Oracle® Al Database

Property Graph Visualization Developer's
Guide and Reference

25.4
G42279-01
October 2025

ORACLE"

Oracle Al Database Property Graph Visualization Developer's Guide and Reference, 25.4
G42279-01

Copyright © 2025, Oracle and/or its affiliates.

Primary Author: Lavanya Jayapalan

Contributors: Melliyal Annamalai, Korbinian Schmid, Diego Ramirez, Jorge Barba, David Berrospe

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Audience i
Documentation Accessibility i
Related Documents [
Conventions i

Changes in This Release for This Guide

Deprecated Features i
Desupported Features ii

1 Introduction to Visualization in Oracle Graph

1.1 About Oracle Graph Visualization Library
1.2 Getting Started with Oracle Graph Visualization Library

2 Interactive Graph Visualization Features
2.1 Layouts 1
2.1.1 Circle Layout 2
2.1.2 Concentric Layout 3
2.1.3 Force Layout 3
2.1.4 Geographical Layout 5
2.1.5 Grid Layout 6
2.1.6 Hierarchical Layout 7
2.1.7 Radial Layout 8
2.1.8 Random Layout 8
2.2 Exploration Modes 9
2.3 Graph Interaction Options 10
2.4 Schema View 12
2.4.1 Schema View Modes 13
2.4.2 Schema Validation 14
2.4.3 Schema View Configuration Parameters 14

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page i of iii

2.4.4 Validation Rules 15
3 Graph Visualization Library Reference
3.1 Properties 1
3.1.1 types 2
3.1.2 data 2
3.1.3 settings 3
3.1.3.1 Style Expressions 15
3.1.3.2 Rule Expressions 16
3.1.4 featureFlags 17
3.1.5 fetchMore 17
3.1.6 expand 17
3.1.7 eventHandlers 18
3.1.8 persist 18
3.1.9 fetchActions 19
3.1.10 search 19
3.1.11 updateEvolution 19
3.1.12 updateSelectedOption 19
3.1.13 updateSearchValue 19
3.1.14 updateGraphData 20
3.1.15 updateRuleBasedStyle 20
3.1.16 editRuleBasedStyle 20
3.2 Events 21
3.3 Methods 21
4 Usage Examples

4.1 Base Styles 1
4.2 Default Legend Styles 5
4.3 Themes 9
4.4 Children 13
4.5 Interpolation 16
4.5.1 Linear Interpolation 16
4.5.2 Discrete Interpolation 20
4.5.3 Color Interpolation 24

4.6 Rule-Based Styles 26
4.7 Animations 30
4.8 Icons 34
4.9 Graph Schema Visualization 36

Property Graph Visualization Developer's Guide and Reference

G42279-01

Copyright © 2025, Oracle and/or its affiliates.

October 20, 2025
Page ii of iii

Index

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page iii of iii

List of Figures

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18

4-10
4-11
4-12
4-13

Property Graph Visualization Developer's Guide and Reference

Circle Layout
Concentric Layout

Default Force Layout
Cluster Layout

Geographical Layout

Grid Layout
Hierarchical

Radial Layout

Random Layout
Graph Exploration Modes

Graph Interaction Options

Expand Action
Drop Action
Focus Action
Group Action

Ungroup Action
Visualizing Schema and Graph Views

Schema View Modes

Using a Custom Base Style

Default Legends

Custom Legends

Applying Dark Theme

Applying Custom Theme

Visualizing Children Nodes

Normal Linear Interpolation

Linear Interpolation for a Range of Values

Discrete Interpolation

Discrete Interpolation Using Colors

Color Interpolation

Using Redwood Icons in Graph Visualization

Visualizing Database Schema for the Property Graph

G42279-01
Copyright © 2025, Oracle and/or its affiliates.

BEREBEBRRNEBEEERoc~wmBEBRREREREBIB w0 © 0 ~ ~ 0 o0 s 0 I

October 20, 2025
Page iv of iii

ORACLE’

Preface

This documentation provides usage and reference information for the graph visualization
library used in property graph visualization.

* Audience

Documentation Accessibility

* Related Documents

e Conventions

Audience

This document is intended for graph developers to build applications using Oracle Graph
Visualization library. It is also applicable for graph users who visualize and analyze property
graphs in applications that use the Graph Visualization library.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Related Documents

For more information, see these following document:

e Oracle Al Database Graph Developer's Guide for Property Graph

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://docs.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=SPGDG

ORACLE
Preface

Convention Meaning

nonospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page ii of ii

ORACLE

Changes in This Release for This Guide

The following changes apply to the graph visualization library that is shipped with Oracle Graph
Server and Client.

New Features in the Graph Visualization Library 25.4

Added support for editRuleBasedStyle callback to handle the editing of rule based styles.
This replaces the edit action handled in updateRuleBasedsStyle.

Added support for validateRuleBasedStyle validation method.

Added support CONTAI NS and CONTAI NS_REGEX filter operators in settings.
Also, note the changes in the behavior of the following operator groups:

— Equality operators (=, ! =):

*

When applied on a property that holds a string array value and a condition that
holds a simple string, text matching will be performed based on equality instead of
contains. CONTAI NS operator can be used for checking if the simple string is a
substring of the property string value.

When applied on a property that holds a number value and a condition that holds a
non-numeric string, text matching will yield an empty result.

When applied on a property that holds a boolean value and a condition that holds
a non-boolean string, text matching will yield an empty result.

— Comparison operators (>, >=, <, <=): When applied on a property that holds a string
array value and a condition that holds a simple string, text comparison will yield an
empty result.

— Regex operator (~):

*

When applied on a property that holds a string array value and a condition that
holds a simple string, text matching will yield an empty result. Instead, you can use
the CONTAI NS_REGEX operator.

When applied on a property that holds a number value and a condition that holds a
simple string, text matching will yield an empty result.

When applied on a property that holds a boolean value and a condition that holds
a simple string, text matching will yield an empty result.

Deprecated Features

Desupported Features

Deprecated Features

The following section lists the deprecated features in the Graph Visualization library:

Deprecated settings features:

— showLegend is deprecated. Instead, use | egendSt at e.

Property Graph Visualization Developer's Guide and Reference

G42279-01

October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page i of ii

ORACLE
Changes in This Release for This Guide

Desupported Features

The following section lists the desupported features in the Graph Visualization library:
e Desupported settings features:

— filters is desupported. Instead, use settings. rul eBasedStyl es.

— FilterCondition is desupported. Instead, use Basi cCondi ti on.

— Filter interface is desupported. Instead, use Rul eBasedSt yl eSet ti ng.

e styl es property is desupported. Instead, use settings. baseStyl es.

e updateFilter is desupported. Instead, use updateRuleBasedStyle.

e * operator desupported in Fi | t er Oper at or type.

Property Graph Visualization Developer's Guide and Reference
G42279-01
Copyright © 2025, Oracle and/or its affiliates.

October 20, 2025
Page ii of ii

Introduction to Visualization in Oracle Graph

Oracle Graph enables you to visually explore, interact, and analyze property graphs using the
graph visualization library.

About Oracle Graph Visualization Library
You can build your own custom property graph visualizations in your applications using the
Graph Visualization library.

Getting Started with Oracle Graph Visualization Library
Oracle Graph Visualization library is released quarterly with Oracle Graph Server and
Client Releases.

1.1 About Oracle Graph Visualization Library

You can build your own custom property graph visualizations in your applications using the
Graph Visualization library.

The library is built using JavaScript and the Graph Visualization component (@vt / gr aphvi z) in
the library supports:

Custom vertex or edge styling based on its properties
Interactive actions for graph exploration

Tooltip with vertex and edge details

Automatic legend

Multiple graph layouts

Icons libraries

Schema View

The Graph Visualization library is used in the following software components:

The Graph Visualization Application, included with Oracle Graph Server and Client
releases.

The APEX Graph Visualization plug-in, available in both on-premises and Cloud
environments.

The Graph Studio Application, which is supported on Oracle Autonomous Al Database
Serverless.

1.2 Getting Started with Oracle Graph Visualization Library

Oracle Graph Visualization library is released quarterly with Oracle Graph Server and Client
Releases.

Perform the following steps to get started with the Graph Visualization library.

1.
2.

Sign in to Oracle Software Delivery Cloud.

Enter Oracle Graph Server and Client in the search bar and select the required release.

Property Graph Visualization Developer's Guide and Reference

G42279-01

October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 1 of 2

http://www.oracle.com/pls/topic/lookup?ctx=property_graph_latest&id=graphviz
http://www.oracle.com/pls/topic/lookup?ctx=property_graph_latest&id=apex-plugin-on-premises
https://docs.oracle.com/en/cloud/paas/autonomous-database/csgru/visualize-and-interact-graph-data-graph-studio.html
https://edelivery.oracle.com

ORACLE Chapter 1
Getting Started with Oracle Graph Visualization Library

3. Download the V1048066- 01 component which contains the Graph Visualization library.

4. Embed the downloaded or acl e- graph-vi sual i zati on-1ibrary-25.1.0.zi p in your web
application.

See the demo application on GitHub for an example.
Related Topics

e Oracle Graph Server and Client Releases Documentation

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 2 of 2

https://github.com/oracle-samples/pgx-samples/tree/master/graphviz-demo
https://docs.oracle.com/en/database/oracle/property-graph/index.html

Interactive Graph Visualization Features

Oracle Graph allows you to explore and interact with your graph data when visualizing property
graphs.

The following describes a few selected features:

* Layouts
The Graph Visualization library supports several graph layouts. Each layout has its own

algorithm, which computes the placements of the vertices and edges, affecting the visual
structure of the graph.

* Exploration Modes
The Graph Visualization library supports three different modes for graph exploration.

e Graph Interaction Options
The Graph Visualization library supports different types of graph interactions.

e Schema View
The Graph Visualization library allows you to visualize a graph's schema in the form of a

property graph.

2.1 Layouts

The Graph Visualization library supports several graph layouts. Each layout has its own
algorithm, which computes the placements of the vertices and edges, affecting the visual
structure of the graph.

You can configure these layouts through the settings option as shown:

Settings:
{
layout: <'circle', 'concentric', 'force', 'grid, '"hierarchical', 'preset',
"radial', 'random, 'geographical'>
}

In addition, you can create custom layouts by passing the layout specific options using the
settings format as shown:

Settings:
{
i ;iglout c
type: 'grid",
spacing: 5
}
}

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 1 of 17

ORACLE’

Chapter 2
Layouts

The following describes the supported layouts in graph visualization.

Circle Layout
The circle layout positions the graph vertices in a circle.

Concentric Layout
The concentric layout positions the graph vertices in concentric circles.

Force Layout
The force layout aims to create a visually appealing graph. It positions the graph vertices in

the viewport so that all the edges are approximately equal in length and minimizes
crossings between the edges.

Geographical Layout
The geographical layout allows you to overlay the graph on a map.

Grid Layout
The grid layout positions the graph vertices in a well-spaced grid.

Hierarchical Layout
The hierarchical layout organizes the graph using Directed Acyclic Graph (DAG) system. It
is especially suitable for DAGs and trees.

Radial Layout
The radial layout displays the dependency chain of a graph by using an outwards

expanding tree structure. It can be especially useful if the graph data has a hierarchical
structure and contains many children for each parent vertex.

Random Layout
The random layout puts the graph vertices in random positions within the viewport.

2.1.1 Circle Layout

The circle layout positions the graph vertices in a circle.

Figure 2-1 Circle Layout

e 27 ,
@ v o
i 458
759 387 ®
bEE] 126
@ @
‘zc-a am ®
.524 ?24.
ol ®
® ®
232 .*.u
13%1. 79
95 ® .zgs
= @ 50
120 @ 230

412 . . 926
21 . . . 626 ’

235 g 439

You can configure the spaci ng property to set the the radius of the circle.

Property Graph Visualization Developer's Guide and Reference

G42279-01

Copyright © 2025, Oracle and/or its affiliates.

October 20, 2025
Page 2 of 17

ORACLE’

2.1.2 Concentric Layout

The concentric layout positions the graph vertices in concentric circles.

Figure 2-2 Concentric Layout

. 759

202

Q-
L

95
[J

535

@ =
4

@
130 @

412

@
80

233

232

235

126

228

231

481

227

439

78

5 @
387
@
901
@
® 724
229 654
® ®
230 .744
.79
.285
@ >
Q® =
@

626

Chapter 2
Layouts

You can configure the spaci ng property to set the minimum spacing between the vertices. It is

basically used for adjusting the radius of the concentric circles.

2.1.3 Force Layout

The force layout aims to create a visually appealing graph. It positions the graph vertices in the
viewport so that all the edges are approximately equal in length and minimizes crossings
between the edges.

The force layout can be used in one of the following modes:

* Standard mode: This is the default mode. In this mode, all vertices of the graph gravitate

towards each other equally regardless of their label or property values.

Property Graph Visualization Developer's Guide and Reference

G42279-01

Copyright © 2025, Oracle and/or its affiliates.

October 20, 2025
Page 3 of 17

ORACLE

Chapter 2

Layouts
Figure 2-3 Default Force Layout
2z @
® ™
® 2
534 L] a6 @ @
g g @ # 626 Y
® 22 ®
4 724
[] e 23
5 g 158 | . g
235
@
202 ® . : 285
[@ 104 ® @ e
624 [] 584 ot 481 []
923 ® Y
%
g 130
® 0
535 [y

Cluster mode: You can activate the cluster mode by setting " cl ust er Enabl ed": true. In
this mode, vertices within the same cluster are attracted more strongly towards each other
than those in different clusters, or no cluster. This is useful to visualize clusters or
communities of vertices in the graph.

You can define the following properties to configure the cluster layout. Note that you can
use cl ust er Opt i ons to specify the vertex property which defines the community or cluster
membership of the vertices.

edgeDi st ance: Sets every edge to the specified length. This can affect the padding
between the vertices.

vert exChar ge: Influences the underlying forces (for example, to remain within the
viewport, to push vertices away from each other). If cl ust er Enabl ed is t r ue, then it
influences the forces among clusters.

vel oci t yDecay: Determines the speed of the simulation.

spaci ng: Determines the spacing between the vertices.

cl ust er Enabl ed: Determines if a cluster based layout is enabled.
cl ust er Opti ons: Related settings for cluster based layout only.

cl ust er By: By default, the cluster layout uses the first element in vertex. | abel s to
form the cluster. Alternatively, cl ust er By can also be set to the property name of a
vertex. In such a case, the clusters will be formed based on the property value.

hi deUncl ust eredVerti ces: Determines whether to display the vertices that do not
belong to any cluster. Default is f al se.

The following shows an example for cluster layout:

Settings:

{

| ayout :

type: 'force',
cl usterEnabl ed: true,
clusterOptions:

{
clusterBy: 'DEPARTMENT I D ,

Property Graph Visualization Developer's Guide and Reference

G42279-01

Copyright © 2025, Oracle and/or its affiliates.

October 20, 2025
Page 4 of 17

ORACLE

Chapter 2
Layouts
hi deUncl ust eredVertices: true
}
}
}
The example aims to create clusters based on DEPARTVENT | D. The corresponding
visualization using cluster layout is as shown:
Figure 2-4 Cluster Layout
‘@ ¢ Q:‘ G - B e H - o8 $ ~ Vertices
® B
O DEPARTMENT
o . EMPLOYEE
i . EBA_GRAPHVIZ_JOB_HIST...
~ Edges
® 9
\ WORKS_AT
o \ 'WORKS_FOR
(€]
O
o
o

—
Page | 1 ‘nfS I < >

2.1.4 Geographical Layout

The geographical layout allows you to overlay the graph on a map.

However, this is provided that the latitude and longitude coordinates exist as graph properties
on the graph's vertices.

Figure 2-5 Geographical Layout

Property Graph Visualization Developer's Guide and Reference
G42279-01

October 20, 2025
Copyright © 2025, Oracle and/or its affiliates. Page 5 of 17

ORACLE Chapter 2
Layouts

You can configure this layout using the following properties:

e appl d: This accepts the app i d that is used to fetch the maps from http://
maps. or acl e. coni el ocati on. If a value is not provided, then a generic appl d will be used.

e latitude: The vertex property to use for determining the latitude of a vertex.
e longitude: The vertex property to use for determining the longitude of a vertex.

e mapType: You can select the map type in map visualization or graph visualization settings.
Alternatively, you can also provide your own sources and layers.
The following map types are available:

world_map_mb (“oracle-elocation")

osm_positron (default)
— osm_bright
— osm_darkmatter

— custom_type
Note that the custom type has the following two additional fields:

* sources: Provide your own sources to be used in the map in JSON format.
Note: Due to security reasons, the attri but e property is separate from
visualization.

* | ayers: Provide layers which you want to display on map in JSON elements array
format. For example:

[{
"id": "elocation-tiles",
"type": "raster",
"source": "oracl e-elocation”
1

« show nf o: Displays an info box in the visualizer (see Figure 2-5) that shows the Latitude
and Longitude of the mouse position and the Zoom Level of the map. Supported values
aretrue orfal se.

e showNavi gati on: Shows the navigation controls towards the top right region of the map.

« markers: Displays location markers on the map. This parameter accepts an array of
objects as shown in the following format:

interface MapMarker {
| ongi tude: nunber;
| atitude: nunber;
content?: string;

}

2.1.5 Grid Layout

The grid layout positions the graph vertices in a well-spaced grid.

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 6 of 17

ORACLE’

Figure 2-6 Grid Layout

227

285

95

778

50

104

228

230

232

458

926

584

387
@
626
@

933

126
@
439
@

624

@
901
@
481
@

202

@
724 229
®

235 231

654

412

® 0 @
759 4

Chapter 2
Layouts

@
744 79
@0
130 535
@O

534 80

You can configure the spaci ng property to set the space between the elements in the grid.

2.1.6 Hierarchical Layout

The hierarchical layout organizes the graph using Directed Acyclic Graph (DAG) system. It is

especially suitable for DAGs and trees.

Figure 2-7 Hierarchical

You can configure this layout using the following properties:

« ranker: Specifies the type of algorithm used to rank the vertices.

Supported algorithms are:

[X ==]

net wor k- si npl ex: The Network Simplex algorithm assigns ranks to each vertex in the
input graph and iteratively improves the ranking to reduce the length of the edges.

tight-tree: The Tight Tree algorithm constructs a spanning tree with tight edges and
adjust the ranks of the input vertex to achieve this. A tight edge is one that has a

length that matches its mi nl en attribute.

| ongest - pat h: The Longest Path algorithm pushes the vertices to the lowest layer
possible, leaving the bottom ranks wide and the edges longer than necessary.

« rankDirection: Controls the alignment of the ranked vertices. Supported values are: UL
(upper left), UR (upper-right direction), DL (down-left direction), DR (down-right direction), TB
(top-to-bottom direction), BT (bottom-to-top direction), LR (left-to-right direction), RL (right-to-
left direction).

e vertexSeparation: Sets the horizontal separation between the vertices.

e edgeSeparation: Sets the horizontal separation between the edges.

* rankSeparation: Sets the separation between two ranks(levels) in the graph.

Property Graph Visualization Developer's Guide and Reference

G42279-01

Copyright © 2025, Oracle and/or its affiliates.

October 20, 2025
Page 7 of 17

ORACLE Chapter 2
Layouts

2.1.7 Radial Layout

The radial layout displays the dependency chain of a graph by using an outwards expanding
tree structure. It can be especially useful if the graph data has a hierarchical structure and
contains many children for each parent vertex.

Figure 2-8 Radial Layout

e o0,
. TR B .
20 126 .
Y 534 %1 ®
4 724
@ o
759 27
[] ®
233 654
@ L]
202 744
® @ @ ®
624 g 228 229 79
@ o
933 285
L @
594 O (@) 50
B 230
@ ®
104 . . 926
s @ @ o

535 439
412

130

You can configure the spaci ng property to set the spacing between neighboring vertices if they
share the same parent vertex. If set to zero, no spacing will be applied.

2.1.8 Random Layout

The random layout puts the graph vertices in random positions within the viewport.

Figure 2-9 Random Layout

[]
o >) © ° o0 o
104 7.9 534 926 ; <l i 285 28 481 o
e ,®
O @] @ [] @ ® 5 @
by - e 221 @ o8
724
) ®
O ® ® o
229
237. . Q. @ L]
584 759 80
B0 i
® 0]
7 50 @

23

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 8 of 17

ORACLE

Chapter 2
Exploration Modes

2.2 Exploration Modes

The Graph Visualization library supports three different modes for graph exploration.

Figure 2-10 Graph Exploration Modes

JMove / Zoom [Fit to ScreenJ [Toggle Sticky Mode]

\ 1/

The supported modes are:

e Move/lZoom

— If Move / Zoom mode is enabled, you can select and move multiple vertices and edges
simultaneously within the visualization.

— If Move / Zoom mode is disabled, you can freely explore the visualization by panning
and zooming, focussing on specific groups of vertices and edges.

* Fit to Screen

— If Fit to Screen mode is enabled, the visualization automatically adjusts to fit all
vertices and edges within the available space, providing a complete view of the entire
graph.

— If Fit to Screen is disabled, the available space for visualization dynamically expands
as required.
* Toggle Sticky Mode

— If Sticky mode is enabled, the positions of vertices and edges in the graph are flexible.
You can move the vertices and edges around, and their new positions will be retained
until the mode is turned off.

— If Sticky Mode is disabled, the positions of vertices and edges remain fixed. Even if
you attempt to move the vertices around, they will snap back to their original positions
once released.

Using a combination of modes
The following describes various scenarios for using a combination of exploration modes:

* All modes switched off
This provides a full view of the graph, where the positions of the vertices are fixed. You can
navigate around the visualization and zoom in or out as required.

* Move | Zoom mode on, Fit to Screen and Sticky mode off
This allows you to select one or multiple vertices, and is useful for actions like grouping or
expanding. However, the positions of the vertices remain fixed since Sticky mode is
switched off.

* Move | Zoom mode and Fit to Screen on, Sticky mode off

Property Graph Visualization Developer's Guide and Reference

G42279-01

October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 9 of 17

ORACLE

Chapter 2
Graph Interaction Options

This mode behaves similarly to the previous case. However, when an action like expand
generates a new set of vertices, the component automatically adjusts its size to fit all new
vertices and edges.

Move | Zoom mode and Fit to Screen off, Sticky mode on
You can navigate the visualization, zoom in and out, and reposition the vertices. These
changes will be retained until the Sticky mode is turned off.

Move | Zoom mode and Sticky mode on, Fit to Screen off

You can select multiple vertices and move them around, with their positions retained.
Vertices can also be moved outside the visible region since Fit to Screen mode is switched
off.

All modes switched on

You can select multiple vertices and move them around, with their new positions retained.
The visualization region will dynamically expand as needed to accommodate these
changes.

2.3 Graph Interaction Options

The Graph Visualization library supports different types of graph interactions.

The following graph interaction options are supported (described in order from left to right):

Figure 2-11 Graph Interaction Options

e’ -1 ©

B © N Q

.......

= .

- am -
1

Expand: You can expand one or more selected vertices to fetch n-hop neighbors.
To expand a vertex, click on the specific vertex and click the Expand option in the toolbar.
Alternatively, you can right-click on the vertex and click Expand in the context menu.

The following figure illustrates expanding on vertex 289.

Figure 2-12 Expand Action

@

289

Id: BANK_ACCOUNTS({"ID":289}

[labels] ACCOUNTS 796 970 674 12 843
D 289
NAME TRENTON STOERMER

7 B e

| Expand - Fetch neighbors based on configurable hop count ‘

Drop Action: You can remove one or more selected vertices from the visualization.
To drop a vertex, click on the specific vertex and click the Drop option in the toolbar.
Alternatively, you can right-click on the vertex and click Drop in the context menu.

Property Graph Visualization Developer's Guide and Reference

G42279-01

October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 10 of 17

ORACLE’

Chapter 2
Graph Interaction Options

The following figure illustrates dropping of vertex 590.

Figure 2-13 Drop Action

O

590
Id: BANK ACCOUNTS{"ID":590}

[abels] ACCOUNTS
D 590
NAME MICHAEL MARKER

e

| Drop - Delete selected vertices and edges ‘

Focus: You can drop everything in your visualization and fetch n-hop neighbors of one or

more selected vertices.

To focus on a vertex, click on the specific vertex and click the Focus option in the toolbar.
Alternatively, you can right-click on the vertex and click Focus in the context menu.

The following figure illustrates focused visualization on vertex 934.

Figure 2-14 Focus Action

B

934
Id: BANK_ACCOUNTS({"ID":934}
Uabels] ACCOUNTS
D 934
NAME RUSSELLRIVERA
e =

| Focus - Drops everything and fetches n-hop neighbors of selected vertices ‘

597 369 732 651 406

Group: You can group selected vertices and collapse them into a single one.
To group vertices, select multiple vertices and click the Group option in the toolbar.
Alternatively, you can right-click on the selection and click Group in the context menu.

The following figure illustrates grouping of vertices 287, 590, 934, and 289.

Property Graph Visualization Developer's Guide and Reference

G42279-01

Copyright © 2025, Oracle and/or its affiliates.

October 20, 2025
Page 11 of 17

ORACLE Chapter 2
Schema View

Figure 2-15 Group Action

@)
287 I} 590 934 289 @
Id: BANK_ACCOUNTS... 1of4 o —

[labels] ACCOUNTS
ID 289
NAME TRENTON STOERMER

e B @

! Group - Group selected vertices ‘_

e Ungroup: You can ungroup a group of selected vertices.

To ungroup, select the group and click the ungroup option in the toolbar. Alternatively, you
can right-click on the group and click ungroup in the context menu.

The following figure illustrates ungrouping of vertices 287, 590, 934, and 289.

Figure 2-16 Ungroup Action

9 -0 @ o o

287 590 934 289
Id: group BANK ACC... 10f5 ¥

[1abels] undefined

smartGroupName undefined
Grouped count 4

< =]

Ungroup - Ungroup selected vertices

* Undo: To undo the last action in your visualization.

* Redo: To redo the last action in your visualization.

* Reset: To reset the visualization to its original state.

2.4 Schema View

The Graph Visualization library allows you to visualize a graph's schema in the form of a
property graph.

In order to enable schema view, you must configure the properties described in Schema View
Configuration Parameters.

Once the schema view is enabled, it will appear along side the graph in the graph visualization
panel as shown:

Property Graph Visualization Developer's Guide and Reference

G42279-01 October 20, 2025
Copyright © 2025, Oracle and/or its affiliates. Page 12 of 17

ORACLE’

Chapter 2
Schema View

Figure 2-17 Visualizing Schema and Graph Views

3 ~ Vertices

®
. COUNTRIES

® REGIONS
O DEPARTMENTS
. EMPLOYEES
. LOCATIONS
O J08S

~ Edges

EMPLOYEES

JoBs

DEPARTMENTS ®

> \{ COUNTREES_REGIONS
4 DEPARTMENTS_EMP

DEPARTMENTS_LOCA

LOCATIONS "\ LOCATIONS_COUNTR.

Ny EmPLOvEES_I0BS
REGIONS \\ Edge Interpolation

COUNTRIES
Line-style

Schema View Modes
You can switch between Schema view, Graph view, or use both in the graph visualization
panel using the toggle buttons in the toolbar.

Schema Validation
In addition to rendering the schema of a graph, the Graph Visualization library
automatically validates the provided graph dat a against the schena if one is available.

Schema View Configuration Parameters
In order to enable Schema View in your visualization, you must configure a few related
properties.

Validation Rules
The graph dat a must conform to the schema based on the certain validation rules.

2.4.1 Schema View Modes

You can switch between Schema view, Graph view, or use both in the graph visualization
panel using the toggle buttons in the toolbar.

Figure 2-18 Schema View Modes

Schema View
I Graph View

& | R

Depending on which toggle button is active the corresponding view will be displayed. The
following describes more about the supported modes:

Schema: In this mode, the schema view is displayed spanning the entire visualization.
Graph (default): In this mode, the graph is displayed spanning the entire visualization.

Schema and Graph: In this mode, when both the toggle buttons are active, the schema
and graph regions will appear side-by-side with a separator in between, as shown in
Figure 2-17. The separator can be dragged to resize the regions.

Property Graph Visualization Developer's Guide and Reference

G42279-01

October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 13 of 17

ORACLE Chapter 2
Schema View

It is important to note that depending on your data and settings configurations, either the
Schema or Graph view will be always enabled in the toolbar. If both the toggle buttons are
manually turned off, then it automatically defaults to Graph view.

2.4.2 Schema Validation

In addition to rendering the schema of a graph, the Graph Visualization library automatically
validates the provided graph dat a against the schenm if one is available.

If the graph dat a conforms to the schema based on the defined validation rules (see Validation
Rules), then the Graph Visualization library initializes without any problems. Also, in the
absence of a schema, the Schema view will not be displayed, and the schema validations will
not be executed.

If the schema validation fails, then the errors will be displayed in the following JSON format:

[{

errorType : string /'l Used by consuming application to
sunmmarize or detail the error

entityType: 'vertex' | 'edge' /1 Can be used to format the error
message to specify the context

entityld?: string /1 Used to identify the entity in the
message

entityDescriptor?: string[] /1 Used to represent name or |abels of
the entity in the message

property?: string /1 Name of the property that failed
val i dation

expect edType?: string /1 Expected type of the property

actual Type?: string /1 Actual type of the property

message?: string /1l Ready to use message if no further
custoni zation is needed at the consunming side
H

The consuming applications can then use the message property to obtain the complete
message for display on its interface. They can also derive their own custom message,
summarize errors, or categorize errors using er r or Type and other properties provided in the
error message.

2.4.3 Schema View Configuration Parameters

In order to enable Schema View in your visualization, you must configure a few related
properties.

The following properties control the behavior of Schema View:

« schena (optional): This provides the data that is shown in a Schema View. This property
takes data in the Gr aphSchena format that is described in settings. Schema View will not
be supported if this property is not confgured.

e schemaSet ti ngs(optional): This defines various settings (for example, styling) to control the
rendering of Schema View. This property follows the Setti ngs format that is described in
settings. schemaSet ti ngs. baseSt yl es and schemaSet ti ngs. rul eBasedSt yl es allow
custom styling of the Schema View. This is similar to set ti ngs. baseStyl es and
settings. rul eBasedStyl es that customize styling for the existing graph view.

If styling is not specified through schemaSet t i ngs, then the Graph Visualization library will
use a default styling to render vertices and edges in Schema View. Also, certain features

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 14 of 17

ORACLE

Chapter 2
Schema View

like pagination, legends, and so on will not apply to Schema View. Therefore, such
attributes will not have any effect even if configured in Set ti ngs.

The Settings interface supports the following additional properties to customize Schema
and Graph views display in the graph visualization panel. See settings for more
information on each of the following properties.

— vi ewMbde (optional): This controls the Schema View and Graph View display. It can
also be used to switch between views at runtime. Supported values are expanded and
col | apsed. Schema View mode will be determined by schemaSet ti ngs. vi ewibde and
Graph View mode will be determined by set ti ngs. vi ewvbde.

— viewLabel (optional): This specifies a label that is displayed in Schema View or
Graph View. If configured, the value will appear as a label on the top center of the
corresponding view. It will also be used in the tooltip for the Schema View and Graph
View toggle buttons.

— legendSt at e (optional): This specifies whether the legend region in the Graph View is
in expanded or collapsed state. Supported values are expanded and col | apsed. This
property will not have any effect when specified in schemaSet ti ngs for Schema View
as there is no legend region for this view.

The following shows an example schemaSet ti ngs for Schema View.

{"viewMbde": "expanded", "viewLabel": "Schema View', "baseStyles":
{ "vertex": { "label": "${properties.|abel Name}", "color": "blue" }}}

The following shows an example set ti ngs for Graph View.

{"viewMbde": "collapsed”, "viewLabel": "Gaph View', "legendState":
“col | apsed", "baseStyles": { "vertex": { "label": "$
{properties.|label Name}", "color": "red"}}}

2.4.4 Validation Rules

The graph dat a must conform to the schema based on the certain validation rules.

The graph dat a is validated against the schema by verifying the following rules:

MANDATORY_PROPS_IN_SCHEMA_MISSING_IN_GRAPH: This rule verifies that all the
properties that are marked as mandatory in the schena have values in the graph dat a.
The following shows a sample error if this validation fails:

{
error Type: "MANDATORY_PROPS | N_SCHEMA M SSI NG | N_GRAPH',

entityType: "vertex",

entityld: "0",
entityDescriptor: ["Hermone"],
property: "id",

message: "Vertex 'Hermione' with id '0' doesn't have a property 'id'
while it is marked as mandatory in the schema"

}

ENTITY_IN_SCHEMA_MISSING_IN_GRAPH: This rule verifies that when entities
(vertices or edges) are defined in the schema, the provided graph dat a also has those
entities in it.

Property Graph Visualization Developer's Guide and Reference

G42279-01

October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 15 of 17

ORACLE

Chapter 2
Schema View

The following shows a sample error if this validation fails:

{
errorType: "ENTI TY_I N SCHEMA M SSI NG | N_GRAPH",

entityType: "edge",
message: "The graph's data doesn't have Edges in it, but is specified
in the schema"

}

ITEMS_IN_GRAPH_NOT_DEFINED_IN_SCHEMA: This rule verifies that entities (vertices
or edges, labels, or properties) that are present in the graph, have definitions in the
schena.

The following shows a sample error if this validation fails due to edges being present in the
graph dat a without having edges defined in the schema:

error Type: "I TEMS_I N_GRAPH_NOT_DEFI NED | N_SCHEMA",

entityType: "edge",

message: "Edge that is present in the graph is not defined in the
schema.”

IR

The following shows a sample error if this validation fails due to a label being present in the
graph dat a without having that label defined in the schema:

errorType: "I TEMS_ | N_GRAPH NOT_DEFI NED | N_SCHEMA",

entityType: "vertex",

entityDescriptor: ["misc"],

message: "Vertex with label 'misc' that is present in the graph is not
defined in the schema."

AN

The following shows a sample error if this validation fails due to a property being present in
the graph dat a without having that property defined in the schema:

errorType: "I TEMS_I N_GRAPH_NOT_DEFI NED | N_SCHEMA",

entityType: "vertex",

entityld: "0",

entityDescriptor: ["Tom Jones"],

property: "date",

message: "Property 'date' of vertex 'TomJones' with id '0" that is
present in the graph is not defined in the schema."”

AN

TYPE_MISMATCH_BETWEEN_SCHEMA_AND_GRAPH: This rule verifies that the data
type of properties in the graph dat a conforms with its definition in the schena.

Property Graph Visualization Developer's Guide and Reference

G42279-01

October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 16 of 17

ORACLE Chapter 2
Schema View

The following shows a sample error if this validation fails:

{
error Type: "TYPE_M SVMATCH BETWEEN SCHEMA AND GRAPH',

entityType: "vertex",

entityDescriptor: ["Mary"],

property: "id",

expect edType: "string",

actual Type: "number",

message: "Vertex 'Mary' has an attribute 'id of type 'nunber' while
it is specified to be of type 'string' in the schena"

}

e MISMATCH_BETWEEN_LABELS_IN_SCHEMA: This rule verifies that all properties
defined in the schema across multiple labels do not contradict, when those labels are used
in a vertex or edge of the graph dat a.
The following shows a sample error if this validation fails:

{
error Type: "M SMATCH BETWEEN LABELS | N_SCHEMA",

entityType: "edge",

entityld: "0",
entityDescriptor: ["default"”, "Label 1", "Label 2", "Label 3"],
property: "id",

message: "Edge 'default' with id '0" has nmismatch in the schema
definition of 'id" property among its |abels 'Label 1', 'Label 2', and
"Label 3"

}

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 17 of 17

Graph Visualization Library Reference

This section provides the JavaScript API reference documentation for the Graph Visualization
library.

Learn about the different properties and events supported by the Graph Visualization library.

Properties
Events

Methods

3.1 Properties

The graph visualization component contains the following properties:

types
This section describes the custom types supported in the Graph Visualization library.

data
This section describes the interfaces that support the initial graph data in a visualization.

settings
This section describes the settings to configure the graph layout, page size, theme,

legends, animation, and so on.

featureFlags
This section describes the hierarchical flags to hide specified features or group of features.

fetchMore
This section describes the callback to retrieve a given page of graph data.

expand
This section describes the callback to retrieve n-hops neighbors of specified vertices.

eventHandlers
This section describes the callbacks to handle events triggered by the graph entities
(vertices or edges).

persist
This section describes the callback to save any graph modification to a datasource.

fetchActions
This section describes the callback to retrieve actions from a data source and apply them
during the initial loading of the graph.

search
This section describes the callback to retrieve a list of vertices and edges that matches a
search.

updateEvolution
This section describes the callback to enable or disable the evolution feature.

updateSelectedOption
This section describes the callback to update the selected option for smart expand or
smart group.

Property Graph Visualization Developer's Guide and Reference

G42279-01

October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 1 of 21

ORACLE

3.1.1types

3.1.2 data

Chapter 3
Properties

e updateSearchValue
This section describes the callback to update the value used for live search.

e updateGraphData
This section describes the callback to handle events when the graph data is updated.

* updateRuleBasedStyle
This section describes the callback to perform custom handling when visibility or styling
toggle, or reordering is performed in the legend area.

* editRuleBasedStyle
This section describes the callback to handle the editing of rule based styles using an
external user interface.

This section describes the custom types supported in the Graph Visualization library.

type Optional <T> = T | undefi ned;

type Nullable<T> =T | null;

type TypedMap<T> = Record<string, T>;

type NonEmptyArray<T> = [T, ...T[]];

type VertexSearchResult = Record<ld, Vertex>;
type EdgesSearchResult = Record<ld, Edge>;

type Defaul tProps = Record<ld, string | number>;

This section describes the interfaces that support the initial graph data in a visualization.

interface TypedArrayMap<TVal ue = any> {
[key: string]: TVal ue;
}

interface Fetchable {
/1 Number of results used for tooltip pagination
nunResul t s?: nunber;
/1 Flag indicating whether this is the last result set.
i sLast Resul t Set ?: bool ean;

}

interface Graph extends Fetchable {
/1 Graph vertices
vertices: Vertex[];
/1 Graph edges
edges: Edge[];
}

declare type Id = string | nunber;

Property Graph Visualization Developer's Guide and Reference

G42279-01

October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 2 of 21

ORACLE Chapter 3
Properties

interface C assable {
/1 Entity classes used for styling
classes?: string[];

}

interface Entity extends Cassable {
Il Entity id
id Id;

/1 Arbitrary entity properties

properties?:. TypedMap<string | nunber | bool ean>;
Il Inline style

style?: Style;

/1 Labels associate with entity

| abel s?: string[];

}

interface Vertex extends Entity {}

interface Edge extends Entity {
/1 Source vertex id

source: 1d;
/I Target vertex id
target: 1d;

}

3.1.3 settings

This section describes the settings to configure the graph layout, page size, theme, legends,
animation, and so on.

interface SearchResult {
vertices?: VertexSearchResult;
edges?: EdgesSearchResult;
def aul t Props?: Defaul t Props;

}

type Theme = 'light' | 'dark';

type EdgeMarker = "arrow | 'none';

type SizeMde = 'conpact' | 'normal’;

type ExpandedState = 'expanded' | 'collapsed’;

type Defaul tSettings = {

/1 Specifies the default state of the 'Select - Mve/Zoom toggle button in
the tool bar. True activates 'Select' node and fal se switches to ' Mve/ Zooni
mode.

interactionActive: Optional <Bool ean>;

/] Specifies the default state of the '"Fit to Screen' toggle button in the
tool bar. True activates the button and fal se deactivates it.

fitToScreenActive: Optional <Bool ean>;

/1 Specifies the default state of the 'Sticky node' toggle button in the
tool bar. True activates the button and fal se deactivates it.

stickyActive: Optional <Bool ean>;

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025
Copyright © 2025, Oracle and/or its affiliates. Page 3 of 21

ORACLE

Chapter 3
Properties

Il Specifies the default state of the 'Evolution' toggle button in the
tool bar. True activates the button and fal se deactivates it.
evol uti onActive: Optional <Bool ean>;

b

/1 When the node is 'hideWenAnyUnchecked', graph elenent (vertex/edge) will
be hi dden when one of the legend items affecting it has its visibility turned
of f.

/1 When the node is 'hideWenAl | Unchecked' , graph elenent (vertex/edge) will
be hidden only when all the legend itenms affecting it has its visibility
turned of f.

type VisibilityToggl eMbde = ' hi deWhenAnyUnchecked' | ' hi deWenAl | Unchecked' ;

interface Settings {

/1 Nunmber of elements to display on first load (default 100)

di spl aySi zeOnLoad?: nunber;

/1 Size of pagination page (default 100).

/1 Note: pageSize is deprecated in Gaph Server and Oient Release 25.3.
I nstead, use displaySi zeOnLoad.

pageSi ze?: nunber;

/1 Wether to group edges with the sane source and target (default false).

gr oupEdges: bool ean;

/1 Marks if nunbers should be formatted, |ocale aware (Default true)

f or mat Nunbers: bool ean;

/1 Layout type or LayoutSettings (default force).

layout: Layout Type | Partial <Layout Settings>;

/1 Network Evolution configuration.

evol ution: NestedPartial <Shortcut s<Evol uti on>>;

/1 Smart groups settings.

smart G oup: Smart G oup;

/1 Smart expand settings.

smart Expand: Smart Expand,;

/1 Enables |ive search feature.

sear chEnabl ed: bool ean;

/1 Escapes HTM. content used on vertex/edge tooltip.

escapeH nl : bool ean;

/1 Wdth used for |egend area.

| egendW dt h: nunber;

/1 Number of hops used for expand acti on.

nunber Of Hops: nunber ;

/1 Smart expand used based on Id.

sel ect edSmart Expand: Nul | abl e<number >;

/1 Smart group used based on I|d.

sel ect edSmart Group: Nul | abl e<nunber >;

/1 Size node determines the size of U elenents (like toolbar buttons,
search region etc).

/1 Possible values are 'conpact’ and 'normal'. If not specified, it will be
conput ed based on the avail abl e page width.

si zeMobde: SizeMode;

/1 Property used for live search feature.

searchVal ue: string | undefined;

/1 Edger marker, can be "arrow or 'none'. Default is "arrow .

edgeMar ker: EdgeMar ker;

/1 Flag to show hide | egend of vertices/edges. Default is true.

/'l @eprecated since version 25.4.0. Instead, use legendState instead.

showLegend: bool ean;

Property Graph Visualization Developer's Guide and Reference

G42279-01

October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 4 of 21

ORACLE Chapter 3
Properties

[l Limt of characters that are shown for vertex/edge I abel.

charLimt: nunber;

/1 Show title of edge/vertex conponents.

showTi t1 e: bool ean;

/1 Vertex property showed on the visualization.

vertexLabel Property: Null abl e<string>;

/1 Edge property showed on the visualization.

edgelLabel Property: Nul | abl e<string>;

Il thene settings (default |ight thene).

theme: Thene;

/'l custonized thene settings.

custonThene: Cust onfThene;

/1 Limt of characters shown on the vertex/edge tooltip. If not set,
default is 100.

tooltipCharLinit: Nullabl e<nunber>;

/1 Styles applied to all vertices and edges

baseStyles: Styles;

/1 Rules correspond to Legend entries that also control visiblity/styling
hi ghl i ghts.

rul eBasedStyl es: Rul eBasedStyl eSetting[];
/1 Deternines whether the view represented by the Settings (Schema View or
Gaph View) is in 'expanded' or 'collapsed state.

vi ewvbde?: ExpandedSt at e;

/'l Specifies the value shown in the label and tooltip to set the current
view s context ('Schema' or 'Gaph')

vi ewLabel ?: string;

/'l Specifies whether the graph Views' legend region is in expanded or
col l apsed state. Not applicable for schema settings

| egendSt at e?: ExpandedSt at e;

/1 Specifies whether accessibility node (that includes features such as
keyboard interactions, voice over support, and so on) is enabl ed.

/1 This will be enabled by default unless explicitly set to false.

accessi bi | i t yEnabl ed?: Bool ean;

/1 Specifies howvisibility of graph el ements are determi ned when
visibility checkbox of the legend is toggled.

/1 Defaults to 'hideWhenAnyUnchecked' when not specified.

vi si bilityToggl eMode?: VisibilityToggl eMode;

/1 Specifies the default state of various aspects of GVT

defaults: Partial <Default Settings>;

}

interface PropertySchema {

/1 Name of the property.

nane: string;

/1 Data type of the property val ue.

dataType: 'string' | 'boolean' | 'nunber' | 'date' | 'tinestanp';

/1 Limts used for validation Iike Maximum | ength, Precision / Scale etc
dependi ng on the data type of the property.

limts?: nunber[];

/1 Specifies if the property should al ways have a val ue.

mandat ory?: bool ean;

}

//Base interface to VertexLabel Schema and Edgelabel Schema, hol di ng properties
conmon to both.
interface EntitylLabel Schema {

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025
Copyright © 2025, Oracle and/or its affiliates. Page 5 of 21

ORACLE

Chapter 3
Properties

Il Specifies the label associated with the schema's vertex or edge.
| abel Nane: string;

/1 Properties defined in the schema.

properties: PropertySchema[];

}

interface VertexLabel Schema extends EntitylLabel Schema {}

i nterface EdgelLabel Schema extends EntityLabel Schema {
/'l Specifies which Schena vertex the edge originates from
sourceVertexLabel ?: string;
/'l Specifies which Schema vertex the edge ends at.
target VertexLabel ?: string;

}

interface GraphSchema {
/1 Vertices of the schema.
vertices: VertexLabel Schemg[];
/1 Edges of the schena.
edges: Edgelabel Schema[];

}

/1 Denotes the id involved in the validation failure.

type EntityValidationType = 'vertex' | 'edge' | 'schema vertex' | 'schema
edge' ;

interface EntityValidationError {
/1 Denotes the type of the entity whose validation failed.
entityType?: EntityValidationType;
/1 Denotes the id of the entity involved in the validation failure.
entityld?: string;
/1 Denotes the label of the entity involved in the validation failure.
entitylLabel ?: string[];
/1 Denotes the property of the entity involved in the validation failure.
property?: string;
/1 Denotes the type of the property received.
actual Type?: string;
/1 Denotes the type of the property expected.
expect edType?: string;
/1 Denotes the validation message as string.
message?: string;

}

interface SchemaValidationError extends EntityValidationError {
/1 Error codes returned when schema validation fails
errorType:
| ' MANDATORY_PROPS | N SCHEMA M SSI NG | N GRAPH
| "ENTITY_IN SCHEMA M SSI NG | N _GRAPH
| '1TEMS | N GRAPH NOT_DEFI NED | N SCHEMA'
| ' TYPE_M SMATCH BETWEEN SCHEMA AND GRAPH ;
}

interface StyleValidationError extends EntityValidationError {
[l Error codes returned when validation of rule based styles fail
errorType: ' CONDI TIONS_M SSING | ' OPERATI ON_NOT_SUPPCRTED ;
operator?: FilterQperator;

Property Graph Visualization Developer's Guide and Reference

G42279-01

October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 6 of 21

ORACLE

Chapter 3
Properties
}
type FilterConponent = 'vertex' | 'edge'
type ApplyTarget = 'vertex' | 'source' | 'target' | 'edge' | 'ingoing'
"out going';
type FilterQperator = '<" | "<=" | "> | '">= | "= | "I="] "~ | 'CONTAINS

| ' CONTAI NS_REGEX' ;

interface El ement Property<T> {
property: string
value: T,

}

interface BasicCondition extends El ementProperty<string | string[]> {
operator: FilterQperator

}

interface RuleCondition {
rule: string;

}

interface ExpandCondition extends BasicCondition {
conponent: FilterConponent;
}

type ConditionsCperator = "and | 'or
interface Conditions<T extends FilterCondition | RuleCondition
Basi cCondi ti on> {

conditions: T[];

operator: ConditionsQperator

}

/1 Graph animations are applied within the filter properties.
interface GaphAnimation {

id?: string;

duration: nunber;

timngFunction: string

direction?: string;

keyFrames: KeyFrane[];

i terationCount?: nunber;

}

type FilterProperties = {

colors?: string[];

classes?: string[];

/1 @eprecated since version 25.1 - use the equival ent Rul eBasedStyle
i nst ead.

sizes?: number[];

/1 @eprecated since version 25.1 - use the equival ent Rul eBasedStyle
i nst ead.

icons?: string[];

/1 @eprecated since version 25.1 - use the equival ent Rul eBasedStyle
i nst ead.

Property Graph Visualization Developer's Guide and Reference

G42279-01

October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 7 of 21

ORACLE

Chapter 3
Properties

i conCol ors?: string[];

/1 @eprecated since version 25.1 - use the equival ent Rul eBasedStyle
i nst ead.

i mge?: string[];

/1 @eprecated since version 25.1 - use the equival ent Rul eBasedStyle
i nst ead.

| abel ?: string[];

/1 @eprecated since version 25.1 - use the equival ent Rul eBasedStyle
i nst ead.

style?: string[];

/1 @eprecated since version 25.1 - use the equival ent Rul eBasedStyle
i nst ead.

ani mations?: G aphAni mation[][];

/1 @eprecated since version 25.1 - use the equival ent Rul eBasedStyle
i nst ead.

l egendTitle?: string[];

/1 @eprecated since version 25.1 - use the equival ent Rul eBasedStyle
i nst ead.

| egendDescription?: string[];
b
interface Filterlnterpolation {

/1 The property on which interpolation is applied.

property: string;

/1 The mininmmrange for interpolation.

m n?: nunber;

/1 The maxi mum range for interpolation.

max?: number;
}
/1 Different types of aggregation functions are supported.
type AggregationType = 'average' | 'mn' | 'max' | 'sumi | 'count' |
"distinctCount';
interface PropertyAggregation {

/1 The property of vertex or edge on which aggregation is conputed.

source: string;

/1 The type of aggregation function used for conputation.

type: AggregationType;
type Overlaylndicatorlcon = 'pin" | 'bookmark'; // icon specified will be

internally converted to the actual icon nanme, based on the theme used.

interface Rul eBasedStyl eSetting extends FronTenplate {

/1 Marks if Styling is enabled for a rul eBasedStyleSetting itemand the
vertices/edges that it controls.

stylingEnabl ed?: bool ean;

/1 Conditions deciding which vertices/edges will be affected by the
rul eBasedStyl eSetting item

condi tions?: Conditions<BasicCondition | RuleCondition>;

/1 The component for which the rul eBasedStyl eSetting is defined.

conponent: FilterConponent;

Il The target on which this rul eBasedStyleSetting applies (vertex, source,
target, edge, ingoing, outgoing).

target: ApplyTarget;

Property Graph Visualization Developer's Guide and Reference

G42279-01

October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 8 of 21

ORACLE

Chapter 3
Properties

/1 The various properties (like colors, icons, image, animations) of a
vertex/edge that this rul eBasedStyleSetting' s state can affect.

properties: FilterProperties;

/1 Marks if aggregation is enabled for a rul eBasedStyleSetting item based
on whi ch conputation is perforned.

aggr egat i onEnabl ed?: bool ean;

/1 The various aggregation properties configured on this
rul eBasedStyl eSetting.

aggregation?. PropertyAggregation[];

Il The properties and range on which interpolation will apply.

interpolation?: Filterlnterpolation;

/1 References of rul eBasedStyleSetting ids.

filterReferencel ds?: nunber[];

/1 Legend title for the rule.

| egendTitle?: string;

Il Style for modifiers. Keys can be selected, unsel ected, group, hover.

nmodi fierStyl es?: TypedMap<VertexStyle | EdgeStyl e>;

/1 Properties for animations.

ani mations?: G aphAnimation[][];

[l Marks if the rule is a default rule.

i sDef aul t Rul e?: bool ean;

/1 Marks the legend item s preview region using the specified icon as an
overl ay.

overl ayl ndi cator?: CQverlaylndi catorlcon;

/1 Marks if the legend entry is displayed in the legend area (Default true).

| egendDi spl ayed?: bool ean;

}

interface LegendEntry extends Rul eBasedStyl eSetting{

/1 The title of the legend entry when the rul eBasedStyleSetting is shown in
the | egend area.

legendTitle?: string[];

/1 Marks if the legend entry is visible in the I egend area.

| egendEnt ryVi si bl e: bool ean;

/1 The style of Iegend entry in the |egend area.

style: Partial<VertexStyle> | Partial <EdgeStyl e>;

/1 The vertices / edges on which this | egend entry has influence.

filteredNodes: Vertex[] | Edge[];

/1 The style is from Rul eBasedSetting and will be applied to el enents that
match the rule.

toAppl yStyl e?: Partial <VertexStyle> | Partial <EdgeStyl e>;
}

type Layout Settings =
| CirclelLayout Settings
| ConcentricLayout Settings
| Forcelayout Settings
| GridLayout Settings
| Hierarchical Layout Settings
| PresetlLayout Settings
| Radial Layout Settings
| RandomLayout Settings;
type LayoutType = 'circle' | 'concentric' | "force' | 'grid | 'hierarchical
| "preset’ | 'radial' | 'random

Property Graph Visualization Developer's Guide and Reference
G42279-01
Copyright © 2025, Oracle and/or its affiliates.

October 20, 2025
Page 9 of 21

ORACLE

Chapter 3
Properties

interface BaselLayout Settings {
type: Layout Type;
}

i nterface SpacingLayout Settings {
/1 Spacing among vertices in multiples of vertex radius.
spaci ng: nunber;

}

interface CirclelLayoutSettings extends BaselLayout Settings,
Spaci ngLayout Settings {
type: 'circle';

}

interface ClusterQptions {
clusterBy?: string; //vertex property
hi deUncl ust eredVertices?: bool ean;

}

interface Concentriclayout Settings extends BaselLayout Settings,
Spaci ngLayout Settings {
type: 'concentric';

}

interface Forcelayout Settings extends BaselLayout Setti ngs,
Spaci ngLayout Settings {

type: 'force';

al phaDecay: nunber; // (default 0.01)

vel oci tyDecay: nunber; // (default 0.1)

edgeDi stance: nunber; // (default 100)

vertexCharge: number; // (default -60)

cl usterEnabl ed: bool ean; // (default false)

clusterOptions?: CusterOptions;

}

/1 Wen selecting grid layout, if neither rows or colums are defined, the
graph will be displayed in a square grid.
/1 1f rows are selected, it will be displayed in a grid with that many rows.
/1 1f colums are selected it will be displayed in a grid witht that many
col umms.
/1 1f both rows and colums are selected, only the rows will be taken into
consi derati on.
interface GidLayout Settings extends BaselLayout Settings,
Spaci ngLayout Settings {

type: 'grid';

rows?: numnber;

col ums?: nunber;

}

type Hierarchical RankDirection =
| "UL" // Up to left

"UR // Up to right

" |/ Down to left

/1 Down to right

' /] Top to bottom

" |/ Bottomto top

2=

vs]

w -

Property Graph Visualization Developer's Guide and Reference

G42279-01

October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 10 of 21

ORACLE

Chapter 3
Properties
| "LR // Left to right
| "RL"; /] Right to left
type Hierarchical Ranker = 'network-sinmplex' | 'tight-tree' | 'longest-path';

interface Hierarchical Layout Settings extends BaselLayout Settings {
type: "hierarchical';
/1 Default is 'TB'.
rankDi rection: Hierarchical RankDirection;
/] Default is 'network-sinplex'.
ranker: Hi erarchical Ranker;
vertexSeparation?: nunber;
edgeSeparati on?: nunber;
rankSeparation?: nunber;

}

interface PresetlLayout Settings extends BaselLayout Settings {
type: 'preset’;
/1 Property of the vertex used as x coordinate.

X: string;
/1 Property of the vertex used as y coordinate.
y: string;

}

interface Radial Layout Settings extends BaselLayout Settings,
Spaci ngLayout Settings {

type: 'radial’;
}

i nterface RandomLayout Settings extends BaselLayout Settings {
type: 'random ;

}

interface MapMarker {
| ongi tude: nunber;
| atitude: nunber;
content?: string;

}

/1 Types of maps.

type MapType = "osmpositron' | "osmbright' | 'osmdarkmatter' |
"world_map_nmb' | 'customtype';

i nterface Geographical Layout Settings extends BaselLayout Settings {
type: 'geographical';
longitude: string;
latitude: string;
appld?: string;
mapType?: MapType;
showl nf0?: bool ean;
showNavi gati on?: bool ean;
| ayers?: string;
sources?: string;
mar kers?: NMapMarker[];

Property Graph Visualization Developer's Guide and Reference

G42279-01

Copyright © 2025, Oracle and/or its affiliates.

October 20, 2025
Page 11 of 21

ORACLE Chapter 3
Properties

interface EvolutionEntity {
/1 Start property.
start: string;
/1 End property.
end?: string

}

interface Evolution {
/1 Height of the U conponent (default is 100).
hei ght: number
/1 Type of the chart (default is 'bar').
chart: "bar' | "line';
/1 Aggregation granularity in given unit (default is 1).
granul arity: nunber
[l Time unit or undefined for nunbers (default is undefined).
unit?: 'second | 'minute' | '"hour' | 'day' | 'week' | 'nonth' | 'year';
Il Vertex Evolution properties (or just string specifying Start property).
vertex?: string | EvolutionEntity;
/1 Edge Evol ution properties (or just string specifying Start property).
edge?: string | EvolutionEntity;
/1 Defines exclusion of val ues.
excl ude: {
/1 Array of excluded val ues.
val ues: (string | nunber)[];
[l \Whether to always show or hide excluded values (default is false).
show. bool ean;

};
/1 Playback options
pl ayback: {

Il Number of vertex / edge changes per step
step: nunber
[l Nurmber of milliseconds between steps.
timeout: nunber;
b
/1 1f turned on, network evolution will keep the original vertex positions
of the graph
/1 when vertices and edges unfold during playback
preservePositions: bool ean;
/1 Requires a string that represents the format in which the date nust be
di spl ayed.
[l The format nust include either YYYY, MM or DD. Qtherwise, it will be
i gnor ed.
/1 1f not provided, the follow ng defaults apply:
/1 Wen displaying units of days, only the day will be displayed (1, 15
30, and so on).
/1 \When displaying nonths only the tag of the nonth will be displayed (Jan
Feb, and so on).
/1 Wen displaying years, only the year wil be displayed (2001, 1999, and
S0 on).
/1 1f the time window between the first date in the graph and the |ast date
/1 in the graph is too big, such that the displayed tine [abel cannot fit,
it owill
/1 change to the next bigger unit. For exanple, if the unit is days and the
| abel s cannot fit,
/1 then it will attenpt to use a month label. In case a nonth label is too
big, then a year label will be used.

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025
Copyright © 2025, Oracle and/or its affiliates. Page 12 of 21

ORACLE

}

Chapter 3
Properties

| abel Format ?: string;
axis?: 'vertices' | 'edges' | 'both';

type SmartExpl orerType = 'expand' | 'group';

interface FronTenpl ate {

}

_frontTenpl ate?: bool ean;
_id?: nunber | string;

interface Smart Expl orer extends FronTenplate {

}

readonly type: SmartExpl orer Type;
nane: string;

interface Smart Expand extends SmartExplorer {

}

readonly type: 'expand';

nunber Of Hops: Opt i onal <nunber >;

navi gation: Conditions<ExpandConditi on>;
destination: Conditions<ExpandCondition>;

interface Smart Group extends SmartExplorer {

}

readonly type: 'group';

automatic: bool ean;

enabl ed: bool ean;

groupBy?: string;

condi tions: Conditions<ExpandCondition>;

type Theme = 'light' | 'dark';

interface Custonfheme {

}

backgroundCol or?: string;
textCol or?: string;

type Styles = TypedMap<VertexStyle | EdgeStyle>;

interface Style extends El enentPosition {

}

/] Default is (vertex: lightgray, edge: #C0C0Q0).

color: string;

[l Default is 1.

opacity: nunber;

Il Css filter. Default is none.

filter: string;

/1 Label settings or just label text. It is null for no |abel.
| abel : Nul | abl e<Label Styl e>;

/1 Legend style or just legend text. It is null for no |egend.
legend: Nullable<this & { text: string }>;

/1 Definitions of child elenments (for exanple, vertex / edge badges).
children: Null abl e<TypedMap<_VertexStyle & O assabl e>>;

interface I mageStyle {

Property Graph Visualization Developer's Guide and Reference

G42279-01

October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 13 of 21

ORACLE

/1 Image url. Default is undefined.
url: string;

/1 1mage scale. Default is 1.

scal e?: nunber;

}

interface BorderStyle {
/1l Border width. Default is 1.
wi dt h?: nunber;
/1 Border color. Default is #404040.
color?: string;

}

interface IconStyle {
/1 lcon class. For exanple, fa-bell. Default is undefined.
class: string;
/1 lcon text color. Default is white.
color?: string;

}

interface VertexStyle extends Style {
/1 Vertex radius. Default is 8.
si ze: nunber;
/1 Background inmage settings or just url. Null for no background.
i mge: |mageStyle;
/'l Vertex border settings or just color. Null for no border.
border: BorderStyle;
/1 Vertex icon settings or just class. Null for no icon.
icon: lconStyle;

}

interface EdgeStyle extends Style {

/1 Edge width. Default is 2.

wi dt h: nunber;

/1 Fill pattern. Default is undefined.

/1 Dasharray values are: '1 5, '5", '510', '105, '51, '15 10 &
10 5 10', '15 10 5 10 15", '55 1 5

dasharray: string;

}

/1 Position of the label or child vertex.
interface El ementPosition {

Chapter 3
Properties

/1 Angle position of label or child vertex (in degrees) wr.t the parent

vert ex.

/1 Following are some val ues and its correspondi ng positioning of |abel or

child vertex:
[l null - inside the parent vertex
/1 0 - to the right side of the parent vertex
/1 90 - towards the top of the parent vertex
/1 180 - to the left side of the parent vertex

/1 270 - towards the bottomof the parent vertex (this is the default

position unless overridden)
angl e?: Nul | abl e<nunber >;

/1 Position on the edge. Value between -1 (edge start) and 1 (edge end).

position?: nunber;

[l Ofset from vertex radius (> 0: outside, < 0: inside) or edge path.

Property Graph Visualization Developer's Guide and Reference

G42279-01

October 20, 2025

Copyright © 2025, Oracle and/or its affiliates.

Page 14 of 21

ORACLE Chapter 3
Properties

Il (> 0: above, < 0: under)
d: nunber;

}

interface FontStyle {
/1 Font size. Default is 10.
si ze?: nunber;
/1 Font family. Default is inherited.
famly?: string;
/1 Font style. Default is inherited.
style?: string;
/1 Font weight. Default is inherited.
wei ght ?: string;

}

interface Label Style extends El ement Position {

/1 Label text.

text: string;

/1 Color - Default is rgba(0, 0, 0, 0.8).

color?: string;

/1 Maximum | abel length. Default is 15. The whole | abel is displayed in
tool tip.

maxLengt h: nunber;

font: FontStyle;

/1 When di sabl eBackdrop is true, it hides the faded backdrop placed behind
vertex |abels.

/1 The backdrop that is enabled by default is particularly useful when
vertex |abel crosses over an edge

/1 or when label is shown inside a vertex.

di sabl eBackdrop: bool ean = fal se;

/1 \Wen resizeParent is true, vertices will adapt its size and shape to
suit the label's length.

/1 Applies only when the |abel is shown within the vertex (that is label's
style.angle is null)

resi zeParent: bool ean = fal se;

}

» Style Expressions

* Rule Expressions

3.1.3.1 Style Expressions

These expressions can access anything from the Expr essi onCont ext which extends Entity so
also all the properties of the vertex / edge that is styled.

interface ExpressionContext extends Entity {
/1 Hel per function for value interpolation
/1 path: path to the ExpressionContext property that will be interpolated
/1 (e.g. "id", 'properties.sonmeProperty')
[l mn: mininuminterpolation result value
/1 max: maximuminterpolation result value
interpolate: (path: string, mn: nunber, max: nunber) => nunber;
/'l Previous value of eval uated property

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 15 of 21

ORACLE Chapter 3
Properties
previous?: nunber | string;
}
Context is accessed through ${accessor} syntax (that is JavaScript template literals). The
following lists a few example expressions:
o https://flagcdn. com 40x30/ ${properties. code}. png: Constructs a URL using a given
property.
e ${previous + 4}: Returns a bigger value. This can be used, for example, to make vertices
or edges bigger on hover.
e ${interpolate("group.size", 8, 16): Interpolation based on the grouped vertex size.
3.1.3.2 Rule Expressions

Rule expressions are used to specify the target element into which given style will be applied.
It has the following structure:

el ement Nane(. cl assNane) *(: modi fier)*([conditionExpression])? (>
el ement Nange(. cl assNane) *)

In the preceding format:

el ementNane :=* | 'vertex' | 'edge'

cl assNane (deprecated since 25.1): Any cl assName specified in input vertex or edge
classes array.

modi fier :="hover' | 'selected | 'unselected | 'group'

condi ti onExpr essi on (deprecated since 25.1): JavaScript expression that can access any
property of evaluated vertex or edge.
It is recommended to use set tings. rul eBasedStyl es.

Also, note the following:

*: Applies to all elements.

vertex: Applies to all vertices.

edge: Applies to all edges.

exanpl e (deprecated since 25.1): Applies to all elements with example class specified.
vert ex. exanpl e (deprecated since 25.1): Applies to all vertices with example class.
vertex: sel ect ed: Applies to all selected vertices.

vertex[id > 10] (deprecated since 25.1). Applies to all vertices with i d > 10.
It is recommended to use settings. rul eBasedSt yl es.

vertex|[properties.sone === 'val ue']: Applies to all vertices that have some property
with value value.

It is recommended to use settings. rul eBasedSt yl es. All the properties in settings are
optional and have their defaults.

Property Graph Visualization Developer's Guide and Reference

G42279-01

October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 16 of 21

ORACLE

3.1.4 featureFlags

Chapter 3
Properties

This section describes the hierarchical flags to hide specified features or group of features.

type FeatureFlags =
| false
| NestedFl ags<{
Il Use false to hide the whole exploration.
exploration: {
/1 Use false to hide expand.
expand: bool ean;
focus: bool ean;
group: bool ean;
ungroup: bool ean;
drop: bool ean;
undo: bool ean;
redo: bool ean;
reset: bool ean;

b
/1l Use false to hide all nodes.
modes: {
/1l Use false to hide interaction node.
interaction: bool ean;
fitToScreen: bool ean;
sticky: bool ean;
b

Il Use false to hide display size control.
di spl aySi zeControl ;: bool ean;

1>

type NestedFl ags<T> = {

readonly [P in keyof T]?: T[P] extends object ? false | NestedFlags<T[P]> :

TP,
b

3.1.5 fetchMore

This section describes the callback to retrieve a given page of graph data.

/1 Returns Gaph for additional data.
type FetchMore = (start: nunber, size: nunber) => Proni se<G aph>;

If provided, dat a does not have to be set and graph visualization will automatically call
f et chMor e to retrieve data on initial load. If not provided, only dat a will be displayed.

3.1.6 expand

This section describes the callback to retrieve n-hops neighbors of specified vertices.

/1 ids: To expand fromthe ids of the selected vertices.
/'l hops: Nunmber of hops to fetch fromselected verti ces.
/'l Returns the expanded graph.

Property Graph Visualization Developer's Guide and Reference

G42279-01

Copyright © 2025, Oracle and/or its affiliates.

October 20, 2025

Page 17 of 21

ORACLE Chapter 3
Properties

type ExpandActionType = 'expand' | 'focus';

type Expand = (ids: 1d[], hops: nunber, action: ExpandActionType,
tenpl atel d?: nunber | null) => Proni se<G aph>;

By default, expand or focus is hidden.

3.1.7 eventHandlers

This section describes the callbacks to handle events triggered by the graph entities (vertices
or edges).

/1 id: Id of the child vertex targeted with the event(if any).

/1 entity: The entity or parent of the vertex(identified by the id paraneter)
targeted with the event.

type EntityEventCallback = (event: Event, id: Optional <string> entity:
Entity) => void;

/1 event Type: Supported <g> el enent event attributes w thout the -on- prefix.
/1 children: Event handlers for child entities.
interface EntityEventHandlers {

[event Type: string]: EntityEventCallback | _EntityEventHandl ers;

children?: EntityEventHandl ers;

}

type EntityEventHandl ers = Optional < EntityEvent Handl er s>;

/1 vertex: Callbacks that handl e events fired by vertices.
/1 edge: Callbacks that handle events fired by edges.
interface _All EventHandlers {

vertex: EntityEventHandl ers;

edge: EntityEventHandl ers;

}

type Al'l EventHandl ers = Partial < Al | Event Handl er s>;

3.1.8 persist

This section describes the callback to save any graph modification to a datasource.

type GraphActionType = 'drop' | "expand' | 'focus' | 'group' | 'ungroup' |
‘undo' | 'redo’ | 'reset';

/1 vertexlds: Ids of the vertices targeted with the action.
/1 edgelds: Ids of the edges targeted with the action.
interface GraphAction {

type: G aphActionType;

vertexl ds?: NonEnptyArray<I|d>;

edgel ds?: NonEnmpt yArray<I d>;

tenpl ate?: Nul | abl e<nunber | string>;

}

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 18 of 21

ORACLE Chapter 3
Properties

/1 action: Gaph action to persist to a datasource.
type Persist = (action: GaphAction) => Prom se<voi d>;

3.1.9 fetchActions

This section describes the callback to retrieve actions from a data source and apply them
during the initial loading of the graph.

/1 This gets executed only once when the graph |oads for the first tine.
/] 1t contains code to retrieve graph actions to apply on the graph initially.
type FetchActions = () => Prom se<G aphAction[]>;

3.1.10 search

This section describes the callback to retrieve a list of vertices and edges that matches a
search.

/1 Function for live search feature.

/11t returns the list of vertices and edges that natches the keyword.
type Search = (keyword: string, searchGraph?: Optional <G aph>) =>
Proni se<Sear chResul t >;

3.1.11 updateEvolution

This section describes the callback to enable or disable the evolution feature.

/1 Enables or disables the network evolution feature.
type Updat eEvol ution = (enabl ed: bool ean) => Prom se<voi d>;

3.1.12 updateSelectedOption

This section describes the callback to update the selected option for smart expand or smart
group.

/1 Updates the selected option for smart group or smart expand.

type UpdateSel ectedOption = (option: number | null, tag: SmartExplorerType)
=> Prom se<voi d>;

3.1.13 updateSearchValue

This section describes the callback to update the value used for live search.

/1 Updates the search value for the |ive search feature.
type UpdateSearchVal ue = (val ue: string) => Promi se<voi d>;

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 19 of 21

ORACLE Chapter 3
Properties

3.1.14 updateGraphData

This section describes the callback to handle events when the graph data is updated.

/1 This gets executed when the graph data gets updated.
/1 Vertices and edges params contains all vertices and edges of the graph.
type UpdateG aphData = (Vertices: Vertex[], edges: Edge[]) => Prom se<voi d>;

3.1.15 updateRuleBasedStyle

This section describes the callback to perform custom handling when visibility or styling toggle,
or reordering is performed in the legend area.

The following describes in detail the different scenarios where the updat eRul eBasedSt yl e gets
invoked:

* Toggling the visibility checkbox of a legend item: A Rul eBasedSt yl eSet ti ng containing
the style with the updated vi si bi | i t yEnabl ed state will be passed as the styl e
parameter, while the act i on parameter will carry the value vi si bi | i t yToggl e. The
consuming application can use the st yl e parameter to update the vi si bi | i t yEnabl ed
state of the style at its end.

* Toggling the styling using the legend item's preview: The consuming application can
use the styl e parameter to update the st yl i ngEnabl ed state of the style at its end.

* Reordering legend items using mouse drag and drop or by using the keyboard up/
down arrows: A Rul eBasedSt yl eSetting[] array containing all the styles in the updated
order will be passed as the st yl e parameter, while the act i on parameter will carry the
value r eor der. The consuming application can then use the st yl e parameter to update the
order of styles at its end.

type Updat eRul eBasedStyle = (
style: Rul eBasedStyleSetting | Rul eBasedStyleSetting[],
action?: StyleAction

) => Proni se<voi d>;

type StyleAction = 'visibilityToggle' | 'stylingToggle' | 'reorder';

3.1.16 editRuleBasedStyle

This section describes the callback to handle the editing of rule based styles using an external
user interface.

Itis triggered when Edit Styl e is invoked on items in the legend area. If the callback method
is not provided, Edi t Styl e button will not appear next to the legend items.

Il Gets executed when the "Edit Style' button of a legend itemis invoked.

/1 A single Rul eBasedStyl eSetting representing the legend itemon which 'Edit
Style' was invoked will be passed as the 'style' paraneter.

/1 The consuming application can use the 'style' paranmeter to |oad the
specific style for further processing.

type EditRul eBasedStyle = (style: Rul eBasedStyleSetting) => Pronise<void>;

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 20 of 21

ORACLE Chapter 3
Events

3.2 Events

The following events are supported:

e graph: This event occurs on any changes to the graph and returns the current state of the
graph.

e selection: This event occurs on any changes to the selection of vertices and edges on the
graph. It returns the currently selected vertices and edges on the graph.

3.3 Methods

The following method is supported:

val i dat eRul eBasedStyl e(style: Partial & t;Rul eBasedStyleSetting>):

Styl eVal i dati onError[]: This validation method can be invoked by the consuming
application to validate the conditions in a rule based style. The style will be validated against
the schema if present or will be validated against data. Any errors found will be returned as an
array.

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025
Copyright © 2025, Oracle and/or its affiliates. Page 21 of 21

Usage Examples

This section provides several usage examples using the Graph Visualization library.

e Base Styles
e Default Legend Styles

e Themes
e Children

e Interpolation
* Rule-Based Styles

* Animations
e |cons

e Graph Schema Visualization

4.1 Base Styles

If base styles or any rule based styles are not defined (or applied), then the following default
base styles are applied to the graph:

const border = {
wi dth: 1,

col or: '#404040'
b

const badge = {
si ze: 6,
col or: '#FF584A",
| abel : {
text: '${group.size}',
angle: null,
color: '"white',
font: {
wei ght: ' bol d'
}
}
b

const defaults: Styles = {
e g
filter: 'none',
[abel: {
maxLengt h: 15,
font: {
size: 10
}
}

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 1 of 41

ORACLE Chapter 4
Base Styles

¥
vertex: {
si ze: 8,
color: 'lightgray',
i mge: {
scale: 1
¥
bor der,
icon: {
color: "white'
¥
[abel : {
angle: 270,
d 2
1
¥
"vertex:group': {
size: "${interpol ate("group.size", 8, 16)}",
opacity: 1,
col or: '#75BBFO',
bor der,
[abel : {
text: ',
angle: 270,
d 2
¥
icon: null,
i mge: null,
 egend: null,
children: {
si ze: badge
1
¥
edge: {
wi dth: 2,
color: '#Q0COCO',
[abel : {
position: O,
d 1
1
¥
"edge: group': {
wi dth: 2,
opacity: 1,
| abel : null,
children: {
size: badge
1
¥
L A {
size: 5,
d: 0,
color: 'darkgray',
border: null,
icon: {
color: "white'

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 2 of 41

ORACLE

}1
i mge: {
scale: 1
}1
[abel : {
d 1
}
}1
"vertex > *': {
angle: 45
}1
"edge > *': {
position: O
}1
":unselected : {
filter: 'grayscal e(1009%"
}1
‘vertex:unselected : {
opacity: 0.3
}1
"edge: unsel ected': {
opacity: 0.3
}1
"vertex: hover': {
size: '${previous + 4}

}

dge: hover': {
width: '${previous + 2}
}

dge: hover > *': {

size: '${previous + 2}
}

b

If you wish to create a custom base style, then you can provide your own
settings. baseStyl es, which overrides the def aul t s shown in the preceding code.

Chapter 4
Base Styles

The following shows an usage example to create a custom base style that applies for all

vertices and edges:

® Note

The Graph Visualization library also contains TypeScript definitions if you are using

TypeScript).

/1 This inmport is not necessary if you are using Oracle JET.
i nport ' @vis/graph/alta.css'
inport Visualization from"' @vt/graphviz';

const vertices = |

{
id: 1,
properties: {
[abel : ' bl ue'

Property Graph Visualization Developer's Guide and Reference
G42279-01
Copyright © 2025, Oracle and/or its affiliates.

October 20, 2025
Page 3 of 41

ORACLE

Property Graph Visualization Developer's Guide and Reference

G42279-01

name: ' Hello'

¥
[abels: ['color']
b
{
id: 2,
properties: {
[abel : ' blue',
nane: 'Wrld'
¥
[abels: ['color']
b
{

id 3,
properties: {
name: ' Some Name
b
[abels: ["text']
}
1

const edges = [
{
id: 1,
source: 1,
target: 2,
[abels: [’
b
{
id: 2,
source: 2,
target: 3,
[abels: [’
}
1

edge']

edge']

const settings = {
baseStyles: {
vertex: {

label: { text: '${properties.nane}' }

}
}
b

new G aphVi sual i zati on({
target: docunent. body,
props: { data: { vertices, edges }, settings }

19K

Chapter 4
Base Styles

The following shows the graph visualization using the preceding custom base style:

Copyright © 2025, Oracle and/or its affiliates.

October 20, 2025
Page 4 of 41

ORACLE’

Figure 4-1 Using a Custom Base Style

O

Some Name

O

World

4.2 Default Legend Styles

O

Hello

Chapter 4
Default Legend Styles

If the vertices or edges include labels, then the corresponding legend entries are automatically
generated based on those labels. For example, consider the following style setting:

const vertices = |

{
id: 1,
properties: {
[abel : ' blue',
nane: 'Hello'
¥
[abel s:['color']
¥
{
id: 2,
properties: {
[abel : 'blue',

name: 'World'

Property Graph Visualization Developer's Guide and Reference
G42279-01
Copyright © 2025, Oracle and/or its affiliates.

October 20, 2025
Page 5 of 41

ORACLE Chapter 4
Default Legend Styles

¥
[abel s:['color']
b
{
id 3,
properties: {
nane: ' Sone Name
¥

[abels:['text']

}
1

const edges = |
{

id: 1,

sour ce:

target:

| abel s:

—_ N

edge']
b
{
id: 2,
source: 2
target: 3
[

| abel s: : edge']
}
l;

const settings = {baseStyles: {}};

const graphViz = new G aphVi sual i zati on({
target: docunent. body,
props: { data: { vertices, edges }, settings }

19K

The legends are then generated from the vertex and edge labels (used in the preceding code)
as shown:

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 6 of 41

ORACLE’

Chapter 4

Default Legend Styles

Figure 4-2 Default Legends

v Vertices

®
QO coor
. text

v Edges

@

edge

O O

The get Current Rul eBasedSt yl es function returns the currently defined rule-based styles,
including both default and custom styles. You can use this function to change the default rule-

based styles as shown in the following example:

const graphViz = new GraphVi sual i zati on({
target: docunent. body,
props: { data: { vertices, edges }, settings }

1
const receivedRul es = grpahVi z. get Current Rul eBasedSt yl es();
/*
Here is exanple of receivedRules. If the rule is default, rule.isDefault
true.
[
{
"opdt o t2v,
"stylingEnabl ed": true,
"target": "vertex",
"conditions": {
"operator": "and",
“conditions": [
{
"property": "labels",
"operator": "~",
"val ue": "color"
}

Property Graph Visualization Developer's Guide and Reference
G42279-01
Copyright © 2025, Oracle and/or its affiliates.

is

October 20, 2025
Page 7 of 41

ORACLE

}1
"conponent": "vertex",
"style": {

"color": "#FOCC71"
!

egendTitle": "color",
"isDefaul tRul e": true

]
*/

/I Modify receivedRul es. Note: Do not edit _id,
[IMdify id =2 default rule, color to aqua

receivedRules = [
{
"oidt 2,
"stylingEnabl ed": true,
"target": "vertex",
"conditions": {
"operator": "and",
“conditions": [
{
“property": "labels",
“operator": "~",
"value": "color"
}
]
¥
"conponent": "vertex",
"style": {
“color": "aqua"
¥
"l egendTitle": "color",
"isDefaul tRule": true

]

Chapter 4
Default Legend Styles

i sDef aul t Rul e, and conditions.

/1 Assgin the nodified received rules to settings.rul eBasedStyl es

settings.rul eBasedStyl es = recivedRul es;

graphVi z. $set ({setting});

The updated styles are then reflected in the legend panel as shown:

Property Graph Visualization Developer's Guide and Reference
G42279-01
Copyright © 2025, Oracle and/or its affiliates.

October 20, 2025
Page 8 of 41

ORACLE’

Figure 4-3 Custom Legends

R - o <

@)

4.3 Themes

Chapter 4
Themes

Q Search gra v Vertices

©
O color
. text

v Edges

@

edge

O

You can enable a dark theme through settings as shown:

/1 This import is not necessary if you are using Oracle JET.

i nport ' @vis/graph/alta.css';
inport Visualization from' @vt/graphviz';

const vertices = |

{
id 1,
properties: {
[abel : ' blue',
nane: 'Hello'
¥
| abel s:['color']
¥
{
id: 2,
properties: {
[abel : ' blue',
nane: 'World'
¥
| abel s:['color']
¥
{

id: 3,
properties: {

Property Graph Visualization Developer's Guide and Reference
G42279-01
Copyright © 2025, Oracle and/or its affiliates.

October 20, 2025
Page 9 of 41

ORACLE

Property Graph Visualization Developer's Guide and Reference

G42279-01

nane: ' Some Nane'
}1
[abels:['text']
}
1

const edges = [
{

id: 1,

sour ce:

target:

| abel s:

—_ N

edge']

2

{
id: 2,
sour ce:
target:
| abel s:

—_ W N

edge']
}
l;

const settings = {
thene: 'dark',
baseStyles: {
vertex: {

label: { text: '${properties.nane}' }

}
}
b

new G aphVi sual i zati on({
target: docunent. body,
props: { data: { vertices, edges }, settings }

19K

The corresponding visualization appears as shown:

Copyright © 2025, Oracle and/or its affiliates.

Chapter 4
Themes

October 20, 2025
Page 10 of 41

ORACLE Chapter 4
Themes

Figure 4-4 Applying Dark Theme

v Vertices

®
. color

text

You can also create a customized theme to modify the background and foreground colors.

/1 This import is not necessary if you are using Oracle JET.
inport ' @vis/graph/alta.css';
inport Visualization from"' @vt/graphviz';

const vertices = |

{
id 1,
properties: {
[abel : ' blue',
nane: 'Hello'
¥
[abel s:['color']
¥
{
id 2,
properties: {
[abel : ' blue',
nane: 'World'
¥
[abel s:['color']
¥
{

id: 3,
properties: {
nanme: ' Some Nane'

b

[abels:['text']

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 11 of 41

ORACLE Chapter 4
Themes

}
1

const edges = [
{

id: 1,

sour ce:

target:

| abel s:

—_ N

edge']

b

{
id: 2,
sour ce:
target:
| abel s:

—_ W N

edge']
}
l;

const settings = {
custonThene: {
"backgroundCol or': ' #2F3C/7E
"textCol or': '#FBEAEB
b
baseStyles: {
vertex: {
label: { text: '${properties.nane}' }
}
}
b

new G aphVi sual i zati on({
target: docunent. body,
props: { data: { vertices, edges }, settings }

19K

The custom theme gets applies as shown:

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 12 of 41

ORACLE’

Chapter 4
Children

Figure 4-5 Applying Custom Theme

v Vertices

@

. e

text

Also, note the following:

* If both dark theme and custom theme are applied simultaneously, the colors defined in the
custom theme will take precedence over the dark theme colors.

* If the settings specify a label color, the label will use the color from the label settings rather
than the color from the theme settings.

4.4 Children

You can use the chi | dr en attribute to create children nodes that appear on the circumference
of the nodes where they are indicated. Styles for the children nodes are applied similarly to the
parent nodes.

Consider the following example:

/1 This import is not necessary if you are using Oracle JET.
i nport ' @vis/graph/alta.css';
inport Visualization from"' @vt/graphviz';

const vertices = |

{
id 1,
properties: {
[abel : ' blue',
nane: 'Hello'
1
h
{

Property Graph Visualization Developer's Guide and Reference

G42279-01

October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 13 of 41

ORACLE Chapter 4

Children
id: 2,
properties: {
[abel : 'blue'
nanme: 'World'
!
b
{
id 3,
properties: {
name: ' Some Name'
!
}

1

const edges = |

{
id: 1,
source: 1,
target: 2
b
{
id: 2,
source: 2,
target: 3
}

1

const settings = {
showLegend: fal se,
baseStyles: {
vertex: {
label: { text: '${properties.name}' },
[/ This would add two children to every vertex, any name can be
assigned to these children nodes.
children: {
firstChild: {
size: '4",
color: 'red
children: {
size: '2
}
b
secondChi l d: {
size: '2',
color: 'green'
border: {
‘width': 1,
‘color': 'black

settings.rul eBasedStyles = [{

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 14 of 41

ORACLE’

Property Graph Visualization Developer's Guide and Reference

G42279-01

H

component: 'vertex',
target: 'vertex',
stylingEnabl ed: true,
condi tions: {
operator: "and',
conditions: [{
property: "label",
operator: "=",
val ue: "bl ue"
H
¥

style: { color: 'blue

new G aphVi sual i zati on({

target: docunent. body,

The corresponding visualization appears as shown:

Figure 4-6 Visualizing Children Nodes

World

Copyright © 2025, Oracle and/or its affiliates.

props: { data: { vertices, edges }, settings }

19K

Chapter 4
Children

Some Name

Hello

October 20, 2025
Page 15 of 41

ORACLE Chapter 4
Interpolation

4.5 Interpolation

Interpolation can be applied to the size or color of the vertices or edges. The following
interpolation types are supported:

e Linear Interpolation

» Discrete Interpolation

e Color Interpolation

4.5.1 Linear Interpolation

The default linear interpolation can be used to define the size of nodes or edges within a range
using a property value to interpolate in the given range.

Consider the following example:

/1 This import is not necessary if you are using Oracle JET.
i nport ' @vis/graph/alta.css';
inport Visualization from"' @vt/graphviz';

const vertices = |
{
id: 1,
properties: {
[abel : ' bl ue'
name: 'Hello',
age: 10
1
1
{
id: 2,
properties: {
[abel : ' bl ue'
name: ‘Wrld',
age: 20
1
¥
{
id 3,
properties: {
nanme: ' Some Nane'
age: 30
1
}
l;

const edges = [

{
id: 1,
source: 1,
target: 2

b,

{

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 16 of 41

ORACLE Chapter 4

Interpolation
id: 2,
source: 2,
target: 3

}
1

const settings = {
showLegend: fal se,
rul eBasedStyles: [{
conmponent: 'vertex'
target: 'vertex'
stylingEnabl ed: true
condi tions: {
operator: 'and'
conditions: [{
property: "label",
operator: "=",
val ue: "bl ue"
1
b
style: { color: '"blue" }
H,
baseStyles: {
vertex: {
Il The label is changed to see the size of the node on it.
label: { text: '"${interpolate("properties.age", 1, 20)}' 1},
Il The size will be defined by the interpolation of properties.age in
the range of 1 -> 20.
size: "${interpol ate("properties.age", 1, 20)}
1
}
b

new G aphVi sual i zati on({
target: docunent. body,
props: { data: { vertices, edges }, settings}

19K

The corresponding visualization appears as shown:

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 17 of 41

ORACLE Chapter 4
Interpolation

Figure 4-7 Normal Linear Interpolation

10.5

Alternatively, you can also use multiple values for interpolation instead of just using one range.

/1 This inmport is not necessary if you are using Oracle JET.
i nport ' @vis/graph/alta.css';
inport Visualization from' @vt/graphviz';

const vertices = |
{
id 1,
properties: {
| abel : ' blue'
nane: 'Hello',
age: 10
1
h
{
id 2,
properties: {
| abel : ' blue'
nane: 'Wrld',
age: 20
1
h

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 18 of 41

ORACLE Chapter 4
Interpolation

{
id 3,
properties: {
nanme: ' Some Nane'
age: 30
}
}
l;

const edges = |

{
id: 1,
source: 1,
target: 2
b
{
id: 2,
source: 2,
target: 3
}

1

const settings = {
showLegend: fal se,
rul eBasedStyles: [{
conmponent: 'vertex'
target: 'vertex'
stylingEnabl ed: true
condi tions: {
operator: 'and'
conditions: [{
property: "label",
operator: "=",
val ue: "bl ue"

}}]

siyle: { color: "blue' }
H
baseStyles: {

vertex: {

Il The label is changed to see the size of the node on it.
label: { text: '${interpolate("properties.age", 1, 20, 40)}' },
Il The size will be defined by the interpolation of properties.age
using the values of 1, 20, 40
size: "${interpol ate("properties.age", 1, 20, 40)}
}
}
b

new G aphVi sual i zati on({
target: docunent. body,
props: { data: { vertices, edges }, settings}

19K

The visualization for the preceding settings appear as shown:

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 19 of 41

ORACLE Chapter 4
Interpolation

Figure 4-8 Linear Interpolation for a Range of Values

40

4.5.2 Discrete Interpolation

Discrete interpolation can be used to define the size of vertices or edges within a defined range
using a property as the value to interpolate in the given range. Unlike linear interpolation, the
resulting values can only be the exact start or end value of the range. If the property value falls
in the first half between the minimum and maximum values, it will be rounded up; otherwise, it
will be rounded down.

Consider the following example:

/1 This import is not necessary if you are using Oracle JET.
inport ' @vis/graph/alta.css';
inport Visualization from' @vt/graphviz';

const vertices = |
{
id 1,
properties: {
| abel : ' blue'
nane: 'Hello',
age: 10
1
b

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 20 of 41

ORACLE Chapter 4

Interpolation
{
id: 2,
properties: {
[abel : ' bl ue'
name: ‘Wrld',
age: 20
}
3
{
id 3,

properties: {
name: ' Some Name'
age: 30
!
}
1

const edges = |

{
id: 1,
source: 1,
target: 2
b
{
id: 2,
source: 2,
target: 3
}

1

const settings = {
showLegend: fal se,
rul eBasedStyles: [{
conmponent: 'vertex'
target: 'vertex'
stylingEnabl ed: true
condi tions: {
operator: 'and'
conditions: [{
property: "label",
operator: "=",
val ue: "bl ue"

}H
¥
style: { color: '"blue" }
H,
baseStyles: {
vertex: {
Il The label is changed to see the size of the node on it.
label: { text: '"${interpolate.discrete("properties.age", 1, 20)}" },
Il The size will be defined by the interpolation of properties.age in
the range of 1 -> 20.
Il In this exanple since the node with age 20 is exactly in the niddle,
it will be rounded up to 20.
size: "${interpol ate.discrete("properties.age", 1, 20)}

}

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 21 of 41

ORACLE Chapter 4
Interpolation

}
b

new G aphVi sual i zati on({
target: docunent. body,
props: { data: { vertices, edges }, settings}

19K

The corresponding graph visualization is as shown:

Figure 4-9 Discrete Interpolation

20

Discrete interpolation can also be applied using colors. You only need to define the colors that
are to be discretely interpolated.

Consider the following example:

/1 This inport is not necessary if you are using Oracle JET.
i mport ' @vis/graph/alta.css';
import Visualization from' @vt/graphviz';

const vertices = |
{
id: 1,
properties: {
| abel : 'blue',
name: 'Hello',
age: 10
1
h

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 22 of 41

ORACLE

Chapter 4
Interpolation

{
id: 2,
properties: {
[abel : ' bl ue'
name: ‘Wrld',
age: 20
}
b
{
id 3,
properties: {
nanme: ' Some Nane'
age: 30
}
}
l;

const edges = |

{
id: 1,
source: 1,
target: 2
b
{
id: 2,
source: 2,
target: 3
}

1

const settings = {
baseStyles: {
vertex: {
label: { text: '${interpolate.discrete("properties.age", "black"
"white")}' },
color: '"${interpolate.discrete("properties.age", "black", "white")}

}

}
b

new G aphVi sual i zati on({
target: docunent. body,
props: { data: { vertices, edges }, settings }

19K

The corresponding visualization appears as shown:

Property Graph Visualization Developer's Guide and Reference

G42279-01

October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 23 of 41

ORACLE Chapter 4
Interpolation

Figure 4-10 Discrete Interpolation Using Colors

white

white

black

4.5.3 Color Interpolation

Colors can also be linearly interpolated using the i nt er pol at e. col or function. You need to
define the colors to interpolate the desired property.

Consider the following example:

/] This import is not necessary if you are using Oracle JET.
i nport ' @vis/graph/alta.css';
inport Visualization from' @vt/graphviz';

const vertices = |
{
id: 1,
properties: {
| abel : ' bl ue'
name: 'Hello',
age: 10
1
¥
{
id: 2,
properties: {
| abel : ' bl ue'
name: "'Wrld',
age: 20
1

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 24 of 41

ORACLE

b
{
id 3,
properties: {
nanme: ' Some Nane'
age: 30
}
}

1

const edges = |

{
id: 1,
source: 1,
target: 2
b
{
id: 2,
source: 2,
target: 3
}

1

const settings = {
baseStyles: {
vertex: {
label: { text: '${properties.age}' },

Chapter 4
Interpolation

color: '"${interpolate.color("properties.age", "black", "white")}

}
}
b

new G aphVi sual i zati on({
target: docunent. body,
props: { data: { vertices, edges }, settings }

H;

The corresponding visualization appears as shown:

Property Graph Visualization Developer's Guide and Reference

G42279-01

Copyright © 2025, Oracle and/or its affiliates.

October 20, 2025
Page 25 of 41

ORACLE’

Chapter 4
Rule-Based Styles

Figure 4-11 Color Interpolation

30

4.6 Rule-Based Styles

Rule-based styles can be applied on any vertex or edge property values. You can define a rule-
based styling using one or more defined properties. The set condition is verified and the
vertices or edges are filtered based on the given condition.

The following operators can be used to determine if the property value matches the set rule: =,
> <, >=, <=, 1= and ~.

Consider the following example which describes a rule to color vertices blue if they have a
label value blue in properties.

/1 This inmport is not necessary if you are using Oracle JET.
i nport ' @vis/graph/alta.css';
inport Visualization from"' @vt/graphviz';

const vertices = |

{
id: 1,
properties: {
[abel : ' blue',
name: 'Hello',
age: 10
}

Property Graph Visualization Developer's Guide and Reference
G42279-01
Copyright © 2025, Oracle and/or its affiliates.

October 20, 2025
Page 26 of 41

ORACLE Chapter 4
Rule-Based Styles

b
{
id: 2,
properties: {
[abel : ' bl ue'
name: ‘Wrld',
age: 20
}
b
{
id 3,
properties: {
nanme: ' Some Nane'
age: 30
}
}

1

const edges = |

{
id: 1,
source: 1,
target: 2
b
{
id: 2,
source: 2,
target: 3
}

1

const settings = {};
settings. baseStyles = {
vertex: {
label: { text: '${properties.nane}' }

}
b
settings.rul eBasedStyles = |
{
/1 The target in the rule
target: 'vertex'
conmponent: 'vertex'
[l The conditions on which the filter will be applied
condi tions: {
operator: 'and'
conditions: [
/1 This condition will verify if the label on a vertex is equals to
"blue'.
{
property: "label"
operator: "="
val ue: "bl ue"
}

]
}

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 27 of 41

ORACLE Chapter 4
Rule-Based Styles

[l The title for the filter that will showin the |egend.
I egendTitle: 'Rule by Iabel",
/1 The colors to apply to the nodes that match the rule.
style: {
color: 'blue'
¥
stylingEnabl ed: true
}
l;

new G aphVi sual i zati on({
target: docunent. body,
props: { data: { vertices, edges }, settings }

19K

Rule-based styles can also be applied to adjust the size of nodes. Also, you can define a rule
to match multiple conditions simultaneously. These conditions can be configured using and or
or operators. In such a case, filtering is applied only when all the specified conditions are met
for the and operator, or when any one of the conditions is satisfied for the or operator.

/1 This import is not necessary if you are using Oracle JET.
i nport ' @vis/graph/alta.css';
inport Visualization from"' @vt/graphviz';

const vertices = |
{
id: 1,
properties: {
[abel : ' bl ue'
name: 'Hello',
age: 10
}
b
{
id: 2,
properties: {
[abel : ' bl ue'
name: ‘World',
age: 20
1
b
{
id 3,
properties: {
nanme: ' Some Nane'
age: 30
1
}
l;

const edges

1
—

{
id: 1,
source: 1,
target: 2

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025
Copyright © 2025, Oracle and/or its affiliates. Page 28 of 41

ORACLE Chapter 4
Rule-Based Styles

b

{
id: 2,
source: 2,
target: 3

}

1

const settings = {};
settings. baseStyles = {
vertex: {
| abel: {text: '${properties.nane}'}
}
b

settings.rul eBasedStyles = |
{
/1 The target in the rule.
target: 'vertex',
component: 'vertex',
[l The conditions on which the rule will be applied.
conditions: {
operator: "and',
conditions: [
/1 This condition will verify that the name contains the letter o.
{
property: "label",
operator: "~",
value: "o
¥
/1 This condition will verify that the name contains the letter I.
{
property: "label",
operator: "~",
value: "I"
}
]
¥
[l The title for the filter that will showin the Iegend.
l egendTitle: 'Rule by nane',
/1 The colors to apply to the nodes that match the rule.
style: {
size: 15
¥
stylingEnabl ed: true

}
1

new G aphVi sual i zati on({
target: docunent. body,
props: { data: { vertices, edges }, settings }

19K

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025
Copyright © 2025, Oracle and/or its affiliates. Page 29 of 41

ORACLE Chapter 4
Animations

4.7 Animations

Using animations. you can show dynamic movement of the graph vertices and/or edges. You
can apply animations through the set t i ngs filter.

Consider the following example which show a graph with the vertices' stroke width animated:

/1 This inmport is not necessary if you are using Oracle JET
i nport ' @vis/graph/alta.css'

inport Visualization from' @vt/graphviz'

const vertices = |

{
id 1,
properties: {
[abel : ' blue'
nane: 'Hello',
age: 10
1
e
{
id 2,
properties: {
[abel : 'blue'
nane: 'Wrld',
age: 20
1
8
{
id 3,

properties: {
nane: ' Sone Nane',
age: 30
}
}
l;

const edges = [

{
id 1,
source: 1,
target: 2
}s
{
id 2,
source: 2,
target: 3
}

I

const settings = {};
settings. baseStyles = {
vertex: {

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 30 of 41

ORACLE Chapter 4
Animations

label: { text: '${properties.nanme}' }

}
b

settings.rul eBasedStyl es= |
{
target: 'vertex',
component: 'vertex',
[egendTitle: 'Vertex animation',
animations: [[
{
duration: 1,
keyFranes: [
{
percent age: 0,
style: {
strokeWdth: ' 3px'
!

b
{

percent age: 50,
style: {

strokeWdth: ' 7px'
}

}7
{
percentage: 100,

style: {
strokeWdth: ' 3px'
}

}
]
}
11,

condi tions: {
operator: "and',
Il This rule is applied to all vertices.
conditions: []
}
}
l;

new G aphVi sual i zati on({
target: docunent. body,
props: { data: { vertices, edges }, settings }

19K

You can configure the animation using the following values:
e duration: Defines the duration of the animation in seconds.

* keyfranmes: An array representing all the changes that have to be applied to the entity
during the animation.

The keyframes properties that need to be provided are:

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025
Copyright © 2025, Oracle and/or its affiliates. Page 31 of 41

ORACLE

Chapter 4
Animations

per cent age: Represents at what percentage of the animation duration should the keyframe
be applied. To generate smooth animations:

— Multiple keyframes: Values must start from zero and end in 100.
— Single keyframe: Percentage value must be 100.
Note that this option is only meaningful when working with st r okeDashof f set .

styl e: Styles that need to be applied to the entity at each keyframe.

The supported style properties are:

st rokeW dt h: Defines the width of the stroke that surrounds the vertices and also the width
of the edges. This can be passed as any valid css value (px is recommended).

stroke: Defines the color of the stroke that surrounds the vertices and the edges.

opaci ty: Defines the opacity on a scale of 0 to 1; O indicates that the element is completely
hidden, while 1 signifies that the element is fully visible with maximum opacity.

r (applies only for the vertices). Defines the radius of the vertices to which it is applied.

st rokeDashof f set (applies only for the edges): Defines the amount of offset that has to be
applied to the dashed pattern on the edges. Negative values make the offset go in the
opposite direction. Note that you must apply the dashed pattern to the edges for this
animation to be visible. Otherwise, nothing will appear on the graph.

The following example describes how to apply edge animation using st r okeDashof f set :

/1 This inmport is not necessary if you are using Oracle JET.
i nport ' @vis/graph/alta.css';

inport Visualization from"' @vt/graphviz';

const vertices = |

1

{

b
{

b
{

}

id: 1,

properties: {
[abel : 'blue',
name: 'Hello',
age: 10

}

id: 2,

properties: {
[abel : 'blue',
name: ‘World',
age: 20

}

id 3,

properties: {
nanme: ' Some Nane'
age: 30

}

Property Graph Visualization Developer's Guide and Reference

G42279-01

October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 32 of 41

ORACLE Chapter 4
Animations

const edges = [

{
id: 1,
source: 1,
target: 2
b
{
id: 2,
source: 2,
target: 3
}

1
const settings = {};

settings. baseStyles = {
vertex: {
label: { text: '${properties.nanme}' }
}
b

settings.rul eBasedStyles = |
{
target: 'edge'
conponent: 'edge'
 egendTitle: 'Edge animation',

style: {
dasharray: 'dashed
¥
ani mations: [
[
{
duration: 1,
keyFrames: [
{
percentage: 100,
style: {
st rokeDashof fset: 50
}
}
]
}

condi tions: {
operator: 'and'
conditions: []
}
}
l;

new G aphVi sual i zati on({
target: docunent. body,
props: { data: { vertices, edges }, settings }

19K

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025
Copyright © 2025, Oracle and/or its affiliates. Page 33 of 41

ORACLE’

4.8 Icons

The Graph Visualization Toolkit supports Redwood as native icon library.

Consider the following example using the icon library:

/] This import is not necessary if you are using Oracle JET.

i nport ' @vis/graph/alta.css';
inport Visualization from' @vt/graphviz';

const vertices = |

{
id 1,
properties: {
[abel : ' blue',
nane: 'Hello'
}
b,
{
id 2,
properties: {
[abel : ' blue',
nane: 'World'
}
b
{
id: 3,
properties: {
nanme: ' Some Nane'
}
}

1

const edges = [

{
id: 1,
source: 1,
target: 2
¥
{
id: 2,
source: 2,
target: 3
}

1

const settings = {};
settings. baseStyles = {
/1 Style applies for all the vertices.

vertex: {
size: 12,
| abel : ' ${properties.nane}',
color: 'red',

i con: '0j-ux-ico-user-not-available'

Property Graph Visualization Developer's Guide and Reference

G42279-01

Copyright © 2025, Oracle and/or its affiliates.

Chapter 4
Icons

October 20, 2025
Page 34 of 41

https://docs.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=redwood_icon_lib

ORACLE Chapter 4
Icons

b

"vertex: hover": {
size: '${previous + 4}
b
/1 Style applies for all the edges.
"edge": {
[abel: "${id}",
col or: ' #FF8080
}
b

settings.rul eBasedStyles = |
{
conmponent: 'vertex'
target: 'target',
condi tions: {
conditions: [

{
property: 'nane',
operator: '=",
value: 'Hello
}
1,
operator: 'and
¥
style: {
color: 'green
¥
stylingEnabl ed: true
b
{
conmponent: 'vertex'
target: 'target',
conditions: {
conditions: [
{
rule: 'id %3 === 0'
}
1,
operator: 'and
¥
style: {
color: 'gray',
icon: { class:
¥
stylingEnabl ed: true
 egendTitle: 'advanced conditions

0j - ux-ico-user-available' }

}
1

new G aphVi sual i zati on({
target: docunent. body,
props: { data: { vertices, edges }, settings }

19K

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 35 of 41

ORACLE

Chapter 4

Graph Schema Visualization

The resulting graph visualization is as shown:

Figure 4-12 Using Redwood Icons in Graph Visualization

WA D

Some Name

World

Hello

4.9 Graph Schema Visualization

You can visualize the underlying database schema for your property graph using the Graph

Visualization library.

The following shows an example JSON configuration for a schema view:

{

"vertices": |

"label s": ["COUNTRIES'],
“properties": [
{
"name": "REG ON I D',
"dataType": "nunber",
"limts": [],
"mandatory": fal se

"name": "COUNTRY_I D',
"dataType": "string",
"limts": [2],
"mandat ory": true

"name": " COUNTRY_NAME',
"dataType": "string",

Property Graph Visualization Developer's Guide and Reference

G42279-01

Copyright © 2025, Oracle and/or its affiliates.

October 20, 2025
Page 36 of 41

ORACLE Chapter 4
Graph Schema Visualization

"limts": [40],
"mandat ory": fal se
}
]
¥
{
"l abel s": ["DEPARTMENTS'],
“properties": [
{
"nanme": "MANAGER | D'
"dat aType": "nunmber"
"limts": [],
"mandat ory": fal se
¥
{
"name": "LOCATION ID',
"dat aType": "nunmber"
"limts": [],
"mandat ory": fal se
¥
{
"nanme": "DEPARTMENT |D',
"dat aType": "nunmber"
"limts": [],
"mandat ory": true
¥
{
"name": " DEPARTMENT NAME'
"dat aType": "string"
"limts": [30],
"mandat ory": true
}
]
¥
{

"l abel s": ["LOCATIONS'],
“properties": [

{
"name": "CITY",
"dat aType": "string"
"limts": [30],
"mandat ory": true

b

{
"name": "COUNTRY_| D'
"dat aType": "string"
"limts": [2],
"mandat ory": fal se

b

{
"name": "LOCATION ID',
"dat aType": "nunmber"
"limts": [],
"mandat ory": true

b

{

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 37 of 41

ORACLE Chapter 4
Graph Schema Visualization

"nanme": "POSTAL_CODE",
"dat aType": "string",
"limts": [12],
"mandat ory": fal se

"name": " STATE_PROVI NCE",
"dat aType": "string",
"limts": [25],

"mandat ory": fal se

"name": "STREET ADDRESS",
"dat aType": "string",

"limts": [40],
"mandat ory": fal se
}
]
b
{
"l abel s": ["JOBS'],
“properties": [
{
"name": "JOB_ID',
"dat aType": "string",
"limts": [10],
"mandat ory": true
1
{
"nanme": "JOB TITLE",
"dat aType": "string",
"limts": [35],
"mandat ory": true
¥
{
"name": "MAX_ SALARY",
"dat aType": "nunmber",
"limts": [],
"mandat ory": fal se
¥
{
"name": "M N_SALARY",
"dat aType": "nunber",
"limts": [],
"mandat ory": fal se
}
]
h
{

"l abel s": ["EMPLOYEES'],
“properties": [

"name": "EMAIL",
"dat aType": "string",
"limts": [25],

"mandat ory": true

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025
Copyright © 2025, Oracle and/or its affiliates. Page 38 of 41

ORACLE

"name": "JOB_ID',
"dat aType": "string"
"limts": [10],
"mandat ory": true

"name": "SALARY",
"dat aType": "nunmber"
"limts": [],
"mandat ory": fal se

"nanme": "H RE_DATE",
"dat aType": "string"
"limts": [],
"mandat ory": true

"name": "LAST_NAME",
"dat aType": "string"
"limts": [25],
"mandat ory": true

"name": "FI RST_NAME",
"dat aType": "string"
"limts": [20],
"mandat ory": fal se

"nanme": "MANAGER | D'
"dat aType": "nunmber"
"limts": [],
"mandat ory": fal se

"name": "EMPLOYEE I D'
"dat aType": "nunmber"
"limts": [],

"mandat ory": true

"nanme": " PHONE_NUMBER'
"dat aType": "string"
"limts": [20],
"mandat ory": fal se

"nanme": "DEPARTMENT |D',
"dat aType": "nunmber"
"limts": [],

"mandat ory": fal se

Property Graph Visualization Developer's Guide and Reference

G42279-01

Copyright © 2025, Oracle and/or its affiliates.

Chapter 4
Graph Schema Visualization

October 20, 2025
Page 39 of 41

ORACLE Chapter 4
Graph Schema Visualization

"name": " COWM SSI ON_PCT",
"dataType": "number",
"limts": [],
"mandatory": false

}
]
¥
{
"l abel s": ["REG ONS'],
“properties": [
{
"nane": "REG ON ID',
"dataType": "number",
"limts": [1],
"mandatory": true
b
{
"nane": "REG ON_NAME',
"dataType": "string",
"limts": [25],
"mandatory": false
}
]
}
1,
"edges": [
{
"l abel s": ["COUNTRI ES_REG ONS'],
“properties": [],
"sourceVertexLabel s": ["COUNTRI ES"],
"targetVertexLabel s": ["REGQ ONS']
¥
{
"l abel s"; ["DEPARTMENTS EMPLOYEES'],
“properties": [],
"sourceVertexLabel s": ["DEPARTMENTS'],
"targetVertexLabel s": ["EMPLOYEES']
¥
{
"l abel s"; ["DEPARTMENTS LOCATI ONS'],
“properties": [],
"sourceVertexLabel s": ["DEPARTMENTS'],
"targetVertexLabel s": ["LOCATI ONS"]
¥
{
"l abel s": ["LOCATI ONS_COUNTRI ES"],
“properties": [],
"sourceVertexLabel s": ["LOCATIONS'],
"targetVertexLabel s": ["COUNTRI ES"]
¥
{
"l abel s": ["EMPLOYEES_JOBS'],
“properties": [],
"sourceVertexLabel s": ["EMPLOYEES'],
"targetVertexLabel s": ["JOBS']
¥

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 40 of 41

ORACLE Chapter 4
Graph Schema Visualization

"l abel s": ["EMPLOYEES DEPARTMENTS'],
“properties": [],

"sourceVertexLabel s": ["EMPLOYEES'],
"targetVertexLabel s": ["DEPARTMENTS']

"l abel s": ["EMPLOYEES EMPLOYEES'],
“properties": [],

"sourceVertexLabel s": ["EMPLOYEES'],
"targetVertexLabel s": ["EMPLOYEES']

The corresponding schema visualization is as shown:

Figure 4-13 Visualizing Database Schema for the Property Graph

EMPLOYEES

JoBs

DEPARTMENTS

LOCATIONS

@
O REGIONS

COUNTRIES

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 41 of 41

Index

A graph interaction, 10
drop, 10
about the Graph Visualization library, 1 expand, 10
animations, 30 focus, 11
group, 11
B grid layout, 6
base styles, 1 H
C hierarchical layout, 7
children, 13 |
circle layout, 2
cluster layout, 4 icons, 34
color interpolation, 24 interpolation, 16
concentric layout, 3 color, 24
discrete, 20
D linear, 16
introduction, 1
data, 2
default legend styles, 5 J
deprecated features, i
desupported features, ii JavaScript API reference, 1
discrete interpolation, 20
L
E
layouts, 1
editRuleBasedStyle, 20 circle, 2
eventHandlers, 18 concentric, 3
events, 21 force, 3
expand, 17 geographical, 5
grid, 6
= hierarchical, 7
radial, 8
featureFlags, 17 random, 8
fetchActions, 19 linear interpolation, 16
fetchMore, 17
fit to screen mode, 9 M
force layout, 3
methods, 21
G modes, 9

move/zoom mode, 9

geographical layout, 5
getting started, 1

Property Graph Visualization Developer's Guide and Reference
G42279-01 October 20, 2025

Copyright © 2025, Oracle and/or its affiliates. Index-1 of Index-2

P

persist, 18
properties, 1

R

radial layout, 8
random layout, 8
rule-based styles, 26

S

schema validation, 14
schema view, 12

schema view configuration, 14
schema view modes, 13
search, 19

settings, 3

sticky mode, 9

T

themes, 9

Property Graph Visualization Developer's Guide and Reference

G42279-01

Copyright © 2025, Oracle and/or its affiliates.

types, 2

U

Index

updateEvolution, 19
updateGraphData, 20
updateRuleBasedStyle, 20
updateSearchValue, 19
updateSelectedOption, 19
usage examples, 1

animations, 30

base styles, 1

children, 13

default legend styles, 5

icons, 34

interpolation, 16

rule-based styles, 26

schema visualization, 36

themes, 9

V

validation rules, 15

October 20, 2025
Index-2 of Index-2

	Contents
	List of Figures
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for This Guide
	Deprecated Features
	Desupported Features

	1 Introduction to Visualization in Oracle Graph
	1.1 About Oracle Graph Visualization Library
	1.2 Getting Started with Oracle Graph Visualization Library

	2 Interactive Graph Visualization Features
	2.1 Layouts
	2.1.1 Circle Layout
	2.1.2 Concentric Layout
	2.1.3 Force Layout
	2.1.4 Geographical Layout
	2.1.5 Grid Layout
	2.1.6 Hierarchical Layout
	2.1.7 Radial Layout
	2.1.8 Random Layout

	2.2 Exploration Modes
	2.3 Graph Interaction Options
	2.4 Schema View
	2.4.1 Schema View Modes
	2.4.2 Schema Validation
	2.4.3 Schema View Configuration Parameters
	2.4.4 Validation Rules

	3 Graph Visualization Library Reference
	3.1 Properties
	3.1.1 types
	3.1.2 data
	3.1.3 settings
	3.1.3.1 Style Expressions
	3.1.3.2 Rule Expressions

	3.1.4 featureFlags
	3.1.5 fetchMore
	3.1.6 expand
	3.1.7 eventHandlers
	3.1.8 persist
	3.1.9 fetchActions
	3.1.10 search
	3.1.11 updateEvolution
	3.1.12 updateSelectedOption
	3.1.13 updateSearchValue
	3.1.14 updateGraphData
	3.1.15 updateRuleBasedStyle
	3.1.16 editRuleBasedStyle

	3.2 Events
	3.3 Methods

	4 Usage Examples
	4.1 Base Styles
	4.2 Default Legend Styles
	4.3 Themes
	4.4 Children
	4.5 Interpolation
	4.5.1 Linear Interpolation
	4.5.2 Discrete Interpolation
	4.5.3 Color Interpolation

	4.6 Rule-Based Styles
	4.7 Animations
	4.8 Icons
	4.9 Graph Schema Visualization

	Index

