If the edge table key is automatically inferred based on a single UNIQUE key, then the set of
columns in that UNIQUE key must also be NOT NULL.

• If the underlying database object does not contain a unique constraint to enforce
uniqueness, then you must explicitly define the KEY subclause in the EDGE TABLES clause,
to identify the columns that define a unique key for the edge table. Note that the column
names must match the column names of the underlying database object.

Chapter 4
Creating a SQL Property Graph

4-5



• By default, the SOURCE and DESTINATION table keys are automatically obtained from a
single FOREIGN KEY constraint between the edge table and the underlying source and
destination tables respectively.

• However, you must explicitly specify the KEY subclause for the SOURCE and DESTINATION
vertex tables, if any of the following applies:

– There is no FOREIGN KEY constraint between the edge and the referenced vertex
tables.

– There are multiple FOREIGN KEY constraints between the edge and the referenced
vertex tables.

– The underlying database objects for the edge table and its source and destination
vertex tables are materialized views or external tables.

Note:

All restrictions that apply for primary key constraints on a database object also apply
on vertex and edge table keys.

4.1.3 About Labels and Properties
Labels can be associated to one or more graph element tables and they enrich the graph
definition. A label can be defined with or without properties.

You can optionally define LABELS and PROPERTIES for the vertex and edge tables in your graph.
When not specified, the graph element tables are automatically assigned a label with the name
of the graph element table, and all visible columns are exposed as properties, using the
column name as property name.

Refer to the SQL property graph definition in Example 4-1 to easily understand the following
sections:

Labels

• By default, the vertex and edge tables are automatically assigned a label with the name of
the respective graph element tables.

• The DEFAULT LABEL subclause can also be used to explicitly apply the preceding rule.

• You can explicitly assign a new label name to a vertex or an edge graph element table
using the LABEL subclause.

• Multiple labels can be associated with the same graph element table.

• The same label can be shared with multiple graph element tables.
A label can be associated with more than one graph element table (shared label) provided
the following conditions apply:

– All graph element tables that share this label declare the same set of property names.
Note that the property order does not matter in the label definition.

– Different columns or value expression exposed by the same property name have
union compatible types.

• Also, refer to Type Compatibility Rules for Determining Property Types for more
information.

Chapter 4
Creating a SQL Property Graph

4-6



Properties

• By default, all the visible columns of a vertex or an edge table are automatically exposed
as properties if there is no label declaration or if the DEFAULT LABEL subclause is used in
the property graph definition. The property names are the same as the column names of
the underlying database object.

• Columns of any Oracle built-in data types can be exposed as properties of labels in a SQL
property graph. This includes virtual columns, JSON data type columns, CLOB and BLOB
data types.
However, the following are not supported:

– XMLType and SDO_GEOMETRY type columns are not supported.

– SQL/XML value expressions over XMLType column stored as binary XML, and
SDO_GEOMETRY built-in functions over SDO_GEOMETRY object datatype column are allowed
as long as they return a value of a type supported for properties. Any general object
data type and user defined data type and their corresponding SQL operator value
expression over them are not supported.

– Columns of type ANYTYPE cannot be exposed as property.

• At the time of the SQL property graph creation, the data type of a vertex or edge property
is determined as follows:

– Distinct properties associated with distinct labels have the same data type as the
underlying database columns.

– Properties with the same name coming from different labels have the same data type
as the underlying database columns. However, you must use the ALLOW MIXED
PROPERTY TYPES option when creating the SQL property graph.
See Using Graph Options to Create SQL Property Graphs for an example using a
shared property name.

– Properties with the same name coming from the same label will have the UNION ALL
compatible type of the underlying database columns. In addition, you must use the
ALLOW MIXED PROPERTY TYPES option when creating the SQL property graph:

* See Using Graph Options to Create SQL Property Graphs for an example using a
shared property name in a shared label.

* See Type Compatibility Rules for Determining Property Types for more information
on the type rules that determine the property type.

• If you want to explicitly define the vertex or edge properties for a label, then the following
property declarations are supported:

– PROPERTIES [ARE] ALL COLUMNS: To expose all the visible columns of the graph
element table as label properties. However, if any columns are added or deleted in the
source database object, after the creation of the SQL property graph, then these will
not be reflected on the graph.

– PROPERTIES [ARE] ALL COLUMNS EXCEPT(<column_names_list>): To expose all the
visible columns of the graph element table as label properties except those that are
explicitly listed.

– PROPERTIES(<list_of_column_names>): To expose only those columns of the graph
element table that are explicitly listed as label properties. The property name defaults
to the column name.

Chapter 4
Creating a SQL Property Graph

4-7



– PROPERTIES(<column_name AS property_name,...>): Same as the preceding option.
However, if AS property_name is appended to the column_name, then property_name is
used as the property name.

– PROPERTIES(<column_expressions AS property_name,...>): To declare a property
which is an expression over columns. The AS clause is mandatory in this case. A value
expression can either be a SQL operator expression defined over scalar data type
columns or JSON expression. See JSON Support in SQL Property Graphs for an
example using JSON expressions.

– NO PROPERTIES: No columns are exposed for a label.

• Peudo-columns cannot be exposed as a label property.

4.1.4 Using Graph Options to Create SQL Property Graphs
You can use graph options to control the behavior of a SQL property graph at the time of its
creation.

Graph options can be specified at the end of the CREATE PROPERTY GRAPH DDL statement using
the OPTIONS clause. You can use either the MODE or MIXED PROPERTY TYPES option, or both as
required.

Using an Option to Specify the Mode of the Graph

You can specify the MODE of the graph by using one of the following option values at the time of
creating the SQL property graph:

• ENFORCED MODE: This ensures that there is a dependency to the unique key constraint on
the underlying database tables. If used when creating a SQL property graph, the CREATE
PROPERTY GRAPH statement will throw an error if any of the following conditions apply:

– The specified vertex or edge table KEY for the graph element table is neither a PRIMARY
KEY nor a UNIQUE key defined on NOT NULL columns.

– There is no explicit vertex or edge table KEY defined for the graph element table and
also the system is unable to automatically identify the default vertex or edge key, as
there is no single PRIMARY KEY or a single UNIQUE key constraint on NOT NULL columns
on the underlying database table.

– For a specified edge source key and corresponding source vertex key or for a
specified edge destination key and corresponding destination vertex key, there does
not exist a corresponding FOREIGN KEY between the underlying tables.

– An edge table has no explicit keys for the source or for the destination and the system
is unable to implicitly infer the keys, as there is no single FOREIGN KEY constraint
between the edge table and the referenced source (or destination) vertex table.

For example, consider the following t1 table in the database that does not have any
primary key, unique key or a NOT NULL constraint.

SQL> CREATE TABLE t1 (id NUMBER, name VARCHAR2(10));

INSERT INTO t1 (id, name) VALUES (1,'John');
INSERT INTO t1 (id, name) VALUES (2, 'Mary');

Chapter 4
Creating a SQL Property Graph

4-8



Create a SQL property graph using OPTIONS(ENFORCED MODE) as shown:

CREATE PROPERTY GRAPH g
   VERTEX TABLES (
      t1 KEY (id)
         LABEL t PROPERTIES ARE ALL COLUMNS
   ) OPTIONS(ENFORCED MODE);

The graph creation fails with the following error as there are no key constraints to enforce
uniqueness:

ORA-42434: Columns used to define a graph element table key must be NOT NULL
in ENFORCED MODE
If you omit the KEY clause in the preceding graph definition, then the following error is
thrown:

ORA-42402: cannot infer key for graph element table T1
• TRUSTED MODE (default): There is no dependency to the unique key constraint on the

underlying database tables when using the TRUSTED mode. Therefore, the preceding
example when run in TRUSTED mode will not throw any error. This implies that if you choose
to use this option, then you must guarantee the uniqueness of primary keys on each of the
graph element tables, as well as valid foreign key references between an edge table and
its source and destination tables. Otherwise, your graph query results may be incorrect as
the expected guarantees are not met.

Using an Option to Allow or Disallow Different Property Types for Shared Property
Names

You can specify the MIXED PROPERTY TYPES options using one of the following values:

• ALLOW MIXED PROPERTY TYPES: This ensures that:

– If two properties with the same name belong to different labels, then they can have
completely different types.
For example, in addition to the sample tables persons and students (see Setting Up
Sample Data in the Database), create the following additional table:

CREATE TABLE t2 (id NUMBER, height VARCHAR2(4),
CONSTRAINT t2_pk PRIMARY KEY (id));

INSERT INTO t2 (id, height) VALUES (1, '1.80');
INSERT INTO t2 (id, height) VALUES (2, '1.65');

CREATE TABLE t3 (id NUMBER, height BINARY_DOUBLE,
CONSTRAINT t3_pk PRIMARY KEY (id));

INSERT INTO t3 (id, height) VALUES (1, 1.80);
INSERT INTO t3 (id, height) VALUES (2, 1.65);

Run the following CREATE PROPERTY GRAPH DDL statement which uses three distinct
labels for the same property name, height.

CREATE PROPERTY GRAPH g1
   VERTEX TABLES (
      persons

Chapter 4
Creating a SQL Property Graph

4-9



        LABEL person PROPERTIES (name, height),
      t2
        LABEL t2 PROPERTIES (height),
      t3
        LABEL t3 PROPERTIES (height)
   )OPTIONS(ALLOW MIXED PROPERTY TYPES);

When the graph is created, the property type for height in the vertex tables associated
with:

* LABEL person is FLOAT
* LABEL t2 is VARCHAR
* LABEL t3 is BINARY_DOUBLE
However, when querying this graph, the property type for height is dependent on the
label constraint used in the SQL graph query. See Accessing Label Properties for more
information.

– If you are sharing property names inside shared labels, then they should be all union
compatible types.
For example, run the following CREATE PROPERTY GRAPH DDL statement where the
property name height is used inside the shared label t:

CREATE PROPERTY GRAPH g2
   VERTEX TABLES (
      persons
        LABEL t PROPERTIES (height),
      t2
        LABEL t PROPERTIES (height)
   )OPTIONS(ALLOW MIXED PROPERTY TYPES);

The graph creation fails as the column height in the tables persons and t2 has the data
type FLOAT and VARCHAR respectively which are union incompatible. Therefore, the
following error is thrown:

ORA-42414: cannot use mixed type for property HEIGHT of label T
However, the following graph will get created successfully as FLOAT and BINARY_DOUBLE
belong to the numeric group and are union compatible.

CREATE PROPERTY GRAPH g3
   VERTEX TABLES (
      persons
        LABEL t PROPERTIES (height),
      t3
        LABEL t PROPERTIES (height)
   )OPTIONS(ALLOW MIXED PROPERTY TYPES);

See Type Compatibility Rules for Determining Property Types for more information.

• DISALLOW MIXED PROPERTY TYPES (default): This ensures that a property with the same
name should strictly be the same data type. This applies to all labels irrespective of
whether they are associated with a single or multiple graph element tables.

Chapter 4
Creating a SQL Property Graph

4-10



For example, run the following DDL statement using persons and t2 as the underlying
database tables:

CREATE PROPERTY GRAPH g4
   VERTEX TABLES (
      persons
        LABEL person PROPERTIES (name, height),
      t2
        LABEL t2 PROPERTIES (height)
   );

The preceding code uses the default DISALLOW MIXED PROPERTY TYPES graph option and
therefore throws an error as mixed property types are used in the graph definition:

ORA-42414: cannot use mixed type for property HEIGHT of label T2
The following table summarizes compatibility rules with respect to the MIXED PROPERTY TYPES
options

Description ALLOW DISALLOW

Properties with the same name
exposed by shared labels1

Union-compatible Types must match

Shared properties2 Any Types must match

1 A label with the same name can be associated with more than one graph element table.
2 A property with the same name can be exposed by different labels.

4.1.5 Granting System and Object Privileges for SQL Property Graphs
Learn about the new system and object privileges for performing operations on SQL property
graphs.

Table 4-1    System Privileges for SQL Property Graph Objects

System Privileges Description

CREATE PROPERTY GRAPH To create a SQL property graph in the grantee’s schema

CREATE ANY PROPERTY
GRAPH

To create a SQL property graph in any schema except SYS and AUDSYS

ALTER PROPERTY GRAPH To alter a SQL property graph in the grantee’s schema

ALTER ANY PROPERTY
GRAPH

To alter a SQL property graph in any schema except SYS and AUDSYS

READ PROPERTY GRAPH To query a SQL property graph in the grantee’s schema

READ ANY PROPERTY GRAPH To query a SQL property graph in any schema except SYS and AUDSY
SELECT PROPERTY GRAPH To query a SQL property graph in the grantee’s schema

DROP ANY PROPERTY GRAPH To drop a SQL property graph in any schema except SYS and AUDSYS

Table 4-2    Object Privileges for SQL Property Graphs

Object Privileges Description

ALTER To alter a SQL property graph

READ To query a SQL property graph with a SQL graph query

Chapter 4
Creating a SQL Property Graph

4-11



Table 4-2    (Cont.) Object Privileges for SQL Property Graphs

Object Privileges Description
1SELECT To query a SQL property graph with a SQL graph query

1 Note that the SELECT privilege behaves exactly as the READ privilege for the SQL property graph object. It is
mainly present for compatibility with the SQL standards for a property graph object.

The following shows the examples for granting and revoking the SQL property graph related
privileges. Ensure you have SYSDBA access to grant and revoke these privileges:

GRANT CREATE PROPERTY GRAPH, CREATE ANY PROPERTY GRAPH, 
      ALTER ANY PROPERTY GRAPH, DROP ANY PROPERTY GRAPH, 
      READ ANY PROPERTY GRAPH TO <graphuser>;

REVOKE CREATE PROPERTY GRAPH, CREATE ANY PROPERTY GRAPH, 
      ALTER ANY PROPERTY GRAPH, DROP ANY PROPERTY GRAPH, 
      READ ANY PROPERTY GRAPH FROM <graphuser>;

You can share your SQL property graph in the database with another user as shown.

GRANT SELECT ON PROPERTY GRAPH <graph_name> TO <schema_user>;

4.1.6 Retrieving Metadata for SQL Property Graphs
The metadata of SQL property graphs can be accessed through a series of data dictionary
views.

The following table provides a complete list of the data dictionary views that you can access to
retrieve the metadata for SQL property graphs. Note that the metadata for each category in the
table exists across ALL_ , USER_, and DBA_ view set. Depending upon your level of privilege,
you can access the corresponding view.

Table 4-3    List of Data Dictionary Views to Retrieve Metadata for SQL Property Graphs

View Name1 Description

• ALL_PROPERTY_GRAPHS
• USER_PROPERTY_GRAPHS
• DBA_PROPERTY_GRAPHS

To describe all the property graphs in the database.

• ALL_PG_ELEMENTS
• USER_PG_ELEMENTS
• DBA_PG_ELEMENTS

To describe all the graph element tables of the property graphs in
the database.

• ALL_PG_EDGE_RELATIONS
HIPS

• USER_PG_EDGE_RELATION
SHIPS

• DBA_PG_EDGE_RELATIONS
HIPS

To describe all the columns used to define the edge relationships.

Chapter 4
Creating a SQL Property Graph

4-12

http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-AB42A475-72A4-4828-8F6C-5B1007744B57
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-F6D92569-4A08-4B37-B99E-FEEB329F0697
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-D85D49E0-15D7-4ADD-9EEE-5CE353C596CF
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-3B97415E-1F8D-4F4E-95AC-DA4769D23D68
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-5B18B8F8-335D-4CBA-9BB6-1803D3348956
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-F08C44C0-3379-4B17-880A-D407FDC74644
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-546E2CDD-62B3-4604-B93E-7333A5F2B372
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-546E2CDD-62B3-4604-B93E-7333A5F2B372
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-893FC3E1-75BC-4671-B70B-FC62F25CBAC9
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-893FC3E1-75BC-4671-B70B-FC62F25CBAC9
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-BCA5D17F-A906-4019-A655-F6258D61DA0E
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-BCA5D17F-A906-4019-A655-F6258D61DA0E


Table 4-3    (Cont.) List of Data Dictionary Views to Retrieve Metadata for SQL Property
Graphs

View Name1 Description

• ALL_PG_KEYS
• USER_PG_KEYS
• DBA_PG_KEYS

To describe all the columns used as the key for the graph element
tables.

• ALL_PG_LABELS
• USER_PG_LABELS
• DBA_PG_LABELS

To describe labels of property graphs in the database.

• ALL_PG_LABEL_PROPERTIE
S

• USER_PG_LABEL_PROPER
TIES

• DBA_PG_LABEL_PROPERTI
ES

To describe the properties of all the labels of the property graphs in
the database.

• ALL_PG_PROP_DEFINITION
S

• USER_PG_PROP_DEFINITIO
NS

• DBA_PG_PROP_DEFINITION
S

To describe all the column expressions used to define the
properties of labels.

• ALL_PG_ELEMENT_LABELS
• USER_PG_ELEMENT_LABEL

S
• DBA_PG_ELEMENT_LABELS

To describe all the labels of all the graph element tables of the
property graphs in the database.

1 See Oracle Database Reference for more information on the views.

The following example retrieves the graph element tables that were defined for the SQL
property graph (students_graph) created in Creating a SQL Property Graph.

SQL> SELECT * FROM USER_PG_ELEMENTS;

GRAPH_NAME           ELEMENT_NAME    ELEMENT_KIND    OBJECT_OWNER    
OBJECT_NAME
-------------------- --------------- --------------- --------------- 
---------------
STUDENTS_GRAPH       PERSONS         VERTEX          GRAPHUSER       PERSONS
STUDENTS_GRAPH       UNIVERSITY      VERTEX          GRAPHUSER       
UNIVERSITY
STUDENTS_GRAPH       FRIENDS         EDGE            GRAPHUSER       FRIENDS
STUDENTS_GRAPH       STUDENT_OF      EDGE            GRAPHUSER       
STUDENT_OF

4.1.7 Retrieving SQL Creation DDL Using the DBMS_METADATA Package
You can retrieve the creation DDL for a SQL property graph using the DBMS_METADATA package.

Chapter 4
Creating a SQL Property Graph

4-13

http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-20E1CADE-95F0-4850-8DD7-1C73937858B0
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-BC1889D0-7866-4D38-BFD2-9F36F3123B98
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-EEA708E8-D149-4655-875E-D11F3A9B9C68
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-3D03F7C5-B515-4CE9-9DF7-1F4B3A8C42C8
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-26AFE9AC-CE32-43D5-B539-4A1D6BAE91E3
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-2C1DB5E4-FC5D-443B-9A1E-00BC7DC5A664
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-8B85728E-7186-4127-9E12-3E3144979B82
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-8B85728E-7186-4127-9E12-3E3144979B82
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-BD6D5315-906A-4366-8F9A-5E5B98ECDEB3
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-BD6D5315-906A-4366-8F9A-5E5B98ECDEB3
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-BB1CD4EA-1075-4784-9EA8-4889F9B123DC
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-BB1CD4EA-1075-4784-9EA8-4889F9B123DC
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-CA9F8F4E-1E1B-45F2-8B59-C4B0E2479FA2
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-CA9F8F4E-1E1B-45F2-8B59-C4B0E2479FA2
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-D43A9AA1-8C5E-40C7-BC2A-5DD6A01C7B6C
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-D43A9AA1-8C5E-40C7-BC2A-5DD6A01C7B6C
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-EB90373D-8421-4E56-9F48-B09A70B3DBCC
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-EB90373D-8421-4E56-9F48-B09A70B3DBCC
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-7BF6506C-C325-4483-B411-96CF6E354D1A
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-6D621608-9C3B-45EA-9856-27090FF3AF8C
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-6D621608-9C3B-45EA-9856-27090FF3AF8C
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-8C752D4C-E4DC-4EAA-BD71-064F8CBD85A9


The following example displays the DDL for the graph created in Creating a SQL Property
Graph using the DBMS_METADATA package.

SQL> SELECT DBMS_METADATA.GET_DDL('PROPERTY_GRAPH', 'STUDENTS_GRAPH') FROM 
DUAL;

  CREATE PROPERTY GRAPH "GRAPHUSER"."STUDENTS_GRAPH"
  VERTEX TABLES (
   "GRAPHUSER"."PERSONS" AS "PERSONS" KEY ("PERSON_ID")
      LABEL PERSON PROPERTIES ("PERSON_ID", "NAME", "BIRTHDATE" AS "DOB")
      LABEL PERSON_HT PROPERTIES ("HEIGHT"),
   "GRAPHUSER"."UNIVERSITY" AS "UNIVERSITY" KEY ("ID")
      PROPERTIES ("ID", "NAME") )
  EDGE TABLES (
   "GRAPHUSER"."FRIENDS" AS "FRIENDS" KEY ("FRIENDSHIP_ID")
      SOURCE KEY("PERSON_A") REFERENCES PERSONS ("PERSON_ID")
      DESTINATION KEY("PERSON_B") REFERENCES PERSONS ("PERSON_ID")
     PROPERTIES ("FRIENDSHIP_ID", "MEETING_DATE"),
   "GRAPHUSER"."STUDENT_OF" AS "STUDENT_OF" KEY ("S_ID")
      SOURCE KEY("S_PERSON_ID") REFERENCES PERSONS ("PERSON_ID")
      DESTINATION KEY("S_UNIV_ID") REFERENCES PERSONS ("ID")
     PROPERTIES ("SUBJECT") )
  OPTIONS (TRUSTED MODE, DISALLOW MIXED PROPERTY TYPES)

4.1.8 Limitations of Creating a SQL Property Graph
This section lists a few restrictions that apply when creating a SQL property graph.

• Views cannot be used as graph element tables in a SQL property graph.

• Hybrid partitioned tables, as well as views derived from these tables, cannot be used as
graph element tables in a SQL property graph.

• Database links, as well as views defined using these links, cannot be used as graph
element tables in a SQL property graph.

• Object tables (that is, table created with CREATE TABLE x OF myObjectType) and object
views cannot be used as graph element tables in a SQL property graph.

• XMLType table (that is, table created with CREATE TABLE x OF XMLTYPE ...) cannot be
used as graph element tables in a SQL property graph. However SQL/XML operators,
XMLExists(), XMLCast(XMLQuery()) over XMLType column stored as binary XML to define
property as SQL value expression is supported.

• Columns of type ANYTYPE cannot be exposed as properties or as keys for graph element
tables.

• Pseudo-columns cannot be exposed as properties or as keys for graph element tables.

• Column expressions that comprise invocations to PL/SQL functions cannot be exposed as
properties. Similarly, virtual columns defined over column expressions that comprise
invocations to PL/SQL functions cannot be exposed as properties.

• SQL property graph are not editionable.

• A SQL property graph definition cannot be modified once the graph is created. However,
you can redefine a SQL property graph using the OR REPLACE clause in the CREATE
PROPERTY GRAPH DDL statement.

Chapter 4
Creating a SQL Property Graph

4-14



• SQL property graph creation is not supported in a shard catalog. However, you can create
a property graph over sharded tables in the local shards.

4.2 Revalidating a SQL Property Graph
Using the ALTER PROPERTY GRAPH COMPILE DDL statement, you can revalidate an existing
property graph object in the database.

A SQL property graph schema may become invalid due to the alteration of the underlying
database objects. For instance, adding or dropping a column from the underlying database
tables, used in the graph definition, can cause the graph to become invalid. Any invalidation of
the graph will also invalidate cursors depending on the graph object. In such a case, you can
recover your property graph from an invalid state as shown in the following example. Also,
refer to Granting System and Object Privileges for SQL Property Graphs to ensure you have
the required privilege to perform the ALTER PROPERTY GRAPH operation.

Example 4-2    Revalidating a SQL Property Graph

ALTER PROPERTY GRAPH students_graph COMPILE;

See Also:

ALTER PROPERTY GRAPH in Oracle Database SQL Language Reference

4.3 Renaming a SQL Property Graph
You can rename an existing SQL property graph using the RENAME DDL statement.

The following example renames the property graph students_graph to a new name students.

Example 4-3    Renaming a SQL Property Graph

RENAME students_graph TO students;

4.4 Dropping a SQL Property Graph
Using the DROP PROPERTY GRAPH DDL statement, you can remove a property graph object in
Oracle Database.

See Granting System and Object Privileges for SQL Property Graphs to ensure you have the
required privilege to drop a SQL property graph.

Example 4-4    Dropping a SQL Property Graph

The following example removes the SQL property graph, students_graph, in the database.

DROP PROPERTY GRAPH students_graph;

Similar to database views, dropping a property graph object does not remove the underlying
database tables.

Chapter 4
Revalidating a SQL Property Graph

4-15



See Also:

DROP PROPERTY GRAPH in Oracle Database SQL Language Reference

4.5 JSON Support in SQL Property Graphs
When creating a SQL property graph, you can define a label property over a JSON data type
column using simplified dot notation. You can later access this property inside the SQL graph
query.

The label property defined over a JSON data type column can be of common SQL scalar data
types, such as:

• VARCHAR
• NUMBER
• BINARY_FLOAT
• BINARY_DOUBLE
• DATE
• TIMESTAMP
• raw JSON data converted to a SQL data type

via .string(), .number(), .float(), .double(), .date(), .timestamp(), .binary() or
their equivalent using the JSON_VALUE operator

Therefore, you can use either a JSON dot notation or the JSON_VALUE operator to select a
scalar value in the JSON data to define a SQL property graph label property. This also applies
when accessing a label property defined over the JSON data type column inside a SQL graph
query.

Example 4-5    Defining a SQL Property Graph Using JSON Dot Notation and JSON
Expressions for Label Properties

The following example creates a SQL property graph that contains label properties defined
over a JSON data type column. The graph is created using the sample database tables
(persons and friendships) defined in Setting Up Sample Data in the Database. The example
uses both the JSON dot notation and the JSON_VALUE expression to define the label property.

CREATE PROPERTY GRAPH friends_graph
  VERTEX TABLES (
      persons AS p KEY (person_id)
        LABEL person
          PROPERTIES (name, birthdate AS dob,
               p.hr_data.department.string() AS "works_in",
               JSON_VALUE(person_data, '$.role') AS "works_as")
  )
  EDGE TABLES (
      friends
        KEY (friendship_id)
        SOURCE KEY (person_a) REFERENCES p(person_id)
        DESTINATION KEY (person_b) REFERENCES p(person_id)
        PROPERTIES (meeting_date)
  );

Chapter 4
JSON Support in SQL Property Graphs

4-16



The graph gets created successfully and you can query the graph as shown in the following
example:

Example 4-6    Querying a SQL Property Graph and Accessing Label Properties Defined
As SQL/JSON Expressions

The following example queries the SQL property graph created in the preceding example to
access the label properties created over a JSON data type column.

SELECT * FROM GRAPH_TABLE (friends_graph
  MATCH
   (a IS person) -[e IS friends]-> (b IS person)
   COLUMNS (a.name AS a,
            a."works_in" AS "a_works_in",
            e.meeting_date,
            b.name AS b)
);

The query produces the following output:

A     a_works_in MEETING_D B
----- ---------- --------- -----
John  IT         01-SEP-00 Bob
Mary  HR         19-SEP-00 Alice
Mary  HR         19-SEP-00 John
Bob   IT         10-JUL-01 Mary

Example 4-7    Creating and Querying a SQL Property Graph with JSON Data Type Label
Property

The following example creates a SQL property graph with JSON data type label property:

CREATE PROPERTY GRAPH friends_graph_new
  VERTEX TABLES (
      persons AS p KEY (person_id)
        LABEL person
          PROPERTIES (name, birthdate AS dob, p.hr_data AS "p_data")
  )
  EDGE TABLES (
      friends
        KEY (friendship_id)
        SOURCE KEY (person_a) REFERENCES p(person_id)
        DESTINATION KEY (person_b) REFERENCES p(person_id)
        PROPERTIES (meeting_date)
  );

You can then query the graph using a JSON_VALUE expression as shown:

SELECT * FROM GRAPH_TABLE (friends_graph_new
  MATCH
   (a IS person WHERE JSON_VALUE(a."p_data", '$.department') = 'IT') -[e]-> 
(b)
   COLUMNS (a.name AS a, 
           a."p_data".department.string() AS "a_works_in",
           a."p_data".role.string() AS "a_works_as",

Chapter 4
JSON Support in SQL Property Graphs

4-17



           e.meeting_date,
           b.name AS b)
  );

A     a_works_in a_works_as           MEETING_D B
----- ---------- -------------------- --------- -----
John  IT         Software Developer   01-SEP-00 Bob
Bob   IT         Technical Consultant 10-JUL-01 Mary

Chapter 4
JSON Support in SQL Property Graphs

4-18



5
SQL Graph Queries

You can query a SQL property graph using the GRAPH_TABLE operator to express graph pattern
matching queries.

Graph pattern matching allows you to define a set of path patterns and match it against a
graph to obtain a set of solutions. You must provide the graph to be queried as an input to the
GRAPH_TABLE operator along with the MATCH clause containing the graph patterns to be
searched as shown:

SELECT * FROM GRAPH_TABLE (students_graph
  MATCH
  (a IS person) -[e IS friends]-> (b IS person WHERE b.name = 'Mary')
  WHERE a.name='John'
  COLUMNS (a.name AS person_a, b.name AS person_b)
);

A basic SQL graph query is made up of the following components:

• FROM clause: It includes the GRAPH_TABLE operator which takes the input graph name as
the first parameter.

• MATCH clause: It expresses the graph element patterns (vertex or edge pattern) to be
searched on the SQL property graph. It can optionally include an element pattern WHERE
clause as seen in the preceding example ((b IS person WHERE b.name = 'Mary')) query.
This in-line WHERE clause can access any matched variable.

• WHERE clause: This is an optional out-of-line WHERE clause. Similar to the element pattern
WHERE clause, it has access to all the graph pattern variables and expresses a predicate
that applies to the entire pattern in the MATCH clause.

• COLUMNS clause: This contains the query output columns.

See Also:

GRAPH_TABLE Operator in Oracle Database SQL Language Reference

The following sections explain SQL graph queries in detail:

• About Graph Pattern
The GRAPH_TABLE operator in a SQL graph query contains a graph pattern.

• Variable Length Path Patterns
Variable length graph patterns provide advanced querying support for SQL property
graphs.

• Complex Path Patterns
You can query a SQL property graph using complex path patterns.

5-1



• Vertex and Edge Identifiers
You can uniquely identify each vertex and edge in a SQL property graph with the
VERTEX_ID and EDGE_ID operators, respectively, in a SQL graph query.

• Using Aggregate Functions in SQL Graph Queries
You can use aggregate functions in a SQL graph query to obtain an aggregated output.

• Selecting All Properties in the COLUMNS Clause
You can select all the vertex or edge properties based on the element type (vertex or edge)
and any label expression specified for the element in the COLUMNS clause of a SQL graph
query.

• Using the SOURCE and DESTINATION Predicates
You can determine if a vertex is a source or destination using the IS [NOT] SOURCE OF or
IS [NOT] DESTINATION OF predicate in a value expression inside a WHERE or COLUMNS
clause.

• Running SQL Graph Queries at a Specific SCN
You can run a SQL graph query at a given System Change Number (SCN) or timestamp
value.

• Privileges to Query a SQL Property Graph
You must have the READ or SELECT object privilege to query a SQL property graph.

• Examples for SQL Graph Queries
This section contains a few examples for querying a SQL property graph with fixed-length
and variable-length graph pattern matching queries.

• Supported Features and Limitations for Querying a SQL Property Graph
This section provides the list of supported and unsupported features for querying a SQL
Property Graph.

• Tuning SQL Property Graph Queries
You can tune a SQL graph query using the EXPLAIN PLAN statement.

• Type Compatibility Rules for Determining Property Types
When using shared property names that are union compatible, the property type is
determined by certain type compatibility rules.

• Viewing and Querying SQL Property Graphs Using SQL Developer
Using SQL Developer 23.1, you can view all the SQL property graphs existing in your
database schema by expanding SQL Property Graphs under the Property Graph node
in the Connections navigator.

5.1 About Graph Pattern
The GRAPH_TABLE operator in a SQL graph query contains a graph pattern.

A graph pattern is expressed between the input graph name and the COLUMNS clause inside the
GRAPH_TABLE operator.

A graph pattern contains one or more comma-separated path patterns, which are composed of
vertex and edge patterns. For example, the following path pattern has two vertex patterns and
one edge pattern:

(v1) -[e]-> (v2)
A vertex pattern is enclosed in parentheses and specifies how to match a single vertex. An
edge pattern is enclosed by a square bracket with delimiters on the left and right side of the
edge pattern and specifies how to match a single edge.

Chapter 5
About Graph Pattern

5-2



Also, the available arrow tokens for edge patterns are summarized in the following table:

Table 5-1    Arrow Tokens for Edge Patterns

Directionality Bracketed Syntax Abbreviated Syntax1

Directed to the right -[ ]-> ->
Directed to the left <-[ ]- ->
Any directed edge (right or left) <-[ ]-> or -[ ]- -

1 • There are no brackets for the arrows in the “abbreviated syntax” column.
• All edge labels will be considered as no edge label is specified. Hence, filtering on a specific edge is not

supported.

A graph element pattern (which can either be a vertex or an edge pattern) may in turn
optionally include:

• An element variable.

• A label expression which is that part in an element pattern that starts with the keyword IS
and is followed by a list of one or more label names. If there is more than one label name,
then these are separated by vertical bars.

• An element pattern WHERE clause which expresses a search condition on the element
variable declared by the element pattern.

See Also:

Graph Pattern in Oracle Database SQL Language Reference

The following sections explain the graph pattern concepts more in detail:

• Graph Element Variables
Vertex and edge pattern variables ranges over vertices and edges respectively.

• Label Expressions
A label expression in a vertex or an edge element pattern is introduced by the keyword IS.

• Accessing Label Properties
You can access a property inside a graph element pattern, in the out-of-line WHERE clause
or in the COLUMNS clause.

5.1.1 Graph Element Variables
Vertex and edge pattern variables ranges over vertices and edges respectively.

For example, consider the following graph pattern which contains three graph element
variables.

(v1)–[e]->(v2)
In the preceding graph pattern, v1 and v2 are two vertex pattern variables and e is an edge
pattern variable.

Ensure that you apply the following rules for the graph pattern variables:

• You cannot use the same variable name for both a vertex and an edge.

Chapter 5
About Graph Pattern

5-3



• You can use the same variable name in two different vertex patterns as shown:
MATCH (a IS person) -> (a IS person)
In the preceding example, the vertex variable a is used in two vertex patterns - (a IS
person) and (a IS person). This implies that the two vertex patterns that declare the
same vertex variable must bind to the same vertex. Thus the vertex variable binds to a
unique vertex but the vertex pattern can appear multiple times in the same graph pattern.

• You can use the same variable name in two different edge patterns.

• Anonymous (that is, omitted) vertex and edge variables are supported. See Example 5-8.

5.1.2 Label Expressions
A label expression in a vertex or an edge element pattern is introduced by the keyword IS.

For example, in the following graph pattern, the vertex pattern associated with the graph
element variable v1 has the label person. Also, the edge pattern associated with the graph
element variable e contains the label friendOf:

(v1 IS person) –[e IS friendOf]-> (v2)
If the label is omitted in a graph element pattern, then depending on the type of the element
variable, either all vertex properties or all edge properties in the graph can be referenced.
Otherwise, if a label expression is specified, then the set of properties that can be referenced is
the union of the properties of labels belonging to vertex (or edge) tables that have at least one
label that satisfies the label expression.

A label expression can also include an optional in-line SQL search condition that can access
any matched variable. When accessing a property, you must specify a graph pattern variable.

The supported vertex and edge label expressions are described in the following table:

Table 5-2    Supported Vertex and Edge Label Expressions

Vertex Label
Expression

Edge Label Expression Description

(a) [e] • The vertex graph pattern variable a may
match a vertex with any label.

• The edge graph pattern variable e may
match an edge with any label.

() [] • The vertex pattern has no label and can
match any vertex.

• The edge pattern has no label and can
match any edge.

When a graph pattern variable is not
specified, a unique vertex or edge variable
name is internally generated by the system.
Therefore, you cannot reference the vertex or
edge elsewhere in the query, as it is unknown.

Chapter 5
About Graph Pattern

5-4



Table 5-2    (Cont.) Supported Vertex and Edge Label Expressions

Vertex Label
Expression

Edge Label Expression Description

(IS person) [IS friend_of] • The vertex pattern has only the person
label.

• The edge pattern has only the
friend_of label.

When a graph pattern variable is not
specified, a unique vertex or edge variable
name is internally generated by the system.
Therefore, you cannot reference the vertex or
edge elsewhere in the query, as it is unknown.

(IS person|place|
thing)

[IS friend_of|
student_of]

• The vertex pattern has an alternation of
three labels, person, place and thing.
This implies that the vertex pattern can
match any vertex having those labels.

• The edge pattern has an alternation of
two labels, friend_of and student_of.
This implies that the edge pattern can
match any edge having those labels.

As there is no explicit graph pattern variable in
the vertex or edge pattern, you cannot
reference this vertex or edge elsewhere in the
query.

(a IS person|place|
thing)

[e IS friend_of|
student_of]

Same as the preceding table entry. However,
the vertex and edge patterns contain a and e
as vertex and edge graph pattern variables
respectively. Therefore, you can reference the
vertex or edge using the respective graph
pattern variables elsewhere in the query.
See Example 5-12.

(a IS person),
(a IS car)

(a)–[e IS L1]->(b),
(a)–[e is L2]->(b)

• The vertex pattern a IS person implies
that a must match vertices having the
label person, and the vertex pattern a
IS car implies that a must match
vertices having the label car. Therefore,
this represents that a must match
vertices having both person and car as
labels, effectively an AND of these two
conditions. Also, you can reference a
vertex as a elsewhere in the query.

• The edge pattern e IS L1 implies that e
must match edges having the label L1,
and the edge pattern e IS L2 implies
that e must match edges having the label
L2. Therefore, this represents that e must
match edges having both L1 and L2 as
labels, effectively an AND of these two
conditions. Also, you can reference an
edge as e elsewhere in the query.

See Example 5-13.

Chapter 5
About Graph Pattern

5-5



Table 5-2    (Cont.) Supported Vertex and Edge Label Expressions

Vertex Label
Expression

Edge Label Expression Description

(a IS person WHERE
a.name = 'Fred')

[e IS student_of WHERE
e.subject = 'Arts']

• The vertex pattern has a label person
and a vertex graph pattern variable a,
which is qualified in the element pattern
WHERE clause.

• The edge pattern has a label
student_of and an edge graph pattern
variable e, which is qualified in the
element pattern WHERE clause.

The only graph pattern variable that is visible
within an element pattern is the graph pattern
variable defined locally by the element
pattern. Graph pattern variables from another
element patterns cannot be accessed. See 
Example 5-5.

5.1.3 Accessing Label Properties
You can access a property inside a graph element pattern, in the out-of-line WHERE clause or in
the COLUMNS clause.

Consider the following graph element pattern where a is a graph element variable and name is
a property name:

(a IS person WHERE a.name='John')
You can then reference the property in the WHERE clause inside the graph element pattern as
a.name. This means a.name references the property name of the graph element bound to the
graph pattern variable a.

Also, the following conditions apply when accessing a property:

• The property name is part of at least one table that satisfies the label expression.

• A graph variable name must always be used to access a property.

• At the time of query compilation, certain type checking rules apply for the vertex or edge
table properties. See Type Compatibility Rules for Determining Property Types for more
information.

The following examples describe a few scenarios for determining property types when
querying SQL property graphs. Note that Example 5-1 to Example 5-3 refer to the SQL
property graph definition for g1 which contains height as a shared property across different
labels.

Example 5-1    Determining the Property Type for a Single Label

The data type for a.height in the following query is FLOAT:

SELECT * FROM GRAPH_TABLE (g1
MATCH
(a IS person)
COLUMNS (a.height)
);

Chapter 5
About Graph Pattern

5-6



The query output is as shown:

HEIGHT
----------
       1.8
      1.65
      1.75
       1.7

Example 5-2    Determining Union Compatible Property Type for Two Different Labels

The data type for a.height in the following query is the union compatible type between FLOAT
and BINARY_DOUBLE:

SELECT * FROM GRAPH_TABLE (g1
MATCH
(a IS person|t3)
COLUMNS (a.height)
);

The query output is as shown:

    HEIGHT
----------
  1.8E+000
 1.65E+000
 1.75E+000
  1.7E+000
  1.8E+000
 1.65E+000

In the SQL property graph g1, the property type for height associated with the labels person
and t3 is FLOAT and BINARY_DOUBLE respectively. BINARY_DOUBLE takes precedence over FLOAT
and hence the resulting output property type for a.height is BINARY_DOUBLE.

Example 5-3    No Union Compatible Property Type for Two Different Labels

Error is thrown for the following query as the data type for a.height is not union compatible
across the tables, person (FLOAT) and t2 (VARCHAR):

SELECT * FROM GRAPH_TABLE (g1
  MATCH
   (a IS person|t2)
  COLUMNS (a.height)
  );

On execution. the preceding query throws the error - ORA-01790: expression must have same
datatype as corresponding expression
Example 5-4    Determining Union Compatible Property Type for Shared Labels

Consider the SQL property graph definition for g3 which uses a shared label (t) that is
associated with a shared property name (height).

Chapter 5
About Graph Pattern

5-7



When querying g3, the data type for a.height in the following SQL graph query is
BINARY_DOUBLE:

SELECT * FROM GRAPH_TABLE (g3
MATCH
(a IS t)
COLUMNS (a.height)
);

The query output is a union of the property columns across all the graph element tables
sharing the label. Also, the property type is BINARY_DOUBLE as per the Type Compatibility Rules
for Determining Property Types:

    HEIGHT
----------
  1.8E+000
 1.65E+000
 1.75E+000
  1.7E+000
  1.8E+000
 1.65E+000

5.2 Variable Length Path Patterns
Variable length graph patterns provide advanced querying support for SQL property graphs.

Variable length graph patterns require recursion such that there is a variable number of joins
when translated into a relational query.

Bounded recursive path patterns that include one or more of the following quantifiers are
supported:

Table 5-3    Quantifier Support for Variable Length Graph Patterns

Quantifier Description

{n} Exactly n
{n, m} Between n and m (inclusive)

{, m} Between 0 and m (inclusive)

Note that the maximum upper bound limit for the quantifiers in the preceding table is 10.

See Example 5-14 for example queries using recursive path patterns with bounded quantifiers.

5.3 Complex Path Patterns
You can query a SQL property graph using complex path patterns.

Cyclic Path Patterns

Vertex and edge path patterns can form cycles. For instance, consider the following graph
pattern:

MATCH (a IS person) -[IS friends]-> (a IS person)

Chapter 5
Variable Length Path Patterns

5-8



The preceding graph pattern describes a single path pattern, and it contains the vertex variable
a twice. Thus, this finds cycles in the graph such that a binds to a person that has a friends
edge to itself.

Also, note the following:

• The label person for the vertex variable a need not be repeated twice. The result is the
same with or without repeating the label expression.

• You can use multiple in-line WHERE clauses to add conditions on the same pattern variable.

• Using the same edge variable twice in a path pattern also has the semantics that the
edges must be the same.

Cycles can be longer than a single edge. See Example 5-11.

Multiple Path Patterns

A MATCH clause may have more than one path pattern, in a comma-separated list. For instance,
the following example shows two path patterns:

MATCH (a IS person WHERE a.name='John') -[IS student_of]-> (b IS university),
(a IS person WHERE a.name='John') -[IS friends]-> (c IS person)

Any graph pattern variables in common between two path patterns denotes an overlap
between the path patterns. In the preceding example, the vertex variable a is shared. Note that
the variable a must bind to the same graph element table in each element pattern of the graph
pattern, and thus there is an implicit natural inner join on such repeated graph pattern
variables.

If there are no shared variables between the two path patterns, then the resulting output set is
a cross product of the outputs of the individual path patterns. See Example 5-9 and 
Example 5-10.

5.4 Vertex and Edge Identifiers
You can uniquely identify each vertex and edge in a SQL property graph with the VERTEX_ID
and EDGE_ID operators, respectively, in a SQL graph query.

Graph element identifiers are based on the key value defined for the graph element tables.
Therefore, it is important to note the following:

• Graphs in TRUSTED mode may produce duplicate identifiers for different vertices if some
key columns do not have a UNIQUE constraint.

• Graphs in ENFORCED mode are guaranteed to always produce unique identifiers.

The VERTEX_ID and EDGE_ID operators can be used in any expression appearing in the
COLUMNS or WHERE clause in a SQL graph query.

Note:

In order to use the VERTEX_ID and EDGE_ID operators, you must ensure that you have
the READ or SELECT privilege on both the property graph object and its underlying
database tables.

Chapter 5
Vertex and Edge Identifiers

5-9



The input to the VERTEX_ID operator is a single vertex graph pattern variable coming from a
matched vertex pattern as shown:

MATCH (v) COLUMNS(VERTEX_ID(v) AS v_id)
Similarly, the EDGE_ID operator takes as input a single edge graph pattern variable coming from
a matched edge pattern as shown:

MATCH (v1)-[e]->(v2) COLUMNS(EDGE_ID(e) AS e_id)
The output of these operators is a vertex or an edge identifier of JSON data type. The following
shows an example of a JSON output describing the vertex identifier:

{
  "GRAPH_OWNER": "GRAPHUSER",
  "GRAPH_NAME": "STUDENTS_GRAPH",
  "ELEM_TABLE": "PERSONS",
  "KEY_VALUE": {
    "PERSON_ID": 1
  }
}

In the preceding JSON output:

• GRAPH_OWNER: Owner of the property graph object

• GRAPH_NAME: Name of the property graph object

• ELEM_TABLE: Name of the vertex table

• KEY_VALUE: Name and value of the key column

The same list of JSON output fields apply to an edge identifier also. However, the ELEM_TABLE
field represents the name of an edge table. Also, all operations that can be performed on a
JSON data type can be performed on the vertex and edge identifiers.

See Example 5-20 for more information.

VERTEX_EQUAL and EDGE_EQUAL Predicates

The VERTEX_EQUAL and EDGE_EQUAL predicates can be used to, respectively, compare two
vertex and edge identifiers and return TRUE if they are equal.

The inputs to the VERTEX_EQUAL predicate are two vertex graph pattern variables. Similarly for
EDGE_EQUAL, both inputs must be edge graph pattern variables. These predicates can be used
in the WHERE clause in a SQL graph query.

See Example 5-21 for more information.

5.5 Using Aggregate Functions in SQL Graph Queries
You can use aggregate functions in a SQL graph query to obtain an aggregated output.

Both SQL built-in Aggregate Functions and user-defined aggregates are supported. These
functions can be included in both fixed length and variable length path patterns in a SQL graph
query.

Chapter 5
Using Aggregate Functions in SQL Graph Queries

5-10

http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-62BE676B-AF18-4E63-BD14-25206FEA0848


The aggregate functions can be applied in the COLUMNS clause or in the graph pattern WHERE
clause of the SQL graph query. For instance, consider the following sample query:

SELECT *
FROM GRAPH_TABLE ( g
       MATCH (v1) (-[e]->(v2)){1,2}
       COLUMNS (LISTAGG(v2.id, ',') AS id_list)

The preceding graph query describes a variable length path pattern having {1,2} as the
quantifier. The LISTAGG aggregate function is used in the COLUMNS clause to list all the ids
along a path.

Similarly, you can also apply aggregations in a fixed length path pattern as shown:

SELECT *
FROM GRAPH_TABLE ( g
       MATCH (v1) (-[e]->(v2)){2}
       WHERE AVG(v2.age) >= 30
       COLUMNS (LISTAGG(v2.id, ',') AS id_list)

The preceding graph query describes a fixed length path pattern. The AVG aggregate used in
the WHERE clause determines only those paths where the average age >= 30 condition is met.
The resulting query output is a list of ids along a path.

See Example 5-15 for example queries using aggregations.

See Also:

Graph Pattern in Oracle Database SQL Language Reference for more examples on
aggregations

5.6 Selecting All Properties in the COLUMNS Clause
You can select all the vertex or edge properties based on the element type (vertex or edge)
and any label expression specified for the element in the COLUMNS clause of a SQL graph
query.

The set of properties is the union of properties of the vertex (or edge) labels belonging to
tables that have at least one label that satisfies the label expression. In case some of these
matching tables define a property while other tables do not, then NULL values will be returned
for those tables that do not define the property.

For instance, the following example matches all the vertices in the graph g and retrieves all the
valid properties through n.* in the COLUMNS clause.

SELECT *
FROM GRAPH_TABLE ( g
  MATCH (n IS person) 
  COLUMNS ( n.* )
)

Chapter 5
Selecting All Properties in the COLUMNS Clause

5-11

http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=GUID-1F1E8BC1-CEBB-43A2-B66A-C7D9BB24D88C


See Example 5-23 for more information.

5.7 Using the SOURCE and DESTINATION Predicates
You can determine if a vertex is a source or destination using the IS [NOT] SOURCE OF or IS
[NOT] DESTINATION OF predicate in a value expression inside a WHERE or COLUMNS clause.

These predicates are mainly useful for determining the direction of edges that are matched
through any-directed edge patterns (<-[]-> or -[]-).

The IS [NOT] SOURCE OF predicate takes a vertex and an edge as input and returns TRUE or
FALSE depending on whether the vertex is (or not) the source of the edge.

The IS [NOT] DESTINATION OF predicate also takes a vertex and an edge as input and returns
TRUE or FALSE depending on whether the vertex is (or not) the destination of the edge.

See Example 5-24 for more information.

5.8 Running SQL Graph Queries at a Specific SCN
You can run a SQL graph query at a given System Change Number (SCN) or timestamp value.

The graph name, which is the first operand of the GRAPH_TABLE operator, can be associated
with either of the following clauses:

• AS OF SCN: See Example 5-18

• AS OF TIMESTAMP: See Example 5-19

5.9 Privileges to Query a SQL Property Graph
You must have the READ or SELECT object privilege to query a SQL property graph.

If you are the graph creator, then you can allow other graph users to query your graph by
granting any one of the following privileges:

GRANT READ ON PROPERTY GRAPH <graph_name> TO <schema_user>;
GRANT SELECT ON PROPERTY GRAPH <graph_name> TO <schema_user>;

It is important to note that granting the preceding privileges allows access only to the property
graph object and not to its underlying database tables.

This allows the graph user to successfully run SQL graph queries on your graph without having
access to the underlying tables. For example:

GRANT READ ON PROPERTY GRAPH students_graph TO hr;

SQL> conn hr/<password_for_hr>;
Connected.
SQL> SELECT * FROM GRAPH_TABLE (graphuser.students_graph MATCH (a IS person) 
COLUMNS (a.name AS person_a));

PERSON_A
----------
John

Chapter 5
Using the SOURCE and DESTINATION Predicates

5-12



Mary
Bob
Alice

However, to perform SQL graph queries with VERTEX_ID and EDGE_ID operators, the graph user
must additionally have READ or SELECT privilege on the underlying database tables.

5.10 Examples for SQL Graph Queries
This section contains a few examples for querying a SQL property graph with fixed-length and
variable-length graph pattern matching queries.

All the queries shown in the examples are run on the SQL property graph, students_graph,
created in Example 4-1:

Example 5-5    Query Using An Edge Pattern Directed Left-To-Right

The following example shows a GRAPH_TABLE query containing an edge pattern (-[e IS
friends]->) which is directed from left-to-right:

SELECT * FROM GRAPH_TABLE (students_graph
  MATCH
  (a IS person) -[e IS friends]-> (b IS person WHERE b.name='Alice')
  WHERE a.name='Mary'
  COLUMNS (a.name AS person_a, b.name AS person_b)
);

The code produces the following output:

PERSON_A   PERSON_B
---------- ----------
Mary       Alice

Example 5-6    Query Using An Edge Pattern Directed Right-To-Left

The following example shows a query containing an edge pattern (<-[e IS friends]-) which
is directed from right-to-left:

SELECT * FROM GRAPH_TABLE (students_graph
  MATCH
  (a IS person) <-[e IS friends]- (b IS person WHERE b.name='Mary')
  WHERE a.name='Alice'
  COLUMNS (a.name AS person_a, b.name AS person_b)
);

The code produces the following output:

PERSON_A   PERSON_B
---------- ----------
Alice      Mary

Chapter 5
Examples for SQL Graph Queries

5-13



Example 5-7    Query Using Any-Directed Edge Pattern

The following example shows a query which contains any-directed edge pattern (-[e IS
friends]-):

SELECT * FROM GRAPH_TABLE (students_graph
  MATCH
  (a IS person) -[e IS friends] - (b IS person WHERE b.name='Alice' OR 
b.name='Mary')
  WHERE (a.name='Alice' OR a.name='Mary')
  COLUMNS (a.name AS person_a, b.name AS person_b)
); 

The code produces the following output:

PERSON_A   PERSON_B
---------- ----------
Mary       Alice
Alice      Mary

Example 5-8    Query Using an Anonymous Edge Variable

The following example shows a query where the edge element variable is omitted:

SELECT * FROM GRAPH_TABLE (students_graph
  MATCH
  (a IS person) -[]-> (b IS person)
  COLUMNS (a.name AS person_a, b.name AS person_b)
  );

Alternatively, you can replace the bracketed syntax for the edge pattern (-[]->) in the
preceding query with an abbreviated syntax ->.

The code produces the following output:

PERSON_A   PERSON_B
---------- ----------
Mary       John
Bob        Mary
John       Bob
Mary       Alice

Example 5-9    Query Using Multiple Path Patterns

The following example shows a query containing two path patterns (a)->(b), (a)->(c)) which
have a common vertex as shown:

SELECT * FROM GRAPH_TABLE (students_graph
  MATCH
  (a IS person WHERE a.name = 'John') -> (b IS person),(a IS person WHERE 
a.name = 'John') -> (c IS university)
  COLUMNS (a.name AS person_a, b.name AS person_b,c.name as university)
  );

Chapter 5
Examples for SQL Graph Queries

5-14



The preceding code produces the following output:

PERSON_A   PERSON_B   UNIVERSITY
---------- ---------- ----------
John       Bob        ABC

Example 5-10    Query Using Disjoint Path Patterns

The following example shows a query containing two disjoint path patterns:

SELECT * FROM GRAPH_TABLE (students_graph
MATCH (a IS person WHERE a.name='John') -[IS student_of]-> (b IS university),
(x IS person) -[IS friends]-> (y IS person)
COLUMNS (a.name AS a, b.name as university, x.name AS x, y.name as y)
);

The resulting output is as shown:

A          UNIVERSITY X          Y
---------- ---------- ---------- ----------
John       ABC        Mary       John
John       ABC        Bob        Mary
John       ABC        John       Bob
John       ABC        Mary       Alice

Example 5-11    Query Using Cyclic Path Patterns

The following example uses a cyclic path pattern (MATCH (a)-[]->(b)-[]->(c)-[]->(a)) as
shown. Note that the example uses the same vertex pattern variable name a (which is bound
to person) twice. Thus, this finds cycles in the graph containing three edges that finally bind to
a itself.

SELECT * FROM GRAPH_TABLE (students_graph
  MATCH
  (a IS person) -[IS friends]-> (b IS person) -[IS friends]->
  (c IS person) -[IS friends]-> (a)
  COLUMNS (a.name AS person_a, b.name AS person_b, c.name AS person_c)
  );

The preceding code produces the following output:

PERSON_A   PERSON_B   PERSON_C
---------- ---------- ----------
Bob        Mary       John
John       Bob        Mary
Mary       John       Bob

Example 5-12    Query Using Label Disjunction

The following example uses label disjunction in the vertex label expression:

SELECT * FROM GRAPH_TABLE (students_graph
MATCH

Chapter 5
Examples for SQL Graph Queries

5-15



(a is person|university)
COLUMNS (a.name, a.dob)
);

The code produces the following output:

NAME       DOB
---------- ---------
John       13-JUN-63
Mary       25-SEP-82
Bob        11-MAR-66
Alice      01-FEB-87
ABC        NULL
XYZ        NULL

6 rows selected.

Example 5-13    Query Using Label Conjunction

The following example uses label conjunction in the vertex label expression:

SELECT * FROM GRAPH_TABLE (students_graph
MATCH
(a IS person), (a IS person_ht)
COLUMNS (a.name as name, a.dob as dob, a.height as height )
);

The code produces the following output:

NAME       DOB           HEIGHT
---------- --------- ----------
John       13-JUN-63        1.8
Mary       25-SEP-82       1.65
Bob        11-MAR-66       1.75
Alice      01-FEB-87        1.7

Example 5-14    Queries Using Recursive Path Patterns with Bounded Quantifiers

The following example uses a recursive path pattern to retrieve all friends within two hops:

SELECT * FROM GRAPH_TABLE (students_graph
MATCH (a is person WHERE a.name='Mary') -[is friends]->{2} (b is person)
COLUMNS (a.name AS a , b.name AS b)
);

The preceding code produces the following output:

A          B
---------- ----------
Mary       Bob

Chapter 5
Examples for SQL Graph Queries

5-16



The following example uses a recursive path pattern to retrieve all friends between one and
two hops (inclusive):

SELECT * FROM GRAPH_TABLE (students_graph
MATCH (a is person WHERE a.name='Mary') -[is friends]->{1, 2} (b is person)
COLUMNS (a.name AS a , b.name AS b)
);

The preceding code produces the following output:

A          B
---------- ----------
Mary       Alice
Mary       John
Mary       Bob

The following example uses a recursive path pattern to retrieve all friends by performing from
zero to two iterations:

SELECT * FROM GRAPH_TABLE (students_graph
MATCH (a is person WHERE a.name='Mary') -[is friends]->{,2} (b is person)
COLUMNS (a.name AS a , b.name AS b)
);

The preceding code produces the following output:

A          B
---------- ----------
Mary       Mary
Mary       Alice
Mary       John
Mary       Bob

Note that in the first line of the preceding output, Mary is bound to both the element pattern
variables, a and b. This is because the query includes a zero hop iteration and therefore, the
vertex pattern to the left and the vertex pattern to the right must bind to the same graph
element.

Example 5-15    Queries Using Aggregations

The following example finds all paths that have a length between two and three edges ({2,3}),
starting from a person named John and following only outgoing edges labeled friends and
vertices labeled person. Vertices along paths should not have the same person_id as John
(WHERE p.person_id <> friend.person_id). The example uses the following four aggregates
in the COLUMNS clause:

• LISTAGG: The first one creates a comma-separated list of the person names along the path
and the second one creates a comma-separated list of the person ages along the path.

• AVG: This computes the average age of the person group in a path.

• COUNT: This computes the length of each path.

SQL> SELECT * FROM GRAPH_TABLE ( students_graph
MATCH (p IS person) (-[e IS friends]-> (friend IS person)

Chapter 5
Examples for SQL Graph Queries

5-17



                      WHERE p.person_id <> friend.person_id){2,3}
WHERE p.name = 'John'
COLUMNS (LISTAGG(friend.name, ',') as fnames,
         LISTAGG(EXTRACT(YEAR from SYSDATE) - EXTRACT(YEAR from friend.dob), 
',') AS age_list,
         AVG(EXTRACT(YEAR from SYSDATE) - EXTRACT(YEAR from friend.dob)) AS 
avg_age_group,
         COUNT(e.friendship_id) AS path)); 

The preceding code produces the following output:

FNAMES                         AGE_LIST        AVG_AGE_GROUP       PATH
------------------------------ --------------- ------------- ----------
Bob,Mary                       57,41                   49.00          2
Bob,Mary,Alice                 57,41,36                44.67          3

The following example finds all paths between university ABC and university XYZ such that
paths have a length of up to three edges ({,3}). For each path, a JSON array is returned such
that the array contains the friendship_id value for edges labeled friends, and the subject
value for edges labeled student_of. Note that the friendship_id property is casted to
VARCHAR(100) to make it type-compatible with the subject property.

SELECT * FROM GRAPH_TABLE ( students_graph
MATCH (u1 IS university) -[e]-{,3} (u2 IS university)
WHERE u1.name = 'ABC' AND u2.name = 'XYZ'
COLUMNS (JSON_ARRAYAGG(CASE WHEN e.subject IS NOT NULL THEN 
e.subject                         
                       ELSE CAST(e.friendship_id AS VARCHAR(100)) END) AS 
path));

The preceding code produces the following output:

PATH
-----------------------------------------
["Arts","3","Math"]
["Music","4","Math"]

Example 5-16    Query Using Bind Variables

The example declares a bind variable, name and assigns a value as shown:

SQL> variable name VARCHAR2(10);
SQL> BEGIN
  2  :name := 'Bob';
  3  END;
  4  /

PL/SQL procedure successfully completed.

Using this bind variable, the following query is performed:

SELECT * FROM GRAPH_TABLE (students_graph
  MATCH

Chapter 5
Examples for SQL Graph Queries

5-18



  (a IS person) -[e IS friends]-> (b IS person WHERE b.name=:name)
  WHERE a.name='John'
  COLUMNS (a.name AS person_a,
           b.name AS person_b,
           e.meeting_date AS met_on)
);

The code produces the following output:

A          B          MET_ON
---------- ---------- ---------
John       Bob        01-SEP-00

Example 5-17    Query Invoking a PL/SQL function Inside an Expression and in the
COLUMNS Clause

The example declares a user defined function(UDF) as shown:

CREATE OR REPLACE FUNCTION get_age(
    id NUMBER
)
RETURN NUMBER
AS
    age NUMBER := 0;
BEGIN
    -- get age
      SELECT (EXTRACT(YEAR from SYSDATE) - EXTRACT(YEAR from birthdate))
      INTO age 
      FROM persons
      WHERE person_id=id;
    -- return age
    RETURN age;
END;
/

Function created.

The following query invokes the UDF inside an expression in the WHERE clause and again in the
COLUMNS clause:

SELECT * FROM GRAPH_TABLE (students_graph
  MATCH
   (a IS person) -[e IS friends]-> (b IS person)
  WHERE (get_age(a.person_id) > 50)
  COLUMNS (a.name AS a,
        get_age(a.person_id) AS age,
           b.name AS b,
           e.meeting_date AS met_on)
  );

The code produces the following output:

A                 AGE B          MET_ON
---------- ---------- ---------- ---------

Chapter 5
Examples for SQL Graph Queries

5-19



John               60 Bob        01-SEP-00
Bob                57 Mary       10-JUL-01

Example 5-18    Query Using SCN
Determine the current SCN value of the database as shown:

SQL>  SELECT TIMESTAMP_TO_SCN(SYSDATE) FROM DUAL;

TIMESTAMP_TO_SCN(SYSDATE)
-------------------------
                  2117789

The following query using the preceding SCN value as shown:

SELECT * FROM GRAPH_TABLE (students_graph AS OF SCN 2117789
  MATCH
   (a IS person) -[e]-> (b IS person)
  COLUMNS (a.name AS a, b.name AS b, e.meeting_date AS met_on)
  );

The query produces the following output:

A          B          MET_ON
---------- ---------- ---------
Mary       John       19-SEP-00
Bob        Mary       10-JUL-01
John       Bob        01-SEP-00
Mary       Alice      19-SEP-00

Example 5-19    Query Using TIMESTAMP
The following query uses a TIMESTAMP value as shown:

SQL> SELECT * FROM GRAPH_TABLE (students_graph AS OF TIMESTAMP SYSTIMESTAMP
  MATCH
   (a IS person WHERE a.name='John') -[e]-> (b IS person)
  COLUMNS (a.name AS a, b.name AS b, e.meeting_date AS met_on)
  );

The query produces the following output:

A          B          MET_ON
---------- ---------- ---------
John       Bob        01-SEP-00

Example 5-20    Query Using the VERTEX_ID and EDGE_ID Identifiers

SELECT * FROM GRAPH_TABLE (students_graph
MATCH
 (a IS person ) -[e IS friends]-> (b IS person)
COLUMNS (JSON_SERIALIZE(VERTEX_ID(a)) AS id_a , JSON_SERIALIZE(EDGE_ID(e)) AS 

Chapter 5
Examples for SQL Graph Queries

5-20



id_e)
);

The query produces a JSON data type output that includes the graph owner, graph name and
graph element table name and the key value as shown:

ID_A                        ID_E
--------------------------- ------------------------------
{"GRAPH_OWNER":"GRAPHUSER", {"GRAPH_OWNER":"GRAPHUSER","GR
"GRAPH_NAME":"STUDENTS_GRAP APH_NAME":"STUDENTS_GRAPH","EL
H","ELEM_TABLE":"PERSONS"," EM_TABLE":"FRIENDS","KEY_VALUE
KEY_VALUE":{"PERSON_ID":1}} ":{"FRIENDSHIP_ID":1}}

{"GRAPH_OWNER":"GRAPHUSER", {"GRAPH_OWNER":"GRAPHUSER","GR
"GRAPH_NAME":"STUDENTS_GRAP APH_NAME":"STUDENTS_GRAPH","EL
H","ELEM_TABLE":"PERSONS"," EM_TABLE":"FRIENDS","KEY_VALUE
KEY_VALUE":{"PERSON_ID":2}} ":{"FRIENDSHIP_ID":2}}

{"GRAPH_OWNER":"GRAPHUSER", {"GRAPH_OWNER":"GRAPHUSER","GR
"GRAPH_NAME":"STUDENTS_GRAP APH_NAME":"STUDENTS_GRAPH","EL
H","ELEM_TABLE":"PERSONS"," EM_TABLE":"FRIENDS","KEY_VALUE
KEY_VALUE":{"PERSON_ID":2}} ":{"FRIENDSHIP_ID":3}}

{"GRAPH_OWNER":"GRAPHUSER", {"GRAPH_OWNER":"GRAPHUSER","GR
"GRAPH_NAME":"STUDENTS_GRAP APH_NAME":"STUDENTS_GRAPH","EL
H","ELEM_TABLE":"PERSONS"," EM_TABLE":"FRIENDS","KEY_VALUE
KEY_VALUE":{"PERSON_ID":3}} ":{"FRIENDSHIP_ID":4}}

Example 5-21    Query Using the VERTEX_EQUAL Predicate

SELECT * FROM GRAPH_TABLE (students_graph
MATCH
 (a IS person WHERE a.name='John') -[e IS friends]->{,1} (b IS person)
WHERE VERTEX_EQUAL(a,b)
COLUMNS (JSON_SERIALIZE(VERTEX_ID(a)) AS id_a , JSON_SERIALIZE(VERTEX_ID(b)) 
AS id_b)
);

The query produces a JSON data type output that includes the graph owner, graph name and
graph element table name and the key value as shown:

ID_A                        ID_B
--------------------------- ---------------------------
{"GRAPH_OWNER":"GRAPHUSER", {"GRAPH_OWNER":"GRAPHUSER",
"GRAPH_NAME":"STUDENTS_GRAP "GRAPH_NAME":"STUDENTS_GRAP
H","ELEM_TABLE":"PERSONS"," H","ELEM_TABLE":"PERSONS","
KEY_VALUE":{"PERSON_ID":1}} KEY_VALUE":{"PERSON_ID":1}}

Chapter 5
Examples for SQL Graph Queries

5-21



Example 5-22    Query Using the IS SOURCE OF and IS DESTINATION OF Predicates

The following query matches FRIENDS edges that are either incoming or outgoing from Mary.
For each edge, it return the NAME property for the source of the edge as well as the NAME
property for the destination of the edge.

SELECT *
FROM GRAPH_TABLE ( students_graph
       MATCH (p1 IS person) -[e IS friends]- (p2 IS person)
       WHERE p1.name = 'Mary'
       COLUMNS (e.friendship_id,
                e.meeting_date,
                CASE WHEN p1 IS SOURCE OF e THEN p1.name ELSE p2.name END AS 
from_person,
                CASE WHEN p1 IS DESTINATION OF e THEN p1.name ELSE p2.name 
END AS to_person))
ORDER BY friendship_id;

FRIENDSHIP_ID MEETING_DATE FROM_PERSON TO_PERSON
------------- ------------ ----------- ---------
            2 19-SEP-00    Mary        Alice
            3 19-SEP-00    Mary        John
            4 10-JUL-01    Bob         Mary

Example 5-23    Queries Fetching All the Vertex and Edge Properties

The following query matches all FRIENDS edges between two persons P1 and P2 and uses all
properties references P1.* and E.* to retrieve all the properties of vertex P1 as well as all
properties of edge E.

SELECT *
FROM GRAPH_TABLE ( students_graph
  MATCH (p1 IS person) -[e IS friends]-> (p2 IS person)
  COLUMNS ( p1.*, p2.name AS p2_name, e.* )
)
ORDER BY 1, 2, 3, 4, 5;

Note that the following result for P1.* includes properties PERSON_ID, NAME and DOB of label
PERSON as well as property HEIGHT of label PERSON_HT. Furthermore, the result for E.* includes
properties FRIENDSHIP_ID and MEETING_DATE of label FRIENDS.

 PERSON_ID NAME       DOB           HEIGHT P2_NAME    FRIENDSHIP_ID MEETING_D
---------- ---------- --------- ---------- ---------- ------------- ---------
         1 John       13-JUN-63        1.8 Bob                    1 01-SEP-00
         2 Mary       25-SEP-82       1.65 Alice                  2 19-SEP-00
         2 Mary       25-SEP-82       1.65 John                   3 19-SEP-00
         3 Bob        11-MAR-66       1.75 Mary                   4 10-JUL-01

The following query matches all vertices in the graph and retrieves all their properties:

SELECT *
FROM GRAPH_TABLE ( students_graph
  MATCH (v)

Chapter 5
Examples for SQL Graph Queries

5-22



  COLUMNS ( v.* )
)
ORDER BY 1, 2, 3, 4, 5;

The query produces the following result. Note that since the PERSON vertices do not have an ID
property, the query returns NULL values (empty strings). Similarly, UNIVERSITY vertices do not
have PERSON_ID, DOB and HEIGHT properties, and so again the query returns NULL values
(empty strings).

 PERSON_ID NAME       DOB           HEIGHT         ID
---------- ---------- --------- ---------- ----------
         1 John       13-JUN-63        1.8
         2 Mary       25-SEP-82       1.65
         3 Bob        11-MAR-66       1.75
         4 Alice      01-FEB-87        1.7
           ABC                                      1
           XYZ                                      2

6 rows selected.

Example 5-24    Query Using the IS SOURCE OF and IS DESTINATION OF Predicates

The following query matches FRIENDS edges that are either incoming or outgoing from Mary.
For each edge, it returns the NAME property for the source of the edge as well as the NAME
property for the destination of the edge.

SELECT *
FROM GRAPH_TABLE ( students_graph
       MATCH (p1 IS person) -[e IS friends]- (p2 IS person)
       WHERE p1.name = 'Mary'
       COLUMNS (e.friendship_id,
                e.meeting_date,
                CASE WHEN p1 IS SOURCE OF e THEN p1.name ELSE p2.name END AS 
from_person,
                CASE WHEN p1 IS DESTINATION OF e THEN p1.name ELSE p2.name 
END AS to_person))
ORDER BY friendship_id;

FRIENDSHIP_ID MEETING_DATE FROM_PERSON TO_PERSON
------------- ------------ ----------- ---------
            2 19-SEP-00    Mary        Alice
            3 19-SEP-00    Mary        John
            4 10-JUL-01    Bob         Mary

• Setting Up Sample Data in the Database

5.10.1 Setting Up Sample Data in the Database
In order to create the SQL property graph, students_graph, shown in Creating a SQL Property
Graph, the following sample tables with data need to be set up in the database.

1. Connect to the database as the schema user.

Chapter 5
Examples for SQL Graph Queries

5-23



2. Run the following SQL script to create the university, persons, students, and
friendships tables with sample data in the database.

CREATE TABLE university (
    id NUMBER GENERATED ALWAYS AS IDENTITY (START WITH 1 INCREMENT BY 1),
    name VARCHAR2(10),
    CONSTRAINT u_pk PRIMARY KEY (id));

INSERT INTO university (name) VALUES ('ABC');
INSERT INTO university (name) VALUES ('XYZ');

CREATE TABLE persons (
     person_id NUMBER GENERATED ALWAYS AS IDENTITY (START WITH 1 INCREMENT
     BY 1),
     name VARCHAR2(10),
     birthdate DATE,
     height FLOAT DEFAULT ON NULL 0,
     hr_data JSON,
     CONSTRAINT person_pk PRIMARY KEY (person_id)
   );

INSERT INTO persons (name, height, birthdate, hr_data)
       VALUES ('John', 1.80, to_date('13/06/1963', 'DD/MM/YYYY'), 
'{"department":"IT","role":"Software Developer"}');

INSERT INTO persons (name, height, birthdate, hr_data)
       VALUES ('Mary', 1.65, to_date('25/09/1982', 'DD/MM/YYYY'), 
'{"department":"HR","role":"HR Manager"}');

INSERT INTO persons (name, height, birthdate, hr_data)
       VALUES ('Bob', 1.75, to_date('11/03/1966', 'DD/MM/YYYY'), 
'{"department":"IT","role":"Technical Consultant"}');

INSERT INTO persons (name, height, birthdate, hr_data)
       VALUES ('Alice', 1.70, to_date('01/02/1987', 'DD/MM/YYYY'), 
'{"department":"HR","role":"HR Assistant"}');

CREATE TABLE student_of (
      s_id NUMBER GENERATED ALWAYS AS IDENTITY (START WITH 1 INCREMENT BY 
1),
      s_univ_id NUMBER,
      s_person_id NUMBER,
      subject VARCHAR2(10),
      CONSTRAINT stud_pk PRIMARY KEY (s_id),
      CONSTRAINT stud_fk_person FOREIGN KEY (s_person_id) REFERENCES 
persons(person_id),
      CONSTRAINT stud_fk_univ FOREIGN KEY (s_univ_id) REFERENCES 
university(id)
    );

INSERT INTO student_of(s_univ_id, s_person_id,subject) VALUES (1,1,'Arts');
INSERT INTO student_of(s_univ_id, s_person_id,subject) VALUES 
(1,3,'Music');
INSERT INTO student_of(s_univ_id, s_person_id,subject) VALUES (2,2,'Math');
INSERT INTO student_of(s_univ_id, s_person_id,subject) VALUES 
(2,4,'Science');

Chapter 5
Examples for SQL Graph Queries

5-24



CREATE TABLE friends (
    friendship_id NUMBER GENERATED ALWAYS AS IDENTITY (START WITH 1 
INCREMENT BY 1),
    person_a NUMBER,
    person_b NUMBER,
    meeting_date DATE,
    CONSTRAINT fk_person_a_id FOREIGN KEY (person_a) REFERENCES 
persons(person_id),
    CONSTRAINT fk_person_b_id FOREIGN KEY (person_b) REFERENCES 
persons(person_id),
    CONSTRAINT fs_pk PRIMARY KEY (friendship_id)
);

INSERT INTO friends (person_a, person_b, meeting_date) VALUES (1, 3, 
to_date('01/09/2000', 'DD/MM/YYYY'));
INSERT INTO friends (person_a, person_b, meeting_date) VALUES (2, 4, 
to_date('19/09/2000', 'DD/MM/YYYY'));
INSERT INTO friends (person_a, person_b, meeting_date) VALUES (2, 1, 
to_date('19/09/2000', 'DD/MM/YYYY'));
INSERT INTO friends (person_a, person_b, meeting_date) VALUES (3, 2, 
to_date('10/07/2001', 'DD/MM/YYYY'));

5.11 Supported Features and Limitations for Querying a SQL
Property Graph

This section provides the list of supported and unsupported features for querying a SQL
Property Graph.

Supported Features

• Single label, no label, label disjunction and label conjunction are supported in label
expressions inside a graph pattern. For more information, see:

– Table 5-2 in Label Expressions

– Examples for SQL Graph Queries

• Any directed edge patterns (MATCH (a)-[e]-(b) are supported.
See Example 5-7.

• Anonymous vertex (MATCH ()-[e]->()) and edge (MATCH (a)-[]->(b)) variables are
supported.
See Example 5-8.

• Complex path pattern queries are supported.
See Example 5-9, Example 5-10 and Example 5-11.

• Bounded recursive path pattern queries are supported.
See Example 5-14.

• Bind variables are supported inside a WHERE clause.
See Example 5-16.

• VERTEX_ID and EDGE_ID operators that uniquely identify a vertex and an edge respectively
can be used within a SQL graph query.

– See Vertex and Edge Identifiers.

Chapter 5
Supported Features and Limitations for Querying a SQL Property Graph

5-25



– See Example 5-20.

• VERTEX_EQUAL and EDGE_EQUAL predicates for matching vertex and edge identifiers are
supported.

– See Vertex and Edge Identifiers.

– See Example 5-21.

• SQL and JSON expressions are supported inside WHERE and COLUMNS clauses.
See Example 4-7.

• JSON simplified syntax is supported to access properties of type JSON.
See Example 4-7.

• PL/SQL functions are supported inside a WHERE or COLUMNS clause.
See Example 5-17.

• Single line and multi-line comments are supported within a graph query.

• All identifiers within the GRAPH_TABLE operator in a SQL graph query, such as graph names,
alias names, graph element pattern variable names, labels and property names follow the
standard SQL rules about case sensitivity:

– Identifiers within double quotes are case sensitive.

– Identifiers not enclosed in double quotes are implicitly converted to uppercase and
enclosed in double quotes.

• SQL hints are supported inside and outside the SQL graph query for tuning.
See Tuning SQL Property Graph Queries for more information.

• You can query a graph defined in another schema if you have the required privileges.
See Granting System and Object Privileges for SQL Property Graphs for more information.

Limitations

• Variable-length pattern matching goals (such as ANY, ALL, ALL SHORTEST, ANY CHEAPEST,
and so on) are not supported.

• Path pattern variables (MATCH p = (n)-[e]->(m)) are not supported.

• Clauses such as COST and TOTAL_COST are not supported.

• Inline subqueries and LATERAL inline views are not supported.

• SQL Macros are not supported.

5.12 Tuning SQL Property Graph Queries
You can tune a SQL graph query using the EXPLAIN PLAN statement.

The GRAPH_TABLE operator with the property graph is internally translated into equivalent SQL.
You can therefore generate the EXPLAIN PLAN for the property graph query as shown:

SQL> EXPLAIN PLAN FOR SELECT * FROM GRAPH_TABLE (students_graph
MATCH (a is person)-[e is friends]-> (b is person)
COLUMNS (a.name AS a , b.name AS b)
);
Explained.

Chapter 5
Tuning SQL Property Graph Queries

5-26



The EXPLAIN PLAN can be viewed as shown:

SQL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY(format=>'ALL'));

Plan hash value: 1420380663
------------------------------------------------------------------------------
-----
| Id  | Operation           | Name        | Rows  | Bytes | Cost (%CPU)| 
Time     |
------------------------------------------------------------------------------
-----
|   0 | SELECT STATEMENT    |             |     4 |   264 |    10  (10)| 
00:00:01 |
|*  1 |  HASH JOIN          |             |     4 |   264 |    10  (10)| 
00:00:01 |
|*  2 |   HASH JOIN         |             |     4 |   184 |     7  (15)| 
00:00:01 |
|   3 |    TABLE ACCESS FULL| PERSONS     |     4 |    80 |     3   (0)| 
00:00:01 |
|   4 |    TABLE ACCESS FULL| FRIENDSHIPS |     4 |   104 |     3   (0)| 
00:00:01 |
|   5 |   TABLE ACCESS FULL | PERSONS     |     4 |    80 |     3   (0)| 
00:00:01 |
------------------------------------------------------------------------------
-----

Query Block Name / Object Alias (identified by operation id):
-------------------------------------------------------------
   1 - SEL$B92C7F25
   3 - SEL$B92C7F25 / "A"@"SEL$213F43E5"
   4 - SEL$B92C7F25 / "E"@"SEL$213F43E5"
   5 - SEL$B92C7F25 / "B"@"SEL$213F43E5"

You can tune the preceding query by using optimizer hints. For instance, the following example
uses the PARALLEL hint and the hint usage can be seen in the following execution plan:

SQL> EXPLAIN PLAN FOR SELECT /*+ PARALLEL(4) */ * FROM GRAPH_TABLE 
(students_graph
MATCH (a is person)-[e is friends]-> (b is person)
COLUMNS (a.name AS a , b.name AS b)
);
Explained.

SQL>  SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY(format=>'ALL'));

Plan hash value: 1486901074
------------------------------------------------------------------------------
-----------------------------------------------
| Id  | Operation                        | Name        | Rows  | Bytes | Cost 
(%CPU)| Time     |    TQ  |IN-OUT| PQ Distrib |
------------------------------------------------------------------------------
-----------------------------------------------
|   0 | SELECT STATEMENT                 |             |     4 |   264 |     
4   (0)| 00:00:01 |        |      |            |
|   1 |  PX COORDINATOR                  |             |       |       

Chapter 5
Tuning SQL Property Graph Queries

5-27



|            |          |        |      |            |
|   2 |   PX SEND QC (RANDOM)            | :TQ10000    |     4 |   264 |     
4   (0)| 00:00:01 |  Q1,00 | P->S | QC (RAND)  |
|   3 |    NESTED LOOPS                  |             |     4 |   264 |     
4   (0)| 00:00:01 |  Q1,00 | PCWP |            |
|   4 |     NESTED LOOPS                 |             |     4 |   264 |     
4   (0)| 00:00:01 |  Q1,00 | PCWP |            |
|   5 |      NESTED LOOPS                |             |     4 |   184 |     
3   (0)| 00:00:01 |  Q1,00 | PCWP |            |
|   6 |       PX BLOCK ITERATOR          |             |       |       
|            |          |  Q1,00 | PCWC |            |
|   7 |        TABLE ACCESS FULL         | FRIENDSHIPS |     4 |   104 |     
2   (0)| 00:00:01 |  Q1,00 | PCWP |            |
|   8 |       TABLE ACCESS BY INDEX ROWID| PERSONS     |     1 |    20 |     
0   (0)| 00:00:01 |  Q1,00 | PCWP |            |
|*  9 |        INDEX UNIQUE SCAN         | PERSON_PK   |     1 |       |     
0   (0)| 00:00:01 |  Q1,00 | PCWP |            |
|* 10 |      INDEX UNIQUE SCAN           | PERSON_PK   |     1 |       |     
0   (0)| 00:00:01 |  Q1,00 | PCWP |            |
|  11 |     TABLE ACCESS BY INDEX ROWID  | PERSONS     |     1 |    20 |     
0   (0)| 00:00:01 |  Q1,00 | PCWP |            |
------------------------------------------------------------------------------
-----------------------------------------------

Query Block Name / Object Alias (identified by operation id):
-------------------------------------------------------------
   1 - SEL$B92C7F25
   7 - SEL$B92C7F25 / "E"@"SEL$213F43E5"
   8 - SEL$B92C7F25 / "A"@"SEL$213F43E5"
   9 - SEL$B92C7F25 / "A"@"SEL$213F43E5"
  10 - SEL$B92C7F25 / "B"@"SEL$213F43E5"
  11 - SEL$B92C7F25 / "B"@"SEL$213F43E5"

Hint Report (identified by operation id / Query Block Name / Object Alias):
Total hints for statement: 1
---------------------------------------------------------------------------
  0 -  STATEMENT

PLAN_TABLE_OUTPUT
---------------------------------------------------------------------------
           -  PARALLEL(4)
Note
-----
   - dynamic statistics used: dynamic sampling (level=2)
   - Degree of Parallelism is 4 because of hint

5.13 Type Compatibility Rules for Determining Property Types
When using shared property names that are union compatible, the property type is determined
by certain type compatibility rules.

The following summarizes the rules for determining the type of a property for union compatible
properties at the time of DDL creation and also during query compilation:

Chapter 5
Type Compatibility Rules for Determining Property Types

5-28



• If expressions exposed by a same property of a shared label are character data, then the
data type of the property is determined as follows:

– If all expressions are of data type CHAR of equal length, then the property has a data
type CHAR of that length. If the expression are all of data type CHAR, but with different
lengths, then the property type is VARCHAR2 with the length of the larger CHAR type.

– If any, or all of the expressions are of data type VARCHAR2, then the property has data
type VARCHAR2. The length of the VARCHAR2 is the maximum length size of the input
columns.

• If expressions exposed by a same property of a shared label are numeric data, then the
data type of the property is determined by numeric precedence:

– If any expression exposed by a property is of data type BINARY DOUBLE, then the
property has the data type BINARY DOUBLE.

– If no expression defining the property are of data type BINARY DOUBLE, but any
expression is of type BINARY FLOAT, then the property has data type BINARY FLOAT.

– If all expressions defining the property are of data type NUMBER, then the property has
data type NUMBER.

• If expressions exposed by a same property of a shared label are date and timestamp data,
then the data type of the property is determined as follows:

– If all expressions are of data type DATE, then property has data type DATE.

– If any, or all of the expressions are of data type TIMESTAMP, then the property has data
type TIMESTAMP.

5.14 Viewing and Querying SQL Property Graphs Using SQL
Developer

Using SQL Developer 23.1, you can view all the SQL property graphs existing in your
database schema by expanding SQL Property Graphs under the Property Graph node in the
Connections navigator.

Figure 5-1    SQL Property Graphs in SQL Developer

The following steps show an example for running graph queries on a SQL property graph:

Chapter 5
Viewing and Querying SQL Property Graphs Using SQL Developer

5-29



1. Click on any SQL property graph.

This opens a SQL worksheet in another tab.

2. Run one or more graph queries in the SQL worksheet.

For example:

Figure 5-2    Running SQL Graph queries in SQL Developer

Chapter 5
Viewing and Querying SQL Property Graphs Using SQL Developer

5-30



6
Loading a SQL Property Graph into the Graph
Server (PGX)

You can load a full SQL property graph or a subgraph into memory in the graph server (PGX).

Note:

Ensure that you drop the graph when it is no longer in use to release the graph
server (PGX) memory. See Deleting a Graph for more information.

The following topics describe the various ways to load a SQL property graph into the graph
server (PGX).

• Loading a SQL Property Graph Using the readGraphByName API
You can load a SQL property graph into the graph server (PGX) by calling the
readGraphByName API on a PgxSession object.

• Loading a Subgraph Using PGQL Queries
You can create an in-memory subgraph from a SQL property graph using the
PgSqlSubgraphReader API.

• Expanding a Subgraph
You can expand an in-memory subgraph by loading graph data from a SQL property graph
into memory, and merging it with the current subgraph.

• Handling Vertex and Edge Identifiers in the Graph Server (PGX)
The Oracle Database maintains globally unique identifiers in JSON format.

• Mapping Oracle Database Types to PGX Types
Learn how the input Oracle database types are mapped to its corresponding PGX types,
when a graph from the database is loaded into the graph server (PGX).

• Privileges to Load a SQL Property Graph
Learn about the privileges required to load a SQL property graph into the graph
server(PGX).

• Restriction on Key Types
Learn about the vertex and edge keys restrictions when loading a full or partial SQL
property graph into memory in the graph server (PGX).

• Loading SQL Property Graphs with Unsupported Key Types
If existing keys in a SQL graph cannot be loaded into the graph server (PGX), then
generated keys maintained by the database may be used instead.

6.1 Loading a SQL Property Graph Using the readGraphByName
API

You can load a SQL property graph into the graph server (PGX) by calling the
readGraphByName API on a PgxSession object.

6-1



When loading a SQL property graph into the graph server (PGX), the full graph schema will be
determined and mapped to a graph configuration. The graphs will be loaded as partitioned
graphs where each vertex or edge table will be mapped to the respective vertex or edge
provider of the same name. Labels and properties will also be loaded as defined.

However, note that only one label per vertex or edge table is supported in order to load a SQL
graph into the graph server (PGX).

For example, consider the following SQL property graph:

CREATE PROPERTY GRAPH student_network
  VERTEX TABLES (
    persons KEY (person_id)
      LABEL person
        PROPERTIES (person_id, name, birthdate AS dob)
  )
  EDGE TABLES (
    friendships AS friends
      KEY (friendship_id)
      SOURCE KEY (person_a) REFERENCES persons(person_id)
      DESTINATION KEY (person_b) REFERENCES persons(person_id)
      PROPERTIES (friendship_id, meeting_date)
  );

You can load this SQL graph into memory as shown:

• JShell

• Java

• Python

JShell

opg4j> var graph = session.readGraphByName 
("STUDENT_NETWORK",GraphSource.PG_SQL)
graph ==> PgxGraph[name=STUDENTS_NETWORK,N=4,E=4,created=1681007796946]

Java

PgxGraph graph = session.readGraphByName("STUDENT_NETWORK", 
GraphSource.PG_SQL);

Python

>>> graph = session.read_graph_by_name("STUDENT_NETWORK", "pg_sql")
>>> graph
PgxGraph(name: STUDENTS_NETWORK, v: 4, e: 4, directed: True, memory(Mb): 0)

Chapter 6
Loading a SQL Property Graph Using the readGraphByName API

6-2



• Loading a SQL Property Graph from a Different Schema
You can specify the schema name when using the readGraphByName API for loading a SQL
property graph.

• Loading a SQL Property Graph Using Graph Optimization Options
You can optimize the read or update performance, when loading a SQL property graph
using the graph optimization options.

• Loading a SQL Property Graph Using OnMissingVertex Options
If either the source or destination vertex or both are missing for an edge, then you can use
the OnMissingVertexOption to specify the behavior for handling the edge with the missing
vertex.

6.1.1 Loading a SQL Property Graph from a Different Schema
You can specify the schema name when using the readGraphByName API for loading a SQL
property graph.

If you only provide the graph name when calling the readGraphByName API, it is assumed that
the graph is owned by current user. But if you want to load a graph owned by another user,
then you must provide the schema name as well. Also, ensure that you have SELECT
permission on the SQL graph and all its underlying data tables.

The following example loads a SQL property graph from the GRAPHUSER schema:

• JShell

• Java

• Python

JShell

opg4j> var graph = session.readGraphByName("GRAPHUSER", "STUDENT_NETWORK", 
GraphSource.PG_SQL)
graph ==> PgxGraph[name=STUDENT_NETWORK,N=4,E=4,created=1680769031393]

Java

PgxGraph graph = session.readGraphByName("GRAPHUSER", "STUDENT_NETWORK", 
GraphSource.PG_SQL);

Python

>>> graph = session.read_graph_by_name("STUDENT_NETWORK", "pg_sql", 
"GRAPHUSER")
>>> graph
PgxGraph(name: STUDENT_NETWORK_2, v: 4, e: 4, directed: True, memory(Mb): 0)

Chapter 6
Loading a SQL Property Graph Using the readGraphByName API

6-3



See Also:

Privileges to Load a SQL Property Graph

6.1.2 Loading a SQL Property Graph Using Graph Optimization Options
You can optimize the read or update performance, when loading a SQL property graph using
the graph optimization options.

The following example shows loading a SQL property graph optimized for READ operation:

• JShell

• Java

• Python

JShell

opg4j> var graph = session.readGraphByName("STUDENT_NETWORK", 
GraphSource.PG_SQL,
...>     ReadGraphOption.optimizeFor(GraphOptimizedFor.READ))
graph ==> PgxGraph[name=STUDENT_NETWORK,N=4,E=4,created=1681008951415]

Java

PgxGraph graph = session.readGraphByName("STUDENT_NETWORK", 
GraphSource.PG_SQL,
  ReadGraphOption.optimizeFor(GraphOptimizedFor.READ);

Python

>>> session.read_graph_by_name('STUDENT_NETWORK', 'pg_sql', 
options=['optimized_for_read'])
PgxGraph(name: STUDENT_NETWORK, v: 4, e: 4, directed: True, memory(Mb): 0)

The following example shows loading a SQL property graph optimized for UPDATE operation.
Also, note that the READ and UPDATE options cannot be used at the same time.

• JShell

• Java

• Python

Chapter 6
Loading a SQL Property Graph Using the readGraphByName API

6-4



JShell

opg4j> var graph = session.readGraphByName("STUDENT_NETWORK", 
GraphSource.PG_SQL,
...>     ReadGraphOption.optimizeFor(GraphOptimizedFor.UPDATES))
graph ==> PgxGraph[name=STUDENT_NETWORK_2,N=4,E=4,created=1681009073501]

Java

PgxGraph graph = session.readGraphByName("STUDENT_NETWORK", 
GraphSource.PG_SQL,
  ReadGraphOption.optimizeFor(GraphOptimizedFor.UPDATES));

Python

>>> session.read_graph_by_name('STUDENT_NETWORK', 'pg_sql', 
options=['optimized_for_updates'])
PgxGraph(name: STUDENT_NETWORK, v: 4, e: 4, directed: True, memory(Mb): 0)

The following example shows loading a SQL property graph with the SYNCHRONIZABLE
optimization option. This option can be used in combination with the READ and UPDATE options.

• JShell

• Java

• Python

JShell

opg4j> var graph = session.readGraphByName("STUDENT_NETWORK", 
GraphSource.PG_SQL,
...>                            ReadGraphOption.SYNCHRONIZABLE)
graph ==> PgxGraph[name=STUDENT_NETWORK,N=4,E=4,created=1696341305374]

Java

PgxGraph graph = session.readGraphByName("STUDENT_NETWORK", 
GraphSource.PG_SQL,
  ReadGraphOption.SYNCHRONIZABLE);

Python

>>> session.read_graph_by_name('STUDENT_NETWORK', 'pg_sql', 
options=['synchronizable'])
PgxGraph(name: STUDENT_NETWORK_2, v: 4, e: 4, directed: True, memory(Mb): 0)

Chapter 6
Loading a SQL Property Graph Using the readGraphByName API

6-5



See Also:

Using the Graph Optimization Options for more information.

6.1.3 Loading a SQL Property Graph Using OnMissingVertex Options
If either the source or destination vertex or both are missing for an edge, then you can use the
OnMissingVertexOption to specify the behavior for handling the edge with the missing vertex.

The supported values are:

• OnMissingVertex.ERROR (default): Specifies that an error must be thrown for edges with
missing source or destination vertex.

• OnMissingVertex.IGNORE_EDGE: Specifies that the edge for a missing source or destination
vertex must be ignored.

• OnMissingVertex.IGNORE_EDGE_LOG: Specifies that the edge for a missing source or
destination vertex must be ignored and all ignored edges must be logged.

• OnMissingVertex.IGNORE_EDGE_LOG_ONCE: Specifies that the edge for a missing source or
destination vertex must be ignored and only the first ignored edge must be logged.

The following example loads a SQL property graph by ignoring the edges with missing vertices
and logging only the first ignored edge.

• JShell

• Java

• Python

JShell

opg4j> session.readGraphByName("STUDENT_NETWORK", GraphSource.PG_SQL,
...>      
ReadGraphOption.onMissingVertex(OnMissingVertex.IGNORE_EDGE_LOG_ONCE))
$2 ==> PgxGraph[name=STUDENT_NETWORK_2,N=4,E=4,created=1697264084059]

Java

PgxGraph graph = session.readGraphByName("STUDENT_NETWORK", 
GraphSource.PG_SQL,
  ReadGraphOption.onMissingVertex(OnMissingVertex.IGNORE_EDGE_LOG_ONCE));

Chapter 6
Loading a SQL Property Graph Using the readGraphByName API

6-6



Python

>>> session.read_graph_by_name('STUDENT_NETWORK', 'pg_sql',
    options=['on_missing_vertex_ignore_edge_log_once'])
PgxGraph(name: STUDENT_NETWORK, v: 4, e: 4, directed: True, memory(Mb): 0)

6.2 Loading a Subgraph Using PGQL Queries
You can create an in-memory subgraph from a SQL property graph using the
PgSqlSubgraphReader API.

You can specify the subgraph to be loaded in one or more PGQL queries. Each of these PGQL
queries will be executed on the database and all the matched vertices and edges will be
loaded as part of the subgraph. Therefore, vertices and edges will be loaded only if they match
at least one of the queries.

Also, note that you can only create subgraphs from SQL property graphs that exist in the
current database user schema.

The following example creates a subgraph from a SQL property graph using multiple PGQL
queries:

• JShell

• Java

• Python

JShell

opg4j> var graph = session.readSubgraph().
...>     fromPgSql("STUDENT_NETWORK").
...>     queryPgql("MATCH (v1 IS Person)-[e IS friends]->(v2 IS Person) WHERE 
id(v1) = 'PERSONS(1)'").
...>     queryPgql("MATCH (v:Person) WHERE id(v) = 'PERSONS(2)'").
...>     load()
graph ==> PgxGraph[name=STUDENT_NETWORK_4,N=3,E=1,created=1681009569883]

Java

PgxGraph graph = session.readSubgraph()
  .fromPgSql("STUDENT_NETWORK")
  .queryPgql("MATCH (v1 IS Person)-[e IS friends]->(v2 IS Person) WHERE 
id(v1) = 'PERSONS(1)'")
  .queryPgql("MATCH (v:Person) WHERE id(v) = 'PERSONS(2)'")
  .load();

Chapter 6
Loading a Subgraph Using PGQL Queries

6-7



Python

>>> graph = session.read_subgraph_from_pg_sql("STUDENT_NETWORK",
...     ["MATCH (v1 IS Person)-[e IS friends]->(v2 IS Person) WHERE id(v1) = 
'PERSONS(1)'",
...      "MATCH (v:Person) WHERE id(v) = 'PERSONS(2)'"])
>>> graph
PgxGraph(name: STUDENT_NETWORK, v: 3, e: 1, directed: True, memory(Mb): 0)

Loading Subgraphs with Custom Names

By default, the new subgraph gets created with the same name as the SQL property graph.
Alternatively, if you want to load a subgraph with a custom name, then you can configure the
subgraph name as shown:

• JShell

• Java

• Python

JShell

opg4j> var graph = session.readSubgraph().
...>     fromPgSql("STUDENT_NETWORK").
...>     queryPgql("MATCH (v1 IS Person)-[e IS friends]->(v2 IS Person) WHERE 
id(v1) = 'PERSONS(1)'").
...>     queryPgql("MATCH (v:Person) WHERE id(v) = 'PERSONS(2)'").
...>     load("student_subgraph")
graph ==> PgxGraph[name=student_subgraph,N=3,E=1,created=1681010160515]

Java

PgxGraph graph = session.readSubgraph()
  .fromPgSql("STUDENT_NETWORK")
  .queryPgql("MATCH (v1 IS Person)-[e IS friends]->(v2 IS Person) WHERE 
id(v1) = 'PERSONS(1)'")
  .queryPgql("MATCH (v:Person) WHERE id(v) = 'PERSONS(2)'")
  .load("student_subgraph");

Python

>>> graph = session.read_subgraph_from_pg_sql("STUDENT_NETWORK",
...     ["MATCH (v1 IS Person)-[e IS friends]->(v2 IS Person) WHERE id(v1) = 
'PERSONS(1)'",
...      "MATCH (v:Person) WHERE id(v) = 'PERSONS(2)'"],
...      graph_name="student_subgraph")
>>> graph
PgxGraph(name: student_subgraph, v: 3, e: 1, directed: True, memory(Mb): 0)

Chapter 6
Loading a Subgraph Using PGQL Queries

6-8



6.3 Expanding a Subgraph
You can expand an in-memory subgraph by loading graph data from a SQL property graph into
memory, and merging it with the current subgraph.

The following applies when merging two subgraphs:

• Expanding a subgraph with data from another SQL graph is only possible if the graph
schemas are compatible.

• The initial subgraph for expanding can also be loaded from a PGQL property graph and
need not necessarily originate from a SQL property graph.

• You can only expand a subgraph by loading graph data from a property graph that exists in
the current database schema.

• Also, see Dynamically Expanding a Subgraph for additional information.

The following example shows the expansion of the subgraph created in Loading a Subgraph
Using PGQL Queries:

• JShell

• Java

• Python

JShell

opg4j> graph = graph.expandGraph().
...>     withPgql().
...>     fromPgSql("STUDENT_NETWORK").
...>     queryPgql("MATCH (v1 IS Person) WHERE id(v1) = 'PERSONS(4)'").
...>     expand()
graph ==> PgxGraph[name=anonymous_graph_31,N=4,E=1,created=1681011908378]

Java

PgxGraph graph = graph.expandGraph()
  .withPgql()
  .fromPgSql("STUDENT_NETWORK")
  .queryPgql("MATCH (v1 IS Person) WHERE id(v1) = 'PERSONS(4)'")
  .expand();

Python

>>> graph = graph.expand_with_pgql("MATCH (v1 IS Person) WHERE id(v1) = 
'PERSONS(4)'", pg_sql_name="STUDENT_NETWORK")
>>> graph
PgxGraph(name: anonymous_graph_34, v: 4, e: 1, directed: True, memory(Mb): 0)

Chapter 6
Expanding a Subgraph

6-9



6.4 Handling Vertex and Edge Identifiers in the Graph Server
(PGX)

The Oracle Database maintains globally unique identifiers in JSON format.

The following shows an example of a JSON output describing the vertex identifier:

{
  "GRAPH_OWNER": "GRAPHUSER",
  "GRAPH_NAME": "STUDENTS_GRAPH",
  "ELEM_TABLE": "PERSONS",
  "KEY_VALUE": {
    "PERSON_ID": 1
  }
}

See Vertex and Edge Identifiers for more information.

However, the graph server (PGX) will not load the full identifiers, but only the KEY_VALUE
column. This ID will then be maintained as a partitioned ID. For instance, the partitioned ID
constructed from the preceding JSON output is: PERSONS(1)
Note that when working with graphs loaded from SQL property graphs, always use the
partitioned ID format to refer to the elements by ID.

6.5 Mapping Oracle Database Types to PGX Types
Learn how the input Oracle database types are mapped to its corresponding PGX types, when
a graph from the database is loaded into the graph server (PGX).

The following table applies for both SQL property graphs and PGQL property graphs.

Chapter 6
Handling Vertex and Edge Identifiers in the Graph Server (PGX)

6-10



Table 6-1    Mapping Oracle Database Types to PGX Types

Oracle Database Type1 PGX Type

NUMBER The following implicit type conversion rules apply:
• NUMBER => LONG (for key columns)

• NUMBER => DOUBLE (for non-key columns)

• NUMBER(m) (number having precision m) with m <= 9 =>
INTEGER

• NUMBER(m) (number having precision m) with 9 < m <=
18 => LONG

• NUMBER(m,n) (number having precision m and scale n)
=> DOUBLE
Note that this applies if n > 0. Otherwise, it follows the
same mapping as NUMBER(x), where x = m-n (that is,
subtracting the scale from the precision). The PGX type
can then vary, depending on the x value as shown:

– x <= 9 => INTEGER
– 9 < x <= 18 => LONG
– x > 18 => DOUBLE

For instance, consider a scenario where n = -100
and m = 1. In this case, x = 101 (m-n), which is
greater than 18. Extremely large numbers cannot be
encoded to fit in INTEGER or LONG and therefore
require the DOUBLE data type.

CHAR or NCHAR STRING
VARCHAR, VARCHAR2, or NVARCHAR2 STRING
BINARY_FLOAT FLOAT
BINARY_DOUBLE DOUBLE
FLOAT The following implicit type conversion rules apply:

• FLOAT(m) with m <= 23 => FLOAT
• FLOAT(m) with 23 < m => DOUBLE
In the preceding entries, m is the variable for precision.

DATE or TIMESTAMP TIMESTAMP
TIMESTAMP WITH LOCAL TIME ZONE TIMESTAMP
TIMESTAMP WITH TIME ZONE TIMESTAMP WITH TIME ZONE

1 Data types for PGQL property graphs and SQL Property Graphs share a one-to-one mapping with Oracle
Database data types.

6.6 Privileges to Load a SQL Property Graph
Learn about the privileges required to load a SQL property graph into the graph server(PGX).

Ensure that you have the following set of permissions:

• SELECT permission is required for the SQL property graph.

– If you are the graph owner, you will automatically get this permission.

– Otherwise, you can grant the permission as shown:
GRANT SELECT ON PROPERTY GRAPH <graph_name> TO <user_name>;

• SELECT permission is required for all the underlying data tables of the SQL property graph

Chapter 6
Privileges to Load a SQL Property Graph

6-11



– This permission is required to access entity keys.

– Note that these permissions are handled separately from the graph permissions.

– You can grant the permission as shown:
GRANT SELECT ON <table_name> TO <user_name>;

6.7 Restriction on Key Types
Learn about the vertex and edge keys restrictions when loading a full or partial SQL property
graph into memory in the graph server (PGX).

The following applies when loading an entire SQL property graph into memory:

• It is mandatory that the vertex keys are both accessible and of a supported type.
For vertices, keys need to be one these (PGX) types: INTEGER, LONG, or STRING.

• Composite vertex keys are not supported. This implies that each vertex table can have one
and only one key column.

• Loading edge keys are optional. This means that if an edge key type is not supported, then
the SQL graph can still be loaded using the readGraphByName API. In such as case, the
graph server (PGX) will not load the edge key, but generate a new one instead.
For edges, keys can only be numeric and the only supported type is LONG.

• Composite edge keys are not supported.

However, when loading a subgraph from a SQL property graph, both the vertex and edge keys
must be of a supported PGX type. If the graph has at least one edge table where keys cannot
be loaded (either because keys are missing, composite keys, or unsupported types), then you
cannot load a subgraph into the graph server (PGX).

In most cases, this restriction can be worked around by using generated numeric keys instead
of existing keys. See Loading SQL Property Graphs with Unsupported Key Types for an
example.

See Also:

Mapping Oracle Database Types to PGX Types

6.8 Loading SQL Property Graphs with Unsupported Key Types
If existing keys in a SQL graph cannot be loaded into the graph server (PGX), then generated
keys maintained by the database may be used instead.

Consider the following SQL property graph which is defined with composite edge keys (USER1,
USER2) for its edge table FRIENDS_WITH:

CREATE PROPERTY GRAPH SOCIAL_NETWORK
    VERTEX TABLES (
        ACCOUNT 
          KEY (ID) LABEL USER PROPERTIES (FULL_NAME, USERNAME)
    ) 
    EDGE TABLES (
        FRIENDS_WITH 
          KEY (USER1, USER2)

Chapter 6
Restriction on Key Types

6-12



          SOURCE KEY (USER1) REFERENCES ACCOUNT (USERNAME)
          DESTINATION KEY (USER2) REFERENCES ACCOUNT (USERNAME)
          NO PROPERTIES
    )
    OPTIONS (TRUSTED MODE);

Although the SOCIAL_NETWORK graph can be loaded into the graph server (PGX), the edge keys
will not be loaded. Also, subgraph loading is not supported for composite edge keys.

In order to resolve these issues, you can perform the following workaround steps on the
underlying FRIENDS_WITH edge table.

1. Add a numeric key column to the FRIENDS_WITH table.

ALTER TABLE FRIENDS_WITH ADD ID NUMBER(5) GENERATED ALWAYS AS IDENTITY;

The data table of the FRIENDS_WITH provider now has an additional ID column which will
automatically be populated with generated numeric keys.

Note that using GENERATED AS IDENTITY columns require additional permissions in the
database, such as CREATE ANY SEQUENCE.

2. Update the graph definition to use this new column as a key for the FRIENDS_WITH edge
table.

a. If you want to create a graph with the same name, then you must first drop the existing
graph.

DROP PROPERTY GRAPH SOCIAL_NETWORK;

b. Update and run the new graph definition.

CREATE PROPERTY GRAPH SOCIAL_NETWORK
    VERTEX TABLES (
        ACCOUNT 
          KEY (ID) 
          LABEL USER 
          PROPERTIES (FULL_NAME, USERNAME)
    ) 
    EDGE TABLES (
        FRIENDS_WITH 
          KEY (ID) 
          SOURCE KEY (USER1) REFERENCES ACCOUNT (USERNAME)
          DESTINATION KEY (USER2) REFERENCES ACCOUNT (USERNAME)
          NO PROPERTIES
    )
    OPTIONS (TRUSTED MODE);

Alternatively, you may also use a CREATE OR REPLACE PROPERTY GRAPH statement,
which will override a graph definition, if one with the same name exists already.

The new graph definition supports subgraph loading using the SOCIAL_NETWORK SQL graph.

Chapter 6
Loading SQL Property Graphs with Unsupported Key Types

6-13



7
Executing PGQL Queries Against SQL
Property Graphs

You can directly run PGQL queries against a SQL property graph in the database.

The PGQL query execution flow is shown in the following figure:

Figure 7-1    PGQL on SQL Property Graphs in Oracle Database

The basic execution flow is:

1. The PGQL query is performed on a SQL property graph through a Java API.

2. The PGQL query is translated to SQL/PGQ (SQL graph query).

3. The translated SQL/PGQ is submitted to Oracle Database by JDBC.

4. The SQL/PGQ result set is wrapped as a PGQL result set and returned to the caller.

See Supported PGQL Features and Limitations for SQL Property Graphs for a complete list of
supported and unsupported features.

• Creating a SQL Property Graph Using PGQL
You can create a SQL property graph from the database tables using the CREATE PROPERTY
GRAPH PGQL DDL statement.

7-1



• Executing PGQL SELECT Queries on a SQL Property Graph
You can execute PGQL SELECT queries, on a SQL property graph, using the Java API in
the oracle.pg.rdbms.pgql package.

• Migrating PGQL Property Graphs to SQL Property Graphs

• Supported PGQL Features and Limitations for SQL Property Graphs
Learn about the supported PGQL features and limitations for SQL property graphs.

7.1 Creating a SQL Property Graph Using PGQL
You can create a SQL property graph from the database tables using the CREATE PROPERTY
GRAPH PGQL DDL statement.

The following example uses the dataset tables that are created by Importing Data from CSV
Files:

• JShell

• Java

• Python

JShell

opg4j> var jdbcUrl="jdbc:oracle:thin:@<host_name>:<port>/<service>"
opg4j> var conn = 
DriverManager.getConnection(jdbcUrl,"<username>","<password>");
opg4j> var pgqlConn = PgqlConnection.getConnection(conn)
opg4j> var pgqlStmt = pgqlConn.createStatement()
opg4j> var pgql = 
...> "CREATE PROPERTY GRAPH bank_sql_pg "
...> + "VERTEX TABLES ( BANK_ACCOUNTS "
...> + "KEY (ID) "
...> + "LABEL Account "
...> + "PROPERTIES (ID, NAME) "
...> + ") "
...> + "EDGE TABLES ( BANK_TXNS "
...> + "KEY (TXN_ID) "
...> + "SOURCE KEY (FROM_ACCT_ID) REFERENCES BANK_ACCOUNTS (ID) "
...> + "DESTINATION KEY (TO_ACCT_ID) REFERENCES BANK_ACCOUNTS (ID) "
...> + "LABEL TRANSFER "
...> + "PROPERTIES (FROM_ACCT_ID, TO_ACCT_ID, AMOUNT, DESCRIPTION) "
...> + ") OPTIONS (PG_SQL) "
opg4j> pgqlStmt.execute(pgql)

Java

import java.sql.Connection;
import java.sql.Statement;
import java.sql.DriverManager;
import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlStatement;

Chapter 7
Creating a SQL Property Graph Using PGQL

7-2



/*
 * This example creates a SQL property graph.
 */
public class CreateSQLGraph
{

  public static void main(String[] args) throws Exception
  {
    int idx=0;
    String jdbcUrl            = args[idx++];
    String username           = args[idx++];
    String password           = args[idx++];
    String graph              = args[idx++];

    Connection conn = null;
    PgqlStatement pgqlStmt = null;

    try {
      //Get a jdbc connection
      conn = DriverManager.getConnection(jdbcUrl, username, password);
      conn.setAutoCommit(false);

      // Get a PGQL connection
      PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);

      // Create a PGQL Statement
      pgqlStmt = pgqlConn.createStatement();
      // Execute PGQL Query
      String pgql =
        "CREATE PROPERTY GRAPH " + graph + " " +
        "VERTEX TABLES ( bank_accounts " +
        "KEY (id) " +
        "LABEL Account " +
        "PROPERTIES (id, name)" +
        ") " +
        "EDGE TABLES ( bank_txns " +
        "KEY (txn_id) " +
        "SOURCE KEY (from_acct_id) REFERENCES bank_accounts (id) " +
        "DESTINATION KEY (to_acct_id) REFERENCES bank_accounts (id) " +
        "LABEL Transfer " +
        "PROPERTIES (from_acct_id, to_acct_id, amount, description)" +
        ") OPTIONS (PG_SQL) ";

      // Print the results
      pgqlStmt.execute(pgql);
    }
    finally {
      // close the statement
      if (pgqlStmt != null) {
         pgqlStmt.close();
         }
      // close the connection

Chapter 7
Creating a SQL Property Graph Using PGQL

7-3



      if (conn != null) {
         conn.close();
         }
      }
  }
}

Python

>>> pgql_conn = opg4py.pgql.get_connection("<username>","<password>", 
"jdbc:oracle:thin:@<host_name>:<port>/<service>")
>>> pgql_statement = pgql_conn.create_statement()
>>> pgql = """
... CREATE PROPERTY GRAPH bank_sql_pg
... VERTEX TABLES (
...   BANK_ACCOUNTS
...     KEY (ID)
...     LABEL Account
...     PROPERTIES (ID, NAME)
... )
... EDGE TABLES (
...   BANK_TXNS
...     KEY (TXN_ID)
...     SOURCE KEY (FROM_ACCT_ID) REFERENCES BANK_ACCOUNTS (ID)
...     DESTINATION KEY (TO_ACCT_ID) REFERENCES BANK_ACCOUNTS (ID)
...     LABEL TRANSFER
...     PROPERTIES (FROM_ACCT_ID, TO_ACCT_ID, AMOUNT, DESCRIPTION)
... ) OPTIONS (PG_SQL)
... """
>>> pgql_statement.execute(pgql)
False

See Creating a Property Graph Using PGQL to understand the PGQL concepts.

7.2 Executing PGQL SELECT Queries on a SQL Property Graph
You can execute PGQL SELECT queries, on a SQL property graph, using the Java API in the
oracle.pg.rdbms.pgql package.

The following example shows a PGQL SELECT query execution:

• JShell

• Java

• Python

Chapter 7
Executing PGQL SELECT Queries on a SQL Property Graph

7-4



JShell

opg4j> var jdbcUrl="jdbc:oracle:thin:@<host_name>:<port>/<db_service>"
opg4j> var conn = 
DriverManager.getConnection(jdbcUrl,"<username>","<password>")
opg4j> conn.setAutoCommit(false)
opg4j> var pgqlConn = PgqlConnection.getConnection(conn)
opg4j> var pgqlStmt = pgqlConn.createStatement()
opg4j> String query = "SELECT n.name FROM MATCH (n:person) ON STUDENTS_GRAPH"
opg4j> var rs = pgqlStmt.executeQuery(query)
opg4j> rs.print()
+-------+
| NAME  |
+-------+
| John  |
| Mary  |
| Bob   |
| Alice |
+-------+

Java

Connection conn = 
DriverManager.getConnection("<jdbcUrl>","<username>","<password>");
        conn.setAutoCommit(false);
        PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
        PgqlStatement pgqlStmt = pgqlConn.createStatement();
        String query = "SELECT n.name FROM MATCH (n:person) ON 
STUDENTS_GRAPH";
        PgqlResultSet rs = pgqlStmt.executeQuery(query);
        rs.print();

Python

>>> pgql_conn = opg4py.pgql.get_connection("<username>","<password>", 
"<jdbcUrl>")
>>> pgql_statement = pgql_conn.create_statement()
>>> query = "SELECT n.name FROM MATCH (n:person) ON STUDENTS_GRAPH"
>>> rs = pgql_statement.execute_query(query)
>>> rs.print()
+-------+
| NAME  |
+-------+
| John  |
| Mary  |
| Bob   |
| Alice |
+-------+

Chapter 7
Executing PGQL SELECT Queries on a SQL Property Graph

7-5



7.3 Migrating PGQL Property Graphs to SQL Property Graphs
You can call the migrate_pgql_to_sql function to migrate a PGQL property graph to SQL
property graph.

The migrate_pgql_to_sql function accepts the following parameters:

• source_schema: Underlying schema of the original PGQL property graph.

• source_graph_name: Name of the original PGQL property graph.

• destination_schema (optional) : Underlying schema of the SQL property graph. If not
specified, then the graph is created in the source PGQL property graph schema.

• destination_graph (optional): Name of the new SQL property graph. If not specified,
then the new graph is created with the original name of the PGQL property graph and the
original graph will be renamed by appending _PGQL at the end of the name.

Note:

PGQL property graphs based on database views cannot be migrated.

Example 7-1    Migrating a PGQL Property Graph to SQL Property Graph

The following example assumes that the PGQL property graph FRIENDS exists in Oracle
Database 23ai.

• JShell

• Java

• Python

JShell

opg4j> var jdbcUrl="jdbc:oracle:thin:@<host_name>:<port>/<db_service>"
opg4j> var conn = 
DriverManager.getConnection(jdbcUrl,"<username>","<password>")
opg4j> PgqlConnection pgqlConn = PgqlConnection.getConnection(conn)
opg4j> PgqlStatement pgqlStmt = pgqlConn.createStatement() 
opg4j> pgqlStmt.execute("CALL pg.migrate_pgql_to_sql('GRAPHUSER', 'FRIENDS', 
'GRAPHUSER', 'FRIENDS_SQL_GRAPH')")
$9 ==> false

Java

DriverManager.registerDriver(new PgqlJdbcRdbmsDriver());
Connection conn = DriverManager.getConnection(<jdbcUrl>, <username>, 
<password>);
PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
PgqlStatement pgqlStmt = pgqlConn.createStatement();

Chapter 7
Migrating PGQL Property Graphs to SQL Property Graphs

7-6



pgqlStmt.execute("CALL pg.migrate_pgql_to_sql('GRAPHUSER', 'FRIENDS', 
'GRAPHUSER', 'FRIENDS_SQL_GRAPH')");

Python

>>> pgql_conn = opg4py.pgql.get_connection("<username>","<password>", 
"jdbc:oracle:thin:@<host_name>:<port>/<db_service>")
>>> pgql_statement = pgql_conn.create_statement()
>>> pgql_statement.execute("CALL pg.migrate_pgql_to_sql('GRAPHUSER', 
'FRIENDS', 'GRAPHUSER', 'FRIENDS_SQL_GRAPH')")
$4 ==> false

7.4 Supported PGQL Features and Limitations for SQL Property
Graphs

Learn about the supported PGQL features and limitations for SQL property graphs.

The following table provides the complete list of supported and unsupported PGQL
functionalities for SQL property graphs:

Table 7-1    Supported PGQL Functionalities and Limitations for SQL Property Graphs

Features PGQL on SQL Property Graphs

CREATE PROPERTY GRAPH Supported

DROP PROPERTY GRAPH Supported

Fixed-length pattern matching Supported

Variable-length pattern matching goals Not Supported

Variable-length pattern matching
quantifiers

Not Supported

Variable-length path unnesting Not Supported

GROUP BY Supported

HAVING Supported

Aggregations Supported:
• COUNT
• MIN, MAX, AVG, SUM
• LISTAGG
Not supported:
• ARRAY_AGG
• JSON_ARRAYAGG

DISTINCT
• SELECT DISTINCT
• Aggregation with DISTINCT (such

as, COUNT(DISTINCT e.prop))

Supported

SELECT v.* Not Supported

ORDER BY (+ASC/DESC), LIMIT,
OFFSET

Supported

Data Types All available Oracle RDBMS data types supported

Chapter 7
Supported PGQL Features and Limitations for SQL Property Graphs

7-7



Table 7-1    (Cont.) Supported PGQL Functionalities and Limitations for SQL Property
Graphs

Features PGQL on SQL Property Graphs

JSON Supported:
• JSON storage:

– JSON strings (VARCHAR2)

– JSON objects
• JSON functions:

Any JSON function call that follows the syntax,
json_function_name(arg1, arg2,…). For example:

json_value(department_data, '$.department')
Limitations:
• Simple Dot Notation
• Any optional clause in a JSON function call (such as

RETURNING, ERROR, and so on) is not supported. For
example:
json_value(department_data,
'$.employees[1].hireDate' RETURNING DATE)

Operators Supported:
• Relational: +, -, *, /, %, - (unary minus)

• Arithmetic: =, <>, <, >, <=, >=
• Logical: AND, OR, NOT
• String: || (concat)

Functions and predicates Supported are all available functions in the Oracle RDBMS
that take the form function_name(arg1, arg2, ...) with
optional schema and package qualifiers.

Supported PGQL functions/predicates:

• IS NULL, IS NOT NULL
• LOWER, UPPER
• SUBSTRING
• ABS, CEIL/CEILING, FLOOR, ROUND
• EXTRACT
• CAST
• CASE
• IN and NOT IN
Unsupported PGQL functions/predicates are all vertex/edge
functions

User-defined functions Supported:
• PL/SQL functions
• Functions created via the Oracle Database Multilingual

Engine (MLE)

Subqueries:
• Scalar subqueries
• EXISTS and NOT EXISTS

subqueries
• LATERAL subquery

Supported subqueries:
• EXISTS
• NOT EXISTS
Not supported:
• Scalar subqueries
• LATERAL subquery

GRAPH_TABLE operator Not supported

INSERT/UPDATE/DELETE Not supported

INTERVAL literals and operations Not supported

Chapter 7
Supported PGQL Features and Limitations for SQL Property Graphs

7-8



8
Visualizing SQL Graph Queries Using the
APEX Graph Visualization Plug-in

You can use the Oracle Application Express (APEX) Graph Visualization plug-in to visualize
and interact with SQL property graphs in an APEX application.

The following topics explain more about the plug-in:

• About the APEX Graph Visualization Plug-in
The APEX Graph Visualization plug-in integrates a Java Script Library that supports graph
visualization in APEX applications.

• Getting Started with the APEX Graph Visualization Plug-in
This section helps you get started with the Graph Visualization plug-in in your APEX
application.

• Configure Attributes for the APEX Graph Visualization Plug-in
Learn how to customize your graph visualization using the Graph Visualization plug-in
attributes in your APEX application.

8.1 About the APEX Graph Visualization Plug-in
The APEX Graph Visualization plug-in integrates a Java Script Library that supports graph
visualization in APEX applications.

See Graph JavaScript API Reference for Property Graph Visualization for more information.

The plug-in mainly allows you to:

• Visualize SQL property graph queries from the graph data in your database.

• Explore the graph vertices and edges. You can also select and visualize these graph
elements individually or in groups.

• Interact with the graph visualization by performing various actions such as changing the
graph layouts, grouping or ungrouping selected vertices, removing selected vertices or
edges, and so on.

• Style the vertices and edges in the graph by configuring the style settings such as size,
color, icon, label values, and so on.

• Visualize and study the evolution of the graph over time.

The following figure shows an example of graph visualization in an APEX application using the
plug-in:

8-1

http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=graphviz_js_doc


Note that the plug-in supports icons in the Font APEX library.

8.2 Getting Started with the APEX Graph Visualization Plug-in
This section helps you get started with the Graph Visualization plug-in in your APEX
application.

Before you get started, ensure that your APEX workspace meets the following requirements:

• The target application into which you want to import the plug-in exists.

• The target application is connected to Oracle Database 23ai.

• The SQL property graph to be used for visualization exists in the default database schema.
Using the command editor in the SQL Workshop component, you can create a SQL
property graph using the CREATE PROPERTY GRAPH DDL statement (see Using the
Command Editor).

1. Download the Graph Visualization (Preview) plug-in
(region_type_plugin_graphviz.sql) from the Oracle APEX GitHub repository.

2. Sign in to your APEX workspace (see Signing In to Your Workspace).

3. Create the DBMS_GVT package in your APEX workspace.

a. Download the optional-23ai-only/gvt_sqlgraph_to_json.sql file from the Oracle
APEX GitHub repository.

b. Upload and run the gvt_sqlgraph_to_json.sql script in your APEX workspace (see 
Uploading a SQL Script).

4. Import the downloaded plug-in script (region_type_plugin_graphviz.sql) file into your
target APEX application (see Importing Plug-ins).

5. Implement the plug-in in an application page to perform various graph visualizations.

The following basic example describes the steps to visualize a graph existing in your
database using the Graph Visualization plug-in.

a. Open the application page in Page Designer.

b. Select the Rendering tab on the left pane of the Page Designer.

c. Right-click an existing component and add a new region component.

d. Select the new region and configure the following attributes in the Region tab of the
Property Editor on the right pane of the Page Designer:

i. Enter the Identification Title.

Chapter 8
Getting Started with the APEX Graph Visualization Plug-in

8-2

https://oracle.github.io/font-apex/
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/apex/23.1&id=GUID-9A30095A-1FBF-42EE-B56E-0A6B96805A8A
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/apex/23.1&id=GUID-9A30095A-1FBF-42EE-B56E-0A6B96805A8A
https://oracle.github.io/apex/
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/apex/23.1&id=GUID-7A8123F6-21D2-4981-A75A-2E94C9CD8BD1#GUID-7A8123F6-21D2-4981-A75A-2E94C9CD8BD1
https://github.com/oracle/apex/tree/23.2/plugins/region/graph-visualization
https://github.com/oracle/apex/tree/23.2/plugins/region/graph-visualization
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/apex/23.1&id=GUID-F1CA58DD-410F-403C-BF3C-FAF707DCB238#GUID-F1CA58DD-410F-403C-BF3C-FAF707DCB238
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/apex/23.1&id=GUID-C35440FD-FE8A-4799-A63F-2DB7D34087A2


ii. Select Graph Visualization (Preview) as Identification Type.

iii. Select the source Location as Local Database.

iv. Select the Type value.
You can choose either SQL Query or PropertyGraph as the Type value.

v. Embed the SQL graph query to retrieve the graph data.
Depending on the type selected in the previous step, you can provide the query as
shown in the following examples:

• SQL Query: Enter the SQL graph query input as shown:

SELECT *
  FROM GRAPH_TABLE (
           BANK_SQL_PG
           MATCH (a IS account) -[e IS transfer]-> (b IS account)
           WHERE a.id = 816
           COLUMNS(vertex_id(a) AS id_a, edge_id(e) AS id_e, 
vertex_id(b) AS id_b)
       )

• PropertyGraph : Provide the SQL graph query as shown:

– Graph Name: Select the SQL property graph name.

– Match Clause: Enter the MATCH clause of the graph query. For example:
(a IS account) -[e IS transfer]-> (b IS account)

– Columns Clause: Enter the COLUMNS clause of the graph query. For
example:
(vertex_id(a) AS id_a, edge_id(e) AS id_e, vertex_id(b) AS id_b)

– Where Clause: Optionally, enter the WHERE clause of the query. For
example, a.id = 816.

e. Run the application page to visualize the graph rendered by the plugin.

Figure 8-1    Visualizing a SQL Graph Query in an APEX Application

Tip:

You can use the Height attribute to control the size of the visualization panel.

6. Optionally, if you wish to implement pagination in the preceding graph visualization, then
perform the following steps:

Chapter 8
Getting Started with the APEX Graph Visualization Plug-in

8-3



a. Switch ON the SQL Query Supports Pagination setting in the Attributes tab of the
Property Editor for the graph visualization component in your APEX application.

b. Set the Page Size value in the Attributes tab of the Property Editor.

c. Save and rerun the application page.

The graph gets rendered with pagination.

7. Optionally, you can import and run the Sample Graph Visualizations application from 
Oracle APEX GitHub repository.

See Importing the Sample Graph Visualizations Application in APEX for more information.

• Importing the Sample Graph Visualizations Application in APEX
The Sample Graph Visualizations application demonstrates the use of the Graph
Visualization plug-in.

8.2.1 Importing the Sample Graph Visualizations Application in APEX
The Sample Graph Visualizations application demonstrates the use of the Graph
Visualization plug-in.

Perform the following steps to import the Sample Graph Visualizations application:

1. Download the Sample Graph Visualizations application from Oracle APEX GitHub
repository.

2. Create the DBMS_GVT package if it is not already added in your APEX workspace.

a. Download the optional-23ai-only/gvt_sqlgraph_to_json.sql file from the Oracle
APEX GitHub repository.

b. Upload and run the gvt_sqlgraph_to_json.sql script in your APEX workspace (see 
Uploading a SQL Script).

3. Import the sample-apps/sample-graph-visualizations/sample-graph-
visualizations_23ai.sql into your APEX instance and install the application by following
the steps in Importing an Application.

You can directly run the sample application once it is installed.

Figure 8-2    Sample Graph Visualization Home Page

Chapter 8
Getting Started with the APEX Graph Visualization Plug-in

8-4

https://github.com/oracle/apex/tree/23.2/sample-apps/sample-graph-visualizations
https://github.com/oracle/apex/tree/23.2/sample-apps/sample-graph-visualizations
https://github.com/oracle/apex/tree/23.2/plugins/region/graph-visualization
https://github.com/oracle/apex/tree/23.2/plugins/region/graph-visualization
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/apex/23.1&id=GUID-F1CA58DD-410F-403C-BF3C-FAF707DCB238#GUID-F1CA58DD-410F-403C-BF3C-FAF707DCB238
https://docs.oracle.com/en/database/oracle/apex/23.1/htmdb/importing-export-files.html#GUID-D01CF7A6-A593-4ACD-A92C-C94CAC100D61


Also, note that the sample application requires a secure HTTPS connection. If you want to
disable secure connection, then perform the following steps:

Caution:

It is not recommended to disable secure connections in production deployment.

a. Navigate to the sample application home page in App Builder.

b. Click Shared Components.

c. Click Authentication Schemes under Security.

d. Click the Current authentication scheme.

e. Click the Session Sharing tab and turn off the Secure switch.

f. Click Apply Changes and then run the application.

8.3 Configure Attributes for the APEX Graph Visualization Plug-in
Learn how to customize your graph visualization using the Graph Visualization plug-in
attributes in your APEX application.

You can configure the attributes for the plug-in component in the Attributes tab (Property
Editor) on the right pane of the Page Designer.

Chapter 8
Configure Attributes for the APEX Graph Visualization Plug-in

8-5



See the Interface page in Graph JavaScript API Reference for Property Graph Visualization
which describes the interface mapping for the plugin attributes.

The attributes are grouped as per their scope in the following panels:

Settings

Attribute Description

Page Size Specify the number of vertices and edges to be displayed per page.

Chapter 8
Configure Attributes for the APEX Graph Visualization Plug-in

8-6

http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=js_interface


Attribute Description

Settings Specify the graph settings in JSON format. See Settings for more
information.

SQL Query supports
Pagination

Switch on this toggle if you are implementing the paginate interface.

Appearance

Attribute Description

Layout Specify the graph layout.

Group Edges Switch on this toggle to group edges.

Vertex Label Specify the property to be used for the vertex label.

Edge Label Specify the property to be used for the edge label.

Maximum Label Length Specify the maximum length of the label.

Display Modes Select this checkbox to display the modes panel with the following
options:
• Select:
• Fit to Screen
• Toggles Sticky Mode

Display Exploration Select this checkbox to display the following graph exploration actions:
• Drop - Delete selected vertices
• Group - Group selected vertices
• Ungroup - Ungroup selected vertices
• Undo last action
• Redo last action
• Reset the visualization to its default state

Styles Specify the styles configuration in JSON format. See Styles for more
information.

Callbacks

Attribute Description

Expand To expand a selected vertex in the graph visualization, see Expand for
more information.

FetchActions To retrieve the graph actions from a data source, refer to fetchActions for
more information.

Persist To persist the graph actions to a data source, refer to persist for more
information.

• Settings
You can apply different graph settings such as switching layouts, grouping edges, or
showing the evolution of the graph entities based on a property using the Settings
attribute in the Property Editor of the Page Designer.

• Styles
You can style a graph using the Styles attribute in the Property Editor of the Page
Designer.

• Expand
You can expand a selected vertex in the graph and fetch the adjacent vertices using the
Expand attribute in the Property Editor of the Page Designer.

Chapter 8
Configure Attributes for the APEX Graph Visualization Plug-in

8-7

http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=js_paginate
http://www.oracle.com/pls/topic/lookup?ctx=property_graph_latest&id=js_fetchActions
http://www.oracle.com/pls/topic/lookup?ctx=property_graph_latest&id=js_persist


8.3.1 Settings
You can apply different graph settings such as switching layouts, grouping edges, or showing
the evolution of the graph entities based on a property using the Settings attribute in the
Property Editor of the Page Designer.

1. Select the graph visualization component in the Rendering tab on the left pane of the
Page Designer.

2. Select Attributes in the Property Editor on the right pane of the Page Designer.

3. Enter the input for the desired action in JSON format in the Settings input box in the
Settings panel.

See settings in Oracle Graph JavaScript API Reference for Property Graph Visualization
for more information on the Settings interface.
For instance, the following JSON example provides the layout and pageSize
configurations:

{ 
"pageSize": 10,
"layout": "concentric"
}

Note:

If the JSON input contains the settings for properties that are already set in the
Appearance panel (such as Layout or Group Edges) or Settings panel (Page
Size), then the property values that are provided directly will override the JSON
values.

The following JSON example shows a sample configuration for adding network evolution to
the graph visualization. The evolution of the graph data is based on the HireDate property:

{
    "evolution": {
        "chart": "line",
        "unit": "year",
        "vertex": "properties.HireDate"
    }
}

8.3.2 Styles
You can style a graph using the Styles attribute in the Property Editor of the Page Designer.

1. Select the graph visualization component in the Rendering tab on the left pane of the
Page Designer.

2. Select Attributes in the Property Editor on the right pane of the Page Designer.

3. Enter the input for styling in JSON format in the Styles input box.

Chapter 8
Configure Attributes for the APEX Graph Visualization Plug-in

8-8

http://www.oracle.com/pls/topic/lookup?ctx=property_graph_latest&id=js_settings


See styles in Oracle Graph JavaScript API Reference for Property Graph Visualization for
more information on the Style interface.
The following example shows the JSON input to add a vertex style.

{
   "vertex":{
      "size":12,
      "label":"${properties.FirstName} ${properties.LastName}",
      "color":"#d5445a",
      "icon":"fa-user"
    }
}

Note:

If the JSON input contains styling for properties that are already set in the
Appearance panel (such as Vertex Label, Edge Label, or Maximum Label
Length), then the property values that are provided directly will override the
JSON values.

8.3.3 Expand
You can expand a selected vertex in the graph and fetch the adjacent vertices using the
Expand attribute in the Property Editor of the Page Designer.

1. Switch to the Processing tab on the left pane of the Page Designer and navigate to the
After Submit node.

2. Right-click and select Create Process from the context menu.

3. Enter the process Name.

4. Specify Type as Execute Code.

5. Select the source Location as Local Database.

6. Select the source Language as PL/SQL and enter the following code in the PL/SQL input
box.

DECLARE data clob;
    id VARCHAR2(100) := apex_application.g_x01;
    graph VARCHAR2(100) := '<graph_name>';
    hops NUMBER := <no_of_hops>;
    n NUMBER := hops - 1;
    match_clause VARCHAR2(100);
    query VARCHAR2(1000);

BEGIN
    IF n = 0 THEN
        match_clause := ' MATCH (x) -[e]-> (z) ';
    ELSE
        match_clause := ' MATCH (x) ->{,' || n || '} (y) -[e]-> (z) ';
    END IF;

    query := 'SELECT id_x, id_e, id_z
              FROM GRAPH_TABLE (' || graph ||  match_clause  || 

Chapter 8
Configure Attributes for the APEX Graph Visualization Plug-in

8-9

http://www.oracle.com/pls/topic/lookup?ctx=property_graph_latest&id=js_styles


              'WHERE JSON_value(vertex_id(x), ''$.ELEM_TABLE'') || 
json_query(vertex_id(x), ''$.KEY_VALUE'' returning varchar2) = '''|| id 
||'''
              COLUMNS (vertex_id(x) as id_x, edge_id(e) as id_e, 
vertex_id(z) as id_z))';
    SELECT <helper_function>(query) INTO data FROM sys.dual;
    htp.p(data);
END;

In the preceding code:

• <graph_name>: Name of the graph

• <hops>: Number of hops to be expanded

• <helper_function>: Name of the function that provides the CURSOR for the SQL graph
query as input to the ORA_SQLGRAPH_TO_JSON function and obtains the JSON output for
visualization.

Note that the process takes the vertex id to be expanded as input and returns the resulting
output as JSON.

7. Select the execution Point as Ajax Callback.

8. Switch to the Rendering tab on the left pane of the Page Designer and select the graph
visualization component.

9. Switch to the Attributes tab on the right pane and enter the following code in the Expand
input box in the Callbacks panel.

const data = await apex.server.process('<process_name>', {
    x01: ids[0]
}, { dataType: 'text' });
try {
    return JSON.parse(data);
} catch (error) {
    return [];
}

In the preceding code, <process_name> refers to the name of process that was provided
at step-3.

10. Click Save.

11. Run the application page and you can now click expand (as shown highlighted in the
following figure) on any specific vertex in the graph.

Chapter 8
Configure Attributes for the APEX Graph Visualization Plug-in

8-10



Figure 8-3    Expanding on a Specific Graph Vertex

The inset image in the preceding figure shows the graph with expanded vertices as
rendered by the plug-in.

Chapter 8
Configure Attributes for the APEX Graph Visualization Plug-in

8-11



Part III
PGQL Property Graphs

Learn and work with PGQL property graphs (also known as property graph views).

You can work with PGQL property graphs if you are using Oracle Database 23ai or earlier
database versions.

• About PGQL Property Graphs
You can create PGQL property graphs over data stored in Oracle Database. You can
perform various graph analytics operations using PGQL on the graphs.

• Loading a PGQL property graph into the Graph Server (PGX)
You can load a full PGQL property graph or a subgraph into the graph server (PGX).

• Quick Starts for Using PGQL Property Graphs
This chapter contains quick start tutorials and other resources to help you get started on
working with PGQL property graphs.

• Getting Started with the Client Tools
You can use multiple client tools to interact with the graph server (PGX) or directly with the
graph data in the database.

• Property Graph Query Language (PGQL)
PGQL is a SQL-like query language for property graph data structures that consist
of vertices that are connected to other vertices by edges, each of which can have key-
value pairs (properties) associated with them.



9
About PGQL Property Graphs

You can create PGQL property graphs over data stored in Oracle Database. You can perform
various graph analytics operations using PGQL on the graphs.

The following sections explain PGQL property graphs in detail:

• Creating PGQL Property Graphs on Oracle Database Tables
The CREATE PROPERTY GRAPH statement in PGQL can be used to create a view-like
object that contains metadata about the graph. This graph can be queried using PGQL.

• Creating a PGQL Property Graph By Importing a GraphSON file
Using the GraphImporterBuilder API, you can create a PGQL property graph by importing
graph data from a GraphSON file.

• Using JSON to Store Vertex and Edge Properties
You can adopt a flexible schema approach in a PGQL property graph by encoding the
vertex and edge properties as a single JSON value. You can then map this to a property
value in a PGQL property graph.

9.1 Creating PGQL Property Graphs on Oracle Database Tables
The CREATE PROPERTY GRAPH statement in PGQL can be used to create a view-like
object that contains metadata about the graph. This graph can be queried using PGQL.

PGQL property graphs are created directly over data that exists in the relational database
tables. These graphs are stored in the database tables and therefore they have a schema.

One of the main benefits of PGQL property graphs is that all updates to the database tables
are immediately reflected in the graph.

Metadata Tables for PGQL Property Graphs

Each time a CREATE PROPERTY GRAPH statement is executed, metadata tables are created in
the user's own schema.

The following table describes the set of metadata tables that are created for each graph on
executing CREATE PROPERTY GRAPH statement.

All columns shown underlined in the Table 9-1 are part of the primary key of the table. Also all
columns have a NOT NULL constraint.

Table 9-1    Metadata Tables for PGQL Property Graphs

Table Name Description

graphName_ELEM_TABLE$ Metadata for graph element (vertex/edge) tables (one row per element table):
• ET_NAME: the name of the element table (the "alias")

• ET_TYPE: either "VERTEX" or "EDGE"

• SCHEMA_NAME: the name of the schema of the underlying table

• TABLE_NAME: the name of underlying table

9-1



Table 9-1    (Cont.) Metadata Tables for PGQL Property Graphs

Table Name Description

graphName_LABEL$ Metadata on labels of element tables (one row per label; one label per element table):
• LABEL_NAME: the name of the label

• ET_NAME: the name of the element table ( the "alias")

• ET_TYPE: either "VERTEX" or "EDGE"

graphName_PROPERTY$ Metadata describing the columns that are exposed through a label (one row per
property)

• PROPERTY_NAME: the name of the property

• ET_NAME: the name of the element table (the "alias")

• ET_TYPE: either "VERTEX" or "EDGE"

• LABEL_NAME: the name of the label that this property belongs to

• COLUMN_NAME: the name of the column (initially, only the case where property
names equal column names is allowed)

graphName_KEY$ Metadata describing a vertex/edge key (one row per column in the key)

• COLUMN_NAME: the name of the column in the key

• COLUMN_NUMBER: the number of the column in the key
For example, in KEY ( a, b, c ), "a" has number 1, "b" has number 2 and "c" has
number 3.

• KEY_TYPE: either "VERTEX" or "EDGE"

• ET_NAME: the name of the element table (the "alias")

graphName_SRC_DST_KEY$ Metadata describing the edge source/destination keys (one row per column of a key):

• ET_NAME: the name of the element table ( the "alias"), which is always an edge
table

• VT_NAME: the name of the vertex table

• KEY_TYPE: either "EDGE_SOURCE" or "EDGE_DESTINATION"

• ET_COLUMN_NAME: the name of the key column

• ET_COLUMN_NUMBER: the number of the column in the key.
For example, in KEY ( a, b, c ), "a" has number 1, "b" has number 2 and "c" has
number 3.

Note:

Currently, support is only for SOURCE KEY ( ... )
REFERENCES T1. So only the edge source/destination
key is stored.

Example 9-1    To create a PGQL property graph

Consider the following CREATE PROPERTY GRAPH statement:

CREATE PROPERTY GRAPH student_network
  VERTEX TABLES(
    person
      KEY ( id )
      LABEL student
      PROPERTIES( name ),
    university

Chapter 9
Creating PGQL Property Graphs on Oracle Database Tables

9-2



      KEY ( id )
      PROPERTIES( name )
  )
  EDGE TABLES(
    knows
      key (person1, person2)
      SOURCE KEY ( person1 ) REFERENCES person (id)
      DESTINATION KEY ( person2 ) REFERENCES person (id)
      NO PROPERTIES,
    person AS studentOf
      key (id, university)
      SOURCE KEY ( id ) REFERENCES person (id)
      DESTINATION KEY ( university ) REFERENCES university (id)
      NO PROPERTIES
  )
  OPTIONS (PG_PGQL)

The OPTIONS clause allows the creation of a PGQL property graph. You must simply pass the
CREATE PROPERTY GRAPH statement to the execute method:

Note:

• You can create PGQL property graphs using the RDBMS Java API or through
SQLcl.

• You can query PGQL property graphs using the graph visualization tool or SQLcl.

stmt.execute("CREATE PROPERTY GRAPH student_network ...");

This results in the creation of the following metadata tables:

SQL> SELECT * FROM STUDENT_NETWORK_ELEM_TABLE$;
 
ET_NAME         ET_TYPE    SCHEMA_NAME     TABLE_NAME
--------------- ---------- --------------- ---------------
PERSON          VERTEX     SCOTT           PERSON
UNIVERSITY      VERTEX     SCOTT           UNIVERSITY
KNOWS           EDGE       SCOTT           KNOWS
STUDENTOF       EDGE       SCOTT           PERSON
 
SQL> SELECT * FROM STUDENT_NETWORK_LABEL$;
 
LABEL_NAME      ET_NAME         ET_TYPE
--------------- --------------- ----------
STUDENT         PERSON          VERTEX
UNIVERSITY      UNIVERSITY      VERTEX
KNOWS           KNOWS           EDGE
STUDENTOF       STUDENTOF       EDGE
 
SQL> SELECT * FROM STUDENT_NETWORK_PROPERTY$;
 

Chapter 9
Creating PGQL Property Graphs on Oracle Database Tables

9-3



PROPERTY_NAME   ET_NAME         ET_TYPE    LABEL_NAME      COLUMN_NAME
--------------- --------------- ---------- --------------- ---------------
NAME            PERSON          VERTEX     STUDENT         NAME
NAME            UNIVERSITY      VERTEX     UNIVERSITY      NAME
 
SQL> SELECT * FROM STUDENT_NETWORK_KEY$;
 
COLUMN_NAME     COLUMN_NUMBER KEY_TY ET_NAME
--------------- ------------- ------ ---------------
ID                          1 VERTEX PERSON
ID                          1 VERTEX UNIVERSITY
PERSON1                     1 EDGE   KNOWS
PERSON2                     2 EDGE   KNOWS
ID                          1 EDGE   STUDENTOF
UNIVERSITY                  2 EDGE   STUDENTOF
 
SQL> SELECT * FROM STUDENT_NETWORK_SRC_DST_KEY$;
 
ET_NAME     VT_NAME        KEY_TYPE         ET_COLUMN_NAME  ET_COLUMN_NUMBER
--------------- ---------- ---------------- --------------- ----------------
KNOWS       PERSON         EDGE_SOURCE      PERSON1                        1
KNOWS       PERSON         EDGE_DESTINATION PERSON2                        1
STUDENTOF   PERSON         EDGE_SOURCE      ID                             1
STUDENTOF   UNIVERSITY     EDGE_DESTINATION UNIVERSITY                     1

You can now run PGQL queries on the student_network PGQL property graph.

See Executing PGQL Queries Against PGQL Property Graphs for more details to create, query
and drop PGQL property graphs.

• Retrieving Metadata for PGQL Property Graphs
You can retrieve the metadata of PGQL property graphs created in the database using the
built-in PROPERTY_GRAPH_METADATA graph in your PGQL queries.

• Privileges for Working with PGQL Property Graphs
Learn about the privileges that are required for working with PGQL property graphs.

9.1.1 Retrieving Metadata for PGQL Property Graphs
You can retrieve the metadata of PGQL property graphs created in the database using the
built-in PROPERTY_GRAPH_METADATA graph in your PGQL queries.

The PROPERTY_GRAPH_METADATA graph structure including properties is as shown:

Chapter 9
Creating PGQL Property Graphs on Oracle Database Tables

9-4



Figure 9-1    PROPERTY_GRAPH_METADATA Graph Design

The following describes the preceding design of the metadata graph:

PROPERTY_GRAPH -[:HAS_VERTEX_TABLE]-> VERTEX_TABLE
               -[:HAS_EDGE_TABLE]-> EDGE_TABLE
 
VERTEX_TABLE -[:HAS_KEY_COLUMN]-> KEY_COLUMN
             -[:HAS_LABEL]-> LABEL
 
EDGE_TABLE -[:HAS_KEY_COLUMN]-> KEY_COLUMN
           -[:HAS_LABEL]-> LABEL
           -[:HAS_SOURCE_TABLE]-> VERTEX_TABLE
           -[:HAS_DESTINATION_TABLE]-> VERTEX_TABLE
 
LABEL -[:HAS_PROPERTY]-> PROPERTY

It is important to note the following when using PROPERTY_GRAPH_METADATA in PGQL queries:

• The PROPERTY_GRAPH_METADATA graph is automatically created and updated the first time
you attempt to access it in a PGQL query.

• The PROPERTY_GRAPH_METADATA graph is similar to a PGQL property graph and has its own
set of metadata tables that describe its structure. In addition to the metadata tables for
PGQL property graphs that are described in Table 9-1, the graph data for
PROPERTY_GRAPH_METADATA is also stored in database objects that are listed in the following
table:

Chapter 9
Creating PGQL Property Graphs on Oracle Database Tables

9-5



Table 9-2    Additional Metadata Tables

Table Name Description

PROPERTY_GRAPH_METADATA_GRAPH_LIST$ Metadata table describing the list of PGQL
property graphs to which the current user has
access

PROPERTY_GRAPH_METADATA_EDGE_KEY_COLUM
NS$

Metadata table describing the edge key columns

PROPERTY_GRAPH_METADATA_EDGE_LABELS$ Metadata table describing the edge labels

PROPERTY_GRAPH_METADATA_EDGE_TABLES$ Metadata table describing the edge tables

PROPERTY_GRAPH_METADATA_LABEL_PROPERTI
ES$

Metadata table describing the vertex and edge
label properties

PROPERTY_GRAPH_METADATA_LABELS$ Metadata table describing the vertex and edge
labels

PROPERTY_GRAPH_METADATA_VERTEX_KEY_COL
UMNS$

Metadata table describing the vertex key
columns

PROPERTY_GRAPH_METADATA_VERTEX_LABELS$ Metadata table describing the vertex labels

PROPERTY_GRAPH_METADATA_VERTEX_TABLES$ Metadata table describing the vertex tables

Note:

It is important that you do not alter or remove any of the metadata tables for the
PROPERTY_GRAPH_METADATA graph.

• When running PGQL queries using the Java API, you must disable autocommit on the
JDBC connection (conn.setAutoCommit(false)). This ensures that
PROPERTY_GRAPH_METADATA graph gets created automatically.

The following examples show using PROPERTY_GRAPH_METADATA in PGQL queries to retrieve the
required metadata.

You can retrieve the list of graphs to which you have access as shown:

• JShell

• Java

• Python

JShell

opg4j> String pgql =
...> "SELECT g.graph_name "
...> +"FROM MATCH (g:property_graph) ON property_graph_metadata "
...> +"ORDER BY g.graph_name"
pgql ==> "SELECT g.graph_name FROM MATCH (g:property_graph) ON 
property_graph_metadata ORDER BY g.graph_name"
opg4j> pgqlStmt.executeQuery(pgql).print()

Chapter 9
Creating PGQL Property Graphs on Oracle Database Tables

9-6



Java

String pgql = "SELECT g.graph_name "+
"FROM MATCH (g:property_graph) ON property_graph_metadata "+
"ORDER BY g.graph_name";
PgqlResultSet rs = pgqlStmt.executeQuery(pgql);
rs.print();

Python

>>> pgql = '''
... SELECT g.graph_name
... FROM MATCH (g:property_graph) ON property_graph_metadata
... ORDER BY g.graph_name
... '''
>>> pgql_statement.execute_query(pgql).print()

On execution, the preceding query produces the following result:

+------------------------+
| GRAPH_NAME             |
+------------------------+
| BANK_GRAPH_VIEW        |
| FINANCIAL_TRANSACTIONS |
| FRIENDS                |
+------------------------+

You can retrieve the vertex properties of a graph as shown:

• JShell

• Java

• Python

JShell

opg4j> String pgql =
...> "SELECT p.property_name "
...> +"FROM MATCH(g:property_graph)-[:has_vertex_table]->(v)-[:has_label]-
>(l:label)-[:has_property]->(p:property) "
...> +"ON property_graph_metadata "
...> +"WHERE g.graph_name = 'FRIENDS' "
pgql ==> "SELECT p.property_name FROM MATCH(g:property_graph)-
[:has_vertex_table]->(v)-[:has_label]->(l:label)-[:has_property]-
>(p:property) ON property_graph_metadata WHERE g.graph_name = 'FRIENDS' "
opg4j> pgqlStmt.executeQuery(pgql).print()

Chapter 9
Creating PGQL Property Graphs on Oracle Database Tables

9-7



Java

String pgql = "SELECT p.property_name "+
"FROM MATCH(g:property_graph)-[:has_vertex_table]->(v)-[:has_label]-
>(l:label)-[:has_property]->(p:property) "+
"ON property_graph_metadata "+
"WHERE g.graph_name = 'FRIENDS' ";
PgqlResultSet rs = pgqlStmt.executeQuery(pgql);
rs.print();

Python

>>> pgql = '''
... SELECT p.property_name
... FROM MATCH(g:property_graph)-[:has_vertex_table]->(v)-[:has_label]-
>(l:label)-[:has_property]->(p:property)
... ON property_graph_metadata
... WHERE g.graph_name = 'FRIENDS'
... '''
>>> pgql_statement.execute_query(pgql).print()

On execution, the preceding query produces the following result:

+---------------+
| PROPERTY_NAME |
+---------------+
| BIRTHDATE     |
| HEIGHT        |
| NAME          |
+---------------+

9.1.2 Privileges for Working with PGQL Property Graphs
Learn about the privileges that are required for working with PGQL property graphs.

In order to create PGQL property graphs, ensure that you have the following privileges:

CREATE SESSION
CREATE TABLE

Note that these privileges can be granted directly to the user:

GRANT CREATE SESSION, CREATE TABLE TO <graphuser>

Or they can be granted indirectly through an appropriate role:

GRANT CREATE SESSION, CREATE TABLE TO GRAPH_DEVELOPER

Chapter 9
Creating PGQL Property Graphs on Oracle Database Tables

9-8



For loading a PGQL property graph created by another user into the graph server (PGX), you
must have:

• SELECT permission on the underlying source database tables or views.

• SELECT permission on the metadata tables used by the PGQL property graph.
See Table 9-1 and Table 9-2 for more details on the metadata tables.

9.2 Creating a PGQL Property Graph By Importing a GraphSON
file

Using the GraphImporterBuilder API, you can create a PGQL property graph by importing
graph data from a GraphSON file.

This import functionality consists of the following steps:

1. Parsing of the GraphSON to a data structure.

2. Creating the SQL tables from the data structure and inserting the data.

3. Generating and running the CREATE PROPERTY GRAPH statement.

The following example show using the GraphImporterBuilder API to create a PGQL property
graph from a GraphSON file.

• JShell

• Java

• Python

JShell

opg4j> import oracle.pg.imports.*
opg4j> var importer = new GraphImporter.Builder().
...>     setFilePath("<path_to_graphson_file>").
...>     setBatchSize(2).
...>     setInputFormat(GraphImportInputFormat.GRAPHSON).
...>     setOutputFormat(GraphImportOutputFormat.PG_PGQL).
...>     setThreads(4).
...>     setDbJdbcUrl("<jdbc_url>").
...>     setDbUsername("<username>").
...>     setDbPassword("<password>").
...>     setGraphName("mygraph").
...>     build()
importer ==> oracle.pg.imports.GraphImporter@5d957cf0
opg4j> var ddl = importer.importGraph()

Java

import oracle.pg.imports.*;
GraphImporter importer = new GraphImporter.Builder()
     .setFilePath("<path_to_graphson_file>")
     .setBatchSize(2)

Chapter 9
Creating a PGQL Property Graph By Importing a GraphSON file

9-9



     .setInputFormat(GraphImportInputFormat.GRAPHSON)
     .setOutputFormat(GraphImportOutputFormat.PG_PGQL)
     .setThreads(4)
     .setDbJdbcUrl("<jdbc_url>")
     .setDbUsername("<username>")
     .setDbPassword("<password>")
     .setGraphName("mygraph")
     .build();

Python

>>> from opg4py.graph_importer import GraphImporter
>>> config = {
...       'jdbc_url'     : '<jdbc_url>',
...       'username'     : '<username>',
...       'password'     : '<password>',
...       'file_path'    : '<path_to_graphson_file>',
...       'graph_name'   : 'mygraph',
...       'output_format': 'pg_pgql',
...       'input_format' : 'graphson'
... }
>>> importer = GraphImporter(config)
>>> importer.import_graph()

The preceding example sets up the required SQL tables in the database, generates and runs
the DDL statement to create mygraph. For instance, this example generates the following
CREATE PROPERTY GRAPH DDL statement:

"CREATE PROPERTY GRAPH mygraph 
   VERTEX TABLES ( 
     software 
       KEY (id) 
       LABEL software 
       PROPERTIES ARE ALL COLUMNS, 
     person 
       KEY (id) 
       LABEL person 
       PROPERTIES ARE ALL COLUMNS 
   ) 
   EDGE TABLES ( 
     created 
       KEY (id) 
       SOURCE KEY (sid) REFERENCES person (id) 
       DESTINATION KEY (did) REFERENCES software (id) 
       LABEL created 
       PROPERTIES ARE ALL COLUMNS, 
     knows 
       KEY (id) 
       SOURCE KEY (sid) REFERENCES person (id) 
       DESTINATION KEY (did) REFERENCES person (id) 
       LABEL knows 

Chapter 9
Creating a PGQL Property Graph By Importing a GraphSON file

9-10



       PROPERTIES ARE ALL COLUMNS 
   ) OPTIONS ( PG_PGQL )"

Alternatively, you can also create a connection to the database by using a data source to
connect to the database as shown in the following example:

• JShell

• Java

JShell

opg4j> import oracle.pg.imports.*
opg4j> import oracle.jdbc.pool.OracleDataSource

opg4j> var ds = new OracleDataSource() // setup the data source
ds ==> oracle.jdbc.pool.OracleDataSource@4154ecd3
ds.setURL("<jdbc_url>")
ds.setUser("<username>")
ds.setPassword("<password>")

opg4j> var importer = new GraphImporter.Builder().
...>     setFilePath("<path_to_graphson_file>").
...>     setBatchSize(2).
...>     setInputFormat(GraphImportInputFormat.GRAPHSON).
...>     setOutputFormat(GraphImportOutputFormat.PG_PGQL).
...>     setThreads(4).
...>     setDataSource(ds).
...>     setGraphName("mygraph").
...>     build()
importer ==> oracle.pg.imports.GraphImporter@5d957cf0
opg4j> var ddl = importer.importGraph()

Java

import oracle.pg.imports.*;
import oracle.jdbc.pool.OracleDataSource;
//Setup the datasource
var ds = new OracleDataSource();
ds.setURL(<jdbc_url>)
ds.setUser(<username>);
ds.setPassword(<password>);
//Setup the GraphImporter
GraphImporter importer = new GraphImporter.Builder()
     .setFilePath("<path_to_graphson_file>")
     .setBatchSize(2)
     .setInputFormat(GraphImportInputFormat.GRAPHSON)
     .setOutputFormat(GraphImportOutputFormat.PG_PGQL)
     .setThreads(4)
     .setDataSource(ds)
     .setGraphName("mygraph")

Chapter 9
Creating a PGQL Property Graph By Importing a GraphSON file

9-11



     .build();
var ddl = importer.importGraph();

Also, note the following:

• The GraphImporterBuilder API supports GraphSON file format version 3.0 only.

• Only GraphSON data types listed in Table 9-7 are supported.

The following sections provide more details on the GraphImporter parameters and the data
type mapping between GraphSON and Oracle Database.

• Additional Information on the GraphImporter Parameters
Learn more about the parameters used by the GraphImporter.

• Mapping GraphSON Types to Oracle Database Data Types
The GraphSON data types can be mapped to their corresponding Oracle Database data
types.

9.2.1 Additional Information on the GraphImporter Parameters
Learn more about the parameters used by the GraphImporter.

Table 9-3    Database Connection Parameters

Parameter Description Setter in API Default
Value

Optional

dataSource Data source for the
database

setDataSource NULL Only if passing dbJdbcUrl,
dbUsername and
dbPassword

dbJdbcUrl JDBC url of the
database

setDbJdbcUrl "" Only if passing a dataSouce

dbPassword Database
password

setDbPassword "" Only if passing a dataSouce

dbUsername Database user
name

setDbUsername "" Only if passing a dataSouce

Table 9-4    GraphImporter Configuration Parameters

Parameter Description Setter in API Default
Value

Optional

pathName Path to the
GraphSON file

setPathname "" No

graphName Resulting graph
name

setGraphName "" Yes

inFormat Input format for the
importer

setInputFormat GraphIm
portInp
utForma
t.GRAPH
SON

Yes

Chapter 9
Creating a PGQL Property Graph By Importing a GraphSON file

9-12



Table 9-4    (Cont.) GraphImporter Configuration Parameters

Parameter Description Setter in API Default
Value

Optional

outFormat Output format for
the importer

setOutputFormat GraphIm
portOut
putForm
at.PG_P
GQL

Yes

batchSize Number of rows
read before
inserting data to
the database

setBatchSize 1000 Yes

threads Number of threads
to be used to insert
to the database

setThreads 1 Yes

Table 9-5    SQL Storage Parameters

Parameter Description Setter in API Default
Value

Optional

stringFieldSize GraphSON String
data type is
translated as
VARCHAR2 in the
database.
This parameter
represents the
VARCHAR2 size for
the data storage.

setStringFields
Size

100 Yes

fractionalSecon
dsPrecision

The fractional
seconds precision
parameter found in
TIMESTAMP data
type in the Oracle
Database.

setFractionalSe
condsPrecision

6 Yes

Table 9-6    PGQL Supported Parameters

Parameter Description Setter in API Default
Value

Optional

parallel Degree of
parallelism to use
for query and
update operations

setPathname 0 Yes

dynamicSampling Dynamic sampling
value

setGraphName 2 Yes

matchOptions Additional options
used to influence
query translation
and execution

setMatchOptions NULL Yes

Chapter 9
Creating a PGQL Property Graph By Importing a GraphSON file

9-13



Table 9-6    (Cont.) PGQL Supported Parameters

Parameter Description Setter in API Default
Value

Optional

options Additional options
used to influence
modify translation
and execution

setOptions NULL Yes

9.2.2 Mapping GraphSON Types to Oracle Database Data Types
The GraphSON data types can be mapped to their corresponding Oracle Database data types.

The following table shows GraphSON data types mapping to Oracle Database data types:

Table 9-7    Mapping GraphSON Types to Oracle Database Types

GraphSON Type Oracle Database Type

String VARCHAR21

g:Int32 NUMBER(10)
g:Int64 NUMBER(10)
g:Float FLOAT
g:Double FLOAT
g:Date DATE
g:Timestamp TIMESTAMP2

g:UUID CHAR(36)
1 You can use the stringFieldSize parameter to determine the string size for the database to store on the
String columns.

2 You can use the fractionalSecondsPrecision parameter to specify the precision on the columns of type
Timestamp.

9.3 Using JSON to Store Vertex and Edge Properties
You can adopt a flexible schema approach in a PGQL property graph by encoding the vertex
and edge properties as a single JSON value. You can then map this to a property value in a
PGQL property graph.

PGQL property graphs do not provide schema flexibility by nature since adding a new label
requires adding a new vertex or edge table, and adding a new property requires adding a new
column, both of which are schema update operations. However, through the use of JSON you
can model schema flexibility on top of PGQL property graphs.

For example, consider the following graph which represents financial transactions between two
Account vertices. The Account can be owned either by a Person or a Company.

Chapter 9
Using JSON to Store Vertex and Edge Properties

9-14



Figure 9-2    Financial Transactions Graph

You can create a single table for storing all the vertices and another single table for storing all
the edges, as shown:

CREATE TABLE fin_vertex_table (
  id NUMBER PRIMARY KEY,
  properties VARCHAR2(2000)
);
 
INSERT INTO fin_vertex_table VALUES ( 1, '{"type":"Person","name":"Nikita"}');
INSERT INTO fin_vertex_table VALUES ( 2, 
'{"type":"Person","name":"Camille"}');
INSERT INTO fin_vertex_table VALUES ( 3, '{"type":"Person","name":"Liam"}');
INSERT INTO fin_vertex_table VALUES ( 4, 
'{"type":"Company","name":"Oracle"}');
INSERT INTO fin_vertex_table VALUES ( 5, '{"type":"Account","number":10039}');
INSERT INTO fin_vertex_table VALUES ( 6, '{"type":"Account","number":2090}');
INSERT INTO fin_vertex_table VALUES ( 7, '{"type":"Account","number":8021}');
INSERT INTO fin_vertex_table VALUES ( 8, '{"type":"Account","number":1001}');
 
CREATE TABLE fin_edge_table (
  id NUMBER PRIMARY KEY,
  src NUMBER REFERENCES fin_vertex_table ( id ),
  dst NUMBER REFERENCES fin_vertex_table ( id ),
  properties VARCHAR2(2000)
);
 
INSERT INTO fin_edge_table VALUES ( 1, 7, 1, '{"type":"owner"}');
INSERT INTO fin_edge_table VALUES ( 2, 5, 2, '{"type":"owner"}');
INSERT INTO fin_edge_table VALUES ( 3, 6, 3, '{"type":"owner"}');
INSERT INTO fin_edge_table VALUES ( 4, 8, 4, '{"type":"owner"}');
INSERT INTO fin_edge_table VALUES ( 5, 2, 4, '{"type":"worksFor"}');
INSERT INTO fin_edge_table VALUES ( 6, 5, 7, 
'{"type":"transaction","amount":1000.00}');
INSERT INTO fin_edge_table VALUES ( 7, 7, 8, 
'{"type":"transaction","amount":1500.30}');

Chapter 9
Using JSON to Store Vertex and Edge Properties

9-15



INSERT INTO fin_edge_table VALUES ( 8, 7, 8, 
'{"type":"transaction","amount":3000.70}');
INSERT INTO fin_edge_table VALUES ( 9, 8, 6, 
'{"type":"transaction","amount":9999.50}');
INSERT INTO fin_edge_table VALUES ( 10, 6, 5, 
'{"type":"transaction","amount":9900.00}');

As seen in the preceding code, each vertex and edge is represented by a single row in the
respective tables. The first column is the unique key of the vertex or the edge. The second and
third columns of the edge table are its source key and destination key respectively. The last
column of the vertex and edge tables encodes all the properties as well as the labels in a
JSON object. A JSON is an unordered set of name and value pairs. Here, you can use such
pairs to encode the property names and their values as well as the label's value. In case of the
label, you can choose an arbitrary name such as "type" or "label". In this example we use
"type".

Because all the labels and properties of a vertex or an edge are encoded as a single JSON
value, you do not need to update the schema when new labels or properties are added to the
graph. Instead, you can add new labels and properties by inserting additional vertices and
edges or by updating the JSON value in the underlying table through SQL.

The following two examples demonstrate how you can extract labels and property values from
JSON objects for PGQL on RDBMS and PGQL on PGX respectively.

Example 9-2    Extracting JSON properties using JSON_VALUE (PGQL on RDBMS)

The following code creates a PGQL property graph using the fin_vertex_table and
fin_edge_table tables and executes a PGQL SELECT query:

PgqlStatement pgqlStmnt = pgqlConn.createStatement();
 
/* Create the property graph */
pgqlStmnt.execute(
  "CREATE PROPERTY GRAPH financial_transactions " +
  "  VERTEX TABLES ( " +
  "    fin_vertex_table PROPERTIES ( properties ) ) " +
  "  EDGE TABLES ( " +
  "    fin_edge_table " +
  "      SOURCE KEY ( src ) REFERENCES fin_vertex_table (id) " +
  "      DESTINATION KEY ( dst ) REFERENCES fin_vertex_table (id) " +
  "      PROPERTIES ( properties ) ) " +
  "  OPTIONS ( PG_PGQL )");
 
/* Set the name of the graph so that we can omit the ON clause from queries */
pgqlConn.setGraph("FINANCIAL_TRANSACTIONS");
 
/* PGQL query: find all outgoing transactions from account 8021. Output the
   transaction amount and the destination account number. */
PgqlResultSet rs = pgqlStmnt.executeQuery(
  "SELECT JSON_VALUE(trans.properties, '$.amount') AS transaction_amount, " +
  "       JSON_VALUE(account2.properties, '$.number') AS account_number " +
  "FROM MATCH (account1) -[trans]-> (account2) " +
  "WHERE JSON_VALUE(account1.properties, '$.number') = 8021 " +
  "  AND JSON_VALUE(trans.properties, '$.type') = 'transaction'");
 
rs.print();

Chapter 9
Using JSON to Store Vertex and Edge Properties

9-16



rs.close();
pgqlStmnt.close();

In the preceding code, the CREATE PROPERTY GRAPH statement maps the JSON column into a
property named "properties". This property will thus contain all the labels and properties of
the vertex or the edge. The PGQL SELECT query extracts these labels and properties using
JSON_VALUE.

For example, instead of account1.number = 8021, you must use
JSON_VALUE(account1.properties, '$.number') = 8021. This causes the query to become a
bit lengthier.

The output of the Java code is:

+-------------------------+
| AMOUNT | ACCOUNT_NUMBER |
+-------------------------+
| 1500.3 | 1001           |
| 3000.7 | 1001           |
+-------------------------+

Example 9-3    Using a UDF to extract a JSON property value (PGQL on PGX)

This example consists of two parts. The first part shows the creation of a UDF and the second
part shows loading of the graph into the graph server (PGX) followed by the execution of a
PGQL query using the UDF.

Since the Graph Server (PGX) does not have a built-in JSON_VALUE function like in PGQL on
RDBMS, you can create a Java UDF instead.

Create the Java class (MyJsonUtils.java) that implements the UDF:

import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.JsonNode;
import com.fasterxml.jackson.databind.ObjectMapper;
 
public class MyJsonUtils {
 
  private final static ObjectMapper mapper = new ObjectMapper();
 
  public static String get_prop(String json_string, String prop_name) throws 
JsonProcessingException {
    JsonNode node =  mapper.readTree(json_string);
    return node.path(prop_name).asText();
  }
}

Compile the class with the JARs from /opt/oracle/graph/pgx/server/lib/* added to the
class path. This is because the library folder contains the necessary Jackson libraries that are
required to parse the JSON.

mkdir ./target
javac -classpath .:/opt/oracle/graph/pgx/server/lib/* -d ./target *.java
cd target
jar cvf MyJsonUtils.jar *

Chapter 9
Using JSON to Store Vertex and Edge Properties

9-17



Using the following UDF JSON configuration file (my_udfs.json), you can now register the
Java UDF on the graph server (PGX) by following step-3 to step-6 in User-Defined Functions
(UDFs) in PGX:

{
  "user_defined_functions": [
    {
      "namespace": "my",
      "function_name": "get_prop",
      "language": "java",
      "implementation_reference": "MyJsonUtils",
      "return_type": "string",
      "arguments": [
        {
          "name": "json_string",
          "type": "string"
        },
        {
          "name": "prop_name",
          "type": "string"
        }
      ]
    }
  ]
}

On implementing the UDF for extracting property values from the JSON, you can now load the
graph into the Graph Server (PGX) and issue a PGQL query:

/* Load the graph into the Graph Server (PGX) */
ServerInstance instance = GraphServer.getInstance("http://localhost:7007", 
username, password.toCharArray());
session = instance.createSession("my-session");
PgxGraph g = session.readGraphByName("FINANCIAL_TRANSACTIONS", 
GraphSource.PG_PGQL);
 
/* PGQL query: find all shortest paths from account 10039 to account 2090 
following only outgoing transaction
   edges. Output the list of transaction amounts along each path as well as 
the total amount of the transactions
   along each path. */
g.queryPgql(
  "  SELECT LISTAGG(my.get_prop(e.properties, 'amount'), ' + ') || ' = ' AS 
amounts_along_path, " +
  "         SUM(CAST(my.get_prop(e.properties, 'amount') AS DOUBLE)) AS 
total_amount " +
  "    FROM MATCH ALL SHORTEST (a) (-[e]-> WHERE my.get_prop(e.properties, 
'type') = 'transaction')* (b) " +
  "   WHERE my.get_prop(a.properties, 'number') = '10039' AND " +
  "         my.get_prop(b.properties, 'number') = '2090' " +
  "ORDER BY total_amount").print().close();

Chapter 9
Using JSON to Store Vertex and Edge Properties

9-18



The output of the Java code is:

+--------------------------------------------+
| amounts_along_path          | total_amount |
+--------------------------------------------+
| 1000.0 + 1500.3 + 9999.5 =  | 12499.8      |
| 1000.0 + 3000.7 + 9999.5 =  | 14000.2      |
+--------------------------------------------+

Chapter 9
Using JSON to Store Vertex and Edge Properties

9-19



10
Loading a PGQL property graph into the
Graph Server (PGX)

You can load a full PGQL property graph or a subgraph into the graph server (PGX).

Note:

Ensure that you drop the graph when it is no longer in use to release the graph
server (PGX) memory. See Deleting a Graph for more information.

There are several ways to load a PGQL property graph into the graph server (PGX).

• Loading a PGQL Property Graph Using the readGraphByName API
You can load a PGQL property graph by name into the graph server (PGX).

• Loading a Graph Using a JSON Configuration File
To load a PGQL property graph into the graph server (PGX), you can create a graph
configuration file, which contains the graph metadata to be loaded.

• Loading a Graph by Defining a Graph Configuration Object
You can load a graph from Oracle Database by first defining the graph configuration object
using the GraphConfigBuilder class and then reading the graph into the graph server
(PGX).

• Loading a Subgraph from a PGQL Property Graph
You can create a subgraph from a PGQL property graph and load it into memory in the
graph server (PGX).

10.1 Loading a PGQL Property Graph Using the
readGraphByName API

You can load a PGQL property graph by name into the graph server (PGX).

You can use the PgxSession#readGraphByName API to load a PGQL property graph:

readGraphByName(String schemaName, String graphName, GraphSource source,
ReadGraphOption options)
The arguments used in the method are described in the following table:

Table 10-1    Parameters for the readGraphByName method

Parameter Description Optional

schemaName Schema owner Yes

graphName Name of the PGQL property graph No

10-1



Table 10-1    (Cont.) Parameters for the readGraphByName method

Parameter Description Optional

source Source format for the graph:
• GraphSource.PG_PGQL: This applies for

PGQL property graphs.
• GraphSource.PG_SQL: This applies for SQL

Property Graphs (refer to Loading a SQL
Property Graph Using the readGraphByName
API).

No

options Represents the graph optimization options Yes

The readGraphByName() method reads the PGQL property graph metadata tables and
internally generates the graph configuration to load the graph. You must have
PGX_SESSION_NEW_GRAPH permission to use this API.

For example you can load the PGQL property graph as shown:

• JShell

• Java

• Python

JShell

opg4j> var graph = session.readGraphByName("BANKDATA", GraphSource.PG_PGQL)
$12 ==> PgxGraph[name=bankdata,N=1000,E=5001,created=1625730942294]

Java

PgxGraph graph = session.readGraphByName("BANKDATA", GraphSource.PG_PGQL);
Graph: PgxGraph[name=bankdata,N=1000,E=5001,created=1625732149262]

Python

>>> graph = session.read_graph_by_name('BANKDATA', 'pg_pgql')
>>> graph
PgxGraph(name: bankdata, v: 1000, e: 5001, directed: True, memory(Mb): 0)

• Specifying Options for the readGraphByName API
You can specify graph optimization options, OnMissingVertexOption or both when using
the readGraphByName API for loading a PGQL property graph.

• Specifying the Schema Name for the readGraphByName API
You can specify the schema name when using the readGraphByName API for loading a
PGQL property graph.

Chapter 10
Loading a PGQL Property Graph Using the readGraphByName API

10-2



See Also:

Mapping Oracle Database Types to PGX Types for more information on the
supported types in the graph server (PGX)

10.1.1 Specifying Options for the readGraphByName API
You can specify graph optimization options, OnMissingVertexOption or both when using the
readGraphByName API for loading a PGQL property graph.

The ReadGraphOption interface supports an additional options parameter when loading a
PGQL property graph by name.

The following sections explain the various options supported by the ReadGraphOption
interface.

Using the Graph Optimization Options

The optimization strategy determines whether the graph is optimized for read-intensive
scenarios or for faster updates. It impacts the performance characteristics of graph operations
such as querying and updating.

The supported graph optimization options are:

• ReadGraphOption.optimizeFor(GraphOptimizedFor.READ): You can choose this option
when the primary operations on the graph are read-based, and updates are infrequent or
non-existent.
When this strategy is selected, the graph's data structures are replicated whenever a new
graph or graph snapshot is created. This results in faster and more efficient read
operations, such as traversals and queries. However, creating snapshots can be expensive
and it can also lead to performance overhead and increased memory usage during
updates.

• ReadGraphOption.optimizeFor(GraphOptimizedFor.UPDATES): You can choose this
option when the graph is expected to undergo frequent updates, such as adding or
removing nodes and edges, or modifying properties of existing elements.
When this strategy is selected, delta logs are used to manage updates. This approach
makes updates more memory-efficient and faster. However, there may be some time
overhead when querying the graph due to the need to apply these delta updates.

• ReadGraphOption.synchronizable(): You can choose this option when the graph is
expected to be synchronized.

It is important to note the following:

• synchronizable() option can be used in combination with UPDATE and READ. However, the
UPDATE and READ options cannot be used at the same time.

• If you are loading a PGQL property graph for SYNCHRONIZABLE option, then ensure that the
vertex and edge keys are numeric and non-composite.

The following example loads a PGQL property graph for READ and SYNCHRONIZABLE options:

• JShell

Chapter 10
Loading a PGQL Property Graph Using the readGraphByName API

10-3

https://docs.oracle.com/en/database/oracle/property-graph/22.2/spgjv/oracle/pgx/config/ReadGraphOption.html


• Java

• Python

JShell

opg4j> var graph = session.readGraphByName("BANK_GRAPH", GraphSource.PG_PGQL,
...>                            
ReadGraphOption.optimizeFor(GraphOptimizedFor.READ),
...>                            ReadGraphOption.synchronizable())
graph ==> PgxGraph[name=BANK_GRAPH_2,N=1000,E=5001,created=1648457198462]

Java

PgxGraph graph = session.readGraphByName("BANK_GRAPH", GraphSource.PG_PGQL,
                                                  
ReadGraphOption.optimizeFor(GraphOptimizedFor.READ),
                                                  
ReadGraphOption.synchronizable());

Python

>>> graph = session.read_graph_by_name('BANK_GRAPH',
...      'pg_pgql', options=['optimized_for_read', 'synchronizable'])

Using the OnMissingVertex Options

If either the source or destination vertex or both are missing for an edge, then you can use the
OnMissingVertexOption which specifies the behavior for handling the edge with the missing
vertex. The following values are supported for this option:

• ReadGraphOption.onMissingVertex(OnMissingVertex.ERROR): This is the default option
and this specifies that an error must be thrown for edges with missing vertices.

• ReadGraphOption.onMissingVertex(OnMissingVertex.IGNORE_EDGE): Specifies that the
edge for a missing vertex must be ignored.

• ReadGraphOption.onMissingVertex(OnMissingVertex.IGNORE_EDGE_LOG): Specifies that
the edge for a missing vertex must be ignored and all ignored edges must be logged.

• ReadGraphOption.onMissingVertex(OnMissingVertex.IGNORE_EDGE_LOG_ONCE):
Specifies that the edge for a missing vertex must be ignored and only the first ignored
edge must be logged.

The following example loads the PGQL property graph by ignoring the edges with missing
vertices and logging only the first ignored edge. Note, to view the logs, you must update the
default Logback configuration file in /etc/oracle/graph/logback.xml and the graph server
(PGX) logger configuration file in /etc/oracle/graph/logback-server.xml to log the DEBUG
logs. You can then view the ignored edges in /var/opt/log/pgx-server.log file.

• JShell

Chapter 10
Loading a PGQL Property Graph Using the readGraphByName API

10-4



• Java

• Python

JShell

opg4j> session.readGraphByName("REGIONS", GraphSource.PG_PGQL,
...>                             
ReadGraphOption.onMissingVertex(OnMissingVertex.IGNORE_EDGE_LOG_ONCE))
$7 ==> PgxGraph[name=REGIONVIEW_3,N=27,E=18,created=1655903219910]

Java

PgxGraph graph = session.readGraphByName("REGIONS", GraphSource.PG_PGQL, 
ReadGraphOption.onMissingVertex(OnMissingVertex.IGNORE_EDGE_LOG_ONCE));

Python

>>> graph = session.read_graph_by_name('REGIONS',
...      'pg_pgql', options=['on_missing_vertex_ignore_edge_log_once'])

10.1.2 Specifying the Schema Name for the readGraphByName API
You can specify the schema name when using the readGraphByName API for loading a PGQL
property graph.

This feature allows you to load a PGQL property graph from another user schema into the
graph server (PGX). However, ensure that you have READ permission on all the underlying
metadata and data tables when loading a PGQL property graph from another schema.

The following example loads a PGQL property graph from the GRAPHUSER schema:

• JShell

• Java

JShell

opg4j> var graph = session.readGraphByName("GRAPHUSER", "FRIENDS", 
GraphSource.PG_PGQL)
graph ==> PgxGraph[name=FRIENDS,N=6,E=4,created=1672743474212]

Java

PgxGraph graph = session.readGraphByName("GRAPHUSER", "FRIENDS", 
GraphSource.PG_PGQL);

Chapter 10
Loading a PGQL Property Graph Using the readGraphByName API

10-5



10.2 Loading a Graph Using a JSON Configuration File
To load a PGQL property graph into the graph server (PGX), you can create a graph
configuration file, which contains the graph metadata to be loaded.

The following shows a sample JSON configuration file:

{
  "name": "BANK_GRAPH",
  "source_name": "BANK_GRAPH",
  "source_type": "pg_pgql",
  "jdbc_url":"jdbc:oracle:thin:@localhost:1521/orclpdb",
  "username":"graphuser",
  "keystore_alias":"database1",
  "vertex_providers":[
        {
            "name":"Accounts",
            "format":"rdbms",
            "database_table_name":"BANK_ACCOUNTS",
            "key_column":"ID",
            "key_type": "integer",
            "parallel_hint_degree": 3,
             "props":[
                {
                        "name":"ID",
                        "type":"integer"

                },
                 {
                        "name":"NAME",
                        "type":"string"
                 }

            ]

        }
    ],
    "edge_providers":[
        {
            "name":"Transfers",
            "format":"rdbms",
            "database_table_name":"BANK_TXNS",
            "key_column":"ID",
            "parallel_hint_degree": 3,
            "source_column":"FROM_ACCT_ID",
            "destination_column":"TO_ACCT_ID",
            "source_vertex_provider":"Accounts",
            "destination_vertex_provider":"Accounts",
            "props":[
                {
                        "name":"FROM_ACCT_ID",
                        "type":"integer"

Chapter 10
Loading a Graph Using a JSON Configuration File

10-6



                },
                {
                        "name":"TXN_AMOUNT",
                        "type":"float",
                        "column":"AMOUNT"
                },
                {
                        "name":"DESCRIPTION",
                        "type":"string"
                },
                {
                        "name":"TO_ACCT_ID",
                        "type":"integer"
                }
            ]
        }
    ]
}

The preceding configuration uses a Java keystore alias to reference the database password
that is stored in a keystore file. See Store the Database Password in a Keystore for more
information.

Also, the edge property AMOUNT is renamed to TXN_AMT. This implies that when loading a graph
into the graph server (PGX), you can optionally rename the vertex or edge properties to have
different names other than the names of the underlying columns in the database.

See Also:

• Configuring PARALLEL Hint when Loading a Graph

• Graph Configuration Options for more details on the graph configuration options.

You can now read the graph into the graph server as shown:

• JShell

• Java

JShell

./bin/opg4j --secret_store /etc/oracle/graph/keystore.p12
enter password for keystore /etc/oracle/graph/keystore.p12:
For an introduction type: /help intro
Oracle Graph Server Shell 24.3.0
Variables instance, session, and analyst ready to use
opg4j> var g = session.readGraphWithProperties("<path_to_json_configuration>")
g ==> PgxGraph[name=BANK_GRAPH_NEW,N=999,E=4993,created=1675960224397]

Chapter 10
Loading a Graph Using a JSON Configuration File

10-7



Java

ServerInstance instance = GraphServer.getInstance("https://localhost:7007", 
<username>, <password>.toCharArray());
PgxSession session = instance.createSession("my-session");
String keystorePath = "/etc/oracle/graph/keystore.p12";
char[] keystorePassword = "<keystore_password>".toCharArray();
session.registerKeystore(keystorePath, keystorePassword);
PgxGraph g = session.readGraphWithProperties("<path_to_json_configuration>");
System.out.println("Graph: " + g);

• Configuring PARALLEL Hint when Loading a Graph

10.2.1 Configuring PARALLEL Hint when Loading a Graph
You can also optimize the graph loading performance by configuring a specific parallel hint
value using the GraphConfig field, PARALLEL_HINT_DEGREE, which will be used by the
underlying SQL queries. This can be applied when loading a graph using a JSON configuration
file or through the GraphConfigBuilder API.

The following table describes how the internal queries are configured based on the specified
PARALLEL_HINT_DEGREE values.

Table 10-2    PARALLEL_HINT_DEGREE values

PARALLEL_HINT_DEGREE Value Parallel hint used in the SQL Statement

Positive integer(n) Uses the given n degree:
SELECT /*+ PARALLEL(n) */ ...

Zero Uses a plain hint:
SELECT /*+ PARALLEL */ ...

Negative integer
(Default value: -1)

No PARALLEL hint:
SELECT ...

See Also:

• Loading a Graph Using a JSON Configuration File for an example using parallel
hint configuration.

• Loading a Graph by Defining a Graph Configuration Object for an example using
parallel hint configuration.

10.3 Loading a Graph by Defining a Graph Configuration Object
You can load a graph from Oracle Database by first defining the graph configuration object
using the GraphConfigBuilder class and then reading the graph into the graph server (PGX).

Chapter 10
Loading a Graph by Defining a Graph Configuration Object

10-8



The following example loads a PGQL property graph into memory, authenticating as
<database user>/<database password> with the database:

• JShell

• Java

JShell

opg4j> var vertexConfig = new RdbmsEntityProviderConfigBuilder().
...>                                         setName("Account").
...>                                         setKeyColumn("ID").
...>                                         setParallelHintDegree(3).
...>                                         
setDatabaseTableName("BANK_ACCOUNTS").
...>                                         addProperty("ID", 
PropertyType.INTEGER).
...>                                         build()

opg4j> var edgeConfig = new RdbmsEntityProviderConfigBuilder().
...>                                    setName("Transfer").
...>                                    setKeyColumn("TXN_ID").
...>                                    setSourceColumn("FROM_ACCT_ID").
...>                                    setDestinationColumn("TO_ACCT_ID").
...>                                    setSourceVertexProvider("Account").
...>                                    
setDestinationVertexProvider("Account").
...>                                    setParallelHintDegree(3).
...>                                    createKeyMapping(true).
...>                                    setDatabaseTableName("BANK_TXNS").
...>                                    addProperty("FROM_ACCT_ID", 
PropertyType.INTEGER).
...>                                    addProperty("TO_ACCT_ID", 
PropertyType.INTEGER).
...>                                    addProperty("AMOUNT", 
PropertyType.FLOAT).
...>                                    build()

opg4j> var cfg = GraphConfigBuilder.forPartitioned().
...>                  setJdbcUrl("jdbc:oracle:thin:@localhost:1521/orclpdb").
...>                  setUsername("graphuser").
...>                  setPassword("<password>").
...>                  setName("bank_graph").
...>                  setSourceName("bank_graph").
...>                  setSourceType(SourceType.PG_PGQL).
...>                  setVertexIdType(IdType.INTEGER).
...>                  addVertexProvider(vertexConfig).
...>                  addEdgeProvider(edgeConfig).
...>                  build()

opg4j> var g = session.readGraphWithProperties(cfg)
g ==> PgxGraph[name=bank_graph,N=999,E=4993,created=1676806306348]

Chapter 10
Loading a Graph by Defining a Graph Configuration Object

10-9



Java

// Build the vertex provider
RdbmsEntityProviderConfig vertexConfig = new 
RdbmsEntityProviderConfigBuilder()
                                              .setName("Account")
                                              .setKeyColumn("ID")
                                              .setParallelHintDegree(3)
                                              .setDatabaseTableName("BANK_ACCO
UNTS")
                                              .addProperty("ID", 
PropertyType.INTEGER)
                                              .build();
// Build the edge provider
RdbmsEntityProviderConfig edgeConfig = new RdbmsEntityProviderConfigBuilder()
                                              .setName("Transfer")
                                              .setKeyColumn("TXN_ID")
                                              .setSourceColumn("FROM_ACCT_ID")
                                              .setDestinationColumn("TO_ACCT_I
D")
                                              .setSourceVertexProvider("Accoun
t")
                                              .setDestinationVertexProvider("A
ccount")
                                              .setParallelHintDegree(3)
                                              .createKeyMapping(true)
                                              .setDatabaseTableName("BANK_TXNS
")
                                              .addProperty("FROM_ACCT_ID", 
PropertyType.INTEGER)
                                              .addProperty("TO_ACCT_ID", 
PropertyType.INTEGER)
                                              .addProperty("AMOUNT", 
PropertyType.FLOAT)
                                              .build();
// Build the graph 
GraphConfig cfg = GraphConfigBuilder.forPartitioned()
                           .setJdbcUrl("jdbc:oracle:thin:@localhost:1521/
orclpdb")
                           .setUsername("graphuser")
                           .setPassword("<password>")
                           .setName("bank_graph")
                           .setSourceName("bank_graph")
                           .setSourceType(SourceType.PG_PGQL)
                           .setVertexIdType(IdType.INTEGER)
                           .addVertexProvider(vertexConfig)
                           .addEdgeProvider(edgeConfig)
                           .build();

PgxGraph g = session.readGraphWithProperties(cfg);

Chapter 10
Loading a Graph by Defining a Graph Configuration Object

10-10



See Also:

Configuring PARALLEL Hint when Loading a Graph

10.4 Loading a Subgraph from a PGQL Property Graph
You can create a subgraph from a PGQL property graph and load it into memory in the graph
server (PGX).

Instead of loading a full graph into memory, you can load a subgraph. This would consume less
memory.

The following sections explain in detail on loading and expanding of subgraphs:

• PGQL Based Subgraph Loading
You can use the PgViewSubgraphReader#fromPgPgql API to create an in-memory
subgraph from a PGQL property graph using a set of PGQL queries.

• Prepared PGQL Queries
You can also use prepared queries when loading a subgraph from a PGQL property graph.

• Providing Database Connection Credentials
You can specify the database connection credentials with the
PgViewSubgraphReader#fromPgPgql API instead of using the default credentials of the
current user.

• Dynamically Expanding a Subgraph
You can expand an in-memory subgraph by loading another subgraph into memory and
merging it with the current in-memory subgraph.

10.4.1 PGQL Based Subgraph Loading
You can use the PgViewSubgraphReader#fromPgPgql API to create an in-memory subgraph
from a PGQL property graph using a set of PGQL queries.

These PGQL queries define the vertices and edges that are to be loaded into the subgraph.
You can also use multiple PGQL queries and the resulting output graph is a union of the
subgraphs, each being loaded independently by each PGQL query.

Note:

• Only non-composite vertex and edge keys are supported.

• Only numeric edge keys are supported.

• PGQL queries with GROUP BY or ORDER BY clauses are not supported for loading
of subgraphs from a PGQL property graph.

The following example creates a subgraph from a PGQL property graph using multiple PGQL
queries:

Chapter 10
Loading a Subgraph from a PGQL Property Graph

10-11



• JShell

• Java

• Python

JShell

opg4j> var graph = session.readSubgraph().
...>                    fromPgPgql("FRIENDS").
...>                    queryPgql("MATCH (v1:Person)-[e:FRIENDOF]-
>(v2:Person) WHERE id(v1) = 'PERSONS(1)'").
...>                    queryPgql("MATCH (v:Person) WHERE id(v) = 
'PERSONS(2)'").
...>                    load()
graph ==> PgxGraph[name=FRIENDS,N=3,E=1,created=1646726883194]

Java

PgxGraph graph = session.readSubgraph()
                       .fromPgPgql("FRIENDS")
                       .queryPgql("MATCH (v1:Person)-[e:FRIENDOF]-
>(v2:Person) WHERE id(v1) = 'PERSONS(1)'")
                       .queryPgql("MATCH (v:Person) WHERE id(v) = 
'PERSONS(2)'")
                       .load();

Python

>>> graph = session.read_subgraph_from_pg_pgql("FRIENDS", ["MATCH (v1:Person)-
[e:FRIENDOF]->(v2:Person) WHERE id(v1) = 'PERSONS(1)'",
...                           "MATCH (v:Person) WHERE id(v) = 'PERSONS(2)'"])
>>> graph
PgxGraph(name: FRIENDS, v: 3, e: 1, directed: True, memory(Mb): 0)

The following displays the output for the preceding PGQL query using the graph visualization
tool.

Chapter 10
Loading a Subgraph from a PGQL Property Graph

10-12



Figure 10-1    Subgraph Visualization

Loading Subgraphs with Custom Names

By default, the new subgraph gets created with the same name as the PGQL property graph.
Alternatively, if you want to load a subgraph with a custom name, then you can configure the
subgraph name as shown:

• JShell

• Java

• Python

JShell

opg4j> var graph = session.readSubgraph().
...>                  fromPgPgql("FRIENDS").
...>                  queryPgql("MATCH (v1:Person)-[e:FRIENDOF]->(v2:Person) 
WHERE id(v1) = 'PERSONS(1)'").
...>                  queryPgql("MATCH (v:Person) WHERE id(v) = 
'PERSONS(2)'").
...>                  load("friends_network")
graph ==> PgxGraph[name=friends_network,N=3,E=1,created=1664458398090]

Java

PgxGraph graph = session.readSubgraph()
                       .fromPgPgql("FRIENDS")
                       .queryPgql("MATCH (v1:Person)-[e:FRIENDOF]-
>(v2:Person) WHERE id(v1) = 'PERSONS(1)'")
                       .queryPgql("MATCH (v:Person) WHERE id(v) = 

Chapter 10
Loading a Subgraph from a PGQL Property Graph

10-13



'PERSONS(2)'")
                       .load("friends_network");

Python

>>> graph = session.read_subgraph_from_pg_pgql("FRIENDS",
...                   ["MATCH (v1:Person)-[e:FRIENDOF]->(v2:Person) WHERE 
id(v1) = 'PERSONS(1)'",
...                    "MATCH (v:Person) WHERE id(v) = 'PERSONS(2)'"],
...                   graph_name="friends_network")
>>> graph
PgxGraph(name: friends_network, v: 3, e: 1, directed: True, memory(Mb): 0)

Loading a Subgraph by Explicitly Specifying the Schema Name

If you want to load a subgraph by reading a PGQL property graph from another schema, you
can additionally provide the schema name as an argument to the
PgViewSubgraphReader#fromPgPgql API . You must also ensure that you have READ permission
on all the underlying metadata and data tables for the PGQL property graph.

For example:

• JShell

• Java

• Python

JShell

opg4j> var graph = session.readSubgraph()
...> .fromPgPgql("GRAPHUSER", "FRIENDS")
...> .queryPgql("MATCH (v:Person) WHERE id(v) = 'PERSONS(2)'")
...> .load()
graph ==> PgxGraph[name=FRIENDS,N=1,E=0,created=1672743755511]

Java

PgxGraph graph = session.readSubgraph()
                       .fromPgPgql("GRAPHUSER", "FRIENDS")
                       .queryPgql("MATCH (v:Person) WHERE id(v) = 
'PERSONS(2)'")
                       .load();

Chapter 10
Loading a Subgraph from a PGQL Property Graph

10-14



Python

>>> graph = session.read_subgraph_from_pg_pgql("FRIENDS",
...  ["MATCH (v:Person) WHERE id(v) = 'PERSONS(2)'"],
...  schema="GRAPHUSER")

10.4.2 Prepared PGQL Queries
You can also use prepared queries when loading a subgraph from a PGQL property graph.

You can pass bind variables using prepared PGQL queries. The
PreparedPgViewPgqlQuery#preparedPgqlQuery method adds a prepared query to a list of
queries that are executed to load the subgraph. The PreparedPgViewPgqlQuery API sets the
bindings for the variables and continues with the loading of the subgraph.

For example:

• JShell

• Java

• Python

JShell

opg4j> var pgViewSubgraphReader = session.readSubgraph().
...>                                      fromPgPgql("FRIENDS")
pgViewSubgraphReader ==> oracle.pgx.api.subgraph.PgViewSubgraphReader@33bfe6d3
opg4j> var preparedPgqlQuery = pgViewSubgraphReader.preparedPgqlQuery("MATCH 
(v1:Person)-[e:FriendOf]->(v2:Person) WHERE id(v2)=?")
preparedPgqlQuery ==> oracle.pgx.api.subgraph.PreparedPgViewPgqlQuery@2e6b379c
opg4j> preparedPgqlQuery = preparedPgqlQuery.withStringArg(1, "PERSONS(3)")
preparedPgqlQuery ==> oracle.pgx.api.subgraph.PreparedPgViewPgqlQuery@2e6b379c
opg4j> var graph = preparedPgqlQuery.load()
graph ==> PgxGraph[name=FRIENDS_2,N=3,E=2,created=1648566047855]

Java

import oracle.pgx.api.subgraph.*;
…
…
PgViewSubgraphReader pgViewSubgraphReader= 
session.readSubgraph().fromPgPgql("FRIENDS");
PreparedPgViewPgqlQuery preparedPgqlQuery = 
pgViewSubgraphReader.preparedPgqlQuery("MATCH (v1:Person)-[e:FriendOf]-
>(v2:Person) WHERE id(v2)=?");
preparedPgqlQuery = preparedPgqlQuery.withStringArg(1, "PERSONS(3)"); 
PgxGraph graph = preparedPgqlQuery.load(); 

Chapter 10
Loading a Subgraph from a PGQL Property Graph

10-15



Python

>>> from pypgx.api import PreparedPgqlQuery
>>> from pypgx.api import PreparedPgqlQueryStringArgument
>>> graph = session.read_subgraph_from_pg_pgql("FRIENDS",
...   [PreparedPgqlQuery("MATCH (v1:Person)-[e:FriendOf]->(v2:Person) WHERE 
id(v2)=?", [PreparedPgqlQueryStringArgument("PERSONS(3)")])])
>>> graph
PgxGraph(name: FRIENDS, v: 3, e: 2, directed: True, memory(Mb): 0)

10.4.3 Providing Database Connection Credentials
You can specify the database connection credentials with the
PgViewSubgraphReader#fromPgPgql API instead of using the default credentials of the current
user.

The following example shows loading of a subgraph for non-default database connection
settings:

• JShell

• Java

JShell

opg4j> var graph = session.readSubgraph().
...>                     fromPgPgql("FRIENDS").
...>                     username("graphuser").
...>                     password("<password_for_graphuser>").
...>                     keystoreAlias("database1").
...>                     schema("GRAPHUSER").
...>                     jdbcUrl("jdbc:oracle:thin:@localhost:1521/orclpdb").
...>                     connections(12).
...>                     queryPgql("MATCH (a:Person)").
...>                     load()
graph ==> PgxGraph[name=FRIENDS,N=4,E=0,created=1648541234520] 

Java

PgxGraph graph = session.readSubgraph()
                        .fromPgPgql("FRIENDS")
                        .username("graphuser")
                        .password("<password_for_graphuser>")
                        .keystoreAlias("database1")
                        .schema("GRAPHUSER")
                        .jdbcUrl("jdbc:oracle:thin:@localhost:1521/orclpdb")
                        .connections(12)
                        .queryPgql("MATCH (a:Person)")
                        .load();

Chapter 10
Loading a Subgraph from a PGQL Property Graph

10-16



10.4.4 Dynamically Expanding a Subgraph
You can expand an in-memory subgraph by loading another subgraph into memory and
merging it with the current in-memory subgraph.

The PgxGraph.expandGraph() method can be used to expand a subgraph. The following
applies when merging two graphs:

• Both the graphs can have separate sets of providers.

• A graph can have some providers same as the other graph. In this case:

– The providers with the same names must have the same labels.

– The graph being merged must have the same or a common subset of properties as the
base graph. However, it is possible that either of the graphs may have more number of
properties.

The following example shows the expansion of the subgraph created in PGQL Based
Subgraph Loading:

• JShell

• Java

• Python

JShell

opg4j> graph = graph.expandGraph().
...>          withPgql().
...>          fromPgPgql("FRIENDS").
...>          queryPgql("MATCH (v1:PERSON) -[e:FRIENDOF]-> (v2:PERSON) WHERE 
id(v1) = 'PERSONS(2)'").
...>          queryPgql("MATCH (v:PERSON) WHERE id(v) = 'PERSONS(4)'").
...>          expand()
graph ==> PgxGraph[name=anonymous_graph_152,N=4,E=3,created=1647347092964]

Java

graph = graph.expandGraph()
             .withPgql()
             .fromPgPgql("FRIENDS")
             .queryPgql("MATCH (v1:PERSON) -[e:FRIENDOF]-> (v2:PERSON) WHERE 
id(v1) = 'PERSONS(2)'")
             .queryPgql("MATCH (v:PERSON) WHERE id(v) = 'PERSONS(4)'")
             .expand();

Python

>>> from pypgx.api import PreparedPgqlQuery
>>> from pypgx.api import PreparedPgqlQueryStringArgument

Chapter 10
Loading a Subgraph from a PGQL Property Graph

10-17



>>> graph = graph.expand_with_pgql(["MATCH (v1:PERSON) -[e:FRIENDOF]-> 
(v2:PERSON) WHERE id(v1) = 'PERSONS(2)'",
...               "MATCH (v:Person) WHERE id(v)= 'PERSONS(4)'"])],
...               pg_view_name="FRIENDS")
>>> graph
PgxGraph(name: anonymous_graph_66, v: 4, e: 3, directed: True, memory(Mb): 0)

The following displays the output for the preceding PGQL query using the graph visualization
tool. The subgraph is now expanded to include the friendOf relationship for PERSONS(2) in
addition to PERSONS(1) which was already existing in the subgraph.

Figure 10-2    Expanding a Subgraph

Expanding a Subgraph by Explicitly Specifying the Schema Name

When expanding a graph, you can load another subgraph by reading a PGQL property graph
from a different schema. For this, you must provide the schema name as an argument to the
PgqlViewGraphExpander#fromPgPgql API. You must also ensure that you have READ
permission on all the underlying metadata and data tables for the PGQL property graph.

For example:

• JShell

Chapter 10
Loading a Subgraph from a PGQL Property Graph

10-18



• Java

• Python

JShell

opg4j> graph = graph.expandGraph().
...>           withPgql().
...>           fromPgPgql("GRAPHUSER", "FRIENDS").
...>           queryPgql("MATCH (v:Person) WHERE id(v) = 'PERSONS(1)'").
...>           expand()
graph ==> PgxGraph[name=anonymous_graph_18,N=1,E=0,created=1672848726308]

Java

graph = graph.expandGraph()
             .withPgql()
             .fromPgPgql("GRAPHUSER", "FRIENDS")
             .queryPgql("MATCH (v:Person) WHERE id(v) = 'PERSONS(1)'")
             .expand();

Python

>>> graph = graph.expand_with_pgql("MATCH (v:Person) WHERE id(v) = 
'PERSONS(1)'",
...  pg_view_name="FRIENDS", schema="GRAPHUSER")
>>> graph
PgxGraph(name: anonymous_graph_6, v: 2, e: 0, directed: True, memory(Mb): 0)

Using Merging Strategy

When expanding a graph, some vertices and edges that are in the new graph data may have
already been loaded in the base graph. In such cases, if the vertex and edge property values
differ for all vertices and edges that are both in the base graph and in the new graph to be
merged, then the following applies:

• If the merging strategy is KEEP_CURRENT_VALUES, then the vertex and edge property values
coming from the new graph are ignored.

• If the merging strategy is UPDATE_WITH_NEW_VALUES, then the vertex and edge property
values are updated with the ones found in the new graph.

For example:

• JShell

• Java

Chapter 10
Loading a Subgraph from a PGQL Property Graph

10-19



JShell

opg4j> import oracle.pgx.api.expansion.PropertyMergeStrategy
opg4j> graph = graph.expandGraph().
...>          withPgql().
...>          fromPgPgql("FRIENDS").
...>          queryPgql("MATCH (v1:PERSON) -[e:FRIENDOF]-> (v2:PERSON) WHERE 
id(v1) = 'PERSONS(2)'").
...>          preparedPgqlQuery("MATCH (v:PERSON) WHERE id(v) 
in ?").withStringArg(1, "PERSONS(4)").
...>          
vertexPropertiesMergingStrategy(PropertyMergeStrategy.UPDATE_WITH_NEW_VALUES).
...>          expand()

Java

import oracle.pgx.api.expansion.PropertyMergeStrategy;
graph = graph.expandGraph()
             .withPgql()
             .fromPgPgql("FRIENDS")
             .queryPgql("MATCH (v1:PERSON) -[e:FRIENDOF]-> (v2:PERSON) WHERE 
id(v1) = 'PERSONS(2)'")
             .preparedPgqlQuery("MATCH (v:PERSON) WHERE id(v) 
in ?").withStringArg(1, "PERSONS(4)")
             .vertexPropertiesMergingStrategy(PropertyMergeStrategy.UPDATE_WIT
H_NEW_VALUES)
             .expand();

Chapter 10
Loading a Subgraph from a PGQL Property Graph

10-20



11
Quick Starts for Using PGQL Property Graphs

This chapter contains quick start tutorials and other resources to help you get started on
working with PGQL property graphs.

• Using Sample Data for Graph Analysis

• Quick Start: Working with PGQL Property Graphs
This tutorial helps you get started on creating, querying and executing graph algorithms on
PGQL property graphs.

• Quick Start: Using Graph Machine Learning on PGQL Property Graphs
This tutorial helps you get started on applying the DeepWalk machine learning algorithm
on a PGQL property graph.

• Quick Start: Using the Python Client as a Module
This section describes how to use the Python client as a module in Python applications.

• Oracle LiveLabs Workshops for Graphs
You can also explore Oracle Property Graph features using the graph workshops in Oracle
LiveLabs.

11.1 Using Sample Data for Graph Analysis
The rpm installation of the graph server provides you with sample graph data which can be
used for graph analysis. You can access this sample graph data either in /opt/oracle/graph/
data or <client_dir>/data directory.

The bank_graph folder contains data that represent the vertices and edges of a graph in
bank_nodes.csv and bank_edges_amt.csv files respectively. You can import the graph data
from these .csv files into the database. You can then create a graph for querying and
analyses.

• Importing Data from CSV Files

11.1.1 Importing Data from CSV Files
You can import data from CSV files into the database through Oracle SQL Developer or by
using Oracle Database utilities (such as SQL*Loader or External Tables).

• See Data Import Wizard in Oracle SQL Developer User's Guide on how to import data
from files into tables.

• See Oracle Database Utilities for more information on data transfer utilities.

The following instructions enable you to load data into the database tables using Oracle SQL
Loader.

11-1

http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/sql-developer/21.4&id=GUID-8CA3C91B-3BE7-40DA-B905-6ACE5C9D8F6E
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/21&id=GUID-8D037494-07FA-4226-B507-E1B2ED10C144


As a prerequisite requirement, you must execute the following SQL statements to create the
vertex (bank_accounts) and edge (bank_txns) tables in the database:

CREATE TABLE bank_accounts(id NUMBER, name VARCHAR2(10));

CREATE TABLE bank_txns(from_acct_id NUMBER, to_acct_id NUMBER, description 
VARCHAR2(10), amount NUMBER);

You can then perform the following steps to load the data:

1. Create a SQL*Loader control file to load the vertices from bank_nodes.csv as shown:

load data
infile '<path_to_bank_nodes.csv>'
into table bank_accounts
fields terminated by "," optionally enclosed by '"'
( id, name )

2. Invoke SQL*Loader from the command line to load the vertices in bank_accounts table,
using the preceding configuration file as shown:

sqlldr <dbuser>/<password> CONTROL=<path_to_vertex_loader.ctl>

The bank_accounts table gets successfully loaded with 1000 rows.

3. Create a SQL*Loader control file to load the edge from bank_edges_amt.csv as shown:

load data
infile '<path_to_bank_edges_amt.csv>'
into table bank_txns
fields terminated by "," optionally enclosed by '"'
(from_acct_id,to_acct_id,description,amount)

4. Invoke SQL*Loader from the command line to load the edges in bank_txns table, using the
preceding configuration file as shown:

sqlldr <dbuser>/<password> CONTROL=<path_to_edge_loader.ctl>

The bank_txns table gets successfully loaded with 4996 rows.

5. Execute the following SQL statement to add the primary key constraint in the
bank_accounts table:

ALTER TABLE bank_accounts ADD PRIMARY KEY (id);

6. Execute the following SQL statements to add a primary key column to the bank_txns table,
populate it with ROWNUM values and then define the primary key constraint:

ALTER TABLE bank_txns ADD txn_id NUMBER;
UPDATE bank_txns SET txn_id = ROWNUM;
COMMIT;
ALTER TABLE bank_txns ADD PRIMARY KEY (txn_id);

Chapter 11
Using Sample Data for Graph Analysis

11-2



7. Execute the following SQL statements to add the foreign key constraints to the bank_txns
table:

ALTER TABLE bank_txns MODIFY from_acct_id REFERENCES bank_accounts(id);
ALTER TABLE bank_txns MODIFY to_acct_id REFERENCES bank_accounts(id);

The sample bank graph data is now available in the database tables.

11.2 Quick Start: Working with PGQL Property Graphs
This tutorial helps you get started on creating, querying and executing graph algorithms on
PGQL property graphs.

The instructions assume that you have loaded the sample bank graph data provided with the
graph server installation in the database tables. See Using Sample Data for Graph Analysis for
more information.

The following instructions are supported with examples that can be executed either with the
OPG4J Java shell or OPG4PY Python shell or through a Java program using the PGX API.

1. Start the interactive graph shell CLI:

• JShell

• Python

JShell

cd /opt/oracle/graph
./bin/opg4j --no_connect
Oracle Graph Server Shell 24.3.0

Python

cd /opt/oracle/graph
./bin/opg4py --no_connect
Oracle Graph Server Shell 24.3.0

2. Obtain a JDBC database connection, if using OPG4J shell or a Java program.

• JShell

• Java

JShell

opg4j> var jdbcUrl="jdbc:oracle:thin:@<host>:<port>/<sid>"
jdbcUrl ==> "jdbc:oracle:thin:@localhost:1521/orclpdb"

Chapter 11
Quick Start: Working with PGQL Property Graphs

11-3



opg4j> var conn = 
DriverManager.getConnection(jdbcUrl,"<username>","<password>")
conn ==> oracle.jdbc.driver.T4CConnection@7d463c9f
opg4j> conn.setAutoCommit(false);

Java

import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlStatement;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pgx.api.*;
import oracle.pg.rdbms.GraphServer;

// Get a jdbc connection
String jdbcUrl="jdbc:oracle:thin:@"+<host>+":"+<port>+"/"+<service>;
conn = DriverManager.getConnection(jdbcUrl, <username>, <password>);
conn.setAutoCommit(false);

3. Create a PGQL connection.

• JShell

• Java

• Python

JShell

opg4j> var pgqlConn = PgqlConnection.getConnection(conn)
pgqlConn ==> oracle.pg.rdbms.pgql.PgqlConnection@5c5c784c

Java

PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);

Python

>>> pgql_conn = opg4py.pgql.get_connection("<username>","<password>", 
"jdbc:oracle:thin:@<host>:<port>/<sid>")

4. Create a PGQL statement to execute PGQL queries.

Chapter 11
Quick Start: Working with PGQL Property Graphs

11-4



• JShell

• Java

• Python

JShell

opg4j> var pgqlStmt = pgqlConn.createStatement()
pgqlStmt ==> oracle.pg.rdbms.pgql.PgqlExecution@29e3c28

Java

PgqlStatement pgqlStmt = pgqlConn.createStatement();

Python

>>> pgql_statement = pgql_conn.create_statement()

5. Create a PGQL property graph using the CREATE PROPERTY GRAPH statement:

• JShell

• Java

• Python

JShell

opg4j> String pgql =
...> "CREATE PROPERTY GRAPH bank_graph "
...> + "VERTEX TABLES ( BANK_ACCOUNTS AS ACCOUNTS "
...> + "KEY (ID) "
...> + "LABEL ACCOUNTS "
...> + "PROPERTIES (ID, NAME) "
...> + ") "
...> + "EDGE TABLES ( BANK_TXNS AS TRANSFERS "
...> + "KEY (FROM_ACCT_ID, TO_ACCT_ID, AMOUNT) "
...> + "SOURCE KEY (FROM_ACCT_ID) REFERENCES ACCOUNTS (ID) "
...> + "DESTINATION KEY (TO_ACCT_ID) REFERENCES ACCOUNTS (ID) "
...> + "LABEL TRANSFERS "
...> + "PROPERTIES (FROM_ACCT_ID, TO_ACCT_ID, AMOUNT, DESCRIPTION) "
...> + ") OPTIONS (PG_PGQL) "
opg4j> pgqlStmt.execute(pgql)

Java

String pgql = 
        "CREATE PROPERTY GRAPH " + graph + " " +

Chapter 11
Quick Start: Working with PGQL Property Graphs

11-5



        "VERTEX TABLES ( BANK_ACCOUNTS AS ACCOUNTS " +
        "KEY (ID) " +
        "LABEL ACCOUNTS " +
        "PROPERTIES (ID, NAME)" +
        ") " +
        "EDGE TABLES ( BANK_TXNS AS TRANSFERS " +
        "KEY (FROM_ACCT_ID, TO_ACCT_ID, AMOUNT) " +
        "SOURCE KEY (FROM_ACCT_ID) REFERENCES ACCOUNTS (ID) " +
        "DESTINATION KEY (TO_ACCT_ID) REFERENCES ACCOUNTS (ID) " +
        "LABEL TRANSFERS " +
        "PROPERTIES (FROM_ACCT_ID, TO_ACCT_ID, AMOUNT, DESCRIPTION)" +
        ") OPTIONS(PG_PGQL)";

      pgqlStmt.execute(pgql);

Python

>>> pgql = """
...         CREATE PROPERTY GRAPH bank_graph
...         VERTEX TABLES (
...           BANK_ACCOUNTS
...           LABEL ACCOUNTS
...           PROPERTIES (ID, NAME)
...         )
...         EDGE TABLES (
...           BANK_TXNS
...             SOURCE KEY (FROM_ACCT_ID) REFERENCES BANK_ACCOUNTS (ID)
...             DESTINATION KEY (TO_ACCT_ID) REFERENCES BANK_ACCOUNTS (ID)
...             LABEL TRANSFERS
...             PROPERTIES (FROM_ACCT_ID, TO_ACCT_ID, AMOUNT, DESCRIPTION)
...         ) OPTIONS(PG_PGQL)
... """
>>> pgql_statement.execute(pgql)
False

The graph gets created successfully.

6. Execute the following query to retrieve the first 10 elements of the graph as shown:

• JShell

• Java

• Python

JShell

opg4j> String pgqlQuery =
...> "SELECT e.from_acct_id, e.to_acct_id, e.amount FROM "
...> + "MATCH (n:ACCOUNTS) -[e:TRANSFERS]-> (m:ACCOUNTS) ON BANK_GRAPH "
...> + "LIMIT 10"

Chapter 11
Quick Start: Working with PGQL Property Graphs

11-6



opg4j> var rs = pgqlStmt.executeQuery(pgqlQuery)
rs ==> oracle.pg.rdbms.pgql.pgview.PgViewResultSet@1e368085
opg4j> rs.print()
+------------------------------------+
| FROM_ACCT_ID | TO_ACCT_ID | AMOUNT |
+------------------------------------+
| 121          | 94         | 1000   |
| 121          | 255        | 1000   |
| 121          | 221        | 1000   |
| 122          | 27         | 1000   |
| 122          | 606        | 1000   |
| 122          | 495        | 1000   |
| 122          | 640        | 1000   |
| 122          | 140        | 1000   |
| 123          | 95         | 1000   |
| 123          | 130        | 1000   |
+------------------------------------+
$16 ==> oracle.pg.rdbms.pgql.pgview.PgViewResultSet@1e368085

Java

String pgqlQuery = 
        "SELECT e.from_acct_id, e.to_acct_id, e.amount FROM " +
        "MATCH (n:ACCOUNTS) -[e:TRANSFERS]-> (m:ACCOUNTS) ON BANK_GRAPH " +
        "LIMIT 10";
PgqlResultSet rs = pgqlStmt.executeQuery(pgqlQuery);
rs.print();

Python

>>> pgql = """
... SELECT e.from_acct_id, e.to_acct_id, e.amount FROM
... MATCH (n:ACCOUNTS) -[e:TRANSFERS]-> (m:ACCOUNTS) on BANK_GRAPH
... limit 10
... """
>>> pgql_statement.execute_query(pgql).print()
+------------------------------------+
| FROM_ACCT_ID | TO_ACCT_ID | AMOUNT |
+------------------------------------+
| 121          | 94         | 1000   |
| 121          | 255        | 1000   |
| 121          | 221        | 1000   |
| 122          | 27         | 1000   |
| 122          | 606        | 1000   |
| 122          | 495        | 1000   |
| 122          | 640        | 1000   |
| 122          | 140        | 1000   |
| 123          | 95         | 1000   |
| 123          | 130        | 1000   |
+------------------------------------+

Chapter 11
Quick Start: Working with PGQL Property Graphs

11-7



7. Load the graph into the graph server (PGX). This will enable you to run a variety of
different built-in algorithms on the graph and will also improve query performance for larger
graphs.

• JShell

• Java

• Python

JShell

opg4j> var instance = GraphServer.getInstance("https://localhost:7007", 
"<username>", "<password>".toCharArray())
instance ==> ServerInstance[embedded=false,baseUrl=https://localhost:7007]
opg4j> var session = instance.createSession("mySession")
session ==> 
PgxSession[ID=43653128-59cd-4e69-992c-1a2beac05857,source=mySession]
opg4j> var graph = 
session.readGraphByName("BANK_GRAPH",GraphSource.PG_PGQL)
graph ==> PgxGraph[name=BANK_GRAPH,N=1000,E=4996,created=1643308582055]

Java

ServerInstance instance = GraphServer.getInstance("https://
localhost:7007", "<username>", "<password>".toCharArray());
PgxSession session = instance.createSession("my-session");
PgxGraph graph = session.readGraphByName("BANK_GRAPH",GraphSource.PG_PGQL);

Python

>>> instance = graph_server.get_instance("https://
localhost:7007","<username>","<password>")
>>> session = instance.create_session("my_session")
>>> graph = session.read_graph_by_name('BANK_GRAPH', 'pg_pgql')
>>> graph
PgxGraph(name: BANK_GRAPH, v: 1000, e: 4996, directed: True, memory(Mb): 0)

8. Execute the PageRank algorithm as shown:

• JShell

• Java

• Python

Chapter 11
Quick Start: Working with PGQL Property Graphs

11-8



JShell

opg4j> var analyst = session.createAnalyst()
analyst ==> NamedArgumentAnalyst[session=3f0a9a71-f349-4aac-b75f-
a7c4ae50851b]
opg4j> analyst.pagerank(graph)
$10 ==> VertexProperty[name=pagerank,type=double,graph=BANK_GRAPH]

Java

Analyst analyst = session.createAnalyst();
analyst.pagerank(graph);

Python

>>> analyst = session.create_analyst()
>>> analyst.pagerank(graph)
VertexProperty(name: pagerank, type: double, graph: BANK_GRAPH)

9. Query the graph to list the top 10 accounts by pagerank:

• JShell

• Java

• Python

JShell

opg4j> String pgql ==> "SELECT a.id, a.pagerank FROM MATCH (a) ON 
BANK_GRAPH ORDER BY a.pagerank DESC LIMIT 10"
opg4j> session.queryPgql(pgql).print()
+-----------------------------+
| id  | pagerank              |
+-----------------------------+
| 387 | 0.007292323575404966  |
| 406 | 0.0067300944623203615 |
| 135 | 0.0067205459831892545 |
| 934 | 0.00663484385036358   |
| 397 | 0.005693569761570973  |
| 559 | 0.0052584383114609844 |
| 352 | 0.005216329599236731  |
| 330 | 0.005093350408942336  |
| 222 | 0.004682551613749817  |
| 4   | 0.004569682370461633  |
+-----------------------------+
$18 ==> PgqlResultSetImpl[graph=BANK_GRAPH,numResults=10]

Chapter 11
Quick Start: Working with PGQL Property Graphs

11-9



Java

String pgQuery = "SELECT a.id, a.pagerank FROM MATCH (a) ON BANK_GRAPH 
ORDER BY a.pagerank DESC LIMIT 10";
session.queryPgql(pgQuery).print();

Python

>>> pgql = "SELECT a.id, a.pagerank FROM MATCH (a) ON BANK_GRAPH ORDER BY 
a.pagerank DESC LIMIT 10"
>>> session.query_pgql(pgql).print()
+-----------------------------+
| id  | pagerank              |
+-----------------------------+
| 387 | 0.007292323575404966  |
| 406 | 0.0067300944623203615 |
| 135 | 0.0067205459831892545 |
| 934 | 0.00663484385036358   |
| 397 | 0.005693569761570973  |
| 559 | 0.0052584383114609844 |
| 352 | 0.005216329599236731  |
| 330 | 0.005093350408942336  |
| 222 | 0.004682551613749817  |
| 4   | 0.004569682370461633  |
+-----------------------------+

11.3 Quick Start: Using Graph Machine Learning on PGQL
Property Graphs

This tutorial helps you get started on applying the DeepWalk machine learning algorithm on a
PGQL property graph.

The instructions assume that the PGQL property graph is already existing in your current
database.

Run the following steps to build and work with a Deep Walk model.

1. Load the PGQL property graph into the graph server (PGX).

• JShell

• Java

• Python

JShell

opg4j> var instance = GraphServer.getInstance("https://localhost:7007", 
"<username>", "<password>".toCharArray())
instance ==> ServerInstance[embedded=false,baseUrl=https://localhost:7007]

Chapter 11
Quick Start: Using Graph Machine Learning on PGQL Property Graphs

11-10



opg4j> var session=instance.createSession("mySession")
session ==> 
PgxSession[ID=5af9c362-10a3-4a7c-953c-602553d4606b,source=mySession]
opg4j> var graph = 
session.readGraphByName("BANK_GRAPH",GraphSource.PG_PGQL)
graph ==> PgxGraph[name=BANK_GRAPH,N=1000,E=4997,created=1684315831352]

Java

ServerInstance instance = GraphServer.getInstance("https://
localhost:7007", "<username>", "<password>".toCharArray());
PgxSession session = instance.createSession("my-session");
PgxGraph graph = session.readGraphByName("BANK_GRAPH",GraphSource.PG_PGQL);

Python

>>> instance = graph_server.get_instance("https://
localhost:7007","<username>","<password>")
>>> session = instance.create_session("my_session")
>>> graph = session.read_graph_by_name("BANK_GRAPH", "pg_pgql")
>>> graph
PgxGraph(name: BANK_GRAPH, v: 1000, e: 4997, directed: True, memory(Mb): 0)

2. Build a Deep Walk model using customized hyper-parameters as shown:

• JShell

• Java

• Python

JShell

opg4j> var model = session.createAnalyst().deepWalkModelBuilder().
...>                 setMinWordFrequency(1).
...>                 setBatchSize(512).
...>                 setNumEpochs(1).
...>                 setLayerSize(100).
...>                 setLearningRate(0.05).
...>                 setMinLearningRate(0.0001).
...>                 setWindowSize(3).
...>                 setWalksPerVertex(6).
...>                 setWalkLength(4).
...>                 setNegativeSample(2).
...>                 build()
model ==> oracle.pgx.api.mllib.DeepWalkModel@6e0f259e

Chapter 11
Quick Start: Using Graph Machine Learning on PGQL Property Graphs

11-11



Java

import oracle.pgx.api.mllib.DeepWalkModel;
DeepWalkModel model= session.createAnalyst().deepWalkModelBuilder()
        .setMinWordFrequency(1)
        .setBatchSize(512)
        .setNumEpochs(1)
        .setLayerSize(100)
        .setLearningRate(0.05)
        .setMinLearningRate(0.0001)
        .setWindowSize(3)
        .setWalksPerVertex(6)
        .setWalkLength(4)
        .setNegativeSample(2)
        .build();

Python

>>> model = session.create_analyst().deepwalk_builder(min_word_frequency= 
1,
...                                 batch_size= 512,
...                                 num_epochs= 1,
...                                 layer_size= 100,
...                                 learning_rate= 0.05,
...                                 min_learning_rate= 0.0001,
...                                 window_size= 3,
...                                 walks_per_vertex= 6,
...                                 walk_length= 4,
...                                 negative_sample= 2)

3. Train the Deep Walk model as shown:

• JShell

• Java

• Python

JShell

opg4j> model.fit(graph)

Java

model.fit(graph);

Chapter 11
Quick Start: Using Graph Machine Learning on PGQL Property Graphs

11-12



Python

>>> model.fit(graph)

4. Get the loss value as shown:

• JShell

• Java

• Python

JShell

opg4j> var loss = model.getLoss()
loss ==> -2.097562355629634E-5

Java

double loss = model.getLoss();

Python

>>> loss = model.loss
>>> loss
-2.0706271243398078e-05

5. Compute similar vertices as shown:

• JShell

• Java

• Python

JShell

opg4j> var similars = model.computeSimilars("ACCOUNTS(280)",10)
batchSimilars ==> oracle.pgx.api.frames.internal.PgxFrameImpl@308e465b
opg4j> batchSimilars.print()

Chapter 11
Quick Start: Using Graph Machine Learning on PGQL Property Graphs

11-13



Java

import oracle.pgx.api.frames.*;

PgxFrame similars = model.computeSimilars("ACCOUNTS(280)", 10);
similars.print();

Python

>>> similars = model.compute_similars("ACCOUNTS(280)",10)
>>> similars.print()

The example produces a similar output:

+-------------------------------------+
| dstVertex     | similarity          |
+-------------------------------------+
| ACCOUNTS(280) | 1.0                 |
| ACCOUNTS(486) | 0.3253505229949951  |
| ACCOUNTS(615) | 0.2806776463985443  |
| ACCOUNTS(660) | 0.27348122000694275 |
| ACCOUNTS(737) | 0.2734076678752899  |
| ACCOUNTS(368) | 0.2707795202732086  |
| ACCOUNTS(479) | 0.27019545435905457 |
| ACCOUNTS(845) | 0.2618815004825592  |
| ACCOUNTS(834) | 0.2543807625770569  |
| ACCOUNTS(249) | 0.24260951578617096 |
+-------------------------------------+

6. Get all trained vectors and store them in a database table as shown:

• JShell

• Java

• Python

JShell

opg4j> var vertexVectors = model.getTrainedVertexVectors().flattenAll()
vertexVectors ==> oracle.pgx.api.frames.internal.PgxFrameImpl@46cb9794
opg4j> 
vertexVectors.write().db().name("deepwalkframe").tablename("vertexVectors")
.overwrite(true).store()

Java

PgxFrame vertexVectors = model.getTrainedVertexVectors().flattenAll();
vertexVectors.write()

Chapter 11
Quick Start: Using Graph Machine Learning on PGQL Property Graphs

11-14



  .db()
  .name("vertex vectors")
  .tablename("vertexVectors")
  .overwrite(true)
  .store();

Python

>>> vertex_vectors = model.trained_vectors.flatten_all()
>>> vertex_vectors.write().db(). \
...         table_name("vertex_vectors"). \
...         overwrite(True). \
...         store()

7. Store the trained model in the database as shown:

• JShell

• Java

• Python

JShell

opg4j> model.export().db().
...>   modelstore("bank_model").
...>   modelname("model").
...>   description("DeepWalk Model for Bank data").
...>   store()

Java

model.export().db()
  .modelstore("bank_model")  
  .modelname("model2")                 
  .description("DeepWalk Model for Bank data") 
  .store();

Python

>>> model.export().db(model_store="bank_model",
...                   model_name="model",
...                   model_description="DeepWalk Model for Bank data")

8. Load a pre-trained model from the database as shown:

Chapter 11
Quick Start: Using Graph Machine Learning on PGQL Property Graphs

11-15



• JShell

• Java

• Python

JShell

opg4j> session.createAnalyst().loadDeepWalkModel().db().
...>   modelstore("bank_model").
...>   modelname("model").
...>   load()

Java

model = session.createAnalyst().loadDeepWalkModel().db()
  .modelstore("bank_model")
  .modelname("model")   
  .load();

Python

>>> model = 
session.create_analyst().get_deepwalk_model_loader().db(model_store="bank_m
odel",
...                                        model_name="model")

9. Destroy the model as shown:

• JShell

• Java

• Python

JShell

opg4j> model.destroy()

Java

model.destroy();

Python

>>> model.destroy()

Chapter 11
Quick Start: Using Graph Machine Learning on PGQL Property Graphs

11-16



See Using the Machine Learning Library (PgxML) for Graphs for more information on the
supported machine learning algorithms.

11.4 Quick Start: Using the Python Client as a Module
This section describes how to use the Python client as a module in Python applications.

Remote Server

For this mode, all you need is the Python client to be installed. In your Python program, you
must authenticate with the remote server before you can create a session as illustrated in the
following example. Note that you must replace the values for base_url, jdbc_url, username,
and password with values to match your environment details.

import pypgx
import opg4py
import opg4py.graph_server as graph_server
pgql_conn = opg4py.pgql.get_connection("<username>","<password>", 
"<jdbc_url>")
pgql_statement = pgql_conn.create_statement()
pgql = """
        CREATE PROPERTY GRAPH bank_graph
        VERTEX TABLES (
          bank_accounts
            LABEL ACCOUNTS
            PROPERTIES (ID, NAME)
        )
        EDGE TABLES (
          bank_txns
            SOURCE KEY (from_acct_id) REFERENCES bank_accounts (ID)
            DESTINATION KEY (to_acct_id) REFERENCES bank_accounts (ID)
            LABEL TRANSFERS
            PROPERTIES (FROM_ACCT_ID, TO_ACCT_ID, AMOUNT, DESCRIPTION)
        ) OPTIONS(PG_PGQL)
"""
pgql_statement.execute(pgql)
instance = graph_server.get_instance("<base_url>", "<username>", "<password>")
session = instance.create_session("my_session")
graph = session.read_graph_by_name('BANK_GRAPH', 'pg_pgql')
analyst = session.create_analyst()
analyst.pagerank(graph)
rs = graph.query_pgql("SELECT id(x), x.pagerank FROM MATCH (x) LIMIT 5")
rs.print()

To execute, save the above program into a file named program.py and run the following
command:

python3 program.py

Chapter 11
Quick Start: Using the Python Client as a Module

11-17



You will see the following output:

+-------------------------------------------+
| id(x)             | pagerank              |
+-------------------------------------------+
| BANK_ACCOUNTS(2)  | 9.749447313256548E-4  |
| BANK_ACCOUNTS(4)  | 0.004584001759076056  |
| BANK_ACCOUNTS(6)  | 5.358461393401424E-4  |
| BANK_ACCOUNTS(8)  | 0.0013051552434930175 |
| BANK_ACCOUNTS(10) | 0.0015040122009364232 |
+-------------------------------------------+

Converting PGQL result set into pandas dataframe

Additionally, you can also convert the PGQL result set to a pandas.DataFrame object using the
to_pandas() method. This makes it easier to perform various data filtering operations on the
result set and it can also be used in Lambda functions. For example,

example_query = (
    "SELECT n.name AS name, n.age AS age "
    "WHERE (n)"
)
result_set = sample_graph.query_pgql(example_query)
result_df = result_set.to_pandas()

result_df['age_bin'] = result_df['age'].apply(lambda x: int(x)/20) # create 
age bins based on age ranges

Note:

To view the complete set of available Python APIs, see OPG4PY Python API
Reference.

Embedded Server

For this mode, the Python client and the Graph Server RPM package must be installed on the
same machine.

import os
os.environ["PGX_CLASSPATH"] = "/opt/oracle/graph/lib/*"
instance = graph_server.get_embedded_instance()
session = instance.create_session("python_pgx_client")
print(session)

To execute, save the above program into a file named program.py and run the following
command.

python3 program.py

Chapter 11
Quick Start: Using the Python Client as a Module

11-18

http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=python_doc
http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=python_doc


After successful login, you must see a similar message indicating a PGX session was created:

PgxSession(id: 32fc7037-18f1-4381-ba94-107e5f63aec2, name: python_pgx_client)

Note:

To view the complete set of available Python APIs, see OPG4PY Python API
Reference.

11.5 Oracle LiveLabs Workshops for Graphs
You can also explore Oracle Property Graph features using the graph workshops in Oracle
LiveLabs.

See the Oracle LiveLabs Workshop for a complete example on querying, analyzing and
visualizing graphs using data stored in a free tier Autonomous Database instance. You will
provision a new free tier Autonomous Database instance, load data into it, create a graph, and
then query, analyze and visualize the graph.

Chapter 11
Oracle LiveLabs Workshops for Graphs

11-19

http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=python_doc
http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=python_doc


12
Getting Started with the Client Tools

You can use multiple client tools to interact with the graph server (PGX) or directly with the
graph data in the database.

The following sections explain how to use the various client tools:

• Interactive Graph Shell CLIs
Both the Oracle Graph server and client packages contain interactive command-line
applications for interacting with the Java APIs and the Python APIs of the product, locally
or on remote computers.

• Using Autonomous Database Graph Client
Using the AdbGraphClient API, you can access Graph Studio features in Autonomous
Database programmatically using the Oracle Graph Client or through your Java or Python
application.

• Using the Graph Visualization Web Client
You can use the Graph Visualization application to visualize graphs that are either loaded
into the graph server (PGX) or stored in the database.

• Using the Jupyter Notebook Interface
You can use the Jupyter notebook interface to create, load, and query PGQL property
graphs through Python.

• Additional Client Tools for Querying PGQL Property Graphs
When working with PGQL property graphs in the database, you can use other supported
client tools.

Related Topics

• Oracle Graph Client Installation
You can interact with the various graph features using the client CLIs and the graph
visualization web client.

12.3 Using the Graph Visualization Web Client
You can use the Graph Visualization application to visualize graphs that are either loaded into
the graph server (PGX) or stored in the database.

To run the graph visualization application for your installation, see Running the Graph
Visualization Web Client.

Related Topics

• Graph Visualization Application
The Graph Visualization application enables interactive exploration and visualization of
property graphs. You can visualize graphs that are loaded into the graph server(PGX) and
the graphs stored in the database.

12-1



12.4 Using the Jupyter Notebook Interface
You can use the Jupyter notebook interface to create, load, and query PGQL property graphs
through Python.

Perform the following steps to perform graph analysis using Jupyter Notebook:

1. Install the Jupyter Notebook application following the Jupyter documentation. The following
example installs Jupyter with pip:

pip3 install --user jupyter

2. Ensure that your Jupyter installation is added to the PATH environment variable.

3. Run the notebook server using the jupyter notebook command.

4. Launch the web application using the generated URL and open a new notebook.

5. Create and analyse a property graph.

• The following example shows creating a PGQL property graph and running graph
queries:

Figure 12-1    Creating a PGQL property graph in Jupyter Notebook

• The following example shows loading the PGQL property graph into the graph server
(PGX) and running graph algorithms for analysis:

Chapter 12
Using the Jupyter Notebook Interface

12-2

https://docs.jupyter.org/en/latest/install/notebook-classic.html


Figure 12-2    Running Graph Algorithms in Jupyter Notebook

12.1 Interactive Graph Shell CLIs
Both the Oracle Graph server and client packages contain interactive command-line
applications for interacting with the Java APIs and the Python APIs of the product, locally or on
remote computers.

The interactive graph shells dynamically interpret command-line inputs from the user, execute
them by invoking the underlying functionality, and can print results or process them further. The
graph shells provide a lightweight and interactive way of exercising graph functionality without
creating a Java or Python application.

The graph shells are especially helpful if you want to do any of the following:

• Quickly run a "one-off" graph analysis on a specific data set, rather than creating a large
application

• Run getting started examples and create demos on a sample data set

• Explore the data set, trying different graph analyses on the data set interactively

• Learn how to use the product and develop a sense of what the built-in algorithms are good
for

• Develop and test custom graph analytics algorithms

The graph shell for the Java API (OPG4J) is implemented on top of the Java Shell tool
(JShell). As such, it inherits all features provided by JShell such as tab-completion, history,
reverse search, semicolon inference, script files, and internal variables. The graph shell for the
Python API (OPG4Py) uses IPython in case it is installed.

The following sections explain in detail on how to start the graph shell CLIs:

• Starting the OPG4J Shell

• Starting the OPG4Py Shell

Chapter 12
Interactive Graph Shell CLIs

12-3



See Also:

• Java API Reference for information on the Java APIs

• Python API Reference for information on the Python APIs

12.1.1 Starting the OPG4J Shell
Launching the OPG4J Shell

The Java shell executables are found in /opt/oracle/graph/bin after the graph server (PGX)
installation, and in <CLIENT_INSTALL_DIR>/bin after the Java client installation.

The OPG4J shell uses JShell, which means the shell needs to run on Java 11 or later. See 
Installing the Java Client From the Graph Server and Client Downloads for more details on the
prerequisites. You can then launch the OPG4J shell by entering the following in your terminal:

cd /opt/oracle/graph
./bin/opg4j

When the shell has started, the following command line prompt appears:

For an introduction type: /help intro
Oracle Graph Server Shell 24.3.0
Variables instance, session, and analyst ready to use.
opg4j>

By default, the OPG4J shell creates a local PGX instance, to run graph functions in the same
JVM as the shell as described in Developing Applications Using Graph Server Functionality as
a Library.

Command-line Options

To view the list of available command-line options, add --help to the opg4j command:

./bin/opg4j --help

To start the opg4j shell without connecting to the graph server (PGX), use the --no_connect
option as shown:

./bin/opg4j --no_connect

Starting the OPG4J Shell on Remote Mode

The OPG4J shell can connect to a graph server (PGX) instance that is running on another
JVM (possibly on a different machine). In order to launch the OPG4J shell in remote mode, you
must specify the --base_url parameter as shown:

./bin/opg4j --base_url https://<host>:7007 --username <graphuser>

where :

Chapter 12
Interactive Graph Shell CLIs

12-4

http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=java_doc
http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=python_doc


• <host>: is the server host

• <graphuser>: is the database user
You will be prompted for the database password.

Note:

The graph server (PGX), listens on port 7007 by default. If needed, you can configure
the graph server to listen on a different port by changing the port value in the server
configuration file (server.conf). See Configuring the Graph Server (PGX) for details.

When the shell has started, the following command line prompt appears:

Oracle Graph Server Shell 24.3.0
Variables instance, session, and analyst ready to use.
opg4j>

If you have multiple versions of Java installed, you can easily switch between installations by
setting the JAVA_HOME variable before starting the shell. For example:

export JAVA_HOME=/usr/lib/jvm/java-11-oracle

Batch Execution of Scripts

The OPG4J shell can execute a script by passing the path(s) to the script(s) to the opg4j
command. For example:

./bin/opg4j /path/to/script.jsh

Predefined Functions

The OPG4J shell provides the following utility functions:

• println(String): A shorthand for System.out.println(String).

• loglevel(String loggerName, String levelName): A convenient function to set the
loglevel.

The loglevel function allows you to set the log level for a logger. For example,
loglevel("ROOT", "INFO") sets the level of the root logger to INFO. This causes all logs of
INFO and higher (WARN, ERROR, FATAL) to be printed to the console.

Script Arguments

You can also provide parameters to the script executed by the graph server (PGX). For
example:

./bin/opg4j /path/to/script.jsh script-arg-1 script-arg-2

Chapter 12
Interactive Graph Shell CLIs

12-5



The script /path/to/script.jsh can then access the arguments through the
arguments.scriptArgs variable. The arguments are provided as an array of strings
(String[]). For example:

Arrays.stream(arguments.scriptArgs).forEach((a) -> 
    System.out.println(a));

The preceding example prints the output as shown:

script-arg-1
script-arg-2

Staying in Interactive Mode

By default, the OPG4J shell exits after it finishes execution. To stay in interactive mode after
the script finishes successfully, pass the --keep_running flag to the shell. For example:

./bin/opg4j -b https://myserver.com:7007/ /path/to/script.jsh --keep_running

12.1.2 Starting the OPG4Py Shell
Launching the OPG4Py Shell

The OPG4Py shell executables are found in /opt/oracle/graph/bin after the graph server
(PGX) installation, and in <CLIENT_INSTALL_DIR>/bin after the Python client installation.

Before launching the OPG4Py shell, verify that your system meets these prerequisites. You
can then launch the OPG4Py shell by entering the following in your terminal:

cd /opt/oracle/graph
./bin/opg4py

When the shell has started, the following command line prompt appears:

Oracle Graph Server Shell 24.3.0
>>>

If IPython is installed the following prompt will appear:

In [1]:

By default, the OPG4Py shell creates a local PGX instance, to run graph functions in the same
JVM as the shell as described in Developing Applications Using Graph Server Functionality as
a Library.

Command-line Options

To view the list of available command-line options, add --help to the opg4py command:

./bin/opg4py --help

Chapter 12
Interactive Graph Shell CLIs

12-6



To start the PyPGX shell without connecting to the graph server (PGX), use the --no_connect
option as shown:

./bin/opg4py --no_connect

Starting the OPG4Py Shell on Remote Mode

The OPG4Py shell can connect to a graph server (PGX) instance that is running on another
JVM (possibly on a different machine). In order to launch the OPG4Py shell in remote mode,
you must specify the --base_url parameter as shown:

./bin/opg4py --base_url https://<host>:7007 --username <graphuser>

where :

• <host>: is the server host

• <graphuser>: is the database user
You will be prompted for the database password.

Note:

The graph server (PGX), listens on port 7007 by default. If needed, you can configure
the graph server to listen on a different port by changing the port value in the server
configuration file (server.conf). See Configuring the Graph Server (PGX) for details.

When the OPG4Py shell has started, the following command line prompt appears:

Oracle Graph Server Shell 24.3.0
>>>

12.2 Using Autonomous Database Graph Client
Using the AdbGraphClient API, you can access Graph Studio features in Autonomous
Database programmatically using the Oracle Graph Client or through your Java or Python
application.

This API provides the following capabilities:

• Authenticate with Autonomous Database

• Manage the Graph Studio environment

• Execute graph queries and algorithms against the graph server (PGX)

• Execute graph queries directly against Oracle Database

To use the AdbGraphClient API, you must have access to Oracle Graph Client installation. The
API is provided by the Oracle Graph Client library which is a part of the Oracle Graph Server
and Client distribution. See Installing Oracle Graph Client on how to install and get started with
the graph client shell CLIs for Java or Python.

Also, prior to using the Autonomous Database Graph Client, ensure you meet all the
prerequisite requirements explained in Prerequisites for Using Autonomous Database Graph
Client.

Chapter 12
Using Autonomous Database Graph Client

12-7

http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=graph_clients


The following example shows using the AdbGraphClient API to establish a connection to
Graph Studio, start an environment with allocated memory, load a PGQL property graph into
memory, execute PGQL queries and run algorithms against the graph.

Note:

See the Javadoc and Python API Reference for more information on AdbGraphClient
API.

1. Start the interactive graph shell CLI and connect to your Autonomous Database instance
with the AdbGraphClient using one of the following methods:

Configuring the AdbGraphClient using Tenancy Details

• JShell

• Java

• Python

JShell

cd /opt/oracle/graph
./bin/opg4j --no_connect
For an introduction type: /help intro
Oracle Graph Server Shell 24.3.0
opg4j> import oracle.pg.rdbms.*
opg4j> var config = AdbGraphClientConfiguration.builder()
opg4j> config.database("<DB_name>")
opg4j> config.tenancyOcid("<tenancy_OCID>")
opg4j> config.databaseOcid("<database_OCID>")
opg4j> config.username("ADBDEV")
opg4j> config.password("<password_for_ADBDEV>")
opg4j> config.endpoint("https://<hostname-
prefix>.adb.<region>.oraclecloudapps.com/")
opg4j> var client = new AdbGraphClient(config.build())
client ==> oracle.pg.rdbms.AdbGraphClient@7b8d1537

Java

import oracle.pg.rdbms.*;
 
var config = AdbGraphClientConfiguration.builder();
config.tenancyOcid("<tenancy_OCID>");
config.databaseOcid("<database_OCID>");
config.database("<DB_name>");
config.username("ADBDEV");
config.password("<password_for_ADBDEV>");
config.endpoint("https://<hostname-
prefix>.adb.<region>.oraclecloudapps.com/");

Chapter 12
Using Autonomous Database Graph Client

12-8

http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=adb_graph_client_java
http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=adb_graph_client_python


 
var client = new AdbGraphClient(config.build());

Python

cd /opt/oracle/graph 
./bin/opg4py --no_connect
Oracle Graph Server Shell 24.3.0
>>> from opg4py.adb import AdbClient
>>> config = {
...          'tenancy_ocid': '<tenancy_OCID>',
...          'database': '<DB_name>',
...          'database_ocid': '<DB_OCID>',
...          'username': 'ADBDEV',
...          'password': '<password_for_ADBDEV>',
...          'endpoint': 'https://<hostname-
prefix>.adb.<region>.oraclecloudapps.com/'
... }
>>> client = AdbClient(config)

Configuring the AdbGraphClient using JDBC Connection
You can also configure the AdbGraphClient to use a JDBC connection to connect to your
Autonomous Database instance (as shown in the following code). See Connect with JDBC
Thin Driver in Using Oracle Autonomous Database Serverless on how to obtain the JDBC
URL to connect to the Autonomous Database.

However, ensure that you have READ access to the v$pdbs view in your Autonomous
Database instance. By default, the ADMIN user has READ access to the v$pdbs view. For
all other users (non-administrator users), the READ access can be granted by the ADMIN
(GRANT SELECT ON v$pdbs TO <user>).

• JShell

• Java

• Python

JShell

import oracle.pg.rdbms.*
opg4j> var conn = DriverManager.getConnection(<jdbcUrl>, <username>, 
<password>)
opg4j> var config = AdbGraphClientConfiguration.fromConnection(conn, 
<password>)
opg4j> var client = new AdbGraphClient(config)

Chapter 12
Using Autonomous Database Graph Client

12-9

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database/serverless&id=GUID-5ED3C08C-1A84-4E5A-B07A-A5114951AA9E
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database/serverless&id=GUID-5ED3C08C-1A84-4E5A-B07A-A5114951AA9E


Java

import oracle.pg.rdbms.*;
AdbGraphClientConfiguration config = 
AdbGraphClientConfiguration.fromCredentials(<jdbcUrl>, <username>, 
<password>);
AdbGraphClient client = new AdbGraphClient(config);

Python

>>> from opg4py.adb import AdbClient
>>> client = AdbClient.from_connection(<jdbcUrl>, <username>, <password>)

2. Start the PGX server environment with the desired memory as shown in the following
code.

This submits a job in Graph Studio for environment creation. job.get() waits for the
environment to get started. You can always verify if the environment has started
successfully with client.isAttached(). The method returns a boolean true if the
environment is running.
However, you can skip the step of creating an environment, if client.isAttached()
returns true in the first step of the code.

• JShell

• Java

• Python

JShell

opg4j> client.isAttached()
$9 ==> false
opg4j> var job=client.startEnvironment(10)
job ==> oracle.pg.rdbms.Job@117e9a56[Not completed]
opg4j> job.get()
$11 ==> null
opg4j> job.getName()
$11 ==> "Environment Creation - 16 GBs"
opg4j> job.getType()
$12 ==> ENVIRONMENT_CREATION
opg4j> job.getCreatedBy()
$13 ==> "ADBDEV"
opg4j> client.isAttached()
$11 ==> true

Java

 if (!client.isAttached()) {
         var job = client.startEnvironment(10);

Chapter 12
Using Autonomous Database Graph Client

12-10



         job.get();
         System.out.println("job details: name=" + job.getName() + "type= 
" + job.getType() +"created_by= " + job.getCreatedBy());
      }
job details: name=Environment Creation - 16 GBstype= 
ENVIRONMENT_CREATIONcreated_by= ADBDEV

Python

>>> client.is_attached()
False
>>> job = client.start_environment(10)
>>> job.get()
>>> job.get_name()
'Environment Creation - 16 GBs'
>>> job.get_created_by()
'ADBDEV'
>>> client.is_attached()
True

3. Create an instance and a session object as shown:

• JShell

• Java

• Python

JShell

opg4j> var instance = client.getPgxInstance()
instance ==> ServerInstance[embedded=false,baseUrl=https://<hostname-
prefix>.adb.<region>.oraclecloudapps.com/graph/pgx]
opg4j> var session = instance.createSession("AdbGraphSession")
session ==> PgxSession[ID=c403be26-
ad0c-45cf-87b7-1da2a48bda54,source=AdbGraphSession]

Java

ServerInstance instance = client.getPgxInstance();
PgxSession session = instance.createSession("AdbGraphSession");

Python

>>> instance = client.get_pgx_instance()
>>> session = instance.create_session("adb-session")

Chapter 12
Using Autonomous Database Graph Client

12-11



4. Load a PGQL property graph from your Autonomous Database instance into memory.

• JShell

• Java

• Python

JShell

opg4j> var graph = session.readGraphByName("BANK_GRAPH", 
GraphSource.PG_PGQL)
graph ==> PgxGraph[name=BANK_GRAPH,N=1000,E=5001,created=1647800790654]

Java

PgxGraph graph = session.readGraphByName("BANK_GRAPH", 
GraphSource.PG_PGQL);

Python

>>> graph = session.read_graph_by_name("BANK_GRAPH", "pg_pgql")

5. Create an Analyst and execute a Pagerank algorithm on the graph as shown:

• JShell

• Java

• Python

JShell

opg4j> session.createAnalyst().pagerank(graph)
$16 ==> VertexProperty[name=pagerank,type=double,graph=BANK_GRAPH]

Java

session.createAnalyst().pagerank(graph);

Python

>>> session.create_analyst().pagerank(graph)
VertexProperty(name: pagerank, type: double, graph: BANK_GRAPH)

Chapter 12
Using Autonomous Database Graph Client

12-12



6. Execute a PGQL query on the graph and print the result set as shown:

• JShell

• Java

• Python

JShell

opg4j> graph.queryPgql("SELECT a.acct_id AS source, a.pagerank, t.amount, 
b.acct_id AS destination FROM MATCH (a)-[t]->(b) ORDER BY a.pagerank DESC 
LIMIT 3").print()

Java

PgqlResultSet rs = graph.queryPgql("SELECT a.acct_id AS source, 
a.pagerank, t.amount, b.acct_id AS destination FROM MATCH (a)-[t]->(b) 
ORDER BY a.pagerank DESC LIMIT 3");
rs.print();

Python

>>> rs = graph.query_pgql("SELECT a.acct_id AS source, a.pagerank, 
t.amount, b.acct_id AS destination FROM MATCH (a)-[t]->(b) ORDER BY 
a.pagerank DESC LIMIT 3").print()

On execution, the query produces the following output:

+------------------------------------------------------+
| source | pagerank             | amount | destination |
+------------------------------------------------------+
| 387    | 0.007302836252205922 | 1000.0 | 188         |
| 387    | 0.007302836252205922 | 1000.0 | 374         |
| 387    | 0.007302836252205922 | 1000.0 | 577         |
+------------------------------------------------------+

7. Optionally, you can execute a PGQL query directly against the graph in the database as
shown in the following code.

In order to establish a JDBC connection to the database, you must download the wallet
and save it in a secure location. See JDBC Thin Connections with a Wallet on how to
determine the JDBC URL connection string.

• JShell

Chapter 12
Using Autonomous Database Graph Client

12-13

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database/adbsa&id=GUID-BE543CFD-6FB4-4C5B-A2EA-9638EC30900D


• Java

• Python

JShell

opg4j> String jdbcUrl="jdbc:oracle:thin:@<tns_alias>?
TNS_ADMIN=<path_to_wallet>"
opg4j> var conn = 
DriverManager.getConnection(jdbcUrl,"ADBDEV","<password_for_ADBDEV>")
conn ==> oracle.jdbc.driver.T4CConnection@36ee8c7b
opg4j> var pgqlConn = PgqlConnection.getConnection(conn)
pgqlConn ==> oracle.pg.rdbms.pgql.PgqlConnection@5f27d271
opg4j> var pgqlStmt = pgqlConn.createStatement()
pgqlStmt ==> oracle.pg.rdbms.pgql.PgqlExecution@4349f52c
opg4j> pgqlStmt.executeQuery("SELECT a.acct_id AS source, t.amount, 
b.acct_id AS destination FROM MATCH (a)-[t]->(b) ON BANK_GRAPH LIMIT 
3").print()

Java

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlStatement;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pgx.api.*;
import oracle.pg.rdbms.GraphServer;
import oracle.pg.rdbms.pgql.jdbc.PgqlJdbcRdbmsDriver;
….
DriverManager.registerDriver(new PgqlJdbcRdbmsDriver());
String jdbcUrl="jdbc:oracle:thin:@<tns_alias>?TNS_ADMIN=<path_to_wallet>";
Connection conn = 
DriverManager.getConnection(jdbcUrl,"ADBDEV","<password_for_ADBDEV>");
PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
PgqlStatement pgqlStmt = pgqlConn.createStatement();
PgqlResultSet rs = pgqlStmt.executeQuery("SELECT a.acct_id AS source, 
t.amount, b.acct_id AS destination FROM MATCH (a)-[t]->(b) ON BANK_GRAPH 
LIMIT 3");
rs.print();

Python

>>> jdbcUrl = "jdbc:oracle:thin:@<tns_alias>?TNS_ADMIN=<path_to_wallet>"
>>> pgql_conn = 
opg4py.pgql.get_connection("ADBDEV","<password_for_ADBDEV>", jdbcUrl)
>>> pgql_statement = pgql_conn.create_statement()
>>> pgql_statement.execute_query("SELECT a.acct_id AS source, t.amount, 
b.acct_id AS destination FROM MATCH (a)-[t]->(b) ON BANK_GRAPH LIMIT 
3").print()

Chapter 12
Using Autonomous Database Graph Client

12-14



On execution, the query produces the following output:

+-------------------------------+
| SOURCE | AMOUNT | DESTINATION |
+-------------------------------+
| 1000   | 1000   | 921         |
| 1000   | 1000   | 662         |
| 1000   | 1000   | 506         |
+-------------------------------+

8. Close the session after executing all graph queries as shown:

• JShell

• Java

• Python

JShell

opg4j> session.close()

Java

opg4j> session.close();

Python

>>> session.close()

• Prerequisites for Using Autonomous Database Graph Client

• Using the PGX JDBC Driver with the AdbGraphClient API
Starting from Graph Server and Client Release 24.1.0, you can use the PGX JDBC driver
with the AdbGraphClient API to query graphs stored in the memory of the graph server in
Graph Studio on Autonomous Database.

12.2.1 Prerequisites for Using Autonomous Database Graph Client
As a prerequisite requirement to get started with the AdbGraphClient API, you must:

• Provision an Autonomous Database instance in Oracle Autonomous Database.

• Obtain the following information if you are configuring the AdbGraphClient using the
tenancy details. Otherwise, skip this step.

Chapter 12
Using Autonomous Database Graph Client

12-15



Key Description More Information

tenancy
OCID

The Oracle Cloud ID (OCID)
of your tenancy

To determine the OCID for your tenancy, see "Where to
Find your Tenancy's OCID" in: Oracle Cloud Infrastructure
Documentation.

databas
e

Database name of your
Autonomous Database
instance

1. Open the OCI console and click Oracle Database in
the left navigation menu.

2. Click Autonomous Database and navigate to the
Autonomous Databases page.

3. Select the required Autonomous Database under the
Display Name column and navigate to the
Autonomous Database Details page.

4. Note the Database Name under "General Information"
in the Autonomous Database Information tab.

databas
e OCID

The Oracle Cloud ID (OCID)
of your Autonomous
Database

1. Open the OCI console and click Oracle Database in
the left navigation menu.

2. Click Autonomous Database and navigate to the
Autonomous Databases page.

3. Select the required Autonomous Database under the
Display Name column and navigate to the
Autonomous Database Details page.

4. Note the Database OCID under "General Information"
in the Autonomous Database Information tab.

usernam
e

Graph enabled Autonomous
Database username, used
for logging into Graph Studio

See Create a Graph User for more information.

passwor
d

Database password for the
graph user

If the password for a graph user is forgotten, then you can
always reset password for the graph user by logging into
Database Actions as the ADMIN user. See Edit User for
more information.

endpoint Graph Studio endpoint URL 1. Select your Autonomous Database instance and
navigate to the Autonomous Database Details page.

2. Click the Tools tab.

3. Click on Graph Studio.

4. Copy the URL of the new tab that opens the Graph
Studio login screen.

5. Edit the URL to remove the part after
oraclecloudapps.com to obtain the endpoint URL.
For example, the following shows the format of a
sample endpoint URL:

https://
<hostname_prefix>.adb.<region_identifier>.
oraclecloudapps.com

• Access Graph Studio and create a PGQL property graph.

• Download, install and start the Oracle Graph Java or Python client.

Chapter 12
Using Autonomous Database Graph Client

12-16

https://docs.oracle.com/en-us/iaas/Content/General/Concepts/identifiers.htm
https://docs.oracle.com/en-us/iaas/Content/General/Concepts/identifiers.htm
https://docs.oracle.com/en/cloud/paas/autonomous-database/csgru/create-graph-user.html
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/sql-developer-web&id=GUID-856BBD92-DFEC-4C6E-A8EE-54368078F699


12.2.2 Using the PGX JDBC Driver with the AdbGraphClient API
Starting from Graph Server and Client Release 24.1.0, you can use the PGX JDBC driver with
the AdbGraphClient API to query graphs stored in the memory of the graph server in Graph
Studio on Autonomous Database.

To use the PGX JDBC driver to connect to your Autonomous Database instance, note the
following:

• Register the PGX JDBC driver with the DriverManager:

import java.sql.DriverManager;
import oracle.pgx.jdbc.PgxJdbcDriver;
...
DriverManager.registerDriver(new PgxJdbcDriver());

• Use one of the following two ways to establish the connection using the PGX JDBC Driver:

– Using Properties

properties = new Properties();
properties.put("tenancy_ocid", "<tenancy_OCID>");
properties.put("database_ocid", "<database_OCID>");
properties.put("database", "<database_name>");
properties.put("username", "<username>");
properties.put("password", "<password>");
Connection connection = 
DriverManager.getConnection("jdbc:oracle:pgx:https://<hostname-
prefix>.adb.<region>.oraclecloudapps.com", properties);

– Using a Wallet

Connection connection = 
DriverManager.getConnection("jdbc:oracle:pgx:@<db_TNS_name>?
TNS_ADMIN=<path_to_wallet>", "<ADB_username>", "<ADB_password>")

Note that the JDBC URL in the preceding code samples, use jdbc:oracle:pgx: as the
prefix.

Example 12-1    Using the PGX JDBC Driver to run graph queries in Autonomous
Database

The following example establishes a connection using the PGX JDBC driver to connect to an
Autonomous Database instance, starts the compute environment in Graph Studio, loads a
graph into the graph server (PGX), creates a statement, and runs a PGQL query on the graph.

import java.sql.*;
import oracle.pgx.jdbc.*;
import oracle.pg.rdbms.*;
import oracle.pgx.api.*;

public class AdbPgxJdbc {

  public static void main(String[] args) throws Exception {

    DriverManager.registerDriver(new PgxJdbcDriver());

Chapter 12
Using Autonomous Database Graph Client

12-17



    try (Connection conn = 
DriverManager.getConnection("jdbc:oracle:pgx:@<db_TNS_name>?
TNS_ADMIN=<path_to_wallet>","ADB_username","<ADB_password>")) {
      AdbGraphClient client = conn.unwrap(AdbGraphClient.class);
      if (!client.isAttached()) {
        var job = client.startEnvironment(10);
         job.get();
         System.out.println("job details: name=" + job.getName() + "type= " + 
job.getType() +"created_by= " + job.getCreatedBy());
        }
      PgxSession session = conn.unwrap(PgxSession.class);
      PgxGraph graph = session.readGraphByName("BANK_PGQL_GRAPH", 
GraphSource.PG_PGQL);
      Statement stmt = conn.createStatement();
      ResultSet rs = stmt.executeQuery("SELECT * "+
                                         "FROM GRAPH_TABLE ( BANK_PGQL_GRAPH 
"+
                                         "MATCH (a IS ACCOUNTS) -[e IS 
TRANSFERS]-> (b IS ACCOUNTS) "+
                                         "WHERE a.ID = 179 AND b.ID = 688 "+
                                         "COLUMNS (e.AMOUNT AS AMOUNT ))");
      while(rs.next()){
        System.out.println("AMOUNT = " + rs.getLong("AMOUNT"));
      }

    }
  }
}

The resulting output of the preceding code is as shown:

AMOUNT = 7562

Related Topics

• PGX Data Type Compatibility and Casting
You can configure a compatibility mode for the PGX JDBC driver to determine the data
type returned when calling the ResultSet#getObject() method.

• Limitations of the PGX JDBC Driver
Review the limiations of the PGX JDBC driver.

12.5 Additional Client Tools for Querying PGQL Property Graphs
When working with PGQL property graphs in the database, you can use other supported client
tools.

• Using Oracle SQLcl
You can access the graph in the database using SQLcl.

• Using SQL Developer with PGQL Property Graphs
Using SQL Developer 23.1, you can view all the PGQL property graphs existing in your
database schema by expanding PGQL Property Graphs under the Property Graph node
in the Connections navigator.

Chapter 12
Additional Client Tools for Querying PGQL Property Graphs

12-18



12.5.1 Using Oracle SQLcl
You can access the graph in the database using SQLcl.

You can run PGQL queries on the graph in SQLcl with a plug-in that is available with Oracle
Graph Server and Client. See PGQL Plug-in for SQLcl in Oracle SQLcl User’s Guide for more
information.

The example in this section helps you get started on executing PGQL queries on a graph in
SQLcl. As a prerequisite, to perform the steps in the example, you must set up the bank graph
data in your database schema using the sample data provided with the graph server
installation. See Using Sample Data for Graph Analysis for more information.

The following example creates a PGQL property graph using the PGQL CREATE PROPERTY
GRAPH statement, executes PGQL queries against the graph and finally drops the graph using
SQLcl.

1. Start SQLcl with your database schema credentials. In the following command, graphuser
is the database user used to connect to SQLcl.

sql graphuser/<password_for_graphuser>@<tns_alias>

SQLcl: Release 21.2 Production on Sun Jan 30 04:30:09 2022
Copyright (c) 1982, 2022, Oracle.  All rights reserved.
Connected to:
Oracle Database 21c Enterprise Edition Release 21.0.0.0.0 - Production
Version 21.3.0.0.0

2. Enable PGQL mode as shown:

SQL> pgql auto on;

PGQL Auto enabled for schema=[null], graph=[null], execute=[true], 
translate=[false]

Note that no arguments are used in the preceding PGQL command.

3. Create a PGQL property graph on the bank graph data tables.

PGQL> CREATE PROPERTY GRAPH bank_graph
  2          VERTEX TABLES (
  3            bank_accounts
  4              LABEL ACCOUNTS
  5              PROPERTIES (ID, NAME)
  6          )
  7          EDGE TABLES (
  8            bank_txns
  9              SOURCE KEY (from_acct_id) REFERENCES bank_accounts (id)
 10              DESTINATION KEY (to_acct_id) REFERENCES bank_accounts (id)
 11              LABEL TRANSFERS
 12              PROPERTIES (FROM_ACCT_ID, TO_ACCT_ID, AMOUNT, DESCRIPTION)
 13*         ) OPTIONS(PG_PGQL);

Graph created

Chapter 12
Additional Client Tools for Querying PGQL Property Graphs

12-19

http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/sql-developer-command-line/23.1&id=GUID-E0EFA43F-003F-4C8C-8056-54E9A428B8B7


4. Set bank_graph as the default graph using the graph argument when enabling PGQL
mode.

PGQL> pgql auto on graph bank_graph;

PGQL Auto enabled for schema=[null], graph=[BANK_GRAPH], execute=[true], 
translate=[false]

5. Execute PGQL queries against the default graph. For example, the following PGQL query
retrieves the total number of vertices as shown:

PGQL> SELECT COUNT(*) AS num_vertices FROM MATCH(n);

   NUM_VERTICES
_______________
           1000

Note that in the preceding query, the graph name is not specified using the ON clause as
part of the MATCH clause.

6. Reconnect to SQLcl as another schema user.

PGQL> conn system/<password_for_system>@<tns_alias>;
Connected.

7. Enable PGQL mode using the schema argument to set the default schema used for
creating the graph. Also, set bank_graph as the default graph using the graph argument :

PGQL> pgql auto on schema graphuser graph bank_graph;

PGQL Auto enabled for schema=[graphuser], graph=[BANK_GRAPH], 
execute=[true], translate=[false]

8. Execute a PGQL query to retrieve all the edge properties on the graph as shown:

PGQL> SELECT e.* FROM MATCH (n:accounts) -[e:transfers]-> (m:accounts) 
LIMIT 10;

   AMOUNT    DESCRIPTION    FROM_ACCT_ID    TO_ACCT_ID
_________ ______________ _______________ _____________
     1000 transfer                   178           921
     1000 transfer                   178           462
     1000 transfer                   179           688
     1000 transfer                   179           166
     1000 transfer                   179           397
     1000 transfer                   179           384
     1000 transfer                   179           900
     1000 transfer                   180           855
     1000 transfer                   180           984
     1000 transfer                   180           352

10 rows selected.

Chapter 12
Additional Client Tools for Querying PGQL Property Graphs

12-20



Therefore, you can set a default schema and execute PGQL queries against a default
graph in SQLcl.

9. Finally, drop the graph after executing the required graph queries.

PGQL> DROP PROPERTY GRAPH bank_graph;

Graph dropped

Also, see Execute PGQL Queries in SQLcl for more information.

12.5.2 Using SQL Developer with PGQL Property Graphs
Using SQL Developer 23.1, you can view all the PGQL property graphs existing in your
database schema by expanding PGQL Property Graphs under the Property Graph node in
the Connections navigator.

Figure 12-3    PGQL Property Graphs in SQL Developer

The following steps show a few examples for working with PGQL property graphs using SQL
Developer.

1. Right-click the Property Graph node and select Open PGQL Worksheet.

PGQL Worksheet opens in a new tab and it supports the following actions:

• Run Query: To run a single PGQL query

• Run Script: To run multiple PGQL queries

2. Create a PGQL property graph by running a CREATE PROPERTY GRAPH statement in the
PGQL Worksheet. For example:

Chapter 12
Additional Client Tools for Querying PGQL Property Graphs

12-21

https://blogs.oracle.com/oraclespatial/executing-property-graph-pgql-queries-in-sqlcl


Figure 12-4    Create a PGQL property graph

The result of the query execution is displayed in the bottom pane of the Editor. On
successful query execution, you can right click and refresh the PGQL Property Graphs
object to view the newly created graph under PGQL Property Graphs.

3. Click on the newly created graph.

This opens a PGQL Worksheet in a new tab with the following default query:

SELECT e, v, n FROM MATCH (v)-[e]-(n) ON <graph_name> LIMIT 100

4. Run one or more PGQL queries.

For example, the following shows the execution of PGQL INSERT and SELECT queries:

Chapter 12
Additional Client Tools for Querying PGQL Property Graphs

12-22



Figure 12-5    Running Multiple PGQL Queries

You can view the results in the Script Output tab.

5. Delete the PGQL property graph as shown:

Figure 12-6    Dropping a PGQL Property Graph

The graph is dropped.

Chapter 12
Additional Client Tools for Querying PGQL Property Graphs

12-23



13
Property Graph Query Language (PGQL)

PGQL is a SQL-like query language for property graph data structures that consist
of vertices that are connected to other vertices by edges, each of which can have key-value
pairs (properties) associated with them.

The language is based on the concept of graph pattern matching, which allows you to specify
patterns that are matched against vertices and edges in a data graph.

Note:

The graph server (PGX) 24.3.0 supports PGQL 2.0 and earlier versions.

The property graph support provides two ways to execute Property Graph Query Language
(PGQL) queries through Java APIs:

• Use the oracle.pgx.api Java package to query an in-memory snapshot of a graph that
has been loaded into the graph server (PGX), as described in Executing PGQL Queries
Against the Graph Server (PGX).

• Use the oracle.pg.rdbms.pgql Java package to directly query graph data stored in Oracle
Database. See Executing PGQL Queries Against PGQL Property Graphs and Executing
PGQL Queries Against SQL Property Graphs for more information.

For more information about PGQL, see the PGQL Specification.

• Creating a Property Graph Using PGQL

• Pattern Matching with PGQL

• Edge Patterns Have a Direction with PGQL

• Vertex and Edge Labels with PGQL

• Variable-Length Paths with PGQL

• Aggregation and Sorting with PGQL

• Executing PGQL Queries Against PGQL Property Graphs
This topic explains how you can execute PGQL queries directly against PGQL property
graphs on Oracle Database tables.

13.1 Creating a Property Graph Using PGQL
CREATE PROPERTY GRAPH is a PGQL DDL statement to create a PGQL property graph from the
database tables.

The CREATE PROPERTY GRAPH statement starts with the name you give the graph, followed by a
set of vertex tables and edge tables. The graph can have no vertex tables or edge tables (an
empty graph), or vertex tables and no edge tables (a graph with only vertices and no edges),
or both vertex tables and edge tables (a graph with vertices and edges). However, a graph
cannot be specified with only edge tables and no vertex tables.

13-1

https://pgql-lang.org/spec/2.0
https://pgql-lang.org


Optionally, you can also create a PGQL property graph from existing graphs. See Creating a
PGQL Property Graph with the BASE_GRAPHS Clause for more information.

Note:

The following best practices are recommended when creating a PGQL property
graph:

• Ensure that a primary key constraint exist for a vertex or an edge key so that the
graph does not contain duplicate vertex or edge keys.

• Ensure that a foreign key constraint exists between the edge and the referenced
vertex tables so that the graph does not contain edges with missing vertices.

• Run the pg.validate() function after creating the graph to verify that the vertex
and edge table keys are unique and the source and destination of the edges
exist.

pgqlStmt.execute("CALL pg.validate('<graph_name>')")

For example, consider the bank_accounts and bank_txns database tables created using the
sample graph data in opt/oracle/graph/data directory. See Importing Data from CSV Files
for more information.

• BANK_ACCOUNTS is a table with columns id, name. A row is added into this table for
every new account.

• BANK_TXNS is a table with columns txn_id, from_acct_id, to_acct_id, description,
and amount. A row is added into this table for every new transaction from from_acct_id to
to_acct_id.

You can create a PGQL property graph using the database tables as shown:

CREATE PROPERTY GRAPH bank_graph
     VERTEX TABLES(
       bank_accounts AS accounts
         KEY(id)
         LABEL accounts
         PROPERTIES (id, name)
     )
     EDGE TABLES(
       bank_txns AS transfers
         KEY (txn_id)
         SOURCE KEY (from_acct_id) REFERENCES accounts (id)
         DESTINATION KEY (to_acct_id) REFERENCES accounts (id)
         PROPERTIES (description, amount)
     ) OPTIONS (PG_PGQL)

The following graph concepts are explained by mapping the database tables to the graph and
using the preceding PGQL DDL statement:

• Vertex tables: A table that contains data entities is a vertex table (for example,
bank_accounts).

– Each row in the vertex table is a vertex.

Chapter 13
Creating a Property Graph Using PGQL

13-2



– The columns in the vertex table are properties of the vertex.

– The name of the vertex table is the default label for this set of vertices. Alternatively,
you can specify a label name as part of the CREATE PROPERTY GRAPH statement.

• Edge tables: An edge table can be any table that links two vertex tables, or a table that
has data that indicates an action from a source entity to a target entity. For example,
transfer of money from FROM_ACCOUNT_ID to TO_ACCOUNT_ID is a natural edge.

– Foreign key relationships can give guidance on what links are relevant in your data.
CREATE PROPERTY GRAPH will default to using foreign key relationships to identify
edges.

– Some of the properties of an edge table can be the properties of the edge. For
example, an edge from from_acct_id to to_acct_id can have properties description
and amount.

– The name of an edge table is the default label for the set of edges. Alternatively, you
can specify a label name as part of the CREATE PROPERTY GRAPH statement.

• Keys:

– Keys in a vertex table: The key of a vertex table identifies a unique vertex in the
graph. The key can be specified in the CREATE PROPERTY GRAPH statement;
otherwise, it defaults to the primary key of the table. If there are duplicate rows in the
table, the CREATE PROPERTY GRAPH statement will return an error.

– Key in an edge table: The key of an edge table uniquely identifies an edge in the
graph. The KEY clause when specifying source and destination vertices uniquely
identifies the source and destination vertex keys.

• Table aliases: Vertex and edge tables must have unique names. If you need to identify
multiple vertex tables from the same relational table, or multiple edge tables from the same
relational table, you must use aliases. For example, you can create two vertex tables
bank_accounts and accounts from one table bank_accounts, as shown:

CREATE PROPERTY GRAPH bank_transfers
     VERTEX TABLES (bank_accounts KEY(id)
                    bank_accounts AS accounts KEY(id))

In case any of your vertex and edge table share the same name, then you must again use
a table alias. In the following example, table alias is used for the edge table,
DEPARTMENTS, as there is a vertex table referenced with the same name:

CREATE PROPERTY GRAPH hr
VERTEX TABLES (
  employees KEY(employee_id)
    PROPERTIES ARE ALL COLUMNS,
  departments KEY(department_id)
    PROPERTIES ARE ALL COLUMNS
 )
EDGE TABLES (   
  departments AS managed_by
    SOURCE KEY ( department_id ) REFERENCES departments ( department_id )
    DESTINATION employees
    PROPERTIES ARE ALL COLUMNS
 )OPTIONS (PG_PGQL)

Chapter 13
Creating a Property Graph Using PGQL

13-3



• Properties: The vertex and edge properties of a graph are derived from the columns of the
vertex and edge tables respectively and by default have the same name as the underlying
table columns. However, you can choose a different property name for each column. This
helps to avoid conflicts when two tables have the same column name but with different
data types.
In the following example, the vertex properties id and name are renamed to acct_no and
acct_name respectively:

CREATE PROPERTY GRAPH bank_transfers
VERTEX TABLES (
  bank_accounts AS accounts
    LABEL accounts  
    PROPERTIES (id AS acct_no, name AS acct_name)
)

• REFERENCES clause: This connects the source and destination vertices of an edge to
the corresponding vertex tables.

For more details on the CREATE PROPERTY GRAPH statement, see the PGQL Specification.

Refer to the following table for creating a property graph:

Table 13-1    CREATE PROPERTY GRAPH Statement Support

Method More Information

Create a property graph in the graph server (PGX)
using the oracle.pgx.api Java package

Java APIs for Executing CREATE PROPERTY
GRAPH Statements

Create a property graph in the graph server (PGX)
using the pypgx.api Python package

Python APIs for Executing CREATE PROPERTY
GRAPH Statements

Create a PGQL property graph on Oracle
Database tables

Creating a PGQL Property Graph

• Creating a PGQL Property Graph with the BASE_GRAPHS Clause
You can create a PGQL property graph by providing a list of existing PGQL property
graphs.

• Creating a PGQL Property Graph with Arbitrary Property Expressions
You can create a PGQL property graph with vertex and edge properties mapped to
arbitrary property expressions.

13.1.1 Creating a PGQL Property Graph with the BASE_GRAPHS Clause
You can create a PGQL property graph by providing a list of existing PGQL property graphs.

You can specify the BASE GRAPHS clause in the CREATE PROPERTY GRAPH DDL statement for
specifying one or more existing PGQL property graphs from which you wish to create the new
PGQL property graph. It is allowed to specify the BASE GRAPHS clause without specifying the
VERTEX TABLES and EDGE TABLES clauses.

The syntax of the BASE GRAPHS clause in the CREATE PROPERTY GRAPH statement is as shown:

CreatePropertyGraph   ::= 'CREATE' 'PROPERTY' 'GRAPH' GraphName
                           BaseGraphs?
                           VertexTables?
                           EdgeTables?
  

Chapter 13
Creating a Property Graph Using PGQL

13-4

https://pgql-lang.org/spec/2.0/#creating-a-property-graph


BaseGraphs            ::= 'BASE' 'GRAPHS' '(' BaseGraph ( ',' BaseGraph )* ')'
  
BaseGraph             ::= SchemaQualifiedName
  
ElementTablesClause   ::=   AllElementTables
                          | ElementTablesList
  
AllElementTables      ::= 'ALL' 'ELEMENT' 'TABLES' ExceptElementTables?
  
ExceptElementTables   ::= 'EXCEPT' '(' ElementTableReference ( ',' 
ElementTableReference )* ')'
  
ElementTablesList     ::= '(' ElementTable ( ',' ElementTable )* ')'
  
ElementTable          ::= ElementTableReference TableAlias?
  
ElementTableReference ::= Identifier

The BASE GRAPHS clause option allows you to duplicate a graph using a different name.

CREATE PROPERTY GRAPH <new_graph>
  BASE GRAPHS (<old_graph>)
  OPTIONS ( PG_PGQL )

Also, note that once the new_graph is created, it does not have any dependency on old_graph.
This implies that updating or deleting the old_graph has no impact on the new_graph.

Consider the following example schema:

Figure 13-1    Example Schema

Chapter 13
Creating a Property Graph Using PGQL

13-5



Assume that the following two graphs, social_network and bank_transactions, are created
from the preceding schema:

Figure 13-2    Graphs Created from the Example Schema

Using the BASE GRAPHS clause, you can then create a new PGQL property graph by
establishing a relationship between both the preceding graphs as shown:

Figure 13-3    Financial_Transactions Graph

To obtain this new graph based on the social_network and bank_transactions graphs:

1. Specify the names of the two graphs, social_network and bank_transactions, in the
BASE GRAPHS clause. If a base graph does not exist in the current schema, then the user
must specify the schema name.

2. Eliminate the Knows edge in the social_network graph. This can be achieved by using the
ALL ELEMENT TABLES EXCEPT clause and specifying the table_name of that edge.
Alternatively, you can use the ELEMENT TABLES clause and specify only the two tables,
Persons and Companies.

3. Create a new edge between the Accounts vertex in the bank_transactions graph and the
Persons vertex in the social_network graph.

4. Create a new edge between the Accounts vertex in the bank_transactions graph and the
Companies vertex in the social_network graph.

Chapter 13
Creating a Property Graph Using PGQL

13-6



The optimized CREATE PROPERTY GRAPH statement with the BASE GRAPHS clause to create the
new PGQL property graph is as shown:

CREATE PROPERTY GRAPH financial_transactions
  BASE GRAPHS(
    bank_transactions,
    social_network ALL ELEMENT TABLES EXCEPT ( knows )
  )
  EDGE TABLES(
    Accounts AS PersonOwner
      SOURCE KEY ( "number" ) REFERENCES Accounts ( "number" )
      DESTINATION Persons
      LABEL owner NO PROPERTIES,
    Accounts AS CompanyOwner
      SOURCE KEY ( "number" ) REFERENCES Accounts ( "number" )
      DESTINATION Companies
      LABEL owner NO PROPERTIES
  ) OPTIONS ( PG_PGQL )

13.1.2 Creating a PGQL Property Graph with Arbitrary Property Expressions
You can create a PGQL property graph with vertex and edge properties mapped to arbitrary
property expressions.

For instance, consider the following example data. The table contains emp_dtls as a JSON
column.

CREATE TABLE emp_data (
  emp_id NUMBER GENERATED ALWAYS AS IDENTITY (START WITH 1 INCREMENT BY 1),
  emp_dtls JSON,
  CONSTRAINT emp_pk PRIMARY KEY (emp_id));
  
INSERT INTO emp_data (emp_dtls)
       VALUES ('{"name":"John","department":"IT","role":"Software 
Developer"}');

INSERT INTO emp_data (emp_dtls)
       VALUES ('{"name":"Mary","department":"HR","role":"HR Manager"}');

INSERT INTO emp_data (emp_dtls)
       VALUES ('{"name":"Bob","department":"IT","role":"Technical 
Consultant"}');

INSERT INTO emp_data (emp_dtls)
       VALUES ('{"name":"Alice","department":"HR","role":"HR Assistant"}');

You can then create a PGQL property graph with vertex and edge properties mapped to JSON
data using the JSON_VALUE function.

CREATE PROPERTY GRAPH g
VERTEX TABLES (
  emp_data PROPERTIES (
           JSON_VALUE(emp_dtls, '$.name') AS name,
           JSON_VALUE(emp_dtls, '$.department') AS department,

Chapter 13
Creating a Property Graph Using PGQL

13-7



           JSON_VALUE(emp_dtls, '$.role') AS role)
) OPTIONS(PG_PGQL)

Finally, you can query the vertex and edge properties of the graph as shown:

SELECT *
FROM GRAPH_TABLE ( g
  MATCH (n IS emp_data)
  COLUMNS (n.name, n.department, n.role) )

The query produces the following output:

+-------------------------------------------+
| NAME  | DEPARTMENT | ROLE                 |
+-------------------------------------------+
| John  | IT         | Software Developer   |
| Mary  | HR         | HR Manager           |
| Bob   | IT         | Technical Consultant |
| Alice | HR         | HR Assistant         |
+-------------------------------------------+

13.2 Pattern Matching with PGQL
Pattern matching is done by specifying one or more path patterns in the MATCH clause. A
single path pattern matches a linear path of vertices and edges, while more complex patterns
can be matched by combining multiple path patterns, separated by comma. Value expressions
(similar to their SQL equivalents) are specified in the WHERE clause and let you filter out
matches, typically by specifying constraints on the properties of the vertices and edges

For example, assume a graph of TCP/IP connections on a computer network, and you want to
detect cases where someone logged into one machine, from there into another, and from there
into yet another. You would query for that pattern like this:

SELECT id(host1) AS id1, id(host2) AS id2, id(host3) AS id3         /* choose 
what to return */
FROM MATCH
    (host1) -[connection1]-> (host2) -[connection2]-> (host3)       /* single 
linear path pattern to match */
WHERE
    connection1.toPort = 22 AND connection1.opened = true AND
    connection2.toPort = 22 AND connection2.opened = true AND
    connection1.bytes > 300 AND                                     /* 
meaningful amount of data was exchanged */
    connection2.bytes > 300 AND
    connection1.start < connection2.start AND                       /* second 
connection within time-frame of first */
    connection2.start + connection2.duration < connection1.start + 
connection1.duration
GROUP BY id1, id2, id3                                              /* 
aggregate multiple matching connections */ 

For more examples of pattern matching, see the Writing simple queries section in the PGQL
specification.

Chapter 13
Pattern Matching with PGQL

13-8

https://pgql-lang.org/spec/2.0/#writing-simple-queries


13.3 Edge Patterns Have a Direction with PGQL
An edge pattern has a direction, as edges in graphs do. Thus, (a) <-[]- (b) specifies a case
where b has an edge pointing at a, whereas (a) -[]-> (b) looks for an edge in the opposite
direction.

The following example finds common friends of April and Chris who are older than both of
them.

SELECT friend.name, friend.dob
FROM MATCH                  /* note the arrow directions below */
  (p1:person) -[:likes]-> (friend) <-[:likes]- (p2:person)
WHERE
  p1.name = 'April' AND p2.name ='Chris' AND
  friend.dob > p1.dob AND friend.dob > p2.dob
ORDER BY friend.dob DESC 

For more examples of edge patterns, see the Edge Patterns section in the PGQL specification.

13.4 Vertex and Edge Labels with PGQL
Labels are a way of attaching type information to edges and nodes in a graph, and can be
used in constraints in graphs where not all nodes represent the same thing. For example:

SELECT p.name
FROM MATCH (p:person) -[e1:likes]-> (m1:movie),
     MATCH (p) -[e2:likes]-> (m2:movie)
WHERE m1.title = 'Star Wars'
  AND m2.title = 'Avatar'

The example queries a graph which contains a set of vertices with the label person, a set of
vertices with the label movie, and a set of edges with the label likes. A label expression can
start with either a colon (:) or the keyword IS followed by one or more labels. If more than one
label is used, then the labels are separated by a vertical bar (|).

The following query shows the preceding example query with the keyword IS for the label
expression:

SELECT p.name
FROM MATCH (p IS person) -[e1 IS likes]-> (m1 IS movie),
     MATCH (p IS person) -[e2 IS likes]-> (m2 IS movie)
WHERE m1.title = 'Star Wars'
  AND m2.title = 'Avatar'

See Also:

Label Expression section in the PGQL specification

Chapter 13
Edge Patterns Have a Direction with PGQL

13-9

https://pgql-lang.org/spec/2.0/#edge-patterns
https://pgql-lang.org/spec/2.0/#label-expression


13.5 Variable-Length Paths with PGQL
Variable-length path patterns have a quantifier like * to match a variable number of vertices and
edges. Using a PATH macro, you can specify a named path pattern at the start of a query that
can be embedded into the MATCH clause any number of times, by referencing its name. The
following example finds all of the common ancestors of Mario and Luigi.

PATH has_parent AS () -[:has_father|has_mother]-> ()
SELECT ancestor.name
FROM MATCH (p1:Person) -/:has_parent*/-> (ancestor:Person)
   , MATCH (p2:Person) -/:has_parent*/-> (ancestor)
WHERE
  p1.name = 'Mario' AND
  p2.name = 'Luigi'

The preceding path specification also shows the use of anonymous constraints, because there
is no need to define names for intermediate edges or nodes that will not be used in additional
constraints or query results. Anonymous elements can have constraints, such as
[:has_father|has_mother] -- the edge does not get a variable name (because it will not be
referenced elsewhere), but it is constrained.

For more examples of variable-length path pattern matching, see the Variable-Length Paths
section in the PGQL specification.

13.6 Aggregation and Sorting with PGQL
Like SQL, PGQL has support for the following:

• GROUP BY to create groups of solutions

• MIN, MAX, SUM, and AVG aggregations

• ORDER BY to sort results

And for many other familiar SQL constructs.

See Also:

• See Grouping and Aggregation for more information on GROUP BY
• See Sorting and Row Limiting for more information on ORDER BY

13.7 Executing PGQL Queries Against PGQL Property Graphs
This topic explains how you can execute PGQL queries directly against PGQL property graphs
on Oracle Database tables.

The PGQL query execution flow is shown in the following figure.

Chapter 13
Variable-Length Paths with PGQL

13-10

https://pgql-lang.org/spec/2.0/#variable-length-paths
http://pgql-lang.org/spec/2.0/#grouping-and-aggregation
https://pgql-lang.org/spec/2.0/#sorting-and-row-limiting


Figure 13-4    PGQL on PGQL Property Graphs in Oracle Database

The basic execution flow is:

1. The PGQL query is submitted to PGQL on RDBMS through a Java API.

2. The PGQL query is translated into SQL statements using the internal metadata tables for
PGQL property graphs.

3. The translated SQL is submitted to Oracle Database by JDBC.

4. The SQL result set is wrapped as a PGQL result set and returned to the caller.

• Supported PGQL Features and Limitations for PGQL Property Graphs
Learn about the supported PGQL features and limitations for PGQL property graphs.

• SQL Translation for a PGQL Query
You can obtain the SQL translation for a PGQL query through the translateQuery() and
getSqlTranslation() methods in PgqlStatement and PgqlPreparedStatement.

• Performance Considerations for PGQL Queries

• Using the Java and Python APIs to Run PGQL Queries

13.7.1 Supported PGQL Features and Limitations for PGQL Property
Graphs

Learn about the supported PGQL features and limitations for PGQL property graphs.

The following table describes the complete list of supported and unsupported PGQL features
for PGQL property graphs:

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13-11



Table 13-2    Supported PGQL Functionalities and Limitations for PGQL Property Graphs

Feature PGQL on PGQL Property Graphs

CREATE PROPERTY GRAPH Supported

DROP PROPERTY GRAPH Supported

Fixed-length pattern matching Supported

Variable-length pattern matching goals Supported:
• Reachability
• Path search prefixes:

– ANY
– ANY SHORTEST
– SHORTEST k
– ALL

• Path modes:
– WALK
– TRAIL
– SIMPLE
– ACYCLIC

Limitations:

• Path search prefixes:
– ALL SHORTEST
– ANY CHEAPEST
– CHEAPEST k

Variable-length pattern matching
quantifiers

Supported:
• *
• +
• ?
• { n }
• { n, }
• { n, m }
• { , m }

Variable-length path unnesting Supported:
• ONE ROW PER STEP

Limitation: Quantifier * not supported
Not supported:

• ONE ROW PER VERTEX

GROUP BY Supported

HAVING Supported

Aggregations Supported:
• COUNT
• MIN, MAX, AVG, SUM
• LISTAGG
• JSON_ARRAYAGG
Limitations:

• ARRAY_AGG
DISTINCT
• SELECT DISTINCT
• Aggregation with DISTINCT (such

as, COUNT(DISTINCT e.prop))

Supported

SELECT v.* Supported

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13-12



Table 13-2    (Cont.) Supported PGQL Functionalities and Limitations for PGQL Property
Graphs

Feature PGQL on PGQL Property Graphs

ORDER BY (+ASC/DESC), LIMIT,
OFFSET

Supported

Data Types All available Oracle RDBMS data types supported

JSON Supported:
• JSON storage:

– JSON strings (VARCHAR2)

– JSON objects
• JSON functions:

Any JSON function call that follows the syntax,
json_function_name(arg1, arg2,…). For example:

json_value(department_data, '$.department')
Limitations:
• Simple Dot Notation
• Any optional clause in a JSON function call (such as

RETURNING, ERROR, and so on) is not supported. For
example:
json_value(department_data,
'$.employees[1].hireDate' RETURNING DATE)

Operators Supported:
• Relational: +, -, *, /, %, - (unary minus)

• Arithmetic: =, <>, <, >, <=, >=
• Logical: AND, OR, NOT
• String: || (concat)

Functions and predicates Supported are all available functions in the Oracle RDBMS
that take the form function_name(arg1, arg2, ...) with
optional schema and package qualifiers.

Supported PGQL functions/predicates:

• IS NULL, IS NOT NULL
• JAVA_REGEXP_LIKE (based on CONTAINS)

• LOWER, UPPER
• SUBSTRING
• ABS, CEIL/CEILING, FLOOR, ROUND
• EXTRACT
• ID, VERTEX_ID, EDGE_ID
• LABEL, IS [NOT] LABELED
• ALL_DIFFERENT
• CAST
• CASE
• IN and NOT IN
• IS [NOT] SOURCE [OF], IS [NOT] DESTINATION

[OF] (Only supported with Oracle Database 23ai)

• VERTEX_EQUAL, EDGE_EQUAL
Limitations:

• LABELS
• IN_DEGREE, OUT_DEGREE

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13-13



Table 13-2    (Cont.) Supported PGQL Functionalities and Limitations for PGQL Property
Graphs

Feature PGQL on PGQL Property Graphs

User-defined functions Supported:
• PL/SQL functions
• Functions created via the Oracle Database Multilingual

Engine (MLE)

Subqueries:
• Scalar subqueries
• EXISTS and NOT EXISTS

subqueries
• LATERAL subquery

Supported:
• EXISTS and NOT EXISTS subqueries

• Scalar subqueries
• LATERAL subquery

GRAPH_TABLE operator Supported
Extension:

• BASE GRAPHS clause in CREATE PROPERTY GRAPH for
creating graphs based on metadata of other graphs

INSERT/UPDATE/DELETE Supported for Oracle Database 19c and later

INTERVAL literals and operations Not supported

• Additional Information on Supported PGQL Features with Examples

13.7.1.1 Additional Information on Supported PGQL Features with Examples
The following PGQL features are supported in PGQL property graphs:

• Recursive queries are supported for the following variable-length path finding goals:

– Reachability

– ANY

– ANY SHORTEST

– TOP k SHORTEST

• Recursive queries are supported for the following horizontal aggregations:

– LISTAGG

SELECT LISTAGG(src.first_name || ' ' || src.last_name, ',')
FROM MATCH TOP 2 SHORTEST ( (n:Person) ((src)-[e:knows]->)* (m:Person) )
WHERE n.id = 1234

– SUM

SELECT SUM(e.weight + 3)
FROM MATCH TOP 2 SHORTEST ( (n:Person) -[e:knows]->* (m:Person) )
WHERE n.id = 1234

– COUNT

SELECT COUNT(e)
FROM MATCH TOP 2 SHORTEST ( (n:Person) -[e:knows]->* (m:Person) )
WHERE n.id = 1234

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13-14



– AVG

SELECT AVG(dst.age)
FROM MATCH TOP 2 SHORTEST ( (n:Person) (-[e:knows]->(dst))* (m:Person) )
WHERE n.id = 1234

– MIN (Only for property value or CAST expressions)

SELECT MIN(CAST(dst.age + 5 AS INTEGER))
FROM MATCH TOP 2 SHORTEST ( (n:Person) (-[e:knows]->(dst))* (m:Person) )
WHERE n.id = 1234

– MAX (Only for property value or CAST expressions)

SELECT MAX(dst.birthday)
FROM MATCH TOP 2 SHORTEST ( (n:Person) (-[e:knows]->(dst))* (m:Person) )
WHERE n.id = 1234

• The following quantifiers are supported in recursive queries:

Table 13-3    Supported Quantifiers in PGQL SELECT Queries

Syntax Description

* zero or more

+ one or more

? zero or one

{n} exactly n

{n,} n or more

{n,m} between n and m (inclusive)

{,m} between zero and m (inclusive)

• Data type casting with precision and scale is supported:

SELECT CAST(v.id AS VARCHAR2(10)) || '→' || CAST(w.id AS VARCHAR2(10)) AS 
friendOf
FROM MATCH (v) -[:friendOf]->(w)

SELECT CAST(e.mval AS NUMBER(5,2)) AS mval
FROM MATCH () -[e:knows]->()
WHERE e.mval = '342.5'

• Both built-in Oracle Database functions and user defined functions (UDFs) are supported.
For example:

– Assuming a table has a JSON column with values such as, {"name":"John", "age":
43}:

SELECT JSON_VALUE(p.attributes, '$.name') AS name
FROM MATCH (p:Person)
WHERE JSON_VALUE(p.attributes, '$.age') > 35

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13-15



– Assuming an Oracle Text index exists on a text column in a table:

SELECT n.text
FROM MATCH (n)
WHERE CONTAINS(n.text, 'cat', 1) > 0

– Assuming a UDF updated_id is registered with the graph server (PGX):

SELECT my.updated_id(n.ID) FROM MATCH(n) LIMIT 10

• Selecting all properties of vertices or edges is supported through SELECT v.* clause,
where v is the variable whose properties are selected. The following example retrieves all
the edge properties of a graph:

SELECT label(e), e.* FROM MATCH (n)-[e]->(m) ON bank_graph LIMIT 3

On execution, the preceding query retrieves all the properties that are bound to the
variable e as shown:

+--------------------------------------------------------------+
| label(e)  | AMOUNT | DESCRIPTION | FROM_ACCT_ID | TO_ACCT_ID |
+--------------------------------------------------------------+
| TRANSFERS | 1000   | transfer    | 178          | 921        |
| TRANSFERS | 1000   | transfer    | 178          | 462        |
| TRANSFERS | 1000   | transfer    | 179          | 688        |
+--------------------------------------------------------------+

A PREFIX can be specified to avoid duplicate column names in cases where you select all
properties using multiple variables. For example:

SELECT n.* PREFIX 'n_', e.* PREFIX 'e_', m.* PREFIX 'm_' 
FROM MATCH (n:Accounts) -[e:transfers]-> (m:Accounts) 
ON bank_graph LIMIT 3

The query output is as follows:

+--------------------------------------------------------------------------
------------------+
| n_ID | n_NAME  | e_AMOUNT | e_DESCRIPTION | e_FROM_ACCT_ID | 
e_TO_ACCT_ID | m_ID | m_NAME  |
+--------------------------------------------------------------------------
------------------+
| 178  | Account | 1000     | transfer      | 178            | 
921          | 921  | Account |
| 178  | Account | 1000     | transfer      | 178            | 
462          | 462  | Account |
| 179  | Account | 1000     | transfer      | 179            | 
688          | 688  | Account |
+--------------------------------------------------------------------------
------------------+

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13-16



Label expressions can be used such that only properties that belong to the specified vertex
or edge labels are selected:

SELECT LABEL(n), n.* FROM MATCH (n:Accounts) ON bank_graph LIMIT 3

The preceding query output is as shown:

+-----------------------+
| LABEL(n) | ID | NAME  |
+-----------------------+
| ACCOUNTS | 1  | User1 |
| ACCOUNTS | 2  | User2 |
| ACCOUNTS | 3  | User3 |
+-----------------------+

• Support for ALL path finding goal to return all the paths between a pair of vertices.
However, to avoid endless cycling, only the following quantifiers are supported:

– ?

– {n}

– {n.m}

– {,m}

For example, the following PGQL query finds all the transaction paths from account 284 to
account 616 :

SELECT LISTAGG(e.amount, ' + ') || ' = ', SUM(e.amount) AS total_amount
FROM MATCH ALL (a:Accounts) -[e:Transfers]->{1,4}(b:Accounts)
WHERE a.id = 284 AND b.id = 616
ORDER BY total_amount

On execution, the query produces the following result:

+--------------------------------------------------+
| LISTAGG(e.amount, ' + ') || ' = ' | TOTAL_AMOUNT |
+--------------------------------------------------+
| 1000 + 1000 + 1000 =              | 3000         |
| 1000 + 1500 + 1000 =              | 3500         |
| 1000 + 1000 + 1000 + 1000 =       | 4000         |
+--------------------------------------------------+
$16 ==> oracle.pg.rdbms.pgql.pgview.PgViewResultSet@4f38acf

• Scalar subqueries which return exactly one column and one row is supported.
For example:

SELECT p.name AS name , (
  SELECT SUM(t.amount)      
  FROM MATCH (a) <-[t:transaction]- (:Account)  
) AS sum_incoming , (
  SELECT SUM(t.amount)      
  FROM MATCH (a) -[t:transaction]-> (:Account)  
) AS sum_outgoing , (
  SELECT COUNT(DISTINCT p2)      
  FROM MATCH (a) -[t:transaction]- (:Account) -[:owner]-> (p2:Person)    

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13-17



  WHERE p2 <> p  
) AS num_persons_transacted_with , (
  SELECT COUNT(DISTINCT c)      
  FROM MATCH (a) -[t:transaction]- (:Account) -[:owner]-> (c:Company)  
) AS num_companies_transacted_with   
FROM MATCH (p:Person) <-[:owner]- (a:Account)
ORDER BY sum_outgoing + sum_incoming DESC

• EXISTS and NOT EXISTS subqueries are supported. Such queries yield TRUE or FALSE
depending on whether the query produces at least one results given the bindings of the
outer query.
For example:

SELECT fof.name, COUNT(friend) AS num_common_friends 
FROM MATCH (p:Person) -[:knows]-> (friend:Person) -[:knows]-> (fof:Person)
WHERE NOT EXISTS (   
  SELECT * FROM MATCH (p) -[:knows]-> (fof) 
)

• PGQL LATERAL subqueries are supported. For example:

SELECT recipient, COUNT(*) AS num_large_transactions
FROM LATERAL ( SELECT m.id AS recipient
               FROM MATCH (n IS accounts) -[e IS transfers]-> (m IS 
accounts)
               WHERE n.id = 772
               ORDER BY e.amount DESC )
GROUP BY recipient
ORDER BY num_large_transactions DESC

• PGQL GRAPH_TABLE operator is supported. For example:

SELECT * FROM GRAPH_TABLE ( bank_graph
  MATCH (a IS accounts) -[e IS transfers]-> (b IS accounts)
  COLUMNS ( a.id as from_ac, e.amount as amount, b.id as to_ac  )
) FETCH FIRST FIVE ROWS ONLY

• The source (IS [NOT] SOURCE OF) and destination (IS [NOT] DESTINATION OF) predicates
to verify if a vertex is a source or destination of an edge are supported. This is useful when
an edge is matched through an any directed edge pattern (-[e]-). Note that this PGQL
feature is supported only in Oracle Database 23ai. For example:

SELECT e.amount, CASE WHEN n IS SOURCE OF e THEN 'Outgoing transaction' 
ELSE 'Incoming transaction' END AS type
FROM MATCH (n:Accounts) -[e:transfers]- (m:Accounts)
WHERE n.id = 284
ORDER BY type, e.amount

The preceding query produces the following result:

+-------------------------------+
| AMOUNT | TYPE                 |
+-------------------------------+
| 1000   | Incoming transaction |

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13-18



| 1200   | Outgoing transaction |
| 1300   | Outgoing transaction |
+-------------------------------+

• JSON_ARRAYAGG function (see JSON_ARRAYAGG in Oracle Database SQL Language
Reference) to aggregate values into a JSON array is supported.

SELECT JSON_ARRAY_AGG(n.id) AS txn_from
FROM MATCH (n:Accounts) -[e:transfers]- (m:Accounts)
WHERE m.id = 616

On execution, the query produces the following result:

+-------------------------------------------+
| TXN_FROM                                  |
+-------------------------------------------+
| [202,582,650,108,744,756,801,674,710,764] |
+-------------------------------------------+

• Built-in graph validation function pg.validate() to check if vertex and edge keys are
unique, and if the sources and destinations of edges exist.

pgqlStmt.execute("CALL pg.validate('BANK_TXN_GRAPH')")
$1 ==> false

Exceptions are raised for invalid keys or edges having missing vertices as shown:

pgqlStmt.execute("CALL pg.validate('COUNTRIES')")
opg4j> pgqlStmt.execute("CALL pg.validate('COUNTRIES')")
|  Exception oracle.pg.rdbms.pgql.PgqlToSqlException: Invalid vertex key 
60 for edge NO in edge table CTY_REG with destination key column(s) 
"REGION_ID" referencing REGIONS ( "REGION_ID" )

• Unnesting of paths using the ONE ROW PER STEP clause is supported in the PGQL
GRAPH_TABLE operator query.

SELECT *
FROM GRAPH_TABLE ( financial_transactions
       MATCH
         (a IS account) -[IS transaction]->+ (a) 
       KEEP SHORTEST 5 SIMPLE PATHS
       WHERE a.number = 10039
       ONE ROW PER STEP ( v1, e, v2 )  
       COLUMNS( MATCHNUM() AS matchnum,
                ELEMENT_NUMBER(e) AS elemnum,
                v1.number AS account1,
                v2.number AS account2, e.amount))
ORDER BY matchnum, elemnum

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13-19



As seen in the preceding example, the ONE ROW PER STEP clause declares an iterator
vertex variable, an iterator edge variable, and another iterator vertex variable. The query
produces one row per step (a step is a vertex-edge-vertex triple) as shown:

+---------------------------------------------------+
| matchnum | elemnum | account1 | account2 | amount |
+---------------------------------------------------+
| 0        | 2       | 10039    | 8021     | 1000.0 |
| 0        | 4       | 8021     | 1001     | 1500.3 |
| 0        | 6       | 1001     | 2090     | 9999.5 |
| 0        | 8       | 2090     | 10039    | 9900.0 |
| 1        | 2       | 10039    | 8021     | 1000.0 |
| 1        | 4       | 8021     | 1001     | 3000.7 |
| 1        | 6       | 1001     | 2090     | 9999.5 |
| 1        | 8       | 2090     | 10039    | 9900.0 |
+---------------------------------------------------+

The preceding output shows two paths, each having 4 edges.

The following are a few PGQL features which are not supported:

• The following PGQL SELECT features are not supported:

– Use of bind variables in path expressions.
If you attempt to use a bind variable, it will result in an error as shown:

opg4j> String s = "SELECT id(a) FROM MATCH ANY SHORTEST (a) -[e]->* (b) 
WHERE id(a) = ?";
s ==> "SELECT id(a) FROM MATCH ANY SHORTEST (a) -[e]->* (b) WHERE id(a) 
= ?"
 
opg4j> PgqlPreparedStatement ps = pgqlConn.prepareStatement(s);
ps ==> oracle.pg.rdbms.pgql.PgqlExecution@7806db3f
 
opg4j> ps.setString(1, "PERSON(3)");
 
opg4j> ps.executeQuery();
|  Exception java.lang.UnsupportedOperationException: Use of bind 
variables for path queries is not supported

– in_degree and out_degree functions.

Note:

• See Supported PGQL Features and Limitations for PGQL Property Graphs for a
complete list of supported and unsupported PGQL features for PGQL property
graphs.

• See Performance Considerations for PGQL Queries for details on recommended
practices to enhance query performance for recursive queries.

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13-20



13.7.2 SQL Translation for a PGQL Query
You can obtain the SQL translation for a PGQL query through the translateQuery() and
getSqlTranslation() methods in PgqlStatement and PgqlPreparedStatement.

Using the raw SQL for a PGQL query you can:

• Run the SQL directly against the database with other SQL-based tools or interfaces (for
example, SQL*Plus or SQL Developer).

• Customize and tune the generated SQL to optimize performance or to satisfy a particular
requirement of your application.

• Build a larger SQL query that joins a PGQL subquery with other data stored in Oracle
Database (such as relational tables, spatial data, and JSON data).

Several options are available to influence PGQL query translation and execution. The following
are the main ways to set query options:

• Through explicit arguments to executeQuery, translateQuery, and
PgqlConnection.prepareStatement methods

• Through flags in the options string argument of executeQuery and translateQuery
• Through Java JVM arguments.

The following table summarizes the available query arguments for PGQL translation and
execution.

Table 13-4    PGQL Translation and Execution Options

Option Default Explicit
Argument

Options Flag JVM Argument

Degree of parallelism 0 parallel none none

Timeout Unlimited timeout none none

Dynamic sampling 2 dynamicSamp
ling

none none

Maximum number of results Unlimited maxResults none none

Reverse path optimization True None REVERSE_PAT
H=F

oracle.pg.rdbms.pgql.rev
ersePath=false

Pushing source filter
optimization

True None PUSH_SRC_HO
PS=F

oracle.pg.rdbms.pgql.pu
shSrcHops=false

Pushing destination filter
optimization

False None PUSH_DST_HO
PS=T

oracle.pg.rdbms.pgql.pu
shDstHops=true

Creation of views in shortest
path translation

False None SP_CREATE_V
IEW=T

oracle.pg.rdbms.pgql.sp
CreateView=true

Creation of tables in shortest
path translation

True None SP_CREATE_T
ABLE=F

oracle.pg.rdbms.pgql.sp
CreateTable=false

Use of CLOB for path
expressions

True None EXP_PATH_CL
OB=F

oracle.pg.rdbms.pgql.ex
pPathClob=false

13.7.3 Performance Considerations for PGQL Queries
The following sections explain a few recommended practices for query performance.

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13-21



• Recursive Queries

• Using Query Optimizer Hints

• Speed Up Query Translation Using Graph Metadata Cache and Translation Cache

13.7.3.1 Recursive Queries
The following indexes are recommended in order to speed up execution of recursive queries:

• For underlying VERTEX tables of the recursive pattern, an index on the key column

• For underlying EDGE tables of the recursive pattern, an index on the source key column

Note:

You can also create index on (source key, destination key).

For example, consider the following CREATE PROPERTY GRAPH statement:

CREATE PROPERTY GRAPH people
  VERTEX TABLES(
    person
      KEY ( id )
      LABEL person
      PROPERTIES( name, age )
  )
  EDGE TABLES(
    knows
      key (person1, person2)
      SOURCE KEY ( person1 ) REFERENCES person (id)
      DESTINATION KEY ( person2 ) REFERENCES person (id)
      NO PROPERTIES
  )
  OPTIONS ( PG_PGQL )

And also consider the following query:

SELECT COUNT(*)
FROM MATCH ANY SHORTEST ( (n:Person) -[e:knows]->* (m:Person) )
WHERE n.id = 1234

In order to improve performance of the recursive part of the preceding query, the following
indexes must exist:

• CREATE INDEX <INDEX_NAME> ON PERSON(ID)
• CREATE INDEX <INDEX_NAME> ON KNOWS(PERSON1) or

CREATE INDEX <INDEX_NAME> ON KNOWS(PERSON1, PERSON2)
Composite Vertex Keys

For composite vertex keys, query execution can be optimized with the creation of function-
base indexes on the key columns:

• For underlying VERTEX tables of the recursive pattern, a function-based index on the
comma-separated concatenation of key columns

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13-22



• For underlying EDGE tables of the recursive pattern, a function-based index on the
comma-separated concatenation of source key columns

Note:

You can also create index on (source key columns, destination key columns).

For example, consider the following CREATE PROPERTY GRAPH statement:

CREATE PROPERTY GRAPH people
  VERTEX TABLES(
    person
      KEY ( id1, id2 )
      LABEL person
      PROPERTIES( name, age )
  )
  EDGE TABLES(
    knows
      key (id)
      SOURCE KEY ( id1person1, id2person1 ) REFERENCES person (id1,id2)
      DESTINATION KEY ( id1person2, id2person2 ) REFERENCES person (id1,id2)
      NO PROPERTIES
  )
  OPTIONS ( PG_PGQL )

And also consider the following query:

SELECT COUNT(*)
FROM MATCH ANY SHORTEST ( (n:Person) -[e:knows]->* (m:Person) )
WHERE n.id = 1234

In order to improve performance of the recursive part of the preceding query, the following
indexes must exist:

• CREATE INDEX <INDEX_NAME> ON PERSON (ID1 || ',' || ID2)
• CREATE INDEX <INDEX_NAME> ON KNOWS (ID1PERSON1 || ',' || ID2PERSON1) or

CREATE INDEX <INDEX_NAME> ON KNOWS (ID1PERSON1 || ',' || ID2PERSON1,
ID1PERSON2 || ',' || ID2PERSON2)

If some of the columns in a composite vertex key is a string column, the column needs to be
comma-escaped in the function-base index creation.

For example, if column ID1 in table PERSON of the preceding example is of type VARCHAR2(10),
you need to escape the comma for the column as follows:

replace(ID1, ',', '\,')

So, the indexes to improve performance will result as shown:

• CREATE INDEX <INDEX_NAME> ON PERSON (replace(ID1, ',', '\,') || ',' || ID2)
• CREATE INDEX <INDEX_NAME> ON KNOWS (replace(ID1PERSON1, ',', '\,') || ',' ||

ID2PERSON1)

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13-23



13.7.3.2 Using Query Optimizer Hints
The following hints can be used to influence translation of PGQL variable-length path patterns
to SQL:

• REVERSE_PATH: Switches on or off the reverse path optimization (ON by default). If ON, it
automatically determines if the pattern can best be evaluated from source to destination or
from destination to source, based on specified filter predicates.

• PUSH_SRC_HOPS: Switches on or off pushing source filter optimization (ON by default). If ON,
then filter predicates are used to limit the number of source vertices (or destination vertices
if path evaluation is reversed) and thereby the search space of variable-length path pattern
evaluations.

• PUSH_DST_HOPS: Switches on or off pushing destination filter optimization (OFF by default). If
ON, then filter predicates are used to limit the number of destination vertices (or source
vertices if path evaluation is reversed) and thereby the search space of variable-length
path pattern evaluations.

The preceding hints can be configured as options parameter in the following Java API
methods:

• executeQuery(String pgql, String options)
• translateQuery(String pgql, String options)
• execute(String pgql, String matchOptions, String options)
For example, consider the following PGQL query:

SELECT v1.name AS v1, v2.name AS v2, v3.name As v3 
FROM MATCH (v1:Person)-[e1:friendOf]->(v2:Person), 
MATCH ANY (v2:Person)-[e2:friendOf]->*(v3:Person) 
WHERE v1.name= 'Bob'

When the preceding query is executed using the default option for PUSH_SRC_HOPS, the output
for start_nodes_translation displays the filter expression as shown:

System.out.println(pgqlStatement.translateQuery(pgql).getSqlTranslation())
...
...
start_nodes_translation => (to_clob('SELECT ''PERSONS'' AS "src_table", 
e1.person_b AS "src_key"
FROM "GRAPHUSER"."PERSONS" "V1", "GRAPHUSER"."FRIENDSHIPS" "E1"
WHERE (((e1.person_a = v1.person_id) AND NOT(e1.person_b IS NULL)) AND 
(v1.name = ''Bob''))')),
     end_nodes_translation => (to_clob('SELECT ''PERSONS'' AS "dst_table", 
v3.person_id AS "dst_key"
FROM "GRAPHUSER"."PERSONS" "V3"')),
...
...

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13-24



If the preceding query is executed with the hint PUSH_SRC_HOPS=F, then the query is translated
into SQL as shown:

System.out.println(pgqlStatement.translateQuery(pgql,"PUSH_SRC_HOPS=F").getSql
Translation())

...

...start_nodes_translation => (to_clob('SELECT ''PERSONS'' AS "src_table", 
v2.person_id AS "src_key"
FROM "GRAPHUSER"."PERSONS" "V2"')),
     end_nodes_translation => (to_clob('SELECT ''PERSONS'' AS "dst_table", 
v3.person_id AS "dst_key"
FROM "GRAPHUSER"."PERSONS" "V3"')),
...
...

13.7.3.3 Speed Up Query Translation Using Graph Metadata Cache and Translation
Cache

The following global caches help to speed up PGQL query translation:

• Graph Metadata Cache: Stores graph metadata such as tables, labels, properties, and so
on.

• Translation Cache: Stores PGQL to SQL translation.

You can configure the caches using the following Java APIs:

• clearTranslationCache()
• disableTranslationCache()
• enableTranslationCache()
• setTranslationCacheMaxCapacity(int maxCapacity)
• clearGraphMetadataCache()
• disableGraphMetadataCache()
• enableGraphMetadataCache()
• setGraphMetadataCacheMaxCapacity(int maxCapacity)
• setGraphMetadataRefreshInterval(long interval)
These preceding methods are part of the PgqlConnection class. Separate caches are
maintained for each database user such that cached objects are shared between different
PgqlConnection objects if they have the same connection URL and user underneath.

By default, both the metadata and translation caches are refreshed every 1000ms (default
value) if they are enabled. This makes it easy to sync the metadata cache in case you are
modifying one graph through multiple JVMs. Also, you can increase the time (in milliseconds)
taken for refreshing the cache by calling the setGraphMetadataRefreshInterval(long
interval) function.

13.7.4 Using the Java and Python APIs to Run PGQL Queries
You can run PGQL queries on PGQL property graphs using the Java API in the
oracle.pg.rdbms.pgql package. Also, you can use the Python OPG4Py package for

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13-25



executing PGQL queries against the graph data in the Oracle Database. This package
contains a sub-package Pgql with one or more modules that wraps around the Java API in the
oracle.pg.rdbms.pgql package.

• Creating a PGQL Property Graph

• Executing PGQL SELECT Queries

• Executing PGQL Queries to Modify PGQL Property Graphs

• Dropping a PGQL Property Graph

13.7.4.1 Creating a PGQL Property Graph
You can create a PGQL property graph using the CREATE PROPERTY GRAPH statement.

Example 13-1    Creating a PGQL Property Graph

The following example describes the creation of a PGQL property graph.

• JShell

• Java

• Python

JShell

opg4j> var jdbcUrl="jdbc:oracle:thin:@<host_name>:<port>/<db_service>"
opg4j> var conn = 
DriverManager.getConnection(jdbcUrl,"<username>","<password>");
opg4j> var pgqlConn = PgqlConnection.getConnection(conn)
opg4j> var pgqlStmt = pgqlConn.createStatement() //create a PGQL Statement
opg4j> conn.setAutoCommit(false)
opg4j> var pgql = 
...> "CREATE PROPERTY GRAPH bank_graph "
...> + "VERTEX TABLES ( bank_accounts AS Accounts "
...> + "KEY (id) "
...> + "LABEL Accounts "
...> + "PROPERTIES (id, name) "
...> + ") "
...> + "EDGE TABLES ( bank_txns AS Transfers "
...> + "KEY (txn_id) "
...> + "SOURCE KEY (from_acct_id) REFERENCES Accounts (id) "
...> + "DESTINATION KEY (to_acct_id) REFERENCES Accounts (id) "
...> + "LABEL Transfers "
...> + "PROPERTIES (from_acct_id, to_acct_id, amount, description) "
...> + ") OPTIONS (PG_PGQL) "
opg4j> pgqlStmt.execute(pgql)

Java

import java.sql.Connection;
import java.sql.Statement;
import java.sql.DriverManager;

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13-26



import oracle.pg.rdbms.pgql.jdbc.PgqlJdbcRdbmsDriver;
import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlStatement;

/*
 * This example shows how to create a PGQL property graph.
 */
public class PgqlCreate
{

  public static void main(String[] args) throws Exception
  {
    int idx=0;
    String jdbcUrl            = args[idx++];
    String username           = args[idx++];
    String password           = args[idx++];
    String graph              = args[idx++];

    Connection conn = null;
    PgqlStatement pgqlStmt = null;

    try {
      //Get a jdbc connection
      DriverManager.registerDriver(new PgqlJdbcRdbmsDriver());
      conn = DriverManager.getConnection(jdbcUrl, username, password);
      conn.setAutoCommit(false);

      // Get a PGQL connection
      PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);

      // Create a PGQL Statement
      pgqlStmt = pgqlConn.createStatement();
      // Execute PGQL Query
      String pgql =
        "CREATE PROPERTY GRAPH " + graph + " " +
        "VERTEX TABLES ( bank_accounts as Accounts " +
        "KEY (id) " +
        "LABEL \"Accounts\"" +
        "PROPERTIES (id, name)" +
        ") " +
        "EDGE TABLES ( bank_txns as Transfers " +
        "KEY (txn_id) " +
        "SOURCE KEY (from_acct_id) REFERENCES Accounts (id) " +
        "DESTINATION KEY (to_acct_id) REFERENCES Accounts (id) " +
        "LABEL \"Transfers\"" +
        "PROPERTIES (from_acct_id, to_acct_id, amount, description)" +
        ") OPTIONS (PG_PGQL) ";

      // Print the results
      pgqlStmt.execute(pgql);
    }
    finally {
      // close the statement

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13-27



      if (pgqlStmt != null) {
         pgqlStmt.close();
         }
      // close the connection
      if (conn != null) {
         conn.close();
         }
      }
  }
}

Python

>>> pgql_conn = opg4py.pgql.get_connection("<username>","<password>", 
"jdbc:oracle:thin:@localhost:1521/orclpdb")
>>> pgql_statement = pgql_conn.create_statement()
>>> pgql = """
...         CREATE PROPERTY GRAPH bank_graph
...         VERTEX TABLES (
...           bank_accounts as Accounts
...             LABEL Accounts
...             PROPERTIES (id, name)
...         )
...         EDGE TABLES (
...           bank_txns as Transfers
...             KEY (txn_id)
...             SOURCE KEY (from_acct_id) REFERENCES Accounts(id)
...             DESTINATION KEY (to_acct_id) REFERENCES Accounts (id)
...             LABEL TRANSFERS
...             PROPERTIES (from_acct_id, to_acct_id, amount, description)
...         ) OPTIONS(PG_PGQL)
... """
>>> pgql_statement.execute(pgql)
False

You can verify the PGQL property graph creation by checking the metadata tables that get
created in the database.

13.7.4.2 Executing PGQL SELECT Queries
You can run PGQL SELECT queries as described in the following examples.

Example 13-2    Running a Simple SELECT Query Using PgqlStatement and PgqlResultSet
In the following example, PgqlConnection is used to obtain a PgqlStatement. Then, it calls the
executeQuery method of PgqlStatement, which returns a PgqlResultSet object.
PgqlResultSet provides a print() method, which displays results in a tabular mode.

• JShell

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13-28



• Java

• Python

JShell

opg4j> var jdbcUrl="jdbc:oracle:thin:@<host_name>:<port>/<db_service>"
opg4j> var conn = 
DriverManager.getConnection(jdbcUrl,"<username>","<password>");
opg4j> var pgqlConn = PgqlConnection.getConnection(conn)
opg4j> pgqlConn.setGraph("BANK_GRAPH")        
opg4j> var pgqlStmt = pgqlConn.createStatement() //create a PGQL Statement
opg4j> String s = "SELECT n.* FROM MATCH (n:Accounts) LIMIT 3"
opg4j> var resultSet = pgqlStmt.executeQuery(s)
opg4j> resultSet.print() //Prints the query result set
+---------------+
| ID | NAME     |
+---------------+
| 1  | Account1 |
| 2  | Account2 |
| 3  | Account3 |
+---------------+

Java

import java.sql.Connection;
import java.sql.Statement;
import java.sql.DriverManager;
import oracle.pg.rdbms.pgql.jdbc.PgqlJdbcRdbmsDriver;
import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pg.rdbms.pgql.PgqlStatement;

/*
 * This example shows how to execute a SELECT query on a PGQL property graph.
 */
public class PgqlExample1
{

  public static void main(String[] args) throws Exception
  {
    int idx=0;
    String jdbcUrl            = args[idx++];
    String username           = args[idx++];
    String password           = args[idx++];
    String graph              = args[idx++];

    Connection conn = null;
    PgqlStatement pgqlStmt = null;
    PgqlResultSet rs = null;

    try {
      //Get a jdbc connection
      DriverManager.registerDriver(new PgqlJdbcRdbmsDriver());

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13-29



      conn = DriverManager.getConnection(jdbcUrl, username, password);
      conn.setAutoCommit(false);

      // Get a PGQL connection
      PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
      pgqlConn.setGraph(graph);

      // Create a PGQL Statement
      pgqlStmt = pgqlConn.createStatement();

      // Execute PGQL Query
      String query = "SELECT n.* FROM MATCH (n:Accounts) LIMIT 5";
      rs = pgqlStmt.executeQuery(query);

      // Print the results
      rs.print();
    }
    finally {
      // close the result set
      if (rs != null) {
         rs.close();
         }
      // close the statement
      if (pgqlStmt != null) {
         pgqlStmt.close();
         }
      // close the connection
      if (conn != null) {
         conn.close();
         }
      }
  }
}

Python

>>> pgql_conn = opg4py.pgql.get_connection("<username>","<password>", 
"<jdbcUrl>")
>>> pgql_statement = pgql_conn.create_statement()
>>> pgql_conn.set_graph("BANK_GRAPH")
>>> s = "SELECT n.* FROM MATCH (n:Accounts) LIMIT 3"
>>> pgql_statement.execute_query(s)
>>> pgql_result_set = pgql_statement.execute_query(s)
>>> pgql_result_set.print()
+---------------+
| ID | NAME     |
+---------------+
| 1  | Account1 |
| 2  | Account2 |
| 3  | Account3 |
+---------------+
>>> pgql_result_set
PgqlResultSet(java_pgql_result_set: oracle.pg.rdbms.pgql.PgqlResultSet, # of 
results: 3)

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13-30



Also, you can convert the PGQL result set obtained in the preceding code to a Pandas
dataframe using the to_pandas() method.

Note:

The pandas package must be installed in your system to successfully execute the call
to to_pandas(). This package is automatically installed at the time of the Python
client installation for versions Python 3.8 and Python 3.9. However, if your call to
to_pandas() fails, verify if the pandas module is installed in your system. In case the
module is found missing or your Python version differs from the earlier mentioned
versions, then install the pandas package manually.

Example 13-3    Running a SELECT Query Using PgqlPreparedStatement

• JShell

• Java

• Python

JShell

opg4j> var jdbcUrl="jdbc:oracle:thin:@<host_name>:<port>/<db_service>"
opg4j> var conn = 
DriverManager.getConnection(jdbcUrl,"<username>","<password>");
opg4j> var pgqlConn = PgqlConnection.getConnection(conn)
opg4j> pgqlConn.setGraph("BANK_GRAPH");         
opg4j> String s = "SELECT n.* FROM MATCH (n:Accounts) LIMIT ?"
opg4j> var ps = pgqlConn.prepareStatement(s, 0 /* timeout */, 4 /* parallel 
*/, 2 /* dynamic sampling */, -1 /* max results */, null /* match options */, 
null /* options */)
opg4j> ps.setInt(1, 3)
opg4j> var rs = ps.executeQuery()
opg4j> rs.print() //Prints the query result set
+---------------+
| ID | NAME     |
+---------------+
| 1  | Account1 |
| 2  | Account2 |
| 3  | Account3 |
+---------------+

Java

import java.sql.Statement;
import java.sql.DriverManager;
import oracle.pg.rdbms.pgql.jdbc.PgqlJdbcRdbmsDriver;
import oracle.pg.rdbms.pgql.*; 

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13-31



public class PgqlExample2
{
  public static void main(String[] args) throws Exception
  {
    int idx=0;
    String jdbcUrl            = args[idx++];
    String username           = args[idx++];
    String password           = args[idx++];
    String graph              = args[idx++];

    Connection conn = null;
    PgqlStatement pgqlStmt = null;
    PgqlResultSet rs = null;

    try {
      //Get a jdbc connection
      DriverManager.registerDriver(new PgqlJdbcRdbmsDriver());
      conn = DriverManager.getConnection(jdbcUrl, username, password);
      conn.setAutoCommit(false);

      // Get a PGQL connection
      PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
      pgqlConn.setGraph(graph);

      // Execute PGQL Query
      String s = "SELECT n.* FROM MATCH (n:Accounts) LIMIT ?";
      PgqlPreparedStatement pStmt = pgqlConn.prepareStatement(s, 0, 4 , 2 , 
-1 , null , null);
      pStmt.setInt(1,3);
      rs = pStmt.executeQuery();

      // Print the results
      rs.print();
    }
    finally {
      // close the result set
      if (rs != null) {
         rs.close();
         }
      // close the statement
      if (pgqlStmt != null) {
         pgqlStmt.close();
         }
      // close the connection
      if (conn != null) {
         conn.close();
         }
      }
  }
}

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13-32



Python

>>> pgql_conn = opg4py.pgql.get_connection("<username>","<password>", 
"<jdbcUrl>")
>>> pgql_statement = pgql_conn.create_statement()
>>> pgql_conn.set_graph("BANK_GRAPH")
>>> s = "SELECT n.* FROM MATCH (n:Accounts) LIMIT ?"
>>> ps = pgql_conn.prepare_statement(s, timeout=0, parallel=4, 
dynamicSampling=2, maxResults=-1, matchOptions=None, options=None)
>>> ps.set_int(1,3)
>>> ps.execute_query().print()
+---------------+
| ID | NAME     |
+---------------+
| 1  | Account1 |
| 2  | Account2 |
| 3  | Account3 |
+---------------+

Example 13-4    Running a SELECT Query with Grouping and Aggregation

• JShell

• Java

• Python

JShell

opg4j> var jdbcUrl="jdbc:oracle:thin:@<host_name>:<port>/<db_service>"
opg4j> var conn = 
DriverManager.getConnection(jdbcUrl,"<username>","<password>");
opg4j> var pgqlConn = PgqlConnection.getConnection(conn)
opg4j> pgqlConn.setGraph("BANK_GRAPH")        
opg4j> var pgqlStmt = pgqlConn.createStatement() //create a PGQL Statement
opg4j> String query = "SELECT v1.id, COUNT(v2) AS numTxns "+
...>         "FROM MATCH (v1)-[e IS Transfers]->(v2) "+
...>         "GROUP BY v1 "+
...>         "ORDER BY numTxns DESC "+
...>         "LIMIT 3"
opg4j> var resultSet = pgqlStmt.executeQuery(query)
opg4j> resultSet.print() //Prints the query result set
+---------------+
| ID  | NUMTXNS |
+---------------+
| 687 | 6       |
| 195 | 5       |
| 192 | 5       |
+---------------+

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13-33



Java

import java.sql.Connection;
import java.sql.Statement;
import java.sql.DriverManager;
import oracle.pg.rdbms.pgql.jdbc.PgqlJdbcRdbmsDriver;
import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pg.rdbms.pgql.PgqlStatement;

/*
 * This example shows how to execute a SELECT query with aggregation .*/
public class PgqlExample3
{

  public static void main(String[] args) throws Exception
  {
    int idx=0;
    String jdbcUrl            = args[idx++];
    String username           = args[idx++];
    String password           = args[idx++];
    String graph              = args[idx++];

    Connection conn = null;
    PgqlStatement pgqlStmt = null;
    PgqlResultSet rs = null;

    try {
      //Get a jdbc connection
      DriverManager.registerDriver(new PgqlJdbcRdbmsDriver());
      conn = DriverManager.getConnection(jdbcUrl, username, password);
      conn.setAutoCommit(false);

      // Get a PGQL connection
      PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
      pgqlConn.setGraph(graph);

      // Create a PGQL Statement
      pgqlStmt = pgqlConn.createStatement();

      // Execute PGQL Query
      String query =
        "SELECT v1.id, COUNT(v2) AS numTxns "+
        "FROM MATCH (v1)-[e IS Transfers]->(v2) "+
        "GROUP BY v1 "+
        "ORDER BY numTxns DESC";

      rs = pgqlStmt.executeQuery(query);
      // Print the results
      rs.print();
    }
    finally {
      // close the result set

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13-34



      if (rs != null) {
         rs.close();
         }
      // close the statement
      if (pgqlStmt != null) {
         pgqlStmt.close();
         }
      // close the connection
      if (conn != null) {
         conn.close();
         }
      }
  }
}

Python

>>> pgql_conn = opg4py.pgql.get_connection("<username>","<password>", 
"<jdbcUrl>")
>>> pgql_statement = pgql_conn.create_statement()
>>> pgql_conn.set_graph("BANK_GRAPH")
>>> query = """
...          SELECT v1.id, COUNT(v2) AS numtxns
...          FROM MATCH (v1)-[e IS Transfers]->(v2)
...          GROUP BY v1
...          ORDER BY numtxns DESC
...          LIMIT 3
...          """
>>> pgql_statement.execute_query(query).print()
+---------------+
| ID  | NUMTXNS |
+---------------+
| 687 | 6       |
| 195 | 5       |
| 192 | 5       |
+---------------+

Example 13-5    Showing a PGQL Path Query

• JShell

• Java

• Python

JShell

opg4j> var jdbcUrl="jdbc:oracle:thin:@<host_name>:<port>/<db_service>"
opg4j> var conn = 
DriverManager.getConnection(jdbcUrl,"<username>","<password>");

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13-35



opg4j> var pgqlConn = PgqlConnection.getConnection(conn)
opg4j> pgqlConn.setGraph("BANK_GRAPH")        
opg4j> var pgqlStmt = pgqlConn.createStatement() //create a PGQL Statement
opg4j> String query = "PATH onehop AS ()-[IS transfers]->() "+
...>         "SELECT v1.id FROM MATCH (v1)-/:onehop/->(v2) "+
...>         "WHERE v2.id = 365"
opg4j> var resultSet = pgqlStmt.executeQuery(query)
opg4j> resultSet.print() //Prints the query result set
+-----+
| ID  |
+-----+
| 132 |
| 435 |
| 296 |
| 327 |
| 328 |
| 399 |
| 684 |
| 919 |
| 923 |
| 771 |
+-----+

Java

import java.sql.Connection;
import java.sql.Statement;
import java.sql.DriverManager;
import oracle.pg.rdbms.pgql.jdbc.PgqlJdbcRdbmsDriver;
import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pg.rdbms.pgql.PgqlStatement;

/*
 * This example shows how to execute a PGQL PATH query.*/
public class PgqlExample4
{

  public static void main(String[] args) throws Exception
  {
    int idx=0;
    String jdbcUrl            = args[idx++];
    String username           = args[idx++];
    String password           = args[idx++];
    String graph              = args[idx++];

    Connection conn = null;
    PgqlStatement pgqlStmt = null;
    PgqlResultSet rs = null;

    try {
      //Get a jdbc connection
      DriverManager.registerDriver(new PgqlJdbcRdbmsDriver());

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13-36



      conn = DriverManager.getConnection(jdbcUrl, username, password);
      conn.setAutoCommit(false);

      // Get a PGQL connection
      PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
      pgqlConn.setGraph(graph);

      // Create a PGQL Statement
      pgqlStmt = pgqlConn.createStatement();

     // Execute PGQL Query
      String query =
                 "PATH onehop AS ()-[IS transfers]->() "+
                 "SELECT v1.id FROM MATCH (v1)-/:onehop/->(v2) "+
                 "WHERE v2.id = 365";
      rs = pgqlStmt.executeQuery(query);

      // Print the results
      rs.print();
    }
    finally {
      // close the result set
      if (rs != null) {
         rs.close();
         }
      // close the statement
      if (pgqlStmt != null) {
         pgqlStmt.close();
         }
      // close the connection
      if (conn != null) {
         conn.close();
         }
      }
  }
}

Python

>>> pgql_conn = opg4py.pgql.get_connection("<username>","<password>", 
"<jdbcUrl>")
>>> pgql_statement = pgql_conn.create_statement()
>>> pgql_conn.set_graph("BANK_GRAPH")
>>> query = """
...                  PATH onehop AS ()-[IS transfers]->()
...                  SELECT v1.id FROM MATCH (v1)-/:onehop/->(v2)
...                  WHERE v2.id = 365
...         """
>>> pgql_statement.execute_query(query).print()
+-----+
| ID  |
+-----+
| 132 |
| 435 |

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13-37



| 296 |
| 327 |
| 328 |
| 399 |
| 684 |
| 919 |
| 923 |
| 771 |
+-----+

13.7.4.3 Executing PGQL Queries to Modify PGQL Property Graphs
You can execute PGQL INSERT, UPDATE and DELETE queries against PGQL property graphs
using the OPG4J Java shell, OPG4Py Python shell or through a Java or Python application.

It is important to note that unique IDs are not auto generated when inserting vertices or edges
in a graph. Therefore, you must ensure that the key column values are either present in the
graph properties or they are auto generated by the database (through SEQUENCE and TRIGGERS
or implemented with auto increment functionality using IDENTITY column).

The following example inserts two new vertices and also adds an edge relationship between
the two vertices.

• JShell

• Java

• Python

JShell

opg4j> String pgql =
...>     "INSERT VERTEX v1 LABELS (Person) PROPERTIES (v1.name= 'ABC', 
v1.height=1.6, v1.birthdate = to_date('13/06/1963', 'DD/MM/YYYY')) "+
...>     "     , VERTEX v2 LABELS (Person) PROPERTIES (v2.name= 'XYZ', 
v2.height=1.75, v2.birthdate = to_date('19/06/1963', 'DD/MM/YYYY')) "+
...>     "     , EDGE e BETWEEN v1 AND v2 LABELS (friendof) PROPERTIES 
( e.meeting_date = to_date('19/06/2021', 'DD/MM/YYYY')) "
pgql ==> "INSERT VERTEX v1 LABELS (Person) PROPERTIES (v1.name= 'ABC', 
v1.height=1.6, v1.birthdate = to_date('13/06/1963', 'DD/MM/YYYY'))      , 
VERTEX v2 LABELS (Person) PROPERTIES (v2.name= 'XYZ', v2.height=1.75, 
v2.birthdate = to_date('19/06/1963', 'DD/MM/YYYY'))      , EDGE e BETWEEN v1 
AND v2 LABELS (friendof) PROPERTIES ( e.meeting_date = to_date('19/06/2021', 
'DD/MM/YYYY')) "
opg4j> pgqlStmt.execute(pgql)
$14 ==> false

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13-38



Java

String pgql =
...>     "INSERT VERTEX v1 LABELS (Person) PROPERTIES (v1.name= 'ABC', 
v1.height=1.6, v1.birthdate = to_date('13/06/1963', 'DD/MM/YYYY')) "+
...>     "     , VERTEX v2 LABELS (Person) PROPERTIES (v2.name= 'XYZ', 
v2.height=1.75, v2.birthdate = to_date('19/06/1963', 'DD/MM/YYYY')) "+
...>     "     , EDGE e BETWEEN v1 AND v2 LABELS (friendof) PROPERTIES 
( e.meeting_date = to_date('19/06/2021', 'DD/MM/YYYY')) ";
pgqlStmt.execute(pgql);

Python

>>> pgql = """
...     INSERT VERTEX v1 LABELS (Person) PROPERTIES (v1.name= 'ABC', 
v1.height=1.6, v1.birthdate = to_date('13/06/1963', 'DD/MM/YYYY'))
...     , VERTEX v2 LABELS (Person) PROPERTIES (v2.name= 'XYZ', 
v2.height=1.75, v2.birthdate = to_date('19/06/1963', 'DD/MM/YYYY'))
...     , EDGE e BETWEEN v1 AND v2 LABELS (friendof) PROPERTIES 
( e.meeting_date = to_date('19/06/2021', 'DD/MM/YYYY'))
... """
>>> pgql_statement.execute(pgql)
False

The following example executes an UPDATE query to modify the edge property that was
inserted in the preceding example and subsequently verifies the update operation through a
SELECT query.

• JShell

• Java

• Python

JShell

opg4j> String pgql = "UPDATE e SET (e.meeting_date = to_date('12/02/2022', 
'DD/MM/YYYY')) "+
...>     "FROM MATCH (v1:Person)-[e:friendof]->(v2:Person) "+
...>     "WHERE v1.person_id = 27 AND v2.person_id = 28"
pgql ==> "UPDATE e SET (e.meeting_date = to_date('12/02/2022', 'DD/MM/YYYY')) 
FROM MATCH (v1:Person)-[e:friendof]->(v2:Person) WHERE v1.person_id = 27 AND 
v2.person_id = 28"
opg4j> pgqlStmt.execute(pgql)
$40 ==> false
opg4j>pgqlStmt.executeQuery("SELECT e.meeting_date FROM MATCH (v1:Person)-
[e:friendof]->(v2:Person) WHERE v1.person_id = 27").print()
+-----------------------+
| MEETING_DATE          |
+-----------------------+

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13-39



| 2022-02-12 00:00:00.0 |
+-----------------------+

Java

String pgql ="UPDATE e SET (e.meeting_date = to_date('12/02/2022', 'DD/MM/
YYYY')) "+
"FROM MATCH (v1:Person)-[e:friendof]->(v2:Person) "+
"WHERE v1.person_id = 27 AND v2.person_id = 28";
pgqlStmt.execute(pgql);

Python

>>> pgql = """
...     UPDATE e SET (e.meeting_date = to_date('12/02/2022', 'DD/MM/YYYY'))
...     FROM MATCH (v1:Person)-[e:friendof]->(v2:Person)
...     WHERE v1.person_id = 27 AND v2.person_id = 28
... """
>>> pgql_statement.execute(pgql)
False
>>> pgql_statement.execute_query("SELECT e.meeting_date FROM MATCH(v1:Person)-
[e:friendof]->(v2:Person) WHERE v1.person_id = 27").print()
+-----------------------+
| MEETING_DATE          |
+-----------------------+
| 2022-02-12 00:00:00.0 |
+-----------------------+

A DELETE query allows deleting of vertices and edges in a graph. The following example
executes a DELETE query to delete an edge in the graph.

• JShell

• Java

• Python

JShell

opg4j> pgqlStmt.execute("DELETE e FROM MATCH (v1:Person)-[e:friendof]-
>(v2:Person) WHERE v.person_id=27")
$14 ==> false

Java

pgqlStmt.execute("DELETE e FROM MATCH (v1:Person)-[e:friendof]->(v2:Person) 
WHERE v.person_id=27");

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13-40



Python

>>> pgql_statement.execute("DELETE e FROM MATCH (v1:Person)-[e:friendof]-
>(v2:Person) WHERE v1.person_id=27")
False

13.7.4.4 Dropping a PGQL Property Graph
You can use the PGQL DROP PROPERTY GRAPH statement to drop a PGQL property graph. Note
that all the metadata tables for the PGQL property graph are dropped.

Example 13-6    Dropping a PGQL Property Graph

• JShell

• Java

• Python

JShell

opg4j> var jdbcUrl="jdbc:oracle:thin:@<host_name>:<port>/<db_service>"
opg4j> var conn = 
DriverManager.getConnection(jdbcUrl,"<username>","<password>")
opg4j> var pgqlConn = PgqlConnection.getConnection(conn)
opg4j> var pgqlStmt = pgqlConn.createStatement() //create a PGQL Statement
opg4j> pgqlStmt.execute("DROP PROPERTY GRAPH <graph>")
$9 ==> false

Java

import java.sql.Connection;
import java.sql.Statement;
import java.sql.DriverManager;
import oracle.pg.rdbms.pgql.jdbc.PgqlJdbcRdbmsDriver;
import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlStatement;
/**
 * This example shows how to drop a PGQL property graph.
 */
public class DropPgqlGraph
{

  public static void main(String[] args) throws Exception
  {
    int idx=0;
    String jdbcUrl            = args[idx++];
    String username           = args[idx++];
    String password           = args[idx++];
    String graph              = args[idx++];  

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13-41



    
    Connection conn = null;
    PgqlStatement pgqlStmt = null;
    
    try {
      //Get a jdbc connection
      DriverManager.registerDriver(new PgqlJdbcRdbmsDriver());
      conn = DriverManager.getConnection(jdbcUrl, username, password);
      conn.setAutoCommit(false);
                
      // Get a PGQL connection
      PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
      
      // Create PGQL Statement
      pgqlStmt = pgqlConn.createStatement();

      String query = "DROP PROPERTY GRAPH " +graph;
      pgqlStmt.execute(query);
      
    }
    finally {
      // close the statement
      if (pgqlStmt != null) {
         pgqlStmt.close();
         }
      // close the connection
      if (conn != null) {
         conn.close();
         }
      }
  }
}

Python

>>> pgql_conn = opg4py.pgql.get_connection("<username>","<password>", 
"jdbc:oracle:thin:@localhost:1521/orclpdb")
>>> pgql_statement = pgql_conn.create_statement()
>>> pgql = "DROP PROPERTY GRAPH <graph>"
>>> pgql_statement.execute(pgql)
False

Chapter 13
Executing PGQL Queries Against PGQL Property Graphs

13-42



Part IV
Installing Oracle Graph Server (PGX) and
Client

Get started on the installation of the Oracle Graph Server (PGX) and the graph clients.

• Oracle Graph Server and Client Installation
This chapter describes the steps for installing the graph server and the graph clients.

• Getting Started with the Graph Server (PGX)
Once you have installed the graph server (PGX), you can start and connect to a graph
server instance.



14
Oracle Graph Server and Client Installation

This chapter describes the steps for installing the graph server and the graph clients.

• Before You Begin
Before you begin to work with Oracle Property Graphs, you must understand the workflow
for installing Oracle Graph Server and Client.

• Oracle Graph Server Installation
You must install the Oracle Graph Server to run graph queries and analytics in the graph
server (PGX).

• Oracle Graph Client Installation
You can interact with the various graph features using the client CLIs and the graph
visualization web client.

• Setting Up Transport Layer Security
The graph server (PGX), by default, allows only encrypted connections using Transport
Layer Security (TLS). TLS requires the server to present a server certificate to the client
and the client must be configured to trust the issuer of that certificate.

14.1 Before You Begin
Before you begin to work with Oracle Property Graphs, you must understand the workflow for
installing Oracle Graph Server and Client.

Table 14-1    Workflow for Installing Oracle Graph Server and Client

Sequen
ce

Task Description More Information

1 Verify Oracle Database
Requirements

Ensure that your Oracle
Database version is 12.2 and
higher.

Verifying Database
Compatibility

2 Download Oracle Graph
Server and Client

Download Oracle Graph
Server and Client from Oracle
Software Delivery Cloud or
from Oracle Technology
Network.

Downloading Oracle Graph
Server and Client

4 Install Oracle Graph Server Install Oracle Graph server,
which is available as a
separate downloadable
package.

Installing Oracle Graph Server
For Linux x86-64

5 Install Oracle Graph Clients Install the graph clients (such
as the graph shell CLIs and
graph visualization
application) to work with
property graphs.

Oracle Graph Client
Installation

6 Set up transport layer security Configure the graph server
and client to trust the self-
signed keystore.

Setting Up Transport Layer
Security

14-1

https://edelivery.oracle.com
https://edelivery.oracle.com
https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client/graph-server-and-client-downloads.html
https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client/graph-server-and-client-downloads.html


Table 14-1    (Cont.) Workflow for Installing Oracle Graph Server and Client

Sequen
ce

Task Description More Information

7 Add permissions to publish
the graph

Grant permissions to publish
graphs.

Adding Permissions to
Publish the Graph

• Verifying Database Compatibility

• Downloading Oracle Graph Server and Client

14.1.1 Verifying Database Compatibility
Oracle Graph Server and Client works with Oracle Database 12.2 onwards on both on-
premises and cloud environments. The cloud environment includes working with all versions of
Oracle Autonomous Database Serverless and Oracle Autonomous Database Dedicated.

However, modifying a property graph using a PGQL INSERT, UPDATE, or DELETE query is not
supported for Oracle Database 12.2.

14.1.2 Downloading Oracle Graph Server and Client
You can download Oracle Graph Server and Client from Oracle Software Delivery Cloud or
from Oracle Technology Network.

Table 14-2 summarizes all the files contained in the Oracle Graph Server and Client
deployment.

<ver> denoted in the file name in the Table 14-2 reflects the downloaded Oracle Graph Server
and Client version.

Table 14-2    Components in the Oracle Graph Server and Client Deployment

File Component Description

oracle-graph-<ver>.rpm Oracle Graph Server An rpm file to deploy
Oracle Graph Server.

oracle-graph-client-<ver>.zip Oracle Graph Client A zip file containing
Oracle Graph Client.

oracle-graph-sqlcl-plugin-<ver>.zip Oracle Graph PGQL Plugin
for SQLcl

A plugin for SQLcl to run
PGQL queries in SQLcl.

oracle-graph-webapps-<ver>.zip Oracle Graph Web
Applications

A zip file
containing .war files for
deploying graph servers
in an application server.

oracle-graph-visualization-library-
<ver>.zip

Oracle Graph Visualization
Library

A zip file containing a
Java Script library for the
Graph Visualization
application.

14.2 Oracle Graph Server Installation
You must install the Oracle Graph Server to run graph queries and analytics in the graph
server (PGX).

Chapter 14
Oracle Graph Server Installation

14-2

https://edelivery.oracle.com
https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client/graph-server-and-client-downloads.html


You also require the graph server to visualize graphs loaded into the graph server (PGX) and
the graphs in the database.

The following sections explain the steps to install the Oracle Graph Server in a standalone
mode or deploy the server as a web application using Oracle WebLogic Server or Apache
Tomcat.

• System Requirements for Installing Oracle Graph Server
Verify that you meet a few system requirements when installing the Oracle Graph Server in
a standalone mode or when deploying to Oracle WebLogic Server or Apache Tomcat.

• Using the RPM Installation
You can run the downloaded RPM file to install the Oracle Graph Server.

• Deploying Oracle Graph Server to a Web Server
You can deploy Oracle Graph Server to Apache Tomcat or Oracle WebLogic Server.

• User Authentication and Authorization
The Oracle Graph server (PGX) uses an Oracle Database as identity manager. Both
username and password based as well as Kerberos based authentication is supported.

Related Topics

• Learn About the Graph Server (PGX)
The in-memory graph server layer enables you to analyze property graphs using parallel
in-memory execution.

14.2.1 System Requirements for Installing Oracle Graph Server
Verify that you meet a few system requirements when installing the Oracle Graph Server in a
standalone mode or when deploying to Oracle WebLogic Server or Apache Tomcat.

Table 14-3    System Requirements

Requirement Type Supported Version

Operating System • Oracle Linux 7 or 8 x64
• Oracle Linux 7 or 8 for Linux 64-bit ARM
• Red Hat Enterprise Linux (RHEL) 7 or 8

JDK version • Oracle JDK 11, JDK 17, or JDK 21
• OpenJDK JDK 11, JDK 17 or JDK 21

Note:

Due to a bug in Oracle JDK and OpenJDK, it is
recommended to avoid the following JDK
versions:
• JDK 11.0.9
• JDK 11.0.10
• JDK 11.0.11
• JDK 11.0.12
See this note for more details.

Chapter 14
Oracle Graph Server Installation

14-3



14.2.2 Using the RPM Installation
You can run the downloaded RPM file to install the Oracle Graph Server.

• Prerequisites for Installing Oracle Graph Server

• Installing Oracle Graph Server For Linux x86-64

• Installing Oracle Graph Server for Linux ARM

• Uninstalling Oracle Graph Server

• Upgrading Oracle Graph Server

14.2.2.1 Prerequisites for Installing Oracle Graph Server
Before installing the graph server using the RPM file, ensure you perform the following
prerequisite steps:

1. Ensure that you meet the system prerequisites as explained in System Requirements for
Installing Oracle Graph Server.

2. Verify if you already have an installed version of the graph server by running the following
command:

sudo rpm -q oracle-graph
[sudo] password for oracle: 
oracle-graph-24.3.0-0.x86_64

Graph server installation may throw an error if an installation already exists. In that case,
see Upgrading Oracle Graph Server to upgrade to a newer version.

14.2.2.2 Installing Oracle Graph Server For Linux x86-64
The installation steps for installing Oracle Graph Server in standalone mode are as shown:

1. As a root user or using sudo, install the RPM file using the rpm command line utility:

sudo rpm -i oracle-graph-<version>.rpm

Where <version> reflects the version that you downloaded. (For example: oracle-
graph-24.3.0.x86_64.rpm)

The .rpm file is the graph server.

The following post-installation steps are carried out at the time of the RPM file installation:

• Creation of a working directory in /opt/oracle/graph/pgx/tmp_data
• Creation of a log directory in /var/log/oracle/graph
• Automatic generation of self-signed TLS certificates in /etc/oracle/graph

Chapter 14
Oracle Graph Server Installation

14-4



Note:

– You can also choose to configure and set up transport layer security
(TLS) in graph server. See Setting Up Transport Layer Security for more
details.

– For demonstration purposes, if you wish to disable transport layer
security (TLS) in graph server, see Disabling Transport Layer Security
(TLS) in Graph Server for more details.

2. As root or using sudo, add operating system users allowed to use the server installation to
the operating system group oraclegraph. For example:

usermod -a -G oraclegraph <graphuser>

This adds the specified graph user to the group oraclegraph.
Note that <graphuser> must log out and log in again for this to take effect.

3. As <graphuser>, configure the server by modifying the files under /etc/oracle/graph by
following the steps under Prepare the Graph Server for Database Authentication.

4. Ensure that authentication is enabled for database users that will connect to the graph
server, as explained in User Authentication and Authorization.

5. As a root user or using sudo, start the graph server (PGX) by executing the following
command:

sudo systemctl start pgx

You can verify if the graph server has started by executing the following command:

systemctl status pgx

• If the graph server has successfully started, the response may appear as:

● pgx.service - Oracle Graph In-Memory Server
   Loaded: loaded (/etc/systemd/system/pgx.service; disabled; vendor 
preset: disabled)
   Active: active (running) since Wed 2021-01-27 10:06:06 EST; 33s ago
 Main PID: 32127 (bash)
   CGroup: /system.slice/pgx.service
           ├─32127 /bin/bash start-server
           └─32176 java -Dlogback.configurationFile=/etc/oracle/graph/
logback-server.xml -Doracle.jdbc.fanEnabled=false -cp /opt/oracle/
graph/pgx/bin/../../pgx/server/lib/jackson-databind...

The graph server is now ready to accept requests.

• If the graph server has not started, then you must check the log files in /var/log/oracle/
graph for errors. Additionally, you can also run the following command to view any systemd
errors:

sudo journalctl -u pgx.service 

Chapter 14
Oracle Graph Server Installation

14-5



For instructions to deploy the graph server in Oracle WebLogic Server or Apache Tomcat, see:

• Deploying to Oracle WebLogic Server

• Deploying to Apache Tomcat

You can also deploy the graph server behind a load balancer. See Deploying Oracle Graph
Server Behind a Load Balancer for more information.

14.2.2.3 Installing Oracle Graph Server for Linux ARM
The installation steps for installing Oracle Graph Server in standalone mode for Linux ARM are
as shown:

1. As a root user or using sudo, install the RPM file using the rpm command line utility:

sudo rpm -i oracle-graph-<version>.rpm --ignorearch

Where <version> reflects the version that you downloaded. (For example: oracle-
graph-24.3.0.x86_64.rpm)

The .rpm file is the graph server.

The following post-installation steps are carried out at the time of the RPM file installation:

• Creation of a working directory in /opt/oracle/graph/pgx/tmp_data
• Creation of a log directory in /var/log/oracle/graph
• Automatic generation of self-signed TLS certificates in /etc/oracle/graph

Note:

– You can also choose to configure and set up transport layer security
(TLS) in graph server. See Setting Up Transport Layer Security for more
details.

– For demonstration purposes, if you wish to disable transport layer
security (TLS) in graph server, see Disabling Transport Layer Security
(TLS) in Graph Server for more details.

2. As root or using sudo, add operating system users allowed to use the server installation to
the operating system group oraclegraph. For example:

usermod -a -G oraclegraph <graphuser>

This adds the specified graph user to the group oraclegraph.
Note that <graphuser> must log out and log in again for this to take effect.

3. As <graphuser>, configure the server by modifying the files under /etc/oracle/graph by
following the steps under Prepare the Graph Server for Database Authentication.

4. As <graphuser>, edit the /etc/oracle/graph/pgx.conf file to add and set the scheduler
parameter to use the basic scheduler as shown:

"scheduler": "basic_scheduler"

Chapter 14
Oracle Graph Server Installation

14-6



5. Ensure that authentication is enabled for database users that will connect to the graph
server, as explained in User Authentication and Authorization.

6. As a root user or using sudo, start the graph server (PGX) by executing the following
command:

sudo systemctl start pgx

You can verify if the graph server has started by executing the following command:

systemctl status pgx

If the graph server has not started, then you must check the log files in /var/log/oracle/
graph for errors. Additionally, you can also run the following command to view any systemd
errors:

sudo journalctl -u pgx.service 

14.2.2.4 Uninstalling Oracle Graph Server
To uninstall the graph server, make sure the graph server is shut down.

• Run the following command as a root user or with sudo:

sudo rpm -e oracle-graph

• During uninstall /opt/oracle/graph/pgx/tmp_data/ and /etc/oracle/graph/
server_keystore.jks are removed.

14.2.2.5 Upgrading Oracle Graph Server
To upgrade the graph server, ensure that you first shut down the existing graph server version.
You can then run the following command with the newer RPM file as an argument.

1. Verify the version of your current graph server installation.

sudo rpm -q oracle-graph

2. Stop the graph server if it is already running.

sudo systemctl stop pgx

3. Upgrade the graph server by running the following command as a root user or with sudo.

sudo rpm -U oracle-graph-24.3.0.x86_64.rpm

Also, note the following:

• The upgrade process automatically preserves the previous PGX (pgx.conf), server
(server.conf), and the logging (logback-server.xml, logback.xml) configurations
files. However, if the new version contains changes, then the upgrade process will
create the newest versions of these files with the .rpmnew extension. You can them

Chapter 14
Oracle Graph Server Installation

14-7



compare the two files (to verify if there are any changes in the default parameter
values or if a new parameter is added) and pick up the latest changes.

• Any manual configuration changes in the systemd configuration file for the PGX
service (/etc/systemd/system/pgx.service) is lost. However, if you are using a drop-
in file, then all customizations in the drop-in file are maintained.

• Existing log files in /var/log/oracle/graph are preserved.

• Existing server keystore file (/etc/oracle/graph/server_keystore.jks) is preserved.

Caution:

If you are upgrading the graph server from version 22.3.0 or earlier to 24.3.0,
then note that the RPM file installation in Graph Server and Client Release
24.3.0 will generate a self-signed server keystore file by default. If you are
using a self-signed server certificate, then note that the server configuration
fields, server_cert and server_private_key are deprecated and will be
desupported in a future release. See Setting Up Transport Layer Security for
more information.

4. Verify if the tmp_data folder exists in the /opt/oracle/graph/pgx/ directory path.

If it does not exist, then create one and assign ownership and permission as shown:

mkdir -p /opt/oracle/graph/pgx/tmp_data
chown -R :oraclegraph /opt/oracle/graph/pgx/tmp_data
chmod 0770 /opt/oracle/graph/pgx/tmp_data

5. Restart the graph server.

sudo systemctl daemon-reload
sudo systemctl start pgx

14.2.3 Deploying Oracle Graph Server to a Web Server
You can deploy Oracle Graph Server to Apache Tomcat or Oracle WebLogic Server.

However, before deploying the graph server on any one of these web servers, ensure that your
system meets the prerequisites explained in System Requirements for Installing Oracle Graph
Server.

The following explains the deployment instructions to a web server:

• Deploying to Apache Tomcat
The example in this topic shows how to deploy the graph server as a web application with
Apache Tomcat.

• Deploying to Oracle WebLogic Server
The example in this topic shows how to deploy the graph server as a web application with
Oracle WebLogic Server version 14.1.1.

Chapter 14
Oracle Graph Server Installation

14-8



14.2.3.1 Deploying to Apache Tomcat
The example in this topic shows how to deploy the graph server as a web application with
Apache Tomcat.

The graph server will work with Apache Tomcat 9.0.x.

1. Download the Oracle Graph Webapps zip file from Oracle Software Delivery Cloud. This
file contains ready-to-deploy Java web application archives (.war files). The file name will
be similar to this: oracle-graph-webapps-<version>.zip.

2. Unzip the file into a directory of your choice.

3. Locate the .war file that follows the naming pattern: graph-server-webapp-
<version>.war.

4. Configure the graph server.

a. Modify authentication and other server settings by modifying the WEB-INF/classes/
pgx.conf file inside the web application archive. See User Authentication and
Authorization section for more information.

b. Optionally, change logging settings by modifying the WEB-INF/classes/logback.xml
file inside the web application archive.

c. Optionally, change other servlet specific deployment descriptors by modifying the WEB-
INF/web.xml file inside the web application archive.

5. Copy the .war file into the Tomcat webapps directory. For example:

cp graph-server-webapp-<version>.war $CATALINA_HOME/webapps/pgx.war

Note:

The name you give the war file in the Tomcat webapps directory determines the
context path of the graph server application. It is recommended naming the war
file as pgx.war.

6. Export the following JAVA_OPTS options only if you are using Oracle JDK 17 or OpenJDK
JDK 17. Otherwise, you can skip this step.

export JAVA_OPTS="$JAVA_OPTS --add-exports jdk.compiler/
com.sun.tools.javac.api=ALL-UNNAMED \
  --add-exports jdk.compiler/com.sun.tools.javac.processing=ALL-UNNAMED \
  --add-exports jdk.compiler/com.sun.tools.javac.util=ALL-UNNAMED \
  --add-exports jdk.compiler/com.sun.tools.javac.tree=ALL-UNNAMED \
  --add-exports jdk.compiler/com.sun.tools.javac.code=ALL-UNNAMED"

7. Configure Tomcat specific settings, like the correct use of TLS/encryption.

8. Ensure that port 8080 is not already in use.

9. Start Tomcat:

cd $CATALINA_HOME 
./bin/startup.sh 

Chapter 14
Oracle Graph Server Installation

14-9

https://edelivery.oracle.com/


The graph server will now listen on localhost:8080/pgx.

You can connect to the server from JShell by running the following command:

$ <client_install_dir>/bin/opg4j --base_url https://localhost:8080/pgx -u 
<graphuser>

Related Topics

• The Tomcat documentation (select desired version)

14.2.3.2 Deploying to Oracle WebLogic Server
The example in this topic shows how to deploy the graph server as a web application with
Oracle WebLogic Server version 14.1.1.

1. Download the Oracle Graph Webapps zip file from Oracle Software Delivery Cloud. This
file contains ready-to-deploy Java web application archives (.war files). The file name will
be similar to this: oracle-graph-webapps-<version>.zip.

2. Unzip the file into a directory of your choice.

3. Locate the .war file that follows the naming pattern: graph-server-webapp-
<version>.war.

4. Configure the graph server.

a. Modify authentication and other server settings by modifying the WEB-INF/classes/
pgx.conf file inside the web application archive.

b. Optionally, change logging settings by modifying the WEB-INF/classes/logback.xml
file inside the web application archive.

c. Edit the WEB-INF/web.xml file inside the web application archive and remove the
following <session-config> element:

<session-config>
        <tracking-mode>COOKIE</tracking-mode>
        <cookie-config>
            <secure>true</secure>
            <http-only>true</http-only>
        </cookie-config>
        <session-timeout>60</session-timeout>
</session-config>

d. Optionally, change other servlet specific deployment descriptors by modifying the WEB-
INF/web.xml file inside the web application archive.

e. Optionally, change WebLogic Server-specific deployment descriptors by modifying the
WEB-INF/weblogic.xml file inside the web application archive.

5. Configure WebLogic specific settings, like the correct use of TLS/encryption.

6. Add the following JAVA_OPTS argument at the beginning of the $MW_HOME/user_projects/
domains/mydomain/bin/setDomainEnv.sh script file (Weblogic domain settings) only if you
are using Oracle JDK 17 or OpenJDK JDK 17. Otherwise, you can skip this step.

export JAVA_OPTS="$JAVA_OPTS --add-exports jdk.compiler/
com.sun.tools.javac.api=ALL-UNNAMED \

Chapter 14
Oracle Graph Server Installation

14-10

http://tomcat.apache.org/
https://edelivery.oracle.com/


  --add-exports jdk.compiler/com.sun.tools.javac.processing=ALL-UNNAMED \
  --add-exports jdk.compiler/com.sun.tools.javac.util=ALL-UNNAMED \
  --add-exports jdk.compiler/com.sun.tools.javac.tree=ALL-UNNAMED \
  --add-exports jdk.compiler/com.sun.tools.javac.code=ALL-UNNAMED"

7. Deploy the .war file to WebLogic Server. The following example shows how to do this from
the command line:

. $MW_HOME/user_projects/domains/mydomain/bin/setDomainEnv.sh

. $MW_HOME/wlserver/server/bin/setWLSEnv.sh
java weblogic.Deployer -adminurl http://localhost:7001 -username 
<username> -password <password> -deploy -source <path-to-war-file>

• Installing Oracle WebLogic Server

14.2.3.2.1 Installing Oracle WebLogic Server
To download and install the latest version of Oracle WebLogic Server, see

http://www.oracle.com/technetwork/middleware/weblogic/documentation/index.html

14.2.4 User Authentication and Authorization
The Oracle Graph server (PGX) uses an Oracle Database as identity manager. Both username
and password based as well as Kerberos based authentication is supported.

The actions that you are allowed to do on the graph server are determined by the privileges
enabled by roles that have been granted to you in the Oracle Database.

• Basic Steps for Using an Oracle Database for Authentication
You can follow the steps explained in this section to authenticate users to the graph server
(PGX).

• Prepare the Graph Server for Database Authentication
Locate the pgx.conf file of your installation.

• Store the Database Password in a Keystore

• Adding Permissions to Publish the Graph
There are two ways by which you can view any graph in your graph server (PGX) session
in the graph visualization application.

• Token Expiration
By default, tokens are valid for 1 hour.

• Customizing Roles and Permissions
You can fully customize the permissions to roles mapping by adding and removing roles
and specifying permissions for a role. You can also authorize individual users instead of
roles.

• Revoking Access to the Graph Server
To revoke a user's ability to access the graph server, either drop the user from the
database or revoke the corresponding roles from the user, depending on how you defined
the access rules in your pgx.conf file.

• Examples of Custom Authorization Rules
You can define custom authorization rules for developers.

Chapter 14
Oracle Graph Server Installation

14-11

http://www.oracle.com/technetwork/middleware/weblogic/documentation/index.html


• Kerberos Enabled Authentication for the Graph Server (PGX)
The graph server (PGX) can authenticate users using an Oracle Database with Kerberos
enabled as identity provider.

14.2.4.1 Basic Steps for Using an Oracle Database for Authentication
You can follow the steps explained in this section to authenticate users to the graph server
(PGX).

1. Use an Oracle Database version that is supported by Oracle Graph Server and Client:
version 12.2 or later, including Autonomous Database.

2. Ensure that you have SYSDBA access for your database (or ADMIN access for
autonomous databases) to grant and revoke users access to the graph server (PGX).

3. Ensure that all existing users to which you plan to grant access to the graph server have at
least the following privileges granted.

CREATE SESSION, CREATE TABLE
4. Ensure that the database is accessible through JDBC from the host where the graph

server runs.

5. As SYSDBA (or ADMIN on autonomous databases), run the following procedure to create
the roles required by the graph server.

Note:

If you are using an Autonomous Database Serverless instance, or if your on-
premises Oracle Database version is 23ai, then you can skip this step as these
roles are pre-installed.

 -- This procedure creates a list of roles needed for graph.
  DECLARE
    PRAGMA AUTONOMOUS_TRANSACTION;
    role_exists EXCEPTION;
    PRAGMA EXCEPTION_INIT(role_exists, -01921);
    TYPE graph_roles_table IS TABLE OF VARCHAR2(50);
    graph_roles graph_roles_table;
  BEGIN
    graph_roles := graph_roles_table(
      'GRAPH_DEVELOPER',
      'GRAPH_ADMINISTRATOR',
      'GRAPH_USER',
      'PGX_SESSION_CREATE',
      'PGX_SERVER_GET_INFO',
      'PGX_SERVER_MANAGE',
      'PGX_SESSION_READ_MODEL',
      'PGX_SESSION_MODIFY_MODEL',
      'PGX_SESSION_NEW_GRAPH',
      'PGX_SESSION_GET_PUBLISHED_GRAPH',
      'PGX_SESSION_COMPILE_ALGORITHM',
      'PGX_SESSION_ADD_PUBLISHED_GRAPH',
      'PGX_SESSION_SET_IDLE_TIMEOUT');
    FOR elem IN 1 .. graph_roles.count LOOP
      BEGIN

Chapter 14
Oracle Graph Server Installation

14-12



        dbms_output.put_line('create_graph_roles: ' || elem || ': CREATE 
ROLE ' || graph_roles(elem));
        EXECUTE IMMEDIATE 'CREATE ROLE ' || graph_roles(elem);
      EXCEPTION
        WHEN role_exists THEN
          dbms_output.put_line('create_graph_roles: role already exists. 
continue');
        WHEN OTHERS THEN
          RAISE;
      END;
    END LOOP;
  EXCEPTION
    when others then
      dbms_output.put_line('create_graph_roles: hit error ');
      raise;
  END;
  /

Optionally, this procedure is also available in /opt/oracle/graph/scripts/
create_graph_roles.sql.

See Table 14-4 for more information on the roles.

6. Assign default permissions to the roles GRAPH_DEVELOPER, GRAPH_USER and
GRAPH_ADMINISTRATOR to group multiple permissions together.

Note:

If you are using an Autonomous Database serverless instance, or if your on-
premises Oracle Database version is 23ai, then you can skip this step as these
privileges are available by default.

-- This procedure add some grants to the graph roles.
  DECLARE
    PRAGMA AUTONOMOUS_TRANSACTION;
  BEGIN
    EXECUTE IMMEDIATE 'GRANT PGX_SESSION_CREATE TO GRAPH_ADMINISTRATOR';
    EXECUTE IMMEDIATE 'GRANT PGX_SERVER_GET_INFO TO GRAPH_ADMINISTRATOR';
    EXECUTE IMMEDIATE 'GRANT PGX_SERVER_MANAGE TO GRAPH_ADMINISTRATOR';
    EXECUTE IMMEDIATE 'GRANT PGX_SESSION_CREATE TO GRAPH_DEVELOPER';
    EXECUTE IMMEDIATE 'GRANT PGX_SESSION_NEW_GRAPH TO GRAPH_DEVELOPER';
    EXECUTE IMMEDIATE 'GRANT PGX_SESSION_GET_PUBLISHED_GRAPH TO 
GRAPH_DEVELOPER';
    EXECUTE IMMEDIATE 'GRANT PGX_SESSION_MODIFY_MODEL TO GRAPH_DEVELOPER';
    EXECUTE IMMEDIATE 'GRANT PGX_SESSION_READ_MODEL TO GRAPH_DEVELOPER';
    EXECUTE IMMEDIATE 'GRANT PGX_SESSION_SET_IDLE_TIMEOUT TO 
GRAPH_DEVELOPER';
    EXECUTE IMMEDIATE 'GRANT PGX_SESSION_CREATE TO GRAPH_USER';
    EXECUTE IMMEDIATE 'GRANT PGX_SESSION_GET_PUBLISHED_GRAPH TO 
GRAPH_USER';
    BEGIN
      EXECUTE IMMEDIATE 'GRANT CREATE PROPERTY GRAPH TO GRAPH_DEVELOPER';
    EXCEPTION WHEN others then
      if sqlcode = -990 then

Chapter 14
Oracle Graph Server Installation

14-13



        mdsys.opg_log.debug('grant create property graph to 
graph_developer: missing privilege, continue');
      else
        raise;
      end if;
    END;
  EXCEPTION
    when others then
      dbms_output.put_line('add_graph_roles_grants: hit error ');
      raise;
  END;
  /

Optionally, this procedure is also available in /opt/oracle/graph/scripts/
create_graph_roles.sql.

7. Assign roles to all the database developers who should have access to the graph server
(PGX). For example:

GRANT GRAPH_DEVELOPER TO <graphuser>

where <graphuser> is a user in the database. You can also assign individual permissions
(roles prefixed with PGX_) to users directly.

8. Assign the administrator role to users who should have administrative access. For
example:

GRANT GRAPH_ADMINISTRATOR to <administratoruser>

where <administratoruser> is a user in the database.

• Privileges and Roles in Oracle Database
This section describes the database roles and privileges that are required only if you are
using the graph server (PGX).

14.2.4.1.1 Privileges and Roles in Oracle Database
This section describes the database roles and privileges that are required only if you are using
the graph server (PGX).

Table 14-4    Oracle Database Privileges and Roles Required for Using the Graph Server
(PGX)

Role Operations enabled by this role Used By

PGX_SESSION_CREATE Create a new PGX session using the
ServerInstance.createSession API.

Graph developers and
graph users

PGX_SERVER_GET_INFO Get status information on the PGX instance
using the Admin API.

Users who administer
PGX

PGX_SERVER_MANAGE
(includes
PGX_SERVER_GET_INFO)

Manage the PGX instance using the Admin
API to stop or restart PGX.

Users who administer
PGX

Chapter 14
Oracle Graph Server Installation

14-14

https://docs.oracle.com/en/database/oracle/property-graph/21.2/spgjv/oracle/pgx/api/admin/Control.html
https://docs.oracle.com/en/database/oracle/property-graph/21.2/spgjv/oracle/pgx/api/admin/Control.html
https://docs.oracle.com/en/database/oracle/property-graph/21.2/spgjv/oracle/pgx/api/admin/Control.html


Table 14-4    (Cont.) Oracle Database Privileges and Roles Required for Using the Graph
Server (PGX)

Role Operations enabled by this role Used By

PGX_SESSION_NEW_GRAPH Create a new graph in PGX by loading from
the database using a config file, using the
CREATE PROPERTY GRAPH statement in
PGQL, creating a sub-graph from another
graph, or using the GraphBuilder.

Graph developers and
graph users

PGX_SESSION_GET_PUBLISH
ED_GRAPH

Query and view graphs published by another
user to the public namespace.

Graph developers and
graph users

PGX_SESSION_ADD_PUBLISH
ED_GRAPH (includes
PGX_SESSION_GET_PUBLISH
ED_GRAPH)

Publish a graph to the public namespace. Graph developers

PGX_SESSION_COMPILE_ALG
ORITHM

Compile an algorithm using the PGX
Algorithm API.

Graph developers

PGX_SESSION_READ_MODEL Load and use an ML model using PgxML. Graph developers

PGX_SESSION_MODIFY_MODE
L

Create, train, and store an ML model using
PgxML.

Graph developers

Few additional roles are also created to group multiple roles together. They provide a
convenient way to grant multiple roles to database users. See Mapping Graph Server Roles to
Default Privileges for more information on these additional roles.

You can create additional groups that are useful for your application, as described in Adding
and Removing Roles and Defining Permissions for Individual Users.

14.2.4.2 Prepare the Graph Server for Database Authentication
Locate the pgx.conf file of your installation.

If you installed the graph server via RPM, the file is located at: /etc/oracle/graph/pgx.conf
If you use the webapps package to deploy into Tomcat or WebLogic Server, the pgx.conf file is
located inside the web application archive file (WAR file) at: WEB-INF/classes/pgx.conf
Tip: On Linux, you can use vim to edit the file directly inside the WAR file without unzipping it
first. For example:

vim graph-server-webapp-<version>.war

Inside the pgx.conf file, locate the jdbc_url line of the realm options:

...
"pgx_realm": {
  "implementation": "oracle.pg.identity.DatabaseRealm",
  "options": {
    "jdbc_url": "<REPLACE-WITH-DATABASE-URL-TO-USE-FOR-AUTHENTICATION>",
    "token_expiration_seconds": 3600,
...

Chapter 14
Oracle Graph Server Installation

14-15



Replace the text with the JDBC URL pointing to your database that you configured in the
previous step. For example:

...
"pgx_realm": {
  "implementation": "oracle.pg.identity.DatabaseRealm",
  "options": {
    "jdbc_url": "jdbc:oracle:thin:@myhost:1521/myservice",
    "token_expiration_seconds": 3600,
...

Then, start the graph server by running the following command as a root user or with sudo:

sudo systemctl start pgx

Preparing the Graph Server (PGX) to Connect to Autonomous Database

You can configure your graph server(PGX) to connect to an Autonomous Database instance.

Irrespective of whether your graph server (PGX) instance is running on premises or on Oracle
Cloud Infrastructure (OCI), you can perform the following steps to determine the service name
to connect to your Autonomous Database instance and update the JDBC URL in /etc/oracle/
graph/pgx.conf file.

1. Download and save the wallet for your Autonomous Database instance from the Oracle
Cloud Infrastructure (OCI) Console. See Download Client Credentials (Wallets) for more
information.

2. Unzip the wallet to a new subdirectory in /etc/oracle/graph/wallets/<dbname>, and
change the group permission as shown:

sudo unzip Wallet_<dbname>.zip -d /etc/oracle/graph/wallets/<dbname>
sudo chgrp -R oraclegraph /etc/oracle/graph/wallets/<dbname>

3. Determine the connect identifier from the tnsnames.ora file in /etc/oracle/graph/
wallets/<dbname> directory. For example, the entry must be similar to:

graphdb_low = 
    description= (retry_count=20)(retry_delay=3)
        (address=
            (protocol=tcps)(port=1522)
            (host=adwc.example.oraclecloud.com)
        )
        (connect_data=(service_name=graphdb_low.adwc.oraclecloud.com))
        (security=(ssl_server_cert_dn="CN=adwc.example.oraclecloud.com, 
OU=Oracle BMCS US, O=Oracle Corporation, L=Redwood City, ST=California, 
C=US"))
)

In the preceding example, graphdb_low is the connect identifier.

Chapter 14
Oracle Graph Server Installation

14-16

https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/connect-download-wallet.html#GUID-B06202D2-0597-41AA-9481-3B174F75D4B1


4. Update the JDBC URL in /etc/oracle/graph/pgx.conf file with the connect identifier
determined in the preceding step along with the directory path to the unzipped wallet file.
For example:

...
"pgx_realm": {
  "implementation": "oracle.pg.identity.DatabaseRealm",
  "options": {
    "jdbc_url": "jdbc:oracle:thin:@graphdb_low?TNS_ADMIN=/etc/oracle/graph/
wallets/<dbname>",
    "token_expiration_seconds": 3600,
...

5. Finally, restart the graph server as shown:

sudo systemctl restart pgx

14.2.4.3 Store the Database Password in a Keystore
PGX requires a database account to read data from the database into memory. The account
should be a low-privilege account (see Security Best Practices with Graph Data).

As described in Reading Graphs from Oracle Database into the Graph Server (PGX), you can
read data from the database into the graph server without specifying additional authentication
as long as the token is valid for that database user. But if you want to access a graph from a
different user, you can do so, as long as that user's password is stored in a Java Keystore file
for protection.

You can use the keytool command that is bundled together with the JDK to generate such a
keystore file on the command line. See the following script as an example:

# Add a password for the 'database1' connection
keytool -importpass -alias database1 -keystore keystore.p12
# 1. Enter the password for the keystore
# 2. Enter the password for the database
 
# Add another password (for the 'database2' connection)
keytool -importpass -alias database2 -keystore keystore.p12
 
# List what's in the keystore using the keytool
keytool -list -keystore keystore.p12

If you are using Java version 8 or lower, you should pass the additional parameter -storetype
pkcs12 to the keytool commands in the preceding example.

You can store more than one password into a single keystore file. Each password can be
referenced using the alias name provided.

• Write the PGX graph configuration file to load a graph directly from relational tables

• Read the data

• Secure coding tips for graph client applications

Chapter 14
Oracle Graph Server Installation

14-17



Write the PGX graph configuration file to load a graph directly from relational tables

The following example loads a subset of the HR sample data from relational tables directly into
PGX as a graph. The configuration file specifies a mapping from relational to graph format by
using the concept of vertex and edge providers.

Note:

Specifying the vertex_providers and edge_providers properties loads the data into
an optimized representation of the graph.

{
    "name":"hr",
    "jdbc_url":"jdbc:oracle:thin:@myhost:1521/orcl",
    "username":"hr",
    "keystore_alias":"database1",
    "vertex_id_strategy": "no_ids",
    "vertex_providers":[
        {
            "name":"Employees",
            "format":"rdbms",
            "database_table_name":"EMPLOYEES",
            "key_column":"EMPLOYEE_ID",
            "key_type": "string",
            "props":[
                {
                    "name":"FIRST_NAME",
                    "type":"string"
                },
                {
                    "name":"LAST_NAME",
                    "type":"string"
                },
                {
                    "name":"EMAIL",
                    "type":"string"
                },
                {
                    "name":"SALARY",
                    "type":"long"
                }
            ]
        },
        {
            "name":"Jobs",
            "format":"rdbms",
            "database_table_name":"JOBS",
            "key_column":"JOB_ID",
            "key_type": "string",
            "props":[
                {
                    "name":"JOB_TITLE",

Chapter 14
Oracle Graph Server Installation

14-18



                    "type":"string"
                }
            ]
        },
        {
            "name":"Departments",
            "format":"rdbms",
            "database_table_name":"DEPARTMENTS",
            "key_column":"DEPARTMENT_ID",
            "key_type": "string",
            "props":[
                {
                    "name":"DEPARTMENT_NAME",
                    "type":"string"
                }
            ]
        }
    ],
    "edge_providers":[
        {
            "name":"WorksFor",
            "format":"rdbms",
            "database_table_name":"EMPLOYEES",
            "key_column":"EMPLOYEE_ID",
            "source_column":"EMPLOYEE_ID",
            "destination_column":"EMPLOYEE_ID",
            "source_vertex_provider":"Employees",
            "destination_vertex_provider":"Employees"
        },
        {
            "name":"WorksAs",
            "format":"rdbms",
            "database_table_name":"EMPLOYEES",
            "key_column":"EMPLOYEE_ID",
            "source_column":"EMPLOYEE_ID",
            "destination_column":"JOB_ID",
            "source_vertex_provider":"Employees",
            "destination_vertex_provider":"Jobs"
        },
        {
            "name":"WorkedAt",
            "format":"rdbms",
            "database_table_name":"JOB_HISTORY",
            "key_column":"EMPLOYEE_ID",
            "source_column":"EMPLOYEE_ID",
            "destination_column":"DEPARTMENT_ID",
            "source_vertex_provider":"Employees",
            "destination_vertex_provider":"Departments",
            "props":[
                {
                    "name":"START_DATE",
                    "type":"local_date"
                },
                {
                    "name":"END_DATE",
                    "type":"local_date"

Chapter 14
Oracle Graph Server Installation

14-19



                }
            ]
        }
    ]
}

Read the data

Now you can instruct PGX to connect to the database and read the data by passing in both the
keystore and the configuration file to PGX, using one of the following approaches:

• Interactively in the graph shell
If you are using the graph shell, start it with the --secret_store option. It will prompt you
for the keystore password and then attach the keystore to your current session. For
example:

cd /opt/oracle/graph
./bin/opg4j --secret_store /etc/my-secrets/keystore.p12
 
 enter password for keystore /etc/my-secrets/keystore.p12:

Inside the shell, you can then use normal PGX APIs to read the graph into memory by
passing the JSON file you just wrote into the readGraphWithProperties API:

opg4j> var graph = session.readGraphWithProperties("config.json")
graph ==> PgxGraph[name=hr,N=215,E=415,created=1576882388130]

• As a PGX preloaded graph
As a server administrator, you can instruct PGX to load graphs into memory upon server
startup. To do so, modify the PGX configuration file at /etc/oracle/graph/pgx.conf and
add the path the graph configuration file to the preload_graphs section. For example:

{
  ...
  "preload_graphs": [{
    "name": "hr", 
    "path": "/path/to/config.json"
  }],
  "authorization": [{
    "pgx_role": "GRAPH_DEVELOPER",
    "pgx_permissions": [{
      "preloaded_graph": "hr",
      "grant": "read"
    }]
  },    
    ....
  ]
}

As root user, edit the service file at /etc/systemd/system/pgx.service and change the
ExecStart command to specify the location of the keystore containing the password:

ExecStart=/bin/bash start-server --secret-store /etc/keystore.p12

Chapter 14
Oracle Graph Server Installation

14-20



Note:

Please note that /etc/keystore.p12 must not be password protected for this to
work. Instead protect the file via file system permission that is only readable by
oraclegraph user.

After the file is edited, reload the changes using:

sudo systemctl daemon-reload

Finally start the server:

sudo systemctl start pgx

• In a Java application
To register a keystore in a Java application, use the registerKeystore() API on the
PgxSession object. For example:

import oracle.pgx.api.*;
 
class Main {
   
  public static void main(String[] args) throws Exception {
    String baseUrl = args[0];
    String keystorePath = "/etc/my-secrets/keystore.p12";
    char[] keystorePassword = args[1].toCharArray();
    String graphConfigPath = args[2];
    ServerInstance instance = Pgx.getInstance(baseUrl);
    try (PgxSession session = instance.createSession("my-session")) {
      session.registerKeystore(keystorePath, keystorePassword);
      PgxGraph graph = session.readGraphWithProperties(graphConfigPath);
      System.out.println("N = " + graph.getNumVertices() + " E = " + 
graph.getNumEdges());
    }
  }
}

You can compile and run the preceding sample program using the Oracle Graph Client
package. For example:

cd $GRAPH_CLIENT
// create Main.java with above contents
javac -cp 'lib/*' Main.java
java -cp '.:conf:lib/*' Main http://myhost:7007 MyKeystorePassword path/to/
config.json

Secure coding tips for graph client applications

When writing graph client applications, make sure to never store any passwords or other
secrets in clear text in any files or in any of your code.

Chapter 14
Oracle Graph Server Installation

14-21



Do not accept passwords or other secrets through command line arguments either. Instead,
use Console.html#readPassword() from the JDK.

14.2.4.4 Adding Permissions to Publish the Graph
There are two ways by which you can view any graph in your graph server (PGX) session in
the graph visualization application.

When you log into the graph visualization tool in your browser, that will be a different session
from your JShell session or application session. To visualize the graph you are working on in
your JShell session or application session in your graph visualization session, you can perform
one of the following two steps:

1. Get the session id of your working session using the PgxSession API, and use that session
id when you log into the graph visualization application. This is the recommended option.

opg4j> session.getId();
$2 ==> "898bdbc3-af80-49b7-9a5e-10ace6c9071c"  //session id

or

2. Grant PGX_SESSION_ADD_PUBLISHED_GRAPH permission and then publish the graph as
shown:

a. Grant PGX_SESSION_ADD_PUBLISHED_GRAPH role in the database to the user visualizing
the graph as shown in the following statement:

GRANT PGX_SESSION_ADD_PUBLISHED_GRAPH TO <graphuser>

b. Publish the graph when you are ready to visualize the graph using the publish API.

Note:

• See User Authentication and Authorization for more information on
authorization rules for Graph Server (PGX) and Client 21.1.

• See Upgrading From Graph Server and Client 20.4.x to 21.x for more
information if you are migrating to Graph Server (PGX) and Client 24.3 from
an earlier version.

14.2.4.5 Token Expiration
By default, tokens are valid for 1 hour.

Internally, the graph client automatically renews tokens which are about to expire in less than
30 minutes. This is also configurable by re-authenticating your credentials with the database.
By default, tokens can only be automatically renewed for up to 24 times, then you need to login
again.

If the maximum amount of auto-renewals is reached, you can log in again without losing any of
your session data by using the GraphServer#reauthenticate (instance, "<user>",
"<password>") API.

Chapter 14
Oracle Graph Server Installation

14-22



Note:

If a session time out occurs before you re-authenticate, then you may lose your
session data.

For example:

opg4j> var graph = 
session.readGraphByName("BANK_GRAPH_VIEW",GraphSource.PG_PGQL)  // fails 
because token cannot be renewed anymore
opg4j> GraphServer.reauthenticate(instance, "<user>", 
"<password>".toCharArray()) // log in again
opg4j> var graph = 
session.readGraphByName("BANK_GRAPH_VIEW",GraphSource.PG_PGQL) // works now 
 

14.2.4.6 Customizing Roles and Permissions
You can fully customize the permissions to roles mapping by adding and removing roles and
specifying permissions for a role. You can also authorize individual users instead of roles.

This topic includes examples of how to customize the permission mapping.

• Checking Graph Permissions Using API

• Adding and Removing Roles
You can add new role permission mappings or remove existing mappings by modifying the
authorization list.

• Defining Permissions for Individual Users
In addition to defining permissions for roles, you can define permissions for individual
users.

• Defining Permissions to Use Custom Graph Algorithms
You can define permissions to allow developers to compile custom graph algorithms.

14.2.4.6.1 Checking Graph Permissions Using API
You can view your roles and graph permissions using the following PGX API methods:

Table 14-5    API for Checking Graph Permissions

Class Method Description

ServerInstance getPgxUsername() Name of the current user

ServerInstance getPgxUserRoles() Role names of the current user

ServerInstance getPgxGenericPermissions() Non-graph (system) permissions
of the current user:
• Pgx system permissions
• File-location permissions

PgxGraph getPermission() Permission on the graph instance
for a current user

You can get all permission-related information using the API in JShell as shown:

Chapter 14
Oracle Graph Server Installation

14-23



• JShell

• Java

JShell

/bin/opg4j -b "https://<host>:<port>" -u "<graphuser>"
opg4j> instance
instance ==> ServerInstance[embedded=false,baseUrl=https://
<host>:<port>,serverVersion=null]
opg4j> instance.getPgxUsername()
$2 ==> "ORACLE"
opg4j> instance.getPgxUserRoles()
$3 ==> [GRAPH_DEVELOPER]
opg4j> instance.getPgxGenericPermissions()
$4 ==> [PGX_SESSION_CREATE, PGX_SESSION_READ_MODEL, 
PGX_SESSION_ADD_PUBLISHED_GRAPH, PGX_SESSION_NEW_GRAPH, 
PGX_SESSION_GET_PUBLISHED_GRAPH, PGX_SESSION_MODIFY_MODEL]
opg4j> var g = session.readGraphByName("BANK_GRAPH_VIEW", GraphSource.PG_PGQL)
g ==> PgxGraph[name=BANK_GRAPH_VIEW,N=999,E=4993,created=1688558374973]
opg4j> g.getPermission() // To get graph permissions
$9 ==> MANAGE

Java

import oracle.pg.rdbms.*;
import java.sql.Connection;
import java.sql.Statement;
import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlStatement;
import oracle.pgx.api.*;
import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;
import java.nio.file.Files;
import java.nio.file.Path;

/**
 * This example shows how to get all permissions.
 */
public class GetPermissions
{

  public static void main(String[] args) throws Exception
  {
    int idx=0;
    String host               = args[idx++]; 
    String port               = args[idx++]; 
    String sid                = args[idx++]; 
    String user               = args[idx++]; 
    String password           = args[idx++];
    String graph              = args[idx++];
        
    Connection conn = null;

Chapter 14
Oracle Graph Server Installation

14-24



    PgxPreparedStatement stmt = null;
  
    try {
      
      // Get a jdbc connection
      PoolDataSource  pds = PoolDataSourceFactory.getPoolDataSource();
      pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
      pds.setURL("jdbc:oracle:thin:@"+host+":"+port +"/"+sid);
      pds.setUser(user);
      pds.setPassword(password);     
      conn = pds.getConnection();
      conn.setAutoCommit(false);
      
      ServerInstance instance = GraphServer.getInstance("http://
localhost:7007", user, password.toCharArray());
      PgxSession session = instance.createSession("my-session");

      var statement = Files.readString(Path.of("/media/sf_Linux/Java/create-
pg.pgql"));
      stmt = session.preparePgql(statement);
      stmt.execute();

      PgxGraph g = session.getGraph(graph);
      System.out.println("Graph: "+ g);
      
      String userName = instance.getPgxUsername();
      var userRoles = instance.getPgxUserRoles();
      var genericPermissions = instance.getPgxGenericPermissions();
      String graphPermission = g.getPermission().toString();

      System.out.println("Username is " + userName);
      System.out.println("User Roles are " + userRoles);
      System.out.println("Generic permissions are " + genericPermissions);
      System.out.println("Graph permission is " + graphPermission);

    }

    finally {
      // close the sql statment
      if (stmt != null) {
        stmt.close();
      }
      // close the connection
      if (conn != null) {
        conn.close();
      }
    }
  }
}

On execution, the code gives the following output:

Graph: PgxGraph[name=BANK_GRAPH_PG,N=1000,E=5001,created=1625731370402]
Username is ORACLE
User Roles are [GRAPH_DEVELOPER]

Chapter 14
Oracle Graph Server Installation

14-25



Generic permissions are [PGX_SESSION_MODIFY_MODEL, PGX_SESSION_CREATE, 
PGX_SESSION_NEW_GRAPH, PGX_SESSION_READ_MODEL, 
PGX_SESSION_ADD_PUBLISHED_GRAPH, PGX_SESSION_GET_PUBLISHED_GRAPH]
Graph permission is MANAGE

14.2.4.6.2 Adding and Removing Roles
You can add new role permission mappings or remove existing mappings by modifying the
authorization list.

For example:

CREATE ROLE MY_CUSTOM_ROLE_1
GRANT PGX_SESSION_CREATE TO MY_CUSTOM_ROLE1 
GRANT PGX_SERVER_GET_INFO TO MY_CUSTOM_ROLE1 
GRANT MY_CUSTOM_ROLE1 TO SCOTT

14.2.4.6.3 Defining Permissions for Individual Users
In addition to defining permissions for roles, you can define permissions for individual users.

For example:

GRANT PGX_SESSION_CREATE TO SCOTT 
GRANT PGX_SERVER_GET_INFO TO SCOTT 

14.2.4.6.4 Defining Permissions to Use Custom Graph Algorithms
You can define permissions to allow developers to compile custom graph algorithms.

For example,

• Add the following static permission to the list of permissions:

GRANT PGX_SESSION_COMPILE_ALGORITHM TO GRAPH_DEVELOPER

14.2.4.7 Revoking Access to the Graph Server
To revoke a user's ability to access the graph server, either drop the user from the database or
revoke the corresponding roles from the user, depending on how you defined the access rules
in your pgx.conf file.

For example:

REVOKE graph_developer FROM scott

Chapter 14
Oracle Graph Server Installation

14-26



Revoking Graph Permissions

If you have the MANAGE permission on a graph, you can revoke graph access from users or
roles using the PgxGraph#revokePermission API. For example:

PgxGraph g = ...
g.revokePermission(new PgxRole("GRAPH_DEVELOPER")) // revokes previously 
granted role access
g.revokePermission(new PgxUser("SCOTT")) // revokes previously granted user 
access

14.2.4.8 Examples of Custom Authorization Rules
You can define custom authorization rules for developers.

• Example 14-1

• Example 14-2

• Example 14-3

• Example 14-4

Example 14-1    Allowing Developers to Publish Graphs

Sharing of graphs with other users should be done in Oracle Database where possible. Use
GRANT statements on the database tables so that other users can create graphs from the
tables.

In the graph server (PGX) you can use the following permissions to share a graph that is
already in memory, with other users connected to the graph server.

Table 14-6    Allowed Permissions

Permission Actions Enabled by this Permission

READ • READ the graph via the PGX API or in PGQL
queries in PGX, create a subgraph, or clone
the graph

MANAGE • Publish the graph or snapshot

• Includes READ and EXPORT

• Grant or revoke READ and EXPORT
permissions on the graph

EXPORT • Export the graph to a file.

• Includes READ permission.

The creator of the graph automatically gets the MANAGE permission granted on the graph. If
you have the MANAGE permission, you can grant other roles or users READ or EXPORT
permission on the graph. You cannot grant MANAGE on a graph. The following describes an
example of granting READ permission on a graph to the GRAPH_DEVELOPER role by userA:

import oracle.pgx.api.*;
import oracle.pgx.common.auth.*;
...
PgxSession session = GraphServer.getInstance("<base-url>", "<userA>", 
"<password-of-userA").createSession("userA");

Chapter 14
Oracle Graph Server Installation

14-27



PgxGraph g = session.readGraphByName("SAMPLE_GRAPH", GraphSource.PG_PGQL);
g.grantPermission(new PgxRole("GRAPH_DEVELOPER"), PgxResourcePermission.READ);
g.publish();

Now other users with the GRAPH_DEVELOPER role can access this graph and have READ access
on it, as shown in the following example of userB:

PgxSession session = GraphServer.getInstance("<base-url>", "<userB>", 
"<password-of-userB").createSession("userB")
PgxGraph g = session.getGraph("sample_graph")
g.queryPgql("select count(*) from match (v)").print().close()

Similarly, graphs can be shared with individual users instead of roles, as shown in the following
example:

g.grantPermission(new PgxUser("OTHER_USER"), PgxResourcePermission.EXPORT)

where OTHER_USER is the user name of the user that will receive the EXPORT permission
on graph g.

Example 14-2    Allowing Developers to Access Preloaded Graphs

To allow developers to access preloaded graphs (graphs loaded during graph server startup),
grant the read permission on the preloaded graph in the pgx.conf file. For example:

"preload_graphs": [{
  "path": "/data/my-graph.json",
  "name": "global_graph"
}],
"authorization": [{
  "pgx_role": "GRAPH_DEVELOPER",
  "pgx_permissions": [{
    "preloaded_graph": "global_graph"
    "grant": "read"
  },
...

You can grant READ, EXPORT, or MANAGE permission.

Example 14-3    Allowing Developers Access to the Local File System

To allow developers access to the local file system (where the graph server runs), you must
first declare a directory and then map it to a read or write permission. For example:

CREATE OR REPLACE DIRECTORY pgx_file_location AS '/opt/oracle/graph/data'
GRANT READ ON DIRECTORY pgx_file_location TO GRAPH_DEVELOPER

Similarly, you can add another permission with GRANT WRITE to allow write access. Such a write
access is required in order to export graphs.

Note that in addition to the preceding configuration, the operating system user that runs the
graph server process must have the corresponding directory privileges to actually read or write
into those directories.

Chapter 14
Oracle Graph Server Installation

14-28



Example 14-4    Allowing Access to Directories on Autonomous Database

To allow developers to read and write from files in Oracle Autonomous Database, you must
perform the following steps:

1. Connect to your Autonomous Database instance as an ADMIN user using any of the SQL
based Oracle Database tools or using Database Actions, the built-in web-based interface.

See Also:

• Connect to Autonomous Database Using Oracle Database Tools

• Connect with Built-in Oracle Database Actions

2. Create the directory by specifying the path to the directory using the graph: prefix as
shown:

CREATE OR REPLACE DIRECTORY pgx_file_location AS 'graph:/opt/oracle/graph/
data'

3. Grant read or write permissions to the directory for the desired role. For example:

GRANT READ ON DIRECTORY pgx_file_location TO GRAPH_DEVELOPER

14.2.4.9 Kerberos Enabled Authentication for the Graph Server (PGX)
The graph server (PGX) can authenticate users using an Oracle Database with Kerberos
enabled as identity provider.

You can log into the graph server using a Kerberos ticket and the actions which you are
allowed to do on the graph server are determined by the roles that have been granted to you in
the Oracle Database.

• Prerequisite Requirements

• Prepare the Graph Server for Kerberos Authentication

• Login to the Graph Server Using Kerberos Ticket

14.2.4.9.1 Prerequisite Requirements
In order to enable Kerberos authentication on the graph server (PGX), the following system
requirements must be met:

• The database needs to have Kerberos authentication enabled. See Configuring Kerberos
Authentication for more information.

• Both the database and the Kerberos Authentication Server need to be reachable from the
host where the graph server runs.

• The database is prepared for graph server authentication. That is, relevant graph roles
have been granted to users who will log into the graph server.

14.2.4.9.2 Prepare the Graph Server for Kerberos Authentication
The following are the steps to enable Kerberos authentication on the graph server (PGX):

Chapter 14
Oracle Graph Server Installation

14-29

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=GUID-CF6C7E1B-D0D4-4641-BADA-5C57DEA7C73B
https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/connect-database-actions.html#GUID-102845D9-6855-4944-8937-5C688939610F


1. Locate the pgx.conf file of your installation.

Note:

If you installed the graph server via RPM, the file is located at: /etc/oracle/
graph/pgx.conf

2. Locate the krb5_conf_file line of the realm options, inside the pgx.conf file:

"pgx_realm": {
  "implementation": "oracle.pg.identity.DatabaseRealm",
  "options": {
    ...
    "krb5_conf_file": "<REPLACE-WITH-KRB5-CONF-FILE-PATH-TO-ENABLE-
KERBEROS-AUTHENTICATION>",
    "krb5_ticket_cache_dir": "/dev/shm",
    "krb5_max_cache_size": 1024
  }
},

3. Replace the text with the krb5.conf file that you are using for the database and user
authentication. For example:

"pgx_realm": {
  "implementation": "oracle.pg.identity.DatabaseRealm",
  "options": {
    ...
    "krb5_conf_file": "/etc/krb5.conf",
    "krb5_ticket_cache_dir": "/dev/shm",
    "krb5_max_cache_size": 1024
  }
},

Note:

The file provided for the krb5_conf_file option needs to be valid and readable
by the graph server. In case you don't replace the krb5_conf_file value or the
value is empty, then the graph server will not use Kerberos authentication.

Also, you can set the cache directory that will be used for the graph server to temporarily
store Kerberos tickets given by clients as well as the maximum cache size after which new
login attempts will be rejected. The cache size represents the maximum amount of
concurrent Kerberos sessions active on the graph server.

14.2.4.9.3 Login to the Graph Server Using Kerberos Ticket
The following are the steps to login to the graph server (PGX) using Kerberos ticket:

1. Create a new Kerberos ticket using the okinit command:

$ okinit <username>

Chapter 14
Oracle Graph Server Installation

14-30



This will prompt for your password and then create a new Kerberos ticket.

2. Connect to a remote graph server with only the base URL parameter using JShell:

$ opg4j -b https://localhost:7007

Or using Python client:

$ opg4py -b https://localhost:7007

On Linux, JShell and Python interactive client shells automatically detect the Kerberos
ticket on your local file system and use that to authenticate with the graph server.

3. In case the auto-detection is not working, you can also explicitly pass in the ticket to the
shell. Run the oklist command, to find the location of the ticket on the local file system.

$ oklist
 
Kerberos Utilities for Linux: Version 19.0.0.0.0 - Production on 31-
MAR-2021 15:26:46
 
Copyright (c) 1996, 2019 Oracle.  All rights reserved.
 
Configuration file : /etc/krb5.conf.
Ticket cache: FILE:/tmp/krb5cc_54321
Default principal: oracle@realm

4. Specify your Kerberos ticket path using the --kerberos_ticket parameter. For example,
using JShell:

$ opg4j -b https://localhost:7007 --kerberos_ticket /tmp/krb5cc_54321

Or using Python Client:

$ opg4py -b https://localhost:7007 --kerberos_ticket /tmp/krb5cc_54321

If you are using a Java client program (or JShell on embedded mode), you can get a
server instance using the following API:

...
ServerInstance instance = GraphServer.getInstance("https://
localhost:7007", "/tmp/krb5cc_54321");
PgxSession session = instance.createSession("my-session");
...

If you are using a Python Client program (or opg4py on embedded mode), you can get a
server instance using the following API

...
instance = graph_server.get_instance("https://localhost:7007", "/tmp/
krb5cc_54321")
session = instance.create_session("my-session")
...

Chapter 14
Oracle Graph Server Installation

14-31



If you are connecting to a remote graph server, all you need is the Oracle Graph Client to
be installed. For example:

import sys
import pypgx as pgx
 
sys.path.append("/path/to/graph/client/oracle-graph-client-21.2.0/python/
pypgx/pg/rdbms")
 
import graph_server
  
base_url = "https://localhost:7007"
kerberos_ticket = "/tmp/krb5cc_54321"
  
instance = graph_server.get_instance(base_url, kerberos_ticket)
print(instance)

14.3 Oracle Graph Client Installation
You can interact with the various graph features using the client CLIs and the graph
visualization web client.

The following sections explain the steps to install the various clients:

• Graph Clients
The Oracle Graph client installation supports a Java and a Python client.

• Running the Graph Visualization Web Client
You require a running graph server (PGX) to use the Graph Visualization web application.

Related Topics

• Getting Started with the Client Tools
You can use multiple client tools to interact with the graph server (PGX) or directly with the
graph data in the database.

14.3.1 Graph Clients
The Oracle Graph client installation supports a Java and a Python client.

The following sections explain the steps to install the clients:

• Oracle Graph Java Client
You can install the Java client from the oracle-graph-client-24.3.0.zip file that is
shipped with Oracle Graph Server and Client or you can use the Java client on Maven
Central.

• Oracle Graph Python Client
You can install the Python client by downloading the oracle-graph-client-24.3.0.zip
file that is shipped with Oracle Graph Server and Client or from PyPI.

14.3.1.1 Oracle Graph Java Client
You can install the Java client from the oracle-graph-client-24.3.0.zip file that is shipped
with Oracle Graph Server and Client or you can use the Java client on Maven Central.

Chapter 14
Oracle Graph Client Installation

14-32



• Installing the Java Client From the Graph Server and Client Downloads
You can download the zip file for Oracle Graph Client 24.3.0 and install the Java client.

• Using Oracle Graph Java Client on Maven Central
You can obtain the property graph Java client from Maven Central.

14.3.1.1.1 Installing the Java Client From the Graph Server and Client Downloads
You can download the zip file for Oracle Graph Client 24.3.0 and install the Java client.

The prerequisites for installing the Java client are:

• Supported Operating Systems: A Unix-based operation system (such as Linux), macOS,
or Microsoft Windows

• Supported JDK versions:

– Oracle JDK 11, JDK 17, or JDK21

– OpenJDK JDK 11, JDK 17, or JDK21

Note:

Due to a bug in Oracle JDK and OpenJDK, which causes a deadlock when you
attempt to copy and paste into a JShell session, it is recommended that you avoid the
following JDK versions:

• JDK 11.0.9

• JDK 11.0.10

• JDK 11.0.11

• JDK 11.0.12

1. Download the Oracle Graph Client from Oracle Software Cloud.

For example, oracle-graph-client-24.3.0.zip.

2. Unzip the file into a directory of your choice.

3. Configure your client to trust the self-signed keystore. See Configuring a Client to Trust the
Self-Signed Keystore for more information.

4. Start the OPG4J shell to connect to the graph server (PGX) as shown:

cd <CLIENT_INSTALL_DIR>
./bin/opg4j --base_url https://<host>:7007 --username <graphuser>

In the preceding code:

• <CLIENT_INSTALL_DIR>: Directory where the shell executables are located.
The shell executables are generally found in /opt/oracle/graph/bin after server
installation, and <CLIENT_INSTALL_DIR>/bin after the client installation.

• <host>: Server host

Chapter 14
Oracle Graph Client Installation

14-33

https://edelivery.oracle.com


Note:

The graph server (PGX), listens on port 7007 by default. If needed, you can
configure the graph server to listen on a different port by changing the port
value in the server configuration file (server.conf). See Configuring the
Graph Server (PGX) for details.

• <graphuser>: Database user

You will be prompted for the database password.

See Starting the OPG4J Shell for more information on the different ways you can start the
OPG4J shell.

The OPG4J shell starts and the following command line prompt appears as shown:

For an introduction type: /help intro
Oracle Graph Server Shell 24.3.0
Variables instance, session, and analyst ready to use.
opg4j>

See Also:

Java API Reference for more information on the Java APIs

14.3.1.1.2 Using Oracle Graph Java Client on Maven Central
You can obtain the property graph Java client from Maven Central.

The Maven artifact for the graph Java client is described as follows:

• Group Name: com.oracle.database.graph

• Artifact Name: opg-client

• Version: 24.3.0

You can perform the following steps to use the graph Java client from Maven Central:

1. Download and Install Apache Maven on your system.

See Apache Maven Project for more information.

2. Add the bin folder with the mvn command to the PATH variable.

3. Build your Maven project and navigate to the project directory.

4. Edit the pom.xml file on the following:

a. Add the graph Java client dependency as shown:

<dependencies>
    <dependency>
      <groupId>com.oracle.database.graph</groupId>
      <artifactId>opg-client</artifactId>
      <version>24.3.0</version>
    </dependency>
</dependencies>

Chapter 14
Oracle Graph Client Installation

14-34

http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=java_doc
https://maven.apache.org/download.cgi


Note:

If you use Gradle as a build tool, then the equivalent dependency declaration
for the Java client is:

implementation group: 'com.oracle.database.graph', name: 'opg-
client', version: '24.3.0'

b. Add the following repository as the Java client depends on the Spoofax Language
Workbench Library to compile PGQL queries:

<repositories>
    <repository>
      <id>spoofax</id>
      <url>https://artifacts.metaborg.org/content/repositories/
releases</url>
    </repository>
</repositories>

5. Optionally, you can skip step 4 and copy the following minimal POM configuration in
<project_dir>/pom.xml file:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://
maven.apache.org/maven-v4_0_0.xsd">
  <modelVersion>4.0.0</modelVersion>
  <groupId>com.mycompany.app</groupId>
  <artifactId>my-app</artifactId>
  <packaging>jar</packaging>
  <version>1.0-SNAPSHOT</version>
  <name>my-app</name>
  <repositories>
    <repository>
      <id>spoofax</id>
      <url>https://artifacts.metaborg.org/content/repositories/releases</
url>
    </repository>       
  </repositories>
  <dependencies>
    <dependency>
      <groupId>com.oracle.database.graph</groupId>
      <artifactId>opg-client</artifactId>
      <version>24.3.0</version>
    </dependency>
  </dependencies>
</project>

6. Build your Java code in <project_dir>/src/main/java/com/mycompany/app and compile
with Maven.

Chapter 14
Oracle Graph Client Installation

14-35

https://www.metaborg.org/en/latest/
https://www.metaborg.org/en/latest/


For example, the following code is stored in a file <project_dir>/src/main/java/com/
mycompany/app/App1.java:

package com.mycompany.app;
 
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlStatement;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pgx.api.*;
import oracle.pg.rdbms.GraphServer;
import oracle.pg.rdbms.pgql.jdbc.PgqlJdbcRdbmsDriver;

public class App1 {
 
  public static void main(String[] args) throws Exception {
    String dbConnectString = args[0];
    String username = args[1];
    String password = args[2];
 
    // Obtain a JDBC database connection
    DriverManager.registerDriver(new PgqlJdbcRdbmsDriver());
    String jdbcUrl = "jdbc:oracle:pgql:@" + dbConnectString;
    System.out.println("connecting to " + jdbcUrl);

    try (Connection conn = DriverManager.getConnection(jdbcUrl, username, 
password)) {
      conn.setAutoCommit(false);

      // Create PGQL connection
      PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);

      // Create a PGQL statement to execute PGQL queries
      PgqlStatement pgqlStmt = pgqlConn.createStatement();

      // Create a PGQL property graph using the CREATE PROPERTY GRAPH 
statement
      String pgPgqlName = "BANK_GRAPH";
      String createPgPgqlQuery = 
          "CREATE PROPERTY GRAPH " + pgPgqlName + " " +
          "VERTEX TABLES ( BANK_ACCOUNTS AS ACCOUNTS " +
          "KEY (ID) " +
          "LABEL ACCOUNTS " +
          "PROPERTIES (ID, NAME)" +
          ") " +
          "EDGE TABLES ( BANK_TXNS AS TRANSFERS " +
          "KEY (FROM_ACCT_ID, TO_ACCT_ID, AMOUNT) " +
          "SOURCE KEY (FROM_ACCT_ID) REFERENCES ACCOUNTS (ID) " +
          "DESTINATION KEY (TO_ACCT_ID) REFERENCES ACCOUNTS (ID) " +
          "LABEL TRANSFERS " +
          "PROPERTIES (FROM_ACCT_ID, TO_ACCT_ID, AMOUNT, DESCRIPTION)" +
          ") OPTIONS(PG_PGQL)";

      pgqlStmt.execute(createPgPgqlQuery);

Chapter 14
Oracle Graph Client Installation

14-36



      // Execute a query to retrieve the first 10 elements of the graph
      String pgqlQuery = 
          "SELECT e.from_acct_id, e.to_acct_id, e.amount FROM " +
          "MATCH (n:ACCOUNTS) -[e:TRANSFERS]-> (m:ACCOUNTS) ON " +
          pgPgqlName + " LIMIT 10";

      PgqlResultSet rs = pgqlStmt.executeQuery(pgqlQuery);
      rs.print();

      // Drop the PGQL property graph using the DROP PROPERTY GRAPH 
statement
      String dropPgPgqlQuery = "DROP PROPERTY GRAPH " + pgPgqlName;
      pgqlStmt.execute(dropPgPgqlQuery);
    }
    System.exit(0);
  }
}

You can then compile and run the preceding code by navigating to your project directory
and running the following command:

mvn compile exec:java -Dexec.mainClass="com.mycompany.app.App1"-
Dexec.arguments='<db-connect-string>,<username>,<password>'

On successful processing, the code may produce an output similar to the following. Note,
your output may be different depending on your <db-connect-string>.

[INFO] --- exec-maven-plugin:3.1.0:java (default-cli) @ my-app ---
connecting to jdbc:oracle:pgql:@myhost:1521/oradb
name = Baz

14.3.1.2 Oracle Graph Python Client
You can install the Python client by downloading the oracle-graph-client-24.3.0.zip file
that is shipped with Oracle Graph Server and Client or from PyPI.

Alternatively, you can also install the python client in embedded mode.

• Installing the Python Client from PyPI
You can obtain the property graph Python client from PyPI.

• Upgrading the Python Client
This section describes how to upgrade the Python client.

• Installing the Python Client From the Graph Server and Client Downloads
You can download the zip file for oracle-graph-client-24.3.0 from the Graph Server and
Client downloads and install the Python client.

• Installing the Python Client in Embedded Mode
You can install and work with the Python client in embedded mode.

• Uninstalling the Python Client
This section describes how to uninstall the Python client.

Chapter 14
Oracle Graph Client Installation

14-37



14.3.1.2.1 Installing the Python Client from PyPI
You can obtain the property graph Python client from PyPI.

You can install the oracle-graph-client-24.3.0.zip package from the PyPI repository using
pip.

Before installing the Python client from PyPI, ensure that your system meets the following
requirements:

• Supported operating systems: Linux, Windows, or macOS (M1 or M2 processor)

• Supported JDK versions:

– Oracle JDK 11, JDK 17, or JDK 21

– OpenJDK JDK 11, JDK 17, or JDK21

• Python 3.8 or later

• Ensure that you set the JAVA_HOME environment variable.

• If you are behind a proxy, then set the https_proxy environment variable to the proxy
server.

You can install and verify the Python client installation as shown:

1. Install the client through pip.

For example,

pip install --user oracle-graph-client

This installs the Python client along with all the required dependencies.

2. Verify that your installation is successful.

$ python3
Python 3.8.12 (default, Apr  5 2022, 08:07:47)
[GCC 8.5.0 20210514 (Red Hat 8.5.0-10.0.1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import opg4py
>>> import pypgx

See Also:

Python API Reference for more information on the Python APIs

14.3.1.2.2 Upgrading the Python Client
This section describes how to upgrade the Python client.

1. Review the available Python client versions and the currently installed version.

pip3 index versions oracle-graph-client

WARNING: pip index is currently an experimental command. It may be removed/

Chapter 14
Oracle Graph Client Installation

14-38

https://pypi.org/project/oracle-graph-client/
http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=python_doc


changed in a future release without prior warning.
oracle-graph-client (23.3.0)
Available versions: 23.3.0, 23.2.0, 23.1.0
  INSTALLED: 23.1.0
  LATEST:    23.3.0

2. Run the following command to upgrade your Python client.

pip3 install oracle-graph-client --upgrade

14.3.1.2.3 Installing the Python Client From the Graph Server and Client Downloads
You can download the zip file for oracle-graph-client-24.3.0 from the Graph Server and
Client downloads and install the Python client.

Before you install the Python client, ensure that you meet the following prerequisites.

• System requirements:

– Supported operating system: Linux

– Supported JDK versions:

* Oracle JDK 11, JDK 17, or JDK 21

* OpenJDK JDK 11, JDK 17. or JDK 21

– Supported Python versions: Python 3.8 or 3.9
To verify that you are using the right version of the Python client, run the following
command:

python3 --version
For more information on installing Python 3 on Oracle Linux, see Python for Oracle
Linux.

Note:

If you are using any other operating system or Python version, then you can
install the Python client from PyPI. See Installing the Python Client from PyPI for
more information.

• Ensure that python3-devel is installed in your system.
sudo yum install python3-devel

Note:

See Python API Reference for more information on the Python APIs.

You can perform the following steps to install and connect using the Python client:

1. Download the Oracle Graph Client from Oracle Software Cloud.

For example, oracle-graph-client-24.3.0.zip.

2. Unzip the file into a directory of your choice.

The unzipped folder contains the oracle-graph-python-client-24.3.0.zip file for
installing the Python client.

Chapter 14
Oracle Graph Client Installation

14-39

https://yum.oracle.com/oracle-linux-python.html
https://yum.oracle.com/oracle-linux-python.html
http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=python_doc
https://edelivery.oracle.com


3. Install the Python client by running the following command.

python3 oracle-graph-python-client-24.3.0.zip --user
4. Configure your client to trust the self-signed keystore. See Configuring a Client to Trust the

Self-Signed Keystore for more information.

5. Start the OPG4Py shell to connect to the graph server(PGX) by running the following
command:

cd <CLIENT_INSTALL_DIR>
./bin/opg4py --base_url https://<host>:7007

In the preceding code:

• <CLIENT_INSTALL_DIR>: Directory where the shell executables are located.
The shell executables are found in <CLIENT_INSTALL_DIR>/bin after the client
installation.

• <host>: Server host

Note:

The graph server (PGX), listens on port 7007 by default. If needed, you can
configure the graph server to listen on a different port by changing the port
value in the server configuration file (server.conf). See Configuring the
Graph Server (PGX) for details.

You are prompted to enter your username and password.

See Starting the OPG4Py Shell for more information on the different ways you can start
the OPG4Py shell.

The OPG4Py shell starts and the following command line prompt appears as shown:

Oracle Graph Server Shell 24.3.0
>>>

Note:

You can also install the python client library in Jupyter Notebook. Using the
Python API, you can then connect to the graph server (PGX) to run PGQL
queries and graph algorithms in a Jupyter Notebook environment. See Using the
Jupyter Notebook Interface for more details.

14.3.1.2.4 Installing the Python Client in Embedded Mode
You can install and work with the Python client in embedded mode.

To install the embedded Python client:

1. Run the following command:

 python3 /opt/oracle/graph/client/oracle-graph-python-embedded-24.3.0.zip 
--user

Chapter 14
Oracle Graph Client Installation

14-40



2. Start the OPG4Py shell in embedded mode as shown:

cd /opt/oracle/graph
./bin/opg4py

Note that the shell executables are found in /opt/oracle/graph/bin after the server
installation.

The OPG4Py shell starts and the following command line prompt appears as shown:

Oracle Graph Server Shell 24.3.0
>>> instance
ServerInstance(embedded: True, version: 24.3.1)
>>>

14.3.1.2.5 Uninstalling the Python Client
This section describes how to uninstall the Python client.

To uninstall the Python client, run the following command:

pip uninstall oracle-graph-client

14.3.2 Running the Graph Visualization Web Client
You require a running graph server (PGX) to use the Graph Visualization web application.

In addition, ensure that you have provided the JDBC URL for your database in the jdbc_url
parameter in the /etc/oracle/graph/pgx.conf file.

To launch the graph visualization application:

1. Start the graph server on your installation.

• See Installing Oracle Graph Server For Linux x86-64 for more information on using the
rpm installation.

• See Deploying Oracle Graph Server to a Web Server for more information on graph
server deployment to a web server.

2. Connect to your browser for running the Graph Visualization application.

• For rpm installation: https://localhost:7007/dash/
• For Apache Tomcat Server: https://localhost:8080/dash
• For Oracle WebLogic Server: https://<<fqdn-ip>>:<<port>>/dash

Note:

The Graph Visualization application which runs on https://
<server_host>:7007/ui/ is deprecated. It is recommended that you use
https://<server_host>:7007/dash/ to launch the new Graph Visualization
application.

The Graph Visualization Login screen opens as shown:

Chapter 14
Oracle Graph Client Installation

14-41



Figure 14-1    Graph Visualization Login

3. Enter your Username and Password.

4. Optionally, provide the PGX Session ID.

5. Click Submit.

6. Click , the Graph Visualization icon.
The Graph Visualization page opens and the default Graph Server tab is displayed. See 
Using the Graph Visualization Application for more information on how to visualize graphs
using this web application.

14.4 Setting Up Transport Layer Security
The graph server (PGX), by default, allows only encrypted connections using Transport Layer
Security (TLS). TLS requires the server to present a server certificate to the client and the
client must be configured to trust the issuer of that certificate.

In this release of Graph Server and Client, the RPM file installation, will generate a self-signed
server keystore file by default. This server_keystore.jks file contains the server certificate
and server private key and is generated into /etc/oracle/graph, for the server to enable TLS.
Note that the default password for the generated keystore is changeit and this is configured

Chapter 14
Setting Up Transport Layer Security

14-42



using an environment variable PGX_SERVER_KEYSTORE_PASSWORD in /etc/systemd/system/
pgx.service file as shown:

[Service]
Environment="PGX_SERVER_KEYSTORE_PASSWORD=changeit"

If this default keystore configuration is sufficient for you to get started and if your connections
are only to localhost, you can skip to Configuring a Client to Trust the Self-Signed Keystore.

If you prefer to use a self-signed server certificate, then refer to Using a Self-Signed Server
Certificate for more information. However, it is important to note that the server configuration
fields, server_cert and server_private_key are deprecated and will be desupported in a
future release. After that, you will be required to use the server keystore to store the server
certificate and the server private key.

• Using a Self-Signed Server Keystore
This section describes the steps to generate a self-signed keystore into /etc/oracle/
graph and configure the graph server (PGX) and client to use the keystore.

• Using a Self-Signed Server Certificate
This section describes the steps to generate a self-signed certificate into /etc/oracle/
graph and configure the graph server (PGX) to use this certificate.

14.4.1 Using a Self-Signed Server Keystore
This section describes the steps to generate a self-signed keystore into /etc/oracle/graph
and configure the graph server (PGX) and client to use the keystore.

• Generating a Self-Signed Server Keystore
You can create a server key store using the keytool command.

• Configuring the Graph Server (PGX) When Using a Server Keystore
You must specify the path to the server keystore in the graph server (PGX) configuration
file.

• Configuring a Client to Trust the Self-Signed Keystore
You must configure your client application to accept the self-signed keystore.

14.4.1.1 Generating a Self-Signed Server Keystore
You can create a server key store using the keytool command.

The following steps show how to create a server keystore with a self-signed certificate:

1. Go to the following directory:

cd /etc/oracle/graph

2. Run the following command:

keytool -genkey -alias pgx -keyalg RSA -keystore server_keystore.jks

3. Provide the requested details. For example:

Enter keystore password:
Re-enter new password:
What is your first and last name?

Chapter 14
Setting Up Transport Layer Security

14-43



  [Unknown]:  localhost
What is the name of your organizational unit?
  [Unknown]:  OU
What is the name of your organization?
  [Unknown]:  MyOrganization
What is the name of your City or Locality?
  [Unknown]:  MyTown
What is the name of your State or Province?
  [Unknown]:  MyState
What is the two-letter country code for this unit?
  [Unknown]:  US
Is CN=localhost, OU=OU, O=MyOrganization, L=MyTown, ST=MyState, C=US 
correct?
  [no]:  yes

The server_keystore.jks is created successfully in cd /etc/oracle/graph.

14.4.1.2 Configuring the Graph Server (PGX) When Using a Server Keystore
You must specify the path to the server keystore in the graph server (PGX) configuration file.

Note:

If you deploy the graph server into your web server using the web applications
download package, then this section does not apply. Please refer to the manual of
your web server for instructions on how to configure TLS.

1. Edit the file at /etc/oracle/graph/server.conf to specify server keystore alias, server
keystore provider, server keystore type and the path to the server keystore as shown:

{
  "port": 7007,
  "enable_tls": true,
  "enable_client_authentication": false,
  "server_keystore": "/etc/oracle/graph/server_keystore.jks",
  "server_keystore_alias": "pgx",
  "server_keystore_type": "PKCS12",
  "server_keystore_provider": "SUN",
  "ca_certs": [],
  "working_dir": "/opt/oracle/graph/pgx/tmp_data"
}

2. Set the keystore password using an OS environment variable called
PGX_SERVER_KEYSTORE_PASSWORD or with a java property called
pgx.SERVER_KEYSTORE_PASSWORD.

For example, to set the keystore password in PGX_SERVER_KEYSTORE_PASSWORD, edit the file
at /etc/systemd/system/pgx.service as shown:

[Service]
Environment="PGX_SERVER_KEYSTORE_PASSWORD=<keystore_password>"

Chapter 14
Setting Up Transport Layer Security

14-44



3. Reload the systemd configuration by running the following command:

sudo systemctl daemon-reload

4. Optionally, if the keystore is vaild for a different host (other than the localhost), then
update the base_url parameter for the pgx_realm configuration in the pgx.conf file with
the matching host details.

 ...
  "pgx_realm": {
    "implementation": "oracle.pg.identity.DatabaseRealm",
    "options": {
      ...
      "base_url": "<request-scheme>://localhost:<request-port>"
    }
  }
  ...

In the preceding configuration:

• request-scheme: Value can be either HTTP or HTTPS. If not specified, then the graph
server will fetch the corresponding value automatically from the browser.

• request-port: Port number to be used. If not specified, then the graph server will fetch
the corresponding value automatically from the browser.

Replace the default localhost to the required host name.

5. Restart the graph server.

Caution:

• Always use a valid certificate issued by a certificate authority (CA) which is
trusted by your organization. If you do not have a CA certificate, you can
temporarily create a self-signed certificate and get started. However, it is not
recommended to use self-signed certificates for production environments.

• The steps to generate a self-signed server certificate can modify the Java
installation on your client-system. Only perform these steps if you are fully
aware of the implications of accepting the self-signed certificates system-
wide.

• Consider carefully when using commands with sudo.

14.4.1.3 Configuring a Client to Trust the Self-Signed Keystore
You must configure your client application to accept the self-signed keystore.

To configure a client to trust the self-signed keystore, the root certificate must be imported to
your Java installation local trust store.

• For a Java or a Python client, you must import the root certificate to all the Java
installations used by all the clients.

Chapter 14
Setting Up Transport Layer Security

14-45



Note:

The JShell client requires Java 11 or later.

• For the Graph Visualization application, you must import the root certificate to the system
Java installation of the environment running the graph server (PGX) or the web server
serving the graph visualization application. That is, the JDK installation which is used by
the OS user running the server that serves the Graph Visualization application.

You can import the root certificate as shown in the following step:

• Ensure JAVA_HOME is set and run the following command as a root user or with sudo.

sudo keytool -importkeystore -srckeystore /etc/oracle/graph/
server_keystore.jks -destkeystore $JAVA_HOME/lib/security/cacerts -
deststorepass changeit -srcstorepass changeit -noprompt

where changeit is the sample keystore password. You can change this password to a
password of your choice. Be sure to remember this password as you will need it to modify
the certificate.

If you are upgrading the graph server from a previous release, then you must first delete
the existing certificate before importing the new certificate. Run the following command
using sudo or as a root user to delete the certificate:

sudo keytool -delete -alias pgx -keystore $JAVA_HOME/lib/security/cacerts -
storepass changeit

14.4.2 Using a Self-Signed Server Certificate
This section describes the steps to generate a self-signed certificate into /etc/oracle/graph
and configure the graph server (PGX) to use this certificate.

• Generating a Self-Signed Server Certificate
You can create a self-signed server certificate using the openssl command.

• Configuring the Graph Server (PGX)
You must specify the path to the server certificate and the server's private key in PEM
format in the graph server (PGX) configuration file.

• Configuring a Client to Trust the Self-Signed Certificate
You must configure your client application to accept the self-signed graph server (PGX)
certificate.

14.4.2.1 Generating a Self-Signed Server Certificate
You can create a self-signed server certificate using the openssl command.

The following steps show how to generate a self-signed server certificate.

1. Go to the following directory:

cd /etc/oracle/graph

Chapter 14
Setting Up Transport Layer Security

14-46



2. Execute the following commands:

openssl req -new -newkey rsa:2048 -days 365 -nodes -x509 -subj "/C=US/
ST=MyState/L=MyTown/O=MyOrganization/CN=ROOT" -keyout ca_key.pem -out 
ca_certificate.pem
openssl genrsa -out server_key_traditional.pem 2048
openssl pkcs8 -topk8 -in server_key_traditional.pem -inform pem -out 
server_key.pem -outform pem -nocrypt
openssl req -new -subj "/C=US/ST=MyState/L=MyTown/O=MyOrganization/
CN=localhost" -key server_key.pem -out server.csr
chmod 600 server_key.pem
openssl x509 -req -CA ca_certificate.pem -CAkey ca_key.pem -in server.csr -
out server_certificate.pem -days 365 -CAcreateserial
chown oraclegraph:oraclegraph server_key.pem

Note:

• The certificate mentioned in the above example will only work for the host
localhost. If you have a different domain, you must replace localhost with
your domain name.

• The above self-signed certificate is valid only for 365 days.

14.4.2.2 Configuring the Graph Server (PGX)
You must specify the path to the server certificate and the server's private key in PEM format in
the graph server (PGX) configuration file.

Note:

If you deploy the graph server into your web server using the web applications
download package, then this section does not apply. Please refer to the manual of
your web server for instructions on how to configure TLS.

1. Edit the file at /etc/oracle/graph/server.conf, and specify the paths to the server
certificate and the server's private key in PEM format, as shown:

{
  "port": 7007,
  "enable_tls": true,
  "server_private_key": "/etc/oracle/graph/server_key.pem",
  "server_cert": "/etc/oracle/graph/server_certificate.pem",
  "enable_client_authentication": false,
  "working_dir": "/opt/oracle/graph/pgx/tmp_data"
}

Chapter 14
Setting Up Transport Layer Security

14-47



2. Optionally, if the certificate is vaild for a different host (other than the localhost), then
update the base_url parameter for the pgx_realm configuration in the pgx.conf file with
the matching host details.

 ...
  "pgx_realm": {
    "implementation": "oracle.pg.identity.DatabaseRealm",
    "options": {
      ...
      "base_url": "<request-scheme>://localhost:<request-port>"
    }
  }
  ...

In the preceding configuration:

• request-scheme: Value can be either HTTP or HTTPS. If not specified, then the graph
server will fetch the corresponding value automatically from the browser.

• request-port: Port number to be used. If not specified, then the graph server will fetch
the corresponding value automatically from the browser.

Replace the default localhost to the required host name.

3. Restart the graph server.

Caution:

• Always use a valid certificate issued by a certificate authority (CA) which is
trusted by your organization. If you do not have a CA certificate, you can
temporarily create a self-signed certificate and get started. However, it is not
recommended to use self-signed certificates for production environments.

• The steps to generate a self-signed server certificate can modify the Java
installation on your client-system. Only perform these steps if you are fully
aware of the implications of accepting the self-signed certificates system-
wide.

• Consider carefully when using commands with sudo.

14.4.2.3 Configuring a Client to Trust the Self-Signed Certificate
You must configure your client application to accept the self-signed graph server (PGX)
certificate.

To configure a client to trust the self-signed certificate, the root certificate must be imported to
your Java installation local trust store.

• For a Java or a Python client, you must import the root certificate to all the Java
installations used by all the clients.

Note:

The JShell client requires Java 11 or later.

Chapter 14
Setting Up Transport Layer Security

14-48



• For the Graph Visualization application, you must import the root certificate to the system
Java installation of the environment running the graph server (PGX) or the web server
serving the graph visualization application. That is, the JDK installation which is used by
the OS user running the server that serves the Graph Visualization application.

You can import the root certificate as shown in the following step:

• Ensure JAVA_HOME is set and run the following command as a root user or with sudo:

sudo keytool -import -trustcacerts -keystore $JAVA_HOME/lib/security/
cacerts -storepass changeit -alias pgx -file /etc/oracle/graph/
ca_certificate.pem -noprompt

where changeit is the sample keystore password. You can change this password to a
password of your choice. Be sure to remember this password as you will need it to modify
the certificate.

If you are upgrading the graph server from a previous release, then you must first delete
the existing certificate before importing the new certificate. Run the command using sudo
or as a root user:

sudo keytool -delete -alias pgx -keystore $JAVA_HOME/lib/security/cacerts -
storepass changeit

Chapter 14
Setting Up Transport Layer Security

14-49



15
Getting Started with the Graph Server (PGX)

Once you have installed the graph server (PGX), you can start and connect to a graph server
instance.

• Starting the Graph Server (PGX)
This section describes the commands to start and stop the graph server (PGX).

• Connecting to the Graph Server (PGX)
This section explains how to connect to the graph server (PGX) running in remote mode or
when deployed as a web application on Apache Tomcat or Oracle WebLogic Server.

15.1 Starting the Graph Server (PGX)
This section describes the commands to start and stop the graph server (PGX).

A preconfigured version of Apache Tomcat is bundled, which allows you to start the graph
server (PGX) by running a script.

As a prerequisite to start the graph server in remote mode, you must ensure that Oracle graph
server is installed in your system. See Installing Oracle Graph Server For Linux x86-64 for
instructions to install the graph server (PGX).

Note:

See Usage Modes of the Graph Server (PGX) for more information on the different
graph server execution modes.

• Starting and Stopping the Graph Server (PGX) Using the Command Line

• Configuring the Graph Server (PGX)

15.1.1 Starting and Stopping the Graph Server (PGX) Using the Command
Line

PGX is integrated with systemd to run it as a Linux service in the background.

If you need to configure the server before starting it, see Configuring the Graph Server (PGX)
and Configuration Parameters for the Graph Server (PGX) Engine for more information on the
configuration options.

The commands to start and stop the graph server (PGX) and the PGX engine are as follows:

Note:

You can run the following commands without sudo if you are the root user.

15-1



To start the PGX server as a daemon process, run the following command:

sudo systemctl start pgx

To stop the server, run the following command:

sudo systemctl stop pgx

If the server does not start up, you can see if there are any errors by running:

sudo journalctl -u pgx.service

For more information about how to interact with systemd on Oracle Linux, see the Oracle Linux
administrator's documentation.

15.1.2 Configuring the Graph Server (PGX)
You can configure the graph server (PGX) by modifying the /etc/oracle/graph/server.conf
file. The following table shows the valid configuration options, which can be specified in JSON
format.

Table 15-1    Configuration Parameters for the Graph Server (PGX)

Parameter Type Description Default

ca_certs array
of
string

List of files storing trusted
certificates (PEM format). If
enable_tls is set to false,
this field has no effect.

[]

Chapter 15
Starting the Graph Server (PGX)

15-2



Table 15-1    (Cont.) Configuration Parameters for the Graph Server (PGX)

Parameter Type Description Default

ciphers array
of
string

List of cipher suites to be
used by the server. For
example, [cipher1, cipher2.]

["TLS_ECDHE_ECDSA_WITH_AES_128_
GCM_SHA256",
"TLS_ECDHE_ECDSA_WITH_AES_256_G
CM_SHA384",
"TLS_ECDHE_RSA_WITH_AES_128_GCM
_SHA256",
"TLS_ECDHE_RSA_WITH_AES_256_GCM
_SHA384",
"TLS_ECDHE_ECDSA_WITH_AES_128_C
BC_SHA256",
"TLS_ECDHE_RSA_WITH_AES_128_CBC
_SHA256",
"TLS_ECDHE_ECDSA_WITH_AES_256_C
BC_SHA384",
"TLS_ECDHE_RSA_WITH_AES_256_CBC
_SHA384",
"TLS_DHE_RSA_WITH_AES_128_GCM_S
HA256",
"TLS_DHE_DSS_WITH_AES_128_GCM_S
HA256",
"TLS_DHE_RSA_WITH_AES_128_CBC_S
HA256",
"TLS_DHE_DSS_WITH_AES_128_CBC_S
HA256",
"TLS_DHE_DSS_WITH_AES_256_GCM_S
HA384",
"TLS_DHE_RSA_WITH_AES_256_CBC_S
HA256",
"TLS_DHE_DSS_WITH_AES_256_CBC_S
HA256",
"TLS_ECDHE_ECDSA_WITH_AES_128_C
BC_SHA",
"TLS_ECDHE_RSA_WITH_AES_256_CBC
_SHA",
"TLS_ECDHE_ECDSA_WITH_AES_256_C
BC_SHA",
"TLS_DHE_DSS_WITH_AES_128_CBC_S
HA",
"TLS_DHE_RSA_WITH_AES_128_CBC_S
HA",
"TLS_DHE_DSS_WITH_AES_256_CBC_S
HA",
"TLS_DHE_RSA_WITH_AES_256_CBC_S
HA",
"TLS_RSA_WITH_AES_128_GCM_SHA25
6",
"TLS_DH_DSS_WITH_AES_128_GCM_SH
A256",
"TLS_ECDH_ECDSA_WITH_AES_128_GC
M_SHA256",
"TLS_RSA_WITH_AES_256_GCM_SHA38
4",

Chapter 15
Starting the Graph Server (PGX)

15-3



Table 15-1    (Cont.) Configuration Parameters for the Graph Server (PGX)

Parameter Type Description Default

"TLS_DH_DSS_WITH_AES_256_GCM_SH
A384",
"TLS_ECDH_ECDSA_WITH_AES_256_GC
M_SHA384",
"TLS_RSA_WITH_AES_128_CBC_SHA25
6",
"TLS_DH_DSS_WITH_AES_128_CBC_SH
A256",
"TLS_ECDH_ECDSA_WITH_AES_128_CB
C_SHA256",
"TLS_RSA_WITH_AES_256_CBC_SHA25
6",
"TLS_DH_DSS_WITH_AES_256_CBC_SH
A256",
"TLS_ECDH_ECDSA_WITH_AES_256_CB
C_SHA384",
"TLS_RSA_WITH_AES_128_CBC_SHA",
"TLS_DH_DSS_WITH_AES_128_CBC_SH
A",
"TLS_ECDH_ECDSA_WITH_AES_128_CB
C_SHA",
"TLS_RSA_WITH_AES_256_CBC_SHA",
"TLS_DH_DSS_WITH_AES_256_CBC_SH
A",
"TLS_ECDH_ECDSA_WITH_AES_256_CB
C_SHA"]

context_path string This can be used to change
the context path. For example,
if you specify port as 7007
and context path as /pgx,
the server will listen on
https://
localhost:7007/pgx

/

enable_tls boolean If true, the server enables
transport layer security (TLS).

true

max_header_size integer Maximum valid header size in
bytes. If null, use the default
from Tomcat.

null

port integer Port the graph server (PGX)
server should listen on.

7007

Chapter 15
Starting the Graph Server (PGX)

15-4



Table 15-1    (Cont.) Configuration Parameters for the Graph Server (PGX)

Parameter Type Description Default

server_cert string The path to the server
certificate to be presented to
TLS clients (PEM format).
This file must only contain one
certificate. If your certificate is
a chain and contains a root
certificate, add it to ca_certs
instead. If enable_tls is set
to false, this field has no
effect
Note: Starting from Graph
Server and Client Release
22.3 onwards, this field is
deprecated. Use
server_keystore instead.

NULL

server_keystore string The path to the keystore to be
used for server connections. If
this field is present along with
server_cert or
server_private_key, then
an error will be raised.
If enable_tls is set to
false, then this field has no
effect.

NULL

server_keystore
_alias

string This is the server keystore
alias of server_keystore.

NULL

server_keystore
_provider

string This is the server keystore
provider of
server_keystore.

SunJSSE

server_keystore
_type

string This is the server keystore
type of server_keystore.

JKS

server_private_
key

string This is the path to the file
storing the private key of the
server (PEM format). For
security reasons, the file must
have only Read and Write
permissions only for the
owner (600 permissions in a
POSIX filesystem), otherwise
an error will be thrown. If
enable_tls is set to false,
this field has no effect.
Note: Starting from Graph
Server and Client Release
22.3 onwards, this field is
deprecated. Use
server_keystore instead.

NULL

tls_version string TLS version to be used by the
server. For example, TLSv1.2

TLSv1.2

Chapter 15
Starting the Graph Server (PGX)

15-5



Table 15-1    (Cont.) Configuration Parameters for the Graph Server (PGX)

Parameter Type Description Default

working_dir string The working directory used by
the server to store temporary
files. Needs to be writable by
the process which started the
server and should not be
touched by any other process
while the server is running.

The graph server (PGX) enables two-way SSL/TLS (Transport Layer Security) by default. The
server enforces TLS 1.2 and disables certain cipher suites known to be vulnerable to attacks.
Upon a TLS handshake, both the server and the client present certificates to each other, which
are used to validate the authenticity of the other party. Client certificates are also used to
authorize client applications.

Example Configuration of server.conf File

{
  "port": 7007,
  "enable_tls": true,
  "server_cert": "server_cert.pem",
  "server_private_key": "server_key.pem",
  "ca_certs": [
    "server_cert.pem"
  ]
  }

Example Configuration of server.conf File Using a Keystore

{
  "port": 7007,
  "enable_tls": true,
  "enable_client_authentication": true,
  "server_keystore": "/pgx/cert/server_keystore.rsa",
  "server_keystore_alias": "pgx",
  "server_keystore_provider": "JsafeJCE",
  "server_keystore_type": "PKCS12"
}

15.2 Connecting to the Graph Server (PGX)
This section explains how to connect to the graph server (PGX) running in remote mode or
when deployed as a web application on Apache Tomcat or Oracle WebLogic Server.

The prerequisite requirement to connect to the graph server is to have the graph server (PGX)
up and running. See Starting and Stopping the Graph Server (PGX) Using the Command Line
for more information on the commands to start the graph server.

Chapter 15
Connecting to the Graph Server (PGX)

15-6



Note:

If you are using the graph server (PGX) as a library, see Using Graph Server (PGX)
as a Library for more information.

• Connecting with the Graph Client CLIs

• Connecting with Java

• Connecting with Python

15.2.1 Connecting with the Graph Client CLIs
The simplest way to connect to a remote graph server (PGX) instance is to specify the base
URL of the server along with the database user name required for the graph server (PGX)
authentication as shown:

• JShell

• Python

JShell

cd /opt/oracle/graph
./bin/opg4j --base_url https://<host>:<port> --username <graphuser>

Python

cd /opt/oracle/graph
./bin/opg4py --base_url https://<host>:<port> --username <graphuser>

where :

• <host>: is the server host name

• <port>: is the server port

• <graphuser>: is the database user
You will be prompted for the database password.

See Also:

• User Authentication and Authorization

• Java API Reference for information on the Java APIs

• Python API Reference for information on the Python APIs

Chapter 15
Connecting to the Graph Server (PGX)

15-7

http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=java_doc
http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=python_doc


About Logging HTTP Requests

The graph shell suppresses all debugging messages by default. To see which HTTP requests
are executed, set the log level for oracle.pgx to DEBUG, as shown in this example:

Note:

Enabling these logs can lead to sensitive information like passwords getting printed
on the screen.

• JShell

• Python

JShell

opg4j> loglevel("oracle.pgx","DEBUG")
===> Log level of oracle.pgx logger set to DEBUG
opg4j> var g = session.readGraphByName("BANK_GRAPH_VIEW", GraphSource.PG_PGQL)
09:19:51,859+0000 DEBUG o.p.c.RemoteUtils - create session cookie (session ID 
= 82f5cc30-358a-4002-a0bc-80a4ad690a94)
09:19:51,862+0000 DEBUG o.p.c.RemoteUtils - no value for the sticky cookie 
given
09:19:51,862+0000 DEBUG o.p.c.RemoteUtils - create csrf token cookie (token = 
d43a5de8-c81c-4361-ae15-81a1867cb2d6)
09:19:51,881+0000 DEBUG o.p.c.HttpRequestExecutor - Requesting POST https://
localhost:7007/core/v2/describe
09:19:51,902+0000 DEBUG o.p.c.HttpRequestExecutor - received HTTP status 202
09:19:51,904+0000 DEBUG o.p.c.HttpRequestExecutor - 
{"futureId":"457025d4-3945-400a-95ed-a1897e6df9ac"}
09:19:51,911+0000 DEBUG o.p.c.PgxRemoteFuture - Requesting GET https://
localhost:7007/core/v1/futures/x-future-id/status
09:19:52,322+0000 DEBUG o.p.c.PgxRemoteFuture - Requesting GET https://
localhost:7007/core/v1/futures/x-future-id/value
09:19:52,337+0000 DEBUG o.p.c.RemoteUtils - received HTTP status 201
09:19:52,337+0000 DEBUG o.p.c.RemoteUtils - 
{"source_name":"BANK_GRAPH_VIEW","optimized_for":"UPDATES","attributes":
{},"vertex_id_type":"string","edge_id_strategy":"PARTITIONED_IDS","vertex_id_s
trategy":"PARTITIONED_IDS","error_handling":
{"on_missing_vertex":"ERROR"},"source_type":"PG_PGQL","vertex_providers":
[{"error_handling":{},"format":"rdbms","key_column":"ID","props":
[{"column":"ID","type":"long","name":"ID","dimension":0},
{"column":"NAME","type":"string","name":"NAME","dimension":0}],"name":"ACCOUNT
S","parallel_hint_degree":-1,"loading":
{"create_key_mapping":true},"database_table_name":"BANK_ACCOUNTS","schema":"GR
APHUSER","key_type":"long","label":"ACCOUNTS","attributes":
{}}],"edge_id_type":"string","loading":
{"snapshots_source":"CHANGE_SET"},"name":"BANK_GRAPH_VIEW","edge_providers":
[{"error_handling":
{},"format":"rdbms","source_column":"FROM_ACCT_ID","destination_vertex_provide
r":"ACCOUNTS","props":

Chapter 15
Connecting to the Graph Server (PGX)

15-8



[{"column":"FROM_ACCT_ID","type":"long","name":"FROM_ACCT_ID","dimension":0},
{"column":"TO_ACCT_ID","type":"long","name":"TO_ACCT_ID","dimension":0},
{"column":"AMOUNT","type":"long","name":"AMOUNT","dimension":0},
{"column":"DESCRIPTION","type":"string","name":"DESCRIPTION","dimension":0}],"
name":"TRANSFERS","parallel_hint_degree":-1,"source_vertex_provider":"ACCOUNTS
","loading":
{"create_key_mapping":false},"database_table_name":"BANK_TXNS","schema":"GRAPH
USER","destination_column":"TO_ACCT_ID","key_type":"long","label":"TRANSFERS",
"attributes":{}}]}
09:19:52,545+0000 DEBUG o.p.c.RemoteUtils - create session cookie (session ID 
= 82f5cc30-358a-4002-a0bc-80a4ad690a94)
09:19:52,547+0000 DEBUG o.p.c.RemoteUtils - no value for the sticky cookie 
given
09:19:52,547+0000 DEBUG o.p.c.RemoteUtils - create csrf token cookie (token = 
d43a5de8-c81c-4361-ae15-81a1867cb2d6)
09:19:52,673+0000 DEBUG o.p.c.HttpRequestExecutor - Requesting POST https://
localhost:7007/core/v1/loadGraph
09:19:52,692+0000 DEBUG o.p.c.HttpRequestExecutor - received HTTP status 202
09:19:52,695+0000 DEBUG o.p.c.HttpRequestExecutor - 
{"futureId":"854bd093-8b80-437b-82ff-97f691436131"}
09:19:52,695+0000 DEBUG o.p.c.PgxRemoteFuture - Requesting GET https://
localhost:7007/core/v1/futures/x-future-id/status
09:19:53,313+0000 DEBUG o.p.c.PgxRemoteFuture - Requesting GET https://
localhost:7007/core/v1/futures/x-future-id/value
09:19:53,331+0000 DEBUG o.p.c.RemoteUtils - received HTTP status 201
09:19:53,332+0000 DEBUG o.p.c.RemoteUtils - {"id":"803F9E73-87BD-461E-A11A-
A54853E8A4A0","links":[{"href":"core/v1/graphs/x-graph-
id","rel":"self","method":"GET","interaction":["async-polling"]},
{"href":"core/v1/graphs/x-graph-
id","rel":"canonical","method":"GET","interaction":["async-
polling"]}],"graphName":"BANK_GRAPH_VIEW","vertexTables":{"ACCOUNTS":
{"name":"ACCOUNTS","metaData":{"name":"ACCOUNTS","idType":"long","labels":
["ACCOUNTS"],"properties":
[{"name":"ID","id":null,"propertyType":"long","dimension":0,"transient":true,"
links":null,"propertyId":"6997E486-C525-4C5B-8A1B-8044386CF379"},
{"name":"NAME","id":null,"propertyType":"string","dimension":0,"transient":tru
e,"links":null,"propertyId":"F5473583-61AE-4EB8-B397-
EF2E4E93DD8F"}],"edgeProviderNamesWhereSource":
["TRANSFERS"],"edgeProviderNamesWhereDestination":
["TRANSFERS"],"id":null,"links":null},"providerLabels":
["ACCOUNTS"],"keyPropertyName":"ID","entityKeyType":"long","isIdentityKeyMappi
ng":false,"vertexProperties":{"05E515A7-CCF7-4A21-BC31-D4444D3B1CF0":
{"id":"05E515A7-CCF7-4A21-BC31-D4444D3B1CF0","links":[{"href":"core/v1/
graphs/x-graph-id/properties/x-property-
name","rel":"self","method":"GET","interaction":["async-polling"]},
{"href":"core/v1/graphs/x-graph-id/properties/x-property-
name","rel":"canonical","method":"GET","interaction":["async-
polling"]}],"dimension":0,"propertyId":"05E515A7-CCF7-4A21-BC31-
D4444D3B1CF0","name":"ID","entityType":"vertex","type":"long","namespace":"2C1
7C639-3771-3E30-88AE-34D6B380C5EC","transient":false},"0DCCD46B-
ED5A-4511-865E-65CDCE6C3DFC":{"id":"0DCCD46B-
ED5A-4511-865E-65CDCE6C3DFC","links":[{"href":"core/v1/graphs/x-graph-id/
properties/x-property-name","rel":"self","method":"GET","interaction":["async-
polling"]},{"href":"core/v1/graphs/x-graph-id/properties/x-property-
name","rel":"canonical","method":"GET","interaction":["async-
polling"]}],"dimension":0,"propertyId":"0DCCD46B-

Chapter 15
Connecting to the Graph Server (PGX)

15-9



ED5A-4511-865E-65CDCE6C3DFC","name":"NAME","entityType":"vertex","type":"strin
g","namespace":"2C17C639-3771-3E30-88AE-34D6B380C5EC","transient":false}},"ver
texLabels":{"id":"13FE312F-18C8-4AFF-A154-AEDC3C5E86FC","links":
[{"href":"core/v1/graphs/x-graph-id/properties/x-property-
name","rel":"self","method":"GET","interaction":["async-polling"]},
{"href":"core/v1/graphs/x-graph-id/properties/x-property-
name","rel":"canonical","method":"GET","interaction":["async-
polling"]}],"dimension":-1,"propertyId":"13FE312F-18C8-4AFF-A154-
AEDC3C5E86FC","name":"__vertex_labels__","entityType":"vertex","type":"ro_stri
ng_set","namespace":"2C17C639-3771
09:19:53,457+0000 DEBUG o.p.a.PgxSession - ==> change sets as snapshot 
source. Returning graph loaded by the engine
g ==> PgxGraph[name=BANK_GRAPH_VIEW,N=1000,E=4993,created=1704705593065]

Python

>>>setloglevel("oracle.pgx","DEBUG")
>>> graph = session.read_graph_by_name('BANK_GRAPH_VIEW', 'pg_pgql')
09:26:26,548+0000 DEBUG o.p.c.RemoteUtils - create session cookie (session ID 
= 279f1676-9229-4c5d-bc71-473e5ce5afb9)
09:26:26,554+0000 DEBUG o.p.c.RemoteUtils - no value for the sticky cookie 
given
09:26:26,555+0000 DEBUG o.p.c.RemoteUtils - create csrf token cookie (token = 
354b9253-84fb-4689-8d29-79da8ec1e3cf)
09:26:26,617+0000 DEBUG o.p.c.HttpRequestExecutor - Requesting POST https://
localhost:7007/core/v2/describe
09:26:26,670+0000 DEBUG o.p.c.HttpRequestExecutor - received HTTP status 202
09:26:26,671+0000 DEBUG o.p.c.HttpRequestExecutor - {"futureId":"95a4da84-
ff08-4471-97ac-6a571c68a82f"}
09:26:26,675+0000 DEBUG o.p.c.PgxRemoteFuture - Requesting GET https://
localhost:7007/core/v1/futures/x-future-id/status
09:26:26,708+0000 DEBUG o.p.c.PgxRemoteFuture - Requesting GET https://
localhost:7007/core/v1/futures/x-future-id/value
09:26:26,716+0000 DEBUG o.p.c.RemoteUtils - received HTTP status 201
09:26:26,717+0000 DEBUG o.p.c.RemoteUtils - 
{"source_name":"BANK_GRAPH_VIEW","optimized_for":"UPDATES","attributes":
{},"vertex_id_type":"string","edge_id_strategy":"PARTITIONED_IDS","vertex_id_s
trategy":"PARTITIONED_IDS","error_handling":
{"on_missing_vertex":"ERROR"},"source_type":"PG_PGQL","vertex_providers":
[{"error_handling":{},"format":"rdbms","key_column":"ID","props":
[{"column":"ID","type":"long","name":"ID","dimension":0},
{"column":"NAME","type":"string","name":"NAME","dimension":0}],"name":"ACCOUNT
S","parallel_hint_degree":-1,"loading":
{"create_key_mapping":true},"database_table_name":"BANK_ACCOUNTS","schema":"GR
APHUSER","key_type":"long","label":"ACCOUNTS","attributes":
{}}],"edge_id_type":"string","loading":
{"snapshots_source":"CHANGE_SET"},"name":"BANK_GRAPH_VIEW","edge_providers":
[{"error_handling":
{},"format":"rdbms","source_column":"FROM_ACCT_ID","destination_vertex_provide
r":"ACCOUNTS","props":
[{"column":"FROM_ACCT_ID","type":"long","name":"FROM_ACCT_ID","dimension":0},
{"column":"TO_ACCT_ID","type":"long","name":"TO_ACCT_ID","dimension":0},
{"column":"AMOUNT","type":"long","name":"AMOUNT","dimension":0},
{"column":"DESCRIPTION","type":"string","name":"DESCRIPTION","dimension":0}],"
name":"TRANSFERS","parallel_hint_degree":-1,"source_vertex_provider":"ACCOUNTS

Chapter 15
Connecting to the Graph Server (PGX)

15-10



","loading":
{"create_key_mapping":false},"database_table_name":"BANK_TXNS","schema":"GRAPH
USER","destination_column":"TO_ACCT_ID","key_type":"long","label":"TRANSFERS",
"attributes":{}}]}
09:26:26,862+0000 DEBUG o.p.c.RemoteUtils - create session cookie (session ID 
= 279f1676-9229-4c5d-bc71-473e5ce5afb9)
09:26:26,862+0000 DEBUG o.p.c.RemoteUtils - no value for the sticky cookie 
given
09:26:26,862+0000 DEBUG o.p.c.RemoteUtils - create csrf token cookie (token = 
354b9253-84fb-4689-8d29-79da8ec1e3cf)
09:26:26,930+0000 DEBUG o.p.c.HttpRequestExecutor - Requesting POST https://
localhost:7007/core/v1/loadGraph
09:26:26,963+0000 DEBUG o.p.c.HttpRequestExecutor - received HTTP status 202
09:26:26,964+0000 DEBUG o.p.c.HttpRequestExecutor - 
{"futureId":"a6ec1f14-891d-470a-a20a-3e0a4a76c11d"}
09:26:26,965+0000 DEBUG o.p.c.PgxRemoteFuture - Requesting GET https://
localhost:7007/core/v1/futures/x-future-id/status
09:26:27,183+0000 DEBUG o.p.c.PgxRemoteFuture - Requesting GET https://
localhost:7007/core/v1/futures/x-future-id/value
09:26:27,202+0000 DEBUG o.p.c.RemoteUtils - received HTTP status 201
09:26:27,203+0000 DEBUG o.p.c.RemoteUtils - {"id":"CCA6B5D6-46DB-4DFE-
AC60-2FDFBD8631AC","links":[{"href":"core/v1/graphs/x-graph-
id","rel":"self","method":"GET","interaction":["async-polling"]},
{"href":"core/v1/graphs/x-graph-
id","rel":"canonical","method":"GET","interaction":["async-
polling"]}],"graphName":"BANK_GRAPH_VIEW","vertexTables":{"ACCOUNTS":
{"name":"ACCOUNTS","metaData":{"name":"ACCOUNTS","idType":"long","labels":
["ACCOUNTS"],"properties":
[{"name":"ID","id":null,"propertyType":"long","dimension":0,"transient":true,"
links":null,"propertyId":"5A6A679C-BBD8-4CA9-886C-19D7DA3041F5"},
{"name":"NAME","id":null,"propertyType":"string","dimension":0,"transient":tru
e,"links":null,"propertyId":"3B479E88-3441-49EA-95EE-
FC14EE0FD318"}],"edgeProviderNamesWhereSource":
["TRANSFERS"],"edgeProviderNamesWhereDestination":
["TRANSFERS"],"id":null,"links":null},"providerLabels":
["ACCOUNTS"],"keyPropertyName":"ID","entityKeyType":"long","isIdentityKeyMappi
ng":false,"vertexProperties":{"9B32DB07-AD6A-47AA-AD7E-56FE417D0423":
{"id":"9B32DB07-AD6A-47AA-AD7E-56FE417D0423","links":[{"href":"core/v1/
graphs/x-graph-id/properties/x-property-
name","rel":"self","method":"GET","interaction":["async-polling"]},
{"href":"core/v1/graphs/x-graph-id/properties/x-property-
name","rel":"canonical","method":"GET","interaction":["async-
polling"]}],"dimension":0,"propertyId":"9B32DB07-AD6A-47AA-
AD7E-56FE417D0423","name":"ID","entityType":"vertex","type":"long","namespace"
:"2C17C639-3771-3E30-88AE-34D6B380C5EC","transient":false},"99C98B32-
FD2F-46B5-A89A-BBB043E38F7E":{"id":"99C98B32-FD2F-46B5-A89A-
BBB043E38F7E","links":[{"href":"core/v1/graphs/x-graph-id/properties/x-
property-name","rel":"self","method":"GET","interaction":["async-polling"]},
{"href":"core/v1/graphs/x-graph-id/properties/x-property-
name","rel":"canonical","method":"GET","interaction":["async-
polling"]}],"dimension":0,"propertyId":"99C98B32-FD2F-46B5-A89A-
BBB043E38F7E","name":"NAME","entityType":"vertex","type":"string","namespace":
"2C17C639-3771-3E30-88AE-34D6B380C5EC","transient":false}},"vertexLabels":
{"id":"85CE5DC4-B2B3-4326-B970-F1A6EB5E0345","links":[{"href":"core/v1/
graphs/x-graph-id/properties/x-property-
name","rel":"self","method":"GET","interaction":["async-polling"]},

Chapter 15
Connecting to the Graph Server (PGX)

15-11



{"href":"core/v1/graphs/x-graph-id/properties/x-property-
name","rel":"canonical","method":"GET","interaction":["async-
polling"]}],"dimension":-1,"propertyId":"85CE5DC4-B2B3-4326-B970-
F1A6EB5E0345","name":"__vertex_labels__","entityType":"vertex","type":"ro_stri
ng_set","namespace":"2C17C639-3771
09:26:27,357+0000 DEBUG o.p.a.PgxSession - ==> change sets as snapshot 
source. Returning graph loaded by the engine

15.2.2 Connecting with Java
You can obtain a connection to a remote graph server (PGX) instance by simply passing the
base URL of the remote PGX instance to the getInstance() method. By doing this, your
application automatically uses the PGX client libraries to connect to a remotely-located graph
server (PGX).

You can specify the base URL when you initialize the graph server (PGX) instance using Java.
An example is as follows. A URL to an graph server (PGX) is provided to the getInMemAnalyst
API call.

import oracle.pgx.api.*;
import oracle.pg.rdbms.*;
ServerInstance instance = GraphServer.getInstance("https://
<hostname>:<port>","<username>","<password>".toCharArray());
PgxSession session = instance.createSession("my-session");

Note:

See Java API Reference for more information on the Java APIs.

• Starting and Stopping the PGX Engine

15.2.2.1 Starting and Stopping the PGX Engine
You can start the graph server (PGX ) from the application by making a call to
instance.startEngine() which takes a JSON object as an argument for PGX configuration.

Note:

• See Connecting with Java for more information about connecting to a graph
server (PGX) instance and obtaining a ServerInstance object.

• See Configuration Parameters for the Graph Server (PGX) Engine for the various
configuration options for the graph server (PGX).

Chapter 15
Connecting to the Graph Server (PGX)

15-12

http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=java_doc


Stopping the PGX Engine

You can stop the PGX engine using one of the following APIs:

instance.shutdownEngineNow(); // cancels pending tasks, throws exception if 
engine is not running
instance.shutdownEngineNowIfRunning(); // cancels pending tasks, only tries 
to shut down if engine is running
if (instance.shutdownEngine(30, TimeUnit.SECONDS) == false) { 
  // doesn't accept new tasks but finishes up remaining tasks
  // pending tasks didn't finish after 30 seconds
}

Note:

Shutting down the PGX engine keeps the Apache Tomcat server alive, but new
sessions cannot be created. Also, all the current sessions and tasks will be cancelled
and terminated.

15.2.3 Connecting with Python
You can connect to a remote graph server (PGX) instance in your Python program. You must
first authenticate with the remote server before you can create a session as illustrated in the
following example:

import pypgx
import opg4py
import opg4py.graph_server as graph_server
pgql_conn = opg4py.pgql.get_connection("<username>","<password>", 
"<jdbc_url>")
pgql_statement = pgql_conn.create_statement()
pgql = """
        CREATE PROPERTY GRAPH bank_graph
        VERTEX TABLES (
          bank_accounts
            LABEL ACCOUNTS
            PROPERTIES (ID, NAME)
        )
        EDGE TABLES (
          bank_txns
            SOURCE KEY (from_acct_id) REFERENCES bank_accounts (ID)
            DESTINATION KEY (to_acct_id) REFERENCES bank_accounts (ID)
            LABEL TRANSFERS
            PROPERTIES (FROM_ACCT_ID, TO_ACCT_ID, AMOUNT, DESCRIPTION)
        ) OPTIONS(PG_PGQL)
"""
pgql_statement.execute(pgql)
instance = graph_server.get_instance("<base_url>", "<username>", "<password>")
session = instance.create_session("my_session")
graph = session.read_graph_by_name('BANK_GRAPH', 'pg_pgql')
analyst = session.create_analyst()
analyst.pagerank(graph)

Chapter 15
Connecting to the Graph Server (PGX)

15-13



rs = graph.query_pgql("SELECT id(x), x.pagerank FROM MATCH (x) LIMIT 5")
rs.print()

To execute, save the above program into a file named program.py and run the following
command:

python3 program.py

You will see the following output:

+-------------------------------------------+
| id(x)             | pagerank              |
+-------------------------------------------+
| BANK_ACCOUNTS(2)  | 9.749447313256548E-4  |
| BANK_ACCOUNTS(4)  | 0.004584001759076056  |
| BANK_ACCOUNTS(6)  | 5.358461393401424E-4  |
| BANK_ACCOUNTS(8)  | 0.0013051552434930175 |
| BANK_ACCOUNTS(10) | 0.0015040122009364232 |
+-------------------------------------------+

Converting PGQL result set into pandas dataframe

Additionally, you can also convert the PGQL result set to a pandas.DataFrame object using the
to_pandas() method. This makes it easier to perform various data filtering operations on the
result set and it can also be used in Lambda functions. For example,

example_query = (
    "SELECT n.name AS name, n.age AS age "
    "WHERE (n)"
)
result_set = sample_graph.query_pgql(example_query)
result_df = result_set.to_pandas()

result_df['age_bin'] = result_df['age'].apply(lambda x: int(x)/20) # create 
age bins based on age ranges

Note:

To view the complete set of available Python APIs, see OPG4PY Python API
Reference.

Chapter 15
Connecting to the Graph Server (PGX)

15-14

http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=python_doc
http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=python_doc


Part V
Using the Graph Server (PGX)

The graph server (PGX) of Oracle Graph supports a set of analytical functions.

This part describes the following:

• Developing Applications with Graph Analytics
In order to run graph algorithms, the graph application connects to the graph server (PGX)
in the middle tier, which in turn connects to the Oracle Database.

• Using the Machine Learning Library (PgxML) for Graphs
The graph server (PGX) provides a machine learning library oracle.pgx.api.mllib, which
supports graph-empowered machine learning algorithms.

• Executing PGQL Queries Against the Graph Server (PGX)
This section describes the Java APIs that are used to execute PGQL queries in the graph
server (PGX).

• REST Endpoints for the Graph Server
This chapter describes the graph server REST API endpoints.



16
Developing Applications with Graph Analytics

In order to run graph algorithms, the graph application connects to the graph server (PGX) in
the middle tier, which in turn connects to the Oracle Database.

• Using the Graph Server Administrator Dashboard
The graph server administrator can efficiently track and manage the memory usage of the
graph server (PGX) using the Administrator Dashboard.

• About Vertex and Edge IDs
The graph server (PGX) enforces by default the existence of a unique identifier for each
vertex and edge in a graph.

• Graph Management in the Graph Server (PGX)
You can load a graph into the graph server (PGX) and perform different actions such as
publish, store, or delete a graph.

• Keeping the Graph in Oracle Database Synchronized with the Graph Server
You can use the FlashbackSynchronizer API to automatically apply changes made to
graph in the database to the corresponding PgxGraph object in memory, thus keeping both
synchronized.

• Optimizing Graphs for Read Versus Updates in the Graph Server (PGX)
The graph server (PGX) can store an optimized graph for other reads or updates. This is
only relevant when the updates are made directly to a graph instance in the graph server.

• Executing Built-in Algorithms
The graph server (PGX) contains a set of built-in algorithms that are available as Java
APIs.

• Using Custom PGX Graph Algorithms
A custom PGX graph algorithm allows you to write a graph algorithm in Java syntax and
have it automatically compiled to an efficient parallel implementation.

• Creating Subgraphs
You can create subgraphs based on a graph that has been loaded into memory. You can
use filter expressions or create bipartite subgraphs based on a vertex (node) collection that
specifies the left set of the bipartite graph.

• User-Defined Functions (UDFs) in PGX
User-defined functions (UDFs) allow users of PGX to add custom logic to their PGQL
queries or custom graph algorithms, to complement built-in functions with custom
requirements.

• Using Graph Server (PGX) as a Library
When you utilize PGX as a library in your application, the graph server (PGX) instance
runs in the same JVM as the Java application and all requests are translated into direct
function calls instead of remote procedure invocations.

16-1



16.1 Using the Graph Server Administrator Dashboard
The graph server administrator can efficiently track and manage the memory usage of the
graph server (PGX) using the Administrator Dashboard.

You can access the Administrator Dashboard only if you are granted the GRAPH_ADMINISTRATOR
role having the PGX_GET_SERVER_INFO privilege.

The user-friendly interface of the Administrator Dashboard comprises the following
components:

• Memory Usage: To view data charts on real-time memory usage, study the current
memory consumption patterns and identify any potential issues.

• Sessions: To manage, monitor, and search active user sessions.

• Graphs: To track and monitor memory usage per graph for all the active users.

Perform the following steps to access the Administrator Dashboard:

1. Open the following URL in your web browser.

https://<server_host>:7007/dash/
The Graph Dashboard login screen opens.

2. Enter your Username and Password.

3. Click Submit.

4. Click Administrator Dashboard in the left navigation menu.

The Memory Usage page of the Administrator Dashboard opens.

5. Optionally, click Sessions or Graphs to navigate to the respective pages.

Figure 16-1    Administrator Dashboard Menu

• Memory Usage
The Memory Usage dashboard provides in-depth information on the amount of memory
used by the graph server (PGX).

• Sessions
The Sessions page displays all the active user sessions.

Chapter 16
Using the Graph Server Administrator Dashboard

16-2



• Graphs
The Graphs page lists the graphs for all the active users and provides the total memory
usage for each graph.

16.1.1 Memory Usage
The Memory Usage dashboard provides in-depth information on the amount of memory used
by the graph server (PGX).

Figure 16-2    Memory Usage Dashboard

The dashboard comprises the following sections:

• Total Used Memory: This chart displays the total memory usage at the system level. It
shows the memory consumption by the graph server (sum of on-heap and off-heap
memory) and other processes. You can also view the available amount of free memory.

• Graph Server Memory Usage: This chart displays the memory consumed by graphs that
are loaded into the graph server and also the memory usage for other graph operations
such as loading graphs, running graph algorithms and so on.

• On-Heap: This section provides the following details:

– Used Memory: This displays the on-heap memory used currently by the graph server
out of the total heap size that is dynamically allocated by the JVM.

– Total Memory: This displays the total (determined by the -Xms flag) and maximum
heap size (determined by the -Xmx flag) allocated by the JVM.

• Off-heap: This displays the off-heap memory used currently by the graph server.

• Hostname: Graph server hostname

• – Active Users: Number of active users

– Active Sessions: Number of active sessions

– Graphs In Memory: Number of graphs loaded in to memory

– Graphs in Progress: Number of graphs that are being loaded into memory

Chapter 16
Using the Graph Server Administrator Dashboard

16-3



16.1.2 Sessions
The Sessions page displays all the active user sessions.

You can view the number of graphs associated with each session as shown in the following
figure. In addition, you can terminate one or more user sessions.

Figure 16-3    Sessions

16.1.3 Graphs
The Graphs page lists the graphs for all the active users and provides the total memory usage
for each graph.

This page comprises the following two tabs:

• Graphs In Memory (default): Displays graphs that are loaded into memory.

• Graphs In Progress: Displays graphs that are being loaded into memory.

The following figure shows the Graphs page for the Graphs In Memory tab. You can inspect
the memory usage for the graphs, or terminate one or more user sessions.

Figure 16-4    Graphs

Chapter 16
Using the Graph Server Administrator Dashboard

16-4



16.2 About Vertex and Edge IDs
The graph server (PGX) enforces by default the existence of a unique identifier for each vertex
and edge in a graph.

When loading a graph into the graph server(PGX), you can retrieve these unique vertex and
edge IDs using PgxGraph.getVertex(ID id) and PgxGraph.getEdge(ID id), or by PGQL
queries using the built-in id() method.
The following supported ID generation strategies can be selected through the configuration
parameters vertex_id_strategy and edge_id_strategy:

• keys_as_ids: This is the default strategy to generate vertex IDs.

• partitioned_ids: This is the recommended strategy for partitioned graphs.

• unstable_generated_ids: This results in system generated vertex or edge IDs.

• no_ids: This strategy disables vertex or edge IDs and therefore prevents you from calling
APIs using vertex or edge IDs.

Using keys to generate IDs

The default strategy to generate the vertex IDs is to use the keys provided during loading of
the graph (keys_as_ids). In that case, each vertex should have a vertex key that is unique
across all providers.

For edges, by default no keys are required in the edge data, and edge IDs will be automatically
generated by PGX (unstable_generated_ids). This automatic ID generation can be applied
for vertex IDs also. Note that the generation of vertex or edge IDs is not guaranteed to be
deterministic. If required, it is also possible to load edge keys as IDs.

The partitioned_ids strategy requires keys to be unique only within a vertex or edge provider
(data source). The keys do not have to be globally unique. Globally unique IDs are derived
from a combination of the provider name and the key inside the provider, as
<provider_name>(<unique_key_within_provider>). For example, Account(1).

The partititioned_ids strategy can be set through the configuration fields
vertex_id_strategy and edge_id_strategy. For example,

{
  "name": "bank_graph_analytics",
  "optimized_for": "updates",
  "vertex_id_strategy" : "partitioned_ids",
  "edge_id_strategy" : "partitioned_ids",
  "vertex_providers": [
    {
      "name": "Accounts",
      "format": "rdbms",
      "database_table_name": "BANK_ACCOUNTS",
      "key_column": "ID",
      "key_type": "integer",
      "props": [
        {
          "name": "ID",
          "type": "integer"
        },
        {

Chapter 16
About Vertex and Edge IDs

16-5



          "name": "NAME",
          "type": "string"
        }
      ],
      "loading": {
        "create_key_mapping" : true
      }
    }
  ],
  "edge_providers": [
    {
      "name": "Transfers",
      "format": "rdbms",
      "database_table_name": "BANK_TXNS",
      "key_column": "ID",
      "source_column": "FROM_ACCT_ID",
      "destination_column": "TO_ACCT_ID",
      "source_vertex_provider": "Accounts",
      "destination_vertex_provider": "Accounts",
      "props": [
         {
          "name": "ID",
          "type": "integer"
        },
        {
          "name": "AMOUNT",
          "type": "double"
        }
      ],
      "loading": {
        "create_key_mapping" : true
      }
    }
  ]
}

Note:

All available key types are supported in combination with partitioned IDs.

After the graph is loaded, PGX maintains information about which property of a provider
corresponds to the key of the provider. In the preceding example, the vertex property ID
happens to correspond to the vertex key and also the edge property ID happens to correspond
to the edge key. Each provider can have at most one such "key property" and the property can
have any name.

Key properties are used for internal optimizations as well as for providing keys for the vertex or
edge or both when inserting new entities. Key properties are currently non-updatable. Trying to
update a key property will result in an error. For example,

vertex key property ID cannot be updated

Chapter 16
About Vertex and Edge IDs

16-6



Using an auto-incrementer to generate partitioned IDs

It is recommended to always set create_key_mapping to true to benefit from performance
optimizations. But if there are no single-column keys for edges, create_key_mapping can be
set to false. Similarly, create_key_mapping can be set to false for vertex providers also. IDs
will be generated via an auto-incrementer, for example Accounts(1), Accounts(2),
Accounts(3).

See PGQL Queries with Partitioned IDs for more information on executing PGQL queries with
partitioned IDs.

16.3 Graph Management in the Graph Server (PGX)
You can load a graph into the graph server (PGX) and perform different actions such as
publish, store, or delete a graph.

Note:

Ensure that you drop the graph when it is no longer in use to release the graph
server (PGX) memory. See Deleting a Graph for more information.

• Reading Graphs from Oracle Database into the Graph Server (PGX)
Once logged into the graph server (PGX), you can read graphs from the database into the
graph server.

• Storing a Graph Snapshot on Disk
After reading a graph into memory, you can make any changes to the graph (such as
running the PageRank algorithm and storing the values as vertex properties), and then
store this snapshot of the graph on disk.

• Publishing a Graph
You can publish a graph that is loaded into the graph server (PGX), so that it can be
referenced by other sessions. Similarly, the snapshots of a graph can also be made
available to other sessions.

• Deleting a Graph
In order to reduce the memory usage of the graph server (PGX), the session must drop the
unused graph objects created through the getGraph() method, by invoking the close()
method.

• Graph Sharing Options and Validating Graph Permissions
The graph_sharing_option parameter in the pgx.conf file determines if and how a graph
can be shared.

16.3.1 Reading Graphs from Oracle Database into the Graph Server (PGX)
Once logged into the graph server (PGX), you can read graphs from the database into the
graph server.

Your database user must exist and have read access on the graph data in the database.

The following options are supported for loading a graph:

SQL Property Graphs

Chapter 16
Graph Management in the Graph Server (PGX)

16-7



• Using the readGraphByName API - see Loading a SQL Property Graph Using the
readGraphByName API for more details.

• Using the PgSqlSubgraphReader API to create and load a subgraph - see Loading a
Subgraph Using PGQL Queries for more details.

• Using the PGQL CREATE PROPERTY GRAPH statement - see Creating a SQL Property Graph
Using PGQL for more details.

PGQL Property Graphs

• Using the readGraphByName API - see Loading a PGQL Property Graph Using the
readGraphByName API for more details.

• Using the PGQL CREATE PROPERTY GRAPH statement - see Creating a Property Graph
Using PGQL for more details.

• Using the PgViewSubgraphReader#fromPgPgql API to create and load a subgraph - see 
Loading a Subgraph from a PGQL Property Graph for more details.

• Using a PGX graph configuration file in JSON format - see Loading a Graph Using a JSON
Configuration File for more details.

• Using the GraphConfigBuilder class to create Oracle RDBMS graph configurations
programmatically through Java methods - see Loading a Graph by Defining a Graph
Configuration Object for more details.

Also, refer to the following sections:

• Enabling Lazy Loading of Graphs
Starting from Graph Server and Client Release 24.3, you can enable lazy loading for
database graphs.

• Reading Entity Providers at the Same SCN
If you have a graph which consists of multiple vertex or edge tables or both, then you can
read all the vertices and edges at the same System Change Number (SCN).

• Progress Reporting and Estimation for Graph Loading
Loading a large graph into the graph server(PGX) can be a long running operation.
However, if you load the graph using an asynchronous action, then you can monitor the
progress of the graph loading operation.

• Graph Configuration Options
Learn about the graph configuration options.

• Data Loading Security Best Practices
Loading a graph from the database requires authentication and it is therefore important to
adhere to certain security guidelines when configuring access to this kind of data source.

• Data Format Support Matrix
Learn about the different data formats supported in the graph server (PGX).

• Immutability of Loaded Graphs
Once the graph is loaded into the graph server (PGX), the graph and its properties are
automatically marked as immutable.

16.3.1.1 Enabling Lazy Loading of Graphs
Starting from Graph Server and Client Release 24.3, you can enable lazy loading for database
graphs.

When lazy loading is enabled, the graphs are automatically loaded into the graph server (PGX)
the first time you access them in a PGQL query. This implies that you can run a PGQL query

Chapter 16
Graph Management in the Graph Server (PGX)

16-8



from a PgxSession instance even if the graph was not loaded into the graph server (PGX)
earlier. However, ensure that you specify the graph name using the ON clause as shown:

• JShell

• Java

• Python

JShell

opg4j> session.queryPgql("SELECT x.* FROM MATCH (x) ON <graph_name>")

Java

session.queryPgql("SELECT x.* FROM MATCH (x) ON <graph_name>");

Python

session.query_pgql("SELECT x.* FROM MATCH (x) ON <graph_name>")

Also, note the following details when lazy loading a graph into the graph server (PGX) memory:

• To use the lazy loading feature, you must add (if not previously added) and enable the
allow_lazy_loading_for_database_graphs configuration field in the pgx.conf file.

{
     "allow_lazy_loading_for_database_graphs": true
}

• The graph will be loaded by name if it exists in the database. Loading a graph by name
relies on the database credentials provided in the pgx_realm options in the pgx.conf file.

• Loading will only happen if the graph is not already loaded into the graph server (PGX)
memory.

• Lazy loading is supported for both PGQL and SQL property graphs. The graph server
(PGX) first attempts to load the graph as a SQL property graph. In case it does not exist,
then the graph is loaded as a PGQL property graph.

• You must have READ permission on the graph and underlying data source tables.

• Lazily loaded graph is added as a session dependency and periodic permission checks are
performed on the graph.

• The following APIs support lazy loading of graphs upon first use:

– PgxSession.queryPgql
– PgxSession.executePgql
– PgxSession.preparePgql

Chapter 16
Graph Management in the Graph Server (PGX)

16-9



– PgxSession.explainPgql
The following example shows the various queries that will trigger lazing loading of a graph. The
example assumes that allow_lazy_loading_for_database_graphs is enabled and MY_GRAPH
exists in the database and is not already loaded into the graph server (PGX) memory.

• JShell

• Java

• Python

JShell

opg4j> session.queryPgql("SELECT x.name FROM MATCH (x) ON MY_GRAPH")
opg4j> session.preparePgql("SELECT x.name FROM MATCH (x) ON MY_GRAPH WHERE 
x.age = ?")
opg4j> session.executePgql("SELECT x.name FROM MATCH (x) ON MY_GRAPH")
opg4j> session.explainPgql("SELECT x.name, x.* FROM MATCH (x) ON MY_GRAPH")

Java

session.queryPgql("SELECT x.name FROM MATCH (x) ON MY_GRAPH");
session.preparePgql("SELECT x.name FROM MATCH (x) ON MY_GRAPH WHERE x.age 
= ?");
session.executePgql("SELECT x.name FROM MATCH (x) ON MY_GRAPH");
session.explainPgql("SELECT x.name, x.* FROM MATCH (x) ON MY_GRAPH");

Python

session.query_pgql("SELECT x.name FROM MATCH (x) ON MY_GRAPH")
session.prepare_pgql("SELECT x.name FROM MATCH (x) ON MY_GRAPH WHERE x.age 
= ?")
session.execute_pgql("SELECT x.name FROM MATCH (x) ON MY_GRAPH")
session.explain_pgql("SELECT x.name, x.* FROM MATCH (x) ON MY_GRAPH")

16.3.1.2 Reading Entity Providers at the Same SCN
If you have a graph which consists of multiple vertex or edge tables or both, then you can read
all the vertices and edges at the same System Change Number (SCN).

This helps to overcome issues such as reading edge providers at a later SCN than the SCN at
which the vertices were read, as some edges may reference missing vertices.

Note that reading a graph from the database is still possible even if Flashback is not enabled
on Oracle Database. In case of multiple databases, SCN can be used to maintain consistency
for entity providers belonging to the same database only.

You can use the as_of flag in the graph configuration to specify at what SCN an entity provider
must be read. The valid values for the as_of flag are as follows:

Chapter 16
Graph Management in the Graph Server (PGX)

16-10



Table 16-1    Valid values for "as_of" Key in Graph Configuration

Value Description

A positive long value This is a parseable SCN value.

"<current-scn>" The current SCN is determined at the beginning of
the graph loading.

"<no-scn>" This is to disable SCN at the time of graph loading.

null This defaults to "<current-scn>" behavior.

If "as_of" is omitted for a vertex or an edge provider in the graph configuration file, then this
follows the same behavior as "as_of": null.

Example 16-1    Graph Configuration Using "as_of" for Vertex and Edge Providers in the
Same Database

The following example configuration has three vertex providers and one edge provider pointing
to the same database.

{
  "name": "employee_graph",
  "vertex_providers": [
    {
      "name": "Department",
      "as_of": "<current-scn>",
      "format": "rdbms",
      "database_table_name": "DEPARTMENTS",
      "key_column": "DEPARTMENT_ID",
      "props": [
        {
          "name": "DEPARTMENT_NAME",
          "type": "string"
        }
      ]
    },
    {
      "name": "Location",
      "as_of": "28924323",
      "format": "rdbms",
      "database_table_name": "LOCATIONS",
      "key_column": "LOCATION_ID",
      "props": [
        {
          "name": "CITY",
          "type": "string"
        }
      ]
    },
    {
      "name": "Region",
      "as_of": "<no-scn>",
      "format": "rdbms",
      "database_table_name": "REGIONS",
      "key_column": "REGION_ID",
      "props": [

Chapter 16
Graph Management in the Graph Server (PGX)

16-11



        {
          "name": "REGION_NAME",
          "type": "string"
        }
      ]
    }
  ],
  "edge_providers": [
    {
      "name": "LocatedAt",
      "format": "rdbms",
      "database_table_name": "DEPARTMENTS",
      "key_column": "DEPARTMENT_ID",
      "source_column": "DEPARTMENT_ID",
      "destination_column": "LOCATION_ID",
      "source_vertex_provider": "Department",
      "destination_vertex_provider": "Location"
    }
  ]
}

When reading the employee_graph using the preceding configuration file, the graph is read at
the same SCN for the Department and LocatedAt entity providers. This is explained in the
following table:

Table 16-2    Example Scenario Using "as_of"

Entity Provider "as_of" SCN Value

Department "<current-scn>" SCN determined automatically

Location "28924323" "28924323" used as SCN

Region "<no-scn>" No SCN used

LocatedAt "as_of" flag is omitted SCN determined automatically

The current SCN value of the database can be determined using one of the following options:

• Querying V$DATABASE view:

SELECT CURRENT_SCN FROM V$DATABASE;

• Using DBMS_FLASHBACK package:

SELECT DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER FROM DUAL;

If you do not have the required privileges to perform either of the preceding operations, then
you can use:

SELECT TIMESTAMP_TO_SCN(SYSDATE) FROM DUAL;

However, note that this option is less precise than the earlier two options.

You can then read the graph into the graph server using the JSON configuration file as shown:

Chapter 16
Graph Management in the Graph Server (PGX)

16-12



• JShell

• Java

• Python

JShell

opg4j> var g = session.readGraphWithProperties("employee_graph.json")

Java

PgxGraph g = session.readGraphWithProperties("employee_graph.json");

Python

g = session.read_graph_with_properties("employee_graph.json")

16.3.1.3 Progress Reporting and Estimation for Graph Loading
Loading a large graph into the graph server(PGX) can be a long running operation. However, if
you load the graph using an asynchronous action, then you can monitor the progress of the
graph loading operation.

The following table shows the asynchronous graph loading APIs supported for the following
formats:

Table 16-3    Asynchronous Graph Loading APIs

Data Format API

PGQL Property Graph session.readGraphByNameAsync()

CSV session.readGraphFileAsync()

These supported APIs return a PgxFuture object.

You can then use the PgxFuture.getProgress() method to collect the following statistics:

• Report on the progress of the graph loading operation

• Estimate of the remaining vertices and edges that need to be loaded into memory

For example, the following code shows the steps to load a PGQL property graph graph
asynchronously and subsequently obtain the FutureProgress object to report and estimate the
loading progress. However, note that the graph loading estimate (for example, the number of
loaded entities and providers or the number of total entities and providers) can be obtained
only until the graph loading operation is in progress. Also, the system internally computes the
graph loading progress for every 10000 entries of entities that are loaded into the graph server
(PGX).

Chapter 16
Graph Management in the Graph Server (PGX)

16-13



• JShell

• Java

JShell

opg4j>  var graphLoadingFuture = session.readGraphByNameAsync("BANK_GRAPH", 
GraphSource.PG_PGQL)
readGraphFuture ==> oracle.pgx.api.PgxFuture@6106dfb6[Not completed]

opg4j> while (!graphLoadingFuture.isDone()) {
...>   var progress = graphLoadingFuture.getProgress();
...>   var graphLoadingProgress = progress.asGraphLoadingProgress();
...>   if (graphLoadingProgress.isPresent()) {
...>     var numLoadedVertices = 
graphLoadingProgress.get().getNumLoadedVertices();
...>   }
...>   Thread.sleep(1000);
...> }

opg4j> var graph = graphLoadingFuture.get();
graph ==> PgxGraph[name=BANK_GRAPH_3,N=999,E=4993,created=1664289985985]

Java

PgxFuture<PgxGraph> graphLoadingFuture = 
session.readGraphByNameAsync("BANK_GRAPH", GraphSource.PG_PGQL);
while (!graphLoadingFuture.isDone()) {
  FutureProgress progress = graphLoadingFuture.getProgress();
  Optional < GraphLoadingProgress > graphLoadingProgress = 
progress.asGraphLoadingProgress();
  if (graphLoadingProgress.isPresent()) {
    long numLoadedVertices = 
graphLoadingProgress.get().getNumLoadedVertices();
  }
  Thread.sleep(1000);
}
PgxGraph graph = graphLoadingFuture.get();

It is recommended that you do not use the FutureProgress object in a chain of asynchronous
operations.

16.3.1.4 Graph Configuration Options
Learn about the graph configuration options.

The following table lists the JSON fields that are common to all graph configurations:

Chapter 16
Graph Management in the Graph Server (PGX)

16-14



Table 16-4    Graph Config JSON Fields

Field Type Description Def
aul
t

name string Name of the graph. Re
quir
ed

array_compaction_thr
eshold

number [only relevant if the graph is optimized for
updates] Threshold used to determined when
to compact the delta-logs into a new array. If
lower than the engine
min_array_compaction_threshold
value,
min_array_compaction_threshold will be
used instead

0.2

attributes object Additional attributes needed to read and write
the graph data.

nul
l

data_source_id string Data source id to use to connect to an
RDBMS instance.

nul
l

edge_id_strategy enum[no_ids,
keys_as_ids,
unstable_gene
rated_ids]

Indicates what ID strategy should be used for
the edges of this graph. If not specified (or set
to null), the strategy will be determined
during loading or using a default value.

nul
l

edge_id_type enum[long] Type of the edge ID. Setting it to long
requires the IDs in the edge providers to be
unique across the graphs; those IDs will be
used as global IDs. Setting it to null (or
omitting it) will allow repeated IDs across
different edge providers and PGX will
automatically generate globally-unique IDs for
the edges.

nul
l

edge_providers array of
object

List of edge providers in this graph. []

error_handling object Error handling configuration. nul
l

external_stores array of
object

Specification of the external stores where
external string properties reside.

[]

jdbc_url string JDBC URL pointing to an RDBMS instance nu
ll

keystore_alias string Alias to the keystore to use when connecting
to database.

nul
l

loading object Loading-specific configuration to use. nul
l

local_date_format array of
string

array of local_date formats to use when
loading and storing local_date properties.
See DateTimeFormatter for more details of
the format string

[]

max_prefetched_rows integer Maximum number of rows prefetched during
each round trip resultset-database.

10
00
0

Chapter 16
Graph Management in the Graph Server (PGX)

16-15

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html


Table 16-4    (Cont.) Graph Config JSON Fields

Field Type Description Def
aul
t

num_connections integer Number of connections to read and write data
from or to the RDBMS table.

<n
o-
of
-
cp
us
>

optimized_for enum[read,
updates]

Indicates if the graph should use data-
structures optimized for read-intensive
scenarios or for fast updates.

rea
d

password string Password to use when connecting to
database.

nul
l

point2d string Longitude and latitude as floating point values
separated by a space.

0.0
0.0

prepared_queries array of object An additional list of prepared queries with
arguments, working in the same way as
'queries'. Data matching at least one those
queries will also be loaded.

[]

queries array of string A list of queries used to determine which data
to load from the database. Data matching at
least one of the queries will be loaded. Not
setting any query will load the entire graph.

[]

redaction_rules array of
object

Array of redaction rules. []

rules_mapping array of
object

Mapping for redaction rules to users and
roles.

[]

schema string Schema to use when reading or writing
RDBMS objects

nu
ll

source_name string Name of the database graph, if the graph is
loaded from a database.

nul
l

source_type enum[pg_pgql,
pg_sql]

Source type for database graphs. nul
l

time_format array of
string

The time format to use when loading and
storing time properties. See 
DateTimeFormatter for a documentation of
the format string.

[]

time_with_timezone_f
ormat

array of
string

The time with timezone format to use
when loading and storing time with timezone
properties. Please see DateTimeFormatter for
more information of the format string.

[]

timestamp_format array of
string

The timestamp format to use when loading
and storing timestamp properties. See 
DateTimeFormatter for more information of
the format string.

[]

Chapter 16
Graph Management in the Graph Server (PGX)

16-16

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html


Table 16-4    (Cont.) Graph Config JSON Fields

Field Type Description Def
aul
t

timestamp_with_timez
one_format

array of
string

The timestamp with timezone format to
use when loading and storing timestamp
with timezone properties. See 
DateTimeFormatter for more information of
the format string.

[]

username string Username to use when connecting to an
RDBMS instance.

nu
ll

vector_component_del
imiter

character Delimiter for the different components of
vector properties.

;

vertex_id_strategy enum[no_ids,
keys_as_ids,
unstable_gene
rated_ids]

Indicates what ID strategy should be used for
the vertices of this graph. If not specified (or
set to null), the strategy will be automatically
detected.

nul
l

vertex_id_type enum[int,
integer,
long, string]

Type of the vertex ID. For homogeneous
graphs, if not specified (or set to null), it will
default to a specific value (depending on the
origin of the data).

nul
l

vertex_providers array of
object

List of vertex providers in this graph. []

Note:

Database connection fields specified in the graph configuration will be used as
default in case underlying data provider configuration does not specify them.

Provider Configuration JSON file Options

You can specify the meta-information about each provider's data using provider configurations.
Provider configurations include the following information about the provider data:

• Location of the data: a file, multiple files or database providers

• Information about the properties: name and type of the property

Table 16-5    Provider Configuration JSON file Options

Field Type Description Default

format enum[pgb,
csv, rdbms]

Provider format. Required

name string Entity provider name. Required

attributes object Additional attributes needed to read and write
the graph data.

null

destination_vert
ex_provider

string Name of the destination vertex provider to be
used for this edge provider.

null

error_handling object Error handling configuration. null

Chapter 16
Graph Management in the Graph Server (PGX)

16-17

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html


Table 16-5    (Cont.) Provider Configuration JSON file Options

Field Type Description Default

has_keys boolean Indicates if the provided entities data have
keys.

true

key_type enum[int,
integer,
long, string]

Type of the keys. long

keystore_alias string Alias to the keystore to use when connecting
to database.

null

label string label for the entities loaded from this provider. null
loading object Loading-specific configuration. null
local_date_forma
t

array of
string

Array of local_date formats to use when
loading and storing local_date properties. See 
DateTimeFormatter for a documentation of
the format string.

[]

password string Password to use when connecting to
database.

null

point2d string Longitude and latitude as floating point values
separated by a space.

0.0 0.0

props array of
object

Specification of the properties associated with
this entity provider.

[]

source_vertex_pr
ovider

string Name of the source vertex provider to be
used for this edge provider.

null

time_format array of
string

The time format to use when loading and
storing time properties. See 
DateTimeFormatter for a documentation of
the format string.

[]

time_with_timezo
ne_format

array of
string

The time with timezone format to use when
loading and storing time with timezone
properties. See DateTimeFormatter for a
documentation of the format string.

[]

timestamp_format array of
string

The timestamp format to use when loading
and storing timestamp properties. See 
DateTimeFormatter for a documentation of
the format string.

[]

timestamp_with_t
imezone_format

array of
string

The timestamp with timezone format to use
when loading and storing timestamp with
timezone properties. See DateTimeFormatter
for a documentation of the format string.

[]

vector_component
_delimiter

character Delimiter for the different components of
vector properties.

;

Provider Labels

The label field in the provider configuration can be used to set a label for the entities loaded
from the provider. If no label is specified, all entities from the provider are labeled with the
name of the provider. It is only possible to set the same label for two different providers if they
have exactly the same properties (same names and same types).

Property Configuration

The props entry in the Provider configuration is an object with the following JSON fields:

Chapter 16
Graph Management in the Graph Server (PGX)

16-18

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html


Table 16-6    Property Configuration

Field Type Description Default

name string Name of the property. Required

type enum[boolean,
integer,
vertex, edge,
float, long,
double,
string, date,
local_date,
time,
timestamp,
time_with_tim
ezone,
timestamp_wit
h_timezone,
point2d]

Type of the property .

Note:

date is
deprecated, use
one of
local_date /
time /
timestamp /
time_with_t
imezone /
timestamp_w
ith_timezon
e instead).

vertex/edge are place-holders for the type
specified in vertex_id_type/
edge_id_type fields.

Required

aggregate enum[identity
, group_key,
min, max,
avg, sum,
concat,
count]

[currently unsupported] which aggregation
function to use, aggregation always happens
by vertex key.

null

column value Name or index (starting from 0) of the column
holding the property data. If it is not specified,
the loader will try to use the property name as
column name (for CSV format only).

null

default value Default value to be assigned to this property if
datasource does not provide it. In case of
date type: string is expected to be formatted
with yyyy-MM-dd HH:mm:ss. If no default is
present (null), non-existent properties will
contain default Java types (primitives) or
empty string (string) or 01.01.1970
00:00 (date).

null

dimension integer Dimension of property. 0
drop_after_loadi
ng

boolean [currently unsupported] indicating helper
properties only used for aggregation, which
are dropped after loading

false

field value Name of the JSON field holding the property
data. Nesting is denoted by dot - separation.
Field names containing dots are possible, in
this case the dots need to be escaped using
backslashes to resolve ambiguities. Only the
exactly specified object are loaded, if they are
non existent, the default value is used.

null

Chapter 16
Graph Management in the Graph Server (PGX)

16-19



Table 16-6    (Cont.) Property Configuration

Field Type Description Default

format array of
string

Array of formats of property. []

group_key string [currently unsupported] can only be used if
the property / key is part of the grouping
expression.

null

max_distinct_str
ings_per_pool

integer [only relevant if
string_pooling_strategy is
indexed] Amount of distinct strings per
property after which to stop pooling. If the limit
is reached an exception is thrown. If set to
null, the default value from the global PGX
configuration will be used.

null

stores array of
object

A list of storage identifiers that indicate where
this property resides.

[]

string_pooling_s
trategy

enum[indexed,
on_heap,
none]

Indicates which string pooling strategy to use.
If set to null, the default value from the
global PGX configuration will be used.

null

Loading Configuration

The loading entry is a JSON object with the following fields:

Table 16-7    Loading Configuration

Field Type Description Default

create_key_mappi
ng

boolean If true, a mapping between entity keys and
internal IDs is prepared during loading.

true

filter string [currently unsupported] the filter expression null
grouping_by array of

string
[currently unsupported] array of edge
properties used for aggregator. For Vertices,
only the ID can be used (default)

[]

load_labels boolean Whether or not to load the entity label if it is
available.

false

strict_mode boolean If true, exceptions are thrown and logged
with ERROR level whenever loader encounters
problems with input file, such as invalid
format, repeated keys, missing fields,
mismatches and other potential errors. If
false, loader may use less memory during
loading phase, but behave unexpectedly with
erratic input files.

true

Error Handling Configuration

The error_handling entry is a JSON object with the following fields:

Chapter 16
Graph Management in the Graph Server (PGX)

16-20



Table 16-8    Error Handling Configuration

Field Type Description Default

on_missed_prop_k
ey

enum[silent,
log_warn,
log_warn_once,
error]

Error handling for a missing
property key.

log_warn_
once

on_missing_verte
x

enum[ignore_edge
,
ignore_edge_log,
ignore_edge_log_
once,
create_vertex,
create_vertex_lo
g,
create_vertex_lo
g_once, error]

Error handling for a missing source
or destination vertex of an edge in
a vertex data source.

error

on_parsing_issue enum[silent,
log_warn,
log_warn_once,
error]

Error handling for incorrect data
parsing. If set to silent, log_warn
or log_warn_once, will attempt to
continue loading. Some parsing
issues may not be recoverable and
provoke the end of loading.

error

on_prop_conversi
on

enum[silent,
log_warn,
log_warn_once,
error]

Error handling when encountering
a different property type other than
the one specified, but coercion is
possible.

log_warn_
once

on_type_mismatch enum[silent,
log_warn,
log_warn_once,
error]

Error handling when encountering
a different property type other than
the one specified, but coercion is
not possible.

error

on_vector_length
_mismatch

enum[silent,
log_warn,
log_warn_once,
error]

Error handling for a vector property
that does not have the correct
dimension.

error

Note:

The only supported setting for the on_missing_vertex error handling configuration is
ignore_edge.

16.3.1.5 Data Loading Security Best Practices
Loading a graph from the database requires authentication and it is therefore important to
adhere to certain security guidelines when configuring access to this kind of data source.

The following guidelines are recommended:

• The user or role used to access the data should be a read-only account that only has
access to the required graph data.

• The graph data should be marked as read-only, for example, with non-updateable views in
the case of the database.

Chapter 16
Graph Management in the Graph Server (PGX)

16-21



16.3.1.6 Data Format Support Matrix
Learn about the different data formats supported in the graph server (PGX).

The following table illustrates how the different data formats differ in the way IDs, labels and
vector properties are handled.

Note:

The table refers to limitations of the PGX implementation of the format and not
necessarily to limitations of the format itself.

Table 16-9    Data Format Support Matrix

Format Vertex
IDs

Edge IDs Vertex
Labels

Edge Labels Vector properties

PGB int,
long,
string

long multiple single supported (vectors can be of
type integer, long, float
or double)

CSV int,
long,
string

long multiple single supported (vectors can be of
type integer, long, float
or double)

ADJ_LIST int,
long,
string

Not supported Not supported Not supported supported (vectors can be of
type integer, long, float
or double)

EDGE_LIST int,
long,
string

Not supported multiple single supported (vectors can be of
type integer, long, float
or double)

GRAPHML int,
long,
string

Not supported Not supported Not supported Not supported

16.3.1.7 Immutability of Loaded Graphs
Once the graph is loaded into the graph server (PGX), the graph and its properties are
automatically marked as immutable.

The immutability of loaded graphs is due to the following design choices:

• Typical graph analyses happen on a snapshot of a graph instance, and therefore they do
not require mutations of the graph instance.

• Immutability allows PGX to use an internal graph representation optimized for fast
analysis.

• In remote mode, the graph instance might be shared among multiple clients.

However, the graph server (PGX) also provides methods to customize and mutate graph
instances for the purpose of analysis. See Graph Mutation and Subgraphs for more
information.

Chapter 16
Graph Management in the Graph Server (PGX)

16-22



16.3.2 Storing a Graph Snapshot on Disk
After reading a graph into memory, you can make any changes to the graph (such as running
the PageRank algorithm and storing the values as vertex properties), and then store this
snapshot of the graph on disk.

If you want to save the state of the graph in memory, then a snapshot of a graph can be saved
as a file in binary format (PGB file).

In general, if you must shut down the graph server, then it is recommended that you store all
the graph queries and analytics APIs that have been run on the graph. Once the graph server
(PGX) is restarted, you can reload the graph and rerun the APIs.

However, if you must save the state of the graph, then the following example explains how to
store the graph snapshot on disk.

As a prerequisite for storing the graph snapshot, you need to explicitly authorize access to the
corresponding directories by defining a directory object pointing to the directory (on the graph
server) that contains the files to read or write.

CREATE OR REPLACE DIRECTORY pgx_file_location AS '<path_to_dir>';
GRANT READ, WRITE ON directory pgx_file_location to GRAPH_DEVELOPER;

Also, note the following:

• The directory in the CREATE DIRECTORY statement must exist on the graph server (PGX).

• The directory must be readable (and/or writable) at the OS level by the graph server
(PGX).

The preceding code grants the privileges on the directory to the GRAPH_DEVELOPER role.
However, you can also grant permissions to an individual user:

GRANT READ, WRITE ON DIRECTORY pgx_file_location TO <graph_user>;

You can then run the following code to load a PGQL property graph into the graph server
(PGX) and save the graph snapshot as a file. Note that multiple PGB files will be generated,
one for each vertex and edge provider in the graph.

opg4j> var g = session.readGraphByName("BANK_GRAPH", GraphSource.PG_PGQL)
g ==> PgxGraph[name=BANK_GRAPH,N=999,E=4993,created=1676021791568]

opg4j> analyst.pagerank(graph)
$8 ==> VertexProperty[name=pagerank,type=double,graph=BANK_GRAPH]

// Now save the state of this graph
opg4j>  var storedPgbConfig = graph.store(ProviderFormat.PGB, "<path_to_dir>")

In a three-tier deployment, the file is written on the server-side file system. You must also
ensure that the file location to write is specified in the graph server (PGX). (As explained in 
Three-Tier Deployments of Oracle Graph with Autonomous Database, in a three-tier
deployment, access to the PGX server file system requires a list of allowed locations to be
specified.)

Chapter 16
Graph Management in the Graph Server (PGX)

16-23



16.3.3 Publishing a Graph
You can publish a graph that is loaded into the graph server (PGX), so that it can be
referenced by other sessions. Similarly, the snapshots of a graph can also be made available
to other sessions.

Publishing a Graph with Snapshots

After loading a graph is loaded into the graph server, if you want to make all snapshots of the
graph visible to other sessions (under the same user), then use the publishWithSnapshots()
method. When a graph is published with snapshots, the GraphMetaData information of each
snapshot is also made available to the other sessions, with the exception of the graph
configuration, which is null.

When calling the publishWithSnapshots() method, all the persistent properties of all the
snapshots are published and made visible to the other sessions. Transient properties are
session-private and therefore they must be published explicitly. Once published, all properties
become read-only. Hence, transient properties are not published when calling
publishWithSnapshots() without arguments.

Publishing a graph with publishWithSnapshots() method, will move the graph name from the
session-private namespace to the public namespace. If a graph with the same name has been
already published, then the publishWithSnapshots() method will fail with an exception.

• JShell

• Java

• Python

JShell

opg4j> graph.publishWithSnapshots()

Java

graph.publishWithSnapshots();

Python

>>> graph.publish_with_snapshots()

If you want to publish specific transient properties, then you can list them within the
publishWithSnapshots() call, as shown in the following example:

• JShell

Chapter 16
Graph Management in the Graph Server (PGX)

16-24



• Java

JShell

opg4j> var prop1 = graph.createVertexProperty(PropertyType.INTEGER, "prop1")
opg4j> prop1.fill(0)
opg4j> var cost = graph.createEdgeProperty(PropertyType.DOUBLE, "cost")
opg4j> cost.fill(0d)
opg4j> graph.publishWithSnapshots(List.of(prop1), List.of(cost))

Java

VertexProperty<Integer, Integer> prop1 = 
graph.createVertexProperty(PropertyType.INTEGER, "prop1");
prop1.fill(0);
EdgeProperty<Double> cost = graph.createEdgeProperty(PropertyType.DOUBLE, 
"cost");
cost.fill(0d);
Collection<VertexProperty<?, ?>> vertexProps = Arrays.asList(prop1);
Collection<EdgeProperty<?>> edgeProps = Arrays.asList(cost);
graph.publishWithSnapshots(vertexProps,edgeProps);

Alternatively, all properties can be published at once by passing the built-in
VertexProperty.ALL and EdgeProperty.ALL to publishWithSnapshots(), as in the following
example.

• JShell

• Java

JShell

opg4j> var prop1 = graph.createVertexProperty(PropertyType.INTEGER, "prop1")
opg4j> prop1.fill(0)
opg4j> var cost = graph.createEdgeProperty(PropertyType.DOUBLE, "cost")
opg4j> cost.fill(0d)
opg4j> graph.publishWithSnapshots(VertexProperty.ALL, EdgeProperty.ALL)

Java

VertexProperty<Integer, Integer> prop1 = 
graph.createVertexProperty(PropertyType.INTEGER, "prop1");
prop1.fill(0);
EdgeProperty<Double> cost = graph.createEdgeProperty(PropertyType.DOUBLE, 
"cost");
cost.fill(0d);
Collection<VertexProperty<?, ?>> vertexProps = Arrays.asList(prop);

Chapter 16
Graph Management in the Graph Server (PGX)

16-25



Collection<EdgeProperty<?>> edgeProps = Arrays.asList(cost);
graph.publishWithSnapshots(VertexProperty.ALL, EdgeProperty.ALL);

After creating a snapshot, properties in the new snapshot will inherit the publishing state of
properties in the old snapshot. This implies that if a property is published in the old snapshot, it
will also be published in the new snapshot. Otherwise it will remain session private in the new
snapshot. This behavior is configurable with
enable_snapshot_properties_publish_state_propagation flag (see Configuration
Parameters for the Graph Server (PGX) Engine). By default, this flag is enabled. However, it
can be disabled by setting its value to false, in which case, the publishing state of the
properties will be ignored when creating new snapshots and the properties in new snapshots
will be session-private.

Note:

By default, calling publishWithSnapshots() is allowed only on the latest snapshot.
Calling publishWithSnapshots() on an old snapshot will result in an exception. To
allow calling publishWithSnapshots() on any snapshot, set the
enable_snapshot_properties_publish_state_propagation configuration field in the
pgx.conf file to false.

• JShell

• Java

JShell

opg4j> var prop1 = graph.createVertexProperty(PropertyType.INTEGER, "prop1")
opg4j> prop1.fill(0)
opg4j> var prop2 = graph.createVertexProperty(PropertyType.INTEGER, "prop2")
opg4j> prop2.fill(0)
opg4j> var cost = graph.createEdgeProperty(PropertyType.DOUBLE, "cost")
opg4j> cost.fill(0d)

// the example intentionally avoids publishing prop2
opg4j> graph.publishWithSnapshots(List.of(prop1), List.of(cost))
opg4j> var snapshot = graph.createChangeSet().buildNewSnapshot()
opg4j> snapshot.getVertexProperty("prop1").isPublished()
=> true
opg4j> snapshot.getVertexProperty("prop2").isPublished()
=> false
opg4j> snapshot.getEdgeProperty("cost").isPublished()
=> true

// publish prop2 in snapshot, this will make it published in future snapshots 
too
// but not in the previous snapshots
opg4j> snapshot.getVertexProperty("prop2").publish()
opg4j> var snapshot2 = snapshot.createChangeSet().buildNewSnapshot();

Chapter 16
Graph Management in the Graph Server (PGX)

16-26



opg4j> snapshot2.getVertexProperty("prop1").isPublished()
=> true
opg4j> snapshot2.getVertexProperty("prop2").isPublished()
=> true
opg4j> snapshot2.getEdgeProperty("cost").isPublished()
=> true

Java

VertexProperty<Integer, Integer> prop1 = 
graph.createVertexProperty(PropertyType.INTEGER, "prop1");
prop1.fill(0);
VertexProperty<Integer, Integer> prop2 = 
graph.createVertexProperty(PropertyType.INTEGER, "prop2");
prop2.fill(0);
EdgeProperty<Double> cost = graph.createEdgeProperty(PropertyType.DOUBLE, 
"cost");
cost.fill(0d);

// the example intentionally avoids publishing prop2
graph.publishWithSnapshots(List.of(prop1), List.of(cost));
PgxGraph snapshot = graph.createChangeSet().buildNewSnapshot();
System.out.println(snapshot.getVertexProperty("prop1").isPublished()); // 
Returns true
System.out.println(snapshot.getVertexProperty("prop2").isPublished()); // 
Returns false
System.out.println(snapshot.getEdgeProperty("cost").isPublished());    // 
Returns true

// publish prop2 in snapshot, this will make it published in future snapshots 
too
// but not in the previous snapshots.
snapshot.getVertexProperty("prop2").publish();
PgxGraph snapshot2 = snapshot.createChangeSet().buildNewSnapshot();
System.out.println(snapshot2.getVertexProperty("prop1").isPublished()); // 
Returns true
System.out.println(snapshot2.getVertexProperty("prop2").isPublished()); // 
Returns true
System.out.println(snapshot2.getEdgeProperty("cost").isPublished());    // 
Returns true

Publishing a Single Graph Snapshot

The PgxGraph#publish() method can be used to publish the current selected snapshot of the
graph. The publish operation will move the graph name from the session-private namespace to
the public namespace. If a graph with the same name has been already published, then the
publish() method will fail with an exception. Graphs published with snapshots and single
published snapshots share the same namespace.

Table 14-6 describes the grants required to publish a graph.

Chapter 16
Graph Management in the Graph Server (PGX)

16-27



Note that calling the publish() method without arguments publishes the snapshot with its
persistent properties only. However, if you want to publish specific transient properties, then
you must list them within the publish() call as shown:

• JShell

• Java

• Python

JShell

opg4j> var prop1 = graph.createVertexProperty(PropertyType.INTEGER, "prop1")
opg4j> prop1.fill(0)
opg4j> var cost = graph.createEdgeProperty(PropertyType.DOUBLE, "cost")
opg4j> cost.fill(0d)
opg4j> graph.publish(List.of(prop1), List.of(cost))

Java

VertexProperty<Integer, Integer> prop1 = 
graph.createVertexProperty(PropertyType.INTEGER, "prop1");
prop1.fill(0);
EdgeProperty<Double> cost = graph.createEdgeProperty(PropertyType.DOUBLE, 
"cost");
cost.fill(0d);
Collection<VertexProperty<?, ?>> vertexProps = Arrays.asList(prop);
Collection<EdgeProperty<?>> edgeProps = Arrays.asList(cost);
graph.publish(vertexProps, edgeProps);

Python

prop = graph.create_vertex_property("integer", "prop1")
prop1.fill(0)
cost = graph.create_edge_property("double", "cost")
cost.fill(float(0))
vertex_props = [prop]
edge_props = [cost]
graph.publish(vertex_props, edge_props)

Referencing a Published Graph from Another Session

You can reference a published graph by its name in another session, using the
PgxSession#getGraph() method.

The following example references a published graph myGraph in a new session (session2):

Chapter 16
Graph Management in the Graph Server (PGX)

16-28



• JShell

• Java

• Python

JShell

opg4j> var session2 = instance.createSession("session2")
opg4j> var graph2 = session2.getGraph(Namespace.PUBLIC, "myGraph")

Java

PgxSession session2 = instance.createSession("session2");
PgxGraph graph2 = session2.getGraph(Namespace.PUBLIC, "myGraph");

Python

session2 = pypgx.get_session("session2");
PgxGraph graph2 = session2.get_graph("myGraph")

session2 can access only the published snapshot. If the graph has been published without
snapshots, calling the getAvailableSnapshots() method will return an empty queue.

In case if the graph snapshots have been published, then the call to getGraph() returns the
most recent available snapshot. session2 can see all the available snapshots through the
getAvailableSnapshots() method. You can then set a specific snapshot using the
PgxSession#setSnapshot() method.

Note:

If a referenced graph is not required anymore, then it is important that you release
the graph. See Deleting a Graph for more information.

Publishing a Property

After publishing (a single snapshot or all of them), you can still publish transient properties
individually. By default, the publishing state of the transient properties are associated to the
specific snapshot on which they are created and thus they are visible only on that snapshot.

• JShell

• Java

• Python

Chapter 16
Graph Management in the Graph Server (PGX)

16-29



JShell

opg4j> graph.getVertexProperty("prop1").publish()
opg4j> graph.getEdgeProperty("cost").publish()

Java

graph.getVertexProperty("prop1").publish();
graph.getEdgeProperty("cost").publish();

Python

graph.get_vertex_property("prop1").publish()
graph.get_edge_property("cost").publish()

Getting a Published Property in Another Session

Sessions referencing a published graph (with or without snapshots) can reference a published
property through the PgxGraph#getVertexProperty and PgxGraph#getEdgeProperty.

• JShell

• Java

• Python

JShell

opg4j> var session2 = instance.createSession("session2")
opg4j> var graph2 = session2.getGraph(Namespace.PUBLIC, "myGraph")
opg4j> var vertexProperty = graph2.getVertexProperty("prop1")
opg4j> var edgeProperty = graph2.getEdgeProperty("cost")

Java

PgxSession session2 = instance.createSession("session2");
PgxGraph graph2 = session2.getGraph(Namespace.PUBLIC, "myGraph");
VertexProperty<Integer, Integer> vertexProperty = 
graph2.getVertexProperty("prop1");
EdgeProperty<Double> edgeProperty = graph2.getEdgeProperty("cost");

Python

session2 = pypgx.get_session(session_name ="session2")
graph2 = session2.get_graph("myGraph")
vertex_property = graph2.get_vertex_property("prop1")
edge_property = graph2.get_edge_property("cost")

Chapter 16
Graph Management in the Graph Server (PGX)

16-30



Pinning a Published Graph

You can pin a published graph so that it remains published even if no session uses it.

• JShell

• Java

• Python

JShell

opg4j> graph.pin()

Java

graph.pin();

Python

>>> graph.pin()

Unpinning a Published Graph

You can unpin a published graph that was earlier pinned. By doing this, you can remove the
graph and all its snapshots, if no other session is using a snapshot of the graph.

• JShell

• Java

• Python

JShell

opg4j> var graph = session.getGraph("bank_graph_analytics")
graph ==> 
PgxGraph[name=bank_graph_analytics,N=999,E=4993,created=1660217577201]
opg4j> graph.unpin()

Java

PgxGraph graph = session.getGraph("bank_graph_analytics");
graph.unpin();

Chapter 16
Graph Management in the Graph Server (PGX)

16-31



Python

>>> graph = session.get_graph("bank_graph_analytics")
>>> graph.unpin()

Related Topics

• Namespaces and Sharing
The graph server (PGX) supports separate namespaces that help you to organize your
entities.

16.3.4 Deleting a Graph
In order to reduce the memory usage of the graph server (PGX), the session must drop the
unused graph objects created through the getGraph() method, by invoking the close()
method.

Calling the close() method not only destroys the specified graph, but all of its associated
properties, including transient properties as well. In addition, all of the collections related to the
graph instance (for example, a VertexSet) are also deleted automatically. If a session holds
multiple PgxGraph objects referencing the same graph, invoking close() on any of them will
invalidate all the PgxGraph objects referencing that graph, making any operation on those
objects fail.

For example:

• JShell

• Java

• Python

JShell

opg4j> var graph1 = session.getGraph("myGraphName")
opg4j> var graph2 = session.getGraph("myGraphName")
opg4j> graph2.close()                                // Delete graph2
opg4j> var properties = graph1.getVertexProperties() //throws an exception as 
graph1 reference is not valid anymore
opg4j> properties = graph2.getVertexProperties()     //throws an exception as 
graph2 reference is not valid anymore

Java

PgxGraph graph1 = session.getGraph("myGraphName");

// graph2 references the same graph of graph1
PgxGraph graph2 = session.getGraph("myGraphName");

// Delete graph2

Chapter 16
Graph Management in the Graph Server (PGX)

16-32



graph2.close();

// Both the following calls throw an exception, as both references are not 
valid anymore
Set<VertexProperty<?, ?>> properties = graph1.getVertexProperties();
properties = graph2.getVertexProperties();

Python

graph1 = session.get_graph("myGraphName")

# graph2 references the same graph of graph1
 graph2 = session.get_graph("myGraphName")

# Delete graph2
graph2.close()

# Both the following calls throw an exception, as both references are not 
valid anymore
properties = graph1.get_vertex_properties()
properties = graph2.get_vertex_properties()

The same behavior occurs when multiple PgxGraph objects reference the same snapshot.
Since a snapshot is effectively a graph, closing a PgxGraph object referencing a certain
snapshot invalidates all PgxGraph objects referencing the same snapshot, but does not
invalidate those referencing other snapshots:

// Get a snapshot of "myGraphName"
PgxGraph graph1 = session.getGraph("myGraphName");

// graph2 and graph3 reference the same snapshot as graph1
PgxGraph graph2 = session.getGraph("myGraphName");
PgxGraph graph3 = session.getGraph("myGraphName");

// Assume another snapshot is created ...

// Make graph3 references the latest snapshot available
session.setSnapshot(graph3, PgxSession.LATEST_SNAPSHOT);
graph2.close();

// Both the following calls throw an exception, as both references are not 
valid anymore
Set<VertexProperty<?, ?>> properties = graph1.getVertexProperties();
properties = graph2.getVertexProperties();

// graph3 is still valid, so the call succeeds
properties = graph3.getVertexProperties();

Chapter 16
Graph Management in the Graph Server (PGX)

16-33



Note:

Even if a graph is closed by a session, the graph data may still remain in the server
memory, if the graph is currently shared by other sessions. In such a case, the graph
may still be visible among the available graphs through the
PgxSession.getGraphs(<namespace>) method.

As a safe alternative to the manual removal of each graph, the PGX API supports some implicit
resource management features which allow developers to safely omit the close() call. See 
Resource Management Considerations for more information.

16.3.5 Graph Sharing Options and Validating Graph Permissions
The graph_sharing_option parameter in the pgx.conf file determines if and how a graph can
be shared.

It mainly depends on whether or not the graph is loaded from the database into the graph
server (PGX). Graphs that are loaded directly from the database using the
session.readGraphByName() API are known as traceable graphs. However, graphs which are
created as a result of mutation (through graph alteration APIs) on a loaded graph instance are
not traceable graphs.

The graph server (PGX) supports sharing of graphs within sessions of a single user (through
the publish API) or across sessions of different users (through the publish and grant permission
APIs). This is determined by the graph_sharing_option field in the pgx.conf file.

In addition, the graph server (PGX) will perform periodic checks on all traceable graphs to
make sure that the user holding a reference to a traceable graph has all the permissions to
access the source graph data in the database. If the permission check fails (for example, the
user privileges on the original data source have been revoked), then the user session will be
destroyed and all sessions of the same user accessing the traceable graph data will be
released from memory. The permission_checks_interval field in the pgx.conf file can be
used to control the frequency at which the graph server must check the graph permissions.

The following table shows the three graph_sharing_option modes that are supported by the
graph server (PGX).

Chapter 16
Graph Management in the Graph Server (PGX)

16-34



Table 16-10    Graph Sharing Options

Graph Sharing Option Description Publish
API
Allowed

Grant
Permiss
ion API
Allowed

P
e
r
i
o
d
i
c
P
e
r
m
i
s
s
i
o
n
C
h
e
c
k

getGrap
h
Permiss
ion
Check

ALLOW_DATA_SHARING
<default>

This indicates that all graph types
(traceable or not) is allowed across
sessions of a single user and
across users.

Yes Yes Y
e
s

Yes

ALLOW_TRACEABLE_DATA_SHARIN
G_WITHIN_SAME_USER

This allows only sharing of
traceable graphs among sessions
of a single user. It does not allow
sharing of non-traceable graphs or
sharing across multiple users.

Yes No Y
e
s

Yes

DISALLOW_DATA_SHARING This indicates graphs are always
session private.

No No Y
e
s

Yes (not
really
needed)

For instance, consider the following example in which the graph_sharing_option is set as
ALLOW_TRACEABLE_DATA_SHARING_WITHIN_SAME_USER and the permission_checks_interval
parameter defaults to 60 seconds in the pgx.conf file. Assume that a graph user's permission
to an underlying source table is revoked after the user publishes the graph. If the user attempts
to access the graph data, in the current or in another session, the graph gets invalidated and
the respective sessions are destroyed.

The following code shows the graph invalidation scenario in the current user session:

• JShell

• Java

• Python

Chapter 16
Graph Management in the Graph Server (PGX)

16-35



JShell

opg4j> var graph = session.readGraphByName("HR", "EMP_GRAPH", 
GraphSource.PG_PGQL)
graph ==> PgxGraph[name=EMP_GRAPH,N=134,E=11,created=1696308375704]
opg4j> session.getGraph("EMP_GRAPH")
$2 ==> graph ==> PgxGraph[name=EMP_GRAPH,N=134,E=11,created=1696402820966]
opg4j> graph.publish()
// Source table permission revoked for the user
opg4j> session.getGraph("EMP_GRAPH") //throws exception and the current 
session is explicitly destroyed

Java

PgxGraph graph = session.readGraphByName("HR", "EMP_GRAPH", 
GraphSource.PG_PGQL);
session.getGraph("EMP_GRAPH");
graph.publish();
// Source table permission revoked for the user
session.getGraph("EMP_GRAPH"); //throws exception and the current session is 
explicitly destroyed

Python

>>> graph = session.read_graph_by_name("EMP_GRAPH", "pg_pgql", schema="HR")
>>> session.get_graph("EMP_GRAPH")
PgxGraph(name: EMP_GRAPH, v: 134, e: 11, directed: True, memory(Mb): 0)
>>> graph.publish()
>>> # Source table permission revoked for the user
>>> session.get_graph("EMP_GRAPH") #throws exception and the current session 
is explicitly destroyed

The following code shows that the referenced graph also gets invalidated in another session of
the given user after permission to the source data table is revoked for the user:

• JShell

• Java

• Python

JShell

opg4j> //throws exception in another session and the session gets explicitly 
destroyed
opg4j> graph.queryPgql("SELECT n.* from MATCH (n:employees) LIMIT 5").print()

Chapter 16
Graph Management in the Graph Server (PGX)

16-36



Java

//throws exception in another session and the session gets explicitly 
destroyed
graph.queryPgql("SELECT n.* from MATCH (n:employees) LIMIT 5").print();

Python

>>> #throws exception in another session and the session gets explicitly 
destroyed
>>> graph.query_pgql("SELECT n.* from MATCH (n:employees) LIMIT 5").print()

16.4 Keeping the Graph in Oracle Database Synchronized with
the Graph Server

You can use the FlashbackSynchronizer API to automatically apply changes made to graph in
the database to the corresponding PgxGraph object in memory, thus keeping both
synchronized.

This API uses Oracle's Flashback Technology to fetch the changes in the database since the
last fetch and then push those changes into the graph server using the ChangeSet API. After
the changes are applied, the usual snapshot semantics of the graph server apply: each delta
fetch application creates a new in-memory snapshot. Any queries or algorithms that are
executing concurrently to snapshot creation are unaffected by the changes until the
corresponding session refreshes its PgxGraph object to the latest state by calling the
session.setSnapshot(graph, PgxSession.LATEST_SNAPSHOT) procedure.

Also, if the changes from the previous fetch operation no longer exist, then the synchronizer
will throw an exception. This occurs if the previous fetch duration is longer than the
UNDO_RETENTION parameter setting in the database. To avoid this exception, ensure to fetch the
changes at intervals less than the UNDO_RETENTION parameter value. The default setting for the
UNDO_RETENTION parameter is 900 seconds. See Oracle Database Reference for more
information.

Prerequisites for Synchronizing

The Oracle database must have Flashback enabled and the database user that you use to
perform synchronization must have:

• Read access to all tables which need to be kept synchronized.

• Permission to use flashback APIs. For example:

GRANT EXECUTE ON DBMS_FLASHBACK TO <user>

The database must also be configured to retain changes for the amount of time needed by
your use case.

Types of graphs that can be synchronized

Not all PgxGraph objects in PGX can be synchronized. The following limitations apply:

Chapter 16
Keeping the Graph in Oracle Database Synchronized with the Graph Server

16-37

http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/21&id=GUID-03D1CAAE-D940-444A-8771-B1BC636D105D


• Only the original creator of the graph can synchronize it. That is, the current user must
have the MANAGE permission of the graph.

• Only graphs loaded from database tables (PGQL property graphs and SQL property
graphs) can be synchronized. Graphs created from other formats or graphs created via the
graph builder API or PGQL property graphs created from database views cannot be
synchronized.

• Only the latest snapshot of a graph can be synchronized.

Types of changes that can be synchronized

The synchronizer supports keeping the in-memory graph snapshot in sync with the following
database-side modifications:

• insertion of new vertices and edges

• removal of existing vertices and edges

• update of property values of any vertex or edge

The synchronizer does not support schema-level changes to the input graph, such as:

• alteration of the list of input vertex or edge tables

• alteration of any columns of any input tables (vertex or edge tables)

Furthermore, the synchronizer does not support updates to vertex and edge keys.

For a detailed example, see the following topic:

• Synchronizing a SQL Property Graph
You can synchronize a SQL property graph that is loaded into the graph server (PGX) with
the changes made to the graph data in the database.

• Synchronizing a PGQL Property Graph
You can synchronize a PGQL property graph loaded into the graph server (PGX) with the
changes made to the graph data in the database.

• Synchronizing a Published Graph
You can synchronize a published graph by configuring the Flashback Synchronizer with a
PartitionedGraphConfig object containing the graph schema along with the database
connection details.

16.4.1 Synchronizing a SQL Property Graph
You can synchronize a SQL property graph that is loaded into the graph server (PGX) with the
changes made to the graph data in the database.

The following example shows the steps for synchronizing a SQL property graph using the
FlashbackSynchronizer API:

1. Load the SQL property graph into the graph server (PGX) using the readGraphByName()
API as shown:

• JShell

• Java

• Python

Chapter 16
Keeping the Graph in Oracle Database Synchronized with the Graph Server

16-38



JShell

opg4j> var graph = session.readGraphByName("BANK_SQL_PG", 
GraphSource.PG_SQL,
...>                   
ReadGraphOption.optimizeFor(GraphOptimizedFor.UPDATES),
...>                   ReadGraphOption.synchronizable())
graph ==> PgxGraph[name=BANK_SQL_PG_2,N=1000,E=5001,created=1697259571499

Java

PgxGraph graph = session.readGraphByName("BANK_SQL_PG",GraphSource.PG_SQL,
                   ReadGraphOption.optimizeFor(GraphOptimizedFor.UPDATES),
                   ReadGraphOption.synchronizable());

Python

>>> graph = session.read_graph_by_name('BANK_SQL_PG', 'pg_sql',
...              options=['optimized_for_updates', 'synchronizable'])

2. Open a new JDBC connection to the database and change the data in the underlying
database tables for the SQL property graph. For example, the following code updates the
database value for one of the edge properties:

• JShell

• Java

• Python

JShell

opg4j> var conn = 
DriverManager.getConnection(<jdbcUrl>,<username>,<password>)
conn ==> oracle.jdbc.driver.T4CConnection@738e79ec
opg4j> var stmt = conn.createStatement()
stmt ==> oracle.jdbc.driver.OracleStatementWrapper@71f056a
opg4j> stmt.executeQuery("UPDATE bank_txns SET amount=2000 WHERE txn_id=2")
$8 ==> oracle.jdbc.driver.ForwardOnlyResultSet@19b0a9f2
opg4j> conn.commit()

Java

Connection conn = 
DriverManager.getConnection(<jdbcUrl>,<username>,<password>);
Statement stmt = conn.createStatement();
stmt.executeQuery("UPDATE bank_txns SET amount=2000 WHERE txn_id=2");
conn.commit();

Chapter 16
Keeping the Graph in Oracle Database Synchronized with the Graph Server

16-39



Python

>>> conn = opg4py.pgql.get_connection(<username>,<password>, 
<jdbcUrl>).get_jdbc_connection()
>>> conn.prepareStatement("UPDATE bank_txns SET amount=2000 WHERE 
txn_id=2").execute()
False
>>> conn.commit()

Committing the changes to the database causes the graph in the memory to go out of sync
with the database source tables.

3. Synchronize the in-memory graph with the database by creating a new synchronizer object
as shown in the following code:

• JShell

• Java

• Python

JShell

opg4j>  var synchronizer = 
graph.createSynchronizer(FlashbackSynchronizer.class, conn)
synchronizer ==> oracle.pgx.api.FlashbackSynchronizer@5f65e0c0

Java

Synchronizer synchronizer = 
graph.createSynchronizer(FlashbackSynchronizer.class, conn);

Python

>>> synchronizer = 
graph.create_synchronizer(synchronizer_class='oracle.pgx.api.FlashbackSynch
ronizer',
...              jdbc_url=<jdbcUrl>, username=<username>, 
password=<password>)

4. Fetch and apply the database changes by calling the sync() function and create a new in-
memory graph snapshot:

• JShell

Chapter 16
Keeping the Graph in Oracle Database Synchronized with the Graph Server

16-40



• Java

• Python

JShell

opg4j> graph=synchronizer.sync()
graph ==> PgxGraph[name=BANK_SQL_PG,N=1000,E=5001,created=1696332603804]

Java

graph=synchronizer.sync();

Python

graph=synchronizer.sync()

Note that the Synchronizer object needs to be created only once per session. Once
created, you can perform the synchronizer.sync() operation multiple times to generate
the latest graph snapshot that is consistent with the changes in the database.

5. Query the graph to verify the updates to the edge property.

• JShell

• Java

• Python

JShell

opg4j> graph.queryPgql("SELECT e.amount FROM MATCH (v1:Account)-
[e:Transfer]->(v2:Account) WHERE e.from_acct_id = 237 AND 
e.to_acct_id=777").print()

Java

graph.queryPgql("SELECT e.amount FROM MATCH (v1:Accounts)-[e:Transfers]-
>(v2:Accounts) WHERE e.from_acct_id = 237 AND e.to_acct_id=777").print();

Python

>>> graph.query_pgql("SELECT e.amount FROM MATCH (v1:Account)-[e:Transfer]-
>(v2:Account) WHERE v1.id = 237 AND v2.id=777").print()

Chapter 16
Keeping the Graph in Oracle Database Synchronized with the Graph Server

16-41



On execution, the preceding example produces the following output:

+--------+
| amount |
+--------+
| 2000.0 |
+--------+

16.4.2 Synchronizing a PGQL Property Graph
You can synchronize a PGQL property graph loaded into the graph server (PGX) with the
changes made to the graph data in the database.

The following example shows the steps for synchronizing a PGQL property graph using the
FlashbackSynchronizer API:

1. Load the PGQL property graph into the graph server (PGX) using the readGraphByName()
API as shown:

• JShell

• Java

• Python

JShell

opg4j> var graph = 
session.readGraphByName("BANK_GRAPH",GraphSource.PG_PGQL,
                 
ReadGraphOption.optimizeFor(GraphOptimizedFor.UPDATES),ReadGraphOption.sync
hronizable())
graph ==> PgxGraph[name=BANK_GRAPH,N=999,E=4993,created=1660275936010]

Java

PgxGraph graph = session.readGraphByName("BANK_GRAPH",GraphSource.PG_PGQL,
                      
ReadGraphOption.optimizeFor(GraphOptimizedFor.UPDATES),ReadGraphOption.sync
hronizable());

Python

>>> graph = session.read_graph_by_name('BANK_GRAPH','pg_pgql',
...              options=['optimized_for_updates', 'synchronizable'])

2. Open a new JDBC connection to the database and change the data in the underlying
database tables for the PGQL property graph. For example, the following code updates the
database value for one of the edge properties:

Chapter 16
Keeping the Graph in Oracle Database Synchronized with the Graph Server

16-42



• JShell

• Java

• Python

JShell

opg4j> var conn = 
DriverManager.getConnection(<jdbcUrl>,<username>,<password>)
conn ==> oracle.jdbc.driver.T4CConnection@60f7261f
opg4j> var stmt = conn.createStatement()
stmt ==> oracle.jdbc.driver.OracleStatementWrapper@1a914a00
opg4j> stmt.executeQuery("UPDATE bank_txns SET amount=4000 WHERE txn_id=3")
$5 ==> oracle.jdbc.driver.ForwardOnlyResultSet@627d5f99
opg4j> conn.setAutoCommit(false)
opg4j> conn.commit()

Java

Connection conn = 
DriverManager.getConnection(<jdbcUrl>,<username>,<password>);
Statement stmt = conn.createStatement();
stmt.executeQuery("UPDATE bank_txns SET amount=4000 WHERE txn_id=3");
conn.setAutoCommit(false);
conn.commit();

Python

>>> conn = opg4py.pgql.get_connection(<username>,<password>, 
<jdbc_url>).get_jdbc_connection()
>>> conn.prepareStatement("UPDATE bank_txns SET amount=4000 WHERE 
txn_id=3").execute()
False
>>> conn.commit()

Committing the changes to the database causes the graph in the memory to go out of sync
with the database source tables.

3. Synchronize the in-memory graph with the database by creating a new synchronizer object
as shown in the following code:

Synchronizer synchronizer = new 
Synchronizer.Builder<FlashbackSynchronizer>()
    .setType(FlashbackSynchronizer.class)
    .setGraph(graph)
    .setConnection(conn)
    .setParallelHintDegree(4)
    .build();

Chapter 16
Keeping the Graph in Oracle Database Synchronized with the Graph Server

16-43



Internally, the graph server keeps track of the Oracle system change number (SCN) to
which the current graph snapshot belongs. The synchronizer is a client-side component
which connects to the database, detects changes by comparing state of the original input
tables using the current SCN via the flashback mechanism and then sends any changes to
the graph server using the changeset API. In order to do so, the synchronizer needs to
know how to connect to the database (conn parameter) as well as which graph to keep in
sync (graph parameter).

You can specify the degree of parallelism in the Flashback Synchronizer builder using the
setParallelHintDegree API. The specified parallel hint degree will be taken into account
by the Flashback Synchronizer when executing the SQL queries.

Alternatively, you can use this equivalent shortcut as shown:

• JShell

• Java

• Python

JShell

opg4j>  var synchronizer = 
graph.createSynchronizer(FlashbackSynchronizer.class, conn)
synchronizer ==> oracle.pgx.api.FlashbackSynchronizer@4ac2b4c6

Java

Synchronizer synchronizer = 
graph.createSynchronizer(FlashbackSynchronizer.class, conn);

Python

>>> synchronizer = 
graph.create_synchronizer(synchronizer_class='oracle.pgx.api.FlashbackSynch
ronizer', jdbc_url=<jdbc_url>, username=<username>, password=<password>)

4. Fetch and apply the database changes by calling the sync() function and create a new in-
memory graph snapshot:

• JShell

• Java

• Python

Chapter 16
Keeping the Graph in Oracle Database Synchronized with the Graph Server

16-44



JShell

opg4j> graph=synchronizer.sync()
g ==> PgxGraph[name=BANK_GRAPH,N=999,E=4993,created=1660308128037]

Java

graph=synchronizer.sync();

Python

>>> graph = synchronizer.sync()

Note that the Synchronizer object needs to be created only once per session. Once
created, you can perform the synchronizer.sync() operation multiple times to generate
the latest graph snapshot that is consistent with the changes in the database.

Splitting the Fetching and Applying of Changes

The synchronizer.sync() invocation in the preceding code, fetches the changes and
applies them in one call. However, you can encode a more complex update logic by
splitting this process into separate fetch() and apply() invocations. For example:

synchronizer.fetch(); // fetches changes from the database
if (synchronizer.getGraphDelta().getTotalNumberOfChanges() > 100) {  // 
only create snapshot if there have been more than 100 changes
  synchronizer.apply();
}

5. Query the graph to verify the updates to the edge property.

• JShell

• Java

• Python

JShell

opg4j> graph.queryPgql("SELECT e.amount FROM MATCH (v1:Accounts)-
[e:Transfers]->(v2:Accounts) WHERE e.from_acct_id = 179 AND 
e.to_acct_id=688").print()

Java

graph.queryPgql("SELECT e.amount FROM MATCH (v1:Accounts)-[e:Transfers]-
>(v2:Accounts) WHERE e.from_acct_id = 179 AND e.to_acct_id=688").print();

Chapter 16
Keeping the Graph in Oracle Database Synchronized with the Graph Server

16-45



Python

>>> graph.query_pgql("SELECT e.amount FROM MATCH (v1:Accounts)-
[e:Transfers]->(v2:Accounts) WHERE e.from_acct_id = 179 AND 
e.to_acct_id=688").print()

On execution, the preceding example produces the following output:

+--------+
| amount |
+--------+
| 4000.0 |
+--------+

16.4.3 Synchronizing a Published Graph
You can synchronize a published graph by configuring the Flashback Synchronizer with a
PartitionedGraphConfig object containing the graph schema along with the database
connection details.

The PartitionedGraphConfig object can be created either through the
PartitionedGraphConfigBuilder API or by reading the graph configuration from a JSON file.
Though synchronization of graphs created via graph configuration objects is supported in
general, the following few limitations apply:

• Only partitioned graph configurations with all providers being database tables are
supported.

• Each edge or vertex provider or both must specify the owner of the table by setting the
username field. For example, if user SCOTT owns the table, then set the user name
accordingly for the providers.

• Snapshot source must be set to CHANGE_SET.

• It is highly recommended to optimize the graph for update operations in order to avoid
memory exhaustion when creating many snapshots.

The following example shows the sample configuration for creating the
PartitionedGraphConfig object:

• JSON Configuration

• GraphConfigBuilder API

JSON Configuration

{
  ...
  "optimized_for": "updates",
  "vertex_providers": [
      ...
      "username":"<username>",

Chapter 16
Keeping the Graph in Oracle Database Synchronized with the Graph Server

16-46



      ...
  ],
  "edge_providers": [
      ...
      "username":"<username>",
      ...
  ],
  "loading": {
    "snapshots_source": "change_set"
  }
}

GraphConfigBuilder API

GraphConfig cfg = GraphConfigBuilder.forPartitioned()
                      …
                      .setUsername("<username>")
                      .setSnapshotsSource(SnapshotsSource.CHANGE_SET)
                      .setOptimizedFor(GraphOptimizedFor.UPDATES)
                      ...
                      .build();

As a prerequisite requirement, you must have a graph that is published in an earlier session.
For example:

• JShell

• Java

• Python

JShell

opg4j> var graph = 
session.readGraphWithProperties("<path_to_json_config_file>")
graph ==> 
PgxGraph[name=bank_graph_analytics_fb,N=999,E=4993,created=1664310157103]
opg4j> graph.publishWithSnapshots()

Java

PgxGraph graph = 
session.readGraphWithProperties("<path_to_json_config_file>");
graph.publishWithSnapshots();

Chapter 16
Keeping the Graph in Oracle Database Synchronized with the Graph Server

16-47



Python

>>> graph = session.read_graph_with_properties("<path_to_json_config_file>")
>>> graph.publish_with_snapshots()

You can now perform the following steps to synchronize the published graph using a graph
configuration object which is built from a JSON file.

1. Get the published graph as shown:

• JShell

• Java

• Python

JShell

opg4j> var graph = session.getGraph("bank_graph")
graph ==> 
PgxGraph[name=bank_graph_analytics_fb,N=999,E=4993,created=1664310157103]

Java

PgxGraph graph = session.getGraph("bank_graph");

Python

>>> graph = session.get_graph("bank_graph")

2. Build the graph configuration object using a JSON file path as shown:

• JShell

• Java

• Python

JShell

opg4j> var cfg = 
GraphConfigFactory.forPartitioned().fromFilePath("path_to_json_config_file"
)
cfg ==> {"edge_providers":
[{"destination_vertex_provider":"Accounts","database_table_name":"BANK_TXNS

Chapter 16
Keeping the Graph in Oracle Database Synchronized with the Graph Server

16-48



","name":"Transfers","key_type":"long",
"props":[{"type":"float","name":"AMOUNT"},
{"type":"string","name":"DESCRIPTION"}],"format":"rdbms","source_vertex_pro
vider":"Accounts",
"source_column":"FROM_ACCT_ID","key_column":"TXN_ID","destination_column":"
TO_ACCT_ID","loading":{"create_key_mapping":true}}],
"loading":
{"snapshots_source":"CHANGE_SET"},"name":"bank_graph","vertex_providers":
[{"database_table_name":"BANK_ACCOUNTS",
"key_column":"ID","name":"Accounts","key_type":"integer","props":
[{"type":"integer","name":"ID"},{"type":"string","name":"NAME"}],
"loading":{"create_key_mapping":true},"format":"rdbms"}]}

Java

PartitionedGraphConfig cfg = 
GraphConfigFactory.forPartitioned().fromFilePath("path_to_json_config_file"
);

Python

>>> from pypgx.api import GraphConfigFactory
>>> cfg = 
GraphConfigFactory.for_partitioned().from_file_path("path_to_json_config_fi
le")

Alternatively, you can also build the graph configuration object using the
GraphConfigBuilder API as shown in Loading a Graph by Defining a Graph Configuration
Object.

3. Change the data in the database table using the JDBC connection:

• JShell

• Java

• Python

JShell

opg4j> var conn = 
DriverManager.getConnection(<jdbcUrl>,<username>,<password>)
conn ==> oracle.jdbc.driver.T4CConnection@60f7261f
opg4j> var stmt = conn.createStatement()
stmt ==> oracle.jdbc.driver.OracleStatementWrapper@1a914a00
opg4j> stmt.executeQuery("UPDATE bank_txns SET amount=9000 WHERE txn_id=3")
$5 ==> oracle.jdbc.driver.ForwardOnlyResultSet@627d5f99
opg4j> conn.setAutoCommit(false)
opg4j> conn.commit()

Chapter 16
Keeping the Graph in Oracle Database Synchronized with the Graph Server

16-49



Java

Connection conn = 
DriverManager.getConnection(<jdbcUrl>,<username>,<password>);
Statement stmt = conn.createStatement();
stmt.executeQuery("UPDATE bank_txns SET amount=9000 WHERE txn_id=3");
conn.setAutoCommit(false);
conn.commit();

Python

>>> conn = opg4py.pgql.get_connection("graphuser","graphuser", 
"jdbc:oracle:thin:@localhost:1521/orclpdb").get_jdbc_connection()
>>> conn.prepareStatement("UPDATE bank_txns SET amount=9000 WHERE 
txn_id=3").execute()
False
>>> conn.commit()

4. Configure the Flashback synchronizer using the graph configuration object and the
connection details:

• JShell

• Java

• Python

JShell

opg4j> var synchronizer = new 
Synchronizer.Builder<FlashbackSynchronizer>().
...>      setType(FlashbackSynchronizer.class).
...>      setGraph(graph).
...>      setConnection(conn).
...>      setGraphConfiguration(cfg).
...>      build()
synchronizer ==> oracle.pgx.api.FlashbackSynchronizer@1f122cbb

Java

Synchronizer synchronizer = new 
Synchronizer.Builder<FlashbackSynchronizer>()
    .setType(FlashbackSynchronizer.class)
    .setGraph(graph)
    .setConnection(conn)
    .setGraphConfiguration(cfg)
    .build();

Chapter 16
Keeping the Graph in Oracle Database Synchronized with the Graph Server

16-50



Python

>>> synchronizer = 
graph.create_synchronizer(synchronizer_class='oracle.pgx.api.FlashbackSynch
ronizer',
                          jdbc_url=<jdbc_url>, username=<username>, 
password=<password>, graph_config=cfg)

5. Synchronize the published graph as shown:

• JShell

• Java

• Python

JShell

opg4j> graph=synchronizer.sync()
graph ==> PgxGraph[name=bank_graph,N=999,E=4993,created=1664454171605]

Java

graph=synchronizer.sync();

Python

>>> graph = synchronizer.sync()

6. Query the graph to verify the updates to the edge property.

• JShell

• Java

• Python

JShell

opg4j> graph.queryPgql("SELECT e.amount FROM MATCH (v1:Accounts)-
[e:Transfers]->(v2:Accounts) WHERE v1.ID=179 and v2.ID=688").print()

Chapter 16
Keeping the Graph in Oracle Database Synchronized with the Graph Server

16-51



Java

graph.queryPgql("SELECT e.amount FROM MATCH (v1:Accounts)-[e:Transfers]-
>(v2:Accounts) WHERE v1.ID=179 and v2.ID=688").print();

Python

graph.query_pgql("SELECT e.amount FROM MATCH (v1:Accounts)-[e:Transfers]-
>(v2:Accounts) WHERE v1.ID=179 and v2.ID=688").print();

On execution, the preceding example produces the following output:

+--------+
| amount |
+--------+
| 9000.0 |
+--------+

16.5 Optimizing Graphs for Read Versus Updates in the Graph
Server (PGX)

The graph server (PGX) can store an optimized graph for other reads or updates. This is only
relevant when the updates are made directly to a graph instance in the graph server.

Graph Optimized for Reads

Graphs optimized for reads will provide the best performance for graph analytics and PGQL
queries. In this case there could be potentially higher latencies to update the graph (adding or
removing vertex and edges or updating the property values of previously existing vertex or
edges through GraphChangeSet API). There could also be higher memory consumption. When
using graphs optimized for reads, each updated graph or graph snapshot consumes memory
proportional to the size of the graph in terms of vertices and edges.

The optimized_for configuration property can be set to reads when loading the graph into the
graph server (PGX) to create a graph instance that is optimized for reads.

Graph Optimized for Updates

Graphs optimized for updates use a representation enabling low-latency update of graphs.
With this representation, the graph server can reach millisecond-scale latencies when updating
graphs with millions of vertices and edges (this is indicative and will vary depending on the
hardware configuration).

To achieve faster update operations, graph server avoids as much as possible doing a full
duplication of the previous graph (snapshot) to create a new graph (snapshot). This also
improves the memory consumption (in typical scenarios). New snapshots (or new graphs) will
only consume additional memory proportional to the memory required for the changes applied.

In this representation, there could be lower performance of graph queries and analytics.

Chapter 16
Optimizing Graphs for Read Versus Updates in the Graph Server (PGX)

16-52



The optimized_for configuration property can be set to updates when loading the graph into
the graph server (PGX) to create a graph instance that is optimized for reads.

16.6 Executing Built-in Algorithms
The graph server (PGX) contains a set of built-in algorithms that are available as Java APIs.

The following table provides an overview of the available algorithms, grouped by category.
Note that these algorithms can be invoked through the Analyst Class.

Note:

See the supported Built-In Algorithms on GitHub for more details.

Table 16-11    Overview of Built-In Algorithms

Category Algorithms

Classic graph algorithms Prim's Algorithm, Prim's Algorithm (Ignoring edge directions)

Community detection Conductance Minimization (Soman and Narang Algorithm), Infomap,
Label Propagation, Louvain, LouvainDirected, Speaker Listener Label
Propagation

Connected components Strongly Connected Components, Weakly Connected Components
(WCC)

Link predition WTF (Whom To Follow) Algorithm

Matrix factorization Matrix Factorization

Other Graph Traversal Algorithms

Path finding All Vertices and Edges on Filtered Path, Bellman-Ford Algorithms,
Bidirectional Dijkstra Algorithms, Compute Distance Index, Compute
High-Degree Vertices, Dijkstra Algorithms, Enumerate Simple Paths,
Fast Path Finding, Fattest Path, Fattest Path (ignoring edge directions),
Filtered Fast Path Finding, Hop Distance Algorithms

Ranking and walking ArticleRank Algorithms, Closeness Centrality Algorithms, Degree
Centrality Algorithms, Eigenvector Centrality, Harmonic Centrality,
Hyperlink-Induced Topic Search (HITS), PageRank Algorithms, Random
Walk with Restart, Stochastic Approach for Link-Structure Analysis
(SALSA) Algorithms, Vertex Betweenness Centrality Algorithms

Structure evaluation Adamic-Adar algorithms, Bipartite Check, Clustering Coefficient
Algorithms, Conductance, Cycle Detection Algorithms, Degree
Distribution Algorithms, Eccentricity Algorithms, K-Core, Modularity,
Partition Conductance, Reachability Algorithms, Topological Ordering
Algorithms, Triangle Counting Algorithms

This following topics describe the use of the graph server (PGX) using Triangle Counting and
PageRank analytics as examples.

• About Built-In Algorithms in the Graph Server (PGX)
The graph server (PGX) contains a set of built-in algorithms that are available as Java and
Python APIs.

• Getting the Progress of a Running Algorithm
The progress of a graph algorithm is based on the value of a monotonically increasing
counter that gets incremented periodically during algorithm executions.

Chapter 16
Executing Built-in Algorithms

16-53

https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/Analyst.html
https://github.com/oracle-samples/pgx-samples/tree/master/built-in-algorithms


• Centrality Algorithms
Centrality algorithms are used to assess the importance or influence of nodes within a
graph.

• Running the Triangle Counting Algorithm

16.6.1 About Built-In Algorithms in the Graph Server (PGX)
The graph server (PGX) contains a set of built-in algorithms that are available as Java and
Python APIs.

The oracle.pgx.api.Analyst class provides convenience methods for invoking a set of built-
in algorithms.

For example, this is the PageRank procedure signature:

/**
   * Classic pagerank algorithm. Time complexity: O(E * K) with E = number of 
edges, K is a given constant (max
   * iterations)
   *
   * @param graph
   *          graph
   * @param e
   *          maximum error for terminating the iteration
   * @param d
   *          damping factor
   * @param max
   *          maximum number of iterations
   * @return Vertex Property holding the result as a double
   */
  public <ID extends Comparable<ID>> VertexProperty<ID, Double> 
pagerank(PgxGraph graph, double e, double d, int max);

16.6.2 Getting the Progress of a Running Algorithm
The progress of a graph algorithm is based on the value of a monotonically increasing counter
that gets incremented periodically during algorithm executions.

You can track the progress of the algorithms using the AlgorithmProgress Java API and
review the progress by comparing the counter value at various points in time to an estimate of
the final value of the counter.

The AlgorithmProgress object represents the progress of an algorithm execution at a certain
time. It contains the following two attributes:

• numberOfStepsCompleted: This counter represents the current number of steps executed.

• numberOfStepsEstimatedForCompletion: This value is an estimation of the total number of
steps needed for completion.
A default positive value is provided for numberOfStepsEstimatedForCompletion for the
following list of built-in algorithms:

– PageRank

– Approximate PageRank

– Personalized PageRank

Chapter 16
Executing Built-in Algorithms

16-54



– Personalized PageRank (for a set of vertices)

– Personalized Weighted PageRank

– Personalized Weighted PageRank (for a set of vertices)

– Weighted PageRank

– Degree Centrality

– In-Degree Centrality

– Out-Degree Centrality

– Filtered Speaker Listener Label Propagation

– Filtered Weighted Speaker Listener Label Propagation

– Weighted Speaker Listener Label Propagation

– Speaker Listener Label Propagation

– Label Propagation

– Louvain

– Soman and Narang

– Weighted Infomap

You cannot estimate the progress as a percentage for algorithms that do not provide a value
for numberOfStepsEstimatedForCompletion. In such a case, you can only access the value of
the counter (numberOfStepsCompleted).

However, you can set the numberOfStepsEstimatedForCompletion value for a custom PGX
graph algorithm. See Tracking the Progress of a Running Custom PGX Graph Algorithm for
more information.

The following example uses the in-built PageRank algorithm and describes the steps to get the
progress of the running built-in algorithm using the AlgorithmProgress Java API:

• JShell

• Java

JShell

opg4j> var graph = session.readGraphByName("BANK_TXN_GRAPH", 
GraphSource.PG_PGQL)
g ==> PgxGraph[name=BANK_TXN_GRAPH,N=1000,E=4993,created=1712307339271]
opg4j>  var future = analyst.pagerankAsync(graph)
future ==> oracle.pgx.api.PgxFuture@1dfe5dd1[Not completed]
opg4j> var futureProgress = future.getProgress()
futureProgress ==> oracle.pgx.api.DefaultFutureProgress@6d7bb5cc
opg4j> var algorithmProgress = futureProgress.asAlgorithmExecutionProgress()

Java

PgxGraph graph = session.readGraphByName("BANK_TXN_GRAPH", 
GraphSource.PG_PGQL);
PgxFuture<?> future = analyst.pagerank.runAsync(graph);

Chapter 16
Executing Built-in Algorithms

16-55



FutureProgress futureProgress = future.getProgress();
Optional<AlgorithmProgress> algorithmProgress = 
futureProgress.asAlgorithmExecutionProgress();

The following code shows how you can estimate the progress as a percentage for the running
algorithm:

• JShell

• Java

JShell

opg4j> if (algorithmProgress.isPresent()) {
...>   var progress = algorithmProgress.get();
...>   var completedSteps = progress.getNumberOfStepsCompleted();
...>   var numberOfStepsEstimatedForCompletion = 
progress.getNumberOfStepsEstimatedForCompletion();
...>   var progressPercentage = completedSteps * 100 / 
numberOfStepsEstimatedForCompletion;
...>   System.out.println(completedSteps);
...>   System.out.println(numberOfStepsEstimatedForCompletion);
...>   System.out.println(progressPercentage);
...> }

Java

if (algorithmProgress.isPresent()) {
  AlgorithmProgress progress = algorithmProgress.get();
  long completedSteps = progress.getNumberOfStepsCompleted();
  Long numberOfStepsEstimatedForCompletion = 
progress.getNumberOfStepsEstimatedForCompletion();
  long progressPercentage = completedSteps * 100 / 
numberOfStepsEstimatedForCompletion;
  System.out.println(completedSteps); 
  System.out.println(numberOfStepsEstimatedForCompletion); 
  System.out.println(progressPercentage); 
};

The preceding code shows the progress at that current moment. If you try to get the progress
of the running algorithm after a while (for example, 1min), then you should get a larger value for
progressPercentage.

16.6.3 Centrality Algorithms
Centrality algorithms are used to assess the importance or influence of nodes within a graph.

Chapter 16
Executing Built-in Algorithms

16-56



These algorithms can be broadly classified into three categories based on their locality and
focus.

Table 16-12    Classification of Centrality Algorithms

Category Description Example Algorithms

Local Measures These algorithms evaluate a
node's importance based on its
immediate connections, offering
straightforward and
computationally efficient insights.

Degree Centrality

Global Path-Based Measures These algorithms evaluate nodes
based on their overall connectivity
and shortest paths within the
entire graph.

Closeness Centrality, Harmonic
Centrality, Betweenness
Centrality

Global Influence-Based
Measures

These algorithms evaluate a
node's influence based on their
direct and indirect connections,
offering in-depth insights into
hierarchical importance and
influence within complex graphs.

Eigenvector centrality, Random
Walk with Restart (RWR),
PageRank, ArticleRank,
Hyperlink-Induced Topic Search
(HITS), Stochastic Approach for
Link-Structure Analysis (SALSA)

Learn more about the Centrality algorithms in the following topics.

• Degree Centrality
The Degree Centrality algorithm measures the number of direct connections each node
has in a graph, indicating its immediate level of influence or prominence within the graph.

• Closeness Centrality
The Closeness Centrality algorithm identifies nodes that can quickly reach all other nodes,
highlighting efficient communicators or spreaders of information.

• Harmonic Centrality
The Harmonic Centrality algorithm improves closeness centrality to better account for
disconnected graphs.

• Vertex Betweenness Centrality
The Vertex Betweenness Centrality algorithm identifies nodes that act as critical bridges,
controlling the flow of information or resources through the graph.

• PageRank
PageRank assigns a numerical weight to each vertex, measuring its relative importance
within the graph.

16.6.3.1 Degree Centrality
The Degree Centrality algorithm measures the number of direct connections each node has in
a graph, indicating its immediate level of influence or prominence within the graph.

This algorithm can be applied in the following scenarios:

• To quickly gain local insights into node importance based on direct connections.

• To understand immediate influence or activity levels.

• Social networking analysis, such as identifying users with most friends or followers.

• Financial transactions analysis, such as detecting accounts with the highest number of
transactions.

Chapter 16
Executing Built-in Algorithms

16-57



• Studying spreading of diseases by pinpointing individuals who have direct contact with
most people.

The following variants of Degree Centrality algorithms are supported:

• Degree Centrality: Returns the sum of the number of incoming and outgoing edges for
each vertex in the graph.

• In-Degree Centrality: Returns the sum of the number of incoming edges for each vertex in
the graph.

• Out-Degree Centrality: Returns the sum of the number of outgoing edges for each vertex
in the graph.

See the Javadoc and Python API Reference for more information on the corresponding APIs
for running these algorithms.

Example 16-2    Running the In-Degree Centrality Algorithm

The following example runs the in-degree centrality algorithm on BANK_GRAPH to identify the top
10 accounts having the maximum number of incoming transactions.

• JShell

• Java

• Python

JShell

opg4j> var graph = session.readGraphByName("BANK_GRAPH",GraphSource.PG_PGQL)
graph ==> PgxGraph[name=BANK_GRAPH,N=1000,E=4996,created=1643308582055]
opg4j> var a = session.createAnalyst()
a ==> NamedArgumentAnalyst[session=4c054326-600d-47d3-ab40-36b41fa0e339]
opg4j> a.inDegreeCentrality(graph)
$3 ==> VertexProperty[name=in_degree,type=integer,graph=BANK_GRAPH_PGQL]
opg4j> graph.queryPgql("SELECT DISTINCT m.id, m.in_degree FROM MATCH 
(m:accounts) -[e:transfers]-> (n:accounts) ORDER BY m.in_degree DESC LIMIT 
10").print()
+-----------------+
| id  | in_degree |
+-----------------+
| 387 | 39        |
| 934 | 39        |
| 135 | 36        |
| 534 | 32        |
| 380 | 31        |
| 330 | 30        |
| 406 | 28        |
| 746 | 28        |
| 259 | 26        |
| 352 | 26        |
+-----------------+
$5 ==> PgqlResultSetImpl[graph=BANK_GRAPH_PGQL,numResults=10]

Chapter 16
Executing Built-in Algorithms

16-58

http://www.oracle.com/pls/topic/lookup?ctx=property_graph_latest&id=analyst_class_java
http://www.oracle.com/pls/topic/lookup?ctx=property_graph_latest&id=analyst_class_python


Java

PgxGraph graph = session.readGraphByName("BANK_GRAPH",GraphSource.PG_PGQL);
Analyst a = session.createAnalyst();
a.inDegreeCentrality(graph);
PgqlResultSet rs = graph.queryPgql("SELECT DISTINCT m.id, m.in_degree FROM 
MATCH (m:accounts) -[e:transfers]-> (n:accounts) ORDER BY m.in_degree DESC 
LIMIT 10");
rs.print();

Python

>>> graph = session.read_graph_by_name('BANK_GRAPH', 'pg_pgql')
>>> a = session.create_analyst()
>>> a.in_degree_centrality(graph)
VertexProperty(name: in_degree, type: integer, graph: BANK_GRAPH_PGQL)
>>> graph.query_pgql("SELECT DISTINCT m.id, m.in_degree FROM MATCH 
(m:accounts) -[e:transfers]-> (n:accounts) ORDER BY m.in_degree DESC LIMIT 
10").print()
+-----------------+
| id  | in_degree |
+-----------------+
| 387 | 39        |
| 934 | 39        |
| 135 | 36        |
| 534 | 32        |
| 380 | 31        |
| 330 | 30        |
| 406 | 28        |
| 746 | 28        |
| 259 | 26        |
| 352 | 26        |
+-----------------+

16.6.3.2 Closeness Centrality
The Closeness Centrality algorithm identifies nodes that can quickly reach all other nodes,
highlighting efficient communicators or spreaders of information.

This algorithm can be applied in the following scenarios:

• To determine nodes that are central to the overall structure of the graph, facilitating efficient
information flow or influence spreading.

• In social network analysis, for example, finding influencers who can disseminate
information quickly to the entire network.

• In financial transactions analysis, for example, accounts with high closeness centrality
might facilitate rapid money movement, making them potential candidates for closer
monitoring for fraudulent activities such as money laundering.

• In studying spreading of diseases, for example, identifying individuals who can potentially
spread a disease to many others quickly due to their central position in the network.

The following two variants are supported for Closeness Centrality:

Chapter 16
Executing Built-in Algorithms

16-59



• Closeness Centrality (Unit Length): The Closeness Centrality of a node v is the
reciprocal of the sum of all the distances from the possible shortest paths starting from v.
Thus the higher the centrality value of v, the closer it is to all the other vertices in the
graph.

• Closeness Centrality (with weights): This takes into account the weights from the edges
when computing the reciprocal of the sum of all the distances from the possible shortest
paths starting from the vertex v, for every vertex in the graph. The weights of the edges
must be positive values greater than 0.

See the Javadoc and Python API Reference for more information on the corresponding APIs
for running these algorithms.

Example 16-3    Running the Closeness Centrality Algorithm

The following example runs the Closeness Centrality algorithm on BANK_GRAPH to identify the
top five accounts that have higher levels of connections with the other accounts.

• JShell

• Java

• Python

JShell

opg4j> var graph = session.readGraphByName("BANK_GRAPH",GraphSource.PG_PGQL)
graph ==> PgxGraph[name=BANK_GRAPH,N=1000,E=4996,created=1643308582055]
opg4j> var a = session.createAnalyst()
a ==> NamedArgumentAnalyst[session=4c054326-600d-47d3-ab40-36b41fa0e339]
opg4j> a.closenessCentralityUnitLength(graph)
$6 ==> VertexProperty[name=closeness,type=double,graph=BANK_GRAPH_PGQL]
opg4j> graph.queryPgql("SELECT DISTINCT m.id, m.closeness FROM MATCH 
(m:accounts) -[e:transfers]-> (n:accounts) ORDER BY m.closeness DESC LIMIT 
5").print()
+-----------------------------+
| id  | closeness             |
+-----------------------------+
| 934 | 3.866976024748647E-4  |
| 135 | 3.8595137012736397E-4 |
| 387 | 3.8476337052712584E-4 |
| 406 | 3.8284839203675346E-4 |
| 330 | 3.7425149700598805E-4 |
+-----------------------------+
$7 ==> PgqlResultSetImpl[graph=BANK_GRAPH_PGQL,numResults=5]

Java

PgxGraph graph = session.readGraphByName("BANK_GRAPH",GraphSource.PG_PGQL);
Analyst a = session.createAnalyst();
a.closenessCentralityUnitLength(graph);
PgqlResultSet rs = graph.queryPgql("SELECT DISTINCT m.id, m.closeness FROM 
MATCH (m:accounts) -[e:transfers]-> (n:accounts) ORDER BY m.closeness DESC 

Chapter 16
Executing Built-in Algorithms

16-60

http://www.oracle.com/pls/topic/lookup?ctx=property_graph_latest&id=analyst_class_java
http://www.oracle.com/pls/topic/lookup?ctx=property_graph_latest&id=analyst_class_python


LIMIT 5");
rs.print();

Python

>>> graph = session.read_graph_by_name('BANK_GRAPH', 'pg_pgql')
>>> a = session.create_analyst()
>>> a.closeness_centrality(graph)
VertexProperty(name: closeness, type: double, graph: BANK_GRAPH_PGQL)
>>> graph.query_pgql("SELECT DISTINCT m.id, m.closeness FROM MATCH 
(m:accounts) -[e:transfers]-> (n:accounts) ORDER BY m.closeness DESC LIMIT 
5").print()
+-----------------------------+
| id  | closeness             |
+-----------------------------+
| 934 | 3.866976024748647E-4  |
| 135 | 3.8595137012736397E-4 |
| 387 | 3.8476337052712584E-4 |
| 406 | 3.8284839203675346E-4 |
| 330 | 3.7425149700598805E-4 |
+-----------------------------+

16.6.3.3 Harmonic Centrality
The Harmonic Centrality algorithm improves closeness centrality to better account for
disconnected graphs.

This algorithm can be applied in the following scenarios for a disconnected graph:

• To determine nodes that are central to the overall structure of the graph, facilitating efficient
information flow or influence spreading.

• In social network analysis, for example, finding influencers who can disseminate
information quickly to the entire network.

• In financial transactions analysis, for example, accounts with high closeness centrality
might facilitate rapid money movement, making them potential candidates for closer
monitoring for fraudulent activities such as money laundering.

• In studying spreading of diseases, for example, identifying individuals who can potentially
spread a disease to many others quickly due to their central position in the network.

See the Javadoc and Python API Reference for more information on the corresponding APIs
for running these algorithms.

Example 16-4    Running the Harmonic Centrality Algorithm

The following example measures the harmonic centrality value for each vertex account in
BANK_GRAPH and prints the top five accounts that have higher levels of connections with the
other accounts.

• JShell

Chapter 16
Executing Built-in Algorithms

16-61

http://www.oracle.com/pls/topic/lookup?ctx=property_graph_latest&id=analyst_class_java
http://www.oracle.com/pls/topic/lookup?ctx=property_graph_latest&id=analyst_class_python


• Java

• Python

JShell

opg4j> var graph = session.readGraphByName("BANK_GRAPH",GraphSource.PG_PGQL)
graph ==> PgxGraph[name=BANK_GRAPH,N=1000,E=4996,created=1643308582055]
opg4j> var a = session.createAnalyst()
a ==> NamedArgumentAnalyst[session=4c054326-600d-47d3-ab40-36b41fa0e339]
opg4j> a.harmonicCentrality(graph)
VertexProperty[name=hc,type=double,graph=BANK_GRAPH_PGQL]
opg4j> graph.queryPgql("SELECT DISTINCT m.id, m.hc FROM MATCH (m:accounts) -
[e:transfers]-> (n:accounts) ORDER BY m.hc DESC LIMIT 5").print()
+--------------------------+
| id  | hc                 |
+--------------------------+
| 34  | 193.53134920634574 |
| 770 | 193.5238095238061  |
| 778 | 193.41904761904416 |
| 262 | 193.32936507936165 |
| 243 | 192.78293650793313 |
+--------------------------+
$9 ==> PgqlResultSetImpl[graph=BANK_GRAPH_PGQL,numResults=5]

Java

PgxGraph graph = session.readGraphByName("BANK_GRAPH",GraphSource.PG_PGQL);
Analyst a = session.createAnalyst();
a.harmonicCentrality(graph);
PgqlResultSet rs = g1.queryPgql("SELECT DISTINCT m.id, m.hc FROM MATCH 
(m:accounts) -[e:transfers]-> (n:accounts) ORDER BY m.hc DESC LIMIT 5");
rs.print();

Python

>>> graph = session.read_graph_by_name('BANK_GRAPH', 'pg_pgql')
>>> a = session.create_analyst()
>>> a.harmonic_centrality(graph)
VertexProperty(name: harmonic_centrality, type: double, graph: 
BANK_GRAPH_PGQL)
>>> graph.query_pgql("SELECT DISTINCT m.id, m.harmonic_centrality FROM MATCH 
(m:accounts) -[e:transfers]-> (n:accounts) ORDER BY m.harmonic_centrality 
DESC LIMIT 5").print()
+---------------------------+
| id  | harmonic_centrality |
+---------------------------+
| 34  | 193.3884920634886   |
| 262 | 193.32936507936165  |
| 56  | 193.10158730158386  |
| 544 | 192.87738095237754  |
| 408 | 192.73452380952043  |
+---------------------------+

Chapter 16
Executing Built-in Algorithms

16-62



16.6.3.4 Vertex Betweenness Centrality
The Vertex Betweenness Centrality algorithm identifies nodes that act as critical bridges,
controlling the flow of information or resources through the graph.

This algorithm can be applied in the following scenarios:

• To identifying nodes that are strategically positioned for mediating interactions within the
graph.

• In social network analysis, for example, highlighting users who act as connectors between
different groups or communities.

• In financial transactions analysis, for example, detecting accounts that facilitate
transactions between otherwise unconnected parts of the financial network.

• In studying spreading of diseases, for example, identifying individuals who serve as
bridges between different social groups, potentially controlling the spread of a disease
across the entire population.

The following three variants are supported for Vertex Betweenness Centrality:

• Vertex Betweenness Centrality: The Betweenness Centrality of a vertex v in a graph is
the sum of the fraction of shortest paths that pass through v from all the possible shortest
paths connecting every possible pair of vertices s, t in the graph, such that v is different
from s and t. This algorithm applies for connected graphs.

• Approximate Vertex Betweenness Centrality with Random Seeds: This variant of
betweenness centrality approximates the centrality of the vertices by just using k random
vertices as starting points for the BFS traversals of the graph, instead of computing the
exact value by using all the vertices in the graph.

• Approximate Vertex Betweenness Centrality From seeds: This variant of betweenness
centrality approximates the centrality of the vertices by just using the vertices from the
given sequence as starting points for the BFS traversals of the graph, instead of computing
the exact value by using all the vertices in the graph.

See the Javadoc and Python API Reference for more information on the corresponding APIs
for running these algorithms.

Example 16-5    Running the Betweenness Centrality Algorithm

The following example identifies the top five accounts that act as critical bridges in graph g1.

• JShell

• Java

• Python

JShell

opg4j> var graph = session.readGraphByName("BANK_GRAPH",GraphSource.PG_PGQL)
graph ==> PgxGraph[name=BANK_GRAPH,N=1000,E=4996,created=1643308582055]
opg4j> var a = session.createAnalyst()
a ==> NamedArgumentAnalyst[session=4c054326-600d-47d3-ab40-36b41fa0e339]

Chapter 16
Executing Built-in Algorithms

16-63

http://www.oracle.com/pls/topic/lookup?ctx=property_graph_latest&id=analyst_class_java
http://www.oracle.com/pls/topic/lookup?ctx=property_graph_latest&id=analyst_class_python


opg4j> a.vertexBetweennessCentrality(graph)
$10 ==> VertexProperty[name=betweenness,type=double,graph=BANK_GRAPH_PGQL]
opg4j> graph.queryPgql("SELECT DISTINCT m.id, m.betweenness FROM MATCH 
(m:accounts) -[e:transfers]-> (n:accounts) ORDER BY m.betweenness DESC LIMIT 
5").print()
+--------------------------+
| id  | betweenness        |
+--------------------------+
| 387 | 18913.34886094081  |
| 352 | 16625.818593102595 |
| 135 | 15190.461087012543 |
| 934 | 14642.317059371073 |
| 222 | 13688.935057639192 |
+--------------------------+
$11 ==> PgqlResultSetImpl[graph=BANK_GRAPH_PGQL,numResults=5]

Java

PgxGraph graph = session.readGraphByName("BANK_GRAPH",GraphSource.PG_PGQL);
Analyst a = session.createAnalyst();
a.vertexBetweennessCentrality(graph);
PgqlResultSet rs = g1.queryPgql("SELECT DISTINCT m.id, m.betweenness FROM 
MATCH (m:accounts) -[e:transfers]-> (n:accounts) ORDER BY m.betweenness DESC 
LIMIT 5");
rs.print();

Python

>>> graph = session.read_graph_by_name('BANK_GRAPH', 'pg_pgql')
>>> a = session.create_analyst()
>>> a.vertex_betweenness_centrality(graph)
VertexProperty(name: betweenness, type: double, graph: BANK_GRAPH_PGQL)
>>> graph.query_pgql("SELECT DISTINCT m.id, m.betweenness FROM MATCH 
(m:accounts) -[e:transfers]-> (n:accounts) ORDER BY m.betweenness DESC LIMIT 
5").print()
+--------------------------+
| id  | betweenness        |
+--------------------------+
| 387 | 18913.34886094081  |
| 352 | 16625.818593102595 |
| 135 | 15190.461087012543 |
| 934 | 14642.317059371073 |
| 222 | 13688.935057639192 |
+--------------------------+

16.6.3.5 PageRank
PageRank assigns a numerical weight to each vertex, measuring its relative importance within
the graph.

This algorithm can be applied in the following scenarios:

Chapter 16
Executing Built-in Algorithms

16-64



• To identify nodes that directly and indirectly influence other nodes.

• In place of Eigenvector centrality, when the underlying process includes randomness, for
example, random browsing.

• In social networks analysis, for example, finding influencers with direct and indirect
influence within the graph.

• In disease spreading analysis, for example, assessing the risk of individuals in spreading a
disease.

PageRank computes a rank value between 0 and 1 for each vertex (node) in the graph and
stores the values in a double property. The algorithm therefore creates a vertex property of
type double for the output.

In the graph server (PGX), there are two types of vertex and edge properties:

• Persistent Properties: Properties that are loaded with the graph from a data source are
fixed, in-memory copies of the data on disk, and are therefore persistent. Persistent
properties are read-only, immutable and shared between sessions.

• Transient Properties: Values can only be written to transient properties, which are private
to a session. You can create transient properties by calling createVertexProperty and
createEdgeProperty on PgxGraph objects, or by copying existing properties using clone()
on Property objects.

Transient properties hold the results of computation by algorithms. For example, the
PageRank algorithm computes a rank value between 0 and 1 for each vertex in the graph
and stores these values in a transient property named pg_rank. Transient properties are
destroyed when the Analyst object is destroyed.

The following variants of PageRank algorithms are supported:

• Classic PageRank: Computes ranking scores for the vertices using the network created
by the incoming edges in the graph. Although it is intended for directed graphs, undirected
graphs can be treated as well by converting them into directed graphs with reciprocated
edges (that is, keeping the original edge and creating a second one going in the opposite
direction).

• Approximate PageRank: Computes the ranking scores for the vertices in similar way to
the classic algorithm without normalization and with a more relaxed convergence criteria
since the tolerated error value is compared against each single vertex in the graph, instead
of looking at the cumulative vertex error. Thus this variant will converge faster than the
classic algorithm, but the ranking values might not be as accurate as in the classic
implementation.

• Weighted PageRank: Similar to the classic PageRank algorithm, except that it allows for a
weight value to be assigned to each edge. This weight determines the fraction of the
PageRank score that will flow from the source vertex through the current edge to its
destination vertex.

See the Javadoc and Python API Reference for more information on the corresponding APIs
for running these algorithms.

Example 16-6    Running the PageRank Algorithm

The following example runs the PageRank algorithm on BANK_GRAPH to identify the top five
accounts with the highest PageRank values. The PageRank algorithm uses the following
default values for the input parameters: error (tolerance = 0.001), damping factor = 0.85, and
maximum number of iterations = 100.

Chapter 16
Executing Built-in Algorithms

16-65

http://www.oracle.com/pls/topic/lookup?ctx=property_graph_latest&id=analyst_class_java
http://www.oracle.com/pls/topic/lookup?ctx=property_graph_latest&id=analyst_class_python


• JShell

• Java

• Python

JShell

opg4j> var graph = session.readGraphByName("BANK_GRAPH",GraphSource.PG_PGQL)
graph ==> PgxGraph[name=BANK_GRAPH,N=1000,E=4996,created=1643308582055]
opg4j> var a = session.createAnalyst()
a ==> NamedArgumentAnalyst[session=4c054326-600d-47d3-ab40-36b41fa0e339]
opg4j> a.pagerank(graph, 0.001, 0.85, 100)
$12 ==> VertexProperty[name=pagerank,type=double,graph=BANK_GRAPH_PGQL]
opg4j> graph.queryPgql("SELECT DISTINCT m.id, m.pagerank FROM MATCH 
(m:accounts) -[e:transfers]-> (n:accounts) ORDER BY m.pagerank DESC LIMIT 
5").print()
+-----------------------------+
| id  | pagerank              |
+-----------------------------+
| 387 | 0.0073028362522059255 |
| 406 | 0.0067344306145590786 |
| 135 | 0.006725965475577352  |
| 934 | 0.0066413407648344865 |
| 397 | 0.0057016075312134595 |
+-----------------------------+
$13 ==> PgqlResultSetImpl[graph=BANK_GRAPH_PGQL,numResults=5]

Java

PgxGraph graph = session.readGraphByName("BANK_GRAPH",GraphSource.PG_PGQL);
Analyst a = session.createAnalyst();
a.pagerank(graph, 0.001, 0.85, 100);
PgqlResultSet rs = g1.queryPgql("SELECT DISTINCT m.id, m.pagerank FROM MATCH 
(m:accounts) -[e:transfers]-> (n:accounts) ORDER BY m.pagerank DESC LIMIT 5");
rs.print();

Python

>>> graph = session.read_graph_by_name('BANK_GRAPH', 'pg_pgql')
>>> a = session.create_analyst()
>>> a.pagerank(graph, 0.001, 0.85, 100)
VertexProperty(name: pagerank, type: double, graph: BANK_GRAPH_PGQL)
>>> graph.query_pgql("SELECT DISTINCT m.id, m.pagerank FROM MATCH 
(m:accounts) -[e:transfers]-> (n:accounts) ORDER BY m.pagerank DESC LIMIT 
5").print()
+-----------------------------+
| id  | pagerank              |
+-----------------------------+
| 387 | 0.0073028362522059255 |
| 406 | 0.0067344306145590786 |
| 135 | 0.006725965475577352  |
| 934 | 0.0066413407648344865 |

Chapter 16
Executing Built-in Algorithms

16-66



| 397 | 0.0057016075312134595 |
+-----------------------------+

16.6.4 Running the Triangle Counting Algorithm
For triangle counting, the sortByDegree boolean parameter of countTriangles() allows you to
control whether the graph should first be sorted by degree (true) or not (false). If true, more
memory will be used, but the algorithm will run faster; however, if your graph is very large, you
might want to turn this optimization off to avoid running out of memory.

• JShell

• Java

JShell
opg4j> analyst.countTriangles(graph, true)
==> 1

Java
import oracle.pgx.api.*;
 
Analyst analyst = session.createAnalyst();
long triangles = analyst.countTriangles(graph, true);

The algorithm finds one triangle in the sample graph.

Tip:

When using the graph shell, you can increase the amount of log output during
execution by changing the logging level. See information about the :loglevel
command with :h :loglevel.

16.7 Using Custom PGX Graph Algorithms
A custom PGX graph algorithm allows you to write a graph algorithm in Java syntax and have
it automatically compiled to an efficient parallel implementation.

• Writing a Custom PGX Algorithm

• Compiling and Running a Custom PGX Algorithm

• Example Custom PGX Algorithm: PageRank

• Tracking the Progress of a Running Custom PGX Graph Algorithm

Chapter 16
Using Custom PGX Graph Algorithms

16-67



16.7.1 Writing a Custom PGX Algorithm
A PGX algorithm is a regular .java file with a single class definition that is annotated with
@GraphAlgorithm. For example:

import oracle.pgx.algorithm.annotations.GraphAlgorithm;

@GraphAlgorithm
public class MyAlgorithm {
    ...
}

A PGX algorithm class must contain exactly one public method which will be used as entry
point. The class may contain any number of private methods.

For example:

import oracle.pgx.algorithm.PgxGraph;
import oracle.pgx.algorithm.VertexProperty;
import oracle.pgx.algorithm.annotations.GraphAlgorithm;
import oracle.pgx.algorithm.annotations.Out;

@GraphAlgorithm
public class MyAlgorithm {
    public int myAlgorithm(PgxGraph g, @Out VertexProperty<Integer> distance) 
{
        System.out.println("My first PGX Algorithm program!");

        return 42;
    }
}

As with normal Java methods, a PGX algorithm method only supports primitive data types as
return values (an integer in this example). More interesting is the @Out annotation, which marks
the vertex property distance as output parameter. The caller passes output parameters by
reference. This way, the caller has a reference to the modified property after the algorithm
terminates.

• Collections

• Iteration

• Reductions

16.7.1.1 Collections
To create a collection you call the .create() function. For example, a VertexProperty<Integer> is
created as follows:

VertexProperty<Integer> distance = VertexProperty.create();

Chapter 16
Using Custom PGX Graph Algorithms

16-68



To get the value of a property at a certain vertex v:

distance.get(v);

Similarly, to set the property of a certain vertex v to a value e:

distance.set(v, e);

You can even create properties of collections:

VertexProperty<VertexSequence> path = VertexProperty.create();

However, PGX Algorithm assignments are always by value (as opposed to by reference). To
make this explicit, you must call .clone() when assigning a collection:

VertexSequence sequence = path.get(v).clone();

Another consequence of values being passed by value is that you can check for equality using
the == operator instead of the Java method .equals(). For example:

PgxVertex v1 = G.getRandomVertex();
PgxVertex v2 = G.getRandomVertex();
System.out.println(v1 == v2);

16.7.1.2 Iteration
The most common operations in PGX algorithms are iterations (such as looping over all
vertices, and looping over a vertex's neighbors) and graph traversal (such as breath-first/depth-
first). All collections expose a forEach and forSequential method by which you can iterate
over the collection in parallel and in sequence, respectively.

For example:

• To iterate over a graph's vertices in parallel:

G.getVertices().forEach(v -> {
    ...
});

• To iterate over a graph's vertices in sequence:

G.getVertices().forSequential(v -> {
    ...
});

• To traverse a graph's vertices from r in breadth-first order:

import oracle.pgx.algorithm.Traversal;

Traversal.inBFS(G, r).forward(n -> {
    ...
});

Chapter 16
Using Custom PGX Graph Algorithms

16-69



Inside the forward (or backward) lambda you can access the current level of the BFS (or
DFS) traversal by calling currentLevel().

16.7.1.3 Reductions
Within these parallel blocks it is common to atomically update, or reduce to, a variable defined
outside the lambda. These atomic reductions are available as methods on Scalar<T>:
reduceAdd, reduceMul, reduceAnd, and so on. For example, to count the number of vertices
in a graph:

public int countVertices() {
    Scalar<Integer> count = Scalar.create(0);

    G.getVertices().forEach(n -> {
        count.reduceAdd(1);
    });

    return count.get();
}

Sometimes you want to update multiple values atomically. For example, you might want to find
the smallest property value as well as the vertex whose property value attains this smallest
value. Due to the parallel execution, two separate reduction statements might get you in an
inconsistent state.

To solve this problem the Reductions class provides argMin and argMax functions. The first
argument to argMin is the current value and the second argument is the potential new
minimum. Additionally, you can chain andUpdate calls on the ArgMinMax object to indicate other
variables and the values that they should be updated to (atomically). For example:

VertexProperty<Integer> rank = VertexProperty.create();
int minRank = Integer.MAX_VALUE;
PgxVertex minVertex = PgxVertex.NONE;

G.getVertices().forEach(n ->
    argMin(minRank, rank.get(n)).andUpdate(minVertex, n)
);

16.7.2 Compiling and Running a Custom PGX Algorithm
To be able to compile and run a custom PGX algorithm, you must perform the following
actions:

1. Set the following two configuration parameters in the conf/pgx.conf file:

• Set the graph_algorithm_language option to JAVA.

• Set the java_home_dir option to the path to your Java home (use <system-java-home-
dir> to have PGX infer Java home from the system properties).

{
  "graph_algorithm_language": "JAVA",
  "java_home_dir": "<system-java-home-dir>"
}

Chapter 16
Using Custom PGX Graph Algorithms

16-70



2. Create a session.

• JShell

• Java

• Python

JShell

cd /opt/oracle/graph
./bin/opg4j 

Java

import oracle.pgx.algorithm.*;
PgxSession session = Pgx.createSession("my-session");

Python

session = instance.create_session("my-session")

3. Compile a PGX Algorithm. For example:

• JShell

• Java

• Python

JShell

opg4j> var myAlgorithm = session.compileProgram("/path/to/
MyAlgorithm.java")
myAlgorithm ==> CompiledProgram[name=MyAlgorithm]

Java

import oracle.pgx.algorithm.CompiledProgram;
CompiledProgram myAlgorithm = session.compileProgram("/path/to/
MyAlgorithm.java");

Python

my_algorithm = session.compile_program("/path/to/MyAlgorithm.java")

Chapter 16
Using Custom PGX Graph Algorithms

16-71



4. Run the algorithm. For example:

• JShell

• Java

• Python

JShell

opg4j> var graph =  
session.readGraphByName("BANK_GRAPH",GraphSource.PG_PGQL)
g ==> PgxGraph[name=BANK_GRAPH_2,N=999,E=4993,created=1689325558251]
opg4j> var property = graph.createVertexProperty(PropertyType.INTEGER)
property ==> 
VertexProperty[name=vertex_prop_integer_9,type=integer,graph=bank_graph_ana
lytics]
opg4j> myAlgorithm.run(graph, property)
$6 ==> {
  "success" : true,
  "canceled" : false,
  "exception" : null,
  "returnValue" : 42,
  "executionTimeMs" : 0
}

Java

import oracle.pgx.algorithm.VertexProperty;
PgxGraph graph =  
session.readGraphByName("BANK_GRAPH",GraphSource.PG_PGQL);
VertexProperty property = graph.createVertexProperty(PropertyType.INTEGER);
myAlgorithm.run(graph, property);

Python

graph = session.read_graph_by_name('BANK_GRAPH', 'pg_pgql')
property = graph.create_vertex_property("integer")
my_algorithm.run(graph, property)
{'success': True, 'canceled': False, 'exception': None, 'return_value': 
42, 'execution_time(ms)': 1}

Chapter 16
Using Custom PGX Graph Algorithms

16-72



16.7.3 Example Custom PGX Algorithm: PageRank
The following is an implementation of pagerank as a PGX algorithm:

import oracle.pgx.algorithm.PgxGraph;
import oracle.pgx.algorithm.Scalar;
import oracle.pgx.algorithm.VertexProperty;
import oracle.pgx.algorithm.annotations.GraphAlgorithm;
import oracle.pgx.algorithm.annotations.Out;

@GraphAlgorithm
public class Pagerank {
  public void pagerank(PgxGraph G, double tol, double damp, int max_iter, 
boolean norm, @Out VertexProperty<Double> rank) {
    Scalar<Double> diff = Scalar.create();
    int cnt = 0;
    double N = G.getNumVertices();

    rank.setAll(1 / N);
    do {
      diff.set(0.0);
      Scalar<Double> dangling_factor = Scalar.create(0d);

      if (norm) {
        dangling_factor.set(damp / N * G.getVertices().filter(v -> 
v.getOutDegree() == 0).sum(rank::get));
      }

      G.getVertices().forEach(t -> {
        double in_sum = t.getInNeighbors().sum(w -> rank.get(w) / 
w.getOutDegree());
        double val = (1 - damp) / N + damp * in_sum + dangling_factor.get();
        diff.reduceAdd(Math.abs(val - rank.get(t)));
        rank.setDeferred(t, val);
      });
      cnt++;
    } while (diff.get() > tol && cnt < max_iter);
  }
}

16.7.4 Tracking the Progress of a Running Custom PGX Graph Algorithm
You can track the progress of a running custom graph algorithm using the AlgorithmProgress
Java API.

The AlgorithmProgress object, which comprises the numberOfStepsCompleted and
numberOfStepsEstimatedForCompletion attributes, is used to calculate the progress of the
algorithm as a percentage.

In case of custom algorithms, the value of numberOfStepsEstimatedForCompletion is not
automatically provided. You are therefore expected to provide the value by calling
ControlFlow.setNumberOfStepsEstimatedForCompletion while implementing your algorithms.
If no value is provided, or the provided value is negative, then
number_of_steps_estimated_for_completion uses the default null value.

Chapter 16
Using Custom PGX Graph Algorithms

16-73



The following example describes the steps for setting the
numberOfStepsEstimatedForCompletion value in a custom graph algorithm followed by
tracking and estimating the progress as a percentage of a running custom graph algorithm
using the AlgorithmProgress Java API.

1. Set the value for numberOfStepsEstimatedForCompletion in your custom graph algorithm.

Note that you cannot estimate the progress as a percentage for algorithms that do not
provide a value for numberOfStepsEstimatedForCompletion. However you can still access
the value of the counter (numberOfStepsCompleted).

The value of numberOfStepsEstimatedForCompletion should ideally be equal to the total
number of execution steps that an algorithm will perform. An execution step is simply a
loop iteration. If the exact value cannot be specified, you should provide an upper bound
estimate of that value.

Consider the following outDegreeCentrality algorithm:

import oracle.pgx.algorithm.PgxGraph;
import oracle.pgx.algorithm.VertexProperty;
import oracle.pgx.algorithm.annotations.GraphAlgorithm;
import oracle.pgx.algorithm.annotations.Out;
import oracle.pgx.algorithm.ControlFlow;

@GraphAlgorithm
public class OutdegreeCentrality {
  public void outdegreeCentrality(PgxGraph g, @Out VertexProperty<Integer> 
outdegreeCentrality) {
    g.getVertices().forEach(n ->
        outdegreeCentrality.set(n, (int) n.getOutDegree())
    );
  }
}

The algorithm just iterates over all vertices of the graph and updates a property. Therefore,
the total number of execution steps in this case is equal to the number of vertices of the
graph:

@GraphAlgorithm
public class OutdegreeCentrality {
  public void outdegreeCentrality(PgxGraph g, @Out VertexProperty<Integer> 
outdegreeCentrality) {

    long totNbOfSteps = g.getNumVertices();
    ControlFlow.setNumberOfStepsEstimatedForCompletion(totNbOfSteps);

    g.getVertices().forEach(n ->
        outdegreeCentrality.set(n, (int) n.getOutDegree())
    );
  }
}

2. Run and track the progress of the custom Out-Degree Centrality algorithm as shown:

Chapter 16
Using Custom PGX Graph Algorithms

16-74



• JShell

• Java

JShell

opg4j> var myAlgorithm = session.compileProgram("/path/to/
OutdegreeCentrality.java")
myAlgorithm ==> CompiledProgram[name=outdegreeCentrality]
opg4j> var graph = session.readGraphByName("BANK_TXN_GRAPH", 
GraphSource.PG_PGQL)
graph ==> PgxGraph[name=BANK_TXN_GRAPH,N=1000,E=4993,created=1712307339271]
opg4j> var future = analyst.outDegreeCentralityAsync(graph)
future ==> oracle.pgx.api.PgxFuture@55fe9c2f[Not completed]
opg4j> var futureProgress = future.getProgress()
futureProgress ==> oracle.pgx.api.DefaultFutureProgress@637506d8
opg4j> var algorithmProgress = 
futureProgress.asAlgorithmExecutionProgress()

Java

import oracle.pgx.algorithm.CompiledProgram;

CompiledProgram myAlgorithm = session.compileProgram("/path/to/
OutdegreeCentrality.java");
PgxGraph graph = session.readGraphByName("BANK_TXN_GRAPH", 
GraphSource.PG_PGQL);
PgxFuture<?> future = analyst.pagerankAsync(graph);
FutureProgress futureProgress = future.getProgress();
Optional<AlgorithmProgress> algorithmProgress = 
futureProgress.asAlgorithmExecutionProgress();

3. Estimate the progress of the running algorithm as a percentage.

• if (algorithmProgress.isPresent()) {
  AlgorithmProgress progress = algorithmProgress.get();
  long completedSteps = progress.getNumberOfStepsCompleted();
  Long numberOfStepsEstimatedForCompletion = 
progress.getNumberOfStepsEstimatedForCompletion();
  long progressPercentage = completedSteps * 100 / 
numberOfStepsEstimatedForCompletion;
  System.out.println(completedSteps); // 153
  System.out.println(numberOfStepsEstimatedForCompletion); // 2343
  System.out.println(progressPercentage); // 6.53
}

• if (algorithmProgress.isPresent()) {
  AlgorithmProgress progress = algorithmProgress.get();
  long completedSteps = progress.getNumberOfStepsCompleted();
  Long numberOfStepsEstimatedForCompletion = 
progress.getNumberOfStepsEstimatedForCompletion();
  long progressPercentage = completedSteps * 100 / 

Chapter 16
Using Custom PGX Graph Algorithms

16-75



numberOfStepsEstimatedForCompletion;
  System.out.println(completedSteps); // 153
  System.out.println(numberOfStepsEstimatedForCompletion); // 2343
  System.out.println(progressPercentage); // 6.53
};

The preceding code shows the progress as 6.53 % at that current moment. If you try to get
the progress of the running algorithm after a while (for example, 1min), then you should get
a larger value.

See Also:

Getting the Progress of a Running Algorithm

16.8 Creating Subgraphs
You can create subgraphs based on a graph that has been loaded into memory. You can use
filter expressions or create bipartite subgraphs based on a vertex (node) collection that
specifies the left set of the bipartite graph.

Note:

Starting from Graph Server and Client Release 22.3, creating subgraphs using filter
expressions is deprecated. It is recommended that you load a subgraph from PGQL
property graphs. See Loading a Subgraph from a PGQL Property Graph for more
information.

For information about reading a graph into memory, see Reading Graphs from Oracle
Database into the Graph Server (PGX) for the various methods to load a graph into the graph
server (PGX).

• About Filter Expressions

• Using a Simple Filter to Create a Subgraph

• Using a Complex Filter to Create a Subgraph

• Using a Vertex Set to Create a Bipartite Subgraph

16.8.1 About Filter Expressions
Filter expressions are expressions that are evaluated for each vertex or edge. The expression
can define predicates that a vertex or an edge must fulfil in order to be contained in the result,
in this case a subgraph.

Consider an example graph that consists of four vertices (nodes) and four edges. For an edge
to match the filter expression src.prop == 10, the source vertex prop property must equal 10.
Two edges match that filter expression, as shown in the following figure.

Chapter 16
Creating Subgraphs

16-76



Figure 16-5     Edges Matching src.prop == 10

The following figure shows the graph that results when the filter is applied.

Figure 16-6    Graph Created by the Simple Filter

The vertex filter src.prop == 10 filters out the edges associated with vertex 333 and the
vertex itself.

16.8.2 Using a Simple Filter to Create a Subgraph
The following examples create the subgraph described in About Filter Expressions.

• JShell

Chapter 16
Creating Subgraphs

16-77



• Java

JShell

var subgraph = graph.filter(new VertexFilter("vertex.prop == 10"))

Java

import oracle.pgx.api.*;
import oracle.pgx.api.filter.*;

PgxGraph graph = session.readGraphWithProperties(...);
PgxGraph subgraph = graph.filter(new VertexFilter("vertex.prop == 10"));

16.8.3 Using a Complex Filter to Create a Subgraph
This example uses a slightly more complex filter. It uses the outDegree function, which
calculates the number of outgoing edges for an identifier (source src or destination dst). The
following filter expression matches all edges with a cost property value greater than 50 and a
destination vertex (node) with an outDegree greater than 1.

dst.outDegree() > 1 && edge.cost > 50

One edge in the sample graph matches this filter expression, as shown in the following figure.

Figure 16-7    Edges Matching the outDegree Filter

The following figure shows the graph that results when the filter is applied. The filter excludes
the edges associated with the vertices 99 and 1908, and so excludes those vertices also.

Chapter 16
Creating Subgraphs

16-78



Figure 16-8    Graph Created by the outDegree Filter

16.8.4 Using a Vertex Set to Create a Bipartite Subgraph
You can create a bipartite subgraph by specifying a set of vertices (nodes), which are used as
the left side. A bipartite subgraph has edges only between the left set of vertices and the right
set of vertices. There are no edges within those sets, such as between two nodes on the left
side. In the graph server (PGX), vertices that are isolated because all incoming and outgoing
edges were deleted are not part of the bipartite subgraph.

The following figure shows a bipartite subgraph. No properties are shown.

Chapter 16
Creating Subgraphs

16-79



The following examples create a bipartite subgraph from a simple graph consisting of four
vertices and four edges. The vertex ID values for the four vertices are 99, 128, 1908 and 333
respectively. See Figure 16-5 in About Filter Expressions for more information on the vertex
and edge property values including the edge direction between the vertices.

You must first create a vertex collection and fill it with the vertices for the left side. In the
example shown, vertices with vertex ID values 333 and 99 are added to the left side of the
vertex collection.

Using the Shell to Create a Bipartite Subgraph

opg4j> s = graph.createVertexSet()
==> ...
opg4j> s.addAll([graph.getVertex(333), graph.getVertex(99)])
==> ...
opg4j> s.size()
==> 2
opg4j> bGraph = graph.bipartiteSubGraphFromLeftSet(s)
==> PGX Bipartite Graph named sample-sub-graph-4

Using Java to Create a Bipartite Subgraph

import oracle.pgx.api.*;
 
VertexSet<Integer> s = graph.createVertexSet();
s.addAll(graph.getVertex(333), graph.getVertex(99));
BipartiteGraph bGraph = graph.bipartiteSubGraphFromLeftSet(s);

When you create a subgraph, the graph server (PGX) automatically creates a Boolean vertex
(node) property that indicates whether the vertex is on the left side. You can specify a unique
name for the property.

The resulting bipartite subgraph looks like this:

Vertex with ID 1908 is excluded from the bipartite subgraph. The only edge that connected that
vertex extended from 128 to 1908. The edge was removed, because it violated the bipartite
properties of the subgraph. Vertex 1908 had no other edges, and so was removed as well.
Moreover, the edge from the vertex with the ID 128 to the vertex with ID 99 is not present in the
bipartite subgraph, because edges are only allowed to go from left to right (and not from right
to left).

Chapter 16
Creating Subgraphs

16-80



16.9 User-Defined Functions (UDFs) in PGX
User-defined functions (UDFs) allow users of PGX to add custom logic to their PGQL queries
or custom graph algorithms, to complement built-in functions with custom requirements.

Caution:

UDFs enable running arbitrary code in the PGX server, possibly accessing sensitive
data. Additionally, any PGX session can invoke any of the UDFs that are enabled on
the PGX server. The application administrator who enables UDFs is responsible for
checking the following:

• All the UDF code can be trusted.

• The UDFs are stored in a secure location that cannot be tampered with.

Furthermore, PGX assumes UDFs to be state-less and side-effect free.

PGX supports two types of UDFs:

• Java UDFs

• JavaScript UDFs

How to Use Java UDFs

The following simple example shows how to register a Java UDF at the PGX server and invoke
it.

1. Create a class with a public static method. For example:

package my.udfs;
 
public class MyUdfs {
  public static String concat(String a, String b) {
    return a + b;
  }
}

2. Compile the class and compress into a JAR file. For example:

mkdir ./target
javac -d ./target *.java
cd target
jar cvf MyUdfs.jar *

3. Copy the JAR file into /opt/oracle/graph/pgx/server/lib.

4. Create a UDF JSON configuration file. For example, assume that /path/to/my/udfs/dir/
my_udfs.json contains the following:

{
  "user_defined_functions": [
    {

Chapter 16
User-Defined Functions (UDFs) in PGX

16-81



      "namespace": "my",
      "language": "java",
      "implementation_reference": "my.udfs.MyUdfs",
      "function_name": "concat",
      "return_type": "string",
      "arguments": [
         {
           "name": "a",
           "type": "string"
         },
         {
           "name": "b",
           "type": "string"
         }
       ]
    }
  ]
}

5. Point to the directory containing the UDF configuration file in /etc/oracle/graph/
pgx.conf. For example:

"udf_config_directory": "/path/to/my/udfs/dir/"

6. Restart the PGX server. For example:

sudo systemctl restart pgx

7. Try to invoke the UDF from within a PGQL query. For example:

graph.queryPgql("SELECT my.concat(my.concat(n.firstName, ' '), n.lastName) 
FROM MATCH (n:Person)")

8. Try to invoke the UDF from within a PGX algorithm. For example:

Note:

For each UDF you want to use, you need to create an abstract method with the
same schema that gets annotated with the @Udf annotation.

import oracle.pgx.algorithm.annotations.Udf;
....
 
@GraphAlgorithm
public class MyAlogrithm {
  public void bomAlgorithm(PgxGraph g, VertexProperty<String> firstName, 
VertexProperty<String> lastName, @Out VertexProperty<String> fullName) {
 
 
  ... fullName.set(v, concat(firstName.get(v), lastName.get(v))); ...
 
  }
 

Chapter 16
User-Defined Functions (UDFs) in PGX

16-82



  @Udf(namespace = "my")
  abstract String concat(String a, String b);
}

JavaScript UDFs

The requirements for a JavaScript UDF is as follows:

• The JavaScript source must contain all dependencies.

• The source must contain at least one valid export.

• The language parameter must be set to javascript in the UDF configuration file.

For example, consider a JavaScript source file format.js as shown:

//format.js
const fun = function(name, country) {
  if (country == null) return name;
  else return name + " (" + country + ")";
}

module.exports = {stringFormat: fun};

In order to load the UDF from format.js, the UDF configuration file will appear as follows:

{
  "namespace": "my",
  "function_name": "format",
  "language": "javascript",
  "source_location": "format.js",
  "source_function_name": "stringFormat",
  "return_type": "string",
  "arguments": [
    {
      "name": "name",
      "type": "string"
    },
    {
      "name": "country",
      "type": "string"
    }
  ]
}

Note:

In this case, since the name of the UDF and the implementing method differ, you
need to set the name of the UDF in the source_function_name field. Also, you can
provide the path of the source code file in the source_location field.

Chapter 16
User-Defined Functions (UDFs) in PGX

16-83



UDF Configuration File Information

A UDF configuration file is a JSON file containing an array of user_defined_functions. (An
example of such a file is in the step to "Create a UDF JSON configuration file" in the preceding 
How to Use Java UDFs subsection.)

Each user-defined function supports the fields shown in the following table.

Table 16-13    Fields for Each UDF

Field Data Type Description Required?

function_name string Name of the function used as
identifier in PGX

Required

language enum[java, javascript] Source language for he
function (java or
javascript)

Required

return_type enum[boolean, integer, long,
float, double, string]

Return type of the function Required

arguments array of object Array of arguments. For each
argument: type, argument
name, required?

[]

implementation_reference string Reference to the function
name on the classpath

null

namespace string Namespace of the function in
PGX

null

source_code string Source code of the function
provided inline

null

source_function_name string Name of the function in the
source language

null

source_location string Local file path to the
function's source code

null

All configured UDFs must be unique with regard to the combination of the following fields:

• namespace

• function_name

• arguments

16.10 Using Graph Server (PGX) as a Library
When you utilize PGX as a library in your application, the graph server (PGX) instance runs in
the same JVM as the Java application and all requests are translated into direct function calls
instead of remote procedure invocations.

In this case, you must install the graph server (PGX) using RPM in the same machine as the
client applications. The shell executables provided by the graph server installation helps you to
launch the Java or the Python shell in an embedded server mode. See Installing Oracle Graph
Server For Linux x86-64 for more information.

You can now start the Java shell without any parameters as shown:

cd /opt/oracle/graph
./bin/opg4j

Chapter 16
Using Graph Server (PGX) as a Library

16-84



The local PGX instance will try to load a PGX configuration file from:

/etc/oracle/graph/pgx.conf

You can change the location of the configuration file by passing the --pgx_conf command-line
option followed by the path to the configuration file:

# start local PGX instance with custom config
./bin/opg4j --pgx_conf <path_to_pgx.conf>

You can also start the Python shell without any parameters as shown:

cd /opt/oracle/graph/
./bin/opg4py

When using Java, you can obtain a reference to the local PGX instance as shown:

import oracle.pg.rdbms.*;
import oracle.pgx.api.*;
...
ServerInstance instance = GraphServer.getEmbeddedInstance();                  

In a Python application, you can obtain a reference to the local PGX instance as shown:

import os
os.environ["PGX_CLASSPATH"] = "/opt/oracle/graph/lib/*"
import opg4py.graph_server as graph_server
...
instance = graph_server.get_embedded_instance()              

Starting the PGX Engine

PGX provides a convenience mechanism to start the PGX Engine when using the graph server
(PGX) as a library. That is, the graph server (PGX) is automatically initialized and starts up
automatically when ServerInstance.createSession() is called the first time. This is provided
that the engine is not already running at that time.

For this implicit initialization, PGX will configure itself with the PGX configuration file at the
default locations. If the PGX configuration file is not found, PGX will configure itself using
default parameter values as shown in Configuration Parameters for the Graph Server (PGX)
Engine.

Stopping the PGX Engine

When using the graph server (PGX) as a library, the shutdownEngine() method will be called
automatically via a JVM shutdown hook on exit. Specifically, the shutdown hook is invoked
once all the non-daemon threads of the application exit.

It is recommended that you do not terminate your PGX application forcibly with kill -9, as it
will not clear the temp directory. See tmp_dir in Configuration Parameters for the Graph Server
(PGX) Engine.

• Using the PGX JDBC Driver when Graph Server (PGX) is Utilized as a Library
When using the graph server (PGX) as a library, you can use the PGX JDBC driver to
query graphs that are loaded from files.

Chapter 16
Using Graph Server (PGX) as a Library

16-85

http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html


16.10.1 Using the PGX JDBC Driver when Graph Server (PGX) is Utilized
as a Library

When using the graph server (PGX) as a library, you can use the PGX JDBC driver to query
graphs that are loaded from files.

Note the following to use the PGX JDBC driver:

• Register the PGX JDBC driver with the DriverManager:

import java.sql.DriverManager;
import oracle.pgx.jdbc.PgxJdbcDriver;
DriverManager.registerDriver(new PgxJdbcDriver());

• The JDBC URL to obtain a connection object is as shown:
jdbc:oracle:pgx:embedded

The following example uses the PGX JDBC driver to query a graph loaded from .CSV files.

opg4j> import oracle.pgx.jdbc.*
opg4j> DriverManager.registerDriver(new PgxJdbcDriver())
opg4j> var conn = DriverManager.getConnection("jdbc:oracle:pgx:embedded")
conn ==> oracle.pgx.jdbc.PgxConnection@1b96d447
opg4j> PgxSession session = conn.unwrap(PgxSession.class)
session ==> PgxSession[ID=738da6ff-81a5-4d6f-9bdc-a912f2193b44,source=PGX-
JDBC]
opg4j> session.readGraphFiles("/scratch/PG/Data/accounts.csv", "/scratch/PG/
Data/transfers.csv", "bank_graph")
$5 ==> PgxGraph[name=bank_graph,N=1000,E=5001,created=1705401162835]
opg4j> var stmt =  conn.createStatement()
stmt ==> oracle.pgx.jdbc.StatementWrapper@48dc9950
opg4j> var rs = stmt.executeQuery("SELECT e.AMOUNT as AMOUNT FROM MATCH (a) -
[e]-> (b) ON bank_graph LIMIT 5")
rs ==> oracle.pgx.jdbc.ResultSetWrapper@16a89351
opg4j> while(rs.next()){
...> System.out.println("AMOUNT = " + rs.getDouble("amount"));
...> }
AMOUNT = 1000.0
AMOUNT = 1000.0
AMOUNT = 1000.0
AMOUNT = 1000.0
AMOUNT = 1000.0

Related Topics

• Executing PGQL Queries Using the PGX JDBC Driver
Starting from Graph Server and Client Release 24.1.0, you can use the PGX JDBC driver
to access a PGX session and query graphs that are loaded in to the graph server (PGX).

Chapter 16
Using Graph Server (PGX) as a Library

16-86



17
Using the Machine Learning Library (PgxML)
for Graphs

The graph server (PGX) provides a machine learning library oracle.pgx.api.mllib, which
supports graph-empowered machine learning algorithms.

The following machine learning algorithms are currently supported:

• Using the DeepWalk Algorithm
DeepWalk is a widely employed vertex representation learning algorithm used in industry.

• Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification)
Supervised GraphWise is an inductive vertex representation learning algorithm which is
able to leverage vertex feature information. It can be applied to a wide variety of tasks,
including vertex classification and link prediction.

• Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification)
SupervisedEdgeWise is an inductive edge representation learning algorithm which is able
to leverage vertex and edge feature information. It can be applied to a wide variety of
tasks, including edge classification and link prediction.

• Using the Unsupervised GraphWise Algorithm (Vertex Embeddings)
Unsupervised GraphWise is an unsupervised inductive vertex representation learning
algorithm which is able to leverage vertex information. The learned embeddings can be
used in various downstream tasks including vertex classification, vertex clustering and
similar vertex search.

• Using the Unsupervised EdgeWise Algorithm
UnsupervisedEdgeWise is an inductive edge representation learning algorithm which is
able to leverage vertex and edge feature information. It can be applied to a wide variety of
tasks, including unsupervised learning edge embeddings for edge classification.

• Using the Unsupervised Anomaly Detection GraphWise Algorithm (Vertex Embeddings
and Anomaly Scores)
UnsupervisedAnomalyDetectionGraphWise is an inductive vertex representation
learning and anomaly detection algorithm which is able to leverage vertex and edge
feature information. Although it can be applied to a wide variety of tasks, it is particularly
suitable for unsupervised learning of vertex embeddings for anomaly detection. After
training this model, it is possible to infer anomaly scores or labels for unseen nodes.

• Using the Pg2vec Algorithm
Pg2vec learns representations of graphlets (partitions inside a graph) by employing edges
as the principal learning units and thereby packing more information in each learning unit
(as compared to employing vertices as learning units) for the representation learning task.

• Model Repository and Model Stores
A model store can be used to persist the trained graph server (PGX) machine learning
models along with a model name (a unique identifier of the model in a particular model
store) and a description.

17-1



See Also:

Model Repository and Model Stores for information on model store management and
how models can be persisted in a model store.

17.1 Using the DeepWalk Algorithm
DeepWalk is a widely employed vertex representation learning algorithm used in industry.

It consists of two main steps:

1. First, the random walk generation step computes random walks for each vertex (with a pre-
defined walk length and a pre-defined number of walks per vertex).

2. Second, these generated walks are fed to a Word2vec algorithm to generate the vector
representation for each vertex (which is the word in the input provided to the Word2vec
algorithm). See KDD paper for more details on DeepWalk algorithm.

DeepWalk creates vertex embeddings for a specific graph and cannot be updated to
incorporate modifications on the graph. Instead, a new DeepWalk model should be trained on
this modified graph. Lastly, it is important to note that the memory consumption of the
DeepWalk model is O(2n*d) where n is the number of vertices in the graph and d is the
embedding length.

The following describes the usage of the main functionalities of DeepWalk in PGX using 
DBpedia graph as an example with 8,637,721 vertices and 165,049,964 edges:

• Loading a Graph

• Building a Minimal DeepWalk Model

• Building a Customized DeepWalk Model

• Training a DeepWalk Model

• Getting the Loss Value For a DeepWalk Model

• Computing Similar Vertices for a Given Vertex

• Computing Similar Vertices for a Vertex Batch

• Getting All Trained Vertex Vectors

• Storing a Trained DeepWalk Model

• Loading a Pre-Trained DeepWalk Model

• Destroying a DeepWalk Model

17.1.1 Loading a Graph
The following describes the steps for loading a graph:

1. Create a Session and an Analyst.

• JShell

• Java

Chapter 17
Using the DeepWalk Algorithm

17-2

https://dl.acm.org/citation.cfm?id=2623732
https://wiki.dbpedia.org/


• Python

JShell

cd /opt/oracle/graph/
./bin/opg4j
// starting the shell will create an implicit session and analyst

Java

import oracle.pgx.api.*;
import oracle.pgx.api.mllib.DeepWalkModel;
import oracle.pgx.api.frames.*;

Python

# starting the Python shell will create an implicit session and analyst

2. Load the graph.

Note:

Though the DeepWalk algorithm implementation can be applied to directed or
undirected graphs, currently only undirected random walks are considered.

• JShell

• Java

• Python

JShell

opg4j> var instance = GraphServer.getInstance("https://localhost:7007", 
"<username>", "<password>".toCharArray())
opg4j> var session=instance.createSession("mySession")
opg4j> var graph = 
session.readGraphByName("<graph_name>",GraphSource.PG_PGQL)

Java

ServerInstance instance = GraphServer.getInstance("https://
localhost:7007", "<username>", "<password>".toCharArray());
PgxSession session = instance.createSession("my-session");
PgxGraph graph = 
session.readGraphByName("<graph_name>",GraphSource.PG_PGQL);

Chapter 17
Using the DeepWalk Algorithm

17-3



Python

instance = graph_server.get_instance("https://
localhost:7007","<username>","<password>")
session = instance.create_session("my_session")
graph = session.read_graph_by_name("<graph_name>", "pg_pgql")

17.1.2 Building a Minimal DeepWalk Model
You can build a DeepWalk model using the minimal configuration and default hyper-
parameters as described in the following code:

• JShell

• Java

• Python

JShell

opg4j> var model = analyst.deepWalkModelBuilder().
                setWindowSize(3).
                setWalksPerVertex(6).
                setWalkLength(4).
                build()

Java

DeepWalkModel model = analyst.deepWalkModelBuilder()
    .setWindowSize(3)
    .setWalksPerVertex(6)
    .setWalkLength(4)
    .build();

Python

model = 
analyst.deepwalk_builder(window_size=3,walks_per_vertex=6,walk_length=4)

17.1.3 Building a Customized DeepWalk Model
You can build a DeepWalk model using customized hyper-parameters as described in the
following code:

Chapter 17
Using the DeepWalk Algorithm

17-4



• JShell

• Java

• Python

JShell

opg4j> var model = analyst.deepWalkModelBuilder().
                setMinWordFrequency(1).
                setBatchSize(512).
                setNumEpochs(1).
                setLayerSize(100).
                setLearningRate(0.05).
                setMinLearningRate(0.0001).
                setWindowSize(3).
                setWalksPerVertex(6).
                setWalkLength(4).
                setSampleRate(0.00001).
                setNegativeSample(2).
                build()

Java

DeepWalkModel model= analyst.deepWalkModelBuilder()
    .setMinWordFrequency(1)
    .setBatchSize(512)
    .setNumEpochs(1)
    .setLayerSize(100)
    .setLearningRate(0.05)
    .setMinLearningRate(0.0001)
    .setWindowSize(3)
    .setWalksPerVertex(6)
    .setWalkLength(4)
    .setSampleRate(0.00001)
    .setNegativeSample(2)
    .build();

Python

model = analyst.deepwalk_builder(min_word_frequency=1,
                                batch_size=512,num_epochs=1,
                                layer_size=100,
                                learning_rate=0.05,
                                min_learning_rate=0.0001,
                                window_size=3,
                                walks_per_vertex=6,
                                walk_length=4,
                                sample_rate=0.00001,
                                negative_sample=2)

Chapter 17
Using the DeepWalk Algorithm

17-5



See DeepWalkModelBuilder in Javadoc for more explanation for each builder operation along
with the default values.

17.1.4 Training a DeepWalk Model
You can train a DeepWalk model with the specified default or customized settings as described
in the following code:

• JShell

• Java

• Python

JShell

opg4j> model.fit(graph)

Java

model.fit(graph);

Python

model.fit(graph)

17.1.5 Getting the Loss Value For a DeepWalk Model
You can fetch the loss value as described in the following code:

• JShell

• Java

• Python

JShell

opg4j> var loss = model.getLoss()

Chapter 17
Using the DeepWalk Algorithm

17-6

https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/mllib/DeepWalkModelBuilder.html


Java

double loss = model.getLoss();

Python

loss = model.loss

17.1.6 Computing Similar Vertices for a Given Vertex
You can fetch the k most similar vertices for a given vertex as described in the following code:

• JShell

• Java

• Python

JShell

opg4j> var similars = model.computeSimilars("Albert_Einstein", 10)
opg4j> similars.print()

Java

PgxFrame similars = model.computeSimilars("Albert_Einstein", 10);
similars.print();

Python

similars = model.compute_similars("Albert_Einstein",10)
similars.print()

Searching for similar vertices for Albert_Einstein using the trained model, will result in the
following output:

+-----------------------------------------+
| dstVertex          | similarity         |
+-----------------------------------------+
| Albert_Einstein    | 1.0000001192092896 |
| Physics            | 0.8664291501045227 |
| Werner_Heisenberg  | 0.8625140190124512 |
| Richard_Feynman    | 0.8496938943862915 |
| List_of_physicists | 0.8415523767471313 |
| Physicist          | 0.8384397625923157 |

Chapter 17
Using the DeepWalk Algorithm

17-7

http://dbpedia.org/page/Albert_Einstein


| Max_Planck         | 0.8370327353477478 |
| Niels_Bohr         | 0.8340970873832703 |
| Quantum_mechanics  | 0.8331197500228882 |
| Special_relativity | 0.8280861973762512 |
+-----------------------------------------+

17.1.7 Computing Similar Vertices for a Vertex Batch
You can fetch the k most similar vertices for a list of input vertices as described in the following
code:

• JShell

• Java

• Python

JShell

opg4j> var vertices = new ArrayList()
opg4j> vertices.add("Machine_learning")
opg4j> vertices.add("Albert_Einstein")
opg4j> batchedSimilars = model.computeSimilars(vertices, 10)
opg4j> batchedSimilars.print()

Java

List vertices = Arrays.asList("Machine_learning","Albert_Einstein");
PgxFrame batchedSimilars = model.computeSimilars(vertices,10);
batchedSimilars.print();

Python

vertices = ["Machine_learning","Albert_Einstein"]
batched_similars = model.compute_similars(vertices,10)
batched_similars.print()

The following describes the output result:

+-------------------------------------------------------------------+
| srcVertex        | dstVertex                 | similarity         |
+-------------------------------------------------------------------+
| Machine_learning | Machine_learning          | 1.0000001192092896 |
| Machine_learning | Data_mining               | 0.9070799350738525 |
| Machine_learning | Computer_science          | 0.8963605165481567 |
| Machine_learning | Unsupervised_learning     | 0.8828719854354858 |
| Machine_learning | R_(programming_language)  | 0.8821185827255249 |
| Machine_learning | Algorithm                 | 0.8819515705108643 |

Chapter 17
Using the DeepWalk Algorithm

17-8



| Machine_learning | Artificial_neural_network | 0.8773092031478882 |
| Machine_learning | Data_analysis             | 0.8758628368377686 |
| Machine_learning | List_of_algorithms        | 0.8737979531288147 |
| Machine_learning | K-means_clustering        | 0.8715602159500122 |
| Albert_Einstein  | Albert_Einstein           | 1.0000001192092896 |
| Albert_Einstein  | Physics                   | 0.8664291501045227 |
| Albert_Einstein  | Werner_Heisenberg         | 0.8625140190124512 |
| Albert_Einstein  | Richard_Feynman           | 0.8496938943862915 |
| Albert_Einstein  | List_of_physicists        | 0.8415523767471313 |
| Albert_Einstein  | Physicist                 | 0.8384397625923157 |
| Albert_Einstein  | Max_Planck                | 0.8370327353477478 |
| Albert_Einstein  | Niels_Bohr                | 0.8340970873832703 |
| Albert_Einstein  | Quantum_mechanics         | 0.8331197500228882 |
| Albert_Einstein  | Special_relativity        | 0.8280861973762512 |
+-------------------------------------------------------------------+

17.1.8 Getting All Trained Vertex Vectors
You can retrieve the trained vertex vectors for the current DeepWalk model and store it in the
database as described in the following code:

• JShell

• Java

• Python

JShell

opg4j> var vertexVectors = model.getTrainedVertexVectors().flattenAll()
opg4j> vertexVectors.write().db().name("vertex 
vectors").tablename("vertexVectors").overwrite(true).store()

Java

PgxFrame vertexVectors = model.getTrainedVertexVectors().flattenAll();
vertexVectors.write()
    .db()
    .name("vertex vectors")
    .tablename("vertexVectors") 
    .overwrite(true)            
    .store();

Python

vertex_vectors = model.trained_vectors.flatten_all()
vertex_vectors.write().db().table_name("table_name").name("vertex_vectors").ov
erwrite(True).store()

Chapter 17
Using the DeepWalk Algorithm

17-9



17.1.9 Storing a Trained DeepWalk Model
You can store models in database. The models get stored as a row inside a model store table.

The following code shows how to store a trained DeepWalk model in database in a specific
model store table:

• JShell

• Java

• Python

JShell

opg4j> model.export().db(). 
              modelstore("modelstoretablename").  // name of the model store 
table
              modelname("model").                 // model name (primary key 
of model store table)
              description("a model description"). // description to store 
alongside the model
              store()

Java

model.export().db()
    .modelstore("modelstoretablename")  // name of the model store table
    .modelname("model")                 // model name (primary key of model 
store table)
    .description("a model description") // description to store alongside the 
model
    .store();

Python

model.export().db(model_store="modeltablename",            # name of the 
model store table
                  model_name="model",                      # model name 
(primary key of model store table)
                  model_description="a model description") # description to 
store alongside the model

Chapter 17
Using the DeepWalk Algorithm

17-10



Note:

All the preceding examples assume that you are storing the model in the current
logged in database. If you must store the model in a different database then refer to
the examples in Storing a Trained Model in Another Database.

• Storing a Trained Model in Another Database

17.1.9.1 Storing a Trained Model in Another Database
You can store models in a different database other than the one used for login.

The following code shows how to store a trained model in a different database:

• JShell

• Java

• Python

JShell

opg4j> model.export().db(). 
              username("user").                   // DB user to use for 
storing the model
              password("password").               // password of the DB user
              jdbcUrl("jdbcUrl").                 // jdbc url to the DB
              modelstore("modelstoretablename").  // name of the model store 
table
              modelname("model").                 // model name (primary key 
of model store table)
              description("a model description"). // description to store 
alongside the model
              store()

Java

model.export().db()
    .username("user")                   // DB user to use for storing the 
model
    .password("password")               // password of the DB user
    .jdbcUrl("jdbcUrl")                 // jdbc url to the DB
    .modelstore("modelstoretablename")  // name of the model store table
    .modelname("model")                 // model name (primary key of model 
store table)
    .description("a model description") // description to store alongside the 
model
    .store();

Chapter 17
Using the DeepWalk Algorithm

17-11



Python

model.export().db(username="user",                         # DB user to use 
for storing the model
                  password="password",                     # password of the 
DB user
                  jdbc_url="jdbc_url",                     # jdbc url to the 
DB
                  model_store="modelstoretablename",       # name of the 
model store table
                  model_name="model",                      # model name 
(primary key of model store table)
                  model_description="a model description") # description to 
store alongside the model

17.1.10 Loading a Pre-Trained DeepWalk Model
You can load models from a database.

You can load a pre-trained DeepWalk model from a model store table in database as described
in the following code:

Loading a Pre-Trained DeepWalk Model Using JShell

opg4j> var model = analyst.loadDeepWalkModel().db()
                .modelstore("modeltablename") // name of the model store table
                .modelname("model")           // model name (primary key of 
model store table)
                .load();

Loading a Pre-Trained DeepWalk Model Using Java

DeepWalkModelmodel = analyst.loadDeepWalkModel().db()
     .modelstore("modeltablename") // name of the model store table
     .modelname("model")           // model name (primary key of model store 
table)
     .load();

Loading a Pre-Trained DeepWalk Model Using Python

analyst.get_deepwalk_model_loader().db(model_store="modelstoretablename",
                                       model_name="model")

Chapter 17
Using the DeepWalk Algorithm

17-12



Note:

All the preceding examples assume that you are loading the model from the current
logged in database. If you must load the model from a different database then refer to
the examples in Loading a Pre-Trained Model From Another Database.

• Loading a Pre-Trained Model From Another Database

17.1.10.1 Loading a Pre-Trained Model From Another Database
You can load models from a different database other than the one used for login.

You can load a pre-trained model from a model store table in database as described in the
following code:

• JShell

• Java

• Python

JShell

opg4j> var model = analyst.<modelLoader>.db().
                username("user").             // DB user to use for storing 
the model
                password("password").         // password of the DB user
                jdbcUrl("jdbcUrl").           // jdbc url to the DB
                modelstore("modeltablename"). // name of the model store table
                modelname("model").           // model name (primary key of 
model store table)
                load()

where <modelLoader> applies as follows:

• loadDeepWalkModel(): Loads a Deepwalk model

• loadSupervisedGraphWiseModel(): Loads a Supervised GraphWise model

• loadUnsupervisedGraphWiseModel(): Loads an Unsupervised GraphWise model

• loadSupervisedEdgeWiseModel(): Loads a Supervised EdgeWise model

• loadUnsupervisedEdgeWiseModel(): Loads an Unsupervised EdgeWise model

• loadUnsupervisedAnomalyDetectionGraphWiseModel(): Loads an Unsupervised Anomaly
Detection GraphWise model

• loadPg2vecModel(): Loads a Pg2vec model

Java

<modeltype> model = analyst.<modelLoader>.db()
     .username("user")             // DB user to use for storing the model

Chapter 17
Using the DeepWalk Algorithm

17-13



     .password("password")         // password of the DB user
     .jdbcUrl("jdbcUrl")           // jdbc url to the DB
     .modelstore("modeltablename") // name of the model store table
     .modelname("model")           // model name (primary key of model store 
table)
     .load();

where <modeltype> can have the following values based on the model to be loaded:

• DeepWalkModel: represents a Deepwalk model

• SupervisedGraphWiseModel: represents a Supervised GraphWise model

• UnsupervisedGraphWiseModel: represents an Unsupervised GraphWise model

• SupervisedEdgeWiseModel: represents a Supervised EdgeWise model

• UnsupervisedEdgeWiseModel: represents an Unsupervised EdgeWise model

• UnsupervisedAnomalyDetectionGraphWiseModel: represents an Unsupervised Anomaly
Detection GraphWise model

• Pg2vecModel: represents a Pg2vec model

where <modelLoader> applies as follows:

• loadDeepWalkModel(): Loads a Deepwalk model

• loadSupervisedGraphWiseModel(): Loads a Supervised GraphWise model

• loadUnsupervisedGraphWiseModel(): Loads an Unsupervised GraphWise model

• loadSupervisedEdgeWiseModel(): Loads a Supervised EdgeWise model

• loadUnsupervisedEdgeWiseModel(): Loads an Unsupervised EdgeWise model

• loadUnsupervisedAnomalyDetectionGraphWiseModel(): Loads an Unsupervised Anomaly
Detection GraphWise model

• loadPg2vecModel(): Loads a Pg2vec model

Python

model = analyst.<modelLoader>.db(model_store="modelstoretablename",  # name 
of the model store table
                  model_name="model",                 # model name (primary 
key of model store table)
                  username="user",                    # DB user to use for 
storing the model
                  password="password",                # password of the DB 
user
                  jdbc_url="jdbc_url")                # jdbc url to the DB 

where <modelLoader> applies as follows:

• get_deepwalk_model_loader(): Loads a Deepwalk model

• get_supervised_graphwise_model_loader(): Loads a Supervised GraphWise model

• get_unsupervised_graphwise_model_loader(): Loads an Unsupervised GraphWise
model

• get_supervised_edgewise_model_loader(): Loads a Supervised EdgeWise model

Chapter 17
Using the DeepWalk Algorithm

17-14



• get_unsupervised_edgewise_model_loader(): Loads an Unsupervised EdgeWise model

• get_unsupervised_anomaly_detection_graphwise_model_loader(): Loads an
Unsupervised Anomaly Detection GraphWise model

• get_pg2vec_model_loader(): Loads a Pg2vec model

17.1.11 Destroying a DeepWalk Model
You can destroy a DeepWalk model as described in the following code:

• JShell

• Java

• Python

JShell

opg4j> model.destroy()

Java

model.destroy();

Python

model.destroy()

17.2 Using the Supervised GraphWise Algorithm (Vertex
Embeddings and Classification)

Supervised GraphWise is an inductive vertex representation learning algorithm which is able
to leverage vertex feature information. It can be applied to a wide variety of tasks, including
vertex classification and link prediction.

Supervised GraphWise is based on GraphSAGE by Hamilton et al.

Model Structure

A Supervised GraphWise model consists of graph convolutional layers followed by several
prediction layers.

The forward pass through a convolutional layer for a vertex proceeds as follows:

1. A set of neighbors of the vertex is sampled.

Chapter 17
Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification)

17-15

https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf


2. The previous layer representations of the neighbors are mean-aggregated, and the
aggregated features are concatenated with the previous layer representation of the vertex.

3. This concatenated vector is multiplied with weights, and a bias vector is added.

4. The result is normalized to such that the layer output has unit norm.

The prediction layers are standard neural network layers.

The following describes the usage of the main functionalities of the implementation of
GraphSAGE in PGX using the Cora graph as an example:

• Loading a Graph

• Building a Minimal GraphWise Model

• Advanced Hyperparameter Customization

• Building a GraphWise Model Using Partitioned Graphs

• Supported Property Types for Supervised GraphWise Model

• Classification Versus Regression Models on Supervised GraphWise Models

• Setting a Custom Loss Function and Batch Generator (for Anomaly Detection)

• Training a Supervised GraphWise Model

• Getting the Loss Value For a Supervised GraphWise Model

• Getting the Training Log for a Supervised GraphWise Model

• Inferring the Vertex Labels for a Supervised GraphWise Model

• Evaluating the Supervised GraphWise Model Performance

• Inferring Embeddings for a Supervised GraphWise Model

• Storing a Trained Supervised GraphWise Model

• Loading a Pre-Trained Supervised GraphWise Model

• Destroying a Supervised GraphWise Model

• Explaining a Prediction of a Supervised GraphWise Model

17.2.1 Loading a Graph
The following describes the steps for loading a graph:

1. Create a Session and an Analyst.

• JShell

• Java

• Python

JShell

cd /opt/oracle/graph/
./bin/opg4j
// starting the shell will create an implicit session and analyst

Chapter 17
Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification)

17-16



opg4j> import oracle.pgx.config.mllib.ActivationFunction
opg4j> import oracle.pgx.config.mllib.WeightInitScheme

Java

import oracle.pgx.api.*;
import oracle.pgx.api.mllib.SupervisedGraphWiseModel;
import oracle.pgx.api.filter.VertexFilter;
import oracle.pgx.api.frames.*;
import oracle.pgx.config.mllib.ActivationFunction;
import oracle.pgx.config.mllib.GraphWiseConvLayerConfig;
import oracle.pgx.config.mllib.GraphWisePredictionLayerConfig;
import oracle.pgx.config.mllib.SupervisedGraphWiseModelConfig;
import oracle.pgx.config.mllib.WeightInitScheme;

Python

# starting the Python shell will create an implicit session and analyst

2. Load the graph.

• JShell

• Java

• Python

JShell

opg4j> var instance = GraphServer.getInstance("https://localhost:7007", 
"<username>", "<password>".toCharArray())
opg4j> var session=instance.createSession("mySession")
opg4j> var fullGraph = 
session.readGraphByName("<cora_graph>",GraphSource.PG_PGQL)
opg4j> var filter = 
VertexFilter.fromPgqlResultSet(session.queryPgql("SELECT v FROM cora MATCH 
(v) WHERE ID(v) % 4 > 0"), "v")
opg4j> var trainGraph = fullGraph.filter(filter)
opg4j> var testVertices = fullGraph.getVertices().
                 stream().
                 filter(v -> !trainGraph.hasVertex(v.getId())).
                 collect(Collectors.toList())

Java

ServerInstance instance = GraphServer.getInstance("https://
localhost:7007", "<username>", "<password>".toCharArray());
PgxSession session = instance.createSession("my-session");
PgxGraph fullGraph = 

Chapter 17
Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification)

17-17



session.readGraphByName("<cora_graph>",GraphSource.PG_PGQL);
VertexFilterfilter = 
VertexFilter.fromPgqlResultSet(session.queryPgql("SELECT v FROM cora MATCH 
(v) WHERE ID(v) % 4 > 0"),"v");PgxGraphtrainGraph=fullGraph.filter(filter);
PgxGraph trainGraph = fullGraph.filter(filter);
List<PgxVertex> testVertices = fullGraph.getVertices()
    .stream()
    .filter(v->!trainGraph.hasVertex(v.getId()))
    .collect(Collectors.toList());

Python

from pypgx.api.filters import VertexFilter
instance = graph_server.get_instance("https://
localhost:7007","<username>","<password>")
session = instance.create_session("my_session")
full_graph = session.read_graph_by_name("<cora_graph>", "pg_pgql")
vertex_filter = 
VertexFilter.from_pgql_result_set(session.query_pgql("SELECT v FROM cora 
MATCH (v) WHERE ID(v) % 4 > 0"),"v")
train_graph = full_graph.filter(vertex_filter)
test_vertices = []
train_vertices = train_graph.get_vertices()
for v in full_graph.get_vertices():
    if(not train_vertices.contains(v)):
        test_vertices.append(v)

17.2.2 Building a Minimal GraphWise Model
You can build a GraphWise model using the minimal configuration and default hyper-
parameters as described in the following code. You can create a model with one of the
following options:

• only vertex properties

• only edge properties

• both vertex and edge properties

• JShell

• Java

• Python

JShell

opg4j> var model = analyst.supervisedGraphWiseModelBuilder().
                setVertexInputPropertyNames("features").
                setVertexTargetPropertyName("label").

Chapter 17
Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification)

17-18



                setEdgeInputPropertyNames("cost").  
                build()

Java

SupervisedGraphWiseModel model = analyst.supervisedGraphWiseModelBuilder()
    .setVertexInputPropertyNames("features")
    .setVertexTargetPropertyName("labels")
    .setEdgeInputPropertyNames("cost")  
    .build();

Python

params = dict(vertex_target_property_name="label",
              edge_input_property_names=["cost"],
              vertex_input_property_names=["features"])

model = analyst.supervised_graphwise_builder(**params)

Note:

Even though only one vertex and one edge property is specified in the preceding
example, you can specify a list of vertex or edge properties.

17.2.3 Advanced Hyperparameter Customization
You can build a GraphWise model using rich hyperparameter customization. Internally for each
node, GraphWise applies an aggregation of the representation of neighbors. You can configure
this operation through one of the following sub-config classes:

• GraphWiseConvLayerConfig: GraphWiseConvLayer is based on Inductive Representation
Learning on Large Graphs (GraphSage) by Hamilton et al.

• GraphWiseAttentionLayerConfig: GraphWiseAttentionLayer is based on Graph Attention
Neworks (GAT) by Velickovic et al. which makes the aggregation smarter but comes with
larger computation cost.

The GraphWisePredictionLayerConfig class implements the prediction layer config.

Also, you can enable or disable a graphics processing unit (GPU) by using the
enable_ml_accelerators graph server (PGX) configuration parameter (see Configuration
Parameters for the Graph Server (PGX) Engine for more information). In addition, ensure that
your system meets the following prerequisites to use the GPU support:

• You must have a GPU device with the CUDA (Compute Unified Device Architecture) toolkit
installed.

• The following list of CUDA libraries are expected:

– libcuda.so.1
– libnvrtc.so.12

Chapter 17
Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification)

17-19

https://arxiv.org/pdf/1706.02216.pdf
https://arxiv.org/pdf/1706.02216.pdf
https://arxiv.org/pdf/1710.10903.pdf
https://arxiv.org/pdf/1710.10903.pdf


– libnvToolsExt.so.1
– libcudart.so.12

Note that the enable_ml_accelerators option is enabled by default. But if a GPU device is not
detected and the CUDA toolkit is not installed, then this feature gets disabled and the CPU will
be used for all the PgxML library operations.

The following code examples uses the GraphWiseConvLayerConfig class for the convolutional
layer configuration. The examples specifies a weight decay parameter of 0.001 and dropout
with dropping probability 0.5 for the GraphWise model to counteract overfitting. Also, note that
the setEnableAccelerator method is enabled to use any available GPU.

• JShell

• Java

• Python

JShell

opg4j> var weightProperty = analyst.pagerank(trainGraph).getName();
opg4j> var convLayerConfig = analyst.graphWiseConvLayerConfigBuilder().
         setNumSampledNeighbors(25).
         setActivationFunction(ActivationFunction.TANH).
         setWeightInitScheme(WeightInitScheme.XAVIER).
         setWeightedAggregationProperty(weightProperty).
         setDropoutRate(0.5).
         build()
opg4j> var predictionLayerConfig = 
analyst.graphWisePredictionLayerConfigBuilder().
         setHiddenDimension(32).
         setActivationFunction(ActivationFunction.RELU).
         setWeightInitScheme(WeightInitScheme.HE).
         setDropoutRate(0.5).
         build()
opg4j> var model = analyst.supervisedGraphWiseModelBuilder().
         setVertexInputPropertyNames("vertex_features").
         setEdgeInputPropertyNames("edge_features").
         setVertexTargetPropertyName("labels").
         setConvLayerConfigs(convLayerConfig).
         setPredictionLayerConfigs(predictionLayerConfig).
         setWeightDecay(0.001).
         setNormalize(false).
         setEmbeddingDim(256).
         setLearningRate(0.05).
         setNumEpochs(30).
         setSeed(42).
         setShuffle(false).
         setStandardize(true).
         setBatchSize(64).
         setEnableAccelerator(true). // Enable or disable GPU
         build()

Chapter 17
Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification)

17-20



Java

String weightProperty = analyst.pagerank(trainGraph).getName();
GraphWiseConvLayerConfig convLayerConfig = 
analyst.graphWiseConvLayerConfigBuilder()
    .setNumSampledNeighbors(25)
    .setActivationFunction(ActivationFunction.TANH)
    .setWeightInitScheme(WeightInitScheme.XAVIER)
    .setWeightedAggregationProperty(weightProperty)
    .setDropoutRate(0.5)
    .build();

GraphWisePredictionLayerConfig predictionLayerConfig = 
analyst.graphWisePredictionLayerConfigBuilder()
    .setHiddenDimension(32)
    .setActivationFunction(ActivationFunction.RELU)
    .setWeightInitScheme(WeightInitScheme.HE)
    .setDropoutRate(0.5)
    .build();

SupervisedGraphWiseModel model = analyst.supervisedGraphWiseModelBuilder()
    .setVertexInputPropertyNames("vertex_features")
    .setEdgeInputPropertyNames("edge_features")
    .setVertexTargetPropertyName("labels")
    .setConvLayerConfigs(convLayerConfig)
    .setPredictionLayerConfigs(predictionLayerConfig)
    .setWeightDecay(0.001)
    .setNormalize(false)
    .setEmbeddingDim(256)
    .setLearningRate(0.05)
    .setNumEpochs(30)
    .setSeed(42)
    .setShuffle(false)
    .setStandardize(true)
    .setBatchSize(64)
    .setEnableAccelerator(true) // Enable or disable GPU
    .build();

Python

weightProperty = analyst.pagerank(train_graph).name

conv_layer_config = dict(num_sampled_neighbors=25,
                         activation_fn='tanh',
                         weight_init_scheme='xavier',
                         neighbor_weight_property_name=weightProperty,
                         dropout_rate=0.5)

conv_layer = analyst.graphwise_conv_layer_config(**conv_layer_config)

pred_layer_config = dict(hidden_dim=32,
                         activation_fn='relu',
                         weight_init_scheme='he',
                         dropout_rate=0.5)

Chapter 17
Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification)

17-21



pred_layer = analyst.graphwise_pred_layer_config(**pred_layer_config)

params = dict(vertex_target_property_name="labels",
              conv_layer_config=[conv_layer],
              pred_layer_config=[pred_layer],
              vertex_input_property_names=["vertex_features"],
              edge_input_property_names=["edge_features"],
              seed=17,
              weight_decay=0.001,
              normalize=false,
              layer_size=256,
              learning_rate=0.05,
              num_epochs=30,
              seed=42,
              standardize=true,
              batch_size=64,
              enable_accelerator=True # Enable or disable GPU
)

model = analyst.supervised_graphwise_builder(**params)

In the preceding example, you can replace GraphWiseConvLayerConfig with the
GraphWiseAttentionLayerConfig class to build a graph attention network model. Also, note
that if the number of sampled neighbors is set to -1 using setNumSampledNeighbors, then all
the neighboring nodes will be sampled.

• JShell

• Java

• Python

JShell

opg4j> var convLayerConfig = analyst.graphWiseAttentionLayerConfigBuilder().
         setNumSampledNeighbors(25).
         setActivationFunction(ActivationFunction.LEAKY_RELU).
         setWeightInitScheme(WeightInitScheme.XAVIER_UNIFORM).
         setHeadAggregation(AggregationOperation.MEAN).
         setNumHeads(4).
         setDropoutRate(0.5).
         build()

Java

GraphWiseAttentionLayerConfig convLayerConfig = 
analyst.graphWiseAttentionLayerConfigBuilder()
    .setNumSampledNeighbors(25)
    .setActivationFunction(ActivationFunction.LEAKY_RELU)
    .setWeightInitScheme(WeightInitScheme.XAVIER_UNIFORM)

Chapter 17
Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification)

17-22



    .setHeadAggregation(AggregationOperation.MEAN)
    .setNumHeads(4)
    .setDropoutRate(0.5)
    .build();

Python

conv_layer_config = dict(num_sampled_neighbors=25,
                         activation_fn='leaky_relu',
                         weight_init_scheme='xavier_uniform',
                         aggregation_operation='mean',
                         num_heads=4,
                         dropout_rate=0.5)

See the Javadoc for more information.

17.2.4 Building a GraphWise Model Using Partitioned Graphs
You can build a GraphWise model using partitioned graphs which have different providers and
features.

• JShell

• Java

• Python

JShell

opg4j> analyst.supervisedGraphWiseModelBuilder().
        setVertexInputPropertyNames("vertex_provider1_features", 
"vertex_provider2_features").
        setEdgeInputPropertyNames("edge_provider_features").
        setVertexTargetPropertyName("target_property").
        build()

Java

SupervisedGraphWiseModel model = analyst.supervisedGraphWiseModelBuilder()
    .setVertexInputPropertyNames("vertex_provider1_features", 
"vertex_provider2_features")
    .setEdgeInputPropertyNames("edge_provider_features")
    .setVertexTargetPropertyName("target_property")
    .build();

Chapter 17
Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification)

17-23



Python

params = dict(vertex_target_property_name="target_property",
              vertex_input_property_names=["vertex_provider1_features", 
"vertex_provider2_features"],
              edge_input_property_names=["edge_provider_features"])
model = analyst.supervised_graphwise_builder(**params)

Also, you can select the providers as shown:

• JShell

• Java

• Python

JShell

opg4j> var model = analyst.supervisedGraphWiseModelBuilder().
         setVertexInputPropertyNames("vertex_provider1_features", 
"vertex_provider2_features").
         setEdgeInputPropertyNames("edge_provider_features").
         setVertexTargetPropertyName("target_property").
         setTargetVertexLabels("provider1").
         build()

Java

SupervisedGraphWiseModel model = analyst.supervisedGraphWiseModelBuilder()
    .setVertexInputPropertyNames("vertex_provider1_features", 
"vertex_provider2_features")
    .setEdgeInputPropertyNames("edge_provider_features")
    .setVertexTargetPropertyName("target_property")
    .setTargetVertexLabels("provider1")
    .build();

Python

params = dict(vertex_target_property_name="target_property",
              vertex_input_property_names=["vertex_provider1_features", 
"vertex_provider2_features"],
              edge_input_property_names=["edge_provider_features"],
              target_vertex_labels=["provider1"])
model = analyst.supervised_graphwise_builder(**params)

Chapter 17
Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification)

17-24



If you wish to control the flow of the embeddings at each layer, you can enable or disable the
required connections. By default, all the connections are enabled.

• JShell

• Java

• Python

JShell

opg4j> var convLayerConfig = analyst.graphWiseConvLayerConfigBuilder().
         setNumSampledNeighbors(25).
         useVertexToVertexConnection(true).
         useEdgeToVertexConnection(true).
         useEdgeToEdgeConnection(false).
         useVertexToEdgeConnection(false).
         build()
opg4j> var model = analyst.supervisedGraphWiseModelBuilder().
         setVertexInputPropertyNames("vertex_provider1_features", 
"vertex_provider2_features").
         setEdgeInputPropertyNames("edge_provider_features").
         setVertexTargetPropertyName("target_property").
         setTargetVertexLabels("provider1").
         build()

Java

GraphWiseConvLayerConfig convLayerConfig = 
analyst.graphWiseConvLayerConfigBuilder()
    .setNumSampledNeighbors(10)
    .useVertexToVertexConnection(true)
    .useEdgeToVertexConnection(true)
    .useEdgeToEdgeConnection(false)
    .useVertexToEdgeConnection(false)
    .build();

SupervisedGraphWiseModel model = analyst.supervisedGraphWiseModelBuilder()
    .setVertexInputPropertyNames("vertex_provider1_features", 
"vertex_provider2_features")
    .setEdgeInputPropertyNames("edge_provider_features")
    .setVertexTargetPropertyName("target_property")
    .setTargetVertexLabels("provider1")
    .setConvLayerConfigs(convLayerConfig)
    .build();

Python

conv_layer_config = dict(num_sampled_neighbors=25,
                         activation_fn='tanh',
                         weight_init_scheme='xavier',
                         neighbor_weight_property_name=weightProperty,

Chapter 17
Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification)

17-25



                         vertex_to_vertex_connection=True,
                         edge_to_vertex_connection=True,
                         vertex_to_edge_connection=False,
                         edge_to_edge_connection=False)

conv_layer = analyst.graphwise_conv_layer_config(**conv_layer_config)

params = dict(vertex_target_property_name="target_property",
              vertex_input_property_names=["vertex_provider1_features", 
"vertex_provider2_features"],
              edge_input_property_names=["edge_provider_features"],
              target_vertex_labels=["provider1"],
              conv_layer_config=[conv_layer])

model = analyst.supervised_graphwise_builder(**params)

17.2.5 Supported Property Types for Supervised GraphWise Model
The model supports two types of properties for both vertices and edges:

• continuous properties (boolean, double, float, integer, long)

• categorical properties (string)

For categorical properties, two categorical configurations are possible:

• One-hot-encoding: Each category is mapped to a vector, that is concatenated to other
features (default)

• Embedding table: Each category is mapped to an embedding that is concatenated to
other features and is trained along with the model

One-hot-encoding converts each category into an independent vector. This is useful if you
want each category to be interpreted as an equally independent group. For instance, if there
are categories ranging from A to E, where each alphabet has no specific meaning, then one-
hot-encoding can be a good fit.

Embedding table is recommended if the semantics of the properties matter, and you want
certain categories to be closer to each other than the others. For example, assume there is a
day property with values ranging from Monday to Sunday. If you wish to preserve the idea that
Tuesday is closer to Wednesday than Saturday, then by choosing the embedding table
configuration, you can let the vectors that represent the categories to be learned during
training, so that the vector that is mapped to Tuesday becomes close to that of Wednesday.

One advantage that the embedding table approach has over one-hot-encoding is that you can
learn more suitable vectors to represent each category. However, this also means that a good
amount of data is required to train the embedding table properly. The one-hot-encoding
approach might be better for use-cases with limited training data.

When using the embedding table, users are allowed to set the out-of-vocabulary probability.
With the given probability, the embedding will be set to the out-of-vocabulary embedding
randomly during training, in order to make the model more robust to unseen categories during
inference.

Chapter 17
Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification)

17-26



• JShell

• Java

• Python

JShell

opg4j> import oracle.pgx.config.mllib.inputconfig.CategoricalPropertyConfig;
opg4j> var prop1config = 
analyst.categoricalPropertyConfigBuilder("vertex_str_feature_1").
    oneHotEncoding().
    setMaxVocabularySize(100).
    build()
opg4j> var prop2config = 
analyst.categoricalPropertyConfigBuilder("vertex_str_feature_2").
    embeddingTable().
    setShared(false). // set whether to share the vocabulary or not when 
several vertex types have a property with the same name
    setEmbeddingDimension(32).
    setOutOfVocabularyProbability(0.001). // probability to set the word 
embedding to the out-of-vocabulary embedding
    build()
opg4j> var model = analyst.supervisedGraphWiseModelBuilder().
    setVertexInputPropertyNames(
        "vertex_int_feature_1", // continuous feature
        "vertex_str_feature_1", // string feature using one-hot-encoding
        "vertex_str_feature_2", // string feature using embedding table
        "vertex_str_feature_3" // string feature using one-hot-encoding 
(default)
    ).
    setVertexTargetPropertyName("label").
    setVertexInputPropertyConfigs(prop1config, prop2config).
    build()

Java

import oracle.pgx.config.mllib.inputconfig.CategoricalPropertyConfig;
import oracle.pgx.config.mllib.inputconfig.InputPropertyConfig;

InputPropertyConfig prop1config = 
analyst.categoricalPropertyConfigBuilder("vertex_str_feature_1")
    .oneHotEncoding()
    .setMaxVocabularySize(100)
    .build();
InputPropertyConfig prop2config = 
analyst.categoricalPropertyConfigBuilder("vertex_str_feature_2")
    .embeddingTable()
    .setShared(false) // set whether to share the vocabulary or not when 
several vertex types have a property with the same name
    .setEmbeddingDimension(32)
    .setOutOfVocabularyProbability(0.001) // probability to set the word 
embedding to the out-of-vocabulary embedding
    .build();
SupervisedGraphWiseModelBuilder model = 

Chapter 17
Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification)

17-27



analyst.supervisedGraphWiseModelBuilder()
    .setVertexInputPropertyNames(
        "vertex_int_feature_1", // continuous feature
        "vertex_str_feature_1", // string feature using one-hot-encoding
        "vertex_str_feature_2", // string feature using embedding table
        "vertex_str_feature_3" // string feature using one-hot-encoding 
(default)
    )
    .setVertexInputPropertyConfigs(prop1config, prop2config)
    .setVertexTargetPropertyName("label")
    .build();

Python

vertex_input_property_configs = [
    analyst.one_hot_encoding_categorical_property_config(
        property_name="vertex_str_feature_1",
        max_vocabulary_size=100,
    ),
    analyst.learned_embedding_categorical_property_config(
        property_name="vertex_str_feature_2",
        embedding_dim=4,
        shared=False, // set whether to share the vocabulary or not when 
several  types have a property with the same name
        oov_probability=0.001 // probability to set the word embedding to the 
out-of-vocabulary embedding
    )
]

model_params = dict(
    vertex_input_property_names=[
        "vertex_int_feature_1", // continuous feature
        "vertex_str_feature_1", // string feature using one-hot-encoding
        "vertex_str_feature_2", // string feature using embedding table
        "vertex_str_feature_3", // string feature using one-hot-encoding 
(default)
    ],
    vertex_input_property_configs=vertex_input_property_configs,
    vertex_target_property_name="label"
)

model = analyst.supervised_graphwise_builder(**model_params)

17.2.6 Classification Versus Regression Models on Supervised GraphWise
Models

When predicting a property, the loss function defines if the model will perform classification
tasks or regression tasks.

For classification tasks, the Supervised GraphWise model will infer labels. Even if the property
is a number, the model will assign one label for each value found and classify on it. The

Chapter 17
Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification)

17-28



possible losses for classification tasks are softmax cross entropy, sigmoid cross entropy,
and DevNet loss.

For regression tasks, the Supervised GraphWise model will infer values for the property. The
loss for regression tasks is the MSE loss.

• JShell

• Java

• Python

JShell

opg4j> import oracle.pgx.config.mllib.loss.LossFunctions
opg4j> var model = analyst.supervisedGraphWiseModelBuilder().
     setVertexInputPropertyNames("vertex_features").
     setEdgeInputPropertyNames("edge_features").
     setVertexTargetPropertyName("scores").
     setConvLayerConfigs(convLayerConfig).
     setPredictionLayerConfigs(predictionLayerConfig).
     setLossFunction(LossFunctions.MSELoss()).   
     setBatchGenerator(BatchGenerators.STRATIFIED_OVERSAMPLING).
     build()

Java

import oracle.pgx.config.mllib.loss.LossFunctions;

SupervisedGraphWiseModel model = analyst.supervisedGraphWiseModelBuilder()
    .setVertexInputPropertyNames("vertex_features")
    .setEdgeInputPropertyNames("edge_features")
    .setVertexTargetPropertyName("scores")
    .setConvLayerConfigs(convLayerConfig)
    .setPredictionLayerConfigs(predictionLayerConfig)
    .setLossFunction(LossFunctions.MSELoss())   
    .setBatchGenerator(BatchGenerators.STRATIFIED_OVERSAMPLING)
    .build();

Python

from pypgx.api.mllib import MSELoss

params = dict(edge_target_property_name="scores",
              conv_layer_config=[conv_layer],
              pred_layer_config=[pred_layer],
              vertex_input_property_names=["vertex_features"],
              edge_input_property_names=["edge_features"],
              batch_gen='Stratified_Oversampling',
              loss_fn=MSELoss())

model = analyst.supervised_graphwise_builder(**params)

Chapter 17
Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification)

17-29



17.2.7 Setting a Custom Loss Function and Batch Generator (for Anomaly
Detection)

It is possible to select different loss functions for the supervised model by providing a
LossFunction object, and different batch generators by providing a BatchGenerator object.
This is useful for applications such as Anomaly Detection, which can be cast into the standard
supervised framework but require different loss functions and batch generators.

SupervisedGraphWise model can use the DevNetLoss and the
StratifiedOversamplingBatchGenerator. The DevNetLoss takes confidence margin and the
value the anomaly takes in the target property as the two parameters.

The following example assumes that the convLayerConfig has already been defined:

• JShell

• Java

• Python

JShell

opg4j> import oracle.pgx.config.mllib.loss.LossFunctions
opg4j> import oracle.pgx.config.mllib.batchgenerator.BatchGenerators
opg4j> var predictionLayerConfig = 
analyst.graphWisePredictionLayerConfigBuilder().
         setHiddenDimension(32).
         setActivationFunction(ActivationFunction.LINEAR).
         build()
opg4j> var model = analyst.supervisedGraphWiseModelBuilder().
         setVertexInputPropertyNames("vertex_features").
         setEdgeInputPropertyNames("edge_features").
         setVertexTargetPropertyName("labels").
         setConvLayerConfigs(convLayerConfig).
         setPredictionLayerConfigs(predictionLayerConfig).
         setLossFunction(LossFunctions.devNetLoss(5.0, true)).
         setBatchGenerator(BatchGenerators.STRATIFIED_OVERSAMPLING).
         build()

Java

import oracle.pgx.config.mllib.loss.LossFunctions;
import oracle.pgx.config.mllib.batchgenerator.BatchGenerators;

GraphWisePredictionLayerConfig predictionLayerConfig = 
analyst.graphWisePredictionLayerConfigBuilder()
    .setHiddenDimension(32)
    .setActivationFunction(ActivationFunction.LINEAR)
    .build();

Chapter 17
Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification)

17-30

https://arxiv.org/pdf/1911.08623.pdf


SupervisedGraphWiseModel model = analyst.supervisedGraphWiseModelBuilder()
    .setVertexInputPropertyNames("vertex_features")
    .setEdgeInputPropertyNames("edge_features")
    .setVertexTargetPropertyName("labels")
    .setConvLayerConfigs(convLayerConfig)
    .setPredictionLayerConfigs(predictionLayerConfig)
    .setLossFunction(LossFunctions.devNetLoss(5.0, true))
    .setBatchGenerator(BatchGenerators.STRATIFIED_OVERSAMPLING)
    .build();

Python

from pypgx.api.mllib import DevNetLoss

pred_layer_config = dict(hidden_dim=32,
                         activation_fn='LINEAR')

pred_layer = analyst.graphwise_pred_layer_config(**pred_layer_config)

params = dict(vertex_target_property_name="labels",
              conv_layer_config=[conv_layer],
              pred_layer_config=[pred_layer],
              vertex_input_property_names=["vertex_features"],
              edge_input_property_names=["edge_features"],
              loss_fn=DevNetLoss(5.0, True),
              batch_gen='Stratified_Oversampling',
              seed=17)

model = analyst.supervised_graphwise_builder(**params)

17.2.8 Training a Supervised GraphWise Model
You can train a Supervised GraphWise model on a graph as described in the following code:

• JShell

• Java

• Python

JShell

opg4j> model.fit(trainGraph)

Java

model.fit(trainGraph);

Chapter 17
Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification)

17-31



Python

model.fit(train_graph)

You can also add a validation step to the training. When training a model, the optimal number
of training epochs is not known in advance and it is one of the key parameters that determines
the model quality. Being able to monitor the training and validation losses helps you to identify
a good value for the model parameters and gain visibility in the training process. The
evaluation frequency can be specified in terms of epoch or step. To configure a validation step,
create a GraphWiseValidationConfig and pass it to the model builder as shown:

• JShell

• Java

• Python

JShell

opg4j> import oracle.pgx.config.mllib.EvaluationFrequencyScale;

opg4j> var validationConfig = analyst.graphWiseValidationConfigBuilder().
         setEvaluationFrequency(2).                                    // set 
the evaluation frequency (default: 1)
         setEvaluationFrequencyScale(EvaluationFrequencyScale.EPOCH).  // 
available options: EPOCH, STEP (default: EPOCH)
         build()
opg4j> var model = analyst.supervisedGraphWiseModelBuilder().
         setVertexInputPropertyNames("features").
         setVertexTargetPropertyName("labels").
         setValidationConfig(validationConfig).                       // 
configuring the validation to be executed every 2 epochs
         build()

Java

import oracle.pgx.config.mllib.GraphWiseValidationConfig;
import oracle.pgx.config.mllib.EvaluationFrequencyScale;

GraphWiseValidationConfig validationConfig = 
analyst.graphWiseValidationConfigBuilder()
    .setEvaluationFrequency(2)                                    // set the 
evaluation frequency (default: 1)
    .setEvaluationFrequencyScale(EvaluationFrequencyScale.EPOCH)  // 
available options: EPOCH, STEP (default: EPOCH)
    .build();

SupervisedGraphWiseModel model = analyst.supervisedGraphWiseModelBuilder()
    .setVertexInputPropertyNames("features")
    .setVertexTargetPropertyName("labels")

Chapter 17
Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification)

17-32



    .setValidationConfig(validationConfig)  // configuring the validation to 
be executed every 2 epochs
    .build();

Python

validation_config = analyst.graphwise_validation_config(
    evaluation_frequency=2,              # set the evaluation frequency 
(default: 1)
    evaluation_frequency_scale="epoch",  # available options: "epoch", "step" 
(default: "epoch")
)

params = dict(vertex_target_property_name="labels"
              vertex_input_property_names=["features"],
              validation_config=validation_config,  # configuring the 
validation to be executed every 2 epochs
              seed=17)

model = analyst.supervised_graphwise_builder(**params)

After configuring a validation step, you can then pass a graph for validation to the fit method
together with the graph for training:

• JShell

• Java

• Python

JShell

opg4j> model.fit(trainGraph, valGraph)

Java

model.fit(trainGraph,valGraph);

Python

model.fit(train_graph,valGraph)

17.2.9 Getting the Loss Value For a Supervised GraphWise Model
You can fetch the training loss value as described in the following code:

Chapter 17
Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification)

17-33



• JShell

• Java

• Python

JShell

opg4j> var loss = model.getTrainingLoss()

Java

double loss = model.getTrainingLoss();

Python

loss = model.get_training_loss()

17.2.10 Getting the Training Log for a Supervised GraphWise Model
If you configured a validation step (see Training a Supervised GraphWise Model) earlier, then
you can fetch the training log that contains the training and validation loss information.

• JShell

• Java

• Python

JShell

opg4j> var trainingLog = model.getTrainingLog()

Java

PgxFrame trainingLog = model.getTrainingLog();

Python

training_log = model.get_training_log()

Chapter 17
Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification)

17-34



The output frame will be similar to the following example output:

+--------------------------------------------------+
| epoch | training_loss      | validation_loss     |
+--------------------------------------------------+
| 2     | 1.5059218406677246 | 0.41696539521217346 |
| 4     | 0.5052874088287354 | 0.3255307078361511  |
| 6     | 0.3264007568359375 | 0.44015955924987793 |
+--------------------------------------------------+

Also, note the following:

• The first column will be named according to the evaluation frequency scale that was set in
the validation configuration ("epoch" or "step").

• The validation loss is the average of the losses evaluated on all batches of the validation
graph, while the training loss is the loss value logged at that epoch or step (that is, the loss
evaluated on the last batch).

• The training log will be overwritten if the fit method is called multiple times.

17.2.11 Inferring the Vertex Labels for a Supervised GraphWise Model
You can infer the labels for vertices on any graph (including vertices or graphs that were not
seen during training) as described in the following code:

• JShell

• Java

• Python

JShell

opg4j> var labels = model.inferLabels(fullGraph, testVertices)
opg4j> labels.head().print()

Java

PgxFrame labels = model.inferLabels(fullGraph,testVertices);
labels.head().print();

Python

labels = model.infer_labels(full_graph, test_vertices)
labels.print()

Chapter 17
Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification)

17-35



The output will be similar to the following example output:

+----------------------------------+
| vertexId | label                 |
+----------------------------------+
| 2        | Neural Networks       |
| 6        | Theory                |
| 7        | Case Based            |
| 22       | Rule Learning         |
| 30       | Theory                |
| 34       | Neural Networks       |
| 47       | Case Based            |
| 48       | Probabalistic Methods |
| 50       | Theory                |
| 52       | Theory                |
+----------------------------------+

Similarly, you can also get the model confidence for each class by inferring the prediction logits
as described in the following code:

• JShell

• Java

• Python

JShell

opg4j> var logits = model.inferLogits(fullGraph, testVertices)
opg4j> labels.head().print()

Java

PgxFrame logits = model.inferLogits(fullGraph,testVertices);
logits.head().print();

Python

logits = model.infer_logits(full_graph, test_vertices)
logits.print()

17.2.12 Evaluating the Supervised GraphWise Model Performance
You can evaluate various classification metrics for the model using the evaluateLabels
method as described in the following code:

Chapter 17
Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification)

17-36



• JShell

• Java

• Python

JShell

opg4j> model.evaluateLabels(fullGraph, testVertices).print()

Java

model.evaluateLabels(fullGraph,testVertices).print();

Python

model.evaluate_labels(full_graph, test_vertices).print()

The output will be similar to the following example output:

+------------------------------------------+
| Accuracy | Precision | Recall | F1-Score |
+------------------------------------------+
| 0.8488   | 0.8523    | 0.831  | 0.8367   |
+------------------------------------------+

17.2.13 Inferring Embeddings for a Supervised GraphWise Model
You can use a trained model to infer embeddings for unseen nodes and store in the database
as described in the following code:

• JShell

• Java

• Python

JShell

opg4j> var vertexVectors = model.inferEmbeddings(fullGraph, 
testVertices).flattenAll()
opg4j> vertexVectors.write().
    db().
    name("vertex vectors").
    tablename("vertexVectors").  
    overwrite(true).             
    store()

Chapter 17
Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification)

17-37



Java

PgxFrame vertexVectors = 
model.inferEmbeddings(fullGraph,testVertices).flattenAll();
vertexVectors.write()
    .db()
    .name("vertex vectors")
    .tablename("vertexVectors") 
    .overwrite(true)            
    .store();

Python

vertex_vectors = model.infer_embeddings(full_graph, 
test_vertices).flatten_all()
vertex_vectors.write().db().table_name("table_name").name("vertex_vectors").ov
erwrite(True).store()

The schema for the vertexVectors will be as follows without flattening (flattenAll splits the
vector column into separate double-valued columns):

+---------------------------------------------------------------+
| vertexId                                | embedding           |
+---------------------------------------------------------------+

Note:

All the preceding examples assume that you are inferring the embeddings for a
model in the current logged in database. If you must infer embeddings for the model
in a different database then refer to the examples in Inferring Embeddings for a
Model in Another Database.

• Inferring Embeddings for a Model in Another Database

17.2.13.1 Inferring Embeddings for a Model in Another Database
You can infer embeddings on a trained model and store in a different database other than the
one used for login.

The following code shows how to infer embeddings and store in a different database:

• JShell

• Java

• Python

Chapter 17
Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification)

17-38



JShell

opg-jshell> var vertexVectors = model.inferEmbeddings(fullGraph, 
testVertices).flattenAll()
opg-jshell> vertexVectors.write().
     db().
     username("user").                   // DB user to use for storing the 
model
     password("password").               // password of the DB user
     jdbcUrl("jdbcUrl").                 // jdbc url to the DB
     name("vertex vectors").
     tablename("vertexVectors").         // indicates the name of the table 
in which the data should be stored
     overwrite(true).                    
     store()

Java

PgxFrame vertexVectors = 
model.inferEmbeddings(fullGraph,testVertices).flattenAll();
vertexVectors.write()
    .db()
    .username("user")                   // DB user to use for storing the 
model
    .password("password")               // password of the DB user
    .jdbcUrl("jdbcUrl")                 // jdbc url to the DB
    .name("vertex vectors")
    .tablename("vertexVectors")         // indicates the name of the table in 
which the data should be stored
    .overwrite(true)                    
    .store();

Python

vertex_vectors = model.infer_embeddings(fullGraph,test_vertices).flattenAll()
vertex_vectors.write().db().username("user") \      
                           .password("password") \  
                           .jdbc_url("jdbcUrl") \
                           .table_name("table_name") \
                           .name("vertex vectors") \ 
                           .overwrite(True) \
                           .store()

17.2.14 Storing a Trained Supervised GraphWise Model
You can store models in database. The models get stored as a row inside a model store table.

The following code shows how to store a trained Supervised GraphWise model in database in
a specific model store table:

Chapter 17
Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification)

17-39



• JShell

• Java

• Python

JShell

opg4j> model.export().db(). 
              modelstore("modelstoretablename").  // name of the model store 
table
              modelname("model").                 // model name (primary key 
of model store table)
              description("a model description"). // description to store 
alongside the model
              store()

Java

model.export().db()
    .modelstore("modelstoretablename")  // name of the model store table
    .modelname("model")                 // model name (primary key of model 
store table)
    .description("a model description") // description to store alongside the 
model
    .store();

Python

model.export().db(model_store="modeltablename",            # name of the 
model store table
                  model_name="model",                      # model name 
(primary key of model store table)
                  model_description="a model description") # description to 
store alongside the model

Note:

All the preceding examples assume that you are storing the model in the current
logged in database. If you must store the model in a different database then refer to
the examples in Storing a Trained Model in Another Database.

17.2.15 Loading a Pre-Trained Supervised GraphWise Model
You can load models from a database.

You can load a pre-trained Supervised GraphWise model from a model store table in database
as described in the following code:

Chapter 17
Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification)

17-40



• JShell

• Java

• Python

JShell

opg4j> var model = analyst.loadSupervisedGraphWiseModel().db().
                modelstore("modeltablename"). // name of the model store table
                modelname("model").           // model name (primary key of 
model store table)
                load();

Java

SupervisedGraphWiseModel model = analyst.loadSupervisedGraphWiseModel().db()
     .modelstore("modeltablename") // name of the model store table
     .modelname("model")           // model name (primary key of model store 
table)
     .load();

Python

model = analyst.get_supervised_graphwise_model_loader(). \
                 db(model_store="modelstoretablename",  # name of the model 
store table
                    model_name="model")                 # model name (primary 
key of model store table)

Note:

All the preceding examples assume that you are loading the model from the current
logged in database. If you must load the model from a different database then refer to
the examples in Loading a Pre-Trained Model From Another Database.

17.2.16 Destroying a Supervised GraphWise Model
You can destroy a GraphWise model as described in the following code:

• JShell

• Java

• Python

Chapter 17
Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification)

17-41



JShell

opg4j> model.destroy()

Java

model.destroy();

Python

model.destroy()

17.2.17 Explaining a Prediction of a Supervised GraphWise Model
In order to understand which features and vertices are important for a prediction of the
Supervised GraphWise model, you can generate a SupervisedGnnExplanation using a
technique similar to the GNNExplainer by Ying et al.

The explanation holds information related to:

• Graph structure: An importance score for each vertex

• Features: An importance score for each graph property

Note:

The vertex being explained is always assigned importance 1. Further, the feature
importances are scaled such that the most important feature has importance 1.

Additionally, an SupervisedGnnExplanation contains the inferred embeddings, logits, and
label. You can get explanations for a model's predictions by using the
SupervisedGnnExplainer object. The object can be obtained using the gnnExplainer method.
After obtaining the SupervisedGnnExplainer object, you can use the inferAndExplain method
to request an explanation for a vertex.

The parameters of the explainer can be configured while the explainer is being created or
afterwards using the relevant setter functions. The configurable parameters for the
SupervisedGnnExplainer are as follows:

• numOptimizationSteps: Number of optimization steps used by the explainer.

• learningRate: Learning rate of the explainer.

• marginalize: Determines if the explainer loss is marginalized over features. This can help
in cases where there are important features that take values close to zero. Without
marginalization the explainer can learn to mask such features out even if they are
important. Marginalization solves this by learning a mask for the deviation from the
estimated input distribution.

Note that, in order to achieve best results, the features should be centered around 0.

Chapter 17
Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification)

17-42

https://papers.nips.cc/paper/2019/file/d80b7040b773199015de6d3b4293c8ff-Paper.pdf


For example, assume a simple graph that contains a feature that correlates with the label and
another feature that does not. It is therefore expected that the importance of the features to
differ significantly (with the feature correlating with the label being more important), while
structural importance does not play a big role. In this case, you can generate an explanation as
shown:

• JShell

• Java

• Python

JShell

opg4j> var simpleGraph = session.createGraphBuilder().
                          addVertex(0).setProperty("label_feature", 
0.5).setProperty("const_feature", 0.5).
                          setProperty("label", true).
                          addVertex(1).setProperty("label_feature", 
-0.5).setProperty("const_feature", 0.5).
                          setProperty("label", false).
                          addEdge(0, 1).build()

// build and train a Supervised GraphWise model as explained in Advanced 
Hyperparameter Customization

// obtain and configure GnnExplainer
var explainer = model.gnnExplainer().learningRate(0.05)
explainer.numOptimizationSteps(200)

// explain prediction of vertex 0
opg4j> var explanation = explainer.inferAndExplain(simpleGraph, 
simpleGraph.getVertex(0))
// if you used the devNet loss, you can add the decision threshold as an 
extra parameter:
// var explanation = explainer.inferAndExplain(simpleGraph, 
simpleGraph.getVertex(0), 6f)

opg4j> var constProperty = simpleGraph.getVertexProperty("const_feature")
opg4j> var labelProperty = simpleGraph.getVertexProperty("label_feature")

// retrieve feature importances
opg4j> var featureImportances = explanation.getVertexFeatureImportance()
opg4j> var importanceConstProp = featureImportances.get(constProperty) // 
small as unimportant
opg4j> var importanceLabelProp = featureImportances.get(labelProperty) // 
large (1) as important

// retrieve computation graph with importances
opg4j> var importanceGraph = explanation.getImportanceGraph()

// retrieve importance of vertices
opg4j> var importanceProperty = explanation.getVertexImportanceProperty()
opg4j> var importanceVertex0 = importanceProperty.get(0) // has importance 1

Chapter 17
Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification)

17-43



opg4j> var importanceVertex1 = importanceProperty.get(1) // available if 
vertex 1 part of computation
    

Java

PgxGraph simpleGraph = session.createGraphBuilder()
    .addVertex(0).setProperty("label_feature", 
0.5).setProperty("const_feature", 0.5)
    .setProperty("label", true)
    .addVertex(1).setProperty("label_feature", 
-0.5).setProperty("const_feature", 0.5)
    .setProperty("label", false)
    .addEdge(0, 1).build();

// build and train a Supervised GraphWise model as explained in Advanced 
Hyperparameter Customization

// obtain and configure the explainer
SupervisedGnnExplainerexplainer=model.gnnExplainer().learningRate(0.05);
explainer.numOptimizationSteps(200);

// explain prediction of vertex 0
SupervisedGnnExplanation<Integer> explanation = 
explainer.inferAndExplain(simpleGraph,
    simpleGraph.getVertex(0));

// if we used the devNet loss, we can add the decision threshold as an extra 
parameter:
// SupervisedGnnExplanation<Integer> explanation = 
explainer.inferAndExplain(simpleGraph, simpleGraph.getVertex(0), 6f);

VertexProperty<Integer, Float> constProperty = 
simpleGraph.getVertexProperty("const_feature");
VertexProperty<Integer, Float> labelProperty = 
simpleGraph.getVertexProperty("label_feature");

// retrieve feature importances
Map<VertexProperty<Integer, ?>, Float> featureImportances = 
explanation.getVertexFeatureImportance();
float importanceConstProp = featureImportances.get(constProperty); // small 
as unimportant
float importanceLabelProp = featureImportances.get(labelProperty); // large 
(1) as important

// retrieve computation graph with importances
PgxGraph importanceGraph = explanation.getImportanceGraph();

// retrieve importance of vertices
VertexProperty<Integer, Float> importanceProperty = 
explanation.getVertexImportanceProperty();
float importanceVertex0 = importanceProperty.get(0); // has importance 1
float importanceVertex1 = importanceProperty.get(1); // available if vertex 1 
part of computation

Chapter 17
Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification)

17-44



Python

simple_graph = session.create_graph_builder()
    .add_vertex(0).set_property("label_feature", 
0.5).set_property("const_feature", 0.5)
    .set_property("label", true)
    .add_vertex(1).set_property("label_feature", 
-0.5).set_property("const_feature", 0.5)
    .set_property("label", false)
    .add_edge(0, 1).build()

# build and train a Supervised GraphWise model as explained in Advanced 
Hyperparameter Customization

# obtain the explainer
explainer = model.gnn_explainer(learning_rate=0.05)
explainer.num_optimization_steps=200

# explain prediction of vertex 0
explanation = 
explainer.inferAndExplain(simple_graph,simple_graph.get_vertex(0))
# if we used the devNet loss, we can add the decision threshold as an extra 
parameter:
# explanation = explainer.inferAndExplain(simple_graph, 
simple_graph.get_vertex(0), 6)

const_property = simple_graph.get_vertex_property("const_feature")
label_property = simple_graph.get_vertex_property("label_feature")

# retrieve feature importances
feature_importances = explanation.get_vertex_feature_importance()
importance_const_prop = feature_importances[const_property]
importance_label_prop = feature_importances[label_property]

# retrieve computation graph with importances
importance_graph = explanation.get_importance_graph()

# retrieve importance of vertices
importance_property = explanation.get_vertex_importance_property()
importance_vertex_0 = importance_property[0]
importance_vertex_1 = importance_property[1]

See Also:

• Building a Minimal GraphWise Model

• Training a Supervised GraphWise Model

Chapter 17
Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification)

17-45



17.3 Using the Supervised EdgeWise Algorithm (Edge
Embeddings and Classification)

SupervisedEdgeWise is an inductive edge representation learning algorithm which is able to
leverage vertex and edge feature information. It can be applied to a wide variety of tasks,
including edge classification and link prediction.

Supervised EdgeWise is based on top of the GraphWise model, leveraging the source vertex
embedding and the destination vertex embedding generated by the GraphWise model to
generate inductive edge embeddings.

Model Structure

A SupervisedEdgeWise model consists of graph convolutional layers followed by several
prediction layers.

First, the source and destination vertices of the target edge are processed through the
convolutional layers. The forward pass through a convolutional layer for a vertex proceeds as
follows:

1. A set of neighbors of the vertex is sampled.

2. The previous layer representations of the neighbors are mean-aggregated, and the
aggregated features are concatenated with the previous layer representation of the vertex.

3. This concatenated vector is multiplied with weights, and a bias vector is added.

4. The result is normalized such that the layer output has unit norm.

The edge embedding layer concatenates the source vertex embedding, the edge features and
the destination vertex embedding, and then forwards it through a linear layer to get the edge
embedding.

The prediction layers are standard neural network layers.

• Loading a Graph

• Building a Minimal Supervised EdgeWise Model

• Advanced Hyperparameter Customization

• Applying EdgeWise for Partitioned Graphs

• Supported Property Types for Supervised EdgeWise Model

• Classification Versus Regression on Supervised EdgeWise Models

• Setting a Custom Loss Function and Batch Generator (for Anomaly Detection)

• Setting the Edge Embedding Production Method

• Training a Supervised EdgeWise Model

• Getting the Loss Value for a Supervised EdgeWise Model

• Getting the Training Log for a Supervised EdgeWise Model

• Inferring Edge Labels for a Supervised EdgeWise Model

• Evaluating Model Performance

• Inferring Embeddings for a Supervised EdgeWise Model

• Storing a Supervised EdgeWise Model

Chapter 17
Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification)

17-46



• Loading a Pre-Trained Supervised EdgeWise Model

• Destroying a Supervised EdgeWise Model

• Example: Predicting Ratings on the Movielens Dataset

17.3.1 Loading a Graph
The following describes the steps for loading a graph:

1. Create a Session and an Analyst.

• JShell

• Java

• Python

JShell

cd /opt/oracle/graph/
./bin/opg4j
// starting the shell will create an implicit session and analyst
opg4j> import oracle.pgx.config.mllib.ActivationFunction
opg4j> import oracle.pgx.config.mllib.WeightInitScheme

Java

import oracle.pgx.api.*;
import oracle.pgx.api.mllib.SupervisedEdgeWiseModel;
import oracle.pgx.api.filter.EdgeFilter;
import oracle.pgx.api.frames.*;
import oracle.pgx.config.mllib.ActivationFunction;
import oracle.pgx.config.mllib.GraphWiseConvLayerConfig;
import oracle.pgx.config.mllib.GraphWisePredictionLayerConfig;
import oracle.pgx.config.mllib.SupervisedEdgeWiseModelConfig;
import oracle.pgx.config.mllib.WeightInitScheme;

Python

# starting the Python shell will create an implicit session and analyst

2. Load the graph.

• JShell

• Java

• Python

Chapter 17
Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification)

17-47



JShell

opg4j> var instance = GraphServer.getInstance("https://localhost:7007", 
"<username>", "<password>".toCharArray())
opg4j> var session=instance.createSession("mySession")
opg4j> var fullGraph = 
session.readGraphByName("<movielens_graph>",GraphSource.PG_PGQL)
opg4j> var filter = EdgeFilter.fromPgqlResultSet(session.queryPgql("SELECT 
e FROM movielens MATCH (v1) -[e]-> (v2) WHERE ID(e) % 4 > 0"), "e")
opg4j> var trainGraph = fullGraph.filter(filter)
opg4j> var testEdges = fullGraph.getEdges().
                     stream().
                     filter(e -> !trainGraph.hasEdge(e.getId())).
                     collect(Collectors.toList())

Java

ServerInstance instance = GraphServer.getInstance("https://
localhost:7007", "<username>", "<password>".toCharArray());
PgxSession session = instance.createSession("my-session");
PgxGraph fullGraph = 
session.readGraphByName("<movielens_graph>",GraphSource.PG_PGQL);
EdgeFilter filter = EdgeFilter.fromPgqlResultSet(session.queryPgql("SELECT 
e FROM movielens MATCH (v1) -[e]-> (v2) WHERE ID(e) % 4 > 0"), "e");
PgxGraph trainGraph = fullGraph.filter(filter);
List<PgxEdge> testEdges = fullGraph.getEdges()
                            .stream()
                            .filter(e -> !trainGraph.hasEdge(e.getId()))
                            .collect(Collectors.toList());

Python

from pypgx.api.filters import EdgeFilter
instance = graph_server.get_instance("https://
localhost:7007","<username>","<password>")
session = instance.create_session("my_session")
full_graph = session.read_graph_by_name("<movielens_graph>", "pg_pgql")
edge_filter = EdgeFilter.from_pgql_result_set(
    session.query_pgql("SELECT e FROM movielens MATCH (v1) -[e]-> (v2) 
WHERE ID(e) % 4 > 0"), "e"
)
train_graph = full_graph.filter(edge_filter)
test_edges = []
train_edges = train_graph.get_edges()
for e in full_graph.get_edges():
    if(not train_edges.contains(e)):
        test_vertices.append(e)

Chapter 17
Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification)

17-48



17.3.2 Building a Minimal Supervised EdgeWise Model
You can build an EdgeWise model using the minimal configuration and default hyper-
parameters as described in the following code. Note that even though only one feature
property is needed (either on vertices with setVertexInputPropertyNames or edges with
setEdgeInputPropertyNames) for the model to work, you can specify as many as required.

• JShell

• Java

• Python

JShell

opg4j> var model = analyst.supervisedEdgeWiseModelBuilder().
         setVertexInputPropertyNames("vertex_features").
         setEdgeInputPropertyNames("edge_features").
         setEdgeTargetPropertyName("label").
         build()

Java

SupervisedEdgeWiseModel model = analyst.supervisedEdgeWiseModelBuilder()
    .setVertexInputPropertyNames("vertex_features")
    .setEdgeInputPropertyNames("edge_features")
    .setEdgeTargetPropertyName("labels")
    .build();

Python

params = dict(edge_target_property_name="label",
              vertex_input_property_names=["vertex_features"],
              edge_input_property_names=["edge_features"])

model = analyst.supervised_edgewise_builder(**params)

17.3.3 Advanced Hyperparameter Customization
You can build a Supervised EdgeWise model using rich hyperparameter customization.
Internally for each node, GraphWise applies an aggregation of the representation of neighbors.
You can configure this operation through one of the following sub-config classes:

• GraphWiseConvLayerConfig: GraphWiseConvLayer is based on Inductive Representation
Learning on Large Graphs (GraphSage) by Hamilton et al.

Chapter 17
Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification)

17-49

https://arxiv.org/pdf/1706.02216.pdf
https://arxiv.org/pdf/1706.02216.pdf


• GraphWiseAttentionLayerConfig: GraphWiseAttentionLayer is based on Graph Attention
Networks (GAT) by Velickovic et al. which makes the aggregation smarter but comes with
larger computation cost.

Also, you can enable or disable a graphics processing unit (GPU) by using the
enable_ml_accelerators graph server (PGX) configuration parameter (see Configuration
Parameters for the Graph Server (PGX) Engine for more information). In addition, ensure that
your system meets the following prerequisites to use the GPU support:

• You must have a GPU device with the CUDA (Compute Unified Device Architecture) toolkit
installed.

• The following list of CUDA libraries are expected:

– libcuda.so.1
– libnvrtc.so.12
– libnvToolsExt.so.1
– libcudart.so.12

Note that the enable_ml_accelerators option is enabled by default. But if a GPU device is not
detected and the CUDA toolkit is not installed, then this feature gets disabled and the CPU will
be used for all the PgxML library operations.

The following code examples uses the GraphWiseConvLayerConfig class for the convolutional
layer configuration. The examples specifies a weight decay parameter of 0.001 and dropout
with dropping probability 0.5 for the GraphWise model to counteract overfitting. Also, note that
the setEnableAccelerator method is enabled to use any available GPU.

• JShell

• Java

• Python

JShell

opg4j> var weightProperty = analyst.pagerank(trainGraph).getName()
opg4j> var convLayerConfig = analyst.graphWiseConvLayerConfigBuilder().
         setNumSampledNeighbors(25).
         setActivationFunction(ActivationFunction.TANH).
         setWeightInitScheme(WeightInitScheme.XAVIER).
         setWeightedAggregationProperty(weightProperty).
         setDropoutRate(0.5).
         build()
opg4j> var predictionLayerConfig = 
analyst.graphWisePredictionLayerConfigBuilder().
         setHiddenDimension(32).
         setActivationFunction(ActivationFunction.RELU).
         setWeightInitScheme(WeightInitScheme.HE).
         setDropoutRate(0.5).
         build()
opg4j> var model = analyst.supervisedEdgeWiseModelBuilder().
         setVertexInputPropertyNames("vertex_features").
         setEdgeInputPropertyNames("edge_features").

Chapter 17
Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification)

17-50

https://arxiv.org/pdf/1710.10903.pdf
https://arxiv.org/pdf/1710.10903.pdf


         setEdgeTargetPropertyName("labels").
         setConvLayerConfigs(convLayerConfig).
         setPredictionLayerConfigs(predictionLayerConfig).
         setWeightDecay(0.001).
         setEnableAccelerator(true). // Enable or disable GPU
         build()

Java

String weightProperty = analyst.pagerank(trainGraph).getName();
GraphWiseConvLayerConfig convLayerConfig = 
analyst.graphWiseConvLayerConfigBuilder()
    .setNumSampledNeighbors(25)
    .setActivationFunction(ActivationFunction.TANH)
    .setWeightInitScheme(WeightInitScheme.XAVIER)
    .setWeightedAggregationProperty(weightProperty)
    .setDropoutRate(0.5)
    .build();

GraphWisePredictionLayerConfig predictionLayerConfig = 
analyst.graphWisePredictionLayerConfigBuilder()
    .setHiddenDimension(32)
    .setActivationFunction(ActivationFunction.RELU)
    .setWeightInitScheme(WeightInitScheme.HE)
    .setDropoutRate(0.5)
    .build();

SupervisedEdgeWiseModel model = analyst.supervisedEdgeWiseModelBuilder()
    .setVertexInputPropertyNames("vertex_features")
    .setEdgeInputPropertyNames("edge_features")
    .setEdgeTargetPropertyName("labels")
    .setConvLayerConfigs(convLayerConfig)
    .setPredictionLayerConfigs(predictionLayerConfig)
    .setWeightDecay(0.001)
    .setEnableAccelerator(true) // Enable or disable GPU
    .build();

Python

weightProperty = analyst.pagerank(train_graph).name

conv_layer_config = dict(num_sampled_neighbors=25,
                         activation_fn='tanh',
                         weight_init_scheme='xavier',
                         neighbor_weight_property_name=weightProperty,
                         dropout_rate=0.5)

conv_layer = analyst.graphwise_conv_layer_config(**conv_layer_config)

pred_layer_config = dict(hidden_dim=32,
                         activation_fn='relu',
                         weight_init_scheme='he',
                         dropout_rate=0.5)

Chapter 17
Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification)

17-51



pred_layer = analyst.graphwise_pred_layer_config(**pred_layer_config)

params = dict(edge_target_property_name="labels",
              conv_layer_config=[conv_layer],
              pred_layer_config=[pred_layer],
              vertex_input_property_names=["vertex_features"],
              edge_input_property_names=["edge_features"],
              seed=17,
              weight_decay=0.001,
              enable_accelerator=True # Enable or disable GPU
)

model = analyst.supervised_edgewise_builder(**params)

In the preceding example, you can replace GraphWiseConvLayerConfig with the
GraphWiseAttentionLayerConfig class to build a graph attention network model. Also, note
that if the number of sampled neighbors is set to -1 using setNumSampledNeighbors, then all
the neighboring nodes will be sampled.

• JShell

• Java

• Python

JShell

opg4j> var convLayerConfig = analyst.graphWiseAttentionLayerConfigBuilder().
         setNumSampledNeighbors(25).
         setActivationFunction(ActivationFunction.LEAKY_RELU).
         setWeightInitScheme(WeightInitScheme.XAVIER_UNIFORM).
         setHeadAggregation(AggregationOperation.MEAN).
         setNumHeads(4).
         setDropoutRate(0.5).
         build()

Java

GraphWiseAttentionLayerConfig convLayerConfig = 
analyst.graphWiseAttentionLayerConfigBuilder()
    .setNumSampledNeighbors(25)
    .setActivationFunction(ActivationFunction.LEAKY_RELU)
    .setWeightInitScheme(WeightInitScheme.XAVIER_UNIFORM)
    .setHeadAggregation(AggregationOperation.MEAN)
    .setNumHeads(4)
    .setDropoutRate(0.5)
    .build();

Chapter 17
Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification)

17-52



Python

conv_layer_config = dict(num_sampled_neighbors=25,
                         activation_fn='leaky_relu',
                         weight_init_scheme='xavier_uniform',
                         aggregation_operation='mean',
                         num_heads=4,
                         dropout_rate=0.5)

See the Javadoc for more information.

17.3.4 Applying EdgeWise for Partitioned Graphs
You can apply EdgeWise on partitioned graphs, where you have different providers and
different features.

• JShell

• Java

• Python

JShell

opg4j> var model = analyst.supervisedEdgeWiseModelBuilder().
         setVertexInputPropertyNames("vertex_provider_features").
         setEdgeInputPropertyNames("edge_provider1_features", 
"edge_provider2_features").
         setEdgeTargetPropertyName("target_property").
         build()

Java

SupervisedEdgeWiseModel model = analyst.supervisedEdgeWiseModelBuilder()
    .setVertexInputPropertyNames("vertex_provider_features")
    .setEdgeInputPropertyNames("edge_provider1_features", 
"edge_provider2_features")
    .setEdgeTargetPropertyName("target_property")
    .build();

Python

params = dict(edge_target_property_name="target_property",
              vertex_input_property_names=["vertex_provider_features"],
              edge_input_property_names=["edge_provider1_features", 
"edge_provider2_features"])

model = analyst.supervised_edgewise_builder(**params)

Chapter 17
Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification)

17-53



You can select which providers you want to train or infer on:

• JShell

• Java

• Python

JShell

opg4j> var model = analyst.supervisedEdgeWiseModelBuilder().
         setVertexInputPropertyNames("vertex_provider_features").
         setEdgeInputPropertyNames("edge_provider1_features", 
"edge_provider2_features").
         setEdgeTargetPropertyName("target_property").
         setTargetEdgeLabels("provider1").
         build()

Java

SupervisedEdgeWiseModel model = analyst.supervisedEdgeWiseModelBuilder()
    .setVertexInputPropertyNames("vertex_provider_features")
    .setEdgeInputPropertyNames("edge_provider1_features", 
"edge_provider2_features")
    .setEdgeTargetPropertyName("target_property")
    .setTargetEdgeLabels("provider1")
    .build();

Python

params = dict(edge_target_property_name="target_property",
              vertex_input_property_names=["vertex_provider_features"],
              edge_input_property_names=["edge_provider1_features", 
"edge_provider2_features"],
              target_edge_labels=["provider1"])

model = analyst.supervised_edgewise_builder(**params)

If you wish to control the flow of the embeddings at each graph convolutional layer of the
underlying Graphwise model, then you can enable or disable the connections of interest. By
default, all the connections are enabled.

• JShell

• Java

Chapter 17
Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification)

17-54



• Python

JShell

opg4j> var convLayerConfig = analyst.graphWiseConvLayerConfigBuilder().
         setNumSampledNeighbors(25).
         useVertexToVertexConnection(true).
         useEdgeToVertexConnection(true).
         useEdgeToEdgeConnection(false).
         useVertexToEdgeConnection(false).
         build()
opg4j> var model = analyst.supervisedEdgeWiseModelBuilder().
         setVertexInputPropertyNames("vertex_provider1_features", 
"vertex_provider2_features").
         setEdgeInputPropertyNames("edge_provider_features").
         setEdgeTargetPropertyName("target_property").
         setTargetEdgeLabels("provider1").
         build()

Java

GraphWiseConvLayerConfig convLayerConfig = 
analyst.graphWiseConvLayerConfigBuilder()
    .setNumSampledNeighbors(10)
    .useVertexToVertexConnection(true)
    .useEdgeToVertexConnection(true)
    .useEdgeToEdgeConnection(false)
    .useVertexToEdgeConnection(false)
    .build();

SupervisedEdgeWiseModel model = analyst.supervisedEdgeWiseModelBuilder()
    .setVertexInputPropertyNames("vertex_provider1_features", 
"vertex_provider2_features")
    .setEdgeInputPropertyNames("edge_provider_features")
    .setEdgeTargetPropertyName("target_property")
    .setTargetEdgeLabels("provider1")
    .setConvLayerConfigs(convLayerConfig)
    .build();

Python

conv_layer_config = dict(num_sampled_neighbors=25,
                         activation_fn='tanh',
                         weight_init_scheme='xavier',
                         neighbor_weight_property_name=weightProperty,
                         vertex_to_vertex_connection=True,
                         edge_to_vertex_connection=True,
                         vertex_to_edge_connection=False,
                         edge_to_edge_connection=False)

conv_layer = analyst.graphwise_conv_layer_config(**conv_layer_config)

params = dict(edge_target_property_name="target_property",
              vertex_input_property_names=["vertex_provider1_features", 

Chapter 17
Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification)

17-55



"vertex_provider2_features"],
              edge_input_property_names=["edge_provider_features"],
              target_edge_labels=["provider1"],
              conv_layer_config=[conv_layer])

model = analyst.supervised_edgewise_builder(**params)

17.3.5 Supported Property Types for Supervised EdgeWise Model
The model supports two types of properties for both vertices and edges:

• continuous properties (boolean, double, float, integer, long)

• categorical properties (string)

For categorical properties, two categorical configurations are possible:

• One-hot-encoding: Each category is mapped to a vector, that is concatenated to other
features (default).

• Embedding table: Each category is mapped to an embedding that is concatenated to
other features and is trained along with the model.

One-hot-encoding converts each category into an independent vector. This is useful if you
want each category to be interpreted as an equally independent group. For instance, if there
are categories ranging from A to E, where each alphabet has no specific meaning, then one-
hot-encoding can be a good fit.

Embedding table is recommended if the semantics of the properties matter, and you want
certain categories to be closer to each other than the others. For example, assume there is a
day property with values ranging from Monday to Sunday. If you wish to preserve the idea that
Tuesday is closer to Wednesday than Saturday, then by choosing the embedding table
configuration, you can let the vectors that represent the categories to be learned during
training, so that the vector that is mapped to Tuesday becomes close to that of Wednesday.

One advantage that the embedding table approach has over one-hot-encoding is that you can
learn more suitable vectors to represent each category. However, this also means that a good
amount of data is required to train the embedding table properly. The one-hot-encoding
approach might be better for use-cases with limited training data.

When using the embedding table, users are allowed to set the out-of-vocabulary probability.
With the given probability, the embedding will be set to the out-of-vocabulary embedding
randomly during training, in order to make the model more robust to unseen categories during
inference.

• JShell

• Java

• Python

Chapter 17
Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification)

17-56



JShell

opg4j> import oracle.pgx.config.mllib.inputconfig.CategoricalPropertyConfig;
opg4j> var prop1config = 
analyst.categoricalPropertyConfigBuilder("vertex_str_feature_1").
    oneHotEncoding().
    setMaxVocabularySize(100).
    build()
opg4j> var prop2config = 
analyst.categoricalPropertyConfigBuilder("vertex_str_feature_2").
    embeddingTable().
    setShared(false). // set whether to share the vocabulary or not when 
several vertex types have a property with the same name
    setEmbeddingDimension(32).
    setOutOfVocabularyProbability(0.001). // probability to set the word 
embedding to the out-of-vocabulary embedding
    build()
opg4j> var model = analyst.supervisedEdgeWiseModelBuilder().
    setVertexInputPropertyNames(
        "vertex_int_feature_1", // continuous feature
        "vertex_str_feature_1", // string feature using one-hot-encoding
        "vertex_str_feature_2", // string feature using embedding table
        "vertex_str_feature_3" // string feature using one-hot-encoding 
(default)
    ).
    setVertexInputPropertyConfigs(prop1config, prop2config).
    setEdgeTargetPropertyName("label").
    build()

Java

import oracle.pgx.config.mllib.inputconfig.CategoricalPropertyConfig;
import oracle.pgx.config.mllib.inputconfig.InputPropertyConfig;

InputPropertyConfig prop1config = 
analyst.categoricalPropertyConfigBuilder("vertex_str_feature_1")
    .oneHotEncoding()
    .setMaxVocabularySize(100)
    .build();
InputPropertyConfig prop2config = 
analyst.categoricalPropertyConfigBuilder("vertex_str_feature_2")
    .embeddingTable()
    .setShared(false) // set whether to share the vocabulary or not when 
several vertex types have a property with the same name
    .setEmbeddingDimension(32)
    .setOutOfVocabularyProbability(0.001) // probability to set the word 
embedding to the out-of-vocabulary embedding
    .build();
SupervisedGraphWiseModelBuilder model = 
analyst.supervisedEdgeWiseModelBuilder()
    .setVertexInputPropertyNames(
        "vertex_int_feature_1", // continuous feature
        "vertex_str_feature_1", // string feature using one-hot-encoding
        "vertex_str_feature_2", // string feature using embedding table
        "vertex_str_feature_3" // string feature using one-hot-encoding 

Chapter 17
Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification)

17-57



(default)
    )
    .setVertexInputPropertyConfigs(prop1config, prop2config)
    .setEdgeTargetPropertyName("label")
    .build();

Python

vertex_input_property_configs = [
    analyst.one_hot_encoding_categorical_property_config(
        property_name="vertex_str_feature_1",
        max_vocabulary_size=100,
    ),
    analyst.learned_embedding_categorical_property_config(
        property_name="vertex_str_feature_2",
        embedding_dim=4,
        shared=False, // set whether to share the vocabulary or not when 
several  types have a property with the same name
        oov_probability=0.001 // probability to set the word embedding to the 
out-of-vocabulary embedding
    )
]

model_params = dict(
    vertex_input_property_names=[
        "vertex_int_feature_1", // continuous feature
        "vertex_str_feature_1", // string feature using one-hot-encoding
        "vertex_str_feature_2", // string feature using embedding table
        "vertex_str_feature_3", // string feature using one-hot-encoding 
(default)
    ],
    vertex_input_property_configs=vertex_input_property_configs,
    edge_target_property_name="labels"
)

model = analyst.supervised_edgewise_builder(**model_params)

17.3.6 Classification Versus Regression on Supervised EdgeWise Models
When predicting a property, the loss function defines if the model will perform classification
tasks or regression tasks.

For classification tasks, the Supervised EdgeWise model will infer labels. Even if this property
is a number, the model will assign one label for each value found and classify on it. The
possible losses for classification tasks are softmax cross entropy, sigmoid cross entropy,
and DevNet loss.

For regression tasks, the Supervised EdgeWise model will infer values for the property. The
loss for regression tasks is the MSE loss.

It is possible to select different loss functions for the supervised model by providing a
LossFunction object.

Chapter 17
Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification)

17-58



• JShell

• Java

• Python

JShell

opg4j> import oracle.pgx.config.mllib.loss.LossFunctions;
opg4j> var model = analyst.supervisedEdgeWiseModelBuilder().
         setVertexInputPropertyNames("vertex_features").
         setEdgeInputPropertyNames("edge_features").
         setEdgeTargetPropertyName("labels").
         setLossFunction(LossFunctions.MSE_LOSS).
         build()

Java

import oracle.pgx.config.mllib.loss.LossFunctions;

SupervisedEdgeWiseModel model = analyst.supervisedEdgeWiseModelBuilder()
    .setVertexInputPropertyNames("vertex_features")
    .setEdgeInputPropertyNames("edge_features")
    .setEdgeTargetPropertyName("labels")
    .setLossFunction(LossFunctions.MSE_LOSS)
    .build();

Python

from pypgx.api.mllib import MSELoss

params = dict(edge_target_property_name="labels",
              vertex_input_property_names=["vertex_features"],
              edge_input_property_names=["edge_features"],
              loss_fn=MSELoss())

model = analyst.supervised_edgewise_builder(**params)

17.3.7 Setting a Custom Loss Function and Batch Generator (for Anomaly
Detection)

In addition to different loss functions, it is also possible to select different batch generators by
providing a batch generator type. This is useful for applications such as Anomaly Detection,
which can be cast into the standard supervised framework but require different loss functions
and batch generators.

Chapter 17
Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification)

17-59



SupervisedEdgeWise model can use the DevNetLoss and the
StratifiedOversamplingBatchGenerator. DevNetLoss takes confidence margin and the value
the anomaly takes in the target property as the two parameters.

The following example assumes that the convLayerConfig has already been defined:

• JShell

• Java

• Python

JShell

opg4j> import oracle.pgx.config.mllib.loss.LossFunctions
opg4j> import oracle.pgx.config.mllib.batchgenerator.BatchGenerators
opg4j> var predictionLayerConfig = 
analyst.graphWisePredictionLayerConfigBuilder().
         setHiddenDimension(32).
         setActivationFunction(ActivationFunction.LINEAR).
         build()
opg4j> var model = analyst.supervisedEdgeWiseModelBuilder().
         setVertexInputPropertyNames("vertex_features").
         setEdgeInputPropertyNames("edge_features").
         setEdgeTargetPropertyName("labels").
         setConvLayerConfigs(convLayerConfig).
         setPredictionLayerConfigs(predictionLayerConfig).
         setLossFunction(LossFunctions.devNetLoss(5.0, true)).
         setBatchGenerator(BatchGenerators.STRATIFIED_OVERSAMPLING).
         build()

Java

import oracle.pgx.config.mllib.loss.LossFunctions;
import oracle.pgx.config.mllib.batchgenerator.BatchGenerators;

GraphWisePredictionLayerConfig predictionLayerConfig = 
analyst.graphWisePredictionLayerConfigBuilder()
    .setHiddenDimension(32)
    .setActivationFunction(ActivationFunction.LINEAR)
    .build();

SupervisedEdgeWiseModel model = analyst.supervisedEdgeWiseModelBuilder()
    .setVertexInputPropertyNames("vertex_features")
    .setEdgeInputPropertyNames("edge_features")
    .setEdgeTargetPropertyName("labels")
    .setConvLayerConfigs(convLayerConfig)
    .setPredictionLayerConfigs(predictionLayerConfig)
    .setLossFunction(LossFunctions.devNetLoss(5.0, true))
    .setBatchGenerator(BatchGenerators.STRATIFIED_OVERSAMPLING)
    .build();

Chapter 17
Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification)

17-60

https://arxiv.org/pdf/1911.08623.pdf


Python

from pypgx.api.mllib import DevNetLoss

pred_layer_config = dict(hidden_dim=32,
                         activation_fn='linear')

pred_layer = analyst.graphwise_pred_layer_config(**pred_layer_config)

params = dict(edge_target_property_name="labels",
              conv_layer_config=[conv_layer],
              pred_layer_config=[pred_layer],
              vertex_input_property_names=["vertex_features"],
              edge_input_property_names=["edge_features"],
              loss_fn=DevNetLoss(5.0, True),
              batch_gen='Stratified_Oversampling',
              seed=17)

model = analyst.supervised_edgewise_builder(**params)

17.3.8 Setting the Edge Embedding Production Method
By default, the edge embedding is computed by combining the source vertex embedding, the
destination vertex embedding and the edge features. You can manually set these by setting the
EdgeCombinationMethod with booleans parameters:

• JShell

• Java

• Python

JShell

opg4j> import oracle.pgx.config.mllib.edgecombination.EdgeCombinationMethods

opg4j> var method = 
EdgeCombinationMethods.concatEdgeCombinationMethod(useSourceVertex, 
useDestinationVertex, useEdge)
opg4j> var model = analyst.supervisedEdgeWiseModelBuilder().
         setVertexInputPropertyNames("vertex_features").
         setEdgeInputPropertyNames("edge_features").
         setEdgeTargetPropertyName("labels").
         setEdgeCombinationMethod(method).
         build()

Chapter 17
Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification)

17-61



Java

import oracle.pgx.config.mllib.edgecombination.EdgeCombinationMethod;
import oracle.pgx.config.mllib.edgecombination.EdgeCombinationMethods;

EdgeCombinationMethod method = 
EdgeCombinationMethods.concatEdgeCombinationMethod(useSourceVertex, 
useDestinationVertex, useEdge);

SupervisedEdgeWiseModel model = analyst.supervisedEdgeWiseModelBuilder()
    .setVertexInputPropertyNames("vertex_features")
    .setEdgeInputPropertyNames("edge_features")
    .setEdgeTargetPropertyName("labels")
    .setEdgeCombinationMethod(method)
    .build();

Python

from pypgx.api.mllib import ConcatEdgeCombinationMethod

method_config = dict(use_source_vertex=True,
    use_destination_vertex=False,
    use_edge=True)

method = ConcatEdgeCombinationMethod(**method_config)

params = dict(edge_target_property_name="labels",
              vertex_input_property_names=["vertex_features"],
              edge_input_property_names=["edge_features"],
              edge_combination_method=method,
              seed=17)

model = analyst.supervised_edgewise_builder(**params)

17.3.9 Training a Supervised EdgeWise Model
You can train a SupervisedEdgeWiseModel on a graph as shown:

• JShell

• Java

• Python

JShell

opg4j> model.fit(trainGraph)

Chapter 17
Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification)

17-62



Java

model.fit(trainGraph);

Python

model.fit(train_graph)

You can also add a validation step to the training. When training a model, the optimal number
of training epochs is not known in advance and it is one of the key parameters that determines
the model quality. Being able to monitor the training and validation losses helps you to identify
a good value for the model parameters and gain visibility in the training process. The
evaluation frequency can be specified in terms of epoch or step. To configure a validation step,
create a GraphWiseValidationConfig and pass it to the model builder as shown:

• JShell

• Java

• Python

JShell

opg4j> import oracle.pgx.config.mllib.EvaluationFrequencyScale;

opg4j> var validationConfig = analyst.graphWiseValidationConfigBuilder().
         setEvaluationFrequency(2).                                    // set 
the evaluation frequency (default: 1)
         setEvaluationFrequencyScale(EvaluationFrequencyScale.EPOCH).  // 
available options: EPOCH, STEP (default: EPOCH)
         build()

opg4j> var model = analyst.supervisedEdgeWiseModelBuilder().
         setVertexInputPropertyNames("vertex_features").
         setEdgeInputPropertyNames("edge_features").
         setEdgeTargetPropertyName("labels").
         setValidationConfig(validationConfig).  // configuring the 
validation to be executed every 2 epochs
         build()

Java

import oracle.pgx.config.mllib.GraphWiseValidationConfig;
import oracle.pgx.config.mllib.EvaluationFrequencyScale;

GraphWiseValidationConfig validationConfig = 
analyst.graphWiseValidationConfigBuilder()
    .setEvaluationFrequency(2)                                    // set the 
evaluation frequency (default: 1)

Chapter 17
Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification)

17-63



    .setEvaluationFrequencyScale(EvaluationFrequencyScale.EPOCH)  // 
available options: EPOCH, STEP (default: EPOCH)
    .build();

SupervisedEdgeWiseModel model = analyst.supervisedEdgeWiseModelBuilder()
    .setVertexInputPropertyNames("vertex_features")
    .setEdgeInputPropertyNames("edge_features")
    .setEdgeTargetPropertyName("labels")
    .setValidationConfig(validationConfig)  // configuring the validation to 
be executed every 2 epochs
    .build();

Python

validation_config = analyst.graphwise_validation_config(
    evaluation_frequency=2,              # set the evaluation frequency 
(default: 1)
    evaluation_frequency_scale="epoch",  # available options: "epoch", "step" 
(default: "epoch")
)

params = dict(edge_target_property_name="labels",
              vertex_input_property_names=["vertex_features"],
              edge_input_property_names=["edge_features"],
              validation_config=validation_config,  # configuring the 
validation to be executed every 2 epochs
              seed=17)

model = analyst.supervised_edgewise_builder(**params)

After configuring a validation step, you can then pass a graph for validation to the fit method
together with the graph for training:

• JShell

• Java

• Python

JShell

opg4j> model.fit(trainGraph, valGraph)

Java

model.fit(trainGraph,valGraph);

Chapter 17
Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification)

17-64



Python

model.fit(train_graph,valGraph)

17.3.10 Getting the Loss Value for a Supervised EdgeWise Model
You can fetch the training loss value for a Supervised EdgeWise Model as shown in the
following code:

• JShell

• Java

• Python

JShell

opg4j> var loss = model.getTrainingLoss()

Java

double loss = model.getTrainingLoss();

Python

loss = model.get_training_loss()

17.3.11 Getting the Training Log for a Supervised EdgeWise Model
If you configured a validation step (see Training a Supervised EdgeWise Model) earlier, then
you can fetch the training log that contains the training and validation loss information.

• JShell

• Java

• Python

JShell

opg4j> var trainingLog = model.getTrainingLog()

Chapter 17
Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification)

17-65



Java

PgxFrame trainingLog = model.getTrainingLog();

Python

training_log = model.get_training_log()

The output frame will be similar to the following example output:

+--------------------------------------------------+
| epoch | training_loss      | validation_loss     |
+--------------------------------------------------+
| 2     | 1.5059218406677246 | 0.41696539521217346 |
| 4     | 0.5052874088287354 | 0.3255307078361511  |
| 6     | 0.3264007568359375 | 0.44015955924987793 |
+--------------------------------------------------+

Also, note the following:

• The first column will be named according to the evaluation frequency scale that was set in
the validation configuration ("epoch" or "step").

• The validation loss is the average of the losses evaluated on all batches of the validation
graph, while the training loss is the loss value logged at that epoch or step (that is, the loss
evaluated on the last batch).

• The training log will be overwritten if the fit method is called multiple times.

17.3.12 Inferring Edge Labels for a Supervised EdgeWise Model
You can infer the edge labels on any graph (including edges or graphs that were not seen
during training):

• JShell

• Java

• Python

JShell

opg4j> var labels = model.infer(fullGraph, testEdges)
opg4j> labels.head().print()

Java

PgxFrame labels = model.infer(fullGraph, testEdges);
labels.head().print();

Chapter 17
Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification)

17-66



Python

labels = model.infer(full_graph,test_edges)
labels.print()

If the loss is SigmoidCrossEntropy or DevNetLoss, then it is also possible to set the decision
threshold applied to the logits by adding it as an extra parameter, which is by default 0:

• JShell

• Java

• Python

JShell

opg4j> var labels = model.infer(fullGraph, testEdges, 6f)
opg4j> labels.head().print()

Java

PgxFrame labels = model.infer(fullGraph,testEdges,6f);
labels.head().print();

Python

labels = model.infer(full_graph, full_graph.get_edges(), 6)
labels.print()

The output will be similar to the following example output:

+-----------------------------+
| edgeId | value              |
+-----------------------------+
| 68472  | 2.2346956729888916 |
| 53436  | 2.1515913009643555 |
| 73364  | 1.9499346017837524 |
| 12096  | 2.1704165935516357 |
| 78740  | 2.1174447536468506 |
| 27664  | 2.1041007041931152 |
| 34844  | 2.148571491241455  |
| 74224  | 2.089123010635376  |
| 33744  | 2.0866644382476807 |
| 32812  | 2.0604987144470215 |
+-----------------------------+

Chapter 17
Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification)

17-67



Similarly, if the task is a classification task, you can get the model confidence for each class by
inferring the prediction logits:

• JShell

• Java

• Python

JShell

opg4j> var logits = model.inferLogits(fullGraph, testEdges)
opg4j> logits.head().print()

Java

PgxFrame logits = model.inferLogits(fullGraph,testEdges);
logits.head().print();

Python

logits = model.infer_logits(full_graph, test_edges)
logits.print()

If the model is a classification model, the inferLabels method is also available and it is
equivalent to the infer methoid.

17.3.13 Evaluating Model Performance
You can use the evaluate convenience method to evaluate various metrics for the model:

• JShell

• Java

• Python

JShell

opg4j> model.evaluate(fullGraph, testEdges).print()

Java

model.evaluate(fullGraph,testEdges).print();

Chapter 17
Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification)

17-68



Python

model.evaluate(full_graph,test_edges).print()

Similar to inferring labels, if the task is a classification task, you can add the decision threshold
as an extra parameter:

• JShell

• Java

• Python

JShell

opg4j> model.evaluate(fullGraph, testEdges, 6f).print()

Java

model.evaluate(fullGraph,testEdges, 6f).print();

Python

model.evaluate(full_graph,test_edges, 6).print()

For a classification model, the output will be similar to the following:

+------------------------------------------+
| Accuracy | Precision | Recall | F1-Score |
+------------------------------------------+
| 0.8488   | 0.8523    | 0.831  | 0.8367   |
+------------------------------------------+

For a regression model, the output will be similar to the following:

+--------------------+
| MSE                |
+--------------------+
| 0.9573243436116953 |
+--------------------+

Note that for a classification model, the evaluateLabels method is also available and this is
equivalent to the evaluate method.

Chapter 17
Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification)

17-69



17.3.14 Inferring Embeddings for a Supervised EdgeWise Model
You can use a trained model to infer embeddings for unseen nodes and store them in the
database as described in the following code:

• JShell

• Java

• Python

JShell

opg4j> var edgeVectors = model.inferEmbeddings(fullGraph, 
testEdges).flattenAll()
opg4j> edgeVectors.write().
         db().
         name("edge vectors").
         tablename("edgeVectors").  
         overwrite(true).             
         store()

Java

PgxFrame edgeVectors = model.inferEmbeddings(fullGraph, 
testEdges).flattenAll();
edgeVectors.write()
    .db()
    .name("edge vectors")
    .tablename("edgeVectors") 
    .overwrite(true)            
    .store();

Python

edge_vectors = model.infer_embeddings(full_Graph, test_edges).flatten_all()
edge_vectors.write().db().table_name("table_name").name("edge_vectors").overwr
ite(True).store()

The schema for the edgeVectors will be as follows without flattening (flattenAll splits the
vector column into separate double-valued columns):

+---------------------------------------------------------------+
| edgeId                                | embedding             |
+---------------------------------------------------------------+

Chapter 17
Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification)

17-70



All the preceding examples assume that you are inferring the embeddings for a model in the
current logged in database. If you must infer embeddings for the model in a different database,
then you must additionally provide the database credentials such as username, password and
JDBC URL to the inferEmbeddings method. Refer to Inferring Embeddings for a Model in
Another Database for an example.

17.3.15 Storing a Supervised EdgeWise Model
You can store models in the database. The models get stored as a row inside a model store
table.
The following shows how to store a trained SupervisedEdgeWise model in the database in a
specific model store table:

• JShell

• Java

• Python

JShell

opg4j> model.export().db(). 
              modelstore("modelstoretablename").  // name of the model store 
table
              modelname("model").                 // model name (primary key 
of model store table)
              description("a model description"). // description to store 
alongside the model
              store()

Java

model.export().db()
    .modelstore("modelstoretablename")  // name of the model store table
    .modelname("model")                 // model name (primary key of model 
store table)
    .description("a model description") // description to store alongside the 
model
    .store();

Python

model.export().db(model_store="modeltablename",            # name of the 
model store table
                  model_name="model",                      # model name 
(primary key of model store table)
                  model_description="a model description") # description to 
store alongside the model

Chapter 17
Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification)

17-71



Note:

All the preceding examples assume that you are storing the model in the current
logged in database. If you must store the model in a different database then refer to
the examples in Storing a Trained Model in Another Database.

17.3.16 Loading a Pre-Trained Supervised EdgeWise Model
You can load a pre-trained SupervisedEdgeWise model from a model store table in the
database as shown:

• JShell

• Java

• Python

JShell

opg4j> var model = analyst.loadSupervisedEdgeWiseModel().db().
                modelstore("modeltablename"). // name of the model store table
                modelname("model").           // model name (primary key of 
model store table)
                load()

Java

SupervisedEdgeWiseModel model = analyst.loadSupervisedEdgeWiseModel().db()
     .modelstore("modeltablename") // name of the model store table
     .modelname("model")           // model name (primary key of model store 
table)
     .load();

Python

model = analyst.get_supervised_edgewise_model_loader(). \
                 db(model_store="modelstoretablename",  # name of the model 
store table
                    model_name="model")                 # model name (primary 
key of model store table)

Chapter 17
Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification)

17-72



Note:

All the preceding examples assume that you are loading the model from the current
logged in database. If you must load the model from a different database then refer to
the examples in Loading a Pre-Trained Model From Another Database.

17.3.17 Destroying a Supervised EdgeWise Model
You can destroy a Supervised EdgeWise model as described in the following code:

• JShell

• Java

• Python

JShell

opg4j> model.destroy()

Java

model.destroy();

Python

model.destroy()

17.3.18 Example: Predicting Ratings on the Movielens Dataset
This section describes the usage of SupervisedEdgeWise in the graph server (PGX) using the 
Movielens graph as an example.
This data set consists of 100,000 ratings (1-5) from 943 users on 1682 movies, with simple
demographic information for the users (age, gender, occupation) and movies (year,
aggravating, genre). Users and movies are vertices, while ratings of users to movies are edges
with a rating feature.

The following example predicts the ratings using the SupervisedEdgeWise model. The model is
first built and it is then fit on the trainGraph.

• JShell

• Java

• Python

Chapter 17
Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification)

17-73

https://movielens.org


JShell

opg4j> import oracle.pgx.config.mllib.loss.LossFunctions
opg4j> var convLayer = analyst.graphWiseConvLayerConfigBuilder().
        setNumSampledNeighbors(10).
        build()
opg4j> var predictionLayer = analyst.graphWisePredictionLayerConfigBuilder().
        setHiddenDimension(16).
        build()
opg4j> var model = analyst.supervisedEdgeWiseModelBuilder().
        setVertexInputPropertyNames("movie_year", "avg_rating", 
"movie_genres", // Movies features
            "user_occupation_label", "user_gender", "raw_user_age"). // Users 
features
        setEdgeTargetPropertyName("user_rating").
        setConvLayerConfigs(convLayer).
        setPredictionLayerConfigs(predictionLayer).
        setNumEpochs(10).
        setEmbeddingDim(32).
        setLearningRate(0.003).
        setStandardize(true).
        setNormalize(true).
        setSeed(0).
        setLossFunction(LossFunctions.MSE_LOSS).
        build()
opg4j> model.fit(trainGraph)

Java

import oracle.pgx.config.mllib.loss.LossFunctions;
GraphWiseConvLayerConfig convLayer = analyst.graphWiseConvLayerConfigBuilder()
        .setNumSampledNeighbors(10)
        .build();

GraphWisePredictionLayerConfig predictionLayer = 
analyst.graphWisePredictionLayerConfigBuilder()
      .setHiddenDimension(16)
      .build();

SupervisedEdgeWiseModel model = analyst.supervisedEdgeWiseModelBuilder()
        .setVertexInputPropertyNames("movie_year", "avg_rating", 
"movie_genres", // Movies features
            "user_occupation_label", "user_gender", "raw_user_age") // Users 
features
        .setEdgeTargetPropertyName("user_rating")
        .setConvLayerConfigs(convLayer)
        .setPredictionLayerConfigs(predictionLayer)
        .setNumEpochs(10)
        .setEmbeddingDim(32)
        .setLearningRate(0.003)
        .setStandardize(true)
        .setNormalize(true)
        .setSeed(0)
        .setLossFunction(LossFunctions.MSE_LOSS)
        .build();

Chapter 17
Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification)

17-74



model.fit(trainGraph);

Python

from pypgx.api.mllib import MSELoss
conv_layer_config = dict(num_sampled_neighbors=10)

conv_layer = analyst.graphwise_conv_layer_config(**conv_layer_config)

pred_layer_config = dict(hidden_dim=16)

pred_layer = analyst.graphwise_pred_layer_config(**pred_layer_config)

params = dict(edge_target_property_name="labels",
              conv_layer_config=[conv_layer],
              pred_layer_config=[pred_layer],
              vertex_input_property_names=["movie_year", "avg_rating", 
"movie_genres",
                "user_occupation_label", "user_gender", "raw_user_age"],
              edge_input_property_names=["user_rating"],
              num_epochs=10,
              layer_size=32,
              learning_rate=0.003,
              normalize=true,
              loss_fn=MSELoss(),
              seed=0)

model = analyst.supervised_edgewise_builder(**params)

model.fit(train_graph)

Since EdgeWise is inductive, you can infer the ratings for unseen edges:

• JShell

• Java

• Python

JShell

opg4j> var labels = model.infer(fullGraph, testEdges)
opg4j> labels.head().print()

Java

PgxFrame labels = model.infer(fullGraph, testEdges);
labels.head().print();

Chapter 17
Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification)

17-75



Python

labels = model.infer(full_graph, test_edges)
labels.print()

This returns the rating prediction for any edge as:

+-----------------------------+
| edgeId | value              |
+-----------------------------+
| 68472  | 3.844510078430176  |
| 53436  | 3.5453758239746094 |
| 73364  | 3.688265085220337  |
| 12096  | 3.8873679637908936 |
| 78740  | 3.3845553398132324 |
| 27664  | 2.6601722240448    |
| 34844  | 4.108948230743408  |
| 74224  | 3.7714107036590576 |
| 33744  | 3.2331383228302    |
| 32812  | 3.8763082027435303 |
+-----------------------------+

You can also evaluate the performance of the model:

• JShell

• Java

• Python

JShell

opg4j> model.evaluate(fullGraph, testEdges).print()

Java

model.evaluate(fullGraph,testEdges).print();

Python

model.evaluate(full_graph,test_edges).print()

Chapter 17
Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification)

17-76



This returns the following output:

+--------------------+
| MSE                |
+--------------------+
| 0.9573243436116953 |
+--------------------+

17.4 Using the Unsupervised GraphWise Algorithm (Vertex
Embeddings)

Unsupervised GraphWise is an unsupervised inductive vertex representation learning
algorithm which is able to leverage vertex information. The learned embeddings can be used in
various downstream tasks including vertex classification, vertex clustering and similar vertex
search.

Unsupervised GraphWise is based on Deep Graph Infomax (DGI) by Velickovic et al.

Model Structure

A Unsupervised GraphWise model consists of graph convolutional layers followed by an
embedding layer which defaults to a DGI Layer.

The forward pass through a convolutional layer for a vertex proceeds as follows:

1. A set of neighbors of the vertex is sampled.

2. The previous layer representations of the neighbors are mean-aggregated, and the
aggregated features are concatenated with the previous layer representation of the vertex.

3. This concatenated vector is multiplied with weights, and a bias vector is added.

4. The result is normalized to such that the layer output has unit norm.

The DGI Layer consists of three parts enabling unsupervised learning using embeddings
produced by the convolution layers.

1. Corruption function: Shuffles the node features while preserving the graph structure to
produce negative embedding samples using the convolution layers.

2. Readout function: Sigmoid activated mean of embeddings, used as summary of a graph.

3. Discriminator: Measures the similarity of positive (unshuffled) embeddings with the
summary as well as the similarity of negative samples with the summary from which the
loss function is computed.

Since none of these contains mutable hyperparameters, the default DGI layer is always used
and cannot be adjusted.

The second embedding layer available is the Dominant Layer.

Dominant is a model that detects anomalies based on the features and the neighbors'
structure. Using GCNs to reconstruct the features in an autoencoder's settings, and the mask
with the dot products of the embeddings.

The loss function is computed from the feature reconstruction loss and the structure
reconstruction loss. The importance given to features or to the structure can be tuned with the
alpha hyperparameter.

Chapter 17
Using the Unsupervised GraphWise Algorithm (Vertex Embeddings)

17-77

https://arxiv.org/pdf/1809.10341.pdf


The following describes the usage of the main functionalities of the implementation of DGI in
PGX using the Cora graph as an example.

• Loading a Graph

• Building a Minimal Unsupervised GraphWise Model

• Advanced Hyperparameter Customization

• Supported Property Types for Unsupervised GraphWise Model

• Building an Unsupervised GraphWise Model Using Partitioned Graphs

• Training an Unsupervised GraphWise Model

• Getting the Loss Value for an Unsupervised GraphWise Model

• Getting the Training Log for an Unsupervised GraphWise Model

• Inferring Embeddings for an Unsupervised GraphWise Model

• Classifying the Vertices Using the Obtained Embeddings

• Storing an Unsupervised GraphWise Model

• Loading a Pre-Trained Unsupervised GraphWise Model

• Destroying an Unsupervised GraphWise Model

• Explaining a Prediction for an Unsupervised GraphWise Model

17.4.1 Loading a Graph
The following describes the steps for loading a graph:

1. Create a Session and an Analyst.

• JShell

• Java

• Python

JShell

cd /opt/oracle/graph/
./bin/opg4j
// starting the shell will create an implicit session and analyst
opg4j> import oracle.pgx.config.mllib.ActivationFunction
opg4j> import oracle.pgx.config.mllib.WeightInitScheme

Java

import oracle.pgx.api.*;
import oracle.pgx.api.mllib.UnsupervisedGraphWiseModel;
import oracle.pgx.api.frames.*;
import oracle.pgx.config.mllib.ActivationFunction;
import oracle.pgx.config.mllib.GraphWiseConvLayerConfig;

Chapter 17
Using the Unsupervised GraphWise Algorithm (Vertex Embeddings)

17-78



import oracle.pgx.config.mllib.UnsupervisedGraphWiseModelConfig;
import oracle.pgx.config.mllib.WeightInitScheme;

Python

# starting the Python shell will create an implicit session and analyst

2. Load the graph.

• JShell

• Java

• Python

JShell

opg4j> var instance = GraphServer.getInstance("https://localhost:7007", 
"<username>", "<password>".toCharArray())
opg4j> var session=instance.createSession("mySession")
opg4j> var graph = 
session.readGraphByName("<graph_name>",GraphSource.PG_PGQL)

Java

ServerInstance instance = GraphServer.getInstance("https://
localhost:7007", "<username>", "<password>".toCharArray());
PgxSession session = instance.createSession("my-session");
PgxGraph graph = 
session.readGraphByName("<graph_name>",GraphSource.PG_PGQL);

Python

instance = graph_server.get_instance("https://
localhost:7007","<username>","<password>")
session = instance.create_session("my_session")
graph = session.read_graph_by_name("<graph_name>", "pg_pgql")

You do not need to use a test graph or test vertices, since the model is trained to be
unsupervised.

17.4.2 Building a Minimal Unsupervised GraphWise Model
You can build an Unsupervised GraphWise model with only vertex properties, or only edge
properties or both using the minimal configuration and default hyper-parameters.

Chapter 17
Using the Unsupervised GraphWise Algorithm (Vertex Embeddings)

17-79



• JShell

• Java

• Python

JShell

opg4j> var model = analyst.unsupervisedGraphWiseModelBuilder().
                setVertexInputPropertyNames("features").
                build()

Java

UnsupervisedGraphWiseModel model = analyst.unsupervisedGraphWiseModelBuilder()
    .setVertexInputPropertyNames("features")
    .build();

Python

model = 
analyst.unsupervised_graphwise_builder(vertex_input_property_names=["features"
])

17.4.3 Advanced Hyperparameter Customization
You can build an Unsupervised GraphWise model using rich hyperparameter customization.
Internally for each node, GraphWise applies an aggregation of the representation of neighbors.
You can configure this operation through one of the following sub-config classes:

• GraphWiseConvLayerConfig: GraphWiseConvLayer is based on Inductive Representation
Learning on Large Graphs (GraphSage) by Hamilton et al.

• GraphWiseAttentionLayerConfig: GraphWiseAttentionLayer is based on Graph Attention
Networks (GAT) by Velickovic et al. which makes the aggregation smarter but comes with
larger computation cost.

Also, you can enable or disable a graphics processing unit (GPU) by using the
enable_ml_accelerators graph server (PGX) configuration parameter (see Configuration
Parameters for the Graph Server (PGX) Engine for more information). In addition, ensure that
your system meets the following prerequisites to use the GPU support:

• You must have a GPU device with the CUDA (Compute Unified Device Architecture) toolkit
installed.

• The following list of CUDA libraries are expected:

– libcuda.so.1
– libnvrtc.so.12
– libnvToolsExt.so.1

Chapter 17
Using the Unsupervised GraphWise Algorithm (Vertex Embeddings)

17-80

https://arxiv.org/pdf/1706.02216.pdf
https://arxiv.org/pdf/1706.02216.pdf
https://arxiv.org/pdf/1710.10903.pdf
https://arxiv.org/pdf/1710.10903.pdf


– libcudart.so.12
Note that the enable_ml_accelerators option is enabled by default. But if a GPU device is not
detected and the CUDA toolkit is not installed, then this feature gets disabled and the CPU will
be used for all the PgxML library operations.

The following code examples uses the GraphWiseConvLayerConfig class for the convolutional
layer configuration. The examples specifies a weight decay parameter of 0.001 and dropout
with dropping probability 0.5 for the GraphWise model to counteract overfitting. Also, it is
recommended to disable normalization of embeddings when you intend to use them in
downstream classfication tasks. Note that the setEnableAccelerator method is enabled to
use any available GPU.

• JShell

• Java

• Python

JShell

opg4j> var weightProperty = analyst.pagerank(trainGraph).getName()
opg4j> var convLayerConfig = analyst.graphWiseConvLayerConfigBuilder().
         setNumSampledNeighbors(25).
         setActivationFunction(ActivationFunction.TANH).
         setWeightInitScheme(WeightInitScheme.XAVIER).
         setWeightedAggregationProperty(weightProperty).
         setDropoutRate(0.5).
         build()
opg4j> var dgiLayerConfig = analyst.graphWiseDgiLayerConfigBuilder().
         setCorruptionFunction(new PermutationCorruption()).
         setDiscriminator(GraphWiseDgiLayerConfig.Discriminator.BILINEAR).
         setReadoutFunction(GraphWiseDgiLayerConfig.ReadoutFunction.MEAN).
         build()
opg4j> var model = analyst.unsupervisedGraphWiseModelBuilder().
         setVertexInputPropertyNames("vertex_features").
         setEdgeInputPropertyNames("edge_features").
         setConvLayerConfigs(convLayerConfig).
         setDgiLayerConfig(dgiLayerConfig).
         
setLossFunction(UnsupervisedGraphWiseModelConfig.LossFunction.SIGMOID_CROSS_EN
TROPY).
         setEmbeddingDim(256).
         setLearningRate(0.05).
         setNumEpochs(30).
         setSeed(42).
         setShuffle(false).
         setStandardize(true).
         setNormalize(false).  // recommended
         setBatchSize(64).
         setEnableAccelerator(true). // Enable or disable GPU
         build()

Chapter 17
Using the Unsupervised GraphWise Algorithm (Vertex Embeddings)

17-81



Java

String weightProperty = analyst.pagerank(trainGraph).getName();
GraphWiseConvLayerConfig convLayerConfig = 
analyst.graphWiseConvLayerConfigBuilder()
    .setNumSampledNeighbors(25)
    .setActivationFunction(ActivationFunction.TANH)
    .setWeightInitScheme(WeightInitScheme.XAVIER)
    .setWeightedAggregationProperty(weightProperty)
    .setDropoutRate(0.5)
    .build();

GraphWiseDgiLayerConfig dgiLayerConfig = 
analyst.graphWiseDgiLayerConfigBuilder()
    .setCorruptionFunction(new PermutationCorruption())
    .setDiscriminator(GraphWiseDgiLayerConfig.Discriminator.BILINEAR)
    .setReadoutFunction(GraphWiseDgiLayerConfig.ReadoutFunction.MEAN)
    .build();

UnsupervisedGraphWiseModel model = analyst.unsupervisedGraphWiseModelBuilder()
    .setVertexInputPropertyNames("vertex_features")
    .setEdgeInputPropertyNames("edge_features")
    .setDgiLayerConfig(dgiLayerConfig)
    .setLossFunction(UnsupervisedGraphWiseModelConfig.LossFunction.SIGMOID_CRO
SS_ENTROPY)
    .setConvLayerConfigs(convLayerConfig)
    .setWeightDecay(0.001)
    .setEmbeddingDim(256)
    .setLearningRate(0.05)
    .setNumEpochs(30)
    .setSeed(42)
    .setShuffle(false)
    .setStandardize(true)
    .setNormalize(false)  // recommended
    .setBatchSize(64)
    .setEnableAccelerator(true) // Enable or disable GPU
    .build();

Python

weightProperty = analyst.pagerank(train_graph).name

conv_layer_config = dict(num_sampled_neighbors=25,
                         activation_fn='tanh',
                         weight_init_scheme='xavier',
                         neighbor_weight_property_name=weightProperty,
                         dropout_rate=0.5)
conv_layer = analyst.graphwise_conv_layer_config(**conv_layer_config)

dgi_layer_config = dict(corruption_function=None, 
                        readout_function="mean", 
                        discriminator="bilinear")
dgi_layer = analyst.graphwise_dgi_layer_config(**dgi_layer_config)

params = dict(conv_layer_config=[conv_layer],

Chapter 17
Using the Unsupervised GraphWise Algorithm (Vertex Embeddings)

17-82



              dgi_layer_config=dgi_layer,
              loss_fn="sigmoid_cross_entropy",
              vertex_input_property_names=["vertex_features"],
              edge_input_property_names=["edge_features"],
              weight_decay=0.001,
              layer_size=256,
              learning_rate=0.05,
              num_epochs=30,
              seed=42,
              standardize=True,
              normalize=False,  # recommended
              batch_size=64,
              enable_accelerator=True # Enable or disable GPU
)

model = analyst.unsupervised_graphwise_builder(**params)

In the preceding example, you can replace GraphWiseConvLayerConfig with the
GraphWiseAttentionLayerConfig class to build a graph attention network model. Also, note
that if the number of sampled neighbors is set to -1 using setNumSampledNeighbors, then all
the neighboring nodes will be sampled.

• JShell

• Java

• Python

JShell

opg4j> var convLayerConfig = analyst.graphWiseAttentionLayerConfigBuilder().
         setNumSampledNeighbors(25).
         setActivationFunction(ActivationFunction.LEAKY_RELU).
         setWeightInitScheme(WeightInitScheme.XAVIER_UNIFORM).
         setHeadAggregation(AggregationOperation.MEAN).
         setNumHeads(4).
         setDropoutRate(0.5).
         build()

Java

GraphWiseAttentionLayerConfig convLayerConfig = 
analyst.graphWiseAttentionLayerConfigBuilder()
    .setNumSampledNeighbors(25)
    .setActivationFunction(ActivationFunction.LEAKY_RELU)
    .setWeightInitScheme(WeightInitScheme.XAVIER_UNIFORM)
    .setHeadAggregation(AggregationOperation.MEAN)
    .setNumHeads(4)

Chapter 17
Using the Unsupervised GraphWise Algorithm (Vertex Embeddings)

17-83



    .setDropoutRate(0.5)
    .build();

Python

conv_layer_config = dict(num_sampled_neighbors=25,
                         activation_fn='leaky_relu',
                         weight_init_scheme='xavier_uniform',
                         aggregation_operation='mean',
                         num_heads=4,
                         dropout_rate=0.5)

See the Javadoc for more information.

17.4.4 Supported Property Types for Unsupervised GraphWise Model
The model supports two types of properties for both vertices and edges:

• continuous properties (boolean, double, float, integer, long)

• categorical properties (string)

For categorical properties, two categorical configurations are possible:

• One-hot-encoding: Each category is mapped to a vector, that is concatenated to other
features (default)

• Embedding table: Each category is mapped to an embedding that is concatenated to
other features and is trained along with the model

One-hot-encoding converts each category into an independent vector. This is useful if you
want each category to be interpreted as an equally independent group. For instance, if there
are categories ranging from A to E, where each alphabet has no specific meaning, then one-
hot-encoding can be a good fit.

Embedding table is recommended if the semantics of the properties matter, and you want
certain categories to be closer to each other than the others. For example, assume there is a
day property with values ranging from Monday to Sunday. If you wish to preserve the idea that
Tuesday is closer to Wednesday than Saturday, then by choosing the embedding table
configuration, you can let the vectors that represent the categories to be learned during
training, so that the vector that is mapped to Tuesday becomes close to that of Wednesday.

One advantage that the embedding table approach has over one-hot-encoding is that you can
learn more suitable vectors to represent each category. However, this also means that a good
amount of data is required to train the embedding table properly. The one-hot-encoding
approach might be better for use-cases with limited training data.

When using the embedding table, users are allowed to set the out-of-vocabulary probability.
With the given probability, the embedding will be set to the out-of-vocabulary embedding
randomly during training, in order to make the model more robust to unseen categories during
inference.

• JShell

Chapter 17
Using the Unsupervised GraphWise Algorithm (Vertex Embeddings)

17-84



• Java

• Python

JShell

opg4j> import oracle.pgx.config.mllib.inputconfig.CategoricalPropertyConfig;
opg4j> var prop1config = 
analyst.categoricalPropertyConfigBuilder("vertex_str_feature_1").
    oneHotEncoding().
    setMaxVocabularySize(100).
    build()
opg4j> var prop2config = 
analyst.categoricalPropertyConfigBuilder("vertex_str_feature_2").
    embeddingTable().
    setShared(false). // set whether to share the vocabulary or not when 
several vertex types have a property with the same name
    setEmbeddingDimension(32).
    setOutOfVocabularyProbability(0.001). // probability to set the word 
embedding to the out-of-vocabulary embedding
    build()
opg4j> var model = analyst.unsupervisedGraphWiseModelBuilder().
    setVertexInputPropertyNames(
        "vertex_int_feature_1", // continuous feature
        "vertex_str_feature_1", // string feature using one-hot-encoding
        "vertex_str_feature_2", // string feature using embedding table
        "vertex_str_feature_3" // string feature using one-hot-encoding 
(default)
    ).
    setVertexInputPropertyConfigs(prop1config, prop2config).
    build()

Java

import oracle.pgx.config.mllib.inputconfig.CategoricalPropertyConfig;
import oracle.pgx.config.mllib.inputconfig.InputPropertyConfig;

InputPropertyConfig prop1config = 
analyst.categoricalPropertyConfigBuilder("vertex_str_feature_1")
    .oneHotEncoding()
    .setMaxVocabularySize(100)
    .build();
InputPropertyConfig prop2config = 
analyst.categoricalPropertyConfigBuilder("vertex_str_feature_2")
    .embeddingTable()
    .setShared(false) // set whether to share the vocabulary or not when 
several vertex types have a property with the same name
    .setEmbeddingDimension(32)
    .setOutOfVocabularyProbability(0.001) // probability to set the word 
embedding to the out-of-vocabulary embedding
    .build();
SupervisedGraphWiseModelBuilder model = 
analyst.unsupervisedGraphWiseModelBuilder()
    .setVertexInputPropertyNames(
        "vertex_int_feature_1", // continuous feature

Chapter 17
Using the Unsupervised GraphWise Algorithm (Vertex Embeddings)

17-85



        "vertex_str_feature_1", // string feature using one-hot-encoding
        "vertex_str_feature_2", // string feature using embedding table
        "vertex_str_feature_3" // string feature using one-hot-encoding 
(default)
    )
    .setVertexInputPropertyConfigs(prop1config, prop2config)
    .build();

Python

vertex_input_property_configs = [
    analyst.one_hot_encoding_categorical_property_config(
        property_name="vertex_str_feature_1",
        max_vocabulary_size=100,
    ),
    analyst.learned_embedding_categorical_property_config(
        property_name="vertex_str_feature_2",
        embedding_dim=4,
        shared=False, // set whether to share the vocabulary or not when 
several  types have a property with the same name
        oov_probability=0.001 // probability to set the word embedding to the 
out-of-vocabulary embedding
    )
]

model_params = dict(
    vertex_input_property_names=[
        "vertex_int_feature_1", // continuous feature
        "vertex_str_feature_1", // string feature using one-hot-encoding
        "vertex_str_feature_2", // string feature using embedding table
        "vertex_str_feature_3", // string feature using one-hot-encoding 
(default)
    ],
    vertex_input_property_configs=vertex_input_property_configs
)

model = analyst.supervised_graphwise_builder(**model_params)

17.4.5 Building an Unsupervised GraphWise Model Using Partitioned
Graphs

You can build an Unsupervised GraphWise model using partitioned graphs which have
different providers and features.

• JShell

• Java

• Python

Chapter 17
Using the Unsupervised GraphWise Algorithm (Vertex Embeddings)

17-86



JShell

opg4j> analyst.unsupervisedGraphWiseModelBuilder().
        setVertexInputPropertyNames("vertex_provider1_features", 
"vertex_provider2_features").
        setEdgeInputPropertyNames("edge_provider_features").
        setVertexTargetPropertyName("target_property").
        build()

Java

UnsupervisedGraphWiseModel model = analyst.unsupervisedGraphWiseModelBuilder()
    .setVertexInputPropertyNames("vertex_provider1_features", 
"vertex_provider2_features")
    .setEdgeInputPropertyNames("edge_provider_features")
    .setVertexTargetPropertyName("target_property")
    .build();

Python

params = dict(vertex_input_property_names=["vertex_provider1_features", 
"vertex_provider2_features"],
              edge_input_property_names=["edge_provider_features"])
model = analyst.unsupervised_graphwise_builder(**params)

Also, you can select specific providers as shown:

• JShell

• Java

• Python

JShell

opg4j> var model = analyst.unsupervisedGraphWiseModelBuilder().
         setVertexInputPropertyNames("vertex_provider1_features", 
"vertex_provider2_features").
         setEdgeInputPropertyNames("edge_provider_features").
         setTargetVertexLabels("provider1").
         build()

Java

UnsupervisedGraphWiseModel model = analyst.unsupervisedGraphWiseModelBuilder()
    .setVertexInputPropertyNames("vertex_provider1_features", 
"vertex_provider2_features")
    .setEdgeInputPropertyNames("edge_provider_features")

Chapter 17
Using the Unsupervised GraphWise Algorithm (Vertex Embeddings)

17-87



    .setTargetVertexLabels("provider1")
    .build();

Python

params = dict(vertex_input_property_names=["vertex_provider1_features", 
"vertex_provider2_features"],
              edge_input_property_names=["edge_provider_features"],
              target_vertex_labels=["provider1"])
model = analyst.unsupervised_graphwise_builder(**params)

If you wish to control the flow of the embeddings at each layer, you can enable or disable the
required connections. By default, all the connections are enabled.

• JShell

• Java

• Python

JShell

opg4j> var convLayerConfig = analyst.graphWiseConvLayerConfigBuilder().
         setNumSampledNeighbors(25).
         useVertexToVertexConnection(true).
         useEdgeToVertexConnection(true).
         useEdgeToEdgeConnection(false).
         useVertexToEdgeConnection(false).
         build()
opg4j> var model = analyst.unsupervisedGraphWiseModelBuilder().
         setVertexInputPropertyNames("vertex_provider1_features", 
"vertex_provider2_features").
         setEdgeInputPropertyNames("edge_provider_features").
         setTargetVertexLabels("provider1").
         build()

Java

GraphWiseConvLayerConfig convLayerConfig = 
analyst.graphWiseConvLayerConfigBuilder()
    .setNumSampledNeighbors(10)
    .useVertexToVertexConnection(true)
    .useEdgeToVertexConnection(true)
    .useEdgeToEdgeConnection(false)
    .useVertexToEdgeConnection(false)
    .build();

UnsupervisedGraphWiseModel model = analyst.unsupervisedGraphWiseModelBuilder()
    .setVertexInputPropertyNames("vertex_provider1_features", 

Chapter 17
Using the Unsupervised GraphWise Algorithm (Vertex Embeddings)

17-88



"vertex_provider2_features")
    .setEdgeInputPropertyNames("edge_provider_features")
    .setTargetVertexLabels("provider1")
    .setConvLayerConfigs(convLayerConfig)
    .build();

Python

conv_layer_config = dict(num_sampled_neighbors=25,
                         activation_fn='tanh',
                         weight_init_scheme='xavier',
                         neighbor_weight_property_name=weightProperty,
                         vertex_to_vertex_connection=True,
                         edge_to_vertex_connection=True,
                         vertex_to_edge_connection=False,
                         edge_to_edge_connection=False)

conv_layer = analyst.graphwise_conv_layer_config(**conv_layer_config)

params = dict(vertex_input_property_names=["vertex_provider1_features", 
"vertex_provider2_features"],
              edge_input_property_names=["edge_provider_features"],
              target_vertex_labels=["provider1"],
              conv_layer_config=[conv_layer])

model = analyst.unsupervised_graphwise_builder(**params)

17.4.6 Training an Unsupervised GraphWise Model
You can train an Unsupervised GraphWise model on a graph as shown:

• JShell

• Java

• Python

JShell

opg4j> model.fit(trainGraph)

Java

model.fit(trainGraph);

Chapter 17
Using the Unsupervised GraphWise Algorithm (Vertex Embeddings)

17-89



Python

model.fit(train_graph)

You can also add a validation step to the training. When training a model, the optimal number
of training epochs is not known in advance and it is one of the key parameters that determines
the model quality. Being able to monitor the training and validation losses helps you to identify
a good value for the model parameters and gain visibility in the training process. The
evaluation frequency can be specified in terms of epoch or step. To configure a validation step,
create a GraphWiseValidationConfig and pass it to the model builder as shown:

• JShell

• Java

• Python

JShell

opg4j> import oracle.pgx.config.mllib.EvaluationFrequencyScale;

opg4j> var validationConfig = analyst.graphWiseValidationConfigBuilder().
         setEvaluationFrequency(100).                                  // set 
the evaluation frequency (default: 1)
         setEvaluationFrequencyScale(EvaluationFrequencyScale.STEP).   // 
available options: EPOCH, STEP (default: EPOCH)
         build()
opg4j> var model = analyst.unsupervisedGraphWiseModelBuilder().
         setVertexInputPropertyNames("vertex_features").
         setValidationConfig(validationConfig).          // configuring the 
validation to be executed every 100 steps
         build()

Java

import oracle.pgx.config.mllib.GraphWiseValidationConfig;
import oracle.pgx.config.mllib.EvaluationFrequencyScale;

GraphWiseValidationConfig validationConfig = 
analyst.graphWiseValidationConfigBuilder()
    .setEvaluationFrequency(100)                                 // set the 
evaluation frequency (default: 1)
    .setEvaluationFrequencyScale(EvaluationFrequencyScale.STEP)  // available 
options: EPOCH, STEP (default: EPOCH)
    .build();

UnsupervisedGraphWiseModel model = analyst.unsupervisedGraphWiseModelBuilder()
    .setVertexInputPropertyNames("vertex_features")
    .setValidationConfig(validationConfig)  // configuring the validation to 

Chapter 17
Using the Unsupervised GraphWise Algorithm (Vertex Embeddings)

17-90



be executed every 100 steps
    .build();

Python

validation_config = analyst.graphwise_validation_config(
    evaluation_frequency=100,           # set the evaluation frequency 
(default: 1)
    evaluation_frequency_scale="step",  # available options: "epoch", "step" 
(default: "epoch")
)

params = dict(vertex_input_property_names=["vertex_features"],
              validation_config=validation_config,  # configuring the 
validation to be executed every 100 steps
              seed=17)

model = analyst.unsupervised_graphwise_builder(**params)

After configuring a validation step, you can then pass a graph for validation to the fit method
together with the graph for training:

• JShell

• Java

• Python

JShell

opg4j> model.fit(trainGraph, valGraph)

Java

model.fit(trainGraph,valGraph);

Python

model.fit(train_graph,valGraph)

17.4.7 Getting the Loss Value for an Unsupervised GraphWise Model
You can fetch the training loss value for an Unsupervised GraphWise Model as shown in the
following code:

Chapter 17
Using the Unsupervised GraphWise Algorithm (Vertex Embeddings)

17-91



• JShell

• Java

• Python

JShell

opg4j> var loss = model.getTrainingLoss()

Java

double loss = model.getTrainingLoss();

Python

loss = model.get_training_loss()

17.4.8 Getting the Training Log for an Unsupervised GraphWise Model
If you configured a validation step (see Training an Unsupervised GraphWise Model) earlier,
then you can fetch the training log that contains the training and validation loss information.

• JShell

• Java

• Python

JShell

opg4j> var trainingLog = model.getTrainingLog()

Java

PgxFrame trainingLog = model.getTrainingLog();

Python

training_log = model.get_training_log()

Chapter 17
Using the Unsupervised GraphWise Algorithm (Vertex Embeddings)

17-92



The output frame will be similar to the following example output:

+--------------------------------------------------+
| step  | training_loss      | validation_loss     |
+--------------------------------------------------+
| 100   | 1.5059218406677246 | 0.41696539521217346 |
| 200   | 0.5052874088287354 | 0.3255307078361511  |
| 300   | 0.3264007568359375 | 0.44015955924987793 |
+--------------------------------------------------+

Also, note the following:

• The first column will be named according to the evaluation frequency scale that was set in
the validation configuration ("epoch" or "step").

• The validation loss is the average of the losses evaluated on all batches of the validation
graph, while the training loss is the loss value logged at that epoch or step (that is, the loss
evaluated on the last batch).

• The training log will be overwritten if the fit method is called multiple times.

17.4.9 Inferring Embeddings for an Unsupervised GraphWise Model
You can use a trained model to infer embeddings for unseen nodes and store them in the
database as described in the following code:

• JShell

• Java

• Python

JShell

opg4j> var vertexVectors = model.inferEmbeddings(fullGraph, 
fullGraph.getVertices()).flattenAll()
opg4j> vertexVectors.write().
    db().
    name("vertex vectors").
    tablename("vertexVectors").  
    overwrite(true).             
    store()

Java

PgxFrame vertexVectors = 
model.inferEmbeddings(fullGraph,fullGraph.getVertices()).flattenAll();
vertexVectors.write()
    .db()
    .name("vertex vectors")
    .tablename("vertexVectors") 
    .overwrite(true)            
    .store();

Chapter 17
Using the Unsupervised GraphWise Algorithm (Vertex Embeddings)

17-93



Python

vertex_vectors = 
model.infer_embeddings(full_Graph,full_Graph.get_vertices()).flatten_all()
vertex_vectors.write().db().table_name("table_name").name("vertex_vectors").ov
erwrite(True).store()

The schema for the vertexVectors will be as follows without flattening (flattenAll splits the
vector column into separate double-valued columns):

+---------------------------------------------------------------+
| vertexId                                | embedding           |
+---------------------------------------------------------------+

Note:

All the preceding examples assume that you are inferring the embeddings for a
model in the current logged in database. If you must infer embeddings for the model
in a different database then refer to the examples in Inferring Embeddings for a
Model in Another Database.

17.4.10 Classifying the Vertices Using the Obtained Embeddings
You can use the obtained embeddings in downstream vertex classification tasks.

The following code shows how you can train a multi-layer perceptron (MLP) classifier, which
takes the embeddings as input. It is assumed that the vertex label information is stored under
the vertex property labels.

• Python

Python

import pandas as pd
from sklearn.metrics import accuracy_score, make_scorer
from sklearn.model_selection import RepeatedStratifiedKFold, cross_val_score
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import StandardScaler

# prepare input data
vertex_vectors_df = vertex_vectors.to_pandas().astype({"vertexId": int})
vertex_labels_df = pd.DataFrame([
    {"vertexId": v.id, "labels": properties}
    for v, properties in graph.get_vertex_property("labels").get_values()
]).astype(int)

Chapter 17
Using the Unsupervised GraphWise Algorithm (Vertex Embeddings)

17-94



vertex_vectors_with_labels_df = vertex_vectors_df.merge(vertex_labels_df, 
on="vertexId")

feature_columns = [c for c in vertex_vectors_df.columns if 
c.startswith("embedding")]
x = vertex_vectors_with_labels_df[feature_columns].to_numpy()
y = vertex_vectors_with_labels_df["labels"].to_numpy()

scaler = StandardScaler()
x = scaler.fit_transform(x)

# define an MLP classifier
model = MLPClassifier(
    hidden_layer_sizes=(6,),
    learning_rate_init=0.05,
    max_iter=2000,
    random_state=42,
)

# define a metric and evaluate with cross-validation
cv = RepeatedStratifiedKFold(n_splits=5, n_repeats=3, random_state=42)
scorer = make_scorer(accuracy_score, greater_is_better=True)
scores = cross_val_score(model, x, y, scoring=scorer, cv=cv, n_jobs=-1)

17.4.11 Storing an Unsupervised GraphWise Model
You can store models in database. The models get stored as a row inside a model store table.

• JShell

• Java

• Python

JShell

opg4j> model.export().db(). 
              modelstore("modelstoretablename").  // name of the model store 
table
              modelname("model").                 // model name (primary key 
of model store table)
              description("a model description"). // description to store 
alongside the model
              store()

Java

model.export().db()
    .modelstore("modelstoretablename")  // name of the model store table
    .modelname("model")                 // model name (primary key of model 

Chapter 17
Using the Unsupervised GraphWise Algorithm (Vertex Embeddings)

17-95



store table)
    .description("a model description") // description to store alongside the 
model
    .store();

Python

model.export().db(model_store="modeltablename",            # name of the 
model store table
                  model_name="model",                      # model name 
(primary key of model store table)
                  model_description="a model description") # description to 
store alongside the model

Note:

All the preceding examples assume that you are storing the model in the current
logged in database. If you must store the model in a different database then refer to
the examples in Storing a Trained Model in Another Database.

17.4.12 Loading a Pre-Trained Unsupervised GraphWise Model
You can load models from a database.

• JShell

• Java

• Python

JShell

opg4j> var model = analyst.loadUnsupervisedGraphWiseModel().db().
                modelstore("modeltablename"). // name of the model store table
                modelname("model").           // model name (primary key of 
model store table)
                load()

Java

UnsupervisedGraphWiseModel model = 
analyst.loadUnsupervisedGraphWiseModel().db()
     .modelstore("modeltablename") // name of the model store table
     .modelname("model")           // model name (primary key of model store 
table)
     .load();

Chapter 17
Using the Unsupervised GraphWise Algorithm (Vertex Embeddings)

17-96



Python

model = analyst.get_unsupervised_graphwise_model_loader(). \
                 db(model_store="modelstoretablename",  # name of the model 
store table
                    model_name="model")                 # model name (primary 
key of model store table)

Note:

All the preceding examples assume that you are loading the model from the current
logged in database. If you must load the model from a different database then refer to
the examples in Loading a Pre-Trained Model From Another Database.

17.4.13 Destroying an Unsupervised GraphWise Model
You can destroy an Unsupervised GraphWise model as described in the following code:

• JShell

• Java

• Python

JShell

opg4j> model.destroy()

Java

model.destroy();

Python

model.destroy()

17.4.14 Explaining a Prediction for an Unsupervised GraphWise Model
In order to understand which features and vertices are important for a prediction of the
Unsupervised GraphWise model, you can generate an UnsupervisedGnnExplanation using a
technique similar to the GNNExplainer by Ying et al.

The explanation holds information related to:

Chapter 17
Using the Unsupervised GraphWise Algorithm (Vertex Embeddings)

17-97

https://papers.nips.cc/paper/2019/file/d80b7040b773199015de6d3b4293c8ff-Paper.pdf


• Graph structure: An importance score for each vertex

• Features: An importance score for each graph property

Note:

The vertex being explained is always assigned importance 1. Further, the feature
importances are scaled such that the most important feature has importance 1.

Additionally, an UnsupervisedGnnExplanation contains the inferred embedding. You can get
explanations for a model's predictions by using the UnsupervisedGnnExplainer object. The
object can be obtained using the gnnExplainer method. After obtaining the
UnsupervisedGnnExplainer object, you can use the inferAndExplain method to request an
explanation for a vertex.

The parameters of the explainer can be configured while the explainer is being created or
afterwards using the relevant setter functions. The configurable parameters for the
UnsupervisedGnnExplainer are as follows:

• numOptimizationSteps: Number of optimization steps used by the explainer.

• learningRate: Learning rate of the explainer.

• marginalize: Determines if the explainer loss is marginalized over features. This can help
in cases where there are important features that take values close to zero. Without
marginalization the explainer can learn to mask such features out even if they are
important. Marginalization solves this by learning a mask for the deviation from the
estimated input distribution.

• numClusters: Number of clusters to use in the explainer loss. The unsupervised explainer
uses k-means clustering to compute the explainer loss that is optimized. If the approximate
number of components in the graph is known, it is a good idea to set the number of
clusters to this number.

• numSamples: Number of vertex samples to use to optimize the explainer. For the sake of
performance, the explainer computes the loss on this number of randomly sampled
vertices. Using more samples will be more accurate but will take longer and use more
resources.

Note that, in order to achieve best results, the features should be centered around 0.

For example, assume a simple graph, componentGraph which contains k densely connect
components, that is, there are many edges between vertices of the same component and few
edges between any two components. By training an Unsupervised GraphWise model on this
graph, you can expect a model that produces similar embeddings for vertices in a densely
connected component.

The following example shows how to generate an explanation on an inference
componentGraph. It is expected that vertices from the same component to have a higher
importance than vertices from a different component. Note that the feature importances are not
relevant in this example.

• JShell

• Java

Chapter 17
Using the Unsupervised GraphWise Algorithm (Vertex Embeddings)

17-98



• Python

JShell

opg4j> var componentGraph = 
session.readGraphByName("<graph>",GraphSource.PG_PGQL)
// explain prediction of vertex 0
opg4j> var feat1Property = componentGraph.getVertexProperty("feat1")
opg4j> var feat2Property = componentGraph.getVertexProperty("feat2")

// build and train an Unsupervised GraphWise model as explained in Advanced 
Hyperparameter Customization

// obtain and configure the explainer
// setting the numClusters argument to the expected number of clusters may 
improve
// explanation results as the explainer optimization will try to cluster 
samples into
// this number of clusters
opg4j> var explainer = model.gnnExplainer().numClusters(50)
// set the number of samples to compute the loss over during explainer 
optimization
opg4j> explainer.numSamples(10000)

// explain prediction of vertex 0
opg4j> var explanation = explainer.inferAndExplain(componentGraph, 
componentGraph.getVertex(0), 10)

// retrieve computation graph with importance
opg4j> var importanceGraph = explanation.getImportanceGraph()

// retrieve importance of vertices
// vertex 1 is in the same densely connected component as vertex 0
// vertex 2 is in a different component
opg4j> var importanceProperty = explanation.getVertexImportanceProperty()
opg4j> var importanceVertex0 = importanceProperty.get(0)  // has importance 1
opg4j> var importanceVertex1 = importanceProperty.get(1)  // high importance
opg4j> var importanceVertex2 = importanceProperty.get(2)  // low importance

opg4j> var featureImportances = explanation.getVertexFeatureImportance()
opg4j> var importanceConstProp = featureImportances.get(constProperty) // 
small as unimportant
opg4j> var importanceLabelProp = featureImportances.get(labelProperty) // 
large (1) as important

// optionally retrieve feature importance
opg4j> var featureImportances = explanation.getVertexFeatureImportance()
opg4j> var importanceFeat1Prop = featureImportances.get(feat1Property)
opg4j> var importanceFeat2Prop = featureImportances.get(feat2Property)
    

Java

PgxGraph componentGraph = 
session.readGraphByName("<graph>",GraphSource.PG_PGQL); // load graph

Chapter 17
Using the Unsupervised GraphWise Algorithm (Vertex Embeddings)

17-99



VertexProperty<Integer, Float> feat1Property = 
componentGraph.getVertexProperty("feat1");
VertexProperty<Integer, Float> feat2Property = 
componentGraph.getVertexProperty("feat2");

// build and train an Unsupervised GraphWise model as explained in Advanced 
Hyperparameter Customization

// obtain and configure the explainer
// setting the numClusters argument to the expected number of clusters may 
improve
// explanation results as the explainer optimization will try to cluster 
samples into
// this number of clusters
UnsupervisedGnnExplainer explainer = model.gnnExplainer().numClusters(50);
// set the number of samples to compute the loss over during explainer 
optimization
explainer.numSamples(10000);

// explain prediction of vertex 0
UnsupervisedGnnExplanation<Integer> explanation = 
explainer.inferAndExplain(componentGraph, componentGraph.getVertex(0));

// retrieve computation graph with importances
PgxGraph importanceGraph = explanation.getImportanceGraph();

// retrieve importance of vertices
// vertex 1 is in the same densely connected component as vertex 0
// vertex 2 is in a different component
VertexProperty<Integer, Float> importanceProperty = 
explanation.getVertexImportanceProperty();
float importanceVertex0 = importanceProperty.get(0);  // has importance 1
float importanceVertex1 = importanceProperty.get(1);  // high importance
float importanceVertex2 = importanceProperty.get(2);  // low importance

// retrieve feature importance (not relevant for this example)
Map<VertexProperty<Integer, ?>, Float> featureImportances = 
explanation.getVertexFeatureImportance();
float importanceFeat1Prop = featureImportances.get(feat1Property);
float importanceFeat2Prop = featureImportances.get(feat2Property);

Python

# load 'component_graph' with vertex features 'feat1' and 'feat2'
feat1_property = component_graph.get_vertex_property("feat1")
feat2_property = component_graph.get_vertex_property("feat2")

# build and train an Unsupervised GraphWise model as explained in Advanced 
Hyperparameter Customization

# obtain and configure the explainer
# setting the num_clusters argument to the expected number of clusters may 
improve
# explanation results as the explainer optimization will try to cluster 
samples into

Chapter 17
Using the Unsupervised GraphWise Algorithm (Vertex Embeddings)

17-100



# this number of clusters
explainer = model.gnn_explainer(num_clusters=50)
# set the number of samples to compute the loss over during explainer 
optimization
explainer.num_samples = 10000

# explain prediction of vertex 0
explanation = explainer.infer_and_explain(
    graph=component_graph,
    vertex=component_graph.get_vertex(0)
)

# retrieve computation graph with importances
importance_graph = explanation.get_importance_graph()

# retrieve importance of vertices
# vertex 1 is in the same densely connected component as vertex 0
# vertex 2 is in a different component
importance_property = explanation.get_vertex_importance_property()
importance_vertex_0 = importance_property[0]  # has importance 1
importance_vertex_1 = importance_property[1]  # high importance
importance_vertex_2 = importance_property[2]  # low importance

# retrieve feature importance (not relevant for this example)
feature_importances = explanation.get_vertex_feature_importance()
importance_feat1_prop = feature_importances[feat1_property]
importance_feat2_prop = feature_importances[feat2_property]

See Also:

• Building a Minimal Unsupervised GraphWise Model

• Training an Unsupervised GraphWise Model

17.5 Using the Unsupervised EdgeWise Algorithm
UnsupervisedEdgeWise is an inductive edge representation learning algorithm which is able to
leverage vertex and edge feature information. It can be applied to a wide variety of tasks,
including unsupervised learning edge embeddings for edge classification.

Unsupervised EdgeWise is based on top of the GraphWise model, leveraging the source
vertex embedding and the destination vertex embedding generated by the GraphWise model to
generate inductive edge embeddings.

The training is based on Deep Graph Infomax (DGI) by Velickovic et al.

Model Structure

An UnsupervisedEdgeWise model consists of graph convolutional layers followed by an
embedding layer which defaults to a DGI layer.

Chapter 17
Using the Unsupervised EdgeWise Algorithm

17-101

https://arxiv.org/pdf/1809.10341.pdf


First, the source and destination vertices of the target edge are processed through the
convolutional layers. The forward pass through a convolutional layer for a vertex proceeds as
follows:

1. A set of neighbors of the vertex is sampled.

2. The previous layer representations of the neighbors are mean-aggregated, and the
aggregated features are concatenated with the previous layer representation of the vertex.

3. This concatenated vector is multiplied with weights, and a bias vector is added.

4. The result is normalized such that the layer output has unit norm.

The edge embedding layer concatenates the source vertex embedding, the edge features and
the destination vertex embedding, and then forwards it through a linear layer to get the edge
embedding.

The DGI Layer consists of three parts enabling unsupervised learning using embeddings
produced by the convolution layers.

1. Corruption function: Shuffles the node features while preserving the graph structure to
produce negative embedding samples using the convolution layers.

2. Readout function: Sigmoid activated mean of embeddings, used as summary of a graph.

3. Discriminator: Measures the similarity of positive (unshuffled) embeddings with the
summary as well as the similarity of negative samples with the summary from which the
loss function is computed.

Since none of these contains mutable hyperparameters, the default DGI layer is always used
and cannot be adjusted.

The second embedding layer available is the Dominant Layer.

Dominant is a model that detects anomalies based on the features and the neighbors'
structure. Using GCNs to reconstruct the features in an autoencoder's settings, and the mask
with the dot products of the embeddings.

The loss function is computed from the feature reconstruction loss and the structure
reconstruction loss. The importance given to features or to the structure can be tuned with the
alpha hyperparameter.

The following describes the usage of the main functionalities of UnsupervisedEdgeWise in PGX
using the Movielens graph as an example.

• Loading a Graph

• Building a Minimal Unsupervised EdgeWise Model

• Advanced Hyperparameter Customization

• Supported Property Types for Unsupervised EdgeWise Model

• Applying Unsupervised EdgeWise for Partitioned Graphs

• Setting the Edge Combination Production Method

• Training an Unsupervised EdgeWise Model

• Getting the Loss Value for an Unsupervised EdgeWise Model

• Getting the Training Log for an Unsupervised EdgeWise Model

• Inferring Embeddings for an Unsupervised EdgeWise Model

• Classifying the Edges Using the Obtained Embeddings

• Storing an Unsupervised EdgeWise Model

Chapter 17
Using the Unsupervised EdgeWise Algorithm

17-102

https://movielens.org


• Loading a Pre-Trained Unsupervised EdgeWise Model

• Destroying an Unsupervised Anomaly Detection GraphWise Model

• Example: Computing Edge Embeddings on the Movielens Dataset

17.5.1 Loading a Graph
The following describes the steps for loading a graph:

1. Create a Session and an Analyst.

• JShell

• Java

• Python

JShell

cd /opt/oracle/graph/
./bin/opg4j
// starting the shell will create an implicit session and analyst
opg4j> import oracle.pgx.config.mllib.ActivationFunction
opg4j> import oracle.pgx.config.mllib.WeightInitScheme

Java

import oracle.pgx.api.*;
import oracle.pgx.api.mllib.UnsupervisedEdgeWiseModel;
import oracle.pgx.api.filter.EdgeFilter;
import oracle.pgx.api.frames.*;
import oracle.pgx.config.mllib.ActivationFunction;
import oracle.pgx.config.mllib.GraphWiseConvLayerConfig;
import oracle.pgx.config.mllib.GraphWiseDgiLayerConfig;
import oracle.pgx.config.mllib.corruption.PermutationCorruption;
import oracle.pgx.config.mllib.UnsupervisedEdgeWiseModelConfig;
import oracle.pgx.config.mllib.WeightInitScheme;

Python

# starting the Python shell will create an implicit session and analyst

2. Load the graph.

• JShell

• Java

Chapter 17
Using the Unsupervised EdgeWise Algorithm

17-103



• Python

JShell

opg4j> var instance = GraphServer.getInstance("https://localhost:7007", 
"<username>", "<password>".toCharArray())
opg4j> var session=instance.createSession("mySession")
opg4j> var fullGraph = 
session.readGraphByName("<movielens_graph>",GraphSource.PG_PGQL)
opg4j> var filter = EdgeFilter.fromPgqlResultSet(session.queryPgql("SELECT 
e FROM movielens MATCH (v1) -[e]-> (v2) WHERE ID(e) % 4 > 0"), "e")
opg4j> var trainGraph = fullGraph.filter(filter)
opg4j> var testEdges = fullGraph.getEdges().
                     stream().
                     filter(e -> !trainGraph.hasEdge(e.getId())).
                     collect(Collectors.toList())

Java

ServerInstance instance = GraphServer.getInstance("https://
localhost:7007", "<username>", "<password>".toCharArray());
PgxSession session = instance.createSession("my-session");
PgxGraph fullGraph = 
session.readGraphByName("<movielens_graph>",GraphSource.PG_PGQL);
EdgeFilter filter = EdgeFilter.fromPgqlResultSet(session.queryPgql("SELECT 
e FROM movielens MATCH (v1) -[e]-> (v2) WHERE ID(e) % 4 > 0"), "e");
PgxGraph trainGraph = fullGraph.filter(filter);
List<PgxEdge> testEdges = fullGraph.getEdges()
    .stream()
    .filter(e -> !trainGraph.hasEdge(e.getId()))
    .collect(Collectors.toList());

Python

from pypgx.api.filters import EdgeFilter
instance = graph_server.get_instance("https://
localhost:7007","<username>","<password>")
session = instance.create_session("my_session")
full_graph = session.read_graph_by_name("<movielens_graph>", "pg_pgql")
edge_filter = EdgeFilter.from_pgql_result_set(
    session.query_pgql("SELECT e FROM movielens MATCH (v1) -[e]-> (v2) 
WHERE ID(e) % 4 > 0"), "e"
)
train_graph = full_graph.filter(edge_filter)
test_edges = []
train_edges = train_graph.get_edges()
for e in full_graph.get_edges():
    if(not train_edges.contains(e)):
        test_vertices.append(e)

Chapter 17
Using the Unsupervised EdgeWise Algorithm

17-104



17.5.2 Building a Minimal Unsupervised EdgeWise Model
You can build an EdgeWise model using the minimal configuration and default hyper-
parameters as described in the following code. Note that even though only one feature
property is needed (either on vertices with setVertexInputPropertyNames or edges with
setEdgeInputPropertyNames) for the model to work, you can specify as many as required.

• JShell

• Java

• Python

JShell

opg4j> var model = analyst.unsupervisedEdgeWiseModelBuilder().
         setVertexInputPropertyNames("vertex_features").
         setEdgeInputPropertyNames("edge_features").
         build()

Java

UnsupervisedEdgeWiseModel model = analyst.unsupervisedEdgeWiseModelBuilder()
    .setVertexInputPropertyNames("vertex_features")
    .setEdgeInputPropertyNames("edge_features")
    .build();

Python

params = dict(vertex_input_property_names=["vertex_features"],
              edge_input_property_names=["edge_features"])

model = analyst.unsupervised_edgewise_builder(**params)

17.5.3 Advanced Hyperparameter Customization
You can build an Unsupervised EdgeWise model using rich hyperparameter customization.
Internally for each node, GraphWise applies an aggregation of the representation of neighbors.
You can configure this operation through one of the following sub-config classes:

• GraphWiseConvLayerConfig: GraphWiseConvLayer is based on Inductive Representation
Learning on Large Graphs (GraphSage) by Hamilton et al.

• GraphWiseAttentionLayerConfig: GraphWiseAttentionLayer is based on Graph Attention
Networks (GAT) by Velickovic et al. which makes the aggregation smarter but comes with
larger computation cost.

Chapter 17
Using the Unsupervised EdgeWise Algorithm

17-105

https://arxiv.org/pdf/1706.02216.pdf
https://arxiv.org/pdf/1706.02216.pdf
https://arxiv.org/pdf/1710.10903.pdf
https://arxiv.org/pdf/1710.10903.pdf


Also, you can enable or disable a graphics processing unit (GPU) by using the
enable_ml_accelerators graph server (PGX) configuration parameter (see Configuration
Parameters for the Graph Server (PGX) Engine for more information). In addition, ensure that
your system meets the following prerequisites to use the GPU support:

• You must have a GPU device with the CUDA (Compute Unified Device Architecture) toolkit
installed.

• The following list of CUDA libraries are expected:

– libcuda.so.1
– libnvrtc.so.12
– libnvToolsExt.so.1
– libcudart.so.12

Note that the enable_ml_accelerators option is enabled by default. But if a GPU device is not
detected and the CUDA toolkit is not installed, then this feature gets disabled and the CPU will
be used for all the PgxML library operations.

The following code examples uses the GraphWiseConvLayerConfig class for the convolutional
layer configuration. The examples also specifies a weight decay parameter of 0.001 and
dropout with dropping probability 0.5 for the GraphWise model to counteract overfitting. Also, it
is recommended to disable normalization of embeddings when you intend to use them in
downstream classfication tasks. Note that the setEnableAccelerator method is enabled to
use any available GPU.

• JShell

• Java

• Python

JShell

opg4j> var weightProperty = analyst.pagerank(trainGraph).getName()
opg4j> var convLayerConfig = analyst.graphWiseConvLayerConfigBuilder().
         setNumSampledNeighbors(25).
         setActivationFunction(ActivationFunction.TANH).
         setWeightInitScheme(WeightInitScheme.XAVIER).
         setWeightedAggregationProperty(weightProperty).
         setDropoutRate(0.5).
         build()
opg4j> var dgiLayerConfig = analyst.graphWiseDgiLayerConfigBuilder().
         setCorruptionFunction(new PermutationCorruption()).
         setDiscriminator(GraphWiseDgiLayerConfig.Discriminator.BILINEAR).
         setReadoutFunction(GraphWiseDgiLayerConfig.ReadoutFunction.MEAN).
         build()
opg4j> var model = analyst.unsupervisedEdgeWiseModelBuilder().
         setVertexInputPropertyNames("vertex_features").
         setEdgeInputPropertyNames("edge_features").
         setConvLayerConfigs(convLayerConfig).
         setDgiLayerConfig(dgiLayerConfig).
         setWeightDecay(0.001).
         setNormalize(false).  // recommended

Chapter 17
Using the Unsupervised EdgeWise Algorithm

17-106



         setEnableAccelerator(true). // Enable or disable GPU
         build()

Java

String weightProperty = analyst.pagerank(trainGraph).getName();
GraphWiseConvLayerConfig convLayerConfig = 
analyst.graphWiseConvLayerConfigBuilder()
    .setNumSampledNeighbors(25)
    .setActivationFunction(ActivationFunction.TANH)
    .setWeightInitScheme(WeightInitScheme.XAVIER)
    .setWeightedAggregationProperty(weightProperty)
    .setDropoutRate(0.5)
    .build();

GraphWiseDgiLayerConfig dgiLayerConfig = 
analyst.graphWiseDgiLayerConfigBuilder()
    .setCorruptionFunction(new PermutationCorruption())
    .setDiscriminator(GraphWiseDgiLayerConfig.Discriminator.BILINEAR)
    .setReadoutFunction(GraphWiseDgiLayerConfig.ReadoutFunction.MEAN)
    .build();

UnsupervisedEdgeWiseModel model = analyst.unsupervisedEdgeWiseModelBuilder()
    .setVertexInputPropertyNames("vertex_features")
    .setEdgeInputPropertyNames("edge_features")
    .setConvLayerConfigs(convLayerConfig)
    .setDgiLayerConfigs(dgiLayerConfig)
    .setWeightDecay(0.001)
    .setNormalize(false)  // recommended
    .setEnableAccelerator(true) // Enable or disable GPU
    .build();

Python

weightProperty = analyst.pagerank(train_graph).name

conv_layer_config = dict(num_sampled_neighbors=25,
                         activation_fn='tanh',
                         weight_init_scheme='xavier',
                         neighbor_weight_property_name=weightProperty,
                         dropout_rate=0.5)

conv_layer = analyst.graphwise_conv_layer_config(**conv_layer_config)

dgi_layer_config = dict(corruption_function=None,
                        readout_function="mean",
                        discriminator="bilinear")

dgi_layer = analyst.graphwise_dgi_layer_config(**dgi_layer_config)

params = dict(conv_layer_config=[conv_layer],
              dgi_layer_config=dgi_layer,
              loss_fn="sigmoid_cross_entropy",
              vertex_input_property_names=["vertex_features"],

Chapter 17
Using the Unsupervised EdgeWise Algorithm

17-107



              edge_input_property_names=["edge_features"],
              seed=17,
              normalize=False,  # recommended
              weight_decay=0.001,
              enable_accelerator=True) # Enable or disable GPU
)

model = analyst.unsupervised_edgewise_builder(**params)

In the preceding example, you can replace GraphWiseConvLayerConfig with the
GraphWiseAttentionLayerConfig class to build a graph attention network model. Also, note
that if the number of sampled neighbors is set to -1 using setNumSampledNeighbors, then all
the neighboring nodes will be sampled.

• JShell

• Java

• Python

JShell

opg4j> var convLayerConfig = analyst.graphWiseAttentionLayerConfigBuilder().
         setNumSampledNeighbors(25).
         setActivationFunction(ActivationFunction.LEAKY_RELU).
         setWeightInitScheme(WeightInitScheme.XAVIER_UNIFORM).
         setHeadAggregation(AggregationOperation.MEAN).
         setNumHeads(4).
         setDropoutRate(0.5).
         build()

Java

GraphWiseAttentionLayerConfig convLayerConfig = 
analyst.graphWiseAttentionLayerConfigBuilder()
    .setNumSampledNeighbors(25)
    .setActivationFunction(ActivationFunction.LEAKY_RELU)
    .setWeightInitScheme(WeightInitScheme.XAVIER_UNIFORM)
    .setHeadAggregation(AggregationOperation.MEAN)
    .setNumHeads(4)
    .setDropoutRate(0.5)
    .build();

Python

conv_layer_config = dict(num_sampled_neighbors=25,
                         activation_fn='leaky_relu',
                         weight_init_scheme='xavier_uniform',
                         aggregation_operation='mean',

Chapter 17
Using the Unsupervised EdgeWise Algorithm

17-108



                         num_heads=4,
                         dropout_rate=0.5)

See the Javadoc for more information.

17.5.4 Supported Property Types for Unsupervised EdgeWise Model
The model supports two types of properties for both vertices and edges:

• continuous properties (boolean, double, float, integer, long)

• categorical properties (string)

For categorical properties, two categorical configurations are possible:

• One-hot-encoding: Each category is mapped to a vector, that is concatenated to other
features (default)

• Embedding table: Each category is mapped to an embedding that is concatenated to
other features and is trained along with the model

One-hot-encoding converts each category into an independent vector. This is useful if you
want each category to be interpreted as an equally independent group. For instance, if there
are categories ranging from A to E, where each alphabet has no specific meaning, then one-
hot-encoding can be a good fit.

Embedding table is recommended if the semantics of the properties matter, and you want
certain categories to be closer to each other than the others. For example, assume there is a
day property with values ranging from Monday to Sunday. If you wish to preserve the idea that
Tuesday is closer to Wednesday than Saturday, then by choosing the embedding table
configuration, you can let the vectors that represent the categories to be learned during
training, so that the vector that is mapped to Tuesday becomes close to that of Wednesday.

One advantage that the embedding table approach has over one-hot-encoding is that you can
learn more suitable vectors to represent each category. However, this also means that a good
amount of data is required to train the embedding table properly. The one-hot-encoding
approach might be better for use-cases with limited training data.

When using the embedding table, users are allowed to set the out-of-vocabulary probability.
With the given probability, the embedding will be set to the out-of-vocabulary embedding
randomly during training, in order to make the model more robust to unseen categories during
inference.

• JShell

• Java

• Python

JShell

opg4j> import oracle.pgx.config.mllib.inputconfig.CategoricalPropertyConfig
opg4j> var prop1config = 
analyst.categoricalPropertyConfigBuilder("vertex_str_feature_1").

Chapter 17
Using the Unsupervised EdgeWise Algorithm

17-109



    oneHotEncoding().
    setMaxVocabularySize(100).
    build()
opg4j> var prop2config = 
analyst.categoricalPropertyConfigBuilder("vertex_str_feature_2").
    embeddingTable().
    setShared(false). // set whether to share the vocabulary or not when 
several vertex types have a property with the same name
    setEmbeddingDimension(32).
    setOutOfVocabularyProbability(0.001). // probability to set the word 
embedding to the out-of-vocabulary embedding
    build()
opg4j> var model = analyst.supervisedEdgeWiseModelBuilder().
    setVertexInputPropertyNames(
        "vertex_int_feature_1", // continuous feature
        "vertex_str_feature_1", // string feature using one-hot-encoding
        "vertex_str_feature_2", // string feature using embedding table
        "vertex_str_feature_3" // string feature using one-hot-encoding 
(default)
    ).
    setVertexInputPropertyConfigs(prop1config, prop2config).
    build()

Java

import oracle.pgx.config.mllib.inputconfig.CategoricalPropertyConfig;
import oracle.pgx.config.mllib.inputconfig.InputPropertyConfig;

InputPropertyConfig prop1config = 
analyst.categoricalPropertyConfigBuilder("vertex_str_feature_1")
    .oneHotEncoding()
    .setMaxVocabularySize(100)
    .build();
InputPropertyConfig prop2config = 
analyst.categoricalPropertyConfigBuilder("vertex_str_feature_2")
    .embeddingTable()
    .setShared(false) // set whether to share the vocabulary or not when 
several vertex types have a property with the same name
    .setEmbeddingDimension(32)
    .setOutOfVocabularyProbability(0.001) // probability to set the word 
embedding to the out-of-vocabulary embedding
    .build();
UnsupervisedEdgeWiseModel model = analyst.unsupervisedEdgeWiseModelBuilder()
    .setVertexInputPropertyNames(
        "vertex_int_feature_1", // continuous feature
        "vertex_str_feature_1", // string feature using one-hot-encoding
        "vertex_str_feature_2", // string feature using embedding table
        "vertex_str_feature_3" // string feature using one-hot-encoding 
(default)
    )
    .setVertexInputPropertyConfigs(prop1config, prop2config)
    .build();

Chapter 17
Using the Unsupervised EdgeWise Algorithm

17-110



Python

vertex_input_property_configs = [
    analyst.one_hot_encoding_categorical_property_config(
        property_name="vertex_str_feature_1",
        max_vocabulary_size=100
    ),
    analyst.learned_embedding_categorical_property_config(
        property_name="vertex_str_feature_2",
        embedding_dim=4,
        shared=False, // set whether to share the vocabulary or not when 
several  types have a property with the same name
        oov_probability=0.001 // probability to set the word embedding to the 
out-of-vocabulary embedding
    )
]

model_params = dict(
    vertex_input_property_names=[
        "vertex_int_feature_1", // continuous feature
        "vertex_str_feature_1", // string feature using one-hot-encoding
        "vertex_str_feature_2", // string feature using embedding table
        "vertex_str_feature_3", // string feature using one-hot-encoding 
(default)
    ],
    vertex_input_property_configs=vertex_input_property_configs    
)

model = analyst.unsupervised_edgewise_builder(**model_params)

17.5.5 Applying Unsupervised EdgeWise for Partitioned Graphs
You can apply unsupervised edgewise on partitioned graphs, where you have different
providers and different features.

• JShell

• Java

• Python

JShell

opg4j> var model = analyst.unsupervisedEdgeWiseModelBuilder().
         setVertexInputPropertyNames("vertex_provider_features").
         setEdgeInputPropertyNames("edge_provider1_features", 
"edge_provider2_features").
         build()

Chapter 17
Using the Unsupervised EdgeWise Algorithm

17-111



Java

UnsupervisedEdgeWiseModel model = analyst.unsupervisedEdgeWiseModelBuilder()
    .setVertexInputPropertyNames("vertex_provider_features")
    .setEdgeInputPropertyNames("edge_provider1_features", 
"edge_provider2_features")
    .build();

Python

params = dict(vertex_input_property_names=["vertex_provider_features"],
              edge_input_property_names=["edge_provider1_features", 
"edge_provider2_features"])

model = analyst.unsupervised_edgewise_builder(**params)

You can select which providers you want to train or infer on:

• JShell

• Java

• Python

JShell

opg4j> var model = analyst.unsupervisedEdgeWiseModelBuilder().
         setVertexInputPropertyNames("vertex_provider_features").
         setEdgeInputPropertyNames("edge_provider1_features", 
"edge_provider2_features").
         setTargetEdgeLabels("provider1").
         build()

Java

UnsupervisedEdgeWiseModel model = analyst.unsupervisedEdgeWiseModelBuilder()
    .setVertexInputPropertyNames("vertex_provider_features")
    .setEdgeInputPropertyNames("edge_provider1_features", 
"edge_provider2_features")
    .setTargetEdgeLabels("provider1")
    .build();

Python

params = dict(vertex_input_property_names=["vertex_provider_features"],
              edge_input_property_names=["edge_provider1_features", 
"edge_provider2_features"],
              target_edge_labels=["provider1"])

Chapter 17
Using the Unsupervised EdgeWise Algorithm

17-112



model = analyst.unsupervised_edgewise_builder(**params)

If you wish to control the flow of the embeddings at each graph convolutional layer of the
underlying Graphwise model, then you can enable or disable the connections of interest. By
default, all the connections are enabled.

• JShell

• Java

• Python

JShell

opg4j> var convLayerConfig = analyst.graphWiseConvLayerConfigBuilder().
         setNumSampledNeighbors(25).
         useVertexToVertexConnection(true).
         useEdgeToVertexConnection(true).
         useEdgeToEdgeConnection(false).
         useVertexToEdgeConnection(false).
         build()
opg4j> var model = analyst.unsupervisedEdgeWiseModelBuilder().
         setVertexInputPropertyNames("vertex_provider1_features", 
"vertex_provider2_features").
         setEdgeInputPropertyNames("edge_provider_features").
         setTargetEdgeLabels("provider1").
         build()

Java

GraphWiseConvLayerConfig convLayerConfig = 
analyst.graphWiseConvLayerConfigBuilder()
    .setNumSampledNeighbors(10)
    .useVertexToVertexConnection(true)
    .useEdgeToVertexConnection(true)
    .useEdgeToEdgeConnection(false)
    .useVertexToEdgeConnection(false)
    .build();

UnsupervisedEdgeWiseModel model = analyst.unsupervisedEdgeWiseModelBuilder()
    .setVertexInputPropertyNames("vertex_provider1_features", 
"vertex_provider2_features")
    .setEdgeInputPropertyNames("edge_provider_features")
    .setTargetEdgeLabels("provider1")
    .setConvLayerConfigs(convLayerConfig)
    .build();

Chapter 17
Using the Unsupervised EdgeWise Algorithm

17-113



Python

conv_layer_config = dict(num_sampled_neighbors=25,
                         activation_fn='tanh',
                         weight_init_scheme='xavier',
                         neighbor_weight_property_name=weightProperty,
                         vertex_to_vertex_connection=True,
                         edge_to_vertex_connection=True,
                         vertex_to_edge_connection=False,
                         edge_to_edge_connection=False)

conv_layer = analyst.graphwise_conv_layer_config(**conv_layer_config)

params = dict(vertex_input_property_names=["vertex_provider1_features", 
"vertex_provider2_features"],
              edge_input_property_names=["edge_provider_features"],
              target_edge_labels=["provider1"],
              conv_layer_config=[conv_layer])

model = analyst.unsupervised_edgewise_builder(**params)

17.5.6 Setting the Edge Combination Production Method
By default, the edge embedding is computed by combining the source vertex embedding, the
destination vertex embedding and the edge features. You can manually set these by setting the
EdgeCombinationMethod with booleans parameters:

• JShell

• Java

• Python

JShell

opg4j> import oracle.pgx.config.mllib.edgecombination.EdgeCombinationMethods

opg4j> var method = 
EdgeCombinationMethods.concatEdgeCombinationMethod(useSourceVertex, 
useDestinationVertex, useEdge)
opg4j> var model = analyst.unsupervisedEdgeWiseModelBuilder().
         setVertexInputPropertyNames("vertex_features").
         setEdgeInputPropertyNames("edge_features").
         setEdgeCombinationMethod(method).
         build()

Chapter 17
Using the Unsupervised EdgeWise Algorithm

17-114



Java

import oracle.pgx.config.mllib.edgecombination.EdgeCombinationMethod;
import oracle.pgx.config.mllib.edgecombination.EdgeCombinationMethods;

EdgeCombinationMethod method = 
EdgeCombinationMethods.concatEdgeCombinationMethod(useSourceVertex, 
useDestinationVertex, useEdge);

UnsupervisedEdgeWiseModel model = analyst.unsupervisedEdgeWiseModelBuilder()
    .setVertexInputPropertyNames("vertex_features")
    .setEdgeInputPropertyNames("edge_features")
    .setEdgeCombinationMethod(method)
    .build();

Python

from pypgx.api.mllib import ConcatEdgeCombinationMethod

method_config = dict(use_source_vertex=True,
    use_destination_vertex=False,
    use_edge=True)

method = ConcatEdgeCombinationMethod(**method_config)

params = dict(vertex_input_property_names=["vertex_features"],
              edge_input_property_names=["edge_features"],
              edge_combination_method=method,
              seed=17)

model = analyst.unsupervised_edgewise_builder(**params)

17.5.7 Training an Unsupervised EdgeWise Model
You can train an UnsupervisedEdgeWiseModel on a graph as shown:

• JShell

• Java

• Python

JShell

opg4j> model.fit(trainGraph)

Chapter 17
Using the Unsupervised EdgeWise Algorithm

17-115



Java

model.fit(trainGraph);

Python

model.fit(train_graph)

You can also add a validation step to the training. When training a model, the optimal number
of training epochs is not known in advance and it is one of the key parameters that determines
the model quality. Being able to monitor the training and validation losses helps you to identify
a good value for the model parameters and gain visibility in the training process. The
evaluation frequency can be specified in terms of epoch or step. To configure a validation step,
create a GraphWiseValidationConfig and pass it to the model builder as shown:

• JShell

• Java

• Python

JShell

opg4j> import oracle.pgx.config.mllib.EvaluationFrequencyScale;

opg4j> var validationConfig = analyst.graphWiseValidationConfigBuilder().
         setEvaluationFrequency(100).                                 // set 
the evaluation frequency (default: 1)
         setEvaluationFrequencyScale(EvaluationFrequencyScale.STEP).  // 
available options: EPOCH, STEP (default: EPOCH)
         build()

opg4j> var model = analyst.unsupervisedEdgeWiseModelBuilder().
         setVertexInputPropertyNames("vertex_features").
         setEdgeInputPropertyNames("edge_features").
         setValidationConfig(validationConfig).  // configuring the 
validation to be executed every 100 steps
         build()

Java

import oracle.pgx.config.mllib.GraphWiseValidationConfig;
import oracle.pgx.config.mllib.EvaluationFrequencyScale;

GraphWiseValidationConfig validationConfig = 
analyst.graphWiseValidationConfigBuilder()
    .setEvaluationFrequency(100)                                 // set the 
evaluation frequency (default: 1)
    .setEvaluationFrequencyScale(EvaluationFrequencyScale.STEP)  // available 

Chapter 17
Using the Unsupervised EdgeWise Algorithm

17-116



options: EPOCH, STEP (default: EPOCH)
    .build();

UnsupervisedEdgeWiseModel model = analyst.unsupervisedEdgeWiseModelBuilder()
    .setVertexInputPropertyNames("vertex_features")
    .setEdgeInputPropertyNames("edge_features")
    .setValidationConfig(validationConfig)  // configuring the validation to 
be executed every 100 steps
    .build();

Python

validation_config = analyst.graphwise_validation_config(
    evaluation_frequency=100,           # set the evaluation frequency 
(default: 1)
    evaluation_frequency_scale="step",  # available options: "epoch", "step" 
(default: "epoch")
)

params = dict(vertex_input_property_names=["vertex_features"],
              edge_input_property_names=["edge_features"],
              validation_config=validation_config,  # configuring the 
validation to be executed every 100 steps
              seed=17)

model = analyst.unsupervised_edgewise_builder(**params)

After configuring a validation step, you can then pass a graph for validation to the fit method
together with the graph for training:

• JShell

• Java

• Python

JShell

opg4j> model.fit(trainGraph, valGraph)

Java

model.fit(trainGraph,valGraph);

Python

model.fit(train_graph,valGraph)

Chapter 17
Using the Unsupervised EdgeWise Algorithm

17-117



17.5.8 Getting the Loss Value for an Unsupervised EdgeWise Model
You can fetch the training loss value for an Unsupervised EdgeWise Model as shown in the
following code:

• JShell

• Java

• Python

JShell

opg4j> var loss = model.getTrainingLoss()

Java

double loss = model.getTrainingLoss();

Python

loss = model.get_training_loss()

17.5.9 Getting the Training Log for an Unsupervised EdgeWise Model
If you configured a validation step (see Training an Unsupervised EdgeWise Model) earlier,
then you can fetch the training log that contains the training and validation loss information.

• JShell

• Java

• Python

JShell

opg4j> var trainingLog = model.getTrainingLog()

Java

PgxFrame trainingLog = model.getTrainingLog();

Chapter 17
Using the Unsupervised EdgeWise Algorithm

17-118



Python

training_log = model.get_training_log()

The output frame will be similar to the following example output:

+--------------------------------------------------+
| step  | training_loss      | validation_loss     |
+--------------------------------------------------+
| 100   | 1.5059218406677246 | 0.41696539521217346 |
| 200   | 0.5052874088287354 | 0.3255307078361511  |
| 300   | 0.3264007568359375 | 0.44015955924987793 |
+--------------------------------------------------+

17.5.10 Inferring Embeddings for an Unsupervised EdgeWise Model
You can use a trained model to infer embeddings for unseen nodes and store them in the
database as described in the following code:

• JShell

• Java

• Python

JShell

opg4j> var edgeVectors = model.inferEmbeddings(fullGraph, 
testEdges).flattenAll()
opg4j> edgeVectors.write().
         db().
         name("edge vectors").
         tablename("edgeVectors").  
         overwrite(true).             
         store()

Java

PgxFrame edgeVectors = model.inferEmbeddings(fullGraph, 
testEdges).flattenAll();
edgeVectors.write()
    .db()
    .name("edge vectors")
    .tablename("edgeVectors") 
    .overwrite(true)            
    .store();

Chapter 17
Using the Unsupervised EdgeWise Algorithm

17-119



Python

edge_vectors = model.infer_embeddings(full_Graph, test_edges).flatten_all()
edge_vectors.write().db().table_name("table_name").name("edge_vectors").overwr
ite(True).store()

The schema for the edgeVectors will be as follows without flattening (flattenAll splits the
vector column into separate double-valued columns):

+---------------------------------------------------------------+
| edgeId                                | embedding             |
+---------------------------------------------------------------+

All the preceding examples assume that you are inferring the embeddings for a model in the
current logged in database. If you must infer embeddings for the model in a different database,
then you must additionally provide the database credentials such as username, password, and
jdbcUrl to the inferEmbeddings method. Refer to Inferring Embeddings for a Model in Another
Database for an example.

17.5.11 Classifying the Edges Using the Obtained Embeddings
You can use the obtained embeddings in downstream edge classification tasks.

The following code shows how you can train a multi-layer perceptron (MLP) classifier, which
takes the embeddings as input. It is assumed that the edge label information is stored under
the edge property labels.

• Python

Python

import pandas as pd
from sklearn.metrics import accuracy_score, make_scorer
from sklearn.model_selection import RepeatedStratifiedKFold, cross_val_score
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import StandardScaler

# prepare input data
edge_vectors_df = edge_vectors.to_pandas().astype({"edgeId": int})
edge_labels_df = pd.DataFrame([
    {"edgeId": e.id, "labels": properties}
    for e, properties in graph.get_edge_property("labels").get_values()
]).astype(int)

edge_vectors_with_labels_df = edge_vectors_df.merge(edge_labels_df, 
on="edgeId")

feature_columns = [c for c in edge_vectors_df.columns if 

Chapter 17
Using the Unsupervised EdgeWise Algorithm

17-120



c.startswith("embedding")]
x = edge_vectors_with_labels_df[feature_columns].to_numpy()
y = edge_vectors_with_labels_df["labels"].to_numpy()

scaler = StandardScaler()
x = scaler.fit_transform(x)

# define an MLP classifier
model = MLPClassifier(
    hidden_layer_sizes=(6,),
    learning_rate_init=0.05,
    max_iter=2000,
    random_state=42,
)

# define a metric and evaluate with cross-validation
cv = RepeatedStratifiedKFold(n_splits=5, n_repeats=3, random_state=42)
scorer = make_scorer(accuracy_score, greater_is_better=True)
scores = cross_val_score(model, x, y, scoring=scorer, cv=cv, n_jobs=-1)

17.5.12 Storing an Unsupervised EdgeWise Model
You can store models in the database. The models get stored as a row inside a model store
table.
The following shows how to store a trained UnsupervisedEdgeWise model in the database in a
specific model store table:

• JShell

• Java

• Python

JShell

opg4j> model.export().db(). 
              modelstore("modelstoretablename").  // name of the model store 
table
              modelname("model").                 // model name (primary key 
of model store table)
              description("a model description"). // description to store 
alongside the model
              store()

Java

model.export().db()
    .modelstore("modelstoretablename")  // name of the model store table
    .modelname("model")                 // model name (primary key of model 
store table)

Chapter 17
Using the Unsupervised EdgeWise Algorithm

17-121



    .description("a model description") // description to store alongside the 
model
    .store();

Python

model.export().db(model_store="modeltablename",    # name of the model store 
table
                  model_name="model",                       # model name 
(primary key of model store table)
                  model_description="a model description")  # description to 
store alongside the model

Note:

All the preceding examples assume that you are storing the model in the current
logged in database. If you must store the model in a different database then refer to
the examples in Storing a Trained Model in Another Database.

17.5.13 Loading a Pre-Trained Unsupervised EdgeWise Model
You can load a pre-trained UnsupervisedEdgeWise model from a model store table in the
database as shown:

• JShell

• Java

• Python

JShell

opg4j> var model = analyst.loadUnsupervisedEdgeWiseModel().db().
                modelstore("modeltablename"). // name of the model store table
                modelname("model").           // model name (primary key of 
model store table)
                load()

Java

UnsupervisedEdgeWiseModel model = analyst.loadUnsupervisedEdgeWiseModel().db()
     .modelstore("modeltablename") // name of the model store table
     .modelname("model")           // model name (primary key of model store 
table)
     .load();

Chapter 17
Using the Unsupervised EdgeWise Algorithm

17-122



Python

model = analyst.get_unsupervised_edgewise_model_loader(). \
                 db("modeltablename",       # name of the model store table
                    "model_name")           # model name (primary key of 
model store table)

Note:

All the preceding examples assume that you are loading the model from the current
logged in database. If you must load the model from a different database then refer to
the examples in Loading a Pre-Trained Model From Another Database.

17.5.14 Destroying an Unsupervised Anomaly Detection GraphWise Model
You can destroy an Unsupervised Anomaly Detection GraphWise model as described in the
following code:

• JShell

• Java

• Python

JShell

opg4j> model.destroy()

Java

model.destroy();

Python

model.destroy()

17.5.15 Example: Computing Edge Embeddings on the Movielens Dataset
This section describes the usage of UnsupervisedEdgeWise in PGX using the Movielens graph
as an example.
This data set consists of 100,000 ratings (1-5) from 943 users on 1682 movies, with simple
demographic information for the users (age, gender, occupation) and movies (year,

Chapter 17
Using the Unsupervised EdgeWise Algorithm

17-123

https://movielens.org


aggravating, genre). Users and movies are vertices, while ratings of users to movies are edges
with a rating feature.

The following example predicts the ratings using the UnsupervisedEdgeWise model. You first
build the model and fit it on the trainGraph.

• JShell

• Java

• Python

JShell

opg4j> var convLayer = analyst.graphWiseConvLayerConfigBuilder().
        setNumSampledNeighbors(10).
        build()

opg4j> var model = analyst.unsupervisedEdgeWiseModelBuilder().
        setVertexInputPropertyNames("movie_year", "avg_rating", 
"movie_genres", // Movies features
            "user_occupation_label", "user_gender", "raw_user_age"). // Users 
features
        setEdgeInputPropertyNames("user_rating").
        setConvLayerConfigs(convLayer).
        setNumEpochs(10).
        setEmbeddingDim(32).
        setLearningRate(0.003).
        setStandardize(true).
        setNormalize(false). //recommended
        setSeed(0).
        build()
opg4j> model.fit(trainGraph)

Java

GraphWiseConvLayerConfig convLayer = analyst.graphWiseConvLayerConfigBuilder()
        .setNumSampledNeighbors(10)
        .build();

UnsupervisedEdgeWiseModel model = analyst.unsupervisedEdgeWiseModelBuilder()
        .setVertexInputPropertyNames("movie_year", "avg_rating", 
"movie_genres", // Movies features
            "user_occupation_label", "user_gender", "raw_user_age") // Users 
features
        .setEdgeInputPropertyNames("user_rating")
        .setConvLayerConfigs(convLayer)
        .setNumEpochs(10)
        .setEmbeddingDim(32)
        .setLearningRate(0.003)
        .setStandardize(true)
        .setNormalize(false) //recommended
        .setSeed(0)

Chapter 17
Using the Unsupervised EdgeWise Algorithm

17-124



        .build();

model.fit(trainGraph);

Python

conv_layer_config = dict(num_sampled_neighbors=10)

conv_layer = analyst.graphwise_conv_layer_config(**conv_layer_config)

params = dict(conv_layer_config=[conv_layer],
              vertex_input_property_names=["movie_year", "avg_rating", 
"movie_genres",
                "user_occupation_label", "user_gender", "raw_user_age"],
              edge_input_property_names=["user_rating"],
              num_epochs=10,
              embedding_dim=32,
              learning_rate=0.003,
              normalize=False, #recommended
              seed=0)

model = analyst.unsupervised_edgewise_builder(**params)

model.fit(train_graph)

Since EdgeWise is inductive, you can infer the ratings for unseen edges:

• JShell

• Java

• Python

JShell

opg4j> var embeddings = model.inferEmbeddings(fullGraph, testEdges)
opg4j> embeddings.head().print()

Java

PgxFrame embeddings = model.inferEmbeddings(fullGraph,testEdges);
embeddings.head().print();

Python

embeddings = model.infer_embeddings(full_graph, test_edges)
embeddings.print()

Chapter 17
Using the Unsupervised EdgeWise Algorithm

17-125



17.6 Using the Unsupervised Anomaly Detection GraphWise
Algorithm (Vertex Embeddings and Anomaly Scores)

UnsupervisedAnomalyDetectionGraphWise is an inductive vertex representation learning
and anomaly detection algorithm which is able to leverage vertex and edge feature information.
Although it can be applied to a wide variety of tasks, it is particularly suitable for unsupervised
learning of vertex embeddings for anomaly detection. After training this model, it is possible to
infer anomaly scores or labels for unseen nodes.

Model Structure

A UnsupervisedAnomalyDetectionGraphWise model consists of graph convolutional layers
followed by an embedding layer. There are two types of embedding layers - DGI layer and
Dominant layer. Both the layers are for inductive vertex representation learning with different
loss functions. The embedding layer defaults to the DGI layer.

The forward pass through a convolutional layer for a vertex proceeds as follows:

1. A set of neighbors of the vertex is sampled.

2. The previous layer representations of the neighbors are mean-aggregated, and the
aggregated features are concatenated with the previous layer representation of the vertex.

3. This concatenated vector is multiplied with weights, and a bias vector is added.

4. The result is normalized to such that the layer output has unit norm.

The DGI Layer, which is based on (Deep Graph Infomax (DGI) by Velickovic et al.) consists of
three parts that enable unsupervised learning using embeddings produced by the convolution
layers.

1. Corruption function: Shuffles the node features while preserving the graph structure to
produce negative embedding samples using the convolution layers.

2. Readout function: Sigmoid activated mean of embeddings, used as summary of a graph.

3. Discriminator: Measures the similarity of positive (unshuffled) embeddings with the
summary as well as the similarity of negative samples with the summary from which the
loss function is computed.

Since none of these contains mutable hyperparameters, the default DGI layer is always used
and cannot be adjusted.

The Dominant layer enables unsupervised learning using a deep autoencoder. It uses the
graph convolutional networks (GCNs) to reconstruct the features in the autoencoder setting,
together with the reconstructed structure that is estimated using the dot products of the
embeddings.

The loss function is computed from the feature reconstruction loss and the structure
reconstruction loss. The importance given to features or to the structure can be tuned with the
alpha hyperparameter.

The following describes the usage of the main functionalities of the implementation of Dominant
in PGX. The example demonstrates a scenario to detect fraudulent vertices based on their
features.

• Loading a Graph

• Building a Minimal Unsupervised Anomaly Detection GraphWise Model

Chapter 17
Using the Unsupervised Anomaly Detection GraphWise Algorithm (Vertex Embeddings and Anomaly Scores)

17-126

https://arxiv.org/pdf/1809.10341.pdf


• Advanced Hyperparameter Customization

• Building an Unsupervised Anomaly Detection GraphWise Model Using Partitioned Graphs

• Training an Unsupervised Anomaly Detection GraphWise Model

• Getting the Loss Value for an Unsupervised Anomaly Detection GraphWise Model

• Inferring Embeddings for an Unsupervised Anomaly Detection GraphWise Model

• Inferring Anomalies

• Storing an Unsupervised Anomaly Detection GraphWise Model

• Loading a Pre-Trained Unsupervised Anomaly Detection GraphWise Model

• Destroying an Unsupervised Anomaly Detection GraphWise Model

17.6.1 Loading a Graph
The following describes the steps for loading a graph:

1. Create a Session and an Analyst.

• JShell

• Java

• Python

JShell

cd /opt/oracle/graph/
./bin/opg4j
// starting the shell will create an implicit session and analyst
opg4j> import oracle.pgx.config.mllib.ActivationFunction
opg4j> import oracle.pgx.config.mllib.WeightInitScheme

Java

import oracle.pgx.api.*;
import oracle.pgx.api.mllib.UnsupervisedAnomalyDetectionGraphWiseModel;
import oracle.pgx.api.frames.*;
import oracle.pgx.config.mllib.ActivationFunction;
import oracle.pgx.config.mllib.GraphWiseConvLayerConfig;
import 
oracle.pgx.config.mllib.UnsupervisedAnomalyDetectionGraphWiseModelConfig;
import oracle.pgx.config.mllib.GraphWiseEmbeddingConfig;
import oracle.pgx.config.mllib.corruption.PermutationCorruption;
import oracle.pgx.config.mllib.WeightInitScheme;

Python

# starting the Python shell will create an implicit session and analyst

Chapter 17
Using the Unsupervised Anomaly Detection GraphWise Algorithm (Vertex Embeddings and Anomaly Scores)

17-127



2. Load the graph.

• JShell

• Java

• Python

JShell

opg4j> var instance = GraphServer.getInstance("https://localhost:7007", 
"<username>", "<password>".toCharArray())
opg4j> var session=instance.createSession("mySession")
opg4j> var graph = 
session.readGraphByName("<graph_name>",GraphSource.PG_PGQL)

Java

ServerInstance instance = GraphServer.getInstance("https://
localhost:7007", "<username>", "<password>".toCharArray());
PgxSession session = instance.createSession("my-session");
PgxGraph graph = 
session.readGraphByName("<graph_name>",GraphSource.PG_PGQL);

Python

instance = graph_server.get_instance("https://
localhost:7007","<username>","<password>")
session = instance.create_session("my_session")
graph = session.read_graph_by_name("<graph_name>", "pg_pgql")

17.6.2 Building a Minimal Unsupervised Anomaly Detection GraphWise
Model

You can build an Unsupervised Anomaly Detection GraphWise model using the minimal
configuration and default hyper-parameters. Note that even though only one feature property is
specified in the following example, you can specify arbitrarily many.

• JShell

• Java

• Python

Chapter 17
Using the Unsupervised Anomaly Detection GraphWise Algorithm (Vertex Embeddings and Anomaly Scores)

17-128



JShell

opg4j> var model = 
analyst.unsupervisedAnomalyDetectionGraphWiseModelBuilder().
          setVertexInputPropertyNames("features").
          build()

Java

UnsupervisedAnomalyDetectionGraphWiseModel model = 
analyst.unsupervisedAnomalyDetectionGraphWiseModelBuilder()
    .setVertexInputPropertyNames("features")
    .build();

Python

model = 
analyst.unsupervised_anomaly_detection_graphwise_builder(vertex_input_property
_names=["features"])

17.6.3 Advanced Hyperparameter Customization
You can build an Unsupervised Anomaly Detection GraphWise model using rich
hyperparameter customization.
This is implemented using the sub-config classes, GraphWiseConvLayerConfig and
GraphWiseEmbeddingConfig.

Also, you can enable or disable a graphics processing unit (GPU) by using the
enable_ml_accelerators graph server (PGX) configuration parameter (see Configuration
Parameters for the Graph Server (PGX) Engine for more information). In addition, ensure that
your system meets the following prerequisites to use the GPU support:

• You must have a GPU device with the CUDA (Compute Unified Device Architecture) toolkit
installed.

• The following list of CUDA libraries are expected:

– libcuda.so.1
– libnvrtc.so.12
– libnvToolsExt.so.1
– libcudart.so.12

Note that the enable_ml_accelerators option is enabled by default. But if a GPU device is not
detected and the CUDA toolkit is not installed, then this feature gets disabled and the CPU will
be used for all the PgxML library operations.

The following example specifies a weight decay parameter of 0.001 and dropout with dropping
probability 0.5 for the model to counteract overfitting. The Dominant embedding layer's alpha
value is specified as 0.6 to slightly increase the importance of the feature reconstruction. Also,
note that the setEnableAccelerator method is enabled to use any available GPU.

Chapter 17
Using the Unsupervised Anomaly Detection GraphWise Algorithm (Vertex Embeddings and Anomaly Scores)

17-129



• JShell

• Java

• Python

JShell

opg4j> var weightProperty = analyst.pagerank(trainGraph).getName()
opg4j> var convLayerConfig = analyst.graphWiseConvLayerConfigBuilder(). // 
customize convolutional layer config
         setNumSampledNeighbors(25).
         setActivationFunction(ActivationFunction.TANH).
         setWeightInitScheme(WeightInitScheme.XAVIER).
         setWeightedAggregationProperty(weightProperty).
         setDropoutRate(0.5). // set dropout rate to prevent overfitting
         build()

opg4j> var predictionLayerConfig = 
analyst.graphWisePredictionLayerConfigBuilder().
        setHiddenDimension(8).
        setActivationFunction(ActivationFunction.RELU).
        build()

opg4j> var dominantConfig = analyst.graphWiseDominantLayerConfigBuilder(). // 
customize embedding layer config
        setDecoderLayerConfigs(predictionLayerConfig).
        setAlpha(0.6). // increase the importance of feature reconstruction
        build()

opg4j> var model = 
analyst.unsupervisedAnomalyDetectionGraphWiseModelBuilder().
         setVertexInputPropertyNames("vertex_features").
         setConvLayerConfigs(convLayerConfig).
         setEmbeddingConfig(dominantConfig).
         setWeightDecay(0.001). // set weight decay to prevent overfitting
         setEmbeddingDim(256).
         setLearningRate(0.05).
         setNumEpochs(30).
         setSeed(42).
         setShuffle(false).
         setStandardize(true).
         setBatchSize(64).
         setEnableAccelerator(true). // Enable or disable GPU
         build()

Java

// customize convolutional layer config
String weightProperty = analyst.pagerank(trainGraph).getName()
GraphWiseConvLayerConfig convLayerConfig = 
analyst.graphWiseConvLayerConfigBuilder()
    .setNumSampledNeighbors(25)

Chapter 17
Using the Unsupervised Anomaly Detection GraphWise Algorithm (Vertex Embeddings and Anomaly Scores)

17-130



    .setActivationFunction(ActivationFunction.TANH)
    .setWeightInitScheme(WeightInitScheme.XAVIER)
    .setWeightedAggregationProperty(weightProperty)
    .setDropoutRate(0.5) // set dropout rate to prevent overfitting
    .build();

GraphWisePredictionLayerConfig predictionLayerConfig = 
analyst.graphWisePredictionLayerConfigBuilder()
    .setHiddenDimension(8)
    .setActivationFunction(ActivationFunction.RELU)
    .build();

// customize embedding layer config
GraphWiseEmbeddingConfig dominantConfig = 
analyst.graphWiseDominantLayerConfigBuilder()
    .setDecoderLayerConfigs(predictionLayerConfig)
    .setAlpha(0.6) // increase the importance of feature reconstruction
    .build();

// build the anomaly detection model
UnsupervisedAnomalyDetectionGraphWiseModel model = 
analyst.unsupervisedAnomalyDetectionGraphWiseModelBuilder()
    .setVertexInputPropertyNames("vertex_features")
    .setEmbeddingConfig(dominantConfig)
    .setConvLayerConfigs(convLayerConfig)
    .setWeightDecay(0.001) // set weight decay to prevent overfitting
    .setEmbeddingDim(256)
    .setLearningRate(0.05)
    .setNumEpochs(30)
    .setSeed(42)
    .setShuffle(false)
    .setStandardize(true)
    .setBatchSize(64)
    .setEnableAccelerator(true) // Enable or disable GPU
    .build();

Python

# customize convolutional layer config
weightProperty = analyst.pagerank(train_graph).name

conv_layer_config = dict(num_sampled_neighbors=25,
                         activation_fn='tanh',
                         weight_init_scheme='xavier',
                         neighbor_weight_property_name=weightProperty,
                         dropout_rate=0.5) # set dropout rate to prevent 
overfitting
conv_layer = analyst.graphwise_conv_layer_config(**conv_layer_config)

# customize embedding layer config
dominant_config = dict(alpha=0.6) # increase the importance of feature 
reconstruction

dominant_layer = analyst.graphwise_dominant_layer_config(**dominant_config)

Chapter 17
Using the Unsupervised Anomaly Detection GraphWise Algorithm (Vertex Embeddings and Anomaly Scores)

17-131



# build the anomaly detection model
params = dict(conv_layer_config=[conv_layer],
              embedding_config=dominant_layer,
              vertex_input_property_names=["vertex_features"],
              weight_decay=0.001, # set weight decay to prevent overfitting
              layer_size=256,
              learning_rate=0.05,
              num_epochs=30,
              seed=42,
              standardize=true,
              batch_size=64,
              enable_accelerator=True # Enable or disable GPU
)
model = analyst.unsupervised_anomaly_detection_graphwise_builder(**params)

17.6.4 Building an Unsupervised Anomaly Detection GraphWise Model
Using Partitioned Graphs

You can build an Unsupervised Anomaly Detection GraphWise model using partitioned graphs
which have different providers and features.

• JShell

• Java

• Python

JShell

opg4j> var model = 
analyst.unsupervisedAnomalyDetectionGraphWiseModelBuilder().
         setVertexInputPropertyNames("vertex_provider1_features", 
"vertex_provider2_features").
         build()

Java

UnsupervisedAnomalyDetectionGraphWiseModel model = 
analyst.unsupervisedAnomalyDetectionGraphWiseModelBuilder()
    .setVertexInputPropertyNames("vertex_provider1_features", 
"vertex_provider2_features")
    .build();

Chapter 17
Using the Unsupervised Anomaly Detection GraphWise Algorithm (Vertex Embeddings and Anomaly Scores)

17-132



Python

params = dict(vertex_input_property_names=["vertex_provider1_features", 
"vertex_provider2_features"])
model = analyst.unsupervised_anomaly_detection_graphwise_builder(**params)

It is possible to select which providers you want to train or infer on:

• JShell

• Java

• Python

JShell

opg4j> var model = 
analyst.unsupervisedAnomalyDetectionGraphWiseModelBuilder().
         setVertexInputPropertyNames("vertex_provider1_features", 
"vertex_provider2_features").
         build()

Java

UnsupervisedAnomalyDetectionGraphWiseModel model = 
analyst.unsupervisedAnomalyDetectionGraphWiseModelBuilder()
    .setVertexInputPropertyNames("vertex_provider1_features", 
"vertex_provider2_features")
    .build();

Python

params = dict(vertex_input_property_names=["vertex_provider1_features", 
"vertex_provider2_features"])
model = analyst.unsupervised_anomaly_detection_graphwise_builder(**params)

If you wish to control the flow of the embeddings at each layer, you can enable or disable the
connections of interest. By default all the connections are enabled.

• JShell

• Java

• Python

Chapter 17
Using the Unsupervised Anomaly Detection GraphWise Algorithm (Vertex Embeddings and Anomaly Scores)

17-133



JShell

opg4j> var convLayerConfig = analyst.graphWiseConvLayerConfigBuilder().
         setNumSampledNeighbors(25).
         useVertexToVertexConnection(true).
         useEdgeToVertexConnection(true).
         useEdgeToEdgeConnection(false).
         useVertexToEdgeConnection(false).
         build()
opg4j> var model = 
analyst.unsupervisedAnomalyDetectionGraphWiseModelBuilder().
         setVertexInputPropertyNames("vertex_provider1_features", 
"vertex_provider2_features").
         build()

Java

GraphWiseConvLayerConfig convLayerConfig = 
analyst.graphWiseConvLayerConfigBuilder()
    .setNumSampledNeighbors(10)
    .useVertexToVertexConnection(true)
    .useEdgeToVertexConnection(true)
    .useEdgeToEdgeConnection(false)
    .useVertexToEdgeConnection(false)
    .build();

UnsupervisedAnomalyDetectionGraphWiseModel model = 
analyst.unsupervisedAnomalyDetectionGraphWiseModelBuilder()
    .setVertexInputPropertyNames("vertex_provider1_features", 
"vertex_provider2_features")
    .setConvLayerConfigs(convLayerConfig)
    .build();

Python

conv_layer_config = dict(num_sampled_neighbors=25,
                         activation_fn='tanh',
                         weight_init_scheme='xavier',
                         neighbor_weight_property_name=weightProperty,
                         vertex_to_vertex_connection=True,
                         edge_to_vertex_connection=True,
                         vertex_to_edge_connection=False,
                         edge_to_edge_connection=False)

conv_layer = analyst.graphwise_conv_layer_config(**conv_layer_config)

params = dict(vertex_input_property_names=["vertex_provider1_features", 
"vertex_provider2_features"],
              conv_layer_config=[conv_layer])

model = analyst.unsupervised_anomaly_detection_graphwise_builder(**params)

Chapter 17
Using the Unsupervised Anomaly Detection GraphWise Algorithm (Vertex Embeddings and Anomaly Scores)

17-134



17.6.5 Training an Unsupervised Anomaly Detection GraphWise Model
You can train an Unsupervised Anomaly Detection GraphWise model on a graph as shown:

• JShell

• Java

• Python

JShell

opg4j> model.fit(graph)

Java

model.fit(graph);

Python

model.fit(graph)

17.6.6 Getting the Loss Value for an Unsupervised Anomaly Detection
GraphWise Model

You can fetch the training loss value for an Unsupervised Anomaly Detection GraphWise
model as shown in the following code:

• JShell

• Java

• Python

JShell

opg4j> var loss = model.getTrainingLoss()

Java

double loss = model.getTrainingLoss();

Chapter 17
Using the Unsupervised Anomaly Detection GraphWise Algorithm (Vertex Embeddings and Anomaly Scores)

17-135



Python

loss = model.get_training_loss()

17.6.7 Inferring Embeddings for an Unsupervised Anomaly Detection
GraphWise Model

You can use a trained model to infer embeddings for unseen nodes and store them in the
database as described in the following code:

• JShell

• Java

• Python

JShell

opg4j> var vertexVectors = model.inferEmbeddings(fullGraph, 
fullGraph.getVertices()).flattenAll()
opg4j> vertexVectors.write().
    db().
    name("vertex vectors").
    tablename("vertexVectors").  
    overwrite(true).             
    store()

Java

PgxFrame vertexVectors = 
model.inferEmbeddings(fullGraph,fullGraph.getVertices()).flattenAll();
vertexVectors.write()
    .db()
    .name("vertex vectors")
    .tablename("vertexVectors") 
    .overwrite(true)            
    .store();

Python

vertex_vectors = 
model.infer_embeddings(full_Graph,full_Graph.get_vertices()).flatten_all()
vertex_vectors.write().db().table_name("table_name").name("vertex_vectors").ov
erwrite(True).store()

Chapter 17
Using the Unsupervised Anomaly Detection GraphWise Algorithm (Vertex Embeddings and Anomaly Scores)

17-136



The schema for the vertexVectors will be as follows without flattening (flattenAll splits the
vector column into separate double-valued columns):

+---------------------------------------------------------------+
| vertexId                                | embedding           |
+---------------------------------------------------------------+

Note:

All the preceding examples assume that you are inferring the embeddings for a
model in the current logged in database. If you must infer embeddings for the model
in a different database then refer to the examples in Inferring Embeddings for a
Model in Another Database.

17.6.8 Inferring Anomalies
You can use a trained model to infer anomaly scores or labels for unseen nodes and store
them in the database as described in the following code:

• JShell

• Java

• Python

JShell

opg4j>  var vertexScores = model.inferAnomalyScores(fullGraph, 
fullGraph.getVertices()).flattenAll()
opg4j> vertexScores.write().
    db().
    name("vertex scores").
    tablename("vertexScores").  
    overwrite(true).             
    store()

Java

PgxFrame vertexScores = 
model.inferAnomalyScores(fullGraph,fullGraph.getVertices()).flattenAll();
vertexScores.write()
    .db()
    .name("vertex scores")
    .tablename("vertexScores") 
    .overwrite(true)            
    .store();

Chapter 17
Using the Unsupervised Anomaly Detection GraphWise Algorithm (Vertex Embeddings and Anomaly Scores)

17-137



Python

vertex_scores = 
model.infer_anomaly_scores(full_Graph,full_Graph.get_vertices()).flatten_all()
vertex_scores.write().db().table_name("table_name").name("vertex_scores").over
write(True).store()

If you know the contamination factor of the data, you can use it to find a good threshold:

• JShell

• Java

• Python

JShell

opg4j>  var vertexLabels = model.inferAnomalyScores(fullGraph, 
fullGraph.getVertices()).flattenAll()
opg4j> vertexLabels.write().
    db().
    name("vertex labels").
    tablename("vertexLabels").  
    overwrite(true).             
    store()

Java

PgxFrame vertexLabels = 
model.inferAnomalyScores(fullGraph,fullGraph.getVertices()).flattenAll();
vertexLabels.write()
    .db()
    .name("vertex labels")
    .tablename("vertexLabels") 
    .overwrite(true)            
    .store();

Python

vertex_labels = 
model.infer_anomaly_scores(full_Graph,full_Graph.get_vertices()).flatten_all()
vertex_labels.write().db().table_name("table_name").name("vertex_labels").over
write(True).store()

All the preceding examples assume that you are inferring anomalies for the model in the
current logged in database. If you must infer anomalies in a different database, then you must

Chapter 17
Using the Unsupervised Anomaly Detection GraphWise Algorithm (Vertex Embeddings and Anomaly Scores)

17-138



additionally provide the database credentials such as username, password, and jdbcUrl to the
inferAnomalyScores method.

• JShell

• Java

• Python

JShell

opg4j> vertexScores.write().
     db().
     name("vertex scores").
     tablename("vertexScores").         
     username("user").                   
     password("password").               
     jdbcUrl("jdbcUrl").                 
     overwrite(true).                    
     store()

Java

vertexScores.write()
    .db()
    .name("vertex scores")
    .tablename("vertexScores")          
    .username("user")                   
    .password("password")              
    .jdbcUrl("jdbcUrl")                 
    .overwrite(true)                    
    .store();

Python

vertex_scores.write().db().table_name("table_name") \
                           .name("vertex scores") \
                           .username("user") \      
                           .password("password") \  
                           .jdbc_url("jdbc_url") \
                           .overwrite(True) \
                           .store()

17.6.9 Storing an Unsupervised Anomaly Detection GraphWise Model
You can store the trained models in a database. The models get stored as a row inside a
model store table.

Chapter 17
Using the Unsupervised Anomaly Detection GraphWise Algorithm (Vertex Embeddings and Anomaly Scores)

17-139



• JShell

• Java

• Python

JShell

opg4j> model.export().db(). 
              modelstore("modelstoretablename").  // name of the model store 
table
              modelname("model").                 // model name (primary key 
of model store table)
              description("a model description"). // description to store 
alongside the model
              store()

Java

model.export().db()
    .modelstore("modelstoretablename")  // name of the model store table
    .modelname("model")                 // model name (primary key of model 
store table)
    .description("a model description") // description to store alongside the 
model
    .store();

Python

model.export().db(model_store="modeltablename",            # name of the 
model store table
                  model_name="model",                      # model name 
(primary key of model store table)
                  model_description="a model description") # description to 
store alongside the model

Note:

All the preceding examples assume that you are storing the model in the current
logged in database. If you must store the model in a different database then refer to
the examples in Storing a Trained Model in Another Database.

17.6.10 Loading a Pre-Trained Unsupervised Anomaly Detection
GraphWise Model

You can load pre-trained models from a model store table in database as follows.

Chapter 17
Using the Unsupervised Anomaly Detection GraphWise Algorithm (Vertex Embeddings and Anomaly Scores)

17-140



• JShell

• Java

• Python

JShell

opg4j> var model = 
analyst.loadUnsupervisedAnomalyDetectionGraphWiseModel().db().
                modelstore("modeltablename"). // name of the model store table
                modelname("model").           // model name (primary key of 
model store table)
                load()

Java

UnsupervisedAnomalyDetectionGraphWiseModel model = 
analyst.loadUnsupervisedAnomalyDetectionGraphWiseModel().db()
     .modelstore("modeltablename") // name of the model store table
     .modelname("model")           // model name (primary key of model store 
table)
     .load();

Python

model = analyst.get_unsupervised_anomaly_detection_graphwise_model_loader(). \
                 db("modeltablename",                   # name of the model 
store table
                    "model_name")                       # model name (primary 
key of model store table)

Note:

All the preceding examples assume that you are loading the model from the current
logged in database. If you must load the model from a different database then refer to
the examples in Loading a Pre-Trained Model From Another Database.

17.6.11 Destroying an Unsupervised Anomaly Detection GraphWise Model
You can destroy an Unsupervised Anomaly Detection GraphWise model as described in the
following code:

• JShell

Chapter 17
Using the Unsupervised Anomaly Detection GraphWise Algorithm (Vertex Embeddings and Anomaly Scores)

17-141



• Java

• Python

JShell

opg4j> model.destroy()

Java

model.destroy();

Python

model.destroy()

17.7 Using the Pg2vec Algorithm
Pg2vec learns representations of graphlets (partitions inside a graph) by employing edges as
the principal learning units and thereby packing more information in each learning unit (as
compared to employing vertices as learning units) for the representation learning task.

It consists of three main steps:

1. Random walks for each vertex (with pre-defined length per walk and pre-defined number of
walks per vertex) are generated.

2. Each edge in this random walk is mapped as a property.edge-word in the created
document (with the document label as the graph-id) where the property.edge-word is
defined as the concatenation of the properties of the source and destination vertices.

3. The generated documents (with their attached document labels) are fed to a doc2vec
algorithm which generates the vector representation for each document, which is a graph
in this case.

Pg2vec creates graphlet embeddings for a specific set of graphlets and cannot be updated to
incorporate modifications on these graphlets. Instead, a new Pg2vec model should be trained
on these modified graphlets.

The following represents the memory consumption of Pg2vec model.

O(2(n+m)*d)

where:

• n: is the number of vertices in the graph

• m: is the number of graphlets in the graph

• d: is the embedding length

The following describes the usage of the main functionalities of the implementation of Pg2vec
in PGX using NCI109 dataset as an example with 4127 graphs in it:

• Loading a Graph

Chapter 17
Using the Pg2vec Algorithm

17-142

https://dl.acm.org/citation.cfm?id=3044805.3045025
https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets


• Building a Minimal Pg2vec Model

• Building a Customized Pg2vec Model

• Training a Pg2vec Model

• Getting the Loss Value For a Pg2vec Model

• Computing Similar Graphlets for a Given Graphlet

• Computing Similars for a Graphlet Batch

• Inferring a Graphlet Vector

• Inferring Vectors for a Graphlet Batch

• Storing a Trained Pg2vec Model

• Loading a Pre-Trained Pg2vec Model

• Destroying a Pg2vec Model

17.7.1 Loading a Graph
The following describes the steps for loading a graph:

1. Create a Session and an Analyst.

• JShell

• Java

• Python

JShell

cd /opt/oracle/graph/
./bin/opg4j
// starting the shell will create an implicit session and analyst

Java

import oracle.pgx.api.*;
import oracle.pgx.api.mllib.Pg2vecModel;
import oracle.pgx.api.frames.*;

Python

# starting the Python shell will create an implicit session and analyst

2. Load the graph.

• JShell

Chapter 17
Using the Pg2vec Algorithm

17-143



• Java

• Python

JShell

opg4j> var instance = GraphServer.getInstance("https://localhost:7007", 
"<username>", "<password>".toCharArray())
opg4j> var session=instance.createSession("mySession")
opg4j> var graph = 
session.readGraphByName("<graph_name>",GraphSource.PG_PGQL)

Java

ServerInstance instance = GraphServer.getInstance("https://
localhost:7007", "<username>", "<password>".toCharArray());
PgxSession session = instance.createSession("my-session");
PgxGraph graph = 
session.readGraphByName("<graph_name>",GraphSource.PG_PGQL);

Python

instance = graph_server.get_instance("https://
localhost:7007","<username>","<password>")
session = instance.create_session("my_session")
graph = session.read_graph_by_name("<graph_name>", "pg_pgql")

17.7.2 Building a Minimal Pg2vec Model
You can build a Pg2vec model using the minimal configuration and default hyper-parameters
as described in the following code:

• JShell

• Java

• Python

JShell

opg4j> var model = analyst.pg2vecModelBuilder().
                setGraphLetIdPropertyName("graph_id").
                setVertexPropertyNames(Arrays.asList("category")).
                setWindowSize(4).
                setWalksPerVertex(5).
                setWalkLength(8).
                build()

Chapter 17
Using the Pg2vec Algorithm

17-144



Java

Pg2vecModel model = analyst.pg2vecModelBuilder()
    .setGraphLetIdPropertyName("graph_id")
    .setVertexPropertyNames(Arrays.asList("category"))
    .setWindowSize(4)
    .setWalksPerVertex(5)
    .setWalkLength(8)
    .build();
    

Python

model = analyst.pg2vec_builder(
    graphlet_id_property_name="graph_id",
    vertex_property_names=["category"],
    window_size=4,
    walks_per_vertex=5,
    walk_length=8)

You can specify the property name to determine each graphlet using the
Pg2vecModelBuilder#setGraphLetIdPropertyName operation and also employ the vertex
properties in Pg2vec which are specified using the
Pg2vecModelBuilder#setVertexPropertyNames operation.

You can also use the weakly connected component (WCC) functionality in PGX to determine
the graphlets in a given graph.

17.7.3 Building a Customized Pg2vec Model
You can build a Pg2vec model using customized hyper-parameters as described in the
following code:

• JShell

• Java

• Python

JShell

opg4j> var model = analyst.pg2vecModelBuilder().
                setGraphLetIdPropertyName("graph_id").
                setVertexPropertyNames(Arrays.asList("category")).
                setMinWordFrequency(1).
                setBatchSize(128).
                setNumEpochs(5).
                setLayerSize(200).
                setLearningRate(0.04).
                setMinLearningRate(0.0001).

Chapter 17
Using the Pg2vec Algorithm

17-145



                setWindowSize(4).
                setWalksPerVertex(5).
                setWalkLength(8).
                setUseGraphletSize(true).
                setGraphletSizePropertyName("<propertyName>").
                build()

Java

Pg2vecModel model= analyst.pg2vecModelBuilder()
    .setGraphLetIdPropertyName("graph_id")
    .setVertexPropertyNames(Arrays.asList("category"))
    .setMinWordFrequency(1)
    .setBatchSize(128)
    .setNumEpochs(5)
    .setLayerSize(200)
    .setLearningRate(0.04)
    .setMinLearningRate(0.0001)
    .setWindowSize(4)
    .setWalksPerVertex(5)
    .setWalkLength(8)
    .setUseGraphletSize(true)
    .setGraphletSizePropertyName("<propertyName>")
    .build();

Python

model = analyst.pg2vec_builder(
    graphlet_id_property_name="graph_id",
    vertex_property_names=["category"],
    min_word_frequency=1,
    batch_size=128,
    num_epochs=5,
    layer_size=200,
    learning_rate=0.04,
    min_learning_rate=0.0001,
    window_size=4,
    walks_per_vertex=5,
    walk_length=8,
    use_graphlet_size=true,
    graphlet_size_property_name="<property_name>")

See Pg2vecModelBuilder in Javadoc for more explanation for each builder operation along
with the default values.

17.7.4 Training a Pg2vec Model
You can train a Pg2vec model with the specified default or customized settings as described in
the following code:

Chapter 17
Using the Pg2vec Algorithm

17-146

https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/mllib/Pg2vecModelBuilder.html


• JShell

• Java

• Python

JShell

opg4j> model.fit(graph)

Java

model.fit(graph);

Python

model.fit(graph)

17.7.5 Getting the Loss Value For a Pg2vec Model
You can fetch the training loss value as described in the following code:

• JShell

• Java

• Python

JShell

opg4j> var loss = model.getLoss()

Java

double loss = model.getLoss();

Python

loss = model.loss

17.7.6 Computing Similar Graphlets for a Given Graphlet
You can fetch the k most similar graphlets for a given graphlet as described in the following
code:

Chapter 17
Using the Pg2vec Algorithm

17-147



• JShell

• Java

• Python

JShell

opg4j> var similars = model.computeSimilars(52, 10)

Java

PgxFrame similars = model.computeSimilars(52, 10);

Python

similars = model.compute_similars(52, 10) 

Searching for similar vertices for graphlet with ID = 52 using the trained model and printing it
with similars.print(), will result in the following output:

+----------------------------------+
| dstGraphlet | similarity         |
+----------------------------------+
| 52          | 1.0                |
| 10          | 0.8748674392700195 |
| 23          | 0.8551455140113831 |
| 26          | 0.8493421673774719 |
| 47          | 0.8411962985992432 |
| 25          | 0.8281504511833191 |
| 43          | 0.8202780485153198 |
| 24          | 0.8179885745048523 |
| 8           | 0.796689510345459  |
| 9           | 0.7947834134101868 |
+----------------------------------+

The following depicts the visualization of two similar graphlets (top: ID = 52 and bottom: ID =
10):

Chapter 17
Using the Pg2vec Algorithm

17-148



Figure 17-1    Pg2vec - Visualization of Two Similar Graphlets

17.7.7 Computing Similars for a Graphlet Batch
You can fetch the k most similar graphlets for a batch of input graphlets as described in the
following code:

• JShell

• Java

• Python

JShell

opg4j> var graphlets = new ArrayList()
opg4j> graphlets.add(52)
opg4j> graphlets.add(41)
opg4j> var batchedSimilars = model.computeSimilars(graphlets, 10)

Java

List graphlets = Arrays.asList(52,41);
PgxFrame batchedSimilars = model.computeSimilars(graphlets,10);

Chapter 17
Using the Pg2vec Algorithm

17-149



Python

batched_similars = model.compute_similars([52,41],10)

Searching for similar vertices for graphlet with ID = 52 and ID = 41 using the trained model
and printing it with batched_similars.print(), will result in the following output:

+------------------------------------------------+
| srcGraphlet | dstGraphlet | similarity         |
+------------------------------------------------+
| 52          | 52          | 1.0                |
| 52          | 10          | 0.8748674392700195 |
| 52          | 23          | 0.8551455140113831 |
| 52          | 26          | 0.8493421673774719 |
| 52          | 47          | 0.8411962985992432 |
| 52          | 25          | 0.8281504511833191 |
| 52          | 43          | 0.8202780485153198 |
| 52          | 24          | 0.8179885745048523 |
| 52          | 8           | 0.796689510345459  |
| 52          | 9           | 0.7947834134101868 |
| 41          | 41          | 1.0                |
| 41          | 197         | 0.9653506875038147 |
| 41          | 84          | 0.9552277326583862 |
| 41          | 157         | 0.9465565085411072 |
| 41          | 65          | 0.9287481307983398 |
| 41          | 248         | 0.9177336096763611 |
| 41          | 315         | 0.9043129086494446 |
| 41          | 92          | 0.8998928070068359 |
| 41          | 297         | 0.8897411227226257 |
| 41          | 50          | 0.8810243010520935 |
+------------------------------------------------+

17.7.8 Inferring a Graphlet Vector
You can infer the vector representation for a given new graphlet as described in the following
code:

• JShell

• Java

• Python

JShell

opg4j> var graphlet = session.readGraphByName("<graph>",GraphSource.PG_PGQL)
opg4j> var inferredVector = model.inferGraphletVector(graphlet)
opg4j> inferredVector.print()

Chapter 17
Using the Pg2vec Algorithm

17-150



Java

PgxGraph graphlet = session.readGraphByName("<graph>",GraphSource.PG_PGQL);
PgxFrame inferredVector = model.inferGraphletVector(graphlet);
inferredVector.print();

Python

graphlet = session.read_graph_by_name("<graph>", "pg_pgql")
inferred_vector = model.infer_graphlet_vector(graphlet)
inferred_vector.print()

The schema for the inferredVector will be similar to the following output:

+---------------------------------------------------------------+
| graphlet                                | embedding           |
+---------------------------------------------------------------+

17.7.9 Inferring Vectors for a Graphlet Batch
You can infer the vector representations for multiple graphlets (specified with different graph-
ids in a graph) as described in the following code:

• JShell

• Java

• Python

JShell

opg4j> var graphlet = session.readGraphByName("<graph>", GraphSource.PG_PGQL)
opg4j> var inferredVectorBatched = model.inferGraphletVectorBatched(graphlets)
opg4j> inferredVectorBatched.print()

Java

PgxGraph graphlet = session.readGraphByName("<graph>", GraphSource.PG_PGQL);
PgxFrame inferredVectorBatched = model.inferGraphletVectorBatched(graphlets);
inferredVector.print();

Python

graphlets = session.read_graph_by_name("<graph>", "pg_pgql")
inferred_vector_batched = model.infer_graphlet_vector_batched(graphlets)
inferred_vector_batched.print()

Chapter 17
Using the Pg2vec Algorithm

17-151



The schema is same as for inferGraphletVector but with more rows corresponding to the
input graphlets.

17.7.10 Storing a Trained Pg2vec Model
You can store models in database. The models get stored as a row inside a model store table.

The following code shows how to store a trained Pg2vec model in database in a specific model
store table:

• JShell

• Java

• Python

JShell

opg4j> model.export().db(). 
              modelstore("modelstoretablename").  // name of the model store 
table
              modelname("model").                 // model name (primary key 
of model store table)
              description("a model description"). // description to store 
alongside the model
              store()

Java

model.export().db()
    .modelstore("modelstoretablename")  // name of the model store table
    .modelname("model")                 // model name (primary key of model 
store table)
    .description("a model description") // description to store alongside the 
model
    .store();

Python

model.export().db(model_store="modeltablename",            # name of the 
model store table
                  model_name="model",                      # model name 
(primary key of model store table)
                  model_description="a model description") # description to 
store alongside the model

Chapter 17
Using the Pg2vec Algorithm

17-152



Note:

All the preceding examples assume that you are storing the model in the current
logged in database. If you must store the model in a different database then refer to
the examples in Storing a Trained Model in Another Database.

17.7.11 Loading a Pre-Trained Pg2vec Model
You can load models from a database.

You can load a pre-trained Pg2vec model from a model store table in database as described in
the following:

• JShell

• Java

• Python

JShell

opg4j> var model = analyst.loadPg2vecModel().db().
                modelstore("modeltablename"). // name of the model store table
                modelname("model").           // model name (primary key of 
model store table)
                load()

Java

Pg2vecModel model = analyst.loadPg2vecModel().db()
     .modelstore("modeltablename") // name of the model store table
     .modelname("model")           // model name (primary key of model store 
table)
     .load();

Python

model = analyst.get_pg2vec_model_loader(). \
                 db(model_store="modelstoretablename",  # name of the model 
store table
                    model_name="model")                 # model name (primary 
key of model store table)

Chapter 17
Using the Pg2vec Algorithm

17-153



Note:

All the preceding examples assume that you are loading the model from the current
logged in database. If you must load the model from a different database then refer to
the examples in Loading a Pre-Trained Model From Another Database.

17.7.12 Destroying a Pg2vec Model
You can destroy a Pg2vec model as described in the following code:

• JShell

• Java

• Python

JShell

opg4j> model.destroy()

Java

model.destroy();

Python

model.destroy()

17.8 Model Repository and Model Stores
A model store can be used to persist the trained graph server (PGX) machine learning models
along with a model name (a unique identifier of the model in a particular model store) and a
description.

The model repository API provides the following capabilities:

• Create a new model store

• List all the available model stores in the model repository

• Store a model in the model store

• List all the models in a given model store

• Load a model from the model store

• Get the model description for a model that is stored in the given model store

• Delete a model from the given model store

Chapter 17
Model Repository and Model Stores

17-154



• Delete the existing model stores

• Database-Backed Model Repository

17.8.1 Database-Backed Model Repository
In a database-backed model repository, each model store corresponds to a table in the
database. Internally, the tables are prefixed by 'GMLS_'.
The following steps describe the usage of the model repository API with code examples.

1. Create a model repository object as shown:

• JShell

• Java

• Python

JShell

opg4j> var mr = analyst.modelRepository().db().open()
mr ==> oracle.pgx.api.mllib.DbModelRepository@5aac6f9f

Java

DbModelRepository mr = analyst.modelRepository().db().open();

Python

>>> mr = analyst.model_repository().db()
>>> mr
<pypgx.api.mllib._model_repo.ModelRepository object at 0x7f637496df60>

The preceding example assumes that you are creating the model repository from the
current logged in database. If you must create the repository in a different database, then
refer to the following example:

• JShell

• Java

• Python

JShell

opg4j> var mr = analyst.modelRepository().db(). 
...>                          username("<username>").   // DB user to use 

Chapter 17
Model Repository and Model Stores

17-155



for storing the model
...>                          password("<password>").   // password of the 
DB user
...>                          jdbcUrl("<jdbcUrl>").     // jdbc url to the 
DB
...>                          open()

Java

DbModelRepository mr = analyst.modelRepository().db() 
                               .username("<username>")   // DB user to use 
for storing the model
                               .password("<password>")  // password of the 
DB user
                               .jdbcUrl("<jdbcUrl>")   // jdbc url to the 
DB
                               .open();

Python

>>> mr = analyst.model_repository().db(username = "<username>", # DB user 
to use for storing the model
...                               password = "<password>", # password of 
the DB user
...                               jdbc_url = "<jdbc_url>") # jdbc url to 
the DB

2. Create a model store as shown:

• JShell

• Java

• Python

JShell

opg4j> var modelstore = "modelstore"
modelstore ==> "modelstore"
opg4j> mr.create(modelstore)

Java

String modelstore = "modelstore";
mr.create(modelstore);

Chapter 17
Model Repository and Model Stores

17-156



Python

>>> mr.create("modelstore")

3. List the model store as shown and verify that the model store is empty:

• JShell

• Java

• Python

JShell

opg4j> mr.listModelStoresNames()
$4 ==> [DW, deepwalk_model, modelstore, modelstoretablename]
opg4j> mr.listModelStoresNamesMatching(modelstore)
$5 ==> [modelstore, modelstoretablename]
opg4j> mr.listModels(modelstore)
$6 ==> []

Java

mr.listModelStoresNames();
mr.listModelStoresNamesMatching(modelstore);
mr.listModels(modelstore);

Python

>>> mr.list_model_stores_names()
>>> mr.list_model_stores_names_matching("modelstore")
>>> mr.list_models("modelstore")

4. Create and fit a DeepWalk model as shown:

• JShell

• Java

• Python

JShell

opg4j> var walkLength = 5
opg4j> var walksPerVertex = 4

Chapter 17
Model Repository and Model Stores

17-157



opg4j> var embeddingSize = 20
opg4j> var batchSize = 128
opg4j> var model = analyst.deepWalkModelBuilder()
                          .setLayerSize(embeddingSize)
                          .setWalkLength(walkLength)
                          .setWalksPerVertex(walksPerVertex)
                          .setBatchSize(batchSize).build()
model ==> oracle.pgx.api.mllib.DeepWalkModel@34be7efb
opg4j> var smallGraphDeepWalk = 
session.readGraphByName("<graph_name>",GraphSource.PG_PGQL)
smallGraphDeepWalk ==> 
PgxGraph[name=BANK_GRAPH_2,N=1000,E=5001,created=1649075718843]
opg4j> model.fit(smallGraphDeepWalk)

Java

import oracle.pgx.api.mllib.DeepWalkModel;
int walkLength = 5;
int walksPerVertex = 4;
int embeddingSize = 20;
int batchSize = 128;
DeepWalkModel model = analyst.deepWalkModelBuilder()
                          .setLayerSize(embeddingSize)
                          .setWalkLength(walkLength)
                          .setWalksPerVertex(walksPerVertex)
                          .setBatchSize(batchSize).build();
PgxGraph smallGraphDeepWalk = 
session.readGraphByName("<graph_name>",GraphSource.PG_PGQL);
model.fit(smallGraphDeepWalk);

Python

>>> model = 
analyst.deepwalk_builder(window_size=3,walks_per_vertex=6,walk_length=4)
graph = session.read_graph_by_name("<graph_name>", 'pg_pgql')
>>> model.fit(graph)

5. Store the trained model in the model store as shown:

• JShell

• Java

• Python

JShell

opg4j> var modelName = "DeepWalkModel"
opg4j> var modelStorer = model.export().db()
modelStorer ==> oracle.pgx.api.mllib.DbModelStorer@1e86b2d1

Chapter 17
Model Repository and Model Stores

17-158



opg4j> modelStorer.modelstore(modelstore)
                  .overwrite(true).modelname(modelName)
                  .description("DeepWalk: model desc")
                  .store()

Java

import oracle.pgx.api.mllib.DbModelStorer;
import oracle.pgx.api.mllib.DbModelLoader;

String modelName = "DeepWalkModel";
DbModelStorer<DeepWalkModel> modelStorer = model.export().db();
modelStorer.modelstore(modelstore)
           .overwrite(true).modelname(modelName)
           .description("DeepWalk: model desc")
           .store();

Python

>>> model.export().db(model_store = "modelstore", model_name = 
"DeepWalkModel",
...                model_description = "DeepWalk model description")

6. Verify that the model is now stored in the model store as shown:

• JShell

• Java

• Python

JShell

opg4j> mr.listModels(modelstore)
$11 ==> [DeepWalkModel]

Java

mr.listModels(modelstore);

Python

>>> mr.list_models("modelstore")

7. Load the model from the model store as shown:

Chapter 17
Model Repository and Model Stores

17-159



• JShell

• Java

• Python

JShell

opg4j> var modelLoader = analyst.loadDeepWalkModel().db()
opg4j> var reloadedModel = modelLoader.
                                 modelstore(modelstore).
                                 modelname(modelName).
                                 load()
reloadedModel ==> oracle.pgx.api.mllib.DeepWalkModel@4248608d

Java

DbModelLoader<DeepWalkModel> modelLoader = 
analyst.loadDeepWalkModel().db();
DeepWalkModel reloadedModel = modelLoader.modelstore(modelstore)
                                         .modelname(modelName)
                                         .load();

Python

>>> analyst.get_deepwalk_model_loader().db(model_store = "modelstore",
                                   model_name = "DeepWalkModel")
DeepWalkModel

The preceding example assumes that you are loading the model from the current logged in
database. If you must load the model from a different database then refer to the example in 
Loading a Pre-Trained Model From Another Database.

8. Get the model description from the model store as shown:

• JShell

• Java

• Python

JShell

opg4j> mr.getModelDescription(modelstore,modelName)
$14 ==> "DeepWalk: model desc"

Chapter 17
Model Repository and Model Stores

17-160



Java

mr.getModelDescription(modelstore,modelName);

Python

>>> mr.get_model_description("modelstore","DeepWalkModel")
'DeepWalk model description'

9. Delete the model from the model store as shown:

• JShell

• Java

• Python

JShell

opg4j> mr.deleteModel(modelstore,modelName)

Java

mr.deleteModel(modelstore,modelName);

Python

>>> mr.delete_model("modelstore","DeepWalkModel")

10. Delete the model store as shown:

• JShell

• Java

• Python

JShell

opg4j> mr.deleteModelStore(modelstore)

Chapter 17
Model Repository and Model Stores

17-161



Java

mr.deleteModelStore(modelstore);

Python

>>>     ("modelstore")

Chapter 17
Model Repository and Model Stores

17-162



18
Executing PGQL Queries Against the Graph
Server (PGX)

This section describes the Java APIs that are used to execute PGQL queries in the graph
server (PGX).

• Getting Started with PGQL
Get started with PGQL in the graph server (PGX).

• Creating Property Graphs Using Options
Learn about the different options for graph optimization and for handling edges with
missing vertices.

• Supported PGQL Features and Limitations on the Graph Server (PGX)
Learn about the supported and unsupported PGQL functionalities in the graph server
(PGX).

• Java APIs for Executing CREATE PROPERTY GRAPH Statements
You can use the PgxSession.executePgql(String statement) method to execute a
CREATE PROPERTY GRAPH statement.

• Python APIs for Executing CREATE PROPERTY GRAPH Statements
You can create a property graph by executing the CREATE PROPERTY GRAPH
statement through the Python API.

• Executing PGQL Queries Using the PGX JDBC Driver
Starting from Graph Server and Client Release 24.1.0, you can use the PGX JDBC driver
to access a PGX session and query graphs that are loaded in to the graph server (PGX).

• Java APIs for Executing SELECT Queries
This section describes the APIs to execute SELECT queries in the graph server (PGX).

• Java APIs for Executing UPDATE Queries
The UPDATE queries make changes to existing graphs using the INSERT, UPDATE, and
DELETE operations.

• Python APIs for Executing UPDATE Queries
You can update a graph that is loaded into the graph server (PGX) using the Python APIs.

• PGQL Queries with Partitioned IDs
You can retrieve partitioned IDs using the id() function in PGQL.

• Security Tools for Executing PGQL Queries
To safeguard against query injection, bind variables can be used in place of literals while
printIdentifier(String identifier) can be used in place of identifiers like graph
names, labels, and property names.

• Best Practices for Tuning PGQL Queries
This section describes best practices regarding memory allocation, parallelism, and query
planning.

18.1 Getting Started with PGQL
Get started with PGQL in the graph server (PGX).

18-1



This section provides an example on how to get started with PGQL. It assumes a database
realm that has been previously set up (follow the steps in Prepare the Graph Server for
Database Authentication). It also assumes that the user has read access to the HR schema.

First, create a graph with employees, departments, and employee works at department, by
executing a CREATE PROPERTY GRAPH statement.

Example 18-1    Creating a graph in the graph server (PGX)

The following statement creates a graph in the graph server (PGX)

String statement =
      "CREATE PROPERTY GRAPH hr_simplified "
    + "  VERTEX TABLES ( "
    + "    hr.employees LABEL employee "
    + "      PROPERTIES ARE ALL COLUMNS EXCEPT ( job_id, manager_id, 
department_id ), "
    + "    hr.departments LABEL department "
    + "      PROPERTIES ( department_id, department_name ) "
    + "  ) "
    + "  EDGE TABLES ( "
    + "    hr.employees AS works_at "
    + "      SOURCE KEY ( employee_id ) REFERENCES employees (employee_id) "
    + "      DESTINATION departments "
    + "      PROPERTIES ( employee_id ) "
    + "  )";
session.executePgql(statement);

/**
 * To get a handle to the graph, execute:
 */
PgxGraph g = session.getGraph("HR_SIMPLIFIED");

/**
 * You can use this handle to run PGQL queries on this graph.
 * For example, to find the department that “Nandita Sarchand” works for, 
execute:
 */
String query =
    "SELECT dep.department_name "
  + "FROM MATCH (emp:Employee) -[:works_at]-> (dep:Department) "
  + "WHERE emp.first_name = 'Nandita' AND emp.last_name = 'Sarchand' "
  + "ORDER BY 1";
PgqlResultSet resultSet = g.queryPgql(query);
resultSet.print();
+-----------------+
| department_name |
+-----------------+
| Shipping        |
+-----------------+

/**
 * To get an overview of the types of vertices and their frequencies, execute:
 */
String query =
      "SELECT label(n), COUNT(*) "
    + "FROM MATCH (n) "

Chapter 18
Getting Started with PGQL

18-2



    + "GROUP BY label(n) "
    + "ORDER BY COUNT(*) DESC";
PgqlResultSet resultSet = g.queryPgql(query);
resultSet.print();

+-----------------------+
| label(n)   | COUNT(*) |
+-----------------------+
| EMPLOYEE   | 107      |
| DEPARTMENT | 27       |
+-----------------------+

/**
  *To get an overview of the types of edges and their frequencies, execute:
  */
 String query =
    "SELECT label(n) AS srcLbl, label(e) AS edgeLbl, label(m) AS dstLbl, 
COUNT(*) "
  + "FROM MATCH (n) -[e]-> (m) "
  + "GROUP BY srcLbl, edgeLbl, dstLbl "
  + "ORDER BY COUNT(*) DESC";
PgqlResultSet resultSet = g.queryPgql(query);
resultSet.print();

+---------------------------------------------+
| srcLbl   | edgeLbl  | dstLbl     | COUNT(*) |
+---------------------------------------------+
| EMPLOYEE | WORKS_AT | DEPARTMENT | 106      |
+---------------------------------------------+

18.2 Creating Property Graphs Using Options
Learn about the different options for graph optimization and for handling edges with missing
vertices.

Using the OPTIONS clause in the CREATE PROPERTY GRAPH statement, you can specify any of
the options explained in the following sections:

Using Graph Optimization Options

You can load a graph for querying and analytics or for performing update operations.
Depending on your requirement, you can optimize the read or update performance using the
OPTIONS clause in the CREATE PROPERTY GRAPH statement.

The following table describes the valid options that are supported in the OPTIONS clause:

Table 18-1    Graph Optimization Options

OPTIONS Description

OPTIMIZED_FOR_READ This can be used for read-intensive scenarios.

OPTIMIZED_FOR_UPDATES This is the default option and can be used for fast updates.

Chapter 18
Creating Property Graphs Using Options

18-3



Table 18-1    (Cont.) Graph Optimization Options

OPTIONS Description

SYNCHRONIZABLE This assures that the graph can be synchronized via Flashback
Technology. However, exceptions are thrown if one of the edge keys is
either composite or non-numeric. In these cases, the graph can normally
still be loaded, but PGX generates a new (numeric and non-composite)
edge key. Such edges can therefore not be synchronized with the
database.

For example, the following graph is set using OPTIMIZED_FOR_UPDATES and SYNCHRONIZABLE
options:

CREATE PROPERTY GRAPH hr 
VERTEX TABLES ( 
employees LABEL employee, departments LABEL department 
) 
EDGE TABLES ( 
departments AS managed_by 
SOURCE KEY ( department_id ) REFERENCES departments (department_id)
DESTINATION employees 
NO PROPERTIES 
) OPTIONS (OPTIMIZED_FOR_UPDATES, SYNCHRONIZABLE)

Note:

• SYNCHRONIZABLE option can be used in combination with OPTIMIZED_FOR_UPDATES
and OPTIMIZED_FOR_READ. But, OPTIMIZED_FOR_UPDATES and
OPTIMIZED_FOR_READ cannot be used together and in such a case an exception
will be thrown.

• If you are creating a synchronizable graph, then ensure that the vertex and edge
keys are numeric and non-composite.

Using Options to Handle Edges with Missing Vertices

If either the source or destination vertex or both are missing for an edge, then you can
configure one of the following values in the OPTIONS clause in the CREATE PROPERTY GRAPH
statement:

• IGNORE EDGE ON MISSING VERTEX: Specifies that the edge for a missing vertex must be
ignored.

• IGNORE EDGE AND LOG ON MISSING VERTEX: Specifies that the edge for a missing vertex
must be ignored and all ignored edges must be logged.

• IGNORE EDGE AND LOG ONCE ON MISSING VERTEX: Specifies that the edge for a missing
vertex must be ignored and only the first ignored edge must be logged.

• ERROR ON MISSING VERTEX (default): Specifies that an error must be thrown for edges with
missing vertices.

Chapter 18
Creating Property Graphs Using Options

18-4



For example, the following graph is set using ERROR ON MISSING VERTEX option:

CREATE PROPERTY GRAPH region_graph 
VERTEX TABLES ( 
regions KEY (region_id), 
countries KEY (country_id)
) 
EDGE TABLES ( 
countries AS countries_regions 
SOURCE KEY ( country_id ) REFERENCES countries(country_id) 
DESTINATION KEY (region_id) REFERENCES regions(region_id) 
NO PROPERTIES 
) OPTIONS ( ERROR ON MISSING VERTEX)

On execution, the following error response is shown:

unknown vertex ID received in destination 4 of edge 5

When using IGNORE EDGE AND LOG ON MISSING VERTEX or IGNORE EDGE AND LOG ONCE ON
MISSING VERTEX option, you must update the default Logback configuration file in /etc/
oracle/graph/logback.xml and the graph server (PGX) logger configuration file in /etc/
oracle/graph/logback-server.xml to log the DEBUG logs. Only then you can view the
ignored edges in /var/opt/log/pgx-server.log file.

18.3 Supported PGQL Features and Limitations on the Graph
Server (PGX)

Learn about the supported and unsupported PGQL functionalities in the graph server (PGX).

Table 18-2    Supported PGQL Functionalities and Limitations on the Graph Server (PGX)

Features PGQL on the Graph Server (PGX)

CREATE PROPERTY GRAPH Supported
Limitations:
• No composite keys for vertices.
• Properties need to be column references; arbitrary

property expressions are not supported unless the graph
is first created in the database and then loaded into the
graph server (PGX).

DROP PROPERTY GRAPH Not Supported

Fixed-length pattern matching Supported

Chapter 18
Supported PGQL Features and Limitations on the Graph Server (PGX)

18-5



Table 18-2    (Cont.) Supported PGQL Functionalities and Limitations on the Graph
Server (PGX)

Features PGQL on the Graph Server (PGX)

Variable-length pattern matching goals Supported:
• Reachability
• Path search prefixes:

– ANY
– ANY SHORTEST
– SHORTEST k
– ALL SHORTEST
– ANY CHEAPEST
– CHEAPEST k
– ALL

• Path modes:
– WALK
– TRAIL
– SIMPLE
– ACYCLIC

Variable-length pattern matching
quantifiers

Supported:
• *
• +
• ?
• { n }
• { n, }
• { n, m }
• { , m }
Limitations:

• ? is only supported for reachability
• In case of ANY CHEAPEST and TOP k CHEAPEST, only *

is supported

Variable-length path unnesting Supported:
• ONE ROW PER VERTEX
• ONE ROW PER STEP

GROUP BY Supported

HAVING Supported

Aggregations Supported:
• COUNT
• MIN, MAX, AVG, SUM
• LISTAGG
• ARRAY_AGG
Not Supported

• JSON_ARRAYAGG
DISTINCT
• SELECT DISTINCT
• Aggregation with DISTINCT (such

as, COUNT(DISTINCT e.prop))

Supported

SELECT v.* Supported

ORDER BY (+ASC/DESC), LIMIT,
OFFSET

Supported

Chapter 18
Supported PGQL Features and Limitations on the Graph Server (PGX)

18-6



Table 18-2    (Cont.) Supported PGQL Functionalities and Limitations on the Graph
Server (PGX)

Features PGQL on the Graph Server (PGX)

Data Types Supported:
• INTEGER (32-bit)
• LONG (64-bit)
• FLOAT (32-bit)
• DOUBLE (64-bit)
• STRING (no maximum length)

• BOOLEAN
• DATE
• TIME
• TIME WITH TIME ZONE
• TIMESTAMP
• TIMESTAMP WITH TIME ZONE

JSON No built-in JSON support. However, JSON values can be
stored as STRING and manipulated or queried through user-
defined functions (UDFs) written in Java or JavaScript.

Operators Supported:
• Relational: +, -, *, /, %, - (unary minus)

• Arithmetic: =, <>, <, >, <=, >=
• Logical: AND, OR, NOT
• String: || (concat)

Functions and predicates Supported:
• IS NULL, IS NOT NULL
• JAVA_REGEXP_LIKE (based on CONTAINS)

• LOWER, UPPER
• SUBSTRING
• ABS, CEIL/CEILING, FLOOR, ROUND
• EXTRACT
• ID, VERTEX_ID, EDGE_ID
• LABEL, LABELS, IS [NOT] LABELED
• ALL_DIFFERENT
• IN_DEGREE, OUT_DEGREE
• CAST
• CASE
• IN and NOT IN
• MATCHNUM
• ELEMENT_NUMBER
• IS [NOT] SOURCE [OF], IS [NOT] DESTINATION

[OF]
• VERTEX_EQUAL, EDGE_EQUAL

User-defined functions Supported:
• Java UDFs
• JavaScript UDFs

Chapter 18
Supported PGQL Features and Limitations on the Graph Server (PGX)

18-7



Table 18-2    (Cont.) Supported PGQL Functionalities and Limitations on the Graph
Server (PGX)

Features PGQL on the Graph Server (PGX)

Subqueries:
• Scalar subqueries
• EXISTS and NOT EXISTS

subqueries
• LATERAL subquery

Supported

GRAPH_TABLE operator Supported

INSERT/UPDATE/DELETE Supported

INTERVAL literals and operations Supported literals:

• SECOND
• MINUTE
• HOUR
• DAY
• MONTH
• YEAR
Supported operations:

• Add INTERVAL to datetime (+)

• Subtract INTERVAL from datetime (-)

Also, the following explains certain supported and unsupported PGQL features:

• Support for Selecting All Properties

• Unnesting of Variable-Length Path Queries

• Using INTERVAL Literals in PGQL Queries

• Using Path Modes with PGQL

• Support for PGQL Lateral Subqueries

• Support for PGQL GRAPH_TABLE Operator

• Limitations on Quantifiers

• Limitations on WHERE and COST Clauses in Quantified Patterns

18.3.1 Support for Selecting All Properties
You can use SELECT v.* to select all properties of the vertices or edges that bind to the
variable v. For example:

SELECT label(n), n.* FROM MATCH (n) ORDER BY "number", "name"

On execution, the query output is as shown:

+-----------------------------+
| label(n) | number | name    |
+-----------------------------+
| Account  | 1001   | <null>  |
| Account  | 2090   | <null>  |
| Account  | 8021   | <null>  |

Chapter 18
Supported PGQL Features and Limitations on the Graph Server (PGX)

18-8



| Account  | 10039  | <null>  |
| Person   | <null> | Camille |
| Person   | <null> | Liam    |
| Person   | <null> | Nikita  |
| Company  | <null> | Oracle  |
+-----------------------------+

You can use label expressions to select properties that belong to the specified vertex or edge
labels. For example:

SELECT label(n), n.* FROM MATCH (n:Person) ORDER BY "name"

The preceding query retrieves all the properties for the specified Person label:

+--------------------+
| label(n) | name    |
+--------------------+
| Person   | Camille |
| Person   | Liam    |
| Person   | Nikita  |
+--------------------+

You can also specify a PREFIX to avoid duplicate column names in cases where you select all
properties using multiple variables. For example:

SELECT n.* PREFIX 'n_', e.* PREFIX 'e_', m.* PREFIX 'm_'
FROM MATCH (n:Account) -[e:transaction]-> (m:Account)
ORDER BY "e_amount"

The query output is as shown:

+--------------------------------+
| n_number | e_amount | m_number |
+--------------------------------+
| 10039    | 1000.0   | 8021     |
| 8021     | 1500.3   | 1001     |
| 8021     | 3000.7   | 1001     |
| 2090     | 9900.0   | 10039    |
| 1001     | 9999.5   | 2090     |
+--------------------------------+

18.3.2 Unnesting of Variable-Length Path Queries
Unnesting of variable-length path queries (such as, SHORTEST or CHEAPEST paths) to obtain a
separate row for each vertex or edge along a path is supported.

You can unnest a path aggregation using one of the following options:

• ONE ROW PER MATCH (default option)

• ONE ROW PER VERTEX(vertex_variable)
• ONE ROW PER STEP(edge_source_variable,edge_variable,edge_destination_variable)

Chapter 18
Supported PGQL Features and Limitations on the Graph Server (PGX)

18-9



For example, the following PGQL query uses the ONE ROW PER STEP option:

SELECT  v1.ACCT_ID AS src_no, k.TXN_AMOUNT, v2.ACCT_ID AS dest_no 
FROM MATCH ALL SHORTEST (a:Accounts) -[e:transfers]->+ (b:Accounts)
ONE ROW PER STEP( v1,k,v2 )
WHERE a.ACCT_ID = 284 AND b.ACCT_ID = 616

It is important to note that the ONE ROW PER STEP option only supports paths with a minimal hop
greater than 0 and hence * quantifier is not supported with this option.

On execution, the preceding query retrieves one row for every edge on the path that is bound
by the corresponding source and destination vertices:

+-------------------------------+
| src_no | TXN_AMOUNT | dest_no |
+-------------------------------+
| 744    | 1000.0     | 616     |
| 772    | 1000.0     | 744     |
| 284    | 1000.0     | 772     |
| 744    | 1000.0     | 616     |
| 772    | 1500.0     | 744     |
| 284    | 1000.0     | 772     |
+-------------------------------+

You can also use the Graph Visualization tool to visualize edges using ONE ROW PER STEP
along a path:

Figure 18-1    Visualizing Unnesting of Variable-Length Path Queries

Chapter 18
Supported PGQL Features and Limitations on the Graph Server (PGX)

18-10



An example for a query with the ONE ROW PER VERTEX option is as follows:

SELECT k.acct_id AS id, k.acct_name AS name
FROM MATCH ANY SHORTEST (a:Accounts) ((src:Accounts)-[e:transfers]->){1,3}
(b:Accounts)
ONE ROW PER VERTEX(k)
WHERE a.acct_id=284 AND b.acct_id=616

On execution, the preceding query retrieves one row per vertex along a path:

+----------------+
| id  | name     |
+----------------+
| 616 | Account4 |
| 744 | Account3 |
| 772 | Account2 |
| 284 | Account1 |
+---------------+

Built-in Function Support for Recursive Path Unnesting Queries

PGQL supports the following two built-in functions, which can be used in combination with any
of the path unnesting option (ONE ROW PER VERTEX, ONE ROW PER STEP or ONE ROW PER MATCH):

• MATCH_NUMBER(k): Returns a unique per-path identifier for each unnested path (that is, if
two rows come from the same path, they have the same MATCH_NUMBER(k)).

• ELEMENT_NUMBER(k): Returns the element number of a vertex or an edge along a path.
Vertices are numbered with odd numbers, the leftmost vertex is numbered 1, the second 3,
then 5 and so on. Edges are assigned with even numbers, starting with 2 for the leftmost
edge, 4 for the next one, and so on.

For example, the following PGQL query uses the MATCH_NUMBER(k) and ELEMENT_NUMBER(k)
functions with ONE ROW PER VERTEX option:

SELECT k.*, match_number(k), element_number(k)
FROM MATCH ANY SHORTEST (a:Accounts) -[e:transfers]->* (b:Accounts) ONE ROW 
PER VERTEX ( k )
WHERE a.acct_id = 284 AND b.acct_id = 616

The preceding query produces the following output on execution. Note that the
element_number(k) returned for the vertices are odd numbered values. Since the preceding
query uses ANY path pattern, there is only one arbitrary path displayed in the output. Therefore
match_number(k) is the same for all the rows in the path.

+-----------------------------------------------------------+
| ACCT_ID | ACCT_NAME | match_number(k) | element_number(k) |
+-----------------------------------------------------------+
| 616     | Account   | 0               | 7                 |
| 744     | Account   | 0               | 5                 |
| 772     | Account   | 0               | 3                 |
| 284     | Account   | 0               | 1                 |
+-----------------------------------------------------------+

Chapter 18
Supported PGQL Features and Limitations on the Graph Server (PGX)

18-11



The following example shows a PGQL query using MATCH_NUMBER(k) and ELEMENT_NUMBER(k)
functions with ONE ROW PER STEP option:

SELECT v1.acct_id AS src_no,k.txn_amount,v2.acct_id AS dest_no, 
match_number(k), element_number(k)
FROM MATCH ALL SHORTEST (a:Accounts) -[e:transfers]->+ (b:Accounts)
ONE ROW PER STEP( v1,k,v2 )
WHERE a.acct_id = 284 AND b.acct_id = 616

The preceding query output is as shown. Note that there are two paths identified by
match_number(k)and the edges are displayed with even numbered element_number(k)
values.

+---------------------------------------------------------------------+
| src_no | txn_amount | dest_no | match_number(k) | element_number(k) |
+---------------------------------------------------------------------+
| 744    | 1000.0     | 616     | 0               | 6                 |
| 772    | 1000.0     | 744     | 0               | 4                 |
| 284    | 1000.0     | 772     | 0               | 2                 |
| 744    | 1000.0     | 616     | 1               | 6                 |
| 772    | 1500.0     | 744     | 1               | 4                 |
| 284    | 1000.0     | 772     | 1               | 2                 |
+---------------------------------------------------------------------+

18.3.3 Using INTERVAL Literals in PGQL Queries
You can use INTERVAL literals in PGQL queries to add or subtract intervals to or from PGQL
temporal data types respectively.

See the PGQL 1.5 Specification for the supported temporal data types.
An INTERVAL type is a period of time, which consists of the keyword "INTERVAL" followed by a
numeral and a temporal unit. For example, INTERVAL '1' DAY.

The following table shows the valid temporal units that are supported in INTERVAL values:

Table 18-3    Valid values for fields in INTERVAL values

Keyword Supported Valid Values

YEAR Unconstrained except by <interval leading field
precision>

MONTH Months (within years) (0-11)

DAY Unconstrained except by <interval leading field
precision>

HOUR Hours (within days) (0-23)

MINUTE Minutes (within hours) (0-59)

SECOND Seconds (within minutes) (0-59.999...)

The following INTERVAL operations are supported on a temporal data type:

• TEMPORAL TYPE + INTERVAL
• INTERVAL + TEMPORAL TYPE

Chapter 18
Supported PGQL Features and Limitations on the Graph Server (PGX)

18-12

https://pgql-lang.org/spec/1.5/#data-types


• TEMPORAL TYPE - INTERVAL
For example, the following PGQL query retrieves persons where n.birthdate + INTERVAL
'20' YEAR > TIMESTAMP '2000-01-01 00:00:00':

• JShell

• Java

• Python

JShell

opg4j> graph.queryPgql("SELECT n.name, n.birthdate FROM MATCH (n:Person) 
WHERE n.birthdate + INTERVAL '20' YEAR > TIMESTAMP '2000-01-01 
00:00:00'").print()

Java

graph.queryPgql("SELECT n.name, n.birthdate FROM MATCH (n:Person) WHERE 
n.birthdate + INTERVAL '20' YEAR > TIMESTAMP '2000-01-01 00:00:00'").print();

Python

graph.query_pgql("SELECT n.name, n.birthdate FROM MATCH (n:Person) WHERE 
n.birthdate + INTERVAL '20' YEAR > TIMESTAMP '2000-01-01 00:00:00'").print()

On execution, the query output is as shown:

+--------------------------+
| name  | birthdate        |
+--------------------------+
| Mary  | 1982-09-25T00:00 |
| Alice | 1987-02-01T00:00 |
+--------------------------+

18.3.4 Using Path Modes with PGQL
The following path modes are available in combination with ANY, ALL, ANY SHORTEST, SHORTEST
k, and ALL SHORTEST:

• WALK (default path mode): A walk is traversing a graph through a sequence of vertices
and edges. The vertices and edges visited in a walk can be repeated. Hence there is no
filtering of paths in this default path mode.

Chapter 18
Supported PGQL Features and Limitations on the Graph Server (PGX)

18-13



• TRAIL: A trail is traversing a graph without repeating the edges. Therefore, path bindings
with repeated edges are not returned.

SELECT CAST(a.number AS STRING) || ' -> ' || LISTAGG(x.number, ' -> ') AS 
accounts_along_path
FROM MATCH ALL TRAIL PATHS (a IS account) (-[IS transaction]-> (x)){2,} (b 
IS Account)
WHERE a.number = 8021 AND b.number = 1001

+-----------------------------------------------+
| accounts_along_path                           |
+-----------------------------------------------+
| 8021 -> 1001 -> 2090 -> 10039 -> 8021 -> 1001 |
| 8021 -> 1001 -> 2090 -> 10039 -> 8021 -> 1001 |
+-----------------------------------------------+

In the preceding output, both the paths contain the vertices 8021 and 1001 twice but they
are still valid trails as long as no edges are repeated.

• ACYCLIC: If the starting and ending vertex in a graph traversal are different, then this
implies that there are no cycles in the path. In this case, the path bindings with repeated
vertices are not returned.

SELECT CAST(a.number AS STRING) || ' -> ' || LISTAGG(x.number, ' -> ') AS 
accounts_along_path
FROM MATCH SHORTEST 10 ACYCLIC PATHS (a IS account) (-[IS transaction]-> 
(x))+ (b)
WHERE a.number = 10039 AND b.number = 1001

+-----------------------+
| accounts_along_path   |
+-----------------------+
| 10039 -> 8021 -> 1001 |
| 10039 -> 8021 -> 1001 |
+-----------------------+

The preceding query requested 10 shortest paths. But only two are returned since all the
other paths are cyclic.

• SIMPLE: A simple walk is traversing a graph without repeating the vertices. Therefore, path
bindings with repeated vertices are not returned. The only exception is when the repeated
vertex is the first and the last in a path.

SELECT CAST(a.number AS STRING) || ' -> ' || LISTAGG(x.number, ' -> ') AS 
accounts_along_path
FROM MATCH ANY SIMPLE PATH (a IS account) (-[IS transaction]-> (x))+ (a)
WHERE a.number = 10039

+----------------------------------------+
| accounts_along_path                    |
+----------------------------------------+
| 10039 -> 8021 -> 1001 -> 2090 -> 10039 |
+----------------------------------------+

Chapter 18
Supported PGQL Features and Limitations on the Graph Server (PGX)

18-14



The preceding query returns a cyclic path. This path is a valid simple path since it starts
and ends in the same vertex and there is no other cycle in the path.

Note that the path modes are syntactically placed after ANY, ALL, ANY SHORTEST, SHORTEST k,
ALL SHORTEST, CHEAPEST, and CHEAPEST k. The path mode is optionally followed by a PATH or
PATHS keyword.

Note that using TRAIL, ACYCLIC, or SIMPLE matching path modes for all unbounded quantifiers
guarantees that the result set of a graph pattern matching will be finite.

18.3.5 Support for PGQL Lateral Subqueries
You can use a LATERAL subquery to pass the output rows of one query into another.

For example, you can use the ORDER BY or GROUP BY clause on top of another ORDER BY or
GROUP BY clause:

/* Find the top-5 largest transactions and return the account number
   that received the highest number of such large transactions */
SELECT recipient, COUNT(*) AS num_large_transactions
FROM LATERAL ( SELECT m.number AS recipient
               FROM MATCH (n:account) -[e:transaction]-> (m:account)
               ORDER BY e.amount DESC
               LIMIT 5 )
GROUP BY recipient
ORDER BY num_large_transactions DESC
LIMIT 1

Also, the LATERAL subquery in the FROM clause can be followed by one or more MATCH clauses.
For example:

SELECT path_num, elem_num, owner.name
FROM LATERAL ( SELECT v, MATCHNUM(v) AS path_num, ELEMENT_NUMBER(v) AS 
elem_num
               FROM MATCH SHORTEST 2 PATHS (a1:account) -[e:transaction]->* 
(a2:account)
                      ONE ROW PER VERTEX ( v )
               WHERE a1.number = 10039 AND a2.number = 2090 )
    , MATCH (v) -[:owner]-> (owner:Person|Company)
ORDER BY path_num, elem_num 

Note that the FROM clause may contain any number of MATCH clauses and LATERAL
subqueries.

Both, MATCH clause followed by a LATERAL subquery, or a LATERAL subquery followed by one or
more LATERAL subqueries are supported.

Also, note the following:

• Variables exported from previous table expressions can be used in subsequent table
expressions.

• Operators like ORDER BY and LIMIT can be used followed by additional pattern matching.

• Variables that are not projected from a LATERAL subquery cannot be accessed in the outer
query.

Chapter 18
Supported PGQL Features and Limitations on the Graph Server (PGX)

18-15



The following example query first retrieves a list of companies, Then, it finds the respective
accounts of the companies. Finally, it finds the top 2 transactions made to the account of each
company in the initial list.

SELECT c.name, a.number, t.amount FROM 
  LATERAL ( SELECT c FROM MATCH (c:Company) ORDER BY c.name LIMIT 1),
  MATCH (a:Account)->(c), 
  LATERAL (SELECT t FROM MATCH ()-[t:Transaction]->(a) ORDER BY t.amount DESC 
LIMIT 2)

In the following query, the LATERAL subquery is followed by two other LATERAL subqueries.
Each subquery builds upon the output from the previous clauses:

SELECT f.number as fundsAccount FROM
LATERAL ( SELECT p FROM MATCH (p:Person) WHERE p.name = 'Nikita'),
LATERAL ( SELECT a FROM MATCH (a)->(p)),
LATERAL ( SELECT f FROM MATCH (f)->(a))

18.3.6 Support for PGQL GRAPH_TABLE Operator
The GRAPH_TABLE operator in PGQL increases the interoperability between graphs loaded into
the graph server (PGX) and the graphs on the database.

However, in order to comply with the SQL standard, ensure that the PGQL query syntax is
aligned as shown:

• The label predicate in the graph pattern MATCH query must use the IS keyword.

• To limit the number of output rows, use the FETCH [FIRST/NEXT] x [ROW/ROWS] clause
instead of the LIMIT x clause.

• To verify the orientation of the edge, use v IS [NOT] SOURCE [OF] e/v IS [NOT]
DESTINATION [OF] e as the standard form instead of [NOT] is_source_of(e, v) / [NOT]
is_destination_of(e, v).

• To verify if the vertex or edge has the given label, use the x IS [NOT] LABELED
<label_string> predicate as an alternative for has_label(x, <label_string>).

• To match the k shortest paths, use MATCH (n) –[e]->* (m) KEEP SHORTEST k as the
standard form of MATCH TOP k SHORTEST (n) –[e]->* (m).

• ALL keyword optional in front of fixed-length path patterns.
MATCH (n) –[e]->{1,4} (m) as an alternative for MATCH ALL (n) –[e]->{1,4} (m).

• MATCH <path pattern> KEEP <path pattern prefix> <WHERE clause> as an alternative
for MATCH <path pattern prefix> <path pattern> <WHERE clause>

The following shows a few query examples using the GRAPH_TABLE operator:

Example 18-2    Aggregation Query Using TRAIL path mode with ALL

SELECT *
FROM GRAPH_TABLE ( financial_transactions
       MATCH ALL TRAIL (a IS account) -[e IS transaction]->* (b IS account)
       /* optional ONE ROW PER VERTEX/STEP clause here */
       WHERE a.number = 8021 AND b.number = 1001

Chapter 18
Supported PGQL Features and Limitations on the Graph Server (PGX)

18-16



       COLUMNS ( LISTAGG(e.amount, ', ') AS amounts )
     )ORDER BY amounts

The preceding query produces the following output:

+----------------------------------------+
| amounts                                |
+----------------------------------------+
| 1500.3                                 |
| 1500.3, 9999.5, 9900.0, 1000.0, 3000.7 |
| 3000.7                                 |
| 3000.7, 9999.5, 9900.0, 1000.0, 1500.3 |
+----------------------------------------+

Example 18-3    Aggregation Query Using KEEP Clause

SELECT *
FROM GRAPH_TABLE ( financial_transactions
       MATCH (a IS Account) -[e IS transaction]->+ (a)
       KEEP SIMPLE PATHS
       WHERE a.number = 10039
       COLUMNS ( LISTAGG(e.amount, ', ') AS amounts_along_path,
                 SUM(e.amount) AS total_amount )
     )
ORDER BY total_amount DESC

The preceding query produces the following output:

+-----------------------------------------------+
| amounts_along_path             | total_amount |
+-----------------------------------------------+
| 1000.0, 3000.7, 9999.5, 9900.0 | 23900.2      |
| 1000.0, 1500.3, 9999.5, 9900.0 | 22399.8      |
+-----------------------------------------------+

18.3.7 Limitations on Quantifiers
Although all quantifiers such as *, +, and {1,4} are supported for reachability and shortest path
patterns, the only quantifier that is supported for cheapest path patterns is * (zero or more).

18.3.8 Limitations on WHERE and COST Clauses in Quantified Patterns
The WHERE and COST clauses in quantified patterns, such as reachability patterns or shortest
and cheapest path patterns, are limited to referencing a single variable only.

The following are examples of queries that are not supported because the WHERE or COST
clauses reference two variables e and x instead of zero or one:

... PATH p AS (n) –[e]-> (m) WHERE e.prop > m.prop ...

... SHORTEST ( (n) (-[e]-> (x) WHERE e.prop + x.prop > 10)* (m) ) ...

... CHEAPEST ( (n) (-[e]-> (x) COST e.prop + x.prop )* (m) ) ...

Chapter 18
Supported PGQL Features and Limitations on the Graph Server (PGX)

18-17



The following query is supported because the subquery only references a single variable a
from the outer scope, while the variable c does not count since it is newly introduced in the
subquery:

... PATH p AS (a) -> (b)
      WHERE EXISTS ( SELECT * FROM MATCH (a) -> (c) ) ...

18.4 Java APIs for Executing CREATE PROPERTY GRAPH
Statements

You can use the PgxSession.executePgql(String statement) method to execute a CREATE
PROPERTY GRAPH statement.

The PgxSession.executePgql(String statement) Java API creates a property graph in graph
server (PGX). Note that when using this API, the graph is not persisted in the database, it is
only created in the graph server (PGX). To persist a graph in the database, you can create a
graph in the database (see Quick Starts for Using PGQL Property Graphs), and then load the
graph into the graph server (PGX).

Example 18-4    Executing a CREATE PROPERTY GRAPH statement

String statement =
      "CREATE PROPERTY GRAPH hr_simplified "
    + "  VERTEX TABLES ( "
    + "    hr.employees LABEL employee "
    + "      PROPERTIES ARE ALL COLUMNS EXCEPT ( job_id, manager_id, 
department_id ), "
    + "    hr.departments LABEL department "
    + "      PROPERTIES ( department_id, department_name ) "
    + "  ) "
    + "  EDGE TABLES ( "
    + "    hr.employees AS works_at "
    + "      SOURCE KEY ( employee_id ) REFERENCES employees (employee_id) "
    + "      DESTINATION departments "
    + "      PROPERTIES ( employee_id ) "
    + "  )";
session.executePgql(statement);
PgxGraph g = session.getGraph("HR_SIMPLIFIED");

/**
 * Alternatively, one can use the prepared statement API, for example:
 */

PgxPreparedStatement stmnt = session.preparePgql(statement);
stmnt.execute();
stmnt.close();
PgxGraph g = session.getGraph("HR_SIMPLIFIED");

Chapter 18
Java APIs for Executing CREATE PROPERTY GRAPH Statements

18-18



18.5 Python APIs for Executing CREATE PROPERTY GRAPH
Statements

You can create a property graph by executing the CREATE PROPERTY GRAPH statement
through the Python API.

The prepare_pgql(<pgql_query>).execute() Python API creates a property graph in the
graph server (PGX). Note that when using this API, the graph is not persisted in the database,
it is only created in the graph server (PGX). If you wish to persist a graph in the database, then
you can create the graph in the database (see Quick Starts for Using PGQL Property Graphs)
and then load the graph into graph server (PGX).

Creating a Property Graph Using the Python Client

• Launch the Python client:

./bin/opg4py --base_url https://localhost:7007 --user customer_360

• Define and execute the CREATE PROPERTY GRAPH statement as shown:

statement = (
       "CREATE PROPERTY GRAPH "+ "<graph_name>" + " " +
       "VERTEX TABLES ( " +
       "bank_accounts " +
       "KEY(acct_id) " +
       "LABEL Account PROPERTIES (acct_id) " +
       ")" +
       "EDGE TABLES ( " +
       "bank_txns " +
       "KEY (txn_id) " +
       "SOURCE KEY (from_acct_id) REFERENCES bank_accounts (acct_id) " +
       "DESTINATION KEY (to_acct_id) REFERENCES bank_accounts (acct_id) " +
       "LABEL Transfer PROPERTIES(amount) " +
       ")")
>>> session.prepare_pgql(statement).execute()

where <graph_name> is the name of the graph.

The graph gets created and you can verify through the get_graph method:

>>> graph = session.get_graph("<graph_name>")
>>> graph
PgxGraph(name:<graph_variable>, v: 1000, e: 5001, directed: True, 
memory(Mb): 0)

18.6 Executing PGQL Queries Using the PGX JDBC Driver
Starting from Graph Server and Client Release 24.1.0, you can use the PGX JDBC driver to
access a PGX session and query graphs that are loaded in to the graph server (PGX).

To use the PGX JDBC driver, note the following:

Chapter 18
Python APIs for Executing CREATE PROPERTY GRAPH Statements

18-19



• Register the PGX JDBC driver with the DriverManager:

import java.sql.DriverManager;
import oracle.pgx.jdbc.PgxJdbcDriver;
...
DriverManager.registerDriver(new PgxJdbcDriver());

• Add the jdbc:oracle:pgx: prefix to the JDBC URL when obtaining a connection object as
shown:
Connection conn =
DriverManager.getConnection("jdbc:oracle:pgx:@<graph_server_host>:<server_port
>", "<username>", "<password>");

Example 18-5    Using the PGX JDBC Driver

The following example establishes a connection using the PGX JDBC driver, accesses the
underlying PGX session to load the graph into the graph server (PGX), creates a statement,
and runs a PGQL query on the graph.

import java.sql.*;
import oracle.pgx.jdbc.*;
import oracle.pgx.api.*;

public class PgxJdbcSample {

  public static void main(String[] args) throws Exception {

    String jdbcUrl = "jdbc:oracle:pgx:https://localhost:7007";
    String username = "graphuser";
    String password = "graph";
    
    DriverManager.registerDriver(new PgxJdbcDriver());
    try(Connection conn = DriverManager.getConnection(jdbcUrl, username, 
password)) {
             if (conn.isWrapperFor(PgxSession.class)) {
                     PgxSession session = conn.unwrap(PgxSession.class);
                     session.readGraphByName("BANK_GRAPH_VIEW", 
GraphSource.PG_PGQL);
             }
            Statement stmt = conn.createStatement();
            ResultSet rs = stmt.executeQuery("SELECT e.AMOUNT AS AMOUNT FROM 
MATCH (a IS ACCOUNTS) -[e IS TRANSFERS]-> (b IS ACCOUNTS) ON BANK_GRAPH_VIEW 
"+
                                             " WHERE a.ID = 179 AND b.ID = 
688");
            while(rs.next()){
                 System.out.println("AMOUNT = " + rs.getLong("AMOUNT"));
            }
    }

  }
}

Chapter 18
Executing PGQL Queries Using the PGX JDBC Driver

18-20



The resulting output of the preceding code is as shown:

AMOUNT = 1000

Note that when running the preceding code, you must provide the PGX client JARs on the
runtime classpath.

• Limitations of the PGX JDBC Driver
Review the limiations of the PGX JDBC driver.

• PGX Data Type Compatibility and Casting
You can configure a compatibility mode for the PGX JDBC driver to determine the data
type returned when calling the ResultSet#getObject() method.

Related Topics

• Using the PGX JDBC Driver when Graph Server (PGX) is Utilized as a Library
When using the graph server (PGX) as a library, you can use the PGX JDBC driver to
query graphs that are loaded from files.

18.6.1 Limitations of the PGX JDBC Driver
Review the limiations of the PGX JDBC driver.

• The following PGX data types are not supported to be returned by the PGX JDBC driver:

– VERTEX
– EDGE
– POINT2D

• Accessing the labels of a vertex or an edge is not supported.

• Multi-dimensional properties such as vectors, and lists are not supported.

18.6.2 PGX Data Type Compatibility and Casting
You can configure a compatibility mode for the PGX JDBC driver to determine the data type
returned when calling the ResultSet#getObject() method.

The PGX JDBC driver supports the following compatibility modes:

• PGX (default): By default, the PGX JDBC driver will use the PGX compatibility mode to
return the PGX native types.

• ORACLE_JDBC19: This mode enables the driver to return data types that are compatible
with Oracle Database 19c.

• ORACLE_JDBC23: This mode enables the driver to return data types that are compatible
with Oracle Database 23ai.

The following table describes the data types returned by the driver for the different compatibility
modes.

Table 18-4    Data Type Compatibility

PGX Type PGX (Default) ORACLE_JDBC19 ORACLE_JDBC23

BOOLEAN BOOLEAN java.math.BigDecima
l

Boolean

Chapter 18
Executing PGQL Queries Using the PGX JDBC Driver

18-21



Table 18-4    (Cont.) Data Type Compatibility

PGX Type PGX (Default) ORACLE_JDBC19 ORACLE_JDBC23

INTEGER/LONG/FLOAT/
DOUBLE

INTEGER/LONG/FLOAT/
DOUBLE

java.math.BigDecima
l

java.math.BigDecima
l

LOCAL_DATE java.sql.Date java.sql.Timestamp java.sql.Timestamp
TIME java.sql.Time Not supported Not supported

TIME_WITH_TIMEZONE java.time.OffsetTim
e

Not supported Not supported

TIMESTAMP java.sql.Timestamp oracle.sql.TIMESTAM
P

oracle.sql.TIMESTAM
P

TIMESTAMP_WITH_TIME
ZONE

java.time.OffsetDat
eTime

oracle.sql.TIMESTAM
PZ

oracle.sql.TIMESTAM
PZ

Setting the Compatibility Mode in the PGX JDBC Driver

If you wish to use a different compatibility mode (other than the default PGX mode), then this
can be set as part of the properties as shown:

import static oracle.pgx.jdbc.CONNECTION_PROPERTY_COMPATIBILITY_MODE;
import static oracle.pgx.jdbc.ORACLE_JDBC19;
...
Properties properties = new Properties();
properties.put(...);
properties.put(CONNECTION_PROPERTY_COMPATIBILITY_MODE, ORACLE_JDBC19); // set 
compatibility mode
Connection connection = DriverManager.getConnection("<jdbc_url>", properties);

Data Type Conversions through Casting

The PGX JDBC driver allows casting of one type into another (regardless of the compatibility
mode) as shown in the following table.

Table 18-5    Additional Supported Types through Casting

PGX Type Default Mapping (PGX
Compatibility)

Additional Supported Types (through Casting)

BOOLEAN BOOLEAN String, BigDecimal
INTEGER INTEGER String, BigDecimal, Long, Float, Double
FLOAT FLOAT String, BigDecimal, Double
LONG LONG String, BigDecimal, Double
DOUBLE DOUBLE String, BigDecimal
LOCAL_DATE java.sql.Date String, java.time.LocalDate,

java.sql.Timestamp
TIME java.sql.Time String, java.time.LocalTime
TIME_WITH_TIMEZONE java.time.OffsetTim

e
String

TIMESTAMP java.sql.Timestamp String, java.time.LocalDateTime,
oracle.sql.TIMESTAMP

Chapter 18
Executing PGQL Queries Using the PGX JDBC Driver

18-22



Table 18-5    (Cont.) Additional Supported Types through Casting

PGX Type Default Mapping (PGX
Compatibility)

Additional Supported Types (through Casting)

TIMESTAMP_WITH_TIME
ZONE

java.time.OffsetDat
eTime

String, oracle.sql.TIMESTAMPZ

Data Type Conversions for PreparedObject#setObject(int index, Object o)
The following table describes the data type conversions when calling the
PreparedObject#setObject(int index, Object o) method.

Table 18-6    Data Type Conversions for setObject Method

Given Object Type PGX Type

BOOLEAN BOOLEAN
INTEGER/FLOAT/LONG/DOUBLE INTEGER/FLOAT/LONG/DOUBLE
BIGDECIMAL DOUBLE
java.sql.Date, java.time.LocalDate LOCAL_DATE
java.sql.Time, java.time.LocalTime TIME
java.time.OffsetTime TIME_WITH_TIMEZONE
java.sql.Timestamp,
java.time.LocalDateTime,
oracle.sql.TIMESTAMP

TIMESTAMP

java.time.OffsetDateTime,
oracle.sql.TIMESTAMPZ

TIMESTAMP_WITH_TIMEZONE

18.7 Java APIs for Executing SELECT Queries
This section describes the APIs to execute SELECT queries in the graph server (PGX).

• Executing SELECT Queries Against a Graph in the Graph Server (PGX)
The PgxGraph.queryPgql(String query) method executes the query in the current
session. The method returns a PgqlResultSet.

• Executing SELECT Queries Against a PGX Session
The PgxSession.queryPgql(String query) method executes the given query in the
session and returns a PgqlResultSet.

• Iterating Through a Result Set
There are two ways to iterate through a result set: in a JDBC-like manner or using the Java
Iterator interface.

• Printing a Result Set
The following methods of PgqlResultSet (package oracle.pgx.api) are used to print a
result set:

Chapter 18
Java APIs for Executing SELECT Queries

18-23



18.7.1 Executing SELECT Queries Against a Graph in the Graph Server
(PGX)

The PgxGraph.queryPgql(String query) method executes the query in the current session.
The method returns a PgqlResultSet.

The ON clauses inside the MATCH clauses can be omitted since the query is executed directly
against a PGX graph. For the same reason, the INTO clauses inside the INSERT clauses can be
omitted. However, if you want to explicitly specify graph names in the ON and INTO clauses,
then those graph names have to match the actual name of the graph (PgxGraph.getName()).

18.7.2 Executing SELECT Queries Against a PGX Session
The PgxSession.queryPgql(String query) method executes the given query in the session
and returns a PgqlResultSet.

The ON clauses inside the MATCH clauses, and the INTO clauses inside the INSERT clauses, must
be specified and cannot be omitted. At this moment, all the ON and INTO clauses of a query
need to reference the same graph since joining data from multiple graphs in a single query is
not yet supported.

18.7.3 Iterating Through a Result Set
There are two ways to iterate through a result set: in a JDBC-like manner or using the Java
Iterator interface.

For JDBC-like iterations, the methods in PgqlResultSet (package oracle.pgx.api) are similar
to the ones in java.sql.ResultSet. A noteworthy difference is that PGQL's result set interface
is based on the new date and time library that was introduced in Java 8, while
java.sql.ResultSet is based on the legacy java.util.Date. To bridge the gap, PGQL's result
set provides getLegacyDate(..) for applications that still use java.util.Date.

A PgqlResultSet has a cursor that is initially set before the first row. Then, the following
methods are available to reposition the cursor:

• next() : boolean
• previous() : boolean
• beforeFirst()
• afterLast()
• first() : boolean
• last() : boolean
• absolute(long row) : boolean
• relative(long rows) : boolean
After the cursor is positioned at the desired row, the following getters are used to obtain values:

• getObject(int columnIdx) : Object
• getObject(String columnName) : Object
• getString(int columnIdx) : String

Chapter 18
Java APIs for Executing SELECT Queries

18-24



• getString(String columnName) : String
• getInteger(int columnIdx) : Integer
• getInteger(String columnName) : Integer
• getLong(int columnIdx) : Long
• getLong(String columnName) : Long
• getFloat(int columnIdx) : Float
• getFloat(String columnName) : Float
• getDouble(int columnIdx) : Double
• getDouble(String columnName) : Double
• getBoolean(int columnIdx) : Boolean
• getBoolean(String columnName) : Boolean
• getVertexLabels(int columnIdx) : Set<String>
• getVertexLabels(String columnName) : Set<String>
• getDate(int columnIdx) : LocalDate
• getDate(String columnName) : LocalDate
• getTime(int columnIdx) : LocalTime
• getTime(String columnName) : LocalTime
• getTimestamp(int columnIdx) : LocalDateTime
• getTimestamp(String columnName) : LocalDateTime
• getTimeWithTimezone(int columnIdx) : OffsetTime
• getTimeWithTimezone(String columnName) : OffsetTime
• getTimestampWithTimezone(int columnIdx) : OffsetDateTime
• getTimestampWithTimezone(String columnName) : OffsetDateTime
• getLegacyDate(int columnIdx) : java.util.Date
• getLegacyDate(String columnName) : java.util.Date
• getVertex(int columnIdx) : PgxVertex<ID>
• getVertex(String columnName) : PgxVertex<ID>
• getEdge(int columnIdx) : PgxEdge
• getEdge(String columnName) : PgxEdge
See the Java Documentation for more details.

Finally, there is a PgqlResultSet.close() which releases the result set’s resources, and there
is a PgqlResultSet.getMetaData() through which the column names and column count can
be retrieved.

An example for result set iteration is as follows:

PgqlResultSet resultSet = g.queryPgql(
    "   SELECT owner.name AS account_holder, SUM(t.amount) AS 
total_transacted_with_Nikita "

Chapter 18
Java APIs for Executing SELECT Queries

18-25

http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=java_doc


  + "     FROM MATCH (p:Person) -[:ownerOf]-> (account1:Account) " 
  + "        , MATCH (account1) -[t:transaction]- (account2) "
  + "        , MATCH (account2:Account) <-[:ownerOf]- (owner:Person|Company) "
  + "    WHERE p.name = 'Nikita' "
  + " GROUP BY owner");

while (resultSet.next()) {
  String accountHolder = resultSet.getString(1);
  long totalTransacted = resultSet.getLong(2);
  System.out.println(accountHolder + ": " + totalTransacted);
}

resultSet.close();

The output of the above example will look like:

Oracle: 4501
Camille: 1000

In addition, the PgqlResultSet is also iterable via the Java Iterator interface. An example of a
“for each loop” over the result set is as follows:

for (PgxResult result : resultSet) {
  String accountHolder = result.getString(1);
  long totalTransacted = result.getLong(2);
  System.out.println(accountHolder + ": " + totalTransacted);
}

The output of the above example will look like:

Oracle: 4501
Camille: 1000

Note that the same getters that are available for PgqlResultSet are also available for
PgxResult.

18.7.4 Printing a Result Set
The following methods of PgqlResultSet (package oracle.pgx.api) are used to print a
result set:

• print() : PgqlResultSet
• print(long numResults) : PgqlResultSet
• print(long numResults, int from) : PgqlResultSet
• print(PrintStream printStream, long numResults, int from) : PgqlResultSet
For example:

g.queryPgql("SELECT COUNT(*) AS numPersons FROM MATCH 
(n:Person)").print().close()
+------------+
| numPersons |

Chapter 18
Java APIs for Executing SELECT Queries

18-26



+------------+
| 3          |
+------------+

Another example:

PgqlResultSet resultSet = g.queryPgql(
    "   SELECT owner.name AS account_holder, SUM(t.amount) AS 
total_transacted_with_Nikita "
  + "     FROM MATCH (p:Person) -[:ownerOf]-> (account1:Account) " 
  + "        , MATCH (account1) -[t:transaction]- (account2) "
  + "        , MATCH (account2:Account) <-[:ownerOf]- (owner:Person|Company) "
  + "    WHERE p.name = 'Nikita' "
  + " GROUP BY owner")

resultSet.print().close()
+-----------------------------------------------+
| account_holder | total_transacted_with_Nikita |
+-----------------------------------------------+
| Camille        | 1000.0                       |
| Oracle         | 4501.0                       |
+-----------------------------------------------+

18.8 Java APIs for Executing UPDATE Queries
The UPDATE queries make changes to existing graphs using the INSERT, UPDATE, and DELETE
operations.

Note that INSERT allows you to insert new vertices and edges into a graph, UPDATE allows you
to update existing vertices and edges by setting their properties to new values, and DELETE
allows you to delete vertices and edges from a graph.

• Updatability of Graphs Through PGQL
Graph data that is loaded from the Oracle RDBMS or from CSV files into the PGX is not
updatable through PGQL right away.

• Executing UPDATE Queries Against a Graph in the Graph Server (PGX)
To execute UPDATE queries against a graph, use the PgxGraph.executePgql(String
query) method.

• Executing UPDATE Queries Against a PGX Session
You can also execute UPDATE queries against a PgxSession.

• Altering the Underlying Schema of a Graph
The INSERT operations can only insert vertices and edges with known labels and
properties. Similarly, UPDATE operations can only set values of known properties. Thus,
new data must always conform to the existing schema of the graph.

18.8.1 Updatability of Graphs Through PGQL
Graph data that is loaded from the Oracle RDBMS or from CSV files into the PGX is not
updatable through PGQL right away.

First, you need to create a copy of the data through the PgxGraph.clone() method. The
resulting graph is fully updatable.

Chapter 18
Java APIs for Executing UPDATE Queries

18-27



Consider the following example:

// load a graph from the RDBMS or from CSV
PgxGraph g1 = session.readGraphByName("<graph>",GraphSource.PG_PGQL);

// create an updatable copy of the graph
PgxGraph g2 = g1.clone("new_graph_name");

// insert an additional vertex into the graph
g2.executePgql("INSERT VERTEX v " +
               "         LABELS ( Person ) " +
               "         PROPERTIES ( v.firstName = 'Camille', " +
               "                      v.lastName = ' Mullins')"); 

Additionally, there is also a PgxGraph.cloneAndExecutePgql(String query, String
graphName) method that combines the last two steps from above example into a single step:

// create an updatable copy of the graph while inserting a new vertex
PgxGraph g2_copy = g1.cloneAndExecutePgql(
                     "INSERT VERTEX v " +
                     "         LABELS ( Person ) " +
                     "         PROPERTIES ( v.firstName = 'Camille', " +
                     "                      v.lastName = ' Mullins') "
                   , "new_graph_name");

Note that graphs that are created through PgxGraph.clone() are local to the session.
However, they can be shared with other sessions through the PgxGraph.publish(..) methods
but then they are no longer updatable through PGQL. Only session-local graphs are updatable
but persistent graphs are not.

18.8.2 Executing UPDATE Queries Against a Graph in the Graph Server
(PGX)

To execute UPDATE queries against a graph, use the PgxGraph.executePgql(String query)
method.

The following is an example of INSERT query:

g.executePgql("INSERT VERTEX v " +
              "         LABELS ( Person ) " +
              "         PROPERTIES ( v.firstName = 'Camille', " +
              "                      v.lastName = ' Mullins' ) "); 

Note that the INTO clause of the INSERT can be omitted. If you use an INTO clause, the graph
name in the INTO clause must correspond to the name of the PGX graph
(PgxGraph.getName()) that the query is executed against.

The following is an example of UPDATE query:

// set the date of birth of Camille to 2014-11-15
g.executePgql("UPDATE v SET ( v.dob = DATE '2014-11-14' ) " +

Chapter 18
Java APIs for Executing UPDATE Queries

18-28



              "FROM MATCH (v:Person) " +
              "WHERE v.firstName = 'Camille' AND v.lastName = ' Mullins' "); 

The following is an example of DELETE query:

// delete Camille from the graph
g.executePgql("DELETE v " +
              "FROM MATCH (v:Person) " +
              "WHERE v.firstName = 'Camille' AND v.lastName = 'Mullins' "); 

18.8.3 Executing UPDATE Queries Against a PGX Session
You can also execute UPDATE queries against a PgxSession.

The following example clones a graph and runs UPDATE queries against the PgxSession.

//Loads the graph into the graph server (PGX)
PgxGraph g1 = session.readGraphByName("BANK_GRAPH_VIEW",GraphSource.PG_PGQL);
//Clones the graph
PgxGraph g2 = g1.clone("BANK_GRAPH_NEW");
//Get the graph
session.getGraph("BANK_GRAPH_NEW");
//Insert vertices and an edge connecting the vertices into the graph
session.executePgql(
     "INSERT INTO BANK_GRAPH_NEW "+
     "   VERTEX v1 LABELS (Accounts) PROPERTIES (v1.id=1001, v1.name='New 
account-1') "+
     ",  VERTEX v2 LABELS (Accounts) PROPERTIES (v2.id=1002, v2.name='New 
account-2') "+
     ",  EDGE e1 BETWEEN v1 AND v2 LABELS (Transfers) PROPERTIES 
(e1.amount=3000) "
);
//Query the graph to verify the newly added edge
session.executePgql(
     "SELECT e.amount FROM MATCH (v1:Accounts) -[e:Transfers]-> (v2:Accounts) 
"+
     "ON BANK_GRAPH_NEW "+
     "WHERE v1.id=1001 AND v2.id=1002"
);

18.8.4 Altering the Underlying Schema of a Graph
The INSERT operations can only insert vertices and edges with known labels and properties.
Similarly, UPDATE operations can only set values of known properties. Thus, new data must
always conform to the existing schema of the graph.

However, some PGX APIs exist for updating the schema of a graph: while no APIs exist for
adding new labels, new properties can be added through the
PgxGraph.createVertexProperty(PropertyType type, String name) and
PgxGraph.createEdgeProperty(PropertyType type, String name) methods. The new
properties are attached to each vertex/edge in the graph, irrespective of their labels. Initially
the properties are assigned a default value but then the values can be updated through the
UPDATE statements.

Chapter 18
Java APIs for Executing UPDATE Queries

18-29



Consider the following example:

// load a graph from the RDBMS or from CSV
PgxGraph g = session.readGraphByName("<graph>",GraphSource.PG_PGQL);

// add a new property to the graph
g.createVertexProperty(PropertyType.LOCAL_DATE, "dob");

// set the date of birth of Camille to 2014-11-15
g.executePgql("UPDATE v SET ( v.dob = DATE '2014-11-14' ) " +
              "FROM MATCH (v:Person) " +
              "WHERE v.firstName = 'Camille' AND v.lastName = ' Mullins' ");

18.9 Python APIs for Executing UPDATE Queries
You can update a graph that is loaded into the graph server (PGX) using the Python APIs.

However, prior to updating the graph, you must first clone the graph. You can perform update
operations only on the cloned graph and not on the original graph.

The following example shows the steps for running UPDATE queries against a graph in the
graph server (PGX) using the Python APIs.

1. Load the PGQL property graph into the graph server (PGX).

>>> g1 = session.read_graph_by_name('BANK_GRAPH', 'pg_pgql')

2. Clone the graph for the update operation.

>>> g2 = g1.clone(name="BANK_GRAPH_NEW")

3. Update the cloned graph as required.

For example:

• Adding one or more vertices with properties

>>> g2.execute_pgql(
...   "INSERT VERTEX v1 LABELS (Accounts) PROPERTIES (v1.id=1001, 
v1.name='New account-1') "
...   "     , VERTEX v2 LABELS (Accounts) PROPERTIES (v2.id=1002, 
v2.name='New account-2') "
... )

• Inserting a new edge with properties
The new edge gets added between all vertices that match the WHERE clause.

>>> g2.execute_pgql(
...   "INSERT EDGE e1 BETWEEN v1 AND v2 "
...   "LABELS (Transfers) "
...   "PROPERTIES (e1.from_acct_id=1001, e1.amount=3000, 
e1.description='Transaction-A', e1.to_acct_id=1002) "
...   "FROM MATCH (v1:Accounts), MATCH (v2:Accounts) "
...   "WHERE v1.id=1001 AND v2.id=1002"
...   )

Chapter 18
Python APIs for Executing UPDATE Queries

18-30



Optionally, query the graph to verify that the new edge is added.

>>> g2.execute_pgql(
...   "SELECT e.* FROM MATCH (v1:Accounts) -[e:Transfers]-> 
(v2:Accounts) "
...   "WHERE v1.id=1001 AND v2.id=1002"
... ).print()
+----------------------------------------------------+
| FROM_ACCT_ID | TO_ACCT_ID | DESCRIPTION   | AMOUNT |
+----------------------------------------------------+
| 1001         | 1002       | Transaction-A | 3000.0 |
+----------------------------------------------------+

• Updating one or more vertex property
The vertex properties get updated for all vertices that match the WHERE clause.

>>> g2.execute_pgql(
...   "UPDATE v SET (v.name='Account-1001') "
...   "FROM MATCH (v:Accounts) "
...   "WHERE v.id=1001"
... )

• Updating one or more edge property
The edge properties get updated for the edge that connects the vertices in the WHERE
clause.

>>> g2.execute_pgql(
...   "UPDATE e SET (e.amount=5000) "
...   "FROM MATCH (v1:Accounts) -[e:Transfers]-> (v2:Accounts) "
...   "WHERE v1.id=1001 AND v2.id=1002"
... )

Optionally, query the graph to verify the updated edge property.

>>> g2.execute_pgql(
...   "SELECT e.amount FROM MATCH (v1:Accounts) -[e:Transfers]-> 
(v2:Accounts) "
...   "WHERE v1.id=1001 AND v2.id=1002"
... ).print()
+--------+
| amount |
+--------+
| 5000.0 |
+--------+

• Deleting a vertex
Note that when you delete a vertex, all edges that connect the vertex are also
removed.

>>> g2.execute_pgql("DELETE v FROM MATCH (v:Accounts) WHERE v.id=1001")

Chapter 18
Python APIs for Executing UPDATE Queries

18-31



Alternatively, you can combine step-2 and step-3 by using the clone_and_execute_pgql()
method as shown:

>>> g2 = g1.clone_and_execute_pgql(
...   "INSERT VERTEX v1 LABELS (Accounts) PROPERTIES (v1.id=1001, 
v1.name='New account-1') "
...   ",  VERTEX v2 LABELS (Accounts) PROPERTIES (v2.id=1002, v2.name='New 
account-2') "
...   ",  EDGE e1 BETWEEN v1 AND v2 LABELS (Transfers) PROPERTIES 
(e1.amount=3000) "
... )

Optionally, query the graph to verify the newly added edge.

>>> g2.execute_pgql(
...   "SELECT e.amount FROM MATCH (v1:Accounts) -[e:Transfers]-> 
(v2:Accounts) "
...   "WHERE v1.id=1001 AND v2.id=1002"
... ).print()
+--------+
| amount |
+--------+
| 3000.0 |
+--------+

Executing UPDATE Queries Against a PgxSession
You can also run UPDATE queries against a PgxSession as shown:

>>> g1 = session.read_graph_by_name('BANK_GRAPH', 'pg_pgql')
>>> g2 = g1.clone(name="BANK_GRAPH_NEW")
>>> session.execute_pgql(
...   "INSERT INTO BANK_GRAPH_NEW VERTEX v1 LABELS (Accounts) PROPERTIES 
(v1.id=1001, v1.name='New account-1') "
...   ",  VERTEX v2 LABELS (Accounts) PROPERTIES (v2.id=1002, v2.name='New 
account-2') "
...   ",  EDGE e1 BETWEEN v1 AND v2 LABELS (Transfers) PROPERTIES 
(e1.amount=3000) "
... )
>>> session.execute_pgql(
...   "SELECT e.amount FROM MATCH (v1:Accounts) -[e:Transfers]-> 
(v2:Accounts) ON BANK_GRAPH_NEW "
...   "WHERE v1.id=1001 AND v2.id=1002"
... ).print()
+--------+
| amount |
+--------+
| 3000.0 |
+--------+

Chapter 18
Python APIs for Executing UPDATE Queries

18-32



18.10 PGQL Queries with Partitioned IDs
You can retrieve partitioned IDs using the id() function in PGQL.

PGQL SELECT Queries

The following are a few examples to retrieve partitioned IDs using PGQL SELECT queries:

g.queryPgql("SELECT id(n) FROM MATCH(n)").print().close()

This prints an output similar to:

+-------------+
| id(n)       |
+-------------+
| Accounts(2) |
| Accounts(4) |
| Accounts(6) |
+-------------+

g.queryPgql("SELECT n.name FROM MATCH(n) WHERE id(n) = 
'Accounts(1)'").print().close()

The output is printed as shown:

+-------+
| name  |
+-------+
| User1 |
+-------+

g.queryPgql("SELECT LABEL(n), n.name from MATCH(n) WHERE n.id = 
1").print().close()

The output is printed as shown:

+------------------+
| label(n) | name  |
+------------------+
| Accounts | User1 |
+------------------+

PGX automatically creates a unique index for keys so that queries with predicates such as
WHERE id(n) = 'Accounts(1)' and WHERE n.id = 1 can be efficiently processed by retrieving
the vertex in constant time.

Using Bind Variables

Partitioned IDs can also be passed as bind values into a PgxPreparedStatement.

Chapter 18
PGQL Queries with Partitioned IDs

18-33



For example:

PgxPreparedStatement statement = g.preparePgql("SELECT n.name FROM MATCH (n) 
WHERE id(n)= ?")
statement.setString(1, "Accounts(1)")
statement.executeQuery().print().close()

This prints the output as shown:

+-------+
| name  |
+-------+
| User1 |
+-------+

PGQL INSERT Queries

In INSERT queries, you must provide a value for the key property if a key property exists. The
value is then used for the vertex or edge key.

For example you can execute an INSERT as shown:

g.executePgql("INSERT VERTEX v LABELS (Accounts) PROPERTIES (v.id = 1001, 
v.name = 'User1001')")

The inserted values can be verified as shown:

g.queryPgql("SELECT id(n), n.name FROM MATCH(n) WHERE n.id = 
1001").print().close()

This prints the output:

+---------------------------+
| id(n)          | name     |
+---------------------------+
| Accounts(1001) | User1001 |
+---------------------------+

18.11 Security Tools for Executing PGQL Queries
To safeguard against query injection, bind variables can be used in place of literals while
printIdentifier(String identifier) can be used in place of identifiers like graph names,
labels, and property names.

• Using Bind Variables
There are two reasons for using bind variables:

• Using Identifiers in a Safe Manner
When you create a query through string concatenation, not only literals in queries pose a
security risk, but also identifiers like graph names, labels, and property names do. The only
problem is that bind variables are not supported for such identifier. Therefore, if these
identifiers are variable from the application's perspective, then it is recommended to

Chapter 18
Security Tools for Executing PGQL Queries

18-34



protect against query injection by passing the identifier through the
oracle.pgql.lang.ir.PgqlUtils.printIdentifier(String identifier) method.

18.11.1 Using Bind Variables
There are two reasons for using bind variables:

• It protects against query injection.

• It speeds up query execution because the same bind variables can be set multiple times
without requiring recompilation of the query.

To create a prepared statement, use one of the following two methods:

• PgxGraph.preparePgql(String query) : PgxPreparedStatement
• PgxSession.preparePgql(String query) : PgxPreparedStatement
The PgxPreparedStatement (package oracle.pgx.api) returned from these methods have
setter methods for binding the bind variables to values of the designated data type.

PreparedStatement stmnt = g.preparePgql(
  "SELECT v.id, v.dob " +
  "FROM MATCH (v) " +
  "WHERE v.firstName = ? AND v.lastName = ?");
stmnt.setString(1, "Camille");
stmnt.setString(2, "Mullins");
ResultSet rs = stmnt.executeQuery();

Each bind variable in the query needs to be set to a value using one of the following setters of
PgxPreparedStatement:

• setBoolean(int parameterIndex, boolean x)
• setDouble(int parameterIndex, double x)
• setFloat(int parameterIndex, float x)
• setInt(int parameterIndex, int x)
• setLong(int parameterIndex, long x)
• setDate(int parameterIndex, LocalDate x)
• setTime(int parameterIndex, LocalTime x)
• setTimestamp(int parameterIndex, LocalDateTime x)
• setTimeWithTimezone(int parameterIndex, OffsetTime x)
• setTimestampWithTimezone(int parameterIndex, OffsetDateTime x)
• setArray(int parameterIndex, List<?> x)
Once all the bind variables are set, the statement can be executed through:

• PgxPreparedStatement.executeQuery()
– For SELECT queries only

– Returns a ResultSet

• PgxPreparedStatement.execute()

Chapter 18
Security Tools for Executing PGQL Queries

18-35



– For any type of statement

– Returns a Boolean to indicate the form of the result: true in case of a SELECT query,
false otherwise

– In case of SELECT, the ResultSet can afterwards be accessed through
PgxPreparedStatement.getResultSet()

In PGQL, bind variables can be used in place of literals of any data type, including array
literals. An example query with a bind variable to is set to an instance of a String array is:

List<String> countryNames = new ArrayList<String>();
countryNames.add("Scotland");
countryNames.add("Tanzania");
countryNames.add("Serbia");

PreparedStatement stmnt = g.preparePgql(
  "SELECT n.name, n.population " +
  "FROM MATCH (c:Country) " +
  "WHERE c.name IN ?");

ResultSet rs = stmnt.executeQuery();

Finally, if a prepared statement is no longer needed, it is closed through
PgxPreparedStatement.close() to free up resources.

18.11.2 Using Identifiers in a Safe Manner
When you create a query through string concatenation, not only literals in queries pose a
security risk, but also identifiers like graph names, labels, and property names do. The only
problem is that bind variables are not supported for such identifier. Therefore, if these
identifiers are variable from the application's perspective, then it is recommended to protect
against query injection by passing the identifier through the
oracle.pgql.lang.ir.PgqlUtils.printIdentifier(String identifier) method.

Given an identifier string, the method automatically adds double quotes to the start and end of
the identifier and escapes the characters in the identifier appropriately.

Consider the following example:

String graphNamePrinted = printIdentifier("my graph name with \" special % 
characters ");
PreparedStatement stmnt = g.preparePgql(
  "SELECT COUNT(*) AS numVertices FROM MATCH (v) ON " + graphNamePrinted);

18.12 Best Practices for Tuning PGQL Queries
This section describes best practices regarding memory allocation, parallelism, and query
planning.

• Memory Allocation
The graph server (PGX) has on-heap and off-heap memory, the earlier being the standard
JVM heap while the latter being a separate heap that is managed by PGX. Just like graph
data, intermediate and final results of PGQL queries are partially stored on-heap and
partially off-heap. Therefore, both heaps are needed.

Chapter 18
Best Practices for Tuning PGQL Queries

18-36



• Parallelism
By default, all available processor threads are used to process PGQL queries. However, if
needed, the number of threads can be limited by setting the parallelism option of the
graph server (PGX).

• Query Plan Explaining
The PgxGraph.explainPgql(String query) method is used to get insight into the query
plan of the query. The method returns an instance of Operation (package
oracle.pgx.api) which has the following methods:

18.12.1 Memory Allocation
The graph server (PGX) has on-heap and off-heap memory, the earlier being the standard
JVM heap while the latter being a separate heap that is managed by PGX. Just like graph
data, intermediate and final results of PGQL queries are partially stored on-heap and partially
off-heap. Therefore, both heaps are needed.

In case of the on-heap memory, the default maximum is chosen upon startup of the JVM, but it
can be overwritten through the -Xmx option.

In case of the off-heap, there is no maximum set by default and the off-heap memory usage,
therefore, keeps increasing automatically until it depletes the system resources, in which case
the operation is canceled, it's memory is released, and an appropriate exception is passed to
the user. If needed, a maximum off-heap size can be configured through the
max_off_heap_size option in the graph server (PGX).

A ratio of 1:1 for on-heap versus off-heap is recommended as a good starting point to allow for
the largest possible graphs to be loaded and queried. See Configuring On-Heap Limits for the
steps to configure the on-heap memory size.

18.12.2 Parallelism
By default, all available processor threads are used to process PGQL queries. However, if
needed, the number of threads can be limited by setting the parallelism option of the graph
server (PGX).

See Configuration Parameters for the Graph Server (PGX) Engine for more information on the
graph server configuration parameters.

18.12.3 Query Plan Explaining
The PgxGraph.explainPgql(String query) method is used to get insight into the query plan
of the query. The method returns an instance of Operation (package oracle.pgx.api) which
has the following methods:

• print(): for printing the operation and its child operations

• getOperationType(): for getting the type of the operation

• getPatternInfo(): for getting a string representation of the operation

• getCostEstimate(): for getting the cost of the operation

• getTotalCostEstimate(): for getting the cost of the operations and its child operations

• getCardinatlityEstimate(): for getting the expected number of result rows

• getChildren(): for accessing the child operations

Chapter 18
Best Practices for Tuning PGQL Queries

18-37



Consider the following example:

g.explainPgql("SELECT COUNT(*) FROM MATCH (n) -[e1]-> (m) -[e2]-> 
(o)").print()
\--- GROUP BY  GroupBy {"cardinality":"42", "cost":"42", 
"accumulatedCost":"58.1"}
     \--- (m) -[e2]-> (o) NeighborMatch {"cardinality":"3.12", "cost":"3.12", 
"accumulatedCost":"16.1"}
          \--- (n) -[e1]-> (m) NeighborMatch {"cardinality":"5", "cost":"5", 
"accumulatedCost":"13"}
               \--- (n) RootVertexMatch {"cardinality":"8", "cost":"8", 
"accumulatedCost":"8"}

In the above example, the print() method is used to print the query plan.

If a query plan is not optimal, it is often possible to rewrite the query to improve its
performance. For example, a SELECT query may be split into an UPDATE and a SELECT query as
a way to improve the total runtime.

Note that the graph server (PGX) does not provide a hint mechanism.

Also, printing the query plan shows the filters used in the query. For example:

g.explainPgql("SELECT id(n) FROM MATCH (n)-[e]->(m) WHERE " +
...> "id(n) > 500 " +
...> "AND id(n) < 510 " +
...> "AND id(n) <> 509 " +
...> "AND id(n) <> 507 ").print()
\--- Projection {"cardinality":"146", "cost":"0", "accumulatedCost":"175"}
     \--- (n) -[e]-> (m) NeighborMatch {"cardinality":"146", "cost":"146", 
"accumulatedCost":"175"}
          \--- (n) RootVertexMatch {"cardinality":"29.2", "cost":"29.2", 
"accumulatedCost":"29.2"}
                WHERE $filter1
filter1: (id(n) <> 509) AND
         (id(n) <> 507) AND
         (id(n) > 500) AND
         (id(n) < 510)

In the preceding example, since the query has filters that spans more than three lines, the
filters are shown displayed below the query plan. If the filters are less than three lines, then the
filters are shown directly within the query plan tree as shown:

g.explainPgql("SELECT id(n) FROM MATCH (n)-[e]->(m) WHERE " +
...> "id(n) > 500 " +
...> "AND id(n) < 510 ").print()
\--- Projection {"cardinality":"162", "cost":"0", "accumulatedCost":"194"}
     \--- (n) -[e]-> (m) NeighborMatch {"cardinality":"162", "cost":"162", 
"accumulatedCost":"194"}
          \--- (n) RootVertexMatch {"cardinality":"32.4", "cost":"32.4", 
"accumulatedCost":"32.4"}
                WHERE (id(n) > 500) AND
                      (id(n) < 510)

Chapter 18
Best Practices for Tuning PGQL Queries

18-38



19
REST Endpoints for the Graph Server

This chapter describes the graph server REST API endpoints.

The graph server REST API supports two different versions. It is recommended that you use
version 2 of the API.

• Graph Server REST API Version 2
Learn about the graph server REST API version 2 (v2).

• Graph Server REST API Version 1
Learn about the graph server REST API version 1 (v1).

19.1 Graph Server REST API Version 2
Learn about the graph server REST API version 2 (v2).

This API version supports a token-based authentication for the REST endpoints. Therefore,
you must first obtain an access token which can be used in the subsequent REST API
requests.

• Get an Authentication Token

• Refresh an Authentication Token

• Get Graphs

• Run a PGQL Query

• Get the Database Version

• Get User

• Asynchronous REST Endpoints

19.1.1 Get an Authentication Token
POST https://localhost:7007/auth/token
Get an authentication token which can be used to authenticate the REST API requests.

Request

Request Header

• Accept: application/json; charset=UTF-8
• Content-Type: application/json

Table 19-1    Request Body Parameters

Parameter Type Description Required

username string Name of the user Yes

password string Password for the user Yes

19-1



Table 19-1    (Cont.) Request Body Parameters

Parameter Type Description Required

createSession boolean To determine if a session
needs to be created

Optional. Set it to true if you
want to run queries against
the graph server (PGX).

source string A descriptive string identifying
the client

Optional. Ensure to enter the
source value without spaces
(for example, "commandLine",
"shellWithJava", and so on).

sessionId string To reuse an existing session
when connecting to the graph
server

Optional. Set it to an existing
session ID if you want to
reuse that session.

Sample Request Body

{
    "username": "graphuser",
    "password": "<password_for_graphuser>",
    "createSession": true,
    "source": "<source-value-for-pgx-session>",
    "sessionId": "<session-id>"
}

Response

• 201 Created

• Content-Type: application/json
Sample Response Body

{
    "access_token": "<token>"
    "token_type": "bearer",
    "expires_in": 3600
}

cURL Example

curl --location 'https://localhost:7007/auth/token' \
--header 'Content-Type: application/json' \
--data '{ 
    "username": "graphuser",
    "password": "<password_for_graphuser>",
    "createSession": true,
    "source": "commandLine",
    "sessionId": "<session-id>"
}'

19.1.2 Refresh an Authentication Token
PUT https://localhost:7007/auth/token

Chapter 19
Graph Server REST API Version 2

19-2



Refresh a valid access token.

Request

Request Header

• Accept: application/json; charset=UTF-8
• Content-Type: application/json

Table 19-2    Request Body Parameters

Parameter Type Description Required

token string Access token value Yes

createSession boolean Flag to determine if a session
needs to be created

Optional. Set it to true if you
want to run queries against
the graph server (PGX).

sessionId string To reuse an existing session
when connecting to the graph
server

Optional. Set it to an existing
session ID if you want to
reuse that session.

Sample Request Body

{
    "token": "<token>",
    "createSession": true,
    "sessionId": "<session-id>"
}

Response

• 201 Created

• Content-Type: application/json
Sample Response Body

{
    "access_token": "<token>"
    "token_type": "bearer",
    "expires_in": 3600
}

cURL Example

curl --location --request PUT 'https://localhost:7007/auth/token' \
--header 'Content-Type: application/json' \
--data '{
    "token": "<token_value>",
    "createSession": true,
    "sessionId": "<session-id>"
}'

Chapter 19
Graph Server REST API Version 2

19-3



19.1.3 Get Graphs
GET https://localhost:7007/v2/graphs
Get the list of graphs for the specified driver.

Version: v2

Request

Request Header

• Accept: application/json; charset=UTF-8
• Header: Authorization: Bearer <token>
• Content-Type: application/json
Request Query Parameter

• driver (required): Specifies the PGQL driver value. This is a mandatory parameter.
Supported values are as follows:

– GRAPH_SERVER_PGX: Graphs loaded into the graph server (PGX)

– PGQL_IN_DATABASE: PGQL property graphs in the database

– SQL_IN_DATABASE: SQL property graphs in the database

Response

• 200 OK

• Content-Type: application/json
Sample Response Body

[
    {
        "schema": <value>,
        "graphName": <value>
    }
]

Note that the schema parameter will be NULL for graphs created in the graph server (PGX).

cURL Example

curl --location --request GET 'https://localhost:7007/v2/graphs?
driver=<driver-value>' \
--header 'Authorization: Bearer <token>'

19.1.4 Run a PGQL Query
POST https://localhost:7007/v2/runQuery
Run one or multiple statements for the specified driver.

Chapter 19
Graph Server REST API Version 2

19-4



Version: v2

Request

Request Header

• Accept: application/json; charset=UTF-8
• Header: Authorization: Bearer <token>
• Content-Type: application/json

Table 19-3    Request Body Parameters

Parameter Type Description Required

statements string [ ] One or multiple
statements

Yes

driver string Specifies the PGQL
driver. The supported
values are:
• GRAPH_SERVER_PG

X: To run PGQL
queries against the
graph server (PGX)

• PGQL_IN_DATABAS
E: To run PGQL
statements or
queries against the
database

• SQL_IN_DATABASE:
To run graph
queries against the
database

Yes

formatter string The supported values
are:
• DATASTUDIO
• GVT

Yes

parameters object
• dynamicSampling

: integer

• parallel: integer

• start: integer

• size: integer

Parameters include:
• Dynamic Sampling

Value
• Degree of

Parallelism
• Fetch size (= the

number of rows) of
the query result

Parameters are all optional.
• Default value for dynamic

sampling is 2.
• Default value for

parallelism depends on
the driver.

• Default value for start is
0.

• Default value for size is
100.

visualize boolean Flag to set visualization Optional. Default value is
true.

Sample Request Body

{
  "statements": [
    "DROP PROPERTY GRAPH TEST_GRAPH",
    "CREATE PROPERTY GRAPH TEST_GRAPH VERTEX TABLES( Male KEY (id) LABEL Male 
PROPERTIES ARE ALL COLUMNS EXCEPT (gender), Female KEY (id) LABEL Female 

Chapter 19
Graph Server REST API Version 2

19-5



PROPERTIES ARE ALL COLUMNS EXCEPT (gender) ) EDGE TABLES( knowsmm KEY (id) 
SOURCE KEY (sid) REFERENCES Male DESTINATION KEY (did) REFERENCES Male LABEL 
knows PROPERTIES (mval, firstMetAt, since), knowsmf KEY (id) SOURCE KEY (sid) 
REFERENCES Male DESTINATION KEY (did) REFERENCES Female LABEL knows 
PROPERTIES (mval, firstMetAt, since), knowsfm KEY (id) SOURCE KEY (sid) 
REFERENCES Female DESTINATION KEY (did) REFERENCES Male LABEL knows 
PROPERTIES (mval, firstMetAt, since), knowsff KEY (id) SOURCE KEY (sid) 
REFERENCES Female DESTINATION KEY (did) REFERENCES Female LABEL knows 
PROPERTIES (mval, firstMetAt, since), friendOfmm KEY (id) SOURCE KEY (sid) 
REFERENCES Male DESTINATION KEY (did) REFERENCES Male LABEL friendOf 
PROPERTIES (strength), friendOfmf KEY (id) SOURCE KEY (sid) REFERENCES Male 
DESTINATION KEY (did) REFERENCES Female LABEL friendOf PROPERTIES (strength), 
friendOffm KEY (id) SOURCE KEY (sid) REFERENCES Female DESTINATION KEY (did) 
REFERENCES Male LABEL friendOf PROPERTIES (strength), friendOfff KEY (id) 
SOURCE KEY (sid) REFERENCES Female DESTINATION KEY (did) REFERENCES Female 
LABEL friendOf PROPERTIES (strength) ) OPTIONS ( pg_pgql )", 
    "SELECT v FROM MATCH (v) ON TEST_GRAPH LIMIT 1"
  ],
  "driver": "PGQL_IN_DATABASE",
  "formatter": "GVT",
  "parameters": {
    "dynamicSampling": 2,
    "parallel": 8,
    "start": 0,
    "size": 100
  },
  "visualize": true

Response

• 200 OK

• Content-Type: application/json
Sample Response Body

{
    "results": [
        {
            "pgqlStatement": "DROP PROPERTY GRAPH TEST_GRAPH",
            "result": "Graph successfully dropped",
            "success": true,
            "error": null,
            "started": 1689656429130,
            "ended": 1689656429198
        },
        {
            "pgqlStatement": "CREATE PROPERTY GRAPH TEST_GRAPH VERTEX 
TABLES( Male KEY (id) LABEL Male PROPERTIES ARE ALL COLUMNS EXCEPT (gender), 
Female KEY (id) LABEL Female PROPERTIES ARE ALL COLUMNS EXCEPT (gender) ) 
EDGE TABLES( knowsmm KEY (id) SOURCE KEY (sid) REFERENCES Male DESTINATION 
KEY (did) REFERENCES Male LABEL knows PROPERTIES (mval, firstMetAt, since), 
knowsmf KEY (id) SOURCE KEY (sid) REFERENCES Male DESTINATION KEY (did) 
REFERENCES Female LABEL knows PROPERTIES (mval, firstMetAt, since), knowsfm 
KEY (id) SOURCE KEY (sid) REFERENCES Female DESTINATION KEY (did) REFERENCES 
Male LABEL knows PROPERTIES (mval, firstMetAt, since), knowsff KEY (id) 
SOURCE KEY (sid) REFERENCES Female DESTINATION KEY (did) REFERENCES Female 

Chapter 19
Graph Server REST API Version 2

19-6



LABEL knows PROPERTIES (mval, firstMetAt, since), friendOfmm KEY (id) SOURCE 
KEY (sid) REFERENCES Male DESTINATION KEY (did) REFERENCES Male LABEL 
friendOf PROPERTIES (strength), friendOfmf KEY (id) SOURCE KEY (sid) 
REFERENCES Male DESTINATION KEY (did) REFERENCES Female LABEL friendOf 
PROPERTIES (strength), friendOffm KEY (id) SOURCE KEY (sid) REFERENCES Female 
DESTINATION KEY (did) REFERENCES Male LABEL friendOf PROPERTIES (strength), 
friendOfff KEY (id) SOURCE KEY (sid) REFERENCES Female DESTINATION KEY (did) 
REFERENCES Female LABEL friendOf PROPERTIES (strength) ) OPTIONS ( pg_pgql )",
            "result": "Graph successfully created",
            "success": true,
            "error": null,
            "started": 1689656429198,
            "ended": 1689656429458
        },
        {
            "pgqlStatement": "SELECT v FROM MATCH (v) ON TEST_GRAPH LIMIT 1",
            "result": 
"{\"schema\":\"GRAPHUSER\",\"name\":\"TEST_GRAPH\",\"resultSetId\":\"\",\"grap
h\":{\"vertices\":[{\"id\":\"MALE(0)\",\"properties\":
{\"AGE\":\"40\",\"BVAL\":\"Y\",\"LNAME\":\"Brown\",\"FNAME\":\"Bill\",\"PREFER
ENCES\":\"{ \\\"color\\\": \\\"blue\\\", \\\"number\\\": \\\"5\\\" }
\",\"ID\":\"0\",\"TEXT\":\"the cat sat on the 
mat\",\"MVAL\":\"y\"}}],\"edges\":[],\"numResults\":1},\"table\":\"V\
\nMALE(0)\"}",
            "success": true,
            "error": null,
            "started": 1689656429458,
            "ended": 1689656430029
        }
    ]
}

cURL Example

curl --location --request POST 'https://localhost:7007/v2/runQuery' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer <token>' \
--data '{
  "statements": [
    "DROP PROPERTY GRAPH TEST_GRAPH",
    "CREATE PROPERTY GRAPH TEST_GRAPH VERTEX TABLES( Male KEY (id) LABEL Male 
PROPERTIES ARE ALL COLUMNS EXCEPT (gender), Female KEY (id) LABEL Female 
PROPERTIES ARE ALL COLUMNS EXCEPT (gender) ) EDGE TABLES( knowsmm KEY (id) 
SOURCE KEY (sid) REFERENCES Male DESTINATION KEY (did) REFERENCES Male LABEL 
knows PROPERTIES (mval, firstMetAt, since), knowsmf KEY (id) SOURCE KEY (sid) 
REFERENCES Male DESTINATION KEY (did) REFERENCES Female LABEL knows 
PROPERTIES (mval, firstMetAt, since), knowsfm KEY (id) SOURCE KEY (sid) 
REFERENCES Female DESTINATION KEY (did) REFERENCES Male LABEL knows 
PROPERTIES (mval, firstMetAt, since), knowsff KEY (id) SOURCE KEY (sid) 
REFERENCES Female DESTINATION KEY (did) REFERENCES Female LABEL knows 
PROPERTIES (mval, firstMetAt, since), friendOfmm KEY (id) SOURCE KEY (sid) 
REFERENCES Male DESTINATION KEY (did) REFERENCES Male LABEL friendOf 
PROPERTIES (strength), friendOfmf KEY (id) SOURCE KEY (sid) REFERENCES Male 
DESTINATION KEY (did) REFERENCES Female LABEL friendOf PROPERTIES (strength), 
friendOffm KEY (id) SOURCE KEY (sid) REFERENCES Female DESTINATION KEY (did) 

Chapter 19
Graph Server REST API Version 2

19-7



REFERENCES Male LABEL friendOf PROPERTIES (strength), friendOfff KEY (id) 
SOURCE KEY (sid) REFERENCES Female DESTINATION KEY (did) REFERENCES Female 
LABEL friendOf PROPERTIES (strength) ) OPTIONS ( pg_pgql )",
    "SELECT v FROM MATCH (v) ON TEST_GRAPH LIMIT 1"
  ],
  "driver": "PGQL_IN_DATABASE",
  "formatter": "GVT",
  "parameters": {
    "dynamicSampling": 2,
    "parallel": 8,
    "start": 0,
    "size": 100  
  },
  "visualize": true
}'

19.1.5 Get the Database Version
GET https://localhost:7007/v2/dbVersion
Get the database version to which the graph server is connected.

Version: v2

Request

Request Header

• Accept: application/json; charset=UTF-8
• Header: Authorization: Bearer <token>
• Content-Type: application/json

Response

• 200 OK

• Content-Type: application/json
Sample Response Body

{
    "dbVersion": "23.0"
}

cURL Example

curl --location --request GET 'https://localhost:7007/v2/dbVersion' \
--header 'Authorization: Bearer <token>'

Chapter 19
Graph Server REST API Version 2

19-8



19.1.6 Get User
GET https://localhost:7007/v2/user
Get the username that is currently connected to the graph server (username is attached to the
token).

Version: v2

Request

Request Header

• Accept: application/json; charset=UTF-8
• Header: Authorization: Bearer <token>
• Content-Type: application/json

Response

• 200 OK

• Content-Type: application/json
Sample Response Body

{
    "username": "graphuser"
}

cURL Example

curl --location --request GET 'https://localhost:7007/v2/user' \
--header 'Authorization: Bearer <token>'

19.1.7 Asynchronous REST Endpoints
The graph server REST endpoints support cancellation of queries.

In order to be able to cancel queries, you need to send the query using the following
asynchronous REST endpoints:

• Run an Asynchronous PGQL Query

• Check Asynchronous Query Completion

• Retrieve Asynchronous Query Result

• Cancel an Asynchronous Query Execution

19.1.7.1 Run an Asynchronous PGQL Query

POST https://localhost:7007/v2/runQueryAsync
Run a PGQL query asynchronously on a property graph.

Version: v2

Chapter 19
Graph Server REST API Version 2

19-9



Request

Request Header

• Accept: application/json; charset=UTF-8
• Header: Authorization: Bearer <token>
• Content-Type: application/json
Request Query Parameters: See Table 19-3 for details.

Sample Request Body

{
  "statements": [
    "DROP PROPERTY GRAPH TEST_GRAPH",
    "CREATE PROPERTY GRAPH TEST_GRAPH VERTEX TABLES( Male KEY (id) LABEL Male 
PROPERTIES ARE ALL COLUMNS EXCEPT (gender), Female KEY (id) LABEL Female 
PROPERTIES ARE ALL COLUMNS EXCEPT (gender) ) EDGE TABLES( knowsmm KEY (id) 
SOURCE KEY (sid) REFERENCES Male DESTINATION KEY (did) REFERENCES Male LABEL 
knows PROPERTIES (mval, firstMetAt, since), knowsmf KEY (id) SOURCE KEY (sid) 
REFERENCES Male DESTINATION KEY (did) REFERENCES Female LABEL knows 
PROPERTIES (mval, firstMetAt, since), knowsfm KEY (id) SOURCE KEY (sid) 
REFERENCES Female DESTINATION KEY (did) REFERENCES Male LABEL knows 
PROPERTIES (mval, firstMetAt, since), knowsff KEY (id) SOURCE KEY (sid) 
REFERENCES Female DESTINATION KEY (did) REFERENCES Female LABEL knows 
PROPERTIES (mval, firstMetAt, since), friendOfmm KEY (id) SOURCE KEY (sid) 
REFERENCES Male DESTINATION KEY (did) REFERENCES Male LABEL friendOf 
PROPERTIES (strength), friendOfmf KEY (id) SOURCE KEY (sid) REFERENCES Male 
DESTINATION KEY (did) REFERENCES Female LABEL friendOf PROPERTIES (strength), 
friendOffm KEY (id) SOURCE KEY (sid) REFERENCES Female DESTINATION KEY (did) 
REFERENCES Male LABEL friendOf PROPERTIES (strength), friendOfff KEY (id) 
SOURCE KEY (sid) REFERENCES Female DESTINATION KEY (did) REFERENCES Female 
LABEL friendOf PROPERTIES (strength) ) OPTIONS ( pg_pgql )", 
    "SELECT v FROM MATCH (v) ON TEST_GRAPH LIMIT 1"
  ],
  "driver": "PGQL_IN_DATABASE",
  "formatter": "GVT",
  "parameters": {
    "dynamicSampling": 2,
    "parallel": 8,
    "start": 0,
    "size": 100
  },
  "visualize": true

Response

• 202 OK

• Content-Type: application/json
Sample Response Body

{
    "message": "Query execution started.",

Chapter 19
Graph Server REST API Version 2

19-10



    "result_id": 0
}

cURL Example

curl --location --request POST 'https://localhost:7007/v2/runQueryAsync' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer <token>' \
--data '{
  "statements": [
    "DROP PROPERTY GRAPH TEST_GRAPH",
    "CREATE PROPERTY GRAPH TEST_GRAPH VERTEX TABLES( Male KEY (id) LABEL Male 
PROPERTIES ARE ALL COLUMNS EXCEPT (gender), Female KEY (id) LABEL Female 
PROPERTIES ARE ALL COLUMNS EXCEPT (gender) ) EDGE TABLES( knowsmm KEY (id) 
SOURCE KEY (sid) REFERENCES Male DESTINATION KEY (did) REFERENCES Male LABEL 
knows PROPERTIES (mval, firstMetAt, since), knowsmf KEY (id) SOURCE KEY (sid) 
REFERENCES Male DESTINATION KEY (did) REFERENCES Female LABEL knows 
PROPERTIES (mval, firstMetAt, since), knowsfm KEY (id) SOURCE KEY (sid) 
REFERENCES Female DESTINATION KEY (did) REFERENCES Male LABEL knows 
PROPERTIES (mval, firstMetAt, since), knowsff KEY (id) SOURCE KEY (sid) 
REFERENCES Female DESTINATION KEY (did) REFERENCES Female LABEL knows 
PROPERTIES (mval, firstMetAt, since), friendOfmm KEY (id) SOURCE KEY (sid) 
REFERENCES Male DESTINATION KEY (did) REFERENCES Male LABEL friendOf 
PROPERTIES (strength), friendOfmf KEY (id) SOURCE KEY (sid) REFERENCES Male 
DESTINATION KEY (did) REFERENCES Female LABEL friendOf PROPERTIES (strength), 
friendOffm KEY (id) SOURCE KEY (sid) REFERENCES Female DESTINATION KEY (did) 
REFERENCES Male LABEL friendOf PROPERTIES (strength), friendOfff KEY (id) 
SOURCE KEY (sid) REFERENCES Female DESTINATION KEY (did) REFERENCES Female 
LABEL friendOf PROPERTIES (strength) ) OPTIONS ( pg_pgql )",
    "SELECT v FROM MATCH (v) ON TEST_GRAPH LIMIT 1"
  ],
  "driver": "PGQL_IN_DATABASE",
  "formatter": "GVT",
  "parameters": {
    "dynamicSampling": 2,
    "parallel": 8,
    "start": 0,
    "size": 100  
  },
  "visualize": true
}'

19.1.7.2 Check Asynchronous Query Completion

GET https://localhost:7007/v2/isAsyncQueryExecutionComplete/<result_id>
Check if an asynchronous query execution is completed.

Version: v2

Request Header

• Accept: application/json; charset=UTF-8
• Header: Authorization: Bearer <token>

Chapter 19
Graph Server REST API Version 2

19-11



• Content-Type: application/json
Request Path Parameter:

• result_id: PGQL query execution result id.

Response

• 200 OK

• Content-Type: application/json
Sample Response Body

true

cURL Example

curl --location --request GET 'https://localhost:7007/v2/
isAsyncQueryExecutionComplete/<result-id>' \
--header 'Authorization: Bearer <token>'

19.1.7.3 Retrieve Asynchronous Query Result

GET https://localhost:7007/v2/runQueryAsync/<result_id>
Retreive the result of an asynchronous query.

Version: v2

Request

Request Header

• Accept: application/json; charset=UTF-8
• Header: Authorization: Bearer <token>
• Content-Type: application/json
Request Path Parameter:

• result_id: PGQL query execution result id.

Response

• 200 OK

• Content-Type: application/json
Sample Response Body

{
    "results": [
        {
            "pgqlStatement": "DROP PROPERTY GRAPH TEST_GRAPH",
            "result": "Graph successfully dropped",
            "success": true,
            "error": null,
            "started": 1689656429130,

Chapter 19
Graph Server REST API Version 2

19-12



            "ended": 1689656429198
        },
        {
            "pgqlStatement": "CREATE PROPERTY GRAPH TEST_GRAPH VERTEX 
TABLES( Male KEY (id) LABEL Male PROPERTIES ARE ALL COLUMNS EXCEPT (gender), 
Female KEY (id) LABEL Female PROPERTIES ARE ALL COLUMNS EXCEPT (gender) ) 
EDGE TABLES( knowsmm KEY (id) SOURCE KEY (sid) REFERENCES Male DESTINATION 
KEY (did) REFERENCES Male LABEL knows PROPERTIES (mval, firstMetAt, since), 
knowsmf KEY (id) SOURCE KEY (sid) REFERENCES Male DESTINATION KEY (did) 
REFERENCES Female LABEL knows PROPERTIES (mval, firstMetAt, since), knowsfm 
KEY (id) SOURCE KEY (sid) REFERENCES Female DESTINATION KEY (did) REFERENCES 
Male LABEL knows PROPERTIES (mval, firstMetAt, since), knowsff KEY (id) 
SOURCE KEY (sid) REFERENCES Female DESTINATION KEY (did) REFERENCES Female 
LABEL knows PROPERTIES (mval, firstMetAt, since), friendOfmm KEY (id) SOURCE 
KEY (sid) REFERENCES Male DESTINATION KEY (did) REFERENCES Male LABEL 
friendOf PROPERTIES (strength), friendOfmf KEY (id) SOURCE KEY (sid) 
REFERENCES Male DESTINATION KEY (did) REFERENCES Female LABEL friendOf 
PROPERTIES (strength), friendOffm KEY (id) SOURCE KEY (sid) REFERENCES Female 
DESTINATION KEY (did) REFERENCES Male LABEL friendOf PROPERTIES (strength), 
friendOfff KEY (id) SOURCE KEY (sid) REFERENCES Female DESTINATION KEY (did) 
REFERENCES Female LABEL friendOf PROPERTIES (strength) ) OPTIONS ( pg_pgql )",
            "result": "Graph successfully created",
            "success": true,
            "error": null,
            "started": 1689656429198,
            "ended": 1689656429458
        },
        {
            "pgqlStatement": "SELECT v FROM MATCH (v) ON TEST_GRAPH LIMIT 1",
            "result": 
"{\"schema\":\"GRAPHUSER\",\"name\":\"TEST_GRAPH\",\"resultSetId\":\"\",\"grap
h\":{\"vertices\":[{\"id\":\"MALE(0)\",\"properties\":
{\"AGE\":\"40\",\"BVAL\":\"Y\",\"LNAME\":\"Brown\",\"FNAME\":\"Bill\",\"PREFER
ENCES\":\"{ \\\"color\\\": \\\"blue\\\", \\\"number\\\": \\\"5\\\" }
\",\"ID\":\"0\",\"TEXT\":\"the cat sat on the 
mat\",\"MVAL\":\"y\"}}],\"edges\":[],\"numResults\":1},\"table\":\"V\
\nMALE(0)\"}",
            "success": true,
            "error": null,
            "started": 1689656429458,
            "ended": 1689656430029
        }
    ]
}

cURL Example

curl --location --request GET 'https://localhost:7007/v2/runQueryAsync/
<result-id>' \
--header 'Authorization: Bearer <token>'

Chapter 19
Graph Server REST API Version 2

19-13



19.1.7.4 Cancel an Asynchronous Query Execution

DELETE https://localhost:7007/v2/runQueryAsync/<result_id>
Cancel the execution of an asynchronous query.

Version: v2

Request

Request Header

• Accept: application/json; charset=UTF-8
• Header: Authorization: Bearer <token>
• Content-Type: application/json
Request Path Parameter:

• result_id: PGQL query execution result id.

Response

• 200 Accepted

• Content-Type: application/json

cURL Example

curl --location --request DELETE 'https://localhost:7007/v2/runQueryAsync/
<result-id>' /
--header 'Authorization: Bearer <token>'

19.2 Graph Server REST API Version 1
Learn about the graph server REST API version 1 (v1).

• Login

• Get Graphs

• Run a PGQL Query

• Get User

• Logout

• Asynchronous REST Endpoints

19.2.1 Login
POST https://localhost:7007/ui/v1/login/
Login to the graph server.

Version: v1

Authentication: Uses cookie-based authentication.

Chapter 19
Graph Server REST API Version 1

19-14



Table 19-4    Parameters

Parameter Parameter Type Value Required

Content-type Header application/json Yes

username Body <username> Yes

password Body <password> Yes

baseUrl Body <baseUrl> to point to the graph server (PGX)
or the database

Optional. If
empty, the
pgx.base_ur
l parameter
value in the
web.xml file
in /opt/
oracle/
graph/pgx/
server/
graph-
server-
webapp-24.3
.0.war will
be used.

pgqlDriver Body Valid PGQL driver configuration values are:
• pgxDriver : for PGQL on the graph

server (PGX)
• pgqlDriver: for PGQL on Oracle

Database

Yes

sessionId Body sessionId from graph server (PGX) Optional

Request

The following curl command signs the user in to the graph server:

curl --cacert /etc/oracle/graph/ca_certificate.pem -c cookie.txt -X POST -H 
"Content-Type: application/json" -d '{"username": "<username>", "password": 
"<password>", "pgqlDriver": "<pgqlDriver>","baseUrl": "<baseUrl>", 
"sessionId": "<sessionId>" }' https://localhost:7007/ui/v1/login/

Response: The username used for the login. For example:

"oracle"

On successful login, the server session cookie is stored in a cookie file, cookie.txt. Use this
cookie file, in the subsequent calls to the API.

19.2.2 Get Graphs
GET https://localhost:7007/ui/v1/graphs
Get the list of all graphs that belong to a user.

Version: v1

Request

Chapter 19
Graph Server REST API Version 1

19-15



The following curl command lists all the graphs that belong to the user:

curl --cacert /etc/oracle/graph/ca_certificate.pem -b cookie.txt 'https://
localhost:7007/ui/v1/graphs'

Response: The list of graphs available for the current user. For example:

[
  {
    "schema": "HR",
    "graphName": "MY_GRAPH"
  }
]

Also, note that the schema parameter will be NULL for graphs created in the graph server (PGX).

19.2.3 Run a PGQL Query
POST https://localhost:7007/ui/v1/query
Run a PGQL Query on a property graph.

Version: v1

Table 19-5    Request Query Parameters

Parameter Description Values Required

pgql PGQL query string <PGQL_query> Yes

graph Name of the graph <graph_name> Optional, only if the pgql query
parameter contains the graph
name. Otherwise, it is required.

parallelism Degree of
Parallelism

<parallelism_value> Optional.
Default value depends on the
PGQL driver configuration:
• pgxDriver: <number-of-

cpus>
See parallelism in 
Table 23-1.

• pgqlDriver: 1
size Fetch size (= the

number of rows) of
the query result

<size_value> Optional. Default size value is 100.

formatter Formatter of the
graph

<formatter_value> Optional.
Supported formatter options are:
• datastudio
• gvt
Default value is datastudio.

Request

Chapter 19
Graph Server REST API Version 1

19-16



The following curl command executes PGQL Query on a property graph:

curl --cacert /etc/oracle/graph/ca_certificate.pem -b cookie.txt 'https://
localhost:7007/ui/v1/query?pgql=SELECT%20e%0AMATCH%20()-%5Be%5D-%3E()
%0ALIMIT%205&graph=hr&size=100'

Response: The PGQL query result in JSON format.

{
  "name": "bank_graph_analytics_2",
  "resultSetId": "pgql_14",
  "graph": {
    "idType": "number",
    "vertices": [
      {
        "_id": "1",
        "p": [],
        "l": [
          "Accounts"
        ],
        "g": [
          "anonymous_1"
        ]
      },
      {
        "_id": "418",
        "p": [],
        "l": [
          "Accounts"
        ],
        "g": [
          "anonymous_2"
        ]
      },
      {
        "_id": "259",
        "p": [],
        "l": [
          "Accounts"
        ],
        "g": [
          "anonymous_2"
        ]
      }
    ],
    "edges": [
      {
        "_id": "0",
        "p": [
          {
            "n": "AMOUNT",
            "v": "1000.0",
            "s": false
          }
        ],

Chapter 19
Graph Server REST API Version 1

19-17



        "l": [
          "Transfers"
        ],
        "g": [
          "e"
        ],
        "s": "1",
        "d": "259",
        "u": false
      },
      {
        "_id": "1",
        "p": [
          {
            "n": "AMOUNT",
            "v": "1000.0",
            "s": false
          }
        ],
        "l": [
          "Transfers"
        ],
        "g": [
          "e"
        ],
        "s": "1",
        "d": "418",
        "u": false
      }
    ],
    "paths": [],
    "totalNumResults": 2
  },
  "table": 
"e\nPgxEdge[provider=Transfers,ID=0]\nPgxEdge[provider=Transfers,ID=1]"
}

19.2.4 Get User
GET https://localhost:7007/ui/v1/user
Get the name of the current user.

Version: v1

Request

The following curl command gets the name of the current user:

curl --cacert /etc/oracle/graph/ca_certificate.pem -b cookie.txt 'https://
localhost:7007/ui/v1/user'

Response: The name of the current user. For example:

"oracle"

Chapter 19
Graph Server REST API Version 1

19-18



19.2.5 Logout
POST https://localhost:7007/ui/v1/logout/
Log out from the graph server.

Version: v1

Request

The following curl command is to successfully log out from the graph server.

curl --cacert /etc/oracle/graph/ca_certificate.pem -b cookie.txt -X POST 
'https://localhost:7007/ui/v1/logout/'

Response: None

On successful logout, the server returns HTTP status code 200 and the session token from the
cookie.txt file will no longer be valid.

19.2.6 Asynchronous REST Endpoints
The graph server REST endpoints support cancellation of queries.

In order to be able to cancel queries, you need to send the query using the following
asynchronous REST endpoints:

• Run an Asynchronous PGQL Query

• Check Asynchronous Query Completion

• Retrieve Asynchronous Query Result

• Cancel an Asynchronous Query Execution

19.2.6.1 Run an Asynchronous PGQL Query

GET https://localhost:7007/ui/v1/async-query
Run a PGQL query asynchronously on a property graph.

Version: 1

See Table 19-5 for more information on query parameters.

Request

The following curl command executes a PGQL query asynchronously on a property graph:

curl --cacert /etc/oracle/graph/ca_certificate.pem -b cookie.txt 'https://
localhost:7007/ui/v1/async-query?pgql=SELECT%20e%0AMATCH%20()-%5Be%5D-%3E()
%0ALIMIT%205&graph=hr&parallelism=&size=100'

Response: None.

Chapter 19
Graph Server REST API Version 1

19-19



Note:

An error message will be returned in case the query is malformed or if the graph does
not exist.

19.2.6.2 Check Asynchronous Query Completion

GET https://localhost:7007/ui/v1/async-query-complete
Checks if an asynchronous query execution is completed.

Version: v1

Request

The following curl command checks if the PGQL query execution is completed:

curl --cacert /etc/oracle/graph/ca_certificate.pem -b cookie.txt 'https://
localhost:7007/ui/v1/async-query-complete'

Response: A boolean that indicates if the query execution is completed. For example,

true

Note:

You do not have to specify any request ID, as the currently executing query is
attached to your HTTP session. You can only have one query executing per session.
For concurrent query execution, create multiple HTTP sessions by logging in multiple
times.

19.2.6.3 Retrieve Asynchronous Query Result

GET https://localhost:7007/ui/v1/async-result
Retreive the result of an asynchronous query.

Version: v1

Chapter 19
Graph Server REST API Version 1

19-20



Note:

The endpoint, GET https://localhost:7007/ui/v1/async-result to retrieve a
query result is deprecated:

curl --cacert /etc/oracle/graph/ca_certificate.pem -b cookie.txt 
'https://localhost:7007/ui/v1/async-result?
pgql=SELECT%20e%0AMATCH%20()-%5Be%5D-%3E()
%0ALIMIT%205&graph=hr&parallelism=&size=100'

Request

The following curl command retrieves the result of a successfully completed query:

curl --cacert /etc/oracle/graph/ca_certificate.pem -b cookie.txt 'https://
localhost:7007/ui/v1/async-result'

Response: The PGQL query result in JSON format.

{
  "name": "bank_graph_analytics_2",
  "resultSetId": "pgql_14",
  "graph": {
    "idType": "number",
    "vertices": [
      {
        "_id": "1",
        "p": [],
        "l": [
          "Accounts"
        ],
        "g": [
          "anonymous_1"
        ]
      },
      {
        "_id": "418",
        "p": [],
        "l": [
          "Accounts"
        ],
        "g": [
          "anonymous_2"
        ]
      },
      {
        "_id": "259",
        "p": [],
        "l": [
          "Accounts"
        ],
        "g": [

Chapter 19
Graph Server REST API Version 1

19-21



          "anonymous_2"
        ]
      }
    ],
    "edges": [
      {
        "_id": "0",
        "p": [
          {
            "n": "AMOUNT",
            "v": "1000.0",
            "s": false
          }
        ],
        "l": [
          "Transfers"
        ],
        "g": [
          "e"
        ],
        "s": "1",
        "d": "259",
        "u": false
      },
      {
        "_id": "1",
        "p": [
          {
            "n": "AMOUNT",
            "v": "1000.0",
            "s": false
          }
        ],
        "l": [
          "Transfers"
        ],
        "g": [
          "e"
        ],
        "s": "1",
        "d": "418",
        "u": false
      }
    ],
    "paths": [],
    "totalNumResults": 2
  },
  "table": 
"e\nPgxEdge[provider=Transfers,ID=0]\nPgxEdge[provider=Transfers,ID=1]"
}

Chapter 19
Graph Server REST API Version 1

19-22



19.2.6.4 Cancel an Asynchronous Query Execution

DELETE https://localhost:7007/ui/v1/async-query
Cancels the execution of an asynchronous query.

Version: 1

Request

The following curl command cancels a currently executing PGQL Query on a property graph:

curl -X DELETE --cacert /etc/oracle/graph/ca_certificate.pem -b cookie.txt 
'https://localhost:7007/ui/v1/async-query'

Response: Confirmation of the cancellation or an error message if the query has already
completed execution.

Chapter 19
Graph Server REST API Version 1

19-23



Part VI
Graph Visualization Application

The Graph Visualization application enables interactive exploration and visualization of
property graphs. You can visualize graphs that are loaded into the graph server(PGX) and the
graphs stored in the database.

Note:

The Graph Visualization application which runs on https://
<server_host>:7007/ui/ is deprecated. It is recommended that you use https://
<server_host>:7007/dash/ to launch the new Graph Visualization application.

• About the Graph Visualization Application
The Graph Visualization application is a single-page web application that works with the
graph server (PGX).

• Using the Graph Visualization Application
The Graph Visualization application is based on the graph visualization library. Using this
interface, you can run PGQL queries on graphs in the graph server (PGX) and database.

• Embedding the Graph Visualization Library in a Web Application
You can integrate the graph visualization component in a web application to visualize
graph data.



20
About the Graph Visualization Application

The Graph Visualization application is a single-page web application that works with the graph
server (PGX).

The graph server can be deployed in embedded mode or in Apache Tomcat or Oracle
WebLogic Server. Graph Visualization application takes PGQL queries or SQL graph queries
(in case of SQL property graphs which are supported only in Oracle Database Release 23ai )
as input and renders the result visually. A rich set of client-side exploration and visualization
features can reveal new insights into your graph data.

Graph Visualization application works with the graph server (PGX). It can visualize graphs that
are have been loaded into the graph server (PGX) at run-time by a client application and made
available through the graph.publish() API.

See Also:

• Running the Graph Visualization Web Client

• REST Endpoints for the Graph Server

20-1



21
Using the Graph Visualization Application

The Graph Visualization application is based on the graph visualization library. Using this
interface, you can run PGQL queries on graphs in the graph server (PGX) and database.

See Also:

Graph JavaScript API Reference for Property Graph Visualization

The Graph Visualization application is made up of the following three tabs:

• Graph Server: To visualize graphs loaded into the graph server (PGX).

• Database (PGQL Property Graphs): To visualize PGQL property graphs in the database.

• Database (SQL Property Graphs): To visualize SQL property graphs. This tab option is
supported only with Oracle Database 23ai.

Each tab comprises a query editor at the top and a graph visualization panel at the bottom of
the interface.

All query level actions (such as running or canceling a query), viewing the list of graphs to
which you have access in a specific tab, or configuring the settings for visualizing the output
can be performed using the following toolbar:

Figure 21-1    Supported Actions

Note that the action to Load graph into memory is supported only in the Graph Server tab.

You can choose to view the results of the graph visualization query in graph (default) or tabular
format using the following toolbar which is displayed on the right of the graph visualization
panel:

Figure 21-2    Display Formats

• Visualizing PGQL Queries on Graphs Loaded Into the Graph Server (PGX)
You can create or load a graph into the graph server (PGX), and then run PGQL graph
queries in the Graph Server tab of the Graph Visualization application.

21-1

http://www.oracle.com/pls/topic/lookup?ctx=property_graph_latest&id=graphviz_js_doc


• Visualizing PGQL Queries on PGQL Property Graphs
You can visualize PGQL queries on PGQL property graphs in the database in the
Database (PGQL Property Graphs) tab of the Graph Visualization application.

• Visualizing Graph Queries on SQL Property Graphs
You can query and visualize a SQL property graph in the database in the Database (SQL
Property Graphs) tab of the Graph Visualization application.

• Graph Visualization Modes and Graph Legend
Learn about the graph visualization toolbar, supported graph visualization modes and
graph legend if you are viewing the results of the query in graph format.

• Graph Visualization Settings
You can click the Settings gear icon to open the Graph Visualization settings window.

21.1 Visualizing PGQL Queries on Graphs Loaded Into the
Graph Server (PGX)

You can create or load a graph into the graph server (PGX), and then run PGQL graph queries
in the Graph Server tab of the Graph Visualization application.

The following sections describe in detail the various actions that you can perform in the Graph
Server tab.

Creating a Property Graph in the Graph Server (PGX)

You can run the CREATE PROPERTY GRAPH PGQL statement to create a graph in the graph
server (PGX). For example:

Figure 21-3    Creating a Property Graph in the Graph Server Memory

The graph gets created and loaded into the graph server memory (PGX). Note that this is a
transient graph which will be destroyed at the end of the session.

You can click the Get Graphs List icon (shown highlighted in the preceding figure) to view all
the graphs that are loaded into the graph server memory.

Loading a Database Property Graph into the Graph Server (PGX) Memory

You can also load any existing PGQL or SQL property graph from the database into the graph
server (PGX) memory by performing the following steps:

Chapter 21
Visualizing PGQL Queries on Graphs Loaded Into the Graph Server (PGX)

21-2



1. Click the  Load graph into memory icon in the GraphServer tab.
The list of database graphs to which you have access are displayed as shown:

Figure 21-4    List of Database Graphs

Note that the SQL property graphs get listed only if you are connected to Oracle Database
23ai.

2. Click Load graph against the desired graph.
The confirmation dialog for loading the graph into memory opens.

Figure 21-5    Loading Graph Into Memory Confirmation

Chapter 21
Visualizing PGQL Queries on Graphs Loaded Into the Graph Server (PGX)

21-3



3. Optionally, click to expand the Advanced Options configuration.
The following advanced options can be configured:

• Ignore Invalid Edges Errors: Switch ON this toggle to ignore all edges that do not
connect to a vertex.

• Synchronizable: Switch ON this toggle to verify that the graph can be synchronized.

• Optimized For: Select one of the following graph optimization strategies:

– READ: To optimize for read-intensive scenarios.

– UPDATE: To optimize for update-intensive scenarios.

• Parallelism: To specify the degree of parallelism.

4. Click Load graph into memory.
The In Progress status against the graph indicates that the graph loading process is
initiated and once the graph is successfully loaded into memory, the status gets updated to
Memory.

5. Click Close and click the Get Graphs List icon to verify that the graph is loaded into
memory.

Running PGQL queries on the graph

You can enter a PGQL query on the desired graph and click Run Query to execute the query.
On successful execution, the graph visualization result (including nodes and their connections)
is displayed in the bottom panel. You can right-click a node or connection to display tooltip
information, and you can drag the nodes around.

The following figure shows a sample query visualization identifying all edges that are directed
edges from any vertex in the graph to any other vertex.

Figure 21-6    Visualizing a PGQL Query

21.2 Visualizing PGQL Queries on PGQL Property Graphs
You can visualize PGQL queries on PGQL property graphs in the database in the Database
(PGQL Property Graphs) tab of the Graph Visualization application.

Chapter 21
Visualizing PGQL Queries on PGQL Property Graphs

21-4



You can create, query, modify and visualize PGQL property graphs in the database using the
Graph Visualization application. The following PGQL operations are supported:

• CREATE PROPERTY GRAPH: To create a new PGQL property graph as shown:

Figure 21-7    Creating a PGQL property graph

• INSERT, UPDATE and DELETE: To modify an existing PGQL property graph. For example:

Figure 21-8    Updating an Edge in a PGQL property graph

Note that you must provide the graph name in the PGQL query. You can click the List of
available graphs icon to view the list of PGQL property graphs to which you have access.

Figure 21-9    Deleting an Edge in a PGQL property graph

• SELECT: To query a PGQL property graph as shown:

Chapter 21
Visualizing PGQL Queries on PGQL Property Graphs

21-5



Figure 21-10    Querying a PGQL property graph

• DROP PROPERTY GRAPH: To delete a PGQL property graph as shown:

Figure 21-11    Dropping a PGQL property graph

21.3 Visualizing Graph Queries on SQL Property Graphs
You can query and visualize a SQL property graph in the database in the Database (SQL
Property Graphs) tab of the Graph Visualization application.

However, in order to visualize the vertices and edges of a GRAPH_TABLE query together with
their IDs and all their labels and properties, the query must return the vertex ID, or edge ID, or
both.

For example, the following figure shows the visualization of a SQL GRAPH_TABLE query on a
SQL property graph. Note that the COLUMNS clause in the query uses the VERTEX_ID and
EDGE_ID operators.

Note:

The Graph Visualization application supports only SELECT graph queries.

Chapter 21
Visualizing Graph Queries on SQL Property Graphs

21-6



Figure 21-12    Graph Query on a SQL Property Graph

The name of the graph must be provided in the SQL graph query. You can click the List of
available graphs icon (shown highlighted in the preceding figure) to view the list of SQL
property graphs to which you have access.

See Also:

SQL Graph Queries for more information

21.4 Graph Visualization Modes and Graph Legend
Learn about the graph visualization toolbar, supported graph visualization modes and graph
legend if you are viewing the results of the query in graph format.

Graph Visualization Toolbar

The graph visualization toolbar is displayed on the left of the graph visualization panel as
shown:

Figure 21-13    Graph Visualization Toolbar

The toolbar supports the following graph visualization modes:

• Move/Zoom: This mode allows you to zoom in and out, as well as to move to another part
of the visualization.

• Fit to Screen: This mode fits the resulting graph in the graph visualization view.

Chapter 21
Graph Visualization Modes and Graph Legend

21-7



• Toggles Sticky Mode: This mode allows you to cancel the action of dragging the nodes
around.

• Graph Manipulation: This mode allows you to interact with your graph visualization.
Supported actions are:

– Drop: To remove selected vertices from the visualization. Can also be executed from
the tooltip.

– Group: To group selected multiple vertices and collapse them into a single one.

– Ungroup: To select a group of collapsed vertices and ungroup them.

– Undo: To undo the last action.

– Redo: To redo the last action.

– Reset: To reset the visualization to the original state after the query.

Graph Visualization Legend

The graph visualization legend appears on the right of the graph visualization panel and
displays the legend items that represent the vertices and edges of the graph. For example:

Figure 21-14    Graph Legend

21.5 Graph Visualization Settings
You can click the Settings gear icon to open the Graph Visualization settings window.

The Visualization settings window comprises the General and Styles tab.

Configuring General Settings

You can add vertex and edge captions, set the graph layout and page size in the General tab
of the Graph Visualization settings:

Chapter 21
Graph Visualization Settings

21-8



Figure 21-15    General Tab Configuration

• Vertex Caption Orientation: Determines where the selected vertex property will be
displayed.

• Vertex Caption: Determines the property to be displayed for a vertex.
Click + Add more to add a vertex caption and select the required vertex Label and vertex
Property.

• Edge Caption: Determines the property to be displayed for an edge.
Click + Add more to add an edge caption and select the required edge Label and edge
Property.

• Maximum Visible Caption Length: Maximum caption length before truncating.

• Layout: Computes the position of the nodes and determines the visual structure of the
graph.
Supported layouts are: Circle, Concentric, Force (default), Grid, Hierarchical, Preset,
Radial, and Random.

• Page Size: Determines the number of entries to be visualized from the result set.

Chapter 21
Graph Visualization Settings

21-9



Configuring Vertex and Edge Styles

You can configure and manage vertex and edge styles to customize the appearance of the
vertices and edges in the graph. All the configured styles are listed in the Styles tab of the
Graph Visualization settings.

Figure 21-16    Vertex and Edge Syles Configuration

To add a new vertex or edge style, click New vertex style or New edge style as appropriate
and configure the following values:

• Name: Name of the style

• Conditions: Click + to add a condition for an element (vertex or edge) and provide the
following values:

– Property of the vertex or edge element.

– Operator to be applied. The following operators are supported:

* = (equal to)

* < (less than)

Chapter 21
Graph Visualization Settings

21-10



* <= (less than or equal to)

* > (greater than)

* >= (greater than or equal to)

* != (not equal to)

* ~ (filter is a regular expression)

* * (any: like a wildcard, can match to anything)

– Value that needs to be fulfilled for the property and the operator

You can add as many conditions as required. For all elements that meet the conditions,
you can configure any of the following styling highlights:

– Size: Size of the vertex or edge

– Color: Color of the vertex or edge

– Icon: Image for the vertex (does not apply for edges)

– Label: Label for the vertex or edge

– Animations: Animation (Pulsating or Flashing) and duration of the animation cycle

The following example shows a sample vertex style configuration.

Figure 21-17    Adding a Vertex Style

Chapter 21
Graph Visualization Settings

21-11



22
Embedding the Graph Visualization Library in
a Web Application

You can integrate the graph visualization component in a web application to visualize graph
data.

The Oracle Graph Server and Client deployment contains a JavaScript library for the Graph
Visualization component in the oracle-graph-visualization-library-24.3.0.zip file.

The Graph Visualization interface in the library supports:

• Custom vertex and edge styling based on its properties

• Interactive actions for graph exploration

• Tooltip with vertex and edge details

• Automatic legend

• Multiple graph layouts

See the Graph JavaScript API Reference for Property Graph Visualization for more
information.

You can download the oracle-graph-visualization-library-24.3.0.zip file from Oracle
Software Delivery Cloud and integrate the library in you web application.

See the demo application on GitHub for an example.

22-1

https://edelivery.oracle.com
https://edelivery.oracle.com
https://github.com/oracle-samples/pgx-samples/tree/master/graphviz-demo


Part VII
Graph Server (PGX) Advanced User Guide

Part II provides in-depth information on using the graph server (PGX) for advanced users.

Part II contains the following chapters:

• Graph Server (PGX) Configuration Options
Learn about the various configuration options for the graph server (PGX).

• Memory Consumption by the Graph Server (PGX)
The graph server (PGX) loads the graph into main memory in order to carry out analysis
on the graph and its properties.

• Deploying Oracle Graph Server Behind a Load Balancer
You can deploy multiple graph servers (PGX) behind a load balancer and connect clients
to the servers through the load balancer.

• Namespaces and Sharing
The graph server (PGX) supports separate namespaces that help you to organize your
entities.

• PGX Programming Guides
You can avail all the PGX functionalities through asynchronous Java APIs. Each
asynchronous method has a synchronous equivalent, which blocks the caller thread until
the server produces a response.

• Working with Files Using the Graph Server (PGX)
This chapter describes in detail about working with different file formats to perform various
actions like loading, storing, or exporting a graph using the Graph Server (PGX).

• Log Management in the Graph Server (PGX)
The graph server (PGX) internally uses the SLF4J interface with Logback as the default
logger implementation.



23
Graph Server (PGX) Configuration Options

Learn about the various configuration options for the graph server (PGX).

• Configuration Parameters for the Graph Server (PGX) Engine
You can configure the graph server (PGX) engine parameters in the /etc/oracle/graph/
pgx.conf JSON file.

• Configuration Parameters for Connecting to the Graph Server (PGX)
You can configure the graph server (PGX) parameters in the /etc/oracle/graph/
server.conf JSON file.

23.1 Configuration Parameters for the Graph Server (PGX)
Engine

You can configure the graph server (PGX) engine parameters in the /etc/oracle/graph/
pgx.conf JSON file.

During startup, the graph server (PGX) picks up the settings in the /etc/oracle/graph/
pgx.conf file, by default.

The following tables describe the different graph server (PGX) runtime configuration options.

Graph Server (PGX) Engine Parameters

The graph server (PGX) engine parameters are described in the following table:

Table 23-1    Runtime Parameters for the Graph Server (PGX) Engine

Parameter Type Description Default

admin_request_cache_timeout integer After how many seconds admin
request results get removed from
the cache. Requests which are not
done or not yet consumed are
excluded from this timeout. Note:
This is only relevant if PGX is
deployed as a webapp.

60

allow_idle_timeout_overwrite boolean If true, sessions can overwrite the
default idle timeout.

true

allow_lazy_loading_for_database_graphs boolean If true, the graph server (PGX) will
automatically load the graphs from
the database when they are first
referenced in the graph queries.

false

allow_override_scheduling_information boolean If true, allow all users to override
scheduling information like task
weight, task priority, and number of
threads

true

allow_task_timeout_overwrite boolean If true, sessions can overwrite the
default task timeout.

true

23-1



Table 23-1    (Cont.) Runtime Parameters for the Graph Server (PGX) Engine

Parameter Type Description Default

allow_user_auto_refresh boolean If true, users may enable auto
refresh for graphs they load.
If false, only graphs mentioned
in preload_graphs can have auto
refresh enabled.

false

allowed_remote_loading_locations array of
string

Allow loading graphs into the PGX
engine from remote locations (http,
https, ftp, ftps, s3). If empty, as by
default, no remote location is
allowed. If "*" is specified in the
array, all remote locations are
allowed. Only the value "*" is
currently supported. Note that pre-
loaded graphs are loaded from any
location, regardless of the value of
this setting. Note that this parameter
reduces security and therefore use
it only when needed.

[]

authorization array of
object

Mapping of users and roles to
resources and permissions for
authorization.

[]

authorization_session_create_allow_all boolean If true allow all users to create a
PGX session regardless of
permissions granted to them.

false

basic_scheduler_config object Configuration parameters for the
fork join pool backend.

null

bfs_iterate_que_task_size integer Task size for BFS iterate QUE
phase.

128

bfs_threshold_parent_read_based number Threshold of BFS traversal level
items to switch to parent-read-
based visiting strategy.

0.05

bfs_threshold_read_based integer Threshold of BFS traversal level
items to switch to read-based
visiting strategy.

1024

bfs_threshold_single_threaded integer Until what number of BFS traversal
level items vertices are visited
single-threaded.

128

character_set string Standard character set to use
throughout PGX. UTF-8 is the
default. Note: Some formats may
not be compatible.

utf-8

cni_diff_factor_default integer Default diff factor value used in the
common neighbor iterator
implementations.

8

cni_small_default integer Default value used in the common
neighbor iterator implementations,
to indicate below which threshold a
subarray is considered small.

128

Chapter 23
Configuration Parameters for the Graph Server (PGX) Engine

23-2



Table 23-1    (Cont.) Runtime Parameters for the Graph Server (PGX) Engine

Parameter Type Description Default

cni_stop_recursion_default integer Default value used in the common
neighbor iterator implementations,
to indicate the minimum size where
the binary search approach is
applied.

96

data_memory_limits object Memory limits configuration
parameters.

null

dfs_threshold_large integer Value that determines at which
number of visited vertices the DFS
implementation will switch to data
structures that are optimized for
larger numbers of vertices.

4096

enable_csrf_token_checks boolean If true, the PGX webapp will verify
the Cross-Site Request Forgery
(CSRF) token cookie and request
parameters sent by the client exist
and match. This is to prevent CSRF
attacks.

true

enable_gm_compiler boolean If true, enable dynamic compilation
of PGX Algorithm API (or Green-
Marl code) during runtime.

true

enable_graph_loading_cache boolean If true, activate the graph loading
cache that will accelerate loading of
graphs that were previously loaded
(can only be disabled in embedded
mode).

true

enable_graph_sharing boolean Indicates if a user is allowed to
grant read permission on its
published graphs to other users.
This flag is only relevant for a
remote server.

true

enable_memory_limits_checks boolean If true the graph server will enforce
the configured memory limits.

true

enable_ml_accelerators boolean If true, the graph server will utilize
the available ML accelerators to run
faster machine learning trainings.

true

enable_shutdown_cleanup_hook boolean If true, PGX will add a JVM
shutdown hook that will
automatically shutdown PGX at
JVM shutdown. Notice: Having the
shutdown hook deactivated and not
explicitly shutting down PGX may
result in pollution of your temp
directory.

true

enable_snapshot_properties_publish_state_p
ropagation

boolean If true, properties in a new
snapshot will inherit the publishing
state of properties in the parent
snapshot.

true

Chapter 23
Configuration Parameters for the Graph Server (PGX) Engine

23-3



Table 23-1    (Cont.) Runtime Parameters for the Graph Server (PGX) Engine

Parameter Type Description Default

enterprise_scheduler_config object Configuration parameters for the
enterprise scheduler. See 
Table 23-3 and Table 23-4 for more
information.

null

enterprise_scheduler_flags object [relevant for enterprise_scheduler] 
Enterprise scheduler-specific
settings.

null

explicit_spin_locks boolean true means spin explicitly in a loop
until lock becomes
available. false means using JDK
locks which rely on the JVM to
decide whether to context switch or
spin. Setting this value to true
usually results in better
performance.

true

file_locations array of
object

The file locations that can be used
in the authorization-config.

[]

graph_algorithm_language enum[GM,
JAVA]

Front-end compiler to use. JAVA

graph_sharing_option enum[allow_da
ta_sharing,
disallow_data
_sharing,
allow_traceab
le_data_shari
ng_for_same_u
ser]

This is to manage if a graph can be
published and shared with other
users.

allow_da
ta_shari
ng

graph_validation_level enum[low,
high]

Level of validation performed on
newly loaded or created graphs.

low

ignore_incompatible_backend_operations boolean If true, only log when encountering
incompatible operations and
configuration values in RTS or FJ
pool. If false, throw exceptions.

false

in_place_update_consistency_model enum[ALLLOW_I
NCONSISTENCIE
S,
CANCEL_TASKS]

Consistency model used when in-
place updates occur. Only relevant
if in-place updates are enabled.
Currently updates are only applied
in place if the updates are not
structural (Only modifies
properties). Two models are
currently implemented, one only
delays new tasks when an update
occurs, the other also delays
running tasks.

ALLOW_IN
CONSISTE
NCIES

init_pgql_on_startup boolean If true PGQL is directly initialized
on start-up of PGX. Otherwise, it is
initialized during the first use of
PGQL.

true

interval_to_poll_max integer Exponential backoff upper bound (in
ms), which once reached, the job
status polling interval is fixed

1000

Chapter 23
Configuration Parameters for the Graph Server (PGX) Engine

23-4



Table 23-1    (Cont.) Runtime Parameters for the Graph Server (PGX) Engine

Parameter Type Description Default

java_home_dir string The path to Java's home directory. If
set to <system-java-home-dir>,
use the java.home system
property.

<system-
java-
home-
dir>

large_array_threshold integer Threshold when the size of an array
is too big to use a normal Java
array. This depends on the used
JVM. (Defaults to
Integer.MAX_VALUE - 3)

21474836
44

max_active_sessions integer Maximum number of sessions
allowed to be active at a time.

1024

max_distinct_strings_per_pool integer [only relevant if
string_pooling_strategy is indexed]
Number of distinct strings per
property after which to stop pooling.
If the limit is reached, an exception
is thrown.

65536

max_http_client_request_size long Maximum size in bytes of any http
request sent to the PGX server over
the REST API. Setting it to -1
allows requests of any size.

10485760

max_off_heap_size integer Maximum amount of off-heap
memory (in megabytes) that PGX is
allowed to allocate before an
OutOfMemoryError will be thrown.

Note that this limit is not guaranteed
to never be exceeded, because of
rounding and synchronization trade-
offs. It only serves as threshold
when PGX starts to reject new
memory allocation requests.

<availab
le-
physical
-memory>

max_on_heap_memory_usage_ratio number Maximum ratio of on-heap memory
that PGX is allowed to use, between
0 and 1.

0.9

max_queue_size_per_session integer The maximum number of pending
tasks allowed to be in the queue,
per session. If a session reaches
the maximum, new incoming
requests of that sesssion get
rejected. A negative value means
infinity or unlimited..

-1

Chapter 23
Configuration Parameters for the Graph Server (PGX) Engine

23-5



Table 23-1    (Cont.) Runtime Parameters for the Graph Server (PGX) Engine

Parameter Type Description Default

max_snapshot_count integer Number of snapshots that may be
loaded in the engine at the same
time. New snapshots can be
created via auto or forced update. If
the number of snapshots of a graph
reaches this threshold, no more
auto-updates will be performed, and
a forced update will result in an
exception until one or more
snapshots are removed from
memory. A value of zero indicates to
support an unlimited amount of
snapshots.

0

memory_allocator enum[basic_al
locator,
enterprise_al
locator]

The memory allocator to use. basic_al
locator

memory_cleanup_interval integer Memory cleanup interval in
seconds.

5

min_array_compaction_threshold number Minimum value (only relevant for
graphs optimized for updates) that
can be used for the
array_compaction_threshold
value in graph configuration. If a
graph configuration attempts to use
a value lower than the one specified
by
min_array_compaction_thresho
ld, it will use
min_array_compaction_thresho
ld instead.

0.2

min_fetch_interval_sec integer For delta-refresh (only relevant if the
graph format supports delta
updates), the lowest interval at
which a graph source is queried for
changes. You can tune this value to
prevent PGX from hanging due to
too frequent graph delta-refreshing.

2

min_update_interval_sec integer For auto-refresh, the lowest interval
after which a new snapshot is
created, either by reloading the
entire graph or if the format
supports delta-updates, out of the
cached changes (only relevant if the
format supports delta updates). You
can tune this value to prevent PGX
from hanging due to too frequent
graph auto-refreshing.

2

ms_bfs_frontier_type_strategy enum[auto_gro
w, short,
int]

The type strategy to use for MS-
BFS frontiers.

auto_gro
w

Chapter 23
Configuration Parameters for the Graph Server (PGX) Engine

23-6



Table 23-1    (Cont.) Runtime Parameters for the Graph Server (PGX) Engine

Parameter Type Description Default

num_spin_locks integer Number of spin locks each
generated app will create at
instantiation. Trade-off: a small
number implies less memory
consumption; a large number
implies faster execution (if algorithm
uses spin locks).

1024

parallelism integer Number of worker threads to be
used in thread pool. Note: If the
caller thread is part of another
thread-pool, this value is ignored
and the parallelism of the parent
pool is used.

<number-
of-cpus>

pattern_matching_supernode_cache_threshold integer Minimum number of a node's
neighbor to be a supernode. This is
for the pattern matching engine.

1000

permission_checks_interval integer Interval in seconds to perform
permission checks on source
graphs.

60

pgx_realm object Configuration parameters for the
realm.
See Table 23-2.

null

pgx_server_base_url string This is used when deploying the
graph server behind a load balancer
to make clients before 21.3
backward compatible. The value
should be set to the load balancer
address.

null

pooling_factor number [only relevant if
string_pooling_strategy is on_heap]
This value prevents the string pool
to grow as big as the property size,
which could render the pooling
ineffective.

0.25

preload_graphs array of
object

List of graph configs to be
registered at start-up. Each item
includes path to a graph config, the
name of the graph and whether it
should be published.

[]

random_generator_strategy enum[non_dete
rministic,
deterministic
]

Method of generating random
numbers in PGX.

non_dete
rministi
c

random_seed long [relevant for deterministic random
number generator only] Seed for the
deterministic random number
generator used in pgx. The default
is -24466691093057031.

-2446669
10930570
31

readiness_memory_usage_ratio number Memory limit ratio that should be
considered to detect if PGX server
is ready. This is used by isReady
API and the default value is 1.0

1.0

Chapter 23
Configuration Parameters for the Graph Server (PGX) Engine

23-7



Table 23-1    (Cont.) Runtime Parameters for the Graph Server (PGX) Engine

Parameter Type Description Default

release_memory_threshold number Threshold percentage (decimal
fraction) of used memory after
which the engine starts freeing
unused graphs. Examples: A value
of 0.0 means graphs get freed as
soon as their reference count
becomes zero. That is, all sessions
which loaded that graph were
destroyed/timed out. A value
of 1.0 means graphs never get
freed, and the engine will throw
OutOfMemoryErrors as soon as a
graph is needed which does not fit
in memory anymore. A value of 0.7
means the engine keeps all graphs
in memory as long as total memory
consumption is below 70% of total
available memory, even if there is
currently no session using them.
When consumption exceeds 70%
and another graph needs to get
loaded, unused graphs get freed
until memory consumption is below
70% again.

0.0

revisit_threshold integer Maximum number of matched
results from a node to be cached.

4096

running_memory_usage_ratio number Memory limit ratio that should be
considered to detect if PGX server
is running. This is used by
isRunning API and the default
value is 1.0

1.0

scheduler enum[basic_sc
heduler,
enterprise_sc
heduler,
low_latency_s
cheduler]

The scheduler to use.
• basic_scheduler: uses a

scheduler with basic features
• enterprise_scheduler:

uses a scheduler with
advanced enterprise features
for running multiple tasks
concurrently and providing
better performance

• low_latency_scheduler:
uses a scheduler that privileges
latency of tasks over
throughput or fairness across
multiple sessions. The
low_latency_scheduler is only
available in embedded mode.

enterpri
se_sched
uler

session_idle_timeout_secs integer Timeout of idling sessions in
seconds. Zero (0) means infinity or
no timeout.

14400

Chapter 23
Configuration Parameters for the Graph Server (PGX) Engine

23-8



Table 23-1    (Cont.) Runtime Parameters for the Graph Server (PGX) Engine

Parameter Type Description Default

session_task_timeout_secs integer Timeout in seconds to interrupt
long-running tasks submitted by
sessions (algorithms, I/O tasks).
Zero (0) means infinity or no
timeout.

0

small_task_length integer Task length if the total amount of
work is smaller than default task
length (only relevant for task-
stealing strategies).

128

strict_mode boolean If true, exceptions are thrown and
logged with ERROR level whenever
the engine encounters configuration
problems, such as invalid keys,
mismatches, and other potential
errors. If false, the engine logs
problems with ERROR/WARN level
(depending on severity) and makes
best guesses and uses sensible
defaults instead of throwing
exceptions.

true

string_pooling_strategy enum[indexed,
on_heap,
none]

The string pooling strategy to use. on_heap

task_length integer Default task length (only relevant for
task-stealing strategies). Should be
between 100 and 10000. Trade-off:
a small number implies more fine-
grained tasks are generated, higher
stealing throughput; a large number
implies less memory consumption
and GC activity.

4096

tmp_dir string Temporary directory to store
compilation artifacts and other
temporary data. If set to <system-
tmp-dir>, uses the standard tmp
directory of the underlying system (/
tmp on Linux).

"/tmp"

udf_config_directory string Directory path containing UDF
config files.

null

use_index_for_reachability_queries enum[auto,
off]

Create index for reachability
queries.

auto

use_memory_mapper_for_reading_pgb boolean If true, use memory mapped files for
reading graphs in PGB format if
possible; if false, always use a
stream-based implementation.

true

use_memory_mapper_for_storing_pgb boolean If true, use memory mapped files for
storing graphs in PGB format if
possible; if false, always use a
stream-based implementation.

true

Chapter 23
Configuration Parameters for the Graph Server (PGX) Engine

23-9



The default values of the runtime configuration fields are optimized to deliver the best
performance across a wide set of algorithms. Depending on your workload you may be able to
improve performance further by experimenting with different strategies, sizes, and thresholds.

Advanced Access Configuration

The following table lists the fields in the pgx_realm object that can be used to customize login
behavior.

Table 23-2    Advanced Access Configuration Options

Parameters Type Description Default

token_expiration_seconds integer After how many seconds the
generated bearer token will
expire.

3600 (1
hour)

refresh_time_before_token_expiry_se
conds

integer After how many seconds a
token is automatically
refreshed before it expires.
Note that this value must
always be less than the
token_expiration_second
s value.

1800

connect_timeout_milliseconds integer After how many milliseconds
an connection attempt to the
specified JDBC URL will time
out, resulting in the login
attempt being rejected.

10000

max_pool_size integer Maximum number of JDBC
connections allowed per user.
If the number is reached,
attempts to read from the
database will fail for the
current user.
Starting from 23.4 onwards, a
new dedicated pool with one
connection is provided for
token refresh. This new
dedicated pool does not affect
the max_pool_size value.

64

max_num_users integer Maximum number of active,
signed in users to allow. If this
number is reached, the graph
server will reject login
attempts.

512

max_num_token_refresh integer Maximum amount of times a
token can be automatically
refreshed before requiring a
login again.

24

Enterprise Scheduler Parameters

The following parameters are relevant only if the advanced scheduler is used. (They are
ignored if the basic scheduler is used.)

Chapter 23
Configuration Parameters for the Graph Server (PGX) Engine

23-10



Table 23-3    Enterprise Scheduler Parameters

Parameter Type Description Default

analysis_task_config object Configuration for analysis
tasks weight

<no-
of-
CPUs>

priority
MEDIUM

max_thr
eads
<no-
of-
CPUs>

fast_analysis_task_config object Configuration for fast analysis
tasks weight

1

priority
HIGH

max_thr
eads
<no-
of-
CPUs>

max_num_concurrent_io_tasks integer Maximum number of
concurrent I/O tasks at a time

3

num_io_threads_per_task integer Number of I/O threads to use
per task

<no-of-
cpus>

Basic Scheduler Parameters

The following parameters are relevant only if the basic scheduler is used. (They are ignored if
the advanced scheduler is used.)

Table 23-4    Basic Scheduler Parameters

Field Type Description Default

num_workers_analysis integer This specifies how many
worker threads to use for
analysis tasks.

<no-of-
cpus>

num_workers_fast_track_analysis integer This specifies how many
worker threads to use for fast-
track analysis tasks.

1

Chapter 23
Configuration Parameters for the Graph Server (PGX) Engine

23-11



Table 23-4    (Cont.) Basic Scheduler Parameters

Field Type Description Default

num_workers_io integer This specifies how many
worker threads to use for I/O
tasks (load/refresh/write
from/to disk). This value does
not impact file-based loaders,
as they are always single-
threaded. Database loaders
will open a new connection for
each I/O worker.

<no-of-
cpus>

Example 23-1    Minimal Graph Server (PGX) Configuration

The following example causes the graph server (PGX) to initialize its analysis thread pool with
32 workers. (Default values are used for all other parameters.)

{
  "enterprise_scheduler_config": {
    "analysis_task_config": {
      "max_threads": 32
    }
  }
}

Example 23-2    Two Pre-loaded Graphs

This example sets more fields and specifies two fixed graphs for loading into memory during
the graph server (PGX) startup.

{ 
  "enterprise_scheduler_config": {
    "analysis_task_config": {
      "max_threads": 32
    },
    "fast_analysis_task_config": {
      "max_threads": 32
    }
  }, 
  "memory_cleanup_interval": 600,
  "max_active_sessions": 1, 
  "release_memory_threshold": 0.2, 
  "preload_graphs": [
    {
      "path": "graph-configs/my-graph.bin.json",
      "name": "my-graph"
    },
    {
      "path": "graph-configs/my-other-graph.adj.json",
      "name": "my-other-graph",
      "publish": false
    }
  ],
  "authorization": [{

Chapter 23
Configuration Parameters for the Graph Server (PGX) Engine

23-12



    "pgx_role": "GRAPH_DEVELOPER",
    "pgx_permissions": [{
      "preloaded_graph": "my-graph",
      "grant": "read"
    },
    {
      "preloaded_graph": "my-other-graph",
      "grant": "read"
    }]
  },    
    ....
  ]
}

Relative paths in parameter values are always resolved relative to the parent directory of the
configuration file in which they are specified. For example, if the preceding JSON is in /pgx/
conf/pgx.conf, then the file path graph-configs/my-graph.bin.json inside that file would be
resolved to /pgx/conf/graph-configs/my-graph.bin.json.

23.2 Configuration Parameters for Connecting to the Graph
Server (PGX)

You can configure the graph server (PGX) parameters in the /etc/oracle/graph/server.conf
JSON file.

See Configuring the Graph Server (PGX)

Chapter 23
Configuration Parameters for Connecting to the Graph Server (PGX)

23-13



24
Memory Consumption by the Graph Server
(PGX)

The graph server (PGX) loads the graph into main memory in order to carry out analysis on the
graph and its properties.

The memory consumed by the graph server for a graph is split between the memory to store
the topology of the graph (the information to indicate what are the vertices and edges in the
graph without their attached properties), and the memory for the properties attached to the
vertices and edges. Internally, the graph server (PGX) stores the graph topology in
compressed sparse row (CSR) format, a data structure which has minimal memory footprint
while providing very fast read access.

• Memory Management

24.1 Memory Management
The graph server (PGX) requires both on-heap and off-heap memory to store graph data.

The allocation of memory for the graph data is as shown:

• Graph indexes and graph topology are stored off-heap.

• All primitive properties (integer, long, double, float, boolean, date, local_date, timestamp,
time, point2d) are stored off-heap.

• String properties are stored on-heap.

Default Configuration of Memory Limits

You can configure both on-heap and off-heap memory limits. In case of the on-heap, if you
don't explicitly set a maximum then it will default to the maximum on-heap size determined by
Java Hotspot, which is based on various factors, including the total amount of physical memory
available.

You can set the max_on_heap_memory_usage_ratio configuration field to decide on the ratio of
the total JAVA heap memory that the graph server (PGX) is allowed to use (for example a
value of 0.8 would mean that the graph server(PGX) is allowed to use 80% of JAVA heap
memory). The default value of this parameter is 1.0 which lets the JVM handle any out of
memory errors. It is recommended to set this parameter to 0.9 to avoid the graph server (PGX)
from using the full on heap memory as this may cause the server to slowdown or crash.

In case of the off-heap, if you don't explicitly set a maximum then it will default to the total
physical available memory on the machine.

• Configuring On-Heap Limits

• Configuring Off-Heap Limits

24-1



24.1.1 Configuring On-Heap Limits
The on-heap memory limits for the graph server (PGX) can be configured by updating the
systemd configuration file for the PGX service. However, there is a risk of losing the updates to
the configuration file, the next time you upgrade the graph server (PGX). Therefore, it is
recommended that you provide the on-heap memory configuration in a drop-in file. All
directives in the drop-in file are dynamically merged with the directives in the main
configuration file (/etc/systemd/system/pgx.service) during the graph server (PGX) startup.

Note:

The graph server (PGX) periodically checks the on-heap memory size. If the memory
usage grows above the threshold defined in the max_on_heap_memory_usage_ratio
field (default value is 0.9) in the /etc/oracle/graph/pgx.conf file, then the graph
server will throw an exception and cancel the current running task (which is unable to
allocate memory). This eliminates the possibility of unexpected server crashes when
the heap memory is full. It is recommended that you configure the
max_on_heap_memory_usage_ratio option to be less than one, so that the used on-
heap memory value remains lesser than the JVM -Xmx value to ensure a safe buffer
for heap memory allocation.

You can perform the following steps to create a drop-in file and configure the on-heap memory
size:

1. Navigate to the /etc/systemd/system/pgx.service.d directory. If the pgx.service.d
directory does not exist in the file path, then create one.

2. Create a drop-in file (.conf file) with any name in /etc/systemd/system/pgx.service.d.
Skip this step, if one already exists.

3. Edit the drop-in file as a root user or with sudo command and add the on-heap memory
option in the [Service] section as shown:

sudo vi /etc/systemd/system/pgx.service.d/setup.conf
The following example displays the added on-heap memory setting in the setup.conf file:

[Service]
# Java on-heap memory setting
Environment="JAVA_TOOL_OPTIONS=-Xms1G -Xmx2G"

This option sets the initial heap space to 1GB and allows it to grow up to 2GB.

The supported options for configuring the on-heap memory are:

• -Xmx: to set the maximum on-heap size of the JVM.

• -Xms: to set the initial on-heap size of the JVM.

• -XX:NewSize: to set the initial size of the young generation

• -XX:MaxNewSize: to set the maximum size of the young generation

See the java command documentation for more information on these options.

Chapter 24
Memory Management

24-2

https://docs.oracle.com/en/java/javase/17/docs/specs/man/java.html


4. Add the JAVA_HOME environment variable to ensure that the graph server (PGX) is using
the appropriate JDK.

[Service]
# JAVA_HOME variable
Environment=JAVA_HOME=/usr/java/jdk-15.0.1/
# Java on-heap memory setting
Environment="JAVA_TOOL_OPTIONS=-Xms1G -Xmx2G"

Note that the comments begin with # and you can optionally comment any specific option
in order to test your configuration.

5. Reload the PGX service to use the updated settings by running the following command:

sudo systemctl daemon-reload
6. Restart the graph server (PGX):

sudo systemctl restart pgx
7. Verify that the service restarted with the new memory settings:

systemctl status pgx
You may see a similar output:

● pgx.service - Oracle Graph In-Memory Server
   Loaded: loaded (/etc/systemd/system/pgx.service; enabled; vendor 
preset: disabled)
  Drop-In: /etc/systemd/system/pgx.service.d
           └─setup.conf
   Active: active (running) since Wed 2023-04-12 14:50:49 CEST; 5 days ago
 Main PID: 1209 (bash)
   CGroup: /system.slice/pgx.service
           ├─1209 /bin/bash start-server
           └─1469 /usr/java/jdk-11.0.6/bin/java -
Dlogback.configurationFile=/etc/oracle/graph/logback-server.xml 
                    -Doracle.jdbc.fanEnabled=false -cp /opt/oracle/
graph/pgx/bin/../../pgx/server/lib/activatio...

Review the Drop-In unit file as shown highlighted in the preceding output. This confirms
that systemd found the drop-in file and applied the required customizations.

8. Finally, use the server-state REST endpoint to confirm the new memory usage. For
example:

BASE_URL=https://localhost:7007
USERNAME=graph
PASSWORD=graph
PGX_RESPONSE=`curl -s -k -X POST -H 'Content-Type: application/json' -d 
'{"username": "'"${USERNAME}"'", "password": "'"${PASSWORD}"'"}' $
{BASE_URL}/auth/token`
PGX_ACCESS_TOKEN=`echo $PGX_RESPONSE | jq -r '.access_token'`
curl -s -k -H 'Authorization: Bearer '"${PGX_ACCESS_TOKEN}" $BASE_URL/
control/v1/serverState|jq '.entity.memory'

Note that the preceding example uses the jq tool to fetch and format the output.

Chapter 24
Memory Management

24-3



24.1.2 Configuring Off-Heap Limits
You can specify the off-heap limit by setting the max_off_heap_size field in the graph server
(PGX) configuration. See Configuration Parameters for the Graph Server (PGX) Engine for
more information on the max_off_heap_size parameter. Note that the off-heap limit is not
guaranteed to never be exceeded because of rounding and synchronization trade-offs.

Chapter 24
Memory Management

24-4



25
Deploying Oracle Graph Server Behind a Load
Balancer

You can deploy multiple graph servers (PGX) behind a load balancer and connect clients to the
servers through the load balancer.

Using Session Persistence with a Load Balancer

You can use the Load Balancer sticky cookie feature since the graph server (PGX) is not
stateless. This implies that when you configure load balancer cookie stickiness, the load
balancer inserts a cookie to identify the server and the client requests are always directed to
the same backend server.

The graph client supports all sessions that belong to a serverInstance to be sent to the same
server. You must set the cookie name as PGX_INSTANCE_STICKY_COOKIE.

You can use one of the following options to deploy different graph servers behind a load
balancer:

• Using HAProxy for PGX Load Balancing and High Availability
HAProxy is a high-performance TCP/HTTP load balancer and proxy server that allows
multiplexing incoming requests across multiple web servers.

• Deploying Graph Server (PGX) Using OCI Load Balancer
You can deploy multiple graph servers (PGX) behind a load balancer using Oracle Cloud
Infrastructure (OCI) Load Balancing Service.

• Health Check in the Load Balancer

25.1 Using HAProxy for PGX Load Balancing and High
Availability

HAProxy is a high-performance TCP/HTTP load balancer and proxy server that allows
multiplexing incoming requests across multiple web servers.

You can use HAProxy with multiple instances of the graph server (PGX) for high availability.
The following example uses the OPG4J shell to connect to PGX.

The following instructions assume you have already installed and configured the graph server
(PGX), as explained in Starting the Graph Server (PGX).

1. If HAProxy is not already installed on Big Data Appliance or your Oracle Linux distribution,
run this command:

yum install haproxy

2. Start the graph server instances.
For example, if you want to load balance PGX across 4 nodes (such as bda02, bda03,
bda04, and bda05) in the Big Data Appliance, start PGX on each of these nodes.
Configure PGX to listen for connections on port 7007.

25-1



3. Configure HAProxy:

a. Locate the haproxy.cfg file in /etc/haproxy directory on the host where you installed
HAProxy.

b. Add a frontend section with the following parameters:

• bind: to set the listening IP address and port

• mode: http or https
• default_backend: to set the name of the backend to be used

For example, the following frontend configuration receives HTTP traffic on all IP
addresses assigned to the server at port 7008:

frontend graph_server_front
  bind *:7008
  mode http
  default_backend graph_server

c. Add a backend section with the following parameters:

• mode: http or https
• cookie: name of the cookie to be used for session persistence

• server: list of servers running behind the load balancer

For example, the following backend configuration uses the
PGX_INSTANCE_STICKY_COOKIE:

backend graph_server
  mode http
  cookie PGX_INSTANCE_STICKY_COOKIE insert indirect nocache
  server graph_server_1 host_name_graph_server_1:port check cookie 
graph_server_1 # Notice that the name at the end must be the same as 
the server name
  server graph_server_2 host_name_graph_server_2:port check cookie 
graph_server_2
  option httpchk GET /isReady
  http-check expect string true

In the preceding configuration file, the option httpchk clause instructs the load
balancer to check the readiness of the server. The http-check clause specifies that
the load balancer must expect a true response in order to determine that the server is
healthy and capable of handling more requests. See Health Check in the Load
Balancer for supported health check endpoints.

4. Start the load balancer.
Start HAProxy using systemctl:

sudo systemctl start haproxy

5. Test the load balancer.

Chapter 25
Using HAProxy for PGX Load Balancing and High Availability

25-2



From any host you can test connectivity to the HAProxy server by passing in the host and
port of the server running HAProxy as the base_url parameter to the graph client shell
CLI. For example:

cd /opt/oracle/graph
./bin/opg4j --base_url http://localhost:7008 -u <username>

Note:

The PGX in-memory state is lost if the server goes down. HAProxy will route
commands to another server, but the client must reload all graph data.

It is recommended that you run a series of PGX commands to test routing. Stop the server
and restart the graph shell CLI to confirm that HAProxy redirects the request to a new
server.

25.2 Deploying Graph Server (PGX) Using OCI Load Balancer
You can deploy multiple graph servers (PGX) behind a load balancer using Oracle Cloud
Infrastructure (OCI) Load Balancing Service.

You can enable cookie-based session persistence with a load balancer to direct all requests
from a single client to a specific backend server.
You can you perform the following steps to deploy multiple graph servers using the OCI load
balancer.

As a prerequisite requirement, you must ensure that two or more graph servers are running on
different machines on the same port (7007 by default).

1. Sign in to OCI console using your Oracle Cloud Account.

2. Open the navigation menu, click Networking and then Load Balancers.

3. Click Create Load Balancer.

The Select Load Balancer Type window opens.

4. Select Load Balancer and click Create Load Balancer.

The Add Details page opens as shown:

Chapter 25
Deploying Graph Server (PGX) Using OCI Load Balancer

25-3



Figure 25-1    Configuring Load Balancer Details

5. Optionally, edit the following details:

• Load Balancer Name

• Choose visibility type

• Choose IP address type

6. Under Choose Networking section, select the Virtual Cloud Network where the graph
server instances are running.

7. Accept the default values for all other fields and click Next.

The Choose Backends page opens.

8. Select Weighted Round Robin as the Load Balancing Policy.

9. Click Add Backends to add the backend servers.

The Add Backends slider opens as shown.

Figure 25-2    Adding Backends to Load Balancer

10. Select as many backend graph server instances as available and click Add Selected
Backends.

The selected backend set appear in the Select Backend Servers table.

11. Specify the following values for the parameters under Specify Health Check Policy:

• Protocol: HTTP

• Port: backend port used by all the graph servers

• Interval in milliseconds: default value

• Timeout in milliseconds: default value

• Number of Retries: default value

Chapter 25
Deploying Graph Server (PGX) Using OCI Load Balancer

25-4



• Status Code: 200

• URL Path: /isReady
See Health Check in the Load Balancer for supported health check endpoints.

• Response Body RegEx: true
12. Click Next.

The Configure Listener page opens as shown:

Figure 25-3    Configuring a Listener for the Load Balancer

13. Optionally, edit the Listener Name.

14. Specify HTTPS or HTTP as the type of traffic handled by the listener.

15. Specify the listener port value to either 443 or 80.

16. Upload SSL Certificate if you specified HTTPS communication.

17. Click Next.

The Manage Logging page opens as shown.

18. Accept all the default values on this page and click Submit.

The load balancer is provisioned and it appears on the table in the Load Balancers page.

19. Click on the provisioned load balancer to view the Load Balancer Details.

20. Click Backend Sets under Resources.

21. Click the backend set you want to edit.

The Backend Set Details page opens.

22. Click Edit.

The Edit Backend Set dialog opens as shown:

Chapter 25
Deploying Graph Server (PGX) Using OCI Load Balancer

25-5



Figure 25-4    Enabling Session Persistence

23. Select Enable load balancer cookie persistence.

24. Set the Cookie Name to PGX_INSTANCE_STICKY_COOKIE and click Save Changes.

Your work request gets submitted.

You can now send requests to the load balancer and your session will be persisted on the
respective server to which you are logged in.

25.3 Health Check in the Load Balancer
To configure health check in the load balancer, the graph server(PGX) exposes the isReady
and isRunning endpoints.

Note:

By default, the isReady and isRunning endpoints are unprotected. See Public Health
Endpoint Security to enable protection for the health check API.

The load balancer can check the following health status of the graph servers:

• Readiness of the graph server: The isReady endpoint detects if the graph server (PGX)
is capable of handling more requests. See the readiness_memory_usage_ratio system
parameter in Configuration Parameters for the Graph Server (PGX) Engine for more
details.

Chapter 25
Health Check in the Load Balancer

25-6



• Liveness of the graph server: The isRunning endpoint detects if the graph server (PGX)
is running and alive. See the running_memory_usage_ratio system parameter in 
Configuration Parameters for the Graph Server (PGX) Engine for more details.

By default, both the endpoints do not require authentication. If the server is running or ready,
they return true in the HTTP body with HTTP status code 200. If the server is not running or
ready, they return false with HTTP status code 503.

Chapter 25
Health Check in the Load Balancer

25-7



26
Namespaces and Sharing

The graph server (PGX) supports separate namespaces that help you to organize your
entities.

Each client session has its own session-private namespace and can choose any name without
affecting other sessions. There is also a public namespace for published graphs (for example,
published via the publishWithSnapshots() or the publish() methods).

Similarly, each published graph defines a public namespace for published properties as well as
a private namespace per session. So different sessions can create properties with the same
name on a published graph.

• Defining Graph Names

• Retrieving Graphs by Name

• Checking Used Names

• Property Name Resolution and Graph Mutations

26.1 Defining Graph Names
Graphs that are created in a session either through loading or through mutations will take up a
name in the session-private namespace. A graph will be placed in the public namespace only
through publishing (that is, when calling the publishWithSnapshots() or the publish()
methods). Publishing a graph will move its name from the session-private namespace to the
public namespace.

There can only be one graph with a given name in a given namespace, but a name can be
used in different namespaces to refer to different graphs. An operation that creates a new
graph will fail if the chosen name of the new graph already exists in the session-private
namespace. Publishing a graph fails if there is already a graph in the public namespace with
the same name.

26.2 Retrieving Graphs by Name
You can retrieve a graph by name by the following two ways:

• getGraph(Namespace, String): with explicitly mentioning the namespace

• getGraph(String): without explicitly mentioning the namespace

With getGraph(Namespace, String), you need to provide the namespace (either session private or
public). In this case, the graph will be looked up in the given namespace only.

With getGraph(String), the provided name will be first looked up in the private namespace. If no
graph with the given name is found there, then the graph name will be looked up in the public
namespace. In other words, if a graph with the same name is defined in both the public and the
private namespaces, getGraph(String) will return the private graph and you need to use 
getGraph(Namespace, String) to get hold of the public graph with that name.

26-1

https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxGraph.html#publishWithSnapshots__
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxGraph.html#publish__
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxSession.html#getGraph_oracle_pgx_api_Namespace_java_lang_String_
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxSession.html#getGraph_java_lang_String_
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxSession.html#getGraph_oracle_pgx_api_Namespace_java_lang_String_
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxSession.html#getGraph_java_lang_String_
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxSession.html#getGraph_java_lang_String_
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxSession.html#getGraph_oracle_pgx_api_Namespace_java_lang_String_


26.3 Checking Used Names
To see the currently used names in a namespace you can use the 
PgxSession.getGraphs(Namespace) method, which will list all the names in the given namespace.
The names in the returned collection can be used in a getGraph(Namespace, String) call to retrieve
the corresponding PgxGraph.

26.4 Property Name Resolution and Graph Mutations
Property names behave in a similar way as graph names. All property names of a non-
published graph are in the session-private namespace. Once a graph is published with 
PgxGraph.publishWithSnapshots() or the PgxGraph.publish() methods, its properties are published as
well and their names move into the public namespace.

Once a graph is published, newly created properties will still be private to the session and their
names will be in the private namespace. Those properties can be published individually with
the Property.publish() method, as long as no other property with the same name is already
published for that graph.

Additionally, new private properties can be created with the same name of an already-
published properties (since the names are part of separate namespaces). To handle such
situations and retrieve the correct property, the PGX API offers the getVertexProperty(Namespace,
String) and the getEdgeProperty(Namespace, String) methods, which allow specifying the
namespace where the property name should be looked up.

Similar to graphs, if you search a property without specifying the namespace, the private
namespace is searched first and if the property is not found, the search proceeds to the public
namespace. This case applies for getVertexProperty(String) or the getEdgeProperty(String) methods
and for PGQL queries.

Likewise, when a mutation on a graph reads or writes a property referred to by name and two
properties exist with the same name, the property in the private namespace is selected. To
override the default selection, some mutation mechanisms accept a collection of specific 
Property objects to be copied into the mutated graph. For example, such mechanism is
supported for filter expressions. See Creating Subgraphs for more details.

Chapter 26
Checking Used Names

26-2

https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxSession.html#getGraphs_oracle_pgx_api_Namespace_
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxSession.html#getGraph_oracle_pgx_api_Namespace_java_lang_String_
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxGraph.html#publishWithSnapshots__
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxGraph.html#publish__
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/Property.html#publish__
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxGraph.html#getVertexProperty_oracle_pgx_api_Namespace_java_lang_String_
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxGraph.html#getVertexProperty_oracle_pgx_api_Namespace_java_lang_String_
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxGraph.html#getEdgeProperty_oracle_pgx_api_Namespace_java_lang_String_
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxGraph.html#getVertexProperty_java_lang_String_
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxGraph.html#getEdgeProperty_java_lang_String_
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/Property.html


27
PGX Programming Guides

You can avail all the PGX functionalities through asynchronous Java APIs. Each asynchronous
method has a synchronous equivalent, which blocks the caller thread until the server produces
a response.

These APIs may perform one or any combination of:

• Complex, non-blocking Java applications on top of PGX

• Simple, sequential Java scripts executed by JShell

• ShellPerforming interactive graph analysis in the JShell

Layers of PGX API

The PGX API is composed of a few different Java interfaces. Each interface provides a distinct
layer of abstraction for PGX, as shown in the following table:

Table 27-1    PGX API Interface

Interface Description

ServerInstance The ServerInstance class encapsulates access to a PGX server
instance and can be used to create sessions, start and stop the PGX
engine, monitor the engine status and perform other administrative
tasks. If the instance points to a remote instance, access to the
administrative functions requires special authorization on the HTTP level
by default.

PgxSession A PgxSession represents an active user currently connected to an
instance. Each session gets its own workspace on the server side which
can be used to read graphs, create in-memory data structures, hold
analysis results and custom algorithms. The PgxSession class provides
various methods to create new transient data (currently collections). If a
session is idling for too long, the PGX engine will automatically destroy it
to ensure no resources are wasted.

PgxGraph A PgxGraph represents a client-side handle to the graph data managed
by the PGX server. A graph may contain an arbitrary amount of
properties of type VertexProperty and/or EdgeProperty.

Note:

The PGX currently only supports non-
partitioned graphs, meaning every vertex/
edge has the same properties with the
same names and types as all the other
vertices/edges.

PgxGraph class provides various methods to create new transient data
(including maps and collections) as well as graph mutation operations,
such as undirecting, sorting and filtering.

27-1



Table 27-1    (Cont.) PGX API Interface

Interface Description

Analyst The Analyst API contains all of the built-in algorithms PGX provides.
Analyst objects keep track of all the transient data they created during
algorithm invocations to hold analysis results. Once an Analyst gets
destroyed, all the results it created get freed on the server-side
automatically.

CompiledProgram The CompiledProgram class (PGX Algorithm API) encapsulates
runtime-compiled custom algorithms and allows invocation of those
algorithms using PGX data objects, such as PgxGraph or
VertexProperty, as arguments.

Please see the oracle.pgx.api package in the Javadoc for more details.

• Design of the Graph Server (PGX) API
This guide focuses on the design of the graph server (PGX) API.

• Data Types and Collections in the Graph Server (PGX)
This guide provides you the list of the supported data types and collections in the graph
server (PGX).

• Handling Asynchronous Requests in Graph Server (PGX)
This guide explains in detail the asynchronous methods supported by the PGX API.

• Graph Client Sessions
The graph server (PGX) assumes there may be multiple concurrent clients, and each client
submits request to the shared PGX server independently.

• Graph Mutation and Subgraphs
This guide discusses the several methods provided by the graph server (PGX) for mutating
graph instances.

• Graph Builder and Graph Change Set

• Managing Transient Data
This guide discusses how to handle transient properties and collections.

• Graph Versioning
This guide describes the different ways to work with graph snapshots.

• Labels and Properties
You can perform various actions on the graph property and label values by executing
PGQL queries.

• Filter Expressions
This guide explains the usage of filter expressions.

• Advanced Task Scheduling Using Execution Environments
This guide shows how you can use the advanced scheduling features of the enterprise
scheduler.

• Admin API
This guide shows how to use the graph server (PGX) Admin API to inspect the server state
including sessions, graphs, tasks, memory and thread pools.

• PgxFrames Tabular Data-Structure

Chapter 27

27-2

https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/package-frame.html


27.1 Design of the Graph Server (PGX) API
This guide focuses on the design of the graph server (PGX) API.

The design of the PGX API reflects consideration of the following situations:

• Multiple clients may concurrently be accessing a single running instance of PGX, sharing
its resources. Each client needs to maintain its own isolated workspace (session).

• Graph and property data can be large in size and therefore that data only resides on the
server side.

• Some graph analysis may take a significant amount of time.

• Clients may not reside in the same address space (JVM) as PGX. Actually, clients may not
even be Java applications.

Client Sessions

In PGX, each client maintains its own session, an isolated, private workspace. Therefore,
clients first have to obtain a PgxSession object from a PGX ServerInstance before they can
perform any analysis.

Asynchronous Execution

The PGX API is designed for asynchronous execution. That means that each computationally
intensive method in the PGX API immediately returns a PgxFuture object without waiting for
the request to finish. The PgxFuture class implements the Future interface, which can be used
to retrieve the result of a computation at some point in the future.

Note:

The asynchronous execution aspect of this design facilitates multiple (remote) clients
submitting requests to a single server. A request from one client may be queued up
to wait until PGX resources become available. The asynchronous API allows the
client (or calling thread) to work on other tasks until PGX completes the request.

No Direct References

The PGX API does not return objects with direct reference to PGX internal objects (such as the
graph or its properties) to the client. This is because:

• The client might not be in the same JVM as the server

• The graph instance might be shared by multiple clients

Instead, the PGX API only returns lightweight, stateless pointer objects to those objects. These
pointer objects only holds the ID(name) of the server-side object to which they are pointing.

Resource Management Considerations

The graph server (PGX), being an in-memory analytic engine, might allocate large amounts of
memory to hold the graph data of clients. Therefore, it is important that client sessions clean up
their resources once they have ended. The PGX API supports several features to make this
easier:

Chapter 27
Design of the Graph Server (PGX) API

27-3

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Future.html


• Every object returned by the PGX API pointing to a server-side resource implements the
Destroyable interface, which means all memory-consuming client-side objects can be
destroyed the same way. For example:

PgxGraph myGraph = ...
myGraph.destroyAsync(); // request destruction of myGraph, don't wait for 
response
try {
  myGraph.destroy();   // blocks caller thread until destruction was done
} catch (ExecutionException e) {
  // destruction failed
}

• Destroyable extends AutoClosable, so users can leverage Java's built-in resource
management syntax:

try (PgxGraph myGraph = session.readGraphWithProperties(config)) {
  // do something with myGraph
}
// myGraph is destroyed

• Session time out. In some cases, the PGX server will remove the session and all its data
automatically. This can occur when a client fails to destroy either the data or its session, or
if it does not hear from the session after a configurable timeout. See Configuration
Parameters for the Graph Server (PGX) Engine for more information to configure timeout
parameters.

27.2 Data Types and Collections in the Graph Server (PGX)
This guide provides you the list of the supported data types and collections in the graph server
(PGX).

Primitive Data Types

The following section explains the primitive data types supported by the graph server (PGX)
and their limitations.

PGX supports the following primitive data types.:

• Numeric Types: integer, long, float, and double. These types have the same size,
range and precision of the corresponding Java primitive data type.

• Boolean Type: The boolean data type has only two possible values, true and false. As
with Java and C++, its size is not precisely defined.

• String: String is a primitive data type in PGX. PGX follows the Java conventions for String
representation.

• Datetime Types: date, time, timestamp, time with time zone, and timestamp with
time zone. These types correspond to the Java types shown in Table 27-2 from the
standard library package java.util.time.

• Vertex and Edge: The type vertex or edge of the graph itself is a proper type in PGX.

Chapter 27
Data Types and Collections in the Graph Server (PGX)

27-4

http://docs.oracle.com/javase/7/docs/api/java/lang/AutoCloseable.html


Note:

• vertex and edge is itself a valid primitive data type. For instance, in a path-
finding algorithm, each vertex can have a temporary property predecessor that
stores which incoming neighbor is the predecessor vertex in the path. Such a
property would have the type vertex.

• local_date must be used instead of date in the graph configuration file. See 
Using Datetime Data Types for more examples on usage of datetime data types.

All properties and scalar variables must be one of the above preceding data types. See 
Managing Transient Data for more information on handling transient properties and scalar
variables.

The following table presents the overview of the supported data types, their integration in
different languages and APIs and their minimum and maximum value limitations.

Note:

• For float and double types, the smallest absolute value is included in the table,
the minimum value is the negative of maximum value for these types.

• For string values, PGX supports arbitrary long strings.

Table 27-2    Overview of Data types

Data Type Loading &
Storing

PGX Java
API

PGQL and
Filter
Expression

Minimum Value
Limitation

Maximum Value
Limitation

string string String STRING - -
int/integer int/integer int INT/INTEGER -2147483648 2147483647
long long long LONG -92233720368547

75808
-92233720368547
75807

float float float FLOAT 1.4E-45 3.4028235e+38
double double double DOUBLE 4.9E-324 1.7976931348623

157E308
boolean boolean boolean BOOLEAN - -
date local_date LocalDate DATE -5877641-06-23 5881580-07-11
time time LocalTime TIME 00:00:00.000 23:59:59.999
timestamp timestamp LocalDateTi

me
TIMESTAMP -292275055-05-1

7 00:00:00.000
292278994-08-17
07:12:55.807

time with
time zone

time_with_t
imezone

OffsetTime TIME WITH
TIME ZONE

00:00:00.000+18
:00

23:59:59.999-18
:00

timestamp
with time
zone

timestamp_w
ith_timezon
e

OffsetDateT
ime

TIMESTAMP
WITH TIME
ZONE

-292275055-05-1
7
00:00:00.000+18
:00

292278994-08-17
07:12:55.807-18
:00

vertex - PgxVertex - - -

Chapter 27
Data Types and Collections in the Graph Server (PGX)

27-5



Table 27-2    (Cont.) Overview of Data types

Data Type Loading &
Storing

PGX Java
API

PGQL and
Filter
Expression

Minimum Value
Limitation

Maximum Value
Limitation

edge - PgxEdge - - -

Collections

The graph server (PGX) supports three different collection types: sequence, set and order.
All of these collections can contain values of the vertex type, but each has different semantics
regarding uniqueness and preserving the order of its elements:

• Sequence: a sequence works basically like a list. It preserves the order of the elements
added to it, and the same element can appear multiple times.

• Set: a set can contain the same value once at the most. Adding a value that is already in
the set will have no effect. set does not preserve the order of the elements it contains.

• Order: just like the set, the order collection will contain each element once at the most.
But the order preserves the order of the elements inserted into it (that is, it is a FIFO data
structure).

See Collection Data Types for examples on creation and usage of the different collections.

Immutable Collections

Some operations, like PgxGraph.getVertices() and PgxGraph.getEdges() return immutable
collections. These collections behave like normal collections, but cannot be modified by
operations like addAll or removeAll and clear.

An immutable collection can be transformed into a mutable collection by using the toMutable
method, which returns a mutable copy of the collection. If toMutable is called on a collection
that is already mutable, the method has the same result as the method clone.

To check if a collection is mutable, use the isMutable method.

Maps

PGX provides the following two kinds of maps:

• Graph-bound maps can hold mappings between types in PropertyType. This is the kind of
maps to use if the key or value types are graph-related like VERTEX and EDGE otherwise
using session-bound maps is recommended.

• Session-bound maps can map between non graph-related types and are directly bound to
the session.

See Map Data Types for examples on creation and usage of maps.

• Using Collections and Maps

• Using Datetime Data Types

27.2.1 Using Collections and Maps
This section explains with examples, the creation and usages of collections and maps.

You must first create a session before getting started with the collection and map data types.

Chapter 27
Data Types and Collections in the Graph Server (PGX)

27-6

https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxGraph.html#getVertices__
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxGraph.html#getEdges__


• JShell

• Java

• Python

JShell

cd /opt/oracle/graph/
./bin/opg4j> // starting the shell will create an implicit session

Java

import oracle.pgx.api.*;
...
PgxSession session=Pgx.createSession("<session_name>");

Python

from pypgx import get_session
session = get_session(session_name="<session_name>")

• Collection Data Types

• Map Data Types

27.2.1.1 Collection Data Types
The graph server (PGX) defines two types of collections:

• Graph-bound collections: such as vertex and edge collections. These collections belong
to the graph.

• Session-bound collections: belong to the session.

• Graph-Bound Collections

• Session-Bound Collections

27.2.1.1.1 Graph-Bound Collections
The following describes the usage of graph-bound collections.

You must first load the graph to work with vertex and edge collections as shown in Reading
Graphs from Oracle Database into the Graph Server (PGX).

Vertex Collections

You can create a vertex collection as shown in the following code:

Chapter 27
Data Types and Collections in the Graph Server (PGX)

27-7



• JShell

• Java

• Python

JShell

v0 = graph.getVertex(100) // 'graph' is the loaded graph object. '100' -> 
'103' are vertex ids that supposedly
v1 = graph.getVertex(101) // exist in the graph
v2 = graph.getVertex(102)
v3 = graph.getVertex(103)

myVertexSet = graph.createVertexSet("myVertexSet")  // A name is 
automatically generated if none given
myVertexSet.add(v0)                                 // Adds vertex 'v0' to 
the set
myVertexSet.addAll([v1, v2, v3])                    // Supports variadic 
parameter as well: myVertexSet.addAll(v1, v2, v3)

Java

import java.util.Arrays;
import oracle.pgx.api.*;
...
PgxVertex v0 = graph.getVertex(100);
PgxVertex v1 = graph.getVertex(101);
PgxVertex v2 = graph.getVertex(102);
PgxVertex v3 = graph.getVertex(103);

VertexSet myVertexSet = graph.createVertexSet("myVertexSet");  // A name is 
automatically generated if none given
myVertexSet.add(v0);
myVertexSet.addAll(Arrays.asList(v1, v2, v3));

Python

...
v0 = graph.get_vertex(100)
v1 = graph.get_vertex(101)
v2 = graph.get_vertex(102)
v3 = graph.get_vertex(103)

my_vertex_set = graph.create_vertex_set("myVertexSet") 
my_vertex_set.add(v0)
my_vertex_set.add_all([v1,v2,v3])

Chapter 27
Data Types and Collections in the Graph Server (PGX)

27-8



Edge Collections

You can create an edge collection as shown in the following code:

• JShell

• Java

• Python

JShell

e0 = graph.getEdge(100) // 'graph' is the loaded graph object. '100' -> '103' 
are edge ids that supposedly
e1 = graph.getEdge(101) // exist in the graph
e2 = graph.getEdge(102)
e3 = graph.getEdge(103)

myEdgeSequence = graph.createEdgeSequence("myEdgeSequence")
myEdgeSequence.add(e0)
myEdgeSequence.addAll([e1, e2, e3])

Java

import java.util.Arrays;
import oracle.pgx.api.*;
...
PgxEdge e0 = graph.getEdge(100);
PgxEdge e1 = graph.getEdge(101);
PgxEdge e2 = graph.getEdge(102);
PgxEdge e3 = graph.getEdge(103);

EdgeSequence myEdgeSequence = graph.createEdgeSequence("myEdgeSequence");
myEdgeSequence.add(e0);
myEdgeSequence.addAll(Arrays.asList(e1, e2, e3));

Python

e0 = graph.get_edge(100)
e1 = graph.get_edge(101)
e2 = graph.get_edge(102)
e3 = graph.get_edge(103)

my_edge_sequence = graph.create_edge_sequence("my_edge_sequence")
my_edge_sequence.add(e0)
my_edge_sequence.add_all([e1, e2, e3])

Chapter 27
Data Types and Collections in the Graph Server (PGX)

27-9



27.2.1.1.2 Session-Bound Collections
You can create and manipulate collections directly in the session without the need for a graph.
Session-bound collections can be further passed as parameters to graph algorithms or used
like any other collection object. The following sub-sections describe the currently supported
types for these collections.

Scalar Collections

Scalar collections contain simple data types like Integer, Long, Float, Double and Boolean.
They can be managed by the PgxSession APIs:

Creation of a Scalar Collection

You can use createSet() and createSequence() methods to create a scalar collection as
shown in the following code:

• JShell

• Java

JShell

myIntSet = session.createSet(PropertyType.INTEGER, "myIntSet")
myDoubleSequence = session.createSequence(PropertyType.DOUBLE)  // A name 
will be automatically generated if none is provided.
println myDoubleSequence.getName()                              // Display 
the generated name.

Java

import oracle.pgx.api.*;
import oracle.pgx.common.types.*;
...
ScalarSet myIntSet = session.createSet(PropertyType.INTEGER, "myIntSet");
ScalarSequence myDoubleSequence = session.createSequence(PropertyType.DOUBLE);
System.out.println(myDoubleSequence.getName());

Run Operations on a Scalar Collection

You can run several operations on a scalar collection as shown in the following code:

• JShell

• Java

Chapter 27
Data Types and Collections in the Graph Server (PGX)

27-10



JShell

myIntSet.add(10)
myIntSet.addAll([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
myIntSet.addAll([0,1,2])                // Element uniqueness. This operation 
has no effect on the set.
println myIntSet

myIntSet.contains(1)                   // Checks the presence of an element. 
This code returns `true`.
myIntSet.remove(10)
myIntSet.removeAll([4, 5, 6, 7, 8, 9]) // Leaves only elements `0, 1, 2, 3`.
println  myIntSet

Java

import java.util.Arrays;
import oracle.pgx.api.*;
...
myIntSet.add(10);
myIntSet.addAll(Arrays.asList(0, 1, 2, 3, 4, 5, 6, 7, 8, 9));
myIntSet.addAll(Arrays.asList(0, 1, 2));

myIntSet.contains(1);  // Returns `true`.
myIntSet.remove(10);
myIntSet.removeAll(Arrays.asList(4, 5, 6, 7, 8, 9));

Traversal of a Scalar Collection

You can traverse a scalar collection either using an iterator or using the new Stream API. You
can add elements of a sequence to a set, traverse a sequence and filter out elements not
required, and then add the rest to another scalar collection.

• JShell

• Java

JShell

myIntSet.forEach({x -> print x + "\n"})
myIntSet.stream().filter({x -> x % 2 == 0}).forEach({x -> 
myDoubleSequence.add(x)})
println myDoubleSequence

Java

import java.util.Iterator;
import java.util.stream.Stream;
import oracle.pgx.api.*;

Chapter 27
Data Types and Collections in the Graph Server (PGX)

27-11

https://docs.oracle.com/javase/8/docs/api/?java/util/stream/Stream.html


...
myIntSet.forEach(x -> System.out.println(x));
myIntSet.stream().filter(x -> x % 2 == 0).forEach(myDoubleSequence::add);

27.2.1.2 Map Data Types
The graph server (PGX) defines two types of maps:

• Graph-bound maps: These maps support any key or value type and are created using a
graph object.

• Session-bound maps: Keys or values in these maps are of any type except from graph-
related types (that is, vertices or edges). These maps belong to the session.

• Graph-Bound Maps

• Session-Bound Maps

27.2.1.2.1 Graph-Bound Maps
Some data types like VERTEX or EDGE depend on the graph. Consequently, mappings involving
these data types also depend on the graph. PGX provides PgxGraph and PgxMap APIs to
manage such maps.

The following describes the usage of graph-bound maps.

You must first load the graph to work with vertex and edge maps.

You can create a graph-bound map using vertices as keys as shown in the following code:

• JShell

• Java

• Python

JShell

v0 = graph.getVertex(100)
v1 = graph.getVertex(101)
v2 = graph.getVertex(102)
v3 = graph.getVertex(103)

vertexToLongMap = graph.createMap(PropertyType.VERTEX, PropertyType.LONG, 
"vertexToLongMap")
vertexToLongMap.put(v0, v0.getDegreeAsync().get())
vertexToLongMap.put(v1, v1.getDegreeAsync().get())
vertexToLongMap.put(v2, v2.getDegreeAsync().get())
vertexToLongMap.put(v3, v3.getDegreeAsync().get())

Chapter 27
Data Types and Collections in the Graph Server (PGX)

27-12



Java

import java.util.Arrays;
import oracle.pgx.api.*;
...
PgxVertex v0 = graph.getVertex(100);
PgxVertex v1 = graph.getVertex(101);
PgxVertex v2 = graph.getVertex(102);
PgxVertex v3 = graph.getVertex(103);

PgxMap<PgxVertex, Long> vertexToLongMap = 
graph.createMap(PropertyType.VERTEX, PropertyType.LONG, "vertexToLongMap");
vertexToLongMap.put(v0, v0.getDegree());
vertexToLongMap.put(v1, v1.getDegree());
vertexToLongMap.put(v2, v2.getDegree());
vertexToLongMap.put(v3, v3.getDegree());

Python

v0 = graph.get_vertex(100)
v1 = graph.get_vertex(101)
v2 = graph.get_vertex(102)
v3 = graph.get_vertex(103)

vertex_to_long_map = graph.create_map("vertex", "long", "vertex_to_long_map")
vertex_to_long_map.put(v0, v0.degree)
vertex_to_long_map.put(v1, v1.degree)
vertex_to_long_map.put(v2, v2.degree)
vertex_to_long_map.put(v3, v3.degree)

You can create graph-bound maps using edges as keys as shown in the following code:

• JShell

• Java

• Python

JShell

e0 = graph.getEdge(100)
e1 = graph.getEdge(101)
e2 = graph.getEdge(102)
e3 = graph.getEdge(103)

edgeToVertexMap = graph.createMap(PropertyType.EDGE, PropertyType.VERTEX, 
"edgeToVertexMap")
edgeToVertexMap.put(e0, e0.getSource())
edgeToVertexMap.put(e1, e1.getSource())

Chapter 27
Data Types and Collections in the Graph Server (PGX)

27-13



edgeToVertexMap.put(e2, e2.getSource())
edgeToVertexMap.put(e3, e3.getSource())

Java

import java.util.Arrays;
import oracle.pgx.api.*;
...
PgxEdge e0 = graph.getEdge(100);
PgxEdge e1 = graph.getEdge(101);
PgxEdge e2 = graph.getEdge(102);
PgxEdge e3 = graph.getEdge(103);

PgxMap<PgxEdge, PgxVertex> edgeToVertexMap = 
graph.createMap(PropertyType.EDGE, PropertyType.VERTEX, "edgeToVertexMap");
edgeToVertexMap.put(e0, e0.getSource());
edgeToVertexMap.put(e1, e1.getSource());
edgeToVertexMap.put(e2, e2.getSource());
edgeToVertexMap.put(e3, e3.getSource());

Python

e0 = graph.get_edge(100) 
e1 = graph.get_edge(101) 
e2 = graph.get_edge(102) 
e3 = graph.get_edge(103)

edge_to_long_map = graph.create_map("edge", "long", "edge_to_long_map") 
edge_to_long_map.put(e0, e0.source) 
edge_to_long_map.put(e1, e1.source) 
edge_to_long_map.put(e2, e2.source) 
edge_to_long_map.put(e3, e3.source)

Note:

If you destroy the graph you will lose the map. Consider using a session-bound maps
instead if your map does not involve any graph-related key or value type.

27.2.1.2.2 Session-Bound Maps
You can directly create maps in the session. But, you cannot use any graph-related data type
as the map key or value type. Session-bound maps can be further passed as parameters to
graph algorithms or used like any other map object. They are managed by PgxSession and
PgxMaps APIs.

Scalar collections contain simple data types like Integer, Long, Float, Double and Boolean.
They can be managed by the PgxSession APIs.

Chapter 27
Data Types and Collections in the Graph Server (PGX)

27-14



Creation of a Session-bound Map

You can use createMap() method and its overloads to create a session-bound map.

• JShell

• Java

JShell

intToDouble = session.createMap(PropertyType.INTEGER, PropertyType.DOUBLE, 
"intToDouble")
intToTime = session.createMap(PropertyType.INTEGER, PropertyType.TIME)  // A 
name will be automatically generated.
println intToTime.getName()
println intToTime.getSessionId()
println intToTime.getGraph()                                           // 
`null`: Not bound to a graph.
println intToTime.getKeyType()
println intToTime.getValueType()

Java

import java.time.LocalTime;
import oracle.pgx.api.*;
import oracle.pgx.common.types.*;
...
PgxMap<Integer, Double> intToDouble = session.createMap(PropertyType.INTEGER, 
PropertyType.DOUBLE, "intToDouble");
PgxMap<Integer, LocalTime> intToTime = 
session.createSequence(PropertyType.INTEGER, PropertyType.TIME);
System.out.println(intToTime.getName());
System.out.println(intToTime.getSessionId());
System.out.println(intToTime.getGraph());  // `null`: Not bound to a graph.
System.out.println(intToTime.getKeyType());
System.out.println(intToTime.getValueType());

Run Operations on a Session-bound Map

You can run important operations such as setting, removing and checking existence of entries
on a session-bound map as shown in the following code:

• JShell

• Java

Chapter 27
Data Types and Collections in the Graph Server (PGX)

27-15



JShell

intToDouble.put(0, 0.314)
intToDouble.put(1, 3.14)
intToDouble.put(2, 31.4)
intToDouble.put(3, 314)

println intToDouble.size()           // 4
println intToDouble.get(1)
println intToDouble.get(3)
println intToDouble.get(10)          // null

println intToDouble.containsKey(0)   // `true`
intToDouble.remove(0)
println intToDouble.containsKey(0)   // `false`
println intToDouble.containsKey(10)  // `false`
intToDouble.remove(10)
println intToDouble.containsKey(10)  // `false`

println intToDouble.put(1, 999)      //  previous mapped value (`3.14`) is 
replaced by `999`
intToDouble.destroy()

Java

import java.util.Arrays;
import oracle.pgx.api.*;

...

intToDouble.put(0, 0.314);
intToDouble.put(1, 3.14);
intToDouble.put(2, 31.4);
intToDouble.put(3, 314);

System.out.println(inToDouble.size());            // 4
System.out.println(intToDouble.get(1));
System.out.println(intToDouble.get(3));
System.out.println(intToDouble.get(10));          // null

System.out.println(intToDouble.containsKey(0));   // `true`
intToDouble.remove(0);
System.out.println(intToDouble.containsKey(0));   // `false`
System.out.println(intToDouble.containsKey(10));  // `false`
intToDouble.remove(10);
System.out.println(intToDouble.containsKey(10));  // `false`

System.out.println(intToDouble.put(1, 999));      //  previous mapped value 
(`3.14`) is replaced by `999`
intToDouble.destroy();

Traversal of a Session-bound Map

Chapter 27
Data Types and Collections in the Graph Server (PGX)

27-16



You can traverse a session-bound map, using entries() method to get an iterable of map
entries and keys() method to get an iterable of map keys.

• JShell

• Java

JShell

intToDouble.entries().forEach {it -> println (it)}
intToDouble.keys().forEach {it -> println (it)}

Java

import java.util.Iterable;
import java.util.stream.Stream;
import oracle.pgx.api.*;
...
Iterable<Map.Entry> entries = intToDouble.entries();
entries.forEach(System.out::println);
Iterable<Map.Entry> keys = intToDouble.keys();
keys.forEach(System.out::println);

27.2.2 Using Datetime Data Types
This section explains in detail working of datetime data types such as date, time and
timestamp.

Overview of Datetime Data Types in Graph Server (PGX)

Table 27-3 presents the overview of the five datetime data types supported by PGX along with
example values.

Note:

PGX also supports custom format specification when loading data into PGX.

Table 27-3    Overview of Datetime Data Types in PGX

Data Type Loading and
Storing

PGX Java
API

PGQL and
Filter
Expression

Example Value-1 Example Value-1

date local_date LocalDate DATE 2001-01-29 2018-10-08
time time LocalTime TIME 10:15 10:30:01.000
timestamp timestamp LocalDateTi

me
TIMESTAMP 2001-01-29

10:15
2018-10-08
10:30:01.000

Chapter 27
Data Types and Collections in the Graph Server (PGX)

27-17



Table 27-3    (Cont.) Overview of Datetime Data Types in PGX

Data Type Loading and
Storing

PGX Java
API

PGQL and
Filter
Expression

Example Value-1 Example Value-1

time with
time zone

time_with_t
imezone

OffsetTime TIME WITH
TIME ZONE

10:15+01:00 10:30:01.000-08
:00

timestamp
with time
zone

timestamp_w
ith_timezon
e

OffsetDateT
ime

TIMESTAMP
WITH TIME
ZONE

2001-01-29
10:15+01:00

2018-10-08
10:30:01.000-08
:00

• Loading Datetime Data

• Specifying Custom Datetime Formats

• APIs for Accessing Datetime Data

• Querying Datetime Data Using PGQL

• Accessing Datetimes from PGQL Result Sets

27.2.2.1 Loading Datetime Data
You must first load a graph to work with datetime data. See Reading Graphs from Oracle
Database into the Graph Server (PGX) for more information on graph loading.

The following example shows how to load a graph that has three vertices representing persons
and zero edges.

Example 27-1    Loading Datetime Data

1. Create an EDGE_LIST file persons.edge_list as shown:

1*Judy,1989-01-15,1989-01-15 10:15-08:00
2*Klara,2001-01-29,2001-01-29 21:30-08:00
3*Pete,1995-08-01,1995-08-01 03:00-08:00

2. Create a corresponding graph configuration file persons.edge_list.json as shown:

{
    "format":"edge_list",
    "uri":"persons.edge_list",
    "vertex_id_type":"long",
    "vertex_props":[
        {
            "name":"name",
            "type":"string"
        },
        {
            "name":"date_of_birth",
            "type":"local_date"
        },
        {
            "name":"timestamp_of_birth",
            "type":"timestamp_with_timezone",
            "format":["yyyy-MM-dd H[H]:m[m][:s[s]][XXX]"]

Chapter 27
Data Types and Collections in the Graph Server (PGX)

27-18



        }
    ],
    "edge_props":[
    ],
    "separator":","
}

3. You can now load the data as shown in the following code:

• JShell

• Java

• Python

JShell

opg4j> var graph = session.readGraphWithProperties("persons.edge_list.json", 
"people_graph")

Java

import oracle.pgx.api.*;
...
PgxGraph graph = 
session.readGraphWithProperties("persons.edge_list.json","people_graph");

Python

graph = 
session.read_graph_with_properties("persons.edge_list.json",graph_name="people
_graph")

27.2.2.2 Specifying Custom Datetime Formats
You can also manually specify the datetime format(s) of your data.

By default, PGX tries to parse datetime values using a set of predefined formats. If this fails, an
exception like the following is thrown:

property timestamp_of_birth: could not parse value at line 1 for property of 
temporal type OffsetDateTime using any of the given formats

In such a case, you can custom format the datetime data.

There are two ways of specifying datetime formats:

• on a per-property basis

• on a per-type basis

Chapter 27
Data Types and Collections in the Graph Server (PGX)

27-19



Property-Specific Datetime format:

You can custom format the property timestamp_of_birth used in Example 27-1 to the format
yyyy-MM-dd H[H]:m[m][:s[s]][XXX] as shown:

Example 27-2    Specifying Property-Specific Datetime format:

{
    "name":"timestamp_of_birth",
    "type":"timestamp_with_timezone",
    "format":["yyyy-MM-dd H[H]:m[m][:s[s]][XXX]"]
}

where yyyy-MM-dd H[H]:m[m][:s[s]][XXX] specifies that the timestamp values consist of:

• a four-digit year

• a hyphen followed by a two-digit month

• a hyphen followed by a two-digit day

• a space

• an hour, specified as either one or two digits

• a colon followed by a minute, specified as either one or two digits

• an optional part that consists of a colon followed by a second that is specified as either one
or two digits

• an optional timezone

Note:

• H[H]:m[m] allows the value 01:15 as well as the value 1:15.

• yyyy-MM-dd allows the value 1989-01-15 but not the value 1989-1-15. However,
if two-digit months and days are needed, a format like yyyy-M[M]-d[d] can be
used.

Also the format specification takes a list of formats. In the preceding example, the list contains
only a single format, but you may specify any number of formats. If more than one format is
specified, then when parsing the datetime data, the formats are tried from left to right until
parsing succeeds. In this way, you can even load data that contains a mixture of values in
different formats.

Type-Specific Datetime format:

You can also specify datetime formats on a per-type basis. This is useful in cases when there
are multiple properties that have the same type as well as the same format because you will
only need to specify the datetime format only once.

In case of the per-type specification, the format is used for each vertex or edge property that
has the particular type.

The following example shows two type-specific formats (local_date_format and
timestamp_with_timezone_format):

Chapter 27
Data Types and Collections in the Graph Server (PGX)

27-20



Example 27-3    Specifying Type-Specific Datetime format:

...
    "edge_props":[
    ],
    "separator":",",
    "local_date_format":["yyyy-MM-dd"],
    "timestamp_with_timezone_format":["yyyy-MM-dd H[H]:m[m][:s[s]][XXX]"]
}

In the example, properties of type date (local_date) have the format yyyy-MM-dd while
properties of type timestamp with time zone (timestamp_with_timezone) have the format
yyyy-MM-dd H[H]:m[m][:s[s]][XXX].

Note:

Property-specific formats always overrides type-specific formats. If you specify a
type-specific format, and the property of the particular type also has a property-
specific format, then only the property-specific format is used to parse the datetime
data.

27.2.2.3 APIs for Accessing Datetime Data
The graph server (PGX) uses the new Java 8 temporal data types for accessing datetime data
through the Java API:

• date in PGX maps to LocalDate in Java

• time in PGX maps to LocalTime in Java

• timestamp in PGX maps to LocalDateTime in Java

• time with time zone in PGX maps to OffsetTime in Java

• timestamp with time zone in PGX maps to OffsetDateTime in Java

You can retrieve a date as shown in the following code:

• JShell

• Java

• Python

JShell

opg4j> var dateOfBirthProperty = graph.getVertexProperty("date_of_birth")
opg4j> var birthdayOfJudy = dateOfBirthProperty.get(1)

Chapter 27
Data Types and Collections in the Graph Server (PGX)

27-21

https://www.oracle.com/technical-resources/articles/java/jf14-date-time.html


Java

import java.time.LocalDate;
import oracle.pgx.api.*;
...
VertexProperty<LocalDate> dateOfBirthProperty = 
graph.getVertexProperty("date_of_birth");
LocalDate birthdayOfJudy = dateOfBirthProperty.get(1);

Python

date_of_birth_property = graph.get_vertex_property("date_of_birth")
birthday_of_judy = date_of_birth_property.get(1)

27.2.2.4 Querying Datetime Data Using PGQL
You can perform various operations such as extracting values from datetimes, comparing
datetime values, and, converting between different datetime types. on datetime data using
PGQL.

The following are example PGQL queries that show different operations that involve datetime
data:

Retrieving Datetime Properties

The following query retrieves the date_of_birth and timestamp_of_birth properties from the
all the persons in the graph.

  SELECT n.name AS name, n.date_of_birth AS birthday, n.timestamp_of_birth AS 
timestamp
    FROM MATCH (n) ON people_graph
ORDER BY birthday

The result of the query is as follows:

+---------------------------------------------+
| name  | birthday   | timestamp              |
+---------------------------------------------+
| Judy  | 1989-01-15 | 1989-01-15T10:15-08:00 |
| Pete  | 1995-08-01 | 1995-08-01T03:00-08:00 |
| Klara | 2001-01-29 | 2001-01-29T21:30-08:00 |
+---------------------------------------------+

Comparing Datetime Values

The following query provides an overview of persons who are older than other persons in the
graph:

SELECT n.name AS person1, 'is older than' AS relation, m.name AS person2
    FROM MATCH (n) ON people_graph, (m) ON people_graph

Chapter 27
Data Types and Collections in the Graph Server (PGX)

27-22



   WHERE n.date_of_birth > m.date_of_birth
ORDER BY person1, person2

The result of the query is as follows:

+-----------------------------------+
| person1 | relation      | person2 |
+-----------------------------------+
| Klara   | is older than | Judy    |
| Klara   | is older than | Pete    |
| Pete    | is older than | Judy    |
+-----------------------------------+

Extracting Values from Datetimes

The following query extracts the year, month, and day from the date_of_birth values:

SELECT n.name AS name
       , n.date_of_birth AS dob
       , EXTRACT(YEAR FROM n.date_of_birth) AS year
       , EXTRACT(MONTH FROM n.date_of_birth) AS month
       , EXTRACT(DAY FROM n.date_of_birth) AS day
    FROM MATCH (n) ON people_graph
ORDER BY name

The result of the query is as follows:

+-----------------------------------------+
| name  | dob        | year | month | day |
+-----------------------------------------+
| Judy  | 1989-01-15 | 1989 | 1     | 15  |
| Klara | 2001-01-29 | 2001 | 1     | 29  |
| Pete  | 1995-08-01 | 1995 | 8     | 1   |
+-----------------------------------------+

Converting Between Different Types of Datetime Values

The following query converts the timestamp_of_birth property into values of the following
three datetime types:

• a timestamp (without time zone)

• a time with time zone

• a time (without time zone)

SELECT n.name AS name
       , n.timestamp_of_birth AS original_timestamp
       , CAST(n.timestamp_of_birth AS TIMESTAMP) AS utc_timestamp
       , CAST(n.timestamp_of_birth AS TIME WITH TIME ZONE) AS timezoned_time
       , CAST(n.timestamp_of_birth AS TIME) AS utc_time
    FROM MATCH (n) ON people_graph
ORDER BY original_timestamp

Chapter 27
Data Types and Collections in the Graph Server (PGX)

27-23



The result of the query is as follows:

+-----------------------------------------------------------------------------
--+
| name  | original_timestamp     | utc_timestamp    | timezoned_time | 
utc_time |
+-----------------------------------------------------------------------------
--+
| Judy  | 1989-01-15T10:15-08:00 | 1989-01-15T18:15 | 10:15-08:00    | 
18:15    |
| Pete  | 1995-08-01T03:00-08:00 | 1995-08-01T11:00 | 03:00-08:00    | 
11:00    |
| Klara | 2001-01-29T21:30-08:00 | 2001-01-30T05:30 | 21:30-08:00    | 
05:30    |
+-----------------------------------------------------------------------------
--+

27.2.2.5 Accessing Datetimes from PGQL Result Sets
You can use the following APIs for retrieving datetime values from PGQL result sets.

LocalDate getDate(int elementIdx)
LocalDate getDate(String variableName)
LocalTime getTime(int elementIdx)
LocalTime getTime(String variableName)
LocalDateTime getTimestamp(int elementIdx)
LocalDateTime getTimestamp(String variableName)
OffsetTime getTimeWithTimezone(int elementIdx)
OffsetTime getTimeWithTimezone(String variableName)
OffsetDateTime getTimestampWithTimezone(int elementIdx)
OffsetDateTime getTimestampWithTimezone(String variableName)

The following example prints the birthdays of all the persons in the graph is as follows:

• JShell

• Java

JShell

opg4j> var resultSet = session.queryPgql("""
  SELECT n.name, n.date_of_birth
    FROM MATCH (n) ON people_graph
ORDER BY n.name
""")
opg4j> while (resultSet.next()) {
...>  System.out.println(resultSet.getString(1) + " has birthday " + 
resultSet.getDate(2));
...> }
opg4j> resultSet.close()

Chapter 27
Data Types and Collections in the Graph Server (PGX)

27-24



Java

import java.time.LocalDate;
import oracle.pgx.api.*;
...
PgqlResultSet resultSet = session.queryPgql(
  "  SELECT n.name, n.date_of_birth\n" +
  "    FROM MATCH (n) ON people_graph\n" +
  "ORDER BY n.name");

while (resultSet.next()) {
  System.out.println(resultSet.getString(1) + " has birthday " + 
resultSet.getDate(2));
}

resultSet.close();

The result of the query is as follows:

Judy has birthday 1989-01-15
Klara has birthday 2001-01-29
Pete has birthday 1995-08-01

In addition to the Java types from the new java.time package, the legacy java.util.Date is
also supported through the following APIs:

Date getLegacyDate(int elementIdx)
Date getLegacyDate(String variableName)

Note:

The legacy java.util.Date can store dates, times, as well as timestamps, so these
two APIs can be used for accessing values of any of the five datetime types.

27.3 Handling Asynchronous Requests in Graph Server (PGX)
This guide explains in detail the asynchronous methods supported by the PGX API.

The PGX API is designed to be asynchronous. This means that all of its core methods ending
with Async do not block the caller thread until the request is completed. Instead, a PgxFuture
object is instantly returned.

You can perform the following three actions on the returned PgxFuture object:

• Block

• Chain

• Cancel

• Blocking Operation

Chapter 27
Handling Asynchronous Requests in Graph Server (PGX)

27-25



• Chaining Operation

• Cancelling Operation

• Handling Concurrent Asynchronus Operations

27.3.1 Blocking Operation
You can easily get the result by calling the get() method on the PgxFuture. The get() blocks
the caller thread until the result is available:

PgxFuture<PgxSession> sessionPromise = instance.createSessionAsync("my-
session");
try {
    // block caller thread
    PgxSession session = sessionPromise.get();
    // do something with session
    ...
} catch (InterruptedException e) {
    // caller thread was interrupted while waiting for result
} catch (ExecutionException e) {
    // an exception was thrown during asynchronous computation
    Throwable cause = e.getCause(); // the actual exception is nested
}

PGX provides blocking convenience methods for every Async method, which calls the get()
method. Typically, those methods have the same name as the asynchronous method they
wrap, but without the Async suffix. For example, the preceding code snippet is equal to:

try {
    // block caller thread
    PgxSession session = instance.createSession("my-session");
    // do something with session
    ...
} catch (InterruptedException e) {
    // caller thread was interrupted while waiting for result
} catch (ExecutionException e) {
    // an exception was thrown during asynchronous computation
    Throwable cause = e.getCause(); // the actual exception is nested
}

27.3.2 Chaining Operation
The graph server (PGX) ships a version of Java 8's CompletableFuture named PgxFuture, an
enhancement of the Future interface.

The CompletableFuture allows chaining of asynchronous computations without polling or the
need of deeply nested callbacks (also known as callback hell). All PgxFuture instances
returned by PGX APIs are instances of CompletableFuture and can be chained without the
need of Java 8.

import java.util.concurrent.CompletableFuture

...

Chapter 27
Handling Asynchronous Requests in Graph Server (PGX)

27-26



final GraphConfig graphConfig = ...
instance.createSessionAsync("my-session")
  .thenCompose(new Fun<PgxSession, CompletableFuture<PgxGraph>>() {
  @Override
  public CompletableFuture<PgxGraph> apply(PgxSession session) {
    return session.readGraphWithPropertiesAsync(graphConfig);
  }
}).thenAccept(new Action<PgxGraph>() {
  @Override
  public void accept(PgxGraph graph) {
    // do something with loaded graph
  }
});

The asynchronous chaining in the preceding example is explained as follows:

• The first line in the code makes an asynchronous call to createSessionAsync() to create a
session.
Once the promise is resolved, it returns a PgxFuture object, which is the newly created
PgxSession.

• The code then calls the .thenCompose() handler by passing a function which takes the
PgxSession object as an argument.
Inside the function, there is another asynchronous readGraphWithPropertiesAsync()
request which return another PgxFuture object.

The outer PgxFuture object returned by .thenCompose() gets resolved when the
readGraphWithPropertiesAsync() request completes.

• This is followed by the .thenAccept() handler. The function that is passed
to .thenAccept() does not return anything. Therefore, the future return type
of .thenAccept() is PgxFuture<Void>.

Blocking Versus Chaining

For most use cases, you can block the caller thread. However, blocking can quickly lead to
poor performance or deadlocks once things get more complex. As a rule, use blocking to
quickly analyze selected graphs in a sequential manner, for example, in shell scripts or during
interactive analysis using the interactive PGX shell.

Use chaining for applications built on top of PGX.

27.3.3 Cancelling Operation
You can cancel a pending request by invoking the cancel method of the returned PgxFuture
instance.

For example:

PgxFuture<Object> promise=...
// do something else
promise.cancel(); // will cancel computation

Any subsequent calls to promise.get() will result in a CancellationException being thrown.

Chapter 27
Handling Asynchronous Requests in Graph Server (PGX)

27-27

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html#cancel(boolean)
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/CancellationException.html


Note:

Due to Java's cooperative threading model, it might take some time before PGX
actually stops the computation.

27.3.4 Handling Concurrent Asynchronus Operations
Using the PgxSession#runConcurrently API provided by the graph server (PGX), you can
submit a list of suppliers of asynchronous APIs to run concurrently in the PGX server.

For example:

import oracle.pgx.api.*;

    Supplier<PgxFuture<?>> asyncRequest1 = () -> 
session.readGraphWithPropertiesAsync(...);
    Supplier<PgxFuture<?>> asyncRequest2 = () -> 
session.getAvailableSnapshotsAsync(...);

    List<Supplier<PgxFuture<?>>> supplierList = Arrays.asList(asyncRequest1, 
asyncRequest2);

    //executing the async requests with the enabled optimization feature
    List<?> results = session.runConcurrently(supplierList);

    //the supplied requests are mapped to their results and orderly collected
    PgxGraph graph = (PgxGraph) results.get(0);
    Deque<GraphMetaData> metaData = (Deque<GraphMetaData>) results.get(1);

27.4 Graph Client Sessions
The graph server (PGX) assumes there may be multiple concurrent clients, and each client
submits request to the shared PGX server independently.

Each session has its own workspace in PGX and is isolated from other sessions.

You can share graphs or properties among sessions.

The following topics describe the different session actions:

• Creating a Session
You can create a session using the ServerInstance#createSession methods.

• Updating Session Idle Timeout
You can configure the idle timeout value for a session.

• Destroying a Session

27.4.1 Creating a Session
You can create a session using the ServerInstance#createSession methods.

Chapter 27
Graph Client Sessions

27-28



• Java

• Python

Java

PgxSession createSession(String source)
PgxSession createSession(String source, long idleTimeout, long taskTimeout, 
TimeUnit unit)

Python

session = create_session(source, idle_timeout=None, task_timeout=None, 
time_unit='milliseconds')

The preceding methods accept the following arguments:

• source is any arbitrary string that describes the client. Currently, this string is only used for
logging purposes.

• The user can specify the idle timeout (idleTimeout) and task timeout (taskTimeout) when
creating a new session. If these values are not specified, default values are used.
See Configuration Parameters for the Graph Server (PGX) Engine for more information on
graph server (PGX) configuration options.

27.4.2 Updating Session Idle Timeout
You can configure the idle timeout value for a session.

The session idle timeout determines how long a session remains active without submitting any
tasks to the graph server (PGX). The idleTimeout value is set during session creation. If no
value is provided, then the server uses the session_idle_timeout_secs value specified in the
pgx.conf configuration file. The default value for the session_idle_timeout_secs
configuration is zero. This implies that timeout is deactivated and the session can remain
active indefinitely as long as the server is running.

You can use the setSessionIdleTimeout API to override the session idleTimeout value that
was set at the time of session creation. When you change the session idleTimeout to any
positive non-zero value, then the timeout job gets reactivated.

All regular graph users having the PGX_SESSION_SET_IDLE_TIMEOUT permission can update the
timeout value of the current session using the PgxSession#setSessionIdleTimeout API as
shown in the following example.

Note:

The PGX_SESSION_SET_IDLE_TIMEOUT permission is granted by default to the
GRAPH_DEVELOPER role. See Basic Steps for Using an Oracle Database for
Authentication for more information.

Chapter 27
Graph Client Sessions

27-29



• JShell

• Java

• Python

JShell

opg4j> session.setSessionIdleTimeout(10L, TimeUnit.SECONDS)

Java

session.setSessionIdleTimeout(10L, TimeUnit.SECONDS);

Python

session.set_session_idle_timeout(10, "seconds")

If you are a graph server administrator having the PGX_SERVER_MANAGE permission, then you
can update the timeout value of other sessions using the
PgxInstance#setSessionIdleTimeout API as shown.

Note:

The PGX_SERVER_MANAGE permission is granted by default to the
GRAPH_ADMINISTRATOR role. See Basic Steps for Using an Oracle Database for
Authentication for more information.

• JShell

• Java

• Python

JShell

opg4j> instance.setSessionIdleTimeout("<session_id>", 10L, TimeUnit.SECONDS)

Java

instance.setSessionIdleTimeout(session_id, 10L, TimeUnit.SECONDS);

Python

instance.set_session_idle_timeout('session_id', 10, 'seconds')

Chapter 27
Graph Client Sessions

27-30



27.4.3 Destroying a Session
To destroy a session, simply call:

• JShell

• Java

• Python

JShell

opg4j> session.destroy()

Java

session.destroy();

Python

session.destroy()

Administrators can destroy sessions by ID using the following code:

instance.killSession(sessionId);

Note:

Calling administrative methods by default requires special authorization in client/
server mode.

When a session is destroyed, PGX reclaims all of the resources associated with the session.
Specifically, all transient data is destroyed immediately. See Managing Transient Data for more
information on transient data.

However, PGX may choose to keep the loaded graph instance in memory for caching
purposes, especially if a graph instance is shared by multiple clients. In summary, every graph
remains in memory until no client is using it.

Chapter 27
Graph Client Sessions

27-31



Note:

A session can be destroyed automatically via the session time-out mechanism. See 
Configuration Parameters for the Graph Server (PGX) Engine for more information
on graph server (PGX) configuration options.

27.5 Graph Mutation and Subgraphs
This guide discusses the several methods provided by the graph server (PGX) for mutating
graph instances.

You can use the mutation and subgraph methods that are defined in the PgxGraph class, to
mutate a graph.

Note:

All of the mutating methods create a new graph or snapshot instance as the mutated
version of the original graph, rather than mutating the original graph directly.

• Altering Graphs

• Simplifying and Copying Graphs

• Transposing Graphs

• Undirecting Graphs

• Advanced Multi-Edge Handling

• Creating a Subgraph

• Creating a Bipartite Subgraph

• Creating a Sparsified Subgraph

27.5.1 Altering Graphs
This section explains the graph alteration mutation used to add or remove vertex and edge
providers of a graph.

You can add or remove vertex and edge providers in a graph that has been loaded or created
previously. Providers can be added from existing datasources, or new empty providers can be
created. The mutation can either create a new independent graph, or create a new snapshot
for the graph.

The following topics explain in detail on adding and removing vertex and edge providers:

You must first create a graph-alteration builder to start altering an existing graph. For example,
the following code shows how to start a graph alteration on a graph that is stored in a variable
graph:

• JShell

• Java

Chapter 27
Graph Mutation and Subgraphs

27-32



• Python

JShell

opg-jshell> var alterationBuilder = graph.alterGraph()

Java

import oracle.pgx.api.*;
import oracle.pgx.api.graphalteration.GraphAlterationBuilder;

GraphAlterationBuilder alterationBuilder = graph.alterGraph();

Python

alteration_builder = graph.alter_graph()

• Loading Or Removing Additional Vertex or Edge Providers

27.5.1.1 Loading Or Removing Additional Vertex or Edge Providers
You can alter your graph by adding or removing vertex or edge providers from a specific
datasource. Alternatively you can also add empty vertex or edge providers.

Keys in Additionally Loaded Providers

The vertex and edge providers that are loaded must provide the respective keys in accordance
with the vertex ID and edge ID strategy of the graph being altered. If the ID strategy is
KEYS_AS_IDS, the provider must create a key mapping. But, if the ID strategy is
UNSTABLE_GENERATED_IDS, it must not create the key mapping.

• Loading Vertex Providers

• Loading Edge Providers

• Adding Additional Empty Vertex or Edge Providers

• Removing Vertex or Edge Providers

• Applying the Alteration and Building a Graph or Snapshot

27.5.1.1.1 Loading Vertex Providers
You can add a vertex provider by calling
alterationBuilder.addVertexProvider(EntityProviderConfig vertexProviderConfig).

vertexProviderConfig is a vertex provider configuration and it provides configuration details
such as:

• location of the datasource to load from

• the stored format

Chapter 27
Graph Mutation and Subgraphs

27-33



• properties of the vertex provider

Adding a Vertex Provider from a JSON Configuration

You can add the provider by calling alterationBuilder.addVertexProvider(String
pathToVertexProviderConfig) where pathToVertexProviderConfig points to a file accessible
from the client that contains a JSON representation of a vertex provider configuration.

For example, a vertex provider configuration can be stored in a JSON file as shown:

{
  "name": "Accounts",
  "format": "rdbms",
  "database_table_name": "BANK_ACCOUNTS",
  "key_column": "ID",
  "key_type": "integer",
  "props": [
    {
      "name": "ID",
      "type": "integer"
    },
    {
      "name": "NAME",
      "type": "string"
    }
  ]
}

You can then add the vertex provider as shown in the following example:

• JShell

• Java

• Python

JShell

// Loading by indicating the path to the JSON file
opg4j> alterationBuilder.addVertexProvider("<path-to-vertex-provider-
configuration>")
$9 ==> 
oracle.pgx.api.graphalteration.internal.GraphAlterationBuilderImpl@48d464cf

// Or by first loading the content of a JSON file into an 
EntityProviderConfig object
opg4j> var vertexProviderConfig = new 
AnyFormatEntityProviderConfigFactory().fromPath("<path-to-vertex-provider-
configuration>")
vertexProviderConfig ==> 
{"format":"rdbms","name":"Accounts","database_table_name":"BANK_ACCOUNTS","loa
ding":{"create_key_mapping":true},"key_type":"integer","props":
[{"type":"integer","name":"ID"},
{"type":"string","name":"NAME"}],"key_column":"ID"}

Chapter 27
Graph Mutation and Subgraphs

27-34



opg4j> alterationBuilder.addVertexProvider(vertexProviderConfig)
$15 ==> 
oracle.pgx.api.graphalteration.internal.GraphAlterationBuilderImpl@77e2a5d3

Java

// Loading by indicating the path to the JSON file
alterationBuilder.addVertexProvider("<path-to-vertex-provider-
configuration>");

// Or by first loading the content of a JSON file into an 
EntityProviderConfig object
EntityProviderConfig vertexProviderConfig = new 
AnyFormatEntityProviderConfigFactory().fromPath("<path-to-vertex-provider-
configuration>");
alterationBuilder.addVertexProvider(vertexProviderConfig);

Python

# Loading by indicating the path to the JSON file
alterationBuilder.add_vertex_provider("<path-to-vertex-provider-
configuration>");

Adding a Vertex Provider Programmatically Using an API

Alternatively, the vertex provider configuration can be built programmatically:

• JShell

• Java

JShell

opg4j> var vertexProviderConfigBuilder = new 
RdbmsEntityProviderConfigBuilder().
...>       setName("Accounts").
...>       setKeyColumn("ID").
...>       setDatabaseTableName("BANK_ACCOUNTS").
...>       addProperty("ID", PropertyType.INTEGER)
vertexProviderConfigBuilder ==> 
oracle.pgx.config.RdbmsEntityProviderConfigBuilder@8ff4d2b

opg4j> var vertexProviderConfig = vertexProviderConfigBuilder.build()
vertexProviderConfig ==> {"error_handling":
{},"format":"rdbms","name":"Accounts","database_table_name":"BANK_ACCOUNTS","l
oading":{"create_key_mapping":true},"attributes":{},"key_type":"long","props":
[{"dimension":0,"type":"integer","name":"ID"}],"key_column":"ID"}

opg4j> alterationBuilder.addVertexProvider(vertexProviderConfig)

Chapter 27
Graph Mutation and Subgraphs

27-35



$24 ==> 
oracle.pgx.api.graphalteration.internal.GraphAlterationBuilderImpl@7b303608

Java

RdbmsEntityProviderConfigBuilder vertexProviderConfigBuilder = new 
RdbmsEntityProviderConfigBuilder()
  .setName("Accounts")
  .setKeyColumn("ID")
  .setDatabaseTableName("BANK_ACCOUNTS")
  .addProperty("ID", PropertyType.INTEGER);
EntityProviderConfig vertexProviderConfig = 
vertexProviderConfigBuilder.build();
alterationBuilder.addVertexProvider(vertexProviderConfig);

27.5.1.1.2 Loading Edge Providers
You can add an edge provider by calling
alterationBuilder.addEdgeProvider(EntityProviderConfig edgeProviderConfig) where
edgeProviderConfig. edgeProviderConfig is an edge provider configuration and it provides
configuration details such as:

• location of the datasource to load from

• the stored format

• properties of the edge provider

The source and destination vertex providers to which it is linked must either be already in the
base graph (and not removed in the alteration), or added with the alteration.

Adding an Edge Provider from a JSON Configuration

You can also add the provider by calling alterationBuilder.addEdgeProvider(String
pathToEdgeProviderConfig) where pathToEdgeProviderConfig points to a file accessible
from the client that contains a JSON representation of an edge provider configuration.

For example, an edge provider configuration can be stored in a JSON file as shown:

{
  "name": "Transfers",
  "format": "rdbms",
  "database_table_name": "BANK_EDGES_AMT",
  "key_column": "ID",
  "source_column": "SRC_ID",
  "destination_column": "DEST_ID",
  "source_vertex_provider": "Accounts",
  "destination_vertex_provider": "Accounts",
  "props": [
    {
      "name": "AMOUNT",
      "type": "float"
    }

Chapter 27
Graph Mutation and Subgraphs

27-36



  ]
}

You can then add the edge provider as shown in the following example:

• JShell

• Java

• Python

JShell

// Loading by indicating the path to the JSON file
opg4j> alterationBuilder.addEdgeProvider("<path-to-edge-provider-
configuration>")
$10 ==> 
oracle.pgx.api.graphalteration.internal.GraphAlterationBuilderImpl@48d464cf

// Or by first loading the content of a JSON file into an 
EntityProviderConfig object
opg4j> EntityProviderConfig edgeProviderConfig = new 
AnyFormatEntityProviderConfigFactory().fromPath("<path-to-edge-provider-
configuration>")
edgeProviderConfig ==> 
{"format":"rdbms","source_vertex_provider":"Accounts","name":"Transfers","data
base_table_name":"BANK_EDGES_AMT","loading":
{"create_key_mapping":false},"source_column":"SRC_ID","destination_column":
"DEST_ID","key_type":"long","destination_vertex_provider":"Accounts","props":
[{"type":"float","name":"AMOUNT"}],"key_column":"ID"}

opg4j> alterationBuilder.addEdgeProvider(edgeProviderConfig)
$26 ==> 
oracle.pgx.api.graphalteration.internal.GraphAlterationBuilderImpl@7b303608

Java

// Loading by indicating the path to the JSON file
alterationBuilder.addEdgeProvider("<path-to-edge-provider-configuration>");

// Or by first loading the content of a JSON file into an 
EntityProviderConfig object
EntityProviderConfig edgeProviderConfig = new 
AnyFormatEntityProviderConfigFactory().fromPath("<path-to-edge-provider-
configuration>");
alterationBuilder.addEdgeProvider(edgeProviderConfig);

Python

# Loading by indicating the path to the JSON file
alterationBuilder.add_edge_provider("<path-to-edge-provider-configuration>");

Chapter 27
Graph Mutation and Subgraphs

27-37



Adding an Edge Provider Programmatically Using an API

Alternatively, the edge provider configuration can be built programmatically:

• JShell

• Java

JShell

opg4j> RdbmsEntityProviderConfigBuilder edgeProviderConfigBuilder = new 
RdbmsEntityProviderConfigBuilder().
...>                                              setName("Transfers").
...>                                              setKeyColumn("id").
...>                                              setSourceColumn("src_id").
...>                                              
setDestinationColumn("dest_id").
...>                                              
setSourceVertexProvider("Accounts").
...>                                              
setDestinationVertexProvider("Accounts").
...>                                              createKeyMapping(true).
...>                                              
setDatabaseTableName("bank_txns").
...>                                              addProperty("from_acct_id", 
PropertyType.LONG).
...>                                              addProperty("to_acct_id", 
PropertyType.LONG).
...>                                              addProperty("amount", 
PropertyType.LONG)
edgeProviderConfigBuilder ==> 
oracle.pgx.config.RdbmsEntityProviderConfigBuilder@5a5f65b9

opg4j> EntityProviderConfig edgeProviderConfig = 
edgeProviderConfigBuilder.build()
edgeProviderConfig ==> {"error_handling":
{},"attributes{},"destination_column":"dest_id","key_type":"long","destination
_vertex_provider":"Accounts","key_column":"id","format":"rdbms","source_vertex
_provider":
"Accounts","name":"Transfers","database_table_name":"bank_txns","loading":
{"create_key_mapping":true},"source_column":"src_id","props":
[{"dimension":0,"type":"long","name":"from_acct_id"},
{"dimension":0,"type":"long",
"name":"to_acct_id"},{"dimension":0,"type":"long","name":"amount"}]}

opg4j> alterationBuilder.addEdgeProvider(edgeProviderConfig)
$30 ==> 
oracle.pgx.api.graphalteration.internal.GraphAlterationBuilderImpl@441ccfd7

Chapter 27
Graph Mutation and Subgraphs

27-38



Java

RdbmsEntityProviderConfigBuilder edgeProviderConfigBuilder = new 
RdbmsEntityProviderConfigBuilder()
.setName("Transfers")
.setKeyColumn("id")
.setSourceColumn("src_id")
.setDestinationColumn("dest_id").
.setSourceVertexProvider("Accounts")
.setDestinationVertexProvider("Accounts")
.createKeyMapping(true)
.setDatabaseTableName("bank_txns")
.addProperty("from_acct_id", PropertyType.LONG)
.addProperty("to_acct_id", PropertyType.LONG)
.addProperty("amount", PropertyType.LONG);

EntityProviderConfig edgeProviderConfig = edgeProviderConfigBuilder.build();
alterationBuilder.addEdgeProvider(edgeProviderConfig);

27.5.1.1.3 Adding Additional Empty Vertex or Edge Providers
You can also add empty vertex or edge providers, without having the providers connected to
any specific datasource.

The names and types of the properties of each empty provider can be specified
programmatically. Similarly, you can also specify if a key mapping for the providers needs to be
created.

Adding Additional Empty Vertex Providers

You can add an empty vertex provider by calling
alterationBuilder.addEmptyVertexProvider(String vertexProviderName). You can then
add properties, specify the key column, create the key mapping programmatically as shown in
the following example.

See the GraphAlterationEmptyVertexProviderBuilder Interface in the Javadoc for more
details.

• JShell

• Java

JShell

opg4j> alterationBuilder.addEmptyVertexProvider("AccountsProvider").
...>         setLabel("Accounts").
...>         createKeyMapping(true).
...>         addProperty("NAME", PropertyType.STRING)
$14 ==> 
oracle.pgx.api.graphalteration.internal.GraphAlterationEmptyVertexProviderBuil
derImpl@4b3ea082

Chapter 27
Graph Mutation and Subgraphs

27-39



Java

alterationBuilder.addEmptyVertexProvider("AccountsProvider")
        .setLabel("Accounts")
        .createKeyMapping(true)
        .addProperty("NAME", PropertyType.STRING);

Adding Additional Empty Edge Providers

You can add an empty edge provider by calling
alterationBuilder.addEmptyEdgeProvider(String providerName, String
sourceProvider, String destProvider). You can then add properties, specify the key
column, create the key mapping programmatically as shown in the following example.

See the GraphAlterationEmptyEdgeProviderBuilder Interface in the Javadoc for more
details.

• JShell

• Java

JShell

opg4j> alterationBuilder.addEmptyEdgeProvider("TransactionProvider", 
"Accounts", "Accounts").
...>         setLabel("Transfers").
...>         createKeyMapping(false). // set to false if no keys are needed
...>         addProperty("Description", PropertyType.STRING)
$26 ==> 
oracle.pgx.api.graphalteration.internal.GraphAlterationEmptyEdgeProviderBuilde
rImpl@54720caf

Java

alterationBuilder.addEmptyEdgeProvider("TransactionProvider", "Accounts", 
"Accounts")
.setLabel("Transfers")
.createKeyMapping(false)
.addProperty("Description", PropertyType.STRING);

27.5.1.1.4 Removing Vertex or Edge Providers
You can remove an edge provider by calling alterationBuilder.removeEdgeProvider(String
edgeProviderName), where edgeProviderName is the name of the edge provider to be removed
from the graph.

Chapter 27
Graph Mutation and Subgraphs

27-40



Similarly, calling alterationBuilder.removeVertexProvider(String vertexProviderName)
will result in the graph to not contain that specific vertex provider. If that vertex provider was the
source or destination provider for some edge providers in the base graph, those edge
providers should also be removed before the application of the alteration or an exception will
be thrown.

It is possible to indicate that the edge providers associated to a removed vertex provider
should be automatically removed by calling
alterationBuilder.cascadeEdgeProviderRemovals(boolean
cascadeEdgeProviderRemovals) with cascadeEdgeProviderRemovals set to true.

27.5.1.1.5 Applying the Alteration and Building a Graph or Snapshot
You must call alterationBuilder.build(), once the different vertex and edge providers have
been added or removed in the alteration to actually apply the operation. By calling
alterationBuilder.build(), a new graph is created and that graph contains all the providers
of the base graph excluding the removed providers, and the additionally loaded providers.

You can also call alterationBuilder.buildNewSnapshot(), in which case, a new snapshot for
the base graph is created and that snapshot contains all the providers of the base graph
excluding the removed providers, and the additionally loaded providers.

27.5.2 Simplifying and Copying Graphs
You can create a simplified version of the graph by calling the simplify() method.

• Java

• Python

Java
PgxGraph simplify(Collection<VertexProperty<?, ?>> vertexProps, 
         Collection<EdgeProperty<?>> edgeProps, MultiEdges multiEdges, 
         SelfEdges selfEdges, TrivialVertices trivialVertices, 
         Mode mode, String newGraphName)

Python
simplify(self, vertex_properties=True, edge_properties=True, keep_multi_edges=False,
                 keep_self_edges=False, keep_trivial_vertices=False, in_place=False, 
name=None)

The first two arguments (vertexProps and edgeProps) list which properties will be copied into
the newly created simplified graph instance. PGX provides convenience constants
VertexProperty.ALL, EdgeProperty.ALL and VertexProperty.NONE, EdgeProperty.NONE to
specify all properties or none properties to be stored, respectively.

The next three arguments determine which operations will be performed to simplify the graph.

• multiEdges: if MultiEdges.REMOVE_MULTI_EDGES, eliminate multiple edges between a
source vertex and a destination vertex, that is, leave at most one edge between two
vertices. MultiEdges.KEEP_MULTI_EDGES indicates to keep them. By default, PGX picks

Chapter 27
Graph Mutation and Subgraphs

27-41



one edge out of the multi-edges and takes its properties. See Advanced Multi-Edge
Handling for more fine-grained control over the edge properties during simplification.

• selfEdges: if SelfEdges.REMOVE_SELF_EDGES, eliminate every edge whose source and
destination are the same vertex. SelfEdges.KEEP_MULTI_EDGES indicates to keep them.

• trivialVertices: if TrivialVertices.REMOVE_TRIVIAL_VERTICES, eliminate all the
vertices that have neither incoming edges nor outgoing edges.
TrivialVertices.KEEP_TRIVIAL_VERTICES indicates to keep them.

The mode argument, if set to Mode.MUTATE_IN_PLACE , requests that the mutation occurs directly
on the specified graph instance without creating a new one. If set to Mode.CREATE_COPY, the
method will create a new graph instance with the new name in newGraphName. If newGraphName
is omitted (or null), PGX will generate a unique graph name.

The return value of this method is the simplified PgxGraph instance.

The Mode.MUTATE_IN_PLACE option is only applicable if the graph is marked as mutable. Every
graph is immutable by default when loaded into PGX. To make a PgxGraph mutable, the client
should create a private copy of the graph first, using one of the following methods:

• Java

• Python

Java

PgxGraph clone()
PgxGraph clone(String newGraphName)
PgxGraph clone(Collection<VertexProperty<?, ?>> vertexProps, 
Collection<EdgeProperty<?>> edgeProps, String newGraphName)

Python

clone(self, vertex_properties=True, edge_properties=True, name=None)

As with simplify(), the user can specify optional properties of the graph to copy with
vertexProps and edgeProps. If no properties are specified, all of the original graph's properties
will be copied into the new graph instance. The user can specify the name of the newly created
graph instance with newGraphName.

27.5.3 Transposing Graphs
You can create a transposed version of the graph.

• Java

• Python

Chapter 27
Graph Mutation and Subgraphs

27-42



Java

PgxGraph transpose(Collection<VertexProperty<?, ?>> vertexProps,
                     Collection<EdgeProperty<?>> edgeProps,
                     Map<String, String> edgeLabelMapping,
                     Mode mode, String newGraphName)

Python

transpose(self, vertex_properties=True, edge_properties=True, 
edge_label_mapping=None, in_place=False,
                  name=None)

The edgeLabelMapping argument can be used to rename edge labels. If any key in the given
map does not exist as an edge label, it will be ignored.

edgeLabelMapping argument can also be an empty Map or null.

• null: if argument is null, edge labels from source graph will be removed on transposed
graph. (default behavior when using convenience methods).

• empty Map: if argument is an empty Map, edge labels from source graph will be neither
removed or renamed. Instead, it will be kept as it is in source graph.

See Simplifying and Copying Graphs for the meaning of the other parameters.

Additionally, the graph server (PGX) provides the following convenience methods from the
PgxGraph class for the common operation of copying all vertex and edge properties into the
transposed graph instance:

• transpose(Mode mode, String newGraphName)
• transpose(String newGraphName)
• transpose(Mode mode)

27.5.4 Undirecting Graphs
The following methods create the undirected version of a graph instance:

• Java

• Python

Java

PgxGraph undirect()
PgxGraph undirect(String newGraphName)
PgxGraph undirect(MultiEdges multiEdges, SelfEdges selfEdges, TrivialVertices 
trivialVertices, Mode mode, String newGraphName)
PgxGraph undirect(Collection<VertexProperty<?, ?>> vertexProps, 

Chapter 27
Graph Mutation and Subgraphs

27-43

https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxGraph.html#transpose_oracle_pgx_api_PgxGraph_Mode_java_lang_String_
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxGraph.html#transpose_java_lang_String_
https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxGraph.html#transpose_oracle_pgx_api_PgxGraph_Mode_


Collection<EdgeProperty<?>> edgeProps, MultiEdges multiEdges, SelfEdges 
selfEdges, Mode mode, String newGraphName)

Python

undirect(self, vertex_properties=True, edge_properties=True, 
keep_multi_edges=True, keep_self_edges=True,
                 keep_trivial_vertices=True, in_place=False, name=None)

The first two methods create an undirected version of the graph while copying all of the vertex
properties. newGraphName is an optional argument to specify the name of the newly created
graph instance.

In contrast, the third and fourth methods concurrently perform undirecting and simplifying of a
graph. See Simplifying and Copying Graphs for the meaning of each parameter.

All methods return an object of the undirected PgxGraph type.

An undirected graph has some restrictions. Some algorithms are only supported on directed
graphs or are not yet supported for undirected graphs. Further, PGX does not support to store
undirected graphs nor reading from undirected formats. Since the edges do not have a
direction anymore, the behavior of pgxEdge.getSource() or pgxEdge.getDestination() can
be ambiguous. In order to provide deterministic results, PGX will always return the vertex with
the smaller internal id as source and the other as destination vertex.

27.5.5 Advanced Multi-Edge Handling
Both simplify() and undirect() support the removal of multi-edges using
MultiEdges.REMOVE_MULTI_EDGES. If this parameter is set, all multi-edges in this graph are
removed, that is, collapsed. Whenever several multi-edges with edge properties are collapsed
into one edge, you can choose one of the following two strategies supported by the graph
server (PGX) to decide how to treat the corresponding properties:

• Picking

• Merging

If you choose picking, the graph server (PGX) picks one edge out of every set of multi-edges
and copies all its properties including the edge label and key into the new graph. In the case of
merging, the graph server (PGX) creates a completely new edge out for every set of multi-
edges. PGX determines the properties of these new edges by applying a MergingFunction on
every property of the multi-edges.

If there are no multi-edges between two vertices, that is, zero or only one edge, the chosen
strategy does not have an effect on the outcome. The edge is kept with all its properties as it is.

• Picking

• Merging

• StrategyBuilder in General

Chapter 27
Graph Mutation and Subgraphs

27-44



27.5.5.1 Picking
This strategy can be used to pick an edge out of multi-edges. The graph server (PGX) allows
the user to define several picking criteria. You can pick by:

• Property

• Label

• Edge-ID

Every picking criteria has to be combined with a PickingStrategyFunction. PGX supports
either PickingStrategyFunction.MIN and PickingStrategyFunction.MAX, which picks the
edge whose property/label/id is either minimal or maximal. If one does not specify a picking
criteria, PGX will non-deterministically pick an edge out of the multi-edges.

A PickingStrategy can be created using a PickingStrategyBuilder, which can be retrieved by
calling createPickingStrategyBuilder() on the target graph.

You can call one of the following functions as per your chosen picking criteria:

PickingStrategyBuilder setPickByEdgeId(PickingStrategyFunction pickingStrategyFunction)
PickingStrategyBuilder setPickByLabel(PickingStrategyFunction pickingStrategyFunction)
PickingStrategyBuilder setPickByProperty(EdgeProperty edgeProperty, 
PickingStrategyFunction pickingStrategyFunction)
PickingStrategyBuilder setPickByProperty(String propertyName, PickingStrategyFunction 
pickingStrategyFunction)    

The following figure shows how PGX picks the edge with the minimal cost and takes all its
properties.

Chapter 27
Graph Mutation and Subgraphs

27-45



Figure 27-1    Picking Strategy

27.5.5.2 Merging
This strategy can be used to merge the properties of multi-edges. The graph server (PGX)
allows the user to define a MergingFunction for every property. Currently, PGX supports the
following functions:

• MergingFunction.MIN
• MergingFunction.MAX
• MergingFunction.SUM

Note:

SUM is only defined on numeric properties.

The following figure shows how the graph server (PGX) merges the different edge properties
and labels. It takes the minimal cost, the sum of distances and the maximal edge label.

Chapter 27
Graph Mutation and Subgraphs

27-46



Figure 27-2    Merging Strategy

27.5.5.3 StrategyBuilder in General
By default, both the StrategyBuilders use the same values as in the convenience methods of
simplify() and undirect(). This includes that all properties are kept by default. If one wants
to drop specific properties, one can either use the dropVertexProperty() or
dropEdgeProperty() functions.

MutationStrategyBuilder setNewGraphName(String newGraphName)
MutationStrategyBuilder setCopyMode(Mode mode)
MutationStrategyBuilder setTrivialVertices(TrivialVertices trivialVertices)
MutationStrategyBuilder setSelfEdges(SelfEdges selfEdges)
MutationStrategyBuilder setMultiEdges(MultiEdges multiEdges)
MutationStrategyBuilder dropVertexProperties(Collection<VertexProperty<?, ?>> 
vertexProperty)
MutationStrategyBuilder dropEdgeProperties(Collection<EdgeProperty<?>> 
edgeProperty)
MutationStrategyBuilder dropVertexProperty(VertexProperty<?, ?> 
vertexProperty)
MutationStrategyBuilder dropEdgeProperty(EdgeProperty<?> edgeProperty)
MutationStrategy build()

Simplify() and undirect() can be called using a MutationStrategy as follows:

MutationStrategy strategy = strategyBuilder.build()
PgxGraph simplifiedGraph graph.simplify(strategy)
//OR
PgxGraph undirectedGraph graph.undirect(strategy)

Chapter 27
Graph Mutation and Subgraphs

27-47



27.5.6 Creating a Subgraph
PGX provides the following methods for creating subgraphs via a filter (see Filter Expressions
for more information) expression:

• Java

• Python

Java

PgxGraph filter(GraphFilter graphFilter)
PgxGraph filter(GraphFilter graphFilter, String newGraphName)
PgxGraph filter(Collection<VertexProperty<?, ?>> vertexProps, 
Collection<EdgeProperty<?>> edgeProps, GraphFilter graphFilter, String 
newGraphName)

Python

filter(self, graph_filter, vertex_properties=True, edge_properties=True, 
name=None)

As in the other graph mutating methods, the user has the option to specify the name of the
subgraph with the newGraphName parameter and of choosing the vertex and edge properties to
be copied into the subgraph (vertexProps and edgeProps). All of the preceding methods return
a PgxGraph object which represents the created subgraph.

All filter methods require a GraphFilter argument containing a filter expression.
Fundamentally, the filter expression is a Boolean expression that is evaluated for every vertex
and edge in the original graph (in parallel). If the expression is evaluated as true for the vertex
or edge, then that vertex or edge is included in the subgraph.

See Creating Subgraphs for more information on how to create subgraphs from graphs loaded
into memory.

27.5.7 Creating a Bipartite Subgraph
The graph server (PGX) enables the client to create a bipartite subgraph. The following
methods return the created BipartiteGraph instance:

• Java

• Python

Chapter 27
Graph Mutation and Subgraphs

27-48



Java

BipartiteGraph bipartiteSubGraphFromLeftSet(VertexSet<?> vertexSet)
BipartiteGraph bipartiteSubGraphFromLeftSet(VertexSet<?> vertexSet, String 
newGraphName)
BipartiteGraph bipartiteSubGraphFromLeftSet(Collection<VertexProperty<?, ?>> 
vertexProps, Collection<EdgeProperty<?>> edgeProps, VertexSet<?> vertexSet, 
String newGraphName)
BipartiteGraph bipartiteSubGraphFromLeftSet(Collection<VertexProperty<?, ?>> 
vertexProps, Collection<EdgeProperty<?>> edgeProps, VertexSet<?> vertexSet, 
String newGraphName, String isLeftPropName)

Python

bipartite_sub_graph_from_left_set(self, vset, vertex_properties=True, 
edge_properties=True, name=None, is_left_name=None)

These methods require an additional argument vertexSet, which points to a set of vertices
(see Using Collections and Maps for more information) whose elements (vertices) would
contain the left vertices (that is, vertices on the left side of the bipartite graph that have only
edges to vertices on the right side) in the resulting bipartite graph.

When creating the bipartite subgraph, PGX automatically inserts an additional boolean vertex
property isLeft. The value of this property is set true for the left vertices and false for the
right vertices in the bipartite subgraph. The name of the isLeft vertex property can be
obtained with getIsLeftPropertyAsync() on the returned BipartiteGraph object.

The user has the option to specify a name for the newly created graph (newGraphName) as well
as a custom name for the Boolean left-vertex indicating property (isLeftPropName). The user
can also specify the vertex and edge properties to be copied into the newly created graph
instance (vertexProps and edgeProps).

27.5.8 Creating a Sparsified Subgraph
The graph server (PGX) supports creating a sparsified subgraph of a graph:

• Java

• Python

Java

PgxGraph sparsify(double e)
PgxGraph sparsify(double e, String newGraphName)
PgxGraph sparsify(Collection<VertexProperty<?, ?>> vertexProps, 
Collection<EdgeProperty<?>> edgeProps, double e, String newGraphName)

Chapter 27
Graph Mutation and Subgraphs

27-49



Python

sparsify(self, sparsification, vertex_properties=True, edge_properties=True, 
name=None)

The double argument e is the sparsification coefficient with a value between 0.0 and 1.0.

The user again has the option to specify the name for the newly created graph (newGraphName)
as well as the vertex and edge properties to be copied into the newly created graph instance
(vertexProps and edgeProps).

The returned PgxGraph object represents a sparsified subgraph which has fewer edges than
the original graph.

27.6 Graph Builder and Graph Change Set
This guide explains the GraphBuilder API used for creating graphs and the GraphChangeSet
interface used for modifying loaded graphs.

• Building Graphs Using GraphBuilder Interface

• Modifying Loaded Graphs Using ChangeSet

27.6.1 Building Graphs Using GraphBuilder Interface
Using the GraphBuilder interface, you can create graphs programmatically.

The basic work flow for creating graphs from scratch is:

1. Acquire a modifiable graph builder to accumulate all the new vertices and edges

2. Add vertices and edges to the graph builder

3. Create a PgxGraph out of the accumulated changes

• Creating a Simple Graph

• Adding a Vertex Property

• Using Strings as Vertex Identifiers

• Referencing a Vertex for Creating Edges

• Adding an Edge Property and a Label

• Using Graph Builder with Implicit IDs

27.6.1.1 Creating a Simple Graph
This section shows an example of creating a simple graph using the createGraphBuilder()
method .

• JShell

• Java

Chapter 27
Graph Builder and Graph Change Set

27-50



• Python

JShell

opg4j> var builder = session.createGraphBuilder()
builder ==> GraphBuilderImpl[session=cd201ac9-e73f-447c-9cec-
cd929293acc3,vertexChanges=0,edgeChanges=0]

opg4j> builder.addEdge(1, 2)
opg4j> builder.addEdge(2, 3)
opg4j> builder.addEdge(2, 4)
opg4j> builder.addEdge(3, 4)
opg4j> builder.addEdge(4, 2)

opg4j> var graph = builder.build()
graph ==> PgxGraph[name=anonymous_graph_16,N=4,E=5,created=1629805890550]

Java

import oracle.pgx.api.*;

PgxSession session = Pgx.createSession("example");
GraphBuilder<Integer> builder = session.createGraphBuilder();

builder.addEdge(1, 2);
builder.addEdge(2, 3);
builder.addEdge(2, 4);
builder.addEdge(3, 4);
builder.addEdge(4, 2);

PgxGraph graph = builder.build();

Python

from pypgx import get_session

session = get_session(session_name="example")
builder = session.create_graph_builder()
builder.add_edge(1, 2)
builder.add_edge(2, 3)
builder.add_edge(2, 4)
builder.add_edge(3, 4)
builder.add_edge(4, 2)
graph = builder.build()

Also, note that the following:

• A call to addEdge consists of the new unique edge ID, the source vertex ID and the
destination vertex ID.

• No graph configuration is required.

Chapter 27
Graph Builder and Graph Change Set

27-51



• When adding edges, all vertices that do not already exist are created on the fly as edges
are created.

• GraphBuilder supports only the following two generation strategies for creating vertices
and edge IDs:

– USER_IDS (the default value)

– AUTO_GENERATED

27.6.1.2 Adding a Vertex Property
You can also add vertices separately and assign property values to them.

The following example shows how to add a vertex property using the GraphBuilder interface.

• JShell

• Java

• Python

JShell

opg4j> var builder = session.createGraphBuilder()
opg4j> builder.addVertex(1).setProperty("double-prop", 0.1)
opg4j> builder.addVertex(2).setProperty("double-prop", 2.0)
opg4j> builder.addVertex(3).setProperty("double-prop", 0.3)
opg4j> builder.addVertex(4).setProperty("double-prop", 4.56789)
opg4j> builder.addEdge(1, 2)
opg4j> builder.addEdge(2, 3)
opg4j> builder.addEdge(2, 4)
opg4j> builder.addEdge(3, 4)
opg4j> builder.addEdge(4, 2)
opg4j> var graph = builder.build()

Java

import oracle.pgx.api.*;

PgxSession session = Pgx.createSession("example");
GraphBuilder<Integer> builder = session.createGraphBuilder();

builder.addVertex(1).setProperty("double-prop", 0.1);
builder.addVertex(2).setProperty("double-prop", 2.0);
builder.addVertex(3).setProperty("double-prop", 0.3);
builder.addVertex(4).setProperty("double-prop", 4.56789);

builder.addEdge(1, 2);
builder.addEdge(2, 3);
builder.addEdge(2, 4);
builder.addEdge(3, 4);
builder.addEdge(4, 2);

Chapter 27
Graph Builder and Graph Change Set

27-52



PgxGraph graph = builder.build();

Python

from pypgx import get_session

session = get_session(session_name="example")
builder = session.create_graph_builder()

builder.add_vertex(1).set_property("double-prop", 0.1)
builder.add_vertex(2).set_property("double-prop", 2.0)
builder.add_vertex(3).set_property("double-prop", 0.3)
builder.add_vertex(4).set_property("double-prop", 4.56789)

builder.add_edge(1, 2)
builder.add_edge(2, 3)
builder.add_edge(2, 4)
builder.add_edge(3, 4)
builder.add_edge(4, 2)

graph=builder.build()

If the value for a property is missing for a vertex or an edge, a default value is assumed as
shown:

Table 27-4    Default Property Values

Properties Default Values

Numeric 0 (or the respective equivalent)

Boolean false
Date 1.1.1970 00:00:00
String null

Tip:

Multiple calls to setProperty can be chained to set multiple property values at once.

27.6.1.3 Using Strings as Vertex Identifiers
By default, integer vertex IDs are used to identify a vertex. But, the type of the vertex ID can
also be a long or a string.

In order to implement this, you must specify the vertex ID type when creating the graph using
the GraphBuilder as shown:

Chapter 27
Graph Builder and Graph Change Set

27-53



• JShell

• Java

• Python

JShell

opg4j> GraphBuilder<String> builder = 
session.createGraphBuilder(IdType.STRING)
opg4j> builder.addVertex("vertex 1").setProperty("double-prop", 0.1)
opg4j> builder.addVertex("vertex 2").setProperty("double-prop", 2.0)
opg4j> builder.addVertex("vertex 3").setProperty("double-prop", 0.3)
opg4j> builder.addVertex("vertex 4").setProperty("double-prop", 4.56789)
opg4j> builder.addEdge("vertex 1", "vertex 2")
opg4j> builder.addEdge("vertex 2", "vertex 3")
opg4j> builder.addEdge("vertex 2", "vertex 4")
opg4j> builder.addEdge("vertex 3", "vertex 4")
opg4j> builder.addEdge("vertex 4", "vertex 2")

opg4j> var graph = builder.build()

Java

import oracle.pgx.api.*;
import oracle.pgx.common.types.IdType;

PgxSession session = Pgx.createSession("example");
GraphBuilder<String> builder = session.createGraphBuilder(IdType.STRING);

builder.addVertex("vertex 1").setProperty("double-prop", 0.1);
builder.addVertex("vertex 2").setProperty("double-prop", 2.0);
builder.addVertex("vertex 3").setProperty("double-prop", 0.3);
builder.addVertex("vertex 4").setProperty("double-prop", 4.56789);

builder.addEdge("vertex 1", "vertex 2");
builder.addEdge("vertex 2", "vertex 3");
builder.addEdge("vertex 2", "vertex 4");
builder.addEdge("vertex 3", "vertex 4");
builder.addEdge("vertex 4", "vertex 2");

PgxGraph graph = builder.build();

Python

from pypgx import get_session

session = get_session(session_name="example")
builder = session.create_graph_builder(id_type='string')
builder.add_vertex("vertex 1").set_property("double-prop", 0.1)
builder.add_vertex("vertex 2").set_property("double-prop", 2.0)
builder.add_vertex("vertex 3").set_property("double-prop", 0.3)
builder.add_vertex("vertex 4").set_property("double-prop", 4.56789)

Chapter 27
Graph Builder and Graph Change Set

27-54



builder.add_edge("vertex 1", "vertex 2")
builder.add_edge("vertex 2", "vertex 3")
builder.add_edge("vertex 2", "vertex 4")
builder.add_edge("vertex 3", "vertex 4")
builder.add_edge("vertex 4", "vertex 2")

graph = builder.build()

27.6.1.4 Referencing a Vertex for Creating Edges
You can also avoid entering the full vertex ID when adding an edge. For this, you must obtain a
reference to the vertex that is created, which can be later used in the addEdge statement.

• JShell

• Java

• Python

JShell

opg4j> GraphBuilder<String> builder = 
session.createGraphBuilder(IdType.STRING)

opg4j> var v1 = builder.addVertex("vertex 1").setProperty("double-prop", 0.1)
opg4j> var v2 = builder.addVertex("vertex 2").setProperty("double-prop", 2.0)
opg4j> var v3 = builder.addVertex("vertex 3").setProperty("double-prop", 0.3)
opg4j> var v4 = builder.addVertex("vertex 4").setProperty("double-prop", 
4.56789)

opg4j> builder.addEdge(v1, v2)
opg4j> builder.addEdge(v2, v3)
opg4j> builder.addEdge(v2, v4)
opg4j> builder.addEdge(v3, v4)
opg4j> builder.addEdge(v4, v2)

opg4j> var graph = builder.build()

Java

import oracle.pgx.api.*;
import oracle.pgx.common.types.IdType;

PgxSession session = Pgx.createSession("example");
GraphBuilder<String> builder = session.createGraphBuilder(IdType.STRING);

VertexBuilder<String> v1 = builder.addVertex("vertex 1").setProperty("double-
prop", 0.1);
VertexBuilder<String> v2 = builder.addVertex("vertex 2").setProperty("double-
prop", 2.0);

Chapter 27
Graph Builder and Graph Change Set

27-55



VertexBuilder<String> v3 = builder.addVertex("vertex 3").setProperty("double-
prop", 0.3);
VertexBuilder<String> v4 = builder.addVertex("vertex 4").setProperty("double-
prop", 4.56789);

builder.addEdge(v1, v2);
builder.addEdge(v2, v3);
builder.addEdge(v2, v4);
builder.addEdge(v3, v4);
builder.addEdge(v4, v2);

PgxGraph graph = builder.build();

Python

from pypgx import get_session

session = get_session(session_name="example")
builder = session.create_graph_builder(id_type='string')

v1 = builder.add_vertex("vertex 1").set_property("double-prop", 0.1)
v2 = builder.add_vertex("vertex 2").set_property("double-prop", 2.0)
v3 = builder.add_vertex("vertex 3").set_property("double-prop", 0.3)
v4 = builder.add_vertex("vertex 4").set_property("double-prop", 4.56789)

builder.add_edge(v1, v2)
builder.add_edge(v2, v3)
builder.add_edge(v2, v4)
builder.add_edge(v3, v4)
builder.add_edge(v4, v2)

graph = builder.build()

27.6.1.5 Adding an Edge Property and a Label
The following examples show how to add an edge property and a label to a graph.

• JShell

• Java

• Python

JShell

opg4j> var builder = session.createGraphBuilder(IdType.STRING)

opg4j> var v1 = builder.addVertex("vertex 1").setProperty("double-prop", 0.1)
opg4j> var v2 = builder.addVertex("vertex 2").setProperty("double-prop", 2.0)
opg4j> var v3 = builder.addVertex("vertex 3").setProperty("double-prop", 0.3)

Chapter 27
Graph Builder and Graph Change Set

27-56



opg4j> var v4 = builder.addVertex("vertex 4").setProperty("double-prop", 
4.56789)

opg4j> builder.addEdge(v1, v2).setProperty("edge-prop", 
"edge_prop_1_2").setLabel("label")
opg4j> builder.addEdge(v2, v3).setProperty("edge-prop", 
"edge_prop_2_3").setLabel("label")
opg4j> builder.addEdge(v2, v4).setProperty("edge-prop", 
"edge_prop_2_4").setLabel("label")
opg4j> builder.addEdge(v3, v4).setProperty("edge-prop", 
"edge_prop_3_4").setLabel("label")
opg4j> builder.addEdge(v4, v2).setProperty("edge-prop", 
"edge_prop_4_2").setLabel("label")

opg4j> var graph = builder.build()

Java

import oracle.pgx.api.*;
import oracle.pgx.common.types.IdType;

PgxSession session = Pgx.createSession("example");
GraphBuilder<String> builder = session.createGraphBuilder(IdType.STRING);

VertexBuilder<String> v1 = builder.addVertex("vertex 1").setProperty("double-
prop", 0.1);
VertexBuilder<String> v2 = builder.addVertex("vertex 2").setProperty("double-
prop", 2.0);
VertexBuilder<String> v3 = builder.addVertex("vertex 3").setProperty("double-
prop", 0.3);
VertexBuilder<String> v4 = builder.addVertex("vertex 4").setProperty("double-
prop", 4.56789);

builder.addEdge(v1, v2).setProperty("edge-prop", 
"edge_prop_1_2").setLabel("label");
builder.addEdge(v2, v3).setProperty("edge-prop", 
"edge_prop_2_3").setLabel("label");
builder.addEdge(v2, v4).setProperty("edge-prop", 
"edge_prop_2_4").setLabel("label");
builder.addEdge(v3, v4).setProperty("edge-prop", 
"edge_prop_3_4").setLabel("label");
builder.addEdge(v4, v2).setProperty("edge-prop", 
"edge_prop_4_2").setLabel("label");

PgxGraph graph = builder.build();

Python

from pypgx import get_session

session = get_session(session_name="example")
builder = session.create_graph_builder(id_type='string')

v1 = builder.add_vertex("vertex 1").set_property("double-prop", 0.1)

Chapter 27
Graph Builder and Graph Change Set

27-57



v2 = builder.add_vertex("vertex 2").set_property("double-prop", 2.0)
v3 = builder.add_vertex("vertex 3").set_property("double-prop", 0.3)
v4 = builder.add_vertex("vertex 4").set_property("double-prop", 4.56789)

builder.add_edge(v1, v2).set_property("edge-prop", 
"edge_prop_1_2").set_label("label")
builder.add_edge(v2, v3).set_property("edge-prop", 
"edge_prop_2_3").set_label("label")
builder.add_edge(v2, v4).set_property("edge-prop", 
"edge_prop_2_4").set_label("label")
builder.add_edge(v3, v4).set_property("edge-prop", 
"edge_prop_3_4").set_label("label")
builder.add_edge(v4, v2).set_property("edge-prop", 
"edge_prop_4_2").set_label("label")

graph = builder.build()

27.6.1.6 Using Graph Builder with Implicit IDs
The GraphBuilder supports an AUTO_GENERATED generation strategy that allows to omit the
edge or vertex IDs.

In this generation strategy, the graph server (PGX) will automatically assign IDs to the entities
being added to the changeset. PgxSession supports
createGraphBuilder(IdGenerationStrategy vertexIdGenerationStrategy,
IdGenerationStrategy edgeIdGenerationStrategy) and createGraphBuilder(IdType
idType, IdGenerationStrategy vertexIdGenerationStrategy, IdGenerationStrategy
edgeIdGenerationStrategy) to specify the IdGenerationStrategy.

The following example illustrates creating a graph with three vertices and three edges using
the GraphBuilder interface.

• JShell

• Java

• Python

JShell

opg4j> var builder = 
session.createGraphBuilder(IdGenerationStrategy.AUTO_GENERATED, 
IdGenerationStrategy.AUTO_GENERATED)

opg4j> var v1 = builder.addVertex()
opg4j> var v2 = builder.addVertex()
opg4j> var v3 = builder.addVertex()
opg4j> builder.addEdge(v1, v2)
opg4j> builder.addEdge(v1, v3)
opg4j> builder.addEdge(v3, v2)
opg4j> var graph = builder.build()

Chapter 27
Graph Builder and Graph Change Set

27-58



Java

import oracle.pgx.api.*;

PgxSession session = Pgx.createSession("example");
GraphBuilder<Integer> builder = 
session.createGraphBuilder(IdGenerationStrategy.AUTO_GENERATED, 
IdGenerationStrategy.AUTO_GENERATED);

VertexBuilder<Integer> v1 = builder.addVertex();
VertexBuilder<Integer> v2 = builder.addVertex();
VertexBuilder<Integer> v3 = builder.addVertex();
builder.addEdge(v1, v2);
builder.addEdge(v1, v3);
builder.addEdge(v3, v2);

PgxGraph graph = builder.build();

Python

>>> builder = 
session.create_graph_builder(vertex_id_generation_strategy='auto_generated', 
edge_id_generation_strategy='auto_generated')
>>> v1 = builder.add_vertex()
>>> v2 = builder.add_vertex()
>>> v3 = builder.add_vertex()
>>> builder.add_edge(v1, v2)
>>> builder.add_edge(v1, v3)
>>> builder.add_edge(v3, v2)
>>> graph = builder.build()

27.6.2 Modifying Loaded Graphs Using ChangeSet
This guide explains how to add and remove vertices and edges from already loaded graphs.

As a prerequisite, you must have a graph already loaded into the graph server (PGX). See 
Reading Graphs from Oracle Database into the Graph Server (PGX) for more information.

You can now use the GraphChangeSet interface to modify the loaded graphs.

Note:

Modifying undirected graphs is not supported in graph server (PGX) 21.3.

• Modifying Vertices

• Adding Edges

• GraphChangeSet with Partitioned IDs

• Error Handling when Using a ChangeSet

Chapter 27
Graph Builder and Graph Change Set

27-59



27.6.2.1 Modifying Vertices
You can add, remove and modify vertices using the GraphChangeSet object.

• JShell

• Java

• Python

JShell

opg4j> var changeSet = graph.<Integer>createChangeSet()

opg4j> changeSet.addVertex(42).setProperty("prop", 23)
opg4j> changeSet.updateVertex(128).setProperty("prop", 5)
opg4j> changeSet.removeVertex(1908)

opg4j> var updatedGraph = changeSet.build()

opg4j> updatedGraph.hasVertex(42) // Evaluates to: true
opg4j> updatedGraph.hasVertex(1908) // Evaluates to: false

Java

import oracle.pgx.api.*;

GraphChangeSet<Integer> changeSet = graph.createChangeSet();

changeSet.addVertex(42).setProperty("prop", 23);
changeSet.updateVertex(128).setProperty("prop", 5);
changeSet.removeVertex(1908);

PgxGraph updatedGraph = changeSet.build();

Python

from pypgx.api import *

change_set = graph.create_change_set()

change_set.add_vertex(42).set_property("prop", 23)
changeSet.update_vertex(128).set_property("prop", 5)
changeSet.remove_vertex(1908)

updated_graph = change_set.build()

Chapter 27
Graph Builder and Graph Change Set

27-60



27.6.2.2 Adding Edges
You can also add edges to a graph using GraphChangeSet.

• JShell

• Java

• Python

JShell

opg4j> var changeSet2 = updatedGraph.<Integer>createChangeSet()

opg4j> changeSet2.addEdge(333, 42).setProperty("cost", 42.3)
opg4j> changeSet2.addEdge(42, 99)

opg4j> var updatedGraph2 = changeSet2.build()

Java

import oracle.pgx.api.*;

GraphChangeSet<Integer> changeSet2 = graph.createChangeSet();

changeSet2.addEdge(333, 42).setProperty("cost", 42.42);
changeSet2.addEdge(42, 99);

PgxGraph updatedGraph2 = changeSet2.build();

Python

from pypgx.api import *

change_set_2 = graph.create_change_set()
changeSet2.add_edge(333, 42).set_property("cost", 42.42)
changeSet2.add_edge(42, 99)
updated_graph_2 = change_set_2.build()

Note that by calling changeSet2.build(), you created a brand new graph with a unique name
assigned by the graph server (PGX). If need be, you can specify a name argument to the
build() method.

Additionally, you can create a new snapshot on top of the current graph with the
buildNewSnapshot() method. See Creating a Snapshot via ChangeSet for more information.

Chapter 27
Graph Builder and Graph Change Set

27-61



27.6.2.3 GraphChangeSet with Partitioned IDs
You can use the GraphChangeSet API with graph with partitioned IDs. Ensure to set both the
vertex ID generation strategy as well as the edge ID generation strategy to
IdGenerationStrategy.USER_IDS. Furthermore, make sure to set the vertex ID type to String.
An edge ID type does not need to be specified.

You can add, update and remove vertices and edges as shown in the following examples:

• Java

• Python

Java

GraphChangeSet<String> changeSet = 
g.createChangeSet(IdGenerationStrategy.USER_IDS, 
IdGenerationStrategy.USER_IDS);
changeSet.addVertex("Accounts(1002)").setProperty("NAME","User1002");
changeSet.updateVertex("Accounts(4)").setProperty("NAME","User4");
changeSet.removeVertex("Accounts(3)");
changeSet.addEdge("Transfers(5002)", "Accounts(5)", 
"Accounts(6)").setProperty("AMOUNT", 12.50);
changeSet.updateEdge("Transfers(5)").setProperty("DESCRIPTION", 'Transfer 
from User');
changeSet.removeEdge("Transfers(5001)");
PgxGraph g1 = changeSet.build();

Python

change_set = graph.create_change_set(vertex_id_generation_strategy = 
'user_ids', edge_id_generation_strategy = 'user_ids')
change_set.add_vertex("Accounts(1002)").set_property("NAME", "User1002")
change_set.update_vertex("Accounts(4)").set_property("NAME", "User4")
change_set.remove_vertex("Accounts(3)")
change_set.remove_edge("Transfers(5001)")
PgxGraph g1 = change_set.build()

Note:

You cannot use the setLabel() API when IDs are partitioned. The vertex or edge will
be labelled automatically based on the label attached to the provider (for which the
name is provided as part of the ID). Similarly, you cannot set the vertex or edge key
properties through the setProperty() API as the value is already extracted from the
vertex or edge ID.

Chapter 27
Graph Builder and Graph Change Set

27-62



27.6.2.4 Error Handling when Using a ChangeSet
Error handling while populating a ChangeSet or while applying a ChangeSet to the existing
graph can be configured by setting the InvalidChangePolicy. The options are:

• OnInvalidChange.ERROR: throws an exception (This is the default configuration)

• OnInvalidChange.IGNORE: ignores the issue and continues

• OnInvalidChange.IGNORE_AND_LOG: ignores the issue, logs in DEBUG log level and
continues

• OnInvalidChange.IGNORE_AND_LOG_ONCE: only logs the first occurrence of each issue type

Issues that can be ignored with InvalidChangePolicy include trying to remove a vertex or an
edge that does not exist in the graph, property type mismatch, updates to non existing
properties, providing a vertex ID with wrong type or invalid vertex or edge providers.

The following example, tries to remove vertex 9032 which does not exist in the graph. By
configuring IGNORE_AND_LOG, this action will be ignored while the property value update for
vertex 99 will be applied successfully.

• JShell

• Java

JShell

opg4j> var changeSet3 = updatedGraph2.<Integer>createChangeSet()
opg4j> changeSet3.setInvalidChangePolicy(OnInvalidChange.IGNORE_AND_LOG)

opg4j> changeSet3.removeVertex(9032)
opg4j> changeSet3.updateVertex(99).setProperty("prop1", 17)
opg4j> var updatedGraph3 = changeSet3.build() // will log that a vertex 
removal was ignored

opg4j> var prop1Val = updatedGraph3.getVertex(99).getProperty("prop1") // 
evaluates to 17

Java

import oracle.pgx.api.*;

GraphChangeSet<Integer> changeSet3 = graph.createChangeSet();
changeSet3.setInvalidChangePolicy(OnInvalidChange.IGNORE_AND_LOG);
changeSet3.removeVertex(9032);
changeSet3.updateVertex(99).setProperty("prop1", 17);
PgxGraph updatedGraph3 = changeSet3.build(); // will log that a vertex 
removal was ignored

int prop1Val = updatedGraph3.getVertex(99).getProperty("prop1"); // evaluates 
to 17

Chapter 27
Graph Builder and Graph Change Set

27-63



Note:

When connecting to a remote graph server (PGX), error handling log messages will
not be relayed to the client. In such a case, you need access to the server logs to
determine which issues have been ignored. For this, you must update the default
Logback configuration file in /etc/oracle/graph/logback.xml and the graph server
(PGX) logger configuration file in /etc/oracle/graph/logback-server.xml to log the
DEBUG logs. You can then view the ignored issues in /var/opt/log/pgx-
server.log file.

Add Existing Edges and Vertices

The error handling for adding a vertex or an edge where its ID is already used in the graph or
in an incompatible ChangeSet action can be configured with AddExistingVertexPolicy and
AddExistingEdgePolicy.

Note:

The default setting for AddExistingVertexPolicy and AddExistingEdgePolicy is
IGNORE. This is different from InvalidChangePolicy where the default is ERROR.

27.7 Managing Transient Data
This guide discusses how to handle transient properties and collections.

The graph server (PGX) allows each client to maintain its own isolated workspace, called
session. Clients may create additional data objects in their own session, which they can then
use for analysis.

• Managing Transient Properties

• Managing Collections and Scalars

27.7.1 Managing Transient Properties
The graph server (PGX) adopts the Property Graph data model. Once a graph is loaded into
PGX, the graph instance itself and its original properties are set as immutable. However, the
client can create and attach additional properties to the graph dynamically. These extra
properties are referred to as transient properties and are mutable by the client

The methods for creating transient properties are available in PgxGraph:

• Java

• Python

Chapter 27
Managing Transient Data

27-64



Java

VertexProperty<ID, V> createVertexPropertyAsync(PropertyType type)
VertexProperty<ID, V> createVertexPropertyAsync(PropertyType type, String 
name)
EdgeProperty<V> createEdgePropertyAsync(PropertyType type)
EdgeProperty<V> createEdgePropertyAsync(PropertyType type, String name)

In the preceding code:

• PropertyType: is an enum for the data type of the property, which must be one of the
primitive types supported by PGX.

• name: is an optional argument to assign a unique name to the newly created property. If no
name is specified, PGX will assign one to the client.

Note:

Names must be unique. There cannot be two different vertex or edge properties
for the same graph and with the same name.

Python

create_vertex_property(self,data_type,name=None)

All methods return a Property object, which represent the newly created transient property.
Both of the underlying classes, VertexProperty<ID, V> and EdgeProperty<V>, are
parametrized with the value type V the property holds. V matches the given PropertyType.
VertexProperty<ID, V> is additionally parametrized with the vertex ID type. This is due to
PGX support of several types of vertex identifiers. See our graph configuration chapter on how
to specify the vertex ID type of a graph. EdgeProperty<V> is not parametrized with the edge ID
type, because PGX only supports edge identifiers of type long.

• Java

• Python

Java

GraphConfig config = GraphConfigBuilder.forFileFormats(...)
    ...
    .setVertexIdType(IdType.LONG)
    ...
    .build();

PgxGraph G = session.readGraphWithProperties(config);
VertexProperty<Long, String> p1 = G.createVertexProperty(PropertyType.STRING);
EdgeProperty<Double> p2 = G.createEdgeProperty(PropertyType.DOUBLE);

Chapter 27
Managing Transient Data

27-65



Python

G = session.read_graph_with_properties(config)
p1 = G.create_vertex_property("string")
p2 = G.create_edge_property("double")

To delete a transient property from the session, call destroyAsync() (or destroy()) on the
property object.

27.7.2 Managing Collections and Scalars
The client can create graph-bound vertex and edge collections to use during the analysis with
the following methods in PgxGraph:

• Java

• Python

Java

VertexSequence<E> createVertexSequence()
VertexSequence<E> createVertexSequence(String name)
VertexSet<E> createVertexSet()
VertexSet<E> createVertexSet(String name)
EdgeSequence createEdgeSequence()
EdgeSequence createEdgeSequence(String name)
EdgeSet createEdgeSet()
EdgeSet createEdgeSet(String name)    

Python

create_edge_sequence(self, name=None)
create_vertex_sequence(self, name=None)
create_edge_set(self, name=None)
create_edge_sequence(self, name=None)

PGX also supports scalar collections such as set and sequence. Each of these collections can
hold elements of various primitive data types like INTEGER, LONG, FLOAT, DOUBLE or BOOLEAN.
Scalar collections are session-bound and can be created with the following methods in
PgxSession:

ScalarSet<T> createSet(PropertyType contentType, String name)
ScalarSequence<T> createSequence(PropertyType contentType, String name)
ScalarSet<T> createSet(PropertyType contentType)
ScalarSequence<T> createSequence(PropertyType contentType)

Chapter 27
Managing Transient Data

27-66



In the preceding code, the optional argument (name) specifies the name of the newly created
collection. If omitted, PGX chooses a name for the client. As with properties, the collections
holding vertices are parametrized with the ID type of the vertices. Refer to graph configuration
chapter to learn how to specify the vertex ID type of a graph.

The return value is the collection object which points to the newly created empty collection.

To drop a collection from the session, call destroy() on the collection object.

To check which collections are currently allocated for a graph you can use the following
method:

• Java

• Python

Java

Map<String, PgxCollection<? extends PgxEntity<?>, ?>> getCollections()

Python

get_collections(self)

The returned map contains the names of the collections as keys and the collections as values.
The collections can be casted to the matching collection subclass.

PGX supports special Map collection types and allows users to map between different data
types (oracle.pgx.common.types.PropertyType). Maps can be created using PgxGraph or
PgxSession APIs, the difference is that the latter supports only non graph-related types, and
that the created maps directly depend on the session:

PgxMap<K, V> createMap(PropertyType keyType, PropertyType valType)
PgxMap<K, V> createMap(PropertyType keyType, PropertyType valType, String 
mapName)

Similarly, scalar variables can be created in the client session using the following methods:

• Java

• Python

Java

Scalar<T> createScalar(PropertyType type, String newScalarName)
Scalar<T> createScalar(PropertyType type)

Chapter 27
Managing Transient Data

27-67



Python

create_scalar(self,data_type,name=None)

These collections and scalar variables can then be passed as arguments to graph algorithms.
See Using Custom PGX Graph Algorithms for more information.

27.8 Graph Versioning
This guide describes the different ways to work with graph snapshots.

A graph can have multiple snapshots associated with it, reflecting different versions of the
graph. All snapshots of a graph have the same graph configuration associated.

The following topics explains the various operations you can perform on graph snapshots:

• Configuring the Snapshots Source

• Creating a Snapshot via Refreshing

• Creating a Snapshot via ChangeSet

• Checking Out the Latest Snapshots of a Graph

• Checking Out Different Snapshots of a Graph

• Directly Loading a Specific Snapshot of a Graph

27.8.1 Configuring the Snapshots Source
Snapshots can be created from two sources: Refreshing and ChangeSet.

Refreshing is available for graphs that are read from a persistent data source, that is, a file.
When the data source has changed with respect to the version stored in the graph server
(PGX), it can be read again manually by calling the PgxSession.readGraphWithProperties()
method. Similarly, if auto-refresh is set for the graph, the graph server (PGX) automatically
reads the data source and creates new snapshots when the data source has changed.

Instead, a ChangeSet is a set of changes to a graph that the user creates and populates via the
PGX ChangeSet API. Once a ChangeSet is created and populated with the desired changes,
the user can simply call GraphChangeSet.buildNewSnapshot() to create a new snapshot for
the graph. In this way, you are empowered to integrate changes coming from any source into
the graph and build snapshots out of them.

Only one source of snapshots is allowed for a single graph and is chosen during graph
configuration via the snapshots_source option, which can be set to either REFRESH or
CHANGE_SET. In case the snapshots_source option is not explicitly set by the user, the following
default settings apply:

• If the graph is from a persistent data source, the default value is REFRESH, so that
snapshots can be created only by calling PgxSession.readGraphWithProperties() (or via
auto-refresh, if configured).

• If the graph is transient, that is, built from a graph builder, the default value is CHANGE_SET,
since the graph is not backed by a persistent data source from which changes can be
read. It is for this reason, CHANGE_SET is the only admissible value for transient graphs.

Chapter 27
Graph Versioning

27-68



Additionally, the following restrictions apply:

• If auto-refresh is enabled, then snapshots come from reading the backing data source and
hence only REFRESH is admissible for the snapshots_source option.

• If the user attempts to create snapshots in a way that is different from the configuration (for
example, by calling GraphChangeSet.buildNewSnapshot() when the graph's
snapshots_source is REFRESH), the operation is invalid and an exception is thrown.

27.8.2 Creating a Snapshot via Refreshing
You can create a snapshot via refreshing by performing the following steps:

1. Create a session and load the graph into memory.

2. Check the available snapshots of the graph with PgxSession.getAvailableSnapshots()
method.

• JShell

• Java

• Python

JShell

opg4j> session.getAvailableSnapshots(G)
==> GraphMetaData [getNumVertices()=4, getNumEdges()=4, memoryMb=0, 
dataSourceVersion=1453315103000, creationRequestTimestamp=1453315122669 
(2016-01-20 10:38:42.669), creationTimestamp=1453315122685 (2016-01-20 
10:38:42.685), vertexIdType=integer, edgeIdType=long]

Java

Deque<GraphMetaData> snapshots = session.getAvailableSnapshots(G);
for( GraphMetaData metaData : snapshots ) {
  System.out.println( metaData );
}

Python

snapshots = session.get_available_snapshots(G)
for metadata in snapshots:
    print(metadata)

3. Edit the source file to contain an additional vertex and an additional edge or insert two
rows in the database.

4. Reload the updated graph within the same session as you loaded the original graph. A
new snapshot is created.

Chapter 27
Graph Versioning

27-69



• JShell

• Java

• Python

JShell

opg4j> var G = session.readGraphWithProperties( G.getConfig(), true )
==> PGX Graph named 'sample_2' bound to PGX session 'a1744e86-65fb-4bd1-
b2dc-5458b20954a9' registered at PGX Server Instance running in embedded 
mode
opg4j> session.getAvailableSnapshots(G)
==> GraphMetaData [getNumVertices()=4, getNumEdges()=4, memoryMb=0, 
dataSourceVersion=1453315103000, creationRequestTimestamp=1453315122669 
(2016-01-20 10:38:42.669), creationTimestamp=1453315122685 (2016-01-20 
10:38:42.685), vertexIdType=integer, edgeIdType=long]
==> GraphMetaData [getNumVertices()=5, getNumEdges()=5, memoryMb=3, 
dataSourceVersion=1452083654000, creationRequestTimestamp=1453314938744 
(2016-01-20 10:35:38.744), creationTimestamp=1453314938833 (2016-01-20 
10:35:38.833), vertexIdType=integer, edgeIdType=long]

Java

G = session.readGraphWithProperties( G.getConfig(), true );

Deque<GraphMetaData> snapshots = session.getAvailableSnapshots( G );

Python

G = session.read_graph_with_properties(G.config,update_if_not_fresh=True)

Note that there are two GraphMetaData objects in the call for available snapshots, one with
4 vertices and 4 edges and one with 5 vertices and 5 edges.

5. Verify that the graph variable points to the newly loaded graph using getNumVertices()
and getNumEdges() methods.

• JShell

• Java

• Python

Chapter 27
Graph Versioning

27-70



JShell

opg4j> G.getNumVertices()
==> 5
opg4j> G.geNumEdges()
==> 5

Java

int vertices = G.getNumVertices();
long edges = G.getNumEdges();

Python

vertices = G.num_vertices
edges = G.num_edges

27.8.3 Creating a Snapshot via ChangeSet
You can create a graph snapshot with ChangeSet via the PGX Java API. When you want to
create the graph from a persistent data source, you can use
PgxSession.readGraphWithProperties() with the snapshots_source configuration option set
to CHANGE_SET.
You can create a snapshot via ChangeSet by performing the following steps:

1. Create a snapshot of a transient graph from database:

• JShell

• Java

• Python

JShell

opg4j> var builder = session.createGraphBuilder()
opg4j> builder.addEdge(1, 2)
opg4j> builder.addEdge(2, 3)
opg4j> builder.addEdge(2, 4)
opg4j> builder.addEdge(3, 4)
opg4j> builder.addEdge(4, 2)
opg4j> var graph = builder.build()

Java

import oracle.pgx.api.*;

GraphBuilder<Integer> builder = session.createGraphBuilder();

Chapter 27
Graph Versioning

27-71



builder.addEdge(1, 2);
builder.addEdge(2, 3);
builder.addEdge(2, 4);
builder.addEdge(3, 4);
builder.addEdge(4, 2);

PgxGraph graph = builder.build();

Python

builder = session.create_graph_builder();

builder.add_edge(1, 2)
builder.add_edge(2, 3)
builder.add_edge(2, 4)
builder.add_edge(3, 4)
builder.add_edge(4, 2)

graph = builder.build()

2. Create a ChangeSet from graph and populate it. The following example shows adding a
new edge between vertices 1 and 4:

• JShell

• Java

• Python

JShell

opg4j> var changeSet = graph.<Integer>createChangeSet()
opg4j> changeSet.addEdge(6, 1, 4)

Java

import oracle.pgx.api.*;
GraphChangeSet<Integer> changeSet = graph.createChangeSet();
changeSet.addEdge(6, 1, 4);

Python

changeSet = graph.create_change_set()changeSet.add_edge(1,4,6)

3. Create a second snapshot using GraphChangeSet.buildNewSnapshot() as shown in the
following code:

Chapter 27
Graph Versioning

27-72



• JShell

• Java

• Python

JShell

opg4j> var secondSnapshot = changeSet.buildNewSnapshot()
opg4j> session.getAvailableSnapshots(secondSnapshot).size()
==> 2

Java

PgxGraph secondSnapshot = changeSet.buildNewSnapshot();
System.out.println( session.getAvailableSnapshots(secondSnapshot).size() );

Python

second_snapshot = change_set.build_new_snapshot()
print(len(session,get_available_snapshots()))

Thus two snapshots, referenced via the variables graph and secondSnapshot are created.

27.8.4 Checking Out the Latest Snapshots of a Graph
With multiple snapshots of a graph being available and regardless of their source, you can
check out a specific snapshot using the PgxSession.setSnapshot() method. You can use the
LATEST_SNAPSHOT constant of PgxSession to easily check out the latest available snapshot, as
shown in the following example:

• JShell

• Java

JShell

opg4j> session.setSnapshot( G, PgxSession.LATEST_SNAPSHOT )
==> null
opg4j> session.getCreationTimestamp()
==> 1453315122685

Chapter 27
Graph Versioning

27-73



Java

session.setSnapshot( G, PgxSession.LATEST_SNAPSHOT );
System.out.println(session.getCreationTimestamp());

See the printed timestamp to verify the most recent snapshot.

27.8.5 Checking Out Different Snapshots of a Graph
You can also check out a specific snapshot, again using the PgxSession.setSnapshot().

For example, consider the following two snapshots of a graph:

==> GraphMetaData [getNumVertices()=4, getNumEdges()=4, memoryMb=0, 
dataSourceVersion=1453315103000, creationRequestTimestamp=1453315122669 
(2016-01-20 10:38:42.669), creationTimestamp=1453315122685 (2016-01-20 
10:38:42.685), vertexIdType=integer, edgeIdType=long]
==> GraphMetaData [getNumVertices()=5, getNumEdges()=5, memoryMb=3, 
dataSourceVersion=1452083654000, creationRequestTimestamp=1453314938744 
(2016-01-20 10:35:38.744), creationTimestamp=1453314938833 (2016-01-20 
10:35:38.833), vertexIdType=integer, edgeIdType=long]

To check out a specific snapshot of the graph, you must pass the creationTimestamp of the
snapshot you want to load to setSnapshot().

For example, if G is pointing to the newest graph with 5 vertices and 5 edges, but you want to
analyze the older graph, you need to set the snapshot to 1453315122685.

• JShell

• Java

• Python

JShell

opg4j> G.getNumVertices()
==> 5
opg4j> G.getNumEdges()
==> 5
opg4j> session.setSnapshot( G, 1453315122685 )
==> null
opg4j> G.getNumVertices()
==> 4
opg4j> G.getNumEdges()
==> 4

Chapter 27
Graph Versioning

27-74



Java

session.setSnapshot(G,1453315122685);

Python

session.set_snapshot(G,1453315122685)

Note that setting the snapshot, changes the number of vertices and edges from 5 to 4.

Alternatively, you can also retrieve the creation timestamp of each snapshot from its associated
GraphMetaData object via the GraphMetaData.getCreationTimestamp() method. The easiest
way to get the GraphMetaData information of all the snapshots is to use the
PgxSession.getAvailableSnapshots() method, which returns a collection of GraphMetaData
information of each snapshot ordered by creation timestamp from the most recent to the
oldest.

27.8.6 Directly Loading a Specific Snapshot of a Graph
You can also load a specific snapshot of a graph directly using the
PgxSession.readGraphAsOf() method. This is a shortcut for loading a graph with
readGraphWithProperties() followed by a setSnapshot().
Consider two snapshots of a graph that are already loaded into the PGX session. The following
example shows how to get a reference to a specific snapshot:

1. Get a graph configuration for the graph:

• JShell

• Java

• Python

JShell

opg4j> var config = 
GraphConfigFactory.forAnyFormat().fromPath("<path_to_json>")
==> {"format":"adj_list", ... }

Java

GraphConfig config = 
GraphConfigFactory.forAnyFormat().fromPath("<path_to_json>");

Python

config = GraphConfigFactory.for_any_format().from_path("<path_to_json>")

Chapter 27
Graph Versioning

27-75



2. Check the loaded snapshots for this graph config using getAvailableSnapshots():

• JShell

• Java

• Python

JShell

opg4j> session.getAvailableSnapshots(G)
==> GraphMetaData [getNumVertices()=4, getNumEdges()=4, memoryMb=0, 
dataSourceVersion=1453315103000, creationRequestTimestamp=1453315122669 
(2016-01-20 10:38:42.669), creationTimestamp=1453315122685 (2016-01-20 
10:38:42.685), vertexIdType=integer, edgeIdType=long]
==> GraphMetaData [getNumVertices()=5, getNumEdges()=5, memoryMb=3, 
dataSourceVersion=1452083654000, creationRequestTimestamp=1453314938744 
(2016-01-20 10:35:38.744), creationTimestamp=1453314938833 (2016-01-20 
10:35:38.833), vertexIdType=integer, edgeIdType=long]

Java

Deque<GraphMetaData> snapshots = session.getAvailableSnapshots(G);

Python

session.get_available_snapshots(G)

3. Check out the snapshot of the graph which has 4 vertices and 4 edges and having the
timestamp 1453315122685:

• JShell

• Java

• Python

JShell

opg4j> var G = session.readGraphAsOf( config, 1453315122685 )
==> PGX Graph named 'sample' bound to PGX session 'a1744e86-65fb-4bd1-
b2dc-5458b20954a9' registered at PGX Server Instance running in embedded 
mode
opg4j> G.getNumVertices()
==> 4

Chapter 27
Graph Versioning

27-76



opg4j> G.getNumEdges()
==> 4

Java

PgxGraph G = session.readGraphAsOf( config, 1453315122685 );

Python

G = read_graph_as_of(config, creation_timestamp=1453315122685)

27.9 Labels and Properties
You can perform various actions on the graph property and label values by executing PGQL
queries.

• Setting and Getting Property Values

• Getting Label Values

27.9.1 Setting and Getting Property Values
Getting Property Values

You can obtain the vertex or edge property values by executing a SELECT PGQL query on the
graph.

For example:

• JShell

• Java

JShell

opg4j> session.queryPgql("SELECT e.src_id, e.dest_id, e.amount FROM MATCH 
(n:Account) -[e:Transfers]-> (m:Account) on bank_graph").print()

Java

...

...
PgxGraph g = session.getGraph("bank_graph");
String query =
    "SELECT e.src_id, e.dest_id, e.amount FROM MATCH (n:Account) -
[e:Transfers]-> (m:Account)";
g.queryPgql(query).print();

Chapter 27
Labels and Properties

27-77



The resulting property values may appear as:

+---------------------------+
| src_id | dest_id | amount |
+---------------------------+
| 1      | 259     | 1000   |
| 1      | 418     | 1000   |
| 1      | 584     | 1000   |
| 1      | 644     | 1000   |
| 1      | 672     | 1000   |
| 2      | 493     | 1000   |
| 2      | 546     | 1000   |
| 2      | 693     | 1000   |
| 2      | 833     | 1000   |
| 2      | 840     | 1000   |
+---------------------------+

Setting Property Values

You can set the vertex or edge property values by executing insert or update PGQL queries on
the graph.

For example, to set a new vertex account ID on a graph using INSERT query:

• JShell

• Java

JShell

opg4j> PgxGraph g = session.getGraph("bank_graph_analytics")
g ==> PgxGraph[name=bank_graph_analytics,N=1000,E=5001,created=1616312153556]
opg4j> PgxGraph g_mutable = g.clone("bank_graph_analytics_copy")
g_mutable ==> 
PgxGraph[name=bank_graph_analytics_copy,N=1000,E=5001,created=1616312413799]
opg4j> g_mutable.executePgql("INSERT VERTEX v LABELS (Accounts) PROPERTIES 
( v.id = 1001)")

Java

...

...
PgxGraph g1 = session.readGraphWithProperties("bank_graph_analytics.json");
PgxGraph g2 = g1.clone("bank_graph_analytics_copy");
g2.executePgql("INSERT VERTEX v " +
               "         LABELS ( Accounts ) " +
               "         PROPERTIES ( v.id = 1001 )");

Chapter 27
Labels and Properties

27-78



27.9.2 Getting Label Values
You can retrieve the vertex or edge label values of a graph as shown:

PgxGraph g = session.getGraph("bank_graph_analytics");
String query =
      "SELECT LABEL(v), COUNT(*) "
    + "FROM MATCH (v) "
    + "GROUP BY LABEL(v) "
    + "ORDER BY COUNT(v) DESC";
PgqlResultSet resultSet = g.queryPgql(query);
resultSet.print();

The result may appear as shown:

+-----------------------+
| LABEL(n)   | COUNT(*) |
+-----------------------+
|  ACCOUNT   | 1000     |
+-----------------------+

27.10 Filter Expressions
This guide explains the usage of filter expressions.

Filter expressions are applied in the following scenarios:

• Path-Finding: Include only specific vertices and edges in a path

• Sub-Graphs: Include only specific vertices and edges in a subgraph

• Set creation: Create a vertex or edge set and include only specific vertices or edges

There are two types of filter expressions:

• Vertex filters:: Evaluated on each vertex

• Edge filters: Evaluated on each edge, including the two vertices it connects.

These filter expressions will evaluate to true if the current edge or vertex matches the
expression or to false if it does not. Filter expressions are stateless and side-effect free.

The following short example below will evaluate to true for all edges where the source vertex's
string property name is "PGX".

src.name="PGX"

• Syntax

• Type System

• Path Finding Filters

• Subgraph Filters

• Operations on Filter Expressions

Chapter 27
Filter Expressions

27-79



27.10.1 Syntax
Trivial Expressions

Always evaluates to true:

true

Always evaluates to false:

false

Constants

Legal constants are integer, long and floating point numbers of single and double precision as
well as strings literals and true and false. Long constants need to be suffixed with l or L.
Floating point numbers are treated as double precision numbers by default. To force a certain
precision you can use f or F for single precision and d or D for double precision floating point
numbers. String literals are UTF-8 character sequences, surrounded by single or double
quotation marks.

25
4294967296L
0.62f
0.33d
"Double quoted string"
'Single quoted string'

Vertex and Edge Identifiers

Depending on the filter type, different identifiers are valid.

Vertex Filter

Vertex filter expressions have only one keyword that addresses the vertex in the current
context.

vertex denotes the vertex that is currently being evaluated by the filter expression.

vertex

Edge Filter

Edge filter expressions have several keywords that addresses the edge or its vertices in the
current context.

edge denotes the edge that is currently being evaluated by the filter expression.

edge

dst denotes the destination vertex of the current edge. dst is only valid in the subgraph
context.

dst

src denotes the source vertex of the current edge. src is only valid in the subgraph context.

Chapter 27
Filter Expressions

27-80



src

Properties

Filter expressions can access the values of vertex and edge properties.

<id>.<property>

where:

• <id>: is any vertex or edge identifier (that is, src, dst, vertex, edge).

• <property>: is the name of a vertex or edge property.

Note:

This has to be the name of an edge property if the identifier is edge. Otherwise it
has to be a vertex property.

If the property name is a reserved name in the filter expression syntax or contains spaces, it
must be quoted in single or double quotes.

The following code accesses the 'cost' property of the source vertex.

src.cost

Temporal properties support values comparison (constants and property values) using special
constructors. The default temporal formats are shown in the following table:

Table 27-5    Default Temporal Formats

Property Type Constructor

DATE date ('yyyy-MM-dd HH:mm:ss')
LOCAL_DATE date 'yyyy-MM-dd'
TIME time 'HH:mm:ss'
TIME_WITH_TIMEZONE time 'HH:mm:ss+/-XXX'
TIMESTAMP timestamp 'yyyy-MM-dd HH:mm:ss'
TIMESTAMP_WITH_TIMEZONE timestamp 'yyyy-MM-dd HH:mm:ss+/-XXX'

The following expression accesses the property 'timestamp_withTZ' of an edge and checks if it
is equal to 3/27/2007 06:00+01:00.

edge.timestamp_withTZ = timestamp'2007-03-2706:00:00+01:00'

Note:

Properties of type date can only be checked for equality. date type usage is
deprecated since version 2.5, instead use local date or timestamp types that support
all operations.

Methods

Filter expressions support the following functions:

Chapter 27
Filter Expressions

27-81



Degree Functions

1. outDegree() returns the number of outgoing edges of the vertex identifier. degree() is a
synonym for outDegree.

int <id>.degree()
int <id>.outDegree()

The following example determines whether the out-degree of the source vertex is greater
than three:

src.degree() > 3
2. inDegree() returns the number of incoming edges of the vertex identifier.

int <id>.inDegree()
Label Functions

1. hasLabel() checks if a vertex has a label.

boolean <id>.hasLabel('<label>')

The following example determines whether a vertex has the label "city":

vertex.hasLabel('city')
2. label() returns the label of an edge.

string <id>.label()

The following expression checks whether the label of an edge is "clicked_by":

edge.label() = 'clicked_by'
Relational Expressions

To compare values (e.g., property values or constants), filter expressions provide the
comparison operators listed below. Note: Both == and = are synonyms.

==
=
!=
<
<=
>
>=

The following example checks whether the "cost" property of the source vertex is lower than or
equals to 1.23.

src.cost <= 1.23

Vertex ID Comparison

It is also possible to filter for vertices with a specific vertex ID.

<id> = <vertex_id>

The following example determines whether the source vertex of an edge has the vertex ID "San
Francisco"

src = "San Francisco"

Regular Expressions

Chapter 27
Filter Expressions

27-82



Strings can be matched using regular expressions.

<string expression> =~ '<regularexpression>'

The following example checks if the edge label starts with a lowercase letter and ends with a
number:

edge.label() =~ '^[a-z].*[0-9]$'

Note:

The syntax followed for the pattern on the right-hand side, is Java REGEX.

Type Conversions

The following syntax allows converting the type of <expression> to <type>.

(<type>) <expression>

The following example converts the value of the 'cost' property of the source vertex to an
integer value:

(int) src.cost

Boolean Expressions

Filter expressions can be composed to form other filter expressions. This can be done using
the Boolean operators && (and), || (or) and ! (not).

Note:

Only boolean operands can be composed.

(! true) || false
edge.cost < INF && dst.visited = false
src.degree() < 10 || !(dst.visited)

Arithmetic Expressions

Any numeric expression can be combined using arithmetic expressions. The available
arithmetic operators are: +, -, *, /, %.

Note:

These operators only work on numeric operands.

1 + 5
-vertex.degree()
edge.cost * 2 > 5
src.value * 2.5 = (dst.inDegree() + 5) / dst.outDegree()

Operator Precedence

Chapter 27
Filter Expressions

27-83

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html


Operator precedences are shown in the following list, from highest precedence to the lowest.
An operator on a higher level is evaluated before an operator on a lower level.

1. + (unary plus), - (unary minus)

2. *,/, %
3. +, -
4. =,!=, <, >, <=, >=, =~
5. NOT
6. AND
7. OR
Syntactic Sugar

both and any denote the source and destination vertex of the current edge. They can be used
to express a condition that should be true for both or at least either one of the two vertices.
These keywords are only valid in an edge filter expression. To use them in a vertex filter results
in a runtime type-checking exception.

both
any

The filter expressions inside the following examples are equivalent:

both.property = 1
src.property = 1 && dst.property = 1

any.degree() > 1
src.degree() > 1 || dst.degree() > 1

27.10.2 Type System
Filter expressions are a very simple type system. There are only the following 13 types:

1. integer (can be abbreviated in expressions with int)

2. long
3. float
4. double
5. boolean
6. string
7. date
8. time
9. time with timezone
10. timestamp
11. timestamp with timezone
12. vertex
13. edge
Conversions are only allowed from one numeric type to another numeric type (i.e. integer,
float, double, long).

Chapter 27
Filter Expressions

27-84



Comparisons require both sides to be of the same (or convertible) type.

27.10.3 Path Finding Filters
Filters can be used to limit the analyzed edges when searching for a shortest path between a
source and destination vertex in a graph.

An edge filter expression is evaluated against each edge that is visited during the traversal of
the graph. If the filter evaluates to false on an edge, this edge will be ignored and will not
appear in the resulting shortest path.

It is also possible to use a vertex filter for path finding.

A vertex filter expression is evaluated against each vertex that is visited during the traversal of
the graph, except for the source and destination vertex.

If the filter evaluates to false on a vertex, the edge to this vertex and all outgoing edges of the
vertex will be ignored. The vertex will not appear in the resulting shortest path.

The source and destination vertex can be any vertex in the graph and the filter is not evaluated
for them.

27.10.4 Subgraph Filters
Edge Filters

An edge filter expression is evaluated for each edge in the graph. The edge filter has access to
the source and destination vertex of each edge and all of its properties.

If the filter expression evaluates to true, the edge and both the source and destination vertex
will appear in the subgraph.

Vertex Filters

A vertex filter expression is evaluated for every vertex in the graph.

Every vertex for which the filter expression evaluates to true will appear in the subgraph.

Every edge connecting two vertices for which the expression evaluates to true will also appear
in the subgraph.

Result Set Filters

Result set edge and vertex filters allow the creation of edge and vertex sets out of a given
PGQL result set.

Vertex and Edge Collection Filters

Vertex and edge collection filters allow the creation of edge and vertex filters out of a given
vertex and edge collection.

27.10.5 Operations on Filter Expressions
This section explains the various operations that you can perform on filter expressions.

• Defining Filter Expressions

• Defining Result Set Filters

• Creating a Subgraph from PGQL Result Set

Chapter 27
Filter Expressions

27-85



• Defining Collection Filters

• Creating a Subgraph from Collection Filters

• Combining Filter Expressions

• Creating a Subgraph Using Filter Expressions with Partitioned IDs

27.10.5.1 Defining Filter Expressions
You can define a new vertex filter, as shown in the following code:

• JShell

• Java

• Python

JShell

opg4j> var vertexFilter = VertexFilter.fromExpression("vertex.name = 'PGX'")

Java

VertexFilter vertexFilter = VertexFilter.fromExpression("vertex.name = 
'PGX'");

Python

from pypgx.api.filters import VertexFilter
vertex_filter = VertexFilter.from_expression("vertex.name = 'PGX'")

You can define a new edge filter, as shown in the following code:

• JShell

• Java

• Python

JShell

opg4j> var edgeFilter = EdgeFilter.fromExpression("edge.cost > 5")

Java

EdgeFilter edgeFilter = EdgeFilter.fromExpression("edge.cost > 5");

Chapter 27
Filter Expressions

27-86



Python

from pypgx.api.filters import EdgeFilter
edge_filter = EdgeFilter.from_expression("edge.cost > 5")

27.10.5.2 Defining Result Set Filters
You can define a result set vertex filter, as shown in the following code:

• JShell

• Java

• Python

JShell

// Evaluates query on graph g to obtain a result set
opg4j> var resultSet = g.queryPgql("SELECT x FROM MATCH (x) WHERE x.age > 24")
// Define a filter on the result set for the column "x"
opg4j> var vertexFilter = VertexFilter.fromPgqlResultSet(resultSet, "x")
// Obtain a vertex set
opg4j> var vertexSet = g.getVertices(vertexFilter)

Java

// Evaluates query on graph g to obtain result set
PgqlResultSet resultSet = g.queryPgql("SELECT x FROM MATCH (x) WHERE x.age > 
24");
// Define a filter on the result set for the column "x"
VertexFilter vertexFilter = VertexFilter.fromPgqlResultSet(resultSet, "x");
// Obtain a vertex set
VertexSet vertexSet = g.getVertices(vertexFilter);

Python

>>> from pypgx.api.filters import VertexFilter
# Evaluates query on graph g to obtain a result set
 >>> result_set = g.query_pgql("SELECT x FROM MATCH (x) WHERE x.age > 24")
# Define a filter on the result set for the column "x"
>>> vertex_filter = VertexFilter.from_pgql_result_set(result_set, "x")
# Obtain a vertex set
>>> vertex_set = g.get_vertices(vertex_filter)

You can define a result set edge filter, as shown in the following code:

Chapter 27
Filter Expressions

27-87



• JShell

• Java

• Python

JShell

// Evaluates query on graph g to obtain result set
opg4j> var resultSet = g.queryPgql("SELECT e FROM MATCH ()-[e]->() WHERE 
e.weight >= 8")
// Define a filter on the result set for the column "e"
opg4j> var edgeFilter = EdgeFilter.fromPgqlResultSet(resultSet, "e")
// Obtain an edge set
opg4j> var edgeSet = g.getEdges(edgeFilter)

Java

// Evaluates query on graph g to obtain result set
PgqlResultSet resultSet = g.queryPgql("SELECT e FROM MATCH ()-[e]->() WHERE 
e.weight >= 8");
// Define a filter on the result set for the column "e"
EdgeFilter edgeFilter = EdgeFilter.fromPgqlResultSet(resultSet, "e");
// Obtain an edge set
EdgeSet edgeSet = g.getEdges(edgeFilter);

Python

>>> from pypgx.api.filters import EdgeFilter
# Evaluates query on graph g to obtain a result set
 >>> result_set = g.query_pgql("SELECT e FROM MATCH ()-[e]->() WHERE e.weight 
>= 8")
# Define a filter on the result set for the column "e"
>>> edge_filter = EdgeFilter.from_pgql_result_set(result_set, "e")
# Obtain an edge set
>>> edge_set = g.get_edges(edge_filter)

27.10.5.3 Creating a Subgraph from PGQL Result Set
A subgraph can be obtained from a PGQL result set using result set filters.

You can create a subgraph from a result set vertex filter, as shown in the following code:

• JShell

• Java

• Python

Chapter 27
Filter Expressions

27-88



JShell

// Evaluates query on graph g to obtain result set
opg4j> var resultSet = g.queryPgql("SELECT x FROM MATCH (x) WHERE x.age > 24")
// Define a filter on the result set for the column "x"
opg4j> var resultSetVertexFilter = VertexFilter.fromPgqlResultSet(resultSet, 
"x")
// Create a subgraph of g containing the matched vertices in the resultSet 
and the edges that connect them if any.
opg4j> var newGraph = g.filter(resultSetVertexFilter)

Java

// Evaluates query on graph g to obtain result set
PgqlResultSet resultSet = g.queryPgql("SELECT x MATCH (x) WHERE x.age > 24");
// Define a filter on the result set for the column "x"
VertexFilter resultSetVertexFilter = 
VertexFilter.fromPgqlResultSet(resultSet, "x");
// Create a subgraph of g containing the matched vertices in the resultSet 
and the edges that connect them if any.
PgxGraph newGraph = g.filter(resultSetVertexFilter);

Python

from pypgx.api.filters import VertexFilter
# Evaluates query on graph g to obtain a result set
>>> result_set = g.query_pgql("SELECT x MATCH (x) WHERE x.age > 24")
# Define a filter on the result set for the column "x"
>>> result_set_vertex_filter = VertexFilter.from_pgql_result_set(result_set, 
"x")
# Create a subgraph of g containing the matched vertices in the resultSet and 
the edges that connect them if any
>>> new_graph = g.filter( result_set_vertex_filter)

You can create a subgraph from a result set edge filter, as shown in the following code:

• JShell

• Java

• Python

JShell

// Evaluates query on graph g to obtain result set
opg4j> var resultSet = g.queryPgql("SELECT e FROM MATCH ()-[e]->() WHERE 
e.cost < 100")
// Define a filter on the result set for the column "e"
opg4j> var resultSetEdgeFilter = EdgeFilter.fromPgqlResultSet(resultSet, "e")

Chapter 27
Filter Expressions

27-89



// Create a subgraph of g containing the matched edges in the resultSet and 
their corresponding source and destination vertices.
opg4j> var newGraph = g.filter(resultSetEdgeFilter)

Java

// Evaluates query on graph g to obtain result set
PgqlResultSet resultSet = g.queryPgql("SELECT e FROM MATCH ()-[e]->() WHERE 
e.cost < 100");
// Define a filter on the result set for the column "e"
EdgeFilter resultSetEdgeFilter = EdgeFilter.fromPgqlResultSet(resultSet, "e");
// Create a subgraph of g containing the matched edges in the resultSet and 
their corresponding source and destination vertices.
PgxGraph newGraph = g.filter(resultSetEdgeFilter);

Python

from pypgx.api.filters import EdgeFilter
# Evaluates query on graph g to obtain a result set
>>> result_set = g.query_pgql("SELECT e FROM MATCH ()-[e]->() WHERE e.cost < 
100")
# Define a filter on the result set for the column "e"
>>> result_set_edge_filter = EdgeFilter.from_pgql_result_set(result_set, "e")
# Create a subgraph of g containing the matched edges in the resultSet and 
their corresponding source and destination vertices
>>> new_graph = g.filter( result_set_edge_filter)

27.10.5.4 Defining Collection Filters
You can define a vetex collection filter, as shown in the following code:

• JShell

• Java

• Python

JShell

// Obtain a vertex collection from an algorithm, query execution or any other 
way
opg4j> VertexCollection<?> vertexCollection = ...
// Define a filter from the collection
opg4j> var vertexFilter = VertexFilter.fromCollection(vertexCollection)

Chapter 27
Filter Expressions

27-90



Java

// Obtain a vertex collection from an algorithm, query execution or any other 
way
VertexCollection<?> vertexCollection = ...
// Define a filter from the collection
VertexFilter vertexFilter = VertexFilter.fromCollection(vertexCollection);

Python

from pypgx.api.filters import VertexFilter
# Obtain a vertex collection from an algorithm, query execution or any other 
way
vertex_collection = ...
# Define a filter from the collection
vertex_filter = VertexFilter.from_collection(vertex_collection)

You can define a edge collection filter, as shown in the following code:

• JShell

• Java

• Python

JShell

// Obtain an edge collection from an algorithm, query execution or any other 
way
opg4j> EdgeCollection edgeCollection = ...
// Define a filter from the collection
opg4j> var edgeFilter = EdgeFilter.fromCollection(edgeCollection)

Java

// Obtain an edge collection from an algorithm, query execution or any other 
way
EdgeCollection edgeCollection = ...
// Define a filter from the collection
EdgeFilter edgeFilter = EdgeFilter.fromCollection(edgeCollection);

Python

from pypgx.api.filters import EdgeFilter
# Obtain an edge collection from an algorithm, query execution or any other 
way
edge_collection = ...

Chapter 27
Filter Expressions

27-91



# Define a filter from the collection
edge_filter = EdgeFilter.from_collection(edge_collection)

27.10.5.5 Creating a Subgraph from Collection Filters
A subgraph can be obtained by using vertex or edge collection filters.

You can create a subgraph from vertex collection filter, as shown in the following code:

• JShell

• Java

• Python

JShell

// Obtain a vertex collection from an algorithm, query execution or any other 
way
opg4j> VertexCollection<?> vertexCollection = ...
// Define a filter from the collection
opg4j> var vertexFilter = VertexFilter.fromCollection(vertexCollection)
// Create a subgraph of g containing the matched vertices in the vertex 
collection and the edges that connect them if any.
opg4j> var newGraph = g.filter(vertexFilter)

Java

// Obtain a vertex collection from an algorithm, query execution or any other 
way
VertexCollection<?> vertexCollection = ...
// Define a filter from the collection
VertexFilter vertexFilter = VertexFilter.fromCollection(vertexCollection);
// Create a subgraph of g containing the matched vertices in the vertex 
collection and the edges that connect them if any.
PgxGraph newGraph = g.filter(vertexFilter);

Python

from pypgx.api.filters import VertexFilter
# Obtain a vertex collection from an algorithm, query execution or any other 
way
vertex_collection = ...
# Define a filter from the collection
vertex_filter = VertexFilter.from_collection(vertex_collection)
# Create a subgraph of g containing the matched vertices in the vertex 
collection and the edges that connect them if any.
new_graph = g.filter(vertex_filter)

Chapter 27
Filter Expressions

27-92



You can create a subgraph from edge collection filter, as shown in the following code:

• JShell

• Java

• Python

JShell

// Obtain an edge collection from an algorithm, query execution or any other 
way
opg4j> EdgeCollection edgeCollection = ...
// Define a filter from the collection
opg4j> var edgeFilter = EdgeFilter.fromCollection(edgeCollection)
// Create a subgraph of g containing the matched edges in the collection and 
their corresponding source and destination vertices.
opg4j> var newGraph = g.filter(edgeFilter)

Java

// Obtain an edge collection from an algorithm, query execution or any other 
way
EdgeCollection edgeCollection = ...
// Define a filter from the collection
EdgeFilter edgeFilter = EdgeFilter.fromCollection(edgeCollection);
// Create a subgraph of g containing the matched edges in the collection and 
their corresponding source and destination vertices.
PgxGraph newGraph = g.filter(edgeFilter);

Python

from pypgx.api.filters import EdgeFilter
# Obtain an edge collection from an algorithm, query execution or any other 
way
edge_collection = ...
# Define a filter from the collection
edge_filter = EdgeFilter.from_collection(edge_collection)
# Create a subgraph of g containing the matched edges in the collection and 
their corresponding source and destination vertices.
new_graph = g.filter(edge_filter)

27.10.5.6 Combining Filter Expressions
Any filter expression used for subgraph filtering, can be combined with any other filter
expression to form a new filter expression.

Chapter 27
Filter Expressions

27-93



Filters can be combined using the following operations:

• intersection

• union

The intersection of two filters will only keep a vertex or edge, if both filters would accept it. Note
that the intersection of two filters will not behave as an AND in the filter expression.

The union of two filters will keep a vertex or edge, if one of the filters would accept it. Note that
the union of filters will not behave as an OR in the filter expression.

In the following example an edge filter is intersected with a vertex filter. The resulting subgraph
will only include vertices that have the name 'PGX' and will only include edges that have a cost
greater than 5.

• JShell

• Java

• Python

JShell

opg4j> var edgeFilter = EdgeFilter.fromExpression("edge.cost > 5")
opg4j> var vertexFilter = VertexFilter.fromExpression("vertex.name = 'PGX'")
opg4j> var combinedFilter = edgeFilter.intersect(vertexFilter)

Java

EdgeFilter edgeFilter = EdgeFilter.fromExpression("edge.cost > 5");
VertexFilter vertexFilter = VertexFilter.fromExpression("vertex.name = 
'PGX'");
GraphFilter combinedFilter = edgeFilter.intersect(vertexFilter);

Python

from pypgx.api.filters import VertexFilter
from pypgx.api.filters import EdgeFilter
edge_filter = EdgeFilter.from_expression("edge.cost > 5")
vertex_filter = VertexFilter.from_expression("vertex.name = 'PGX'")
combined_filter = edge_filter.intersect(vertex_filter)

In contrast, the subgraph created by the union of those filters will include vertices that either
have the name 'PGX' or that has an incoming or outgoing edge with a cost greater than 5. It will
also include edges with a cost greater than 5, as well as edges for which the source and
destination vertex have the name 'PGX'.

Chapter 27
Filter Expressions

27-94



27.10.5.7 Creating a Subgraph Using Filter Expressions with Partitioned IDs
You can create a subgraph using filter expressions with partitioned IDs.

For example, the following creates a subgraph that contains only a single vertex with ID
Account(1):

• JShell

• Java

• Python

JShell

opg4j> PgxGraph subgraph = g.filter(VertexFilter.fromExpression("vertex = 
'Accounts(1)'"))
subgraph ==> PgxGraph[name=sub-graph_26,N=1,E=0,created=1630414040396]

Java

PgxGraph subgraph = g.filter(VertexFilter.fromExpression("vertex = 
'Accounts(1)'"));

Python

subgraph = graph.filter(VertexFilter.from_expression("vertex = 
'Accounts(1)'"))

The following example creates a subgraph that contains only a single edge with ID
Transfers(1), and two accompanying vertices:

• JShell

• Java

• Python

JShell

opg4j> PgxGraph subgraph = g.filter(EdgeFilter.fromExpression("edge = 
'Transfers(1)'"))
subgraph ==> PgxGraph[name=sub-graph_27,N=2,E=1,created=1630414144529]

Chapter 27
Filter Expressions

27-95



Java

PgxGraph subgraph = g.filter(EdgeFilter.fromExpression("edge = 
'Transfers(1)'"));

Python

subgraph = graph.filter(EdgeFilter.from_expression("edge = 'Transfers(1)'"))

27.11 Advanced Task Scheduling Using Execution Environments
This guide shows how you can use the advanced scheduling features of the enterprise
scheduler.

The following topics provide more detailed information on enabling and scheduling tasks using
the execution environment:

• Prerequisites for Using the Enterprise Scheduler

• Enabling Enterprise Scheduler Features

• Retrieving and Inspecting the Execution Environment

• Modifying and Submitting Tasks Under an Updated Environment

• Using Lambda Syntax

• Enterprise Scheduler Configuration Guide

27.11.1 Prerequisites for Using the Enterprise Scheduler
• Ensure that you meet the following system prerequisites to use the enterprise scheduler

feature of the graph server (PGX):

– Operating System: Linux (x86_64)

– The following shared libraries are required:

* The GNU C Library - libc.so.6 (GLIBC_2.6)
* The GNU dynamic linker/loader - ld-linux-x86-64.so.2 (GLIBC_2.3)
* The POSIX Threading Library - libpthread.so.0 (GLIBC_2.3.2)
* The Standard Math Library - libm.so.6 (GLIBC_2.2.5)
* The Realtime Extensions library - librt.so.1 (GLIBC_2.2.5)
* The NUMA policy support library - libnuma.so.1 (libnuma_1.2)
* The GCC low-level runtime library - libgcc_s.so.1 (GCC_3.4)
* The GNU C++ Library - libstdc++.so.6 (GLIBCXX_3.4.19 and CXXABI_1.3.5)

• Ensure that you set the scheduler parameter in the pgx.conf file as shown:
"scheduler": "enterprise_scheduler"

Chapter 27
Advanced Task Scheduling Using Execution Environments

27-96



Note:

When using the enterprise scheduler, if the graph server (PGX) fails to start with the
following error message in the log file - The enterprise scheduler backend is not
supported on this system, then note that the server no longer falls back to the
basic scheduler.
If you wish to use the basic scheduler then you must set the scheduler parameter in
the pgx.conf file as shown:

"scheduler": "basic_scheduler"

27.11.2 Enabling Enterprise Scheduler Features
You can enable the enterprise scheduler features, by setting the flag
allow_override_scheduling_information of the the graph server (PGX) configuration file to
true:

{"allow_override_scheduling_information":true}

See Configuration Parameters for the Graph Server (PGX) Engine for all configuration options
of the graph server (PGX).

27.11.3 Retrieving and Inspecting the Execution Environment
Execution environments are bound to a session. You can retrieve the execution environment
for a session by calling getExecutionEnvironment() on a PgxSession:

• JShell

• Java

JShell

opg4j> execEnv.getValues()
==> [analysis-pool.max_num_threads=4, analysis-pool.weight=4, analysis-
pool.priority=MEDIUM, io-pool.num_threads_per_task=4, fast-track-analysis-
pool.max_num_threads=4, fast-track-analysis-pool.weight=1, fast-track-
analysis-pool.priority=HIGH]

Java

import oracle.pgx.api.*;
import java.util.List;
import java.util.Map.Entry;

List<Entry<String, Object>> currentValues = execEnv.getValues();
for (Entry<String, Object> value : currentValues) {

Chapter 27
Advanced Task Scheduling Using Execution Environments

27-97



  System.out.println(value.getKey() + " = " + value.getValue());
}

See Enterprise Scheduler Configuration Guide for the values of an unmodified execution
environment.

To retrieve the sub-environments use the getIoEnvironment(), getAnalysisEnvironment()
and getFastAnalysisEnvironment() methods. Each sub-environment has their own
getValues() method for retrieving the configuration of the sub-environment.

• JShell

• Java

JShell

opg4j> var ioEnv = execEnv.getIoEnvironment()
ioEnv ==> IoEnvironment[pool=io-pool]
opg4j> ioEnv.getValues()
$5 ==> {num_threads_per_task=4}

opg4j> var analysisEnv = execEnv.getAnalysisEnvironment()
analysisEnv ==> CpuEnvironment[pool=analysis-pool]
opg4j> analysisEnv.getValues()
$7 ==> {max_num_threads=4, weight=4, priority=MEDIUM}

opg4j> var fastAnalysisEnv = execEnv.getFastAnalysisEnvironment()
fastAnalysisEnv ==> CpuEnvironment[pool=fast-track-analysis-pool]
opg4j> fastAnalysisEnv.getValues()
$9 ==> {max_num_threads=4, weight=1, priority=HIGH}

Java

import oracle.pgx.api.*;
import oracle.pgx.api.executionenvironment.*;
import java.util.Map;

IoEnvironment ioEnv = execEnv.getIoEnvironment();
CpuEnvironment analysisEnv = execEnv.getAnalysisEnvironment();
CpuEnvironment fastAnalysisEnv = execEnv.getFastAnalysisEnvironment();

for (Entry<String, Object> value : ioEnv.getValues().getEntrySet()) {
  System.out.println(value.getKey() + " = " + value.getValue());
}

for (Entry<String, Object> value : analysisEnv.getValues().getEntrySet()) {
  System.out.println(value.getKey() + " = " + value.getValue());
}

for (Entry<String, Object> value : fastAnalysisEnv.getValues().getEntrySet()) 

Chapter 27
Advanced Task Scheduling Using Execution Environments

27-98



{
  System.out.println(value.getKey() + " = " + value.getValue());
}

27.11.4 Modifying and Submitting Tasks Under an Updated Environment
You can modify an Input/Output (IO) environment in the number of threads by using the
setNumThreadsPerTask() method of the IoEnvironment. The value is updated immediately
and all tasks that are submitted after updating it are executed with the updated value.

• JShell

• Java

JShell

opg4j> ioEnv.setNumThreadsPerTask(8)
opg4j> var g = session.readGraphWithProperties(...)
==> PgxGraph[name=graph,N=3,E=6,created=0]

Java

import oracle.pgx.api.*;
import oracle.pgx.api.executionenvironment.*;

ioEnv.setNumThreadsPerTask(8);
PgxGraph g = session.readGraphWithProperties(...);

You can reset an environment to their initial values by calling the ioEnv.reset() method.
Additionally, you can reset all environments at once by calling execEnv.reset() on the
ExecutionEnvironment class.

You can modify CPU environments in their weight, priority and maximum number of threads
using the setWeight(), setPriority() and setMaxThreads() methods:

• JShell

• Java

JShell

opg4j> analysisEnv.setWeight(50)
opg4j> fastAnalysisEnv.setMaxNumThreads(1)

Chapter 27
Advanced Task Scheduling Using Execution Environments

27-99



opg4j> var rank = analyst.pagerank(g)
rank ==> VertexProperty[name=pagerank,type=double,graph=my-graph]

Java

import oracle.pgx.api.*;
import oracle.pgx.api.executionenvironment.*;

analysisEnv.setWeight(50);
fastAnalysisEnv.setMaxThreads(1);
Analyst analyst = session.createAnalyst();
VertexProperty rank = analyst.pagerank(g);

27.11.5 Using Lambda Syntax
Generally you can perform the following actions in the environment:

1. Set up the execution environment

2. Execute task

3. Reset execution environment

All these actions can be combined and performed in a single step using the set method. For
each set method there is a method using the with prefix which takes the updated value and a
lambda which should be executed using the updated value.

For example, use withNumThreadsPerTask() instead of setNumThreadsPerTask() as shown:

• JShell

• Java

JShell

opg4j> var g = ioEnv.withNumThreadsPerTask(8, () -> 
session.readGraphWithProperties(...))
==> PgxGraph[name=graph,N=3,E=6,created=0]

Java

import oracle.pgx.api.*;
import oracle.pgx.api.executionenvironment.*;

PgxGraph g = ioEnv.withNumThreadsPerTask(8, () -> 
session.readGraphWithProperties(...));

Chapter 27
Advanced Task Scheduling Using Execution Environments

27-100



The preceding code execution is equivalent to the following sequence of actions:

var oldValue = ioEnv.getNumThreadsPerTask()
ioEnv.setNumThreadsPerTask(currentValue)
var g = session.readGraphWithProperties(...)
ioEnv.setNumThreadsPerTask(oldValue)

27.11.6 Enterprise Scheduler Configuration Guide
This chapter describes the extra configuration options for the enterprise scheduler.

Note:

These configuration options are only available if the scheduler configuration variable
is set to enterprise_scheduler in Configuration Parameters for the Graph Server
(PGX) Engine.

The configuration is divided into the following two parts:

1. enteprise_scheduler_config: for setting details about how tasks should be scheduled

2. enterprise_scheduler_flags: where you can configure the enterprise scheduler in more
detail

Enterprise Scheduler Fields

Field Type Description Default

analysis_task
_config

object Configuration for analysis tasks.
weight
<no-of-CPUs>

priority
medium

max_threads
<no-of-CPUs>

fast_analysis
_task_config

object Configuration for fast analysis
tasks. weight

1

priority
high

max_threads
<no-of-CPUs>

max_num_concu
rrent_io_task
s

integer Maximum number of concurrent io
tasks at a time.

3

num_io_thread
s_per_task

integer Number of io threads to use per
task.

<no-of-cpus>

Analysis Task Config Fields

Chapter 27
Advanced Task Scheduling Using Execution Environments

27-101



Field Type Description Default

max_threads integer A hard limit on the number of threads to use
for a task.

required

priority enum[high,
medium, low]

The priority of the task. Threads are given to
the task with the highest priority at the
moment of execution. If there are more
threads that have the highest priority, threads
are given to the tasks according to their
weight

required

weight integer The weight of the task. Threads are given to
tasks proportionally to their weight. Tasks with
higher weight will get more threads than tasks
with lower weight. Tasks with the same weight
will get the same amount of threads.

required

Enterprise Scheduler Flags

Field Type Description Default

show_allocati
ons

boolean If true show memory allocation information. false

show_environm
ent

boolean If true show version numbers and main
environment settings at startup.

false

show_logging boolean If true enable summary logging. This is
available even in non-debug builds and
includes information such as the machine
hardware information obtained at start-up,
and per-job / per-loop information about the
workload.

false

show_profilin
g

boolean If true show profiling information. false

show_schedule
r_state

boolean If true dump scheduler state on each update. false

show_warnings boolean If true enable warnings. These are non-fatal
errors. For example, if a NUMA-aware
allocation cannot be placed on the intended
socket.

true

Example 27-4    Custom Enterprise Scheduler Configuration

This configuration sets the number of io threads per task to 16, increases the maximum
number of concurrent io tasks to 5. It also sets the configuration for fast analysis tasks to have
a weight of 1, priority of "high" and sets a limit to the maximum number of threads used to 1.

{
  "enterprise_scheduler_config": {
    "num_io_threads_per_task": 16,
    "max_num_concurrent_io_tasks": 5,
    "fast_analysis_task_config": {
      "weight": 1,
      "priority": "high",
      "max_threads": 1
    }

Chapter 27
Advanced Task Scheduling Using Execution Environments

27-102



  }
}

Example 27-5    Using the Enterprise Scheduler Flags

This configuration enables extra logging output from the enterprise scheduler.

{
  "enterprise_scheduler_flags": {
    "show_logging": true
  }
}

27.12 Admin API
This guide shows how to use the graph server (PGX) Admin API to inspect the server state
including sessions, graphs, tasks, memory and thread pools.

• Get a Server Instance

• Get Inspection Data

• Get Active Sessions

• Get Cached Graphs

• Get Published Graphs

• Get Currently Loading Graphs

• Get Tasks

• Get Available Memories

27.12.1 Get a Server Instance
You can get a PGX Instance as shown in the following code:

• Java

• Python

Java

import oracle.pgx.api.*;
ServerInstance instance = Pgx.getInstance(Pgx.EMBEDDED_URL);

Python

instance = pypgx.get_session(base_url = "url")

Chapter 27
Admin API

27-103



27.12.2 Get Inspection Data
Inspection data is information about the server state.

You can get the inspection data using the following code. Note that you must the
PGX_SERVER_GET_INFO permission to access the server state data.

• JShell

• Java

• Python

JShell

var serverState = instance.getServerState()

Java

JsonNode serverState = instance.getServerState();

Python

server_state = instance.get_server_state()

This returns a JsonNode which contains all the administration information, such as number of
graphs loaded, number of sessions, memory usage for graphs, properties, and so on.

{
    "cached_graphs": [],
    "published_graphs": [],
    "graphs_currently_loading": [],
    "sessions": [],
    "tasks": [],
    "pools": [],
    "memory": {}
}

Note that the sessions parameter lists all the sessions and the memory used by the sessions
along with the user information for each session.

{
  "session_id": "530b5f9a-75c4-4838-9cc3-44df44b035c5",
  "source": "testServerState",
  "user": "user1",    // session user information
   ...
} 

Chapter 27
Admin API

27-104



27.12.3 Get Active Sessions
serverState.get("sessions") returns an array of current active sessions. Each entry
contains information about a session.

{
   "session_id":"530b5f9a-75c4-4838-9cc3-44df44b035c5",
   "source":"testServerState",
   "user":"user1",
   "task_timeout_ms":0,
   "idle_timeout_ms":0,
   "alive_ms":237,
   "total_analysis_time_ms":115,
   "state":"RELEASED",
   "private_graphs":[
      {
         "name":"anonymous_graph_1",
         "creation_timestamp":1589317879755,
         "is_transient":true,
         "memory":{
            "topology_bytes":46,
            "key_mapping_bytes":30,
            "persistent_property_mem_bytes":0,
            "transient_property_mem_bytes":0
         },
         "vertices_num":1,
         "edges_num":0,
         "persistent_vertex_properties":[
            
         ],
         "persistent_edge_properties":[
            
         ],
         "transient_vertex_properties":[
            
         ],
         "transient_edge_properties":[
            
         ]
      }
   ],
   "published_graphs":[
      {
         "name":"multigraph",
         "creation_timestamp":1589317879593,
         "is_transient":false,
         "memory":{
            "topology_bytes":110,
            "key_mapping_bytes":56,
            "persistent_property_mem_bytes":64,
            "transient_property_mem_bytes":0
         },
         "vertices_num":2,
         "edges_num":6,

Chapter 27
Admin API

27-105



         "persistent_vertex_properties":[
            {
               "loaded":true,
               "mem_size_bytes":16,
               "name":"tProp",
               "type":"string"
            }
         ],
         "persistent_edge_properties":[
            {
               "loaded":true,
               "mem_size_bytes":48,
               "name":"cost",
               "type":"double"
            }
         ],
         "transient_vertex_properties":[
            
         ],
         "transient_edge_properties":[
            
         ]
      }
   ]
}

The following table explains session information fields:

Table 27-6    Session Information Options

Field Description

sessionID Session ID generated by the graph server (PGX)

source Descriptive string identifying the client session

user Session owner

task_timeout_ms Timeout to interrupt long-running tasks submitted by sessions
(algorithms, I/O tasks) in milliseconds. Set to zero for infinity/no timeout.

idle_timeout_ms Timeout of idling sessions in milliseconds. Set to zero for infinity/no
timeout.

alive_ms Session's age in milliseconds

total_analysis_time_ms Total session's executing time in milliseconds

state Current session of the session can be Idle, Submitted, Released or
Terminating

private_graphs Session bounded graphs

published_graphs Published graphs pointed to from the session

Note:

The is_transient field indicates if the graph is transient. A graph is transient if it is
not loaded from an external source.

Chapter 27
Admin API

27-106



27.12.4 Get Cached Graphs
The server state contains also cached graph information serverState.get("cached_graphs")
which returns a collection of graphs cached in memory. Each entry contains information about
a graph as shown:

{
   "name":"sf-1589317879394",
   "creation_timestamp":1589317879394,
   "vertex_properties":[
      {
         "loaded":true,
         "mem_size_bytes":478504,
         "name":"prop1",
         "type":"double"
      }
   ],
   "edge_properties":[
      {
         "loaded":true,
         "mem_size_bytes":1197720,
         "name":"cost",
         "type":"double"
      },
      {
         "loaded":true,
         "mem_size_bytes":598860,
         "name":"0",
         "type":"integer"
      }
   ],
   "memory":{
      "topology_bytes":3921814,
      "key_mapping_bytes":1407466,
      "property_mem_bytes":2275084
   },
   "vertices_num":59813,
   "edges_num":149715
}

The following table explains graph information fields:

Table 27-7    Graph Information

Field Description

name Name of the graph.

creation_timestamp Creation timestamp of the graph.

vertex_properties List of vertex properties, each entry contains the name, type, memory
size used by the property, and a boolean flag to indicate if the property is
loaded into memory.

edge_properties List of edges properties, similar to vertex properties.

Chapter 27
Admin API

27-107



Table 27-7    (Cont.) Graph Information

Field Description

memory Memory size used by the whole graph (topology, key mappings and
properties).

vertices_num Number of vertices.

edges_num Number of edges.

27.12.5 Get Published Graphs
serverState.get("published_graphs") returns a list of published graphs.

Each graph entry contains information about the published graph, similar to cached_graphs.

27.12.6 Get Currently Loading Graphs
serverState.get("graphs_currently_loading") returns progress information about graphs
which are currently loading.

Each entry, corresponding to one graph, is shown as follows:

{
    "name": "anonymous_graph_1",
    "session_id": "530b5f9a-75c4-4838-9cc3-44df44b035c5",
    "start_loading_timestamp": 1605468453030,
    "elapsed_loading_time_ms": 281742,
    "num_vertices_read": 10000000,
    "num_edges_read": 196500000,
    "num_edge_providers_loaded": 1,
    "num_edge_providers_remaining": 9,
    "num_vertex_providers_loaded": 1,
    "num_vertex_providers_remaining": 0,
    "loading_phase": "reading edges",
    "loading_phase_start_timestamp": 1605468453085,
    "loading_phase_elapsed_time_ms": 281687,
    "loading_phase_state": "current vertex provider index: 1, number of 
vertices read for prorvider: 0, current edge provider index: 1, number of 
edges read for prorvider: 76,500,000"
}

The name field contains a temporary name of the graph. It may not be equal to the name that is
assigned to graph after loading.

Fields indicating the number of read vertices and edges are updated in regular intervals of
10,000 entities.

The field loading_phase indicates the current phase during graph loading. Valid values are
"reading edges" or "building graph indices". For some loading phases, the field
loading_phase_state contains a string with additional information on the phase. However, not
all loading phases provide this additional information.

Chapter 27
Admin API

27-108



Note:

graphs_currently_loading is supported for data formats CSV, ADJ_LIST, EDGE_LIST,
TWO_TABLES and PG (FLAT_FILE) for homogeneous graphs and for formats CSV and
RDBMS for partitioned graphs.

27.12.7 Get Tasks
serverState.get("tasks") returns the last 100 queued tasks.

Each task has a type, the pool to be executed on (the task might be already executed) and
other status fields ({Queued|Started|Done} time), and a sessionid if the task belongs to a
session.

27.12.8 Get Available Memories
This section contains a map of available memories, the key is the hostname and the value is a
list of current available memories (managed and unmanaged). Each entry contains how much
memory is free, used and the maximum available memory.

27.13 PgxFrames Tabular Data-Structure
PgxFrame is a data-structure to load, store and manipulate tabular data. It contains rows and
columns. A PgxFrame can contain multiple columns where each column consist of elements of
the same data type, and has a name. The list of the columns with their names and data types
defines the schema of the frame. (The number of rows in the PgxFrame is not part of the
schema of the frame.)

PgxFrame provides some operations that also output PgxFrames (described later in the tutorial).
Those operations can be performed in-place (meaning that the frame is mutated during the
operation) in order to save memory. In place operations should be used whenever possible.
However, we provide out-place variants, i.e., a new frame is created during the operation.

The following table lists all the in-place operations along with the respective out-place
operations:

Table 27-8    Mapping between In-Place and Out-Place Operations

In-place operations Out-place operations

headInPlace head
tailInPlace tail
flattenAllInPlace flattenAll
renameColumnInPlace renameColumn
renameColumnsInPlace renameColumns
selectInPlace select

• Converting PgqlResultSet to a PgxFrame

• Storing a PgxFrame to a Database

• Storing a PgxFrame to a CSV File

Chapter 27
PgxFrames Tabular Data-Structure

27-109



• Union of PGX Frames

• Joining PGX Frames

• Printing the Content of a PgxFrame

• Destroying a PgxFrame

• Loading and Storing Vector Properties

• Flattening Vector Properties

• PgxFrame Helpers

• Converting a PgxFrame to PgqlResultSet

• PgxFrame to Pandas DataFrame Conversions

• Loading a PgxFrame from a Database

• Loading a PgxFrame from a CSV File

• Loading a PgxFrame from Client-Side Data

• Creating a Graph from Multiple PgxFrame Objects

27.13.1 Converting PgqlResultSet to a PgxFrame
The following example describes how to save the PgqlResultSet to a PgxFrame.

• JShell

• Java

• Python

JShell

opg4j> var pg = session.readGraphByName("BANK_GRAPH",GraphSource.PG_PGQL)
opg4j> var rs = pg.queryPgql("SELECT e.* FROM MATCH (v1:Accounts)-
[e:Transfers]->(v2:Accounts) LIMIT 5")
opg4j> var rsFrame = rs.toFrame()
opg4j> rsFrame.print()
+--------------------------------------------------+
| FROM_ACCT_ID | TO_ACCT_ID | AMOUNT | DESCRIPTION |
+--------------------------------------------------+
| 999          | 934        | 1000.0 | transfer    |
| 999          | 71         | 1000.0 | transfer    |
| 999          | 839        | 1000.0 | transfer    |
| 999          | 891        | 1000.0 | transfer    |
| 999          | 919        | 1000.0 | transfer    |
+--------------------------------------------------+
$4 ==> oracle.pgx.api.frames.internal.PgxFrameImpl@39a1c200

Java

import oracle.pgx.api.frames.*;

Chapter 27
PgxFrames Tabular Data-Structure

27-110



PgxGraph pg = session.readGraphByName("BANK_GRAPH",GraphSource.PG_PGQL);
PgqlResultSet rs = pg.queryPgql("SELECT e.* FROM MATCH (v1:Accounts)-
[e:Transfers]->(v2:Accounts) LIMIT 5");
PgxFrame rsFrame = rs.toFrame();
rsFrame.print();

Python

>>> pg = session.read_graph_by_name('BANK_GRAPH','pg_pgql')
>>> rs = pg.query_pgql("SELECT e.* FROM MATCH (v1:Accounts)-[e:Transfers]-
>(v2:Accounts) LIMIT 5")
>>> rs_frame = rs.to_frame()
>>> rs_frame.print()
+--------------------------------------------------+
| FROM_ACCT_ID | TO_ACCT_ID | AMOUNT | DESCRIPTION |
+--------------------------------------------------+
| 1            | 418        | 1000.0 | transfer    |
| 1            | 584        | 1000.0 | transfer    |
| 1            | 644        | 1000.0 | transfer    |
| 1            | 672        | 1000.0 | transfer    |
| 1            | 259        | 1000.0 | transfer    |
+--------------------------------------------------+

Converting PgqlResultSet to pandas DataFrame

You can also save the PgqlResultSet to pandas DataFrame as shown in the following
example:

>>> rs.to_pandas()
   FROM_ACCT_ID  TO_ACCT_ID  AMOUNT DESCRIPTION
0           999         934  1000.0    transfer
1           999          71  1000.0    transfer
2           999         839  1000.0    transfer
3           999         891  1000.0    transfer
4           999         919  1000.0    transfer

27.13.2 Storing a PgxFrame to a Database
When storing a PgxFrame to a database, the frame is stored as a table, where the columns
correspond to the columns of the PgxFrame and the rows correspond to the rows of the
PgxFrame. Note that the column order preservation may or may not happen when storing a
PgxFrame in the database.

The following example shows how to store the PgxFrame in the database. The example
assumes that you are storing the PgxFrame in the current logged in schema.

• JShell

• Java

Chapter 27
PgxFrames Tabular Data-Structure

27-111



• Python

JShell

opg4j> rsFrame.write().
           db().                     // select the "format" to be relational 
db
           name("F1").               // name of the frame
           tablename("T1").          // name of the table in which the data 
must be stored
           overwrite(true).          // indicates that if there is a table 
with the same name, it will be overwritten (truncated)
           connections(16).          // indicates that 16 connections can be 
used to store in parallel
           store()

Java

rsFrame.write()
    .db()                     
    .name("F1")              
    .tablename("T1")        
    .overwrite(true)        
    .connections(16)       
    .store();

Python

>>> rs_frame.write().db().\
...     table_name('T1').\
...     overwrite(True).\
...     store()

Alternatively, you can also store the PgxFrame in a different schema as shown in the following
example. Ensure that you have CREATE TABLE privilege when writing to a different schema:

• JShell

• Java

• Python

JShell

// store as table in the database using jdbc + username + password
opg4j> rsFrame.write().
           db().                     // select the "format" to be relational 
db
           name("framename").        // name of the frame

Chapter 27
PgxFrames Tabular Data-Structure

27-112



           tablename("tablename").   // name of the table in which the data 
must be stored
           overwrite(true).          // indicates that if there is a table 
with the same name, it will be overwritten (truncated)
           connections(16).          // indicates that 16 connections can be 
used to store in parallel
           jdbcUrl("<jdbcUrl>").
           username("<db_username>").
           password("<password>").
           store()

Java

rsFrame.write()
    .db()                     // select the "format" to be relational db
    .name("framename")        // name of the frame
    .tablename("tablename")   // name of the table in which the data must be 
stored
    .overwrite(true)          // indicates that if there is a table with the 
same name, it will be overwritten (truncated)
    .connections(16)          // indicates that 16 connections can be used to 
store in parallel
    .jdbcUrl("<jdbcUrl>")
    .username("<db_username>")
    .password("<password>")
    .store();

Python

>>> rs_frame.write().db().\
...     table_name('T1').\
...     overwrite(True).\
...     jdbc_url("<jdbcUrl>").\
...     username("<db_username>").\
...     password("<password>").\
...     store()

27.13.3 Storing a PgxFrame to a CSV File
In order to write a PgxFrame to a CSV file, you first need to explicitly authorize access to the
corresponding directories by defining a directory object pointing to the directory (on the graph
server) where the file needs to be written.

CREATE OR REPLACE DIRECTORY graph_files AS '/tmp';
GRANT READ, WRITE ON DIRECTORY graph_files TO GRAPH_DEVELOPER;

Also, note the following:

• The directory in the CREATE DIRECTORY statement must exist on the graph server (PGX).

• The directory must be writable at the OS level by the graph server (PGX).

Chapter 27
PgxFrames Tabular Data-Structure

27-113



The preceding code grants the privileges on the directory to the GRAPH_DEVELOPER role.
However, you can also grant permissions to an individual user:

GRANT WRITE ON DIRECTORY graph_files TO <graph_user>;

You can then save a PgxFrame to a CSV file as shown in the following example:

• JShell

• Java

• Python

JShell

opg4j> rsFrame.write().overwrite(true).csv("/tmp/Transfers.csv")

Java

rsFrame.write().overwrite(true).csv("/tmp/Transfers.csv");

Python

>>> rs_frame.store("/tmp/Transfers.csv")

27.13.4 Union of PGX Frames
You can join two PgxFrames that have compatible columns (that is, same type and order).

• JShell

• Java

• Python

JShell

opg4j> <first-frame>.union(<secondframe>).print()

Java

<first-frame>.union(<first-frame>).print();

Chapter 27
PgxFrames Tabular Data-Structure

27-114



Python

<first-frame>.union(<first-frame>).print()

The rows of the resulting PgxFrame are the union of the rows from the two original frames.

Note that the union operation does not remove duplicate rows that resulted by joining the two
frames.

27.13.5 Joining PGX Frames
You can join two frames whose rows are correlated through one of the columns using the join
functionality. This allows us to combine frames by checking for equality between rows for a
specific column.

The following example shows joining two PgxFrames exampleFrame and moreInfoFrame on the
name column by calling the join method.

• JShell

• Java

• Java

JShell

opg4j> exampleFrame.join(moreInfoFrame, "name", "leftFrame", 
"rightFrame").print()

Java

exampleFrame.join(moreInfoFrame, "name", "leftFrame", "rightFrame").print();

Java

example_frame.join(moreInfoFrame, "name", "leftFrame", "rightFrame").print()

The result may appear as shown:

+-----------------------------------------------------------------------------
------------------------------------------------------------------------------
-------------------------------------------+
| leftFrame_name | leftFrame_age | leftFrame_salary | leftFrame_married | 
leftFrame_tax_rate | leftFrame_random | leftFrame_date_of_birth | 
rightFrame_name | rightFrame_title             | rightFrame_reports |
+-----------------------------------------------------------------------------

Chapter 27
PgxFrames Tabular Data-Structure

27-115



------------------------------------------------------------------------------
----------------------------------------------------+
| John           | 27            | 4133300.0        | true              | 
11.0               | 123456782        | 1985-10-18              | 
John            | Software Engineering Manager | 5                  |
| Albert         | 23            | 5813000.5        | false             | 
12.0               | 124343142        | 2000-01-14              | 
Albert          | Sales Manager                | 10                 |
| Emily          | 24            | 9380080.5        | false             | 
13.0               | 128973221        | 1910-07-30              | 
Emily           | Operations Manager           | 20                 |
+-----------------------------------------------------------------------------
------------------------------------------------------------------------------
----------------------------------------------------+

The joined frame contains the columns of the two frames involved in the operation for the rows
with the same name.

Note:

The column prefixes specified in the join() call, leftFrame and rightFrame.

27.13.6 Printing the Content of a PgxFrame
You can observe the contents of a frame using the print functionality as shown:

• JShell

• Java

• Python

JShell

opg4j> exampleFrame.print()

Java

exampleFrame.print();

Python

example_frame.print()

Chapter 27
PgxFrames Tabular Data-Structure

27-116



The output appears as follows:

+--------------------------------------------------+
| FROM_ACCT_ID | TO_ACCT_ID | AMOUNT | DESCRIPTION |
+--------------------------------------------------+
| 2            | 546        | 1000.0 | transfer    |
| 2            | 840        | 1000.0 | transfer    |
| 2            | 493        | 1000.0 | transfer    |
| 2            | 693        | 1000.0 | transfer    |
| 2            | 833        | 1000.0 | transfer    |
+--------------------------------------------------+

27.13.7 Destroying a PgxFrame
PgxFrames consumes a lot of memory on the graph server (PGX) if they have a lot of rows or
columns. Hence, it is necessary to close them with the close() operation. After this operation,
the content of the PgxFrame is not available anymore.

You can close a frame as shown:

• JShell

• Java

• Python

JShell

opg4j> exampleFrame.close()

Java

exampleFrame.close();

Python

example_frame.close()

27.13.8 Loading and Storing Vector Properties
You can load or store vector properties which are fundamental for PgxML functionality in the
graph server (PGX) using PgxFrames.
In order to load a PgxFrame with vector properties, follow the steps as shown:

1. Create the PgxFrame schema, defining the columns as shown:

Chapter 27
PgxFrames Tabular Data-Structure

27-117



• JShell

• Java

JShell

opg4j> var vecFrameSchema = List.of(
  columnDescriptor("intProp", DataTypes.INTEGER_TYPE),
  columnDescriptor("intProp2", DataTypes.INTEGER_TYPE),
  columnDescriptor("vectProp", DataTypes.vector(DataTypes.FLOAT_TYPE, 3)),
  columnDescriptor("stringProp", DataTypes.STRING_TYPE),
  columnDescriptor("vectProp2", DataTypes.vector(DataTypes.FLOAT_TYPE, 2))
).toArray(new ColumnDescriptor[0])

Java

ColumnDescriptor[] vecFrameSchema = {
    columnDescriptor("intProp", DataTypes.INTEGER_TYPE),
    columnDescriptor("intProp2", DataTypes.INTEGER_TYPE),
    columnDescriptor("vectProp", DataTypes.vector(DataTypes.FLOAT_TYPE, 
3)),
    columnDescriptor("stringProp", DataTypes.STRING_TYPE),
    columnDescriptor("vectProp2", DataTypes.vector(DataTypes.FLOAT_TYPE, 
2))
};

2. Load the PgxFrame with the given schema from the specified path:

• JShell

• Java

JShell

opg4j> var vecFrame = session.readFrame().
    db().
    name("vector PgxFrame").
    tablename("tablename").      // name of the table from where the data 
must be loaded
    jdbcUrl("jdbcUrl").
    username("user").
    owner("owner").              // necessary if the table is owned by 
another user
    connections(16).             // indicates that 16 connections can be 
used to load in parallel
    columns(vecFrameSchema).     // columns to load
    load()

Chapter 27
PgxFrames Tabular Data-Structure

27-118



Java

PgxFrame vecFrame = session.readFrame()
    .db()
    .name("vector PgxFrame")
    .tablename("tablename")      // name of the table from where the data 
must be loaded
    .jdbcUrl("jdbcUrl")
    .username("user")
    .owner("owner")              // necessary if the table is owned by 
another user
    .connections(16)             // indicates that 16 connections can be 
used to load in parallel
    .columns(vecFrameSchema)     // columns to load
    .load();

The final result in the PgxFrame may appear as follows:

+-----------------------------------------------------------+
| intProp | intProp2 | vectProp    | stringProp | vectProp2 |
+-----------------------------------------------------------+
| 0       | 2        | 0.1;0.2;0.3 | testProp0  | 0.1;0.2   |
| 1       | 1        | 0.1;0.2;0.3 | testProp10 | 0.1;0.2   |
| 1       | 2        | 0.1;0.2;0.3 | testProp20 | 0.1;0.2   |
| 2       | 3        | 0.1;0.2;0.3 | testProp30 | 0.1;0.2   |
| 3       | 1        | 0.1;0.2;0.3 | testProp40 | 0.1;0.2   |
+-----------------------------------------------------------+

27.13.9 Flattening Vector Properties
You can split the vector properties into multiple columns using the flattenAll() operation.

For example, you can flatten the vector properties for the example explained in Loading and
Storing Vector Properties as shown:

• JShell

• Java

JShell

opg4j> vecFrame.flattenAll()

Java

vecFrame.flattenAll();

Chapter 27
PgxFrames Tabular Data-Structure

27-119



The resulting flattened PgxFrame may appear as shown:

+-----------------------------------------------------------------------------
-----------------------+
| intProp | intProp2 | vectProp_0 | vectProp_1 | vectProp_2 | stringProp | 
vectProp2_0 | vectProp2_1 |
+-----------------------------------------------------------------------------
-----------------------+
| 0       | 2        | 0.1        | 0.2        | 0.3        | testProp0  | 
0.1         | 0.2         |
| 1       | 1        | 0.1        | 0.2        | 0.3        | testProp10 | 
0.1         | 0.2         |
| 1       | 2        | 0.1        | 0.2        | 0.3        | testProp20 | 
0.1         | 0.2         |
| 2       | 3        | 0.1        | 0.2        | 0.3        | testProp30 | 
0.1         | 0.2         |
| 3       | 1        | 0.1        | 0.2        | 0.3        | testProp40 | 
0.1         | 0.2         |
+-----------------------------------------------------------------------------
-----------------------+

27.13.10 PgxFrame Helpers
PgxFrame supports the following operations:

• head
• tail
• select
• renameColumns

Head Operation

The head operation can be used to only keep the first rows of a PgxFrame. (The result is
deterministic only for ordered PgxFrame.)

• JShell

• Java

JShell

opg4j> vecFrame.head(2).print()

Java

vecFrame.head(2).print();

Chapter 27
PgxFrames Tabular Data-Structure

27-120



The output appears as follows:

+-----------------------------------------------------------+
| intProp | intProp2 | vectProp    | stringProp | vectProp2 |
+-----------------------------------------------------------+
| 0       | 2        | 0.1;0.2;0.3 | testProp0  | 0.1;0.2   |
| 1       | 1        | 0.1;0.2;0.3 | testProp10 | 0.1;0.2   |
+-----------------------------------------------------------+

Tail Operation

The tail operation can be used to only keep the last rows of a PgxFrame. (The result is
deterministic only for ordered PgxFrame).

• JShell

• Java

JShell

opg4j> vecFrame.tail(2).print()

Java

vecFrame.tail(2).print();

The output appears as follows:

+-----------------------------------------------------------+
| intProp | intProp2 | vectProp    | stringProp | vectProp2 |
+-----------------------------------------------------------+
| 2       | 3        | 0.1;0.2;0.3 | testProp30 | 0.1;0.2   |
| 3       | 1        | 0.1;0.2;0.3 | testProp40 | 0.1;0.2   |
+-----------------------------------------------------------+

Select Operation

The select operation can be used to keep only a specified list of columns of an input
PgxFrame.

• JShell

• Java

• Python

Chapter 27
PgxFrames Tabular Data-Structure

27-121



JShell

opg4j> var vecFrameSelected = vecFrame.select("vectProp2", "vectProp", 
"stringProp")

Java

PgxFrame vecFrameSelected = 
vecFrame.select("vectProp2","vectProp","stringProp");

Python

vec_frame_selected = vec_frame.select("vectProp2","vectProp","stringProp")

The result may appear as follows:

+--------------------------------------+
| vectProp2 | vectProp    | stringProp |
+--------------------------------------+
| 0.1;0.2   | 0.1;0.2;0.3 | testProp0  |
| 0.1;0.2   | 0.1;0.2;0.3 | testProp10 |
| 0.1;0.2   | 0.1;0.2;0.3 | testProp20 |
| 0.1;0.2   | 0.1;0.2;0.3 | testProp30 |
| 0.1;0.2   | 0.1;0.2;0.3 | testProp40 |
+--------------------------------------+

Rename PgxFrame Columns

You can rename the columns in a PgxFrame to customized names as follows:

• JShell

• Java

JShell

opg4j> var vecFrameRenamed = vecFrame.renameColumns(
  renaming("vectProp2", "vectProp2_renamed"),
  renaming("vectProp", "vectProp_renamed"),
  renaming("stringProp", "stringProp_renamed")
)

Java

vecFrameRenamed = vecFrame.renameColumns(renaming("vectProp2", 
"vectProp2_renamed"),
                                            renaming("vectProp", 

Chapter 27
PgxFrames Tabular Data-Structure

27-122



"vectProp_renamed"),
                                            renaming("stringProp", 
"stringProp_renamed"));

The renamed PgxFrame appears as follows:

+-----------------------------------------------------------------------------
---+
| intProp | intProp2 | vectProp_renamed | stringProp_renamed | 
vectProp2_renamed |
+-----------------------------------------------------------------------------
---+
| 0       | 2        | 0.1;0.2;0.3      | testProp0          | 
0.1;0.2           |
| 1       | 1        | 0.1;0.2;0.3      | testProp10         | 
0.1;0.2           |
| 1       | 2        | 0.1;0.2;0.3      | testProp20         | 
0.1;0.2           |
| 2       | 3        | 0.1;0.2;0.3      | testProp30         | 
0.1;0.2           |
| 3       | 1        | 0.1;0.2;0.3      | testProp40         | 
0.1;0.2           |
+-----------------------------------------------------------------------------
---+

27.13.11 Converting a PgxFrame to PgqlResultSet
You can convert a PgxFrame to PgqlResultSet as follows:

• JShell

• Java

• Python

JShell

opg4j> var resultSet = exampleFrame.toPgqlResultSet()

Java

PgqlResultSet resultSet = exampleFrame.toPgqlResultSet();

Python

result_set = example_frame.to_pgql_result_set()

Chapter 27
PgxFrames Tabular Data-Structure

27-123



You can view the content of the result set through the usual PgqlResultSet APIs. The output
appears as follows:

+--------------------------------------------------+
| from_acct_id | to_acct_id | amount | description |
+--------------------------------------------------+
| 1            | 418        | 1000.0 | transfer    |
| 1            | 584        | 1000.0 | transfer    |
| 1            | 644        | 1000.0 | transfer    |
| 1            | 672        | 1000.0 | transfer    |
| 1            | 259        | 1000.0 | transfer    |
+--------------------------------------------------+

27.13.12 PgxFrame to Pandas DataFrame Conversions
You can save a PgxFrame to a pandas DataFrame as shown in the following example:

>>> pandas_data_frame =  example_frame.to_pandas()

Similarly, you can load a PgxFrame from a pandas DataFrame as shown in the following
example:

>>> example_frame = session.pandas_to_pgx_frame(pandas_data_frame, "example 
frame")

27.13.13 Loading a PgxFrame from a Database
You can load a PgxFrame from relational tables in an Oracle database. Each column of the
relational table will correspond to a column in the loaded frame. When loading a PgxFrame from
the database, the default behavior is to detect the table columns and load them all. If not
specified explicitly, the connection details of the current user and session are used and the
columns are detected automatically.
The following describes the steps to load a PgxFrame from a database table:

1. Create a Session and an Analyst:

• JShell

• Java

• Python

JShell

cd /opt/oracle/graph/
./bin/opg4j
// starting the shell will create an implicit session and analyst
opg4j> import static 
oracle.pgx.api.frames.functions.ColumnRenaming.renaming

Chapter 27
PgxFrames Tabular Data-Structure

27-124



opg4j> import static 
oracle.pgx.api.frames.schema.ColumnDescriptor.columnDescriptor
opg4j> import oracle.pgx.api.frames.schema.*
opg4j> import oracle.pgx.api.frames.schema.datatypes.*

Java

import oracle.pgx.api.*;
import oracle.pgx.api.frames.*;
import oracle.pgx.api.frames.functions.*;
import oracle.pgx.api.frames.schema.*;
import oracle.pgx.api.frames.schema.datatypes.*;
import static oracle.pgx.api.frames.functions.ColumnRenaming.renaming;
import static 
oracle.pgx.api.frames.schema.ColumnDescriptor.columnDescriptor;

PgxSession session = Pgx.createSession("my-session");
Analyst analyst = session.createAnalyst();

Python

session = pypgx.get_session(session_name="my-session")
analyst = session.create_analyst()

2. Load a PgxFrame. The example assumes that you are loading the PgxFrame from the
current logged in schema.

• JShell

• Java

• Python

JShell

opg4j> var exampleFrame = session.readFrame().
...>       db().
...>       name("Transfers").      // name of the frame
...>       tablename("T1").        // name of the table from where the 
data must be loaded
...>       connections(16).        // indicates that 16 connections can be 
used to load in parallel
...>       load()

Java

PgxFrame exampleFrame = session.readFrame()
    .db()
    .name("Transfers")      

Chapter 27
PgxFrames Tabular Data-Structure

27-125



    .tablename("T1")        
    .connections(16)        
    .load();

Python

>>> example_frame = session.read_frame() \
...     .name('Transfers') \
...     .db() \
...     .table_name('T1') \
...     .load()

3. If only a subset of the columns must be loaded, then you can specify the columns as
shown in the following example. Note that the following example loads the PgxFrame from a
different schema.

• JShell

• Java

• Python

JShell

opg4j> session.registerKeystore(<pathToKeystore>, <keystorePassword>)
opg4j> var exampleFrame = session.readFrame().
...>       db().
...>       name("Transfers").
...>       tablename("T1").              // name of the table from where 
the data must be loaded
...>       jdbcUrl("<jdbcUrl>").
...>       username("<username>").
...>       keystoreAlias("<keystore_alias>").
...>       connections(16).             // indicates that 16 connections 
can be used to load in parallel
...>       columns(
...>       columnDescriptor("FROM_ACCT_ID", DataTypes.INTEGER_TYPE),
...>       columnDescriptor("TO_ACCT_ID", DataTypes.INTEGER_TYPE)
...>       ).                          // columns to load
...>       load()

Java

session.registerKeystore(<pathToKeystore>, <keystorePassword>)
PgxFrame exampleFrame = session.readFrame()
    .db()
    .name("Transfers")
    .tablename("T1")              // name of the table from where the data 
must be loaded
    .jdbcUrl("<jdbcUrl>")

Chapter 27
PgxFrames Tabular Data-Structure

27-126



    .username("<username>")
    .keystoreAlias("<keystore_alias>")
    .connections(16)             // indicates that 16 connections can be 
used to load in parallel
    .columns(
              columnDescriptor("FROM_ACCT_ID", DataTypes.INTEGER_TYPE),
              columnDescriptor("TO_ACCT_ID", DataTypes.INTEGER_TYPE)
            )                    // columns to load
    .load();

Python

>>> example_frame = session.read_frame() \
...              .name('Transfers1') \
...              .db() \
...              .table_name('T1') \
...              .jdbc_url('jdbc:oracle:thin:@localhost:1521/orclpdb') \
...              .username('graphuser') \
...              .keystore_alias('database3') \
...              .columns(
...              [
...                ('FROM_ACCT_ID', 'INTEGER_TYPE'),
...                ('TO_ACCT_ID', 'INTEGER_TYPE')
...              ]
...              )\
...              .load()

You can also create a graph from the PgxFrame(s). See Creating a Graph from Multiple
PgxFrame Objects for more information.

27.13.14 Loading a PgxFrame from a CSV File
In order to load a PgxFrame from a CSV file, you first need to explicitly authorize access to the
corresponding directories by defining a directory object pointing to the directory (on the graph
server) where the file needs to be written.

CREATE OR REPLACE DIRECTORY graph_files AS '/tmp';
GRANT READ, WRITE ON DIRECTORY graph_files TO GRAPH_DEVELOPER;

Also, note the following:

• The directory in the CREATE DIRECTORY statement must exist on the graph server (PGX).

• The directory must be readable at the OS level by the graph server (PGX).

The preceding code grants the privileges on the directory to the GRAPH_DEVELOPER role.
However, you can also grant permissions to an individual user:

GRANT READ ON DIRECTORY graph_files TO <graph_user>;

You can then load a PgxFrame from a CSV file as shown in the following example:

Chapter 27
PgxFrames Tabular Data-Structure

27-127



• JShell

• Java

• Python

JShell

opg4j> import oracle.pgx.api.frames.schema.datatypes.*
opg4j> import static 
oracle.pgx.api.frames.schema.ColumnDescriptor.columnDescriptor

opg4j> var exampleFrame = session.readFrame().csv().
...>     name("transfersFrame").
...>     columns(
...>       columnDescriptor("from_acct_id", DataTypes.INTEGER_TYPE),
...>       columnDescriptor("to_acct_id", DataTypes.INTEGER_TYPE),
...>       columnDescriptor("amount", DataTypes.FLOAT_TYPE),
...>       columnDescriptor("description", DataTypes.STRING_TYPE)
...>     ).
...>     load("/tmp/Transfers.csv")

Java

import oracle.pgx.api.frames.schema.datatypes.*;
import static oracle.pgx.api.frames.schema.ColumnDescriptor.columnDescriptor;

PgxFrame exampleFrame = session.readFrame().csv().
    name("transfersFrame").
    columns(
      columnDescriptor("from_acct_id", DataTypes.INTEGER_TYPE),
      columnDescriptor("to_acct_id", DataTypes.INTEGER_TYPE),
      columnDescriptor("amount", DataTypes.FLOAT_TYPE),
      columnDescriptor("description", DataTypes.STRING_TYPE)
    ).
    load("/tmp/Transfers.csv");

Python

>>> example_frame = session.read_frame(). \
...     csv(). \
...     name('transfers_frame'). \
...     columns([('from_acct_id', 'INTEGER_TYPE'),
...              ('to_acct_id', 'INTEGER_TYPE'),
...              ('amount', 'FLOAT_TYPE'),
...              ('description', 'STRING_TYPE')]). \
...     load('/tmp/Transfers.csv')

Chapter 27
PgxFrames Tabular Data-Structure

27-128



27.13.15 Loading a PgxFrame from Client-Side Data
You can also load PgxFrame(s) directly from client-side data.
The following describes the steps to load a PgxFrame from client-side data:

1. Create a Session and an Analyst:

See step-1 in Loading a PgxFrame from a Database for the code examples.

2. Define a frame schema to load a PgxFrame from client side data. For example, the
following shows a frame schema defined with various data types:

• JShell

• Java

• Python

JShell

opg4j> var exampleFrameSchema = List.of(
    columnDescriptor("name", DataTypes.STRING_TYPE),
    columnDescriptor("age", DataTypes.INTEGER_TYPE),
    columnDescriptor("salary", DataTypes.DOUBLE_TYPE),
    columnDescriptor("married", DataTypes.BOOLEAN_TYPE),
    columnDescriptor("tax_rate", DataTypes.FLOAT_TYPE),
    columnDescriptor("random", DataTypes.LONG_TYPE),
    columnDescriptor("date_of_birth", DataTypes.LOCAL_DATE_TYPE)
)

Java

List<ColumnDescriptor> exampleFrameSchema = Arrays.asList(
    columnDescriptor("name", DataTypes.STRING_TYPE), 
    columnDescriptor("age", DataTypes.INTEGER_TYPE),
    columnDescriptor("salary", DataTypes.DOUBLE_TYPE), 
    columnDescriptor("married", DataTypes.BOOLEAN_TYPE),
    columnDescriptor("tax_rate", DataTypes.FLOAT_TYPE), 
    columnDescriptor("random", DataTypes.LONG_TYPE),
    columnDescriptor("date_of_birth", DataTypes.LOCAL_DATE_TYPE)
);

Python

example_frame_schema = [
    ("name", "STRING_TYPE"),
    ("age", "INTEGER_TYPE"),
    ("salary", "DOUBLE_TYPE"),
    ("married", "BOOLEAN_TYPE"),
    ("tax_rate", "FLOAT_TYPE"),
    ("random", "LONG_TYPE"),

Chapter 27
PgxFrames Tabular Data-Structure

27-129



    ("date_of_birth", "LOCAL_DATE_TYPE")
]

3. Define data as per the schema.

• JShell

• Java

• Python

JShell

opg4j> Map<String, Iterable<?>> exampleFrameData = Map.of(
    "name", Arrays.asList("Alice", "Bob", "Charlie"), 
    "age", Arrays.asList(25, 27, 29),
    "salary", Arrays.asList(10000.0, 15000.0, 20000.0),
    "married", Arrays.asList(false, false, true),
    "tax_rate", Arrays.asList(0.21, 0.26, 0.32),
    "random", Arrays.asList(2394293898324L, 45640604960495L, 
12312323409087654L),
    "date_of_birth", Arrays.asList(
        LocalDate.of(1990, 9, 15),
        LocalDate.of(1991, 11, 4),
        LocalDate.of(1993, 10, 4)
    )
)

Java

Map<String, Iterable<?>> exampleFrameData = new HashMap<>();
exampleFrameData.put("name", Arrays.asList("Alice", "Bob", "Charlie"));
exampleFrameData.put("age", Arrays.asList(25, 27, 29));
exampleFrameData.put("salary", Arrays.asList(10000.0, 15000.0, 20000.0));
exampleFrameData.put("married", Arrays.asList(false, false, true));
exampleFrameData.put("tax_rate", Arrays.asList(0.21, 0.26, 0.32));
exampleFrameData.put("random", Arrays.asList(2394293898324L, 
45640604960495L, 12312323409087654L));
exampleFrameData.put("date_of_birth",
    Arrays.asList(LocalDate.of(1990, 9, 15),
        LocalDate.of(1991, 11, 4),
        LocalDate.of(1993, 10, 4)
    )
);

Python

from datetime import date

example_frame_data = {

Chapter 27
PgxFrames Tabular Data-Structure

27-130



    "name": ["Alice", "Bob", "Charlie"],
    "age": [25, 27, 29],
    "salary": [10000.0, 15000.0, 20000.0],
    "married": [False, False, True],
    "tax_rate": [0.21, 0.26, 0.32],
    "random": [2394293898324, 45640604960495, 12312323409087654],
    "date_of_birth": [date(1990, 9, 15),
                      date(1991, 11, 4),
                      date(1993, 10, 4)]
}

4. Load the frame as shown:

• JShell

• Java

• Python

JShell

opg4j> var exampleFrame = session.createFrame(exampleFrameSchema, 
exampleFrameData, "example frame")

Java

PgxFrame exampleFrame = session.createFrame(exampleFrameSchema, 
exampleFrameData, "example frame");

Python

example_frame=session.create_frame(example_frame_schema,example_frame_data,
'example frame')

5. You can also load the frame incrementally as you receive more data:

• JShell

• Java

• Python

Chapter 27
PgxFrames Tabular Data-Structure

27-131



JShell

opg4j> var exampleFrameBuilder = 
session.createFrameBuilder(exampleFrameSchema);
opg4j> exampleFrameBuilder.addRows(exampleFrameData)
opg4j> Map<String, Iterable<?>> exampleFrameDataPart2 = Map.of(
    "name", Arrays.asList("Dave"),
    "age", Arrays.asList(26),
    "salary", Arrays.asList(18000.0),
    "married", Arrays.asList(true),
    "tax_rate", Arrays.asList(0.30),
    "random", Arrays.asList(456783423423L),
    "date_of_birth", Arrays.asList(LocalDate.of(1989, 9, 15))
)
opg4j> exampleFrameBuilder.addRows(exampleFrameDataPart2)
opg4j> var exampleFrame = exampleFrameBuilder.build("example frame")

Java

PgxFrameBuilder exampleFrameBuilder = 
session.createFrameBuilder(exampleFrameSchema);
exampleFrameBuilder.addRows(exampleFrameData);
Map<String, Iterable<?>> exampleFrameDataPart2 = new HashMap<>();
exampleFrameDataPart2.put("name", Arrays.asList("Dave"));
exampleFrameDataPart2.put("age", Arrays.asList(26));
exampleFrameDataPart2.put("salary", Arrays.asList(18000.0));
exampleFrameDataPart2.put("married", Arrays.asList(true));
exampleFrameDataPart2.put("tax_rate", Arrays.asList(0.30));
exampleFrameDataPart2.put("random", Arrays.asList(456783423423L));
exampleFrameDataPart2.put("date_of_birth",
    Arrays.asList(LocalDate.of(1989, 9, 15))
);
exampleFrameBuilder.addRows(exampleFrameDataPart2);
PgxFrame exampleFrame = exampleFrameBuilder.build("example frame");

Python

example_frame_builder = session.create_frame_builder(example_frame_schema)
example_frame_builder.add_rows(example_frame_data)
example_frame_data_part_2 = {
    "name": ["Dave"],
    "age": [26],
    "salary": [18000.0],
    "married": [True],
    "tax_rate": [0.30],
    "random": [456783423423],
    "date_of_birth": [date(1989, 9, 15)]
}
example_frame_builder.add_rows(example_frame_data_part_2)
example_frame = example_frame_builder.build("example frame")

Chapter 27
PgxFrames Tabular Data-Structure

27-132



6. Finally, you can also load a frame from a Pandas dataframe in Python as shown:

import pandas as pd
example_pandas_dataframe = pd.DataFrame(data=example_frame_data)
example_frame = session.pandas_to_pgx_frame(example_pandas_dataframe, 
"example frame")

You can also create a graph from the PgxFrame(s) . See Creating a Graph from Multiple
PgxFrame Objects for more information.

27.13.16 Creating a Graph from Multiple PgxFrame Objects
You can create a PgxGraph with vertex PgxFrame(s) and edge PgxFrame(s).

Consider the following PgxFrame objects:

people
+--------------+
| id | name    |
+--------------+
| 1  | Alice   |
| 2  | Bob     |
| 3  | Charlie |
+--------------+

houses
+---------------------------+
| identification | location |
+---------------------------+
| 1              | Road 1   |
| 2              | Street 5 |
| 3              | Avenue 4 |
+---------------------------+

knows
+-----------+
| src | dst |
+-----------+
| 1   | 1   |
| 2   | 3   |
| 3   | 2   |
+-----------+

lives
+----------------------+
| source | destination |
+----------------------+
| 1      | 2           |
| 2      | 1           |
| 3      | 3           |
+----------------------+

You can now create a PgxGraph as shown in the following examples:

Chapter 27
PgxFrames Tabular Data-Structure

27-133



• JShell

• Java

• Python

JShell

opg4j> var graphFromFramesCreator = session.createGraphFromFrames("example 
graph")
opg4j> graphFromFramesCreator.vertexProvider("people", people).label("people")
opg4j> graphFromFramesCreator.vertexProvider("houses", 
houses).vertexKeyColumn("identification")
opg4j> graphFromFramesCreator.edgeProvider("knows", "people", "people", 
knows).edgeKeyColumn("identifier")
opg4j> var edge_provider = graphFromFramesCreator.edgeProvider("lives", 
"people", "houses", lives)
opg4j> edge_provider.edgeKeyColumn("id")
opg4j> edge_provider.sourceVertexKeyColumn("source")
opg4j> edge_provider.destinationVertexKeyColumn("destination")
opg4j> edge_provider.label("lives")
opg4j> graphFromFramesCreator.partitioned(true)
opg4j> graphFromFramesCreator.vertexIdStrategy(IdStrategy.PARTITIONED_IDS)
opg4j> graphFromFramesCreator.vertexIdStrategy(IdStrategy.KEYS_AS_IDS)
opg4j> var graph = graphFromFramesCreator.create()

Java

PgxGraphFromFramesCreator graphFromFramesCreator = 
session.createGraphFromFrames("example graph");
graphFromFramesCreator.vertexProvider("people", people).label("people");
graphFromFramesCreator.vertexProvider("houses", 
houses).vertexKeyColumn("identification");
graphFromFramesCreator.edgeProvider("knows", "people", "people", 
knows).edgeKeyColumn("identifier");
PgxEdgeProviderFromFramesCreator edgeProvider = 
graphFromFramesCreator.edgeProvider("lives", "people", "houses", lives);
edgeProvider.edgeKeyColumn("id");
edgeProvider.sourceVertexKeyColumn("source");
edgeProvider.destinationVertexKeyColumn("destination");
edgeProvider.label("lives");
graphFromFramesCreator.partitioned(true);
graphFromFramesCreator.vertexIdStrategy(IdStrategy.PARTITIONED_IDS);
graphFromFramesCreator.edgeIdStrategy(IdStrategy.KEYS_AS_IDS);
PgxGraph graph = graphFromFramesCreator.create();

Python

vertex_providers_from_frames = [
    session.vertex_provider_from_frame("person", 
                                       people,
                                       vertex_key_column="id",

Chapter 27
PgxFrames Tabular Data-Structure

27-134



                                       label="people"),
    session.vertex_provider_from_frame("house", 
                                       frame = houses, 
                                       vertex_key_column = "identification")
]
edge_providers_from_frames = [
    session.edge_provider_from_frame("person_knows_person", 
                                     source_provider = "person", 
                                     destination_provider = "person", 
                                     frame = knows,
                                     source_vertex_column="src",
                                     destination_vertex_column="dst",
                                     edge_key_column="identifier"),
    session.edge_provider_from_frame("person_lives_at_house", 
                                     source_provider = "person", 
                                     destination_provider = "house", 
                                     frame = lives, 
                                     source_vertex_column="source", 
                                     destination_vertex_column="destination",
                                     edge_key_column="id",
                                     label="lives")
]
graph = session.graph_from_frames("example graph", 
          vertex_providers_from_frames,
          edge_providers_from_frames,
          partitioned=True,
          vertex_id_strategy="partitioned_ids",
          edge_id_strategy="keys_as_ids"
)

Chapter 27
PgxFrames Tabular Data-Structure

27-135



28
Working with Files Using the Graph Server
(PGX)

This chapter describes in detail about working with different file formats to perform various
actions like loading, storing, or exporting a graph using the Graph Server (PGX).

In order to read or write files, you need to explicitly authorize access to the corresponding
directories by defining a directory object pointing to the directory (on the graph server) that
contains the files to read or write.

CREATE OR REPLACE DIRECTORY graph_files AS '/data/graphs/my_graphs';
GRANT READ, WRITE ON DIRECTORY graph_files TO GRAPH_DEVELOPER;

Also, note the following:

• The directory in the CREATE DIRECTORY statement must exist on the graph server (PGX).

• The directory must be readable (and/or writable) at the OS level by the graph server
(PGX).

The preceding code grants the privileges on the directory to the GRAPH_DEVELOPER role.
However, you can also grant permissions to an individual user:

GRANT READ ON DIRECTORY graph_files TO <graph_user>;

• Loading Graph Data from Files

• Loading Graph Data in Parallel from Multiple Files

• Exporting Graphs Into a File

• Exporting a Graph into Multiple Files

28.1 Loading Graph Data from Files
You can load graph data from files by either of the two ways:

• using the header format specified in the files

• by directly calling the graph builder API

Creating a graph using file header format

The graph server (PGX) uses the header of the files to determine the name and types of the
properties to load. It also infers the column to be used as vertex ID, the columns that indicate
the source and destination vertex ID for edges, and the column to be loaded as vertex or edge
label.

Creating a graph using graph builder API

You can also use PgxSession.readGraphFiles() to load the graph. This method takes the following
three arguments:

28-1

https://docs.oracle.com/en/database/oracle/property-graph/21.1/spgjv/oracle/pgx/api/PgxSession.html#readGraphFiles_java_util_List_


• path to the vertex file

• path to the edge file

• name of the graph to be created

• JShell

• Java

• Python

JShell

opg4j> var loadedGraph = session.readGraphFiles("<path/vertices.csv>", "<path/
edges.csv>", "<graph_name>")

Java

import oracle.pgx.api.PgxSession;
import oracle.pgx.api.PgxGraph;

PgxSession session = Pgx.createSession("NewSession");
PgxGraph loadedGraph = session.readGraphFiles("<path/vertices.csv>", "<path/
edges.csv>", "<graph_name>");

Python

session = pypgx.get_session(session_name="<session_name>")
loaded_graph = session.read_graph_files("<path/vertices.csv>", "<path/
edges.csv>", "<graph_name>")

The graph server (PGX) supports loading graph data from files for the following data formats

• Plain Text Formats

• XML File Formats

• Binary File Formats

• Graph Configuration for Loading from File

• Specifying the File Path

• Supported File Access Protocols

• Plain Text Formats

• XML File Formats

• Binary File Formats

Chapter 28
Loading Graph Data from Files

28-2



28.1.1 Graph Configuration for Loading from File
For graphs in the CSV format, the columns used to specify the key column, source column,
destination column (for partitioned graphs) need to be either all specified, or none. If none are
specified, the graph server (PGX) assumes the key column is the first (for vertex files) or
missing (for edge files), followed by source and destination column (for edge files), and then by
the property columns according to their order in the graph configuration.

Partitioned Graphs

In order to load a partitioned graph from supported files, you must set the following additional
graph configuration fields.

Table 28-1    Loading a Partitioned Graph From File - Additional Graph Configuration
Options

Field Type Description Default

format enum[pgb,
csv, rdbms,
es]

Provider format. required

name string Entity provider name. required

attributes object Additional attributes needed to read/write the
graph data.

null

destination_vert
ex_provider

string Name of the destination vertex provider to be
used for this edge provider.

null

detect_gzip boolean Enable or disable automatic gzip compression
detection when loading graphs.

true

error_handling object Error handling configuration. null
has_keys boolean Indicates if the provided entities data have

keys.
true

header boolean First line of file is meant for headers, such as
EdgeId, SourceId, DestId, EdgeProp1,
and EdgeProp2

false

key_type enum[int,
integer,
long, string]

Type of the keys. long

keystore_alias string Alias to the keystore to use when connecting
to database.

null

label string Label for the entities loaded from this provider. null
loading object Loading specific configuration. null
local_date_forma
t

array of
string

Array of local_date formats to use when
loading and storing local_date properties.
See DateTimeFormatter for a documentation
of the format string.

[]

password string Password to use when connecting to
database.

null

point2d string Longitude and latitude as floating point values
separated by a space.

0.0
0.0

props array of
object

Specifies the properties associated with this
entity provider.

[]

Chapter 28
Loading Graph Data from Files

28-3

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html


Table 28-1    (Cont.) Loading a Partitioned Graph From File - Additional Graph
Configuration Options

Field Type Description Default

separator string A series of single-character separators for
tokenizing. The characters ", {, }, and \n
cannot be used as separators. Default value
is , for CSV files, and \t for other formats.
The first character will be used as a separator
when storing.

null

source_vertex_pr
ovider

string Name of the source vertex provider to be
used for this edge provider.

null

storing object Storing specific configuration. null
time_format array of

string
The time format to use when loading and
storing time properties. See 
DateTimeFormatter for a documentation of
the format string.

[]

time_with_timezo
ne_format

array of
string

The time with timezone format to use when
loading and storing time with timezone
properties. See DateTimeFormatter for a
documentation of the format string.

[]

timestamp_format array of
string

The timestamp format to use when loading
and storing timestamp properties. See 
DateTimeFormatter for a documentation of
the format string.

[]

timestamp_with_t
imezone_format

array of
string

The timestamp with timezone format to use
when loading and storing timestamp with
timezone properties. See DateTimeFormatter
for a documentation of the format string.

[]

uris array of
string

List of unified resource identifiers. []

vector_component
_delimiter

character Delimiter for the different components of
vector properties.

;

The key column, source column, destination column can be configured with the following CSV
specific fields:

Table 28-2    CSV Specific Options for Partitioned Graphs

Field Type Description Default

format enum[pgb, csv,
rdbms, es]

Provider format. required

name string Entity provider name. required

attributes object Additional attributes
needed to read/write the
graph data.

null

destination_colu
mn

value Name or index (starting
from 1) of column
corresponding to edge
destination (for CSV
format only).

null

Chapter 28
Loading Graph Data from Files

28-4

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html


Table 28-2    (Cont.) CSV Specific Options for Partitioned Graphs

Field Type Description Default

destination_vert
ex_provider

string Name of the destination
vertex provider to be
used for this edge
provider.

null

detect_gzip boolean Enable or disable
automatic gzip
compression detection
when loading graphs.

true

error_handling object Error handling
configuration.

null

has_keys boolean Indicates if the provided
entities data have keys.

true

header boolean First line of file is meant
for headers, such as
EdgeId, SourceId,
DestId, EdgeProp1,
EdgeProp2.

false

key_column value Name or index (starting
from 1) of column
corresponding to keys
(for CSV format only)

null

key_type enum[int,
integer, long,
string]

Type of the keys. long

keystore_alias string Alias to the keystore to
use when connecting to
database.

null

label string Label for the entities
loaded from this
provider.

null

loading object Loading-specific
configuration.

null

local_date_forma
t

array of string Array of local_date
formats to use when
loading and storing
local_date properties.
See DateTimeFormatter
for a documentation of
the format string.

[]

password string Password to use when
connecting to database.

null

point2d string Longitude and latitude
as floating point values
separated by a space.

0.0 0.0

props array of object Specifies the properties
associated with this
entity provider.

[]

Chapter 28
Loading Graph Data from Files

28-5

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html


Table 28-2    (Cont.) CSV Specific Options for Partitioned Graphs

Field Type Description Default

separator string A series of single-
character separators for
tokenizing. The
characters , {, }, and
\n cannot be used as
separators. Default value
is , for CSV files, and \t
for other formats. The
first character will be
used as a separator
when storing.

null

source_column value Name or index (starting
from 1) of column
corresponding to edge
source (for CSV format
only).

null

source_vertex_pr
ovider

string Name of the source
vertex provider to be
used for this edge
provider.

null

storing object Storing-specific
configuration.

null

time_format array of string The time format to use
when loading and
storing time properties.
See DateTimeFormatter
for a documentation of
the format string.

[]

time_with_timezo
ne_format

array of string The time with timezone
format to use when
loading and storing time
with timezone properties.
See DateTimeFormatter
for a documentation of
the format string.

[]

timestamp_format array of string The timestamp format to
use when loading and
storing timestamp
properties. See 
DateTimeFormatter for a
documentation of the
format string.

[]

timestamp_with_t
imezone_format

array of string The timestamp with
timezone format to use
when loading and
storing timestamp with
timezone properties. See 
DateTimeFormatter for a
documentation of the
format string.

[]

vector_component
_delimiter

character Delimiter for the different
components of vector
properties.

;

Chapter 28
Loading Graph Data from Files

28-6

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html


28.1.2 Specifying the File Path
The following examples show how to specify the file path for various file formats.

For formats that contain vertices and edges specified in one file (for example, EdgeList), use
uris as shown in the following code:

{"uris":["path/to/file.format"]}

For formats that require separate files for edges and vertices (for example, FlatFile), use
vertex_uris and edge_uris as shown in the following code:

{"vertex_uris":["vertices1.format","vertices2.format"],"edge_uris":
["edges1.format","edges2.format"]}

PGX will parse graphs in most of the plain text formats in parallel if the graph data is split into
multiple files, as shown in the following code:

{"uris":["file1.format","file2.format",...,"fileN.format"]}

28.1.3 Supported File Access Protocols
The graph server (PGX) supports loading from graph configuration files and graph data files
over various protocols and virtual file systems. The type of file system or protocol is determined
by the scheme of the uniform resource identifier (URI):

• local file system (file:) - this is also the default if the given URI does not contain any
scheme

• classpath (classpath: or res:)

• HTTPS (https:)

• FTPS (ftps:)

• various archive formats (zip:, jar:, tar:, tgz:, tbz2:, gz: and bz2:). The URI format is
scheme://arch-file-uri[!absolute-path] (if you would like to use the ! as a literal file-
name character it must be escaped using %21).
For example, jar:../lib/classes.jar!/META-INF/graph.json.
Paths may be nested as in tar:gz:https://anyhost/dir/mytar.tar.gz!/mytar.tar!/
path/in/tar/graph.data.

Note:

Relative paths are always resolved relative to the parent directory of the configuration
file.

28.1.4 Plain Text Formats
The graph server (PGX) supports the following plain-text formats:

Chapter 28
Loading Graph Data from Files

28-7



• Comma-Separated Values (CSV)

• Adjacency List (ADJ_LIST)

• Edge List (EDGE_LIST)

• Two Tables (TWO_TABLES)

• Flat File (FLAT_FILE)

Note that loading graphs from files encoded in UTF-8, without Byte Order Mark (BOM), is only
supported. Therefore, to successfully load graph from files, ensure text-based provider files are
UTF-8 encoded without a BOM.

Parsing of Vertices

PGX supports three types of vertex identifies (id): integer, long and string. The type defaults
to integer, but can be configured through the vertex_id_type option in the graph
configuration.

Parsing of Edges

Of the various formats and protocols supported by graph server (PGX), only CSV and flat file
parsing support edge identifiers. For all other data sources, the id of an edge is PGX's internal
id, which is an integer from zero to num_edges - 1.

Parsing of Properties

string properties, spatial properties (currently only point2d) and temporal properties (date,
local_date, time, timestamp, time_with_timezone and timestamp_with_timezone) must be
quoted ("<string>") only if they contain a separator character (usually , for CSV and ' ' for
Edge List and Adjacency List) or if they contain " or \n.

date properties are parsed using Java's SimpleDateFormat utility, instantiated with the format
string yyyy-MM-dd HH:mm:ss unless specified otherwise in the graph configuration. All other
types of temporal properties are parsed using Java's DateTimeFormatter utility.

point2d can be specified by its longitude followed by its latitude, separated by a space. Both
longitude and latitude are doubles. For example, "-74.0445 40.6892" is the representation of a
point2d instance representing the location of the Statue of Liberty.

Boolean values are interpreted as true if the value is true (ignoring case), Y (ignoring case) or
1, false otherwise. The suggested notation for false is false (ignoring case), N (ignoring case)
or 0. All other types are parsed using the parseXXX() functions of its corresponding Java type,
for example, Integer.parseInt(...) for integer types.

Vector properties are supported in the Adjacency List (ADJ_LIST), Comma-Separated Values
(CSV), Edge List (EDGE_LIST), and Two Tables text (TWO_TABLES) formats. Vector
properties with vector components of type integer, long, float and double can be loaded
from these formats. In order to specify that a vertex or edge property is a vector property, the
dimension field of the graph property configuration must be set to the dimension of the vector
and be a strictly positive integer value. A vector value is represented in the supported text
formats by the list of the vector components values separated by the vector component
delimiter. By default the vector component delimiter is ;, but this delimiter can be changed by
changing the vector_component_delimiter graph configuration entry. Therefore a 3-
dimensional vector of doubles could for example look like 0.1;0.0004;3.14 in the text file if the
vector component delimiter is ;.

Chapter 28
Loading Graph Data from Files

28-8



Separators

When using single file formats, IDs and properties are separated with tab or one single space
("\t ") by default, for multiple file formats comma (",") is used instead. However, PGX allows
to configure the separator string.

Parallel Loading

The following formats support parallel loading from multiple files:

• CSV (specify multiple files in vertex_uris and/or edge_uris)

• Adjacency List (specify multiple files in uris)

• Edge List (specify multiple files in uris)

• Two Tables (specify multiple files in vertex_uris and/or edge_uris)

• Flat File (specify multiple files in vertex_uris and/or edge_uris)

Legend

The following abbreviations are used to specify text formats:

• V = Vertex Key

• VG = Neighbor Vertex

• VL = Vertex Labels

• VP = Vertex Property

• VPK = Vertex Property Key

• VPT = Vertex Property Type

• EL = Edge Label

• EP = Edge Property

• EPK = Edge Property Key

• EPT = Edge Property Type

For example <V-2, VG-4> or <V-2, VG-4> denotes the 4th neighbor of the 2nd vertex.

• Comma-Separated Values (CSV)

• Adjacency List (ADJ_LIST)

• Edge List (EDGE_LIST)

• Two Tables (TWO_TABLES)

28.1.4.1 Comma-Separated Values (CSV)
The CSV format is a text file format with vertices and edges stored in different files. Each line
of the files represents a vertex or an edge. The vertex key and labels, the edge key, source,
destination and label, and the attached properties are stored in the order specified by the file
header (first line) and the configuration.

A graph with V vertices, having N vertex properties and K neighbors each, and E edges,
having M edge properties, would be represented in CSV as shown:

vertices.csv

Chapter 28
Loading Graph Data from Files

28-9



<V-1>,<VL-1>,<V-1, NP-1>,...,<V-1, NP-N>
<V-2>,<VL-2>,<V-2, NP-1>,...,<V-2, NP-N>
...
<V-V>,<VL-N>,<V-V, NP-1>,...,<V-V, NP-N>

edges.csv

<E-1>,<V-1>,<V-1, VG-1>,<EL-1>,<E-1, EP-1>,...,<E-1, EP-M>
...
<E-K>,<V-1>,<V-1, VG-K>,<EL-N>,<E-K, EP-1>,...,<E-K, EP-M>
<E-K+1>,<V-2>,<V-2, VG-1>,<EL-N+1>,<E-K+1, EP-1>,...,<E-K+1, EP-M>
...
<E-V*K>,<V-V>,<V-V, VG-K>,<EL-V*K>,<E-V*K, EP-1>,...,<E-V*K, EP-M>

Example 28-1    Loading graph from a CSV file with header details

The following examples shows a graph configuration file for loading a graph with two vertices
and two edges:

vertices.csv

key,integer_prop,string_prop
1,33,"Alice"
2,42,"Bob"

edges.csv

source,dest,integer_prop,string_prop
1,2,0,"baz"
2,2,-12,"bat"

The corresponding graph configuration file is as shown:

{
    "format": "csv",
    "header": true,
    "vertex_id_column": "key",
    "edge_source_column": "source",
    "edge_destination_column": "dest",
    "vertex_uris": ["vertices.csv"],
    "edge_uris": ["edges.csv"],
    "vertex_props": [
        {
            "name": "integer_prop",
            "type": "integer"
        },
        {
            "name": "string_prop",
            "type": "string"
        }
    ],
    "edge_props": [
        {
            "name": "integer_prop",
            "type": "integer"
        },

Chapter 28
Loading Graph Data from Files

28-10



        {
            "name": "string_prop",
            "type": "string"
        }
    ]
}

Example 28-2    Loading graph from a CSV file without header details

The following examples shows a graph configuration file for loading a graph with two vertices
and two edges:

vertices.csv

1,33,"Alice"
2,42,"Bob"

edges.csv

1,2,0,"baz"
2,2,-12,"bat"

The corresponding graph configuration file is as shown:

Note:

The column indices are given in place of the column names.

{
    "format": "csv",
    "header": false,
    "vertex_id_column": 1,
    "edge_source_column": 1,
    "edge_destination_column": 2,
    "vertex_uris": ["vertices.csv"],
    "edge_uris": ["edges.csv"],
    "vertex_props": [
        {
            "name": "integer_prop",
            "type": "integer",
            "column": 2
        },
        {
            "name": "string_prop",
            "type": "string",
            "column": 3
        }
    ],
    "edge_props": [
        {
            "name": "integer_prop",
            "type": "integer",

Chapter 28
Loading Graph Data from Files

28-11



            "column": 3
        },
        {
            "name": "string_prop",
            "type": "string",
            "column": 4
        }
    ]
}

If no column indices are set in the configuration file, the columns are assumed to be in the
following order:

• For vertex files: - Vertex ID - Vertex labels (if present) - Vertex properties in the order they
are declared in the configuration

• For edge files: - Edge ID (if present) - Edge source - Edge destination - Edge label (if
present) - Edge properties in the order they are declared in the configuration

Therefore the earlier configuration is equivalent to:

{
    "format": "csv",
    "header": false,
    "vertex_uris": ["vertices.csv"],
    "edge_uris": ["edges.csv"],
    "vertex_props": [
        {
            "name": "integer_prop",
            "type": "integer"
        },
        {
            "name": "string_prop",
            "type": "string"
        }
    ],
    "edge_props": [
        {
            "name": "integer_prop",
            "type": "integer"
        },
        {
            "name": "string_prop",
            "type": "string"
        }
    ]
}

28.1.4.2 Adjacency List (ADJ_LIST)
The Adjacency List format is a text file format containing a list of neighbors from a vertex, per
line. The format is extended to encode properties. The following shows a graph with V vertices,
having N vertex properties and M edge properties:

<V-1> <V-1, VP-1> ... <V-1, VP-N> <V-1, VG-1> <EP-1> ... <EP-M> <V-1, VG-2> <EP-1> ... 
<EP-M>
<V-2> <V-2, VP-1> ... <V-2, VP-N> <V-2, VG-1> <EP-1> ... <EP-M> <V-2, VG-2> <EP-1> ... 

Chapter 28
Loading Graph Data from Files

28-12



<EP-M>
...
<V-V> <V-V, VP-1> ... <V-V, VP-N> <V-V, VG-1> <EP-1> ... <EP-M> <V-V, VG-2> <EP-1> ... 
<EP-M>

Note:

Trailing separators will be considered as errors. For example, if whitespace is used to
separate the properties, any trailing whitespace will cause an exception to be raised.

Example 28-3    Graph in Adjacency List Format

This example shows a graph with 4 vertices (1, 2, 3 and 4), each having a double and a string
property, and 3 edges, each having a boolean and a date property, encoded in Adjacency List
format:

1 8.0 "foo"
2 4.3 "bar" 1 false "1985-10-18 10:00:00"
3 6.1 "bax" 2 true "1961-12-30 14:45:14" 4 false "2001-01-15 07:00:43"
4 17.78 "f00"

Note:

ADJ_LIST is more space efficient than EDGE_LIST. This is because vertices are first
defined and then the edges are being created, indicating that we are repeating each
vertex at least once.

28.1.4.3 Edge List (EDGE_LIST)
The Edge List format is a text file format starting with a section with one vertex per line,
followed by a section with one edge per line. If a vertex does not have any labels or properties,
it is possible to omit the vertex in the first section, but still specify edges for the vertex in the
second section.

EdgeList      := {Vertex '\n'}* '\n' {Edge '\n'}*

Vertex        := VertexId '*' VertexLabels? PropertyValue*
VertexId      := Integer | Long | String
VertexLabels  := '{' String* '}'

Edge          := SrcVertex DstVertex EdgeLabel? PropertyValue*
SrcVertex     := VertexId
DstVertex     := VertexId
EdgeLabel     := String

PropertyValue := Integer | Long | Double | Float | Boolean | String | Date

The vertices start with an identifier (VertexId), followed by a *, an optional set of vertex labels
(VertexLabels?) and the vertex properties (PropertyValue*). A vertex identifier is either an
Integer, a Long, or a String. Furthermore, vertex labels are zero or more Strings between curly
braces ('{' String* '}').

Chapter 28
Loading Graph Data from Files

28-13



The edges start with source and destination vertex identifiers (SrcVertex DstVertex), followed
by optional edge label (EdgeLabel?) and the edge properties (PropertyValue*). The edge label
is a String.

Example 28-4    Graph in Edge List format

This example shows a graph with two vertices and two edges, with labels and properties:

1 * { "Person" "Male" } "Mario" 15
2 * { "Person" "Male" } "Luigi" 14
1 2 "likes" 3.5
2 1 "likes" 2.1

The two vertices (lines 1-2) have identifiers 1 and 2 and both have the labels "Person" and
"Male", a string property ("Mario" and "Luigi") and an integer property (15 and 14). There is an
edge from vertex 1 to vertex 2 (line 3) with label "likes" and a double property with value 3.5,
and another edge from vertex 2 to vertex 1 with label "likes" and a double property with value
2.1.

The following shows the corresponding graph configuration:

{
  "format":"edge_list",
  "uri":"example.edgelist",
  "vertex_id_type":"long",
  "vertex_labels":true,
  "edge_label":true,
  "vertex_props":[
    {
      "name":"name",
      "type":"string"
    },
    {
      "name":"age",
      "type":"int"
    }
  ],
  "edge_props":[
    {
      "name":"rating",
      "type":"double"
    }
  ],
  "loading_options": {
    "load_vertex_labels":true,
    "load_edge_label":true
  },
  "separator":" "
}

28.1.4.4 Two Tables (TWO_TABLES)
When configured to use file as datastore, the Two Tables format becomes a text file format
similar to the Edge List format, with the only difference that the vertices and edges are stored

Chapter 28
Loading Graph Data from Files

28-14



in two different files. The vertices file contains vertex IDs followed by vertex properties. The
edges file contains the source vertices and target vertices, followed by edge properties.

A graph with V vertices, having N vertex properties and M edge properties would be
represented in two files as shown in the following:

vertices.ttt:

<V-1>  <V-1, NP-1> ... <V-1, NP-N>
<V-2>  <V-2, NP-1> ... <V-2, NP-N>
...
<V-V> <V-V, NP-1> ... <V-V, NP-N>

edges.ttt:

<V-1> <V-1, VG-1> <EP-1> ... <EP-M>
<V-1> <V-1, VG-2> <EP-1> ... <EP-M>
...
<V-V> <V-V, VG-1> <EP-1> ... <EP-M>

Example 28-5    Graph in Two Tables Text format

The following example shows the graph of 4 vertices (1, 2, 3 and 4), each having a double and
a string property, and 3 edges, each having a boolean and a date property, encoded in Two
Tables Text format:

vertices.ttt:

1 8.0 "foo"
2 4.3 "bar"
3 6.1 "bax"
4 17.78 "f00"

edges.ttt:

2 1 false "1985-10-18 10:00:00"
3 2 true "1961-12-30 14:45:14"
3 4 false "2001-01-15 07:00:43"

Note:

If you are planning on storing big graphs you must consider Two Tables Text format in
order to save disk space.

28.1.5 XML File Formats
Graph ML

The graph server (PGX) supports loading graphs from files using the XML-based Graph ML
format. Graphs already in memory may also be exported into GraphML files. See GraphML
specification for a detailed description of the XML schema.

PGX GraphML Limitation

PGX does not support all features of the GraphML format. Some of the limitations are:

• If the graph is undirected (edgedefault="undirected"), then edge properties are not
supported

Chapter 28
Loading Graph Data from Files

28-15

http://graphml.graphdrawing.org/specification.html
http://graphml.graphdrawing.org/specification.html


• All vertices (edges) must have the same amount and type of vertex (edge) properties

• port, default, and hyperedge are not supported

Example 28-6    

The following example graph consists of 3 vertices and 3 edges. Each vertex has an integer
property named number and each edge has a string property named label. Note that the
edges are directed and that the strings for the property do not have to be put in (double)
quotation marks.

<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns">
    <key attr.name="number" attr.type="integer" for="node" id="number"/>
    <key attr.name="label" attr.type="string" for="edge" id="label"/>
    <graph edgedefault="directed">
        <node id="1">
            <data key="number">2</data>
        </node>
        <node id="2">
            <data key="number">45</data>
        </node>
        <node id="3">
            <data key="number">83</data>
        </node>
        <edge target="2" source="1">
            <data key="label">this graph</data>
        </edge>
        <edge source="3" target="2">
            <data key="label">forms a</data>
        </edge>
        <edge target="1" source="3">
            <data key="label">triangle</data>
        </edge>
    </graph>
</graphml>

Caution:

Due to the verbose nature of XML, the GraphML format comes with a large overhead
compared to other file-based graph formats. You must use a different format if you
want to consider the load or store performance and file size as important factors.

28.1.6 Binary File Formats
PGX Binary Format (PGB)

PGX binary format (.pgb) is the proprietary binary format for graph server (PGX), which allows
fast and efficient file processing. Fundamentally, the file is a binary dump of the graph and
property data. Bytes are written in network byte order (big endian).

Chapter 28
Loading Graph Data from Files

28-16



Type Encoding

Table 28-3    Type Encoding

Value Type Size in bytes

0 Boolean 1
1 Integer 4
2 Long 8
3 Float 4
4 Double 8
7 String varies

11 Vertex labels varies

13 Local date 4
14 Time 4
15 Timestamp 8
16 Time with time zone 8
17 Timestamp with time zone 12
18 Vector property variable: <sizeof component-

type> * <dimension>

File Layout

Table 28-4    File Layout

Size in bytes Description Require
d

Comment

4 magic word Yes 0x99191191
4 vertex size Yes Allowed values are 4 and 8.

4 edge size Yes Allowed values are 4 and 8.

<vertex size> number of vertices Yes

<edge size> number of edges Yes

<edge size> *
(<numVertices> + 1)

edge begin array Yes

<vertex size> *
<numEdges>

destination vertex array Yes

1 component bitmap Yes • 0x0001: node keys

• 0x0002: vertex labels

• 0x0004: edge label

• 0x0008: edge keys

• other bits: reserved

4 vertexKey type No Only present if component bitmap &
0x0001 == 0x0001. See Table 28-3 for
type encoding.

<vertex key layout> vertex keys No Only present if component bitmap &
0x0001 == 0x0001.

4 edgeKey type No Only present if component bitmap &
0x0008 == 0x0008. See table 
Table 28-3 for type encoding

Chapter 28
Loading Graph Data from Files

28-17



Table 28-4    (Cont.) File Layout

Size in bytes Description Require
d

Comment

<numEdges> * 8 edge keys No Only present if component bitmap &
0x0008 == 0x0008.

4 number of vertex
properties

Yes

<num vertex
properties> *
<property layout>

property data Yes See Table 28-10.

4 number of edge
properties

Yes

<num edge
properties> *
<property layout>

property data Y See Edge Property Layout.

<vertex labels
layout>

vertex labels No Only present if component bit & 0x0002
== 0x0002.

<edge labels
layout>

edge label No Only present if component bit & 0x0004
== 0x0004.

4 number of shared pools Yes

<shared pools size> shared pools No

<property names
size>

property names No Only present if component bit & 0x0010
== 0x0010. See Table 28-19.

Vertex Key Layout

The layout of vertex keys depends on the vertexKey type. PGB supports integer, long and
string vertex keys.

Table 28-5    Integer Vertex Keys

Size in bytes Description Require
d

Comment

<numVertices> * 4 key data Yes For each vertex, the corresponding
integer key value.

Table 28-6    Long Vertex Keys

Size in bytes Description Require
d

Comment

<numVertices> * 8 key data Yes For each vertex, the corresponding long
key value.

Table 28-7    String Vertex Keys

Size in bytes Description Require
d

Comment

4 compression scheme Yes reserved (must be 0)

Chapter 28
Loading Graph Data from Files

28-18



Table 28-7    (Cont.) String Vertex Keys

Size in bytes Description Require
d

Comment

8 property size Yes size of each element in bytes in the
following data

<number of keys> *
<string key element
layout>

string key data Yes content of the vertex keys (see 
Table 28-5)

Table 28-8    String Key Element Layout

Size in bytes Description Require
d

Comment

4 string length Yes length of the string in bytes

<string length> string key data Yes content of the string as bytes, No zero-
character

Property Layout

The following shows the special layout for string properties, and for vector properties:

Table 28-9    Primitive Type Layout

Size in bytes Description Require
d

Comment

4 property type Yes See Table 28-3 for type encoding.

8 property size Yes Size of the property data in bytes

<property size> property data Yes Stored as <numVertices/numEdges>
* <type size>

Table 28-10    Vector Property Layout

Size in bytes Description Comment

4 vector type mark Always equal to 18.

8 size of vector property
data and extra fields

dataSize = <sizeof component-type> *
<dimension> + 8 (The 8 extra bytes are for
the added following 2 extra fields in the vector
property header.)

4 vector component data
type

Valid types are integer, long, float, double.
Encoded with the value specified in Table 28-3.

4 vector dimension Number of components per vector value. Must
be greater than 0 to be a valid vector property.

dataSize - 8 data Stored as array of length * ` in which the
value of the j-th component of the
vector for the i-th entity is at
position i * + j`.

Chapter 28
Loading Graph Data from Files

28-19



Table 28-11    String Type Layout

Size in bytes Description Require
d

Comment

4 property type Yes Must be 7.

8 property size Yes Size of the following data in bytes.

1 reserved Yes Reserved (must be 0).

<dictionary layout> dictionary Yes String dictionary used in the property

<numVertices/
numEdges> * 8

property content Yes Content of the string property, stored as
IDs that refer to the strings in the
dictionary.

Table 28-12    String Dictionary Layout

Size in bytes Description Require
d

Comment

1 reserved Yes Reserved (must be 0).

8 number of strings Yes Number of strings in the following
dictionary.

<number of strings>
* <dictionary
element layout>

dictionary data Yes See Table 28-13.

Table 28-13    String Dictionary Element Layout

Size in bytes Description Require
d

Comment

8 string id Yes Unique ID of the string.

4 string length Yes Length of the string in bytes.

<string length> string data Yes Content of the string as bytes, No zero-
character

Vertex Labels Layout

Table 28-14    Vertex Labels Layout

Size in bytes Description Require
d

Comment

4 type Yes Must be 11.

8 size Yes Size of the following data in bytes.

<dictionary layout> dictionary Yes String dictionary used in the vertex
labels.

<numVertices + 1> *
8

string id begin array Yes <string ids> offset array for each
vertex.

8 number of string ids Yes The number of string ids.

<number of string
ids> * 8

string ids Yes Array of string ids in the string dictionary.

Chapter 28
Loading Graph Data from Files

28-20



Edge Label Layout

The edge label layout follows the string type layout.

Shared Pools Layout

Table 28-15    Shared Pools Layout

Size in bytes Description Require
d

Comment

1 type Yes 1: enum, 2: prefixed

Table 28-16    Type == Enum

Size in bytes Description Require
d

Comment

8 num strings Yes

<number of strings>
* <string table
layout>

dictionary data Yes See Table 28-18.

Table 28-17    Type == Prefix

Size in bytes Description Require
d

Comment

8 num prefixes Yes

<number of
prefixes> * <string
table layout>

dictionary data Yes See Table 28-18.

8 num suffixes Yes

<number of
suffixes> * <string
table layout>

dictionary data Yes See Table 28-18.

Table 28-18    String Table for Shared Pools

Size in bytes Description Require
d

Comment

8 string id Yes String can be literal (in case of enum) or
prefix/suffix (in case of prefix).

4 string length Yes

<string length> string data Yes

Chapter 28
Loading Graph Data from Files

28-21



Property Names Layout

Table 28-19    Property Names Layout

Size in bytes Description Require
d

Comment

8 size Yes String can be literal (in case of enum) or
prefix/suffix (in case of prefix).

<sum of size of
vertex property
names>

vertex property names No Follows the String Key Element Layout.
See Table 28-8.

<sum of size of
edge property
names>

edge property names No Follows the String Key Element Layout.
See Table 28-8.

28.2 Loading Graph Data in Parallel from Multiple Files
You can load a graph in parallel using multiple files.

The following example demonstrates how to load graph data from multiple files.

For example, consider a vertex file split into four partitions as shown:

vertex_file1

1,Color,1,red,,
2,Color,1,yellow,,

vertex_file2

3,Color,1,blue,,
4,Color,1,green,,

vertex_file3

5,Color,1,orange,,
6,Color,1,white,,

vertex_file4

7,Color,1,black,,

The edge file is split into two partitions as shown:

edge_file1

1,1,2,edge1,Weight,4,,1.0,

Chapter 28
Loading Graph Data in Parallel from Multiple Files

28-22



2,2,3,edge2,Weight,4,,2.0,
3,3,4,edge3,Weight,4,,3.0,

edge_file2

4,4,5,edge4,Weight,4,,4.0,
5,5,6,edge5,Weight,4,,5.0,
6,6,7,edge6,Weight,4,,6.0,

The following graph configuration can be used to load the graph data from four vertex files and
two edge files into the same graph. Note that all the uris are specified inside the JSON graph
configuration.

{
  "format": "flat_file",
  "vertex_uris": ["vertex_file1", "vertex_file2", "vertex_file3", 
"vertex_file4"],
  "edge_uris": ["edge_file1", "edge_file2"],
  "separator": ",",
  "edge_props": [
    {
      "name": "Weight",
      "type": "double"
    }
  ],
  "vertex_props": [
    {
      "name": "Color",
      "type": "string"
    }
  ]
}

You can also create a graph configuration with multiple file partitions using Java as shown:

FileGraphConfig config = GraphConfigBuilder
   .forFileFormat(Format.FLAT_FILE)
   .setSeparator(",")
   .addVertexUri("vertex_file1")
   .addVertexUri("vertex_file2")
   .addVertexUri("vertex_file3")
   .addVertexUri("vertex_file4")
   .addEdgeUri("edge_file1")
   .addEdgeUri("edge_file2")
   .addVertexProperty("Color", PropertyType.STRING)
   .addEdgeProperty("Weight", PropertyType.DOUBLE)
   .build();

Chapter 28
Loading Graph Data in Parallel from Multiple Files

28-23



Note:

The graph configuration in the preceding codes include one double edge property
named "Weight" and one string vertex property named "Color".

You can now load the graph data from the files as explained in Creating a graph using graph
builder API.

The graph server (PGX) will automatically load the graph in parallel, using one thread for each
file. This means that a graph can be loaded in parallel with as many threads as files are given
depending on the configured parallelism for the graph server (PGX) instance.

Note:

Since the graph config will be used for all of the specified files, it is crucial to use the
same format for all these files, that is, using the same separator, having the same
defined properties, complying with the same format specification.

28.3 Exporting Graphs Into a File
The graph server (PGX) allows the client to export a currently loaded graph into a file.

Using the store() method on any PgxGraph object, the client can specify which file format to
store the graph in. The client can also dynamically select the set of properties to be stored with
the graph, that is, not all the properties need to be exported. The client can specify a
CompressionScheme to use when storing as shown:

Table 28-20    Files CompressionScheme

CompressionScheme Supported Formats

NONE All formats

GZIP ADJ_LIST, EDGE_LIST, FLAT_FILE, TWO_TABLES
(text)

The client can export to multiple files as well.

When PGX exports the specified graph into a file, PGX also creates a graph config which the
client receives as return value. This is to help loading the created graph instance later.

When exporting graph data into multiple files a FileGraphStoringConfig can be used which
contains the following JSON fields:

Chapter 28
Exporting Graphs Into a File

28-24



Table 28-21    Graph Configuration when Exporting Graph into Multiple Files

Field Type Description Default

base_path string Base path to use for
storing a graph; file
paths will be constructed
using the following
format _._, that is,
parent_path/
my_graph_1.edges.

null

compression_sche
me

enum[none, gzip] The scheme to use for
compression, or none to
disable compression.

none

delimiter character Delimiter character used
as separator when
storing. The characters
", {, } and \n cannot be
used as delimiters.

null

edge_extension string The extension to use
when creating edge file
partitions.

edges

initial_partitio
n_index

integer The value used as initial
partition index, that is,
initial_partition_i
ndex=1024 ->
my_graph_1024.edges
,
my_graph_1025.edges
.

1

num_partitions integer The number of partitions
that should be created,
when exporting to
multiple files.

1

row_extension string The extension to use
when creating row file
partitions.

rows

vertex_extension string The extension to use
when creating vertex file
partitions.

nodes

• Exporting a Graph to Disk

28.3.1 Exporting a Graph to Disk
You can save a graph loaded into memory to the disk in various formats. Therefore you can
make sub-graphs and graph data computed at run time through analytics persistent, for future
use. The resulting file can be used later as input for the graph server (PGX).

Consider the following example where a graph is loaded into memory and PageRank analysis
is executed on the graph.

• JShell

Chapter 28
Exporting Graphs Into a File

28-25



• Java

• Python

JShell

var g = session.readGraphWithProperties("<path_to_json>")
var rank = analyst.pagerank(g, 0.001, 0.85, 100)

Java

PgxGraph g = session.readGraphWithProperties("<path_to_json>");
Analyst analyst = session.createAnalyst();
VertexProperty<Integer, Double> rank = analyst.pagerank(g, 0.001, 0.85, 100);

Python

g = session.read_graph_with_properties("<path_to_json>")
analyst = session.create_analyst()
rank = analyst.pagerank(g, 0.001, 0.85, 100)

You can now store the graph, together with the result of the PageRank analysis and all original
edge properties, as a file in edge-list format, on disk. When a graph is stored, you need to
specify the graph format, a path where the file should be stored, the properties to store and a
flag that specifies whether or not a file should be overwritten should a file with the same name
already exist.

• JShell

• Java

• Python

JShell

var config = g.store(Format.EDGE_LIST, "<file-path>", List.of(rank), 
EdgeProperty.ALL, false)

Java

var config = g.store(Format.EDGE_LIST, "<file-path>", List.of(rank), 
EdgeProperty.ALL, false);

Python

config = g.store('edge_list', "<file-path>", vertex_properties = [rank], 
overwrite= False)

Chapter 28
Exporting Graphs Into a File

28-26



The graph data can now be found under the file path. The graph configuration returned by the
store method can be used to load the new graph back into memory. To persist the graph
configuration to disk as well, you can use the config's toString method to get a JSON
representation:

• JShell

• Java

• Python

JShell

var path = Paths.get("<file-path>")
Files.writeString(path, config.toString())

Java

import apache.commons.io.*; // PGX contains a version of Apache Commons IO
...
FileUtils.write(new File("<file-path>"), config.toString());

Python

with open("<file-path>","w"):
    f.write(str(config))

28.4 Exporting a Graph into Multiple Files
You can store a graph into multiple files using the store method. Most parameters are the
same, as if storing to a single file. However, the main difference lies in specifying how to
partition the data.

You can partition the data in either of the following two ways:

• specifying a FileGraphStoringConfig (see Table 28-21 for more information)

• specifying a base path and the number of partitions

Export into Multiple Files Using FileGraphStoringConfig

You can specify a more detailed way of creating the multiple partitions used to store the graph
by using the FileGraphStoringConfig. You can create a FileGraphStoringConfig object
using a FileGraphStoringConfigBuilder.

For example, the following code specifies that the storing should be done into four partitions
using the specified base path and using zero as the initial index for the partitioning. It also

Chapter 28
Exporting a Graph into Multiple Files

28-27



contains the file extension to use for vertex files and for edge files and finally it sets comma as
the delimiter to be used when storing the graph data:

FileGraphStoringConfig storingConfig = new 
FileGraphStoringConfigBuilder(basePath) //
  .setNumPartitions(4) //
  .setInitialPartitionIndex(0) //
  .setVertexExtension(vertexExtension) //
  .setEdgeExtension(edgeExtension) //
  .setDelimiter(',') //
  .build();

You can also partition all tables equally using the numPartitions parameter. This implies that
all tables are exported into the same number of files.

If you do not want to partition the tables equally, you can either create one
PartitionedGraphConfig which contains for each provider a FileGraphStoringConfig (see 
Table 28-21) or we can use a version of store() that takes two maps of
FileGraphStoringConfigs, one for the vertex tables and one for the edge tables.

For the first option, you can create for each vertex and edge table a FileGraphStoringConfig
and put it into a FileEntityProviderConfig using setStoringOptions in the builder of
FileEntityProviderConfig. The providers are then added to the PartitionedGraphConfig as
edge and vertex providers using addVertexProvider() and addEdgeProvider() in the builder
of PartitionedGraphConfig. Later you can use the store() method which takes the
PartitionedGraphConfig as parameter.

The second option creates for every edge and vertex table a storing configuration, adds those
into a vertex provider and an edge provider map and calls the corresponding store() method
with these maps as parameters.

For example:

FileGraphStoringConfig vertexStoringConfig1 = new 
FileGraphStoringConfigBuilder(basePath + "_vertexTable1") //
  .setNumPartitions(4) //
  .setInitialPartitionIndex(0) //
  .setVertexExtension(vertexExtension) //
  .setDelimiter(',') //
  .build();

FileGraphStoringConfig vertexStoringConfig2 = new 
FileGraphStoringConfigBuilder(basePath + "_vertexTable2") //
  .setNumPartitions(4) //
  .setInitialPartitionIndex(0) //
  .setVertexExtension(vertexExtension) //
  .setDelimiter(',') //
  .build();

FileGraphStoringConfig edgeStoringConfig1 = new 
FileGraphStoringConfigBuilder(basePath + "_edgeTable1") //
  .setNumPartitions(4) //
  .setInitialPartitionIndex(0) //
  .setEdgeExtension(edgeExtension) //
  .setDelimiter(',') //
  .build();

Chapter 28
Exporting a Graph into Multiple Files

28-28



Map<String, FileGraphStoringConfig> vertexStoringConfigs = new HashMap<>();
vertexStoringConfigs.put("vertexTable1", vertexStoringConfig1);
vertexStoringConfigs.put("vertexTable2", vertexStoringConfig2);

Map<String, FileGraphStoringConfig> edgeStoringConfigs = new HashMap<>();
edgeStoringConfigs.put("edgeTable1", edgeStoringConfig);

Export into Multiple Files without FileGraphStoringConfig

If you only need to specify how many partitions are required and the base name to be used, it
is simpler to use store() method by only specifying those parameters. Following this
procedure, the graph server (PGX) will use defaults for the other fields. See Table 28-21 for
more information on default values.

Export into Multiple Files Using a Graph Configuration Object

An alternate way for exporting into multiple files is by creating a FileGraphStoringConfig and
putting it into a Graph Configuration object using setStoringOptions in its builder, and then
using the corresponding version of the store() method.

Chapter 28
Exporting a Graph into Multiple Files

28-29



29
Log Management in the Graph Server (PGX)

The graph server (PGX) internally uses the SLF4J interface with Logback as the default logger
implementation.

• Configuring Logback Logging

29.1 Configuring Logback Logging
The default Logback logging configuration file is located in /etc/oracle/graph/logback-
server.xml. This configuration file contains the target location for the logs in /var/log/
oracle/graph/. Additionally, the rolling file appenders are also defined in this configuration file.

Note:

• Logback is configured to roll the log files based on both log size (250 MB) and
date.

• Log files are automatically saved in a compressed format in subdirectories, one
directory per month. There can be multiple files on a given day.

• Also, each startup of the graph server(PGX) triggers a new log file.

The Logback configuration file is picked up automatically by the the graph server(PGX). To use
this configuration in your java application, you can set the logback.configurationFile system
variable when launching the JVM:

java -Dlogback.configurationFile=$PGX_HOME/conf/logback.xml ...

Changing Logging Level During a JShell Session

When connected to the graph server using JShell, you can use the loglevel(String
loggerName, String levelName) function to quickly change the logging level of any logger.
For example:

loglevel("oracle.pgx", "debug")
loglevel("ROOT", "info")
loglevel("org.apache.hadoop", "off")

Logging in a Web Application Server

The graph-server-webapp-<version>.war file in the oracle-graph-webapps-<version>.zip
download package contains the logback.xml. This file determines what should be logged in
the web application running on the application server of your choice. The file is located in the
folder WEB-INF/classes inside the graph-server-webapp-<version>.war file. By default, only

29-1



errors are logged. But you can change this file if you want more logging in your web server.
You must restart the web server after you change the file, for the change to take effect.

Chapter 29
Configuring Logback Logging

29-2



Part VIII
Supplementary Information for Property Graph
Support

This document has the following appendixes.

• Mapping Graph Server Roles to Default Privileges

• Disabling Transport Layer Security (TLS) in Graph Server

• Migrating Property Graph Applications from Before Release 21c
If you are migrating from a previous version of Oracle Spatial and Graph to Release 21c,
you may need to make some changes to existing property graph-related applications.

• Upgrading From Graph Server and Client 20.4.x to 21.x
If you are upgrading from Graph Server and Client 20.4.x to 21.x version, you may need to
create new roles in database and migrate authorization rules from pgx.conf file to the
database. Also, starting from Graph Server and Client Release 21.1, TLS is enforced at
the time of the RPM file installation.

• Third-Party License Information for Oracle Graph Server and Client
This appendix contains licensing information about third-party products included with
Oracle Graph Server and Client.



A
Mapping Graph Server Roles to Default
Privileges

The following table describes the graph server (PGX) roles and the default privileges that are
created in Basic Steps for Using an Oracle Database for Authentication:

Table A-1    Mapping Graph Server Roles to Default Privileges

Roles Description Permission

GRAPH_ADMINISTR
ATOR

User who performs operations on the
graph server (PGX) using the Java API.
(As compared to running start and stop
operations as an OS user.)

PGX_SESSION_CREATE
PGX_SERVER_GET_INFO
PGX_SERVER_MANAGE

GRAPH_DEVELOPER User who creates graphs, publishes
graphs, modifies graphs, queries graphs,
and views graphs using the Java API or
SQLcl or the graph visualization
application.

PGX_SESSION_CREATE
PGX_SESSION_NEW_GRAPH
PGX_SESSION_GET_PUBLISHED_GR
APH
PGX_SESSION_MODIFY_MODEL
PGX_SESSION_READ_MODEL

GRAPH_USER User who queries graphs and views
graphs Java API or SQLcl or the graph
visualization application.

PGX_SESSION_CREATE
PGX_SESSION_GET_PUBLISHED_GR
APH

A-1



B
Disabling Transport Layer Security (TLS) in
Graph Server

For demonstration or evaluation purposes, it is possible to turn off transport layer security
(TLS) of the graph server.

Caution:

This is not recommended for production. In a secure configuration, the server must
always have TLS enabled.

The following instructions only apply if you installed the graph server via the RPM package.

Note:

If you deployed the graph server into your own web server (such as Weblogic or
Apache Tomcat), please refer to the manual of your web server for TLS configuration.

1. Edit /etc/oracle/graph/server.conf to change enable_tls to false.

2. Optionally, if you are using Graph Server REST API Version 1 (cookie-based
authentication), then perform the following by editing the WEB-INF/web.xml file inside
the /opt/oracle/graph/pgx/server/graph-server-webapp-24.3.0.war file:

a. Replace `https` with `http` for the `pgx.base_url` property. For example:

<context-param>
    <param-name>pgx.base_url</param-name>
    <param-value>http://localhost:7007</param-value>
</context-param> 

b. Configure the cookies to be sent over non-secure connections by setting
<secure>false</secure> as follows:

<session-config>
        <tracking-mode>COOKIE</tracking-mode>
        <cookie-config>
            <secure>false</secure>
        </cookie-config>
        ...
</session-config>

3. Restart the server.

sudo systemctl restart pgx

B-1



The graph server now accepts connections over HTTP instead of HTTPS.

On Oracle Linux 7, you can execute the following script to perform the preceding four steps all
at once:

echo "$(jq '.enable_tls = false' /etc/oracle/graph/server.conf)" > /etc/
oracle/graph/server.conf
WAR=$(find /opt/oracle/graph/pgx/server -name '*.war')
TMP=$(mktemp -d)
cd $TMP
unzip $WAR WEB-INF/web.xml
sed -i 's|<secure>true</secure>|<secure>false</secure>|' WEB-INF/web.xml
sed -i 's|https://|http://|' WEB-INF/web.xml
sudo zip $WAR WEB-INF/web.xml
rm -r $TMP
sudo systemctl restart pgx

Appendix B

B-2



C
Migrating Property Graph Applications from
Before Release 21c

If you are migrating from a previous version of Oracle Spatial and Graph to Release 21c, you
may need to make some changes to existing property graph-related applications.

Also note that Oracle Graph Server and Client is required for property graph applications. This
can be downloaded from Oracle Software Delivery Cloud or from Oracle Downloads page.

Security-Related Changes

The Property Graph feature contains a series of enhancements to further strengthen the
security of the property graph component of product. The following enhancements may require
manual changes to existing graph applications so that they continue to work properly.

• Graph configuration files now require sensitive information such as passwords to
be stored in Java Keystore files
If you use graph configuration files you are required to use Java Keystore files to store
sensitive information such as passwords. (See Store the Database Password in a Keystore
for how to create and reference such a keystore.)

All existing graph configuration files with secrets in them must be migrated to the keystore-
based approach.

• In a three-tier deployment, access to the PGX server file system requires a
directories allowlist
By default, the PGX server does not allow remote access to the local file system. This can
be explicitly allowed, though, in /etc/oracle/graph/pgx.conf by setting
allow_local_filesystem to true. If you set allow_local_filesystem to true, you must
also specify a list of directories that are allowed to be accessed, by setting
datasource_dir_whitelist. For example:

"allow_local_filesystem": true,
"datasource_dir_whitelist": ["/scratch/data1", "/scratch/data2"]

This will allow remote users to read and write data on the server's file-system from and
into /scratch/data1 and /scratch/data2.

• In a three-tier deployment, reading from remote locations into PGX is no longer
allowed by default
Previously, PGX allowed graph data to be read from remote locations over FTP or HTTP.
This is no longer allowed by default and requires explicit opt-in by the server administrator.
To opt-in, specify the allowed_remote_loading_locations configuration option in /etc/
oracle/graph/pgx.conf. For example:

allowed_remote_loading_locations: ["*"]

In addition:

– The ftp and http protocols are no longer supported for loading or storing data because
they are unencrypted and thus insecure.

C-1

https://edelivery.oracle.com/osdc/faces/Home.jspx;jsessionid=vkBw18Qn2e8sD-qiMKBhvTE1KGzdAecEuVRxNVq-qYyUUUJsW5gO!-1637381810
https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client.html


– Configuration files can no longer be loaded from remote locations, but must be loaded
from the local file system.

• Removed shell command line options
The following command line options of the Groovy-based opg shell have been removed
and will no longer work:

– --attach - the shell no longer supports attaching to existing sessions via command
line

– --password - the shell will prompt now for the password

Also note that the Groovy-based shell has been deprecated, and you are encourage to use
the new JShell-based shell instead (see Interactive Graph Shell CLIs).

• Changes to PGX APIs
The following APIs no longer return graph configuration information:

– ServerInstance#getGraphInfo()
– ServerInstance#getGraphInfos()
– ServerInstance#getServerState()
The REST API now identifies collections, graphs, and properties by UUID instead of a
name.

The namespaces for graphs and properties are session private by default now. This
implies that some operations that would previously throw an exception due to a naming
conflict could succeed now.

PgxGraph#publish() throws an exception now if a graph with the given name has been
published before.

Migrating Data to a New Database Version

Oracle Graph Server and Client works with older database versions. (See Verifying Database
Compatibility for information.) If as part of your upgrade you also upgraded your Oracle
Database, you can migrate your existing graph data that was stored using the Oracle Property
Graph format by invoking the following helper script in your database after the upgrade:

sqlplus> EXECUTE mdsys.opg.migrate_pg_to_current(graph_name=>'mygraph');

The preceding example migrates the property graph mygraph to the current database version.

Uninstalling Previous Versions of Property Graph Libraries

This is only necessary if you are using Oracle Database versions 12.2, 18c, or 19c.

Use of the Property Graph feature of Oracle Database now requires Oracle Graph Server and
Client that is installed separately. After you have completed the Graph Server and Client
installation, complete the preceding migration steps (if needed), and confirmed that everything
is working well, it is recommended that you remove the binaries of older graph installations
from your Oracle Database installation by performing the following un-install steps:

1. Make sure the Property Graph mid-tier components are not in use on the target database
host. For example, ensure that there is no application running which uses any files
under $ORACLE_HOME/md/property_graph. Examples of such an application are a running
PGX server on the same host as the database or a client application that references the
JAR files under $ORACLE_HOME/md/property_graph/lib.

Appendix C

C-2



It is not necessary to shut down the database to perform the uninstall. The Oracle
database itself does not reference or use any files under $ORACLE_HOME/md/
property_graph.

2. Remove the files under $ORACLE_HOME/md/property_graph on your database host. On
Linux, you can copy the following helper script to your database host and run it with as the
DBA operating system user: /opt/oracle/graph/scripts/patch-opg-oracle-home.sh

Appendix C

C-3



D
Upgrading From Graph Server and Client
20.4.x to 21.x

If you are upgrading from Graph Server and Client 20.4.x to 21.x version, you may need to
create new roles in database and migrate authorization rules from pgx.conf file to the
database. Also, starting from Graph Server and Client Release 21.1, TLS is enforced at the
time of the RPM file installation.

One of the main enhancements of Graph Server and Client Release 21.1 is moving the graph
access permissions from the pgx.conf file to the database.

In order to comply with this feature you must perform the database actions explained in the
following sections:

Creating additional roles in the database

• See Basic Steps for Using an Oracle Database for Authentication for more information on
manually creating the roles in the database with the default set of privileges.

• Mapping Graph Server Roles to Default Privileges in the appendix for more details on the
default mappings.

Migrating authorization rules

You must execute database GRANTS for user-added mappings contained in the pgx.conf file
when upgrading to 21.x.

The following examples explain the various scenarios where migration of authorization rules
may or may not apply.

Example D-1    Migrating user-added mappings to database

To migrate the following user-added mappings in pgx.conf file:

...
"authorization": [{
  "pgx_role": "GRAPH_DEVELOPER",
  "pgx_permissions": [{
    "grant": "PGX_SESSION_ADD_PUBLISHED_GRAPH"
  },
...

You must execute the following GRANT statement in the database used by 21.x:

GRANT PGX_SESSION_ADD_PUBLISHED_GRAPH TO GRAPH_DEVELOPER

D-1



Example D-2    Migrating user-added file system authorization rules to database

To migrate the following user-added file system authorization rules in pgx.conf file:

...
"file_locations": [{
  "name": "my_graph_data",
  "location": "/opt/oracle/graph/data"
}],
"authorization": [{
  "pgx_role": "GRAPH_DEVELOPER",
  "pgx_permissions": [{
    "file_location": "my_graph_data",
    "grant": "read"  
  },
...

You must execute the following GRANT statement in the database used by 21.x:

CREATE OR REPLACE DIRECTORY my_graph_data AS '/opt/oracle/graph/data'
GRANT READ ON DIRECTORY my_graph_data TO GRAPH_DEVELOPER

Example D-3    User-added graph authorization rules for preloaded graphs

Note:

No migration required for user-added graph authorization rules for preloaded
graphs.

You must not migrate user-added graph authorization rules for preloaded graphs (as shown in
the following code) as these rules continue to be configured in pgx.conf file.

"preload_graphs": [{
  "path": "/data/my-graph.json",
  "name": "global_graph"
}],
"authorization": [{
  "pgx_role": "GRAPH_DEVELOPER",
  "pgx_permissions": [{
    "preloaded_graph": "global_graph",
    "grant": "read"
  },
...

Self-signed TLS certificate now generated upon RPM installation

In Graph Server and Client 21.x the RPM installation generates a self-signed certificate
into /etc/oracle/graph, which the server uses to enable TLS by default.

Appendix D

D-2



According to security best practices, access to the certificate is restricted to the oraclegraph
operating system user. The implication of this is that you no longer can start the graph server
via the /opt/oracle/graph/pgx/bin/start-server script, even if your user is part of the
oraclegraph group. Instead, manage the lifecycle of the graph server via systemctl
commands. For example:

sudo systemctl start pgx

Another possible option is to change the ownership of the certificate as shown:

sudo chown <youruser> /etc/oracle/graph/server_key.pem

Turning off TLS is not recommended as it reduces the security of your connection. However, if
you must do so, see Disabling Transport Layer Security (TLS) in Graph Server for more
details.

Appendix D

D-3



E
Third-Party License Information for Oracle
Graph Server and Client

This appendix contains licensing information about third-party products included with Oracle
Graph Server and Client.

Eclipse Parsson

Vendor: Eclipse Foundation

Version: 1.1.5

Eclipse Parsson (org.eclipse.parsson:parsson)
 Copyright (c) 2011, 2023 Oracle and/or its affiliates. All rights reserved.

 This program and the accompanying materials are made available under the
 terms of the Eclipse Public License v. 2.0, which is available at
 http://www.eclipse.org/legal/epl-2.0.

 This Source Code may also be made available under the following Secondary
 Licenses when the conditions for such availability set forth in the
 Eclipse Public License v. 2.0 are satisfied: GNU General Public License,
 version 2 with the GNU Classpath Exception, which is available at
 https://www.gnu.org/software/classpath/license.html.

 SPDX-License-Identifier: Eclipse Public License 2.0 + GPL v.2 with CPE

Eclipse Public License 2.0 + GPL v.2 with CPE
--------------------------------------------
# Notices for Eclipse Parsson

This content is produced and maintained by the Eclipse Parsson project.

* Project home: https://projects.eclipse.org/projects/ee4j.parsson

## Trademarks

 Eclipse Parsson is a trademark of the Eclipse Foundation.

## Copyright

All content is the property of the respective authors or their employers. For
more information regarding authorship of content, please consult the listed
source code repository logs.

## Declared Project Licenses

This program and the accompanying materials are made available under the terms
of the Eclipse Public License v. 2.0 which is available at
https://www.eclipse.org/legal/epl-2.0.

SPDX-License-Identifier: EPL-2.0

## Source Code

E-1



The project maintains the following source code repositories:

* https://github.com/eclipse-ee4j/parsson

## Third-party Content

This project leverages the following third party content.

None

## Cryptography

Content may contain encryption software. The country in which you are currently
may have restrictions on the import, possession, and use, and/or re-export to
another country, of encryption software. BEFORE using any encryption software,
please check the country's laws, regulations and policies concerning the import,
possession, or use, and re-export of encryption software, to see if this is
permitted.
--------------------------------------------
Eclipse Public License - v 2.0

    THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS ECLIPSE
    PUBLIC LICENSE ("AGREEMENT"). ANY USE, REPRODUCTION OR DISTRIBUTION
    OF THE PROGRAM CONSTITUTES RECIPIENT'S ACCEPTANCE OF THIS AGREEMENT.

1. DEFINITIONS

"Contribution" means:

  a) in the case of the initial Contributor, the initial content
     Distributed under this Agreement, and

  b) in the case of each subsequent Contributor: 
     i) changes to the Program, and 
     ii) additions to the Program;
  where such changes and/or additions to the Program originate from
  and are Distributed by that particular Contributor. A Contribution
  "originates" from a Contributor if it was added to the Program by
  such Contributor itself or anyone acting on such Contributor's behalf.
  Contributions do not include changes or additions to the Program that
  are not Modified Works.

"Contributor" means any person or entity that Distributes the Program.

"Licensed Patents" mean patent claims licensable by a Contributor which
are necessarily infringed by the use or sale of its Contribution alone
or when combined with the Program.

"Program" means the Contributions Distributed in accordance with this
Agreement.

"Recipient" means anyone who receives the Program under this Agreement
or any Secondary License (as applicable), including Contributors.

"Derivative Works" shall mean any work, whether in Source Code or other
form, that is based on (or derived from) the Program and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship.

"Modified Works" shall mean any work in Source Code or other form that
results from an addition to, deletion from, or modification of the
contents of the Program, including, for purposes of clarity any new file

Appendix E

E-2



in Source Code form that contains any contents of the Program. Modified
Works shall not include works that contain only declarations,
interfaces, types, classes, structures, or files of the Program solely
in each case in order to link to, bind by name, or subclass the Program
or Modified Works thereof.

"Distribute" means the acts of a) distributing or b) making available
in any manner that enables the transfer of a copy.

"Source Code" means the form of a Program preferred for making
modifications, including but not limited to software source code,
documentation source, and configuration files.

"Secondary License" means either the GNU General Public License,
Version 2.0, or any later versions of that license, including any
exceptions or additional permissions as identified by the initial
Contributor.

2. GRANT OF RIGHTS

  a) Subject to the terms of this Agreement, each Contributor hereby
  grants Recipient a non-exclusive, worldwide, royalty-free copyright
  license to reproduce, prepare Derivative Works of, publicly display,
  publicly perform, Distribute and sublicense the Contribution of such
  Contributor, if any, and such Derivative Works.

  b) Subject to the terms of this Agreement, each Contributor hereby
  grants Recipient a non-exclusive, worldwide, royalty-free patent
  license under Licensed Patents to make, use, sell, offer to sell,
  import and otherwise transfer the Contribution of such Contributor,
  if any, in Source Code or other form. This patent license shall
  apply to the combination of the Contribution and the Program if, at
  the time the Contribution is added by the Contributor, such addition
  of the Contribution causes such combination to be covered by the
  Licensed Patents. The patent license shall not apply to any other
  combinations which include the Contribution. No hardware per se is
  licensed hereunder.

  c) Recipient understands that although each Contributor grants the
  licenses to its Contributions set forth herein, no assurances are
  provided by any Contributor that the Program does not infringe the
  patent or other intellectual property rights of any other entity.
  Each Contributor disclaims any liability to Recipient for claims
  brought by any other entity based on infringement of intellectual
  property rights or otherwise. As a condition to exercising the
  rights and licenses granted hereunder, each Recipient hereby
  assumes sole responsibility to secure any other intellectual
  property rights needed, if any. For example, if a third party
  patent license is required to allow Recipient to Distribute the
  Program, it is Recipient's responsibility to acquire that license
  before distributing the Program.

  d) Each Contributor represents that to its knowledge it has
  sufficient copyright rights in its Contribution, if any, to grant
  the copyright license set forth in this Agreement.

  e) Notwithstanding the terms of any Secondary License, no
  Contributor makes additional grants to any Recipient (other than
  those set forth in this Agreement) as a result of such Recipient's
  receipt of the Program under the terms of a Secondary License
  (if permitted under the terms of Section 3).

Appendix E

E-3



3. REQUIREMENTS

3.1 If a Contributor Distributes the Program in any form, then:

  a) the Program must also be made available as Source Code, in
  accordance with section 3.2, and the Contributor must accompany
  the Program with a statement that the Source Code for the Program
  is available under this Agreement, and informs Recipients how to
  obtain it in a reasonable manner on or through a medium customarily
  used for software exchange; and

  b) the Contributor may Distribute the Program under a license
  different than this Agreement, provided that such license:
     i) effectively disclaims on behalf of all other Contributors all
     warranties and conditions, express and implied, including
     warranties or conditions of title and non-infringement, and
     implied warranties or conditions of merchantability and fitness
     for a particular purpose;

     ii) effectively excludes on behalf of all other Contributors all
     liability for damages, including direct, indirect, special,
     incidental and consequential damages, such as lost profits;

     iii) does not attempt to limit or alter the recipients' rights
     in the Source Code under section 3.2; and

     iv) requires any subsequent distribution of the Program by any
     party to be under a license that satisfies the requirements
     of this section 3.

3.2 When the Program is Distributed as Source Code:

  a) it must be made available under this Agreement, or if the
  Program (i) is combined with other material in a separate file or
  files made available under a Secondary License, and (ii) the initial
  Contributor attached to the Source Code the notice described in
  Exhibit A of this Agreement, then the Program may be made available
  under the terms of such Secondary Licenses, and

  b) a copy of this Agreement must be included with each copy of
  the Program.

3.3 Contributors may not remove or alter any copyright, patent,
trademark, attribution notices, disclaimers of warranty, or limitations
of liability ("notices") contained within the Program from any copy of
the Program which they Distribute, provided that Contributors may add
their own appropriate notices.

4. COMMERCIAL DISTRIBUTION

Commercial distributors of software may accept certain responsibilities
with respect to end users, business partners and the like. While this
license is intended to facilitate the commercial use of the Program,
the Contributor who includes the Program in a commercial product
offering should do so in a manner which does not create potential
liability for other Contributors. Therefore, if a Contributor includes
the Program in a commercial product offering, such Contributor
("Commercial Contributor") hereby agrees to defend and indemnify every
other Contributor ("Indemnified Contributor") against any losses,
damages and costs (collectively "Losses") arising from claims, lawsuits
and other legal actions brought by a third party against the Indemnified
Contributor to the extent caused by the acts or omissions of such

Appendix E

E-4



Commercial Contributor in connection with its distribution of the Program
in a commercial product offering. The obligations in this section do not
apply to any claims or Losses relating to any actual or alleged
intellectual property infringement. In order to qualify, an Indemnified
Contributor must: a) promptly notify the Commercial Contributor in
writing of such claim, and b) allow the Commercial Contributor to control,
and cooperate with the Commercial Contributor in, the defense and any
related settlement negotiations. The Indemnified Contributor may
participate in any such claim at its own expense.

For example, a Contributor might include the Program in a commercial
product offering, Product X. That Contributor is then a Commercial
Contributor. If that Commercial Contributor then makes performance
claims, or offers warranties related to Product X, those performance
claims and warranties are such Commercial Contributor's responsibility
alone. Under this section, the Commercial Contributor would have to
defend claims against the other Contributors related to those performance
claims and warranties, and if a court requires any other Contributor to
pay any damages as a result, the Commercial Contributor must pay
those damages.

5. NO WARRANTY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, AND TO THE EXTENT
PERMITTED BY APPLICABLE LAW, THE PROGRAM IS PROVIDED ON AN "AS IS"
BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS OR
IMPLIED INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR CONDITIONS OF
TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Each Recipient is solely responsible for determining the
appropriateness of using and distributing the Program and assumes all
risks associated with its exercise of rights under this Agreement,
including but not limited to the risks and costs of program errors,
compliance with applicable laws, damage to or loss of data, programs
or equipment, and unavailability or interruption of operations.

6. DISCLAIMER OF LIABILITY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, AND TO THE EXTENT
PERMITTED BY APPLICABLE LAW, NEITHER RECIPIENT NOR ANY CONTRIBUTORS
SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION LOST
PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE PROGRAM OR THE
EXERCISE OF ANY RIGHTS GRANTED HEREUNDER, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

7. GENERAL

If any provision of this Agreement is invalid or unenforceable under
applicable law, it shall not affect the validity or enforceability of
the remainder of the terms of this Agreement, and without further
action by the parties hereto, such provision shall be reformed to the
minimum extent necessary to make such provision valid and enforceable.

If Recipient institutes patent litigation against any entity
(including a cross-claim or counterclaim in a lawsuit) alleging that the
Program itself (excluding combinations of the Program with other software
or hardware) infringes such Recipient's patent(s), then such Recipient's
rights granted under Section 2(b) shall terminate as of the date such
litigation is filed.

Appendix E

E-5



All Recipient's rights under this Agreement shall terminate if it
fails to comply with any of the material terms or conditions of this
Agreement and does not cure such failure in a reasonable period of
time after becoming aware of such noncompliance. If all Recipient's
rights under this Agreement terminate, Recipient agrees to cease use
and distribution of the Program as soon as reasonably practicable.
However, Recipient's obligations under this Agreement and any licenses
granted by Recipient relating to the Program shall continue and survive.

Everyone is permitted to copy and distribute copies of this Agreement,
but in order to avoid inconsistency the Agreement is copyrighted and
may only be modified in the following manner. The Agreement Steward
reserves the right to publish new versions (including revisions) of
this Agreement from time to time. No one other than the Agreement
Steward has the right to modify this Agreement. The Eclipse Foundation
is the initial Agreement Steward. The Eclipse Foundation may assign the
responsibility to serve as the Agreement Steward to a suitable separate
entity. Each new version of the Agreement will be given a distinguishing
version number. The Program (including Contributions) may always be
Distributed subject to the version of the Agreement under which it was
received. In addition, after a new version of the Agreement is published,
Contributor may elect to Distribute the Program (including its
Contributions) under the new version.

Except as expressly stated in Sections 2(a) and 2(b) above, Recipient
receives no rights or licenses to the intellectual property of any
Contributor under this Agreement, whether expressly, by implication,
estoppel or otherwise. All rights in the Program not expressly granted
under this Agreement are reserved. Nothing in this Agreement is intended
to be enforceable by any entity that is not a Contributor or Recipient.
No third-party beneficiary rights are created under this Agreement.

Exhibit A - Form of Secondary Licenses Notice

"This Source Code may also be made available under the following 
Secondary Licenses when the conditions for such availability set forth 
in the Eclipse Public License, v. 2.0 are satisfied: {name license(s),
version(s), and exceptions or additional permissions here}."

  Simply including a copy of this Agreement, including this Exhibit A
  is not sufficient to license the Source Code under Secondary Licenses.

  If it is not possible or desirable to put the notice in a particular
  file, then You may include the notice in a location (such as a LICENSE
  file in a relevant directory) where a recipient would be likely to
  look for such a notice.

  You may add additional accurate notices of copyright ownership.

--------------------------------------------

                    GNU GENERAL PUBLIC LICENSE
                       Version 2, June 1991

 Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

                            Preamble

  The licenses for most software are designed to take away your

Appendix E

E-6



freedom to share and change it.  By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users.  This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it.  (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.)  You can apply it to
your programs, too.

  When we speak of free software, we are referring to freedom, not
price.  Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

  To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

  For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have.  You must make sure that they, too, receive or can get the
source code.  And you must show them these terms so they know their
rights.

  We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

  Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software.  If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

  Finally, any free program is threatened constantly by software
patents.  We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary.  To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

  The precise terms and conditions for copying, distribution and
modification follow.

                    GNU GENERAL PUBLIC LICENSE
   TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

  0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License.  The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language.  (Hereinafter, translation is included without limitation in
the term "modification".)  Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope.  The act of

Appendix E

E-7



running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

  1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

  2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

    a) You must cause the modified files to carry prominent notices
    stating that you changed the files and the date of any change.

    b) You must cause any work that you distribute or publish, that in
    whole or in part contains or is derived from the Program or any
    part thereof, to be licensed as a whole at no charge to all third
    parties under the terms of this License.

    c) If the modified program normally reads commands interactively
    when run, you must cause it, when started running for such
    interactive use in the most ordinary way, to print or display an
    announcement including an appropriate copyright notice and a
    notice that there is no warranty (or else, saying that you provide
    a warranty) and that users may redistribute the program under
    these conditions, and telling the user how to view a copy of this
    License.  (Exception: if the Program itself is interactive but
    does not normally print such an announcement, your work based on
    the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole.  If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works.  But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

  3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of

Appendix E

E-8



Sections 1 and 2 above provided that you also do one of the following:

    a) Accompany it with the complete corresponding machine-readable
    source code, which must be distributed under the terms of Sections
    1 and 2 above on a medium customarily used for software interchange; or,

    b) Accompany it with a written offer, valid for at least three
    years, to give any third party, for a charge no more than your
    cost of physically performing source distribution, a complete
    machine-readable copy of the corresponding source code, to be
    distributed under the terms of Sections 1 and 2 above on a medium
    customarily used for software interchange; or,

    c) Accompany it with the information you received as to the offer
    to distribute corresponding source code.  (This alternative is
    allowed only for noncommercial distribution and only if you
    received the program in object code or executable form with such
    an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it.  For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable.  However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

  4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License.  Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

  5. You are not required to accept this License, since you have not
signed it.  However, nothing else grants you permission to modify or
distribute the Program or its derivative works.  These actions are
prohibited by law if you do not accept this License.  Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

  6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions.  You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

  7. If, as a consequence of a court judgment or allegation of patent

Appendix E

E-9



infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License.  If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all.  For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices.  Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

  8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded.  In such case, this License incorporates
the limitation as if written in the body of this License.

  9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time.  Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number.  If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation.  If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

  10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission.  For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this.  Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

                            NO WARRANTY

Appendix E

E-10



  11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.  EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.  SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

  12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

                     END OF TERMS AND CONDITIONS

            How to Apply These Terms to Your New Programs

  If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

  To do so, attach the following notices to the program.  It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

    <one line to give the program's name and a brief idea of what it does.>
    Copyright (C) <year>  <name of author>

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License along
    with this program; if not, write to the Free Software Foundation, Inc.,
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

    Gnomovision version 69, Copyright (C) year name of author
    Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
    This is free software, and you are welcome to redistribute it
    under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License.  Of course, the commands you use may

Appendix E

E-11



be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary.  Here is a sample; alter the names:

  Yoyodyne, Inc., hereby disclaims all copyright interest in the program
  `Gnomovision' (which makes passes at compilers) written by James Hacker.

  <signature of Ty Coon>, 1 April 1989
  Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs.  If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library.  If this is what you want to do, use the GNU Lesser General
Public License instead of this License.

CLASSPATH EXCEPTION
Linking this library statically or dynamically with other modules is
making a combined work based on this library.  Thus, the terms and
conditions of the GNU General Public License version 2 cover the whole
combination.

As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module.  An independent module is a module which is not derived from or
based on this library.  If you modify this library, you may extend this
exception to your version of the library, but you are not obligated to
do so.  If you do not wish to do so, delete this exception statement
from your version.

--------------------------------------------
Fourth Party Dependencies
--------------------------------------------

"Jakarta JSON Processing API" (jakarta.json:jakarta.json-api)

Copyright (c) 2011, 2023 Oracle and/or its affiliates. All rights reserved.

This program and the accompanying materials are made available under the
    terms of the Eclipse Public License v. 2.0, which is available at
    http://www.eclipse.org/legal/epl-2.0.

    This Source Code may also be made available under the following Secondary
    Licenses when the conditions for such availability set forth in the
    Eclipse Public License v. 2.0 are satisfied: GNU General Public License,
    version 2 with the GNU Classpath Exception, which is available at
    https://www.gnu.org/software/classpath/license.html.

    SPDX-License-Identifier: Eclipse Public License 2.0 + GPL v.2 with CPE

 Licenses:
Eclipse Public License 2.0 + GPL v.2 with CPE
--------------------------------------------

Appendix E

E-12



Titanium JSON-LD

Vendor: The original authors or authors

Version: 1.3.2

------------------------------- Top-level license --------------------------
                                 Apache License
                           Version 2.0, January 2004
                        http://www.apache.org/licenses/

   TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

   1. Definitions.

      "License" shall mean the terms and conditions for use, reproduction,
      and distribution as defined by Sections 1 through 9 of this document.

      "Licensor" shall mean the copyright owner or entity authorized by
      the copyright owner that is granting the License.

      "Legal Entity" shall mean the union of the acting entity and all
      other entities that control, are controlled by, or are under common
      control with that entity. For the purposes of this definition,
      "control" means (i) the power, direct or indirect, to cause the
      direction or management of such entity, whether by contract or
      otherwise, or (ii) ownership of fifty percent (50%) or more of the
      outstanding shares, or (iii) beneficial ownership of such entity.

      "You" (or "Your") shall mean an individual or Legal Entity
      exercising permissions granted by this License.

      "Source" form shall mean the preferred form for making modifications,
      including but not limited to software source code, documentation
      source, and configuration files.

      "Object" form shall mean any form resulting from mechanical
      transformation or translation of a Source form, including but
      not limited to compiled object code, generated documentation,
      and conversions to other media types.

      "Work" shall mean the work of authorship, whether in Source or
      Object form, made available under the License, as indicated by a
      copyright notice that is included in or attached to the work
      (an example is provided in the Appendix below).

      "Derivative Works" shall mean any work, whether in Source or Object
      form, that is based on (or derived from) the Work and for which the
      editorial revisions, annotations, elaborations, or other modifications
      represent, as a whole, an original work of authorship. For the purposes
      of this License, Derivative Works shall not include works that remain
      separable from, or merely link (or bind by name) to the interfaces of,
      the Work and Derivative Works thereof.

      "Contribution" shall mean any work of authorship, including
      the original version of the Work and any modifications or additions
      to that Work or Derivative Works thereof, that is intentionally
      submitted to Licensor for inclusion in the Work by the copyright owner
      or by an individual or Legal Entity authorized to submit on behalf of
      the copyright owner. For the purposes of this definition, "submitted"
      means any form of electronic, verbal, or written communication sent
      to the Licensor or its representatives, including but not limited to

Appendix E

E-13



      communication on electronic mailing lists, source code control systems,
      and issue tracking systems that are managed by, or on behalf of, the
      Licensor for the purpose of discussing and improving the Work, but
      excluding communication that is conspicuously marked or otherwise
      designated in writing by the copyright owner as "Not a Contribution."

      "Contributor" shall mean Licensor and any individual or Legal Entity
      on behalf of whom a Contribution has been received by Licensor and
      subsequently incorporated within the Work.

   2. Grant of Copyright License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      copyright license to reproduce, prepare Derivative Works of,
      publicly display, publicly perform, sublicense, and distribute the
      Work and such Derivative Works in Source or Object form.

   3. Grant of Patent License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      (except as stated in this section) patent license to make, have made,
      use, offer to sell, sell, import, and otherwise transfer the Work,
      where such license applies only to those patent claims licensable
      by such Contributor that are necessarily infringed by their
      Contribution(s) alone or by combination of their Contribution(s)
      with the Work to which such Contribution(s) was submitted. If You
      institute patent litigation against any entity (including a
      cross-claim or counterclaim in a lawsuit) alleging that the Work
      or a Contribution incorporated within the Work constitutes direct
      or contributory patent infringement, then any patent licenses
      granted to You under this License for that Work shall terminate
      as of the date such litigation is filed.

   4. Redistribution. You may reproduce and distribute copies of the
      Work or Derivative Works thereof in any medium, with or without
      modifications, and in Source or Object form, provided that You
      meet the following conditions:

      (a) You must give any other recipients of the Work or
          Derivative Works a copy of this License; and

      (b) You must cause any modified files to carry prominent notices
          stating that You changed the files; and

      (c) You must retain, in the Source form of any Derivative Works
          that You distribute, all copyright, patent, trademark, and
          attribution notices from the Source form of the Work,
          excluding those notices that do not pertain to any part of
          the Derivative Works; and

      (d) If the Work includes a "NOTICE" text file as part of its
          distribution, then any Derivative Works that You distribute must
          include a readable copy of the attribution notices contained
          within such NOTICE file, excluding those notices that do not
          pertain to any part of the Derivative Works, in at least one
          of the following places: within a NOTICE text file distributed
          as part of the Derivative Works; within the Source form or
          documentation, if provided along with the Derivative Works; or,
          within a display generated by the Derivative Works, if and
          wherever such third-party notices normally appear. The contents
          of the NOTICE file are for informational purposes only and
          do not modify the License. You may add Your own attribution

Appendix E

E-14



          notices within Derivative Works that You distribute, alongside
          or as an addendum to the NOTICE text from the Work, provided
          that such additional attribution notices cannot be construed
          as modifying the License.

      You may add Your own copyright statement to Your modifications and
      may provide additional or different license terms and conditions
      for use, reproduction, or distribution of Your modifications, or
      for any such Derivative Works as a whole, provided Your use,
      reproduction, and distribution of the Work otherwise complies with
      the conditions stated in this License.

   5. Submission of Contributions. Unless You explicitly state otherwise,
      any Contribution intentionally submitted for inclusion in the Work
      by You to the Licensor shall be under the terms and conditions of
      this License, without any additional terms or conditions.
      Notwithstanding the above, nothing herein shall supersede or modify
      the terms of any separate license agreement you may have executed
      with Licensor regarding such Contributions.

   6. Trademarks. This License does not grant permission to use the trade
      names, trademarks, service marks, or product names of the Licensor,
      except as required for reasonable and customary use in describing the
      origin of the Work and reproducing the content of the NOTICE file.

   7. Disclaimer of Warranty. Unless required by applicable law or
      agreed to in writing, Licensor provides the Work (and each
      Contributor provides its Contributions) on an "AS IS" BASIS,
      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
      implied, including, without limitation, any warranties or conditions
      of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
      PARTICULAR PURPOSE. You are solely responsible for determining the
      appropriateness of using or redistributing the Work and assume any
      risks associated with Your exercise of permissions under this License.

   8. Limitation of Liability. In no event and under no legal theory,
      whether in tort (including negligence), contract, or otherwise,
      unless required by applicable law (such as deliberate and grossly
      negligent acts) or agreed to in writing, shall any Contributor be
      liable to You for damages, including any direct, indirect, special,
      incidental, or consequential damages of any character arising as a
      result of this License or out of the use or inability to use the
      Work (including but not limited to damages for loss of goodwill,
      work stoppage, computer failure or malfunction, or any and all
      other commercial damages or losses), even if such Contributor
      has been advised of the possibility of such damages.

   9. Accepting Warranty or Additional Liability. While redistributing
      the Work or Derivative Works thereof, You may choose to offer,
      and charge a fee for, acceptance of support, warranty, indemnity,
      or other liability obligations and/or rights consistent with this
      License. However, in accepting such obligations, You may act only
      on Your own behalf and on Your sole responsibility, not on behalf
      of any other Contributor, and only if You agree to indemnify,
      defend, and hold each Contributor harmless for any liability
      incurred by, or claims asserted against, such Contributor by reason
      of your accepting any such warranty or additional liability.

   END OF TERMS AND CONDITIONS

   APPENDIX: How to apply the Apache License to your work.

Appendix E

E-15



      To apply the Apache License to your work, attach the following
      boilerplate notice, with the fields enclosed by brackets "[]"
      replaced with your own identifying information. (Don't include
      the brackets!)  The text should be enclosed in the appropriate
      comment syntax for the file format. We also recommend that a
      file or class name and description of purpose be included on the
      same "printed page" as the copyright notice for easier
      identification within third-party archives.

   Copyright [yyyy] [name of copyright owner]

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.
------------------------------- Copyright notices --------------------------
/*
 * Copyright 2020 the original author or authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
---------------------------- Fourth-party information ----------------------

== NAME OF DEPENDENCY 1
jakarta.json-api
== License
# Eclipse Public License - v 2.0

        THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS ECLIPSE
        PUBLIC LICENSE ("AGREEMENT"). ANY USE, REPRODUCTION OR DISTRIBUTION
        OF THE PROGRAM CONSTITUTES RECIPIENT'S ACCEPTANCE OF THIS AGREEMENT.

    1. DEFINITIONS

    "Contribution" means:

      a) in the case of the initial Contributor, the initial content
         Distributed under this Agreement, and

      b) in the case of each subsequent Contributor: 
         i) changes to the Program, and 
         ii) additions to the Program;
      where such changes and/or additions to the Program originate from
      and are Distributed by that particular Contributor. A Contribution
      "originates" from a Contributor if it was added to the Program by

Appendix E

E-16



      such Contributor itself or anyone acting on such Contributor's behalf.
      Contributions do not include changes or additions to the Program that
      are not Modified Works.

    "Contributor" means any person or entity that Distributes the Program.

    "Licensed Patents" mean patent claims licensable by a Contributor which
    are necessarily infringed by the use or sale of its Contribution alone
    or when combined with the Program.

    "Program" means the Contributions Distributed in accordance with this
    Agreement.

    "Recipient" means anyone who receives the Program under this Agreement
    or any Secondary License (as applicable), including Contributors.

    "Derivative Works" shall mean any work, whether in Source Code or other
    form, that is based on (or derived from) the Program and for which the
    editorial revisions, annotations, elaborations, or other modifications
    represent, as a whole, an original work of authorship.

    "Modified Works" shall mean any work in Source Code or other form that
    results from an addition to, deletion from, or modification of the
    contents of the Program, including, for purposes of clarity any new file
    in Source Code form that contains any contents of the Program. Modified
    Works shall not include works that contain only declarations,
    interfaces, types, classes, structures, or files of the Program solely
    in each case in order to link to, bind by name, or subclass the Program
    or Modified Works thereof.

    "Distribute" means the acts of a) distributing or b) making available
    in any manner that enables the transfer of a copy.

    "Source Code" means the form of a Program preferred for making
    modifications, including but not limited to software source code,
    documentation source, and configuration files.

    "Secondary License" means either the GNU General Public License,
    Version 2.0, or any later versions of that license, including any
    exceptions or additional permissions as identified by the initial
    Contributor.

    2. GRANT OF RIGHTS

      a) Subject to the terms of this Agreement, each Contributor hereby
      grants Recipient a non-exclusive, worldwide, royalty-free copyright
      license to reproduce, prepare Derivative Works of, publicly display,
      publicly perform, Distribute and sublicense the Contribution of such
      Contributor, if any, and such Derivative Works.

      b) Subject to the terms of this Agreement, each Contributor hereby
      grants Recipient a non-exclusive, worldwide, royalty-free patent
      license under Licensed Patents to make, use, sell, offer to sell,
      import and otherwise transfer the Contribution of such Contributor,
      if any, in Source Code or other form. This patent license shall
      apply to the combination of the Contribution and the Program if, at
      the time the Contribution is added by the Contributor, such addition
      of the Contribution causes such combination to be covered by the
      Licensed Patents. The patent license shall not apply to any other
      combinations which include the Contribution. No hardware per se is
      licensed hereunder.

Appendix E

E-17



      c) Recipient understands that although each Contributor grants the
      licenses to its Contributions set forth herein, no assurances are
      provided by any Contributor that the Program does not infringe the
      patent or other intellectual property rights of any other entity.
      Each Contributor disclaims any liability to Recipient for claims
      brought by any other entity based on infringement of intellectual
      property rights or otherwise. As a condition to exercising the
      rights and licenses granted hereunder, each Recipient hereby
      assumes sole responsibility to secure any other intellectual
      property rights needed, if any. For example, if a third party
      patent license is required to allow Recipient to Distribute the
      Program, it is Recipient's responsibility to acquire that license
      before distributing the Program.

      d) Each Contributor represents that to its knowledge it has
      sufficient copyright rights in its Contribution, if any, to grant
      the copyright license set forth in this Agreement.

      e) Notwithstanding the terms of any Secondary License, no
      Contributor makes additional grants to any Recipient (other than
      those set forth in this Agreement) as a result of such Recipient's
      receipt of the Program under the terms of a Secondary License
      (if permitted under the terms of Section 3).

    3. REQUIREMENTS

    3.1 If a Contributor Distributes the Program in any form, then:

      a) the Program must also be made available as Source Code, in
      accordance with section 3.2, and the Contributor must accompany
      the Program with a statement that the Source Code for the Program
      is available under this Agreement, and informs Recipients how to
      obtain it in a reasonable manner on or through a medium customarily
      used for software exchange; and

      b) the Contributor may Distribute the Program under a license
      different than this Agreement, provided that such license:
         i) effectively disclaims on behalf of all other Contributors all
         warranties and conditions, express and implied, including
         warranties or conditions of title and non-infringement, and
         implied warranties or conditions of merchantability and fitness
         for a particular purpose;

         ii) effectively excludes on behalf of all other Contributors all
         liability for damages, including direct, indirect, special,
         incidental and consequential damages, such as lost profits;

         iii) does not attempt to limit or alter the recipients' rights
         in the Source Code under section 3.2; and

         iv) requires any subsequent distribution of the Program by any
         party to be under a license that satisfies the requirements
         of this section 3.

    3.2 When the Program is Distributed as Source Code:

      a) it must be made available under this Agreement, or if the
      Program (i) is combined with other material in a separate file or
      files made available under a Secondary License, and (ii) the initial
      Contributor attached to the Source Code the notice described in
      Exhibit A of this Agreement, then the Program may be made available
      under the terms of such Secondary Licenses, and

Appendix E

E-18



      b) a copy of this Agreement must be included with each copy of
      the Program.

    3.3 Contributors may not remove or alter any copyright, patent,
    trademark, attribution notices, disclaimers of warranty, or limitations
    of liability ("notices") contained within the Program from any copy of
    the Program which they Distribute, provided that Contributors may add
    their own appropriate notices.

    4. COMMERCIAL DISTRIBUTION

    Commercial distributors of software may accept certain responsibilities
    with respect to end users, business partners and the like. While this
    license is intended to facilitate the commercial use of the Program,
    the Contributor who includes the Program in a commercial product
    offering should do so in a manner which does not create potential
    liability for other Contributors. Therefore, if a Contributor includes
    the Program in a commercial product offering, such Contributor
    ("Commercial Contributor") hereby agrees to defend and indemnify every
    other Contributor ("Indemnified Contributor") against any losses,
    damages and costs (collectively "Losses") arising from claims, lawsuits
    and other legal actions brought by a third party against the Indemnified
    Contributor to the extent caused by the acts or omissions of such
    Commercial Contributor in connection with its distribution of the Program
    in a commercial product offering. The obligations in this section do not
    apply to any claims or Losses relating to any actual or alleged
    intellectual property infringement. In order to qualify, an Indemnified
    Contributor must: a) promptly notify the Commercial Contributor in
    writing of such claim, and b) allow the Commercial Contributor to control,
    and cooperate with the Commercial Contributor in, the defense and any
    related settlement negotiations. The Indemnified Contributor may
    participate in any such claim at its own expense.

    For example, a Contributor might include the Program in a commercial
    product offering, Product X. That Contributor is then a Commercial
    Contributor. If that Commercial Contributor then makes performance
    claims, or offers warranties related to Product X, those performance
    claims and warranties are such Commercial Contributor's responsibility
    alone. Under this section, the Commercial Contributor would have to
    defend claims against the other Contributors related to those performance
    claims and warranties, and if a court requires any other Contributor to
    pay any damages as a result, the Commercial Contributor must pay
    those damages.

    5. NO WARRANTY

    EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, AND TO THE EXTENT
    PERMITTED BY APPLICABLE LAW, THE PROGRAM IS PROVIDED ON AN "AS IS"
    BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS OR
    IMPLIED INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR CONDITIONS OF
    TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
    PURPOSE. Each Recipient is solely responsible for determining the
    appropriateness of using and distributing the Program and assumes all
    risks associated with its exercise of rights under this Agreement,
    including but not limited to the risks and costs of program errors,
    compliance with applicable laws, damage to or loss of data, programs
    or equipment, and unavailability or interruption of operations.

    6. DISCLAIMER OF LIABILITY

    EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, AND TO THE EXTENT

Appendix E

E-19



    PERMITTED BY APPLICABLE LAW, NEITHER RECIPIENT NOR ANY CONTRIBUTORS
    SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
    EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION LOST
    PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    ARISING IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE PROGRAM OR THE
    EXERCISE OF ANY RIGHTS GRANTED HEREUNDER, EVEN IF ADVISED OF THE
    POSSIBILITY OF SUCH DAMAGES.

    7. GENERAL

    If any provision of this Agreement is invalid or unenforceable under
    applicable law, it shall not affect the validity or enforceability of
    the remainder of the terms of this Agreement, and without further
    action by the parties hereto, such provision shall be reformed to the
    minimum extent necessary to make such provision valid and enforceable.

    If Recipient institutes patent litigation against any entity
    (including a cross-claim or counterclaim in a lawsuit) alleging that the
    Program itself (excluding combinations of the Program with other software
    or hardware) infringes such Recipient's patent(s), then such Recipient's
    rights granted under Section 2(b) shall terminate as of the date such
    litigation is filed.

    All Recipient's rights under this Agreement shall terminate if it
    fails to comply with any of the material terms or conditions of this
    Agreement and does not cure such failure in a reasonable period of
    time after becoming aware of such noncompliance. If all Recipient's
    rights under this Agreement terminate, Recipient agrees to cease use
    and distribution of the Program as soon as reasonably practicable.
    However, Recipient's obligations under this Agreement and any licenses
    granted by Recipient relating to the Program shall continue and survive.

    Everyone is permitted to copy and distribute copies of this Agreement,
    but in order to avoid inconsistency the Agreement is copyrighted and
    may only be modified in the following manner. The Agreement Steward
    reserves the right to publish new versions (including revisions) of
    this Agreement from time to time. No one other than the Agreement
    Steward has the right to modify this Agreement. The Eclipse Foundation
    is the initial Agreement Steward. The Eclipse Foundation may assign the
    responsibility to serve as the Agreement Steward to a suitable separate
    entity. Each new version of the Agreement will be given a distinguishing
    version number. The Program (including Contributions) may always be
    Distributed subject to the version of the Agreement under which it was
    received. In addition, after a new version of the Agreement is published,
    Contributor may elect to Distribute the Program (including its
    Contributions) under the new version.

    Except as expressly stated in Sections 2(a) and 2(b) above, Recipient
    receives no rights or licenses to the intellectual property of any
    Contributor under this Agreement, whether expressly, by implication,
    estoppel or otherwise. All rights in the Program not expressly granted
    under this Agreement are reserved. Nothing in this Agreement is intended
    to be enforceable by any entity that is not a Contributor or Recipient.
    No third-party beneficiary rights are created under this Agreement.

    Exhibit A - Form of Secondary Licenses Notice

    "This Source Code may also be made available under the following 
    Secondary Licenses when the conditions for such availability set forth 
    in the Eclipse Public License, v. 2.0 are satisfied: {name license(s),
    version(s), and exceptions or additional permissions here}."

Appendix E

E-20



      Simply including a copy of this Agreement, including this Exhibit A
      is not sufficient to license the Source Code under Secondary Licenses.

      If it is not possible or desirable to put the notice in a particular
      file, then You may include the notice in a location (such as a LICENSE
      file in a relevant directory) where a recipient would be likely to
      look for such a notice.

      You may add additional accurate notices of copyright ownership.

---

##    The GNU General Public License (GPL) Version 2, June 1991

    Copyright (C) 1989, 1991 Free Software Foundation, Inc.
    51 Franklin Street, Fifth Floor
    Boston, MA 02110-1335
    USA

    Everyone is permitted to copy and distribute verbatim copies
    of this license document, but changing it is not allowed.

    Preamble

    The licenses for most software are designed to take away your freedom to
    share and change it. By contrast, the GNU General Public License is
    intended to guarantee your freedom to share and change free software--to
    make sure the software is free for all its users. This General Public
    License applies to most of the Free Software Foundation's software and
    to any other program whose authors commit to using it. (Some other Free
    Software Foundation software is covered by the GNU Library General
    Public License instead.) You can apply it to your programs, too.

    When we speak of free software, we are referring to freedom, not price.
    Our General Public Licenses are designed to make sure that you have the
    freedom to distribute copies of free software (and charge for this
    service if you wish), that you receive source code or can get it if you
    want it, that you can change the software or use pieces of it in new
    free programs; and that you know you can do these things.

    To protect your rights, we need to make restrictions that forbid anyone
    to deny you these rights or to ask you to surrender the rights. These
    restrictions translate to certain responsibilities for you if you
    distribute copies of the software, or if you modify it.

    For example, if you distribute copies of such a program, whether gratis
    or for a fee, you must give the recipients all the rights that you have.
    You must make sure that they, too, receive or can get the source code.
    And you must show them these terms so they know their rights.

    We protect your rights with two steps: (1) copyright the software, and
    (2) offer you this license which gives you legal permission to copy,
    distribute and/or modify the software.

    Also, for each author's protection and ours, we want to make certain
    that everyone understands that there is no warranty for this free
    software. If the software is modified by someone else and passed on, we
    want its recipients to know that what they have is not the original, so
    that any problems introduced by others will not reflect on the original
    authors' reputations.

Appendix E

E-21



    Finally, any free program is threatened constantly by software patents.
    We wish to avoid the danger that redistributors of a free program will
    individually obtain patent licenses, in effect making the program
    proprietary. To prevent this, we have made it clear that any patent must
    be licensed for everyone's free use or not licensed at all.

    The precise terms and conditions for copying, distribution and
    modification follow.

    TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

    0. This License applies to any program or other work which contains a
    notice placed by the copyright holder saying it may be distributed under
    the terms of this General Public License. The "Program", below, refers
    to any such program or work, and a "work based on the Program" means
    either the Program or any derivative work under copyright law: that is
    to say, a work containing the Program or a portion of it, either
    verbatim or with modifications and/or translated into another language.
    (Hereinafter, translation is included without limitation in the term
    "modification".) Each licensee is addressed as "you".

    Activities other than copying, distribution and modification are not
    covered by this License; they are outside its scope. The act of running
    the Program is not restricted, and the output from the Program is
    covered only if its contents constitute a work based on the Program
    (independent of having been made by running the Program). Whether that
    is true depends on what the Program does.

    1. You may copy and distribute verbatim copies of the Program's source
    code as you receive it, in any medium, provided that you conspicuously
    and appropriately publish on each copy an appropriate copyright notice
    and disclaimer of warranty; keep intact all the notices that refer to
    this License and to the absence of any warranty; and give any other
    recipients of the Program a copy of this License along with the Program.

    You may charge a fee for the physical act of transferring a copy, and
    you may at your option offer warranty protection in exchange for a fee.

    2. You may modify your copy or copies of the Program or any portion of
    it, thus forming a work based on the Program, and copy and distribute
    such modifications or work under the terms of Section 1 above, provided
    that you also meet all of these conditions:

        a) You must cause the modified files to carry prominent notices
        stating that you changed the files and the date of any change.

        b) You must cause any work that you distribute or publish, that in
        whole or in part contains or is derived from the Program or any part
        thereof, to be licensed as a whole at no charge to all third parties
        under the terms of this License.

        c) If the modified program normally reads commands interactively
        when run, you must cause it, when started running for such
        interactive use in the most ordinary way, to print or display an
        announcement including an appropriate copyright notice and a notice
        that there is no warranty (or else, saying that you provide a
        warranty) and that users may redistribute the program under these
        conditions, and telling the user how to view a copy of this License.
        (Exception: if the Program itself is interactive but does not
        normally print such an announcement, your work based on the Program
        is not required to print an announcement.)

Appendix E

E-22



    These requirements apply to the modified work as a whole. If
    identifiable sections of that work are not derived from the Program, and
    can be reasonably considered independent and separate works in
    themselves, then this License, and its terms, do not apply to those
    sections when you distribute them as separate works. But when you
    distribute the same sections as part of a whole which is a work based on
    the Program, the distribution of the whole must be on the terms of this
    License, whose permissions for other licensees extend to the entire
    whole, and thus to each and every part regardless of who wrote it.

    Thus, it is not the intent of this section to claim rights or contest
    your rights to work written entirely by you; rather, the intent is to
    exercise the right to control the distribution of derivative or
    collective works based on the Program.

    In addition, mere aggregation of another work not based on the Program
    with the Program (or with a work based on the Program) on a volume of a
    storage or distribution medium does not bring the other work under the
    scope of this License.

    3. You may copy and distribute the Program (or a work based on it,
    under Section 2) in object code or executable form under the terms of
    Sections 1 and 2 above provided that you also do one of the following:

        a) Accompany it with the complete corresponding machine-readable
        source code, which must be distributed under the terms of Sections 1
        and 2 above on a medium customarily used for software interchange; or,

        b) Accompany it with a written offer, valid for at least three
        years, to give any third party, for a charge no more than your cost
        of physically performing source distribution, a complete
        machine-readable copy of the corresponding source code, to be
        distributed under the terms of Sections 1 and 2 above on a medium
        customarily used for software interchange; or,

        c) Accompany it with the information you received as to the offer to
        distribute corresponding source code. (This alternative is allowed
        only for noncommercial distribution and only if you received the
        program in object code or executable form with such an offer, in
        accord with Subsection b above.)

    The source code for a work means the preferred form of the work for
    making modifications to it. For an executable work, complete source code
    means all the source code for all modules it contains, plus any
    associated interface definition files, plus the scripts used to control
    compilation and installation of the executable. However, as a special
    exception, the source code distributed need not include anything that is
    normally distributed (in either source or binary form) with the major
    components (compiler, kernel, and so on) of the operating system on
    which the executable runs, unless that component itself accompanies the
    executable.

    If distribution of executable or object code is made by offering access
    to copy from a designated place, then offering equivalent access to copy
    the source code from the same place counts as distribution of the source
    code, even though third parties are not compelled to copy the source
    along with the object code.

    4. You may not copy, modify, sublicense, or distribute the Program
    except as expressly provided under this License. Any attempt otherwise
    to copy, modify, sublicense or distribute the Program is void, and will
    automatically terminate your rights under this License. However, parties

Appendix E

E-23



    who have received copies, or rights, from you under this License will
    not have their licenses terminated so long as such parties remain in
    full compliance.

    5. You are not required to accept this License, since you have not
    signed it. However, nothing else grants you permission to modify or
    distribute the Program or its derivative works. These actions are
    prohibited by law if you do not accept this License. Therefore, by
    modifying or distributing the Program (or any work based on the
    Program), you indicate your acceptance of this License to do so, and all
    its terms and conditions for copying, distributing or modifying the
    Program or works based on it.

    6. Each time you redistribute the Program (or any work based on the
    Program), the recipient automatically receives a license from the
    original licensor to copy, distribute or modify the Program subject to
    these terms and conditions. You may not impose any further restrictions
    on the recipients' exercise of the rights granted herein. You are not
    responsible for enforcing compliance by third parties to this License.

    7. If, as a consequence of a court judgment or allegation of patent
    infringement or for any other reason (not limited to patent issues),
    conditions are imposed on you (whether by court order, agreement or
    otherwise) that contradict the conditions of this License, they do not
    excuse you from the conditions of this License. If you cannot distribute
    so as to satisfy simultaneously your obligations under this License and
    any other pertinent obligations, then as a consequence you may not
    distribute the Program at all. For example, if a patent license would
    not permit royalty-free redistribution of the Program by all those who
    receive copies directly or indirectly through you, then the only way you
    could satisfy both it and this License would be to refrain entirely from
    distribution of the Program.

    If any portion of this section is held invalid or unenforceable under
    any particular circumstance, the balance of the section is intended to
    apply and the section as a whole is intended to apply in other
    circumstances.

    It is not the purpose of this section to induce you to infringe any
    patents or other property right claims or to contest validity of any
    such claims; this section has the sole purpose of protecting the
    integrity of the free software distribution system, which is implemented
    by public license practices. Many people have made generous
    contributions to the wide range of software distributed through that
    system in reliance on consistent application of that system; it is up to
    the author/donor to decide if he or she is willing to distribute
    software through any other system and a licensee cannot impose that choice.

    This section is intended to make thoroughly clear what is believed to be
    a consequence of the rest of this License.

    8. If the distribution and/or use of the Program is restricted in
    certain countries either by patents or by copyrighted interfaces, the
    original copyright holder who places the Program under this License may
    add an explicit geographical distribution limitation excluding those
    countries, so that distribution is permitted only in or among countries
    not thus excluded. In such case, this License incorporates the
    limitation as if written in the body of this License.

    9. The Free Software Foundation may publish revised and/or new
    versions of the General Public License from time to time. Such new
    versions will be similar in spirit to the present version, but may

Appendix E

E-24



    differ in detail to address new problems or concerns.

    Each version is given a distinguishing version number. If the Program
    specifies a version number of this License which applies to it and "any
    later version", you have the option of following the terms and
    conditions either of that version or of any later version published by
    the Free Software Foundation. If the Program does not specify a version
    number of this License, you may choose any version ever published by the
    Free Software Foundation.

    10. If you wish to incorporate parts of the Program into other free
    programs whose distribution conditions are different, write to the
    author to ask for permission. For software which is copyrighted by the
    Free Software Foundation, write to the Free Software Foundation; we
    sometimes make exceptions for this. Our decision will be guided by the
    two goals of preserving the free status of all derivatives of our free
    software and of promoting the sharing and reuse of software generally.

    NO WARRANTY

    11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
    WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
    EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
    OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND,
    EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
    WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
    ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
    YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
    NECESSARY SERVICING, REPAIR OR CORRECTION.

    12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
    WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
    AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
    DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
    DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM
    (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
    INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF
    THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
    OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

    END OF TERMS AND CONDITIONS

    How to Apply These Terms to Your New Programs

    If you develop a new program, and you want it to be of the greatest
    possible use to the public, the best way to achieve this is to make it
    free software which everyone can redistribute and change under these terms.

    To do so, attach the following notices to the program. It is safest to
    attach them to the start of each source file to most effectively convey
    the exclusion of warranty; and each file should have at least the
    "copyright" line and a pointer to where the full notice is found.

        One line to give the program's name and a brief idea of what it does.
        Copyright (C) <year> <name of author>

        This program is free software; you can redistribute it and/or modify
        it under the terms of the GNU General Public License as published by
        the Free Software Foundation; either version 2 of the License, or
        (at your option) any later version.

        This program is distributed in the hope that it will be useful, but

Appendix E

E-25



        WITHOUT ANY WARRANTY; without even the implied warranty of
        MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
        General Public License for more details.

        You should have received a copy of the GNU General Public License
        along with this program; if not, write to the Free Software
        Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA

    Also add information on how to contact you by electronic and paper mail.

    If the program is interactive, make it output a short notice like this
    when it starts in an interactive mode:

        Gnomovision version 69, Copyright (C) year name of author
        Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type
        `show w'. This is free software, and you are welcome to redistribute
        it under certain conditions; type `show c' for details.

    The hypothetical commands `show w' and `show c' should show the
    appropriate parts of the General Public License. Of course, the commands
    you use may be called something other than `show w' and `show c'; they
    could even be mouse-clicks or menu items--whatever suits your program.

    You should also get your employer (if you work as a programmer) or your
    school, if any, to sign a "copyright disclaimer" for the program, if
    necessary. Here is a sample; alter the names:

        Yoyodyne, Inc., hereby disclaims all copyright interest in the
        program `Gnomovision' (which makes passes at compilers) written by
        James Hacker.

        signature of Ty Coon, 1 April 1989
        Ty Coon, President of Vice

    This General Public License does not permit incorporating your program
    into proprietary programs. If your program is a subroutine library, you
    may consider it more useful to permit linking proprietary applications
    with the library. If this is what you want to do, use the GNU Library
    General Public License instead of this License.

---

## CLASSPATH EXCEPTION

    Linking this library statically or dynamically with other modules is
    making a combined work based on this library.  Thus, the terms and
    conditions of the GNU General Public License version 2 cover the whole
    combination.

    As a special exception, the copyright holders of this library give you
    permission to link this library with independent modules to produce an
    executable, regardless of the license terms of these independent
    modules, and to copy and distribute the resulting executable under
    terms of your choice, provided that you also meet, for each linked
    independent module, the terms and conditions of the license of that
    module.  An independent module is a module which is not derived from or
    based on this library.  If you modify this library, you may extend this
    exception to your version of the library, but you are not obligated to
    do so.  If you do not wish to do so, delete this exception statement
    from your version.
== Copyright Notices
/*

Appendix E

E-26



 * Copyright (c) YYYY Oracle and/or its affiliates. All rights reserved.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Eclipse Public License v. 2.0, which is available at
 * http://www.eclipse.org/legal/epl-2.0.
 *
 * This Source Code may also be made available under the following Secondary
 * Licenses when the conditions for such availability set forth in the
 * Eclipse Public License v. 2.0 are satisfied: GNU General Public License,
 * version 2 with the GNU Classpath Exception, which is available at
 * https://www.gnu.org/software/classpath/license.html.
 *
 * SPDX-License-Identifier: EPL-2.0 OR GPL-2.0 WITH Classpath-exception-2.0
 */

cytoscape.js

Vendor: Cytoscape Consortium

Version: 3.29.2

Copyright (c) 2016-2024, The Cytoscape Consortium.

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

lodash

Vendor:OpenJS Foundation

Version: 4.17.21

The MIT License

Copyright JS Foundation and other contributors 

Based on Underscore.js, copyright Jeremy Ashkenas,
DocumentCloud and Investigative Reporters & Editors 

This software consists of voluntary contributions made by many
individuals. For exact contribution history, see the revision history
available at https://github.com/lodash/lodash

The following license applies to all parts of this software except as
documented below:

====

Appendix E

E-27



Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

====

Copyright and related rights for sample code are waived via CC0. Sample
code is defined as all source code displayed within the prose of the
documentation.

CC0: http://creativecommons.org/publicdomain/zero/1.0/

====

Files located in the node_modules and vendor directories are externally
maintained libraries used by this software which have their own
licenses; we recommend you read them, as their terms may differ from the
terms above.

Moment.js

Vendor: JS Foundation and other contributors

Version: 2.29.4

Copyright (c) JS Foundation and other contributors

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Appendix E

E-28



three.js

Vendor: three.js authors

Version: 0.145.0

The MIT License

Copyright © 2010-2022 three.js authors

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Nimbus JOSE+JWT

Vendor: Connect2id Ltd.

Version: 9.37.3

-------------------------  Copyright Info  ---------------------------
Nimbus JOSE + JWT

Copyright 2012 - 2022, Connect2id Ltd.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License. You may obtain a copy of the
License at

   https://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

-----------------------------------------------------------------------------------------
-------
                        Apache License
                        Version 2.0, January 2004
                        http://www.apache.org/licenses/

   TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

   1. Definitions.

      "License" shall mean the terms and conditions for use, reproduction,
      and distribution as defined by Sections 1 through 9 of this document.

Appendix E

E-29



      "Licensor" shall mean the copyright owner or entity authorized by
      the copyright owner that is granting the License.

      "Legal Entity" shall mean the union of the acting entity and all
      other entities that control, are controlled by, or are under common
      control with that entity. For the purposes of this definition,
      "control" means (i) the power, direct or indirect, to cause the
      direction or management of such entity, whether by contract or
      otherwise, or (ii) ownership of fifty percent (50%) or more of the
      outstanding shares, or (iii) beneficial ownership of such entity.

      "You" (or "Your") shall mean an individual or Legal Entity
      exercising permissions granted by this License.

      "Source" form shall mean the preferred form for making modifications,
      including but not limited to software source code, documentation
      source, and configuration files.

      "Object" form shall mean any form resulting from mechanical
      transformation or translation of a Source form, including but
      not limited to compiled object code, generated documentation,
      and conversions to other media types.

      "Work" shall mean the work of authorship, whether in Source or
      Object form, made available under the License, as indicated by a
      copyright notice that is included in or attached to the work
      (an example is provided in the Appendix below).

      "Derivative Works" shall mean any work, whether in Source or Object
      form, that is based on (or derived from) the Work and for which the
      editorial revisions, annotations, elaborations, or other modifications
      represent, as a whole, an original work of authorship. For the purposes
      of this License, Derivative Works shall not include works that remain
      separable from, or merely link (or bind by name) to the interfaces of,
      the Work and Derivative Works thereof.

      "Contribution" shall mean any work of authorship, including
      the original version of the Work and any modifications or additions
      to that Work or Derivative Works thereof, that is intentionally
      submitted to Licensor for inclusion in the Work by the copyright owner
      or by an individual or Legal Entity authorized to submit on behalf of
      the copyright owner. For the purposes of this definition, "submitted"
      means any form of electronic, verbal, or written communication sent
      to the Licensor or its representatives, including but not limited to
      communication on electronic mailing lists, source code control systems,
      and issue tracking systems that are managed by, or on behalf of, the
      Licensor for the purpose of discussing and improving the Work, but
      excluding communication that is conspicuously marked or otherwise
      designated in writing by the copyright owner as "Not a Contribution."

      "Contributor" shall mean Licensor and any individual or Legal Entity
      on behalf of whom a Contribution has been received by Licensor and
      subsequently incorporated within the Work.

   2. Grant of Copyright License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      copyright license to reproduce, prepare Derivative Works of,
      publicly display, publicly perform, sublicense, and distribute the
      Work and such Derivative Works in Source or Object form.

Appendix E

E-30



   3. Grant of Patent License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      (except as stated in this section) patent license to make, have made,
      use, offer to sell, sell, import, and otherwise transfer the Work,
      where such license applies only to those patent claims licensable
      by such Contributor that are necessarily infringed by their
      Contribution(s) alone or by combination of their Contribution(s)
      with the Work to which such Contribution(s) was submitted. If You
      institute patent litigation against any entity (including a
      cross-claim or counterclaim in a lawsuit) alleging that the Work
      or a Contribution incorporated within the Work constitutes direct
      or contributory patent infringement, then any patent licenses
      granted to You under this License for that Work shall terminate
      as of the date such litigation is filed.

   4. Redistribution. You may reproduce and distribute copies of the
      Work or Derivative Works thereof in any medium, with or without
      modifications, and in Source or Object form, provided that You
      meet the following conditions:

      (a) You must give any other recipients of the Work or
          Derivative Works a copy of this License; and

      (b) You must cause any modified files to carry prominent notices
          stating that You changed the files; and

      (c) You must retain, in the Source form of any Derivative Works
          that You distribute, all copyright, patent, trademark, and
          attribution notices from the Source form of the Work,
          excluding those notices that do not pertain to any part of
          the Derivative Works; and

      (d) If the Work includes a "NOTICE" text file as part of its
          distribution, then any Derivative Works that You distribute must
          include a readable copy of the attribution notices contained
          within such NOTICE file, excluding those notices that do not
          pertain to any part of the Derivative Works, in at least one
          of the following places: within a NOTICE text file distributed
          as part of the Derivative Works; within the Source form or
          documentation, if provided along with the Derivative Works; or,
          within a display generated by the Derivative Works, if and
          wherever such third-party notices normally appear. The contents
          of the NOTICE file are for informational purposes only and
          do not modify the License. You may add Your own attribution
          notices within Derivative Works that You distribute, alongside
          or as an addendum to the NOTICE text from the Work, provided
          that such additional attribution notices cannot be construed
          as modifying the License.

      You may add Your own copyright statement to Your modifications and
      may provide additional or different license terms and conditions
      for use, reproduction, or distribution of Your modifications, or
      for any such Derivative Works as a whole, provided Your use,
      reproduction, and distribution of the Work otherwise complies with
      the conditions stated in this License.

   5. Submission of Contributions. Unless You explicitly state otherwise,
      any Contribution intentionally submitted for inclusion in the Work
      by You to the Licensor shall be under the terms and conditions of
      this License, without any additional terms or conditions.
      Notwithstanding the above, nothing herein shall supersede or modify

Appendix E

E-31



      the terms of any separate license agreement you may have executed
      with Licensor regarding such Contributions.

   6. Trademarks. This License does not grant permission to use the trade
      names, trademarks, service marks, or product names of the Licensor,
      except as required for reasonable and customary use in describing the
      origin of the Work and reproducing the content of the NOTICE file.

   7. Disclaimer of Warranty. Unless required by applicable law or
      agreed to in writing, Licensor provides the Work (and each
      Contributor provides its Contributions) on an "AS IS" BASIS,
      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
      implied, including, without limitation, any warranties or conditions
      of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
      PARTICULAR PURPOSE. You are solely responsible for determining the
      appropriateness of using or redistributing the Work and assume any
      risks associated with Your exercise of permissions under this License.

   8. Limitation of Liability. In no event and under no legal theory,
      whether in tort (including negligence), contract, or otherwise,
      unless required by applicable law (such as deliberate and grossly
      negligent acts) or agreed to in writing, shall any Contributor be
      liable to You for damages, including any direct, indirect, special,
      incidental, or consequential damages of any character arising as a
      result of this License or out of the use or inability to use the
      Work (including but not limited to damages for loss of goodwill,
      work stoppage, computer failure or malfunction, or any and all
      other commercial damages or losses), even if such Contributor
      has been advised of the possibility of such damages.

   9. Accepting Warranty or Additional Liability. While redistributing
      the Work or Derivative Works thereof, You may choose to offer,
      and charge a fee for, acceptance of support, warranty, indemnity,
      or other liability obligations and/or rights consistent with this
      License. However, in accepting such obligations, You may act only
      on Your own behalf and on Your sole responsibility, not on behalf
      of any other Contributor, and only if You agree to indemnify,
      defend, and hold each Contributor harmless for any liability
      incurred by, or claims asserted against, such Contributor by reason
      of your accepting any such warranty or additional liability.

   END OF TERMS AND CONDITIONS
-------------------------------------------------------------------------

4th Party Dependencies:

1. com.github.stephenc.jcip » jcip-annotations  (Apache 2.0)

/*
 * Copyright 2013 Stephen Connolly.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and

Appendix E

E-32



 * limitations under the License.
 */
-----------------------------------------------------------------------

jackson-annotations

Vendor: FasterXML, LLC

Version: 2.14.2

License:
                           Version 2.0, January 2004
                        http://www.apache.org/licenses/

   TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

   1. Definitions.

      "License" shall mean the terms and conditions for use, reproduction,
      and distribution as defined by Sections 1 through 9 of this document.

      "Licensor" shall mean the copyright owner or entity authorized by
      the copyright owner that is granting the License.

      "Legal Entity" shall mean the union of the acting entity and all
      other entities that control, are controlled by, or are under common
      control with that entity. For the purposes of this definition,
      "control" means (i) the power, direct or indirect, to cause the
      direction or management of such entity, whether by contract or
      otherwise, or (ii) ownership of fifty percent (50%) or more of the
      outstanding shares, or (iii) beneficial ownership of such entity.

      "You" (or "Your") shall mean an individual or Legal Entity
      exercising permissions granted by this License.

      "Source" form shall mean the preferred form for making modifications,
      including but not limited to software source code, documentation
      source, and configuration files.

      "Object" form shall mean any form resulting from mechanical
      transformation or translation of a Source form, including but
      not limited to compiled object code, generated documentation,
      and conversions to other media types.

      "Work" shall mean the work of authorship, whether in Source or
      Object form, made available under the License, as indicated by a
      copyright notice that is included in or attached to the work
      (an example is provided in the Appendix below).

      "Derivative Works" shall mean any work, whether in Source or Object
      form, that is based on (or derived from) the Work and for which the
      editorial revisions, annotations, elaborations, or other modifications
      represent, as a whole, an original work of authorship. For the purposes
      of this License, Derivative Works shall not include works that remain
      separable from, or merely link (or bind by name) to the interfaces of,
      the Work and Derivative Works thereof.

      "Contribution" shall mean any work of authorship, including
      the original version of the Work and any modifications or additions
      to that Work or Derivative Works thereof, that is intentionally
      submitted to Licensor for inclusion in the Work by the copyright owner
      or by an individual or Legal Entity authorized to submit on behalf of
      the copyright owner. For the purposes of this definition, "submitted"

Appendix E

E-33



      means any form of electronic, verbal, or written communication sent
      to the Licensor or its representatives, including but not limited to
      communication on electronic mailing lists, source code control systems,
      and issue tracking systems that are managed by, or on behalf of, the
      Licensor for the purpose of discussing and improving the Work, but
      excluding communication that is conspicuously marked or otherwise
      designated in writing by the copyright owner as "Not a Contribution."

      "Contributor" shall mean Licensor and any individual or Legal Entity
      on behalf of whom a Contribution has been received by Licensor and
      subsequently incorporated within the Work.

   2. Grant of Copyright License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      copyright license to reproduce, prepare Derivative Works of,
      publicly display, publicly perform, sublicense, and distribute the
      Work and such Derivative Works in Source or Object form.

   3. Grant of Patent License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      (except as stated in this section) patent license to make, have made,
      use, offer to sell, sell, import, and otherwise transfer the Work,
      where such license applies only to those patent claims licensable
      by such Contributor that are necessarily infringed by their
      Contribution(s) alone or by combination of their Contribution(s)
      with the Work to which such Contribution(s) was submitted. If You
      institute patent litigation against any entity (including a
      cross-claim or counterclaim in a lawsuit) alleging that the Work
      or a Contribution incorporated within the Work constitutes direct
      or contributory patent infringement, then any patent licenses
      granted to You under this License for that Work shall terminate
      as of the date such litigation is filed.

   4. Redistribution. You may reproduce and distribute copies of the
      Work or Derivative Works thereof in any medium, with or without
      modifications, and in Source or Object form, provided that You
      meet the following conditions:

      (a) You must give any other recipients of the Work or
          Derivative Works a copy of this License; and

      (b) You must cause any modified files to carry prominent notices
          stating that You changed the files; and

      (c) You must retain, in the Source form of any Derivative Works
          that You distribute, all copyright, patent, trademark, and
          attribution notices from the Source form of the Work,
          excluding those notices that do not pertain to any part of
          the Derivative Works; and

      (d) If the Work includes a "NOTICE" text file as part of its
          distribution, then any Derivative Works that You distribute must
          include a readable copy of the attribution notices contained
          within such NOTICE file, excluding those notices that do not
          pertain to any part of the Derivative Works, in at least one
          of the following places: within a NOTICE text file distributed
          as part of the Derivative Works; within the Source form or
          documentation, if provided along with the Derivative Works; or,
          within a display generated by the Derivative Works, if and
          wherever such third-party notices normally appear. The contents

Appendix E

E-34



          of the NOTICE file are for informational purposes only and
          do not modify the License. You may add Your own attribution
          notices within Derivative Works that You distribute, alongside
          or as an addendum to the NOTICE text from the Work, provided
          that such additional attribution notices cannot be construed
          as modifying the License.

      You may add Your own copyright statement to Your modifications and
      may provide additional or different license terms and conditions
      for use, reproduction, or distribution of Your modifications, or
      for any such Derivative Works as a whole, provided Your use,
      reproduction, and distribution of the Work otherwise complies with
      the conditions stated in this License.

   5. Submission of Contributions. Unless You explicitly state otherwise,
      any Contribution intentionally submitted for inclusion in the Work
      by You to the Licensor shall be under the terms and conditions of
      this License, without any additional terms or conditions.
      Notwithstanding the above, nothing herein shall supersede or modify
      the terms of any separate license agreement you may have executed
      with Licensor regarding such Contributions.

   6. Trademarks. This License does not grant permission to use the trade
      names, trademarks, service marks, or product names of the Licensor,
      except as required for reasonable and customary use in describing the
      origin of the Work and reproducing the content of the NOTICE file.

   7. Disclaimer of Warranty. Unless required by applicable law or
      agreed to in writing, Licensor provides the Work (and each
      Contributor provides its Contributions) on an "AS IS" BASIS,
      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
      implied, including, without limitation, any warranties or conditions
      of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
      PARTICULAR PURPOSE. You are solely responsible for determining the
      appropriateness of using or redistributing the Work and assume any
      risks associated with Your exercise of permissions under this License.

   8. Limitation of Liability. In no event and under no legal theory,
      whether in tort (including negligence), contract, or otherwise,
      unless required by applicable law (such as deliberate and grossly
      negligent acts) or agreed to in writing, shall any Contributor be
      liable to You for damages, including any direct, indirect, special,
      incidental, or consequential damages of any character arising as a
      result of this License or out of the use or inability to use the
      Work (including but not limited to damages for loss of goodwill,
      work stoppage, computer failure or malfunction, or any and all
      other commercial damages or losses), even if such Contributor
      has been advised of the possibility of such damages.

   9. Accepting Warranty or Additional Liability. While redistributing
      the Work or Derivative Works thereof, You may choose to offer,
      and charge a fee for, acceptance of support, warranty, indemnity,
      or other liability obligations and/or rights consistent with this
      License. However, in accepting such obligations, You may act only
      on Your own behalf and on Your sole responsibility, not on behalf
      of any other Contributor, and only if You agree to indemnify,
      defend, and hold each Contributor harmless for any liability
      incurred by, or claims asserted against, such Contributor by reason
      of your accepting any such warranty or additional liability.

   END OF TERMS AND CONDITIONS

Appendix E

E-35



   APPENDIX: How to apply the Apache License to your work.

      To apply the Apache License to your work, attach the following
      boilerplate notice, with the fields enclosed by brackets "[]"
      replaced with your own identifying information. (Don't include
      the brackets!)  The text should be enclosed in the appropriate
      comment syntax for the file format. We also recommend that a
      file or class name and description of purpose be included on the
      same "printed page" as the copyright notice for easier
      identification within third-party archives.

   Copyright [yyyy] [name of copyright owner]

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.

Copyright © 2007–2022 FasterXML. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
     http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

***********************************************************************

Copyright © 2007–2022 FasterXML. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
     http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Notice:
# Jackson JSON processor

Jackson is a high-performance, Free/Open Source JSON processing library.
It was originally written by Tatu Saloranta (tatu.saloranta@iki.fi), and has
been in development since 2007.
It is currently developed by a community of developers.

## Licensing

Jackson 2.x core and extension components are licensed under Apache License 2.0

Appendix E

E-36



To find the details that apply to this artifact see the accompanying LICENSE file.

## Credits

A list of contributors may be found from CREDITS(-2.x) file, which is included
in some artifacts (usually source distributions); but is always available
from the source code management (SCM) system project uses.

jackson-core

Vendor: FasterXML, LLC

Version: 2.14.2

Jackson Core
Copyright © 2008–2019 FasterXML. All rights reserved.

This copy of Jackson JSON processor streaming parser/generator is licensed under the
Apache (Software) License, version 2.0 ("the License").
See the License for details about distribution rights, and the
specific rights regarding derivate works.

You may obtain a copy of the License at:

http://www.apache.org/licenses/LICENSE-2.0

NOTICE FILE:
===============
# Jackson JSON processor
 
Jackson is a high-performance, Free/Open Source JSON processing library.
It was originally written by Tatu Saloranta (tatu.saloranta@iki.fi), and has
been in development since 2007.
It is currently developed by a community of developers, as well as supported
commercially by FasterXML.com.
 
## Licensing
 
Jackson core and extension components may licensed under different licenses.
To find the details that apply to this artifact see the accompanying LICENSE file.
For more information, including possible other licensing options, contact
FasterXML.com (http://fasterxml.com).
 
## Credits
 
A list of contributors may be found from CREDITS file, which is included
in some artifacts (usually source distributions); but is always available
from the source code management (SCM) system project uses.
===============

 From the LICENSE file:

                            Apache License
                           Version 2.0, January 2004
                        http://www.apache.org/licenses/

   TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

   1. Definitions.

      "License" shall mean the terms and conditions for use, reproduction,
      and distribution as defined by Sections 1 through 9 of this document.

Appendix E

E-37



      "Licensor" shall mean the copyright owner or entity authorized by
      the copyright owner that is granting the License.

      "Legal Entity" shall mean the union of the acting entity and all
      other entities that control, are controlled by, or are under common
      control with that entity. For the purposes of this definition,
      "control" means (i) the power, direct or indirect, to cause the
      direction or management of such entity, whether by contract or
      otherwise, or (ii) ownership of fifty percent (50%) or more of the
      outstanding shares, or (iii) beneficial ownership of such entity.

      "You" (or "Your") shall mean an individual or Legal Entity
      exercising permissions granted by this License.

      "Source" form shall mean the preferred form for making modifications,
      including but not limited to software source code, documentation
      source, and configuration files.

      "Object" form shall mean any form resulting from mechanical
      transformation or translation of a Source form, including but
      not limited to compiled object code, generated documentation,
      and conversions to other media types.

      "Work" shall mean the work of authorship, whether in Source or
      Object form, made available under the License, as indicated by a
      copyright notice that is included in or attached to the work
      (an example is provided in the Appendix below).

      "Derivative Works" shall mean any work, whether in Source or Object
      form, that is based on (or derived from) the Work and for which the
      editorial revisions, annotations, elaborations, or other modifications
      represent, as a whole, an original work of authorship. For the purposes
      of this License, Derivative Works shall not include works that remain
      separable from, or merely link (or bind by name) to the interfaces of,
      the Work and Derivative Works thereof.

      "Contribution" shall mean any work of authorship, including
      the original version of the Work and any modifications or additions
      to that Work or Derivative Works thereof, that is intentionally
      submitted to Licensor for inclusion in the Work by the copyright owner
      or by an individual or Legal Entity authorized to submit on behalf of
      the copyright owner. For the purposes of this definition, "submitted"
      means any form of electronic, verbal, or written communication sent
      to the Licensor or its representatives, including but not limited to
      communication on electronic mailing lists, source code control systems,
      and issue tracking systems that are managed by, or on behalf of, the
      Licensor for the purpose of discussing and improving the Work, but
      excluding communication that is conspicuously marked or otherwise
      designated in writing by the copyright owner as "Not a Contribution."

      "Contributor" shall mean Licensor and any individual or Legal Entity
      on behalf of whom a Contribution has been received by Licensor and
      subsequently incorporated within the Work.

   2. Grant of Copyright License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      copyright license to reproduce, prepare Derivative Works of,
      publicly display, publicly perform, sublicense, and distribute the
      Work and such Derivative Works in Source or Object form.

Appendix E

E-38



   3. Grant of Patent License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      (except as stated in this section) patent license to make, have made,
      use, offer to sell, sell, import, and otherwise transfer the Work,
      where such license applies only to those patent claims licensable
      by such Contributor that are necessarily infringed by their
      Contribution(s) alone or by combination of their Contribution(s)
      with the Work to which such Contribution(s) was submitted. If You
      institute patent litigation against any entity (including a
      cross-claim or counterclaim in a lawsuit) alleging that the Work
      or a Contribution incorporated within the Work constitutes direct
      or contributory patent infringement, then any patent licenses
      granted to You under this License for that Work shall terminate
      as of the date such litigation is filed.

   4. Redistribution. You may reproduce and distribute copies of the
      Work or Derivative Works thereof in any medium, with or without
      modifications, and in Source or Object form, provided that You
      meet the following conditions:

      (a) You must give any other recipients of the Work or
          Derivative Works a copy of this License; and

      (b) You must cause any modified files to carry prominent notices
          stating that You changed the files; and

      (c) You must retain, in the Source form of any Derivative Works
          that You distribute, all copyright, patent, trademark, and
          attribution notices from the Source form of the Work,
          excluding those notices that do not pertain to any part of
          the Derivative Works; and

      (d) If the Work includes a "NOTICE" text file as part of its
          distribution, then any Derivative Works that You distribute must
          include a readable copy of the attribution notices contained
          within such NOTICE file, excluding those notices that do not
          pertain to any part of the Derivative Works, in at least one
          of the following places: within a NOTICE text file distributed
          as part of the Derivative Works; within the Source form or
          documentation, if provided along with the Derivative Works; or,
          within a display generated by the Derivative Works, if and
          wherever such third-party notices normally appear. The contents
          of the NOTICE file are for informational purposes only and
          do not modify the License. You may add Your own attribution
          notices within Derivative Works that You distribute, alongside
          or as an addendum to the NOTICE text from the Work, provided
          that such additional attribution notices cannot be construed
          as modifying the License.

      You may add Your own copyright statement to Your modifications and
      may provide additional or different license terms and conditions
      for use, reproduction, or distribution of Your modifications, or
      for any such Derivative Works as a whole, provided Your use,
      reproduction, and distribution of the Work otherwise complies with
      the conditions stated in this License.

   5. Submission of Contributions. Unless You explicitly state otherwise,
      any Contribution intentionally submitted for inclusion in the Work
      by You to the Licensor shall be under the terms and conditions of
      this License, without any additional terms or conditions.
      Notwithstanding the above, nothing herein shall supersede or modify

Appendix E

E-39



      the terms of any separate license agreement you may have executed
      with Licensor regarding such Contributions.

   6. Trademarks. This License does not grant permission to use the trade
      names, trademarks, service marks, or product names of the Licensor,
      except as required for reasonable and customary use in describing the
      origin of the Work and reproducing the content of the NOTICE file.

   7. Disclaimer of Warranty. Unless required by applicable law or
      agreed to in writing, Licensor provides the Work (and each
      Contributor provides its Contributions) on an "AS IS" BASIS,
      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
      implied, including, without limitation, any warranties or conditions
      of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
      PARTICULAR PURPOSE. You are solely responsible for determining the
      appropriateness of using or redistributing the Work and assume any
      risks associated with Your exercise of permissions under this License.

   8. Limitation of Liability. In no event and under no legal theory,
      whether in tort (including negligence), contract, or otherwise,
      unless required by applicable law (such as deliberate and grossly
      negligent acts) or agreed to in writing, shall any Contributor be
      liable to You for damages, including any direct, indirect, special,
      incidental, or consequential damages of any character arising as a
      result of this License or out of the use or inability to use the
      Work (including but not limited to damages for loss of goodwill,
      work stoppage, computer failure or malfunction, or any and all
      other commercial damages or losses), even if such Contributor
      has been advised of the possibility of such damages.

   9. Accepting Warranty or Additional Liability. While redistributing
      the Work or Derivative Works thereof, You may choose to offer,
      and charge a fee for, acceptance of support, warranty, indemnity,
      or other liability obligations and/or rights consistent with this
      License. However, in accepting such obligations, You may act only
      on Your own behalf and on Your sole responsibility, not on behalf
      of any other Contributor, and only if You agree to indemnify,
      defend, and hold each Contributor harmless for any liability
      incurred by, or claims asserted against, such Contributor by reason
      of your accepting any such warranty or additional liability.

   END OF TERMS AND CONDITIONS

   APPENDIX: How to apply the Apache License to your work.

      To apply the Apache License to your work, attach the following
      boilerplate notice, with the fields enclosed by brackets "[]"
      replaced with your own identifying information. (Don't include
      the brackets!)  The text should be enclosed in the appropriate
      comment syntax for the file format. We also recommend that a
      file or class name and description of purpose be included on the
      same "printed page" as the copyright notice for easier
      identification within third-party archives.

   Copyright [yyyy] [name of copyright owner]

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

Appendix E

E-40



   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.

jackson-databind

Vendor: FasterXML, LLC

Version: 2.14.2

TOP LEVEL COMPONENT NAMES: com.fasterxml.jackson.core:jackson-databind
Copyright © 2008–2019 FasterXML. All rights reserved.
----------------------------------------------------------------------

                                 Apache License
                           Version 2.0, January 2004
                        http://www.apache.org/licenses/

   TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

   1. Definitions.

      "License" shall mean the terms and conditions for use, reproduction,
      and distribution as defined by Sections 1 through 9 of this document.

      "Licensor" shall mean the copyright owner or entity authorized by
      the copyright owner that is granting the License.

      "Legal Entity" shall mean the union of the acting entity and all
      other entities that control, are controlled by, or are under common
      control with that entity. For the purposes of this definition,
      "control" means (i) the power, direct or indirect, to cause the
      direction or management of such entity, whether by contract or
      otherwise, or (ii) ownership of fifty percent (50%) or more of the
      outstanding shares, or (iii) beneficial ownership of such entity.

      "You" (or "Your") shall mean an individual or Legal Entity
      exercising permissions granted by this License.

      "Source" form shall mean the preferred form for making modifications,
      including but not limited to software source code, documentation
      source, and configuration files.

      "Object" form shall mean any form resulting from mechanical
      transformation or translation of a Source form, including but
      not limited to compiled object code, generated documentation,
      and conversions to other media types.

      "Work" shall mean the work of authorship, whether in Source or
      Object form, made available under the License, as indicated by a
      copyright notice that is included in or attached to the work
      (an example is provided in the Appendix below).

      "Derivative Works" shall mean any work, whether in Source or Object
      form, that is based on (or derived from) the Work and for which the
      editorial revisions, annotations, elaborations, or other modifications
      represent, as a whole, an original work of authorship. For the purposes
      of this License, Derivative Works shall not include works that remain
      separable from, or merely link (or bind by name) to the interfaces of,
      the Work and Derivative Works thereof.

Appendix E

E-41



      "Contribution" shall mean any work of authorship, including
      the original version of the Work and any modifications or additions
      to that Work or Derivative Works thereof, that is intentionally
      submitted to Licensor for inclusion in the Work by the copyright owner
      or by an individual or Legal Entity authorized to submit on behalf of
      the copyright owner. For the purposes of this definition, "submitted"
      means any form of electronic, verbal, or written communication sent
      to the Licensor or its representatives, including but not limited to
      communication on electronic mailing lists, source code control systems,
      and issue tracking systems that are managed by, or on behalf of, the
      Licensor for the purpose of discussing and improving the Work, but
      excluding communication that is conspicuously marked or otherwise
      designated in writing by the copyright owner as "Not a Contribution."

      "Contributor" shall mean Licensor and any individual or Legal Entity
      on behalf of whom a Contribution has been received by Licensor and
      subsequently incorporated within the Work.

   2. Grant of Copyright License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      copyright license to reproduce, prepare Derivative Works of,
      publicly display, publicly perform, sublicense, and distribute the
      Work and such Derivative Works in Source or Object form.

   3. Grant of Patent License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      (except as stated in this section) patent license to make, have made,
      use, offer to sell, sell, import, and otherwise transfer the Work,
      where such license applies only to those patent claims licensable
      by such Contributor that are necessarily infringed by their
      Contribution(s) alone or by combination of their Contribution(s)
      with the Work to which such Contribution(s) was submitted. If You
      institute patent litigation against any entity (including a
      cross-claim or counterclaim in a lawsuit) alleging that the Work
      or a Contribution incorporated within the Work constitutes direct
      or contributory patent infringement, then any patent licenses
      granted to You under this License for that Work shall terminate
      as of the date such litigation is filed.

   4. Redistribution. You may reproduce and distribute copies of the
      Work or Derivative Works thereof in any medium, with or without
      modifications, and in Source or Object form, provided that You
      meet the following conditions:

      (a) You must give any other recipients of the Work or
          Derivative Works a copy of this License; and

      (b) You must cause any modified files to carry prominent notices
          stating that You changed the files; and

      (c) You must retain, in the Source form of any Derivative Works
          that You distribute, all copyright, patent, trademark, and
          attribution notices from the Source form of the Work,
          excluding those notices that do not pertain to any part of
          the Derivative Works; and

      (d) If the Work includes a "NOTICE" text file as part of its
          distribution, then any Derivative Works that You distribute must
          include a readable copy of the attribution notices contained

Appendix E

E-42



          within such NOTICE file, excluding those notices that do not
          pertain to any part of the Derivative Works, in at least one
          of the following places: within a NOTICE text file distributed
          as part of the Derivative Works; within the Source form or
          documentation, if provided along with the Derivative Works; or,
          within a display generated by the Derivative Works, if and
          wherever such third-party notices normally appear. The contents
          of the NOTICE file are for informational purposes only and
          do not modify the License. You may add Your own attribution
          notices within Derivative Works that You distribute, alongside
          or as an addendum to the NOTICE text from the Work, provided
          that such additional attribution notices cannot be construed
          as modifying the License.

      You may add Your own copyright statement to Your modifications and
      may provide additional or different license terms and conditions
      for use, reproduction, or distribution of Your modifications, or
      for any such Derivative Works as a whole, provided Your use,
      reproduction, and distribution of the Work otherwise complies with
      the conditions stated in this License.

   5. Submission of Contributions. Unless You explicitly state otherwise,
      any Contribution intentionally submitted for inclusion in the Work
      by You to the Licensor shall be under the terms and conditions of
      this License, without any additional terms or conditions.
      Notwithstanding the above, nothing herein shall supersede or modify
      the terms of any separate license agreement you may have executed
      with Licensor regarding such Contributions.

   6. Trademarks. This License does not grant permission to use the trade
      names, trademarks, service marks, or product names of the Licensor,
      except as required for reasonable and customary use in describing the
      origin of the Work and reproducing the content of the NOTICE file.

   7. Disclaimer of Warranty. Unless required by applicable law or
      agreed to in writing, Licensor provides the Work (and each
      Contributor provides its Contributions) on an "AS IS" BASIS,
      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
      implied, including, without limitation, any warranties or conditions
      of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
      PARTICULAR PURPOSE. You are solely responsible for determining the
      appropriateness of using or redistributing the Work and assume any
      risks associated with Your exercise of permissions under this License.

   8. Limitation of Liability. In no event and under no legal theory,
      whether in tort (including negligence), contract, or otherwise,
      unless required by applicable law (such as deliberate and grossly
      negligent acts) or agreed to in writing, shall any Contributor be
      liable to You for damages, including any direct, indirect, special,
      incidental, or consequential damages of any character arising as a
      result of this License or out of the use or inability to use the
      Work (including but not limited to damages for loss of goodwill,
      work stoppage, computer failure or malfunction, or any and all
      other commercial damages or losses), even if such Contributor
      has been advised of the possibility of such damages.

   9. Accepting Warranty or Additional Liability. While redistributing
      the Work or Derivative Works thereof, You may choose to offer,
      and charge a fee for, acceptance of support, warranty, indemnity,
      or other liability obligations and/or rights consistent with this
      License. However, in accepting such obligations, You may act only
      on Your own behalf and on Your sole responsibility, not on behalf

Appendix E

E-43



      of any other Contributor, and only if You agree to indemnify,
      defend, and hold each Contributor harmless for any liability
      incurred by, or claims asserted against, such Contributor by reason
      of your accepting any such warranty or additional liability.

   END OF TERMS AND CONDITIONS

   APPENDIX: How to apply the Apache License to your work.

      To apply the Apache License to your work, attach the following
      boilerplate notice, with the fields enclosed by brackets "[]"
      replaced with your own identifying information. (Don't include
      the brackets!)  The text should be enclosed in the appropriate
      comment syntax for the file format. We also recommend that a
      file or class name and description of purpose be included on the
      same "printed page" as the copyright notice for easier
      identification within third-party archives.

   Copyright [yyyy] [name of copyright owner]

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.

====================End of Apache License 2.0 of top level 
component======================

FOURTH-PARTY DEPENDENCY

----------------jackson-core 2.11.0 -----------------------
COPYRIGHT: Copyright (c) 2007-2020 Tatu Saloranta, tatu.saloranta@iki.fi
LICENSE: Apache 2.0

-----------------jackson-annotations 2.11.0 -----------------------
COPYRIGHT: Copyright (c) 2007- 2020 Tatu Saloranta, tatu.saloranta@iki.fi
LICENSE: Apache 2.0

Copyright Notice:
# Jackson JSON processor

Jackson is a high-performance, Free/Open Source JSON processing library.
It was originally written by Tatu Saloranta (tatu.saloranta@iki.fi), and has
been in development since 2007.
It is currently developed by a community of developers, as well as supported
commercially by FasterXML.com.

## Licensing

Jackson core and extension components may be licensed under different licenses.
To find the details that apply to this artifact see the accompanying LICENSE file.
For more information, including possible other licensing options, contact
FasterXML.com (http://fasterxml.com).

Appendix E

E-44



## Credits

A list of contributors may be found from CREDITS file, which is included
in some artifacts (usually source distributions); but is always available
from the source code management (SCM) system project uses.

jackson-jaxrs-base

Vendor: FasterXML, LLC

Version: 2.14.2

jackson-jaxrs-base

    This copy of Jackson JSON processor databind module is licensed under the
    Apache (Software) License, version 2.0 ("the License").
    See the License for details about distribution rights, and the
    specific rights regarding derivate works.

                                 Apache License
                           Version 2.0, January 2004
                        http://www.apache.org/licenses/

   TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

   1. Definitions.

      "License" shall mean the terms and conditions for use, reproduction,
      and distribution as defined by Sections 1 through 9 of this document.

      "Licensor" shall mean the copyright owner or entity authorized by
      the copyright owner that is granting the License.

      "Legal Entity" shall mean the union of the acting entity and all
      other entities that control, are controlled by, or are under common
      control with that entity. For the purposes of this definition,
      "control" means (i) the power, direct or indirect, to cause the
      direction or management of such entity, whether by contract or
      otherwise, or (ii) ownership of fifty percent (50%) or more of the
      outstanding shares, or (iii) beneficial ownership of such entity.

      "You" (or "Your") shall mean an individual or Legal Entity
      exercising permissions granted by this License.

      "Source" form shall mean the preferred form for making modifications,
      including but not limited to software source code, documentation
      source, and configuration files.

      "Object" form shall mean any form resulting from mechanical
      transformation or translation of a Source form, including but
      not limited to compiled object code, generated documentation,
      and conversions to other media types.

      "Work" shall mean the work of authorship, whether in Source or
      Object form, made available under the License, as indicated by a
      copyright notice that is included in or attached to the work
      (an example is provided in the Appendix below).

      "Derivative Works" shall mean any work, whether in Source or Object
      form, that is based on (or derived from) the Work and for which the
      editorial revisions, annotations, elaborations, or other modifications
      represent, as a whole, an original work of authorship. For the purposes

Appendix E

E-45



      of this License, Derivative Works shall not include works that remain
      separable from, or merely link (or bind by name) to the interfaces of,
      the Work and Derivative Works thereof.

      "Contribution" shall mean any work of authorship, including
      the original version of the Work and any modifications or additions
      to that Work or Derivative Works thereof, that is intentionally
      submitted to Licensor for inclusion in the Work by the copyright owner
      or by an individual or Legal Entity authorized to submit on behalf of
      the copyright owner. For the purposes of this definition, "submitted"
      means any form of electronic, verbal, or written communication sent
      to the Licensor or its representatives, including but not limited to
      communication on electronic mailing lists, source code control systems,
      and issue tracking systems that are managed by, or on behalf of, the
      Licensor for the purpose of discussing and improving the Work, but
      excluding communication that is conspicuously marked or otherwise
      designated in writing by the copyright owner as "Not a Contribution."

      "Contributor" shall mean Licensor and any individual or Legal Entity
      on behalf of whom a Contribution has been received by Licensor and
      subsequently incorporated within the Work.

   2. Grant of Copyright License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      copyright license to reproduce, prepare Derivative Works of,
      publicly display, publicly perform, sublicense, and distribute the
      Work and such Derivative Works in Source or Object form.

   3. Grant of Patent License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      (except as stated in this section) patent license to make, have made,
      use, offer to sell, sell, import, and otherwise transfer the Work,
      where such license applies only to those patent claims licensable
      by such Contributor that are necessarily infringed by their
      Contribution(s) alone or by combination of their Contribution(s)
      with the Work to which such Contribution(s) was submitted. If You
      institute patent litigation against any entity (including a
      cross-claim or counterclaim in a lawsuit) alleging that the Work
      or a Contribution incorporated within the Work constitutes direct
      or contributory patent infringement, then any patent licenses
      granted to You under this License for that Work shall terminate
      as of the date such litigation is filed.

   4. Redistribution. You may reproduce and distribute copies of the
      Work or Derivative Works thereof in any medium, with or without
      modifications, and in Source or Object form, provided that You
      meet the following conditions:

      (a) You must give any other recipients of the Work or
          Derivative Works a copy of this License; and

      (b) You must cause any modified files to carry prominent notices
          stating that You changed the files; and

      (c) You must retain, in the Source form of any Derivative Works
          that You distribute, all copyright, patent, trademark, and
          attribution notices from the Source form of the Work,
          excluding those notices that do not pertain to any part of
          the Derivative Works; and

Appendix E

E-46



      (d) If the Work includes a "NOTICE" text file as part of its
          distribution, then any Derivative Works that You distribute must
          include a readable copy of the attribution notices contained
          within such NOTICE file, excluding those notices that do not
          pertain to any part of the Derivative Works, in at least one
          of the following places: within a NOTICE text file distributed
          as part of the Derivative Works; within the Source form or
          documentation, if provided along with the Derivative Works; or,
          within a display generated by the Derivative Works, if and
          wherever such third-party notices normally appear. The contents
          of the NOTICE file are for informational purposes only and
          do not modify the License. You may add Your own attribution
          notices within Derivative Works that You distribute, alongside
          or as an addendum to the NOTICE text from the Work, provided
          that such additional attribution notices cannot be construed
          as modifying the License.

      You may add Your own copyright statement to Your modifications and
      may provide additional or different license terms and conditions
      for use, reproduction, or distribution of Your modifications, or
      for any such Derivative Works as a whole, provided Your use,
      reproduction, and distribution of the Work otherwise complies with
      the conditions stated in this License.

   5. Submission of Contributions. Unless You explicitly state otherwise,
      any Contribution intentionally submitted for inclusion in the Work
      by You to the Licensor shall be under the terms and conditions of
      this License, without any additional terms or conditions.
      Notwithstanding the above, nothing herein shall supersede or modify
      the terms of any separate license agreement you may have executed
      with Licensor regarding such Contributions.

   6. Trademarks. This License does not grant permission to use the trade
      names, trademarks, service marks, or product names of the Licensor,
      except as required for reasonable and customary use in describing the
      origin of the Work and reproducing the content of the NOTICE file.

   7. Disclaimer of Warranty. Unless required by applicable law or
      agreed to in writing, Licensor provides the Work (and each
      Contributor provides its Contributions) on an "AS IS" BASIS,
      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
      implied, including, without limitation, any warranties or conditions
      of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
      PARTICULAR PURPOSE. You are solely responsible for determining the
      appropriateness of using or redistributing the Work and assume any
      risks associated with Your exercise of permissions under this License.

   8. Limitation of Liability. In no event and under no legal theory,
      whether in tort (including negligence), contract, or otherwise,
      unless required by applicable law (such as deliberate and grossly
      negligent acts) or agreed to in writing, shall any Contributor be
      liable to You for damages, including any direct, indirect, special,
      incidental, or consequential damages of any character arising as a
      result of this License or out of the use or inability to use the
      Work (including but not limited to damages for loss of goodwill,
      work stoppage, computer failure or malfunction, or any and all
      other commercial damages or losses), even if such Contributor
      has been advised of the possibility of such damages.

   9. Accepting Warranty or Additional Liability. While redistributing
      the Work or Derivative Works thereof, You may choose to offer,
      and charge a fee for, acceptance of support, warranty, indemnity,

Appendix E

E-47



      or other liability obligations and/or rights consistent with this
      License. However, in accepting such obligations, You may act only
      on Your own behalf and on Your sole responsibility, not on behalf
      of any other Contributor, and only if You agree to indemnify,
      defend, and hold each Contributor harmless for any liability
      incurred by, or claims asserted against, such Contributor by reason
      of your accepting any such warranty or additional liability.

   END OF TERMS AND CONDITIONS

   APPENDIX: How to apply the Apache License to your work.

      To apply the Apache License to your work, attach the following
      boilerplate notice, with the fields enclosed by brackets "[]"
      replaced with your own identifying information. (Don't include
      the brackets!)  The text should be enclosed in the appropriate
      comment syntax for the file format. We also recommend that a
      file or class name and description of purpose be included on the
      same "printed page" as the copyright notice for easier
      identification within third-party archives.

   Copyright [yyyy] [name of copyright owner]

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.

Copyright © 2021 FasterXML. All rights reserved.

# Jackson JSON processor

Jackson is a high-performance, Free/Open Source JSON processing library.
It was originally written by Tatu Saloranta (tatu.saloranta@iki.fi), and has
been in development since 2007.
It is currently developed by a community of developers, as well as supported
commercially by FasterXML.com.

## Licensing

Jackson core and extension components may licensed under different licenses.
To find the details that apply to this artifact see the accompanying LICENSE file.
For more information, including possible other licensing options, contact
FasterXML.com (http://fasterxml.com).

## Credits

A list of contributors may be found from CREDITS file, which is included
in some artifacts (usually source distributions); but is always available
from the source code management (SCM) system project uses.

-----------------------------------------------------------------------------------------
---------
  4th Party Dependency

Appendix E

E-48



-----------------------------------------------------------------------------------------
---------
jackson-core
License: Apache Software License, Version 2.0    http://www.apache.org/licenses/
LICENSE-2.0.txt 

Copyright Notice
Copyright (c) 2007- Tatu Saloranta, tatu.saloranta@iki.fi
Copyright (c) Fasterxml

# Jackson JSON processor

Jackson is a high-performance, Free/Open Source JSON processing library.
It was originally written by Tatu Saloranta (tatu.saloranta@iki.fi), and has
been in development since 2007.
It is currently developed by a community of developers.

## Licensing

Jackson 2.x core and extension components are licensed under Apache License 2.0
To find the details that apply to this artifact see the accompanying LICENSE file.

## Credits

A list of contributors may be found from CREDITS(-2.x) file, which is included
in some artifacts (usually source distributions); but is always available
from the source code management (SCM) system project uses.

Copyright from source code:

 * Copyright (c) 2007- Tatu Saloranta, tatu.saloranta@iki.fi
 * Copyright 2018-2020 Raffaello Giulietti

-----------------------------------------------------------------------------------------
---------
jackson-databind

License: Apache Software License, Version 2.0 http://www.apache.org/licenses/
LICENSE-2.0.txt 

Copyright Notice
Copyright © 2012 FasterXML. All Rights Reserved.

# Jackson JSON processor

Jackson is a high-performance, Free/Open Source JSON processing library.
It was originally written by Tatu Saloranta (tatu.saloranta@iki.fi), and has
been in development since 2007.
It is currently developed by a community of developers.

## Licensing

Jackson 2.x core and extension components are licensed under Apache License 2.0
To find the details that apply to this artifact see the accompanying LICENSE file.

## Credits

A list of contributors may be found from CREDITS(-2.x) file, which is included
in some artifacts (usually source distributions); but is always available
from the source code management (SCM) system project uses.

Appendix E

E-49



-----------------------------------------------------------------------------------------
---------
jackson-annotations

License: Apache Software License, Version 2.0    http://www.apache.org/licenses/
LICENSE-2.0.txt 

Copyright Notice
Copyright © 2007–2022 FasterXML. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
     http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

# Jackson JSON processor

Jackson is a high-performance, Free/Open Source JSON processing library.
It was originally written by Tatu Saloranta (tatu.saloranta@iki.fi), and has
been in development since 2007.
It is currently developed by a community of developers.

## Licensing

Jackson 2.x core and extension components are licensed under Apache License 2.0
To find the details that apply to this artifact see the accompanying LICENSE file.

## Credits

A list of contributors may be found from CREDITS(-2.x) file, which is included
in some artifacts (usually source distributions); but is always available
from the source code management (SCM) system project uses.
-----------------------------------------------------------------------------------------
---------

jackson-jaxrs-json-provider

Vendor: FasterXML, LLC

Version: 2.14.2

Top Level Component : jackson-jaxrs-json-provider
----------------------------------------

Top Level Component License : Apache License
---------------------------------------------

                                 Apache License
                           Version 2.0, January 2004
                        https://www.apache.org/licenses/

   TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

   1. Definitions.

      "License" shall mean the terms and conditions for use, reproduction,
      and distribution as defined by Sections 1 through 9 of this document.

Appendix E

E-50



      "Licensor" shall mean the copyright owner or entity authorized by
      the copyright owner that is granting the License.

      "Legal Entity" shall mean the union of the acting entity and all
      other entities that control, are controlled by, or are under common
      control with that entity. For the purposes of this definition,
      "control" means (i) the power, direct or indirect, to cause the
      direction or management of such entity, whether by contract or
      otherwise, or (ii) ownership of fifty percent (50%) or more of the
      outstanding shares, or (iii) beneficial ownership of such entity.

      "You" (or "Your") shall mean an individual or Legal Entity
      exercising permissions granted by this License.

      "Source" form shall mean the preferred form for making modifications,
      including but not limited to software source code, documentation
      source, and configuration files.

      "Object" form shall mean any form resulting from mechanical
      transformation or translation of a Source form, including but
      not limited to compiled object code, generated documentation,
      and conversions to other media types.

      "Work" shall mean the work of authorship, whether in Source or
      Object form, made available under the License, as indicated by a
      copyright notice that is included in or attached to the work
      (an example is provided in the Appendix below).

      "Derivative Works" shall mean any work, whether in Source or Object
      form, that is based on (or derived from) the Work and for which the
      editorial revisions, annotations, elaborations, or other modifications
      represent, as a whole, an original work of authorship. For the purposes
      of this License, Derivative Works shall not include works that remain
      separable from, or merely link (or bind by name) to the interfaces of,
      the Work and Derivative Works thereof.

      "Contribution" shall mean any work of authorship, including
      the original version of the Work and any modifications or additions
      to that Work or Derivative Works thereof, that is intentionally
      submitted to Licensor for inclusion in the Work by the copyright owner
      or by an individual or Legal Entity authorized to submit on behalf of
      the copyright owner. For the purposes of this definition, "submitted"
      means any form of electronic, verbal, or written communication sent
      to the Licensor or its representatives, including but not limited to
      communication on electronic mailing lists, source code control systems,
      and issue tracking systems that are managed by, or on behalf of, the
      Licensor for the purpose of discussing and improving the Work, but
      excluding communication that is conspicuously marked or otherwise
      designated in writing by the copyright owner as "Not a Contribution."

      "Contributor" shall mean Licensor and any individual or Legal Entity
      on behalf of whom a Contribution has been received by Licensor and
      subsequently incorporated within the Work.

   2. Grant of Copyright License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      copyright license to reproduce, prepare Derivative Works of,
      publicly display, publicly perform, sublicense, and distribute the
      Work and such Derivative Works in Source or Object form.

Appendix E

E-51



   3. Grant of Patent License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      (except as stated in this section) patent license to make, have made,
      use, offer to sell, sell, import, and otherwise transfer the Work,
      where such license applies only to those patent claims licensable
      by such Contributor that are necessarily infringed by their
      Contribution(s) alone or by combination of their Contribution(s)
      with the Work to which such Contribution(s) was submitted. If You
      institute patent litigation against any entity (including a
      cross-claim or counterclaim in a lawsuit) alleging that the Work
      or a Contribution incorporated within the Work constitutes direct
      or contributory patent infringement, then any patent licenses
      granted to You under this License for that Work shall terminate
      as of the date such litigation is filed.

   4. Redistribution. You may reproduce and distribute copies of the
      Work or Derivative Works thereof in any medium, with or without
      modifications, and in Source or Object form, provided that You
      meet the following conditions:

      (a) You must give any other recipients of the Work or
          Derivative Works a copy of this License; and

      (b) You must cause any modified files to carry prominent notices
          stating that You changed the files; and

      (c) You must retain, in the Source form of any Derivative Works
          that You distribute, all copyright, patent, trademark, and
          attribution notices from the Source form of the Work,
          excluding those notices that do not pertain to any part of
          the Derivative Works; and

      (d) If the Work includes a "NOTICE" text file as part of its
          distribution, then any Derivative Works that You distribute must
          include a readable copy of the attribution notices contained
          within such NOTICE file, excluding those notices that do not
          pertain to any part of the Derivative Works, in at least one
          of the following places: within a NOTICE text file distributed
          as part of the Derivative Works; within the Source form or
          documentation, if provided along with the Derivative Works; or,
          within a display generated by the Derivative Works, if and
          wherever such third-party notices normally appear. The contents
          of the NOTICE file are for informational purposes only and
          do not modify the License. You may add Your own attribution
          notices within Derivative Works that You distribute, alongside
          or as an addendum to the NOTICE text from the Work, provided
          that such additional attribution notices cannot be construed
          as modifying the License.

      You may add Your own copyright statement to Your modifications and
      may provide additional or different license terms and conditions
      for use, reproduction, or distribution of Your modifications, or
      for any such Derivative Works as a whole, provided Your use,
      reproduction, and distribution of the Work otherwise complies with
      the conditions stated in this License.

   5. Submission of Contributions. Unless You explicitly state otherwise,
      any Contribution intentionally submitted for inclusion in the Work
      by You to the Licensor shall be under the terms and conditions of
      this License, without any additional terms or conditions.
      Notwithstanding the above, nothing herein shall supersede or modify

Appendix E

E-52



      the terms of any separate license agreement you may have executed
      with Licensor regarding such Contributions.

   6. Trademarks. This License does not grant permission to use the trade
      names, trademarks, service marks, or product names of the Licensor,
      except as required for reasonable and customary use in describing the
      origin of the Work and reproducing the content of the NOTICE file.

   7. Disclaimer of Warranty. Unless required by applicable law or
      agreed to in writing, Licensor provides the Work (and each
      Contributor provides its Contributions) on an "AS IS" BASIS,
      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
      implied, including, without limitation, any warranties or conditions
      of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
      PARTICULAR PURPOSE. You are solely responsible for determining the
      appropriateness of using or redistributing the Work and assume any
      risks associated with Your exercise of permissions under this License.

   8. Limitation of Liability. In no event and under no legal theory,
      whether in tort (including negligence), contract, or otherwise,
      unless required by applicable law (such as deliberate and grossly
      negligent acts) or agreed to in writing, shall any Contributor be
      liable to You for damages, including any direct, indirect, special,
      incidental, or consequential damages of any character arising as a
      result of this License or out of the use or inability to use the
      Work (including but not limited to damages for loss of goodwill,
      work stoppage, computer failure or malfunction, or any and all
      other commercial damages or losses), even if such Contributor
      has been advised of the possibility of such damages.

   9. Accepting Warranty or Additional Liability. While redistributing
      the Work or Derivative Works thereof, You may choose to offer,
      and charge a fee for, acceptance of support, warranty, indemnity,
      or other liability obligations and/or rights consistent with this
      License. However, in accepting such obligations, You may act only
      on Your own behalf and on Your sole responsibility, not on behalf
      of any other Contributor, and only if You agree to indemnify,
      defend, and hold each Contributor harmless for any liability
      incurred by, or claims asserted against, such Contributor by reason
      of your accepting any such warranty or additional liability.

   END OF TERMS AND CONDITIONS

   APPENDIX: How to apply the Apache License to your work.

      To apply the Apache License to your work, attach the following
      boilerplate notice, with the fields enclosed by brackets "[]"
      replaced with your own identifying information. (Don't include
      the brackets!)  The text should be enclosed in the appropriate
      comment syntax for the file format. We also recommend that a
      file or class name and description of purpose be included on the
      same "printed page" as the copyright notice for easier
      identification within third-party archives.

   Copyright [yyyy] [name of copyright owner]

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

       https://www.apache.org/licenses/LICENSE-2.0

Appendix E

E-53



   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.
----------------------------------------------------------------------
Top Level Component Copyright:
-------------------------------
Copyright © 2022 FasterXML. All rights reserved.

# Jackson JSON processor

Jackson is a high-performance, Free/Open Source JSON processing library.
It was originally written by Tatu Saloranta (tatu.saloranta@iki.fi), and has
been in development since 2007.
It is currently developed by a community of developers, as well as supported
commercially by FasterXML.com.

## Licensing

Jackson core and extension components may be licensed under different licenses.
To find the details that apply to this artifact see the accompanying LICENSE file.
For more information, including possible other licensing options, contact
FasterXML.com (http://fasterxml.com).

## Credits

A list of contributors may be found from CREDITS file, which is included
in some artifacts (usually source distributions); but is always available
from the source code management (SCM) system project uses.
========================================================================================
Fourth Party Component: jackson-annotations
Fourth Party Component License: Apache 2.0
Fourth Party Component Copyright Notice: 
----------------------------------------------
Copyright © 2008–2022 FasterXML. All rights reserved.

 Licensed to the Apache Software Foundation (ASF) under one
  or more contributor license agreements.  See the NOTICE file
  distributed with this work for additional information
  regarding copyright ownership.  The ASF licenses this file
  to you under the Apache License, Version 2.0 (the
  "License"); you may not use this file except in compliance
  with the License.  You may obtain a copy of the License at
 
     http://www.apache.org/licenses/LICENSE-2.0
 
  Unless required by applicable law or agreed to in writing,
  software distributed under the License is distributed on an
  "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  KIND, either express or implied.  See the License for the
  specific language 

From META-INF/NOTICE: 
# Jackson JSON processor

Jackson is a high-performance, Free/Open Source JSON processing library.
It was originally written by Tatu Saloranta (tatu.saloranta@iki.fi), and has
been in development since 2007.
It is currently developed by a community of developers.

## Licensing

Appendix E

E-54



Jackson 2.x core and extension components are licensed under Apache License 2.0
To find the details that apply to this artifact see the accompanying LICENSE file.

## Credits

A list of contributors may be found from CREDITS(-2.x) file, which is included
in some artifacts (usually source distributions); but is always available
from the source code management (SCM) system project uses.
 
========================================================================================
Fourth Party Component: jackson-core
Fourth Party Component  License: Apache 2.0
Fourth Party Component  Copyright Notice: 
---------------------------------------------
Copyright © 2008–2022 FasterXML. All rights reserved.

Jackson JSON-processor.
 
 Copyright (c) 2007- Tatu Saloranta, tatu.saloranta@iki.fi
 
# Jackson JSON processor

Jackson is a high-performance, Free/Open Source JSON processing library.
It was originally written by Tatu Saloranta (tatu.saloranta@iki.fi), and has
been in development since 2007.
It is currently developed by a community of developers.

## Licensing

Jackson 2.x core and extension components are licensed under Apache License 2.0
To find the details that apply to this artifact see the accompanying LICENSE file.

## Credits

A list of contributors may be found from CREDITS(-2.x) file, which is included
in some artifacts (usually source distributions); but is always available
from the source code management (SCM) system project uses.

From source code:

 * Copyright (c) 2007- Tatu Saloranta, tatu.saloranta@iki.fi
 * Copyright 2018-2020 Raffaello Giulietti
 
========================================================================================
Fourth Party Component : jackson-databind
Fourth Party Component  License: Apache 2.0
Fourth Party Component Copyright Notice: 
--------------------------------------------
Copyright © 2008–2022 FasterXML. All rights reserved.

# Jackson JSON processor

Jackson is a high-performance, Free/Open Source JSON processing library.
It was originally written by Tatu Saloranta (tatu.saloranta@iki.fi), and has
been in development since 2007.
It is currently developed by a community of developers.

## Licensing

Jackson 2.x core and extension components are licensed under Apache License 2.0
To find the details that apply to this artifact see the accompanying LICENSE file.

Appendix E

E-55



## Credits

A list of contributors may be found from CREDITS(-2.x) file, which is included
in some artifacts (usually source distributions); but is always available
from the source code management (SCM) system project uses.

From source code:

 * Copyright 2011 Google Inc. All Rights Reserved.
 * Copyright 2010 Google Inc. All Rights Reserved.

========================================================================================
Fourth Party Component : jackson-jaxrs-base
Fourth Party Component  License: Apache 2.0
Fourth Party Component Copyright Notice: 
---------------------------------------------
Copyright © 2022 FasterXML. All rights reserved.

# Jackson JSON processor

Jackson is a high-performance, Free/Open Source JSON processing library.
It was originally written by Tatu Saloranta (tatu.saloranta@iki.fi), and has
been in development since 2007.
It is currently developed by a community of developers.

## Licensing

Jackson 2.x core and extension components are licensed under Apache License 2.0
To find the details that apply to this artifact see the accompanying LICENSE file.

## Credits

A list of contributors may be found from CREDITS(-2.x) file, which is included
in some artifacts (usually source distributions); but is always available
from the source code management (SCM) system project uses.

========================================================================================
Fourth Party Component : jackson-module-jaxb-annotations
Fourth Party Component  License: Apache 2.0
Fourth Party Component Copyright Notice: 
---------------------------------------------
Copyright © 2022 FasterXML. All rights reserved.

# Jackson JSON processor

Jackson is a high-performance, Free/Open Source JSON processing library.
It was originally written by Tatu Saloranta (tatu.saloranta@iki.fi), and has
been in development since 2007.
It is currently developed by a community of developers.

## Licensing

Jackson 2.x core and extension components are licensed under Apache License 2.0
To find the details that apply to this artifact see the accompanying LICENSE file.

## Credits

A list of contributors may be found from CREDITS(-2.x) file, which is included
in some artifacts (usually source distributions); but is always available
from the source code management (SCM) system project uses.
--------------------------------------------------------------------------

Appendix E

E-56



jackson-module-jaxb-annotations

Vendor: FasterXML, LLC

Version: 2.14.2

This copy of Jackson JSON processor `jackson-module-jaxb-annotations` module is licensed 
under the
Apache (Software) License, version 2.0 ("the License").
See the License for details about distribution rights, and the
specific rights regarding derivate works.
You may obtain a copy of the License at:
http://www.apache.org/licenses/LICENSE-2.0

Apache License
                           Version 2.0, January 2004
                        http://www.apache.org/licenses/

   TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

   1. Definitions.

      "License" shall mean the terms and conditions for use, reproduction,
      and distribution as defined by Sections 1 through 9 of this document.

      "Licensor" shall mean the copyright owner or entity authorized by
      the copyright owner that is granting the License.

      "Legal Entity" shall mean the union of the acting entity and all
      other entities that control, are controlled by, or are under common
      control with that entity. For the purposes of this definition,
      "control" means (i) the power, direct or indirect, to cause the
      direction or management of such entity, whether by contract or
      otherwise, or (ii) ownership of fifty percent (50%) or more of the
      outstanding shares, or (iii) beneficial ownership of such entity.

      "You" (or "Your") shall mean an individual or Legal Entity
      exercising permissions granted by this License.

      "Source" form shall mean the preferred form for making modifications,
      including but not limited to software source code, documentation
      source, and configuration files.

      "Object" form shall mean any form resulting from mechanical
      transformation or translation of a Source form, including but
      not limited to compiled object code, generated documentation,
      and conversions to other media types.

      "Work" shall mean the work of authorship, whether in Source or
      Object form, made available under the License, as indicated by a
      copyright notice that is included in or attached to the work
      (an example is provided in the Appendix below).

      "Derivative Works" shall mean any work, whether in Source or Object
      form, that is based on (or derived from) the Work and for which the
      editorial revisions, annotations, elaborations, or other modifications
      represent, as a whole, an original work of authorship. For the purposes
      of this License, Derivative Works shall not include works that remain
      separable from, or merely link (or bind by name) to the interfaces of,
      the Work and Derivative Works thereof.

      "Contribution" shall mean any work of authorship, including

Appendix E

E-57



      the original version of the Work and any modifications or additions
      to that Work or Derivative Works thereof, that is intentionally
      submitted to Licensor for inclusion in the Work by the copyright owner
      or by an individual or Legal Entity authorized to submit on behalf of
      the copyright owner. For the purposes of this definition, "submitted"
      means any form of electronic, verbal, or written communication sent
      to the Licensor or its representatives, including but not limited to
      communication on electronic mailing lists, source code control systems,
      and issue tracking systems that are managed by, or on behalf of, the
      Licensor for the purpose of discussing and improving the Work, but
      excluding communication that is conspicuously marked or otherwise
      designated in writing by the copyright owner as "Not a Contribution."

      "Contributor" shall mean Licensor and any individual or Legal Entity
      on behalf of whom a Contribution has been received by Licensor and
      subsequently incorporated within the Work.

   2. Grant of Copyright License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      copyright license to reproduce, prepare Derivative Works of,
      publicly display, publicly perform, sublicense, and distribute the
      Work and such Derivative Works in Source or Object form.

   3. Grant of Patent License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      (except as stated in this section) patent license to make, have made,
      use, offer to sell, sell, import, and otherwise transfer the Work,
      where such license applies only to those patent claims licensable
      by such Contributor that are necessarily infringed by their
      Contribution(s) alone or by combination of their Contribution(s)
      with the Work to which such Contribution(s) was submitted. If You
      institute patent litigation against any entity (including a
      cross-claim or counterclaim in a lawsuit) alleging that the Work
      or a Contribution incorporated within the Work constitutes direct
      or contributory patent infringement, then any patent licenses
      granted to You under this License for that Work shall terminate
      as of the date such litigation is filed.

   4. Redistribution. You may reproduce and distribute copies of the
      Work or Derivative Works thereof in any medium, with or without
      modifications, and in Source or Object form, provided that You
      meet the following conditions:

      (a) You must give any other recipients of the Work or
          Derivative Works a copy of this License; and

      (b) You must cause any modified files to carry prominent notices
          stating that You changed the files; and

      (c) You must retain, in the Source form of any Derivative Works
          that You distribute, all copyright, patent, trademark, and
          attribution notices from the Source form of the Work,
          excluding those notices that do not pertain to any part of
          the Derivative Works; and

      (d) If the Work includes a "NOTICE" text file as part of its
          distribution, then any Derivative Works that You distribute must
          include a readable copy of the attribution notices contained
          within such NOTICE file, excluding those notices that do not
          pertain to any part of the Derivative Works, in at least one

Appendix E

E-58



          of the following places: within a NOTICE text file distributed
          as part of the Derivative Works; within the Source form or
          documentation, if provided along with the Derivative Works; or,
          within a display generated by the Derivative Works, if and
          wherever such third-party notices normally appear. The contents
          of the NOTICE file are for informational purposes only and
          do not modify the License. You may add Your own attribution
          notices within Derivative Works that You distribute, alongside
          or as an addendum to the NOTICE text from the Work, provided
          that such additional attribution notices cannot be construed
          as modifying the License.

      You may add Your own copyright statement to Your modifications and
      may provide additional or different license terms and conditions
      for use, reproduction, or distribution of Your modifications, or
      for any such Derivative Works as a whole, provided Your use,
      reproduction, and distribution of the Work otherwise complies with
      the conditions stated in this License.

   5. Submission of Contributions. Unless You explicitly state otherwise,
      any Contribution intentionally submitted for inclusion in the Work
      by You to the Licensor shall be under the terms and conditions of
      this License, without any additional terms or conditions.
      Notwithstanding the above, nothing herein shall supersede or modify
      the terms of any separate license agreement you may have executed
      with Licensor regarding such Contributions.

   6. Trademarks. This License does not grant permission to use the trade
      names, trademarks, service marks, or product names of the Licensor,
      except as required for reasonable and customary use in describing the
      origin of the Work and reproducing the content of the NOTICE file.

   7. Disclaimer of Warranty. Unless required by applicable law or
      agreed to in writing, Licensor provides the Work (and each
      Contributor provides its Contributions) on an "AS IS" BASIS,
      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
      implied, including, without limitation, any warranties or conditions
      of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
      PARTICULAR PURPOSE. You are solely responsible for determining the
      appropriateness of using or redistributing the Work and assume any
      risks associated with Your exercise of permissions under this License.

   8. Limitation of Liability. In no event and under no legal theory,
      whether in tort (including negligence), contract, or otherwise,
      unless required by applicable law (such as deliberate and grossly
      negligent acts) or agreed to in writing, shall any Contributor be
      liable to You for damages, including any direct, indirect, special,
      incidental, or consequential damages of any character arising as a
      result of this License or out of the use or inability to use the
      Work (including but not limited to damages for loss of goodwill,
      work stoppage, computer failure or malfunction, or any and all
      other commercial damages or losses), even if such Contributor
      has been advised of the possibility of such damages.

   9. Accepting Warranty or Additional Liability. While redistributing
      the Work or Derivative Works thereof, You may choose to offer,
      and charge a fee for, acceptance of support, warranty, indemnity,
      or other liability obligations and/or rights consistent with this
      License. However, in accepting such obligations, You may act only
      on Your own behalf and on Your sole responsibility, not on behalf
      of any other Contributor, and only if You agree to indemnify,
      defend, and hold each Contributor harmless for any liability

Appendix E

E-59



      incurred by, or claims asserted against, such Contributor by reason
      of your accepting any such warranty or additional liability.

   END OF TERMS AND CONDITIONS

   APPENDIX: How to apply the Apache License to your work.

      To apply the Apache License to your work, attach the following
      boilerplate notice, with the fields enclosed by brackets "[]"
      replaced with your own identifying information. (Don't include
      the brackets!)  The text should be enclosed in the appropriate
      comment syntax for the file format. We also recommend that a
      file or class name and description of purpose be included on the
      same "printed page" as the copyright notice for easier
      identification within third-party archives.

   Copyright [yyyy] [name of copyright owner]

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.

====================End of Apache License 2.0 of top level 
component======================

# Jackson JSON processor
Jackson is a high-performance, Free/Open Source JSON processing library.
It was originally written by Tatu Saloranta (tatu.saloranta@iki.fi), and has
been in development since 2007.
It is currently developed by a community of developers, as well as supported
commercially by FasterXML.com.
## Licensing
Jackson core and extension components may licensed under different licenses.
To find the details that apply to this artifact see the accompanying LICENSE file.
For more information, including possible other licensing options, contact
FasterXML.com (http://fasterxml.com).
## Credits
A list of contributors may be found from CREDITS file, which is included
in some artifacts (usually source distributions); but is always available
from the source code management (SCM) system project uses.

========================================================================================
Fourth Party Component: jackson-annotations
Fourth Party Component License: Apache 2.0
Fourth Party Component Copyright Notice: 
# Jackson JSON processor
Jackson is a high-performance, Free/Open Source JSON processing library.
It was originally written by Tatu Saloranta (tatu.saloranta@iki.fi), and has
been in development since 2007.
It is currently developed by a community of developers.
## Licensing
Jackson 2.x core and extension components are licensed under Apache License 2.0
To find the details that apply to this artifact see the accompanying LICENSE file.
## Credits

Appendix E

E-60



A list of contributors may be found from CREDITS(-2.x) file, which is included
in some artifacts (usually source distributions); but is always available
from the source code management (SCM) system project uses.
========================================================================================
Fourth Party Component: jackson-core
Fourth Party Component  License: Apache 2.0
Fourth Party Component  Copyright Notice: 
# Jackson JSON processor
Jackson is a high-performance, Free/Open Source JSON processing library.
It was originally written by Tatu Saloranta (tatu.saloranta@iki.fi), and has
been in development since 2007.
It is currently developed by a community of developers.
## Licensing
Jackson 2.x core and extension components are licensed under Apache License 2.0
To find the details that apply to this artifact see the accompanying LICENSE file.
## Credits
A list of contributors may be found from CREDITS(-2.x) file, which is included
in some artifacts (usually source distributions); but is always available
from the source code management (SCM) system project uses.

========================================================================================
Fourth Party Component : jackson-databind
Fourth Party Component  License: Apache 2.0
Fourth Party Component Copyright Notice: 
Copyright © 2008–2022 FasterXML. All rights reserved.

# Jackson JSON processor

Jackson is a high-performance, Free/Open Source JSON processing library.
It was originally written by Tatu Saloranta (tatu.saloranta@iki.fi), and has
been in development since 2007.
It is currently developed by a community of developers.

## Licensing

Jackson 2.x core and extension components are licensed under Apache License 2.0
To find the details that apply to this artifact see the accompanying LICENSE file.

## Credits

A list of contributors may be found from CREDITS(-2.x) file, which is included
in some artifacts (usually source distributions); but is always available
from the source code management (SCM) system project uses.

========================================================================================
Fourth Party Component: jakarta.activation-api
Copyright (c) 2018 Oracle and/or its affiliates. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

  - Redistributions of source code must retain the above copyright
    notice, this list of conditions and the following disclaimer.

  - Redistributions in binary form must reproduce the above copyright
    notice, this list of conditions and the following disclaimer in the
    documentation and/or other materials provided with the distribution.

  - Neither the name of the Eclipse Foundation, Inc. nor the names of its
    contributors may be used to endorse or promote products derived
    from this software without specific prior written permission.

Appendix E

E-61



THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-------------------------------------------------------------
Fourth Party Component Copyright Notice: 
---------------------------------------------
Copyright (c) 1997, 2021 Oracle and/or its affiliates. All rights reserved.

This program and the accompanying materials are made available under the
terms of the Eclipse Distribution License v. 1.0, which is available at
http://www.eclipse.org/org/documents/edl-v10.php.
SPDX-License-Identifier: BSD-3-Clause
========================================================================================
Fourth Party Component: jakarta.xml.bind-api
Copyright (c) 2007, Eclipse Foundation, Inc. and its licensors. 

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are 
permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of 
conditions and the following disclaimer. 
Redistributions in binary form must reproduce the above copyright notice, this list of 
conditions and the following disclaimer in the documentation and/or other materials 
provided with the distribution. 
Neither the name of the Eclipse Foundation, Inc. nor the names of its contributors may 
be used to endorse or promote products derived from this software without specific prior 
written permission. 
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY 
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

---------------------------------------------------
Copyright (c) 2018, 2020 Oracle and/or its affiliates. All rights reserved.

    This program and the accompanying materials are made available under the
    terms of the Eclipse Distribution License v. 1.0, which is available at
    http://www.eclipse.org/org/documents/edl-v10.php.

    SPDX-License-Identifier: BSD-3-Clause

Guava

Vendor: Google

Version: 33.2.1-jre

Appendix E

E-62



Copyright (C) 2020 The Guava Authors

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.

   Apache License Version 2.0
                                 Apache License
                           Version 2.0, January 2004
                        http://www.apache.org/licenses/

   TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

   1. Definitions.

      "License" shall mean the terms and conditions for use, reproduction,
      and distribution as defined by Sections 1 through 9 of this document.

      "Licensor" shall mean the copyright owner or entity authorized by
      the copyright owner that is granting the License.

      "Legal Entity" shall mean the union of the acting entity and all
      other entities that control, are controlled by, or are under common
      control with that entity. For the purposes of this definition,
      "control" means (i) the power, direct or indirect, to cause the
      direction or management of such entity, whether by contract or
      otherwise, or (ii) ownership of fifty percent (50%) or more of the
      outstanding shares, or (iii) beneficial ownership of such entity.

      "You" (or "Your") shall mean an individual or Legal Entity
      exercising permissions granted by this License.

      "Source" form shall mean the preferred form for making modifications,
      including but not limited to software source code, documentation
      source, and configuration files.

      "Object" form shall mean any form resulting from mechanical
      transformation or translation of a Source form, including but
      not limited to compiled object code, generated documentation,
      and conversions to other media types.

      "Work" shall mean the work of authorship, whether in Source or
      Object form, made available under the License, as indicated by a
      copyright notice that is included in or attached to the work
      (an example is provided in the Appendix below).

      "Derivative Works" shall mean any work, whether in Source or Object
      form, that is based on (or derived from) the Work and for which the
      editorial revisions, annotations, elaborations, or other modifications
      represent, as a whole, an original work of authorship. For the purposes
      of this License, Derivative Works shall not include works that remain
      separable from, or merely link (or bind by name) to the interfaces of,
      the Work and Derivative Works thereof.

Appendix E

E-63



      "Contribution" shall mean any work of authorship, including
      the original version of the Work and any modifications or additions
      to that Work or Derivative Works thereof, that is intentionally
      submitted to Licensor for inclusion in the Work by the copyright owner
      or by an individual or Legal Entity authorized to submit on behalf of
      the copyright owner. For the purposes of this definition, "submitted"
      means any form of electronic, verbal, or written communication sent
      to the Licensor or its representatives, including but not limited to
      communication on electronic mailing lists, source code control systems,
      and issue tracking systems that are managed by, or on behalf of, the
      Licensor for the purpose of discussing and improving the Work, but
      excluding communication that is conspicuously marked or otherwise
      designated in writing by the copyright owner as "Not a Contribution."

      "Contributor" shall mean Licensor and any individual or Legal Entity
      on behalf of whom a Contribution has been received by Licensor and
      subsequently incorporated within the Work.

   2. Grant of Copyright License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      copyright license to reproduce, prepare Derivative Works of,
      publicly display, publicly perform, sublicense, and distribute the
      Work and such Derivative Works in Source or Object form.

   3. Grant of Patent License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      (except as stated in this section) patent license to make, have made,
      use, offer to sell, sell, import, and otherwise transfer the Work,
      where such license applies only to those patent claims licensable
      by such Contributor that are necessarily infringed by their
      Contribution(s) alone or by combination of their Contribution(s)
      with the Work to which such Contribution(s) was submitted. If You
      institute patent litigation against any entity (including a
      cross-claim or counterclaim in a lawsuit) alleging that the Work
      or a Contribution incorporated within the Work constitutes direct
      or contributory patent infringement, then any patent licenses
      granted to You under this License for that Work shall terminate
      as of the date such litigation is filed.

   4. Redistribution. You may reproduce and distribute copies of the
      Work or Derivative Works thereof in any medium, with or without
      modifications, and in Source or Object form, provided that You
      meet the following conditions:

      (a) You must give any other recipients of the Work or
          Derivative Works a copy of this License; and

      (b) You must cause any modified files to carry prominent notices
          stating that You changed the files; and

      (c) You must retain, in the Source form of any Derivative Works
          that You distribute, all copyright, patent, trademark, and
          attribution notices from the Source form of the Work,
          excluding those notices that do not pertain to any part of
          the Derivative Works; and

      (d) If the Work includes a "NOTICE" text file as part of its
          distribution, then any Derivative Works that You distribute must
          include a readable copy of the attribution notices contained

Appendix E

E-64



          within such NOTICE file, excluding those notices that do not
          pertain to any part of the Derivative Works, in at least one
          of the following places: within a NOTICE text file distributed
          as part of the Derivative Works; within the Source form or
          documentation, if provided along with the Derivative Works; or,
          within a display generated by the Derivative Works, if and
          wherever such third-party notices normally appear. The contents
          of the NOTICE file are for informational purposes only and
          do not modify the License. You may add Your own attribution
          notices within Derivative Works that You distribute, alongside
          or as an addendum to the NOTICE text from the Work, provided
          that such additional attribution notices cannot be construed
          as modifying the License.

      You may add Your own copyright statement to Your modifications and
      may provide additional or different license terms and conditions
      for use, reproduction, or distribution of Your modifications, or
      for any such Derivative Works as a whole, provided Your use,
      reproduction, and distribution of the Work otherwise complies with
      the conditions stated in this License.

   5. Submission of Contributions. Unless You explicitly state otherwise,
      any Contribution intentionally submitted for inclusion in the Work
      by You to the Licensor shall be under the terms and conditions of
      this License, without any additional terms or conditions.
      Notwithstanding the above, nothing herein shall supersede or modify
      the terms of any separate license agreement you may have executed
      with Licensor regarding such Contributions.

   6. Trademarks. This License does not grant permission to use the trade
      names, trademarks, service marks, or product names of the Licensor,
      except as required for reasonable and customary use in describing the
      origin of the Work and reproducing the content of the NOTICE file.

   7. Disclaimer of Warranty. Unless required by applicable law or
      agreed to in writing, Licensor provides the Work (and each
      Contributor provides its Contributions) on an "AS IS" BASIS,
      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
      implied, including, without limitation, any warranties or conditions
      of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
      PARTICULAR PURPOSE. You are solely responsible for determining the
      appropriateness of using or redistributing the Work and assume any
      risks associated with Your exercise of permissions under this License.

   8. Limitation of Liability. In no event and under no legal theory,
      whether in tort (including negligence), contract, or otherwise,
      unless required by applicable law (such as deliberate and grossly
      negligent acts) or agreed to in writing, shall any Contributor be
      liable to You for damages, including any direct, indirect, special,
      incidental, or consequential damages of any character arising as a
      result of this License or out of the use or inability to use the
      Work (including but not limited to damages for loss of goodwill,
      work stoppage, computer failure or malfunction, or any and all
      other commercial damages or losses), even if such Contributor
      has been advised of the possibility of such damages.

   9. Accepting Warranty or Additional Liability. While redistributing
      the Work or Derivative Works thereof, You may choose to offer,
      and charge a fee for, acceptance of support, warranty, indemnity,
      or other liability obligations and/or rights consistent with this
      License. However, in accepting such obligations, You may act only
      on Your own behalf and on Your sole responsibility, not on behalf

Appendix E

E-65



      of any other Contributor, and only if You agree to indemnify,
      defend, and hold each Contributor harmless for any liability
      incurred by, or claims asserted against, such Contributor by reason
      of your accepting any such warranty or additional liability.

   END OF TERMS AND CONDITIONS

   APPENDIX: How to apply the Apache License to your work.

      To apply the Apache License to your work, attach the following
      boilerplate notice, with the fields enclosed by brackets "[]"
      replaced with your own identifying information. (Don't include
      the brackets!)  The text should be enclosed in the appropriate
      comment syntax for the file format. We also recommend that a
      file or class name and description of purpose be included on the
      same "printed page" as the copyright notice for easier
      identification within third-party archives.

   Copyright [yyyy] [name of copyright owner]

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.

====================================================================

+--- 4th party: com.google.guava:failureaccess

Copyright (C) 2018 The Guava Authors

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.

   < Apache License Version 2.0>
====================================================================

+--- 4th party: com.google.guava:listenablefuture

Copyright (C) 2018 The Guava Authors

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

Appendix E

E-66



   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.

   < Apache License Version 2.0>
====================================================================

fuse.js

Vendor: Kirollos Risk

Version: 7.0.0

Apache License
                           Version 2.0, January 2004
                        http://www.apache.org/licenses/

   TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

   1. Definitions.

      "License" shall mean the terms and conditions for use, reproduction,
      and distribution as defined by Sections 1 through 9 of this document.

      "Licensor" shall mean the copyright owner or entity authorized by
      the copyright owner that is granting the License.

      "Legal Entity" shall mean the union of the acting entity and all
      other entities that control, are controlled by, or are under common
      control with that entity. For the purposes of this definition,
      "control" means (i) the power, direct or indirect, to cause the
      direction or management of such entity, whether by contract or
      otherwise, or (ii) ownership of fifty percent (50%) or more of the
      outstanding shares, or (iii) beneficial ownership of such entity.

      "You" (or "Your") shall mean an individual or Legal Entity
      exercising permissions granted by this License.

      "Source" form shall mean the preferred form for making modifications,
      including but not limited to software source code, documentation
      source, and configuration files.

      "Object" form shall mean any form resulting from mechanical
      transformation or translation of a Source form, including but
      not limited to compiled object code, generated documentation,
      and conversions to other media types.

      "Work" shall mean the work of authorship, whether in Source or
      Object form, made available under the License, as indicated by a
      copyright notice that is included in or attached to the work
      (an example is provided in the Appendix below).

      "Derivative Works" shall mean any work, whether in Source or Object
      form, that is based on (or derived from) the Work and for which the
      editorial revisions, annotations, elaborations, or other modifications
      represent, as a whole, an original work of authorship. For the purposes
      of this License, Derivative Works shall not include works that remain
      separable from, or merely link (or bind by name) to the interfaces of,
      the Work and Derivative Works thereof.

Appendix E

E-67



      "Contribution" shall mean any work of authorship, including
      the original version of the Work and any modifications or additions
      to that Work or Derivative Works thereof, that is intentionally
      submitted to Licensor for inclusion in the Work by the copyright owner
      or by an individual or Legal Entity authorized to submit on behalf of
      the copyright owner. For the purposes of this definition, "submitted"
      means any form of electronic, verbal, or written communication sent
      to the Licensor or its representatives, including but not limited to
      communication on electronic mailing lists, source code control systems,
      and issue tracking systems that are managed by, or on behalf of, the
      Licensor for the purpose of discussing and improving the Work, but
      excluding communication that is conspicuously marked or otherwise
      designated in writing by the copyright owner as "Not a Contribution."

      "Contributor" shall mean Licensor and any individual or Legal Entity
      on behalf of whom a Contribution has been received by Licensor and
      subsequently incorporated within the Work.

   2. Grant of Copyright License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      copyright license to reproduce, prepare Derivative Works of,
      publicly display, publicly perform, sublicense, and distribute the
      Work and such Derivative Works in Source or Object form.

   3. Grant of Patent License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      (except as stated in this section) patent license to make, have made,
      use, offer to sell, sell, import, and otherwise transfer the Work,
      where such license applies only to those patent claims licensable
      by such Contributor that are necessarily infringed by their
      Contribution(s) alone or by combination of their Contribution(s)
      with the Work to which such Contribution(s) was submitted. If You
      institute patent litigation against any entity (including a
      cross-claim or counterclaim in a lawsuit) alleging that the Work
      or a Contribution incorporated within the Work constitutes direct
      or contributory patent infringement, then any patent licenses
      granted to You under this License for that Work shall terminate
      as of the date such litigation is filed.

   4. Redistribution. You may reproduce and distribute copies of the
      Work or Derivative Works thereof in any medium, with or without
      modifications, and in Source or Object form, provided that You
      meet the following conditions:

      (a) You must give any other recipients of the Work or
          Derivative Works a copy of this License; and

      (b) You must cause any modified files to carry prominent notices
          stating that You changed the files; and

      (c) You must retain, in the Source form of any Derivative Works
          that You distribute, all copyright, patent, trademark, and
          attribution notices from the Source form of the Work,
          excluding those notices that do not pertain to any part of
          the Derivative Works; and

      (d) If the Work includes a "NOTICE" text file as part of its
          distribution, then any Derivative Works that You distribute must
          include a readable copy of the attribution notices contained
          within such NOTICE file, excluding those notices that do not

Appendix E

E-68



          pertain to any part of the Derivative Works, in at least one
          of the following places: within a NOTICE text file distributed
          as part of the Derivative Works; within the Source form or
          documentation, if provided along with the Derivative Works; or,
          within a display generated by the Derivative Works, if and
          wherever such third-party notices normally appear. The contents
          of the NOTICE file are for informational purposes only and
          do not modify the License. You may add Your own attribution
          notices within Derivative Works that You distribute, alongside
          or as an addendum to the NOTICE text from the Work, provided
          that such additional attribution notices cannot be construed
          as modifying the License.

      You may add Your own copyright statement to Your modifications and
      may provide additional or different license terms and conditions
      for use, reproduction, or distribution of Your modifications, or
      for any such Derivative Works as a whole, provided Your use,
      reproduction, and distribution of the Work otherwise complies with
      the conditions stated in this License.

   5. Submission of Contributions. Unless You explicitly state otherwise,
      any Contribution intentionally submitted for inclusion in the Work
      by You to the Licensor shall be under the terms and conditions of
      this License, without any additional terms or conditions.
      Notwithstanding the above, nothing herein shall supersede or modify
      the terms of any separate license agreement you may have executed
      with Licensor regarding such Contributions.

   6. Trademarks. This License does not grant permission to use the trade
      names, trademarks, service marks, or product names of the Licensor,
      except as required for reasonable and customary use in describing the
      origin of the Work and reproducing the content of the NOTICE file.

   7. Disclaimer of Warranty. Unless required by applicable law or
      agreed to in writing, Licensor provides the Work (and each
      Contributor provides its Contributions) on an "AS IS" BASIS,
      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
      implied, including, without limitation, any warranties or conditions
      of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
      PARTICULAR PURPOSE. You are solely responsible for determining the
      appropriateness of using or redistributing the Work and assume any
      risks associated with Your exercise of permissions under this License.

   8. Limitation of Liability. In no event and under no legal theory,
      whether in tort (including negligence), contract, or otherwise,
      unless required by applicable law (such as deliberate and grossly
      negligent acts) or agreed to in writing, shall any Contributor be
      liable to You for damages, including any direct, indirect, special,
      incidental, or consequential damages of any character arising as a
      result of this License or out of the use or inability to use the
      Work (including but not limited to damages for loss of goodwill,
      work stoppage, computer failure or malfunction, or any and all
      other commercial damages or losses), even if such Contributor
      has been advised of the possibility of such damages.

   9. Accepting Warranty or Additional Liability. While redistributing
      the Work or Derivative Works thereof, You may choose to offer,
      and charge a fee for, acceptance of support, warranty, indemnity,
      or other liability obligations and/or rights consistent with this
      License. However, in accepting such obligations, You may act only
      on Your own behalf and on Your sole responsibility, not on behalf
      of any other Contributor, and only if You agree to indemnify,

Appendix E

E-69



      defend, and hold each Contributor harmless for any liability
      incurred by, or claims asserted against, such Contributor by reason
      of your accepting any such warranty or additional liability.

   END OF TERMS AND CONDITIONS

   APPENDIX: How to apply the Apache License to your work.

      To apply the Apache License to your work, attach the following
      boilerplate notice, with the fields enclosed by brackets "{}"
      replaced with your own identifying information. (Don't include
      the brackets!)  The text should be enclosed in the appropriate
      comment syntax for the file format. We also recommend that a
      file or class name and description of purpose be included on the
      same "printed page" as the copyright notice for easier
      identification within third-party archives.

   Copyright 2017 Kirollos Risk

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.

MapLibre GL

Vendor: MapLibre

Version: 2.4.0

Copyright (c) 2020, MapLibre contributors

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

    * Redistributions of source code must retain the above copyright notice,
      this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright notice,
      this list of conditions and the following disclaimer in the documentation
      and/or other materials provided with the distribution.
    * Neither the name of MapLibre GL JS nor the names of its contributors
      may be used to endorse or promote products derived from this software
      without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

Appendix E

E-70



SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

-------------------------------------------------------------------------------

Contains code from mapbox-gl-js v1.13 and earlier

Version v1.13 of mapbox-gl-js and earlier are licensed under a BSD-3-Clause license

Copyright (c) 2020, Mapbox
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,
  this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
  this list of conditions and the following disclaimer in the documentation
  and/or other materials provided with the distribution.
* Neither the name of Mapbox GL JS nor the names of its contributors
  may be used to endorse or promote products derived from this software
  without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

-------------------------------------------------------------------------------

Contains code from glfx.js

Copyright (C) 2011 by Evan Wallace

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

--------------------------------------------------------------------------------

Contains a portion of d3-color https://github.com/d3/d3-color

Appendix E

E-71



Copyright 2010-2016 Mike Bostock
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
  list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
  this list of conditions and the following disclaimer in the documentation
  and/or other materials provided with the distribution.

* Neither the name of the author nor the names of contributors may be used to
  endorse or promote products derived from this software without specific prior
  written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

---------------------------- Fourth-party information ----------------------

== NAME OF DEPENDENCY 1
.@mapbox/geojson-rewind
== License
Copyright (c) 2020, Mapbox

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

== DEPENDENCY 1 DEPENPENCIES
.get-stream
== License
MIT License

Copyright (c) Sindre Sorhus <sindresorhus@gmail.com> (https://sindresorhus.com)

Permission is hereby granted, free of charge, to any person obtaining a copy of this 
software and associated documentation files (the "Software"), to deal in the Software 
without restriction, including without limitation the rights to use, copy, modify, 
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to 
permit persons to whom the Software is furnished to do so, subject to the following 
conditions:

Appendix E

E-72



The above copyright notice and this permission notice shall be included in all copies or 
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT 
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 
OTHER DEALINGS IN THE SOFTWARE.

.minimist
== License
This software is released under the MIT license:

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 2
.@mapbox/jsonlint-lines-primitives
== License
MIT License
Copyright (C) 2012 Zachary Carter

Permission is hereby granted, free of charge, to any person obtaining a copy of this 
software and associated documentation files (the "Software"), to deal in the Software 
without restriction, including without limitation the rights to use, copy, modify, 
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to 
permit persons to whom the Software is furnished to do so, subject to the following 
conditions:

The above copyright notice and this permission notice shall be included in all copies or 
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT 
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 
OTHER DEALINGS IN THE SOFTWARE.

--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 3
.@mapbox/mapbox-gl-supported
== License
BSD 3-Clause License

Copyright (c) 2017, Mapbox
All rights reserved.

Appendix E

E-73



Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
  list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
  this list of conditions and the following disclaimer in the documentation
  and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of its
  contributors may be used to endorse or promote products derived from
  this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 4
.@mapbox/point-geometry
== License
Copyright (c) 2015, Mapbox <>

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 5
.@mapbox/tiny-sdf
BSD-2-Clause
Copyright (c) 2016-2022 Mapbox, Inc.

Redistribution and use in source and binary forms, with or without modification, are 
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of 
conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list 
of conditions and the following disclaimer in the documentation and/or other materials 
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY 
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 
THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 

Appendix E

E-74



OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 6
.@mapbox/unitbezier
BSD-2-Clause

Copyright (C) 2008 Apple Inc. All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
   notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
   notice, this list of conditions and the following disclaimer in the
   documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Ported from Webkit
http://svn.webkit.org/repository/webkit/trunk/Source/WebCore/platform/graphics/
UnitBezier.h
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 7
.@mapbox/vector-tile
== License
Copyright (c) 2014, Mapbox

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

    * Redistributions of source code must retain the above copyright notice,
      this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright notice,
      this list of conditions and the following disclaimer in the documentation
      and/or other materials provided with the distribution.
    * Neither the name of Mapbox nor the names of its contributors
      may be used to endorse or promote products derived from this software
      without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR

Appendix E

E-75



CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
== DEPENDENCY 7 DEPENPENCIES
.@mapbox/point-geometry
== License
Copyright (c) 2015, Mapbox <>
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 8
.@mapbox/whoots-js
== License
ISC License

Copyright (c) 2017, Mapbox

Permission to use, copy, modify, and/or distribute this software for any purpose with or 
without fee is hereby granted, provided that the above copyright notice and this 
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO 
THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO 
EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL 
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER 
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN 
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 9
.@types/geojson
== License
This project is licensed under the MIT license.
Copyrights are respective of each contributor listed at the beginning of each definition 
file.

Permission is hereby granted, free of charge, to any person obtaining a copy of this 
software and associated documentation files (the "Software"), to deal in the Software 
without restriction, including without limitation the rights to use, copy, modify, 
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to 
permit persons to whom the Software is furnished to do so, subject to the following 
conditions:

The above copyright notice and this permission notice shall be included in all copies or 
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT 
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 
OTHER DEALINGS IN THE SOFTWARE.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 10
.@types/mapbox__point-geometry
This project is licensed under the MIT license.
Copyrights are respective of each contributor listed at the beginning of each definition 
file.

Permission is hereby granted, free of charge, to any person obtaining a copy of this 
software and associated documentation files (the "Software"), to deal in the Software 

Appendix E

E-76



without restriction, including without limitation the rights to use, copy, modify, 
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to 
permit persons to whom the Software is furnished to do so, subject to the following 
conditions:

The above copyright notice and this permission notice shall be included in all copies or 
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT 
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 
OTHER DEALINGS IN THE SOFTWARE.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 11
.@types/mapbox__vector-tile
This project is licensed under the MIT license.
Copyrights are respective of each contributor listed at the beginning of each definition 
file.

Permission is hereby granted, free of charge, to any person obtaining a copy of this 
software and associated documentation files (the "Software"), to deal in the Software 
without restriction, including without limitation the rights to use, copy, modify, 
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to 
permit persons to whom the Software is furnished to do so, subject to the following 
conditions:

The above copyright notice and this permission notice shall be included in all copies or 
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT 
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 
OTHER DEALINGS IN THE SOFTWARE

== DEPENDENCY 11 DEPENPENCIES
.@types/geojson
This project is licensed under the MIT license.
Copyrights are respective of each contributor listed at the beginning of each definition 
file.
.@types/mapbox__point-geometry
This project is licensed under the MIT license.
Copyrights are respective of each contributor listed at the beginning of each definition 
file.
.@types/pbf
This project is licensed under the MIT license.
Copyrights are respective of each contributor listed at the beginning of each definition 
file.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 12
.@types/pbf
This project is licensed under the MIT license.
Copyrights are respective of each contributor listed at the beginning of each definition 
file.

Permission is hereby granted, free of charge, to any person obtaining a copy of this 
software and associated documentation files (the "Software"), to deal in the Software 
without restriction, including without limitation the rights to use, copy, modify, 
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to 

Appendix E

E-77



permit persons to whom the Software is furnished to do so, subject to the following 
conditions:

The above copyright notice and this permission notice shall be included in all copies or 
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT 
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 
OTHER DEALINGS IN THE SOFTWARE.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 13
.csscolorparser
(c) Dean McNamee <dean@gmail.com>, 2012.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 14
.earcut
ISC License

Copyright (c) 2016, Mapbox

Permission to use, copy, modify, and/or distribute this software for any purpose
with or without fee is hereby granted, provided that the above copyright notice
and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 15
.geojson-vt
ISC License

Copyright (c) 2015, Mapbox

Permission to use, copy, modify, and/or distribute this software for any purpose
with or without fee is hereby granted, provided that the above copyright notice
and this permission notice appear in all copies.

Appendix E

E-78



THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 16
.gl-matrix
Copyright (c) 2015-2021, Brandon Jones, Colin MacKenzie IV.

Permission is hereby granted, free of charge, to any person obtaining a copy of this 
software and associated documentation files (the "Software"), to deal in the Software 
without restriction, including without limitation the rights to use, copy, modify, 
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to 
permit persons to whom the Software is furnished to do so, subject to the following 
conditions:

The above copyright notice and this permission notice shall be included in all copies or 
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT 
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 
OTHER DEALINGS IN THE SOFTWARE.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 17
.global-prefix
The MIT License (MIT)

Copyright (c) 2015-present, Jon Schlinkert.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
== DEPENDENCY 17 DEPENPENCIES
.ini
The ISC License

Copyright (c) Isaac Z. Schlueter and Contributors

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

Appendix E

E-79



THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR
IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
.kind-of
The MIT License (MIT)

Copyright (c) 2014-2017, Jon Schlinkert.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
.which
The ISC License

Copyright (c) Isaac Z. Schlueter and Contributors

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR
IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
.isexe
The ISC License

Copyright (c) 2016-2022 Isaac Z. Schlueter and Contributors

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR
IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Appendix E

E-80



--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 18
.murmurhash-js
Copyright (c) 2011 Gary Court

Permission is hereby granted, free of charge, to any person obtaining a copy of this 
software and associated documentation files (the "Software"), to deal in the Software 
without restriction, including without limitation the rights to use, copy, modify, 
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to 
permit persons to whom the Software is furnished to do so, subject to the following 
conditions:

The above copyright notice and this permission notice shall be included in all copies or 
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT 
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 
OTHER DEALINGS IN THE SOFTWARE.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 19
.pbf
Copyright (c) 2017, Mapbox
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
  list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
  this list of conditions and the following disclaimer in the documentation
  and/or other materials provided with the distribution.

* Neither the name of pbf nor the names of its
  contributors may be used to endorse or promote products derived from
  this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
== DEPENDENCY 19 DEPENPENCIES
.ieee754
Copyright 2008 Fair Oaks Labs, Inc.

Redistribution and use in source and binary forms, with or without modification, are 
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of 
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list 

Appendix E

E-81



of conditions and the following disclaimer in the documentation and/or other materials 
provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be 
used to endorse or promote products derived from this software without specific prior 
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY 
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 
THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

.resolve-protobuf-schema
The MIT License (MIT)

Copyright (c) 2014 Mathias Buus

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
.protocol-buffers-schema
The MIT License (MIT)

Copyright (c) 2014 Mathias Buus

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
--------------------------------(separator)---------------------------------

Appendix E

E-82



== NAME OF DEPENDENCY 20
.potpack
ISC License

Copyright (c) 2022, Mapbox

Permission to use, copy, modify, and/or distribute this software for any purpose
with or without fee is hereby granted, provided that the above copyright notice
and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 21
.quickselect
The MIT License

Copyright (c) 2014-2018 Google, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 22
.supercluster
ISC License

Copyright (c) 2021, Mapbox

Permission to use, copy, modify, and/or distribute this software for any purpose
with or without fee is hereby granted, provided that the above copyright notice
and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
== DEPENDENCY 22 DEPENPENCIES
.kdbush
ISC License

Appendix E

E-83



Copyright (c) 2018, Vladimir Agafonkin

Permission to use, copy, modify, and/or distribute this software for any purpose
with or without fee is hereby granted, provided that the above copyright notice
and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.
THIS SOFTWARE.-----------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 23
.tinyqueue
ISC License

Copyright (c) 2017, Vladimir Agafonkin

Permission to use, copy, modify, and/or distribute this software for any purpose
with or without fee is hereby granted, provided that the above copyright notice
and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 24
.vt-pbf
The MIT License (MIT)

Copyright (c) 2015 Anand Thakker

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

--------------------------------------------------------------------------------

Contains geojson_wrapper.js from https://github.com/mapbox/mapbox-gl-js

Copyright (c) 2014, Mapbox

Appendix E

E-84



All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

    * Redistributions of source code must retain the above copyright notice,
      this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright notice,
      this list of conditions and the following disclaimer in the documentation
      and/or other materials provided with the distribution.
    * Neither the name of Mapbox GL JS nor the names of its contributors
      may be used to endorse or promote products derived from this software
      without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
== DEPENDENCY 24 DEPENPENCIES
.@mapbox/point-geometry
Copyright (c) 2015, Mapbox <>
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
.@mapbox/vector-tile
Copyright (c) 2014, Mapbox
All rights reserved.
.pbf
Copyright (c) 2017, Mapbox
All rights reserved.
.ieee754
Copyright 2008 Fair Oaks Labs, Inc.
.resolve-protobuf-schema
The MIT License (MIT)

Copyright (c) 2014 Mathias Buus
.protocol-buffers-schema
The MIT License (MIT)

Copyright (c) 2014 Mathias Buus

D3

Vendor: Michael Bostock

Version: 7.1.1

Copyright 2010-2020 Mike Bostock
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
  list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
  this list of conditions and the following disclaimer in the documentation
  and/or other materials provided with the distribution.

Appendix E

E-85



* Neither the name of the author nor the names of contributors may be used to
  endorse or promote products derived from this software without specific prior
  written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  d3-array
--------------------------------------------------
Copyright 2010-2016 Mike Bostock
All rights reserved.
(see license under d3)
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  d3-axis
--------------------------------------------------
Copyright 2010-2016 Mike Bostock
All rights reserved.
(see license under d3)
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  d3-brush
--------------------------------------------------
Copyright 2010-2016 Mike Bostock
All rights reserved.
(see license under d3)
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  d3-chord
--------------------------------------------------
Copyright 2010-2016 Mike Bostock
All rights reserved.
(see license under d3)
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  d3-color
--------------------------------------------------
Copyright 2010-2016 Mike Bostock
All rights reserved.
(see license under d3)
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  d3-contour
--------------------------------------------------
Copyright 2012-2017 Mike Bostock
All rights reserved.
(see license under d3)
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  d3-delaunay
--------------------------------------------------
Copyright 2018 Observable, Inc.
Permission to use, copy, modify, and/or distribute this software for any purpose
with or without fee is hereby granted, provided that the above copyright notice
and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF

Appendix E

E-86



THIS SOFTWARE.
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  d3-dispatch
--------------------------------------------------
Copyright 2010-2016 Mike Bostock
All rights reserved.
(see license under d3)
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  d3-drag
--------------------------------------------------
Copyright 2010-2016 Mike Bostock
All rights reserved.
(see license under d3)
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  d3-dsv
--------------------------------------------------
Copyright 2013-2016 Mike Bostock
All rights reserved.
(see license under d3)
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  d3-ease
--------------------------------------------------
Copyright 2010-2016 Mike Bostock
Copyright 2001 Robert Penner
All rights reserved.
(see license under d3)
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  d3-fetch
--------------------------------------------------
Copyright 2016 Mike Bostock
All rights reserved.
(see license under d3)
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  d3-force
--------------------------------------------------
Copyright 2010-2016 Mike Bostock
All rights reserved.
(see license under d3)
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  d3-format
--------------------------------------------------
Copyright 2010-2015 Mike Bostock
All rights reserved.
(see license under d3)
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  d3-geo
--------------------------------------------------
Copyright 2010-2016 Mike Bostock
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
  list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
  this list of conditions and the following disclaimer in the documentation
  and/or other materials provided with the distribution.
* Neither the name of the author nor the names of contributors may be used to
  endorse or promote products derived from this software without specific prior
  written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

Appendix E

E-87



DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
This license applies to GeographicLib, versions 1.12 and later.
Copyright (c) 2008-2012, Charles Karney
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  d3-hierarchy
--------------------------------------------------
Copyright 2010-2016 Mike Bostock
All rights reserved.
(see license under d3)
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  d3-interpolate
--------------------------------------------------
Copyright 2010-2016 Mike Bostock
All rights reserved.
(see license under d3)
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  d3-path
--------------------------------------------------
Copyright 2015-2016 Mike Bostock
All rights reserved.
(see license under d3)
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  d3-polygon
--------------------------------------------------
Copyright 2010-2016 Mike Bostock
All rights reserved.
(see license under d3)
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  d3-quadtree
--------------------------------------------------
Copyright 2010-2016 Mike Bostock
All rights reserved.
(see license under d3)
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  d3-random
--------------------------------------------------
Copyright 2010-2016 Mike Bostock
All rights reserved.
(see license under d3)
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  d3-scale
--------------------------------------------------

Appendix E

E-88



Copyright 2010-2015 Mike Bostock
All rights reserved.
(see license under d3)
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  d3-scale-chromatic
--------------------------------------------------
Copyright 2010-2018 Mike Bostock
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
  list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
  this list of conditions and the following disclaimer in the documentation
  and/or other materials provided with the distribution.
* Neither the name of the author nor the names of contributors may be used to
  endorse or promote products derived from this software without specific prior
  written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Apache-Style Software License for ColorBrewer software and ColorBrewer Color
Schemes
Copyright (c) 2002 Cynthia Brewer, Mark Harrower, and The Pennsylvania State
University.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License.  You may obtain a copy of the
License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction, and distribution as 
defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by the copyright owner 
that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all other entities that 
control, are controlled by, or are under common control with that entity. For the 
purposes of this definition, "control" means (i) the power, direct or indirect, to cause 
the direction or management of such entity, whether by contract or otherwise, or (ii) 
ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial 
ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity exercising permissions 
granted by this License.
"Source" form shall mean the preferred form for making modifications, including but not 
limited to software source code, documentation source, and configuration files.
"Object" form shall mean any form resulting from mechanical transformation or 
translation of a Source form, including but not limited to compiled object code, 
generated documentation, and conversions to other media types.

Appendix E

E-89



"Work" shall mean the work of authorship, whether in Source or Object form, made 
available under the License, as indicated by a copyright notice that is included in or 
attached to the work (an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object form, that is based 
on (or derived from) the Work and for which the editorial revisions, annotations, 
elaborations, or other modifications represent, as a whole, an original work of 
authorship. For the purposes of this License, Derivative Works shall not include works 
that remain separable from, or merely link (or bind by name) to the interfaces of, the 
Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including the original version of the 
Work and any modifications or additions to that Work or Derivative Works thereof, that 
is intentionally submitted to Licensor for inclusion in the Work by the copyright owner 
or by an individual or Legal Entity authorized to submit on behalf of the copyright 
owner. For the purposes of this definition, "submitted" means any form of electronic, 
verbal, or written communication sent to the Licensor or its representatives, including 
but not limited to communication on electronic mailing lists, source code control 
systems, and issue tracking systems that are managed by, or on behalf of, the Licensor 
for the purpose of discussing and improving the Work, but excluding communication that 
is conspicuously marked or otherwise designated in writing by the copyright owner as 
"Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a 
Contribution has been received by Licensor and subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of this License, each 
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, 
royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, 
publicly display, publicly perform, sublicense, and distribute the Work and such 
Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of this License, each 
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, 
royalty-free, irrevocable (except as stated in this section) patent license to make, 
have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such 
license applies only to those patent claims licensable by such Contributor that are 
necessarily infringed by their Contribution(s) alone or by combination of their 
Contribution(s) with the Work to which such Contribution(s) was submitted. If You 
institute patent litigation against any entity (including a cross-claim or counterclaim 
in a lawsuit) alleging that the Work or a Contribution incorporated within the Work 
constitutes direct or contributory patent infringement, then any patent licenses granted 
to You under this License for that Work shall terminate as of the date such litigation 
is filed.
4. Redistribution. You may reproduce and distribute copies of the Work or Derivative 
Works thereof in any medium, with or without modifications, and in Source or Object 
form, provided that You meet the following conditions:
    You must give any other recipients of the Work or Derivative Works a copy of this 
License; and
    You must cause any modified files to carry prominent notices stating that You 
changed the files; and
    You must retain, in the Source form of any Derivative Works that You distribute, all 
copyright, patent, trademark, and attribution notices from the Source form of the Work, 
excluding those notices that do not pertain to any part of the Derivative Works; and
    If the Work includes a "NOTICE" text file as part of its distribution, then any 
Derivative Works that You distribute must include a readable copy of the attribution 
notices contained within such NOTICE file, excluding those notices that do not pertain 
to any part of the Derivative Works, in at least one of the following places: within a 
NOTICE text file distributed as part of the Derivative Works; within the Source form or 
documentation, if provided along with the Derivative Works; or, within a display 
generated by the Derivative Works, if and wherever such third-party notices normally 
appear. The contents of the NOTICE file are for informational purposes only and do not 
modify the License. You may add Your own attribution notices within Derivative Works 
that You distribute, alongside or as an addendum to the NOTICE text from the Work, 
provided that such additional attribution notices cannot be construed as modifying the 
License.
    You may add Your own copyright statement to Your modifications and may provide 

Appendix E

E-90



additional or different license terms and conditions for use, reproduction, or 
distribution of Your modifications, or for any such Derivative Works as a whole, 
provided Your use, reproduction, and distribution of the Work otherwise complies with 
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution 
intentionally submitted for inclusion in the Work by You to the Licensor shall be under 
the terms and conditions of this License, without any additional terms or conditions. 
Notwithstanding the above, nothing herein shall supersede or modify the terms of any 
separate license agreement you may have executed with Licensor regarding such 
Contributions.
6. Trademarks. This License does not grant permission to use the trade names, 
trademarks, service marks, or product names of the Licensor, except as required for 
reasonable and customary use in describing the origin of the Work and reproducing the 
content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, 
Licensor provides the Work (and each Contributor provides its Contributions) on an "AS 
IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, 
including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, 
MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for 
determining the appropriateness of using or redistributing the Work and assume any risks 
associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory, whether in tort 
(including negligence), contract, or otherwise, unless required by applicable law (such 
as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor 
be liable to You for damages, including any direct, indirect, special, incidental, or 
consequential damages of any character arising as a result of this License or out of the 
use or inability to use the Work (including but not limited to damages for loss of 
goodwill, work stoppage, computer failure or malfunction, or any and all other 
commercial damages or losses), even if such Contributor has been advised of the 
possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing the Work or 
Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of 
support, warranty, indemnity, or other liability obligations and/or rights consistent 
with this License. However, in accepting such obligations, You may act only on Your own 
behalf and on Your sole responsibility, not on behalf of any other Contributor, and only 
if You agree to indemnify, defend, and hold each Contributor harmless for any liability 
incurred by, or claims asserted against, such Contributor by reason of your accepting 
any such warranty or additional liability.
END OF TERMS AND CONDITIONS
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  d3-selection
--------------------------------------------------
Copyright (c) 2010-2018, Michael Bostock
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
  list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
  this list of conditions and the following disclaimer in the documentation
  and/or other materials provided with the distribution.
* The name Michael Bostock may not be used to endorse or promote products
  derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL MICHAEL BOSTOCK BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,

Appendix E

E-91



EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  d3-shape
--------------------------------------------------
Copyright 2010-2015 Mike Bostock
All rights reserved.
(see license under d3)
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  d3-time
--------------------------------------------------
Copyright 2010-2016 Mike Bostock
All rights reserved.
(see license under d3)
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  d3-time-format
--------------------------------------------------
Copyright 2010-2017 Mike Bostock
All rights reserved.
(see license under d3)
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  d3-timer
--------------------------------------------------
Copyright 2010-2016 Mike Bostock
All rights reserved.
(see license under d3)
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  d3-transition
--------------------------------------------------
Copyright (c) 2010-2015, Michael Bostock
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
  list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
  this list of conditions and the following disclaimer in the documentation
  and/or other materials provided with the distribution.
* The name Michael Bostock may not be used to endorse or promote products
  derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL MICHAEL BOSTOCK BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
TERMS OF USE - EASING EQUATIONS
Open source under the BSD License.
Copyright 2001 Robert Penner
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright notice, this
  list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice,
  this list of conditions and the following disclaimer in the documentation
  and/or other materials provided with the distribution.
- Neither the name of the author nor the names of contributors may be used to
  endorse or promote products derived from this software without specific prior

Appendix E

E-92



  written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  d3-zoom
--------------------------------------------------
Copyright 2010-2016 Mike Bostock
All rights reserved.
(see license under d3)
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  commander
--------------------------------------------------
(The MIT License)
Copyright (c) 2011 TJ Holowaychuk 
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
'Software'), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  delaunator
--------------------------------------------------
ISC License
Copyright (c) 2017, Mapbox
Permission to use, copy, modify, and/or distribute this software for any purpose
with or without fee is hereby granted, provided that the above copyright notice
and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  iconv-lite
--------------------------------------------------
Copyright (c) 2011 Alexander Shtuchkin
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to

Appendix E

E-93



permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  internmap
--------------------------------------------------
Copyright 2021 Mike Bostock
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
  list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
  this list of conditions and the following disclaimer in the documentation
  and/or other materials provided with the distribution.
* Neither the name of the author nor the names of contributors may be used to
  endorse or promote products derived from this software without specific prior
  written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  rw
--------------------------------------------------
Copyright (c) 2014-2016, Michael Bostock
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
  list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
  this list of conditions and the following disclaimer in the documentation
  and/or other materials provided with the distribution.
* The name Michael Bostock may not be used to endorse or promote products
  derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL MICHAEL BOSTOCK BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
--------------------------------------------------
FOURTH-PARTY DEPENDENCY (of d3):  safer-buffer

Appendix E

E-94



--------------------------------------------------
MIT License
Copyright (c) 2018 Nikita Skovoroda 
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Monaco Editor

Vendor: Microsoft Corporation

Version: 0.34.0

================================================================================
monaco-editor
https://github.com/microsoft/monaco-editor/blob/main/LICENSE.txt
--------------------------------------------------------------------------------

The MIT License (MIT)

Copyright (c) 2016 - present Microsoft Corporation

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

OWASP Java Encoder Project

Vendor: Open Web Application Security Project (OWASP)

Version: 1.2.3

Copyright (c) 2015 Jeff Ichnowski
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions

Appendix E

E-95



are met:

    * Redistributions of source code must retain the above
      copyright notice, this list of conditions and the following
      disclaimer.

    * Redistributions in binary form must reproduce the above
      copyright notice, this list of conditions and the following
      disclaimer in the documentation and/or other materials
      provided with the distribution.

    * Neither the name of the OWASP nor the names of its
      contributors may be used to endorse or promote products
      derived from this software without specific prior written
      permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

Commons IO

Vendor: The Apache Software Foundation

Version: 2.15.1

Apache Commons IO
Copyright 2002-2023 The Apache Software Foundation

This product includes software developed at
The Apache Software Foundation (https://www.apache.org/).
--
Apache License
                           Version 2.0, January 2004
                        http://www.apache.org/licenses/

   TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

   1. Definitions.

      "License" shall mean the terms and conditions for use, reproduction,
      and distribution as defined by Sections 1 through 9 of this document.

      "Licensor" shall mean the copyright owner or entity authorized by
      the copyright owner that is granting the License.

      "Legal Entity" shall mean the union of the acting entity and all
      other entities that control, are controlled by, or are under common
      control with that entity. For the purposes of this definition,
      "control" means (i) the power, direct or indirect, to cause the
      direction or management of such entity, whether by contract or
      otherwise, or (ii) ownership of fifty percent (50%) or more of the
      outstanding shares, or (iii) beneficial ownership of such entity.

Appendix E

E-96



      "You" (or "Your") shall mean an individual or Legal Entity
      exercising permissions granted by this License.

      "Source" form shall mean the preferred form for making modifications,
      including but not limited to software source code, documentation
      source, and configuration files.

      "Object" form shall mean any form resulting from mechanical
      transformation or translation of a Source form, including but
      not limited to compiled object code, generated documentation,
      and conversions to other media types.

      "Work" shall mean the work of authorship, whether in Source or
      Object form, made available under the License, as indicated by a
      copyright notice that is included in or attached to the work
      (an example is provided in the Appendix below).

      "Derivative Works" shall mean any work, whether in Source or Object
      form, that is based on (or derived from) the Work and for which the
      editorial revisions, annotations, elaborations, or other modifications
      represent, as a whole, an original work of authorship. For the purposes
      of this License, Derivative Works shall not include works that remain
      separable from, or merely link (or bind by name) to the interfaces of,
      the Work and Derivative Works thereof.

      "Contribution" shall mean any work of authorship, including
      the original version of the Work and any modifications or additions
      to that Work or Derivative Works thereof, that is intentionally
      submitted to Licensor for inclusion in the Work by the copyright owner
      or by an individual or Legal Entity authorized to submit on behalf of
      the copyright owner. For the purposes of this definition, "submitted"
      means any form of electronic, verbal, or written communication sent
      to the Licensor or its representatives, including but not limited to
      communication on electronic mailing lists, source code control systems,
      and issue tracking systems that are managed by, or on behalf of, the
      Licensor for the purpose of discussing and improving the Work, but
      excluding communication that is conspicuously marked or otherwise
      designated in writing by the copyright owner as "Not a Contribution."

      "Contributor" shall mean Licensor and any individual or Legal Entity
      on behalf of whom a Contribution has been received by Licensor and
      subsequently incorporated within the Work.

   2. Grant of Copyright License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      copyright license to reproduce, prepare Derivative Works of,
      publicly display, publicly perform, sublicense, and distribute the
      Work and such Derivative Works in Source or Object form.

   3. Grant of Patent License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      (except as stated in this section) patent license to make, have made,
      use, offer to sell, sell, import, and otherwise transfer the Work,
      where such license applies only to those patent claims licensable
      by such Contributor that are necessarily infringed by their
      Contribution(s) alone or by combination of their Contribution(s)
      with the Work to which such Contribution(s) was submitted. If You
      institute patent litigation against any entity (including a
      cross-claim or counterclaim in a lawsuit) alleging that the Work
      or a Contribution incorporated within the Work constitutes direct

Appendix E

E-97



      or contributory patent infringement, then any patent licenses
      granted to You under this License for that Work shall terminate
      as of the date such litigation is filed.

   4. Redistribution. You may reproduce and distribute copies of the
      Work or Derivative Works thereof in any medium, with or without
      modifications, and in Source or Object form, provided that You
      meet the following conditions:

      (a) You must give any other recipients of the Work or
          Derivative Works a copy of this License; and

      (b) You must cause any modified files to carry prominent notices
          stating that You changed the files; and

      (c) You must retain, in the Source form of any Derivative Works
          that You distribute, all copyright, patent, trademark, and
          attribution notices from the Source form of the Work,
          excluding those notices that do not pertain to any part of
          the Derivative Works; and

      (d) If the Work includes a "NOTICE" text file as part of its
          distribution, then any Derivative Works that You distribute must
          include a readable copy of the attribution notices contained
          within such NOTICE file, excluding those notices that do not
          pertain to any part of the Derivative Works, in at least one
          of the following places: within a NOTICE text file distributed
          as part of the Derivative Works; within the Source form or
          documentation, if provided along with the Derivative Works; or,
          within a display generated by the Derivative Works, if and
          wherever such third-party notices normally appear. The contents
          of the NOTICE file are for informational purposes only and
          do not modify the License. You may add Your own attribution
          notices within Derivative Works that You distribute, alongside
          or as an addendum to the NOTICE text from the Work, provided
          that such additional attribution notices cannot be construed
          as modifying the License.

      You may add Your own copyright statement to Your modifications and
      may provide additional or different license terms and conditions
      for use, reproduction, or distribution of Your modifications, or
      for any such Derivative Works as a whole, provided Your use,
      reproduction, and distribution of the Work otherwise complies with
      the conditions stated in this License.

   5. Submission of Contributions. Unless You explicitly state otherwise,
      any Contribution intentionally submitted for inclusion in the Work
      by You to the Licensor shall be under the terms and conditions of
      this License, without any additional terms or conditions.
      Notwithstanding the above, nothing herein shall supersede or modify
      the terms of any separate license agreement you may have executed
      with Licensor regarding such Contributions.

   6. Trademarks. This License does not grant permission to use the trade
      names, trademarks, service marks, or product names of the Licensor,
      except as required for reasonable and customary use in describing the
      origin of the Work and reproducing the content of the NOTICE file.

   7. Disclaimer of Warranty. Unless required by applicable law or
      agreed to in writing, Licensor provides the Work (and each
      Contributor provides its Contributions) on an "AS IS" BASIS,
      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

Appendix E

E-98



      implied, including, without limitation, any warranties or conditions
      of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
      PARTICULAR PURPOSE. You are solely responsible for determining the
      appropriateness of using or redistributing the Work and assume any
      risks associated with Your exercise of permissions under this License.

   8. Limitation of Liability. In no event and under no legal theory,
      whether in tort (including negligence), contract, or otherwise,
      unless required by applicable law (such as deliberate and grossly
      negligent acts) or agreed to in writing, shall any Contributor be
      liable to You for damages, including any direct, indirect, special,
      incidental, or consequential damages of any character arising as a
      result of this License or out of the use or inability to use the
      Work (including but not limited to damages for loss of goodwill,
      work stoppage, computer failure or malfunction, or any and all
      other commercial damages or losses), even if such Contributor
      has been advised of the possibility of such damages.

   9. Accepting Warranty or Additional Liability. While redistributing
      the Work or Derivative Works thereof, You may choose to offer,
      and charge a fee for, acceptance of support, warranty, indemnity,
      or other liability obligations and/or rights consistent with this
      License. However, in accepting such obligations, You may act only
      on Your own behalf and on Your sole responsibility, not on behalf
      of any other Contributor, and only if You agree to indemnify,
      defend, and hold each Contributor harmless for any liability
      incurred by, or claims asserted against, such Contributor by reason
      of your accepting any such warranty or additional liability.

   END OF TERMS AND CONDITIONS

   APPENDIX: How to apply the Apache License to your work.

      To apply the Apache License to your work, attach the following
      boilerplate notice, with the fields enclosed by brackets "[]"
      replaced with your own identifying information. (Don't include
      the brackets!)  The text should be enclosed in the appropriate
      comment syntax for the file format. We also recommend that a
      file or class name and description of purpose be included on the
      same "printed page" as the copyright notice for easier
      identification within third-party archives.

   Copyright [yyyy] [name of copyright owner]

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

Commons Lang

Vendor: The Apache Software Foundation

Version: 3.13.0

NOTICE:
Apache Commons Lang
Copyright 2001-2023 The Apache Software Foundation

This product includes software developed at
The Apache Software Foundation (https://www.apache.org/).

Appendix E

E-99



LICENSE: Apache 2.0

                                 Apache License
                           Version 2.0, January 2004
                        http://www.apache.org/licenses/

   TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

   1. Definitions.

      "License" shall mean the terms and conditions for use, reproduction,
      and distribution as defined by Sections 1 through 9 of this document.

      "Licensor" shall mean the copyright owner or entity authorized by
      the copyright owner that is granting the License.

      "Legal Entity" shall mean the union of the acting entity and all
      other entities that control, are controlled by, or are under common
      control with that entity. For the purposes of this definition,
      "control" means (i) the power, direct or indirect, to cause the
      direction or management of such entity, whether by contract or
      otherwise, or (ii) ownership of fifty percent (50%) or more of the
      outstanding shares, or (iii) beneficial ownership of such entity.

      "You" (or "Your") shall mean an individual or Legal Entity
      exercising permissions granted by this License.

      "Source" form shall mean the preferred form for making modifications,
      including but not limited to software source code, documentation
      source, and configuration files.

      "Object" form shall mean any form resulting from mechanical
      transformation or translation of a Source form, including but
      not limited to compiled object code, generated documentation,
      and conversions to other media types.

      "Work" shall mean the work of authorship, whether in Source or
      Object form, made available under the License, as indicated by a
      copyright notice that is included in or attached to the work
      (an example is provided in the Appendix below).

      "Derivative Works" shall mean any work, whether in Source or Object
      form, that is based on (or derived from) the Work and for which the
      editorial revisions, annotations, elaborations, or other modifications
      represent, as a whole, an original work of authorship. For the purposes
      of this License, Derivative Works shall not include works that remain
      separable from, or merely link (or bind by name) to the interfaces of,
      the Work and Derivative Works thereof.

      "Contribution" shall mean any work of authorship, including
      the original version of the Work and any modifications or additions
      to that Work or Derivative Works thereof, that is intentionally
      submitted to Licensor for inclusion in the Work by the copyright owner
      or by an individual or Legal Entity authorized to submit on behalf of
      the copyright owner. For the purposes of this definition, "submitted"
      means any form of electronic, verbal, or written communication sent
      to the Licensor or its representatives, including but not limited to
      communication on electronic mailing lists, source code control systems,
      and issue tracking systems that are managed by, or on behalf of, the
      Licensor for the purpose of discussing and improving the Work, but
      excluding communication that is conspicuously marked or otherwise

Appendix E

E-100



      designated in writing by the copyright owner as "Not a Contribution."

      "Contributor" shall mean Licensor and any individual or Legal Entity
      on behalf of whom a Contribution has been received by Licensor and
      subsequently incorporated within the Work.

   2. Grant of Copyright License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      copyright license to reproduce, prepare Derivative Works of,
      publicly display, publicly perform, sublicense, and distribute the
      Work and such Derivative Works in Source or Object form.

   3. Grant of Patent License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      (except as stated in this section) patent license to make, have made,
      use, offer to sell, sell, import, and otherwise transfer the Work,
      where such license applies only to those patent claims licensable
      by such Contributor that are necessarily infringed by their
      Contribution(s) alone or by combination of their Contribution(s)
      with the Work to which such Contribution(s) was submitted. If You
      institute patent litigation against any entity (including a
      cross-claim or counterclaim in a lawsuit) alleging that the Work
      or a Contribution incorporated within the Work constitutes direct
      or contributory patent infringement, then any patent licenses
      granted to You under this License for that Work shall terminate
      as of the date such litigation is filed.

   4. Redistribution. You may reproduce and distribute copies of the
      Work or Derivative Works thereof in any medium, with or without
      modifications, and in Source or Object form, provided that You
      meet the following conditions:

      (a) You must give any other recipients of the Work or
          Derivative Works a copy of this License; and

      (b) You must cause any modified files to carry prominent notices
          stating that You changed the files; and

      (c) You must retain, in the Source form of any Derivative Works
          that You distribute, all copyright, patent, trademark, and
          attribution notices from the Source form of the Work,
          excluding those notices that do not pertain to any part of
          the Derivative Works; and

      (d) If the Work includes a "NOTICE" text file as part of its
          distribution, then any Derivative Works that You distribute must
          include a readable copy of the attribution notices contained
          within such NOTICE file, excluding those notices that do not
          pertain to any part of the Derivative Works, in at least one
          of the following places: within a NOTICE text file distributed
          as part of the Derivative Works; within the Source form or
          documentation, if provided along with the Derivative Works; or,
          within a display generated by the Derivative Works, if and
          wherever such third-party notices normally appear. The contents
          of the NOTICE file are for informational purposes only and
          do not modify the License. You may add Your own attribution
          notices within Derivative Works that You distribute, alongside
          or as an addendum to the NOTICE text from the Work, provided
          that such additional attribution notices cannot be construed
          as modifying the License.

Appendix E

E-101



      You may add Your own copyright statement to Your modifications and
      may provide additional or different license terms and conditions
      for use, reproduction, or distribution of Your modifications, or
      for any such Derivative Works as a whole, provided Your use,
      reproduction, and distribution of the Work otherwise complies with
      the conditions stated in this License.

   5. Submission of Contributions. Unless You explicitly state otherwise,
      any Contribution intentionally submitted for inclusion in the Work
      by You to the Licensor shall be under the terms and conditions of
      this License, without any additional terms or conditions.
      Notwithstanding the above, nothing herein shall supersede or modify
      the terms of any separate license agreement you may have executed
      with Licensor regarding such Contributions.

   6. Trademarks. This License does not grant permission to use the trade
      names, trademarks, service marks, or product names of the Licensor,
      except as required for reasonable and customary use in describing the
      origin of the Work and reproducing the content of the NOTICE file.

   7. Disclaimer of Warranty. Unless required by applicable law or
      agreed to in writing, Licensor provides the Work (and each
      Contributor provides its Contributions) on an "AS IS" BASIS,
      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
      implied, including, without limitation, any warranties or conditions
      of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
      PARTICULAR PURPOSE. You are solely responsible for determining the
      appropriateness of using or redistributing the Work and assume any
      risks associated with Your exercise of permissions under this License.

   8. Limitation of Liability. In no event and under no legal theory,
      whether in tort (including negligence), contract, or otherwise,
      unless required by applicable law (such as deliberate and grossly
      negligent acts) or agreed to in writing, shall any Contributor be
      liable to You for damages, including any direct, indirect, special,
      incidental, or consequential damages of any character arising as a
      result of this License or out of the use or inability to use the
      Work (including but not limited to damages for loss of goodwill,
      work stoppage, computer failure or malfunction, or any and all
      other commercial damages or losses), even if such Contributor
      has been advised of the possibility of such damages.

   9. Accepting Warranty or Additional Liability. While redistributing
      the Work or Derivative Works thereof, You may choose to offer,
      and charge a fee for, acceptance of support, warranty, indemnity,
      or other liability obligations and/or rights consistent with this
      License. However, in accepting such obligations, You may act only
      on Your own behalf and on Your sole responsibility, not on behalf
      of any other Contributor, and only if You agree to indemnify,
      defend, and hold each Contributor harmless for any liability
      incurred by, or claims asserted against, such Contributor by reason
      of your accepting any such warranty or additional liability.

   END OF TERMS AND CONDITIONS

   APPENDIX: How to apply the Apache License to your work.

      To apply the Apache License to your work, attach the following
      boilerplate notice, with the fields enclosed by brackets "[]"
      replaced with your own identifying information. (Don't include
      the brackets!)  The text should be enclosed in the appropriate

Appendix E

E-102



      comment syntax for the file format. We also recommend that a
      file or class name and description of purpose be included on the
      same "printed page" as the copyright notice for easier
      identification within third-party archives.

   Copyright [yyyy] [name of copyright owner]

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and limitations under 
the License.

Tomcat

Vendor: The Apache Software Foundation

Version: 8.5.99

== NOTICE file
  
  Apache Tomcat
Copyright 1999-2024 The Apache Software Foundation

This product includes software developed at
The Apache Software Foundation (https://www.apache.org/).

This software contains code derived from netty-native
developed by the Netty project
(https://netty.io, https://github.com/netty/netty-tcnative/)
and from finagle-native developed at Twitter
(https://github.com/twitter/finagle).

Java compilation software for JSP pages is provided by the Eclipse
JDT Core Batch Compiler component, which is open source software.
The original software and related information is available at
https://www.eclipse.org/jdt/core/.

For portions of the Tomcat JNI OpenSSL API and the OpenSSL JSSE integration
The org.apache.tomcat.jni and the org.apache.tomcat.net.openssl packages
are derivative work originating from the Netty project and the finagle-native
project developed at Twitter
* Copyright 2014 The Netty Project
* Copyright 2014 Twitter

==LICENSE FILE

                                 Apache License
                           Version 2.0, January 2004
                        http://www.apache.org/licenses/

   TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

   1. Definitions.

Appendix E

E-103



      "License" shall mean the terms and conditions for use, reproduction,
      and distribution as defined by Sections 1 through 9 of this document.

      "Licensor" shall mean the copyright owner or entity authorized by
      the copyright owner that is granting the License.

      "Legal Entity" shall mean the union of the acting entity and all
      other entities that control, are controlled by, or are under common
      control with that entity. For the purposes of this definition,
      "control" means (i) the power, direct or indirect, to cause the
      direction or management of such entity, whether by contract or
      otherwise, or (ii) ownership of fifty percent (50%) or more of the
      outstanding shares, or (iii) beneficial ownership of such entity.

      "You" (or "Your") shall mean an individual or Legal Entity
      exercising permissions granted by this License.

      "Source" form shall mean the preferred form for making modifications,
      including but not limited to software source code, documentation
      source, and configuration files.

      "Object" form shall mean any form resulting from mechanical
      transformation or translation of a Source form, including but
      not limited to compiled object code, generated documentation,
      and conversions to other media types.

      "Work" shall mean the work of authorship, whether in Source or
      Object form, made available under the License, as indicated by a
      copyright notice that is included in or attached to the work
      (an example is provided in the Appendix below).

      "Derivative Works" shall mean any work, whether in Source or Object
      form, that is based on (or derived from) the Work and for which the
      editorial revisions, annotations, elaborations, or other modifications
      represent, as a whole, an original work of authorship. For the purposes
      of this License, Derivative Works shall not include works that remain
      separable from, or merely link (or bind by name) to the interfaces of,
      the Work and Derivative Works thereof.

      "Contribution" shall mean any work of authorship, including
      the original version of the Work and any modifications or additions
      to that Work or Derivative Works thereof, that is intentionally
      submitted to Licensor for inclusion in the Work by the copyright owner
      or by an individual or Legal Entity authorized to submit on behalf of
      the copyright owner. For the purposes of this definition, "submitted"
      means any form of electronic, verbal, or written communication sent
      to the Licensor or its representatives, including but not limited to
      communication on electronic mailing lists, source code control systems,
      and issue tracking systems that are managed by, or on behalf of, the
      Licensor for the purpose of discussing and improving the Work, but
      excluding communication that is conspicuously marked or otherwise
      designated in writing by the copyright owner as "Not a Contribution."

      "Contributor" shall mean Licensor and any individual or Legal Entity
      on behalf of whom a Contribution has been received by Licensor and
      subsequently incorporated within the Work.

   2. Grant of Copyright License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      copyright license to reproduce, prepare Derivative Works of,
      publicly display, publicly perform, sublicense, and distribute the

Appendix E

E-104



      Work and such Derivative Works in Source or Object form.

   3. Grant of Patent License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      (except as stated in this section) patent license to make, have made,
      use, offer to sell, sell, import, and otherwise transfer the Work,
      where such license applies only to those patent claims licensable
      by such Contributor that are necessarily infringed by their
      Contribution(s) alone or by combination of their Contribution(s)
      with the Work to which such Contribution(s) was submitted. If You
      institute patent litigation against any entity (including a
      cross-claim or counterclaim in a lawsuit) alleging that the Work
      or a Contribution incorporated within the Work constitutes direct
      or contributory patent infringement, then any patent licenses
      granted to You under this License for that Work shall terminate
      as of the date such litigation is filed.

   4. Redistribution. You may reproduce and distribute copies of the
      Work or Derivative Works thereof in any medium, with or without
      modifications, and in Source or Object form, provided that You
      meet the following conditions:

      (a) You must give any other recipients of the Work or
          Derivative Works a copy of this License; and

      (b) You must cause any modified files to carry prominent notices
          stating that You changed the files; and

      (c) You must retain, in the Source form of any Derivative Works
          that You distribute, all copyright, patent, trademark, and
          attribution notices from the Source form of the Work,
          excluding those notices that do not pertain to any part of
          the Derivative Works; and

      (d) If the Work includes a "NOTICE" text file as part of its
          distribution, then any Derivative Works that You distribute must
          include a readable copy of the attribution notices contained
          within such NOTICE file, excluding those notices that do not
          pertain to any part of the Derivative Works, in at least one
          of the following places: within a NOTICE text file distributed
          as part of the Derivative Works; within the Source form or
          documentation, if provided along with the Derivative Works; or,
          within a display generated by the Derivative Works, if and
          wherever such third-party notices normally appear. The contents
          of the NOTICE file are for informational purposes only and
          do not modify the License. You may add Your own attribution
          notices within Derivative Works that You distribute, alongside
          or as an addendum to the NOTICE text from the Work, provided
          that such additional attribution notices cannot be construed
          as modifying the License.

      You may add Your own copyright statement to Your modifications and
      may provide additional or different license terms and conditions
      for use, reproduction, or distribution of Your modifications, or
      for any such Derivative Works as a whole, provided Your use,
      reproduction, and distribution of the Work otherwise complies with
      the conditions stated in this License.

   5. Submission of Contributions. Unless You explicitly state otherwise,
      any Contribution intentionally submitted for inclusion in the Work
      by You to the Licensor shall be under the terms and conditions of

Appendix E

E-105



      this License, without any additional terms or conditions.
      Notwithstanding the above, nothing herein shall supersede or modify
      the terms of any separate license agreement you may have executed
      with Licensor regarding such Contributions.

   6. Trademarks. This License does not grant permission to use the trade
      names, trademarks, service marks, or product names of the Licensor,
      except as required for reasonable and customary use in describing the
      origin of the Work and reproducing the content of the NOTICE file.

   7. Disclaimer of Warranty. Unless required by applicable law or
      agreed to in writing, Licensor provides the Work (and each
      Contributor provides its Contributions) on an "AS IS" BASIS,
      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
      implied, including, without limitation, any warranties or conditions
      of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
      PARTICULAR PURPOSE. You are solely responsible for determining the
      appropriateness of using or redistributing the Work and assume any
      risks associated with Your exercise of permissions under this License.

   8. Limitation of Liability. In no event and under no legal theory,
      whether in tort (including negligence), contract, or otherwise,
      unless required by applicable law (such as deliberate and grossly
      negligent acts) or agreed to in writing, shall any Contributor be
      liable to You for damages, including any direct, indirect, special,
      incidental, or consequential damages of any character arising as a
      result of this License or out of the use or inability to use the
      Work (including but not limited to damages for loss of goodwill,
      work stoppage, computer failure or malfunction, or any and all
      other commercial damages or losses), even if such Contributor
      has been advised of the possibility of such damages.

   9. Accepting Warranty or Additional Liability. While redistributing
      the Work or Derivative Works thereof, You may choose to offer,
      and charge a fee for, acceptance of support, warranty, indemnity,
      or other liability obligations and/or rights consistent with this
      License. However, in accepting such obligations, You may act only
      on Your own behalf and on Your sole responsibility, not on behalf
      of any other Contributor, and only if You agree to indemnify,
      defend, and hold each Contributor harmless for any liability
      incurred by, or claims asserted against, such Contributor by reason
      of your accepting any such warranty or additional liability.

   END OF TERMS AND CONDITIONS

   APPENDIX: How to apply the Apache License to your work.

      To apply the Apache License to your work, attach the following
      boilerplate notice, with the fields enclosed by brackets "[]"
      replaced with your own identifying information. (Don't include
      the brackets!)  The text should be enclosed in the appropriate
      comment syntax for the file format. We also recommend that a
      file or class name and description of purpose be included on the
      same "printed page" as the copyright notice for easier
      identification within third-party archives.

   Copyright [yyyy] [name of copyright owner]

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

Appendix E

E-106



       http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.

APACHE TOMCAT SUBCOMPONENTS:

Apache Tomcat includes a number of subcomponents with separate copyright notices
and license terms. Your use of these subcomponents is subject to the terms and
conditions of the following licenses.

For the Eclipse JDT Core Batch Compiler (ecj-x.x.x.jar) component:

Eclipse Public License - v 1.0

THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS ECLIPSE PUBLIC
LICENSE ("AGREEMENT"). ANY USE, REPRODUCTION OR DISTRIBUTION OF THE PROGRAM
CONSTITUTES RECIPIENT'S ACCEPTANCE OF THIS AGREEMENT.

1. DEFINITIONS

"Contribution" means:

a) in the case of the initial Contributor, the initial code and documentation
distributed under this Agreement, and

b) in the case of each subsequent Contributor:

i) changes to the Program, and

ii) additions to the Program;

where such changes and/or additions to the Program originate from and are
distributed by that particular Contributor. A Contribution 'originates' from a
Contributor if it was added to the Program by such Contributor itself or anyone
acting on such Contributor's behalf. Contributions do not include additions to
the Program which: (i) are separate modules of software distributed in
conjunction with the Program under their own license agreement, and (ii) are not
derivative works of the Program.

"Contributor" means any person or entity that distributes the Program.

"Licensed Patents" mean patent claims licensable by a Contributor which are
necessarily infringed by the use or sale of its Contribution alone or when
combined with the Program.

"Program" means the Contributions distributed in accordance with this Agreement.

"Recipient" means anyone who receives the Program under this Agreement,
including all Contributors.

2. GRANT OF RIGHTS

a) Subject to the terms of this Agreement, each Contributor hereby grants
Recipient a non-exclusive, worldwide, royalty-free copyright license to
reproduce, prepare derivative works of, publicly display, publicly perform,

Appendix E

E-107



distribute and sublicense the Contribution of such Contributor, if any, and such
derivative works, in source code and object code form.

b) Subject to the terms of this Agreement, each Contributor hereby grants
Recipient a non-exclusive, worldwide, royalty-free patent license under Licensed
Patents to make, use, sell, offer to sell, import and otherwise transfer the
Contribution of such Contributor, if any, in source code and object code form.
This patent license shall apply to the combination of the Contribution and the
Program if, at the time the Contribution is added by the Contributor, such
addition of the Contribution causes such combination to be covered by the
Licensed Patents. The patent license shall not apply to any other combinations
which include the Contribution. No hardware per se is licensed hereunder.

c) Recipient understands that although each Contributor grants the licenses to
its Contributions set forth herein, no assurances are provided by any
Contributor that the Program does not infringe the patent or other intellectual
property rights of any other entity. Each Contributor disclaims any liability to
Recipient for claims brought by any other entity based on infringement of
intellectual property rights or otherwise. As a condition to exercising the
rights and licenses granted hereunder, each Recipient hereby assumes sole
responsibility to secure any other intellectual property rights needed, if any.
For example, if a third party patent license is required to allow Recipient to
distribute the Program, it is Recipient's responsibility to acquire that license
before distributing the Program.

d) Each Contributor represents that to its knowledge it has sufficient copyright
rights in its Contribution, if any, to grant the copyright license set forth in
this Agreement.

3. REQUIREMENTS

A Contributor may choose to distribute the Program in object code form under its
own license agreement, provided that:

a) it complies with the terms and conditions of this Agreement; and

b) its license agreement:

i) effectively disclaims on behalf of all Contributors all warranties and
conditions, express and implied, including warranties or conditions of title and
non-infringement, and implied warranties or conditions of merchantability and
fitness for a particular purpose;

ii) effectively excludes on behalf of all Contributors all liability for
damages, including direct, indirect, special, incidental and consequential
damages, such as lost profits;

iii) states that any provisions which differ from this Agreement are offered by
that Contributor alone and not by any other party; and

iv) states that source code for the Program is available from such Contributor,
and informs licensees how to obtain it in a reasonable manner on or through a
medium customarily used for software exchange.

When the Program is made available in source code form:

a) it must be made available under this Agreement; and

b) a copy of this Agreement must be included with each copy of the Program.

Contributors may not remove or alter any copyright notices contained within the
Program.

Appendix E

E-108



Each Contributor must identify itself as the originator of its Contribution, if
any, in a manner that reasonably allows subsequent Recipients to identify the
originator of the Contribution.

4. COMMERCIAL DISTRIBUTION

Commercial distributors of software may accept certain responsibilities with
respect to end users, business partners and the like. While this license is
intended to facilitate the commercial use of the Program, the Contributor who
includes the Program in a commercial product offering should do so in a manner
which does not create potential liability for other Contributors. Therefore, if
a Contributor includes the Program in a commercial product offering, such
Contributor ("Commercial Contributor") hereby agrees to defend and indemnify
every other Contributor ("Indemnified Contributor") against any losses, damages
and costs (collectively "Losses") arising from claims, lawsuits and other legal
actions brought by a third party against the Indemnified Contributor to the
extent caused by the acts or omissions of such Commercial Contributor in
connection with its distribution of the Program in a commercial product
offering. The obligations in this section do not apply to any claims or Losses
relating to any actual or alleged intellectual property infringement. In order
to qualify, an Indemnified Contributor must: a) promptly notify the Commercial
Contributor in writing of such claim, and b) allow the Commercial Contributor
to control, and cooperate with the Commercial Contributor in, the defense and
any related settlement negotiations. The Indemnified Contributor may
participate in any such claim at its own expense.

For example, a Contributor might include the Program in a commercial product
offering, Product X. That Contributor is then a Commercial Contributor. If that
Commercial Contributor then makes performance claims, or offers warranties
related to Product X, those performance claims and warranties are such
Commercial Contributor's responsibility alone. Under this section, the
Commercial Contributor would have to defend claims against the other
Contributors related to those performance claims and warranties, and if a court
requires any other Contributor to pay any damages as a result, the Commercial
Contributor must pay those damages.

5. NO WARRANTY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS PROVIDED ON AN
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS OR
IMPLIED INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE,
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each
Recipient is solely responsible for determining the appropriateness of using and
distributing the Program and assumes all risks associated with its exercise of
rights under this Agreement , including but not limited to the risks and costs
of program errors, compliance with applicable laws, damage to or loss of data,
programs or equipment, and unavailability or interruption of operations.

6. DISCLAIMER OF LIABILITY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT NOR ANY
CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION LOST
PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS
GRANTED HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. GENERAL

If any provision of this Agreement is invalid or unenforceable under applicable

Appendix E

E-109



law, it shall not affect the validity or enforceability of the remainder of the
terms of this Agreement, and without further action by the parties hereto, such
provision shall be reformed to the minimum extent necessary to make such
provision valid and enforceable.

If Recipient institutes patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Program itself
(excluding combinations of the Program with other software or hardware)
infringes such Recipient's patent(s), then such Recipient's rights granted under
Section 2(b) shall terminate as of the date such litigation is filed.

All Recipient's rights under this Agreement shall terminate if it fails to
comply with any of the material terms or conditions of this Agreement and does
not cure such failure in a reasonable period of time after becoming aware of
such noncompliance. If all Recipient's rights under this Agreement terminate,
Recipient agrees to cease use and distribution of the Program as soon as
reasonably practicable. However, Recipient's obligations under this Agreement
and any licenses granted by Recipient relating to the Program shall continue and
survive.

Everyone is permitted to copy and distribute copies of this Agreement, but in
order to avoid inconsistency the Agreement is copyrighted and may only be
modified in the following manner. The Agreement Steward reserves the right to
publish new versions (including revisions) of this Agreement from time to time.
No one other than the Agreement Steward has the right to modify this Agreement.
The Eclipse Foundation is the initial Agreement Steward. The Eclipse Foundation
may assign the responsibility to serve as the Agreement Steward to a suitable
separate entity. Each new version of the Agreement will be given a
distinguishing version number. The Program (including Contributions) may always
be distributed subject to the version of the Agreement under which it was
received. In addition, after a new version of the Agreement is published,
Contributor may elect to distribute the Program (including its Contributions)
under the new version. Except as expressly stated in Sections 2(a) and 2(b)
above, Recipient receives no rights or licenses to the intellectual property of
any Contributor under this Agreement, whether expressly, by implication,
estoppel or otherwise. All rights in the Program not expressly granted under
this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and the
intellectual property laws of the United States of America. No party to this
Agreement will bring a legal action under this Agreement more than one year
after the cause of action arose. Each party waives its rights to a jury trial in
any resulting litigation.

JavaScript Extension Toolkit (JET)

Vendor: Oracle

Version: 14.1.14

# Oracle JET 14.1.14

You may not use the identified files except in compliance with the Universal Permissive 
License (UPL), Version 1.0 (the "License.")

You may obtain a copy of the License at https://opensource.org/licenses/UPL. A copy of 
the license is also reproduced below.

Unless required by applicable law or agreed to in writing, software distributed under 
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY 
KIND, either express or implied.

See the License for the specific language governing permissions and limitations under 

Appendix E

E-110



the License.

Copyright (c) 2014, 2023 Oracle and/or its affiliates
The Universal Permissive License (UPL), Version 1.0

Subject to the condition set forth below, permission is hereby granted to any person 
obtaining
a copy of this software, associated documentation and/or data (collectively the 
"Software"), 
free of charge and under any and all copyright rights in the Software, and any and all 
patent 
rights owned or freely licensable by each licensor hereunder covering either (i) the 
unmodified 
Software as contributed to or provided by such licensor, or (ii) the Larger Works (as 
defined below), 
to deal in both

(a) the Software, and (b) any piece of software and/or hardware listed in the 
lrgrwrks.txt file if 
one is included with the Software (each a Larger Work to which the Software is 
contributed by such licensors),
without restriction, including without limitation the rights to copy, create derivative 
works of, 
display, perform, and distribute the Software and make, use, sell, offer for sale, 
import, export, 
have made, and have sold the Software and the Larger Work(s), and to sublicense the 
foregoing rights 
on either these or other terms.

This license is subject to the following condition:

The above copyright notice and either this complete permission notice or at a minimum a 
reference 
to the UPL must be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 
INCLUDING BUT NOT 
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
NONINFRINGEMENT. 
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 
OTHER LIABILITY, 
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 
CONNECTION WITH 
THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

-----------------------------------------------------------------------------------------
-------------------------------

DO NOT TRANSLATE OR LOCALIZE.

********************************************************************************
Oracle elects to use only the GNU Lesser General Public License version 2.1
(LGPL) for any software where a choice of LGPL/GPL license versions are made
available with the language indicating that LGPLv2.1/GPLv2 or any later version
may be used, or where a choice of which version of the LGPL/GPL is applied is
unspecified.
********************************************************************************

THIRD-PARTY COMPONENT FILE                                               LICENSE
(path in the installation)                   (see license text reproduced below)
--------------------------------------------------------------------------------
js/libs/chai/chai                                                              MIT

Appendix E

E-111



js/libs/hammer/hammer                                                 MIT
js/libs/js-signals/signals.                                                MIT
js/libs/jquery/jquery                                                        MIT
js/libs/jquery/jquery-ui.custom.                                      MIT
js/libs/jquery/jqueryui-amd/core                                     MIT
js/libs/jquery/jqueryui-amd/draggable                            MIT
js/libs/jquery/jqueryui-amd/mouse                            MIT
js/libs/jquery/jqueryui-amdposition                          MIT
js/libs/jquery/jqueryui-amd/sortable                           MIT
js/libs/jquery/jqueryui-amd/widget                             MIT
js/libs/knockout/knockout                                           MIT
js/libs/knockout/knockout-mapping-latest.js                                   MIT
js/libs/oj/v14.1.14/min/ojcspexpressionevaluator (cspexpressionevaluator.js)   MIT
js/libs/oj/v14.1.14/min/ojexpparser                    MIT
js/libs/oj/v14.1.14/min/ojknockout         MIT
js/libs/oj/v14.1.14/min/ojselectcombobox.                Apache 2.0
js/libs/oj/v14.1.14/ojtree                         MIT
js/libs/oj/v14.1.14/ojL10n                          MIT
js/libs/proj4js/dist/proj4                                               Proj4js
js/libs/require/require                                                   MIT
js/libs/require/text                                                     MIT
js/libs/require-css/css.min                               MIT
scss/oj/v14.1.14/3rdparty/normalize/normalize.scss                       MIT
js/libs/touchr/touchr.js                                                      MIT
js/libs/preact/dist/preact.umd.js                                             MIT

Chai
https://github.com/chaijs/chai
Copyright (c) 2017 Chai.js Assertion Library

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

expression-eval 
https://github.com/donmccurdy/expression-eval
Copyright (c) 2017 Don McCurdy

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

Appendix E

E-112



copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
 

jsep - 
https://github.com/soney/jsep
Copyright (c) 2013 Stephen Oney, https://ericsmekens.github.io/jsep/

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Knockout Fast Foreach 
By: Brian M Hunt (C) 2015 | License: MIT
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

proj4js

Appendix E

E-113



http://proj4js.org/
Copyright (C) 2014 Mike Adair, Richard Greenwood, Didier Richard, Stephen Irons, Olivier 
Terral and Calvin Metcalf;
Licensed under the Proj4js license

require-css
https://github.com/guybedford/require-css
Copyright (C) 2013 Guy Bedford

Permission is hereby granted, free of charge, to any person obtaining a copy of this 
software and associated documentation files (the "Software"), to deal in the Software 
without restriction, including without limitation the rights to use, copy, modify, 
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to 
permit persons to whom the Software is furnished to do so, subject to the following 
conditions:

The above copyright notice and this permission notice shall be included in all copies or 
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT 
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 
OTHER DEALINGS IN THE SOFTWARE.

Hammer.JS 
http://hammerjs.github.io/
Copyright (C) 2011-2017 by Jorik Tangelder (Eight Media)

Permission is hereby granted, free of charge, to any person obtaining a copy of this 
software and associated documentation files (the "Software"), to deal in the Software 
without restriction, including without limitation the rights to use, copy, modify, 
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to 
permit persons to whom the Software is furnished to do so, subject to the following 
conditions:

The above copyright notice and this permission notice shall be included in all copies or 
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT 
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 
OTHER DEALINGS IN THE SOFTWARE.

Foundation Responsive Library
http://foundation.zurb.com
Copyright 2014, ZURB
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

Appendix E

E-114



all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Normalize.scss
Copyright Â© Nicolas Gallagher and Jonathan Neal

Permission is hereby granted, free of charge, to any person obtaining a copy of this 
software and associated documentation files (the "Software"), to deal in the Software 
without restriction, including without limitation the rights to use, copy, modify, 
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to 
permit persons to whom the Software is furnished to do so, subject to the following 
conditions:

The above copyright notice and this permission notice shall be included in all copies or 
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT 
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 
OTHER DEALINGS IN THE SOFTWARE.

RequireJS i18n 
http://github.com/requirejs/i18n for details
Copyright (c) 2010-2011, The Dojo Foundation

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE. 

jsTree    http://jstree.com/
Copyright (c) 2012 Ivan Bozhanov (http://vakata.com)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is

Appendix E

E-115



furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE. 

select2.js
https://github.com/select2/select2
Copyright 2012 Igor Vaynberg
This software is licensed under the Apache License, Version 2.0 (the "Apache License") 
or the GNU
General Public License version 2 (the "GPL License"). You may choose either license to 
govern your use of this software only upon the condition that you accept all of the 
terms of either the Apache License or the GPL License.

You may obtain a copy of the Apache License and the GPL License at:

http://www.apache.org/licenses/LICENSE-2.0
http://www.gnu.org/licenses/gpl-2.0.html

Unless required by applicable law or agreed to in writing, software distributed under the
Apache License or the GPL Licesnse is distributed on an "AS IS" BASIS, WITHOUT 
WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the Apache License and the GPL 
License for
the specific language governing permissions and limitations under the Apache License and 
the GPL License.

jQuery UI -
http://jqueryui.com
Includes: core.js, widget.js, mouse.js, position.js, draggable.js, sortable.js

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Appendix E

E-116



jQuery JavaScript Library
http://jquery.com/
Copyright OpenJS Foundation and other contributors, https://openjsf.org/

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

JS Signals <http://millermedeiros.github.com/js-signals/>
Author: Miller Medeiros

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

RequireJS text  
http://github.com/requirejs/text
Copyright jQuery Foundation and other contributors, https://jquery.org/

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

Appendix E

E-117



THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

RequireJS 
http://github.com/jrburke/requirejs
Copyright jQuery Foundation and other contributors, https://jquery.org/

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Knockout JavaScript library 
Copyright (c) 2010 Steven Sanderson, the Knockout.js team, and other contributors
http://knockoutjs.com/

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Preact 

The MIT License (MIT)
Copyright (c) 2015-present Jason Miller

Permission is hereby granted, free of charge, to any person obtaining a copy

Appendix E

E-118



of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

========================= Apache-2.0 =========================

The following applies to all products licensed under the Apache 2.0 License:

You may not use the identified files except in compliance with the Apache
License, Version 2.0 (the "License.")

You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0.
A copy of the license is also reproduced below.

Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and limitations
under the License.

                                 Apache License
                           Version 2.0, January 2004
                        http://www.apache.org/licenses/

   TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

   1. Definitions.

      "License" shall mean the terms and conditions for use, reproduction,
      and distribution as defined by Sections 1 through 9 of this document.

      "Licensor" shall mean the copyright owner or entity authorized by
      the copyright owner that is granting the License.

      "Legal Entity" shall mean the union of the acting entity and all
      other entities that control, are controlled by, or are under common
      control with that entity. For the purposes of this definition,
      "control" means (i) the power, direct or indirect, to cause the
      direction or management of such entity, whether by contract or
      otherwise, or (ii) ownership of fifty percent (50%) or more of the
      outstanding shares, or (iii) beneficial ownership of such entity.

      "You" (or "Your") shall mean an individual or Legal Entity
      exercising permissions granted by this License.

Appendix E

E-119



      "Source" form shall mean the preferred form for making modifications,
      including but not limited to software source code, documentation
      source, and configuration files.

      "Object" form shall mean any form resulting from mechanical
      transformation or translation of a Source form, including but
      not limited to compiled object code, generated documentation,
      and conversions to other media types.

      "Work" shall mean the work of authorship, whether in Source or
      Object form, made available under the License, as indicated by a
      copyright notice that is included in or attached to the work
      (an example is provided in the Appendix below).

      "Derivative Works" shall mean any work, whether in Source or Object
      form, that is based on (or derived from) the Work and for which the
      editorial revisions, annotations, elaborations, or other modifications
      represent, as a whole, an original work of authorship. For the purposes
      of this License, Derivative Works shall not include works that remain
      separable from, or merely link (or bind by name) to the interfaces of,
      the Work and Derivative Works thereof.

      "Contribution" shall mean any work of authorship, including
      the original version of the Work and any modifications or additions
      to that Work or Derivative Works thereof, that is intentionally
      submitted to Licensor for inclusion in the Work by the copyright owner
      or by an individual or Legal Entity authorized to submit on behalf of
      the copyright owner. For the purposes of this definition, "submitted"
      means any form of electronic, verbal, or written communication sent
      to the Licensor or its representatives, including but not limited to
      communication on electronic mailing lists, source code control systems,
      and issue tracking systems that are managed by, or on behalf of, the
      Licensor for the purpose of discussing and improving the Work, but
      excluding communication that is conspicuously marked or otherwise
      designated in writing by the copyright owner as "Not a Contribution."

      "Contributor" shall mean Licensor and any individual or Legal Entity
      on behalf of whom a Contribution has been received by Licensor and
      subsequently incorporated within the Work.

   2. Grant of Copyright License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      copyright license to reproduce, prepare Derivative Works of,
      publicly display, publicly perform, sublicense, and distribute the
      Work and such Derivative Works in Source or Object form.

   3. Grant of Patent License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      (except as stated in this section) patent license to make, have made,
      use, offer to sell, sell, import, and otherwise transfer the Work,
      where such license applies only to those patent claims licensable
      by such Contributor that are necessarily infringed by their
      Contribution(s) alone or by combination of their Contribution(s)
      with the Work to which such Contribution(s) was submitted. If You
      institute patent litigation against any entity (including a
      cross-claim or counterclaim in a lawsuit) alleging that the Work
      or a Contribution incorporated within the Work constitutes direct
      or contributory patent infringement, then any patent licenses
      granted to You under this License for that Work shall terminate
      as of the date such litigation is filed.

Appendix E

E-120



   4. Redistribution. You may reproduce and distribute copies of the
      Work or Derivative Works thereof in any medium, with or without
      modifications, and in Source or Object form, provided that You
      meet the following conditions:

      (a) You must give any other recipients of the Work or
          Derivative Works a copy of this License; and

      (b) You must cause any modified files to carry prominent notices
          stating that You changed the files; and

      (c) You must retain, in the Source form of any Derivative Works
          that You distribute, all copyright, patent, trademark, and
          attribution notices from the Source form of the Work,
          excluding those notices that do not pertain to any part of
          the Derivative Works; and

      (d) If the Work includes a "NOTICE" text file as part of its
          distribution, then any Derivative Works that You distribute must
          include a readable copy of the attribution notices contained
          within such NOTICE file, excluding those notices that do not
          pertain to any part of the Derivative Works, in at least one
          of the following places: within a NOTICE text file distributed
          as part of the Derivative Works; within the Source form or
          documentation, if provided along with the Derivative Works; or,
          within a display generated by the Derivative Works, if and
          wherever such third-party notices normally appear. The contents
          of the NOTICE file are for informational purposes only and
          do not modify the License. You may add Your own attribution
          notices within Derivative Works that You distribute, alongside
          or as an addendum to the NOTICE text from the Work, provided
          that such additional attribution notices cannot be construed
          as modifying the License.

      You may add Your own copyright statement to Your modifications and
      may provide additional or different license terms and conditions
      for use, reproduction, or distribution of Your modifications, or
      for any such Derivative Works as a whole, provided Your use,
      reproduction, and distribution of the Work otherwise complies with
      the conditions stated in this License.

   5. Submission of Contributions. Unless You explicitly state otherwise,
      any Contribution intentionally submitted for inclusion in the Work
      by You to the Licensor shall be under the terms and conditions of
      this License, without any additional terms or conditions.
      Notwithstanding the above, nothing herein shall supersede or modify
      the terms of any separate license agreement you may have executed
      with Licensor regarding such Contributions.

   6. Trademarks. This License does not grant permission to use the trade
      names, trademarks, service marks, or product names of the Licensor,
      except as required for reasonable and customary use in describing the
      origin of the Work and reproducing the content of the NOTICE file.

   7. Disclaimer of Warranty. Unless required by applicable law or
      agreed to in writing, Licensor provides the Work (and each
      Contributor provides its Contributions) on an "AS IS" BASIS,
      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
      implied, including, without limitation, any warranties or conditions
      of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
      PARTICULAR PURPOSE. You are solely responsible for determining the

Appendix E

E-121



      appropriateness of using or redistributing the Work and assume any
      risks associated with Your exercise of permissions under this License.

   8. Limitation of Liability. In no event and under no legal theory,
      whether in tort (including negligence), contract, or otherwise,
      unless required by applicable law (such as deliberate and grossly
      negligent acts) or agreed to in writing, shall any Contributor be
      liable to You for damages, including any direct, indirect, special,
      incidental, or consequential damages of any character arising as a
      result of this License or out of the use or inability to use the
      Work (including but not limited to damages for loss of goodwill,
      work stoppage, computer failure or malfunction, or any and all
      other commercial damages or losses), even if such Contributor
      has been advised of the possibility of such damages.

   9. Accepting Warranty or Additional Liability. While redistributing
      the Work or Derivative Works thereof, You may choose to offer,
      and charge a fee for, acceptance of support, warranty, indemnity,
      or other liability obligations and/or rights consistent with this
      License. However, in accepting such obligations, You may act only
      on Your own behalf and on Your sole responsibility, not on behalf
      of any other Contributor, and only if You agree to indemnify,
      defend, and hold each Contributor harmless for any liability
      incurred by, or claims asserted against, such Contributor by reason
      of your accepting any such warranty or additional liability.

   END OF TERMS AND CONDITIONS

   APPENDIX: How to apply the Apache License to your work.

      To apply the Apache License to your work, attach the following
      boilerplate notice, with the fields enclosed by brackets "[]"
      replaced with your own identifying information. (Don't include
      the brackets!)  The text should be enclosed in the appropriate
      comment syntax for the file format. We also recommend that a
      file or class name and description of purpose be included on the
      same "printed page" as the copyright notice for easier
      identification within third-party archives.

   Copyright [yyyy] [name of copyright owner]

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.

========================= MIT =========================

The MIT License

Copyright (c) __YEARS__, __NAMES__

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

Appendix E

E-122



in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

========================= Proj4js =========================
Mike Adair madairATdmsolutions.ca
Richard Greenwood richATgreenwoodmap.com
Didier Richard didier.richardATign.fr
Stephen Irons stephen.ironsATclear.net.nz
Olivier Terral oterralATgmail.com
Calvin Metcalf cmetcalfATappgeo.com

Copyright (c) 2014, Mike Adair, Richard Greenwood, Didier Richard, Stephen Irons, 
Olivier Terral and Calvin Metcalf

Permission is hereby granted, free of charge, to any person obtaining a copy of this 
software and associated documentation files (the "Software"), to deal in the Software 
without restriction, including without limitation the rights to use, copy, modify, 
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to 
permit persons to whom the Software is furnished to do so, subject to the following 
conditions:

The above copyright notice and this permission notice shall be included in all copies or 
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT 
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 
OTHER DEALINGS IN THE SOFTWARE.

NT Technology: HERE Data

Vendor: Navigation Technologies

Version: All

ORACLE MAPS end users terms (https://maps.oracle.com/elocation/terms.html) AND NOTICES 
(http://maps.oracle.com/elocation/supplierterms.html) must
be used and provided to end users.  This can be fulfilled by linking the terms to the 
map in your application or by adding the links to the terms
and condition to the product user guides.  IN ADDITION, THE ORACLE MAPS CLOUD SERVICE 
ENTERPRISE HOSTING AND DELIVERY POLICIES
(https://www.oracle.com/assets/maps-cloud-hd-policies-2767907.pdf) must be referenced by 
all applications using the service.
This can be fulfilled by linking TO THE DOCUMENT OR PROVIDING A COPY OF THEM TO USERS 
WITH OTHER LICENSING MATERIALS.
Please contact Legal and/or the Spatial LOB with any questions.  Please verify the links 
before inclusion.

Appendix E

E-123



• Third-Party License Information for Graph Visualization Toolkit

E.1 Third-Party License Information for Graph Visualization
Toolkit

MapLibre GL

Vendor: MapLibre Contributors

Version: 2.4.0

Copyright (c) 2020, MapLibre contributors

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

    * Redistributions of source code must retain the above copyright notice,
      this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright notice,
      this list of conditions and the following disclaimer in the documentation
      and/or other materials provided with the distribution.
    * Neither the name of MapLibre GL JS nor the names of its contributors
      may be used to endorse or promote products derived from this software
      without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

-------------------------------------------------------------------------------

Contains code from mapbox-gl-js v1.13 and earlier

Version v1.13 of mapbox-gl-js and earlier are licensed under a BSD-3-Clause license

Copyright (c) 2020, Mapbox
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,
  this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
  this list of conditions and the following disclaimer in the documentation
  and/or other materials provided with the distribution.
* Neither the name of Mapbox GL JS nor the names of its contributors
  may be used to endorse or promote products derived from this software
  without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-124



"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

-------------------------------------------------------------------------------

Contains code from glfx.js

Copyright (C) 2011 by Evan Wallace

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

--------------------------------------------------------------------------------

Contains a portion of d3-color https://github.com/d3/d3-color

Copyright 2010-2016 Mike Bostock
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
  list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
  this list of conditions and the following disclaimer in the documentation
  and/or other materials provided with the distribution.

* Neither the name of the author nor the names of contributors may be used to
  endorse or promote products derived from this software without specific prior
  written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-125



(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

---------------------------- Fourth-party information ----------------------

== NAME OF DEPENDENCY 1
.@mapbox/geojson-rewind
== License
Copyright (c) 2020, Mapbox

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

== DEPENDENCY 1 DEPENPENCIES
.get-stream
== License
MIT License

Copyright (c) Sindre Sorhus <sindresorhus@gmail.com> (https://sindresorhus.com)

Permission is hereby granted, free of charge, to any person obtaining a copy of this 
software and associated documentation files (the "Software"), to deal in the Software 
without restriction, including without limitation the rights to use, copy, modify, 
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to 
permit persons to whom the Software is furnished to do so, subject to the following 
conditions:

The above copyright notice and this permission notice shall be included in all copies or 
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT 
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 
OTHER DEALINGS IN THE SOFTWARE.

.minimist
== License
This software is released under the MIT license:

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-126



THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 2
.@mapbox/jsonlint-lines-primitives
== License
MIT License
Copyright (C) 2012 Zachary Carter

Permission is hereby granted, free of charge, to any person obtaining a copy of this 
software and associated documentation files (the "Software"), to deal in the Software 
without restriction, including without limitation the rights to use, copy, modify, 
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to 
permit persons to whom the Software is furnished to do so, subject to the following 
conditions:

The above copyright notice and this permission notice shall be included in all copies or 
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT 
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 
OTHER DEALINGS IN THE SOFTWARE.

--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 3
.@mapbox/mapbox-gl-supported
== License
BSD 3-Clause License

Copyright (c) 2017, Mapbox
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
  list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
  this list of conditions and the following disclaimer in the documentation
  and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of its
  contributors may be used to endorse or promote products derived from
  this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-127



OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 4
.@mapbox/point-geometry
== License
Copyright (c) 2015, Mapbox <>

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 5
.@mapbox/tiny-sdf
BSD-2-Clause
Copyright (c) 2016-2022 Mapbox, Inc.

Redistribution and use in source and binary forms, with or without modification, are 
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of 
conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list 
of conditions and the following disclaimer in the documentation and/or other materials 
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY 
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 
THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 6
.@mapbox/unitbezier
BSD-2-Clause

Copyright (C) 2008 Apple Inc. All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
   notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
   notice, this list of conditions and the following disclaimer in the
   documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-128



EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Ported from Webkit
http://svn.webkit.org/repository/webkit/trunk/Source/WebCore/platform/graphics/
UnitBezier.h
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 7
.@mapbox/vector-tile
== License
Copyright (c) 2014, Mapbox

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

    * Redistributions of source code must retain the above copyright notice,
      this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright notice,
      this list of conditions and the following disclaimer in the documentation
      and/or other materials provided with the distribution.
    * Neither the name of Mapbox nor the names of its contributors
      may be used to endorse or promote products derived from this software
      without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
== DEPENDENCY 7 DEPENPENCIES
.@mapbox/point-geometry
== License
Copyright (c) 2015, Mapbox <>
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 8
.@mapbox/whoots-js
== License
ISC License

Copyright (c) 2017, Mapbox

Permission to use, copy, modify, and/or distribute this software for any purpose with or 
without fee is hereby granted, provided that the above copyright notice and this 
permission notice appear in all copies.

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-129



THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO 
THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO 
EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL 
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER 
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN 
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 9
.@types/geojson
== License
This project is licensed under the MIT license.
Copyrights are respective of each contributor listed at the beginning of each definition 
file.

Permission is hereby granted, free of charge, to any person obtaining a copy of this 
software and associated documentation files (the "Software"), to deal in the Software 
without restriction, including without limitation the rights to use, copy, modify, 
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to 
permit persons to whom the Software is furnished to do so, subject to the following 
conditions:

The above copyright notice and this permission notice shall be included in all copies or 
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT 
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 
OTHER DEALINGS IN THE SOFTWARE.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 10
.@types/mapbox__point-geometry
This project is licensed under the MIT license.
Copyrights are respective of each contributor listed at the beginning of each definition 
file.

Permission is hereby granted, free of charge, to any person obtaining a copy of this 
software and associated documentation files (the "Software"), to deal in the Software 
without restriction, including without limitation the rights to use, copy, modify, 
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to 
permit persons to whom the Software is furnished to do so, subject to the following 
conditions:

The above copyright notice and this permission notice shall be included in all copies or 
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT 
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 
OTHER DEALINGS IN THE SOFTWARE.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 11
.@types/mapbox__vector-tile
This project is licensed under the MIT license.
Copyrights are respective of each contributor listed at the beginning of each definition 
file.

Permission is hereby granted, free of charge, to any person obtaining a copy of this 
software and associated documentation files (the "Software"), to deal in the Software 

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-130



without restriction, including without limitation the rights to use, copy, modify, 
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to 
permit persons to whom the Software is furnished to do so, subject to the following 
conditions:

The above copyright notice and this permission notice shall be included in all copies or 
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT 
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 
OTHER DEALINGS IN THE SOFTWARE

== DEPENDENCY 11 DEPENPENCIES
.@types/geojson
This project is licensed under the MIT license.
Copyrights are respective of each contributor listed at the beginning of each definition 
file.
.@types/mapbox__point-geometry
This project is licensed under the MIT license.
Copyrights are respective of each contributor listed at the beginning of each definition 
file.
.@types/pbf
This project is licensed under the MIT license.
Copyrights are respective of each contributor listed at the beginning of each definition 
file.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 12
.@types/pbf
This project is licensed under the MIT license.
Copyrights are respective of each contributor listed at the beginning of each definition 
file.

Permission is hereby granted, free of charge, to any person obtaining a copy of this 
software and associated documentation files (the "Software"), to deal in the Software 
without restriction, including without limitation the rights to use, copy, modify, 
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to 
permit persons to whom the Software is furnished to do so, subject to the following 
conditions:

The above copyright notice and this permission notice shall be included in all copies or 
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT 
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 
OTHER DEALINGS IN THE SOFTWARE.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 13
.csscolorparser
(c) Dean McNamee <dean@gmail.com>, 2012.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-131



The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 14
.earcut
ISC License

Copyright (c) 2016, Mapbox

Permission to use, copy, modify, and/or distribute this software for any purpose
with or without fee is hereby granted, provided that the above copyright notice
and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 15
.geojson-vt
ISC License

Copyright (c) 2015, Mapbox

Permission to use, copy, modify, and/or distribute this software for any purpose
with or without fee is hereby granted, provided that the above copyright notice
and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 16
.gl-matrix
Copyright (c) 2015-2021, Brandon Jones, Colin MacKenzie IV.

Permission is hereby granted, free of charge, to any person obtaining a copy of this 
software and associated documentation files (the "Software"), to deal in the Software 
without restriction, including without limitation the rights to use, copy, modify, 
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to 
permit persons to whom the Software is furnished to do so, subject to the following 
conditions:

The above copyright notice and this permission notice shall be included in all copies or 
substantial portions of the Software.

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-132



THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT 
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 
OTHER DEALINGS IN THE SOFTWARE.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 17
.global-prefix
The MIT License (MIT)

Copyright (c) 2015-present, Jon Schlinkert.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
== DEPENDENCY 17 DEPENPENCIES
.ini
The ISC License

Copyright (c) Isaac Z. Schlueter and Contributors

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR
IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
.kind-of
The MIT License (MIT)

Copyright (c) 2014-2017, Jon Schlinkert.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-133



THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
.which
The ISC License

Copyright (c) Isaac Z. Schlueter and Contributors

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR
IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
.isexe
The ISC License

Copyright (c) 2016-2022 Isaac Z. Schlueter and Contributors

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR
IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 18
.murmurhash-js
Copyright (c) 2011 Gary Court

Permission is hereby granted, free of charge, to any person obtaining a copy of this 
software and associated documentation files (the "Software"), to deal in the Software 
without restriction, including without limitation the rights to use, copy, modify, 
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to 
permit persons to whom the Software is furnished to do so, subject to the following 
conditions:

The above copyright notice and this permission notice shall be included in all copies or 
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT 
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 
OTHER DEALINGS IN THE SOFTWARE.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 19

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-134



.pbf
Copyright (c) 2017, Mapbox
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
  list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
  this list of conditions and the following disclaimer in the documentation
  and/or other materials provided with the distribution.

* Neither the name of pbf nor the names of its
  contributors may be used to endorse or promote products derived from
  this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
== DEPENDENCY 19 DEPENPENCIES
.ieee754
Copyright 2008 Fair Oaks Labs, Inc.

Redistribution and use in source and binary forms, with or without modification, are 
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of 
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list 
of conditions and the following disclaimer in the documentation and/or other materials 
provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be 
used to endorse or promote products derived from this software without specific prior 
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY 
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 
THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

.resolve-protobuf-schema
The MIT License (MIT)

Copyright (c) 2014 Mathias Buus

Permission is hereby granted, free of charge, to any person obtaining a copy

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-135



of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
.protocol-buffers-schema
The MIT License (MIT)

Copyright (c) 2014 Mathias Buus

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 20
.potpack
ISC License

Copyright (c) 2022, Mapbox

Permission to use, copy, modify, and/or distribute this software for any purpose
with or without fee is hereby granted, provided that the above copyright notice
and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 21
.quickselect
The MIT License

Copyright (c) 2014-2018 Google, Inc.

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-136



Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 22
.supercluster
ISC License

Copyright (c) 2021, Mapbox

Permission to use, copy, modify, and/or distribute this software for any purpose
with or without fee is hereby granted, provided that the above copyright notice
and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
== DEPENDENCY 22 DEPENPENCIES
.kdbush
ISC License

Copyright (c) 2018, Vladimir Agafonkin

Permission to use, copy, modify, and/or distribute this software for any purpose
with or without fee is hereby granted, provided that the above copyright notice
and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.
THIS SOFTWARE.-----------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 23
.tinyqueue
ISC License

Copyright (c) 2017, Vladimir Agafonkin

Permission to use, copy, modify, and/or distribute this software for any purpose
with or without fee is hereby granted, provided that the above copyright notice
and this permission notice appear in all copies.

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-137



THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.
--------------------------------(separator)---------------------------------
== NAME OF DEPENDENCY 24
.vt-pbf
The MIT License (MIT)

Copyright (c) 2015 Anand Thakker

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

--------------------------------------------------------------------------------

Contains geojson_wrapper.js from https://github.com/mapbox/mapbox-gl-js

Copyright (c) 2014, Mapbox

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

    * Redistributions of source code must retain the above copyright notice,
      this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright notice,
      this list of conditions and the following disclaimer in the documentation
      and/or other materials provided with the distribution.
    * Neither the name of Mapbox GL JS nor the names of its contributors
      may be used to endorse or promote products derived from this software
      without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-138



NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
== DEPENDENCY 24 DEPENPENCIES
.@mapbox/point-geometry
Copyright (c) 2015, Mapbox <>
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
.@mapbox/vector-tile
Copyright (c) 2014, Mapbox
All rights reserved.
.pbf
Copyright (c) 2017, Mapbox
All rights reserved.
.ieee754
Copyright 2008 Fair Oaks Labs, Inc.
.resolve-protobuf-schema
The MIT License (MIT)

Copyright (c) 2014 Mathias Buus
.protocol-buffers-schema
The MIT License (MIT)

Copyright (c) 2014 Mathias Buus

lodash

Vendor: OpenJS Foundation

Version: 4.17.21

The MIT License

Copyright OpenJS Foundation and other contributors 

Based on Underscore.js, copyright Jeremy Ashkenas,
DocumentCloud and Investigative Reporters & Editors 

This software consists of voluntary contributions made by many
individuals. For exact contribution history, see the revision history
available at https://github.com/lodash/lodash

The following license applies to all parts of this software except as
documented below:

====

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-139



OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

====

Copyright and related rights for sample code are waived via CC0. Sample
code is defined as all source code displayed within the prose of the
documentation.

CC0: http://creativecommons.org/publicdomain/zero/1.0/

====

Files located in the node_modules and vendor directories are externally
maintained libraries used by this software which have their own
licenses; we recommend you read them, as their terms may differ from the
terms above.

lunr.js

Vendor: Oliver Nightingale

Version: 2.3.9

Copyright (C) 2013 by Oliver Nightingale

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Clipboard

Vendor: Zeno Rocha

Version: 2.0.11

Clipboard 2.0.11 (MIT)
=========================================
MIT License

Copyright (c) Zeno Rocha

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-140



The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

---------------------------- Fourth-party dependencies ----------------------

==================================================
4th party dependency: good-listener  (MIT)
4th party dependency: select  (MIT)
4th party dependency: delegate  (MIT) (dependency of good-listener)
==================================================

MIT License

Copyright (c) Zeno Rocha

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

==================================================
4th party dependency: tiny-emitter (MIT)
==================================================
The MIT License (MIT)

Copyright (c) 2017 Scott Corgan

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-141



LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

DOMPurify

Vendor: Mario Heiderich

Version: 3.0.3

DOMPurify
Copyright 2023 Dr.-Ing. Mario Heiderich, Cure53

DOMPurify is free software; you can redistribute it and/or modify it under the
terms of either:

a) the Apache License Version 2.0, or
b) the Mozilla Public License Version 2.0

-----------------------------------------------------------------------------

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.

-----------------------------------------------------------------------------
Mozilla Public License, version 2.0

1. Definitions

1.1. “Contributor”

     means each individual or legal entity that creates, contributes to the
     creation of, or owns Covered Software.

1.2. “Contributor Version”

     means the combination of the Contributions of others (if any) used by a
     Contributor and that particular Contributor’s Contribution.

1.3. “Contribution”

     means Covered Software of a particular Contributor.

1.4. “Covered Software”

     means Source Code Form to which the initial Contributor has attached the
     notice in Exhibit A, the Executable Form of such Source Code Form, and
     Modifications of such Source Code Form, in each case including portions
     thereof.

1.5. “Incompatible With Secondary Licenses”
     means

     a. that the initial Contributor has attached the notice described in

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-142



        Exhibit B to the Covered Software; or

     b. that the Covered Software was made available under the terms of version
        1.1 or earlier of the License, but not also under the terms of a
        Secondary License.

1.6. “Executable Form”

     means any form of the work other than Source Code Form.

1.7. “Larger Work”

     means a work that combines Covered Software with other material, in a separate
     file or files, that is not Covered Software.

1.8. “License”

     means this document.

1.9. “Licensable”

     means having the right to grant, to the maximum extent possible, whether at the
     time of the initial grant or subsequently, any and all of the rights conveyed by
     this License.

1.10. “Modifications”

     means any of the following:

     a. any file in Source Code Form that results from an addition to, deletion
        from, or modification of the contents of Covered Software; or

     b. any new file in Source Code Form that contains any Covered Software.

1.11. “Patent Claims” of a Contributor

      means any patent claim(s), including without limitation, method, process,
      and apparatus claims, in any patent Licensable by such Contributor that
      would be infringed, but for the grant of the License, by the making,
      using, selling, offering for sale, having made, import, or transfer of
      either its Contributions or its Contributor Version.

1.12. “Secondary License”

      means either the GNU General Public License, Version 2.0, the GNU Lesser
      General Public License, Version 2.1, the GNU Affero General Public
      License, Version 3.0, or any later versions of those licenses.

1.13. “Source Code Form”

      means the form of the work preferred for making modifications.

1.14. “You” (or “Your”)

      means an individual or a legal entity exercising rights under this
      License. For legal entities, “You” includes any entity that controls, is
      controlled by, or is under common control with You. For purposes of this
      definition, “control” means (a) the power, direct or indirect, to cause
      the direction or management of such entity, whether by contract or
      otherwise, or (b) ownership of more than fifty percent (50%) of the
      outstanding shares or beneficial ownership of such entity.

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-143



2. License Grants and Conditions

2.1. Grants

     Each Contributor hereby grants You a world-wide, royalty-free,
     non-exclusive license:

     a. under intellectual property rights (other than patent or trademark)
        Licensable by such Contributor to use, reproduce, make available,
        modify, display, perform, distribute, and otherwise exploit its
        Contributions, either on an unmodified basis, with Modifications, or as
        part of a Larger Work; and

     b. under Patent Claims of such Contributor to make, use, sell, offer for
        sale, have made, import, and otherwise transfer either its Contributions
        or its Contributor Version.

2.2. Effective Date

     The licenses granted in Section 2.1 with respect to any Contribution become
     effective for each Contribution on the date the Contributor first distributes
     such Contribution.

2.3. Limitations on Grant Scope

     The licenses granted in this Section 2 are the only rights granted under this
     License. No additional rights or licenses will be implied from the distribution
     or licensing of Covered Software under this License. Notwithstanding Section
     2.1(b) above, no patent license is granted by a Contributor:

     a. for any code that a Contributor has removed from Covered Software; or

     b. for infringements caused by: (i) Your and any other third party’s
        modifications of Covered Software, or (ii) the combination of its
        Contributions with other software (except as part of its Contributor
        Version); or

     c. under Patent Claims infringed by Covered Software in the absence of its
        Contributions.

     This License does not grant any rights in the trademarks, service marks, or
     logos of any Contributor (except as may be necessary to comply with the
     notice requirements in Section 3.4).

2.4. Subsequent Licenses

     No Contributor makes additional grants as a result of Your choice to
     distribute the Covered Software under a subsequent version of this License
     (see Section 10.2) or under the terms of a Secondary License (if permitted
     under the terms of Section 3.3).

2.5. Representation

     Each Contributor represents that the Contributor believes its Contributions
     are its original creation(s) or it has sufficient rights to grant the
     rights to its Contributions conveyed by this License.

2.6. Fair Use

     This License is not intended to limit any rights You have under applicable
     copyright doctrines of fair use, fair dealing, or other equivalents.

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-144



2.7. Conditions

     Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted in
     Section 2.1.

3. Responsibilities

3.1. Distribution of Source Form

     All distribution of Covered Software in Source Code Form, including any
     Modifications that You create or to which You contribute, must be under the
     terms of this License. You must inform recipients that the Source Code Form
     of the Covered Software is governed by the terms of this License, and how
     they can obtain a copy of this License. You may not attempt to alter or
     restrict the recipients’ rights in the Source Code Form.

3.2. Distribution of Executable Form

     If You distribute Covered Software in Executable Form then:

     a. such Covered Software must also be made available in Source Code Form,
        as described in Section 3.1, and You must inform recipients of the
        Executable Form how they can obtain a copy of such Source Code Form by
        reasonable means in a timely manner, at a charge no more than the cost
        of distribution to the recipient; and

     b. You may distribute such Executable Form under the terms of this License,
        or sublicense it under different terms, provided that the license for
        the Executable Form does not attempt to limit or alter the recipients’
        rights in the Source Code Form under this License.

3.3. Distribution of a Larger Work

     You may create and distribute a Larger Work under terms of Your choice,
     provided that You also comply with the requirements of this License for the
     Covered Software. If the Larger Work is a combination of Covered Software
     with a work governed by one or more Secondary Licenses, and the Covered
     Software is not Incompatible With Secondary Licenses, this License permits
     You to additionally distribute such Covered Software under the terms of
     such Secondary License(s), so that the recipient of the Larger Work may, at
     their option, further distribute the Covered Software under the terms of
     either this License or such Secondary License(s).

3.4. Notices

     You may not remove or alter the substance of any license notices (including
     copyright notices, patent notices, disclaimers of warranty, or limitations
     of liability) contained within the Source Code Form of the Covered
     Software, except that You may alter any license notices to the extent
     required to remedy known factual inaccuracies.

3.5. Application of Additional Terms

     You may choose to offer, and to charge a fee for, warranty, support,
     indemnity or liability obligations to one or more recipients of Covered
     Software. However, You may do so only on Your own behalf, and not on behalf
     of any Contributor. You must make it absolutely clear that any such
     warranty, support, indemnity, or liability obligation is offered by You
     alone, and You hereby agree to indemnify every Contributor for any
     liability incurred by such Contributor as a result of warranty, support,

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-145



     indemnity or liability terms You offer. You may include additional
     disclaimers of warranty and limitations of liability specific to any
     jurisdiction.

4. Inability to Comply Due to Statute or Regulation

   If it is impossible for You to comply with any of the terms of this License
   with respect to some or all of the Covered Software due to statute, judicial
   order, or regulation then You must: (a) comply with the terms of this License
   to the maximum extent possible; and (b) describe the limitations and the code
   they affect. Such description must be placed in a text file included with all
   distributions of the Covered Software under this License. Except to the
   extent prohibited by statute or regulation, such description must be
   sufficiently detailed for a recipient of ordinary skill to be able to
   understand it.

5. Termination

5.1. The rights granted under this License will terminate automatically if You
     fail to comply with any of its terms. However, if You become compliant,
     then the rights granted under this License from a particular Contributor
     are reinstated (a) provisionally, unless and until such Contributor
     explicitly and finally terminates Your grants, and (b) on an ongoing basis,
     if such Contributor fails to notify You of the non-compliance by some
     reasonable means prior to 60 days after You have come back into compliance.
     Moreover, Your grants from a particular Contributor are reinstated on an
     ongoing basis if such Contributor notifies You of the non-compliance by
     some reasonable means, this is the first time You have received notice of
     non-compliance with this License from such Contributor, and You become
     compliant prior to 30 days after Your receipt of the notice.

5.2. If You initiate litigation against any entity by asserting a patent
     infringement claim (excluding declaratory judgment actions, counter-claims,
     and cross-claims) alleging that a Contributor Version directly or
     indirectly infringes any patent, then the rights granted to You by any and
     all Contributors for the Covered Software under Section 2.1 of this License
     shall terminate.

5.3. In the event of termination under Sections 5.1 or 5.2 above, all end user
     license agreements (excluding distributors and resellers) which have been
     validly granted by You or Your distributors under this License prior to
     termination shall survive termination.

6. Disclaimer of Warranty

   Covered Software is provided under this License on an “as is” basis, without
   warranty of any kind, either expressed, implied, or statutory, including,
   without limitation, warranties that the Covered Software is free of defects,
   merchantable, fit for a particular purpose or non-infringing. The entire
   risk as to the quality and performance of the Covered Software is with You.
   Should any Covered Software prove defective in any respect, You (not any
   Contributor) assume the cost of any necessary servicing, repair, or
   correction. This disclaimer of warranty constitutes an essential part of this
   License. No use of  any Covered Software is authorized under this License
   except under this disclaimer.

7. Limitation of Liability

   Under no circumstances and under no legal theory, whether tort (including
   negligence), contract, or otherwise, shall any Contributor, or anyone who
   distributes Covered Software as permitted above, be liable to You for any
   direct, indirect, special, incidental, or consequential damages of any

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-146



   character including, without limitation, damages for lost profits, loss of
   goodwill, work stoppage, computer failure or malfunction, or any and all
   other commercial damages or losses, even if such party shall have been
   informed of the possibility of such damages. This limitation of liability
   shall not apply to liability for death or personal injury resulting from such
   party’s negligence to the extent applicable law prohibits such limitation.
   Some jurisdictions do not allow the exclusion or limitation of incidental or
   consequential damages, so this exclusion and limitation may not apply to You.

8. Litigation

   Any litigation relating to this License may be brought only in the courts of
   a jurisdiction where the defendant maintains its principal place of business
   and such litigation shall be governed by laws of that jurisdiction, without
   reference to its conflict-of-law provisions. Nothing in this Section shall
   prevent a party’s ability to bring cross-claims or counter-claims.

9. Miscellaneous

   This License represents the complete agreement concerning the subject matter
   hereof. If any provision of this License is held to be unenforceable, such
   provision shall be reformed only to the extent necessary to make it
   enforceable. Any law or regulation which provides that the language of a
   contract shall be construed against the drafter shall not be used to construe
   this License against a Contributor.

10. Versions of the License

10.1. New Versions

      Mozilla Foundation is the license steward. Except as provided in Section
      10.3, no one other than the license steward has the right to modify or
      publish new versions of this License. Each version will be given a
      distinguishing version number.

10.2. Effect of New Versions

      You may distribute the Covered Software under the terms of the version of
      the License under which You originally received the Covered Software, or
      under the terms of any subsequent version published by the license
      steward.

10.3. Modified Versions

      If you create software not governed by this License, and you want to
      create a new license for such software, you may create and use a modified
      version of this License if you rename the license and remove any
      references to the name of the license steward (except to note that such
      modified license differs from this License).

10.4. Distributing Source Code Form that is Incompatible With Secondary Licenses
      If You choose to distribute Source Code Form that is Incompatible With
      Secondary Licenses under the terms of this version of the License, the
      notice described in Exhibit B of this License must be attached.

Exhibit A - Source Code Form License Notice

      This Source Code Form is subject to the
      terms of the Mozilla Public License, v.
      2.0. If a copy of the MPL was not
      distributed with this file, You can

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-147



      obtain one at
      http://mozilla.org/MPL/2.0/.

If it is not possible or desirable to put the notice in a particular file, then
You may include the notice in a location (such as a LICENSE file in a relevant
directory) where a recipient would be likely to look for such a notice.

You may add additional accurate notices of copyright ownership.

Exhibit B - “Incompatible With Secondary Licenses” Notice

      This Source Code Form is “Incompatible
      With Secondary Licenses”, as defined by
      the Mozilla Public License, v. 2.0.
------------------------------------------------------------------------------

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as 
defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner 
that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that 
control, are controlled by, or are under common control with that entity. For the 
purposes of this definition, "control" means (i) the power, direct or indirect, to cause 
the direction or management of such entity, whether by contract or otherwise, or (ii) 
ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial 
ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions 
granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not 
limited to software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or 
translation of a Source form, including but not limited to compiled object code, 
generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made 
available under the License, as indicated by a copyright notice that is included in or 
attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based 
on (or derived from) the Work and for which the editorial revisions, annotations, 
elaborations, or other modifications represent, as a whole, an original work of 
authorship. For the purposes of this License, Derivative Works shall not include works 
that remain separable from, or merely link (or bind by name) to the interfaces of, the 
Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the 
Work and any modifications or additions to that Work or Derivative Works thereof, that 
is intentionally submitted to Licensor for inclusion in the Work by the copyright owner 

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-148



or by an individual or Legal Entity authorized to submit on behalf of the copyright 
owner. For the purposes of this definition, "submitted" means any form of electronic, 
verbal, or written communication sent to the Licensor or its representatives, including 
but not limited to communication on electronic mailing lists, source code control 
systems, and issue tracking systems that are managed by, or on behalf of, the Licensor 
for the purpose of discussing and improving the Work, but excluding communication that 
is conspicuously marked or otherwise designated in writing by the copyright owner as 
"Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a 
Contribution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each 
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, 
royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, 
publicly display, publicly perform, sublicense, and distribute the Work and such 
Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each 
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, 
royalty-free, irrevocable (except as stated in this section) patent license to make, 
have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such 
license applies only to those patent claims licensable by such Contributor that are 
necessarily infringed by their Contribution(s) alone or by combination of their 
Contribution(s) with the Work to which such Contribution(s) was submitted. If You 
institute patent litigation against any entity (including a cross-claim or counterclaim 
in a lawsuit) alleging that the Work or a Contribution incorporated within the Work 
constitutes direct or contributory patent infringement, then any patent licenses granted 
to You under this License for that Work shall terminate as of the date such litigation 
is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative 
Works thereof in any medium, with or without modifications, and in Source or Object 
form, provided that You meet the following conditions:

    You must give any other recipients of the Work or Derivative Works a copy of this 
License; and
    You must cause any modified files to carry prominent notices stating that You 
changed the files; and
    You must retain, in the Source form of any Derivative Works that You distribute, all 
copyright, patent, trademark, and attribution notices from the Source form of the Work, 
excluding those notices that do not pertain to any part of the Derivative Works; and
    If the Work includes a "NOTICE" text file as part of its distribution, then any 
Derivative Works that You distribute must include a readable copy of the attribution 
notices contained within such NOTICE file, excluding those notices that do not pertain 
to any part of the Derivative Works, in at least one of the following places: within a 
NOTICE text file distributed as part of the Derivative Works; within the Source form or 
documentation, if provided along with the Derivative Works; or, within a display 
generated by the Derivative Works, if and wherever such third-party notices normally 
appear. The contents of the NOTICE file are for informational purposes only and do not 
modify the License. You may add Your own attribution notices within Derivative Works 
that You distribute, alongside or as an addendum to the NOTICE text from the Work, 
provided that such additional attribution notices cannot be construed as modifying the 
License.

    You may add Your own copyright statement to Your modifications and may provide 
additional or different license terms and conditions for use, reproduction, or 
distribution of Your modifications, or for any such Derivative Works as a whole, 
provided Your use, reproduction, and distribution of the Work otherwise complies with 
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution 

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-149



intentionally submitted for inclusion in the Work by You to the Licensor shall be under 
the terms and conditions of this License, without any additional terms or conditions. 
Notwithstanding the above, nothing herein shall supersede or modify the terms of any 
separate license agreement you may have executed with Licensor regarding such 
Contributions.

6. Trademarks. This License does not grant permission to use the trade names, 
trademarks, service marks, or product names of the Licensor, except as required for 
reasonable and customary use in describing the origin of the Work and reproducing the 
content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, 
Licensor provides the Work (and each Contributor provides its Contributions) on an "AS 
IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, 
including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, 
MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for 
determining the appropriateness of using or redistributing the Work and assume any risks 
associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort 
(including negligence), contract, or otherwise, unless required by applicable law (such 
as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor 
be liable to You for damages, including any direct, indirect, special, incidental, or 
consequential damages of any character arising as a result of this License or out of the 
use or inability to use the Work (including but not limited to damages for loss of 
goodwill, work stoppage, computer failure or malfunction, or any and all other 
commercial damages or losses), even if such Contributor has been advised of the 
possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or 
Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of 
support, warranty, indemnity, or other liability obligations and/or rights consistent 
with this License. However, in accepting such obligations, You may act only on Your own 
behalf and on Your sole responsibility, not on behalf of any other Contributor, and only 
if You agree to indemnify, defend, and hold each Contributor harmless for any liability 
incurred by, or claims asserted against, such Contributor by reason of your accepting 
any such warranty or additional liability.

END OF TERMS AND CONDITIONS

D3

Vendor: Michael Bostock

Version: 7.9.0

------------------------------ Top-Level License -------------------------------
ISC-fcc83e5a

---------------------------------- Copyright -----------------------------------
Copyright 2010-2023 Mike Bostock

-------------------------- Fourth Party Dependencies ---------------------------

----------------------------------- Licenses -----------------------------------
-  BSD-3-Clause
-  ISC
-  MIT
-  Unlicense

--------------------------------- (separator) ----------------------------------

== Dependency

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-150



commander

== License Type
SPDX:MIT

== Copyright
Copyright (c) 2011 TJ Holowaychuk <tj@vision-media.ca>

--------------------------------- (separator) ----------------------------------

== Dependency
d3-array

== License Type
SPDX:ISC

== Copyright
Copyright 2010-2023 Mike Bostock
Copyright 2018 Vladimir Agafonkin.

--------------------------------- (separator) ----------------------------------

== Dependency
d3-axis

== License Type
SPDX:ISC

== Copyright
Copyright 2010-2021 Mike Bostock

--------------------------------- (separator) ----------------------------------

== Dependency
d3-brush

== License Type
SPDX:ISC

== Copyright
Copyright 2010-2021 Mike Bostock

--------------------------------- (separator) ----------------------------------

== Dependency
d3-chord

== License Type
SPDX:ISC

== Copyright
Copyright 2010-2021 Mike Bostock

--------------------------------- (separator) ----------------------------------

== Dependency
d3-color

== License Type
SPDX:ISC

== Copyright

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-151



Copyright 2010-2022 Mike Bostock

--------------------------------- (separator) ----------------------------------

== Dependency
d3-contour

== License Type
SPDX:ISC

== Copyright
Copyright 2012-2023 Mike Bostock

--------------------------------- (separator) ----------------------------------

== Dependency
d3-delaunay

== License Type
SPDX:ISC

== Copyright
Copyright 2018-2021 Observable, Inc.
Copyright 2018-2021 Observable, Inc., 2021 Mapbox
Copyright 2021 Mapbox

--------------------------------- (separator) ----------------------------------

== Dependency
d3-dispatch

== License Type
SPDX:ISC

== Copyright
Copyright 2010-2021 Mike Bostock

--------------------------------- (separator) ----------------------------------

== Dependency
d3-drag

== License Type
SPDX:ISC

== Copyright
Copyright 2010-2021 Mike Bostock

--------------------------------- (separator) ----------------------------------

== Dependency
d3-dsv

== License Type
SPDX:ISC

== Copyright
Copyright 2013-2021 Mike Bostock

--------------------------------- (separator) ----------------------------------

== Dependency

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-152



d3-ease

== License Type
SPDX:BSD-3-Clause

== Copyright
Copyright 2001 Robert Penner
Copyright 2010-2021 Mike Bostock
Copyright 2010-2021 Mike Bostock, 2001 Robert Penner

--------------------------------- (separator) ----------------------------------

== Dependency
d3-fetch

== License Type
SPDX:ISC

== Copyright
Copyright 2016-2021 Mike Bostock

--------------------------------- (separator) ----------------------------------

== Dependency
d3-force

== License Type
SPDX:ISC

== Copyright
Copyright 2010-2021 Mike Bostock

--------------------------------- (separator) ----------------------------------

== Dependency
d3-format

== License Type
SPDX:ISC

== Copyright
Copyright 2010-2021 Mike Bostock

--------------------------------- (separator) ----------------------------------

== Dependency
d3-geo

== License Type
SPDX:ISC

== Copyright
Copyright 2008-2012 Charles Karney
Copyright 2010-2024 Mike Bostock
Copyright 2010-2024 Mike Bostock, 2008-2012 Charles Karney

--------------------------------- (separator) ----------------------------------

== Dependency
d3-hierarchy

== License Type

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-153



SPDX:ISC

== Copyright
Copyright 2010-2021 Mike Bostock

--------------------------------- (separator) ----------------------------------

== Dependency
d3-interpolate

== License Type
SPDX:ISC

== Copyright
Copyright 2010-2021 Mike Bostock

--------------------------------- (separator) ----------------------------------

== Dependency
d3-path

== License Type
SPDX:ISC

== Copyright
Copyright 2015-2022 Mike Bostock

--------------------------------- (separator) ----------------------------------

== Dependency
d3-polygon

== License Type
SPDX:ISC

== Copyright
Copyright 2010-2021 Mike Bostock

--------------------------------- (separator) ----------------------------------

== Dependency
d3-quadtree

== License Type
SPDX:ISC

== Copyright
Copyright 2010-2021 Mike Bostock

--------------------------------- (separator) ----------------------------------

== Dependency
d3-random

== License Type
SPDX:ISC

== Copyright
Copyright 2010-2021 Mike Bostock

--------------------------------- (separator) ----------------------------------

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-154



== Dependency
d3-scale-chromatic

== License Type
SPDX:ISC

== Copyright
Copyright 2002 Cynthia Brewer, Mark Harrower, and The Pennsylvania State University
Copyright 2010-2024 Mike Bostock
Copyright 2010-2024 Mike Bostock; 2002 Cynthia Brewer, Mark Harrower, and The 
Pennsylvania State University

--------------------------------- (separator) ----------------------------------

== Dependency
d3-scale

== License Type
SPDX:ISC

== Copyright
Copyright 2010-2021 Mike Bostock

--------------------------------- (separator) ----------------------------------

== Dependency
d3-selection

== License Type
SPDX:ISC

== Copyright
Copyright 2010-2021 Mike Bostock

--------------------------------- (separator) ----------------------------------

== Dependency
d3-shape

== License Type
SPDX:ISC

== Copyright
Copyright 2010-2022 Mike Bostock

--------------------------------- (separator) ----------------------------------

== Dependency
d3-time-format

== License Type
SPDX:ISC

== Copyright
Copyright 2010-2021 Mike Bostock

--------------------------------- (separator) ----------------------------------

== Dependency
d3-time

== License Type

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-155



SPDX:ISC

== Copyright
Copyright 2010-2022 Mike Bostock

--------------------------------- (separator) ----------------------------------

== Dependency
d3-timer

== License Type
SPDX:ISC

== Copyright
Copyright 2010-2021 Mike Bostock

--------------------------------- (separator) ----------------------------------

== Dependency
d3-transition

== License Type
SPDX:ISC

== Copyright
Copyright 2010-2021 Mike Bostock

--------------------------------- (separator) ----------------------------------

== Dependency
d3-zoom

== License Type
SPDX:ISC

== Copyright
Copyright 2010-2021 Mike Bostock

--------------------------------- (separator) ----------------------------------

== Dependency
delaunator

== License Type
SPDX:ISC

== Copyright
Copyright (c) 2021, Mapbox

--------------------------------- (separator) ----------------------------------

== Dependency
iconv-lite

== License Type
SPDX:MIT

== Copyright
Copyright (c) 2011 Alexander Shtuchkin
Copyright (c) Microsoft Corporation. All rights reserved.

--------------------------------- (separator) ----------------------------------

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-156



== Dependency
internmap

== License Type
SPDX:ISC

== Copyright
Copyright 2021 Mike Bostock

--------------------------------- (separator) ----------------------------------

== Dependency
robust-predicates

== License Type
SPDX:Unlicense

== Copyright
(no copyright notices found)

--------------------------------- (separator) ----------------------------------

== Dependency
rw

== License Type
SPDX:BSD-3-Clause

== Copyright
Copyright (c) 2014-2016, Michael Bostock

--------------------------------- (separator) ----------------------------------

== Dependency
safer-buffer

== License Type
SPDX:MIT

== Copyright
Copyright (c) 2018 Nikita Skovoroda <chalkerx@gmail.com>

----------------------------------- Licenses -----------------------------------

--------------------------------- (separator) ----------------------------------
== SPDX:BSD-3-Clause

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
   list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
   this list of conditions and the following disclaimer in the documentation
   and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
   may be used to endorse or promote products derived from this software without
   specific prior written permission.

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-157



THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

--------------------------------- (separator) ----------------------------------
== SPDX:ISC

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

--------------------------------- (separator) ----------------------------------
== SPDX:MIT

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

--------------------------------- (separator) ----------------------------------
== SPDX:Unlicense

This is free and unencumbered software released into the public domain.

Anyone is free to copy, modify, publish, use, compile, sell, or distribute
this software, either in source code form or as a compiled binary, for any
purpose, commercial or non-commercial, and by any means.

In jurisdictions that recognize copyright laws, the author or authors of this

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-158



software dedicate any and all copyright interest in the software to the public
domain. We make this dedication for the benefit of the public at large and to
the detriment of our heirs and

successors. We intend this dedication to be an overt act of relinquishment in
perpetuity of all present and future rights to this software under copyright
law.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

For more information, please refer to <http://unlicense.org/>

Appendix E
Third-Party License Information for Graph Visualization Toolkit

E-159



Index

A
administrator dashboard for the graph server,

16-2
aggregations in GRAPH_TABLE, 5-10
APEX Graph Visualization plug-in, 8-1
architecture models, 1-3
Autonomous database graph client, 12-7

D
DBMS_METADATA package, 4-13

E
edge graph element tables, 4-4
edge table keys for SQL property graphs, 4-4
enforced mode, 4-8

G
graph pattern, 5-2
graph server (PGX) and client

installation, 14-1
workflow, 14-1

graph visualization application, 1
embedding graph visualization library, 22-1
running the web application, 14-41
using the graph visualization application, 21-1

visualizing graph queries on SQL property
graphs, 21-6
visualizing PGQL queries

graphs in the graph
server(PGX), 21-2

PGQL property graphs, 21-4
graphs

administrator dashboard for the graph server,
16-4

J
Jupyter Notebook, 12-2

L
labels and properties for SQL property graphs,

4-6
loading graph into graph server (PGX)

PGQL property graphs, 10-1
SQL property graphs, 6-1

log management in the graph server (PGX), 29-1

M
memory consumption by the graph server, 24-1
memory usage dashboard, 16-3
migrate_pgql_to_sql(), 7-6
migrating PGQL to SQL property graph, 7-6
mixed property types, 4-8

O
operators

EDGE_ID, 5-9
GRAPH_TABLE operator, 5-1
VERTEX_ID, 5-9

OPG4J shell, 12-4
OPG4Py shell, 12-6
Oracle Graph clients

Java client, 14-32
from Oracle Graph Server and Client

downloads, 14-33
on Maven Central, 14-34

Python client, 14-37
from Oracle Graph server and Client

downloads, 14-39
from PyPI, 14-38
in embedded mode, 14-40
upgrade, 14-38

Oracle Graph Server (PGX)
configuration

graph server configuration parameters in
server.conf file, 15-2

runtime configuration parameters in
pgx.conf file, 23-1

connecting to the graph server, 15-6
installation, 14-2

deploy to Apache Tomcat, 14-9
deploy to Oracle WebLogic server, 14-10

Index-1



Oracle Graph Server (PGX) (continued)
installation (continued)
deploying behind a load balancer, 25-1
rpm, 14-4

kerberos enabled authentication, 14-29
learn about the graph server, 1-6
log management, 29-1
starting the graph server, 15-1
using the graph server, 1
working with files, 28-1

P
PGQL (Property Graph Query Language), 13-1
PGQL property graphs, 1

creating graphs, 9-1
GraphSON file import, 9-9
metadata tables, 9-4
privileges, 9-8
quick start, 11-1

PgxML for Graphs, 17-1
DeepWalk Algorithm, 17-2
Pg2vec Algorithm, 17-142
Supervised GraphWise Algorithm, 17-15
Unsupervised GraphWise Algorithm, 17-77,

17-126
property graph

architecture, 1-3
introduction, 1-1

Property Graph Query Language (PGQL), 13-1

R
REST endpoints for the graph server, 19-1

v1
cancel an asynchronous query execution,

19-23
check asynchronous query completion,

19-20
get graphs, 19-15
get user, 19-18
login, 19-14
logout, 19-19
retrieve ansynchronous query result,

19-20
run a PGQL query, 19-16
run a PGQL query asynchronously, 19-19

v2
cancel an asynchronous query execution,

19-14
check asynchronous query completion,

19-11
get an authentication token, 19-1
get graphs for a driver, 19-4
get the database version, 19-8

REST endpoints for the graph server (continued)
v2 (continued)
get user, 19-9
refresh an authentication token, 19-2
retrieve ansynchronous query result,

19-12
run a PGQL query, 19-4
run a PGQL query asynchronously, 19-9

S
sessions, 27-28

administrator dashboard for the graph server,
16-4

create, 27-28
destroy, 27-31
update, 27-29

setting up TLS (Transport layer Security), 14-42
using self-signed server certificate, 14-46
using self-signed server keystore, 14-43

SQL Developer
querying PGQL property graphs, 12-21
querying SQL property graphs, 5-29

SQL graph queries, 5-1
aggregate functions, 5-10
at specific SCN, 5-12
complex path patterns, 5-8
graph pattern, 5-2
variable length path pattern, 5-8

SQL property graphs, 1
create a SQL property graph, 4-1
drop a SQL property graph, 4-15
granting privileges, 4-11
metadata tables, 4-12
quick start, 3-2
rename a SQL property graph, 4-15
revalidate a SQL property graph, 4-15
SQL graph queries, 5-1

examples, 5-13
using JSON columns, 4-16
visualization using APEX Graph Visualization

plug-in, 8-1
SQLcl, 12-19
subgraph loading for PGQL property graphs,

10-11
subgraph loading for SQL property graphs, 6-7

T
trusted mode, 4-8
tuning SQL property graphs, 5-26

V
vertex graph element tables, 4-4
vertex table keys for SQL property graphs, 4-4

Index

Index-2


	Contents
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for This Guide
	Deprecated Features
	Desupported Features

	Part I Getting Started with Oracle Property Graphs
	1 Introduction to Property Graphs
	1.1 What Are Property Graphs?
	1.2 About the Property Graph Feature of Oracle Database
	1.3 Overview of Property Graph Architecture
	1.3.1 Architecture Model for Running Graph Queries in the Database
	1.3.2 Architecture Model for Running Graph Analytics
	1.3.3 Developing Applications Using Graph Server Functionality as a Library

	1.4 Learn About the Graph Server (PGX)
	1.4.1 Overview of the Graph Server (PGX)
	1.4.1.1 Design of the Graph Server (PGX)
	1.4.1.2 Usage Modes of the Graph Server (PGX)


	1.5 Security Best Practices with Graph Data
	1.6 About Oracle Graph Server and Client Accessibility

	2 Using Oracle Graph with the Autonomous Database
	2.1 Two-Tier Deployments of Oracle Graph with Autonomous Database
	2.2 Three-Tier Deployments of Oracle Graph with Autonomous Database


	Part II SQL Property Graphs
	3 Introduction to SQL Property Graphs
	3.1 Quick Start for Working with SQL Property Graphs

	4 SQL DDL Statements for Property Graphs
	4.1 Creating a SQL Property Graph
	4.1.1 About Vertex and Edge Graph Element Tables
	4.1.2 About Vertex and Edge Table Keys
	4.1.3 About Labels and Properties
	4.1.4 Using Graph Options to Create SQL Property Graphs
	4.1.5 Granting System and Object Privileges for SQL Property Graphs
	4.1.6 Retrieving Metadata for SQL Property Graphs
	4.1.7 Retrieving SQL Creation DDL Using the DBMS_METADATA Package
	4.1.8 Limitations of Creating a SQL Property Graph

	4.2 Revalidating a SQL Property Graph
	4.3 Renaming a SQL Property Graph
	4.4 Dropping a SQL Property Graph
	4.5 JSON Support in SQL Property Graphs

	5 SQL Graph Queries
	5.1 About Graph Pattern
	5.1.1 Graph Element Variables
	5.1.2 Label Expressions
	5.1.3 Accessing Label Properties

	5.2 Variable Length Path Patterns
	5.3 Complex Path Patterns
	5.4 Vertex and Edge Identifiers
	5.5 Using Aggregate Functions in SQL Graph Queries
	5.6 Selecting All Properties in the COLUMNS Clause
	5.7 Using the SOURCE and DESTINATION Predicates
	5.8 Running SQL Graph Queries at a Specific SCN
	5.9 Privileges to Query a SQL Property Graph
	5.10 Examples for SQL Graph Queries
	5.10.1 Setting Up Sample Data in the Database

	5.11 Supported Features and Limitations for Querying a SQL Property Graph
	5.12 Tuning SQL Property Graph Queries
	5.13 Type Compatibility Rules for Determining Property Types
	5.14 Viewing and Querying SQL Property Graphs Using SQL Developer

	6 Loading a SQL Property Graph into the Graph Server (PGX)
	6.1 Loading a SQL Property Graph Using the readGraphByName API
	6.1.1 Loading a SQL Property Graph from a Different Schema
	6.1.2 Loading a SQL Property Graph Using Graph Optimization Options
	6.1.3 Loading a SQL Property Graph Using OnMissingVertex Options

	6.2 Loading a Subgraph Using PGQL Queries
	6.3 Expanding a Subgraph
	6.4 Handling Vertex and Edge Identifiers in the Graph Server (PGX)
	6.5 Mapping Oracle Database Types to PGX Types
	6.6 Privileges to Load a SQL Property Graph
	6.7 Restriction on Key Types
	6.8 Loading SQL Property Graphs with Unsupported Key Types

	7 Executing PGQL Queries Against SQL Property Graphs
	7.1 Creating a SQL Property Graph Using PGQL
	7.2 Executing PGQL SELECT Queries on a SQL Property Graph
	7.3 Migrating PGQL Property Graphs to SQL Property Graphs
	7.4 Supported PGQL Features and Limitations for SQL Property Graphs

	8 Visualizing SQL Graph Queries Using the APEX Graph Visualization Plug-in
	8.1 About the APEX Graph Visualization Plug-in
	8.2 Getting Started with the APEX Graph Visualization Plug-in
	8.2.1 Importing the Sample Graph Visualizations Application in APEX

	8.3 Configure Attributes for the APEX Graph Visualization Plug-in
	8.3.1 Settings
	8.3.2 Styles
	8.3.3 Expand



	Part III PGQL Property Graphs
	9 About PGQL Property Graphs
	9.1 Creating PGQL Property Graphs on Oracle Database Tables
	9.1.1 Retrieving Metadata for PGQL Property Graphs
	9.1.2 Privileges for Working with PGQL Property Graphs

	9.2 Creating a PGQL Property Graph By Importing a GraphSON file
	9.2.1 Additional Information on the GraphImporter Parameters
	9.2.2 Mapping GraphSON Types to Oracle Database Data Types

	9.3 Using JSON to Store Vertex and Edge Properties

	10 Loading a PGQL property graph into the Graph Server (PGX)
	10.1 Loading a PGQL Property Graph Using the readGraphByName API
	10.1.1 Specifying Options for the readGraphByName API
	10.1.2 Specifying the Schema Name for the readGraphByName API

	10.2 Loading a Graph Using a JSON Configuration File
	10.2.1 Configuring PARALLEL Hint when Loading a Graph

	10.3 Loading a Graph by Defining a Graph Configuration Object
	10.4 Loading a Subgraph from a PGQL Property Graph
	10.4.1 PGQL Based Subgraph Loading
	10.4.2 Prepared PGQL Queries
	10.4.3 Providing Database Connection Credentials
	10.4.4 Dynamically Expanding a Subgraph


	11 Quick Starts for Using PGQL Property Graphs
	11.1 Using Sample Data for Graph Analysis
	11.1.1 Importing Data from CSV Files

	11.2 Quick Start: Working with PGQL Property Graphs
	11.3 Quick Start: Using Graph Machine Learning on PGQL Property Graphs
	11.4 Quick Start: Using the Python Client as a Module
	11.5 Oracle LiveLabs Workshops for Graphs

	12 Getting Started with the Client Tools
	12.3 Using the Graph Visualization Web Client
	12.4 Using the Jupyter Notebook Interface
	12.1 Interactive Graph Shell CLIs
	12.1.1 Starting the OPG4J Shell
	12.1.2 Starting the OPG4Py Shell

	12.2 Using Autonomous Database Graph Client
	12.2.1 Prerequisites for Using Autonomous Database Graph Client
	12.2.2 Using the PGX JDBC Driver with the AdbGraphClient API

	12.5 Additional Client Tools for Querying PGQL Property Graphs
	12.5.1 Using Oracle SQLcl
	12.5.2 Using SQL Developer with PGQL Property Graphs


	13 Property Graph Query Language (PGQL)
	13.1 Creating a Property Graph Using PGQL
	13.1.1 Creating a PGQL Property Graph with the BASE_GRAPHS Clause
	13.1.2 Creating a PGQL Property Graph with Arbitrary Property Expressions

	13.2 Pattern Matching with PGQL
	13.3 Edge Patterns Have a Direction with PGQL
	13.4 Vertex and Edge Labels with PGQL
	13.5 Variable-Length Paths with PGQL
	13.6 Aggregation and Sorting with PGQL
	13.7 Executing PGQL Queries Against PGQL Property Graphs
	13.7.1 Supported PGQL Features and Limitations for PGQL Property Graphs
	13.7.1.1 Additional Information on Supported PGQL Features with Examples

	13.7.2 SQL Translation for a PGQL Query
	13.7.3 Performance Considerations for PGQL Queries
	13.7.3.1 Recursive Queries
	13.7.3.2 Using Query Optimizer Hints
	13.7.3.3 Speed Up Query Translation Using Graph Metadata Cache and Translation Cache

	13.7.4 Using the Java and Python APIs to Run PGQL Queries
	13.7.4.1 Creating a PGQL Property Graph
	13.7.4.2 Executing PGQL SELECT Queries
	13.7.4.3 Executing PGQL Queries to Modify PGQL Property Graphs
	13.7.4.4 Dropping a PGQL Property Graph




	Part IV Installing Oracle Graph Server (PGX) and Client
	14 Oracle Graph Server and Client Installation
	14.1 Before You Begin
	14.1.1 Verifying Database Compatibility
	14.1.2 Downloading Oracle Graph Server and Client

	14.2 Oracle Graph Server Installation
	14.2.1 System Requirements for Installing Oracle Graph Server
	14.2.2 Using the RPM Installation
	14.2.2.1 Prerequisites for Installing Oracle Graph Server
	14.2.2.2 Installing Oracle Graph Server For Linux x86-64
	14.2.2.3 Installing Oracle Graph Server for Linux ARM
	14.2.2.4 Uninstalling Oracle Graph Server
	14.2.2.5 Upgrading Oracle Graph Server

	14.2.3 Deploying Oracle Graph Server to a Web Server
	14.2.3.1 Deploying to Apache Tomcat
	14.2.3.2 Deploying to Oracle WebLogic Server
	14.2.3.2.1 Installing Oracle WebLogic Server


	14.2.4 User Authentication and Authorization
	14.2.4.1 Basic Steps for Using an Oracle Database for Authentication
	14.2.4.1.1 Privileges and Roles in Oracle Database

	14.2.4.2 Prepare the Graph Server for Database Authentication
	14.2.4.3 Store the Database Password in a Keystore
	14.2.4.4 Adding Permissions to Publish the Graph
	14.2.4.5 Token Expiration
	14.2.4.6 Customizing Roles and Permissions
	14.2.4.6.1 Checking Graph Permissions Using API
	14.2.4.6.2 Adding and Removing Roles
	14.2.4.6.3 Defining Permissions for Individual Users
	14.2.4.6.4 Defining Permissions to Use Custom Graph Algorithms

	14.2.4.7 Revoking Access to the Graph Server
	14.2.4.8 Examples of Custom Authorization Rules
	14.2.4.9 Kerberos Enabled Authentication for the Graph Server (PGX)
	14.2.4.9.1 Prerequisite Requirements
	14.2.4.9.2 Prepare the Graph Server for Kerberos Authentication
	14.2.4.9.3 Login to the Graph Server Using Kerberos Ticket



	14.3 Oracle Graph Client Installation
	14.3.1 Graph Clients
	14.3.1.1 Oracle Graph Java Client
	14.3.1.1.1 Installing the Java Client From the Graph Server and Client Downloads
	14.3.1.1.2 Using Oracle Graph Java Client on Maven Central

	14.3.1.2 Oracle Graph Python Client
	14.3.1.2.1 Installing the Python Client from PyPI
	14.3.1.2.2 Upgrading the Python Client
	14.3.1.2.3 Installing the Python Client From the Graph Server and Client Downloads
	14.3.1.2.4 Installing the Python Client in Embedded Mode
	14.3.1.2.5 Uninstalling the Python Client


	14.3.2 Running the Graph Visualization Web Client

	14.4 Setting Up Transport Layer Security
	14.4.1 Using a Self-Signed Server Keystore
	14.4.1.1 Generating a Self-Signed Server Keystore
	14.4.1.2 Configuring the Graph Server (PGX) When Using a Server Keystore
	14.4.1.3 Configuring a Client to Trust the Self-Signed Keystore

	14.4.2 Using a Self-Signed Server Certificate
	14.4.2.1 Generating a Self-Signed Server Certificate
	14.4.2.2 Configuring the Graph Server (PGX)
	14.4.2.3 Configuring a Client to Trust the Self-Signed Certificate



	15 Getting Started with the Graph Server (PGX)
	15.1 Starting the Graph Server (PGX)
	15.1.1 Starting and Stopping the Graph Server (PGX) Using the Command Line
	15.1.2 Configuring the Graph Server (PGX)

	15.2 Connecting to the Graph Server (PGX)
	15.2.1 Connecting with the Graph Client CLIs
	15.2.2 Connecting with Java
	15.2.2.1 Starting and Stopping the PGX Engine

	15.2.3 Connecting with Python



	Part V Using the Graph Server (PGX)
	16 Developing Applications with Graph Analytics
	16.1 Using the Graph Server Administrator Dashboard
	16.1.1 Memory Usage
	16.1.2 Sessions
	16.1.3 Graphs

	16.2 About Vertex and Edge IDs
	16.3 Graph Management in the Graph Server (PGX)
	16.3.1 Reading Graphs from Oracle Database into the Graph Server (PGX)
	16.3.1.1 Enabling Lazy Loading of Graphs
	16.3.1.2 Reading Entity Providers at the Same SCN
	16.3.1.3 Progress Reporting and Estimation for Graph Loading
	16.3.1.4 Graph Configuration Options
	16.3.1.5 Data Loading Security Best Practices
	16.3.1.6 Data Format Support Matrix
	16.3.1.7 Immutability of Loaded Graphs

	16.3.2 Storing a Graph Snapshot on Disk
	16.3.3 Publishing a Graph
	16.3.4 Deleting a Graph
	16.3.5 Graph Sharing Options and Validating Graph Permissions

	16.4 Keeping the Graph in Oracle Database Synchronized with the Graph Server
	16.4.1 Synchronizing a SQL Property Graph
	16.4.2 Synchronizing a PGQL Property Graph
	16.4.3 Synchronizing a Published Graph

	16.5 Optimizing Graphs for Read Versus Updates in the Graph Server (PGX)
	16.6 Executing Built-in Algorithms
	16.6.1 About Built-In Algorithms in the Graph Server (PGX)
	16.6.2 Getting the Progress of a Running Algorithm
	16.6.3 Centrality Algorithms
	16.6.3.1 Degree Centrality
	16.6.3.2 Closeness Centrality
	16.6.3.3 Harmonic Centrality
	16.6.3.4 Vertex Betweenness Centrality
	16.6.3.5 PageRank

	16.6.4 Running the Triangle Counting Algorithm

	16.7 Using Custom PGX Graph Algorithms
	16.7.1 Writing a Custom PGX Algorithm
	16.7.1.1 Collections
	16.7.1.2 Iteration
	16.7.1.3 Reductions

	16.7.2 Compiling and Running a Custom PGX Algorithm
	16.7.3 Example Custom PGX Algorithm: PageRank
	16.7.4 Tracking the Progress of a Running Custom PGX Graph Algorithm

	16.8 Creating Subgraphs
	16.8.1 About Filter Expressions
	16.8.2 Using a Simple Filter to Create a Subgraph
	16.8.3 Using a Complex Filter to Create a Subgraph
	16.8.4 Using a Vertex Set to Create a Bipartite Subgraph

	16.9 User-Defined Functions (UDFs) in PGX
	16.10 Using Graph Server (PGX) as a Library
	16.10.1 Using the PGX JDBC Driver when Graph Server (PGX) is Utilized as a Library


	17 Using the Machine Learning Library (PgxML) for Graphs
	17.1 Using the DeepWalk Algorithm
	17.1.1 Loading a Graph
	17.1.2 Building a Minimal DeepWalk Model
	17.1.3 Building a Customized DeepWalk Model
	17.1.4 Training a DeepWalk Model
	17.1.5 Getting the Loss Value For a DeepWalk Model
	17.1.6 Computing Similar Vertices for a Given Vertex
	17.1.7 Computing Similar Vertices for a Vertex Batch
	17.1.8 Getting All Trained Vertex Vectors
	17.1.9 Storing a Trained DeepWalk Model
	17.1.9.1 Storing a Trained Model in Another Database

	17.1.10 Loading a Pre-Trained DeepWalk Model
	17.1.10.1 Loading a Pre-Trained Model From Another Database

	17.1.11 Destroying a DeepWalk Model

	17.2 Using the Supervised GraphWise Algorithm (Vertex Embeddings and Classification)
	17.2.1 Loading a Graph
	17.2.2 Building a Minimal GraphWise Model
	17.2.3 Advanced Hyperparameter Customization
	17.2.4 Building a GraphWise Model Using Partitioned Graphs
	17.2.5 Supported Property Types for Supervised GraphWise Model
	17.2.6 Classification Versus Regression Models on Supervised GraphWise Models
	17.2.7 Setting a Custom Loss Function and Batch Generator (for Anomaly Detection)
	17.2.8 Training a Supervised GraphWise Model
	17.2.9 Getting the Loss Value For a Supervised GraphWise Model
	17.2.10 Getting the Training Log for a Supervised GraphWise Model
	17.2.11 Inferring the Vertex Labels for a Supervised GraphWise Model
	17.2.12 Evaluating the Supervised GraphWise Model Performance
	17.2.13 Inferring Embeddings for a Supervised GraphWise Model
	17.2.13.1 Inferring Embeddings for a Model in Another Database

	17.2.14 Storing a Trained Supervised GraphWise Model
	17.2.15 Loading a Pre-Trained Supervised GraphWise Model
	17.2.16 Destroying a Supervised GraphWise Model
	17.2.17 Explaining a Prediction of a Supervised GraphWise Model

	17.3 Using the Supervised EdgeWise Algorithm (Edge Embeddings and Classification)
	17.3.1 Loading a Graph
	17.3.2 Building a Minimal Supervised EdgeWise Model
	17.3.3 Advanced Hyperparameter Customization
	17.3.4 Applying EdgeWise for Partitioned Graphs
	17.3.5 Supported Property Types for Supervised EdgeWise Model
	17.3.6 Classification Versus Regression on Supervised EdgeWise Models
	17.3.7 Setting a Custom Loss Function and Batch Generator (for Anomaly Detection)
	17.3.8 Setting the Edge Embedding Production Method
	17.3.9 Training a Supervised EdgeWise Model
	17.3.10 Getting the Loss Value for a Supervised EdgeWise Model
	17.3.11 Getting the Training Log for a Supervised EdgeWise Model
	17.3.12 Inferring Edge Labels for a Supervised EdgeWise Model
	17.3.13 Evaluating Model Performance
	17.3.14 Inferring Embeddings for a Supervised EdgeWise Model
	17.3.15 Storing a Supervised EdgeWise Model
	17.3.16 Loading a Pre-Trained Supervised EdgeWise Model
	17.3.17 Destroying a Supervised EdgeWise Model
	17.3.18 Example: Predicting Ratings on the Movielens Dataset

	17.4 Using the Unsupervised GraphWise Algorithm (Vertex Embeddings)
	17.4.1 Loading a Graph
	17.4.2 Building a Minimal Unsupervised GraphWise Model
	17.4.3 Advanced Hyperparameter Customization
	17.4.4 Supported Property Types for Unsupervised GraphWise Model
	17.4.5 Building an Unsupervised GraphWise Model Using Partitioned Graphs
	17.4.6 Training an Unsupervised GraphWise Model
	17.4.7 Getting the Loss Value for an Unsupervised GraphWise Model
	17.4.8 Getting the Training Log for an Unsupervised GraphWise Model
	17.4.9 Inferring Embeddings for an Unsupervised GraphWise Model
	17.4.10 Classifying the Vertices Using the Obtained Embeddings
	17.4.11 Storing an Unsupervised GraphWise Model
	17.4.12 Loading a Pre-Trained Unsupervised GraphWise Model
	17.4.13 Destroying an Unsupervised GraphWise Model
	17.4.14 Explaining a Prediction for an Unsupervised GraphWise Model

	17.5 Using the Unsupervised EdgeWise Algorithm
	17.5.1 Loading a Graph
	17.5.2 Building a Minimal Unsupervised EdgeWise Model
	17.5.3 Advanced Hyperparameter Customization
	17.5.4 Supported Property Types for Unsupervised EdgeWise Model
	17.5.5 Applying Unsupervised EdgeWise for Partitioned Graphs
	17.5.6 Setting the Edge Combination Production Method
	17.5.7 Training an Unsupervised EdgeWise Model
	17.5.8 Getting the Loss Value for an Unsupervised EdgeWise Model
	17.5.9 Getting the Training Log for an Unsupervised EdgeWise Model
	17.5.10 Inferring Embeddings for an Unsupervised EdgeWise Model
	17.5.11 Classifying the Edges Using the Obtained Embeddings
	17.5.12 Storing an Unsupervised EdgeWise Model
	17.5.13 Loading a Pre-Trained Unsupervised EdgeWise Model
	17.5.14 Destroying an Unsupervised Anomaly Detection GraphWise Model
	17.5.15 Example: Computing Edge Embeddings on the Movielens Dataset

	17.6 Using the Unsupervised Anomaly Detection GraphWise Algorithm (Vertex Embeddings and Anomaly Scores)
	17.6.1 Loading a Graph
	17.6.2 Building a Minimal Unsupervised Anomaly Detection GraphWise Model
	17.6.3 Advanced Hyperparameter Customization
	17.6.4 Building an Unsupervised Anomaly Detection GraphWise Model Using Partitioned Graphs
	17.6.5 Training an Unsupervised Anomaly Detection GraphWise Model
	17.6.6 Getting the Loss Value for an Unsupervised Anomaly Detection GraphWise Model
	17.6.7 Inferring Embeddings for an Unsupervised Anomaly Detection GraphWise Model
	17.6.8 Inferring Anomalies
	17.6.9 Storing an Unsupervised Anomaly Detection GraphWise Model
	17.6.10 Loading a Pre-Trained Unsupervised Anomaly Detection GraphWise Model
	17.6.11 Destroying an Unsupervised Anomaly Detection GraphWise Model

	17.7 Using the Pg2vec Algorithm
	17.7.1 Loading a Graph
	17.7.2 Building a Minimal Pg2vec Model
	17.7.3 Building a Customized Pg2vec Model
	17.7.4 Training a Pg2vec Model
	17.7.5 Getting the Loss Value For a Pg2vec Model
	17.7.6 Computing Similar Graphlets for a Given Graphlet
	17.7.7 Computing Similars for a Graphlet Batch
	17.7.8 Inferring a Graphlet Vector
	17.7.9 Inferring Vectors for a Graphlet Batch
	17.7.10 Storing a Trained Pg2vec Model
	17.7.11 Loading a Pre-Trained Pg2vec Model
	17.7.12 Destroying a Pg2vec Model

	17.8 Model Repository and Model Stores
	17.8.1 Database-Backed Model Repository


	18 Executing PGQL Queries Against the Graph Server (PGX)
	18.1 Getting Started with PGQL
	18.2 Creating Property Graphs Using Options
	18.3 Supported PGQL Features and Limitations on the Graph Server (PGX)
	18.3.1 Support for Selecting All Properties
	18.3.2 Unnesting of Variable-Length Path Queries
	18.3.3 Using INTERVAL Literals in PGQL Queries
	18.3.4 Using Path Modes with PGQL
	18.3.5 Support for PGQL Lateral Subqueries
	18.3.6 Support for PGQL GRAPH_TABLE Operator
	18.3.7 Limitations on Quantifiers
	18.3.8 Limitations on WHERE and COST Clauses in Quantified Patterns

	18.4 Java APIs for Executing CREATE PROPERTY GRAPH Statements
	18.5 Python APIs for Executing CREATE PROPERTY GRAPH Statements
	18.6 Executing PGQL Queries Using the PGX JDBC Driver
	18.6.1 Limitations of the PGX JDBC Driver
	18.6.2 PGX Data Type Compatibility and Casting

	18.7 Java APIs for Executing SELECT Queries
	18.7.1 Executing SELECT Queries Against a Graph in the Graph Server (PGX)
	18.7.2 Executing SELECT Queries Against a PGX Session
	18.7.3 Iterating Through a Result Set
	18.7.4 Printing a Result Set

	18.8 Java APIs for Executing UPDATE Queries
	18.8.1 Updatability of Graphs Through PGQL
	18.8.2 Executing UPDATE Queries Against a Graph in the Graph Server (PGX)
	18.8.3 Executing UPDATE Queries Against a PGX Session
	18.8.4 Altering the Underlying Schema of a Graph

	18.9 Python APIs for Executing UPDATE Queries
	18.10 PGQL Queries with Partitioned IDs
	18.11 Security Tools for Executing PGQL Queries
	18.11.1 Using Bind Variables
	18.11.2 Using Identifiers in a Safe Manner

	18.12 Best Practices for Tuning PGQL Queries
	18.12.1 Memory Allocation
	18.12.2 Parallelism
	18.12.3 Query Plan Explaining


	19 REST Endpoints for the Graph Server
	19.1 Graph Server REST API Version 2
	19.1.1 Get an Authentication Token
	19.1.2 Refresh an Authentication Token
	19.1.3 Get Graphs
	19.1.4 Run a PGQL Query
	19.1.5 Get the Database Version
	19.1.6 Get User
	19.1.7 Asynchronous REST Endpoints
	19.1.7.1 Run an Asynchronous PGQL Query
	19.1.7.2 Check Asynchronous Query Completion
	19.1.7.3 Retrieve Asynchronous Query Result
	19.1.7.4 Cancel an Asynchronous Query Execution


	19.2 Graph Server REST API Version 1
	19.2.1 Login
	19.2.2 Get Graphs
	19.2.3 Run a PGQL Query
	19.2.4 Get User
	19.2.5 Logout
	19.2.6 Asynchronous REST Endpoints
	19.2.6.1 Run an Asynchronous PGQL Query
	19.2.6.2 Check Asynchronous Query Completion
	19.2.6.3 Retrieve Asynchronous Query Result
	19.2.6.4 Cancel an Asynchronous Query Execution




	Part VI Graph Visualization Application
	20 About the Graph Visualization Application
	21 Using the Graph Visualization Application
	21.1 Visualizing PGQL Queries on Graphs Loaded Into the Graph Server (PGX)
	21.2 Visualizing PGQL Queries on PGQL Property Graphs
	21.3 Visualizing Graph Queries on SQL Property Graphs
	21.4 Graph Visualization Modes and Graph Legend
	21.5 Graph Visualization Settings

	22 Embedding the Graph Visualization Library in a Web Application

	Part VII Graph Server (PGX) Advanced User Guide
	23 Graph Server (PGX) Configuration Options
	23.1 Configuration Parameters for the Graph Server (PGX) Engine
	23.2 Configuration Parameters for Connecting to the Graph Server (PGX)

	24 Memory Consumption by the Graph Server (PGX)
	24.1 Memory Management
	24.1.1 Configuring On-Heap Limits
	24.1.2 Configuring Off-Heap Limits


	25 Deploying Oracle Graph Server Behind a Load Balancer
	25.1 Using HAProxy for PGX Load Balancing and High Availability
	25.2 Deploying Graph Server (PGX) Using OCI Load Balancer
	25.3 Health Check in the Load Balancer

	26 Namespaces and Sharing
	26.1 Defining Graph Names
	26.2 Retrieving Graphs by Name
	26.3 Checking Used Names
	26.4 Property Name Resolution and Graph Mutations

	27 PGX Programming Guides
	27.1 Design of the Graph Server (PGX) API
	27.2 Data Types and Collections in the Graph Server (PGX)
	27.2.1 Using Collections and Maps
	27.2.1.1 Collection Data Types
	27.2.1.1.1 Graph-Bound Collections
	27.2.1.1.2 Session-Bound Collections

	27.2.1.2 Map Data Types
	27.2.1.2.1 Graph-Bound Maps
	27.2.1.2.2 Session-Bound Maps


	27.2.2 Using Datetime Data Types
	27.2.2.1 Loading Datetime Data
	27.2.2.2 Specifying Custom Datetime Formats
	27.2.2.3 APIs for Accessing Datetime Data
	27.2.2.4 Querying Datetime Data Using PGQL
	27.2.2.5 Accessing Datetimes from PGQL Result Sets


	27.3 Handling Asynchronous Requests in Graph Server (PGX)
	27.3.1 Blocking Operation
	27.3.2 Chaining Operation
	27.3.3 Cancelling Operation
	27.3.4 Handling Concurrent Asynchronus Operations

	27.4 Graph Client Sessions
	27.4.1 Creating a Session
	27.4.2 Updating Session Idle Timeout
	27.4.3 Destroying a Session

	27.5 Graph Mutation and Subgraphs
	27.5.1 Altering Graphs
	27.5.1.1 Loading Or Removing Additional Vertex or Edge Providers
	27.5.1.1.1 Loading Vertex Providers
	27.5.1.1.2 Loading Edge Providers
	27.5.1.1.3 Adding Additional Empty Vertex or Edge Providers
	27.5.1.1.4 Removing Vertex or Edge Providers
	27.5.1.1.5 Applying the Alteration and Building a Graph or Snapshot


	27.5.2 Simplifying and Copying Graphs
	27.5.3 Transposing Graphs
	27.5.4 Undirecting Graphs
	27.5.5 Advanced Multi-Edge Handling
	27.5.5.1 Picking
	27.5.5.2 Merging
	27.5.5.3 StrategyBuilder in General

	27.5.6 Creating a Subgraph
	27.5.7 Creating a Bipartite Subgraph
	27.5.8 Creating a Sparsified Subgraph

	27.6 Graph Builder and Graph Change Set
	27.6.1 Building Graphs Using GraphBuilder Interface
	27.6.1.1 Creating a Simple Graph
	27.6.1.2 Adding a Vertex Property
	27.6.1.3 Using Strings as Vertex Identifiers
	27.6.1.4 Referencing a Vertex for Creating Edges
	27.6.1.5 Adding an Edge Property and a Label
	27.6.1.6 Using Graph Builder with Implicit IDs

	27.6.2 Modifying Loaded Graphs Using ChangeSet
	27.6.2.1 Modifying Vertices
	27.6.2.2 Adding Edges
	27.6.2.3 GraphChangeSet with Partitioned IDs
	27.6.2.4 Error Handling when Using a ChangeSet


	27.7 Managing Transient Data
	27.7.1 Managing Transient Properties
	27.7.2 Managing Collections and Scalars

	27.8 Graph Versioning
	27.8.1 Configuring the Snapshots Source
	27.8.2 Creating a Snapshot via Refreshing
	27.8.3 Creating a Snapshot via ChangeSet
	27.8.4 Checking Out the Latest Snapshots of a Graph
	27.8.5 Checking Out Different Snapshots of a Graph
	27.8.6 Directly Loading a Specific Snapshot of a Graph

	27.9 Labels and Properties
	27.9.1 Setting and Getting Property Values
	27.9.2 Getting Label Values

	27.10 Filter Expressions
	27.10.1 Syntax
	27.10.2 Type System
	27.10.3 Path Finding Filters
	27.10.4 Subgraph Filters
	27.10.5 Operations on Filter Expressions
	27.10.5.1 Defining Filter Expressions
	27.10.5.2 Defining Result Set Filters
	27.10.5.3 Creating a Subgraph from PGQL Result Set
	27.10.5.4 Defining Collection Filters
	27.10.5.5 Creating a Subgraph from Collection Filters
	27.10.5.6 Combining Filter Expressions
	27.10.5.7 Creating a Subgraph Using Filter Expressions with Partitioned IDs


	27.11 Advanced Task Scheduling Using Execution Environments
	27.11.1 Prerequisites for Using the Enterprise Scheduler
	27.11.2 Enabling Enterprise Scheduler Features
	27.11.3 Retrieving and Inspecting the Execution Environment
	27.11.4 Modifying and Submitting Tasks Under an Updated Environment
	27.11.5 Using Lambda Syntax
	27.11.6 Enterprise Scheduler Configuration Guide

	27.12 Admin API
	27.12.1 Get a Server Instance
	27.12.2 Get Inspection Data
	27.12.3 Get Active Sessions
	27.12.4 Get Cached Graphs
	27.12.5 Get Published Graphs
	27.12.6 Get Currently Loading Graphs
	27.12.7 Get Tasks
	27.12.8 Get Available Memories

	27.13 PgxFrames Tabular Data-Structure
	27.13.1 Converting PgqlResultSet to a PgxFrame
	27.13.2 Storing a PgxFrame to a Database
	27.13.3 Storing a PgxFrame to a CSV File
	27.13.4 Union of PGX Frames
	27.13.5 Joining PGX Frames
	27.13.6 Printing the Content of a PgxFrame
	27.13.7 Destroying a PgxFrame
	27.13.8 Loading and Storing Vector Properties
	27.13.9 Flattening Vector Properties
	27.13.10 PgxFrame Helpers
	27.13.11 Converting a PgxFrame to PgqlResultSet
	27.13.12 PgxFrame to Pandas DataFrame Conversions
	27.13.13 Loading a PgxFrame from a Database
	27.13.14 Loading a PgxFrame from a CSV File
	27.13.15 Loading a PgxFrame from Client-Side Data
	27.13.16 Creating a Graph from Multiple PgxFrame Objects


	28 Working with Files Using the Graph Server (PGX)
	28.1 Loading Graph Data from Files
	28.1.1 Graph Configuration for Loading from File
	28.1.2 Specifying the File Path
	28.1.3 Supported File Access Protocols
	28.1.4 Plain Text Formats
	28.1.4.1 Comma-Separated Values (CSV)
	28.1.4.2 Adjacency List (ADJ_LIST)
	28.1.4.3 Edge List (EDGE_LIST)
	28.1.4.4 Two Tables (TWO_TABLES)

	28.1.5 XML File Formats
	28.1.6 Binary File Formats

	28.2 Loading Graph Data in Parallel from Multiple Files
	28.3 Exporting Graphs Into a File
	28.3.1 Exporting a Graph to Disk

	28.4 Exporting a Graph into Multiple Files

	29 Log Management in the Graph Server (PGX)
	29.1 Configuring Logback Logging


	Part VIII Supplementary Information for Property Graph Support
	A Mapping Graph Server Roles to Default Privileges
	B Disabling Transport Layer Security (TLS) in Graph Server
	C Migrating Property Graph Applications from Before Release 21c
	D Upgrading From Graph Server and Client 20.4.x to 21.x
	E Third-Party License Information for Oracle Graph Server and Client
	E.1 Third-Party License Information for Graph Visualization Toolkit


	Index

