
Oracle® Database
Property Graph Visualization Developer's
Guide and Reference

G26126-01
April 2025

Oracle Database Property Graph Visualization Developer's Guide and Reference,

G26126-01

Copyright © 2025, Oracle and/or its affiliates.

Primary Author: Lavanya Jayapalan

Contributors: Melliyal Annamalai, Korbinian Schmid, Diego Ramirez, Jorge Barba, David Berrospe

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Related Documents vi

Conventions vi

1 Introduction to Visualization in Oracle Graph

1.1 About Oracle Graph Visualization Library 1-1

1.2 Getting Started with Oracle Graph Visualization Library 1-1

2 Interactive Graph Visualization Features

2.1 Layouts 2-1

2.1.1 Circle Layout 2-2

2.1.2 Concentric Layout 2-3

2.1.3 Force Layout 2-3

2.1.4 Geographical Layout 2-5

2.1.5 Grid Layout 2-6

2.1.6 Hierarchical Layout 2-7

2.1.7 Radial Layout 2-8

2.1.8 Random Layout 2-8

2.2 Exploration Modes 2-9

2.3 Schema View 2-10

2.3.1 Schema View Modes 2-11

2.3.2 Schema Validation 2-11

2.3.3 Schema View Configuration Parameters 2-12

2.3.4 Validation Rules 2-13

3 Graph Visualization Library Reference

3.1 Properties 3-1

3.1.1 types 3-2

3.1.2 data 3-2

iii

3.1.3 settings 3-3

3.1.3.1 Style Expressions 3-15

3.1.3.2 Rule Expressions 3-15

3.1.4 featureFlags 3-16

3.1.5 paginate 3-17

3.1.6 expand 3-17

3.1.7 eventHandlers 3-17

3.1.8 persist 3-18

3.1.9 fetchActions 3-18

3.1.10 search 3-18

3.1.11 updateFilter 3-18

3.1.12 updateEvolution 3-19

3.1.13 updateSelectedOption 3-19

3.1.14 updateSearchValue 3-19

3.1.15 updateGraphData 3-19

3.2 Events 3-19

4 Usage Examples

4.1 Base Styles 4-1

4.2 Default Legend Styles 4-5

4.3 Themes 4-9

4.4 Children 4-13

4.5 Interpolation 4-16

4.5.1 Linear Interpolation 4-16

4.5.2 Discrete Interpolation 4-20

4.5.3 Color Interpolation 4-24

4.6 Rule-Based Styles 4-26

4.7 Animations 4-30

4.8 Icons 4-34

4.9 Graph Schema Visualization 4-36

Index

iv

List of Figures

2-1 Circle Layout 2-2

2-2 Concentric Layout 2-3

2-3 Default Force Layout 2-4

2-4 Cluster Layout 2-5

2-5 Geographical Layout 2-5

2-6 Grid Layout 2-7

2-7 Hierarchical 2-7

2-8 Radial Layout 2-8

2-9 Random Layout 2-8

2-10 Graph Exploration Modes 2-9

2-11 Visualizing Schema and Graph Views 2-10

2-12 Schema View Modes 2-11

4-1 Using a Custom Base Style 4-5

4-2 Default Legends 4-7

4-3 Custom Legends 4-9

4-4 Applying Dark Theme 4-11

4-5 Applying Custom Theme 4-13

4-6 Visualizing Children Nodes 4-15

4-7 Normal Linear Interpolation 4-18

4-8 Linear Interpolation for a Range of Values 4-20

4-9 Discrete Interpolation 4-22

4-10 Discrete Interpolation Using Colors 4-24

4-11 Color Interpolation 4-26

4-12 Using Redwood Icons in Graph Visualization 4-36

4-13 Visualizing Database Schema for the Property Graph 4-41

v

Preface

This documentation provides usage and reference information for the graph visualization
library used in property graph visualization.

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This document is intended for graph developers to build applications using Oracle Graph
Visualization library. It is also applicable for graph users who visualize and analyze property
graphs in applications that use the Graph Visualization library.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Related Documents
For more information, see these following document:

• Oracle Database Graph Developer's Guide for Property Graph

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://docs.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=SPGDG

Convention Meaning

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

vii

1
Introduction to Visualization in Oracle Graph

Oracle Graph enables you to visually explore, interact, and analyze property graphs using the
graph visualization library.

• About Oracle Graph Visualization Library
You can build your own custom property graph visualizations in your applications using the
Graph Visualization library.

• Getting Started with Oracle Graph Visualization Library
Oracle Graph Visualization library is released quarterly with Oracle Graph Server and
Client Releases.

1.1 About Oracle Graph Visualization Library
You can build your own custom property graph visualizations in your applications using the
Graph Visualization library.

The library is built using JavaScript and the Graph Visualization component (@gvt/graphviz) in
the library supports:

• Custom vertex or edge styling based on its properties

• Interactive actions for graph exploration

• Tooltip with vertex and edge details

• Automatic legend

• Multiple graph layouts

• Icons libraries

• Schema View

The Graph Visualization library is used in the following software components:

• The Graph Visualization Application, included with Oracle Graph Server and Client
releases.

• The APEX Graph Visualization plug-in, available in both on-premises and Cloud
environments.

• The Graph Studio Application, which is supported on Oracle Autonomous Database
Serverless.

1.2 Getting Started with Oracle Graph Visualization Library
Oracle Graph Visualization library is released quarterly with Oracle Graph Server and Client
Releases.

Perform the following steps to get started with the Graph Visualization library.

1. Sign in to Oracle Software Delivery Cloud.

2. Enter Oracle Graph Server and Client in the search bar and select the required release.

1-1

http://www.oracle.com/pls/topic/lookup?ctx=property_graph_latest&id=graphviz
http://www.oracle.com/pls/topic/lookup?ctx=property_graph_latest&id=apex-plugin-on-premises
https://docs.oracle.com/en/cloud/paas/autonomous-database/csgru/visualize-and-interact-graph-data-graph-studio.html
https://edelivery.oracle.com

3. Download the V1048066-01 component which contains the Graph Visualization library.

4. Embed the downloaded oracle-graph-visualization-library-25.1.0.zip in your web
application.

See the demo application on GitHub for an example.

Related Topics

• Oracle Graph Server and Client Releases Documentation

Chapter 1
Getting Started with Oracle Graph Visualization Library

1-2

https://github.com/oracle-samples/pgx-samples/tree/master/graphviz-demo
https://docs.oracle.com/en/database/oracle/property-graph/index.html

2
Interactive Graph Visualization Features

Oracle Graph allows you to explore and interact with your graph data when visualizing property
graphs.

The following describes a few selected features:

• Layouts
The Graph Visualization library supports several graph layouts. Each layout has its own
algorithm, which computes the placements of the vertices and edges, affecting the visual
structure of the graph.

• Exploration Modes
The Graph Visualization library supports three different modes for graph exploration.

• Schema View
The Graph Visualization library allows you to visualize a graph's schema in the form of a
property graph.

2.1 Layouts
The Graph Visualization library supports several graph layouts. Each layout has its own
algorithm, which computes the placements of the vertices and edges, affecting the visual
structure of the graph.

You can configure these layouts through the settings option as shown:

Settings:
{
 ...
 layout: <'circle', 'concentric', 'force', 'grid', 'hierarchical', 'preset',
'radial', 'random', 'geographical'>
 ...
}

In addition, you can create custom layouts by passing the layout specific options using the
settings format as shown:

Settings:
{
 ...
 layout: {
 type: 'grid',
 spacing: 5
 }
 ...
}

The following describes the supported layouts in graph visualization.

2-1

• Circle Layout
The circle layout positions the graph vertices in a circle.

• Concentric Layout
The concentric layout positions the graph vertices in concentric circles.

• Force Layout
The force layout aims to create a visually appealing graph. It positions the graph vertices in
the viewport so that all the edges are approximately equal in length and minimizes
crossings between the edges.

• Geographical Layout
The geographical layout allows you to overlay the graph on a map.

• Grid Layout
The grid layout positions the graph vertices in a well-spaced grid.

• Hierarchical Layout
The hierarchical layout organizes the graph using Directed Acyclic Graph (DAG) system. It
is especially suitable for DAGs and trees.

• Radial Layout
The radial layout displays the dependency chain of a graph by using an outwards
expanding tree structure. It can be especially useful if the graph data has a hierarchical
structure and contains many children for each parent vertex.

• Random Layout
The random layout puts the graph vertices in random positions within the viewport.

2.1.1 Circle Layout
The circle layout positions the graph vertices in a circle.

Figure 2-1 Circle Layout

You can configure the spacing property to set the the radius of the circle.

Chapter 2
Layouts

2-2

2.1.2 Concentric Layout
The concentric layout positions the graph vertices in concentric circles.

Figure 2-2 Concentric Layout

You can configure the spacing property to set the minimum spacing between the vertices. It is
basically used for adjusting the radius of the concentric circles.

2.1.3 Force Layout
The force layout aims to create a visually appealing graph. It positions the graph vertices in the
viewport so that all the edges are approximately equal in length and minimizes crossings
between the edges.

The force layout can be used in one of the following modes:

• Standard mode: This is the default mode. In this mode, all vertices of the graph gravitate
towards each other equally regardless of their label or property values.

Chapter 2
Layouts

2-3

Figure 2-3 Default Force Layout

• Cluster mode: You can activate the cluster mode by setting "clusterEnabled": true. In
this mode, vertices within the same cluster are attracted more strongly towards each other
than those in different clusters, or no cluster. This is useful to visualize clusters or
communities of vertices in the graph.
You can define the following properties to configure the cluster layout. Note that you can
use clusterOptions to specify the vertex property which defines the community or cluster
membership of the vertices.

– edgeDistance: Sets every edge to the specified length. This can affect the padding
between the vertices.

– vertexCharge: Influences the underlying forces (for example, to remain within the
viewport, to push vertices away from each other). If clusterEnabled is true, then it
influences the forces among clusters.

– velocityDecay: Determines the speed of the simulation.

– spacing: Determines the spacing between the vertices.

– clusterEnabled: Determines if a cluster based layout is enabled.

– clusterOptions: Related settings for cluster based layout only.

– clusterBy: By default, the cluster layout uses the first element in vertex.labels to
form the cluster. Alternatively, clusterBy can also be set to the property name of a
vertex. In such a case, the clusters will be formed based on the property value.

– hideUnclusteredVertices: Determines whether to display the vertices that do not
belong to any cluster. Default is false.

The following shows an example for cluster layout:

Settings:
{
 ...
 layout:
 {
 type: 'force',
 clusterEnabled: true,
 clusterOptions:
 {
 clusterBy: 'DEPARTMENT_ID',

Chapter 2
Layouts

2-4

 hideUnclusteredVertices: true
 }
 }
}

The example aims to create clusters based on DEPARTMENT_ID. The corresponding
visualization using cluster layout is as shown:

Figure 2-4 Cluster Layout

2.1.4 Geographical Layout
The geographical layout allows you to overlay the graph on a map.

However, this is provided that the latitude and longitude coordinates exist as graph properties
on the graph's vertices.

Figure 2-5 Geographical Layout

Chapter 2
Layouts

2-5

You can configure this layout using the following properties:

• appId: This accepts the app id that is used to fetch the maps from http://
maps.oracle.com/elocation. If a value is not provided, then a generic appId will be used.

• latitude: The vertex property to use for determining the latitude of a vertex.

• longitude: The vertex property to use for determining the longitude of a vertex.

• mapType: You can select the map type in map visualization or graph visualization settings.
Alternatively, you can also provide your own sources and layers.
The following map types are available:

– world_map_mb ("oracle-elocation")

– osm_positron (default)

– osm_bright

– osm_darkmatter

– custom_type
Note that the custom type has the following two additional fields:

* sources: Provide your own sources to be used in the map in JSON format.
Note: Due to security reasons, the attribute property is separate from
visualization.

* layers: Provide layers which you want to display on map in JSON elements array
format. For example:

[{
 "id": "elocation-tiles",
 "type": "raster",
 "source": "oracle-elocation"
}]

• showInfo: Displays an info box in the visualizer (see Figure 2-5) that shows the Latitude
and Longitude of the mouse position and the Zoom Level of the map. Supported values
are true or false.

• showNavigation: Shows the navigation controls towards the top right region of the map.

• markers: Displays location markers on the map. This parameter accepts an array of
objects as shown in the following format:

interface MapMarker {
 longitude: number;
 latitude: number;
 content?: string;
}

2.1.5 Grid Layout
The grid layout positions the graph vertices in a well-spaced grid.

Chapter 2
Layouts

2-6

Figure 2-6 Grid Layout

You can configure the spacing property to set the space between the elements in the grid.

2.1.6 Hierarchical Layout
The hierarchical layout organizes the graph using Directed Acyclic Graph (DAG) system. It is
especially suitable for DAGs and trees.

Figure 2-7 Hierarchical

You can configure this layout using the following properties:

• ranker: Specifies the type of algorithm used to rank the vertices.
Supported algorithms are:

– network-simplex: The Network Simplex algorithm assigns ranks to each vertex in the
input graph and iteratively improves the ranking to reduce the length of the edges.

– tight-tree: The Tight Tree algorithm constructs a spanning tree with tight edges and
adjust the ranks of the input vertex to achieve this. A tight edge is one that has a
length that matches its minlen attribute.

– longest-path: The Longest Path algorithm pushes the vertices to the lowest layer
possible, leaving the bottom ranks wide and the edges longer than necessary.

• rankDirection: Controls the alignment of the ranked vertices. Supported values are: UL
(upper left), UR (upper-right direction), DL (down-left direction), DR (down-right direction), TB
(top-to-bottom direction), BT (bottom-to-top direction), LR (left-to-right direction), RL (right-to-
left direction).

• vertexSeparation: Sets the horizontal separation between the vertices.

• edgeSeparation: Sets the horizontal separation between the edges.

Chapter 2
Layouts

2-7

• rankSeparation: Sets the separation between two ranks(levels) in the graph.

2.1.7 Radial Layout
The radial layout displays the dependency chain of a graph by using an outwards expanding
tree structure. It can be especially useful if the graph data has a hierarchical structure and
contains many children for each parent vertex.

Figure 2-8 Radial Layout

You can configure the spacing property to set the spacing between neighboring vertices if they
share the same parent vertex. If set to zero, no spacing will be applied.

2.1.8 Random Layout
The random layout puts the graph vertices in random positions within the viewport.

Figure 2-9 Random Layout

Chapter 2
Layouts

2-8

2.2 Exploration Modes
The Graph Visualization library supports three different modes for graph exploration.

Figure 2-10 Graph Exploration Modes

The supported modes are:

• Move / Zoom

– If Move / Zoom mode is enabled, you can select and move multiple vertices and edges
simultaneously within the visualization.

– If Move / Zoom mode is disabled, you can freely explore the visualization by panning
and zooming, focussing on specific groups of vertices and edges.

• Fit to Screen

– If Fit to Screen mode is enabled, the visualization automatically adjusts to fit all
vertices and edges within the available space, providing a complete view of the entire
graph.

– If Fit to Screen is disabled, the available space for visualization dynamically expands
as required.

• Toggle Sticky Mode

– If Sticky mode is enabled, the positions of vertices and edges in the graph are flexible.
You can move the vertices and edges around, and their new positions will be retained
until the mode is turned off.

– If Sticky Mode is disabled, the positions of vertices and edges remain fixed. Even if
you attempt to move the vertices around, they will snap back to their original positions
once released.

Using a combination of modes

The following describes various scenarios for using a combination of exploration modes:

• All modes switched off
This provides a full view of the graph, where the positions of the vertices are fixed. You can
navigate around the visualization and zoom in or out as required.

• Move / Zoom mode on, Fit to Screen and Sticky mode off
This allows you to select one or multiple vertices, and is useful for actions like grouping or
expanding. However, the positions of the vertices remain fixed since Sticky mode is
switched off.

• Move / Zoom mode and Fit to Screen on, Sticky mode off

Chapter 2
Exploration Modes

2-9

This mode behaves similarly to the previous case. However, when an action like expand
generates a new set of vertices, the component automatically adjusts its size to fit all new
vertices and edges.

• Move / Zoom mode and Fit to Screen off, Sticky mode on
You can navigate the visualization, zoom in and out, and reposition the vertices. These
changes will be retained until the Sticky mode is turned off.

• Move / Zoom mode and Sticky mode on, Fit to Screen off
You can select multiple vertices and move them around, with their positions retained.
Vertices can also be moved outside the visible region since Fit to Screen mode is switched
off.

• All modes switched on
You can select multiple vertices and move them around, with their new positions retained.
The visualization region will dynamically expand as needed to accommodate these
changes.

2.3 Schema View
The Graph Visualization library allows you to visualize a graph's schema in the form of a
property graph.

In order to enable schema view, you must configure the properties described in Schema View
Configuration Parameters.

Once the schema view is enabled, it will appear along side the graph in the graph visualization
panel as shown:

Figure 2-11 Visualizing Schema and Graph Views

• Schema View Modes
You can switch between Schema view, Graph view, or use both in the graph visualization
panel using the toggle buttons in the toolbar.

• Schema Validation
In addition to rendering the schema of a graph, the Graph Visualization library
automatically validates the provided graph data against the schema if one is available.

Chapter 2
Schema View

2-10

• Schema View Configuration Parameters
In order to enable Schema View in your visualization, you must configure a few related
properties.

• Validation Rules
The graph data must conform to the schema based on the certain validation rules.

2.3.1 Schema View Modes
You can switch between Schema view, Graph view, or use both in the graph visualization
panel using the toggle buttons in the toolbar.

Figure 2-12 Schema View Modes

Depending on which toggle button is active the corresponding view will be displayed. The
following describes more about the supported modes:

• Schema: In this mode, the schema view is displayed spanning the entire visualization.

• Graph (default): In this mode, the graph is displayed spanning the entire visualization.

• Schema and Graph: In this mode, when both the toggle buttons are active, the schema
and graph regions will appear side-by-side with a separator in between, as shown in
Figure 2-11. The separator can be dragged to resize the regions.

It is important to note that depending on your data and settings configurations, either the
Schema or Graph view will be always enabled in the toolbar. If both the toggle buttons are
manually turned off, then it automatically defaults to Graph view.

2.3.2 Schema Validation
In addition to rendering the schema of a graph, the Graph Visualization library automatically
validates the provided graph data against the schema if one is available.

If the graph data conforms to the schema based on the defined validation rules (see Validation
Rules), then the Graph Visualization library initializes without any problems. Also, in the
absence of a schema, the Schema view will not be displayed, and the schema validations will
not be executed.

If the schema validation fails, then the errors will be displayed in the following JSON format:

[{
 errorType : string // Used by consuming application to
summarize or detail the error
 entityType: 'vertex' | 'edge' // Can be used to format the error
message to specify the context
 entityId?: string // Used to identify the entity in the
message
 entityDescriptor?: string[] // Used to represent name or labels of
the entity in the message
 property?: string // Name of the property that failed
validation
 expectedType?: string // Expected type of the property

Chapter 2
Schema View

2-11

 actualType?: string // Actual type of the property
 message?: string // Ready to use message if no further
customization is needed at the consuming side
}]

The consuming applications can then use the message property to obtain the complete
message for display on its interface. They can also derive their own custom message,
summarize errors, or categorize errors using errorType and other properties provided in the
error message.

2.3.3 Schema View Configuration Parameters
In order to enable Schema View in your visualization, you must configure a few related
properties.

The following properties control the behavior of Schema View:

• schema (optional): This provides the data that is shown in a Schema View. This property
takes data in the GraphSchema format that is described in settings. Schema View will not
be supported if this property is not confgured.

• schemaSettings(optional): This defines various settings (for example, styling) to control the
rendering of Schema View. This property follows the Settings format that is described in
settings. schemaSettings.baseStyles and schemaSettings.ruleBasedStyles allow
custom styling of the Schema View. This is similar to settings.baseStyles and
settings.ruleBasedStyles that customize styling for the existing graph view.
If styling is not specified through schemaSettings, then the Graph Visualization library will
use a default styling to render vertices and edges in Schema View. Also, certain features
like pagination, legends, and so on will not apply to Schema View. Therefore, such
attributes will not have any effect even if configured in Settings.

• The Settings interface supports the following additional properties to customize Schema
and Graph views display in the graph visualization panel. See settings for more
information on each of the following properties.

– viewMode (optional): This controls the Schema View and Graph View display. It can
also be used to switch between views at runtime. Supported values are expanded and
collapsed. Schema View mode will be determined by schemaSettings.viewMode and
Graph View mode will be determined by settings.viewMode.

– viewLabel (optional): This specifies a label that is displayed in Schema View or
Graph View. If configured, the value will appear as a label on the top center of the
corresponding view. It will also be used in the tooltip for the Schema View and Graph
View toggle buttons.

– legendState (optional): This specifies whether the legend region in the Graph View is
in expanded or collapsed state. Supported values are expanded and collapsed. This
property will not have any effect when specified in schemaSettings for Schema View
as there is no legend region for this view.

The following shows an example schemaSettings for Schema View.

{"viewMode": "expanded", "viewLabel": "Schema View", "baseStyles":
{ "vertex": { "label": "${properties.labelName}", "color": "blue" }}}

Chapter 2
Schema View

2-12

The following shows an example settings for Graph View.

{"viewMode": "collapsed", "viewLabel": "Graph View", "legendState":
"collapsed", "baseStyles": { "vertex": { "label": "$
{properties.labelName}", "color": "red"}}}

2.3.4 Validation Rules
The graph data must conform to the schema based on the certain validation rules.

The graph data is validated against the schema by verifying the following rules:

• MANDATORY_PROPS_IN_SCHEMA_MISSING_IN_GRAPH: This rule verifies that all the
properties that are marked as mandatory in the schema have values in the graph data.
The following shows a sample error if this validation fails:

{
 errorType: "MANDATORY_PROPS_IN_SCHEMA_MISSING_IN_GRAPH",
 entityType: "vertex",
 entityId: "0",
 entityDescriptor: ["Hermione"],
 property: "id",
 message: "Vertex 'Hermione' with id '0' doesn't have a property 'id'
while it is marked as mandatory in the schema"
}

• ENTITY_IN_SCHEMA_MISSING_IN_GRAPH: This rule verifies that when entities
(vertices or edges) are defined in the schema, the provided graph data also has those
entities in it.
The following shows a sample error if this validation fails:

{
 errorType: "ENTITY_IN_SCHEMA_MISSING_IN_GRAPH",
 entityType: "edge",
 message: "The graph's data doesn't have Edges in it, but is specified
in the schema"
}

• ITEMS_IN_GRAPH_NOT_DEFINED_IN_SCHEMA: This rule verifies that entities (vertices
or edges, labels, or properties) that are present in the graph, have definitions in the
schema.
The following shows a sample error if this validation fails due to edges being present in the
graph data without having edges defined in the schema:

```
{
    errorType: "ITEMS_IN_GRAPH_NOT_DEFINED_IN_SCHEMA",
    entityType: "edge",
    message: "Edge that is present in the graph is not defined in the 
schema."
}
```

Chapter 2
Schema View

2-13

The following shows a sample error if this validation fails due to a label being present in the
graph data without having that label defined in the schema:

```
{
    errorType: "ITEMS_IN_GRAPH_NOT_DEFINED_IN_SCHEMA",
    entityType: "vertex",
    entityDescriptor: ["misc"],
    message: "Vertex with label 'misc' that is present in the graph is not 
defined in the schema."
}
```

The following shows a sample error if this validation fails due to a property being present in
the graph data without having that property defined in the schema:

```
{
    errorType: "ITEMS_IN_GRAPH_NOT_DEFINED_IN_SCHEMA",
    entityType: "vertex",
    entityId: "0",
    entityDescriptor: ["Tom Jones"],
    property: "date",
    message: "Property 'date' of vertex 'Tom Jones' with id '0' that is 
present in the graph is not defined in the schema."
}
```

• TYPE_MISMATCH_BETWEEN_SCHEMA_AND_GRAPH: This rule verifies that the data
type of properties in the graph data conforms with its definition in the schema.
The following shows a sample error if this validation fails:

{
 errorType: "TYPE_MISMATCH_BETWEEN_SCHEMA_AND_GRAPH",
 entityType: "vertex",
 entityDescriptor: ["Mary"],
 property: "id",
 expectedType: "string",
 actualType: "number",
 message: "Vertex 'Mary' has an attribute 'id' of type 'number' while
it is specified to be of type 'string' in the schema"
}

• MISMATCH_BETWEEN_LABELS_IN_SCHEMA: This rule verifies that all properties
defined in the schema across multiple labels do not contradict, when those labels are used
in a vertex or edge of the graph data.
The following shows a sample error if this validation fails:

{
 errorType: "MISMATCH_BETWEEN_LABELS_IN_SCHEMA",
 entityType: "edge",
 entityId: "0",
 entityDescriptor: ["default", "Label 1", "Label 2", "Label 3"],
 property: "id",
 message: "Edge 'default' with id '0' has mismatch in the schema

Chapter 2
Schema View

2-14

definition of 'id' property among its labels 'Label 1', 'Label 2', and
'Label 3'"
}

Chapter 2
Schema View

2-15

3
Graph Visualization Library Reference

This section provides the JavaScript API reference documentation for the Graph Visualization
library.

Learn about the different properties and events supported by the Graph Visualization library.

• Properties

• Events

3.1 Properties
The graph visualization component contains the following properties:

• types
This section describes the custom types supported in the Graph Visualization library.

• data
This section describes the interfaces that support the initial graph data in a visualization.

• settings
This section describes the settings to configure the graph layout, page size, theme,
legends, animation, and so on.

• featureFlags
This section describes the hierarchical flags to hide specified features or group of features.

• paginate
This section describes the callback to retrieve a given page of graph data.

• expand
This section describes the callback to retrieve n-hops neighbors of specified vertices.

• eventHandlers
This section describes the callbacks to handle events triggered by the graph entities
(vertices or edges).

• persist
This section describes the callback to save any graph modification to a datasource.

• fetchActions
This section describes the callback to retrieve actions from a data source and apply them
during the initial loading of the graph.

• search
This section describes the callback to retrieve a list of vertices and edges that matches a
search.

• updateFilter
This section describes the callback to update the list of filters.

• updateEvolution
This section describes the callback to enable or disable the evolution feature.

3-1

• updateSelectedOption
This section describes the callback to update the selected option for smart expand or
smart group.

• updateSearchValue
This section describes the callback to update the value used for live search.

• updateGraphData
This section describes the callback to handle events when the graph data is updated.

3.1.1 types
This section describes the custom types supported in the Graph Visualization library.

type Optional<T> = T | undefined;

type Nullable<T> = T | null;

type TypedMap<T> = Record<string, T>;

type NonEmptyArray<T> = [T, ...T[]];

type VertexSearchResult = Record<Id, Vertex>;

type EdgesSearchResult = Record<Id, Edge>;

type DefaultProps = Record<Id, string | number>;

3.1.2 data
This section describes the interfaces that support the initial graph data in a visualization.

interface TypedArrayMap<TValue = any> {
 [key: string]: TValue;
}

interface Paginable {
 // Number of results used for pagination
 numResults?: number;
}

interface Graph extends Paginable {
 // Graph vertices
 vertices: Vertex[];
 // Graph edges
 edges: Edge[];
}

declare type Id = string | number;

interface Classable {
 // Entity classes used for styling
 classes?: string[];
}

Chapter 3
Properties

3-2

interface Entity extends Classable {
 // Entity id
 id: Id;
 // Arbitrary entity properties
 properties?: TypedMap<string | number | boolean>;
 // Inline style
 style?: Style;
 // Labels associate with entity
 labels?: string[];
}

interface Vertex extends Entity {}

interface Edge extends Entity {
 // Source vertex id
 source: Id;
 // Target vertex id
 target: Id;
}

3.1.3 settings
This section describes the settings to configure the graph layout, page size, theme, legends,
animation, and so on.

interface SearchResult {
 vertices?: VertexSearchResult;
 edges?: EdgesSearchResult;
 defaultProps?: DefaultProps;
}

type Theme = 'light' | 'dark';

type EdgeMarker = 'arrow' | 'none';

type VertexLabelOrientation = 'top' | 'bottom' | 'center' | 'left' | 'right';

type SizeMode = 'compact' | 'normal';

type ExpandedState = 'expanded' | 'collapsed';

type DefaultSettings = {
 // Specifies the default state of the 'Select - Move/Zoom' toggle button in
the toolbar. True activates 'Select' mode and false switches to 'Move/Zoom'
mode.
 interactionActive: Optional<Boolean>;
 // Specifies the default state of the 'Fit to Screen' toggle button in the
toolbar. True activates the button and false deactivates it.
 fitToScreenActive: Optional<Boolean>;
 // Specifies the default state of the 'Sticky mode' toggle button in the
toolbar. True activates the button and false deactivates it.
 stickyActive: Optional<Boolean>;
 // Specifies the default state of the 'Evolution' toggle button in the
toolbar. True activates the button and false deactivates it.
 evolutionActive: Optional<Boolean>;

Chapter 3
Properties

3-3

};

interface Settings {
 // Size of pagination page (default 100).
 pageSize: number;
 // Whether to group edges with the same source and target (default false).
 groupEdges: boolean;
 // Layout type or LayoutSettings (default force).
 layout: LayoutType | Partial<LayoutSettings>;
 // Network Evolution configuration.
 evolution: NestedPartial<Shortcuts<Evolution>>;;
 // Filters correspond to Legend entries that also controls visiblity/
styling highlights.
 // @Deprecated since version 25.1, use ruleBasedStyles instead.
 filters: Filter[];
 // Smart groups settings.
 smartGroup: SmartGroup;
 // Smart expand settings.
 smartExpand: SmartExpand;
 // Enables live search feature.
 searchEnabled: boolean;
 // Escapes HTML content used on vertex/edge tooltip.
 escapeHtml: boolean;
 // Width used for legend area.
 legendWidth: number;
 // Number of hops used for expand action.
 numberOfHops: number;
 // Smart expand used based on Id.
 selectedSmartExpand: Nullable<number>;
 // Smart group used based on Id.
 selectedSmartGroup: Nullable<number>;
 // Size mode determines the size of UI elements (like toolbar buttons,
search region etc).
 // Possible values are 'compact' and 'normal'. If not specified, it will be
computed based on the available page width.
 sizeMode: SizeMode;
 // Property used for live search feature.
 searchValue: string | undefined;
 // Edger marker, can be 'arrow' or 'none'. Default is 'arrow'.
 edgeMarker: EdgeMarker;
 // Flag to show/hide legend of vertices/edges. Default is true.
 showLegend: boolean;
 // Limit of characters that are shown for vertex/edge label.
 charLimit: number;
 // Show title of edge/vertex components.
 showTitle: boolean;
 // Vertex property showed on the visualization.
 vertexLabelProperty: Nullable<string>;
 // Edge property showed on the visualization.
 edgeLabelProperty: Nullable<string>;
 // Orientation for vertex caption.
 vertexLabelOrientation: VertexLabelOrientation;
 // theme settings (default light theme).
 theme: Theme;
 // customized theme settings.
 customTheme: CustomTheme;

Chapter 3
Properties

3-4

 // Limit of characters shown on the vertex/edge tooltip. If not set,
default is 100.
 tooltipCharLimit: Nullable<number>;
 // Styles applied to all vertices and edges
 baseStyles: Styles;
 // Rules correspond to Legend entries that also control visiblity/styling
highlights.
 ruleBasedStyles: RuleBasedStyleSetting[];
// Determines whether the view represented by the Settings (Schema View or
Graph View) is in 'expanded' or 'collapsed' state.
 viewMode?: ExpandedState;
 // Specifies the value shown in the label and tooltip to set the current
view's context ('Schema' or 'Graph')
 viewLabel?: string;
 // Specifies whether the graph Views' legend region is in expanded or
collapsed state. Not applicable for schema settings
 legendState?: ExpandedState;
 // Specifies the default state of various aspects of GVT
 defaults: Partial<DefaultSettings>;
}

export interface PropertySchema {
 // Name of the property.
 name: string;
 // Data type of the property value.
 dataType: 'string' | 'number' | 'date' | 'timestamp';
 // Limits used for validation like Maximum length, Precision / Scale etc
depending on the data type of the property.
 limits?: number[];
 // Specifies if the property should always have a value.
 mandatory?: boolean;
}

//Base interface to VertexLabelSchema and EdgeLabelSchema, holding properties
common to both.
export interface EntityLabelSchema {
 // Specifies the label associated with the schema's vertex or edge.
 labelName: string;
 // Properties defined in the schema.
 properties: PropertySchema[];
}

export interface VertexLabelSchema extends EntityLabelSchema {}

export interface EdgeLabelSchema extends EntityLabelSchema {
 // Specifies which Schema vertex the edge originates from.
 sourceVertexLabel?: string;
 // Specifies which Schema vertex the edge ends at.
 targetVertexLabel?: string;
}

export interface GraphSchema {
 // Vertices of the schema.
 vertices: VertexLabelSchema[];
 // Edges of the schema.
 edges: EdgeLabelSchema[];

Chapter 3
Properties

3-5

}

type FilterComponent = 'vertex' | 'edge';

type ApplyTarget = 'vertex' | 'source' | 'target' | 'edge' | 'ingoing' |
'outgoing';

type FilterOperator = '<' | '<=' | '>' | '>=' | '=' | '!=' | '~' | '*';

interface ElementProperty<T> {
 property: string;
 value: T;
}

// @Deprecated since version 25.1 - use the equivalent BasicCondition instead.
export interface FilterCondition extends ElementProperty<string> {
 operator: FilterOperator;
}

export interface BasicCondition extends ElementProperty<string> {
 operator: FilterOperator;
}

export interface RuleCondition {
 rule: string;
}

interface ExpandCondition extends BasicCondition {
 component: FilterComponent;
}

export type ConditionsOperator = 'and' | 'or';

export interface Conditions<T extends FilterCondition | RuleCondition |
BasicCondition> {
 conditions: T[];
 operator: ConditionsOperator;
}

// Graph animations are applied within the filter properties.
interface GraphAnimation {
 id?: string;
 duration: number;
 timingFunction: string;
 direction?: string;
 keyFrames: KeyFrame[];
 iterationCount?: number;
}

type FilterProperties = {
 colors?: string[];
 classes?: string[];
 // @Deprecated since version 25.1 - use the equivalent RuleBasedStyle
instead.
 sizes?: number[];
 // @Deprecated since version 25.1 - use the equivalent RuleBasedStyle

Chapter 3
Properties

3-6

instead.
 icons?: string[];
 // @Deprecated since version 25.1 - use the equivalent RuleBasedStyle
instead.
 iconColors?: string[];
 // @Deprecated since version 25.1 - use the equivalent RuleBasedStyle
instead.
 image?: string[];
 // @Deprecated since version 25.1 - use the equivalent RuleBasedStyle
instead.
 label?: string[];
 // @Deprecated since version 25.1 - use the equivalent RuleBasedStyle
instead.
 style?: string[];
 // @Deprecated since version 25.1 - use the equivalent RuleBasedStyle
instead.
 animations?: GraphAnimation[][];
 // @Deprecated since version 25.1 - use the equivalent RuleBasedStyle
instead.
 legendTitle?: string[];
 // @Deprecated since version 25.1 - use the equivalent RuleBasedStyle
instead.
 legendDescription?: string[];
};

interface FilterInterpolation {
 // The property on which interpolation is applied.
 property: string;
 // The minimum range for interpolation.
 min?: number;
 // The maximum range for interpolation.
 max?: number;
}

// Different types of aggregation functions are supported.
type AggregationType = 'average' | 'min' | 'max' | 'sum' | 'count' |
'distinctCount';

interface PropertyAggregation {
 // The property of vertex or edge on which aggregation is computed.
 source: string;
 // The type of aggregation function used for computation.
 type: AggregationType;
}

// @Deprecated since version 25.1, use ruleBasedStyles instead.
interface Filter extends FromTemplate {
 // Marks if styling is enabled for a filter item and the vertices/edges
that it controls.
 stylingEnabled?: boolean;
 // Conditions deciding which vertices/edges will be affected by the filter
item.
 conditions?: Conditions<FilterCondition>;
 // The component (vertex/edge) for which the filter is defined.
 component: FilterComponent;
 // The target on which this filter applies (vertex, source, target, edge,

Chapter 3
Properties

3-7

ingoing, outgoing).
 target: ApplyTarget;
 // The various properties (like colors, icons, image, animations) of a
vertex/edge that this filter's state can affect.
 properties: FilterProperties;
 // Marks if aggregation is enabled for a filter item, based on which
computation is performed.
 aggregationEnabled?: boolean;
 // The various aggregation properties configured on this filter.
 aggregation?: PropertyAggregation[];
 // The properties and range on which interpolation will apply.
 interpolation?: FilterInterpolation;
 // References of filter ids.
 filterReferenceIds?: number[];
}

interface RuleBasedStyleSetting extends FromTemplate {
 // Marks if Styling is enabled for a filter item and the vertices/edges
that it controls.
 stylingEnabled?: boolean;
 // Conditions deciding which vertices/edges will be affected by the filter
item.
 conditions?: Conditions<BasicCondition | RuleCondition>;
 // The component for which the filter is defined.
 component: FilterComponent;
 // The target on which this filter applies (vertex, source, target, edge,
ingoing, outgoing).
 target: ApplyTarget;
 // The various properties (like colors, icons, image, animations) of a
vertex/edge that this filter's state can affect.
 properties: FilterProperties;
 // Marks if aggregation is enabled for a filter item, based on which
computation is performed.
 aggregationEnabled?: boolean;
 // The various aggregation properties configured on this filter.
 aggregation?: PropertyAggregation[];
 // The properties and range on which interpolation will apply.
 interpolation?: FilterInterpolation;
 // References of filter ids.
 filterReferenceIds?: number[];
 // Legend title for the rule.
 legendTitle?: string;
 // Style for modifiers. Keys can be selected, unselected, group, hover.
 modifierStyles?: TypedMap<VertexStyle | EdgeStyle>;
 // Properties for animations.
 animations?: GraphAnimation[][];
 // Marks if the rule is a default rule.
 isDefaultRule?: boolean;
}

interface LegendEntry extends Filter, RuleBasedStyleSetting{
 // The title of the legend entry when the filter is shown in the legend
area.
 legendTitle?: string[];
 // Marks if the legend entry is visible in the legend area.
 legendEntryVisible: boolean;

Chapter 3
Properties

3-8

 // The style of legend entry in the legend area.
 style: Partial<VertexStyle> | Partial<EdgeStyle>;
 // The vertices / edges on which this legend entry has influence.
 filteredNodes: Vertex[] | Edge[];
 // The style is from RuleBasedSetting and will be applied to elements that
match the rule.
 toApplyStyle?: Partial<VertexStyle> | Partial<EdgeStyle>;
}

type LayoutSettings =
 | CircleLayoutSettings
 | ConcentricLayoutSettings
 | ForceLayoutSettings
 | GridLayoutSettings
 | HierarchicalLayoutSettings
 | PresetLayoutSettings
 | RadialLayoutSettings
 | RandomLayoutSettings;

type LayoutType = 'circle' | 'concentric' | 'force' | 'grid' | 'hierarchical'
| 'preset' | 'radial' | 'random';

interface BaseLayoutSettings {
 type: LayoutType;
}

interface SpacingLayoutSettings {
 // Spacing among vertices in multiples of vertex radius.
 spacing: number;
}

interface CircleLayoutSettings extends BaseLayoutSettings,
SpacingLayoutSettings {
 type: 'circle';
}

interface ClusterOptions {
 clusterBy?: string; //vertex property
 hideUnclusteredVertices?: boolean;
}

interface ConcentricLayoutSettings extends BaseLayoutSettings,
SpacingLayoutSettings {
 type: 'concentric';
}

interface ForceLayoutSettings extends BaseLayoutSettings,
SpacingLayoutSettings {
 type: 'force';
 alphaDecay: number; // (default 0.01)
 velocityDecay: number; // (default 0.1)
 edgeDistance: number; // (default 100)
 vertexCharge: number; // (default -60)
 clusterEnabled: boolean; // (default false)
 clusterOptions?: ClusterOptions;
}

Chapter 3
Properties

3-9

// When selecting grid layout, if neither rows or columns are defined, the
graph will be displayed in a square grid.
// If rows are selected, it will be displayed in a grid with that many rows.
// If columns are selected it will be displayed in a grid witht that many
columns.
// If both rows and columns are selected, only the rows will be taken into
consideration.
interface GridLayoutSettings extends BaseLayoutSettings,
SpacingLayoutSettings {
 type: 'grid';
 rows?: number;
 columns?: number;
}

type HierarchicalRankDirection =
 | 'UL' // Up to left
 | 'UR' // Up to right
 | 'DL' // Down to left
 | 'DR' // Down to right
 | 'TB' // Top to bottom
 | 'BT' // Bottom to top
 | 'LR' // Left to right
 | 'RL'; // Right to left

type HierarchicalRanker = 'network-simplex' | 'tight-tree' | 'longest-path';

interface HierarchicalLayoutSettings extends BaseLayoutSettings {
 type: 'hierarchical';
 // Default is 'TB'.
 rankDirection: HierarchicalRankDirection;
 // Default is 'network-simplex'.
 ranker: HierarchicalRanker;
 vertexSeparation?: number;
 edgeSeparation?: number;
 rankSeparation?: number;
}

interface PresetLayoutSettings extends BaseLayoutSettings {
 type: 'preset';
 // Property of the vertex used as x coordinate.
 x: string;
 // Property of the vertex used as y coordinate.
 y: string;
}

interface RadialLayoutSettings extends BaseLayoutSettings,
SpacingLayoutSettings {
 type: 'radial';
}

interface RandomLayoutSettings extends BaseLayoutSettings {
 type: 'random';
}

interface MapMarker {

Chapter 3
Properties

3-10

 longitude: number;
 latitude: number;
 content?: string;
}

// Types of maps.
type MapType = 'osm_positron' | 'osm_bright' | 'osm_darkmatter' |
'world_map_mb' | 'custom_type';

interface GeographicalLayoutSettings extends BaseLayoutSettings {
 type: 'geographical';
 longitude: string;
 latitude: string;
 appId?: string;
 mapType?: MapType;
 showInfo?: boolean;
 showNavigation?: boolean;
 layers?: string;
 sources?: string;
 markers?: MapMarker[];
}

interface EvolutionEntity {
 // Start property.
 start: string;
 // End property.
 end?: string;
}

interface Evolution {
 // Height of the UI component (default is 100).
 height: number;
 // Type of the chart (default is 'bar').
 chart: 'bar' | 'line';
 // Aggregation granularity in given unit (default is 1).
 granularity: number;
 // Time unit or undefined for numbers (default is undefined).
 unit?: 'second' | 'minute' | 'hour' | 'day' | 'week' | 'month' | 'year';
 // Vertex Evolution properties (or just string specifying Start property).
 vertex?: string | EvolutionEntity;
 // Edge Evolution properties (or just string specifying Start property).
 edge?: string | EvolutionEntity;
 // Defines exclusion of values.
 exclude: {
 // Array of excluded values.
 values: (string | number)[];
 // Whether to always show or hide excluded values (default is false).
 show: boolean;
 };
 // Playback options.
 playback: {
 // Number of vertex / edge changes per step.
 step: number;
 // Number of milliseconds between steps.
 timeout: number;
 };

Chapter 3
Properties

3-11

 // If turned on, network evolution will keep the original vertex positions
of the graph
 // when vertices and edges unfold during playback.
 preservePositions: boolean;
 // Requires a string that represents the format in which the date must be
displayed.
 // The format must include either YYYY, MM, or DD. Otherwise, it will be
ignored.
 // If not provided, the following defaults apply:
 // When displaying units of days, only the day will be displayed (1, 15,
30, and so on).
 // When displaying months only the tag of the month will be displayed (Jan,
Feb, and so on).
 // When displaying years, only the year wil be displayed (2001, 1999, and
so on).
 // If the time window between the first date in the graph and the last date
 // in the graph is too big, such that the displayed time label cannot fit,
it will
 // change to the next bigger unit. For example, if the unit is days and the
labels cannot fit,
 // then it will attempt to use a month label. In case a month label is too
big, then a year label will be used.
 labelFormat?: string;
 axis?: 'vertices' | 'edges' | 'both';
}

type SmartExplorerType = 'expand' | 'group';

interface FromTemplate {
 _fromTemplate?: boolean;
 _id?: number | string;
}

interface SmartExplorer extends FromTemplate {
 readonly type: SmartExplorerType;
 name: string;
}

interface SmartExpand extends SmartExplorer {
 readonly type: 'expand';
 numberOfHops: Optional<number>;
 navigation: Conditions<ExpandCondition>;
 destination: Conditions<ExpandCondition>;
}

interface SmartGroup extends SmartExplorer {
 readonly type: 'group';
 automatic: boolean;
 enabled: boolean;
 groupBy?: string;
 conditions: Conditions<ExpandCondition>;
}

type Theme = 'light' | 'dark';

interface CustomTheme {

Chapter 3
Properties

3-12

 backgroundColor?: string;
 textColor?: string;
}

type Styles = TypedMap<VertexStyle | EdgeStyle>;

interface Style extends ElementPosition {
 // Default is (vertex: lightgray, edge: #C0C0C0).
 color: string;
 // Default is 1.
 opacity: number;
 // Css filter. Default is none.
 filter: string;
 // Label settings or just label text. It is null for no label.
 label: Nullable<LabelStyle>;
 // Legend style or just legend text. It is null for no legend.
 legend: Nullable<this & { text: string }>;
 // Definitions of child elements (for example, vertex / edge badges).
 children: Nullable<TypedMap<_VertexStyle & Classable>>;
}

interface ImageStyle {
 // Image url. Default is undefined.
 url: string;
 // Image scale. Default is 1.
 scale?: number;
}

interface BorderStyle {
 // Border width. Default is 1.
 width?: number;
 // Border color. Default is #404040.
 color?: string;
}

interface IconStyle {
 // Icon class. For example, fa-bell. Default is undefined.
 class: string;
 // Icon text color. Default is white.
 color?: string;
}

interface VertexStyle extends Style {
 // Vertex radius. Default is 8.
 size: number;
 // Background image settings or just url. Null for no background.
 image: ImageStyle
 // Vertex border settings or just color. Null for no border.
 border: BorderStyle
 // Vertex icon settings or just class. Null for no icon.
 icon: IconStyle
}

interface EdgeStyle extends Style {
 // Edge width. Default is 2.
 width: number;

Chapter 3
Properties

3-13

 // Fill pattern. Default is undefined.
 // Dasharray values are: '1 5', '5', '5 10', '10 5', '5 1', '15 10 5', '15
10 5 10', '15 10 5 10 15', '5 5 1 5'
 dasharray: string;
}

// Position of the label or child vertex.
interface ElementPosition {
 // Angle position of label or child vertex (in degrees) w.r.t the parent
vertex.
 // Following are some values and its corresponding positioning of label or
child vertex:
 // null - inside the parent vertex
 // 0 - to the right side of the parent vertex
 // 90 - towards the top of the parent vertex
 // 180 - to the left side of the parent vertex
 // 270 - towards the bottom of the parent vertex (this is the default
position unless overridden)
 angle?: Nullable<number>;
 // Position on the edge. Value between -1 (edge start) and 1 (edge end).
 position?: number;
 // Offset from: vertex radius (> 0: outside, < 0: inside) or edge path.
 // (> 0: above, < 0: under)
 d: number;
}

interface FontStyle {
 // Font size. Default is 10.
 size?: number;
 // Font family. Default is inherited.
 family?: string;
 // Font style. Default is inherited.
 style?: string;
 // Font weight. Default is inherited.
 weight?: string;
}

interface LabelStyle extends ElementPosition {
 // Label text.
 text: string;
 // Color - Default is rgba(0, 0, 0, 0.8).
 color?: string;
 // Maximum label length. Default is 15. The whole label is displayed in
tooltip.
 maxLength: number;
 font: FontStyle
 // When disableBackdrop is true, it hides the faded backdrop placed behind
vertex labels.
 // The backdrop that is enabled by default is particularly useful when
vertex label crosses over an edge
 // or when label is shown inside a vertex.
 disableBackdrop: boolean = false;
 // When resizeParent is true, vertices will adapt its size and shape to
suit the label's length.
 // Applies only when the label is shown within the vertex (that is label's
style.angle is null)

Chapter 3
Properties

3-14

 resizeParent: boolean = false;
}

• Style Expressions

• Rule Expressions

3.1.3.1 Style Expressions
These expressions can access anything from the ExpressionContext which extends Entity so
also all the properties of the vertex / edge that is styled.

interface ExpressionContext extends Entity {
 // Helper function for value interpolation
 // path: path to the ExpressionContext property that will be interpolated
 // (e.g. 'id', 'properties.someProperty')
 // min: minimum interpolation result value
 // max: maximum interpolation result value
 interpolate: (path: string, min: number, max: number) => number;
 // Previous value of evaluated property
 previous?: number | string;
}

Context is accessed through ${accessor} syntax (that is JavaScript template literals). The
following lists a few example expressions:

• https://flagcdn.com/40x30/${properties.code}.png: Constructs a URL using a given
property.

• ${previous + 4}: Returns a bigger value. This can be used, for example, to make vertices
or edges bigger on hover.

• ${interpolate("group.size", 8, 16): Interpolation based on the grouped vertex size.

3.1.3.2 Rule Expressions
Rule expressions are used to specify the target element into which given style will be applied.
It has the following structure:

elementName(.className)*(:modifier)*([conditionExpression])? (>
elementName(.className)*)
In the preceding format:

• elementName := * | 'vertex' | 'edge'
• className (deprecated since 25.1): Any className specified in input vertex or edge

classes array.

• modifier := 'hover' | 'selected' | 'unselected' | 'group'
• conditionExpression (deprecated since 25.1): JavaScript expression that can access any

property of evaluated vertex or edge.
It is recommended to use settings.ruleBasedStyles.

Also, note the following:

• *: Applies to all elements.

Chapter 3
Properties

3-15

• vertex: Applies to all vertices.

• edge: Applies to all edges.

• example (deprecated since 25.1): Applies to all elements with example class specified.

• vertex.example (deprecated since 25.1): Applies to all vertices with example class.

• vertex:selected: Applies to all selected vertices.

• vertex[id > 10] (deprecated since 25.1): Applies to all vertices with id > 10.
It is recommended to use settings.ruleBasedStyles.

• vertex[properties.some === 'value']: Applies to all vertices that have some property
with value value.

• It is recommended to use settings.ruleBasedStyles. All the properties in settings are
optional and have their defaults.

3.1.4 featureFlags
This section describes the hierarchical flags to hide specified features or group of features.

type FeatureFlags =
 | false
 | NestedFlags<{
 // Use false to hide the whole exploration.
 exploration: {
 // Use false to hide expand.
 expand: boolean;
 focus: boolean;
 group: boolean;
 ungroup: boolean;
 drop: boolean;
 undo: boolean;
 redo: boolean;
 reset: boolean;
 };
 // Use false to hide all modes.
 modes: {
 // Use false to hide interaction mode.
 interaction: boolean;
 fitToScreen: boolean;
 sticky: boolean;
 };
 // Use false to hide pagination.
 pagination: boolean;
 }>;

type NestedFlags<T> = {
 readonly [P in keyof T]?: T[P] extends object ? false | NestedFlags<T[P]> :
T[P];
};

Chapter 3
Properties

3-16

3.1.5 paginate
This section describes the callback to retrieve a given page of graph data.

// start: Starting index of the pagination.
// size: Page size (from settings.pageSize).
// Returns the graph of given page.
type Paginate = (start: number, size: number) => Promise<Graph>;

By default, pagination is hidden. If provided, data does not have to be set and graph
visualization will automatically fetch the first page on initial render.

3.1.6 expand
This section describes the callback to retrieve n-hops neighbors of specified vertices.

// ids: To expand from the ids of the selected vertices.
// hops: Number of hops to fetch from selected vertices.
// Returns the expanded graph.
type ExpandActionType = 'expand' | 'focus';

type Expand = (ids: Id[], hops: number, action: ExpandActionType,
templateId?: number | null) => Promise<Graph>;

By default, expand or focus is hidden.

3.1.7 eventHandlers
This section describes the callbacks to handle events triggered by the graph entities (vertices
or edges).

// id: Id of the child vertex targeted with the event(if any).
// entity: The entity or parent of the vertex(identified by the id parameter)
targeted with the event.
type EntityEventCallback = (event: Event, id: Optional<string>, entity:
Entity) => void;

// eventType: Supported <g> element event attributes without the -on- prefix.
// children: Event handlers for child entities.
interface _EntityEventHandlers {
 [eventType: string]: EntityEventCallback | _EntityEventHandlers;
 children?: EntityEventHandlers;
}

type EntityEventHandlers = Optional<_EntityEventHandlers>;

// vertex: Callbacks that handle events fired by vertices.
// edge: Callbacks that handle events fired by edges.
interface _AllEventHandlers {
 vertex: EntityEventHandlers;
 edge: EntityEventHandlers;
}

Chapter 3
Properties

3-17

type AllEventHandlers = Partial<_AllEventHandlers>;

3.1.8 persist
This section describes the callback to save any graph modification to a datasource.

type GraphActionType = 'drop' | 'expand' | 'focus' | 'group' | 'ungroup' |
'undo' | 'redo' | 'reset';

// vertexIds: Ids of the vertices targeted with the action.
// edgeIds: Ids of the edges targeted with the action.
interface GraphAction {
 type: GraphActionType;
 vertexIds?: NonEmptyArray<Id>;
 edgeIds?: NonEmptyArray<Id>;
 template?: Nullable<number | string>;
}

// action: Graph action to persist to a datasource.
type Persist = (action: GraphAction) => Promise<void>;

3.1.9 fetchActions
This section describes the callback to retrieve actions from a data source and apply them
during the initial loading of the graph.

// This gets executed only once when the graph loads for the first time.
// It contains code to retrieve graph actions to apply on the graph initially.
type FetchActions = () => Promise<GraphAction[]>;

3.1.10 search
This section describes the callback to retrieve a list of vertices and edges that matches a
search.

// Function for live search feature.
//It returns the list of vertices and edges that matches the keyword.
type Search = (Keyword: string) => Promise<SearchResult>;

3.1.11 updateFilter
This section describes the callback to update the list of filters.

// Updates the list of filters with the given filter.
type UpdateFilter = (filter: Filter) => Promise<void>;

Chapter 3
Properties

3-18

3.1.12 updateEvolution
This section describes the callback to enable or disable the evolution feature.

// Enables or disables the network evolution feature.
type UpdateEvolution = (enabled: boolean) => Promise<void>;

3.1.13 updateSelectedOption
This section describes the callback to update the selected option for smart expand or smart
group.

// Updates the selected option for smart group or smart expand.
type UpdateSelectedOption = (option: number | null, tag: SmartExplorerType)
=> Promise<void>;

3.1.14 updateSearchValue
This section describes the callback to update the value used for live search.

// Updates the search value for the live search feature.
type UpdateSearchValue = (value: string) => Promise<void>;

3.1.15 updateGraphData
This section describes the callback to handle events when the graph data is updated.

// This gets executed when the graph data gets updated.
// Vertices and edges params contains all vertices and edges of the graph.
type UpdateGraphData = (Vertices: Vertex[], edges: Edge[]) => Promise<void>;

3.2 Events
The following events are supported:

• graph: This event occurs on any changes to the graph and returns the current state of the
graph.

• selection: This event occurs on any changes to the selection of vertices and edges on the
graph. It returns the currently selected vertices and edges on the graph.

Chapter 3
Events

3-19

4
Usage Examples

This section provides several usage examples using the Graph Visualization library.

• Base Styles

• Default Legend Styles

• Themes

• Children

• Interpolation

• Rule-Based Styles

• Animations

• Icons

• Graph Schema Visualization

4.1 Base Styles
If base styles or any rule based styles are not defined (or applied), then the following default
base styles are applied to the graph:

const border = {
 width: 1,
 color: '#404040'
};

const badge = {
 size: 6,
 color: '#FF584A',
 label: {
 text: '${group.size}',
 angle: null,
 color: 'white',
 font: {
 weight: 'bold'
 }
 }
};

const defaults: Styles = {
 '*': {
 filter: 'none',
 label: {
 maxLength: 15,
 font: {
 size: 10
 }
 }

4-1

 },
 vertex: {
 size: 8,
 color: 'lightgray',
 image: {
 scale: 1
 },
 border,
 icon: {
 color: 'white'
 },
 label: {
 angle: 270,
 d: 2
 }
 },
 'vertex:group': {
 size: '${interpolate("group.size", 8, 16)}',
 opacity: 1,
 color: '#75BBF0',
 border,
 label: {
 text: '',
 angle: 270,
 d: 2
 },
 icon: null,
 image: null,
 legend: null,
 children: {
 size: badge
 }
 },
 edge: {
 width: 2,
 color: '#C0C0C0',
 label: {
 position: 0,
 d: 1
 }
 },
 'edge:group': {
 width: 2,
 opacity: 1,
 label: null,
 children: {
 size: badge
 }
 },
 '* > *': {
 size: 5,
 d: 0,
 color: 'darkgray',
 border: null,
 icon: {
 color: 'white'

Chapter 4
Base Styles

4-2

 },
 image: {
 scale: 1
 },
 label: {
 d: 1
 }
 },
 'vertex > *': {
 angle: 45
 },
 'edge > *': {
 position: 0
 },
 ':unselected': {
 filter: 'grayscale(100%)'
 },
 'vertex:unselected': {
 opacity: 0.3
 },
 'edge:unselected': {
 opacity: 0.3
 },
 'vertex:hover': {
 size: '${previous + 4}'
 },
 'edge:hover': {
 width: '${previous + 2}'
 },
 'edge:hover > *': {
 size: '${previous + 2}'
 }
};

If you wish to create a custom base style, then you can provide your own
settings.baseStyles, which overrides the defaults shown in the preceding code.

The following shows an usage example to create a custom base style that applies for all
vertices and edges:

Note:

The Graph Visualization library also contains TypeScript definitions if you are using
TypeScript).

// This import is not necessary if you are using Oracle JET.
import '@ovis/graph/alta.css';
import Visualization from '@gvt/graphviz';

const vertices = [
 {
 id: 1,
 properties: {

Chapter 4
Base Styles

4-3

 label: 'blue',
 name: 'Hello'
 },
 labels: ['color']
 },
 {
 id: 2,
 properties: {
 label: 'blue',
 name: 'World'
 },
 labels: ['color']
 },
 {
 id: 3,
 properties: {
 name: 'Some Name'
 },
 labels: ['text']
 }
];

const edges = [
 {
 id: 1,
 source: 1,
 target: 2,
 labels: ['edge']
 },
 {
 id: 2,
 source: 2,
 target: 3,
 labels: ['edge']
 }
];

const settings = {
 baseStyles: {
 vertex: {
 label: { text: '${properties.name}' }
 }
 }
};

new GraphVisualization({
 target: document.body,
 props: { data: { vertices, edges }, settings }
});

The following shows the graph visualization using the preceding custom base style:

Chapter 4
Base Styles

4-4

Figure 4-1 Using a Custom Base Style

4.2 Default Legend Styles
If the vertices or edges include labels, then the corresponding legend entries are automatically
generated based on those labels. For example, consider the following style setting:

const vertices = [
 {
 id: 1,
 properties: {
 label: 'blue',
 name: 'Hello'
 },
 labels:['color']
 },
 {
 id: 2,
 properties: {
 label: 'blue',
 name: 'World'

Chapter 4
Default Legend Styles

4-5

 },
 labels:['color']
 },
 {
 id: 3,
 properties: {
 name: 'Some Name'
 },
 labels:['text']
 }
];

const edges = [
 {
 id: 1,
 source: 1,
 target: 2,
 labels: ['edge']
 },
 {
 id: 2,
 source: 2,
 target: 3,
 labels: ['edge']
 }
];

const settings = {baseStyles: {}};

const graphViz = new GraphVisualization({
 target: document.body,
 props: { data: { vertices, edges }, settings }
});

The legends are then generated from the vertex and edge labels (used in the preceding code)
as shown:

Chapter 4
Default Legend Styles

4-6

Figure 4-2 Default Legends

The getCurrentRuleBasedStyles function returns the currently defined rule-based styles,
including both default and custom styles. You can use this function to change the default rule-
based styles as shown in the following example:

const graphViz = new GraphVisualization({
 target: document.body,
 props: { data: { vertices, edges }, settings }
});

const receivedRules = grpahViz.getCurrentRuleBasedStyles();

/*
Here is example of receivedRules. If the rule is default, rule.isDefault is
true.
[
 {
 "_id": "2",
 "stylingEnabled": true,
 "target": "vertex",
 "conditions": {
 "operator": "and",
 "conditions": [
 {
 "property": "labels",
 "operator": "~",
 "value": "color"
 }
]

Chapter 4
Default Legend Styles

4-7

 },
 "component": "vertex",
 "style": {
 "color": "#F0CC71"
 },
 "legendTitle": "color",
 "isDefaultRule": true
 },
 ...
]
*/

//Modify receivedRules. Note: Do not edit _id, isDefaultRule, and conditions.
//Modify _id = 2 default rule, color to aqua
receivedRules = [
 {
 "_id": "2",
 "stylingEnabled": true,
 "target": "vertex",
 "conditions": {
 "operator": "and",
 "conditions": [
 {
 "property": "labels",
 "operator": "~",
 "value": "color"
 }
]
 },
 "component": "vertex",
 "style": {
 "color": "aqua"
 },
 "legendTitle": "color",
 "isDefaultRule": true
 },
 ...
]

//Assgin the modified received rules to settings.ruleBasedStyles
settings.ruleBasedStyles = recivedRules;
graphViz.$set({setting});

The updated styles are then reflected in the legend panel as shown:

Chapter 4
Default Legend Styles

4-8

Figure 4-3 Custom Legends

4.3 Themes
You can enable a dark theme through settings as shown:

// This import is not necessary if you are using Oracle JET.
import '@ovis/graph/alta.css';
import Visualization from '@gvt/graphviz';

const vertices = [
 {
 id: 1,
 properties: {
 label: 'blue',
 name: 'Hello'
 },
 labels:['color']
 },
 {
 id: 2,
 properties: {
 label: 'blue',
 name: 'World'
 },
 labels:['color']
 },
 {
 id: 3,
 properties: {

Chapter 4
Themes

4-9

 name: 'Some Name'
 },
 labels:['text']
 }
];

const edges = [
 {
 id: 1,
 source: 1,
 target: 2,
 labels: ['edge']
 },
 {
 id: 2,
 source: 2,
 target: 3,
 labels: ['edge']
 }
];

const settings = {
 theme: 'dark',
 baseStyles: {
 vertex: {
 label: { text: '${properties.name}' }
 }
 }
};

new GraphVisualization({
 target: document.body,
 props: { data: { vertices, edges }, settings }
});

The corresponding visualization appears as shown:

Chapter 4
Themes

4-10

Figure 4-4 Applying Dark Theme

You can also create a customized theme to modify the background and foreground colors.

// This import is not necessary if you are using Oracle JET.
import '@ovis/graph/alta.css';
import Visualization from '@gvt/graphviz';

const vertices = [
 {
 id: 1,
 properties: {
 label: 'blue',
 name: 'Hello'
 },
 labels:['color']
 },
 {
 id: 2,
 properties: {
 label: 'blue',
 name: 'World'
 },
 labels:['color']
 },
 {
 id: 3,
 properties: {
 name: 'Some Name'
 },
 labels:['text']

Chapter 4
Themes

4-11

 }
];

const edges = [
 {
 id: 1,
 source: 1,
 target: 2,
 labels: ['edge']
 },
 {
 id: 2,
 source: 2,
 target: 3,
 labels: ['edge']
 }
];

const settings = {
 customTheme: {
 'backgroundColor': '#2F3C7E',
 'textColor': '#FBEAEB'
 },
 baseStyles: {
 vertex: {
 label: { text: '${properties.name}' }
 }
 }
};

new GraphVisualization({
 target: document.body,
 props: { data: { vertices, edges }, settings }
});

The custom theme gets applies as shown:

Chapter 4
Themes

4-12

Figure 4-5 Applying Custom Theme

Also, note the following:

• If both dark theme and custom theme are applied simultaneously, the colors defined in the
custom theme will take precedence over the dark theme colors.

• If the settings specify a label color, the label will use the color from the label settings rather
than the color from the theme settings.

4.4 Children
You can use the children attribute to create children nodes that appear on the circumference
of the nodes where they are indicated. Styles for the children nodes are applied similarly to the
parent nodes.

Consider the following example:

// This import is not necessary if you are using Oracle JET.
import '@ovis/graph/alta.css';
import Visualization from '@gvt/graphviz';

const vertices = [
 {
 id: 1,
 properties: {
 label: 'blue',
 name: 'Hello'
 }
 },
 {

Chapter 4
Children

4-13

 id: 2,
 properties: {
 label: 'blue',
 name: 'World'
 }
 },
 {
 id: 3,
 properties: {
 name: 'Some Name'
 }
 }
];

const edges = [
 {
 id: 1,
 source: 1,
 target: 2
 },
 {
 id: 2,
 source: 2,
 target: 3
 }
];

const settings = {
 showLegend: false,
 baseStyles: {
 vertex: {
 label: { text: '${properties.name}' },
 // This would add two children to every vertex, any name can be
assigned to these children nodes.
 children: {
 firstChild: {
 size: '4',
 color: 'red',
 children: {
 size: '2'
 }
 },
 secondChild: {
 size: '2',
 color: 'green',
 border: {
 'width': 1,
 'color': 'black'
 }
 }
 }
 }
 }
};

settings.ruleBasedStyles = [{

Chapter 4
Children

4-14

 component: 'vertex',
 target: 'vertex',
 stylingEnabled: true,
 conditions: {
 operator: 'and',
 conditions: [{
 property: "label",
 operator: "=",
 value: "blue"
 }]
 },
 style: { color: 'blue' }
}];

new GraphVisualization({
 target: document.body,
 props: { data: { vertices, edges }, settings }
});

The corresponding visualization appears as shown:

Figure 4-6 Visualizing Children Nodes

Chapter 4
Children

4-15

4.5 Interpolation
Interpolation can be applied to the size or color of the vertices or edges. The following
interpolation types are supported:

• Linear Interpolation

• Discrete Interpolation

• Color Interpolation

4.5.1 Linear Interpolation
The default linear interpolation can be used to define the size of nodes or edges within a range
using a property value to interpolate in the given range.

Consider the following example:

// This import is not necessary if you are using Oracle JET.
import '@ovis/graph/alta.css';
import Visualization from '@gvt/graphviz';

const vertices = [
 {
 id: 1,
 properties: {
 label: 'blue',
 name: 'Hello',
 age: 10
 }
 },
 {
 id: 2,
 properties: {
 label: 'blue',
 name: 'World',
 age: 20
 }
 },
 {
 id: 3,
 properties: {
 name: 'Some Name',
 age: 30
 }
 }
];

const edges = [
 {
 id: 1,
 source: 1,
 target: 2
 },
 {

Chapter 4
Interpolation

4-16

 id: 2,
 source: 2,
 target: 3
 }
];

const settings = {
 showLegend: false,
 ruleBasedStyles: [{
 component: 'vertex',
 target: 'vertex',
 stylingEnabled: true,
 conditions: {
 operator: 'and',
 conditions: [{
 property: "label",
 operator: "=",
 value: "blue"
 }]
 },
 style: { color: 'blue' }
 }],
 baseStyles: {
 vertex: {
 // The label is changed to see the size of the node on it.
 label: { text: '${interpolate("properties.age", 1, 20)}' },
 // The size will be defined by the interpolation of properties.age in
the range of 1 -> 20.
 size: '${interpolate("properties.age", 1, 20)}'
 }
 }
};

new GraphVisualization({
 target: document.body,
 props: { data: { vertices, edges }, settings}
});

The corresponding visualization appears as shown:

Chapter 4
Interpolation

4-17

Figure 4-7 Normal Linear Interpolation

Alternatively, you can also use multiple values for interpolation instead of just using one range.

// This import is not necessary if you are using Oracle JET.
import '@ovis/graph/alta.css';
import Visualization from '@gvt/graphviz';

const vertices = [
 {
 id: 1,
 properties: {
 label: 'blue',
 name: 'Hello',
 age: 10
 }
 },
 {
 id: 2,
 properties: {
 label: 'blue',
 name: 'World',
 age: 20
 }
 },

Chapter 4
Interpolation

4-18

 {
 id: 3,
 properties: {
 name: 'Some Name',
 age: 30
 }
 }
];

const edges = [
 {
 id: 1,
 source: 1,
 target: 2
 },
 {
 id: 2,
 source: 2,
 target: 3
 }
];

const settings = {
 showLegend: false,
 ruleBasedStyles: [{
 component: 'vertex',
 target: 'vertex',
 stylingEnabled: true,
 conditions: {
 operator: 'and',
 conditions: [{
 property: "label",
 operator: "=",
 value: "blue"
 }]
 },
 style: { color: 'blue' }
 }],
 baseStyles: {
 vertex: {
 // The label is changed to see the size of the node on it.
 label: { text: '${interpolate("properties.age", 1, 20, 40)}' },
 // The size will be defined by the interpolation of properties.age
using the values of 1, 20, 40.
 size: '${interpolate("properties.age", 1, 20, 40)}'
 }
 }
};

new GraphVisualization({
 target: document.body,
 props: { data: { vertices, edges }, settings}
});

The visualization for the preceding settings appear as shown:

Chapter 4
Interpolation

4-19

Figure 4-8 Linear Interpolation for a Range of Values

4.5.2 Discrete Interpolation
Discrete interpolation can be used to define the size of vertices or edges within a defined range
using a property as the value to interpolate in the given range. Unlike linear interpolation, the
resulting values can only be the exact start or end value of the range. If the property value falls
in the first half between the minimum and maximum values, it will be rounded up; otherwise, it
will be rounded down.

Consider the following example:

// This import is not necessary if you are using Oracle JET.
import '@ovis/graph/alta.css';
import Visualization from '@gvt/graphviz';

const vertices = [
 {
 id: 1,
 properties: {
 label: 'blue',
 name: 'Hello',
 age: 10
 }
 },

Chapter 4
Interpolation

4-20

 {
 id: 2,
 properties: {
 label: 'blue',
 name: 'World',
 age: 20
 }
 },
 {
 id: 3,
 properties: {
 name: 'Some Name',
 age: 30
 }
 }
];

const edges = [
 {
 id: 1,
 source: 1,
 target: 2
 },
 {
 id: 2,
 source: 2,
 target: 3
 }
];

const settings = {
 showLegend: false,
 ruleBasedStyles: [{
 component: 'vertex',
 target: 'vertex',
 stylingEnabled: true,
 conditions: {
 operator: 'and',
 conditions: [{
 property: "label",
 operator: "=",
 value: "blue"
 }]
 },
 style: { color: 'blue' }
 }],
 baseStyles: {
 vertex: {
 // The label is changed to see the size of the node on it.
 label: { text: '${interpolate.discrete("properties.age", 1, 20)}' },
 // The size will be defined by the interpolation of properties.age in
the range of 1 -> 20.
 // In this example since the node with age 20 is exactly in the middle,
it will be rounded up to 20.
 size: '${interpolate.discrete("properties.age", 1, 20)}'
 }

Chapter 4
Interpolation

4-21

 }
};

new GraphVisualization({
 target: document.body,
 props: { data: { vertices, edges }, settings}
});

The corresponding graph visualization is as shown:

Figure 4-9 Discrete Interpolation

Discrete interpolation can also be applied using colors. You only need to define the colors that
are to be discretely interpolated.

Consider the following example:

// This import is not necessary if you are using Oracle JET.
import '@ovis/graph/alta.css';
import Visualization from '@gvt/graphviz';

const vertices = [
 {
 id: 1,
 properties: {
 label: 'blue',
 name: 'Hello',
 age: 10
 }
 },

Chapter 4
Interpolation

4-22

 {
 id: 2,
 properties: {
 label: 'blue',
 name: 'World',
 age: 20
 }
 },
 {
 id: 3,
 properties: {
 name: 'Some Name',
 age: 30
 }
 }
];

const edges = [
 {
 id: 1,
 source: 1,
 target: 2
 },
 {
 id: 2,
 source: 2,
 target: 3
 }
];

const settings = {
 baseStyles: {
 vertex: {
 label: { text: '${interpolate.discrete("properties.age", "black",
"white")}' },
 color: '${interpolate.discrete("properties.age", "black", "white")}'
 }
 }
};

new GraphVisualization({
 target: document.body,
 props: { data: { vertices, edges }, settings }
});

The corresponding visualization appears as shown:

Chapter 4
Interpolation

4-23

Figure 4-10 Discrete Interpolation Using Colors

4.5.3 Color Interpolation
Colors can also be linearly interpolated using the interpolate.color function. You need to
define the colors to interpolate the desired property.

Consider the following example:

// This import is not necessary if you are using Oracle JET.
import '@ovis/graph/alta.css';
import Visualization from '@gvt/graphviz';

const vertices = [
 {
 id: 1,
 properties: {
 label: 'blue',
 name: 'Hello',
 age: 10
 }
 },
 {
 id: 2,
 properties: {
 label: 'blue',
 name: 'World',
 age: 20
 }

Chapter 4
Interpolation

4-24

 },
 {
 id: 3,
 properties: {
 name: 'Some Name',
 age: 30
 }
 }
];

const edges = [
 {
 id: 1,
 source: 1,
 target: 2
 },
 {
 id: 2,
 source: 2,
 target: 3
 }
];

const settings = {
 baseStyles: {
 vertex: {
 label: { text: '${properties.age}' },
 color: '${interpolate.color("properties.age", "black", "white")}'
 }
 }
};

new GraphVisualization({
 target: document.body,
 props: { data: { vertices, edges }, settings }
});

The corresponding visualization appears as shown:

Chapter 4
Interpolation

4-25

Figure 4-11 Color Interpolation

4.6 Rule-Based Styles
Rule-based styles can be applied on any vertex or edge property values. You can define a rule-
based styling using one or more defined properties. The set condition is verified and the
vertices or edges are filtered based on the given condition.

The following operators can be used to determine if the property value matches the set rule: =,
>, <, >=, <=, !=, and ~.

Consider the following example which describes a rule to color vertices blue if they have a
label value blue in properties.

// This import is not necessary if you are using Oracle JET.
import '@ovis/graph/alta.css';
import Visualization from '@gvt/graphviz';

const vertices = [
 {
 id: 1,
 properties: {
 label: 'blue',
 name: 'Hello',
 age: 10
 }

Chapter 4
Rule-Based Styles

4-26

 },
 {
 id: 2,
 properties: {
 label: 'blue',
 name: 'World',
 age: 20
 }
 },
 {
 id: 3,
 properties: {
 name: 'Some Name',
 age: 30
 }
 }
];

const edges = [
 {
 id: 1,
 source: 1,
 target: 2
 },
 {
 id: 2,
 source: 2,
 target: 3
 }
];

const settings = {};
settings.baseStyles = {
 vertex: {
 label: { text: '${properties.name}' }
 }
};

settings.ruleBasedStyles = [
 {
 // The target in the rule.
 target: 'vertex',
 component: 'vertex',
 // The conditions on which the filter will be applied.
 conditions: {
 operator: 'and',
 conditions: [
 // This condition will verify if the label on a vertex is equals to
'blue'.
 {
 property: "label",
 operator: "=",
 value: "blue"
 }
]
 },

Chapter 4
Rule-Based Styles

4-27

 // The title for the filter that will show in the legend.
 legendTitle: 'Rule by label',
 // The colors to apply to the nodes that match the rule.
 style: {
 color: 'blue'
 },
 stylingEnabled: true
 }
];

new GraphVisualization({
 target: document.body,
 props: { data: { vertices, edges }, settings }
});

Rule-based styles can also be applied to adjust the size of nodes. Also, you can define a rule
to match multiple conditions simultaneously. These conditions can be configured using and or
or operators. In such a case, filtering is applied only when all the specified conditions are met
for the and operator, or when any one of the conditions is satisfied for the or operator.

// This import is not necessary if you are using Oracle JET.
import '@ovis/graph/alta.css';
import Visualization from '@gvt/graphviz';

const vertices = [
 {
 id: 1,
 properties: {
 label: 'blue',
 name: 'Hello',
 age: 10
 }
 },
 {
 id: 2,
 properties: {
 label: 'blue',
 name: 'World',
 age: 20
 }
 },
 {
 id: 3,
 properties: {
 name: 'Some Name',
 age: 30
 }
 }
];

const edges = [
 {
 id: 1,
 source: 1,
 target: 2

Chapter 4
Rule-Based Styles

4-28

 },
 {
 id: 2,
 source: 2,
 target: 3
 }
];

const settings = {};
settings.baseStyles = {
 vertex: {
 label: {text: '${properties.name}'}
 }
};

settings.ruleBasedStyles = [
 {
 // The target in the rule.
 target: 'vertex',
 component: 'vertex',
 // The conditions on which the rule will be applied.
 conditions: {
 operator: 'and',
 conditions: [
 // This condition will verify that the name contains the letter o.
 {
 property: "label",
 operator: "~",
 value: "o"
 },
 // This condition will verify that the name contains the letter l.
 {
 property: "label",
 operator: "~",
 value: "l"
 }
]
 },
 // The title for the filter that will show in the legend.
 legendTitle: 'Rule by name',
 // The colors to apply to the nodes that match the rule.
 style: {
 size: 15
 },
 stylingEnabled: true
 }
];

new GraphVisualization({
 target: document.body,
 props: { data: { vertices, edges }, settings }
});

Chapter 4
Rule-Based Styles

4-29

4.7 Animations
Using animations. you can show dynamic movement of the graph vertices and/or edges. You
can apply animations through the settings filter.

Consider the following example which show a graph with the vertices' stroke width animated:

// This import is not necessary if you are using Oracle JET.
import '@ovis/graph/alta.css';

import Visualization from '@gvt/graphviz';

const vertices = [
 {
 id: 1,
 properties: {
 label: 'blue',
 name: 'Hello',
 age: 10
 }
 },
 {
 id: 2,
 properties: {
 label: 'blue',
 name: 'World',
 age: 20
 }
 },
 {
 id: 3,
 properties: {
 name: 'Some Name',
 age: 30
 }
 }
];

const edges = [
 {
 id: 1,
 source: 1,
 target: 2
 },
 {
 id: 2,
 source: 2,
 target: 3
 }
];

const settings = {};
settings.baseStyles = {
 vertex: {

Chapter 4
Animations

4-30

 label: { text: '${properties.name}' }
 }
};

settings.ruleBasedStyles= [
 {
 target: 'vertex',
 component: 'vertex',
 legendTitle: 'Vertex animation',
 animations: [[
 {
 duration: 1,
 keyFrames: [
 {
 percentage: 0,
 style: {
 strokeWidth: '3px'
 }
 },
 {
 percentage: 50,
 style: {
 strokeWidth: '7px'
 }
 },
 {
 percentage: 100,
 style: {
 strokeWidth: '3px'
 }
 }
]
 }
]],
 conditions: {
 operator: 'and',
 // This rule is applied to all vertices.
 conditions: []
 }
 }
];

new GraphVisualization({
 target: document.body,
 props: { data: { vertices, edges }, settings }
});

You can configure the animation using the following values:

• duration: Defines the duration of the animation in seconds.

• keyframes: An array representing all the changes that have to be applied to the entity
during the animation.

The keyframes properties that need to be provided are:

Chapter 4
Animations

4-31

• percentage: Represents at what percentage of the animation duration should the keyframe
be applied. To generate smooth animations:

– Multiple keyframes: Values must start from zero and end in 100.

– Single keyframe: Percentage value must be 100.

Note that this option is only meaningful when working with strokeDashoffset.

• style: Styles that need to be applied to the entity at each keyframe.

The supported style properties are:

• strokeWidth: Defines the width of the stroke that surrounds the vertices and also the width
of the edges. This can be passed as any valid css value (px is recommended).

• stroke: Defines the color of the stroke that surrounds the vertices and the edges.

• opacity: Defines the opacity on a scale of 0 to 1; 0 indicates that the element is completely
hidden, while 1 signifies that the element is fully visible with maximum opacity.

• r (applies only for the vertices): Defines the radius of the vertices to which it is applied.

• strokeDashoffset (applies only for the edges): Defines the amount of offset that has to be
applied to the dashed pattern on the edges. Negative values make the offset go in the
opposite direction. Note that you must apply the dashed pattern to the edges for this
animation to be visible. Otherwise, nothing will appear on the graph.

The following example describes how to apply edge animation using strokeDashoffset:

// This import is not necessary if you are using Oracle JET.
import '@ovis/graph/alta.css';

import Visualization from '@gvt/graphviz';

const vertices = [
 {
 id: 1,
 properties: {
 label: 'blue',
 name: 'Hello',
 age: 10
 }
 },
 {
 id: 2,
 properties: {
 label: 'blue',
 name: 'World',
 age: 20
 }
 },
 {
 id: 3,
 properties: {
 name: 'Some Name',
 age: 30
 }
 }
];

Chapter 4
Animations

4-32

const edges = [
 {
 id: 1,
 source: 1,
 target: 2
 },
 {
 id: 2,
 source: 2,
 target: 3
 }
];

const settings = {};

settings.baseStyles = {
 vertex: {
 label: { text: '${properties.name}' }
 }
};

settings.ruleBasedStyles = [
 {
 target: 'edge',
 component: 'edge',
 legendTitle: 'Edge animation',
 style: {
 dasharray: 'dashed'
 },
 animations: [
 [
 {
 duration: 1,
 keyFrames: [
 {
 percentage: 100,
 style: {
 strokeDashoffset: 50
 }
 }
]
 }
]]
 ,
 conditions: {
 operator: 'and',
 conditions: []
 }
 }
];

new GraphVisualization({
 target: document.body,
 props: { data: { vertices, edges }, settings }
});

Chapter 4
Animations

4-33

4.8 Icons
The Graph Visualization Toolkit supports Redwood as native icon library.

Consider the following example using the icon library:

// This import is not necessary if you are using Oracle JET.
import '@ovis/graph/alta.css';
import Visualization from '@gvt/graphviz';

const vertices = [
 {
 id: 1,
 properties: {
 label: 'blue',
 name: 'Hello'
 }
 },
 {
 id: 2,
 properties: {
 label: 'blue',
 name: 'World'
 }
 },
 {
 id: 3,
 properties: {
 name: 'Some Name'
 }
 }
];

const edges = [
 {
 id: 1,
 source: 1,
 target: 2
 },
 {
 id: 2,
 source: 2,
 target: 3
 }
];

const settings = {};
settings.baseStyles = {
 // Style applies for all the vertices.
 vertex: {
 size: 12,
 label: '${properties.name}',
 color: 'red',
 icon: 'oj-ux-ico-user-not-available',

Chapter 4
Icons

4-34

https://docs.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=redwood_icon_lib

 },

 "vertex:hover": {
 size: '${previous + 4}'
 },
 // Style applies for all the edges.
 "edge": {
 label: '${id}',
 color: '#FF8080'
 }
};

settings.ruleBasedStyles = [
 {
 component: 'vertex',
 target: 'target',
 conditions: {
 conditions: [
 {
 property: 'name',
 operator: '=',
 value: 'Hello'
 }
],
 operator: 'and'
 },
 style: {
 color: 'green'
 },
 stylingEnabled: true,
 },
 {
 component: 'vertex',
 target: 'target',
 conditions: {
 conditions: [
 {
 rule: 'id % 3 === 0'
 }
],
 operator: 'and'
 },
 style: {
 color: 'gray',
 icon: { class: 'oj-ux-ico-user-available' }
 },
 stylingEnabled: true,
 legendTitle: 'advanced conditions'
 }
];

new GraphVisualization({
 target: document.body,
 props: { data: { vertices, edges }, settings }
});

Chapter 4
Icons

4-35

The resulting graph visualization is as shown:

Figure 4-12 Using Redwood Icons in Graph Visualization

4.9 Graph Schema Visualization
You can visualize the underlying database schema for your property graph using the Graph
Visualization library.

The following shows an example JSON configuration for a schema view:

{
 "vertices": [{
 "labelName": "COUNTRIES",
 "properties": [{
 "name": "COUNTRY_ID",
 "dataType": "string",
 "limits": [2],
 "mandatory": true
 }, {
 "name": "COUNTRY_NAME",
 "dataType": "string",
 "limits": [40],
 "mandatory": false
 }, {
 "name": "REGION_ID",
 "dataType": "number",
 "limits": [],
 "mandatory": false
 }]
 }, {

Chapter 4
Graph Schema Visualization

4-36

 "labelName": "DEPARTMENTS",
 "properties": [{
 "name": "DEPARTMENT_ID",
 "dataType": "number",
 "limits": [],
 "mandatory": true
 }, {
 "name": "DEPARTMENT_NAME",
 "dataType": "string",
 "limits": [30],
 "mandatory": true
 }, {
 "name": "LOCATION_ID",
 "dataType": "number",
 "limits": [],
 "mandatory": false
 }, {
 "name": "MANAGER_ID",
 "dataType": "number",
 "limits": [],
 "mandatory": false
 }]
 }, {
 "labelName": "LOCATIONS",
 "properties": [{
 "name": "CITY",
 "dataType": "string",
 "limits": [30],
 "mandatory": true
 }, {
 "name": "COUNTRY_ID",
 "dataType": "string",
 "limits": [2],
 "mandatory": false
 }, {
 "name": "LOCATION_ID",
 "dataType": "number",
 "limits": [],
 "mandatory": true
 }, {
 "name": "POSTAL_CODE",
 "dataType": "string",
 "limits": [12],
 "mandatory": false
 }, {
 "name": "STATE_PROVINCE",
 "dataType": "string",
 "limits": [25],
 "mandatory": false
 }, {
 "name": "STREET_ADDRESS",
 "dataType": "string",
 "limits": [40],
 "mandatory": false
 }]
 }, {

Chapter 4
Graph Schema Visualization

4-37

 "labelName": "JOBS",
 "properties": [{
 "name": "JOB_ID",
 "dataType": "string",
 "limits": [10],
 "mandatory": true
 }, {
 "name": "JOB_TITLE",
 "dataType": "string",
 "limits": [35],
 "mandatory": true
 }, {
 "name": "MAX_SALARY",
 "dataType": "number",
 "limits": [],
 "mandatory": false
 }, {
 "name": "MIN_SALARY",
 "dataType": "number",
 "limits": [],
 "mandatory": false
 }]
 }, {
 "labelName": "EMPLOYEES",
 "properties": [{
 "name": "COMMISSION_PCT",
 "dataType": "number",
 "limits": [],
 "mandatory": false
 }, {
 "name": "DEPARTMENT_ID",
 "dataType": "number",
 "limits": [],
 "mandatory": false
 }, {
 "name": "EMAIL",
 "dataType": "string",
 "limits": [25],
 "mandatory": true
 }, {
 "name": "EMPLOYEE_ID",
 "dataType": "number",
 "limits": [],
 "mandatory": true
 }, {
 "name": "FIRST_NAME",
 "dataType": "string",
 "limits": [20],
 "mandatory": false
 }, {
 "name": "HIRE_DATE",
 "dataType": "string",
 "limits": [],
 "mandatory": true
 }, {
 "name": "JOB_ID",

Chapter 4
Graph Schema Visualization

4-38

 "dataType": "string",
 "limits": [10],
 "mandatory": true
 }, {
 "name": "LAST_NAME",
 "dataType": "string",
 "limits": [25],
 "mandatory": true
 }, {
 "name": "MANAGER_ID",
 "dataType": "number",
 "limits": [],
 "mandatory": false
 }, {
 "name": "PHONE_NUMBER",
 "dataType": "string",
 "limits": [20],
 "mandatory": false
 }, {
 "name": "SALARY",
 "dataType": "number",
 "limits": [],
 "mandatory": false
 }]
 }, {
 "labelName": "REGIONS",
 "properties": [{
 "name": "REGION_ID",
 "dataType": "number",
 "limits": [],
 "mandatory": true
 }, {
 "name": "REGION_NAME",
 "dataType": "string",
 "limits": [25],
 "mandatory": false
 }]
 }],
 "edges": [{
 "labelName": "COUNTRIES_REGIONS",
 "properties": [],
 "sourceVertexLabel": "COUNTRIES",
 "targetVertexLabel": "REGIONS"
 }, {
 "labelName": "DEPARTMENTS_EMPLOYEES",
 "properties": [],
 "sourceVertexLabel": "DEPARTMENTS",
 "targetVertexLabel": "EMPLOYEES"
 }, {
 "labelName": "DEPARTMENTS_LOCATIONS",
 "properties": [],
 "sourceVertexLabel": "DEPARTMENTS",
 "targetVertexLabel": "LOCATIONS"
 }, {
 "labelName": "LOCATIONS_COUNTRIES",
 "properties": [],

Chapter 4
Graph Schema Visualization

4-39

 "sourceVertexLabel": "LOCATIONS",
 "targetVertexLabel": "COUNTRIES"
 }, {
 "labelName": "EMPLOYEES_JOBS",
 "properties": [],
 "sourceVertexLabel": "EMPLOYEES",
 "targetVertexLabel": "JOBS"
 }, {
 "labelName": "EMPLOYEES_DEPARTMENTS",
 "properties": [],
 "sourceVertexLabel": "EMPLOYEES",
 "targetVertexLabel": "DEPARTMENTS"
 }, {
 "labelName": "EMPLOYEES_EMPLOYEES",
 "properties": [],
 "sourceVertexLabel": "EMPLOYEES",
 "targetVertexLabel": "EMPLOYEES"
 }]
}

The corresponding schema visualization is as shown:

Chapter 4
Graph Schema Visualization

4-40

Figure 4-13 Visualizing Database Schema for the Property Graph

Chapter 4
Graph Schema Visualization

4-41

Index

A
about the Graph Visualization library, 1-1
animations, 4-30

B
base styles, 4-1

C
children, 4-13
circle layout, 2-2
cluster layout, 2-4
color interpolation, 4-24
concentric layout, 2-3

D
data, 3-2
default legend styles, 4-5
discrete interpolation, 4-20

E
eventHandlers, 3-17
events, 3-19
expand, 3-17

F
featureFlags, 3-16
fetchActions, 3-18
fit to screen mode, 2-9
force layout, 2-3

G
geographical layout, 2-5
getting started, 1-1
grid layout, 2-6

H
hierarchical layout, 2-7

I
icons, 4-34
interpolation, 4-16

color, 4-24
discrete, 4-20
linear, 4-16

introduction, 1-1

J
JavaScript API reference, 3-1

L
layouts, 2-1

circle, 2-2
concentric, 2-3
force, 2-3
geographical, 2-5
grid, 2-6
hierarchical, 2-7
radial, 2-8
random, 2-8

linear interpolation, 4-16

M
modes, 2-9
move/zoom mode, 2-9

P
paginate, 3-17
persist, 3-18
properties, 3-1

R
radial layout, 2-8
random layout, 2-8
rule-based styles, 4-26

Index-1

S
schema validation, 2-11
schema view, 2-10
schema view configuration, 2-12
schema view modes, 2-11
search, 3-18
settings, 3-3
sticky mode, 2-9

T
themes, 4-9
types, 3-2

U
updateEvolution, 3-19

updateFilter, 3-18
updateGraphData, 3-19
updateSearchValue, 3-19
updateSelectedOption, 3-19
usage examples, 4-1

animations, 4-30
base styles, 4-1
children, 4-13
default legend styles, 4-5
icons, 4-34
interpolation, 4-16
rule-based styles, 4-26
schema visualization, 4-36
themes, 4-9

V
validation rules, 2-13

Index

Index-2

	Contents
	List of Figures
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to Visualization in Oracle Graph
	1.1 About Oracle Graph Visualization Library
	1.2 Getting Started with Oracle Graph Visualization Library

	2 Interactive Graph Visualization Features
	2.1 Layouts
	2.1.1 Circle Layout
	2.1.2 Concentric Layout
	2.1.3 Force Layout
	2.1.4 Geographical Layout
	2.1.5 Grid Layout
	2.1.6 Hierarchical Layout
	2.1.7 Radial Layout
	2.1.8 Random Layout

	2.2 Exploration Modes
	2.3 Schema View
	2.3.1 Schema View Modes
	2.3.2 Schema Validation
	2.3.3 Schema View Configuration Parameters
	2.3.4 Validation Rules

	3 Graph Visualization Library Reference
	3.1 Properties
	3.1.1 types
	3.1.2 data
	3.1.3 settings
	3.1.3.1 Style Expressions
	3.1.3.2 Rule Expressions

	3.1.4 featureFlags
	3.1.5 paginate
	3.1.6 expand
	3.1.7 eventHandlers
	3.1.8 persist
	3.1.9 fetchActions
	3.1.10 search
	3.1.11 updateFilter
	3.1.12 updateEvolution
	3.1.13 updateSelectedOption
	3.1.14 updateSearchValue
	3.1.15 updateGraphData

	3.2 Events

	4 Usage Examples
	4.1 Base Styles
	4.2 Default Legend Styles
	4.3 Themes
	4.4 Children
	4.5 Interpolation
	4.5.1 Linear Interpolation
	4.5.2 Discrete Interpolation
	4.5.3 Color Interpolation

	4.6 Rule-Based Styles
	4.7 Animations
	4.8 Icons
	4.9 Graph Schema Visualization

	Index

