17.3.2 Building a Minimal Supervised EdgeWise Model
You can build an EdgeWise model using the minimal
configuration and default hyper-parameters as described in the following code. Note that
even though only one feature property is needed (either on vertices with
setVertexInputPropertyNames or edges with
setEdgeInputPropertyNames) for the model to work, you can specify as many
as required.
opg4j> var model = analyst.supervisedEdgeWiseModelBuilder().
setVertexInputPropertyNames("vertex_features").
setEdgeInputPropertyNames("edge_features").
setEdgeTargetPropertyName("label").
build()SupervisedEdgeWiseModel model = analyst.supervisedEdgeWiseModelBuilder()
.setVertexInputPropertyNames("vertex_features")
.setEdgeInputPropertyNames("edge_features")
.setEdgeTargetPropertyName("labels")
.build();params = dict(edge_target_property_name="label",
vertex_input_property_names=["vertex_features"],
edge_input_property_names=["edge_features"])
model = analyst.supervised_edgewise_builder(**params)