Contents

Preface

Technology Rebrand ix
Audience ix
Documentation Accessibility ix
Related Documents x
Oracle Machine Learning for R Online Resources x
Conventions x

Changes in This Release for Oracle Machine Learning for R

New Features for Oracle Database Release 12.2.0.1 xi
New Features for Oracle Database Release 12.1.0.2 and Earlier xi

1 Introduction to Oracle Machine Learning for R

1.1 About Oracle Machine Learning for R 1-1
1.2 Advantages of Oracle Machine Learning for R 1-2
1.3 Get Online Help for Oracle Machine Learning for R Classes, Functions, and Methods 1-3
1.4 About Transparently Using R on Oracle Database Data 1-6
 1.4.1 About the Transparency Layer 1-6
 1.4.2 Transparency Layer Support for R Data Types and Classes 1-7
 1.4.2.1 About Oracle Machine Learning for R Data Types and Classes 1-8
 1.4.2.2 About the ore.frame Class 1-9
 1.4.2.3 Support for R Naming Conventions 1-11
 1.4.2.4 About Coercing R and Oracle Machine Learning for R Class Types 1-11
1.5 Typical Operations in Using Oracle Machine Learning for R 1-12
1.6 Oracle Machine Learning for R Global Options 1-12

2 Get Started with Oracle Machine Learning for R

2.1 Create and Manage R Objects in Oracle Database 2-1
 2.1.1 Create R Objects for In-Database Data 2-1
3.1.9 Prepare Time Series Data 3-16

3.2 Explore Data 3-22
3.2.1 About the Exploratory Data Analysis Functions 3-23
3.2.2 About the NARROW Data Set for Examples 3-24
3.2.3 Correlate Data 3-24
3.2.4 Cross-Tabulate Data 3-26
3.2.5 Analyze the Frequency of Cross-Tabulations 3-31
3.2.6 Build Exponential Smoothing Models on Time Series Data 3-31
3.2.7 Rank Data 3-35
3.2.8 Sort Data 3-36
3.2.9 Summarize Data with ore.summary 3-38
3.2.10 Analyze the Distribution of Numeric Variables 3-39
3.2.11 Principal Component Analysis 3-40
3.2.12 Singular Value Decomposition 3-42

3.3 Data Manipulation Using OREdplyr 3-43
3.3.1 Select and Order Data 3-43
3.3.1.1 Examples of Selecting Columns 3-44
3.3.1.2 Examples of Programming with select_ 3-45
3.3.1.3 Examples of Selecting Distinct Columns 3-46
3.3.1.4 Examples of Selecting Rows by Position 3-47
3.3.1.5 Examples of Arranging Columns 3-49
3.3.1.6 Examples of Filtering Columns 3-49
3.3.1.7 Examples of Mutating Columns 3-50
3.3.2 Join Rows 3-51
3.3.3 Group Columns and Rows 3-52
3.3.4 Aggregate Columns and Rows 3-56
3.3.5 Sample Rows 3-58
3.3.6 Rank Rows 3-60

3.4 Graph Analysis Using OAAgraph 3-63

3.5 Using a Third-Party Package on the Client 3-72

4 Build Models in Oracle Machine Learning for R 4-1
4.1 Build Oracle Machine Learning for R Models 4-1
4.1.1 About OREmodels Functions 4-2
4.1.2 About the longley Data Set for Examples 4-3
4.1.3 Build Linear Regression Models 4-3
4.1.4 Build a Generalized Linear Model 4-5
4.1.5 Build a Neural Network Model 4-8
4.1.6 Build a Random Forest Model 4-9
4.2 Build Oracle Machine Learning for SQL Models 4-11
4.2.1 About Building OML4SQL Models using OML4R

- **4.2.1.1 OML4SQL Models Supported by OML4R**
- **4.2.1.2 About OML4SQL Models Built by OML4R Functions**
- **4.2.1.3 Partitioning and Text Processing**

4.2.2 Build an Association Rules Model

4.2.3 Build an Attribute Importance Model

4.2.4 Build a Decision Tree Model

4.2.5 Build an Expectation Maximization Model

4.2.6 Build an Explicit Semantic Analysis Model

4.2.7 Build an Extensible R Algorithm Model

4.2.8 Build General Linearized Models

4.2.9 Build a k-Means Model

4.2.10 Build a Naive Bayes Model

4.2.11 Build a Non-Negative Matrix Factorization Model

4.2.12 Build an Orthogonal Partitioning Cluster Model

4.2.13 Build a Singular Value Decomposition Model

4.2.14 Build a Support Vector Machine Model

4.3 Cross-Validate Models

5 Prediction With R Models

- **5.1 About the ore.predict Function**
- **5.2 Use the ore.predict Function**

6 Use Oracle Machine Learning for R Embedded R Execution

- **6.1 About Oracle Machine Learning for R Embedded R Execution**
 - **6.1.1 Benefits of Embedded R Execution**
 - **6.1.2 APIs for Embedded R Execution**
 - **6.1.3 Security for Scripts**
 - **6.1.4 Support for Parallel Execution**
 - **6.1.5 Install a Third-Party Package for Use in Embedded R Execution**
- **6.2 R Interface for Embedded R Execution**
 - **6.2.1 Arguments for Functions that Run Scripts**
 - **6.2.1.1 Input Function to Execute**
 - **6.2.1.2 Optional and Control Arguments**
 - **6.2.1.3 Structure of Return Value**
 - **6.2.1.4 Input Data**
 - **6.2.1.5 Parallel Execution**
 - **6.2.1.6 Unique Arguments**
 - **6.2.2 Manage Scripts in R**
6.2.3 Use the ore.doEval Function 6-21
6.2.4 Use the ore.tableApply Function 6-26
6.2.5 Use the ore.groupApply Function 6-27
 6.2.5.1 Partition on a Single Column 6-28
 6.2.5.2 Partition on Multiple Columns 6-30
6.2.6 Use the ore.rowApply Function 6-34
6.2.7 Use the ore.indexApply Function 6-40
 6.2.7.1 Simple Example of Using the ore.indexApply Function 6-41
 6.2.7.2 Column-Parallel Use Case 6-41
 6.2.7.3 Simulations Use Case 6-42
6.3 SQL Interface for Embedded R Execution 6-45
 6.3.1 About Oracle Machine Learning for R SQL Table Functions 6-46
 6.3.1.1 Parameters of the SQL Table Functions 6-46
 6.3.1.2 Return Value of SQL Table Functions 6-47
 6.3.1.3 Connect to Oracle Machine Learning for R in Embedded R Execution 6-48
 6.3.2 Manage Scripts in SQL 6-48
 6.3.3 Manage Datastores in SQL 6-50

A SQL APIs for Oracle Machine Learning for R
A.1 rqDropDataStore Procedure A-1
A.2 rqEval Function A-2
A.3 rqGrant Procedure A-5
A.4 rqGroupEval Function A-5
A.5 rqRevoke Procedure A-8
A.6 rqRowEval Function A-9
A.7 rqTableEval Function A-13
A.8 sys.rqScriptCreate Procedure A-16
A.9 sys.rqScriptDrop Procedure A-17

B Oracle Database Views for Oracle Machine Learning for R
B.1 ALL_RQ_DATASTORES B-2
B.2 ALL_RQ_SCRIPTS B-2
B.3 RQUSER_DATASTORECONTENTS B-3
B.4 RQUSER_DATASTORELIST B-3
B.5 USER_RQ_DATASTORE_PRIVS B-3
B.6 USER_RQ_DATASTORES B-4
B.7 USER_RQ_SCRIPT_PRIVS B-5
B.8 USER_RQ_SCRIPTS B-5
R Operators and Functions Supported by Oracle Machine Learning for R

Index
Preface

This publication describes how to use Oracle Machine Learning for R (OML4R).

- Technology Rebrand
 Oracle R Enterprise is now Oracle Machine Learning for R (OML4R).

- Audience

- Documentation Accessibility

- Related Documents

- Oracle Machine Learning for R Online Resources

- Conventions

Technology Rebrand

Oracle R Enterprise is now Oracle Machine Learning for R (OML4R).

Oracle is rebranding the suite of products and components that support machine learning with Oracle Database and Big Data. This technology is now known as Oracle Machine Learning (OML).

The OML application programming interface (API) for R, previously under the name Oracle R Enterprise, is now named Oracle Machine Learning for R (OML4R). The package, class, and function names are not rebranded. They remain ORE, OREbase, ore.frame, ore.connect, and so on.

The OML application programming interfaces (APIs) for SQL include PL/SQL packages, SQL functions, and data dictionary views. Using these APIs is described in publications, previously under the name Oracle Data Mining, that are now named Oracle Machine Learning for SQL (OML4SQL). The PL/SQL package and database view names are not rebranded. They remain DBMS_DATA_MINING, ALL_MINING_MODELS, and so on.

The Oracle R Advanced Analytics for Hadoop (ORAAH) technology is now Oracle Machine Learning for Spark (OML4Spark).

For more information, see Oracle Machine Learning.

Audience

This document is intended for anyone who uses Oracle Machine Learning for R. Use of OML4R requires knowledge of R and of Oracle Database.

Documentation Accessibility
For information about Oracle’s commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

The Oracle Machine Learning for R documentation set includes this publication and the following:

- *Oracle Machine Learning for R Release Notes*
- *Oracle Machine Learning for R Installation and Administration Guide*

Oracle Machine Learning for R Online Resources

The following websites provide useful information for users of OML4R:

- The [Oracle Machine Learning for R page](http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info) on the Oracle Technology Network (OTN) provides downloads, the latest documentation, and information such as white papers, blogs, discussion forums, presentations, and tutorials.
- The [Oracle Machine Learning](http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs) page, which has information on all of the Oracle Machine Learning technologies.
- The [R Technologies Discussion Forum](http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs) supports all aspects of Oracle's R-related offerings, including Oracle Machine Learning for R and Oracle R Distribution. Use the forum to ask questions and make comments about the software.

Conventions

The following text conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td>monospace</td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>
Changes in This Release for Oracle Machine Learning for R

Describes new features in Oracle Machine Learning for R.

In previous releases, Oracle Machine Learning for R (OML4R) was named Oracle R Enterprise.

- **New Features for Oracle Database Release 12.2.0.1**
 Oracle Machine Learning for R 1.5.1 has the new graph analytics package OAAgraph and has new functions in the OML4R package OREdm.

- **New Features for Oracle Database Release 12.1.0.2 and Earlier**
 Oracle Machine Learning for R 1.5.1 has the new OREdplyr package, improved performance of row ordering in ore.frame objects, and faster loading of the OML4R packages.

New Features for Oracle Database Release 12.2.0.1

Oracle Machine Learning for R 1.5.1 has the new graph analytics package OAAgraph and has new functions in the OML4R package OREdm.

New Features for Oracle Database Release 12.1.0.2 and Earlier

Oracle Machine Learning for R 1.5.1 has the new OREdplyr package, improved performance of row ordering in ore.frame objects, and faster loading of the OML4R packages.

OREdplyr Package for Data Manipulation

The dplyr package provides a grammar of data manipulation functions for data.frame objects and numeric objects. The new OREdplyr package implements much of this functionality for ore.frame and ore.numeric objects. This enables in-database execution of dplyr functionality such as selecting, filtering, ordering, and grouping columns and rows, and joining, summarizing, sampling, and ranking rows.

Related Topics

- **Data Manipulation Using OREdplyr**
 OREdplyr package functions transparently implement dplyr functions for use with ore.frame and ore.numeric objects.
1

Introduction to Oracle Machine Learning for R

Lists topics that introduce Oracle Machine Learning for R (OML4R).

OML4R in previous releases was named Oracle R Enterprise. The following topics introduce OML4R:

- **About Oracle Machine Learning for R**
 Oracle Machine Learning for R (OML4R) is a comprehensive, database-centric environment for end-to-end analytical processes in R, with immediate deployment to production environments.

- **Advantages of Oracle Machine Learning for R**
 Using OML4R to prepare and analyze data in an Oracle Database instance has many advantages for an R user.

- **Get Online Help for Oracle Machine Learning for R Classes, Functions, and Methods**
 The OML4R client packages contain the R components that you use to interact with data in an Oracle database.

- **About Transparently Using R on Oracle Database Data**
 OML4R has overloaded open source R methods and functions that you can use to operate directly on data in an Oracle Database instance.

- **Typical Operations in Using Oracle Machine Learning for R**
 In using OML4R, the following is a typical progression of operations:

- **Oracle Machine Learning for R Global Options**
 OML4R has global options that affect various functions.

1.1 About Oracle Machine Learning for R

Oracle Machine Learning for R (OML4R) is a comprehensive, database-centric environment for end-to-end analytical processes in R, with immediate deployment to production environments.

OML4R is a set of R packages and Oracle Database features that enable an R user to operate on database-resident data without using SQL and to execute R scripts in one or more embedded R engines that run on the database server.

Using OML4R from your local R session, you have easy access to data in an Oracle Database instance. You can create and use R objects that specify data in database tables. OML4R has overloaded functions that translate R operations into SQL that executes in the database. The database consolidates the SQL and can use the query optimization, parallel processing, and scalability features of the database when it executes the SQL statements. The database returns the results as R objects.

Embedded R execution provides some of the most significant advantages of using OML4R. Using embedded R execution, you can store and run R scripts in the
database through either an R interface or a SQL interface or both. You can use the results of R scripts in SQL-enabled tools for structured data, R objects, and images.

1.2 Advantages of Oracle Machine Learning for R

Using OML4R to prepare and analyze data in an Oracle Database instance has many advantages for an R user.

With OML4R, you can do the following:

• **Operate on Database-Resident Data Without Using SQL.** OML4R has overloaded open source R methods and functions that transparently convert standard R syntax into SQL. These methods and functions are in packages that implement the OML4R transparency layer. With these functions and methods, you can create R objects that access, analyze, and manipulate data that resides in the database. The database can automatically optimize the SQL to improve the efficiency of the query.

• **Eliminate Data Movement.** By keeping the data in the database, you eliminate the time involved in transferring the data to your desktop computer and the need to store the data locally. You also eliminate the need to manage the locally stored data, which includes tasks such as distributing the data files to the appropriate locations, synchronizing the data with changes that are made in the production database, and so on.

• **Keep Data Secure.** By keeping the data in the database, you have the security, scalability, reliability, and backup features of Oracle Database for managing the data.

• **Use the Power of the Database.** By operating directly on database-resident data, you can use the memory and processing power of the database and avoid the memory constraints of your client R session.

• **Use Current Data.** As data is refreshed in the database, you have immediate access to current data.

• **Prepare Data in the Database.** Using the transparency layer functions, prepare large database-resident data sets for predictive analysis through operations such as ordering, aggregating, filtering, recoding, and the use of comprehensive sampling techniques without having to write SQL code.

• **Save R Objects in the Database.** You can save R objects in an Oracle Database instance as persistent database objects that are available to others. You can store R and OML4R objects in an OML4R datastore, which is managed by the Oracle Database instance.

• **Build Models in the Database.** You can build models in the database and store and manage them in an OML4R datastore. You can use functions in packages that you download from CRAN (The Comprehensive R Archive Network) to build models that require large amounts of memory and that use techniques such as ensemble modeling.

• **Score Data in the Database.** You can include your R models in scripts to score database-resident data. You can perform tasks such as the following:
 – Go from model building to scoring in one step because you can use the same R code for scoring. You do not need to translate the scoring logic as required by some standalone analytic servers.
 – Schedule scripts to be run automatically to perform tasks such as bulk scoring.
– Score data in the context of a transaction.
– Perform online what-if scoring.
– Optionally convert a model to SQL, which Oracle Database does automatically for you. You can then deploy the resulting SQL for low-latency scoring tasks.

Execute R Scripts in the Database. Using OML4R **embedded R execution** functionality, you can create, store, and execute R scripts in the database. When the script executes, Oracle Database starts, controls, and manages one or more R engines that can run in parallel on the database server. By executing scripts on the database server, you can take advantage of scalability and performance of the server.

With the embedded R execution functionality, you can do the following:

– Develop and test R scripts interactively and make the scripts available for use by SQL applications
– Use CRAN and other packages in R scripts on the database server
– Operationalize entire R scripts in production applications and eliminate porting R code; avoid reinventing code to integrate R results into existing applications
– Seamlessly leverage Oracle Database as a high performance computing (HPC) environment for R scripts, providing data parallelism and resource management
– Use the processing and memory resources of Oracle Database and the increased efficiency of read/write operations between the database and the embedded R execution R engines
– Use the parallel processing capabilities of the database for data-parallel or task-parallel operations
– Perform parallel simulations
– Generate XML and PNG images that can be used by R or SQL applications

Integrate with the Oracle Technology Stack. You can take advantage of all aspects of the Oracle technology stack to integrate your data analysis within a larger framework for business intelligence or scientific inquiry. For example, you can integrate the results of your OML4R analysis into Oracle Business Intelligence Enterprise Edition (OBIEE).

1.3 Get Online Help for Oracle Machine Learning for R Classes, Functions, and Methods

The OML4R client packages contain the R components that you use to interact with data in an Oracle database.

For a list and brief descriptions of the client packages, and for information on installing them, see *Oracle Machine Learning for R Installation and Administration Guide*.

To get help on OML4R classes, functions, and methods, use R functions such as `help` and `showMethods`. If the name of a class or function has an `ore` prefix, you can supply the name to the `help` function. To get help on an overloaded method of an open-source R function, supply the name of the method and the name of the `ore` class.
Example 1-1 Getting Help on OML4R Classes, Functions, and Methods

This example shows several ways of getting information on OML4R classes, functions, and methods. In the listing following the example some code has been modified to display only a portion of the results and the output of some of the functions is not shown.

```r
# List the contents of the OREbase package.
ls("package:OREbase")

# Get help for the OREbase package.
help("OREBase")

# Get help for the ore virtual class.
help("ore-class")

# Show the subclasses of the ore virtual class.
showClass("ore")

# Get help on the ore.frame class.
help("ore.frame")

# Get help on the ore.vector class.
help("ore.vector")

# Show the arguments for the aggregate method.
showMethods("aggregate")

# Get help on the aggregate method for an ore.vector object.
help("aggregate,ore.vector-method")

# Show the signatures for the merge method.
showMethods("merge")

# Get help on the merge method for an ore.frame object.
help("merge,ore.frame,ore.frame-method")

showMethods("scale")

# Get help on the scale method for an ore.number object.
help("scale,ore.number-method")

# Get help on the ore.connect function.
help("ore.connect")
```

Listing for Example 1-1

```
R> options(width = 80)
R> head(ls("package:OREbase"), 12)
[1] "%in%"          "Arith"         "Compare"       "I"
[5] "Logic"         "Math"          "NCOL"          "NROW"
[9] "Summary"       "as.data.frame" "as.env"        "as.factor"
R>
R># Get help for the OREbase package.
R> help("OREBase")  # Output not shown.
R>
R> # Get help for the ore virtual class.
R> help("ore-class") # Output not shown.
R>
R> # Show the subclasses of the ore virtual class.
```
R> showClass("ore")
Virtual Class "ore" [package "OREbase"]

No Slots, prototype of class "ore.vector"

Known Subclasses:
Class "ore.vector", directly
Class "ore.frame", directly
Class "ore.matrix", directly
Class "ore.number", by class "ore.vector", distance 2
Class "ore.character", by class "ore.vector", distance 2
Class "ore.factor", by class "ore.vector", distance 2
Class "ore.date", by class "ore.vector", distance 2
Class "ore.datetime", by class "ore.vector", distance 2
Class "ore.difftime", by class "ore.vector", distance 2
Class "ore.logical", by class "ore.vector", distance 3
Class "ore.integer", by class "ore.vector", distance 3
Class "ore.numeric", by class "ore.vector", distance 3
Class "ore.tblmatrix", by class "ore.matrix", distance 2
Class "ore.vecmatrix", by class "ore.matrix", distance 2

R>
Get help on the ore.frame class.
R> help("ore.frame") # Output not shown.

R> # Get help on the ore.vector class.
R> help("ore.vector") # Output not shown.
R>
R> # Show the arguments for the aggregate method.
R> showMethods("aggregate")
Function: aggregate (package stats)
 x="ANY" x="ore.vector"

R> # Get help on the aggregate method for an ore.vector object.
R> help("aggregate,ore.vector-method") # Output not shown.

R> # Show the signatures for the merge method.
R> showMethods("merge")
Function: merge (package base)
 x="ANY", y="ANY"
 x="data.frame", y="ore.frame"
 x="ore.frame", y="data.frame"
 x="ore.frame", y="ore.frame"

R> # Get help on the merge method for an ore.frame object.
R> help("merge,ore.frame,ore.frame-method") # Output not shown.

R> showMethods("scale")
Function: scale (package base)
 x="ANY"
 x="ore.frame"
 x="ore.number"
 x="ore.tblmatrix"
 x="ore.vecmatrix"

R> # Get help on the scale method for an ore.number object.
R> help("scale,ore.number-method") # Output not shown.

R> # Get help on the ore.connect function.
R> help("ore.connect") # Output not shown.
1.4 About Transparently Using R on Oracle Database Data

OML4R has overloaded open source R methods and functions that you can use to operate directly on data in an Oracle Database instance.

The methods and functions are in packages that implement a transparency layer that translates R functions into SQL.

The OML4R transparency layer packages and the limitations of converting R into SQL are described in the following topics:

- **About the Transparency Layer**
 The Oracle Machine Learning for R transparency layer is implemented by the OREbase, OREgraphics, and OREstats packages.

- **Transparency Layer Support for R Data Types and Classes**
 Oracle Machine Learning for R transparency layer has classes and data types that map R data types to Oracle Database data types.

1.4.1 About the Transparency Layer

The Oracle Machine Learning for R transparency layer is implemented by the OREbase, OREgraphics, and OREstats packages.

These OML4R packages contain overloaded methods of functions in the open source R base, graphics, and stats packages, respectively. The OML4R packages also contain OML4R versions of some of the open source R functions.

With the methods and functions in these packages, you can create R objects that specify data in an Oracle Database instance. When you execute an R expression that uses such an object, the method or function transparently generates a SQL query and sends it to the database. The database then executes the query and returns the results of the operation as an R object.

A database table or view is represented by an ore.frame object, which is a subclass of data.frame. Other OML4R classes inherit from corresponding R classes, such as ore.vector and vector. OML4R maps Oracle Database data types to OML4R classes, such as NUMBER to ore.integer.

You can use the transparency layer methods and functions to prepare database-resident data for analysis. You can then use functions in other OML4R packages to build and fit models and use them to score data. For large data sets, you can do the modeling and scoring using R engines embedded in Oracle Database.

See Also:

- “Transparency Layer Support for R Data Types and Classes” for information on OML4R data types and object mappings and on the correspondences between R, OML4R, and SQL data types and objects
- “Getting Started with Oracle R Enterprise”
Example 1-2 Finding the Mean of the Petal Lengths by Species in R

This example illustrates the translation of an R function invocation into SQL. It uses the overloaded OML4R `aggregate` function to get the mean of the petal lengths from the `IRIS_TABLE` object.

```r
ore.create(iris, table = 'IRIS_TABLE')
aggplen = aggregate(IRIS_TABLE$Petal.Length,
                    by = list(species = IRIS_TABLE$Species),
                    FUN = mean)
aggplen
```

Listing for This Example

R> ore.create(iris, table = 'IRIS_TABLE')
R> aggplen = aggregate(IRIS_TABLE$Petal.Length,
 by = list(species = IRIS_TABLE$Species),
 FUN = mean)
R> aggplen

```
species     x
setosa         setosa 1.462
versicolor versicolor 4.260
virginica   virginica 5.552
```

Example 1-3 SQL Equivalent of the Previous Example

This example shows the SQL equivalent of the `aggregate` function in the previous example.

```sql
SELECT "Species", AVG("Petal.Length")
FROM IRIS_TABLE
GROUP BY "Species"
ORDER BY "Species";
```

```
Species     AVG("PETAL.LENGTH")
----------- -------------------
setosa       1.4620000000000002
versicolor   4.26
virginica    5.552
```

1.4.2 Transparency Layer Support for R Data Types and Classes

Oracle Machine Learning for R transparency layer has classes and data types that map R data types to Oracle Database data types.

Those classes and data types are described in the following topics:

- About Oracle Machine Learning for R Data Types and Classes
 OML4R has data types that map R data types to SQL data types.

- About the `ore.frame` Class
 An `ore.frame` object represents a relational query for an Oracle Database instance.

- Support for R Naming Conventions
 OML4R uses R naming conventions for `ore.frame` columns instead of the more restrictive Oracle Database naming conventions.

- About Coercing R and Oracle Machine Learning for R Class Types
 Some OML4R functions coerce R objects and class types to OML4R `ore` objects and types.
1.4.2.1 About Oracle Machine Learning for R Data Types and Classes

OML4R has data types that map R data types to SQL data types.

In an R session, when you create database objects from R objects or you create R objects from database data, OML4R translates R data types to SQL data types and the reverse where possible.

OML4R creates objects that are instances of OML4R classes. OML4R overloads many standard R functions so that they use OML4R classes and data types. R language constructs and syntax are supported for objects that are mapped to Oracle Database objects.

<table>
<thead>
<tr>
<th>R Data Type</th>
<th>OML4R Data Type</th>
<th>SQL Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>character mode vector</td>
<td>ore.character</td>
<td>VARCHAR2</td>
</tr>
<tr>
<td>integer mode vector</td>
<td>ore.integer</td>
<td>NUMBER</td>
</tr>
<tr>
<td>logical mode vector</td>
<td>ore.logical</td>
<td>The NUMBER 0 for FALSE and 1 for TRUE</td>
</tr>
<tr>
<td>numeric mode vector</td>
<td>ore.number</td>
<td>BINARY_DOUBLE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BINARY_FLOAT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLOAT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NUMBER</td>
</tr>
<tr>
<td>Date</td>
<td>ore.date</td>
<td>DATE</td>
</tr>
<tr>
<td>POSIXct</td>
<td>ore.datetime</td>
<td>TIMESTAMP</td>
</tr>
<tr>
<td>POSIXlt</td>
<td>ore.datetime</td>
<td>TIMESTAMP WITH TIME ZONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TIMESTAMP WITH LOCAL TIME ZONE</td>
</tr>
<tr>
<td>difftime</td>
<td>ore.difftime</td>
<td>INTERVAL DAY TO SECOND</td>
</tr>
<tr>
<td>None</td>
<td>Not supported</td>
<td>LONG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LONG RAW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RAW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>User defined data types</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reference data types</td>
</tr>
</tbody>
</table>
Note:

- Objects of type `ore.datetime` do not support a time zone setting, instead they use the system time zone `Sys.timezone` if it is available or GMT if `Sys.timezone` is not available.
- The SQL VARCHAR2 data type is mapped to the R character data type through the embedded R input data argument. Users can convert the character variable to a factor in R if needed by using `as.factor()`.

Related Topics

- R Operators and Functions Supported by Oracle Machine Learning for R
 The OML4R packages support many R operators and functions that you can use with OML4R objects.

1.4.2.2 About the `ore.frame` Class

An `ore.frame` object represents a relational query for an Oracle Database instance.

It is the OML4R equivalent of a `data.frame`. Typically, you get `ore.frame` objects that are proxies for database tables. You can then add new columns, or make other changes, to the `ore.frame` proxy object. Any such change does not affect the underlying table. If you then request data from the source table of the `ore.frame` object, the transparency layer function generates a SQL query that has the additional columns in the select list, but the table is not changed.

In R, the elements of a `data.frame` have an explicit order. You can specify elements by using integer indexing. In contrast, relational database tables do not define any order of rows and therefore cannot be directly mapped to R data structures.

OML4R has both ordered and unordered `ore.frame` objects. If a table has a primary key, which is a set of one or more columns that form a distinct tuple within a row, you can produce ordered results by performing a sort using an `ORDER BY` clause in a `SELECT` statement. However, ordering relational data can be expensive and is often unnecessary for transparency layer operations. For example, ordering is not required to compute summary statistics when invoking the `summary` function on an `ore.frame`.

See Also:

- "Moving Data to and from the Database" for information on `ore.create`
- "Creating Ordered and Unordered ore.frame Objects".

Example 1-4 Classes of a `data.frame` and a Corresponding `ore.frame`

This example creates a `data.frame` with columns that contain different data types and displays the structure of the `data.frame`. The example then invokes the `ore.push` function to create a temporary table in the database that contains a copy of the data of the `data.frame`. The `ore.push` invocation also generates an `ore.frame` object that is a
proxy for the table. The example displays the classes of the ore.frame object and of the columns in the data.frame and the ore.frame objects.

```r
df <- data.frame(a="abc",
                 b=1.456,
                 c=TRUE,
                 d=as.integer(1),
                 e=Sys.Date(),
                 f=as.difftime(c("0:3:20", "11:23:15")))
ore.push(df)
class(df)
attr(,
     "package")
[1] "OREbase"
class(df$a)
[1] "factor"
attr(,
     "package")
[1] "OREbase"
class(df$b)
[1] "numeric"
attr(,
     "package")
[1] "OREbase"
class(df$c)
[1] "logical"
attr(,
     "package")
[1] "OREbase"
class(df$d)
[1] "integer"
attr(,
     "package")
[1] "OREbase"
class(df$e)
[1] "ore.factor"
attr(,
     "package")
[1] "OREbase"
class(df$f)
[1] "ore.numeric"
attr(,
     "package")
[1] "OREbase"
```

Listing for Example 1-4

```r
R> df <- data.frame(a="abc",
>                   b=1.456,
>                   c=TRUE,
>                   d=as.integer(1),
>                   e=Sys.Date(),
>                   f=as.difftime(c("0:3:20", "11:23:15")))
R> ore.push(df)
R> class(df)
[1] "ore.frame"
attr(,
     "package")
[1] "OREbase"
class(df$a)
[1] "factor"
attr(,
     "package")
[1] "OREbase"
class(df$b)
[1] "numeric"
attr(,
     "package")
[1] "OREbase"
class(df$c)
[1] "logical"
attr(,
     "package")
[1] "OREbase"
class(df$d)
[1] "integer"
attr(,
     "package")
[1] "OREbase"
```
1.4.2.3 Support for R Naming Conventions

OML4R uses R naming conventions for `ore.frame` columns instead of the more restrictive Oracle Database naming conventions.

The column names of an `ore.frame` can be longer than 30 bytes, can contain double quotes, and can be non-unique.

1.4.2.4 About Coercing R and Oracle Machine Learning for R Class Types

Some OML4R functions coerce R objects and class types to OML4R `ore` objects and types.

The generic `as.ore` function coerces in-memory R objects to `ore` objects. The more specific functions, such as `as.ore.character`, coerce objects to specific types. The `ore.push` function implicitly coerces R class types to `ore` class types and the `ore.pull` function coerces `ore` class types to R class types. For information on those functions, see “Moving Data to and from the Database”.

Example 1-5 Coercing R and OML4R Class Types

This example illustrates coercing R objects to `ore` objects. creates an R `integer` object and then uses the generic method `as.ore` to coerce it to an `ore` object, which is an `ore.integer`. The example coerces the R object to various other `ore` class types. For an example of using `as.factor` in embedded R execution function, see Example 6-13.

```r
x <- 1:10
class(x)
X <- as.ore(x)
class(X)
Xn <- as.ore.numeric(x)
class(Xn)
Xc <- as.ore.character(x)
class(Xc)
Xc
XF <- as.ore.factor(x)
XF
```

Listing for Example 1-5

```r
R> x <- 1:10
R> class(x)
[1] "integer"
R> X <- as.ore(x)
R> class(X)
[1] "ore.integer"
```
1.5 Typical Operations in Using Oracle Machine Learning for R

In using OML4R, the following is a typical progression of operations:

1. In an R session, connect to a schema in an Oracle Database instance.
2. Attach the schema and synchronize with the schema objects, which generates OML4R proxy objects for database tables.
3. Prepare the data for analysis and possibly perform exploratory data analysis and data visualization.
4. Build models using functions in the OREmodels or OREdm packages.
5. Score data using the models either in your local R session or by using embedded R execution.
6. Deploy the results of the analysis to end users.

Figure 1-1 Typical OML4R Workflow

This figure illustrates these steps and typical reiterations of them.

1.6 Oracle Machine Learning for R Global Options

OML4R has global options that affect various functions.

Table 1-2 lists the OML4R global options and descriptions of them.
Table 1-2 OML4R Global Options

<table>
<thead>
<tr>
<th>Global</th>
<th>Description</th>
</tr>
</thead>
</table>
| `ore.envAsEmptyenv` | A logical value that specifies whether an environment referenced in an object should be replaced with an empty environment during serialization to an Oracle Database. When TRUE, the referenced environment in the object is replaced with an empty environment whose parent is `.GlobalEnv`, and the objects in the original referenced environment are not serialized. In some cases, this can significantly reduce the size of serialized objects. When FALSE, all of the objects in the referenced environment are serialized, and can be unserialized and loaded into memory. The default value for this option is FALSE. The following OML4R functions use this global option:
 • `ore.push`, in saving a serialized list object to the database
 • `ore.save`, in saving objects to an OML4R datastore
 • `ore.doEval` and the other embedded R execution functions for serializing parameters of list type and for serializing some objects returned by an R function during embedded R execution |
| `ore.na.extract` | A logical value used during logical subscripting of an `ore.frame` or `ore.vector` object. When TRUE, rows or elements with an NA logical subscript produce rows or elements with NA values, which mimics how R treats missing value logical subscripting of `data.frame` and `vector` objects. When FALSE, an NA logical subscript is interpreted as a FALSE value, resulting in the removal of the corresponding row or element. The default value is FALSE. |
| `ore.parallel` | A preferred degree of parallelism to use in embedded R execution. One of the following:
 • A positive integer greater than or equal to 2 for a specific degree of parallelism
 • FALSE or 1 for no parallelism
 • TRUE for the default parallelism of the data argument
 • NULL for the database default for the operation
 The default value is NULL. |
| `ore.sep` | A character string that specifies the separator to use between multiple column row names of an `ore.frame`. The default value is `|`. |
| `ore.trace` | A logical value that specifies whether iterative OML4R functions should print output at each iteration. The default value is FALSE. |
| `ore.warn.order` | A logical value that specifies whether OML4R displays a warning message when an `ore.frame` that lacks row names or an `ore.vector` that lacks element names is used in a function that requires ordering. The default value is TRUE. |
See Also:

- "Global Options Related to Ordering" for information on using `ore.sep` and `ore.warn.order`
- "Support for Parallel Execution"
Get Started with Oracle Machine Learning for R

Start using OML4R by connecting to an Oracle Database instance, creating OML4R objects, and storing them in the database.

This chapter discusses these topics:

- **Create and Manage R Objects in Oracle Database**
 With transparency layer functions you can connect to an Oracle Database instance and interact with data structures in a database schema.

- **Connect to an Oracle Database Instance**
 To use Oracle Machine Learning for R, you first connect to an Oracle Database instance.

2.1 Create and Manage R Objects in Oracle Database

With transparency layer functions you can connect to an Oracle Database instance and interact with data structures in a database schema.

You can move data to and from the database and create database tables. You can also save R objects in the database. The OML4R functions that perform these actions are described in the following topics.

- **Create R Objects for In-Database Data**
 Using Oracle Machine Learning for R, you can create R proxy objects in your R session for database-resident data.

- **Create Ordered and Unordered ore.frame Objects**
 Oracle Machine Learning for R provides the ability to create ordered or unordered ore.frame objects.

- **Move Data to and from the Database**
 You can create a temporary database table, and its corresponding proxy ore.frame object, from a local R object with the ore.push function.

- **Create and Delete Database Tables**
 Use the ore.create function to create a persistent table in an Oracle Database schema.

- **Save and Manage R Objects in the Database**
 Oracle Machine Learning for R provides datastores that you can use to save OML4R proxy objects, as well as any R object, in an Oracle database.

2.1.1 Create R Objects for In-Database Data

Using Oracle Machine Learning for R, you can create R proxy objects in your R session for database-resident data.

Creating proxy objects is described in the following topics.
• **About Creating R Objects for Database Objects**
 To gain access to the data in the database tables in the schema, you use the `ore.sync` function.

• **Synchronize Data with the `ore.sync` Function**
 The following example demonstrates the use of the `ore.sync` function.

• **Get Objects with the `ore.get` Function**

• **Add a Schema with the `ore.attach` Function**

2.1.1.1 About Creating R Objects for Database Objects

To gain access to the data in the database tables in the schema, you use the `ore.sync` function.

When you invoke `ore.connect` in an R session, Oracle Machine Learning for R creates a connection to a schema in an Oracle Database instance. The `ore.sync` function creates an `ore.frame` object that is a proxy for a table in a schema. You can use the `ore.attach` function to add an R environment that represents a schema in the R search path.

When you use the `ore.sync` function to create an `ore.frame` object as a proxy for a database table, the name of the `ore.frame` proxy object is the same as the name of the database object. Each `ore.frame` proxy object contains metadata about the corresponding database object.

You can use the proxy `ore.frame` object to select data from the table. When you execute an R operation that selects data from the table, the operation returns the current data from the database object. However, if some application has added a column to the table, or has otherwise changed the metadata of the database object, the `ore.frame` proxy object does not reflect such a change until you again invoke `ore.sync` for the database object.

If you invoke the `ore.sync` function with no tables specified, and if the value of the `all` argument was `FALSE` in the `ore.connect` function call that established the connection to the Oracle database instance, then the `ore.sync` function creates a proxy object for each table in the schema specified by `ore.connect`. You can use the `table` argument to specify the tables for which you want to create `ore.frame` proxy objects.

Tip:
To conserve memory resources and save time, you should only add proxies for the tables that you want to use in your R session.

With the `schema` argument, you can specify the schema for which you want to create an R environment and proxy objects. Only one environment for a given database schema can exist at a time. With the `use.keys` argument, you can specify whether you want to use primary keys in the table to order the `ore.frame` object.
Ordering is expensive in the database. Because most operations in R do not need ordering, you should generally set use.keys to FALSE unless you need ordering for sampling data or some other purpose.

With the query argument, you can specify a SQL SELECT statement. This enables you to create an ore.frame for a query without creating a view in the database. This can be useful when you do not have the CREATE VIEW system privilege for the current schema. You cannot use the schema argument and the query argument in the same ore.sync invocation.

You can use the ore.ls function to list the ore.frame proxy objects that correspond to database tables in the environment for a schema. You can use the ore.exists function to find out if an ore.frame proxy object for a database table exists in an R environment. The function returns TRUE if the proxy object exists or FALSE if it does not. You can remove an ore.frame proxy object from an R environment with the ore.rm function.

2.1.1.2 Synchronize Data with the ore.sync Function

The following example demonstrates the use of the ore.sync function.

The example first invokes the ore.exec function to create some tables to represent tables existing in the OML_USER database schema. The example then invokes ore.sync and specifies three tables of the schema. The ore.sync invocation creates an R environment for the OML_USER schema and creates proxy ore.frame objects for the specified tables in that schema. The example lists the ore.frame proxy objects in the current environment. The TABLE3 table exists in the schema but does not have an ore.frame proxy object because it was not included in the ore.sync invocation.

The example next invokes ore.sync with the query argument to create ore.frame objects for the specified SQL queries. The example lists the ore.frame objects again.

The example then invokes ore.sync again and creates an R environment for the SH schema and proxy objects in that environment for the specified tables in that schema. The example invokes the ore.exists function to find out if the specified table exists in the current environment and then in the SH environment. The example lists the R objects in the SH environment.

The example next removes the ore.frame objects QUERY1, QUERY2, and TABLE4 from the OML_USER environment. Finally, the example lists the proxy objects in the environment again.

The ore.rm function invocation removes the ore.frame that is a proxy for the TABLE4 table from the environment. It does not delete the table from the schema.
Example 2-1 Using ore.sync to Add ore.frame Proxy Objects to an R Environment

After connecting to a database as OML_USER, create some tables.
ore.exec("CREATE TABLE TABLE1 AS SELECT * FROM dual")
ore.exec("CREATE TABLE TABLE2 AS SELECT * FROM dual")
ore.exec("CREATE TABLE TABLE3 AS SELECT * FROM dual")
ore.exec("CREATE TABLE TABLE4 AS SELECT * FROM dual")
Create ore.frame objects for the specified tables.
ore.sync(table = c("TABLE1", "TABLE3", "TABLE4"))
List the ore.frame proxy objects in the current environment.
ore.ls()
Create ore.frame objects for the specified queries.
ore.sync(query = c("QUERY1" = "SELECT 0 X, 1 Y FROM dual",
 "QUERY2" = "SELECT 1 X, 0 Y FROM dual"))
ore.ls()
The OML_USER user has been granted SELECT permission on the tables in
SH schema.
ore.sync("SH", table = c("CUSTOMERS", "SALES"))
Find out if the CUSTOMERS ore.frame exists in the OML_USER environment.
ore.exists("CUSTOMERS")
Find out if it exists in the SH environment.
ore.exists("CUSTOMERS", schema = "SH")
List the ore.frame proxy objects in the SH environment.
ore.ls("SH")
Remove the ore.frame objects for the specified objects.
ore.rm(c("QUERY1", "QUERY2", "TABLE4"))
List the ore.frame proxy objects in the current environment again.
ore.ls()

Listing for This Example

R> # After connecting to a database as OML_USER, create some tables.
R> ore.exec("CREATE TABLE TABLE1 AS SELECT * FROM dual")
R> ore.exec("CREATE TABLE TABLE2 AS SELECT * FROM dual")
R> ore.exec("CREATE TABLE TABLE3 AS SELECT * FROM dual")
R> ore.exec("CREATE TABLE TABLE4 AS SELECT * FROM dual")
R> # Create ore.frame objects for the specified tables.
R> ore.sync(table = c("TABLE1", "TABLE3", "TABLE4"))
R> # List the ore.frame proxy objects in the current environment.
R> ore.ls()
[1] "TABLE1" "TABLE3" "TABLE4"
R> # Create ore.frame objects for the specified queries.
R> ore.sync(query = c("QUERY1" = "SELECT 0 X, 1 Y FROM dual",
 +"QUERY2" = "SELECT 1 X, 0 Y FROM dual"))
R> ore.ls()
[1] "QUERY1" "QUERY2" "TABLE1" "TABLE3" "TABLE4"
R> # The OML_USER user has been granted SELECT permission on the tables in
the
R> # SH schema.
R> ore.sync("SH", table = c("CUSTOMERS", "SALES"))
R> # Find out if the CUSTOMERS ore.frame exists in the OML_USER
environment.
R> ore.exists("CUSTOMERS")
[1] FALSE
R> # Find out if it exists in the SH environment.
R> ore.exists("CUSTOMERS", schema = "SH")
[1] TRUE
R> # List the ore.frame proxy objects in the SH environment.
R> ore.ls("SH")
[1] "CUSTOMERS" "SALES"
R> # Remove the ore.frame objects for the specified objects.
R> ore.rm(c("QUERY1", "QUERY2", "TABLE4"))
R> # List the ore.frame proxy objects in the current environment again.
R> ore.ls()
[1] "TABLE1" "TABLE3"

2.1.1.3 Get Objects with the ore.get Function

After you have created an R environment and ore.frame proxy objects with ore.sync, you can get a proxy object by name with the ore.get function. You can use ore.get to get the proxy ore.frame for a table and assign it to a variable in R, as in SH_CUST <- ore.get(name = "CUSTOMERS", schema = "SH"). The ore.frame exists in the R global environment, which can be referred to using .GlobalEnv, and so it appears in the list returned by the ls function. Also, because this object exists in the R global environment, as opposed an R environment that represents a database schema, it is not listed by the ore.ls function.

Example 2-2 Using ore.get to Get a Database Table

This example invokes the ore.sync function to create an ore.frame object that is a proxy for the CUSTOMERS table in the SH schema. The example then gets the dimensions of the proxy object.

```r
ore.sync(schema = "SH", table = "CUSTOMERS", use.keys = FALSE)
dim(ore.get(name = "CUSTOMERS", schema = "SH"))
```

Listing for Example 2-2

```
R> ore.sync(schema = "SH", table = "CUSTOMERS", use.keys = FALSE)
R> dim(ore.get(name = "CUSTOMERS", schema = "SH"))
[1] 630 15
```

2.1.1.4 Add a Schema with the ore.attach Function

With ore.attach, you add an R environment for a database schema to the R search path. When you add the R environment, you have access to database tables by name through the proxy objects created by the ore.sync function without needing to specify the schema environment.

The default schema is the one specified in creating the connection and the default position in the search path is 2. You can specify the schema and the position in the ore.attach function invocation. You can also specify whether you want the ore.attach function to indicate whether a naming conflict occurs when adding the environment. You can detach the environment for a schema from the R search path with the ore.detach function.
Example 2-3 Using ore.attach to Add an Environment for a Database Schema

This example demonstrates the use of the `ore.attach` function. Comments in the example explain the function invocations.

```r
# Connected as oml_user.
# Add the environment for the oml_user schema to the R search path.
ore.attach()
# Create an unordered ore.frame proxy object in the SH environment for the
# specified table.
ore.sync(schema = "SH", table = "CUSTOMERS", use.keys = FALSE)
# Add the environment for the SH schema to the search path and warn if naming
# conflicts exist.
ore.attach("SH", 3, warn.conflicts = TRUE)
# Display the number of rows and columns in the proxy object for the table.
dim(CUSTOMERS)
# Remove the environment for the SH schema from the search path.
ore.detach("SH")
# Invoke the dim function again.
dim(CUSTOMERS)
```

Listing for Example 2-3

```r
R> # Connected as oml_user.
R> # Add the environment for the oml_user schema to the R search path.
R> ore.attach()
R> # Create an unordered ore.frame proxy object in the SH environment for the
R> # specified table.
R> ore.sync(schema = "SH", table = "CUSTOMERS", use.keys = FALSE)
R> # Add the environment for the SH schema to the search path and warn if naming
R> # conflicts exist.
R> ore.attach("SH", 3, warn.conflicts = TRUE)
R> # Display the number of rows and columns in the proxy object for the table.
R> dim(CUSTOMERS)
[1] 630  15
R> # Remove the environment for the SH schema from the search path.
R> ore.detach("SH")
R> # Invoke the dim function again.
R> dim(CUSTOMERS)
Error: object 'CUSTOMERS' not found
```

2.1.2 Create Ordered and Unordered ore.frame Objects

Oracle Machine Learning for R provides the ability to create ordered or unordered ore.frame objects.

The following topics describe this feature.

- **About Ordering in ore.frame Objects**
 R objects such as `vector` and `data.frame` have an implicit ordering of their elements.

- **Global Options Related to Ordering**
 OML4R has options that relate to the ordering of an ore.frame object.

- **Ordering Using Keys**
 You can use the primary key of a database table to order an ore.frame object.

- **Ordering Using Row Names**
 You can use row names to order an ore.frame object.
• Using Ordered Frames
 This example shows the result of merging two ordered `ore.frame` objects and two unordered `ore.frame` objects.

2.1.2.1 About Ordering in `ore.frame` Objects

R objects such as `vector` and `data.frame` have an implicit ordering of their elements.

The data in an Oracle Database table is not necessarily ordered. For some R operations, ordering is useful whereas for other operations it is unnecessary. By ordering an `ore.frame`, you are able to index the `ore.frame` object by using either integer or character indexes.

Using an ordered `ore.frame` object that is a proxy for a SQL query can be time-consuming for a large data set. Therefore, although OML4R attempts to create ordered `ore.frame` objects by default, it also provides the means of creating an unordered `ore.frame` object.

When you invoke the `ore.sync` function to create an OML4R `ore.frame` object as a proxy for a SQL query, you can use the `use.keys` argument to specify whether the `ore.frame` can be ordered or must be unordered.

An `ore.frame` object can be ordered if one or more of the following conditions are true:

- The value of the `use.keys` argument of the `ore.sync` function is `TRUE` and a primary key is defined on the underlying table
- The row names of the `ore.frame` constitute a unique tuple
- The `ore.frame` object is produced by certain functions such as `aggregate` and `cbind`
- All of the `ore.frame` objects that are input arguments to relevant OML4R functions are ordered

An `ore.frame` object is unordered if one or more of the following conditions are true:

- The value of the `use.keys` argument of the `ore.sync` function is `FALSE`
- No primary key is defined on the underlying table and either the row names of the `ore.frame` object are not specified or the row names of the `ore.frame` object are set to `NULL`
- One or more of the `ore.frame` objects that are input arguments to relevant OML4R functions are unordered

An unordered `ore.frame` object has null row names. You can determine whether an `ore.frame` object is ordered by invoking `is.null` on the row names of the objects, as shown in the last lines of Example 2-4. If the `ore.frame` object is unordered, `is.null` returns an error.

See Also:

"Indexing Data"
2.1.2.2 Global Options Related to Ordering

OML4R has options that relate to the ordering of an `ore.frame` object.

The `ore.warn.order` global option specifies whether you want OML4R to display a warning message if you use an unordered `ore.frame` object in a function that requires ordering. If you know what to expect in an operation, then you might want to turn the warnings off so they do not appear in the output. For examples of the warning messages, see Example 2-4 and Example 2-5.

You can see what the current setting is, or turn the option on or off, as in the following example.

R> options("ore.warn.order")
$ore.warn.order
[1] TRUE
R> options("ore.warn.order" = FALSE)
R> options("ore.warn.order" = TRUE)

With the `ore.sep` option, you can specify the separator between the row name values that you use for multi-column keys, as in the following example.

R> options("ore.sep")
$ore.sep
[1] "|

R> options("ore.sep" = "/")
R> options("ore.sep" = "|")

2.1.2.3 Ordering Using Keys

You can use the primary key of a database table to order an `ore.frame` object.

The following example loads the spam data set from the `kernlab` package. It adds two columns to the data set.

The example invokes `ore.drop` to drop the named tables if they exist. It then invokes `ore.create` to create two tables from the data set. It invokes `ore.exec` to make the USERID and TS columns a composite primary key of the SPAM_PK table, and invokes `ore.sync` to synchronize the table with its `ore.frame` proxy.

Note:
The `ore.exec` function executes a SQL statement in the Oracle Database schema. The function is intended for database definition language (DDL) statements that have no return value.

The example then displays the first eight rows of each table. The proxy object for the SPAM_PK table is an ordered `ore.frame` object. It has row names that are a combination of the TS and USERID column values separated by the "|" character. The proxy object for the SPAM_NOPK table is an unordered `ore.frame` object that has the symbol `SPAM_NOPK`. By default, `SPAM_NOPK` has row names that are sequential numbers.
Example 2-4 Ordering Using Keys

Prepare the data.
library(kernlab)
data(spam)
s <- spam
Create a column that has integer values.
sTS <- 1001:(1000 + nrow(s))
Create a column that has integer values with each number repeated twice.
sUSERID <- rep(351:400, each=2, len=nrow(s))
Ensure that the database tables do not exist.
ore.drop(table='SPAM_PK')
ore.drop(table='SPAM_NOPK')
Create database tables.
ore.create(s[,c(59:60,1:28)], table="SPAM_PK")
ore.create(s[,c(59:60,1:28)], table="SPAM_NOPK")
Using a SQL statement, alter the SPAM_PK table to add a composite primary key.
ore.exec("alter table SPAM_PK add constraint SPAM_PK primary key
("USERID","TS")")
Synchronize the table to get the change to it.
ore.sync(table = "SPAM_PK")
View the data in the tables.
The row names of the ordered SPAM_PK are the primary key column values.
head(SPAM_PK[,1:8])
The row names of the unordered SPAM_NOPK are sequential numbers.
The first warning results from the inner accessing of SPAM_NOPK to subset
the columns. The second warning is for the invocation of the head
function on that subset.
head(SPAM_NOPK[,1:8])
Verify that SPAM_NOPK is unordered.
is.null(row.names(SPAM_NOPK))

Listing for This Example

R> # Prepare the data.
R> library(kernlab)
R> data(spam)
R> s <- spam
R> # Create a column that has integer values.
R> sTS <- 1001:(1000 + nrow(s))
R> # Create a column that has integer values with each number repeated twice.
R> sUSERID <- rep(351:400, each=2, len=nrow(s))
R> # Ensure that the database tables do not exist.
R> ore.drop(table='SPAM_PK')
R> ore.drop(table='SPAM_NOPK')
R> # Create database tables.
R> ore.create(s[,c(59:60,1:28)], table="SPAM_PK")
R> ore.create(s[,c(59:60,1:28)], table="SPAM_NOPK")
R> # Using a SQL statement, alter the SPAM_PK table to add a composite primary key.
R> ore.exec("alter table SPAM_PK add constraint SPAM_PK primary key
+ ("USERID","TS")")
R> # Synchronize the table to get the change to it.
R> ore.sync(table = "SPAM_PK")
R> # View the data in the tables.
R> # The row names of the ordered SPAM_PK are the primary key column values.
R> head(SPAM_PK[,1:8])
 TS USERID make address all num3d our over
1001 351 1001 351 0.00 0.64 0.64 0.32 0.00
1002 351 1002 351 0.21 0.28 0.50 0.14 0.28
1003 352 1003 352 0.06 0.00 0.71 1.23 0.19
1004 352 1004 352 0.00 0.00 0.00 0.63 0.00
1005 353 1005 353 0.00 0.00 0.00 0.63 0.00
The row names of the unordered SPAM_NOPK are sequential numbers.
The first warning results from the inner accessing of SPAM_NOPK to subset
the columns. The second warning is for the invocation of the head
function on that subset.
R> head(SPAM_NOPK[,1:8])

TS USERID make address all num3d our over
1 1001 351 0.00 0.64 0.64 0 0.32 0.00
2 1002 351 0.21 0.28 0.50 0 0.14 0.28
3 1003 352 0.06 0.00 0.71 0 1.23 0.19
4 1004 352 0.00 0.00 0.63 0 0.63 0.00
5 1005 353 0.00 0.00 0.63 0 0.63 0.00
6 1006 353 0.00 0.00 0.00 0 1.85 0.00
Warning messages:
1: ORE object has no unique key - using random order
2: ORE object has no unique key - using random order
R> # Verify that SPAM_NOPK is unordered.
R> is.null(row.names(SPAM_NOPK))

2.1.2.4 Ordering Using Row Names

You can use row names to order an ore.frame object.

The following example creates a data.frame object in the local R session memory and pushes it to the ore.frame object with the symbol a, which exists in the memory of the Oracle database to which the R session is connected. The example shows that the ore.frame object has the default row names of the R data.frame object. Because the ore.frame object is ordered, invoking the row.names function on it does not produce a warning message.

The example uses the ordered SPAM_PK and unordered SPAM_NOPK ore.frame objects to show that invoking row.names on the unordered SPAM_NOPK produces a warning message but invoking it on the ordered SPAM_PK does not.

The SPAM_PK object is ordered by the row names, which are the combined values of the TS and USERID column values separated by the "|" character. The example shows that you can change the row names.

Example 2-5 Ordering Using Row Names

Prepare the data.
library(kernlab)
data(spam)
s <- spam
Create a column that has integer values.
s$TS <- 1001:(1000 + nrow(s))
Create a column that has integer values with each number repeated twice.
s$USERID <- rep(351:400, each=2, len=nrow(s))
Ensure that the database tables do not exist.
ore.drop(table="SPAM_PK")
ore.drop(table="SPAM_NOPK")
Create database tables.
ore.create(s[,c(59:60,1:28)], table="SPAM_PK")
ore.create(s[,c(59:60,1:28)], table="SPAM_NOPK")
Using a SQL statement, alter the SPAM_PK table to add a composite primary key.
ore.exec("alter table SPAM_PK add constraint SPAM_PK primary key
("USERID","TS")")
Synchronize the table to get the change to it.
ore.sync(table = "SPAM_PK")
Create an ordered ore.frame by default.
a <- ore.push(data.frame(a=c(1:10,10:1), b=letters[c(1:10,10:1)]))

Display the values in the b column. Note that because the ore.frame is
ordered, no warnings appear.
a$b

Display the default row names for the first six rows of the a column.
row.names(head(a))

SPAM_NOPK has no unique key, so row.names raises error messages.
row.names(head(SPAM_NOPK))

Row names consist of TS '|' USERID.
For display on this page, only the first four row names are shown.
row.names(head(SPAM_PK))

Reassign the row names to the TS column only
row.names(SPAM_PK) <- SPAM_PK$TS

The row names now correspond to the TS values only.
row.names(head(SPAM_PK[,1:4]))

head(SPAM_PK[,1:4])

Listing for This Example

```r
R> # Prepare the data.
R> library(kernlab)
R> data(spam)
R> s <- spam
R> # Create a column that has integer values.
R> s$TS <- 1001:(1000 + nrow(s))
R> # Create a column that has integer values with each number repeated twice.
R> s$USERID <- rep(351:400, each=2, len=nrow(s))
R> # Ensure that the database tables do not exist.
R> ore.drop(table="SPAM_PK")
R> ore.drop(table="SPAM_NOPK")
R> # Create database tables.
R> ore.create(s[,c(59:60,1:28)], table="SPAM_PK")
R> ore.create(s[,c(59:60,1:28)], table="SPAM_NOPK")
R> # Using a SQL statement, alter the SPAM_PK table to add a composite primary key.
R> ore.exec("alter table SPAM_PK add constraint SPAM_PK primary key
+ ("USERID","TS")")
R> # Synchronize the table to get the change to it.
R> ore.sync(table = "SPAM_PK")
R> # Create an ordered ore.frame by default.
R> a <- ore.push(data.frame(a=c(1:10,10:1), b=letters[c(1:10,10:1)]))
R> # Display the values in the b column. Note that because the ore.frame is
R> # ordered, no warnings appear.
R> a$b

[1] a b c d e f g h i j

R> # Display the default row names for the first six rows of the a column.
R> row.names(head(a))

[1] 1 2 3 4 5 6

R> # SPAM_NOPK has no unique key, so row.names raises error messages.
R> row.names(head(SPAM_NOPK))

Error: ORE object has no unique key
In addition: Warning message:
ORE object has no unique key - using random order
R> # Row names consist of TS '|' USERID.
R> # For display on this page, only the first four row names are shown.
R> row.names(head(SPAM_PK))

1001 | 1000 | 351 | 352 | 1002 | 1003 | 1004 | 1005 | 1006

"1001|3.51E+002" "1002|3.51E+002" "1003|3.52E+002" "1004|3.52E+002"

R> # Reassign the row names to the TS column only
R> row.names(SPAM_PK) <- SPAM_PK$TS
R> # The row names now correspond to the TS values only.
```
R> row.names(head(SPAM_PK[,1:4]))
[1] 1001 1002 1003 1004 1005 1006
R> head(SPAM_PK[,1:4])
 TS USERID make address
1001 1001 351 0.00 0.64
1002 1002 351 0.21 0.28
1003 1003 352 0.06 0.00
1004 1004 352 0.00 0.00
1005 1005 353 0.00 0.00
1006 1006 353 0.00 0.00

2.1.2.5 Using Ordered Frames

This example shows the result of merging two ordered `ore.frame` objects and two unordered `ore.frame` objects.

Example 2-6 Merging Ordered and Unordered ore.frame Objects

```r
# Prepare the data.
library(kernlab)
data(spam)
s <- spam
# Create a column that has integer values.
s$TS <- 1001:(1000 + nrow(s))
# Create a column that has integer values with each number repeated twice.
s$USERID <- rep(351:400, each=2, len=nrow(s))
# Ensure that the database tables do not exist.
ore.drop(table="SPAM_PK")
ore.drop(table="SPAM_NOPK")
# Create database tables.
ore.create(s[,c(59:60,1:28)], table="SPAM_PK")
ore.create(s[,c(59:60,1:28)], table="SPAM_NOPK")
# Using a SQL statement, alter the SPAM_PK table to add a composite primary key.
ore.exec("alter table SPAM_PK add constraint SPAM_PK primary key ("USERID","TS")")
# Synchronize the table to get the change to it.
ore.sync(table = "SPAM_PK")
# Create objects for merging data from unordered ore.frame objects.
x <- SPAM_NOPK[,1:4]
y <- SPAM_NOPK[,c(1,2,4,5)]
m1 <- merge(x, y, by="USERID")
# The merged result m1 produces a warning because it is not an ordered frame.
head(m1,3)
# Create objects for merging data from ordered ore.frame objects.
x <- SPAM_PK[,1:4]
y <- SPAM_PK[,c(1,2,4,5)]
# The merged result m1 does not produce a warning now because it is an ordered frame.
m1 <- merge(x, y, by="USERID")
head(m1,3)
```
Listing for This Example

R> # Prepare the data.
R> library(kernlab)
R> data(spam)
R> s <- spam
R> # Create a column that has integer values.
R> s$TS <- 1001:(1000 + nrow(s))
R> # Create a column that has integer values with each number repeated twice.
R> s$USERID <- rep(351:400, each=2, len=nrow(s))
R> # Ensure that the database tables do not exist.
R> ore.drop(table='SPAM_PK')
R> ore.drop(table='SPAM_NOPK')
R> # Create database tables.
R> ore.create(s[,c(59:60,1:28)], table="SPAM_PK")
R> ore.create(s[,c(59:60,1:28)], table="SPAM_NOPK")
R> # Using a SQL statement, alter the SPAM_PK table to add a composite primary key.
R> ore.exec("alter table SPAM_PK add constraint SPAM_PK primary key + ("USERID","TS")")
R> # Synchronize the table to get the change to it.
R> ore.sync(table = "SPAM_PK")
R> # Create objects for merging data from unordered ore.frame objects.
R> x <- SPAM_NOPK[,1:4]
R> y <- SPAM_NOPK[,c(1,2,4,5)]
R> m1 <- merge(x, y, by="USERID")
R> # The merged result m1 produces a warning because it is not an ordered frame.
R> head(m1,3)

USERID TS.x make address.x TS.y address.y all
1 351 5601 0.00 0 1001 0.64 0.64
2 351 5502 0.00 0 1001 0.64 0.64
3 351 5501 0.78 0 1001 0.64 0.64

Warning messages:
1: ORE object has no unique key - using random order
2: ORE object has no unique key - using random order
R> # Create objects for merging data from ordered ore.frame objects.
R> x <- SPAM_PK[,1:4]
R> y <- SPAM_PK[,c(1,2,4,5)]
R> # The merged result m1 does not produce a warning now because it is an ordered frame.
R> m1 <- merge(x, y, by="USERID")
R> head(m1,3)

USERID TS.x make address.x TS.y address.y all
1001|1001 351 1001 0 0.64 1001 0.64 0.64
1001|1002 351 1001 0 0.64 1002 0.28 0.50
1001|1101 351 1001 0 0.64 1101 0.00 0.00
2.1.3 Move Data to and from the Database

You can create a temporary database table, and its corresponding proxy `ore.frame` object, from a local R object with the `ore.push` function.

With the `ore.pull` function you can create a local R object that contains a copy of data represented by an OML4R proxy object.

The `ore.push` function translates an R object into an OML4R object of the appropriate data type. The `ore.pull` function takes an `ore` class object and returns an R object. If the input object is an `ore.list`, the `ore.pull` function creates a `data.frame` and translates each the data of each database column into the appropriate R representation.

Note:
You can pull data to a local R `data.frame` only if the data can fit into the R session memory. Also, even if the data fits in memory but is still very large, you may not be able to perform many, or any, R functions in the client R session.

Unless you explicitly save them, the temporary database tables and their corresponding OML4R proxy objects that you create with the `ore.push` function are discarded when you quit the R session.

See Also:
- "Transparency Layer Support for R Data Types and Classes" for information on data type mappings
- "Saving and Managing R Objects in the Database" for information on permanently saving the OML4R objects in the database
- The `push_pull.R` example script

Example 2-7 Using ore.push and ore.pull to Move Data

This example demonstrates pushing an R `data.frame` object to the database as a temporary database table with an associated `ore.frame` object, `iris_of`, then creating another `ore.frame` object, `iris_of_setosa`, by selecting one column from `iris_of`, and then pulling the `iris_of_setosa` object into the local R session memory as a `data.frame` object. The example displays the class of some of the objects.

```r
class(iris) # Push the iris data frame to the database. iris_of <- ore.push(iris) class(iris_of) # Display the data type of the Sepal.Length column in the data.frame. class(iris$Sepal.Length) # Display the data type of the Sepal.Length column in the ore.frame. class(iris_of$Sepal.Length)
```
Filter one column of the data set.
iris_of_setosa <- iris_of[iris_of$Species == "setosa",]
class(iris_of_setosa)
Pull the selected column into the local R client memory.
local_setosa = ore.pull(iris_of_setosa)
class(local_setosa)

Listing for This Example
R> class(iris)
[1] "data.frame"
R> # Push the iris data frame to the database.
R> iris_of <- ore.push(iris)
R> class(iris_of)
[1] "ore.frame"
attr("package")
[1] "OREbase"
R> # Display the data type of the Sepal.Length column in the data.frame.
R> class(iris$Sepal.Length)
[1] "numeric"
R> # Display the data type of the Sepal.Length column in the ore.frame.
R> class(iris_of$Sepal.Length)
[1] "ore.numeric"
attr("package")
[1] "OREbase"
R> # Filter one column of the data set.
R> iris_of_setosa <- iris_of[iris_of$Species == "setosa",]
R> class(iris_of_setosa)
[1] "ore.frame"
attr("package")
[1] "OREbase"
R> # Pull the selected column into the local R client memory.
R> local_setosa = ore.pull(iris_of_setosa)
R> class(local_setosa)
[1] "data.frame"

2.1.4 Create and Delete Database Tables

Use the ore.create function to create a persistent table in an Oracle Database schema.

Creating the table automatically creates an ore.frame proxy object for the table in the R environment that represents your database schema. The proxy ore.frame object has the same name as the table. You can delete the persistent table in an Oracle Database schema with the ore.drop function.

⚠️ Caution:

Only use the ore.drop function to delete a database table and its associated ore.frame proxy object. Never use it to remove an ore.frame object that is not associated with a permanent database table. To remove an ore.frame object for a temporary database table, use the ore.rm function.
Example 2-8 Using ore.create and ore.drop to Create and Drop Tables

This example creates tables in the database and drops some of them.

```r
# Create the AIRQUALITY table from the data.frame for the airquality data set.
ore.create(airquality, table = "AIRQUALITY")
# Create data.frame objects.
df1 <- data.frame(x1 = 1:5, y1 = letters[1:5])
df2 <- data.frame(x2 = 5:1, y2 = letters[11:15])
# Create the DF1 and DF2 tables from the data.frame objects.
ore.create(df1, "DF1")
ore.create(df2, "DF2")
# Create the CARS93 table from the data.frame for the Cars93 data set.
ore.create(Cars93, table = "CARS93")
# List the OML4R proxy objects.
ore.ls()
# Drop the CARS93 object.
ore.drop(table = "CARS93")
# List the OML4R proxy objects again.
ore.ls()
```

Listing for This Example

```
R> # Create the AIRQUALITY table from the data.frame for the airquality
data set.
R> ore.create(airquality, table = "AIRQUALITY")
R> # Create data.frame objects.
R> df1 <- data.frame(x1 = 1:5, y1 = letters[1:5])
R> df2 <- data.frame(x2 = 5:1, y2 = letters[11:15])
R> # Create the DF1_TABLE and DF2_TABLE tables from the data.frame objects.
R> ore.create(df1, "DF1")
R> ore.create(df2, "DF2")
R> # Create the CARS93 table from the data.frame for the Cars93 data set.
R> ore.create(Cars93, table = "CARS93")
R> # List the OML4R proxy objects.
R> ore.ls()
[1] "AIRQUALITY" "CARS93" "DF1" "DF2"
R> # Drop the CARS93 object.
R> ore.drop(table = "CARS93")
R> # List the OML4R proxy objects again.
R> ore.ls()
[1] "AIRQUALITY" "DF1_" "DF2"
```

2.1.5 Save and Manage R Objects in the Database

Oracle Machine Learning for R provides datastores that you can use to save OML4R proxy objects, as well as any R object, in an Oracle database.

You can grant or revoke read privilege access to a datastore for one or more users. You can restore the saved objects in another R session. The objects in a datastore are also accessible to embedded R execution through both the R and the SQL interfaces.
This section describes the OML4R functions that you can use to create and manage datastores. The section contains the following topics:

- **About Persisting Oracle Machine Learning for R Objects**
 With OML4R datastores, you can save R objects in the database.

- **About OML4R Datastores**
 Each database schema has a table that stores named OML4R datastores.

- **Save Objects to a Datastore**
 The `ore.save` function saves one or more R objects in the specified datastore.

- **Control Access to Datastores**
 With the `ore.grant` and `ore.revoke` functions you can grant or revoke access to an OML4R datastore.

- **Get Information about Datastore Contents**
 You can get information about a datastore in the current user schema by using the `ore.datastore` and `ore.datastoreSummary` functions.

- **Restore Objects from a Datastore**
 The `ore.load` function restores R objects saved in a datastore to the R global environment, `.GlobalEnv`.

- **Delete a Datastore**
 With the `ore.delete` function, you can delete objects from an OML4R datastore or you can delete the datastore itself.

- **About Using a Datastore in Embedded R Execution**
 Saving objects in a datastore makes it very easy to pass arguments to, and reference R objects with, embedded R execution functions.

2.1.5.1 About Persisting Oracle Machine Learning for R Objects

With OML4R datastores, you can save R objects in the database.

R objects, including OML4R proxy objects, exist for the duration of the current R session unless you explicitly save them. The standard R functions for saving and restoring R objects, `save` and `load`, serialize objects in R memory to store them in a file and deserialize them to restore them in memory. However, for OML4R proxy objects, those functions do not save the database objects associated with the proxy objects in an Oracle database; therefore the saved proxy objects do not behave properly in a different R session.

You can save OML4R proxy objects, as well as any R object, with the `ore.save` function. The `ore.save` function specifies an OML4R datastore. A datastore persists in the database when you end the R session. The datastore maintains the referential integrity of the objects it contains. Using the `ore.load` function, you can restore in another R session the objects in the datastore.

Using a datastore, you can do the following:

- **Save OML4R and other R objects that you create in one R session and restore them in another R session.**
- **Pass arguments to R functions for use in embedded R execution.**
- **Pass objects for use in embedded R execution.** You could, for example, use a function in the `OREdm` package to build an Oracle Machine Learning for SQL model and save it in a datastore. You could then use that model to score data in the database.
The following table lists the functions that manipulate datastores and provides brief descriptions of them.

Table 2-1 Functions that Manipulate Datastores

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ore.datastore</td>
<td>Lists information about a datastore in the current Oracle database schema.</td>
</tr>
<tr>
<td>ore.datastoreSummary</td>
<td>Provides detailed information about the specified datastore in the current Oracle database schema.</td>
</tr>
<tr>
<td>ore.delete</td>
<td>Deletes a datastore from the current Oracle database schema.</td>
</tr>
<tr>
<td>ore.grant</td>
<td>Grants read access to a datastore.</td>
</tr>
<tr>
<td>ore.lazyLoad</td>
<td>Lazily restores objects from a datastore into an R environment.</td>
</tr>
<tr>
<td>ore.load</td>
<td>Restores objects from a datastore into an R environment.</td>
</tr>
<tr>
<td>ore.revoke</td>
<td>Revokes read access to a datastore.</td>
</tr>
<tr>
<td>ore.save</td>
<td>Saves R objects in a new or existing datastore.</td>
</tr>
</tbody>
</table>

See Also:

"Using Oracle R Enterprise Embedded R Execution" for information on using the R and the SQL interfaces to embedded R execution

2.1.5.2 About OML4R Datastores

Each database schema has a table that stores named OML4R datastores.

A datastore can contain OML4R objects and standard R objects.

You create a datastore with the `ore.save` function. When you create a datastore, you specify a name for it. You can save objects in one or more datastores.

As long as a datastore contains an OML4R proxy object for a database object, the database object persists between R sessions. For example, you could use the `ore.odmNB` function in the OREdm package to build an Oracle Machine Learning for SQL Naive Bayes model. If you save the resulting `ore.odmNB` object in a datastore and end the R session, then Oracle Database does not delete the OML4SQL model. If no datastore contains the `ore.odmNB` object and the R session ends, then the database automatically drops the model.

2.1.5.3 Save Objects to a Datastore

The `ore.save` function saves one or more R objects in the specified datastore.

By default, OML4R creates the datastore in the current user schema. With the arguments to `ore.save`, you can provide the names of specific objects, or provide a list of objects. You can specify whether read privilege access to the datastore can be
granted to other users. You can specify a particular R environment to search for the objects you would like to save. The overwrite and append arguments are mutually exclusive. If you set the overwrite argument to TRUE, then you can replace an existing datastore with another datastore of the same name. If you set the append argument to TRUE, then you can add objects to an existing datastore. With the description argument, you can provide some descriptive text that appears when you get information about the datastore. The description argument has no effect when used with the append argument.

Example 2-9 Saving Objects and Creating a Datastore

This example demonstrates creating datastores using different combinations of arguments.

```r
# Create some R objects.
df1 <- data.frame(x1 = 1:5, y1 = letters[1:5])
df2 <- data.frame(x2 = 5:1, y2 = letters[11:15])
iris_of <- ore.push(iris)

# Create a database table and an OML4R proxy object for the table.
ore.drop("AIRQUALITY")
ore.create(airquality, table = "AIRQUALITY")

# List the R objects.
ls()

# List the OML4R proxy objects.
ore.ls()

# Save the proxy object and all objects in the current workspace environment to the datastore named ds1 and supply a description.
ore.save(AIRQUALITY, list = ls(), name = "ds1", description = "My private datastore")

# Create some more objects.
x <- stats::runif(20)  # x is an object of type numeric.
y <- list(a = 1, b = TRUE, c = "hoopsa")
z <- ore.push(x)  # z is an object of type ore.numeric.

# Create another datastore.
ore.save(x, y, name = "ds2", description = "x and y")

# Overwrite the contents of datastore ds2.
ore.save(x, name = "ds2", overwrite = TRUE, description = "only x")

# Append object z to datastore ds2.
ore.save(z, name = "ds2", append = TRUE)
```

Listing for This Example

```r
R> # Create some R objects.
R> df1 <- data.frame(x1 = 1:5, y1 = letters[1:5])
R> df2 <- data.frame(x2 = 5:1, y2 = letters[11:15])
R> iris_of <- ore.push(iris)
```
2.1.5.4 Control Access to Datastores

With the `ore.grant` and `ore.revoke` functions you can grant or revoke access to an OML4R datastore.

With the `ore.grant` and `ore.revoke` functions, you can control access to datastores. You can grant read access to a specified user to a datastore that you own or revoke the access privilege. The functions `ore.save`, `ore.load`, `ore.datastore`, and `ore.datastoreSummary` have arguments related to the accessibility of datastores.

Note:

If you use `ore.create` to create a persistent database table and its proxy `ore.frame` object, then save the proxy `ore.frame` object in a grantable datastore, and then use `ore.grant` to grant read privilege access to the datastore, the access applies only to the `ore.frame` object. The read access does not extend to the persistent database table. To grant read permission to the table itself, you must execute an appropriate SQL command.
Example 2-10 Granting and Revoking Access to a Datastore

This example pushes the airquality data set from the local R session to the Oracle database, where it exists as the ore.frame object AIRQUALITY and as a temporary database table with the same name. The example then saves the AIRQUALITY object to the datastore ds3 and specifies that access to the datastore can be granted to other users. It invokes function ore.datastore with type = grantable to display all of the datastores to which read access has been granted. It grants the read privilege for the ds3 datastore to SCOTT. It then invokes ore.datastore with type = grant to display the datastores to which read access has been granted. It revokes the read privilege for SCOTT, and again displays the datastores to which access has been granted.

```
AIRQUALITY <- ore.push(airquality)
ore.save(AIRQUALITY, name = "ds3",
    description = "My datastore 3", grantable = TRUE)
ore.datastore(type = "grantable")
ore.datastore(type = "grant")
ore.grant("ds3", type = "datastore", user = "SCOTT")
ore.datastore(type = "grant")
```

Listing for This Example

```
R> AIRQUALITY <- ore.push(airquality)
R> ore.save(AIRQUALITY, name = "ds3",
+    description = "My datastore 3", grantable = TRUE)
R> ore.datastore(type = "grantable")
datastore.name object.count size creation.date description
1     ds3 1    1451 2015-11-30 18:48:25 My datastore 3
R> ore.datastore(type = "grant")
[1] datastore.name grantee
<0 rows> (or 0-length row.names)
R> ore.grant("ds3", type = "datastore", user = "SCOTT")
R> ore.datastore(type = "grant")
datastore.name grantee
1     ds3     SCOTT
R> ore.revoke("ds3", type = "datastore", user = "SCOTT")
R> ore.datastore(type = "grant")
[1] datastore.name grantee
<0 rows> (or 0-length row.names)
```

2.1.5.5 Get Information about Datastore Contents

You can get information about a datastore in the current user schema by using the ore.datastore and ore.datastoreSummary functions.

Using the ore.datastore function, you can list basic information about datastores. To get information about a specific type of datastore, you can use the optional character string type argument. The valid values for type are the following:

- **user**, which lists the datastores created by current session user. This is the default value.
- **private**, which lists the datastores for which read access cannot be granted by the current session user to other users.
- **all**, which lists all of the datastores to which the current session user has read access.
- **grantable**, which lists the datastores the read privilege for which can be granted by the current session user to other users.
- **grant**, which lists the datastores the read privilege for which has been granted by the current session user to other users.
- **granted**, which lists the datastores the read privilege for which has been granted by other users to the current session user.

If you do not specify a type, then function `ore.datastore` returns a `data.frame` object with columns that correspond to the datastore name, the number of objects in the datastore, the datastore size, the creation date, and a description. Rows are sorted by column `datastore.name` in alphabetical order. If you do specify a type, then the function returns a `data.frame` that has a column for the specified type.

You can search for a datastore by name or by using a regular expression pattern.

The `ore.datastoreSummary` function returns information about the R objects saved within a datastore in the user schema in the connected database. The function returns a `data.frame` with columns that correspond to object name, object class, object size, and either the length of the object, if it is a vector, or the number of rows and columns, if it is a `data.frame` object. It takes one required argument, the name of a datastore, and has an optional argument, the owner of the datastore.

Example 2-11 Using the ore.datastore Function

This example demonstrates using the `ore.datastore` function.

```r
# Create some R objects.
df1 <- data.frame(x1 = 1:5, y1 = letters[1:5])
df2 <- data.frame(x2 = 5:1, y2 = letters[11:15])
iris_of <- ore.push(iris)

# Create a database table and an OML4R proxy object for the table.
ore.drop("AIRQUALITY")
ore.create(airquality, table = "AIRQUALITY")

# Save the objects to a datastore named ds1 and supply a description.
ore.save(AIRQUALITY, list = ls(), name = "ds1", description = "My private datastore")

# Create some more objects.
x <- stats::runif(20)  # x is an object of type numeric.
y <- list(a = 1, b = TRUE, c = "hoopsa")
z <- ore.push(x)  # z is an object of type ore.numeric.

# Create other datastores.
ore.save(x, y, name = "ds2", description = "x and y")
ore.save(df1, df2, name = "dfobj", description = "df objects")
ore.save(x, y, z, name = "another_ds", description = "For pattern matching")
```
List all of the datastore objects.
ore.datastore()

List the specified datastore.
ore.datastore("ds1")

List the datastore objects with names that include "ds".
ore.datastore(pattern = "ds")

Listing for This Example

```r
R> # Create some R objects.
R> df1 <- data.frame(x1 = 1:5, y1 = letters[1:5])
R> df2 <- data.frame(x2 = 5:1, y2 = letters[11:15])
R> iris_of <- ore.push(iris)
R>
R> # Create a database table and an OML4R proxy object for the table.
R> ore.drop("AIRQUALITY")
R> ore.create(airquality, table = "AIRQUALITY")
R>
R> # Save the objects to a datastore named ds1 and supply a description.
R> ore.save(AIRQUALITY, list = ls(), name = "ds1", description = "My
private datastore")
R>
R> # Create some more objects.
R> x <- stats::runif(20) # x is an object of type numeric.
R> y <- list(a = 1, b = TRUE, c = "hoopsa")
R> z <- ore.push(x) # z is an object of type ore.numeric.
R>
R> # Create other datastores.
R> ore.save(x, y, name = "ds2", description = "x and y")
R> ore.save(df1, df2, name = "dfobj", description = "df objects")
R> ore.save(x, y, z, name = "another_ds", description = "For pattern
matching")
R>
R> # List all of the datastore objects.
R> ore.datastore()
datastore.name object.count size creation.date description
1 another_ds 3 1284 2017-04-21 16:08:57 For pattern matching
2 dfobj 2 656 2017-04-21 16:08:38 df objects
3 ds1 4 3439 2017-04-21 16:03:55 My private datastore
4 ds2 2 314 2017-04-21 16:04:32 x and y

R> # List the specified datastore.
R> ore.datastore("ds1")
datastore.name object.count size creation.date description
1 ds1 4 3439 2017-04-21 16:03:55 My private datastore

R> # List the datastore objects with names that include "ds".
R> ore.datastore(pattern = "ds")
datastore.name object.count size creation.date description
1 another_ds 3 1284 2017-04-21 16:08:57 For pattern matching
```
Example 2-12 Using the ore.datastoreSummary Function

This example demonstrates using the ore.datastoreSummary function. The example uses the datastores created in the previous example.

```
ore.datastoreSummary("ds1")
ore.datastoreSummary("ds2")
```

Listing for This Example

```
R> ore.datastoreSummary("ds1")
object.name    class  size  length row.count col.count
1  AIRQUALITY  ore.frame 1213      6       NA        6
2       df1   data.frame  328      2        5        2
3       df2   data.frame  328      2        5        2
4  iris_of   ore.frame 1570      5       NA        5
R> ore.datastoreSummary("ds2")
object.name class  size  length row.count col.count
1         x    numeric  182     20       NA       NA
2         y         list  132      3       NA       NA
```

2.1.5.6 Restore Objects from a Datastore

The ore.load function restores R objects saved in a datastore to the R global environment, .GlobalEnv.

The function returns a character vector that contains the names of the restored objects.

You can load all of the saved objects or you can use the list argument to specify the objects to load. With the envir argument, you can specify an environment in which to load objects.

Example 2-13 Using the ore.load Function to Restore Objects from a Datastore

This example demonstrates using the ore.load function to restore objects from datastores that were created in Example 2-11. The example runs in the same R session as that example.

```
# List the R objects.
ls()

# List the datastores.
ore.datastore()

# Delete the x and z objects.
rm(x, z)
ls()

# Restore all of the objects in datastore ds2.
ore.load("ds2")
ls()
```
After ending the R session and starting another session.

ls()
The datastore objects persist between sessions.
ore.datastore()

Restore some of the objects from datastore ds1.
ore.load("ds1", list = c("df1", "df2", "iris_of"))
ls()

Listing for Example 2-13

R> # List the R objects.
R> ls()
[1] "df1" "df2" "iris_of" "x" "y" "z"
R>
R> # List the datastores.
R> ore.datastore()

 datastore.name object.count size creation.date description
1 another_ds 3 1243 2014-07-24 13:31:56 For pattern matching
2 dfo 2 656 2014-07-24 13:31:46 df objects
4 ds2 2 1111 2014-07-24 13:27:26 only x
R>
R> # Delete the x and z objects.
R> rm(x, z)
R> ls()
[1] "df1" "df2" "iris_of" "y"
R>
R> # Restore all of the objects in datastore ds2.
R> ore.load("ds2")

 [1] "x" "z"
R>
R> ls()
[1] "df1" "df2" "iris_of" "x" "y" "z"
R>
R> # After ending the R session and starting another session.
R> ls()
character(0)
R> # The datastore objects persist between sessions.
R> ore.datastore()

 datastore.name object.count size creation.date description
1 another_ds 3 1243 2014-07-24 13:31:56 For pattern matching
2 dfo 2 656 2014-07-24 13:31:46 df objects
4 ds2 2 1111 2014-07-24 13:27:26 only x
R>
R> # Restore some of the objects from datastore ds1.
R> ore.load("ds1", list = c("df1", "df2", "iris_of"))

 [1] "df1" "df2" "iris_of"
R> ls()
[1] "df1" "df2" "iris_of"
2.1.5.7 Delete a Datastore

With the `ore.delete` function, you can delete objects from an OML4R datastore or you can delete the datastore itself.

To delete a datastore, you specify the name of it. To delete one or more objects from the datastore, you specify the `list` argument. The `ore.delete` function returns the name of the deleted objects or datastore.

When you delete a datastore, OML4R discards all temporary database objects that were referenced by R objects in the deleted datastore. If you have saved an R object in more than one datastore, then OML4R discards a temporary database object only when no object in a datastore references the temporary database object.

Example 2-14 Using the `ore.delete` Function

This example demonstrates using `ore.delete` to delete an object from a datastore and then to delete the entire datastore. The example uses objects created in [Example 2-9](#).

```r
# Delete the df2 object from the ds1 datastore.
ore.delete("ds1", list = "df2")
# Delete the datastore named ds1.
ore.delete("ds1")
```

Listing for Example 2-14

```r
c> # Delete the df2 object from the ds1 datastore.
c> ore.delete("ds1", list = "df2")
c> # Delete the datastore named ds1.
c> ore.delete("ds1")
```

2.1.5.8 About Using a Datastore in Embedded R Execution

Saving objects in a datastore makes it very easy to pass arguments to, and reference R objects with, embedded R execution functions.

You can save objects that you create in one R session in a single datastore in the database. You can pass the name of this datastore to an embedded R function as an argument for loading within that function. You can use a datastore to easily pass one object or multiple objects.

2.2 Connect to an Oracle Database Instance

To use Oracle Machine Learning for R, you first connect to an Oracle Database instance.

- **About Connecting to the Database**
 Oracle Machine Learning for R client components connect an R session to an Oracle Database instance and the OML4R server components.

- **Use the `ore.connect` and `ore.disconnect` Functions**
 The examples in this section demonstrate the various ways of specifying an OML4R connection to an Oracle Database instance.
2.2.1 About Connecting to the Database

Oracle Machine Learning for R client components connect an R session to an Oracle Database instance and the OML4R server components.

The connection makes the data in a database schema available to the R user. It also makes the processing power, memory, and storage capacities of the database server available to the R session through the OML4R client interface.

The following topics discuss connecting and disconnecting an R session to an Oracle Database instance:

- **About Using the ore.connect Function**
 To begin using OML4R, you first connect to a schema in an Oracle Database instance with the `ore.connect` function.

- **About Using the ore.disconnect Function**
 To explicitly end the connection between an R session and the Oracle Database instance, invoke the `ore.disconnect` function.

2.2.1.1 About Using the ore.connect Function

To begin using OML4R, you first connect to a schema in an Oracle Database instance with the `ore.connect` function.

Only one OML4R connection can exist at a time during an R session. If an R session is already connected to the database, then invoking `ore.connect` terminates the active connection before opening a new connection. Before attempting to connect, you can discover whether an active connection exists by using the `ore.is.connected` function.

You explicitly end a connection with the `ore.disconnect` function. If you do not invoke `ore.disconnect`, then the connection is automatically terminated when the R session ends.

With the `type` argument of `ore.connect`, you specify the type of connection, either ORACLE or HIVE. A HIVE type of connection connects to Hive tables in a Hadoop cluster. An ORACLE type of connection connects to a schema in an Oracle Database instance. The default value of `type` is "ORACLE".

If the connection type is HIVE, then `ore.connect` ignores all other arguments. The HIVE option applies only if you are using Oracle Machine Learning for Spark (OML4Spark) in conjunction with a Hadoop cluster. OML4Spark is part of the Oracle Big Data Connectors option to the Big Data Appliance.

If the connection type is ORACLE, then you do the following:

- **Use the logical `all` argument to specify whether OML4R automatically creates an `ore.frame` object for each table to which the user has access in the schema and makes those `ore.frame` objects visible in the current R session. The `ore.frame` objects contain metadata about the tables. The default value of the `all` argument is `FALSE`.

 If `all = TRUE`, then OML4R implicitly invokes the `ore.sync` and `ore.attach` functions. If `all = FALSE`, then the user must explicitly invoke `ore.sync` to create `ore.frame` objects. To access these objects by name, the user must invoke `ore.attach` to include the names in the search path.
Use either the `conn_string` argument, or various combinations of the `user`, `sid`, `host`, `password`, `port`, `service_name`, and `conn_string` arguments to specify information that identifies the connection.

To avoid using a clear-text password, you can specify an Oracle wallet password with the `conn_string` argument. No other arguments are needed. By specifying an Oracle wallet password, you can avoid embedding a database user password in application code, batch jobs, or scripts.

With the other connection identifier arguments, you specify a database user name, host name, and password, and either a system identifier (SID) or service name, and, optionally, a TCP port, or you specify a database user name, password, and a `conn_string` argument.

The default value of the `port` argument is 1521, the default value of `host` is "localhost", which specifies the local host, and the default value of `conn_string` is NULL. You specify the local host when your R session is running on the same computer as the Oracle Database instance to which you want to connect.

See Also:

- "Using the `ore.connect` and `ore.disconnect` Functions" for examples of using the various connection identifiers
- "Creating R Objects for In-Database Data"
- *Oracle Big Data Connectors User's Guide*

2.2.1.2 About Using the `ore.disconnect` Function

To explicitly end the connection between an R session and the Oracle Database instance, invoke the `ore.disconnect` function.

OML4R implicitly invokes `ore.disconnect` if you do either of the following:

- Quit the R session.
- Invoke `ore.connect` while an OML4R connection is already active.

When you disconnect the active connection, OML4R discards all OML4R objects that you have not explicitly saved in an OML4R datastore.

2.2.2 Use the `ore.connect` and `ore.disconnect` Functions

The examples in this section demonstrate the various ways of specifying an OML4R connection to an Oracle Database instance.

The examples use sample values for the `ore.connect` argument values. Replace the sample values with the appropriate values for connecting to your database.
Example 2-15 Using ore.connect and Specifying a SID
This example invokes the ore.connect function and specifies the user, sid, host, password, and port arguments.

ore.connect(user = "oml_user", sid = "sales", host = "sales-server", password = "oml_userStrongPassword", port = 1521)

Example 2-16 Using ore.connect and Specifying a Service Name
This example demonstrates using a service name rather than a SID. It also specifies connecting to the local host.

ore.connect(user = "oml_user", host = "localhost", password = "oml_userStrongPassword", service_name = "sales.example.com")

Example 2-17 Using ore.connect and Specifying an Easy Connect String
This example uses the conn_string argument to specify an easy connect string that identifies the connection.

ore.connect(user = "oml_user", password = "oml_userStrongPassword", conn_string = "sales-server:1521:sales
 (ADDRESS=(PROTOCOL=tcp) (HOST=sales-server) (PORT=1521))
 (CONNECT_DATA=(SERVICE_NAME=sales.example.com))")

Example 2-18 Using ore.connect and Specifying a Full Connection String
This example uses the conn_string argument to specify a full connection string that identifies the connection.

ore.connect(user = "oml_user", password = "oml_userStrongPassword", conn_string = "DESCRIPTION=
 (ADDRESS=(PROTOCOL=tcp) (HOST=sales-server) (PORT=1521))
 (CONNECT_DATA=(SERVICE_NAME=myserver.example.com))")

Example 2-19 Using the conn_string Argument to Specify an Oracle Wallet
This example uses the conn_string argument to specify an Oracle wallet. The mydb_test string is the connection identifier for the Oracle database. The Oracle wallet contains the information needed to create the connection. For information on creating an Oracle wallet for an OML4R connection, see Oracle Machine Learning for R Installation and Administration Guide.

ore.connect(conn_string = "mydb_test")

Example 2-20 Using the conn_string Argument and Specifying an Empty Connection String
This example uses an empty connection string to connect to the local host.

ore.connect(user = "oml_user", password = "oml_userStrongPassword", conn_string = "")

Example 2-21 Using the conn_string Argument in Connecting to a Pluggable Database
This example connects to a pluggable database using the conn_string argument to specify a service name.

ore.connect(conn_string = "pdb1.example.com")
Example 2-22 Using the service_name Argument in Connecting to a Pluggable Database

This example invokes `ore.connect` using a service name, host name, and port number to connect to a pluggable database.

```
ore.connect(service_name = "pdb1.example.com", host = "mypdb", port = 1521)
```

Example 2-23 Disconnecting an OML4R Session

This example explicitly disconnects an OML4R session from an Oracle database.

```
ore.disconnect()
```
Prepare and Explore Data in the Database

Use Oracle Machine Learning for R functions to prepare data for analysis and to perform exploratory analysis of the data.

These functions make it easier for you to prepare very large enterprise database-resident data for modeling. They are described in the following topics:

- **Prepare Data in the Database Using Oracle Machine Learning for R**
 Using OML4R, you can prepare data for analysis in the database.

- **Explore Data**
 Oracle Machine Learning for R provides functions that enable you to perform exploratory data analysis.

- **Data Manipulation Using OREdplyr**
 OREdplyr package functions transparently implement dplyr functions for use with ore.frame and ore.numeric objects.

- **Graph Analysis Using OAAgraph**
 Beginning with Oracle Database 12.2, the OAAgraph package provides an R interface to the Oracle Spatial and Graph Property Graph In-Memory Analyst (PGX) for use with OML4R and database tables.

- **Using a Third-Party Package on the Client**
 In Oracle Machine Learning for R, if you want to use functions from an open source R package from The Comprehensive R Archive Network (CRAN) or other third-party R package, then you would generally do so in the context of embedded R execution.

3.1 Prepare Data in the Database Using Oracle Machine Learning for R

Using OML4R, you can prepare data for analysis in the database.

Data preparation is described in the following topics:

- **About Preparing Data in the Database**
 Oracle Machine Learning for R provides functions that enable you to use R to prepare database data for analysis.

- **Select Data**
 A typical step in preparing data for analysis is selecting or filtering values of interest from a larger data set.

- **Index Data**
 You can use integer or character vectors to index an ordered ore.frame object.

- **Combine Data**
 You can join data from ore.frame objects that represent database tables by using the merge function.
• **Summarize Data**
 Summarize data with the `aggregate` function.

• **Transform Data**
 In preparing data for analysis, a typical step is to transform data by reformatting it or deriving new columns and adding them to the data set.

• **Sample Data**
 Sampling is an important capability for statistical analytics.

• **Partition Data**
 In analyzing large data sets, a typical operation is to randomly partition the data set into subsets.

• **Prepare Time Series Data**
 OML4R provides you with the ability to perform many data preparation operations on time series data, such as filtering, ordering, and transforming the data.

3.1.1 About Preparing Data in the Database

Oracle Machine Learning for R provides functions that enable you to use R to prepare database data for analysis.

Using these functions, you can perform typical data preparation tasks on `ore.frame` and other OML4R objects. You can perform data preparation operations on large quantities of data in the database and then pull the results to your local R session for analysis using functions in packages available from The Comprehensive R Archive Network (CRAN).

You can do operations on data such as the following.

- Selecting
- Binning
- Sampling
- Sorting and Ordering
- Summarizing
- Transforming
- Performing data preparation operations on date and time data

Performing these operations is described in the other topics in this chapter.

3.1.2 Select Data

A typical step in preparing data for analysis is selecting or filtering values of interest from a larger data set.

The examples in this topic demonstrate selecting data from an `ore.frame` object by column, by row, and by value. The examples are in the following topics:

- **Select Data by Column**
 This example selects columns from an `ore.frame` object.

- **Select Data by Row**
 This example selects rows from an ordered `ore.frame` object.
• **Select Data by Value**
 This example selects portions of a data set.

3.1.2.1 Select Data by Column

This example selects columns from an `ore.frame` object.

Example 3-1 Selecting Data by Column

This example first creates a temporary database table, with the corresponding proxy `ore.frame` object `iris_of`, from the `iris.data.frame` object. It displays the first three rows of `iris_of`. The example selects two columns from `iris_of` and creates the `ore.frame` object `iris_projected` with them. It then displays the first three rows of `iris_projected`.

```r
iris_of <- ore.push(iris)
head(iris_of, 3)

iris_projected = iris_of[, c("Petal.Length", "Species")]
head (iris_projected, 3)
```

Listing for This Example

```r
iris_of <- ore.push(iris)
head(iris_of, 3)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1  5.1 3.5 1.4 0.2  setosa
2  4.9 3.0 1.4 0.2  setosa
3  4.7 3.2 1.3 0.2  setosa

R> iris_projected = iris_of[, c("Petal.Length", "Species")]

R> head (iris_projected, 3)

Petal.Length Species
1    1.4  setosa
2    1.4  setosa
3    1.3  setosa
```

3.1.2.2 Select Data by Row

This example selects rows from an ordered `ore.frame` object.

Example 3-2 Selecting Data by Row

This example first adds a column to the `iris.data.frame` object for use in creating an ordered `ore.frame` object. It invokes the `ore.drop` function to delete the database table `IRIS_TABLE`, if it exists. It then creates a database table, with the corresponding proxy `ore.frame` object `IRIS_TABLE`, from the `iris.data.frame`. The example invokes the `ore.exec` function to execute a SQL statement that makes the RID column the primary key of the database table. It then invokes the `ore.sync` function to synchronize the `IRIS_TABLE` `ore.frame` object with the table and displays the first three rows of the proxy `ore.frame` object.

The example next selects 51 rows from `IRIS_TABLE` by row number and creates the ordered `ore.frame` object `iris_selrows` with them. It displays the first six rows of `iris_selrows`. It then selects 3 rows by row name and displays the result.
Add a column to the iris data set to use as row identifiers.
iris$RID <- as.integer(1:nrow(iris) + 100)
ore.drop(table = 'IRIS_TABLE')
ore.create(iris, table = 'IRIS_TABLE')
ore.exec("alter table IRIS_TABLE add constraint IRIS_TABLE
primary key ("RID")")
ore.sync(table = "IRIS_TABLE")
head(IRIS_TABLE, 3)

Select rows by row number.
iris_selrows <- IRIS_TABLE[50:100,]
head(iris_selrows)

Select rows by row name.
IRIS_TABLE[c("101", "151", "201"),]

Listing for This Example

```r
R> # Add a column to the iris data set to use as row identifiers.
R> iris$RID <- as.integer(1:nrow(iris) + 100)
R> ore.drop(table = 'IRIS_TABLE')
R> ore.create(iris, table = 'IRIS_TABLE')
R> ore.exec("alter table IRIS_TABLE add constraint IRIS_TABLE
+ primary key ("RID")")
R> ore.sync(table = "IRIS_TABLE")
R> head(IRIS_TABLE, 3)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species RID
101          5.1         3.5          1.4         0.2     setosa 101
102          4.9         3.0          1.4         0.2     setosa 102
103          4.7         3.2          1.3         0.2     setosa 103
```

R> # Select rows by row number.
R> iris_selrows <- IRIS_TABLE[50:100,]
R> head(iris_selrows)

```r
Sepal.Length Sepal.Width Petal.Length Petal.Width Species RID
150          5.0         3.3          1.4         0.2     setosa 150
151          7.0         3.2          4.7         1.4     versicolor 151
152          6.4         3.2          4.5         1.5     versicolor 152
153          6.9         3.1          4.9         1.5     versicolor 153
154          5.5         2.3          4.0         1.3     versicolor 154
155          6.5         2.8          4.6         1.5     versicolor 155
```

R> # Select rows by row name.
R> IRIS_TABLE[c("101", "151", "201"),]

```r
Sepal.Length Sepal.Width Petal.Length Petal.Width Species RID
101          5.1         3.5          1.4         0.2     setosa 101
151          7.0         3.2          4.7         1.4     versicolor 151
201          6.3         3.3          6.0         2.5     virginica 201
```

3.1.2.3 Select Data by Value

This example selects portions of a data set.

Example 3-3 Selecting Data by Value

The example pushes the `iris` data set to the database and gets the `ore.frame` object `iris_of`. It filters the data to produce `iris_of_filtered`, which contains the values from the rows of `iris_of` that have a petal length of less than 1.5 and that are in the `Sepal.Length` and `Species` columns. The example also filters the data using conditions, so that `iris_of_filtered` contains the values from `iris_of` that are of the setosa or versicolor species and that have a petal width of less than 2.0.
iris_of <- ore.push(iris)
Select sepal length and species where petal length is less than 1.5.
iris_of_filtered <- iris_of[iris_of$Petal.Length < 1.5,
c("Sepal.Length", "Species")]
	names(iris_of_filtered)

nrow(iris_of_filtered)
head(iris_of_filtered, 3)
Alternate syntax filtering.
iris_of_filtered <- subset(iris_of, Petal.Length < 1.5)
nrow(iris_of_filtered)
head(iris_of_filtered, 3)
Using the AND and OR conditions in filtering.
Select all rows with in which the species is setosa or versicolor.
and the petal width is less than 2.0.
iris_of_filtered <- iris_of[(iris_of$Species == "setosa" |
 iris_of$Species == "versicolor") &
 iris_of$Petal.Width < 2.0,]
nrow(iris_of_filtered)

head(iris_of, 3)

Listing for This Example

```r
R> iris_of <- ore.push(iris)
R> # Select sepal length and species where petal length is less than 1.5.
R> iris_of_filtered <- iris_of[iris_of$Petal.Length < 1.5,
+                               c("Sepal.Length", "Species")]
R> names(iris_of_filtered)
[1] "Sepal.Length" "Species"
R> nrow(iris_of_filtered)
[1] 24
R> head(iris_of_filtered, 3)
  Sepal.Length Species
1      5.1       setosa
2      4.9       setosa
3      4.7       setosa

R> # Alternate syntax filtering.
R> iris_of_filtered <- subset(iris_of, Petal.Length < 1.5)
R> nrow(iris_of_filtered)
[1] 24
R> head(iris_of_filtered, 3)
  Sepal.Length  Sepal.Width Petal.Length  Petal.Width Species
1       5.1        3.5          1.4        0.2       setosa
2       4.9        3.0          1.4        0.2       setosa
3       4.7        3.2          1.3        0.2       setosa

R> # Using the AND and OR conditions in filtering.
R> # Select all rows with in which the species is setosa or versicolor.
R> # and the petal width is less than 2.0.
R> iris_of_filtered <- iris_of[(iris_of$Species == "setosa" |
+                               iris_of$Species == "versicolor") &
+                               iris_of$Petal.Width < 2.0,]
R> nrow(iris_of_filtered)
[1] 100
R> head(iris_of, 3)
  Sepal.Length  Sepal.Width Petal.Length  Petal.Width Species
1       5.1        3.5          1.4        0.2       setosa
2       4.9        3.0          1.4        0.2       setosa
3       4.7        3.2          1.3        0.2       setosa
```
3.1.3 Index Data

You can use integer or character vectors to index an ordered `ore.frame` object.

You can use the indexing to perform sampling and partitioning, as described in "Sampling Data" and "Partitioning Data".

Oracle Machine Learning for R supports functionality similar to R indexing with these differences:

- Integer indexing is not supported for `ore.vector` objects.
- Negative integer indexes are not supported.
- Row order is not preserved.

Example 3-4 Indexing an ore.frame Object

This example demonstrates character and integer indexing. The example uses the ordered SPAM_PK `ore.frame` object from Example 2-4. The example shows that you can access rows by name and that you can also access a set of rows by supplying a vector of character row names. The example then shows that you can supply the actual integer value. In the example this results in a set of different rows because the USERID values start at 1001, as opposed to 1.

```
# Index to a specifically named row.
SPAM_PK["2060", 1:4]
# Index to a range of rows by row names.
SPAM_PK[as.character(2060:2064), 1:4]
# Index to a range of rows by integer index.
SPAM_PK[2060:2063, 1:4]
```

Listing for This Example

```
R> # Index to a specifically named row.
R> SPAM_PK["2060", 1:4]
TS USERID make address
2060 2060 380 0 0
R> # Index to a range of rows by row names.
R> SPAM_PK[as.character(2060:2064), 1:4]
TS USERID make address
2060 2060 380 0 0
2061 2061 381 0 0
2062 2062 381 0 0
2063 2063 382 0 0
2064 2064 382 0 0
R> # Index to a range of rows by integer index.
R> SPAM_PK[2060:2063, 1:4]
TS USERID make address
3060 3060 380 0.00 0.00
3061 3061 381 0.00 1.32
3062 3062 381 0.00 2.07
3063 3063 382 0.34 0.00
```

3.1.4 Combine Data

You can join data from `ore.frame` objects that represent database tables by using the `merge` function.
Example 3-5 Joining Data from Two Tables

This example creates two data.frame objects and merges them. It then invokes the ore.create function to create a database table for each data.frame object. The ore.create function automatically generates an ore.frame object as a proxy object for the table. The ore.frame object has the same name as the table. The example merges the ore.frame objects. Note that the order of the results of the two merge operations is not the same because the ore.frame objects are unordered.

```r
# Create data.frame objects.
df1 <- data.frame(x1=1:5, y1=letters[1:5])
df2 <- data.frame(x2=5:1, y2=letters[11:15])

# Combine the data.frame objects.
merge (df1, df2, by.x="x1", by.y="x2")

# Create database tables and ore.frame proxy objects to correspond to
# the local R objects df1 and df2.
ore.create(df1, table="DF1_TABLE")
ore.create(df2, table="DF2_TABLE")

# Combine the ore.frame objects.
merge (DF1_TABLE, DF2_TABLE, by.x="x1", by.y="x2")
```

Listing for This Example

```r
R> # Create data.frame objects.
R> df1 <- data.frame(x1=1:5, y1=letters[1:5])
R> df2 <- data.frame(x2=5:1, y2=letters[11:15])

R> # Combine the data.frame objects.
R> merge (df1, df2, by.x="x1", by.y="x2")
  x1 y1 y2
  1  1  a  o
  2  2  b  n
  3  3  c  m
  4  4  d  l
  5  5  e  k

R> # Create database tables and ore.frame proxy objects to correspond to
R> # the local R objects df1 and df2.
R> ore.create(df1, table="DF1_TABLE")
R> ore.create(df2, table="DF2_TABLE")

R> # Combine the ore.frame objects.
R> merge (DF1_TABLE, DF2_TABLE, by.x="x1", by.y="x2")
  x1 y1 y2
  1  5  e  k
  2  4  d  l
  3  3  c  m
  4  2  b  n
  5  1  a  o
Warning message:
ORE object has no unique key - using random order
```

3.1.5 Summarize Data

Summarize data with the aggregate function.
Example 3-6 Aggregating Data

This example pushes the iris data set to database memory as the `ore.frame` object `iris_of`. It aggregates the values of `iris_of` by the Species column using the `length` function. It then displays the first three rows of the result.

```r
# Create a temporary database table from the iris data set and get an ore.frame.
iris_of <- ore.push(iris)
aggdata <- aggregate(iris_of$Sepal.Length,
                      by = list(species = iris_of$Species),
                      FUN = length)
head(aggdata, 3)
```

Listing for This Example

```r
# Create a temporary database table from the iris data set and get an ore.frame.
R> iris_of <- ore.push(iris)
R> aggdata <- aggregate(iris_of$Sepal.Length,
+                      by = list(species = iris_of$Species),
+                      FUN = length)
R> head(aggdata, 3)
```

```
species x
setosa    setosa 50
versicolor versicolor 50
virginica virginica 50
```

3.1.6 Transform Data

In preparing data for analysis, a typical step is to transform data by reformatting it or deriving new columns and adding them to the data set.

The examples in this topic demonstrate two ways of formatting data and deriving columns.

Example 3-7 Formatting Data

This example creates a function to format the data in a column.

```r
# Create a function for formatting data.
petalCategory_fmt <- function(x) {
  ifelse(x > 5, ©LONG©,
    ifelse(x > 2, ©MEDIUM©, ©SMALL©))
}
# Create an ore.frame in database memory with the iris data set.
iris_of <- ore.push(iris)
# Select some rows from iris_of.
iris_of[c(10, 20, 60, 80, 110, 140),]
# Format the data in Petal.Length column.
iris_of$Petal.Length <- petalCategory_fmt(iris_of$Petal.Length)
# Select the same rows from iris_of.
```

Listing for This Example

```r
R> # Create a function for formatting data.
R> petalCategory_fmt <- function(x) {
+    ifelse(x > 5, ©LONG©,
+    ifelse(x > 2, ©MEDIUM©, ©SMALL©))
+ }
R> # Create an ore.frame in database memory with the iris data set.
R> iris_of <- ore.push(iris)
R> # Select some rows from iris_of.
```
Example 3-8 Using the transform Function

This example does the same thing as the previous example except that it uses the `transform` function to reformat the data in a column of the data set.

```r
# Create an ore.frame in database memory with the iris data set.
iris_of2 <- ore.push(iris)
# Select some rows from iris_of.
iris_of2[c(10, 20, 60, 80, 110, 140),]
iris_of2 <- transform(iris_of2,
                      Petal.Length = ifelse(Petal.Length > 5, 'LONG',
                                             ifelse(Petal.Length > 2, 'MEDIUM', 'SMALL')))
iris_of2[c(10, 20, 60, 80, 110, 140),]
```

Listing for This Example

```r
# Create an ore.frame in database memory with the iris data set.
iris_of2 <- ore.push(iris)
# Select some rows from iris_of.
iris_of2[c(10, 20, 60, 80, 110, 140),]
iris_of2 <- transform(iris_of2,
                      Petal.Length = ifelse(Petal.Length > 5, 'LONG',
                                             ifelse(Petal.Length > 2, 'MEDIUM', 'SMALL')))
iris_of2[c(10, 20, 60, 80, 110, 140),]
```
Example 3-9 Adding Derived Columns

This example uses the `transform` function to add a derived column to the data set and then to add additional columns to it.

```r
# Set the page width.
options(width = 80)
# Create an ore.frame in database memory with the iris data set.
iris_of <- ore.push(iris)
names(iris_of)
# Add one column derived from another
iris_of <- transform(iris_of, LOG_PL = log(Petal.Length))
names(iris_of)
head(iris_of, 3)
# Add more columns.
iris_of <- transform(iris_of,
  SEPALBINS = ifelse(Sepal.Length < 6.0, "A", "B"),
  PRODUCTCOLUMN = Petal.Length * Petal.Width,
  CONSTANTCOLUMN = 10)
names(iris_of)
# Select some rows of iris_of.
iris_of[c(10, 20, 60, 80, 110, 140),]
```

Listing for This Example

```r
R> # Set the page width.
R> options(width = 80)
R> # Create an ore.frame in database memory with the iris data set.
R> iris_of <- ore.push(iris)
R> names(iris_of)
R> # Add one column derived from another
R> iris_of <- transform(iris_of, LOG_PL = log(Petal.Length))
R> names(iris_of)
[6] "LOG_PL"
R> head(iris_of, 3)
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species    LOG_PL
  1          5.1         3.5          1.4         0.2  setosa 0.3364722
  2          4.9         3.0          1.4         0.2  setosa 0.3364722
  3          4.7         3.2          1.3         0.2  setosa 0.2623643
R> # Add more columns.
R> iris_of <- transform(iris_of,
  SEPALBINS = ifelse(Sepal.Length < 6.0, "A", "B"),
  PRODUCTCOLUMN = Petal.Length * Petal.Width,
  CONSTANTCOLUMN = 10)
R> names(iris_of)
[5] "Species" "LOG_PL" "CONSTANTCOLUMN" "SEPALBINS"
[9] "PRODUCTCOLUMN"
R> # Select some rows of iris_of.
R> iris_of[10:140,]
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species    LOG_PL
  10           4.9         3.1          1.5         0.1     setosa 0.4054651
  20           5.1         3.8          1.5         0.3     setosa 0.4054651
  60           5.2         2.7          3.9         1.4 versicolor 1.3609766
  80           5.7         2.6          3.5         1.0 versicolor 1.2527630
 110           7.2         3.6          6.1         2.5  virginica 1.8082888
 140           6.9         3.1          5.4         2.1  virginica 1.6863990
  CONSTANTCOLUMN SEPALBINS PRODUCTCOLUMN
  10         10         A         0.15
```
3.1.7 Sample Data

Sampling is an important capability for statistical analytics.

Typically, you sample data to reduce its size and to perform meaningful work on it. In R you usually must load data into memory to sample it. However, if the data is too large, this isn't possible.

In OML4R, instead of pulling the data from the database and then sampling, you can sample directly in the database and then pull only those records that are part of the sample. By sampling in the database, you minimize data movement and you can work with larger data sets. Note that it is the ordering framework integer row indexing in the transparency layer that enables this capability.

Note:
Sampling requires using ordered ore.frame objects as described in Creating Ordered and Unordered ore.frame Objects.

The examples in this section illustrate several sampling techniques.

Example 3-10 Simple Random Sampling

This example demonstrates a simple selection of rows at random. The example creates a small data.frame object and pushes it to the database to create an ore.frame object, MYDATA. Out of 20 rows, the example samples 5. It uses the R sample function to produce a random set of indices that it uses to get the sample from MYDATA. The sample, simpleRandomSample, is an ore.frame object.

```
set.seed(1)
N <- 20
myData <- data.frame(a=1:N, b=letters[1:N])
MYDATA <- ore.push(myData)
head(MYDATA)
sampleSize <- 5
simpleRandomSample <- MYDATA[sample(nrow(MYDATA), sampleSize), , drop=FALSE]
class(simpleRandomSample)
simpleRandomSample
```

Listing for This Example

```
R> set.seed(1)
R> N <- 20
R> myData <- data.frame(a=1:N, b=letters[1:N])
R> MYDATA <- ore.push(myData)
R> head(MYDATA)
  a b
1 1 a
2 2 b
3 3 c
```
Example 3-11 Split Data Sampling

This example demonstrates randomly partitioning data into training and testing sets. This splitting of the data is normally done in classification and regression to assess how well a model performs on new data. The example uses the `MYDATA` object created in the previous example.

This example produces a sample set of indices to use as the test data set. It then creates the logical vector `group` that is `TRUE` if the index is in the sample and is `FALSE` otherwise. Next, it uses row indexing to produce the training set where the group is `FALSE` and the test set where the group is `TRUE`. Notice that the number of rows in the training set is 15 and the number of rows in the test set is 5, as specified in the invocation of the `sample` function.

```R
set.seed(1)
sampleSize <- 5
ind <- sample(1:nrow(MYDATA), sampleSize)
group <- as.integer(1:nrow(MYDATA) %in% ind)
MYDATA.train <- MYDATA[group==FALSE,]
dim(MYDATA.train)
MYDATA.test <- MYDATA[group==TRUE,]
dim(MYDATA.test)
```

Listing for This Example

```R
set.seed(1)
sampleSize <- 5
ind <- sample(1:nrow(MYDATA), sampleSize)
group <- as.integer(1:nrow(MYDATA) %in% ind)
MYDATA.train <- MYDATA[group==FALSE,]
dim(MYDATA.train)
[1] 15 2
MYDATA.test <- MYDATA[group==TRUE,]
dim(MYDATA.test)
[1] 5 2
```

Example 3-12 Systematic Sampling

This example demonstrates systematic sampling, in which rows are selected at regular intervals. The example uses the `seq` function to create a sequence of values that start at 2 and increase by increments of 3. The number of values in the sequence is equal to the number of rows in `MYDATA`. The `MYDATA` object is created in the first example.
set.seed(1)
N <- 20
myData <- data.frame(a=1:20, b=letters[1:N])
MYDATA <- ore.push(myData)
head(MYDATA)
start <- 2
by <- 3
systematicSample <- MYDATA[seq(start, nrow(MYDATA), by = by), , drop = FALSE]

Listing for This Example

R> set.seed(1)
R> N <- 20
R> myData <- data.frame(a=1:20, b=letters[1:N])
R> MYDATA <- ore.push(myData)
R> head(MYDATA)
 a b
 1 1 a
 2 2 b
 3 3 c
 4 4 d
 5 5 e
 6 6 f
R> start <- 2
R> by <- 3
R> systematicSample <- MYDATA[seq(start, nrow(MYDATA), by = by), , drop = FALSE]
 a b
 2 2 b
 5 5 e
 8 8 h
11 11 k
14 14 n
17 17 q
20 20 t

Example 3-13 Stratified Sampling

This example demonstrates stratified sampling, in which rows are selected within each group where the group is determined by the values of a particular column. The example creates a data set that has each row assigned to a group. The function \texttt{rnorm} produces random normal numbers. The argument 4 is the desired mean for the distribution. The example splits the data according to group and then samples proportionately from each partition. Finally, it row binds the list of subset \texttt{ore.frame} objects into a single \texttt{ore.frame} object and then displays the values of the result, \texttt{stratifiedSample}.

set.seed(1)
N <- 200
myData <- data.frame(a=1:N, b=round(rnorm(N),2),
 group=round(rnorm(N,4),0))
MYDATA <- ore.push(myData)
head(MYDATA)
sampleSize <- 10
stratifiedSample <- do.call(rbind,
 lapply(split(MYDATA, MYDATA$group),
 function(y) {
 ny <- nrow(y)
 y[sample(ny, sampleSize*ny/N), , drop = FALSE]})
Listing for This Example

R> set.seed(1)
R> N <- 200
R> myData <- data.frame(a=1:N,b=round(runif(N),2),
 + group=round(rnorm(N,4),0))
R> MYDATA <- ore.push(myData)
R> head(MYDATA)
a b group
1 1 -0.63 4
2 2 0.18 6
3 3 -0.84 6
4 4 1.60 4
5 5 0.33 2
6 6 -0.82 6
R> sampleSize <- 10
R> stratifiedSample <- do.call(rbind,
+ lapply(split(MYDATA, MYDATA$group),
+ function(y) {
+ ny <- nrow(y)
+ y[sample(ny, sampleSize*ny/N), , drop = FALSE]
+ })))
R> stratifiedSample
a b group
173|173 173 0.46 3
9|9 9 0.58 4
53|53 53 0.34 4
139|139 139 -0.65 4
188|188 188 -0.77 4
78|78 78 0.00 5
137|137 137 -0.30 5

Example 3-14 Cluster Sampling

This example demonstrates cluster sampling, in which entire groups are selected at random. The example splits the data according to group and then samples among the groups and row binds into a single ore.frame object. The resulting sample has data from two clusters, 6 and 7.

R> sampleSize <- 5
R> clusteredSample <- do.call(rbind,
+ sample(split(MYDATA, MYDATA$group), 2))
R> unique(clusteredSample$group)

Listing for This Example

R> set.seed(1)
R> N <- 200
R> myData <- data.frame(a=1:N,b=round(runif(N),2),
 + group=round(rnorm(N,4),0))
R> MYDATA <- ore.push(myData)
R> head(MYDATA)
Example 3-15 Quota Sampling

This example demonstrates quota sampling, in which a consecutive number of records are selected as the sample. The example uses the `head` function to select the sample. The `tail` function could also have been used.

```r
set.seed(1)
N <- 200
myData <- data.frame(a=1:N,b=round(runif(N),2))
MYDATA <- ore.push(myData)
sampleSize <- 10
quotaSample1 <- head(MYDATA, sampleSize)
quotaSample1
```

Listing for This Example

```r
R> set.seed(1)
R> N <- 200
R> myData <- data.frame(a=1:N,b=round(runif(N),2))
R> MYDATA <- ore.push(myData)
R> sampleSize <- 10
R> quotaSample1 <- head(MYDATA, sampleSize)
R> quotaSample1
   a  b
 1 1 0.15
 2 2 0.75
 3 3 0.98
 4 4 0.97
 5 5 0.35
 6 6 0.39
 7 7 0.95
 8 8 0.11
 9 9 0.93
10 10 0.35
```

3.1.8 Partition Data

In analyzing large data sets, a typical operation is to randomly partition the data set into subsets.

You can analyze the partitions by using OML4R embedded R execution, as shown in the following example.

Example 3-16 Randomly Partitioning Data

This example creates a `data.frame` object with the symbol `myData` in the local R session and adds a column to it that contains a randomly generated set of values. It
pushes the data set to database memory as the object MYDATA. The example invokes the embedded R execution function `ore.groupApply`, which partitions the data based on the partition column and then applies the `lm` function to each partition.

```r
N <- 200
k <- 5
myData <- data.frame(a=1:N,b=round(runif(N),2))
myData$partition <- sample(rep(1:k, each = N/k), length.out = N, replace = TRUE)
MYDATA <- ore.push(myData)
head(MYDATA)
results <- ore.groupApply(MYDATA, MYDATA$partition,
                           function(y) {lm(b~a,y)}, parallel = TRUE)
length(results)
results[[1]]
```

Listing for This Example

```r
R> N <- 200
R> k <- 5
R> myData <- data.frame(a=1:N,b=round(runif(N),2))
R> myData$partition <- sample(rep(1:k, each = N/k), length.out = N, replace = TRUE)
R> MYDATA <- ore.push(myData)
R> head(MYDATA)
a    b partition
1 1 0.89         2
2 2 0.31         4
3 3 0.39         5
4 4 0.66         3
5 5 0.01         1
6 6 0.12         4
R> results <- ore.groupApply(MYDATA, MYDATA$partition,
                            function(y) {lm(b~a,y)}, parallel = TRUE)
R> length(results)
[1] 5
R> results[[1]]

Call:
  lm(formula = b ~ a, data = y)

Coefficients:
(Intercept)            a
 0.388795     0.001015
```

3.1.9 Prepare Time Series Data

OML4R provides you with the ability to perform many data preparation operations on time series data, such as filtering, ordering, and transforming the data.

OML4R maps R data types to SQL data types, which allows you to create OML4R objects and perform data preparation operations in database memory. The following examples demonstrate some operations on time series data.

Example 3-17 Aggregating Date and Time Data

This example illustrates some of the statistical aggregation functions. For a data set, the example first generates on the local client a sequence of five hundred dates spread evenly throughout 2001. It then introduces a random `difftime` and a vector of random normal values. The example then uses the `ore.push` function to create
MYDATA, an in-database version of the data. The example invokes the class function to show that MYDATA is an ore.frame object and that the datetime column is of class ore.datetime. The example displays the first three rows of the generated data. It then uses the statistical aggregation operations of min, max, range, median, and quantile on the datetime column of MYDATA.

```r
N <- 500
mydata <- data.frame(datetime =
  seq(as.POSIXct("2001/01/01"),
  as.POSIXct("2001/12/31"),
  length.out = N),
  difftime = as.difftime(runif(N),
  units = "mins"),
  x = rnorm(N))
MYDATA <- ore.push(mydata)
class(MYDATA)
class(MYDATA$datetime)
head(MYDATA, 3)
# statistical aggregations
min(MYDATA$datetime)
max(MYDATA$datetime)
range(MYDATA$datetime)
quantile(MYDATA$datetime,
  probs = c(0, 0.05, 0.10))
```

Listing for This Example

```r
R> N <- 500
R> mydata <- data.frame(datetime =
+   seq(as.POSIXct("2001/01/01"),
+   as.POSIXct("2001/12/31"),
+   length.out = N),
+   difftime = as.difftime(runif(N),
+   units = "mins"),
+   x = rnorm(N))
R> MYDATA <- ore.push(mydata)
R> class(MYDATA)
[1] "ore.frame"
attr("package")
[1] "OREbase"
R> class(MYDATA$datetime)
[1] "ore.datetime"
attr("package")
[1] "OREbase"
R> head(MYDATA, 3)
      datetime       difftime           x
1 2001-01-01 00:00:00 16.436782 secs 0.68439244
2 2001-01-01 17:30:25  8.711562 secs 1.38481435
3 2001-01-02 11:00:50  1.366927 secs -0.00927078

R> # statistical aggregations
R> min(MYDATA$datetime)
[1] "2001-01-01 CST"
R> max(MYDATA$datetime)
[1] "2001-12-31 CST"
R> range(MYDATA$datetime)
[1] "2001-01-01 CST" "2001-12-31 CST"
R> quantile(MYDATA$datetime,
+   probs = c(0, 0.05, 0.10))
   0%         5%      10%
"2001-01-01 00:00:00 CST" "2001-01-19 04:48:00 CST" "2001-02-06 09:36:00 CST"
```
Example 3-18 Using Date and Time Arithmetic

This example creates a one day shift by taking the datetime column of the MYDATA ore.frame object created in the previous example and adding a difftime of one day. The result is day1Shift, which the example shows is of class ore.datetime. The example displays the first three elements of the datetime column of MYDATA and those of day1Shift. The first element of day1Shift is January 2, 2001.

This example also computes lag differences using the overloaded diff function. The difference between the dates is all the same because the 500 dates in MYDATA are evenly distributed throughout 2001.

day1Shift <- MYDATA$datetime + as.difftime(1, units = "days")
class(day1Shift)
head(MYDATA$datetime,3)
head(day1Shift,3)
lag1Diff <- diff(MYDATA$datetime)
class(lag1Diff)
head(lag1Diff,3)

Listing for This Example

```
R> day1Shift <- MYDATA$datetime + as.difftime(1, units = "days")
R> class(day1Shift)
[1] "ore.datetime"
attr("package")
R> head(MYDATA$datetime,3)
[1] "2001-01-01 00:00:00 CST" "2001-01-01 17:30:25 CST" "2001-01-02 11:00:50 CST"
R> head(day1Shift,3)
[1] "2001-01-02 00:00:00 CST" "2001-01-02 17:30:25 CST" "2001-01-03 11:00:50 CST"
R> lag1Diff <- diff(MYDATA$datetime)
R> class(lag1Diff)
[1] "ore.difftime"
attr("package")
R> head(lag1Diff,3)
Time differences in secs
[1] 63025.25 63025.25 63025.25
```

Example 3-19 Comparing Dates and Times

This example demonstrates date and time comparisons. The example uses the datetime Column of the MYDATA ore.frame object created in the first example. This example selects the elements of MYDATA that have a date earlier than April 1, 2001. The resulting isQ1 is of class ore.logical and for the first three entries the result is TRUE. The example finds out how many dates matching isQ1 are in March. It then sums the logical vector and displays the result, which is that 43 rows are in March. The example next filters rows based on dates that are the end of the year, after December 27. The result is eoySubset, which is an ore.frame object. The example displays the first three rows returned in eoySubset.

isQ1 <- MYDATA$datetime < as.Date("2001/04/01")
class(isQ1)
head(isQ1,3)
isMarch <- isQ1 & MYDATA$datetime > as.Date("2001/03/01")
class(isMarch)
head(isMarch,3)
sum(isMarch)
eoySubset <- MYDATA[MYDATA$datetime > as.Date("2001/12/27"),]
Listing for This Example

R> isQ1 <- MYDATA$datetime < as.Date("2001/04/01")
R> class(isQ1)
[1] "ore.logical"
attr(,"package")
[1] "OREbase"
R> head(isQ1,3)
[1] TRUE TRUE TRUE
R> isMarch <- isQ1 & MYDATA$datetime > as.Date("2001/03/01")
R> class(isMarch)
[1] "ore.logical"
attr(,"package")
[1] "OREbase"
R> head(isMarch,3)
[1] FALSE FALSE FALSE
R> sum(isMarch)
[1] 43
R> eoySubset <- MYDATA[MYDATA$datetime > as.Date("2001/12/27"),]
R> class(eoySubset)
[1] "ore.frame"
attr(,"package")
[1] "OREbase"
R> head(eoySubset,3)

Example 3-20 Using Date and Time Accessors

OML4R has accessor functions that you can use to extract various components from datetime objects, such as year, month, day of the month, hour, minute, and second. This example demonstrates the use of these functions. The example uses the datetime column of the MYDATA ore.frame object created in the first example.

This example gets the year elements of the datetime column. The invocation of the unique function for year displays 2001 because it is the only year value in the column. However, for objects that have a range of values, as for example, ore.mday, the range function returns the day of the month. The result contains a vector with values that range from 1 through 31. Invoking the range function succinctly reports the range of values, as demonstrated for the other accessor functions.

year <- ore.year(MYDATA$datetime)
unique(year)
month <- ore.month(MYDATA$datetime)
range(month)
dayOfMonth <- ore.mday(MYDATA$datetime)
range(dayOfMonth)
hour <- ore.hour(MYDATA$datetime)
range(hour)
minute <- ore.minute(MYDATA$datetime)
range(minute)
second <- ore.second(MYDATA$datetime)
range(second)
R> year <- ore.year(MYDATA$datetime)
R> unique(year)
R> month <- ore.month(MYDATA$datetime)
R> range(month)
[1] 1 12
R> dayOfMonth <- ore.mday(MYDATA$datetime)
R> range(dayOfMonth)
[1] 1 31
R> hour <- ore.hour(MYDATA$datetime)
R> range(hour)
[1] 0 23
R> minute <- ore.minute(MYDATA$datetime)
R> range(minute)
[1] 0 59
R> second <- ore.second(MYDATA$datetime)
R> range(second)
[1] 0.00000 59.87976

Example 3-21 Coercing Date and Time Data Types
This example uses the as.ore subclass objects to coerce an ore.datetime data type into other data types. The example uses the datetime column of the MYDATA ore.frame object created in the first example. That column contains ore.datetime values. This example first extracts the date from the MYDATA$datetime column. The resulting dateOnly object has ore.date values that contain only the year, month, and day, but not the time. The example then coerces the ore.datetime values into objects with ore.character and ore.integer values that represent the names of days, the number of the day of the year, and the quarter of the year.

dateOnly <- as.ore.date(MYDATA$datetime)
class(dateOnly)
head(sort(unique(dateOnly)),3)
nameOfDay <- as.ore.character(MYDATA$datetime, format = "DAY")
class(nameOfDay)
sort(unique(nameOfDay))
dayOfYear <- as.integer(as.character(MYDATA$datetime, format = "DDD"))
class(dayOfYear)
range(dayOfYear)
quarter <- as.integer(as.character(MYDATA$datetime, format = "Q"))
class(quarter)
sort(unique(quarter))

Listing for This Example
R> dateOnly <- as.ore.date(MYDATA$datetime)
R> class(dateOnly)[1] "ore.date"
attr("package")[1] "OREbase"
R> head(sort(unique(dateOnly)),3)
[1] "2001-01-01" "2001-01-02" "2001-01-03"
R> nameOfDay <- as.ore.character(MYDATA$datetime, format = "DAY")
R> class(nameOfDay)
[1] "ore.character"
attr("package")
[1] "OREbase"
R> sort(unique(nameOfDay))
[1] "FRIDAY" "MONDAY" "SATURDAY" "SUNDAY" "THURSDAY" "TUESDAY" "WEDNESDAY"
R> dayOfYear <- as.integer(as.character(MYDATA$datetime, format = "DDD"))
R> class(dayOfYear)
[1] "ore.integer"
attr("package")
Example 3-22 Using a Window Function

This example uses the window functions ore.rollmean and ore.rollsd to compute the rolling mean and the rolling standard deviation. The example uses the MYDATA ore.frame object created in the first example. This example ensures that MYDATA is an ordered ore.frame by assigning the values of the datetime column as the row names of MYDATA. The example computes the rolling mean and the rolling standard deviation over five periods. Next, to use the R time series functionality in the stats package, the example pulls data to the client. To limit the data pulled to the client, it uses the vector is.March from the third example to select only the data points in March. The example creates a time series object using the ts function, builds the Arima model, and predicts three points out.

row.names(MYDATA) <- MYDATA$datetime
MYDATA$rollmean5 <- ore.rollmean(MYDATA$x, k = 5)
MYDATA$rollsd5 <- ore.rollsd (MYDATA$x, k = 5)
head(MYDATA)
marchData <- ore.pull(MYDATA[isMarch,])
tseries.x <- ts(marchData$x)
arima110.x <- arima(tseries.x, c(1,1,0))
predict(arima110.x, 3)
tseries.rm5 <- ts(marchData$rollmean5)
arima110.rm5 <- arima(tseries.rm5, c(1,1,0))
predict(arima110.rm5, 3)

Listing for This Example

R> row.names(MYDATA) <- MYDATA$datetime
R> MYDATA$rollmean5 <- ore.rollmean(MYDATA$x, k = 5)
R> MYDATA$rollsd5 <- ore.rollsd (MYDATA$x, k = 5)
R> head(MYDATA)

 datetime difftime
2001-01-01 00:00:00 39.998460 secs x rollmean5 rollsd5
 -0.3450421 -0.46650761 0.8057575
2001-01-01 17:30:25 37.75568 secs x rollmean5 rollsd5
 -1.3261019 0.02877517 1.1891384
2001-01-02 11:00:50 18.44243 secs x rollmean5 rollsd5
 0.2716211 -0.13224503 1.0909515
2001-01-03 04:31:15 38.594384 secs x rollmean5 rollsd5
 1.5146235 0.36307913 1.4674456
2001-01-03 22:01:41 2.520976 secs x rollmean5 rollsd5

R> marchData <- ore.pull(MYDATA[isMarch,])
R> tseries.x <- ts(marchData$x)
R> arima110.x <- arima(tseries.x, c(1,1,0))
R> predict(arima110.x, 3)
$pred
Time Series:
Start = 44
End = 46
Frequency = 1
[1] 1.4556614 0.6156379 1.1387587

$se
Time Series:
Start = 44
End = 46
Frequency = 1
[1] 1.408117 1.504988 1.850830

R> tseries.rm5 <- ts(marchData$rollmean5)
R> arima110.rm5 <- arima(tseries.rm5, c(1,1,0))
R> predict(arima110.rm5, 3)
$pred
Time Series:
Start = 44
End = 46
Frequency = 1
[1] 0.3240135 0.3240966 0.3240922

$se
Time Series:
Start = 44
End = 46
Frequency = 1
[1] 0.3254551 0.4482886 0.5445763

3.2 Explore Data

Oracle Machine Learning for R provides functions that enable you to perform exploratory data analysis.

With these functions, you can perform common statistical operations.

The functions and their uses are described in the following topics:

- **About the Exploratory Data Analysis Functions**
 The OML4R functions for exploratory data analysis are in the `OREeda` package.

- **About the NARROW Data Set for Examples**
 Many of the examples of the exploratory data analysis functions use the `NARROW` data set.

- **Correlate Data**
 You can use the `ore.corr` function to perform correlation analysis.
• **Cross-Tabulate Data**
 Cross-tabulation is a statistical technique that finds an interdependent relationship between two tables of values.

• **Analyze the Frequency of Cross-Tabulations**
 The `ore.freq` function analyses the output of the `ore.crosstab` function and automatically determines the techniques that are relevant to an `ore.crosstab` result.

• **Build Exponential Smoothing Models on Time Series Data**
 The `ore.esm` function builds a simple or a double exponential smoothing model for in-database time series observations in an ordered `ore.vector` object.

• **Rank Data**
 The `ore.rank` function analyzes distribution of values in numeric columns of an `ore.frame`.

• **Sort Data**
 The `ore.sort` function enables flexible sorting of a data frame along one or more columns specified by the `by` argument.

• **Summarize Data with ore.summary**
 The `ore.summary` function calculates descriptive statistics and supports extensive analysis of columns in an `ore.frame`, along with flexible row aggregations.

• **Analyze the Distribution of Numeric Variables**
 The `ore.univariate` function provides distribution analysis of numeric variables in an `ore.frame`.

• **Principal Component Analysis**
 The overloaded `prcomp` and `princomp` functions perform principal component analysis in parallel in the database.

• **Singular Value Decomposition**
 The overloaded `svd` function performs singular value decomposition in parallel in the database.

3.2.1 About the Exploratory Data Analysis Functions

The OML4R functions for exploratory data analysis are in the `OREeda` package.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ore.corr</code></td>
<td>Performs correlation analysis across numeric columns in an <code>ore.frame</code> object.</td>
</tr>
<tr>
<td><code>ore.crosstab</code></td>
<td>Expands on the <code>xtabs</code> function by supporting multiple columns with optional aggregations, weighting, and ordering options. Building a cross-tabulation is a pre-requisite to using the <code>ore.freq</code> function.</td>
</tr>
<tr>
<td><code>ore.esm</code></td>
<td>Builds exponential smoothing models on data in an ordered <code>ore.Vector</code> object.</td>
</tr>
<tr>
<td><code>ore.freq</code></td>
<td>Operates on output from the <code>ore.crosstab</code> function and automatically determines techniques that are relevant for the table.</td>
</tr>
</tbody>
</table>
Table 3-1 (Cont.) Functions in the OREeda Package

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ore.rank</td>
<td>Enables the investigation of the distribution of values along numeric columns in an ore.frame object.</td>
</tr>
<tr>
<td>ore.sort</td>
<td>Provides flexible sorting for ore.frame objects.</td>
</tr>
<tr>
<td>ore.summary</td>
<td>Provides descriptive statistics for ore.frame objects within flexible row aggregations.</td>
</tr>
<tr>
<td>ore.univariate</td>
<td>Provides distribution analysis of numeric columns in an ore.frame object. Reports all statistics from the ore.summary function plus signed-rank test and extreme values.</td>
</tr>
</tbody>
</table>

3.2.2 About the NARROW Data Set for Examples

Many of the examples of the exploratory data analysis functions use the NARROW data set.

NARROW is an ore.frame that has 9 columns and 1500 rows, as shown in the following example. Some of the columns are numeric, others are not.

Example 3-23 The NARROW Data Set

This example shows the class, dimensions, and names of the NARROW object.

```
R> class(NARROW)
[1] "ore.frame"
attr("package", "OREbase")
R> dim(NARROW)
[1] 1500    9
R> names(NARROW)
[1] "ID"             "GENDER"         "AGE"            "MARITAL_STATUS"
[5] "COUNTRY"        "EDUCATION"      "OCCUPATION"     "YRS_RESIDENCE"  

3.2.3 Correlate Data

You can use the ore.corr function to perform correlation analysis.

With the ore.corr function, you can do the following:

• Perform Pearson, Spearman or Kendall correlation analysis across numeric columns in an ore.frame object.
• Perform partial correlations by specifying a control column.
• Aggregate some data prior to the correlations.
• Post-process results and integrate them into an R code flow.
You can make the output of the `ore.corr` function conform to the output of the R `cor` function; doing so allows you to use any R function to post-process the output or to use the output as the input to a graphics function.

For details about the function arguments, invoke `help(ore.corr)`.

The following examples demonstrate these operations.

**Example 3-24  Performing Basic Correlation Calculations**

This example demonstrates how to specify the different types of correlation statistics.

```r
Before performing correlations, project out all non-numeric values by specifying only the columns that have numeric values.
names(NARROW)
NARROW_NUMS <- NARROW[,c(3,8,9)]

Calculate the correlation using the default correlation statistic, Pearson.
x <- ore.corr(NARROW_NUMS,var='AGE,YRS_RESIDENCE,CLASS')
head(x, 3)

Calculate using Spearman.
x <- ore.corr(NARROW_NUMS,var='AGE,YRS_RESIDENCE,CLASS', stats='spearman')
head(x, 3)

Calculate using Kendall
x <- ore.corr(NARROW_NUMS,var='AGE,YRS_RESIDENCE,CLASS', stats='kendall')
head(x, 3)
```

**Listing for This Example**

```r
R> # Before performing correlations, project out all non-numeric values by specifying only the columns that have numeric values.
R> names(NARROW)
R> [1] "ID" "GENDER" "AGE" "MARITAL_STATUS" "COUNTRY" "EDUCATION" "OCCUPATION"
R> [8] "YRS_RESIDENCE" "CLASS" "AGEBINS"
R> NARROW_NUMS <- NARROW[,c(3,8,9)]
R> names(NARROW_NUMS)
R> [1] "AGE" "YRS_RESIDENCE" "CLASS"

R> # Calculate the correlation using the default correlation statistic, Pearson.
R> x <- ore.corr(NARROW_NUMS,var='AGE,YRS_RESIDENCE,CLASS')
R> head(x, 3)

 ROW COL PEARSON_T PEARSON_P PEARSON_DF
 1 AGE CLASS 0.2200960 1e-15 1298
 2 AGE YRS_RESIDENCE 0.6568534 0e+00 1098
 3 YRS_RESIDENCE CLASS 0.3561869 0e+00 1298

R> # Calculate using Spearman.
R> x <- ore.corr(NARROW_NUMS,var='AGE,YRS_RESIDENCE,CLASS', stats='spearman')
R> head(x, 3)

 ROW COL SPEARMAN_T SPEARMAN_P SPEARMAN_DF
 1 AGE CLASS 0.2601221 1e-15 1298
 2 AGE YRS_RESIDENCE 0.7462684 0e+00 1098
 3 YRS_RESIDENCE CLASS 0.3835252 0e+00 1298

R> # Calculate using Kendall
R> x <- ore.corr(NARROW_NUMS,var='AGE,YRS_RESIDENCE,CLASS', stats='kendall')
R> head(x, 3)

 ROW COL KENDALL_T KENDALL_P KENDALL_DF
 1 AGE CLASS 0.2147107 4.285594e-31 <NA>
 2 AGE YRS_RESIDENCE 0.6332196 0.0000000e+00 <NA>
 3 YRS_RESIDENCE CLASS 0.3362078 1.094478e-73 <NA>
```
Example 3-25  Creating Correlation Matrices

This example pushes the *iris* data set to a temporary table in the database, which has the proxy *ore.frame* object *iris_of*. It creates correlation matrices grouped by species.

```
iris_of <- ore.push(iris)
x <- ore.corr(iris_of, var = "Sepal.Length, Sepal.Width, Petal.Length",
 partial = "Petal.Width", group.by = "Species")
class(x)
head(x)
```

Listing for This Example

```
R> iris_of <- ore.push(iris)
R> x <- ore.corr(iris_of, var = "Sepal.Length, Sepal.Width, Petal.Length",
+ partial = "Petal.Width", group.by = "Species")
R> class(x)
[1] "list"
R> head(x)

$setosa
 ROW COL PART_PEARSON_T PART_PEARSON_P PART_PEARSON_DF
1 Sepal.Length Petal.Length 0.1930601 9.191136e-02 47
2 Sepal.Length Sepal.Width 0.7255823 1.840300e-09 47
3 Sepal.Width Petal.Length 0.1095503 2.268336e-01 47

$versicolor
 ROW COL PART_PEARSON_T PART_PEARSON_P PART_PEARSON_DF
1 Sepal.Length Petal.Length 0.62696041 7.180100e-07 47
2 Sepal.Length Sepal.Width 0.26039166 3.538109e-02 47
3 Sepal.Width Petal.Length 0.08269662 2.860704e-01 47

$virginica
 ROW COL PART_PEARSON_T PART_PEARSON_P PART_PEARSON_DF
1 Sepal.Length Petal.Length 0.85157254 4.000000e-15 47
2 Sepal.Length Sepal.Width 0.37827280 3.681795e-03 47
3 Sepal.Width Petal.Length 0.28544592 2.339940e-02 47
```

3.2.4 Cross-Tabulate Data

Cross-tabulation is a statistical technique that finds an interdependent relationship between two tables of values.

The *ore.crosstab* function enables cross-column analysis of an *ore.frame*. This function is a sophisticated variant of the R *table* function.

You must use *ore.crosstab* function before performing frequency analysis using *ore.freq*.

If the result of the *ore.crosstab* function invocation is a single cross-tabulation, then the function returns an *ore.frame* object. If the result is multiple cross-tabulations, then the function returns a list of *ore.frame* objects.

For details about function arguments, invoke *help(ore.crosstab)*.

Example 3-26  Creating a Single Column Frequency Table

The most basic use case is to create a single-column frequency table, as shown in this example.
This example filters the NARROW ore.frame, grouping by GENDER.

ct <- ore.crosstab(~AGE, data=NARROW)
head(ct)

Listing for This Example

R> ct <- ore.crosstab(~AGE, data=NARROW)
R> head(ct)

<table>
<thead>
<tr>
<th>AGE</th>
<th>ORE$FREQ</th>
<th>ORE$STRATA</th>
<th>ORE$GROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>14</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>16</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>30</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>23</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>39</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Example 3-27  Analyzing Two Columns

This example analyses AGE by GENDER and AGE by CLASS.

cr <- ore.crosstab(AGE~GENDER+CLASS, data=NARROW)
head(cr)

Listing for This Example

R> ct <- ore.crosstab(AGE~GENDER+CLASS, data=NARROW)
R> head(cr)

$`AGE~GENDER`

<table>
<thead>
<tr>
<th>AGE</th>
<th>GENDER</th>
<th>ORE$FREQ</th>
<th>ORE$STRATA</th>
<th>ORE$GROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>F</td>
<td>17</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>M</td>
<td>17</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>F</td>
<td>18</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>M</td>
<td>18</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>F</td>
<td>19</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>M</td>
<td>19</td>
<td>17</td>
<td>1</td>
</tr>
</tbody>
</table>

# The remaining output is not shown.

Example 3-28  Weighting Rows

To weight rows, include a count based on another column as shown in this example. This example weights values in AGE and GENDER using values in YRS_RESIDENCE.

cr <- ore.crosstab(AGE~GENDER*YRS_RESIDENCE, data=NARROW)
head(cr)

Listing for This Example

R> ct <- ore.crosstab(AGE~GENDER*YRS_RESIDENCE, data=NARROW)
R> head(cr)

<table>
<thead>
<tr>
<th>AGE</th>
<th>GENDER</th>
<th>ORE$FREQ</th>
<th>ORE$STRATA</th>
<th>ORE$GROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>F</td>
<td>17</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>M</td>
<td>17</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>F</td>
<td>18</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>M</td>
<td>18</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>F</td>
<td>19</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>M</td>
<td>19</td>
<td>17</td>
<td>1</td>
</tr>
</tbody>
</table>
Example 3-29  Ordering Cross-Tabulated Data

There are several possibilities for ordering rows in a cross-tabulated table, such as the following:

- Default or NAME orders by the columns being analyzed
- FREQ orders by frequency counts
- -NAME or -FREQ does reverse ordering
- INTERNAL bypasses ordering

This example orders by frequency count and then by reverse order by frequency count.

```r
tt <- ore.crosstab(AGE~GENDER|FREQ, data=NARROW)
head(tt)
tt <- ore.crosstab(AGE~GENDER|-FREQ, data=NARROW)
head(tt)
```

Listing for This Example

```r
R> tt <- ore.crosstab(AGE~GENDER|FREQ, data=NARROW)
R> head(tt)

<table>
<thead>
<tr>
<th>AGE</th>
<th>GENDER</th>
<th>ORE$FREQ</th>
<th>ORE$STRATA</th>
<th>ORE$GROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td>F</td>
<td>F</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>70</td>
<td>F</td>
<td>F</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>73</td>
<td>M</td>
<td>M</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>74</td>
<td>M</td>
<td>M</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>76</td>
<td>F</td>
<td>F</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>77</td>
<td>F</td>
<td>F</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

R> tt <- ore.crosstab(AGE~GENDER|-FREQ, data=NARROW)
R> head(tt)

<table>
<thead>
<tr>
<th>AGE</th>
<th>GENDER</th>
<th>ORE$FREQ</th>
<th>ORE$STRATA</th>
<th>ORE$GROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>M</td>
<td>M</td>
<td>33</td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>M</td>
<td>M</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>41</td>
<td>M</td>
<td>M</td>
<td>27</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>M</td>
<td>M</td>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>M</td>
<td>M</td>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>M</td>
<td>M</td>
<td>25</td>
<td>1</td>
</tr>
</tbody>
</table>
```

Example 3-30  Analyzing Three or More Columns

This example demonstrates analyzing three or more columns. The result is similar to what the SQL GROUPING SETS clause accomplishes.

```r
tt <- ore.crosstab(AGE+COUNTRY~GENDER, NARROW)
head(tt)
```

Listing for This Example

```r
R> tt <- ore.crosstab(AGE+COUNTRY~GENDER, NARROW)
R> head(tt)

$AGE~GENDER$

<table>
<thead>
<tr>
<th>AGE</th>
<th>GENDER</th>
<th>ORE$FREQ</th>
<th>ORE$STRATA</th>
<th>ORE$GROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>F</td>
<td>F</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>M</td>
<td>M</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>F</td>
<td>F</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>M</td>
<td>M</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>F</td>
<td>F</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>M</td>
<td>M</td>
<td>13</td>
<td>1</td>
</tr>
</tbody>
</table>
Example 3-31 Specifying a Range of Columns

You can specify a range of columns instead of having to type all the column names, as demonstrated in this example.

```r
names(NARROW)
# Because AGE, MARITAL_STATUS and COUNTRY are successive columns,
# you can simply do the following:
ct <- ore.crosstab(AGE-COUNTRY~GENDER, NARROW)
# An equivalent invocation is the following:
ct <- ore.crosstab(AGE+MARITAL_STATUS+COUNTRY~GENDER, NARROW)
```

Listing for This Example

```
R> names(NARROW)
[1] "ID"         "GENDER"    "AGE"        "MARITAL_STATUS"
[5] "COUNTRY"   "EDUCATION" "OCCUPATION" "YRS_RESIDENCE"
[9] "CLASS"
R> # Because AGE, MARITAL_STATUS and COUNTRY are successive columns,
R> # you can simply do the following:
R> ct <- ore.crosstab(AGE-COUNTRY~GENDER, NARROW)
R> # An equivalent invocation is the following:
R> ct <- ore.crosstab(AGE+MARITAL_STATUS+COUNTRY~GENDER, NARROW)
```

Example 3-32 Producing One Cross-Tabulation Table for Each Value of Another Column

This example produces one cross-tabulation table (AGE, GENDER) for each unique value of another column COUNTRY.

```r
c <- ore.crosstab(~AGE/COUNTRY, data=NARROW)
head(ct)
```

Listing for This Example

```
R> ct <- ore.crosstab(~AGE/COUNTRY, data=NARROW)
R> head(ct)
AGE ORE$FREQ ORE$STRATA ORE$GROUP
Argentina 17 1 1 1
Brazil 17 1 1 3
United States of America 17 12 1 19
United States of America 18 18 1 19
United States of America 19 30 1 19
United States of America 20 23 1 19
```

Example 3-33 Producing One Cross-Tabulation Table for Each Set of Value of Two Columns

You can extend the cross-tabulation to more than one column, as shown in this example, which produces one (AGE, EDUCATION) table for each unique combination of (COUNTRY, GENDER).

```r
c <- ore.crosstab(AGE-EDUCATION/COUNTRY+GENDER, data=NARROW)
head(ct)
```
Example 3-34 Augmenting Cross-Tabulation with Stratification

All of the cross-tabulation tables in the previous examples can be augmented with stratification, as shown in this example.

```r
ct <- ore.crosstab(AGE~GENDER^CLASS, data=NARROW)
head(ct)
```

<table>
<thead>
<tr>
<th>GENDER</th>
<th>CLASS</th>
<th>FREQ</th>
<th>STRATA</th>
<th>GROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>1</td>
<td>17</td>
<td>10th</td>
<td>1</td>
</tr>
<tr>
<td>M</td>
<td>1</td>
<td>18</td>
<td>10th</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>19</td>
<td>11th</td>
<td>1</td>
</tr>
<tr>
<td>M</td>
<td>1</td>
<td>20</td>
<td>11th</td>
<td>1</td>
</tr>
</tbody>
</table>

Example 3-35 Binning Followed by Cross-Tabulation

This example does a custom binning by AGE and then calculates the cross-tabulation for GENDER and the bins.

```r
NARROW$AGEBINS <- ifelse(NARROW$AGE<20, 1, ifelse(NARROW$AGE<30, 2, ifelse(NARROW$AGE<40, 3, 4)))
ore.crosstab(GENDER~AGEBINS, NARROW)
```

<table>
<thead>
<tr>
<th>AGEBINS</th>
<th>GENDER</th>
<th>FREQ</th>
<th>STRATA</th>
<th>GROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>108</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>86</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>164</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>29</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>177</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>230</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>381</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
3.2.5 Analyze the Frequency of Cross-Tabulations

The `ore.freq` function analyses the output of the `ore.crosstab` function and automatically determines the techniques that are relevant to an `ore.crosstab` result.

The techniques depend on the kind of cross-tabulation tables, which are the following:

- **2-way cross-tabulation tables**
 - Various statistics that describe relationships between columns in the cross-tabulation
 - Chi-square tests, Cochran-Mantel-Haenzsel statistics, measures of association, strength of association, risk differences, odds ratio and relative risk for 2x2 tables, tests for trend
- **N-way cross-tabulation tables**
 - N 2-way cross-tabulation tables
 - Statistics across and within strata

The `ore.freq` function uses Oracle Database SQL functions when available.

The `ore.freq` function returns an `ore.frame` in all cases.

Before you use `ore.freq`, you must calculate crosstabs, as shown in the following example.

For details about the function arguments, invoke `help(ore.freq)`.

Example 3-36 Using the ore.freq Function

This example pushes the `iris` data set to the database and gets the `ore.frame` object `iris_of`. The example gets a crosstab and invokes the `ore.freq` function on it.

```r
IRIS <- ore.push(iris)
ct <- ore.crosstab(Species ~ Petal.Length + Sepal.Length, data = IRIS)
ore.freq(ct)
```

Listing for This Example

```
$'Species~Petal.Length'
 METHOD   FREQ DF  PVALUE        DESCR GROUP
1  PCHISQ 181.4667 84 3.921603e-09 Pearson Chi-Square 1

$'Species-Sepal.Length'
 METHOD   FREQ DF  PVALUE        DESCR GROUP
1  PCHISQ 102.6 68 0.004270601 Pearson Chi-Square 1
```

3.2.6 Build Exponential Smoothing Models on Time Series Data

The `ore.esm` function builds a simple or a double exponential smoothing model for in-database time series observations in an ordered `ore.vector` object.

The function operates on time series data, whose observations are evenly spaced by a fixed interval, or transactional data, whose observations are not equally spaced. The
The `ore.esm` function processes the data in one or more R engines running on the database server. The function returns an object of class `ore.esm`. You can use the `predict` method to predict the time series of the exponential smoothing model built by `ore.esm`. If you have loaded the `forecast` package, then you can use the `forecast` method on the `ore.esm` object. You can use the fitted method to generate the fitted values of the training time series data set.

For information about the arguments of the `ore.esm` function, invoke `help(ore.esm)`.

Example 3-37 Building a Double Exponential Smoothing Model

This example builds a double exponential smoothing model on a synthetic time series data set. The `predict` and `fitted` functions are invoked to generate the predictions and the fitted values, respectively. The figure shows the observations, fitted values, and the predictions.

```r
N <- 5000
ts0 <- ore.push(data.frame(ID=1:N,
    VAL=seq(1,5,length.out=N)^2+rnorm(N,sd=0.5)))
rownames(ts0) <- ts0$ID
x <- ts0$VAL
esm.mod <- ore.esm(x, model = "double")
esm.predict <- predict(esm.mod, 30)
esm.fitted <- fitted(esm.mod, start=4000, end=5000)
plot(ts0[4000:5000,], pch=©.©)
lines(ts0[4000:5000, 1], esm.fitted, col="blue")
lines(esm.predict, col="red", lwd=2)
```
Example 3-38 Building a Time Series Model with Transactional Data

This example builds a simple smoothing model based on a transactional data set. As preprocessing, it aggregates the values to the day level by taking averages, and fills missing values by setting them to the previous aggregated value. The model is then built on the aggregated daily time series. The function `predict` is invoked to generate predicted values on the daily basis.

```r
ts01 <- data.frame(ID=seq(as.POSIXct("2008/6/13"), as.POSIXct("2011/6/16"), length.out=4000), VAL=rnorm(4000, 10))
ts02 <- data.frame(ID=seq(as.POSIXct("2011/7/19"), as.POSIXct("2012/11/20"), length.out=1500), VAL=rnorm(1500, 10))
ts03 <- data.frame(ID=seq(as.POSIXct("2012/12/09"), as.POSIXct("2013/9/25"), length.out=1000), VAL=rnorm(1000, 10))
tsi = ore.push(rbind(ts01, ts02, ts03))
rownames(tsi) <- ts1$ID
x <- ts1$VAL
esc.mod <- ore.esm(x, "DAY", accumulate = "AVG", model="simple", setmissing="PREV")
esm.predict <- predict(esm.mod)
esm.predict
```
Example 3-39 Building a Double Exponential Smoothing Model Specifying an Interval

This example uses stock data from the TTR package. It builds a double exponential smoothing model based on the daily stock closing prices. The 30-day predicted stock prices, along with the original observations, are shown in the following figure.

```
library(TTR)
stock <- "orcl"
xts.data <- getYahooData(stock, 20010101, 20131024)
df.data <- data.frame(xts.data)
df.data$date <- index(xts.data)
of.data <- ore.push(df.data[, c("date", "Close")])
rownames(of.data) <- of.data$date
esm.mod <- ore.esm(of.data$Close, "DAY", model = "double")
esm.predict <- predict(esm.mod, 30)
plot(of.data,type="l")
lines(esm.predict,col="red",lwd=4)
```
3.2.7 Rank Data

The `ore.rank` function analyzes distribution of values in numeric columns of an `ore.frame`.

The `ore.rank` function supports useful functionality, including:

- Ranking within groups
- Partitioning rows into groups based on rank tiles
- Calculation of cumulative percentages and percentiles
- Treatment of ties
- Calculation of normal scores from ranks

The `ore.rank` function syntax is simpler than the corresponding SQL queries.

The `ore.rank` function returns an `ore.frame` in all instances.

You can use these R scoring methods with `ore.rank`:

- To compute exponential scores from ranks, use `savage`.
- To compute normal scores, use one of `blom`, `tukey`, or `vw` (van der Waerden).

For details about the function arguments, invoke `help(ore.rank)`.
The following examples illustrate using `ore.rank`. The examples use the `NARROW` data set.

Example 3-40 Ranking Two Columns

This example ranks the two columns `AGE` and `CLASS` and reports the results as derived columns; values are ranked in the default order, which is ascending.

```r
x <- ore.rank(data=NARROW, var="AGE=RankOfAge, CLASS=RankOfClass")
```

Example 3-41 Handling Ties in Ranking

This example ranks the two columns `AGE` and `CLASS`. If there is a tie, the smallest value is assigned to all tied values.

```r
x <- ore.rank(data=NARROW, var="AGE=RankOfAge, CLASS=RankOfClass", ties='low')
```

Example 3-42 Ranking by Groups

This example ranks the two columns `AGE` and `CLASS` and then ranks the resulting values according to `COUNTRY`.

```r
x <- ore.rank(data=NARROW, var="AGE=RankOfAge, CLASS=RankOfClass", group.by='COUNTRY')
```

Example 3-43 Partitioning into Deciles

To partition the columns into a different number of partitions, change the value of `groups`. For example, `groups=4` partitions into quartiles. This example ranks the two columns `AGE` and `CLASS` and partitions the columns into deciles (10 partitions).

```r
x <- ore.rank(data=NARROW, var="AGE=RankOfAge, CLASS=RankOfClass", groups=10)
```

Example 3-44 Estimating Cumulative Distribution Function

This example ranks the two columns `AGE` and `CLASS` and estimates the cumulative distribution function for both column.

```r
x <- ore.rank(data=NARROW, var="AGE=RankOfAge, CLASS=RankOfClass", nplus1=TRUE)
```

Example 3-45 Scoring Ranks

This example ranks the two columns `AGE` and `CLASS` and scores the ranks in two different ways. The first command partitions the columns into percentiles (100 groups). The `savage` scoring method calculates exponential scores and `blom` scoring calculates normal scores.

```r
x <- ore.rank(data=NARROW, var="AGE=RankOfAge, CLASS=RankOfClass", score='savage', groups=100, group.by='COUNTRY')
x <- ore.rank(data=NARROW, var="AGE=RankOfAge, CLASS=RankOfClass", score='blom')
```

3.2.8 Sort Data

The `ore.sort` function enables flexible sorting of a data frame along one or more columns specified by the `by` argument.

The `ore.sort` function can be used with other data pre-processing functions. The results of sorting can provide input to R visualization.

The sorting done by the `ore.sort` function takes place in the Oracle database. The `ore.sort` function supports the database `nls.sort` option.
The `ore.sort` function returns an `ore.frame`.

For details about the function arguments, invoke `help(ore.sort)`.

Most of the following examples use the `NARROW` data set. Some examples use the `ONTIME_S` data set.

Example 3-46 Sorting Columns in Descending Order

This example sorts the columns `AGE` and `GENDER` in descending order.

```r
x <- ore.sort(data=NARROW, by='AGE,GENDER', reverse=TRUE)
```

Example 3-47 Sorting Different Columns in Different Orders

This example sorts `AGE` in descending order and `GENDER` in ascending order.

```r
x <- ore.sort(data=NARROW, by='~AGE,GENDER')
```

Example 3-48 Sorting and Returning One Row per Unique Value

This example sorts by `AGE` and keep one row per unique value of `AGE`:

```r
x <- ore.sort(data=NARROW, by='AGE', unique.key=TRUE)
```

Example 3-49 Removing Duplicate Columns

This example sorts by `AGE` and removes duplicate rows:

```r
x <- ore.sort(data=NARROW, by='AGE', unique.data=TRUE)
```

Example 3-50 Removing Duplicate Columns and Returning One Row per Unique Value

This example sorts by `AGE`, removes duplicate rows, and returns one row per unique value of `AGE`.

```r
x <- ore.sort(data=NARROW, by='AGE', unique.data=TRUE, unique.key = TRUE)
```

Example 3-51 Preserving Relative Order in the Output

This example maintains the relative order in the sorted output.

```r
x <- ore.sort(data=NARROW, by='AGE', stable=TRUE)
```

Example 3-52 Sorting Two Columns in Different Orders

This example sorts `ONTIME_S` by airline name in descending order and departure delay in ascending order.

```r
sortedOnTime1 <- ore.sort(data=ONTIME_S, by='~UNIQUECARRIER,DEPDELAY')
```

Example 3-53 Sorting Two Columns in Different Orders and Producing Unique Combinations

This example sorts `ONTIME_S` by airline name and departure delay and selects one of each combination (that is, returns a unique key).

```r
sortedOnTime1 <- ore.sort(data=ONTIME_S, by='~UNIQUECARRIER,DEPDELAY', unique.key=TRUE)
```
3.2.9 Summarize Data with ore.summary

The `ore.summary` function calculates descriptive statistics and supports extensive analysis of columns in an `ore.frame`, along with flexible row aggregations.

The `ore.summary` function supports these statistics:

- Mean, minimum, maximum, mode, number of missing values, sum, weighted sum
- Corrected and uncorrected sum of squares, range of values, stddev, stderr, variance
- t-test for testing the hypothesis that the population mean is 0
- Kurtosis, skew, Coefficient of Variation
- Quantiles: p1, p5, p10, p25, p50, p75, p90, p95, p99, qrange
- 1-sided and 2-sided Confidence Limits for the mean: clm, rclm, lclm
- Extreme value tagging

The `ore.summary` function provides a relatively simple syntax compared with SQL queries that produce the same results.

The `ore.summary` function returns an `ore.frame` in all cases except when the `group.by` argument is used. If the `group.by` argument is used, then `ore.summary` returns a list of `ore.frame` objects, one `ore.frame` per stratum.

For details about the function arguments, invoke `help(ore.summary)`.

Example 3-54 Calculating Default Statistics

This example calculates the mean, minimum, and maximum values for columns AGE and CLASS and rolls up (aggregates) the GENDER column.

```r
ore.summary(NARROW, class = 'GENDER', var = c('AGE', 'CLASS', order = 'freq')
```

Example 3-55 Calculating Skew and Probability for t Test

This example calculates the skew of AGE as column A and the probability of the Student's t distribution for CLASS as column B.

```r
ore.summary(NARROW, class = 'GENDER', var = 'AGE, CLASS', stats = 'skew(AGE) = A, probt(CLASS) = B')
```

Example 3-56 Calculating the Weighted Sum

This example calculates the weighted sum for AGE aggregated by GENDER with YRS_RESIDENCE as weights; in other words, it calculates `sum(var*weight)`.

```r
ore.summary(NARROW, class = 'GENDER', var = 'AGE', stats = 'sum = X', weight = 'YRS_RESIDENCE')
```

Example 3-57 Grouping by Two Columns

This example groups CLASS by GENDER and MARITAL_STATUS.

```r
ore.summary(NARROW, class = c('GENDER', 'MARITAL_STATUS'), var = 'CLASS', ways = 1)
```
Example 3-58 Grouping by All Possible Ways

This example groups CLASS in all possible ways by GENDER and MARITAL_STATUS.

ore.summary(NARROW, class = c('GENDER', 'MARITAL_STATUS'), var = 'CLASS', ways = 'nway')

Example 3-59 Getting the Maximum Values of Columns Using ore.summary

This example lists the maximum value and corresponding species of the Sepal.Length and Sepal.Width columns in the IRIS ore.frame.

IRIS <- ore.push(iris)
ore.summary(IRIS, c("Sepal.Length", "Sepal.Width"),
 "max",
 maxid=c(Sepal.Length="Species", Sepal.Width="Species"))

Listing for This Example

R> IRIS <- ore.push(iris)
R> ore.summary(IRIS, c("Sepal.Length", "Sepal.Width"),
+ "max",
+ maxid=c(Sepal.Length="Species", Sepal.Width="Species"))

FREQ MAX(Sepal.Length) MAX(Sepal.Width) MAXID(Sepal.Length->Species)
MAXID(Sepal.Width->Species)
1 150 7.9 4.4
virginica setosa
Warning message:
ORE object has no unique key - using random order

3.2.10 Analyze the Distribution of Numeric Variables

The ore.univariate function provides distribution analysis of numeric variables in an ore.frame.

The ore.univariate function provides these statistics:

• All statistics reported by the summary function
• Signed rank test, Student's t-test
• Extreme values reporting

The ore.univariate function returns an ore.frame as output in all cases.

For details about the function arguments, invoke help(ore.univariate).

Example 3-60 Calculating the Default Univariate Statistics

This example calculates the default univariate statistics for AGE, YRS_RESIDENCE, and CLASS.

ore.univariate(NARROW, var="AGE,YRS_RESIDENCE,CLASS")
Example 3-61 Calculating the Default Univariate Statistics
This example calculates location statistics for YRS_RESIDENCE.
ore.univariate(NARROW, var="YRS_RESIDENCE", stats="location")

Example 3-62 Calculating the Complete Quantile Statistics
This example calculates complete quantile statistics for AGE and YRS_RESIDENCE.
ore.univariate(NARROW, var="AGE,YRS_RESIDENCE",stats="quantiles")

3.2.11 Principal Component Analysis

The overloaded prcomp and princomp functions perform principal component analysis in parallel in the database.

The prcomp function uses a singular value decomposition of the covariance and correlations between variables. The princomp function uses eigen decomposition of the covariance and correlations between samples.

The transparency layer methods ore.frame-prcomp and ore.frame-princomp enable you to use the generic functions prcomp and princomp on data in an ore.frame object. This allows the functions to execute in parallel processes in the database.

For both functions, the methods support the function signature that accepts an ore.frame as the x argument and the signature that accepts a formula. The ore.frame must contain only numeric data. The formula must refer only to numeric variables and have no response variable.

Function prcomp returns a prcomp object and function princomp returns a princomp object.

For details about the function arguments, invoke help('ore.frame-prcomp') and help('ore.frame-princomp').

Note:
The biplot function is not supported for the objects returned by these transparency layer methods.

Example 3-63 Using the prcomp and princomp Functions

USARRESTS <- ore.push(USArrests)

Using prcomp
prcomp(USARRESTS)
prcomp(USARRESTS, scale. = TRUE)

Formula interface
prcomp(~ Murder + Assault + UrbanPop, data = USARRESTS, scale. = TRUE)

Using princomp
princomp(USARRESTS)
princomp(USARRESTS, cor = TRUE)

Formula interface
princomp(~ Murder + Assault + UrbanPop, data = USARRESTS, cor = TRUE)

Listing for This Example

R> USARRESTS <- ore.push(USArrests)
R>
R> # Using prcomp
R>
R> prcomp(USARRESTS)
Standard deviations:
Rotation:
 PC1 PC2 PC3 PC4
Murder 0.04170432 -0.04482166 0.07989066 -0.99492173
Assault 0.99522128 -0.05876003 -0.06756974 0.03893830
UrbanPop 0.04633575 0.97685748 -0.20054629 -0.05816914
Rape 0.07515550 0.20071807 0.97408059 0.07232502

R> prcomp(USARRESTS, scale. = TRUE)
Standard deviations:
[1] 1.5748783 0.9948694 0.5971291 0.4164494
Rotation:
 PC1 PC2 PC3 PC4
Murder 0.5358995 -0.4181809 0.3412327 0.64922780
Assault 0.5831836 -0.1879856 0.2681484 -0.74340748
UrbanPop 0.2781909 0.8728062 0.3780158 0.13387773
Rape 0.5434321 0.1673186 -0.8177779 0.08902432

R> # Formula interface
R> prcomp(~ Murder + Assault + UrbanPop, data = USARRESTS, scale. = TRUE)
Standard deviations:
[1] 1.3656547 0.9795415 0.4189100
Rotation:
 PC1 PC2 PC3
Murder 0.6672955 -0.30345520 0.6801703
Assault 0.6970818 -0.06713997 -0.7138411
UrbanPop 0.2622854 0.95047734 0.1667309
R>
R> # Using princomp
R>
R> princomp(USARRESTS)
Call:
princomp(USARRESTS)
Standard deviations:
 Comp.1 Comp.2 Comp.3 Comp.4
82.890847 14.069560 6.424204 2.457837
4 variables and 50 observations.
R> princomp(USARRESTS, cor = TRUE)
Call:
princomp(USARRESTS, cor = TRUE)
Standard deviations:
Comp.1 Comp.2 Comp.3 Comp.4
1.5748783 0.9948694 0.5971291 0.4164494
4 variables and 50 observations.
R>
R> # Formula interface
R> princomp(~ Murder + Assault + UrbanPop, data = USARRESTS, cor = TRUE)
Call:
princomp(~Murder + Assault + UrbanPop, data = USARRESTS, cor = TRUE)
Standard deviations:
Comp.1 Comp.2 Comp.3
1.3656547 0.9795415 0.4189100
3 variables and 50 observations.

3.2.12 Singular Value Decomposition

The overloaded svd function performs singular value decomposition in parallel in the database.

The svd function accepts an ore.frame or an ore.tblmatrix object as the x argument. The ore.frame-svd method distributes block SVD computation to parallel processes executing in the database. The method uses the global option ore.parallel to determine the degree of parallelism to employ.

The function returns a list object that contains the d vector and v matrix components of a singular value decomposition of argument x. It does not return the left singular vector matrix u, therefore the argument nu is not used.

For details about the function arguments, invoke help('ore.frame-svd').

Example 3-64 Using the svd Function

USARRESTS <- ore.push(USArrests)
svd(USARRESTS)

Listing for This Example

R> USARRESTS <- ore.push(USArrests)
R> svd(USARRESTS)
$d
[1] 1419.06140 194.82585 45.66134 18.06956
$v
[1,] 0.04239181 -0.01616262 0.06588426 0.99679535
3.3 Data Manipulation Using OREdplyr

OREdplyr package functions transparently implement dplyr functions for use with ore.frame and ore.numeric objects.

Many of these functions have non-standard evaluation (NSE) and standard evaluation (SE) interfaces. The SE functions have an underscore (_) appended to the function name. NSE functions are useful in interactive R sessions; SE functions are convenient for use in programs.

The functions in the OREdplyr package are described in the following topics.

- **Select and Order Data**
 OREdplyr functions for selecting and ordering data in columns and rows of an ore.frame object.

- **Join Rows**
 OREdplyr functions for joining rows.

- **Group Columns and Rows**
 OREdplyr functions for grouping columns and rows.

- **Aggregate Columns and Rows**
 OREdplyr functions for aggregating columns and rows.

- **Sample Rows**
 OREdplyr functions for sampling rows.

- **Rank Rows**
 OREdplyr functions for ranking rows.

3.3.1 Select and Order Data

OREdplyr functions for selecting and ordering data in columns and rows of an ore.frame object.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>arrange</td>
<td>Orders rows by the specified columns.</td>
</tr>
<tr>
<td>arrange_</td>
<td></td>
</tr>
<tr>
<td>desc</td>
<td>Sorts an ore.number, ore.factor, or ore.character object in descending order</td>
</tr>
<tr>
<td>distinct</td>
<td>Selects unique rows from an input ore.frame object over the specified columns</td>
</tr>
<tr>
<td>distinct_</td>
<td></td>
</tr>
<tr>
<td>filter</td>
<td>Filters rows by matching the specified condition.</td>
</tr>
<tr>
<td>filter_</td>
<td></td>
</tr>
</tbody>
</table>
Table 3-2 (Cont.) Selecting and Ordering Columns and Rows

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mutate</td>
<td>Adds new columns.</td>
</tr>
<tr>
<td>mutate_</td>
<td>Renames the specified columns and keeps all columns.</td>
</tr>
<tr>
<td>rename</td>
<td>Selects only the specified columns.</td>
</tr>
<tr>
<td>rename_</td>
<td>Selects rows by position; ignores the grouping of the input ordered ore.frame object.</td>
</tr>
<tr>
<td>select</td>
<td>Adds new columns and drops the existing columns.</td>
</tr>
<tr>
<td>select_</td>
<td>Examples of using these functions are the following:</td>
</tr>
<tr>
<td>slice</td>
<td>Examples of the select and rename functions of the OREdplyr package.</td>
</tr>
<tr>
<td>slice_</td>
<td>Examples of the select_function of the OREdplyr package.</td>
</tr>
<tr>
<td>tranmute</td>
<td>Examples of the distinct and arrange functions of the OREdplyr package.</td>
</tr>
<tr>
<td>tranmute_</td>
<td>Examples of the slice and filter functions of the OREdplyr package.</td>
</tr>
<tr>
<td></td>
<td>Examples of the arrange and desc functions of the OREdplyr package.</td>
</tr>
<tr>
<td></td>
<td>Examples of the filter function of the OREdplyr package.</td>
</tr>
<tr>
<td></td>
<td>Examples of the mutate and transmute functions of the OREdplyr package.</td>
</tr>
</tbody>
</table>

Examples of Selecting Columns

Examples of the select and rename functions of the OREdplyr package.

Example 3-65 Selecting Columns

The following examples select columns from the IRIS ore.frame object that is created by using the ore.push function on the iris data.frame objects.

```r
IRIS <- ore.push(iris)
# Select the specified column
names(select(IRIS, Petal.Length))
names(select(IRIS, petal_length = Petal.Length))

# Drop the specified column
names(select(IRIS, -Petal.Length))
```
rename() keeps all variables
```
names(rename(IRIS, petal_length = Petal.Length))
```

Listing for This Example

```r
IRIS <- ore.push(iris)
# Select the specified column
names(select(IRIS, Petal.Length))
[1] "Petal.Length"

R> names(select(IRIS, petal_length = Petal.Length))
[1] "petal_length"

R> # Drop the specified column
names(select(IRIS, -Petal.Length))

R> # rename() keeps all variables
names(rename(IRIS, petal_length = Petal.Length))
```

3.3.1.2 Examples of Programming with select_

Examples of the `select_` function of the OREdplyr package.

Example 3-66 Programming with select

This example uses the `select_` function to select columns from the IRIS `ore.frame` object that is created by using the `ore.push` function on the `iris` `data.frame` object.

```r
IRIS <- ore.push(iris)
# Use ~, double quote, or quote function to specify the column to select
table(select_(IRIS, ~Petal.Length))
table(select_(IRIS, "Petal.Length"))
table(select_(IRIS, quote(-Petal.Length), quote(-Petal.Width)))
table(select_(IRIS, .dots = list(quote(-Petal.Length), quote(-Petal.Width))))
```

Listing for This Example

```r
IRIS <- ore.push(iris)
# Use ~, double quote, or quote function to specify the column to select
head(select_(IRIS, ~Petal.Length))
  Petal.Length
  1    1.4
  2    1.4
  3    1.3
  4    1.5
  5    1.4
  6    1.7

R> head(select_(IRIS, "Petal.Length"))
    Petal.Length
  1    1.4
  2    1.4
  3    1.3
  4    1.5
  5    1.4
  6    1.7
```
3.3.1.3 Examples of Selecting Distinct Columns

Examples of the `distinct` and `arrange` functions of the OREdplyr package.

Example 3-67 Selecting Distinct Columns

```r
df <- data.frame(
  x = sample(10, 100, rep = TRUE),
  y = sample(10, 100, rep = TRUE)
)
DF <- ore.push(df)
nrow(DF)
nrow(distinct(DF))
arrange(distinct(DF, x), x)
arrange(distinct(DF, y), y)

# Use distinct on computed variables
arrange(distinct(DF, diff = abs(x - y)), diff)
```

Listing for This Example

```r
R> df <- data.frame(
+   x = sample(10, 100, rep = TRUE),
+   y = sample(10, 100, rep = TRUE)
+ )
R> DF <- ore.push(df)
R> nrow(DF)
[1] 100
R> nrow(distinct(DF))
[1] 66
```
3.3.1.4 Examples of Selecting Rows by Position

Example 3-68 Selecting Rows by Position

MTCARS <- ore.push(mtcars)
Display the names of the rows in MTCARS
rownames(MTCARS)
Select the first row
slice(MTCARS, 1L)

Arrange the rows by horsepower, then select the first row by position
MTCARS <- arrange(MTCARS, hp)
slice(MTCARS, 1L)
Listing for This Example

R> MTCARS <- ore.push(mtcars)
R> # Display the names of the rows in MTCARS
R> rownames(MTCARS)
[1] "Mazda RX4" "Mazda RX4 Wag" "Datsun 710"
"Hornet 4 Drive" "Hornet Sportabout"
[6] "Valiant" "Duster 360" "Merc 240D"
"Merc 230" "Merc 280"
"Merc 450SLC" "Cadillac Fleetwood"
[16] "Lincoln Continental" "Chrysler Imperial" "Plymouth Satellite"
"Honda Civic" "Toyota Corolla"
[21] "Toyota Corona" "Dodge Challenger" "AMC Javelin"
"Camaro Z28" "Pontiac Firebird"
[26] "Plymouth Fury" "Lotus Europa"
"Ford Pantera L" "Ferrari Dino"
[31] "Maserati Bora" "Volvo 142E"
R> # Select the first row
R> slice(MTCARS, 1L)
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21 6 160 110 3.9 2.62 16.46 0 1 4 4

R> # Arrange the rows by horsepower, then select the first row by position
R> MTCARS <- arrange(MTCARS, hp)
R> slice(MTCARS, 1L)
mpg cyl disp hp drat wt qsec vs am gear carb
1 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2

R> by_cyl <- group_by(MTCARS, cyl)
R> # Grouping is ignored by slice
R> slice(by_cyl, 1:2)
mpg cyl disp hp drat wt qsec vs am gear carb
1 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
2 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2

Warning message:
In slice_.ore.frame(.data, .dots = .ore.dplyr.exprall(..., env = parent.frame())):
grouping is ignored

R> # Use filter and row_number to obtain slices per group
R> filter(by_cyl, row_number(hp) < 3L)
mpg cyl disp hp drat wt qsec vs am gear carb
1 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
2 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
3 18.1 6 225.0 105 2.76 3.460 20.22 0 0 3 1
4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
5 15.2 8 304.0 150 3.15 3.430 17.30 0 0 3 2
6 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
3.3.1.5 Examples of Arranging Columns

Examples of the `arrange` and `desc` functions of the `OREdplyr` package.

Example 3-69 Arranging Columns

This example arranges columns from the `ore.frame` object `MTCARS` that is created by using the `ore.push` function on the `mtcars` data.frame object. The second `arrange()` invocation calls the `desc()` function to arrange the values in descending order.

```r
MTCARS <- ore.push(mtcars)
head(arrange(mtcars, cyl, disp))
head(arrange(MTCARS, desc(disp)))
```

Listing for This Example

```r
R> MTCARS <- ore.push(mtcars)
R> head(arrange(MTCARS, cyl, disp))
     mpg  cyl disp  hp drat    wt  qsec vs am gear carb
1  33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
2  30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
3  32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
4  27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
5  30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
6  22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
R> head(arrange(MTCARS, desc(disp)))
     mpg  cyl disp  hp drat    wt  qsec vs am gear carb
1 10.4   8  472 205 2.93 5.250 17.98  0  0    3    4
2 10.4   8  460 215 3.00 5.424 17.82  0  0    3    4
3 14.7   8  440 230 3.23 5.345 17.42  0  0    3    4
4 19.2   8  400 175 3.08 3.845 17.05  0  0    3    2
5 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
6 14.3   8  360 245 3.21 3.570 15.84  0  0    3    4
```

3.3.1.6 Examples of Filtering Columns

Examples of the `filter` function of the `OREdplyr` package.

Example 3-70 Filtering Columns

This example filters columns from the `MTCARS` `ore.frame` object that is created by using the `ore.push` function on the `mtcars` data.frame object.

```r
MTCARS <- ore.push(mtcars)
head(filter(MTCARS, cyl == 8))
# Using multiple criteria
head(filter(MTCARS, cyl < 6 & vs == 1))
# Using multiple arguments is the equivalent to using &
head(filter(MTCARS, cyl < 6, vs == 1))
```

```r
MTCARS <- ore.push(mtcars)
head(filter(MTCARS, cyl == 8))
# Using multiple criteria
head(filter(MTCARS, cyl < 6 & vs == 1))
# Using multiple arguments is the equivalent to using &
head(filter(MTCARS, cyl < 6, vs == 1))
```
3.3.1.7 Examples of Mutating Columns

Examples of the `mutate` and `transmute` functions of the `OREdplyr` package.

Example 3-71 Mutating Columns

This example uses the MTCARS `ore.frame` object that is created by using the `ore.push` function on the `mtcars` data.frame object.

The `mutate` function adds the extra column `displ_l` with the value derived from that of column `disp`. Setting the column to NULL removes the column.

```r
MTCARS <- ore.push(mtcars)
head(mutate(MTCARS, displ_l = disp / 61.0237))
head(transmute(MTCARS, displ_l = disp / 61.0237))
head(mutate(MTCARS, cyl = NULL))
head(mutate(MTCARS, cyl = NULL, hp = NULL, displ_l = disp / 61.0237))
```

Listing for This Example

```r
R> MTCARS <- ore.push(mtcars)
R> head(mutate(MTCARS, displ_l = disp / 61.0237))
mpg cyl disp hp drat wt qsec vs am gear carb displ_l
1 21.0 6 160 110 3.90 2.620 16.46 0 1 4 2.621932
```
3.3.2 Join Rows

OREdplyr functions for joining rows.

<table>
<thead>
<tr>
<th>Table 3-3 Joining Rows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
</tr>
<tr>
<td>full_join</td>
</tr>
<tr>
<td>inner_join</td>
</tr>
<tr>
<td>left_join</td>
</tr>
<tr>
<td>right_join</td>
</tr>
</tbody>
</table>

Example 3-72 Joining Rows

To join two tables, the join function selects the columns in each table that have the same name or uses the argument by to specify the columns.

```r
MTCARS <- ore.push(mtcars)
M1 <- filter(select(MTCARS, mpg, cyl, carb), carb < 6L)
```
M2 <- filter(select(MTCARS, cyl, hp, carb), carb > 2L)

names(inner_join(M1, M2))
nrow(left_join(M1, M2))
nrow(right_join(M1, M2))
nrow(full_join(M1, M2))

names(M2) <- c("cyl", "hp", "carb2")

Listing for This Example

R> MTCARS <- ore.push(mtcars)
R> M1 <- filter(select(MTCARS, mpg, cyl, carb), carb < 6L)
R> M2 <- filter(select(MTCARS, cyl, hp, carb), carb > 2L)
R>
R> names(inner_join(M1, M2))
[1] "cyl" "carb" "mpg" "hp"
R> nrow(left_join(M1, M2))
[1] 78
R> nrow(right_join(M1, M2))
[1] 63
R> nrow(full_join(M1, M2))
[1] 80
R>
R> names(M2) <- c("cyl", "hp", "carb2")
R> names(inner_join(M1, M2, by = c("cyl", carb="carb2")))
[1] "cyl" "carb" "mpg" "hp"
R> nrow(inner_join(M1, M2, by = c("cyl", carb="carb2")))
[1] 61
R> nrow(left_join(M1, M2, by = c("cyl", carb="carb2")))
[1] 78
R> nrow(right_join(M1, M2, by = c("cyl", carb="carb2")))
[1] 63
R> nrow(full_join(M1, M2, by = c("cyl", carb="carb2")))
[1] 80

3.3.3 Group Columns and Rows

OREdplyr functions for grouping columns and rows.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>group_by</td>
<td>Groups an ore.frame object over the specified columns.</td>
</tr>
<tr>
<td>group_by_</td>
<td></td>
</tr>
<tr>
<td>group_size</td>
<td>Lists the number of rows in each group.</td>
</tr>
</tbody>
</table>

Chapter 3

Data Manipulation Using OREdplyr

3-52
Table 3-4 (Cont.) Grouping Columns and Rows

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>groups</td>
<td>Shows the names of the grouping columns.</td>
</tr>
<tr>
<td>n_groups</td>
<td>Returns the number of groups.</td>
</tr>
<tr>
<td>ungroup</td>
<td>Drops the grouping from the input ore.frame object.</td>
</tr>
</tbody>
</table>

Example 3-73 Using Grouping Functions

The following examples use the ore.frame object MTCARS that is created by using the ore.push function on the mtcars data.frame object. They exemplify the use of the grouping functions group_by, group_size, groups, n_group, and ungroup. They also use the OREdplyr functions arrange, rename, and summarize.

```
MTCARS <- ore.push(mtcars)
by_cyl <- group_by(MTCARS, cyl)

# Apply the summarise function to each group
arrange(summarise(by_cyl, mean(disp), mean(hp)), cyl)

# Summarise drops one layer of grouping
by_vs_am <- group_by(MTCARS, vs, am)
by_vs <- summarise(by_vs_am, n = n())
arrange(by_vs, vs, am)
arrange(summarise(by_vs, n = sum(n)), vs)

# Remove grouping
summarise(ungroup(by_vs), n = sum(n))

# Group by expressions with mutate
arrange(group_size(group_by(mutate(MTCARS, vsam = vs + am), vsam)), vsam)

# Rename the grouping column
groups(rename(group_by(MTCARS, vs), vs2 = vs))

# Add more grouping columns
groups(group_by(by_cyl, vs, am))
groups(group_by(by_cyl, vs, am, add = TRUE))

# Drop duplicate groups
groups(group_by(by_cyl, cyl, cyl))

# Load the magrittr library to use the forward-pipe operator %>%
library(magrittr)
by_cyl_gear_carb <- MTCARS %>% group_by(cyl, gear, carb)
n_groups(by_cyl_gear_carb)
arrange(group_size(by_cyl_gear_carb), cyl, gear, carb)

by_cyl <- MTCARS %>% group_by(cyl)
# Number of groups
n_groups(by_cyl)
```
Size of each group

```r
arrange(group_size(by_cyl), cyl)
```

Listing for This Example

```r
# Apply the summarise function to each group
arrange(summarise(by_cyl, mean(disp), mean(hp)), cyl)

<table>
<thead>
<tr>
<th>cyl</th>
<th>mean.disp.</th>
<th>mean.hp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>105.1364</td>
<td>82.63636</td>
</tr>
<tr>
<td>2</td>
<td>183.3143</td>
<td>122.28571</td>
</tr>
<tr>
<td>3</td>
<td>353.1000</td>
<td>209.21429</td>
</tr>
</tbody>
</table>

# Summarise drops one layer of grouping
by_vs_am <- group_by(MTCARS, vs, am)
by_vs <- summarise(by_vs_am, n = n())
arrange(by_vs, vs, am)

<table>
<thead>
<tr>
<th>vs</th>
<th>am</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>

arrange(summarise(by_vs, n = sum(n)), vs)

<table>
<thead>
<tr>
<th>vs</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
</tr>
</tbody>
</table>

# Remove grouping
summarise(ungroup(by_vs), n = sum(n))

<table>
<thead>
<tr>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
</tr>
</tbody>
</table>

# Group by expressions with mutate
arrange(group_size(group_by(mutate(MTCARS, vsam = vs + am), vsam)), vsam)

<table>
<thead>
<tr>
<th>vsam</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

# Rename the grouping column
groups(rename(group_by(MTCARS, vs), vs2 = vs))

[1] "vs2"

# Add more grouping columns
groups(group_by(by_cyl, vs, am))

[[1]]

[1] "vs"

[[2]]

[1] "am"
R> groups(group_by(by_cyl, vs, am, add = TRUE))
[[1]]
[1] "cyl"

[[2]]
[1] "vs"

[[3]]
[1] "am"
R>
R> # Drop duplicate groups
R> groups(group_by(by_cyl, cyl, cyl))
[1] "cyl"
R>
R> # Load the magrittr library to use the forward-pipe operator %>%
R> library(magrittr)
R> by_cyl_gear_carb <- MTCARS %>% group_by(cyl, gear, carb)
R> n_groups(by_cyl_gear_carb)
[1] 12
R> arrange(group_size(by_cyl_gear_carb), cyl, gear, carb)
cyl gear carb n
1  4  3  1  1
2  4  4  1  4
3  4  4  2  4
4  4  5  2  2
5  6  3  1  2
6  6  4  4  4
7  6  5  6  1
8  8  3  2  4
9  8  3  3  3
10 8  3  4  5
11 8  5  4  1
12 8  5  8  1
R>
R> by_cyl <- MTCARS %>% group_by(cyl)
R> # Number of groups
R> n_groups(by_cyl)
[1] 3
R> # Number of groups
R> n_groups(by_cyl)
[1] 3
R>
R> # Size of each group
R> arrange(group_size(by_cyl), cyl)
cyl n
1  4 11
2  6  7
3  8 14
## 3.3.4 Aggregate Columns and Rows

OREdplyr functions for aggregating columns and rows.

### Table 3-5  Aggregating Columns and Rows

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>Counts rows by group; similar to tally, but it does the group_by for you.</td>
</tr>
<tr>
<td>count_</td>
<td>Summarizes columns by using aggregate functions. When an ore.frame object is grouped, the aggregate function is applied group-wise. The resulting ore.frame drops one grouping of the input ore.frame.</td>
</tr>
<tr>
<td>summarise</td>
<td>Summarizes columns by using aggregate functions. When an ore.frame object is grouped, the aggregate function is applied group-wise. The resulting ore.frame drops one grouping of the input ore.frame.</td>
</tr>
<tr>
<td>summarise_</td>
<td>Tallies rows by group; a convenient wrapper for summarise that either calls n or sum(n) depending on whether you're tallying for the first time or re-tallying.</td>
</tr>
</tbody>
</table>

### Example 3-74  Aggregating Columns

The following examples use the ore.frame object MTCARS that is created by using the ore.push function on the mtcars data.frame object. They exemplify the use of the aggregation functions count, summarize, and tally. They also use the OREdplyr functions arrange and group_by.

```r
MTCARS <- ore.push(mtcars)
arrange(tally(group_by(MTCARS, cyl)), cyl)
tally(group_by(MTCARS, cyl), sort = TRUE)

Multiple tallys progressively roll up the groups
cyl_by_gear <- tally(group_by(MTCARS, cyl, gear), sort = TRUE)
tally(cyl_by_gear, sort = TRUE)
tally(tally(cyl_by_gear))

cyl_by_gear <- tally(group_by(MTCARS, cyl, gear), wt = hp, sort = TRUE)
tally(cyl_by_gear, sort = TRUE)
tally(tally(cyl_by_gear))

cyl_by_gear <- count(MTCARS, cyl, gear, wt = hp + mpg, sort = TRUE)
tally(cyl_by_gear, sort = TRUE)
tally(tally(cyl_by_gear))

Load the magrittr library to use the forward-pipe operator %>%
library(magrittr)
MTCARS %>% group_by(cyl) %>% tally(sort = TRUE)

count is more succinct and also does the grouping
MTCARS %>% count(cyl) %>% arrange(cyl)
MTCARS %>% count(cyl, wt = hp) %>% arrange(cyl)
MTCARS %>% count_(cyl, wt = hp, sort = TRUE)
```
Listing for This Example

R> MTCARS <- ore.push(mtcars)
R> arrange(tally(group_by(MTCARS, cyl)), cyl)
   cyl n
1  4 11
2  6  7
3  8 14
R> tally(group_by(MTCARS, cyl), sort = TRUE)
   cyl n
1  8 14
2  4 11
3  6  7
R> # Multiple tallys progressively roll up the groups
R> cyl_by_gear <- tally(group_by(MTCARS, cyl, gear), sort = TRUE)
R> tally(cyl_by_gear, sort = TRUE)
Using n as weighting variable
   cyl n
1  8 14
2  4 11
3  6  7
R> tally(tally(cyl_by_gear))
Using n as weighting variable
Using n as weighting variable
   n
32
R> cyl_by_gear <- tally(group_by(MTCARS, cyl, gear), wt = hp, sort = TRUE)
R> tally(cyl_by_gear, sort = TRUE)
Using n as weighting variable
   cyl n
1  8 2929
2  4  909
3  6  856
R> tally(tally(cyl_by_gear))
Using n as weighting variable
Using n as weighting variable
   n
4694
R> cyl_by_gear <- count(MTCARS, cyl, gear, wt = hp + mpg, sort = TRUE)
R> tally(cyl_by_gear, sort = TRUE)
Using n as weighting variable
   cyl n
1  8 3140.4
2  4 1202.3
3  6  994.2
R> tally(tally(cyl_by_gear))
Using n as weighting variable
Using n as weighting variable
   n
5336.9
R> # Load the magrittr library to use the forward-pipe operator %>%
R> library(magrittr)
R> MTCARS %>% group_by(cyl) %>% tally(sort = TRUE)
  cyl n
 1  8 14
 2  4 11
 3  6  7
R>
R> # count is more succinct and also does the grouping
R> MTCARS %>% count(cyl) %>% arrange(cyl)
  cyl n
 1  4 11
 2  6  7
 3  8 14
R> MTCARS %>% count(cyl, wt = hp) %>% arrange(cyl)
  cyl    n
 1    4   909
 2    6   856
 3    8  2929
R> MTCARS %>% count_("cyl", wt = hp, sort = TRUE)
  cyl    n
 1    8  2929
 2    4  909
 3    6  856

3.3.5 Sample Rows

OREdplyr functions for sampling rows.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample_frac</td>
<td>Samples an ore.frame object by a fraction.</td>
</tr>
<tr>
<td>sample_n</td>
<td>Samples an ore.frame object by a fixed number of rows.</td>
</tr>
</tbody>
</table>

Example 3-75  Sampling Rows

These examples use the ore.frame object MTCARS that is created by using the ore.push function on the mtcars data.frame object. They exemplify the use of the sampling functions sample_n and sample_frac. They also use the OREdplyr functions arrange and summarize.

MTCARS <- ore.push(mtcars)
by_cyl <- group_by(MTCARS, cyl)

# Sample fixed number per group of rows from the entire dataset
sample_n(MTCARS, 10)
nrow(sample_n(MTCARS, 50, replace = TRUE))

# Sample fixed number of rows per group with replacement and weight
sample_n(MTCARS, 10, weight = mpg)
sample_n(MTCARS, 10, weight = MTCARS[["mpg"]])

# Sample fixed number of rows per group with replacement and weight
arrange(sample_n(by_cyl, 3), cyl, mpg)
arrange(summarise(sample_n(by_cyl, 10, replace = TRUE), n = n()), cyl)
arrange(summarise(sample_n(by_cyl, 3, weight = mpg/mean(mpg)), n = n()),
cyl)
arrange(summarise(sample_n(by_cyl, 3,
    weight = by_cyl["mpg"] / mean(by_cyl["mpg"])), n = n()), cyl)

# Sample fixed fraction per group
nrow(sample_frac(MTCARS, 0.1))
nrow(sample_frac(MTCARS, 1.5, replace = TRUE))
nrow(sample_frac(MTCARS, 0.1, weight = 1/mpg))

Listing for This Example

R> MTCARS <- ore.push(mtcars)
R> by_cyl <- group_by(MTCARS, cyl)
R>
R> # Sample fixed number per group of rows from the entire dataset
R> sample_n(MTCARS, 10)

R> nrow(sample_n(MTCARS, 50, replace = TRUE))
[1] 50
R>
R> # Sample fixed number of rows per group with replacement and weight
R> arrange(sample_n(by_cyl, 3), cyl, mpg)

R> arrange(summarise(sample_n(by_cyl, 10, replace = TRUE), n = n()), cyl)
  cyl n
  1 4 10
  2 6 10
  3 8 10
R> arrange(summarise(sample_n(by_cyl, 3, weight = mpg/mean(mpg)), n = n()),
cyl)
  cyl n
  1 4 3
R> arrange(summarise(sample_n(by_cyl, 3, weight = by_cyl["mpg"])/
mean(by_cyl["mpg"])), n = n()), cyl)
cyl n
1 4 3
2 6 3
3 8 3
R>
R> nrow(sample_frac(MTCARS, 0.1))
[1] 3
R> nrow(sample_frac(MTCARS, 1.5, replace = TRUE))
[1] 48
R> nrow(sample_frac(MTCARS, 0.1, weight = 1/mpg))
[1] 3

3.3.6 Rank Rows

OREdplyr functions for ranking rows.

The ranking functions rank the elements in an ordered ore.vector by its values. An ore.character is coerced to an ore.factor. The values of an ore.factor are based upon factor levels. To reverse the direction of the ranking, use the desc function.

Table 3-7 Ranking Rows

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cume_dist</td>
<td>A cumulative distribution function: returns the proportion of all values that are less than or equal to the current rank.</td>
</tr>
<tr>
<td>dense_rank</td>
<td>Like min_rank but with no gaps between ranks.</td>
</tr>
<tr>
<td>first</td>
<td>Gets the first value from an ordered ore.vector object.</td>
</tr>
<tr>
<td>last</td>
<td>Gets the last value from an ordered ore.vector object.</td>
</tr>
<tr>
<td>min_rank</td>
<td>Equivalent to rank(ties.method = &quot;min&quot;).</td>
</tr>
<tr>
<td>nth</td>
<td>Obtains the value at the specified position in the order.</td>
</tr>
<tr>
<td>ntile</td>
<td>A rough ranking that breaks the input vector into n buckets.</td>
</tr>
<tr>
<td>n_distinct</td>
<td>Gets the n'th value from an ordered ore.vector object.</td>
</tr>
<tr>
<td>percent_rank</td>
<td>Returns a number between 0 and 1 that is computed by rescaling min_rank to [0, 1].</td>
</tr>
<tr>
<td>row_number</td>
<td>Equivalent to rank(ties.method = &quot;first&quot;).</td>
</tr>
<tr>
<td>top_n</td>
<td>Selects the top or bottom number of rows.</td>
</tr>
</tbody>
</table>

Example 3-76 Ranking Rows

These examples use the ranking functions row_number, min_rank, dense_rank, percent_rank, cume_dist, and ntile.

X <- ore.push(c(5, 1, 3, 2, 2, NA))

row_number(X)
row_number(desc(X))

min_rank(X)

dense_rank(X)

percent_rank(X)

cume_dist(X)

ntile(X, 2)

ntile(ore.push(runif(100)), 10)

MTCARS <- ore.push(mtcars)
by_cyl <- group_by(MTCARS, cyl)

# Using ranking functions with an ore.frame
head(mutate(MTCARS, rank = row_number(hp)))

head(mutate(MTCARS, rank = min_rank(hp)))

head(mutate(MTCARS, rank = dense_rank(hp)))

# Using ranking functions with a grouped ore.frame
head(mutate(by_cyl, rank = row_number(hp)))

head(mutate(by_cyl, rank = min_rank(hp)))

head(mutate(by_cyl, rank = dense_rank(hp)))

**Listing for This Example**

```r
R> X <- ore.push(c(5, 1, 3, 2, 2, NA))
R>
R> row_number(X)
[1] 5 1 4 2 3 6
R> row_number(desc(X))
[1] 1 5 2 3 4 6
R>
R> min_rank(X)
[1] 5 1 4 2 2 6
R>
R> dense_rank(X)
[1] 4 1 3 2 2 6
R>
R> percent_rank(X)
[1] 0.8 0.0 0.6 0.2 0.2 1.0
R>
R> cume_dist(X)
[1] 0.8333333 0.1666667 0.6666667 0.5000000 0.5000000 1.0000000
R>
R> ntile(X, 2)
[1] 2 1 2 1 1 2
R> ntile(ore.push(runif(100)), 10)
```
[1]  6 10  5  2  1  1  8  3  8  8  7  3 10  3  7  9  9  4  4 10 10  7
2  3  7  4  5  5  3  9  4  6  8  4 10  6  1  5  5  4  6  9
3  8  2  7  7  1  2  9  1  2  8  5  6  5  3  4  7  1  3  1 10  1
4  5 10  9  2  3  9  6  6  8  8  6  3  7  2  2  8  4  1  9
5  6 10  4 10  7  2  9 10  7  2  4  9  6  3  8  1
R> MTCARS <- ore.push(mtcars)
R> by_cyl <- group_by(MTCARS, cyl)
R>
R> # Using ranking functions with an ore.frame
R> head(mutate(MTCARS, rank = row_number(hp)))

<table>
<thead>
<tr>
<th>mpg</th>
<th>cyl</th>
<th>disp</th>
<th>hp</th>
<th>drat</th>
<th>wt</th>
<th>qsec</th>
<th>vs</th>
<th>am</th>
<th>gear</th>
<th>carb</th>
<th>rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.0</td>
<td>6</td>
<td>160</td>
<td>110</td>
<td>3.90</td>
<td>2.620</td>
<td>16.46</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>21.0</td>
<td>6</td>
<td>160</td>
<td>110</td>
<td>3.90</td>
<td>2.875</td>
<td>17.02</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>22.8</td>
<td>4</td>
<td>108</td>
<td>93</td>
<td>3.85</td>
<td>2.320</td>
<td>18.61</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>21.4</td>
<td>6</td>
<td>258</td>
<td>110</td>
<td>3.08</td>
<td>3.215</td>
<td>19.44</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>18.7</td>
<td>8</td>
<td>360</td>
<td>175</td>
<td>3.15</td>
<td>3.440</td>
<td>17.02</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>18.1</td>
<td>6</td>
<td>225</td>
<td>105</td>
<td>2.76</td>
<td>3.460</td>
<td>20.22</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>
R>
R> head(mutate(MTCARS, rank = min_rank(hp)))

<table>
<thead>
<tr>
<th>mpg</th>
<th>cyl</th>
<th>disp</th>
<th>hp</th>
<th>drat</th>
<th>wt</th>
<th>qsec</th>
<th>vs</th>
<th>am</th>
<th>gear</th>
<th>carb</th>
<th>rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.0</td>
<td>6</td>
<td>160</td>
<td>110</td>
<td>3.90</td>
<td>2.620</td>
<td>16.46</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>21.0</td>
<td>6</td>
<td>160</td>
<td>110</td>
<td>3.90</td>
<td>2.875</td>
<td>17.02</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>22.8</td>
<td>4</td>
<td>108</td>
<td>93</td>
<td>3.85</td>
<td>2.320</td>
<td>18.61</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>21.4</td>
<td>6</td>
<td>258</td>
<td>110</td>
<td>3.08</td>
<td>3.215</td>
<td>19.44</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>18.7</td>
<td>8</td>
<td>360</td>
<td>175</td>
<td>3.15</td>
<td>3.440</td>
<td>17.02</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>18.1</td>
<td>6</td>
<td>225</td>
<td>105</td>
<td>2.76</td>
<td>3.460</td>
<td>20.22</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>
R>
R> head(mutate(MTCARS, rank = dense_rank(hp)))

<table>
<thead>
<tr>
<th>mpg</th>
<th>cyl</th>
<th>disp</th>
<th>hp</th>
<th>drat</th>
<th>wt</th>
<th>qsec</th>
<th>vs</th>
<th>am</th>
<th>gear</th>
<th>carb</th>
<th>rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.0</td>
<td>6</td>
<td>160</td>
<td>110</td>
<td>3.90</td>
<td>2.620</td>
<td>16.46</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>21.0</td>
<td>6</td>
<td>160</td>
<td>110</td>
<td>3.90</td>
<td>2.875</td>
<td>17.02</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>22.8</td>
<td>4</td>
<td>108</td>
<td>93</td>
<td>3.85</td>
<td>2.320</td>
<td>18.61</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>21.4</td>
<td>6</td>
<td>258</td>
<td>110</td>
<td>3.08</td>
<td>3.215</td>
<td>19.44</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>18.7</td>
<td>8</td>
<td>360</td>
<td>175</td>
<td>3.15</td>
<td>3.440</td>
<td>17.02</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>18.1</td>
<td>6</td>
<td>225</td>
<td>105</td>
<td>2.76</td>
<td>3.460</td>
<td>20.22</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>
R>
R> # Using ranking functions with a grouped ore.frame
R> head(mutate(by_cyl, rank = row_number(hp)))

<table>
<thead>
<tr>
<th>mpg</th>
<th>cyl</th>
<th>disp</th>
<th>hp</th>
<th>drat</th>
<th>wt</th>
<th>qsec</th>
<th>vs</th>
<th>am</th>
<th>gear</th>
<th>carb</th>
<th>rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.0</td>
<td>6</td>
<td>160</td>
<td>110</td>
<td>3.90</td>
<td>2.620</td>
<td>16.46</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>21.0</td>
<td>6</td>
<td>160</td>
<td>110</td>
<td>3.90</td>
<td>2.875</td>
<td>17.02</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>22.8</td>
<td>4</td>
<td>108</td>
<td>93</td>
<td>3.85</td>
<td>2.320</td>
<td>18.61</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>21.4</td>
<td>6</td>
<td>258</td>
<td>110</td>
<td>3.08</td>
<td>3.215</td>
<td>19.44</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>18.7</td>
<td>8</td>
<td>360</td>
<td>175</td>
<td>3.15</td>
<td>3.440</td>
<td>17.02</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>18.1</td>
<td>6</td>
<td>225</td>
<td>105</td>
<td>2.76</td>
<td>3.460</td>
<td>20.22</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
R>
R> head(mutate(by_cyl, rank = min_rank(hp)))

<table>
<thead>
<tr>
<th>mpg</th>
<th>cyl</th>
<th>disp</th>
<th>hp</th>
<th>drat</th>
<th>wt</th>
<th>qsec</th>
<th>vs</th>
<th>am</th>
<th>gear</th>
<th>carb</th>
<th>rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.0</td>
<td>6</td>
<td>160</td>
<td>110</td>
<td>3.90</td>
<td>2.620</td>
<td>16.46</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>21.0</td>
<td>6</td>
<td>160</td>
<td>110</td>
<td>3.90</td>
<td>2.875</td>
<td>17.02</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>22.8</td>
<td>4</td>
<td>108</td>
<td>93</td>
<td>3.85</td>
<td>2.320</td>
<td>18.61</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>21.4</td>
<td>6</td>
<td>258</td>
<td>110</td>
<td>3.08</td>
<td>3.215</td>
<td>19.44</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>18.7</td>
<td>8</td>
<td>360</td>
<td>175</td>
<td>3.15</td>
<td>3.440</td>
<td>17.02</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>18.1</td>
<td>6</td>
<td>225</td>
<td>105</td>
<td>2.76</td>
<td>3.460</td>
<td>20.22</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Chapter 3
Data Manipulation Using OREdplyr
3-62
R> head(mutate(by_cyl, rank = dense_rank(hp)))

<table>
<thead>
<tr>
<th></th>
<th>mpg</th>
<th>cyl</th>
<th>disp</th>
<th>hp</th>
<th>drat</th>
<th>wt</th>
<th>qsec</th>
<th>vs</th>
<th>am</th>
<th>gear</th>
<th>carb</th>
<th>rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mazda RX4</td>
<td>21.0</td>
<td>6</td>
<td>160</td>
<td>110</td>
<td>3.90</td>
<td>2.620</td>
<td>16.46</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Mazda RX4 Wag</td>
<td>21.0</td>
<td>6</td>
<td>160</td>
<td>110</td>
<td>3.90</td>
<td>2.875</td>
<td>17.02</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Datsun 710</td>
<td>22.8</td>
<td>4</td>
<td>108</td>
<td>93</td>
<td>3.85</td>
<td>2.320</td>
<td>18.61</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Hornet 4 Drive</td>
<td>21.4</td>
<td>6</td>
<td>258</td>
<td>110</td>
<td>3.08</td>
<td>3.215</td>
<td>19.44</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Hornet Sportabout</td>
<td>18.7</td>
<td>8</td>
<td>360</td>
<td>175</td>
<td>3.15</td>
<td>3.440</td>
<td>17.02</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Valiant</td>
<td>18.1</td>
<td>6</td>
<td>225</td>
<td>105</td>
<td>2.76</td>
<td>3.460</td>
<td>20.22</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

3.4 Graph Analysis Using OAAgraph

Beginning with Oracle Database 12.2, the OAAgraph package provides an R interface to the Oracle Spatial and Graph Property Graph In-Memory Analyst (PGX) for use with OML4R and database tables.

About OAAgraph

PGX is an integrated set of Oracle Database functions, procedures, data types, and data models that support spatial and graph analytics. The OAAgraph package contains several graph algorithms, graph transformation operations, and graph querying capabilities.

With the OAAgraph functions in R, you can use the efficient PGX graph algorithms and representations to compute graph metrics and analysis in memory in the database. You can use the resulting data.frame objects to build models that include the graph metrics as predictors. You can use the models to score or classify data. You can then add the results to graph nodes where you can use the graph algorithms to further explore the graph or compute new metrics.

Figure 3-3  Graph Analytics and Machine Learning Interaction

Advantages of the OAAgraph package include:
Access in R to the PGX in-memory graph analysis engine, which provides fast, parallel graph analysis

Many graph algorithms

Ability to query graphs and perform pattern matching

Integration with Oracle Big Data Spatial and Graph and Oracle Machine Learning for Spark

Graph analysis is a methodology in data analysis in which you represent your data as a graph. Data entities become nodes and relationships become edges. You can analyze fine-grained relationships through the graph and navigate multi-hop relationships quickly without needing to repeatedly compute joins.

Two major types of graph algorithms are:

- Computational graph analytics, which analyze an entire graph
- Graph pattern matching, which are queries that find sub-graphs that fit relationship patterns

OAAgraph Algorithms

The algorithms in the OAAgraph package are the following:

**Ranking**
Pagerank and variants
Vertex betweenness centrality, including approximations
Closeness centrality
Eigenvector centrality

**Path Finding**
Dijkstra and variants
Bellman Ford and variants
Hop distance and variants
Fattest path

**Partitioning**
Weakly and strongly connected components
Conductance and modularity
Community detection

**Recommendation**
Twitter’s whom-to-follow
Matrix factorization

**Other**
Breadth first search with filter
Triangle counting
Degree distribution
K-core
Adamic Adar
Example 3-77 Using OAAgraph Functions

This example uses the graph capabilities of the OAAgraph package. The example does the following:

- Creates a graph from node and edge tables
- Creates a graph from a snapshot in-memory representation stored in the database
- Invokes the graph analytics algorithms countTriangles, degree, pagerank, and adamicAdarCounting
- Uses the oaa.cursor object
- Cleans up in-memory graphs and database objects

```r
library(ORE)
library(OAAgraph)

#-- Replace the values in quotation marks with the values for your database
dbHost <- "<DATABASE_HOST>"
dbUser <- "<DATABASE_USERNAME>"
dbPassword <- "<DATABASE_PASSWORD>"
dbSid <- "<DATABASE_SID>"
pgxBaseUrl <- "<PGX_BASE_URL>"

#-- Connect to the OML4R and PGX servers
ore.connect(host = dbHost, user = dbUser, password = dbPassword, sid = dbSid)
oaa.graphConnect(pgxBaseUrl = pgxBaseUrl, dbHost = dbHost, dbSid = dbSid, dbUser = dbUser, dbPassword = dbPassword)

#-- Create the node table in Oracle Database
VID <- c(1, 2, 3, 4, 5)
NP1 <- c("node1", "node2", "node3", "node4", "node5")
NP2 <- c(111.11, 222.22, 333.33, 444.44, 555.55)
NP3 <- c(1, 2, 3, 4, 5)

nodes <- data.frame(VID, NP1, NP2, NP3)
ore.drop(table = "MY_NODES")
ore.create(nodes, table = "MY_NODES")

#-- Create the edge table in Oracle Database
EID <- c(1, 2, 3, 4, 5)
SVID <- c(1, 3, 3, 2, 4)
DVID <- c(2, 1, 4, 3, 2)
EP1 <- c("edge1", "edge2", "edge3", "edge4", "edge5")
EL <- c("label1", "label2", "label3", "label4", "label5")
```
edges <- data.frame(EID, SVID, DVID, EP1, EL)
ore.drop(table = "MY_EDGES")
ore.create(edges, table = "MY_EDGES")

#-- Verify that the tables exist as ore.frame objects
ore.ls()

#-- Create a graph in PGX from the node and edge tables in the database

graph <- oaa.graph(MY_EDGES, MY_NODES, "myPgxGraph")
names(graph, "nodes")
names(graph, "edges")

#-- See the result of the countTriangles function, which gives an
#-- overview of the number of connections between nodes in neighborhoods

countTriangles(graph, sortVerticesByDegree=FALSE)

#-- See the results from degree algorithm variants, note the graph nodes
#-- are augmented with new properties as indicated by the 'name' argument

degree(graph, name = "OutDegree")
degree(graph, name = "InDegree", variant = "in")
degree(graph, name = "InOutDegree", variant = "all")

#-- Create a cursor including the degree properties

cursor <- oaa.cursor(graph, c("OutDegree", "InOutDegree", "InDegree"),
"nodes")
oaa.next(cursor, 5)

#-- Create a cursor over the degree properties using
#-- the PGX SQL-like query language PGQL

cursor <- oaa.cursor(graph,
    query = "select n.OutDegree, n.InOutDegree, n.InDegree
            where (n) order by n.OutDegree desc")

#-- View the first 5 entries from the cursor
oaa.next(cursor, 5)

#-- See results from the pagerank algorithm

pagerankCursor <- pagerank(graph, 0.085, 0.1, 100)
oaa.next(pagerankCursor, 5)

#-- Create a cursor over the pagerank property using PGQL

cursor <- oaa.cursor(graph,
    query = "select n.pagerank where (n)
            order by n.pagerank desc")
#-- You can create a cursor using the R interface as well

cursor <- oaa.cursor(graph, "pagerank", ordering = "desc")
oaa.next(cursor, 5)

#-- Compute the adamic adar index for edges

topEdges <- adamicAdarCounting(graph)
oaa.next(topEdges)

#-- List any graph snapshots available

oaa.graphSnapshotList()

#-- Export a binary snapshot of the whole graph into Oracle Database
#-- and view the listing again

oaa.graphSnapshotPersist(graph, nodeProperties = TRUE, edgeProperties = TRUE)
oaa.graphSnapshotList()

#-- Read the snapshot back into memory

graph2 <- oaa.graphSnapshot("myPgxGraph")

#-- Export the graph nodes and specific node properties from memory
#-- into a database table

oaa.create(graph2, nodeTableName = "RANKED_NODES", nodeProperties = TRUE)

#-- Export both nodes and edges as tables from memory into the database,
#-- but only export the pagerank node property

oaa.create(graph2, nodeTableName = "RANKED_GRAPH_N",
            nodeProperties = c("NP1", "pagerank"),
            edgeTableName = "RANKED_GRAPH_E")

#-- Export the graph edges and their properties from memory into a
#-- database table

oaa.create(graph2, edgeTableName = "RANKED_EDGES", edgeProperties = TRUE)

#-- Free the graphs at the PGX server

oaa.rm(graph)
oaa.rm(graph2)

#-- Clean up the tables created by this example

ore.drop("MY_NODES")
ore.drop("MY_EDGES")
ore.drop("RANKED_NODES")
ore.drop("RANKED_GRAPH_N")
ore.drop("RANKED_GRAPH_E")
ore.drop("RANKED_EDGES")
oaa.dropSnapshots("myPgxGraph")

Listing for This Example

R> library(ORE)
R> library(OAAgraph)
R>
R> #-- Replace the values in quotation marks with the values for your database
R> dbHost     <- "<DATABASE_HOST>"
R> dbUser     <- "<DATABASE_USERNAME>"
R> dbPassword <- "<DATABASE_PASSWORD>"
R> dbSid      <- "<DATABASE_SID>"
R> pgxBaseUrl <- "<PGX_BASE_URL>"
R>
R> #-- Connect to the OML4R and PGX servers
R> ore.connect(host = dbHost, user = dbUser, password = dbPassword, sid = dbSid)
R> oaa.graphConnect(pgxBaseUrl = pgxBaseUrl, dbHost = dbHost, +                  dbSid = dbSid, dbUser = dbUser, dbPassword = dbPassword)
R>
R> #-- Create the node table in Oracle Database
R>
R> VID <- c(1, 2, 3, 4, 5)
R> NP1 <- c("node1", "node2", "node3", "node4", "node5")
R> NP2 <- c(111.11, 222.22, 333.33, 444.44, 555.55)
R> NP3 <- c(1, 2, 3, 4, 5)
R>
R> nodes <- data.frame(VID, NP1, NP2, NP3)
R> ore.drop(table = "MY_NODES")
R> ore.create(nodes, table = "MY_NODES")
R>
R> #-- Create the edge table in Oracle Database
R>
R> EID <- c(1, 2, 3, 4, 5)
R> SVID <- c(1, 3, 3, 2, 4)
R> DVID <- c(2, 1, 4, 3, 2)
R> EP1 <- c("edge1", "edge2", "edge3", "edge4", "edge5")
R> EL <- c("label1", "label2", "label3", "label4", "label5")
R>
R> edges <- data.frame(EID, SVID, DVID, EP1, EL)
R> ore.drop(table = "MY_EDGES")
R> ore.create(edges, table = "MY_EDGES")
R>
R> #-- Verify that the tables exist as ore.frame objects
R> ore.ls()
[1] "ASSIGN_EDGES_SUBSET" "ASSIGN_NODES_SUBSET" "CALL_EDGES"
R> #-- Create a graph in PGX from the node and edge tables in the database
R> graph <- oaa.graph(MY_EDGES, MY_NODES, "myPgxGraph")
R> names(graph, "nodes")
[1] "NP1" "NP3" "NP2"
R> names(graph, "edges")
[1] "EP1"
R>
R> #-- See the result of the countTriangles function, which gives an
R> #-- overview of the number of connections between nodes in neighborhoods
R> countTriangles(graph, sortVerticesByDegree=FALSE)
[1] 2
R>
R> #-- See the results from degree algorithm variants; note the graph nodes
R> #-- are augmented with new properties as indicated by the 'name'
R> argument
R> degree(graph, name = "OutDegree")
oaa.cursor over: ID, OutDegree
position: 0
size: 5
R> degree(graph, name = "InDegree", variant = "in")
oaa.cursor over: ID, InDegree
position: 0
size: 5
R> degree(graph, name = "InOutDegree", variant = "all")
oaa.cursor over: ID, InOutDegree
position: 0
size: 5
R>
R> #-- Create a cursor including the degree properties
R> cursor <- oaa.cursor(graph, c("OutDegree", "InOutDegree", "InDegree"),
   "nodes")
R> oaa.next(cursor, 5)
   OutDegree InOutDegree InDegree
1 1 2 1
R> #-- Create a cursor over the degree properties using
R> #-- the PGX SQL-like query language PGQL
R>
R> cursor <- oaa.cursor(graph,
+                      query = "select n.OutDegree, n.InOutDegree,
+                               n.InDegree
+                                     where (n) order by n.OutDegree desc")
R> #-- View the first 5 entries from the cursor
R>
R> oaa.next(cursor, 5)
   n.OutDegree n.InOutDegree n.InDegree
1      2         3         1
2      1         3         2
3      1         2         1
4      1         2         1
5      0         0         0
R>
R> #-- See the results from the pagerank algorithm
R>
R> pagerankCursor <- pagerank(graph, 0.085, 0.1, 100)
R> oaa.next(pagerankCursor, 5)
   pagerank
2   0.22
3   0.20
1   0.19
4   0.19
5   0.18
R>
R> #-- Create a cursor over the pagerank property using PGQL
R>
R> cursor <- oaa.cursor(graph,
+                      query = "select n.pagerank where (n)
+                                     order by n.pagerank desc")
R>
R> oaa.next(cursor, 5)
   n.pagerank
1   0.22
2   0.20
3   0.19
4   0.19
5   0.18
R>
R> #-- You can create a cursor using the R interface as well
R>
R> cursor <- oaa.cursor(graph, "pagerank", ordering = "desc")
R>
R> oaa.next(cursor, 5)
   pagerank
1   0.19
2   0.22
R> #-- Compute the adamic adar index for edges
R>
R> topEdges <- adamicAdarCounting(graph)
R> oaa.next(topEdges)

  adamic_adar
  0     0
  1     0
  2     0
  3     0
  4     0

R>
R> #-- List any graph snapshots available
R>
R> oaa.graphSnapshotList()

[1] "ANONYMOUS_GRAPH_1"  "CONNECTIONS"  "EXAMPLE_GRAPH"
[4] "GRAPH1"              "GRAPH_EXPORT_LABELED" "G_160317161147"
[7] "G_160317201914"      "MYAWESOMEGRAPH"    "MYEXAMPLEGRAPH"
[10] "MY_GRAPH1"           "SAMPLE"               "SAMPLE_GRAPH"
[13] "SF"                  "SF_MUTATION"

R>
R> #-- Export a binary snapshot of the whole graph into Oracle Database
R> #-- and view the listing again
R>
R> oaa.graphSnapshotPersist(graph, nodeProperties = TRUE, edgeProperties =
R>
R> TRUE)
R> oaa.graphSnapshotList()

[1] "ANONYMOUS_GRAPH_1"  "CONNECTIONS"  "EXAMPLE_GRAPH"
[4] "GRAPH1"              "GRAPH_EXPORT_LABELED" "G_160317161147"
[7] "G_160317201914"      "MYAWESOMEGRAPH"    "MYEXAMPLEGRAPH"
[10] "MYPGXGRAPH"         "MY_GRAPH1"           "SAMPLE"
[13] "SAMPLE_GRAPH"       "SF"                  "SF_MUTATION"

R>
R> #-- Read the snapshot back into memory
R>
R> graph2 <- oaa.graphSnapshot("myPgxGraph")
R>
R> #-- Export the graph nodes and specific node properties from memory
R> #-- into a database table
R>
R> oaa.create(graph2, nodeTableName = "RANKED_NODES", nodeProperties =
R> TRUE)
R>
R> #-- Export both nodes and edges as tables from memory into the database,
R> #-- but only export the pagerank node property
R>
R> oaa.create(graph2, nodeTableName = "RANKED_GRAPH_N",
R> + nodeProperties = c("NP1", "pagerank"),
R> + edgeTableName = "RANKED_GRAPH_E")
R> #-- Export the graph edges and their properties from memory into a database table
R> oaa.create(graph2, edgeTableName = "RANKED_EDGES", edgeProperties = TRUE)
R> #-- Free the graphs at the PGX server
R> oaa.rm(graph)
R> oaa.rm(graph2)
R> #-- Clean up the tables created by this example
R> ore.drop("MY_NODES")
R> ore.drop("MY_EDGES")
R> ore.drop("RANKED_NODES")
R> ore.drop("RANKED_GRAPH_N")
R> ore.drop("RANKED_GRAPH_E")
R> ore.drop("RANKED_EDGES")
R> oaa.dropSnapshots("myPgxGraph")

3.5 Using a Third-Party Package on the Client

In Oracle Machine Learning for R, if you want to use functions from an open source R package from The Comprehensive R Archive Network (CRAN) or other third-party R package, then you would generally do so in the context of embedded R execution.

Using embedded R execution, you can take advantage of the likely greater amount of RAM on the database server.

However, if you want to use a third-party package function in your local R session on data from an Oracle database table, you must use the ore.pull function to get the data from an ore.frame object to your local session as a data.frame object. This is the same as using open source R except that you can extract the data from the database without needing the help of a DBA.

When pulling data from a database table to a local data.frame, you are limited to using the amount of data that can fit into the memory of your local machine. On your local machine, you do not have the benefits provided by embedded R execution.

To use a third-party package, you must install it on your system and load it in your R session.

For an example that uses the kernlab package, see Example 2-4.

See Also:

- Installing a Third-Party Package for Use in Embedded R Execution
- R Administration and Installation
- Installing R packages
Example 3-78  Downloading, Installing, and Loading a Third-Party Package on the Client

This example demonstrates downloading, installing, and loading the CRAN package kernlab. The kernlab package contains kernel-based machine learning methods. The example invokes the install.packages function to download and install the package. It then invokes the library function to load the package.

```r
install.packages("kernlab")
library("kernlab")
```

Listing for This Example

R> install.packages("kernlab")
trying URL 'http://cran.rstudio.com/bin/windows/contrib/3.0/kernlab_0.9-19.zip'
Content type 'application/zip' length 2029405 bytes (1.9 Mb)
opened URL downloaded 1.9 Mb
	package 'kernlab' successfully unpacked and MD5 sums checked

The downloaded binary packages are in
  C:\Users\oml_user\AppData\Local\Temp\RtmpSKVZql\downloaded_packages
R> library("kernlab")

Example 3-79  Using a kernlab Package Function

This example invokes the demo function to look for example programs in the kernlab package. Because the package does not have examples, this example then gets help for the ksvm function. The example invokes example code from the help.

```r
demo(package = "kernlab")
help(package = "kernlab", ksvm)
data(spam)
index <- sample(1:dim(spam)[1])
spamtrain <- spam[index[1:floor(dim(spam)[1]/2)],]
spamtest <- spam[index[((ceiling(dim(spam)[1]/2)) + 1):dim(spam)[1]],]
filter <- ksvm(type~.,data=spamtrain,kernel="rbfdot",
+ kpar=list(sigma=0.05),C=5,cross=3)
filter
table(mailtype,spamtest[,58])
```

Listing for This Example

R> demo(package = "kernlab")
no demos found
R> help(package = "kernlab", ksvm)  # Output not shown.
R> data(spam)
R> index <- sample(1:dim(spam)[1])
R> spamtrain <- spam[index[1:floor(dim(spam)[1]/2)], ]
R> spamtest <- spam[index[((ceiling(dim(spam)[1]/2)) + 1):dim(spam)[1]], ]
R> filter <- ksvm(type~.,data=spamtrain,kernel="rbfdot",
+                kpar=list(sigma=0.05),C=5,cross=3)
R> filter
Support Vector Machine object of class "ksvm"

SV type: C-svc  (classification)
  parameter : cost C = 5

Gaussian Radial Basis kernel function.
  Hyperparameter : sigma = 0.05
Number of Support Vectors : 970

Objective Function Value : -1058.218
Training error : 0.018261
Cross validation error : 0.08696
> mailtype <- predict(filter, spamtest[, -58])
> table(mailtype, spamtest[, 58])

mailtype  nonspam spam
  nonspam  1347  136
    spam    45  772
Build Models in Oracle Machine Learning
for R

OML4R provides functions for building regression models, neural network models, and models based on Oracle Machine Learning for SQL algorithms.

This chapter has the following topics:

• **Build Oracle Machine Learning for R Models**
  The OML4R package OREmodels contains functions with which you can create advanced analytical data models using ore.frame objects.

• **Build Oracle Machine Learning for SQL Models**
  Use the functions in the OREdm package of Oracle Machine Learning for R to build Oracle Machine Learning for SQL models in R.

• **Cross-Validate Models**
  Cross-validation is a model improvement technique that avoids the limitations of a single train-and-test experiment by building and testing multiple models through repeated sampling from the available data.

4.1 Build Oracle Machine Learning for R Models

The OML4R package OREmodels contains functions with which you can create advanced analytical data models using ore.frame objects.

These functions are described in the following topics:

• **About OREmodels Functions**
  The OREmodels package contains functions with which you can build machine learning models using ore.frame objects.

• **About the longley Data Set for Examples**
  Most of the linear regression and ore.neural examples use the longley data set, which is provided by R.

• **Build Linear Regression Models**
  The ore.lm and ore.stepwise functions perform least squares regression and stepwise least squares regression, respectively, on data represented in an ore.frame object.

• **Build a Generalized Linear Model**
  The ore.glm functions fits generalized linear models on data in an ore.frame object.

• **Build a Neural Network Model**
  Neural network models can be used to capture intricate nonlinear relationships between inputs and outputs or to find patterns in data.

• **Build a Random Forest Model**
  The ore.randomForest function provides an ensemble learning technique for classification of data in an ore.frame object.
4.1.1 About OREmodels Functions

The OREmodels package contains functions with which you can build machine learning models using ore.frame objects.

The OREmodels functions are the following:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ore.glm</td>
<td>Fits and uses a generalized linear model on data in an ore.frame.</td>
</tr>
<tr>
<td>ore.lm</td>
<td>Fits a linear regression model on data in an ore.frame.</td>
</tr>
<tr>
<td>ore.neural</td>
<td>Fits a neural network model on data in an ore.frame.</td>
</tr>
<tr>
<td>ore.randomForest</td>
<td>Creates a random forest classification model in parallel on data in an ore.frame.</td>
</tr>
<tr>
<td>ore.stepwise</td>
<td>Fits a stepwise linear regression model on data in an ore.frame.</td>
</tr>
</tbody>
</table>

**Note:**

In R terminology, the phrase "fits a model" is often synonymous with "builds a model". In this document and in the online help for Oracle Machine Learning for R functions, the phrases are used interchangeably.

The ore.glm, ore.lm, and ore.stepwise functions have the following advantages:

- The algorithms provide accurate solutions using out-of-core QR factorization. QR factorization decomposes a matrix into an orthogonal matrix and a triangular matrix. QR is an algorithm of choice for difficult rank-deficient models.
- You can process data that does not fit into memory, that is, out-of-core data. QR factors a matrix into two matrices, one of which fits into memory while the other is stored on disk.
  - The ore.glm, ore.lm and ore.stepwise functions can solve data sets with more than one billion rows.
- The ore.stepwise function allows fast implementations of forward, backward, and stepwise model selection techniques.

The ore.neural function has the following advantages:

- It is a highly scalable implementation of neural networks, able to build a model on even billion row data sets in a matter of minutes. The ore.neural function can be run in two modes: in-memory for small to medium data sets and distributed (out-of-core) for large inputs.
- Users can specify the activation functions on neurons on a per-layer basis; ore.neural supports many different activation functions.
Users can specify a neural network topology consisting of any number of hidden layers, including none.

### 4.1.2 About the longley Data Set for Examples

Most of the linear regression and ore.neural examples use the longley data set, which is provided by R.

The longley data set is a small macroeconomic data set that provides a well-known example for collinear regression and consists of seven economic variables observed yearly over 16 years.

**Example 4-1 Displaying Values from the longley Data Set**

This example pushes the longley data set to a temporary database table that has the proxy ore.frame object longley_of displays the first six rows of longley_of.

```r
longley_of <- ore.push(longley)
head(longley_of)
```

**Listing for This Example**

```r
R> longley_of <- ore.push(longley)
R> dim(longley_of)[1] 16 7
R> head(longley_of)
```

<table>
<thead>
<tr>
<th>Year</th>
<th>GNP.deflator</th>
<th>GNP.Unemployed</th>
<th>Armed.Forces</th>
<th>Population</th>
<th>Year</th>
<th>Employed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1947</td>
<td>83.0</td>
<td>234.289</td>
<td>235.6</td>
<td>159.0</td>
<td>1947</td>
<td>107.608</td>
</tr>
<tr>
<td>1948</td>
<td>88.5</td>
<td>259.426</td>
<td>232.5</td>
<td>145.6</td>
<td>1948</td>
<td>108.632</td>
</tr>
<tr>
<td>1949</td>
<td>88.2</td>
<td>258.054</td>
<td>368.2</td>
<td>161.6</td>
<td>1949</td>
<td>109.773</td>
</tr>
<tr>
<td>1950</td>
<td>96.2</td>
<td>328.975</td>
<td>209.9</td>
<td>309.9</td>
<td>1950</td>
<td>112.075</td>
</tr>
<tr>
<td>1951</td>
<td>98.1</td>
<td>346.999</td>
<td>193.2</td>
<td>359.4</td>
<td>1951</td>
<td>113.270</td>
</tr>
<tr>
<td>1952</td>
<td>98.1</td>
<td>346.999</td>
<td>193.2</td>
<td>359.4</td>
<td>1952</td>
<td>113.270</td>
</tr>
</tbody>
</table>

### 4.1.3 Build Linear Regression Models

The ore.lm and ore.stepwise functions perform least squares regression and stepwise least squares regression, respectively, on data represented in an ore.frame object.

A model fit is generated using embedded R map/reduce operations where the map operation creates either QR decompositions or matrix cross-products depending on the number of coefficients being estimated. The underlying model matrices are created using either a model.matrix or sparse.model.matrix object depending on the sparsity of the model. Once the coefficients for the model have been estimated another pass of the data is made to estimate the model-level statistics.

When forward, backward, or stepwise selection is performed, the XtX and Xty matrices are subsetted to generate the F-test p-values based upon coefficient estimates that were generated using a Choleski decomposition of the XtX subset matrix.

If there are collinear terms in the model, functions ore.lm and ore.stepwise do not estimate the coefficient values for a collinear set of terms. For ore.stepwise, a collinear set of terms is excluded throughout the procedure.

For more information on ore.lm and ore.stepwise, invoke help(ore.lm).
Example 4-2  Using ore.lm

This example pushes the longley data set to a temporary database table that has the proxy ore.frame object longley_of. The example builds a linear regression model using ore.lm.

longley_of <- ore.push(longley)
# Fit full model
oreFit1 <- ore.lm(Employed ~ ., data = longley_of)
class(oreFit1)
summary(oreFit1)

Listing for This Example

R> longley_of <- ore.push(longley)
R> # Fit full model
R>  oreFit1 <- ore.lm(Employed ~ ., data = longley_of)
R> class(oreFit1)
[1] "ore.lm" "ore.model" "lm"
R> summary(oreFit1)

Call:
ore.lm(formula = Employed ~ ., data = longley_of)

Residuals:
   Min     1Q Median     3Q    Max
-0.41011 -0.15767 -0.02816  0.10155  0.45539

Coefficients:  
                Estimate Std. Error t value Pr(>|t|)
(Intercept)  -3.482e+03  8.904e+02  -3.911  0.003560 **
GNP.deflator  1.506e-02  8.492e-02   0.177  0.863141
GNP          -3.582e-02  3.349e-02  -1.070  0.312681
Unemployed   -2.020e-02  4.884e-03  -4.136  0.002535 **
Armed.Forces -1.033e-02  2.143e-03  -4.822  0.000944 ***
Population   -5.110e-02  2.261e-01  -0.226  0.826212
Year          1.829e+00  4.555e-01   4.016  0.003037 **

---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 1

Residual standard error: 0.3049 on 9 degrees of freedom
Multiple R-squared: 0.9955, Adjusted R-squared: 0.9925
F-statistic: 330.3 on 6 and 9 DF, p-value: 4.984e-10

Example 4-3  Using the ore.stepwise Function

This example pushes the longley data set to a temporary database table that has the proxy ore.frame object longley_of. The example builds linear regression models using the ore.stepwise function.

longley_of <- ore.push(longley)
# Two stepwise alternatives
oreStep1 <-
   ore.stepwise(Employed ~ .^2, data = longley_of, add.p = 0.1, drop.p = 0.1)
oreStep2 <-
   step(ore.lm(Employed ~ 1, data = longley_of),
       scope = terms(Employed ~ .^2, data = longley_of))

Listing for This Example
R> longley_of <- ore.push(longley)
R> # Two stepwise alternatives
R> oreStep1 <-
  + ore.stepwise(Employed ~ .^2, data = longley_of, add.p = 0.1, drop.p = 0.1)
R> oreStep2 <-
  + step(ore.lm(Employed ~ 1, data = longley_of),
  +     scope = terms(Employed ~ .^2, data = longley_of))
Start:  AIC=41.17
Employed ~ 1

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum of Sq</th>
<th>RSS</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ GNP</td>
<td>178.973</td>
<td>6.036</td>
<td>-11.597</td>
</tr>
<tr>
<td>+ Year</td>
<td>174.552</td>
<td>10.457</td>
<td>-2.806</td>
</tr>
<tr>
<td>+ GNP.deflator</td>
<td>174.397</td>
<td>10.611</td>
<td>-2.571</td>
</tr>
<tr>
<td>+ Population</td>
<td>170.643</td>
<td>14.366</td>
<td>2.276</td>
</tr>
<tr>
<td>+ Unemployed</td>
<td>46.716</td>
<td>138.293</td>
<td>38.509</td>
</tr>
<tr>
<td>+ Armed.Forces</td>
<td>38.691</td>
<td>146.318</td>
<td>39.411</td>
</tr>
<tr>
<td>&lt;none&gt;</td>
<td></td>
<td>185.009</td>
<td>41.165</td>
</tr>
</tbody>
</table>

Step:  AIC=-11.6
Employed ~ GNP

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum of Sq</th>
<th>RSS</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Unemployed</td>
<td>2.457</td>
<td>3.579</td>
<td>-17.960</td>
</tr>
<tr>
<td>+ Population</td>
<td>2.162</td>
<td>3.874</td>
<td>-16.691</td>
</tr>
<tr>
<td>+ Year</td>
<td>1.125</td>
<td>4.911</td>
<td>-12.898</td>
</tr>
<tr>
<td>&lt;none&gt;</td>
<td></td>
<td>6.036</td>
<td>-11.597</td>
</tr>
<tr>
<td>+ GNP.deflator</td>
<td>0.212</td>
<td>5.824</td>
<td>-10.169</td>
</tr>
<tr>
<td>+ Armed.Forces</td>
<td>0.077</td>
<td>5.959</td>
<td>-9.802</td>
</tr>
</tbody>
</table>
- GNP          | 178.973  | 185.009 | 41.165 |

... The rest of the output is not shown.

4.1.4 Build a Generalized Linear Model

The ore.glm functions fits generalized linear models on data in an ore.frame object.

The function uses a Fisher scoring iteratively reweighted least squares (IRLS) algorithm. Instead of the traditional step of halving to prevent the selection of less optimal coefficient estimates, ore.glm uses a line search to select new coefficient estimates at each iteration, starting from the current coefficient estimates and moving through the Fisher scoring suggested estimates using the formula \((1 - \alpha) \times \text{old} + \alpha \times \text{suggested}\) where \(\alpha\) in \([0, 2]\). When the interp control argument is TRUE, the deviance is approximated by a cubic spline interpolation. When it is FALSE, the deviance is calculated using a follow-up data scan.

Each iteration consists of two or three embedded R execution map/reduce operations: an IRLS operation, an initial line search operation, and, if interp = FALSE, an optional follow-up line search operation. As with ore.lm, the IRLS map operation creates QR decompositions when update = "qr" or cross-products when update = "crossprod" of the model.matrix, or sparse.model.matrix if argument sparse = TRUE, and the IRLS reduce operation block updates those QR decompositions or cross-product matrices. After the algorithm has either converged or reached the maximum number of iterations, a final embedded R map/reduce operation is used to generate the complete set of model-level statistics.

The ore.glm function returns an ore.glm object.

For information on the ore.glm function arguments, invoke help(ore.glm).
Example 4-4 Using the ore.glm Function

This example loads the rpart package and then pushes the kyphosis data set to a temporary database table that has the proxy ore.frame object KYPHOSIS. The example builds a generalized linear model using the ore.glm function and one using the glm function and invokes the summary function on the models.

```r
Load the rpart library to get the kyphosis and solder data sets.
library(rpart)
Logistic regression
KYPHOSIS <- ore.push(kyphosis)
kyphFit1 <- ore.glm(Kyphosis ~ ., data = KYPHOSIS, family = binomial())
kyphFit2 <- glm(Kyphosis ~ ., data = kyphosis, family = binomial())
summary(kyphFit1)
summary(kyphFit2)
```

Listing for Example 4-4

R> # Load the rpart library to get the kyphosis and solder data sets.
R> library(rpart)

R> # Logistic regression
R> KYPHOSIS <- ore.push(kyphosis)
R> kyphFit1 <- ore.glm(Kyphosis ~ ., data = KYPHOSIS, family = binomial())
R> kyphFit2 <- glm(Kyphosis ~ ., data = kyphosis, family = binomial())
R> summary(kyphFit1)

```
Call:
 ore.glm(formula = Kyphosis ~ ., data = KYPHOSIS, family = binomial())

Deviance Residuals:
 Min 1Q Median 3Q Max
-2.3124 -0.5484 -0.3632 -0.1659 2.1613

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.036934 1.449622 -1.405 0.15998
 Age 0.010930 0.006447 1.696 0.08997 .
 Number 0.410601 0.224870 1.826 0.06786 .
 Start -0.206510 0.067700 -3.050 0.00229 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 83.234 on 80 degrees of freedom
Residual deviance: 61.380 on 77 degrees of freedom
AIC: 69.38

Number of Fisher Scoring iterations: 4
```

R> summary(kyphFit2)

```
Call:
 glm(formula = Kyphosis ~ ., family = binomial(), data = kyphosis)

Deviance Residuals:
 Min 1Q Median 3Q Max
-2.3124 -0.5484 -0.3632 -0.1659 2.1613

Coefficients:
```

# Load the rpart library to get the kyphosis and solder data sets.
library(rpart)
# Logistic regression
KYPHOSIS <- ore.push(kyphosis)
kyphFit1 <- ore.glm(Kyphosis ~ ., data = KYPHOSIS, family = binomial())
kyphFit2 <- glm(Kyphosis ~ ., data = kyphosis, family = binomial())
summary(kyphFit1)
summary(kyphFit2)
Chapter 4
Build Oracle Machine Learning for R Models

---

# Poisson regression
R> SOLDER <- ore.push(solder)
R> solFit1 <- ore.glm(skips ~ ., data = SOLDER, family = poisson())
R> solFit2 <- glm(skips ~ ., data = solder, family = poisson())
R> summary(solFit1)

Call:
ore.glm(formula = skips ~ ., data = SOLDER, family = poisson())

Deviance Residuals:
Min       1Q   Median       3Q      Max
-3.4105  -1.0897  -0.4408   0.6406   3.7927

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.25506    0.10069 -12.465  < 2e-16 ***
OpeningM     0.25851    0.06656   3.884 0.000103 ***
OpeningS     1.89349    0.05363  35.305  < 2e-16 ***
SolderThin   1.09973    0.03864  28.465  < 2e-16 ***
MaskA3       0.42819    0.07547   5.674 1.40e-08 ***
MaskB3       1.20225    0.06697  17.953  < 2e-16 ***
MaskB6       1.86648    0.06310  29.580  < 2e-16 ***
PadTypeD6   -0.36865    0.07138  -5.164 2.41e-07 ***
PadTypeD7   -0.09844    0.06620  -1.487 0.137001
PadTypeL4    0.26236    0.06071   4.321 1.55e-05 ***
PadTypeL6   -0.66845    0.07841  -8.525  < 2e-16 ***
PadTypeL7   -0.49021    0.07406  -6.619 3.61e-11 ***
PadTypeL8   -0.27115    0.06939  -3.907 9.33e-05 ***
PadTypeL9   -0.63645    0.07759  -8.203 2.35e-16 ***
PadTypeW4   -0.11000    0.06640  -1.657 0.097591
Panel        0.11818    0.02056   5.749 8.97e-09 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 6855.7  on 719 degrees of freedom
Residual deviance: 1165.4  on 703 degrees of freedom
AIC: 2781.6

Number of Fisher Scoring iterations: 4
4.1.5 Build a Neural Network Model

Neural network models can be used to capture intricate nonlinear relationships between inputs and outputs or to find patterns in data.

The `ore.neural` function builds a feed-forward neural network for regression on `ore.frame` data. It supports multiple hidden layers with a specifiable number of nodes. Each layer can have one of several activation functions.

The output layer is a single numeric or binary categorical target. The output layer can have any of the activation functions. It has the linear activation function by default.

The output of `ore.neural` is an object of type `ore.neural`.

For information about the arguments to the `ore.neural` function, invoke `help(ore.neural)`.

Modeling with the `ore.neural` function is well-suited for noisy and complex data such as sensor data. Problems that such data might have are the following:

- Potentially many (numeric) predictors, for example, pixel values
- The target may be discrete-valued, real-valued, or a vector of such values
- Training data may contain errors – robust to noise
- Fast scoring
- Model transparency is not required; models difficult to interpret

Typical steps in neural network modeling are the following:

1. Specifying the architecture
2. Preparing the data
3. Building the model
4. Specifying the stopping criteria: iterations, error on a validation set within tolerance
5. Viewing statistical results from model
6. Improving the model

**Example 4-5   Building a Neural Network Model**

This example builds a neural network with default values, including a hidden size of 1. The example pushes a subset of the `longley` data set to an `ore.frame` object in database memory as the object `trainData`. The example then pushes a different subset of `longley` to the database as the object `testData`. The example builds a neural network model with `trainData` and then predicts results using `testData`.

```r
trainData <- ore.push(longley[1:11,])
testData <- ore.push(longley[12:16,])
fit <- ore.neural('Employed ~ GNP + Population + Year', data = trainData)
ans <- predict(fit, newdata = testData)
ans
```

**Listing for This Example**

```r
R> trainData <- ore.push(longley[1:11,])
R> testData <- ore.push(longley[12:16,])
R> fit <- ore.neural('Employed ~ GNP + Population + Year', data = trainData)
```
Example 4-6 Using ore.neural and Specifying Activations

This example pushes the iris data set to a temporary database table that has the proxy ore.frame object IRIS. The example builds a neural network model using the ore.neural function and specifies a different activation function for each layer.

IRIS <- ore.push(iris)
fit <- ore.neural(Petal.Length ~ Petal.Width + Sepal.Length,
  data = IRIS,
  hiddenSizes = c(20, 5),
  activations = c("bSigmoid", "tanh", "linear"))
ans <- predict(fit, newdata = IRIS,
  supplemental.cols = c("Petal.Length"))
options(ore.warn.order = FALSE)
head(ans, 3)
summary(ans)

Listing for This Example

R> IRIS <- ore.push(iris)
R> fit <- ore.neural(Petal.Length ~ Petal.Width + Sepal.Length,
+    data = IRIS,
+    hiddenSizes = c(20, 5),
+    activations = c("bSigmoid", "tanh", "linear"))
R>
R> ans <- predict(fit, newdata = IRIS,
+    supplemental.cols = c("Petal.Length"))
R> options(ore.warn.order = FALSE)
R> head(ans, 3)
R> summary(ans)

4.1.6 Build a Random Forest Model

The ore.randomForest function provides an ensemble learning technique for classification of data in an ore.frame object.

Function ore.randomForest builds a random forest model by growing trees in parallel on the database server. It constructs many decision trees and outputs the class that is
the mode of the classes of the individual trees. The function avoids overfitting, which is a common problem for decision trees.

The random forest algorithm, developed by Leo Breiman and Adele Cutler, combines the ideas of bagging and the random selection of variables, which results in a collection of decision trees with controlled variance. The random forest algorithm provides high accuracy, but performance and scalability can be issues for large data sets.

Function `ore.randomForest` executes in parallel for model building and scoring. Parallel execution can occur whether you are using the randomForest package in Oracle R Distribution (ORD) or the open source randomForest package 4.6-10. Using `ore.randomForest` and ORD can require less memory than using `ore.randomForest` with the open source alternative. If you use the open source randomForest package, Oracle Machine Learning for R issues a warning.

Function `ore.randomForest` uses the global option `ore.parallel` to determine the degree of parallelism to employ. The function returns an `ore.randomForest` object.

An invocation of the scoring method `predict` on an `ore.randomForest` object also runs in parallel on the database server. The `cache.model` argument specifies whether to cache the entire random forest model in memory during prediction. If sufficient memory is available, use the default `cache.model` value of `TRUE` for better performance.

The `grabTree` method returns an `ore.frame` object that contains information on the specified tree. Each row of the `ore.frame` represents one node of the tree.

---

**Note:**

Function `ore.randomForest` loads a copy of the training data for each embedded R session executing in parallel. For large datasets, this can exceed the amount of available memory. Oracle recommends that you adjust the number of parallel processes and the amount of available memory accordingly. The global option `ore.parallel` specifies the number of parallel processes. For information on controlling the amount of memory used by embedded R execution processes, see Controlling Memory Used by Embedded R in *Oracle Machine Learning for R Installation and Administration Guide*.

---

**Example 4-7 Using ore.randomForest**

```r
Using the iris dataset
IRIS <- ore.push(iris)
mod <- ore.randomForest(Species~., IRIS)
tree10 <- grabTree(mod, k = 10, labelVar = TRUE)
ans <- predict(mod, IRIS, type="all", supplemental.cols="Species")
table(ans$Species, ans$prediction)

Using the infert dataset
INFERT <- ore.push(infert)
formula <- case ~ age + parity + education + spontaneous + induced
```
rfMod <- ore.randomForest(formula, INFERT, ntree=1000, nodesize = 2)
tree <- grabTree(rfMod, k = 500)
rfPred <- predict(rfMod, INFERT, supplemental.cols = "case")
confusion.matrix <- with(rfPred, table(case, prediction))
confusion.matrix

Listing for This Example

R> # Using the iris dataset
R> IRIS <- ore.push(iris)
R> mod <- ore.randomForest(Species~., IRIS)
R> tree10 <- grabTree(mod, k = 10, labelVar = TRUE)
R> ans <- predict(mod, IRIS, type="all", supplemental.cols="Species")
R> table(ans$Species, ans$prediction)

         setosa versicolor virginica
       setosa      50          0         0
       versicolor    0       50          0
       virginica     0          0       50

# Using the infert dataset
R> INFERT <- ore.push(infert)
R> formula <- case ~ age + parity + education + spontaneous + induced
R> rfMod <- ore.randomForest(formula, INFERT, ntree=1000, nodesize = 2)
R> tree <- grabTree(rfMod, k = 500)
R> rfPred <- predict(rfMod, INFERT, supplemental.cols = "case")
R> confusion.matrix <- with(rfPred, table(case, prediction))
R> confusion.matrix

       prediction
       case 0 1
     0 154 11
     1 27 56

4.2 Build Oracle Machine Learning for SQL Models

Use the functions in the OREdm package of Oracle Machine Learning for R to build
Oracle Machine Learning for SQL models in R.

These functions are described in the following topics:

- **About Building OML4SQL Models using OML4R**
  Oracle Machine Learning for SQL functions can process tables, views, star
  schemas, transactional data, and unstructured data.

- **Build an Association Rules Model**
  The ore.odmAssocRules function implements the Apriori algorithm to find frequent
  itemsets and generate an association model.
• Build an Attribute Importance Model
  Attribute importance ranks attributes according to their significance in predicting a target.

• Build a Decision Tree Model
  The ore.odmDT function uses the OML4SQL Decision Tree algorithm, which is based on conditional probabilities.

• Build an Expectation Maximization Model
  The ore.odmEM function creates a model that uses the OML4SQL Expectation Maximization (EM) algorithm.

• Build an Explicit Semantic Analysis Model
  The ore.odmESA function creates a model that uses the OML4SQL Explicit Semantic Analysis (ESA) algorithm.

• Build an Extensible R Algorithm Model
  The ore.odmRAlg function creates an Extensible R algorithm model using OML4SQL.

• Build General Linearized Models
  The ore.odmGLM function builds Generalized Linear Models (GLM), which include and extend the class of linear models (linear regression).

• Build a k-Means Model
  The ore.odmKM function uses the OML4SQL k-Means (KM) algorithm, a distance-based clustering algorithm that partitions data into a specified number of clusters.

• Build a Naive Bayes Model
  The ore.odmNB function builds an OML4SQL Naive Bayes model.

• Build a Non-Negative Matrix Factorization Model
  The ore.odmNMF function builds an OML4SQL Non-Negative Matrix Factorization (NMF) model for feature extraction.

• Build an Orthogonal Partitioning Cluster Model
  The ore.odmOC function builds an OML4SQL model using the Orthogonal Partitioning Cluster (O-Cluster) algorithm.

• Build a Singular Value Decomposition Model
  The ore.odmSVD function creates a model that uses the OML4SQL Singular Value Decomposition (SVD) algorithm.

• Build a Support Vector Machine Model
  The ore.odmSVM function builds an OML4R Support Vector Machine (SVM) model.

4.2.1 About Building OML4SQL Models using OML4R

Oracle Machine Learning for SQL functions can process tables, views, star schemas, transactional data, and unstructured data.

These OREdm package functions provide R interfaces that use arguments that conform to typical R usage for corresponding predictive analytics and OML4SQL functions.

This section has the following topics:

• OML4SQL Models Supported by OML4R
• About OML4SQL Models Built by OML4R Functions

In each OREdm R model object, the slot name (or fit.name) is the name of the underlying OML4SQL model generated by the OREdm function.
Partitioning and Text Processing

Functions in the `OREdm` package have an argument that specifies settings for an Oracle Machine Learning for SQL model and some have an argument for setting text processing parameters.

4.2.1.1 OML4SQL Models Supported by OML4R

The functions in the `OREdm` package provide access to the Oracle Machine Learning for SQL in-database machine learning functionality of Oracle Database. You use these functions to build OML4SQL models in the database.

The following table lists the OML4R functions that build OML4SQL models and the corresponding OML4SQL algorithms and functions.

<table>
<thead>
<tr>
<th>OML4R Function</th>
<th>OML4SQL Algorithm</th>
<th>OML4SQL Function</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ore.odmAI</code></td>
<td>Minimum Description Length</td>
<td>Attribute importance for classification or regression</td>
</tr>
<tr>
<td><code>ore.odmAssocRules</code></td>
<td>Apriori</td>
<td>Association rules</td>
</tr>
<tr>
<td><code>ore.odmDT</code></td>
<td>Decision Tree</td>
<td>Classification</td>
</tr>
<tr>
<td><code>ore.odmEM</code></td>
<td>Expectation Maximization</td>
<td>Clustering</td>
</tr>
<tr>
<td>(12.2 feature)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>ore.odmESA</code></td>
<td>Explicit Semantic Analysis</td>
<td>Feature extraction</td>
</tr>
<tr>
<td>(12.2 feature)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>ore.odmGLM</code></td>
<td>Generalized Linear Models</td>
<td>Classification and regression</td>
</tr>
<tr>
<td><code>ore.odmKMeans</code></td>
<td>k-Means</td>
<td>Clustering</td>
</tr>
<tr>
<td><code>ore.odmNB</code></td>
<td>Naive Bayes</td>
<td>Classification</td>
</tr>
<tr>
<td><code>ore.odmNMF</code></td>
<td>Non-Negative Matrix Factorization</td>
<td>Feature extraction</td>
</tr>
<tr>
<td><code>ore.odmOC</code></td>
<td>Orthogonal Partitioning Cluster (O-Cluster)</td>
<td>Clustering</td>
</tr>
<tr>
<td><code>ore.odmRAlg</code></td>
<td>Extensible R Algorithm</td>
<td>Association rules, attribute importance, classification, clustering, feature extraction, and regression</td>
</tr>
<tr>
<td>(12.2 feature)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>ore.odmSVD</code></td>
<td>Singular Value Decomposition</td>
<td>Feature extraction</td>
</tr>
<tr>
<td>(12.2 feature)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>ore.odmSVM</code></td>
<td>Support Vector Machines</td>
<td>Classification and regression</td>
</tr>
</tbody>
</table>

4.2.1.2 About OML4SQL Models Built by OML4R Functions

In each `OREdm` R model object, the slot `name` (or `fit.name`) is the name of the underlying OML4SQL model generated by the `OREdm` function.

While the R model exists, the OML4SQL model name can be used to access the OML4SQL model through other interfaces, including:

- Oracle Data Miner
- Any SQL interface, such as SQL*Plus or SQL Developer
In particular, the models can be used with the OML4SQL prediction functions.

With Oracle Data Miner you can do the following:

- Get a list of available models
- Use model viewers to inspect model details
- Score appropriately transformed data

**Note:**

Any transformations performed in the R space are not carried over into Oracle Data Miner or SQL scoring.

Users can also get a list of models using SQL for inspecting model details or for scoring appropriately transformed data.

By default, models built using OREdm functions are transient objects; they do not persist past the R session in which they were built unless they are explicitly saved in an OML4R datastore. OML4SQL models built using Data Miner or SQL, on the other hand, exist until they are explicitly dropped.

Model objects can be saved or persisted. Saving a model object generated by an OREdm function allows it to exist across R sessions and keeps the corresponding OML4SQL object in place. While the OREdm model exists, you can export and import it; then you can use it apart from the OML4R R object existence.

You can use the `MODEL_NAME` parameter in `odm.settings` to explicitly name an OML4SQL object created in the database. The named OML4SQL model object persists in the database just like those created using Oracle Data Miner or SQL.

**Related Topics**

- Save and Manage R Objects in the Database

Oracle Machine Learning for R provides datastores that you can use to save OML4R proxy objects, as well as any R object, in an Oracle database.

### 4.2.1.3 Partitioning and Text Processing

Functions in the OREdm package have an argument that specifies settings for an Oracle Machine Learning for SQL model and some have an argument for setting text processing parameters.

With the `odm.setting` argument to an OREdm function, you can specify a list of OML4SQL parameter settings. Each list element's name and value refer to the parameter setting name and value, respectively. The setting value must be numeric or string. Refer to *Oracle Machine Learning for SQL User's Guide* for each algorithm's valid settings.

The `settings` function returns a data.frame that lists each OML4SQL parameter setting name and value pair used to build the model.

**Partitioned OML4SQL Models**

A partitioned model is an ensemble model that consists of multiple sub-models. To create a partitioned OML4SQL model, use the `odm.setting` argument with
ODMS_PARTITION_COLUMNS as the name and with the names of the columns by which to partition the input data as the value. The OREdm function returns a model with a sub-model for each partition. The partitions are based on the unique values found in the columns.

Partitioned models can automate scoring by allowing you to reference the top-level model only, which causes the proper sub-model to be chosen based on the values of the partitioned column or columns for each row of data to be scored.

The partitions function returns an ore.frame that lists each partition of the specified model object and the associated partition column values of the model. Partition names are system-determined. The function returns NULL for a non-partitioned model.

Text Processing Attribute Settings

Some OREdm functions have a ctx.settings argument that specifies text processing attribute settings with which you can specify Oracle Text attribute-specific settings. With the odm.settings argument, you can specify the Oracle text policy, the minimal number of documents in which each token occurs, and the maximum number of distinct features for text processing. With the ctx.settings argument, you specify the columns that should be treated as text and the type of text transformation to apply.

The ctx.settings argument applies to the following functions:

- ore.odmESA, Explicit Semantic Analysis
- ore.odmGLM, Generalized Linear Models
- ore.odmKMeans, k-Means
- ore.odmNMF, Non-Negative Matrix Factorization
- ore.odmSVD, Singular Value Decomposition
- ore.odmSVM, Support Vector Machine

Note:

To create an Oracle Text policy, the user must have the CTXSYS.CTX_DDL privilege.

See Also:

Creating a Model that Includes Text Mining in Oracle Machine Learning for SQL User’s Guide for valid text attribute values.

Example 4-8    Example of Text Processing with ore.odmKMeans

This example uses the odm.settings and ctx.settings arguments. The figure following the example shows the output of the histogram(km.mod1) function.

```r
x <- rbind(matrix(rnorm(100, sd = 0.3), ncol = 2),
 matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2))
colnames(x) <- c("x", "y")
```
X <- ore.push (data.frame(x))
km.mod1 <- NULL
km.mod1 <- ore.odmKMeans(~., X, num.centers = 2)
km.mod1
summary(km.mod1)
rules(km.mod1)
clusterhists(km.mod1)
histogram(km.mod1)

km.res1 <- predict(km.mod1,X,type="class",supplemental.cols=c("x","y"))
head(km.res1,3)
km.res1.local <- ore.pull(km.res1)
plot(data.frame(x = km.res1.local$x,
                y = km.res1.local$y),
                col = km.res1.local$CLUSTER_ID)
points(km.mod1$centers2, col = rownames(km.mod1$centers2), pch = 8, cex=2)

head(predict(km.mod1,X))
head(predict(km.mod1,X,type=c("class","raw"),supplemental.cols=c("x","y")),3)
head(predict(km.mod1,X,type="raw",supplemental.cols=c("x","y")),3)

# Text processing with ore.odmKMeans
title <- c('Aids in Africa: Planning for a long war',
            'Mars rover maneuvers for rim shot',
            'Mars express confirms presence of water at Mars south pole',
            'NASA announces major Mars rover finding',
            'Drug access, Asia threat in focus at AIDS summit',
            'NASA Mars Odyssey THEMIS image: typical crater',
            'Road blocks for Aids')
response <- c('Aids', 'Mars', 'Mars', 'Mars', 'Aids', 'Mars', 'Aids')

# TEXT contents in character column
KM_TEXT <- ore.push(data.frame(CUST_ID = seq(length(title)),
                                RESPONSE = response, TITLE = title))

# Create text policy (CTXSYS.CTX_DDL privilege is required)
ore.exec("Begin ctx_ddl.create_policy('ESA_TXTPOL'); End;")

# Specify POLICY_NAME, MIN_DOCUMENTS, MAX_FEATURES and
# text column attribute specification
km.mod <- ore.odmKMeans(~ TITLE, data = KM_TEXT, num.centers = 2L,
                      odm.settings = list(ODMS_TEXT_POLICY_NAME = "ESA_TXTPOL",
                                          ODMS_TEXT_MIN_DOCUMENTS = 1,
                                          ODMS_TEXT_MAX_FEATURES = 3,
                                          kmns_distance =
                                          "dbms_data_mining.kmns_cosine",
                                          kmns_details = "kmns_details_all"),
                      ctx.settings = list(TITLE = "TEXT(TOKEN_TYPE:STEM)"))
summary(km.mod)
settings(km.mod)
print(predict(km.mod, KM_TEXT, supplemental.cols = "RESPONSE"), digits = 3L)

ore.exec("Begin ctx_ddl.drop_policy('ESA_TXTPOL'); End;")
Listing for This Example

R> x <- rbind(matrix(rnorm(100, sd = 0.3), ncol = 2),
+            matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2))
R> colnames(x) <- c("x", "y")
R>
R> X <- ore.push (data.frame(x))
R> km.mod1 <- NULL
R> km.mod1 <- ore.odmKMeans(~., X, num.centers = 2)
R> km.mod1

Call:
  ore.odmKMeans(formula = ~., data = X, num.centers = 2)

Settings:
  value
  clus.num.clusters                                  2
  block.growth                                       2
  conv.tolerance                                  0.01
  details                                  details.all
  distance                                   euclidean
  iterations                                         3
  min.pct.attr.support                             0.1
  num.bins                                          10
  random.seed                                        0
  split.criterion                             variance
  odms.missing.value.treatment odms.missing.value.auto
  odms.sampling                  odms.sampling.disable
  prep.auto                                         ON

R> summary(km.mod1)

Call:
  ore.odmKMeans(formula = ~., data = X, num.centers = 2)

Settings:
  value
  clus.num.clusters                                  2
  block.growth                                       2
  conv.tolerance                                  0.01
  details                                  details.all
  distance                                   euclidean
  iterations                                         3
  min.pct.attr.support                             0.1
  num.bins                                          10
  random.seed                                        0
  split.criterion                             variance
  odms.missing.value.treatment odms.missing.value.auto
  odms.sampling                  odms.sampling.disable
  prep.auto                                         ON

Centers:

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-0.07638266 0.04449368</td>
</tr>
<tr>
<td>3</td>
<td>0.98493306 1.00864399</td>
</tr>
</tbody>
</table>
R> rules(km.mod1)
    cluster.id rhs.support rhs.conf lhr.support lhs.conf lhs.var
           lhs.var.support lhs.var.conf   predicate
    1           100      1.0          92     0.86 x
2           100      1.0          92     0.86 x
    3           100      1.0          86     0.86 y
4           100      1.0          86     0.86 y
    5           50      0.5          48     0.96 x
6           50      0.5          48     0.96 x
    7           50      0.5          48     0.96 y
8           50      0.5          48     0.96 y
    9           50      0.5          49     0.98 x
10          50      0.5          49     0.98 x
   11          50      0.5          50     0.98 y
12          50      0.5          50     0.98 y

R> clusterhists(km.mod1)
    cluster.id variable bin.id lower.bound upper.bound               label
       count
1            1    x      1  -0.61884662  -0.35602715 -.6188466:-.
  3560272       6
2            1    x      2 -0.35602715  -0.09320769 -.3560272:-.
   0932077      17
3            1    x      3 -0.09320769   0.16961178 -.0932077:.1696118
   0932077:1696118 15
4            1    x      4  0.16961178   0.43243125 .1696118:.4324312
1696118:.4324312 11
5            1    x      5  0.43243125   0.69525071 .4324312:.6952507
   4324312:.6952507  8
6            1    x      6  0.69525071   0.95807018 .6952507:.9580702
  6952507:.9580702  17
7            1    x      7  0.95807018  1.22088965 .9580702:1.2208896
  9580702:1.2208896 18
8            1    x      8  1.22088965  1.48370911 1.2208896:1.4837091
1.2208896:1.4837091  4
9            1    x      9  1.48370911  1.74652858 1.4837091:1.7465286
1.4837091:1.7465286  4
10           1    y      1 -0.89359597  -0.59946141 -.8935959:-.
   5994614       2
11           1    y      2 -0.59946141  -0.30532685 -.5994614:-.
  3053269       4
12           1    y      3 -0.30532685  -0.01119230 -.3053268:-.

Chapter 4
Build Oracle Machine Learning for SQL Models
4-18
```r
R> histogram(km.mod1)
R>
R> km.res1 <- predict(km.mod1, X, type="class", supplemental.cols = c("x","y"))
R> head(km.res1, 3)
x y CLUSTER_ID
1 -0.43646407 0.26201831 2
2 -0.02797831 0.07319952 2
3 0.11998373 -0.08638716 2
R> km.res1.local <- ore.pull(km.res1)
R> plot(data.frame(x = km.res1.local$x,
+ y = km.res1.local$y),
+ col = km.res1.local$CLUSTER_ID)
R> points(km.mod1$centers2, col = rownames(km.mod1$centers2), pch = 8,
+ cex = 2)
R>
R> head(predict(km.mod1, X))
 '2' '3' CLUSTER_ID
1 0.9992236 0.0007763706 2
2 0.9971310 0.0028690375 2
3 0.9974216 0.0025783939 2
4 0.9997335 0.0002665114 2
5 0.9917773 0.0082226599 2
6 0.9771667 0.0228333398 2
R>
```
head(predict(km.mod1,X,type=c("class","raw"),supplemental.cols=c("x","y")),3)

<table>
<thead>
<tr>
<th>2'</th>
<th>3'</th>
<th>x</th>
<th>y</th>
<th>CLUSTER_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9992236</td>
<td>0.0007763706</td>
<td>-0.43646407</td>
<td>0.26201831</td>
</tr>
<tr>
<td>2</td>
<td>0.9971310</td>
<td>0.0028690375</td>
<td>-0.02797831</td>
<td>0.07319952</td>
</tr>
<tr>
<td>3</td>
<td>0.9974216</td>
<td>0.0025783939</td>
<td>0.11998373</td>
<td>-0.08638716</td>
</tr>
</tbody>
</table>

R> head(predict(km.mod1,X,type="raw",supplemental.cols=c("x","y")),3)

<table>
<thead>
<tr>
<th></th>
<th>2'</th>
<th>3'</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.43646407</td>
<td>0.26201831</td>
<td>0.9992236</td>
<td>0.0007763706</td>
</tr>
<tr>
<td>2</td>
<td>-0.02797831</td>
<td>0.07319952</td>
<td>0.9971310</td>
<td>0.0028690375</td>
</tr>
<tr>
<td>3</td>
<td>0.11998373</td>
<td>-0.08638716</td>
<td>0.9974216</td>
<td>0.0025783939</td>
</tr>
</tbody>
</table>

R> # Text processing with ore.odmKMeans
R> # Text processing with ore.odmKMeans
R> title <- c('Aids in Africa: Planning for a long war',
+             'Mars rover maneuvers for rim shot',
+             'Mars express confirms presence of water at Mars south pole',
+             'NASA announces major Mars rover finding',
+             'Drug access, Asia threat in focus at AIDS summit',
+             'NASA Mars Odyssey THEMIS image: typical crater',
+             'Road blocks for Aids')
R> response <- c('Aids', 'Mars', 'Mars', 'Mars', 'Aids', 'Mars', 'Aids')
R> KM_TEXT <- ore.push(data.frame(CUST_ID = seq(length(title)),
+                               RESPONSE = response, TITLE = title))
R> # Create text policy (CTXSYS.CTX_DDL privilege is required)
R> ore.exec("Begin ctx_ddl.create_policy('ESA_TXTPOL'); End;")
R> # specify POLICY_NAME, MIN_DOCUMENTS, MAX_FEATURES and
R> # Text column attribute specification
R> km.mod <- ore.odmKMeans(~ TITLE, data = KM_TEXT, num.centers = 2L,
+                         odm.settings = list(ODMS_TEXT_POLICY_NAME = "ESA_TXTPOL",
+                                            ODMS_TEXT_MIN_DOCUMENTS = 1,
+                                            ODMS_TEXT_MAX_FEATURES = 3,
+                                            kmns_distance = "dbms_data_mining.kmns_cosine",
+                                            kmns_details = "kmns_details_all"),
+                         ctx.settings = list(TITLE="TEXT(TOKEN_TYPE:STEM)")))
iterations                                         3
min.pct.attr.support                             0.1
num.bins                                          10
random.seed                                        0
split.criterion                              variance
odms.missing.value.treatment odms.missing.value.auto
odms.sampling odms.sampling.disable
odms.text.max.features                             3
odms.text.min.documents                            1
odms.text.policy.name ESA_TXTPOL
prep.auto                                         ON

Centers:
TITLE.MARS TITLE.NASA TITLE.ROVER TITLE.AIDS
2  0.5292307  0.7936566   0.7936566         NA
3         NA         NA          NA          1
R> settings(km.mod)

 SETTING_NAME    SETTING_VALUE SETTING_TYPE
   1 ALGO_NAME ALGO_KMEANS INPUT
   2 CLUS_NUM_CLUSTERS                       2        INPUT
   3 KMNS_BLOCK_GROWTH                       2        INPUT
   4 KMNS_CONV_TOLERANCE  0.01        INPUT
   5 KMNS_DETAILS KMNS_DETAILS_ALL        INPUT
   6 KMNS_DISTANCE KMNS_COSINE INPUT
   7 KMNS_ITERATIONS                       3        INPUT
   8 KMNS_MIN_PCT_ATTR_SUPPORT                     0.1        INPUT
   9 KMNS_NUM_BINS                               10       INPUT
  10 KMNS_RANDOM_SEED                       0      DEFAULT
  11 KMNS_SPLIT_CRITERION KMNS_VARIANCE INPUT
  12 ODMS_MISSING_VALUE_TREATMENT ODMS_MISSING_VALUE_AUTO DEFAULT
  13 ODMS_SAMPLING ODMS_SAMPLING_DISABLE DEFAULT
  14 ODMS_TEXT_MAX_FEATURES                       3        INPUT
  15 ODMS_TEXT_MIN_DOCUMENTS                       1        INPUT
  16 ODMS_TEXT_POLICY_NAME ESA_TXTPOL INPUT
  17 PREP_AUTO                      ON        INPUT
R> print(predict(km.mod, KM_TEXT, supplemental.cols = "RESPONSE"), digits = 3L)

 '2'   '3' RESPONSE CLUSTER_ID
  1  0.0213  0.9787   Aids    3
  2  0.9463  0.0537   Mars    2
  3  0.9325  0.0675   Mars    2
  4  0.9691  0.0309   Mars    2
  5  0.0213  0.9787   Aids    3
  6  0.9463  0.0537   Mars    2
  7  0.0213  0.9787   Aids    3
R> ore.exec("Begin ctx_ddl.drop_policy('ESA_TXTPOL'); End;")
4.2.2 Build an Association Rules Model

The `ore.odmAssocRules` function implements the Apriori algorithm to find frequent itemsets and generate an association model.

The function finds the co-occurrence of items in large volumes of transactional data such as in market basket analysis. An association rule identifies a pattern in the data in which the appearance of a set of items in a transactional record implies another set of items. The groups of items used to form rules must pass a minimum threshold according to how frequently they occur (the `support` of the rule) and how often the consequent follows the antecedent (the `confidence` of the rule). Association models generate all rules that have support and confidence greater than user-specified thresholds. The Apriori algorithm is efficient, and scales well with respect to the number of transactions, number of items, and number of itemsets and rules produced.

The formula specification has the form `~ terms`, where `terms` is a series of column names to include in the analysis. Multiple column names are specified using `+` between column names. Use `~ .` if all columns in the data should be used for model building. To exclude columns, use `~ -` before each column name to exclude. Functions can be applied to the items in `terms` to realize transformations.

The `ore.odmAssocRules` function accepts data in the following forms:

- Transactional data
- Multi-record case data using item id and item value
- Relational data

For examples of specifying the forms of data and for information on the arguments of the function, invoke `help(ore.odmAssocRules).`
The function `rules` returns an object of class `ore.rules`, which specifies a set of association rules. You can pull an `ore.rules` object into memory in a local R session by using `ore.pull`. The local in-memory object is of class `rules` defined in the `arules` package. See `help(ore.rules)`.

The function `itemsets` returns an object of class `ore.itemsets`, which specifies a set of itemsets. You can pull an `ore.itemsets` object into memory in a local R session by using `ore.pull`. The local in-memory object is of class `itemsets` defined in the `arules` package. See `help(ore.itemsets)`.

**Example 4-9 Using the ore.odmAssocRules Function**

This example builds an association model on a transactional data set. The packages `arules` and `arulesViz` are required to pull the resulting rules and itemsets into the client R session memory and be visualized. The graph of the rules appears in the figure following the example.

```r
Load the arules and arulesViz packages.
library(arules)
library(arulesViz)
Create some transactional data.
id <- c(1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3)
item <- c("b", "d", "e", "a", "b", "c", "e", "b", "c", "d", "e")
Push the data to the database as an ore.frame object.
transdata_of <- ore.push(data.frame(ID = id, ITEM = item))
Build a model with specifications.
ar.mod1 <- ore.odmAssocRules(~., transdata_of, case.id.column = "ID",
 item.id.column = "ITEM", min.support = 0.6, min.confidence = 0.6,
 max.rule.length = 3)
Generate itemsets and rules of the model.
itemsets <- itemsets(ar.mod1)
rules <- rules(ar.mod1)
Convert the rules to the rules object in arules package.
rules.arules <- ore.pull(rules)
inspect(rules.arules)
Convert itemsets to the itemsets object in arules package.
itemsets.arules <- ore.pull(itemsets)
inspect(itemsets.arules)
Plot the rules graph.
plot(rules.arules, method = "graph", interactive = TRUE)
```

**Listing for This Example**

R> # Load the arules and arulesViz packages.
R> library(arules)
R> library(arulesViz)
R> # Create some transactional data.
R> id <- c(1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3)
R> item <- c("b", "d", "e", "a", "b", "c", "e", "b", "c", "d", "e")
R> # Push the data to the database as an ore.frame object.
R> transdata_of <- ore.push(data.frame(ID = id, ITEM = item))
R> # Build a model with specifications.
R> ar.mod1 <- ore.odmAssocRules(~., transdata_of, case.id.column = "ID",
R+             item.id.column = "ITEM", min.support = 0.6, min.confidence = 0.6,
R+             max.rule.length = 3)
R> # Generate itemsets and rules of the model.
R> itemsets <- itemsets(ar.mod1)
R> rules <- rules(ar.mod1)
R> # Convert the rules to the rules object in arules package.
R> rules.arules <- ore.pull(rules)
R> inspect(rules.arules)
<table>
<thead>
<tr>
<th>lhs</th>
<th>rhs</th>
<th>support</th>
<th>confidence</th>
<th>lift</th>
</tr>
</thead>
<tbody>
<tr>
<td>{b} =&gt; {e}</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1</td>
</tr>
<tr>
<td>{e} =&gt; {b}</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1</td>
</tr>
<tr>
<td>{c} =&gt; {e}</td>
<td>0.6666667</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1</td>
</tr>
<tr>
<td>{d, e} =&gt; {b}</td>
<td>0.6666667</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1</td>
</tr>
<tr>
<td>{c, e} =&gt; {b}</td>
<td>0.6666667</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1</td>
</tr>
<tr>
<td>{b, d} =&gt; {e}</td>
<td>0.6666667</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1</td>
</tr>
<tr>
<td>{b, c} =&gt; {e}</td>
<td>0.6666667</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1</td>
</tr>
<tr>
<td>{d, e} =&gt; {b}</td>
<td>0.6666667</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1</td>
</tr>
<tr>
<td>{c, e} =&gt; {b}</td>
<td>0.6666667</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1</td>
</tr>
<tr>
<td>{b, e} =&gt; {d}</td>
<td>0.6666667</td>
<td>0.6666667</td>
<td>0.6666667</td>
<td>1</td>
</tr>
<tr>
<td>{b, e} =&gt; {c}</td>
<td>0.6666667</td>
<td>0.6666667</td>
<td>0.6666667</td>
<td>1</td>
</tr>
</tbody>
</table>

R> # Convert itemsets to the itemsets object in arules package.
R> itemsets.arules <- ore.pull(itemsets)
R> inspect(itemsets.arules)

items support
1 {b} 1.0000000
2 {e} 1.0000000
3 {b, e} 1.0000000
4 {c} 0.6666667
5 {d} 0.6666667
6 {b, c} 0.6666667
7 {b, d} 0.6666667
8 {c, e} 0.6666667
9 {d, e} 0.6666667
10 {b, c, e} 0.6666667
11 {b, d, e} 0.6666667

R> # Plot the rules graph.
R> plot(rules.arules, method = "graph", interactive = TRUE)
4.2.3 Build an Attribute Importance Model

Attribute importance ranks attributes according to their significance in predicting a target.

The `ore.odmAI` function uses the OML4SQL Minimum Description Length algorithm to calculate attribute importance. Minimum Description Length (MDL) is an information theoretic model selection principle. It is an important concept in information theory (the study of the quantification of information) and in learning theory (the study of the capacity for generalization based on empirical data).

MDL assumes that the simplest, most compact representation of the data is the best and most probable explanation of the data. The MDL principle is used to build OML4SQL attribute importance models.

Attribute importance models built using OML4SQL cannot be applied to new data.

The `ore.odmAI` function produces a ranking of attributes and their importance values.
Note:

OREdm attribute importance models differ from OML4SQL attribute importance models in these ways: a model object is not retained, and an R model object is not returned. Only the importance ranking created by the model is returned.

For information on the ore.odmAI function arguments, invoke help(ore.odmAI).

Example 4-10 Using the ore.odmAI Function

This example pushes the data.frame iris to the database as the ore.frame iris_of. The example then builds an attribute importance model.

iris_of <- ore.push(iris)
ore.odmAI(Species ~ ., iris_of)

Listing for This Example

R> iris_of <- ore.push(iris)
R> ore.odmAI(Species ~ ., iris_of)

Call:
ore.odmAI(formula = Species ~ ., data = iris_of)

Importance:

<table>
<thead>
<tr>
<th></th>
<th>importance rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petal.Width</td>
<td>1.1701851</td>
</tr>
<tr>
<td>Petal.Length</td>
<td>1.1494402</td>
</tr>
<tr>
<td>Sepal.Length</td>
<td>0.5248815</td>
</tr>
<tr>
<td>Sepal.Width</td>
<td>0.2504077</td>
</tr>
</tbody>
</table>

4.2.4 Build a Decision Tree Model

The ore.odmDT function uses the OML4SQL Decision Tree algorithm, which is based on conditional probabilities.

Decision tree models are classification models. Decision trees generate rules. A rule is a conditional statement that can easily be understood by humans and be used within a database to identify a set of records.

A decision tree predicts a target value by asking a sequence of questions. At a given stage in the sequence, the question that is asked depends upon the answers to the previous questions. The goal is to ask questions that, taken together, uniquely identify specific target values. Graphically, this process forms a tree structure.

During the training process, the Decision Tree algorithm must repeatedly find the most efficient way to split a set of cases (records) into two child nodes. The ore.odmDT function offers two homogeneity metrics, gini and entropy, for calculating the splits. The default metric is gini.

For information on the ore.odmDT function arguments, invoke help(ore.odmDT).

Example 4-11 Using the ore.odmDT Function

This example creates an input ore.frame, builds a model, makes predictions, and generates a confusion matrix.
m <- mtcars
m$gear <- as.factor(m$gear)
m$cyl <- as.factor(m$cyl)
m$vs <- as.factor(m$vs)
m$ID <- 1:nrow(m)
mtcars_of <- ore.push(m)
row.names(mtcars_of) <- mtcars_of
# Build the model.
dt.mod <- ore.odmDT(gear ~ ., mtcars_of)
summary(dt.mod)
# Make predictions and generate a confusion matrix.
dt.res <- predict (dt.mod, mtcars_of, "gear")
with(dt.res, table(gear, PREDICTION))

Listing for This Example

R> m <- mtcars
R> m$gear <- as.factor(m$gear)
R> m$cyl <- as.factor(m$cyl)
R> m$vs <- as.factor(m$vs)
R> m$ID <- 1:nrow(m)
R> mtcars_of <- ore.push(m)
R> row.names(mtcars_of) <- mtcars_of
R> # Build the model.
R> dt.mod <- ore.odmDT(gear ~ ., mtcars_of)
R> summary(dt.mod)

Call:
    ore.odmDT(formula = gear ~ ., data = mtcars_of)

    n =  32

    Nodes:
       parent node.id row.count prediction         split
              1      NA        0          32          3         <NA>
              2          0        1          16          4  (disp <= 196.299999999999995)
              3          0        2          16          3  (disp > 196.299999999999995)
              1         <NA>        <NA>         <NA>
              2  (cyl in ("4" "6" ))  (disp <= 196.299999999999995)
              3  (cyl in ("8" ))  (disp > 196.299999999999995)

    Settings:
      value
    prep.auto        on
    impurity.metric  impurity.gini
    term.max.depth    7
    term.minpct.node  0.05
    term.minpct.split 0.1
    term.minrec.node  10
    term.minrec.split 20
R> # Make predictions and generate a confusion matrix.
R> dt.res <- predict (dt.mod, mtcars_of, "gear")
R> with(dt.res, table(gear, PREDICTION))

    gear PREDICTION
       3          4
       3          1
       4          0
       5          2
       3          3
4.2.5 Build an Expectation Maximization Model

The `ore.odmEM` function creates a model that uses the OML4SQL Expectation Maximization (EM) algorithm.

EM is a density estimation algorithm that performs probabilistic clustering. In density estimation, the goal is to construct a density function that captures how a given population is distributed. The density estimate is based on observed data that represents a sample of the population.

For information on the `ore.odmEM` function arguments, invoke `help(ore.odmEM)`.

**Example 4-12 Using the `ore.odmEM` Function**

```r
Synthetic 2-dimensional data set
set.seed(7654)
x <- rbind(matrix(rnorm(100, mean = 4, sd = 0.3), ncol = 2),
 matrix(rnorm(100, mean = 2, sd = 0.3), ncol = 2))
colnames(x) <- c("x", "y")
X <- ore.push (data.frame(ID=1:100,x))
rownames(X) <- X$ID

em.mod <- NULL
em.mod <- ore.odmEM(~., X, num.centers = 2L)
summary(em.mod)
rules(em.mod)
clusterhists(em.mod)
histogram(em.mod)

data.em.res <- predict(em.mod, X, type="class", supplemental.cols=c("x", "y"))
head(data.em.res)
data.em.res.local <- ore.pull(data.em.res)
plot(data.frame(x=data.em.res.local$x, y=data.em.res.local$y),
 col=data.em.res.local$CLUSTER_ID)
points(em.mod$centers2, col = rownames(em.mod$centers2), pch=8, cex=2)

head(predict(em.mod,X))
head(predict(em.mod,X,type=c("class","raw")))
head(predict(em.mod,X,type=c("class","raw"),supplemental.cols=c("x","y")))
head(predict(em.mod,X,type="raw",supplemental.cols=c("x","y")))
```

**Listing for This Example**

```r
Synthetic 2-dimensional data set
set.seed(7654)
x <- rbind(matrix(rnorm(100, mean = 4, sd = 0.3), ncol = 2),
 matrix(rnorm(100, mean = 2, sd = 0.3), ncol = 2))
colnames(x) <- c("x", "y")
set.seed(7654)
x <- rbind(matrix(rnorm(100, mean = 4, sd = 0.3), ncol = 2),
 matrix(rnorm(100, mean = 2, sd = 0.3), ncol = 2))
colnames(x) <- c("x", "y")
```
R> X <- ore.push (data.frame(ID=1:100,x))
R> rownames(X) <- X$ID
R>
R> em.mod <- NULL
R> em.mod <- ore.odmEM(~., X, num.centers = 2L)
R> summary(em.mod)

Call:
ore.odmEM(formula = ~., data = X, num.centers = 2L)

Settings:  

<table>
<thead>
<tr>
<th></th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>clus.num.clusters</td>
<td>2</td>
</tr>
<tr>
<td>cluster.components</td>
<td></td>
</tr>
<tr>
<td>cluster.statistics</td>
<td></td>
</tr>
<tr>
<td>cluster.thresh</td>
<td>2</td>
</tr>
<tr>
<td>linkage.function</td>
<td>linkage.single</td>
</tr>
<tr>
<td>loglike.improvement</td>
<td>.001</td>
</tr>
<tr>
<td>max.num.attr.2d</td>
<td>50</td>
</tr>
<tr>
<td>min.pct.attr.support</td>
<td>.1</td>
</tr>
<tr>
<td>model.search</td>
<td>model.search.disable</td>
</tr>
<tr>
<td>num.components</td>
<td>20</td>
</tr>
<tr>
<td>num.distribution</td>
<td>num.distr.system</td>
</tr>
<tr>
<td>num.equilibwidth.bins</td>
<td>11</td>
</tr>
<tr>
<td>num.iterations</td>
<td>100</td>
</tr>
<tr>
<td>num.projections</td>
<td>50</td>
</tr>
<tr>
<td>random.seed</td>
<td>0</td>
</tr>
<tr>
<td>remove.components</td>
<td>remove.comps.enable</td>
</tr>
<tr>
<td>odms.missing.value.treatment</td>
<td>odms.missing.value.auto</td>
</tr>
<tr>
<td>odms.sampling</td>
<td>odms.sampling.disable</td>
</tr>
<tr>
<td>prep.auto</td>
<td>ON</td>
</tr>
</tbody>
</table>

Centers:  

<table>
<thead>
<tr>
<th>MEAN.ID</th>
<th>MEAN.x</th>
<th>MEAN.y</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>25.5</td>
<td>4.03</td>
</tr>
<tr>
<td>3</td>
<td>75.5</td>
<td>1.93</td>
</tr>
</tbody>
</table>

R> rules(em.mod)

<table>
<thead>
<tr>
<th>cluster.id</th>
<th>rhs.support</th>
<th>rhs.conf</th>
<th>lhr.support</th>
<th>lhr.conf</th>
<th>lhs.conf</th>
<th>lhs.var</th>
<th>lhs.var.support</th>
<th>lhs.var.conf</th>
<th>predicate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>100</td>
<td>1.0</td>
<td>100</td>
<td>1.0</td>
<td>1.00</td>
<td>100</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>100</td>
<td>0.0000</td>
<td>ID &lt;= 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>100</td>
<td>1.0</td>
<td>100</td>
<td>1.0</td>
<td>1.00</td>
<td>100</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>100</td>
<td>0.0000</td>
<td>ID &gt;= 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>100</td>
<td>1.0</td>
<td>100</td>
<td>1.0</td>
<td>1.00</td>
<td>100</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>100</td>
<td>0.2500</td>
<td>x &lt;= 4.6298</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>100</td>
<td>1.0</td>
<td>100</td>
<td>1.0</td>
<td>1.00</td>
<td>100</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>100</td>
<td>0.2500</td>
<td>x &gt;= 1.3987</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>100</td>
<td>1.0</td>
<td>100</td>
<td>1.0</td>
<td>1.00</td>
<td>100</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>y</td>
<td>100</td>
<td>0.3000</td>
<td>y &lt;= 4.5846</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>100</td>
<td>1.0</td>
<td>100</td>
<td>1.0</td>
<td>1.00</td>
<td>100</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>y</td>
<td>100</td>
<td>0.3000</td>
<td>y &gt;= 1.3546</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>50</td>
<td>0.5</td>
<td>50</td>
<td>1.0</td>
<td>1.00</td>
<td>100</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>50</td>
<td>0.0937</td>
<td>ID &lt;= 50.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cluster.id</td>
<td>variable</td>
<td>bin.id</td>
<td>lower.bound</td>
<td>upper.bound</td>
<td>label</td>
<td>count</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
<td>------------------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ID</td>
<td>1</td>
<td>1.00</td>
<td>10.90</td>
<td>1:10.9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ID</td>
<td>1</td>
<td>2.00</td>
<td>10.90</td>
<td>10.9:20.8</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ID</td>
<td>1</td>
<td>3.00</td>
<td>20.80</td>
<td>20.8:30.7</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ID</td>
<td>1</td>
<td>4.00</td>
<td>30.70</td>
<td>30.7:40.6</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ID</td>
<td>1</td>
<td>5.00</td>
<td>40.60</td>
<td>40.6:50.5</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ID</td>
<td>1</td>
<td>6.00</td>
<td>50.50</td>
<td>50.5:60.4</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ID</td>
<td>1</td>
<td>7.00</td>
<td>60.40</td>
<td>60.4:70.3</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ID</td>
<td>1</td>
<td>8.00</td>
<td>70.30</td>
<td>70.3:80.2</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>ID</td>
<td>1</td>
<td>9.00</td>
<td>80.20</td>
<td>80.2:90.1</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>ID</td>
<td>1</td>
<td>10.00</td>
<td>90.10</td>
<td>90.1:100</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>ID</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
<td>:</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>x</td>
<td>1</td>
<td>1.40</td>
<td>1.72</td>
<td>1.399:1.722</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>x</td>
<td>1</td>
<td>1.72</td>
<td>2.04</td>
<td>1.722:2.045</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>x</td>
<td>1</td>
<td>2.04</td>
<td>2.37</td>
<td>2.045:2.368</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>x</td>
<td>1</td>
<td>2.37</td>
<td>2.69</td>
<td>2.368:2.691</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>x</td>
<td>1</td>
<td>2.69</td>
<td>3.01</td>
<td>2.691:3.014</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>x</td>
<td>1</td>
<td>3.01</td>
<td>3.34</td>
<td>3.014:3.337</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>x</td>
<td>1</td>
<td>3.34</td>
<td>3.66</td>
<td>3.337:3.66</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>x</td>
<td>1</td>
<td>3.66</td>
<td>3.98</td>
<td>3.66:3.984</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>x</td>
<td>1</td>
<td>3.98</td>
<td>4.31</td>
<td>3.984:4.307</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>x</td>
<td>1</td>
<td>4.31</td>
<td>4.63</td>
<td>4.307:4.63</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>x</td>
<td>1</td>
<td>4.63</td>
<td>NA</td>
<td>NA</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>y</td>
<td>1</td>
<td>1.35</td>
<td>1.68</td>
<td>1.355:1.678</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>y</td>
<td>1</td>
<td>1.68</td>
<td>1.98</td>
<td>1.678:2.001</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>y</td>
<td>1</td>
<td>2.00</td>
<td>2.32</td>
<td>2.001:2.324</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>y</td>
<td>1</td>
<td>2.32</td>
<td>2.65</td>
<td>2.324:2.647</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>y</td>
<td>1</td>
<td>2.65</td>
<td>2.97</td>
<td>2.647:2.97</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>y</td>
<td>1</td>
<td>2.97</td>
<td>3.29</td>
<td>2.97:3.293</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>y</td>
<td>1</td>
<td>3.29</td>
<td>3.62</td>
<td>3.293:3.616</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>y</td>
<td>1</td>
<td>3.62</td>
<td>3.94</td>
<td>3.616:3.939</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>y</td>
<td>1</td>
<td>3.94</td>
<td>4.26</td>
<td>3.939:4.262</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 4
Build Oracle Machine Learning for SQL Models

32  1     y  10   4.26  4.58  4.26:4.585  11
33  1     y  11  NA    NA    NA          :  0
34  2     ID  1  1.00  10.90  1:10.9    10
35  2     ID  2 10.90  20.80  10.9:20.8    10
36  2     ID  3 20.80  30.70  20.8:30.7    10
37  2     ID  4 30.70  40.60  30.7:40.6    10
38  2     ID  5 40.60  50.50  40.6:50.5    10
39  2     ID  6 50.50  60.40  50.5:60.4    0
40  2     ID  7 60.40  70.30  60.4:70.3    0
41  2     ID  8 70.30  80.20  70.3:80.2    0
42  2     ID  9 80.20  90.10  80.2:90.1    0
43  2    ID 10  90.10 100.00  90.1:100   0
44  2    ID 11  NA    NA    NA          :  0
45  2     x  1  1.40  1.72   1.399:1.722   0
46  2     x  2  1.72  2.04   1.722:2.045   0
47  2     x  3  2.04  2.37   2.045:2.368   0
48  2     x  4  2.37  2.69   2.368:2.691   0
49  2     x  5  2.69  3.01   2.691:3.014   0
50  2     x  6  3.01  3.34   3.014:3.337   0
51  2     x  7  3.34  3.66   3.337:3.66    4
52  2     x  8  3.66  3.98   3.66:3.984   18
53  2     x  9  3.98  4.31   3.984:4.307  22
54  2    x 10  4.31  4.63   4.307:4.63   6
55  2    x 11  NA    NA    NA          :  0
56  2     y  1  1.35  1.68   1.355:1.678   0
57  2     y  2  1.68  2.00   1.678:2.001   0
58  2     y  3  2.00  2.32   2.001:2.324   0
59  2     y  4  2.32  2.65   2.324:2.647   0
60  2     y  5  2.65  2.97   2.647:2.97    0
61  2     y  6  2.97  3.29   2.972:3.293   4
62  2     y  7  3.29  3.62   3.293:3.616   3
63  2     y  8  3.62  3.94   3.616:3.939  16
64  2     y  9  3.94  4.26   3.939:4.262  16
65  2    y 10  4.26  4.58   4.262:4.585  11
66  2    y 11  NA    NA    NA          :  0
67  3     ID  1  1.00  10.90  1:10.9    10
68  3     ID  2 10.90  20.80  10.9:20.8    0
69  3     ID  3 20.80  30.70  20.8:30.7    0
70  3     ID  4 30.70  40.60  30.7:40.6    0
71  3     ID  5 40.60  50.50  40.6:50.5    0
72  3     ID  6 50.50  60.40  50.5:60.4    10
73  3     ID  7 60.40  70.30  60.4:70.3    10
74  3     ID  8 70.30  80.20  70.3:80.2    10
75  3     ID  9 80.20  90.10  80.2:90.1    10
76  3    ID 10  90.10 100.00  90.1:100   10
77  3    ID 11  NA    NA    NA          :  0
78  3     x  1  1.40  1.72   1.399:1.722   11
79  3     x  2  1.72  2.04   1.722:2.045  22
80  3     x  3  2.04  2.37   2.045:2.368  16
81  3     x  4  2.37  2.69   2.368:2.691  1
82  3     x  5  2.69  3.01   2.691:3.014  0
83  3     x  6  3.01  3.34   3.014:3.337  0
84  3     x  7  3.34  3.66   3.337:3.66    0
85  3     x  8  3.66  3.98   3.66:3.984   0
86  3     x  9  3.98  4.31   3.984:4.307  0

4-32
Chapter 4
Build Oracle Machine Learning for SQL Models

R> histogram(em.mod)
R>
R> em.res <- predict(em.mod, X, type="class", supplemental.cols=c("x", "y"))
R> head(em.res)

   x    y CLUSTER_ID
1 4.15 3.63          2
2 3.88 4.13          2
3 3.72 4.10          2
4 3.78 4.14          2
5 4.22 4.35          2
6 4.07 3.62          2

R> em.res.local <- ore.pull(em.res)
R> plot(data.frame(x=em.res.local$x, y=em.res.local$y),
      col=em.res.local$CLUSTER_ID)
R> points(em.mod$centers2, col = rownames(em.mod$centers2), pch=8, cex=2)
R>
R> head(predict(em.mod,X))

   '2'  '3' CLUSTER_ID
1  1 1.14e-54          2
2  1 1.63e-55          2
3  1 1.10e-51          2
4  1 1.53e-52          2
5  1 9.02e-62          2
6  1 3.20e-49          2

R> head(predict(em.mod,X,type=c("class","raw")))

   '2'  '3' CLUSTER_ID
1  1 1.14e-54          2
2  1 1.63e-55          2
3  1 1.10e-51          2
4  1 1.53e-52          2
5  1 9.02e-62          2
6  1 3.20e-49          2

R> head(predict(em.mod,X,type=c("class","raw"),supplemental.cols=c("x","y")))

   '2'  '3'    x    y CLUSTER_ID
1  1 1.14e-54 4.15 3.63          2
2  1 1.63e-55 3.88 4.13          2
3  1 1.10e-51 3.72 4.10          2
4  1 1.53e-52 3.78 4.14          2
5  1 9.02e-62 4.22 4.35          2
6  1 3.20e-49 4.07 3.62          2
4.2.6 Build an Explicit Semantic Analysis Model

The `ore.odmESA` function creates a model that uses the OML4SQL Explicit Semantic Analysis (ESA) algorithm.

ESA is an unsupervised algorithm used by OML4SQL for feature extraction. ESA does not discover latent features but instead uses explicit features based on an existing knowledge base.

Explicit knowledge often exists in text form. Multiple knowledge bases are available as collections of text documents. These knowledge bases can be generic, for example, Wikipedia, or domain-specific. Data preparation transforms the text into vectors that capture attribute-concept associations.

For information on the `ore.odmESA` function arguments, invoke `help(ore.odmESA)`.

**Example 4-13  Using the `ore.odmESA` Function**

```r
TEXT contents in character column
df <- data.frame(CUST_ID = seq(length(title)), TITLE = title)
ESA_TEXT <- ore.push(df)

TEXT contents in clob column
attr(df$TITLE, "ora.type") <- "clob"
ESA_TEXT_CLOB <- ore.push(df)

Create text policy (CTXSYS.CTX_DDL privilege is required)
ore.exec("Begin ctx_ddl.create_policy('ESA_TXTPOL'); End;")

Specify TEXT POLICY_NAME, MIN_DOCUMENTS, MAX_FEATURES and # ESA algorithm settings in `odm.settings`
esa.mod <- ore.odmESA(~ TITLE, data = ESA_TEXT_CLOB,
odm.settings = list(case_id_column_name = "CUST_ID",
 ODMS_TEXT_POLICY_NAME = "ESA_TXTPOL",
 ODMS_TEXT_MIN_DOCUMENTS = 1,
 ODMS_TEXT_MAX_FEATURES = 3,
 ESAS_MIN_ITEMS = 1,
```

R> head(predict(em.mod,X,type="raw",supplemental.cols=c("x","y")))

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.14e-54</td>
<td>1.63e-55</td>
<td>1.10e-51</td>
<td>1.53e-52</td>
</tr>
<tr>
<td>9.02e-62</td>
<td>3.20e-49</td>
<td>1.53e-52</td>
<td>1.10e-51</td>
</tr>
<tr>
<td>1.14e-54</td>
<td>1.63e-55</td>
<td>1.10e-51</td>
<td>1.53e-52</td>
</tr>
<tr>
<td>9.02e-62</td>
<td>3.20e-49</td>
<td>1.53e-52</td>
<td>1.10e-51</td>
</tr>
<tr>
<td>1.14e-54</td>
<td>1.63e-55</td>
<td>1.10e-51</td>
<td>1.53e-52</td>
</tr>
<tr>
<td>9.02e-62</td>
<td>3.20e-49</td>
<td>1.53e-52</td>
<td>1.10e-51</td>
</tr>
</tbody>
</table>

```

4-34
ESAS_VALUE_THRESHOLD = 0.0001,
ESAS_TOPN_FEATURES = 3)

class(esa.mod)
summary(esa.mod)
settings(esa.mod)
features(esa.mod)
predict(esa.mod, ESA_TEXT, type = "class", supplemental.cols = "TITLE")

Use ctx.settings to specify a character column as TEXT and
the same settings as above as well as TOKEN_TYPE
esa.mod2 <- ore.odmESA(~ TITLE, data = ESA_TEXT,
 odm.settings = list(case_id_column_name = "CUST_ID", ESAS_MIN_ITEMS = 1),
 ctx.settings = list(TITLE =
 "TEXT(POLICY_NAME:ESA_TXTPOL)(TOKEN_TYPE:STEM)(MIN_DOCUMENTS:1)
 (MAX_FEATURES:3)"))
summary(esa.mod2)
settings(esa.mod2)
features(esa.mod2)
predict(esa.mod2, ESA_TEXT_CLOB, type = "class", supplemental.cols = "TITLE")

ore.exec("Begin ctx_ddl.drop_policy('ESA_TXTPOL'); End;")

Listing for This Example

R> title <- c('Aids in Africa: Planning for a long war',
 + 'Mars rover maneuvers for rim shot',
 + 'Mars express confirms presence of water at Mars south pole',
 + 'NASA announces major Mars rover finding',
 + 'Drug access, Asia threat in focus at AIDS summit',
 + 'NASA Mars Odyssey THEMIS image: typical crater',
 + 'Road blocks for Aids')
R>
R> # TEXT contents in character column
R> df <- data.frame(CUST_ID = seq(length(title)), TITLE = title)
R> ESA_TEXT <- ore.push(df)
R>
R> # TEXT contents in clob column
R> attr(df$TITLE, "ora.type") <- "clob"
R> ESA_TEXT_CLOB <- ore.push(df)
R>
R> # Create a text policy (CTXSYS.CTX_DDL privilege is required)
R> ore.exec("Begin ctx_ddl.create_policy('ESA_TXTPOL'); End;")
R>
R> # Specify TEXT POLICY_NAME, MIN_DOCUMENTS, MAX_FEATURES and
R> # ESA algorithm settings in odm.settings
R> esa.mod <- ore.odmESA(~ TITLE, data = ESA_TEXT_CLOB,
 + odm.settings = list(case_id_column_name = "CUST_ID",
 + ODMS_TEXT_POLICY_NAME = "ESA_TXTPOL",
 + ODMS_TEXT_MIN_DOCUMENTS = 1,
 + ODMS_TEXT_MAX_FEATURES = 3,
 + ESAS_MIN_ITEMS = 1,
 + ESAS_VALUE_THRESHOLD = 0.0001,
 + ESAS_TOPN_FEATURES = 3))
R> class(esa.mod)
[1] "ore.odmESA" "ore.model"
R> summary(esa.mod)

Call:
ore.odmESA(formula = ~TITLE, data = ESA_TEXT_CLOB, odm.settings =
list(case_id_column_name = "CUST_ID",
 ODMS_TEXT_POLICY_NAME = "ESA_TXTPOL", ODMS_TEXT_MIN_DOCUMENTS = 1,
 ODMS_TEXT_MAX_FEATURES = 3, ESAS_MIN_ITEMS = 1, ESAS_VALUE_THRESHOLD =
 1e-04,
 ESAS_TOPN_FEATURES = 3))

Settings:

<table>
<thead>
<tr>
<th>SETTING_NAME</th>
<th>SETTING_VALUE</th>
<th>SETTING_TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALGO_NAME</td>
<td>ALGO_EXPLICIT_SEMANTIC_ANALYS</td>
<td>INPUT</td>
</tr>
<tr>
<td>ESAS_MIN_ITEMS</td>
<td>1</td>
<td>INPUT</td>
</tr>
<tr>
<td>ESAS_TOPN_FEATURES</td>
<td>3</td>
<td>INPUT</td>
</tr>
<tr>
<td>ESAS_VALUE_THRESHOLD</td>
<td>1e-04</td>
<td>INPUT</td>
</tr>
<tr>
<td>ODMS_MISSING_VALUE_TREATMENT</td>
<td>ODMS_MISSING_VALUE_AUTO</td>
<td>DEFAULT</td>
</tr>
<tr>
<td>ODMS_SAMPLING</td>
<td>ODMS_SAMPLING_DISABLE</td>
<td>DEFAULT</td>
</tr>
<tr>
<td>ODMS_TEXT_MAX_FEATURES</td>
<td>3</td>
<td>INPUT</td>
</tr>
<tr>
<td>ODMS_TEXT_MIN_DOCUMENTS</td>
<td>1</td>
<td>INPUT</td>
</tr>
<tr>
<td>ODMS_TEXT_POLICY_NAME</td>
<td>ESA_TXTPOL</td>
<td>INPUT</td>
</tr>
<tr>
<td>PREP_AUTO</td>
<td>ON</td>
<td>INPUT</td>
</tr>
</tbody>
</table>

Features:

<table>
<thead>
<tr>
<th>FEATURE_ID</th>
<th>ATTRIBUTE_NAME</th>
<th>ATTRIBUTE_VALUE</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TITLE.AIDS</td>
<td><NA></td>
<td>1.0000000</td>
</tr>
<tr>
<td>2</td>
<td>TITLE.MARS</td>
<td><NA></td>
<td>0.4078615</td>
</tr>
<tr>
<td>2</td>
<td>TITLE.ROVER</td>
<td><NA></td>
<td>0.9130438</td>
</tr>
<tr>
<td>3</td>
<td>TITLE.MARS</td>
<td><NA></td>
<td>1.0000000</td>
</tr>
<tr>
<td>4</td>
<td>TITLE.NASA</td>
<td><NA></td>
<td>0.6742695</td>
</tr>
<tr>
<td>4</td>
<td>TITLE.ROVER</td>
<td><NA></td>
<td>0.6742695</td>
</tr>
<tr>
<td>5</td>
<td>TITLE.AIDS</td>
<td><NA></td>
<td>1.0000000</td>
</tr>
<tr>
<td>6</td>
<td>TITLE.MARS</td>
<td><NA></td>
<td>0.4078615</td>
</tr>
<tr>
<td>7</td>
<td>TITLE.AIDS</td>
<td><NA></td>
<td>1.0000000</td>
</tr>
<tr>
<td>8</td>
<td>TITLE.MARS</td>
<td><NA></td>
<td>0.9130438</td>
</tr>
<tr>
<td>9</td>
<td>TITLE.NASA</td>
<td><NA></td>
<td>0.9130438</td>
</tr>
<tr>
<td>10</td>
<td>TITLE.AIDS</td>
<td><NA></td>
<td>1.0000000</td>
</tr>
</tbody>
</table>

R> settings(esa.mod)

R> features(esa.mod)
<table>
<thead>
<tr>
<th>FEATURE_ID</th>
<th>ATTRIBUTE_NAME</th>
<th>ATTRIBUTE_VALUE</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TITLE.AIDS</td>
<td><NA></td>
<td>1.0000000</td>
</tr>
<tr>
<td>2</td>
<td>TITLE.MARS</td>
<td><NA></td>
<td>0.4078615</td>
</tr>
<tr>
<td>3</td>
<td>TITLE.ROVER</td>
<td><NA></td>
<td>0.9130438</td>
</tr>
<tr>
<td>4</td>
<td>TITLE.MARS</td>
<td><NA></td>
<td>0.3011997</td>
</tr>
<tr>
<td>5</td>
<td>TITLE.NASA</td>
<td><NA></td>
<td>0.6742695</td>
</tr>
<tr>
<td>6</td>
<td>TITLE.AIDS</td>
<td><NA></td>
<td>1.0000000</td>
</tr>
<tr>
<td>7</td>
<td>TITLE.MARS</td>
<td><NA></td>
<td>0.4078615</td>
</tr>
<tr>
<td>8</td>
<td>TITLE.NASA</td>
<td><NA></td>
<td>0.6742695</td>
</tr>
<tr>
<td>9</td>
<td>TITLE.MARS</td>
<td><NA></td>
<td>0.4078615</td>
</tr>
<tr>
<td>10</td>
<td>TITLE.NASA</td>
<td><NA></td>
<td>0.9130438</td>
</tr>
</tbody>
</table>

R> predict(esa.mod, ESA_TEXT, type = "class", supplemental.cols = "TITLE")

<table>
<thead>
<tr>
<th>TITLE FEATURE_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aids in Africa: Planning for a long war 1</td>
</tr>
<tr>
<td>Mars rover maneuvers for rim shot 2</td>
</tr>
<tr>
<td>Mars express confirms presence of water at Mars south pole 3</td>
</tr>
<tr>
<td>NASA announces major Mars rover finding 4</td>
</tr>
<tr>
<td>Drug access, Asia threat in focus at AIDS summit 1</td>
</tr>
<tr>
<td>NASA Mars Odyssey THEMIS image: typical crater 6</td>
</tr>
<tr>
<td>Road blocks for Aids 1</td>
</tr>
</tbody>
</table>

R> # Use ctx.settings to specify a character column as TEXT and
R> # the same settings as above as well as TOKEN_TYPE
R> esa.mod2 <- ore.odmESA(~ TITLE, data = ESA_TEXT, + odm.settings = list(case_id_column_name = "CUST_ID", ESAS_MIN_ITEMS = 1), + ctx.settings = list(TITLE = + "TEXT(POLICY_NAME:ESA_TXTPOL)(TOKEN_TYPE:STEM)(MIN_DOCUMENTS:1) + (MAX_FEATURES:3)"))

R> summary(esa.mod2)

Call:
ore.odmESA(formula = ~TITLE, data = ESA_TEXT, odm.settings = list(case_id_column_name = "CUST_ID", ESAS_MIN_ITEMS = 1), ctx.settings = list(TITLE = "TEXT(POLICY_NAME:ESA_TXTPOL)(TOKEN_TYPE:STEM)(MIN_DOCUMENTS:1) (MAX_FEATURES:3)"))

Settings:

<table>
<thead>
<tr>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>min.items</td>
</tr>
<tr>
<td>topn.features</td>
</tr>
<tr>
<td>value.threshold</td>
</tr>
<tr>
<td>odms.missing.value.treatment</td>
</tr>
<tr>
<td>odms.sampling</td>
</tr>
<tr>
<td>odms.text.max.features</td>
</tr>
<tr>
<td>odms.text.min.documents</td>
</tr>
<tr>
<td>prep.auto</td>
</tr>
</tbody>
</table>

Features:

<table>
<thead>
<tr>
<th>FEATURE_ID</th>
<th>ATTRIBUTE_NAME</th>
<th>ATTRIBUTE_VALUE</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TITLE.AIDS</td>
<td><NA></td>
<td>1.0000000</td>
</tr>
<tr>
<td>2</td>
<td>TITLE.MARS</td>
<td><NA></td>
<td>0.4078615</td>
</tr>
<tr>
<td>3</td>
<td>TITLE.ROVER</td>
<td><NA></td>
<td>0.9130438</td>
</tr>
<tr>
<td>4</td>
<td>TITLE.MARS</td>
<td><NA></td>
<td>0.3011997</td>
</tr>
<tr>
<td>5</td>
<td>TITLE.NASA</td>
<td><NA></td>
<td>0.6742695</td>
</tr>
<tr>
<td>6</td>
<td>TITLE.AIDS</td>
<td><NA></td>
<td>1.0000000</td>
</tr>
<tr>
<td>7</td>
<td>TITLE.MARS</td>
<td><NA></td>
<td>0.4078615</td>
</tr>
<tr>
<td>8</td>
<td>TITLE.NASA</td>
<td><NA></td>
<td>0.6742695</td>
</tr>
<tr>
<td>9</td>
<td>TITLE.MARS</td>
<td><NA></td>
<td>0.4078615</td>
</tr>
<tr>
<td>10</td>
<td>TITLE.NASA</td>
<td><NA></td>
<td>0.9130438</td>
</tr>
</tbody>
</table>

Chapter 4
Build Oracle Machine Learning for SQL Models

4-37
4.2.7 Build an Extensible R Algorithm Model

The `ore.odmRAlg` function creates an Extensible R algorithm model using OML4SQL.

The Extensible R algorithm builds, scores, and views an R model using registered R scripts. It supports classification, regression, clustering, feature extraction, attribute importance, and association machine learning functions.

For information on the `ore.odmRAlg` function arguments and for an example of using the function, invoke `help(ore.odmRAlg)`.

Example 4-14 Using the ore.odmRAlg Function

```r
library(OREembed)
digits <- getOption("digits")
options(digits = 5L)
```
IRIS <- ore.push(iris)

Regression with glm
ore.scriptCreate("glm_build",
 function(data, form, family)
 glm(formula = form, data = data, family = family))

ore.scriptCreate("glm_score",
 function(mod, data)
 { res <- predict(mod, newdata = data);
 data.frame(res) })

ore.scriptCreate("glm_detail", function(mod)
 data.frame(name=names(mod$coefficients),
 coef=mod$coefficients))

ore.scriptList(name = "glm_build")
ore.scriptList(name = "glm_score")
ore.scriptList(name = "glm_detail")

ralg.glm <- ore.odmRAlg(IRIS, mining.function = "regression",
 formula = c(form="Sepal.Length ~ ."),
 build.function = "glm_build",
 build.parameter = list(family="gaussian"),
 score.function = "glm_score",
 detail.function = "glm_detail",
 detail.value = data.frame(name="a", coef=1))

summary(ralg.glm)
predict(ralg.glm, newdata = head(IRIS), supplemental.cols = "Sepal.Length")

ore.scriptDrop(name = "glm_build")
ore.scriptDrop(name = "glm_score")
ore.scriptDrop(name = "glm_detail")

Classification with nnet
ore.scriptCreate("nnet_build",
 function(dat, form, sz){
 require(nnet);
 set.seed(1234);
 nnet(formula = formula(form), data = dat,
 size = sz, linout = TRUE, trace = FALSE);
 },
 overwrite = TRUE)

ore.scriptCreate("nnet_detail", function(mod)
 data.frame(conn = mod$conn, wts = mod$wts),
 overwrite = TRUE)

ore.scriptCreate("nnet_score",
 function(mod, data) {
 require(nnet);
 res <- data.frame(predict(mod, newdata = data));
 names(res) <- sort(mod$lev); res
 })
ralg.nnet <- ore.odmRAlg(iris, mining.function = "classification",
 formula = c(form="Species ~ ",
 build.function = "nnet_build",
 build.parameter = list(sz=2),
 score.function = "nnet_score",
 detail.function = "nnet_detail",
 detail.value = data.frame(conn=1, wts =1))

summary(ralg.nnet)
predict(ralg.nnet, newdata = head(iris), supplemental.cols = "Species")

ore.scriptDrop(name = "nnet_build")
ore.scriptDrop(name = "nnet_score")
ore.scriptDrop(name = "nnet_detail")

Feature extraction with pca
Feature extraction with pca
ore.scriptCreate("pca_build",
 function(dat){
 mod <- prcomp(dat, retx = FALSE)
 attr(mod, "dm$nfeat") <- ncol(mod$rotation)
 mod},
 overwrite = TRUE)

ore.scriptCreate("pca_score",
 function(mod, data) {
 res <- predict(mod, data)
 as.data.frame(res),
 overwrite=TRUE)

ore.scriptCreate("pca_detail",
 function(mod) {
 rotation_t <- t(mod$rotation)
 data.frame(id = seq_along(rownames(rotation_t)),
 rotation_t),
 overwrite = TRUE)

X <- iris[, -5L]
ralg.pca <- ore.odmRAlg(X,
 mining.function = "feature_extraction",
 formula = NULL,
 build.function = "pca_build",
 score.function = "pca_score",
 detail.function = "pca_detail",
 detail.value = data.frame(Feature.ID=1,
 ore.pull(head(X,1L))))

summary(ralg.pca)
head(cbind(X, Pred = predict(ralg.pca, newdata = X)))

ore.scriptDrop(name = "pca_build")
ore.scriptDrop(name = "pca_score")
ore.scriptDrop(name = "pca_detail")
options(digits = digits)

Listing for This Example

R> library(OREembed)
R>
R> digits <- getOption("digits")
R> options(digits = 5L)
R>
R> IRIS <- ore.push(iris)
R>
R> # Regression with glm
R> ore.scriptCreate("glm_build",
+ function(data, form, family)
+ glm(formula = form, data = data, family = family))
R>
R> ore.scriptCreate("glm_score",
+ function(mod, data)
+ { res <- predict(mod, newdata = data);
+ data.frame(res) })
R>
R> ore.scriptCreate("glm_detail", function(mod)
+ data.frame(name=names(mod$coefficients),
+ coef=mod$coefficients))
R>
R> ore.scriptList(name = "glm_build")

NAME
 SCRIPT
1 glm_build function (data, form, family) \nglm(formula = form, data = data, family = family)

R> ore.scriptList(name = "glm_score")

NAME
 SCRIPT
1 glm_score function (mod, data) \n{\n res <- predict(mod, newdata = data)\n data.frame(res)\n}
R> ore.scriptList(name = "glm_detail")

NAME
 SCRIPT
1 glm_detail function (mod) \ndata.frame(name = names(mod$coefficients),
 coef = mod$coefficients)
R>
R> ralg.glm <- ore.odmRAlg(IRIS, mining.function = "regression",
+ formula = c(form="Sepal.Length ~ ."),
+ build.function = "glm_build",
+ build.parameter = list(family="gaussian"),
+ score.function = "glm_score",
+ detail.function = "glm_detail",
+ detail.value = data.frame(name="a", coef=1))
R>
R> summary(ralg.glm)

Call:
ore.odmRAlg(data = IRIS, mining.function = "regression", formula = c(form
= "Sepal.Length ~ ."),
 build.function = "glm_build", build.parameter = list(family =
"gaussian"),
 score.function = "glm_score", detail.function = "glm_detail",
 detail.value = data.frame(name = "a", coef = 1))

Settings:

<table>
<thead>
<tr>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>odms.missing.value.treatment</td>
</tr>
<tr>
<td>odms.missing.value.auto</td>
</tr>
<tr>
<td>odms.sampling</td>
</tr>
<tr>
<td>odms.sampling.disable</td>
</tr>
<tr>
<td>prep.auto</td>
</tr>
<tr>
<td>OFF</td>
</tr>
<tr>
<td>build.function</td>
</tr>
<tr>
<td>OML_USER.glm_build</td>
</tr>
<tr>
<td>build.parameter</td>
</tr>
<tr>
<td>"family" from dual</td>
</tr>
<tr>
<td>select 'Sepal.Length ~ .' "form", 'gaussian'</td>
</tr>
<tr>
<td>details.format</td>
</tr>
<tr>
<td>select cast('a' as varchar2(4000)) "name",</td>
</tr>
<tr>
<td>1 "coef" from dual</td>
</tr>
<tr>
<td>details.function</td>
</tr>
<tr>
<td>OML_USER.glm_detail</td>
</tr>
<tr>
<td>score.function</td>
</tr>
<tr>
<td>OML_USER.glm_score</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>name</th>
<th>coef</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>2.17127</td>
</tr>
<tr>
<td>Petal.Length</td>
<td>0.82924</td>
</tr>
<tr>
<td>Petal.Width</td>
<td>-0.31516</td>
</tr>
<tr>
<td>Sepal.Width</td>
<td>0.49589</td>
</tr>
<tr>
<td>Speciesversicolor</td>
<td>-0.72356</td>
</tr>
<tr>
<td>Speciesvirginica</td>
<td>-1.02350</td>
</tr>
</tbody>
</table>

R> predict(ralg.glm, newdata = head(IRIS), supplemental.cols = "Sepal.Length")

<table>
<thead>
<tr>
<th>Sepal.Length PREDICTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

R> ore.scriptDrop(name = "glm_build")
R> ore.scriptDrop(name = "glm_score")
R> ore.scriptDrop(name = "glm_detail")
R>
R> # Classification with nnet
R> ore.scriptCreate("nnet_build",
 function(dat, form, sz){
 require(nnet);
```r
set.seed(1234);
nnet(formula = formula(form), data = dat,
    size = sz, linout = TRUE, trace = FALSE);

ore.scriptCreate("nnet_detail", function(mod)
  data.frame(conn = mod$conn, wts = mod$wts),
  overwrite = TRUE)

ore.scriptCreate("nnet_score",
  function(mod, data) {
    require(nnet);
    res <- data.frame(predict(mod, newdata = data));
    names(res) <- sort(mod$lev); res
  })

ralg.nnet <- ore.odmRAlg(IRIS, mining.function = "classification",
  formula = "Species ~ .", build.function = "nnet_build",
  build.parameter = list(sz=2),
  score.function = "nnet_score",
  detail.function = "nnet_detail",
  detail.value = data.frame(conn=1, wts =1))

summary(ralg.nnet)
```

Call:

```r
ore.odmRAlg(data = IRIS, mining.function = "classification",
  formula = c(form="Species ~ ."),
  build.function = "nnet_build",
  build.parameter = list(sz=2),
  score.function = "nnet_score",
  detail.function = "nnet_detail", detail.value = data.frame(conn=1,
    wts = 1))
```

Settings:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>clas.weights.balanced</td>
<td>OFF</td>
</tr>
<tr>
<td>odms.missing.value.treatment</td>
<td>odms.missing.value.auto</td>
</tr>
<tr>
<td>odms.sampling</td>
<td>odms.sampling.disable</td>
</tr>
<tr>
<td>prep.auto</td>
<td>OFF</td>
</tr>
<tr>
<td>build.function</td>
<td>OML_USER.nnet_build</td>
</tr>
<tr>
<td>build.parameter</td>
<td>select 'Species ~ .' "form", 2 "sz" from dual</td>
</tr>
<tr>
<td>details.format</td>
<td>select 1 "conn", 1 "wts" from dual</td>
</tr>
<tr>
<td>details.function</td>
<td>OML_USER.nnet_detail</td>
</tr>
<tr>
<td>score.function</td>
<td>OML_USER.nnet_score</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>conn</th>
<th>wts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.46775</td>
</tr>
<tr>
<td>2</td>
<td>-12.88542</td>
</tr>
<tr>
<td>3</td>
<td>-4.38886</td>
</tr>
<tr>
<td>4</td>
<td>9.98648</td>
</tr>
<tr>
<td>5</td>
<td>16.57056</td>
</tr>
<tr>
<td>6</td>
<td>0.97809</td>
</tr>
<tr>
<td>7</td>
<td>-0.51626</td>
</tr>
<tr>
<td>8</td>
<td>-0.94815</td>
</tr>
</tbody>
</table>
```
9 3 0.13692
10 4 0.35104
11 0 37.22475
12 5 -66.49123
13 6 70.81160
14 0 -4.50893
15 5 7.01611
16 6 20.88774
17 0 -32.15127
18 5 58.92088
19 6 -91.96989
R> predict(ralg.nnet, newdata = head(IRIS), supplemental.cols = "Species")
Species PREDICTION PROBABILITY
1  setosa     setosa     0.99999
2  setosa     setosa     0.99998
3  setosa     setosa     0.99999
4  setosa     setosa     0.99998
5  setosa     setosa     1.00000
6  setosa     setosa     0.99999
R> ore.scriptDrop(name = "nnet_build")
R> ore.scriptDrop(name = "nnet_score")
R> ore.scriptDrop(name = "nnet_detail")
R>
R> ore.scriptCreate("pca_build",
+ function(dat){
+   mod <- prcomp(dat, retx = FALSE)
+   attr(mod, "dm$nfeat") <- ncol(mod$rotation)
+   mod),
+   overwrite = TRUE)
R>
R> ore.scriptCreate("pca_score",
+ function(mod, data) {
+   res <- predict(mod, data)
+   as.data.frame(res),
+   overwrite=TRUE)
R>
R> ore.scriptCreate("pca_detail",
+ function(mod) {
+   rotation_t <- t(mod$rotation)
+   data.frame(id = seq_along(rownames(rotation_t)),
+               rotation_t),
+   overwrite = TRUE)
R>
R> X <- IRIS[, -5L]
R> ralg.pca <- ore.odmRAlg(X,
+  mining.function = "feature_extraction",
+  formula = NULL,
+  build.function = "pca_build",
+  score.function = "pca_score",
+  detail.function = "pca_detail",
+  detail.value = data.frame(Feature.ID=1,
+                             ore.pull(head(X,1L))))
R>
R> summary(ralg.pca)
Chapter 4
Build Oracle Machine Learning for SQL Models

4.2.8 Build General Linearized Models

The `ore.odmGLM` function builds Generalized Linear Models (GLM), which include and extend the class of linear models (linear regression).

Generalized linear models relax the restrictions on linear models, which are often violated in practice. For example, binary (yes/no or 0/1) responses do not have the same variance across classes.

The OML4SQL GLM is a parametric modeling technique. Parametric models make assumptions about the distribution of the data. When the assumptions are met, parametric models can be more efficient than non-parametric models.
The challenge in developing models of this type involves assessing the extent to which the assumptions are met. For this reason, quality diagnostics are key to developing quality parametric models.

In addition to the classical weighted least squares estimation for linear regression and iteratively re-weighted least squares estimation for logistic regression, both solved through Cholesky decomposition and matrix inversion, OML4SQL GLM provides a conjugate gradient-based optimization algorithm that does not require matrix inversion and is very well suited to high-dimensional data. The choice of algorithm is handled internally and is transparent to the user.

GLM can be used to build classification or regression models as follows:

- **Classification**: Binary logistic regression is the GLM classification algorithm. The algorithm uses the logit link function and the binomial variance function.

- **Regression**: Linear regression is the GLM regression algorithm. The algorithm assumes no target transformation and constant variance over the range of target values.

The `ore.odmGLM` function allows you to build two different types of models. Some arguments apply to classification models only and some to regression models only.

For information on the `ore.odmGLM` function arguments, invoke `help(ore.odmGLM)`.

The following examples build several models using GLM. The input `ore.frame` objects are R data sets pushed to the database.

**Example 4-15  Building a Linear Regression Model**

This example builds a linear regression model using the `longley` data set.

```r
longley_of <- ore.push(longley)
longfit1 <- ore.odmGLM(Employed ~ ., data = longley_of)
summary(longfit1)
```

**Listing for This Example**

```r
R> longley_of <- ore.push(longley)
R> longfit1 <- ore.odmGLM(Employed ~ ., data = longley_of)
R> summary(longfit1)
```

Call:
`ore.odmGLM(formula = Employed ~ ., data = longley_of)`

Residuals:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>0.41011</td>
<td>-0.15767</td>
<td>-0.10155</td>
<td>0.45539</td>
</tr>
</tbody>
</table>

Coefficients:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| (Intercept) | -3.482e+03 | 8.904e+02 | -3.911 | 0.003560 ** |
| GNP.deflator | 1.506e-02 | 8.492e-02 | 0.177 | 0.863141 |
| GNP | -3.582e-02 | 3.349e-02 | -1.070 | 0.312681 |
| Unemployed | -2.020e-02 | 4.884e-03 | -4.136 | 0.002535 ** |
| Armed.Forces | -1.033e-02 | 2.143e-03 | -4.822 | 0.000944 *** |
| Population | -5.110e-02 | 2.261e-01 | -0.226 | 0.826212 |
| Year | 1.829e+00 | 4.555e-01 | 4.016 | 0.003037 ** |

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3049 on 9 degrees of freedom
Example 4-16 Using Ridge Estimation for the Coefficients of the ore.odmGLM Model

This example uses the longley_of ore.frame from the previous example. This example invokes the ore.odmGLM function and specifies using ridge estimation for the coefficients.

```r
longfit2 <- ore.odmGLM(Employed ~ ., data = longley_of, ridge = TRUE,
 ridge.vif = TRUE)
summary(longfit2)
```

Example 4-17 Building a Logistic Regression GLM

This example builds a logistic regression (classification) model. It uses the infert data set. The example invokes the ore.odmGLM function and specifies logistic as the type argument, which builds a binomial GLM.

```r
infert_of <- ore.push(infert)
infit1 <- ore.odmGLM(case ~ age+parity+education+spontaneous+induced,
 data = infert_of, type = "logistic")
infit1
```

Response:
Example 4-18  Specifying a Reference Value in Building a Logistic Regression GLM

This example builds a logistic regression (classification) model and specifies a reference value. The example uses the `infert_of` ore.frame from Example 4-17.

```r
infit2 <- ore.odmGLM(case ~ age+parity+education+spontaneous+induced,
 data = infert_of, type = "logistic", reference = 1)

infit2
```

Response:
```r
case == "0"
```

Call:  ore.odmGLM(formula = case ~ age + parity + education + spontaneous +
                   induced, data = infert_of, type = "logistic", reference = 1)

Coefficients:
          (Intercept)       age         parity education0-5yrs education12+
years spontaneous induced          -2.4538       0.083958 -0.852828     1.04424
         -0.35896           2.04590          1.28876

Degrees of Freedom: 247 Total (i.e. Null);  241 Residual
Null Deviance:      316.2
Residual Deviance: 257.8        AIC: 271.8

4.2.9 Build a k-Means Model

The `ore.odmKM` function uses the OML4SQL k-Means (KM) algorithm, a distance-based clustering algorithm that partitions data into a specified number of clusters.

The algorithm has the following features:

- Several distance functions: Euclidean, Cosine, and Fast Cosine distance functions. The default is Euclidean.
- For each cluster, the algorithm returns the centroid, a histogram for each attribute, and a rule describing the hyperbox that encloses the majority of the data assigned
to the cluster. The centroid reports the mode for categorical attributes and the mean and variance for numeric attributes.

For information on the ore.odmKM function arguments, invoke help(ore.odmKM).

**Example 4-19 Using the ore.odmKM Function**

This example demonstrates the use of the ore.odmKMeans function. The example creates two matrices that have 100 rows and two columns. The values in the rows are random variates. It binds the matrices into the matrix x, then coerces x to a data.frame and pushes it to the database as x_of, an ore.frame object. The example next invokes the ore.odmKMeans function to build the KM model, km.mod1. It then invokes the summary and histogram functions on the model. Figure 4-3 shows the graphic displayed by the histogram function.

Finally, the example makes a prediction using the model, pulls the result to local memory, and plots the results. Figure 4-4 shows the graphic displayed by the points function.

```r
x <- rbind(matrix(rnorm(100, sd = 0.3), ncol = 2),
matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2))
colnames(x) <- c("x", "y")
x_of <- ore.push (data.frame(x))
km.mod1 <- NULL
km.mod1 <- ore.odmKMeans(~., x_of, num.centers=2)
summary(km.mod1)
histogram(km.mod1)
Make a prediction.
km.res1 <- predict(km.mod1, x_of, type="class", supplemental.cols=c("x","y"))
head(km.res1, 3)
Pull the results to the local memory and plot them.
km.res1.local <- ore.pull(km.res1)
plot(data.frame(x=km.res1.local$x, y=km.res1.local$y),
 col=km.res1.local$CLUSTER_ID)
points(km.mod1$centers2, col = rownames(km.mod1$centers2), pch = 8, cex=2)
head(predict(km.mod1, x_of, type=c("class","raw"),
 supplemental.cols=c("x","y")), 3)
```

**Listing for This Example**

```r
R> x <- rbind(matrix(rnorm(100, sd = 0.3), ncol = 2),
+ matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2))
R> colnames(x) <- c("x", "y")
R> x_of <- ore.push (data.frame(x))
R> km.mod1 <- NULL
R> km.mod1 <- ore.odmKMeans(~., x_of, num.centers=2)
R> summary(km.mod1)

Call:
ore.odmKMeans(formula = ~., data = x_of, num.centers = 2)

Settings:

<table>
<thead>
<tr>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>clus.numclusters 2</td>
</tr>
<tr>
<td>block.growth 2</td>
</tr>
<tr>
<td>conv.tolerance 0.01</td>
</tr>
<tr>
<td>distance euclidean</td>
</tr>
<tr>
<td>iterations 3</td>
</tr>
<tr>
<td>min.pct.attr.support 0.1</td>
</tr>
<tr>
<td>num.bins 10</td>
</tr>
<tr>
<td>split.criterion variance</td>
</tr>
</tbody>
</table>
```
prep.auto on

Centers:

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 0.99772307</td>
<td>0.93368684</td>
</tr>
<tr>
<td>3 -0.02721078</td>
<td>-0.05099784</td>
</tr>
</tbody>
</table>

R> histogram(km.mod1)

R> # Make a prediction.
R> km.res1 <- predict(km.mod1, x_of, type="class", supplemental.cols=c("x","y"))
R> head(km.res1, 3)

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>CLUSTER_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.03038444</td>
<td>0.4395409</td>
<td>3</td>
</tr>
<tr>
<td>0.17724606</td>
<td>-0.5342975</td>
<td>3</td>
</tr>
<tr>
<td>-0.17565761</td>
<td>0.2832132</td>
<td>3</td>
</tr>
</tbody>
</table>

R> km.res1.local <- ore.pull(km.res1)
R> plot(data.frame(x=km.res1.local$x, y=km.res1.local$y),
       col=km.res1.local$CLUSTER_ID)
R> points(km.mod1$centers2, col = rownames(km.mod1$centers2), pch = 8, cex=2)
R> head(predict(km.mod1, x_of, type=c("class","raw"),
             supplemental.cols=c("x","y")), 3)

<table>
<thead>
<tr>
<th>'2'</th>
<th></th>
<th>'3'</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 8.610341e-03</td>
<td>0.9913897</td>
<td>-0.03038444</td>
<td>0.4395409</td>
</tr>
<tr>
<td>2 8.017890e-06</td>
<td>0.9999920</td>
<td>0.17724606</td>
<td>-0.5342975</td>
</tr>
<tr>
<td>3 5.494263e-04</td>
<td>0.9994506</td>
<td>-0.17565761</td>
<td>0.2832132</td>
</tr>
</tbody>
</table>

**Figure 4-3** shows the graphic displayed by the invocation of the `histogram` function in Example 4-19.
Figure 4-3  Cluster Histograms for the km.mod1 Model

Figure 4-4 shows the graphic displayed by the invocation of the `points` function in Example 4-19.
4.2.10 Build a Naive Bayes Model

The `ore.odmNB` function builds an OML4SQL Naive Bayes model.

The Naive Bayes algorithm is based on conditional probabilities. Naive Bayes looks at the historical data and calculates conditional probabilities for the target values by observing the frequency of attribute values and of combinations of attribute values.

Naive Bayes assumes that each predictor is conditionally independent of the others. (Bayes' Theorem requires that the predictors be independent.)

For information on the `ore.odmNB` function arguments, invoke `help(ore.odmNB)`.

**Example 4-20  Using the `ore.odmNB` Function**

This example creates an input `ore.frame`, builds a Naive Bayes model, makes predictions, and generates a confusion matrix.

```r
m <- mtcars
m$gear <- as.factor(m$gear)
m$cyl <- as.factor(m$cyl)
m$vs <- as.factor(m$vs)
m$ID <- 1:nrow(m)
mtcars_of <- ore.push(m)
row.names(mtcars_of) <- mtcars_of
```
# Build the model.
nb.mod  <- ore.odmNB(gear ~ ., mtcars_of)
summary(nb.mod)
# Make predictions and generate a confusion matrix.
nb.res  <- predict(nb.mod, mtcars_of, "gear")
with(nb.res, table(gear, PREDICTION))

Listing for This Example

R> m <- mtcars
R> m$gear <- as.factor(m$gear)
R> m$cyl  <- as.factor(m$cyl)
R> m$vs   <- as.factor(m$vs)
R> m$ID   <- 1:nrow(m)
R> mtcars_of <- ore.push(m)
R> row.names(mtcars_of) <- mtcars_of
R> # Build the model.
R> nb.mod  <- ore.odmNB(gear ~ ., mtcars_of)
R> summary(nb.mod)

Call:
ore.odmNB(formula = gear ~ ., data = mtcars_of)

Settings:
value
prep.auto    on

Apriori:
  3 4 5
0.46875 0.37500 0.15625

Tables:
$ID
 ( ; 26.5), [26.5; 26.5] (26.5; )
  3 1.0000000
  4 0.91666667 0.08333333
  5 1.0000000

$am
 0 1
 3 1.0000000
  4 0.3333333 0.6666667
  5 1.0000000

$cyl
'4', '6' '8'
 3 0.2 0.8
  4 1.0
  5 0.6 0.4

$disp
 ( ; 196.299999999999995), [196.299999999999995; 196.299999999999995]
  3 0.6666667
  4 1.0000000
  5 0.6000000

 $drat
 ( ; 3.385), [3.385; 3.385] (3.385; )
4.2.11 Build a Non-Negative Matrix Factorization Model

The `ore.odmNMF` function builds an OML4SQL Non-Negative Matrix Factorization (NMF) model for feature extraction.

Each feature extracted by NMF is a linear combination of the original attribution set. Each feature has a set of non-negative coefficients, which are a measure of the weight of each attribute on the feature. If the argument `allow.negative.scores` is `TRUE`, then negative coefficients are allowed.

For information on the `ore.odmNMF` function arguments, invoke `help(ore.odmNMF)`.

**Example 4-21   Using the `ore.odmNMF` Function**

This example creates an NMF model on a training data set and scores on a test data set.

```
training.set <- ore.push(npk[1:18, c("N","P","K")])
score.set <- ore.push(npk[19:24, c("N","P","K")])
nmf.mod <- ore.odmNMF(~., training.set, num.features = 3)
features(nmf.mod)
```
summary(nmf.mod)
predict(nmf.mod, scoring.set)

Listing for This Example

R> training.set <- ore.push(npk[1:18, c("N","P","K")])
R> scoring.set <- ore.push(npk[19:24, c("N","P","K")])
R> nmf.mod <- ore.odmNMF(~., training.set, num.features = 3)
R> features(nmf.mod)

        FEATURE_ID ATTRIBUTE_NAME ATTRIBUTE_VALUE  COEFFICIENT
        1            1              K               0 3.723468e-01
        2            1              K               1 1.761670e-01
        3            1              N               0 7.469067e-01
        4            1              N               1 1.085058e-02
        5            1              P               0 5.730082e-01
        6            1              P               1 2.797865e-02
        7            2              K               0 4.107375e-01
        8            2              K               1 2.193757e-01
        9            2              N               0 8.065393e-03
       10           2              N               1 8.569538e-01
       11           2              P               0 4.005661e-01
       12           2              P               1 4.124996e-02
       13           3              K               0 1.918852e-01
       14           3              K               1 3.311137e-01
       15           3              N               0 1.547561e-01
       16           3              N               1 1.283887e-01
       17           3              P               0 9.791965e-06
       18           3              P               1 9.113922e-01
R> summary(nmf.mod)

Call:
ore.odmNMF(formula = ~., data = training.set, num.features = 3)

Settings:

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>feat.num.features</td>
</tr>
<tr>
<td>nmfs.conv.tolerance</td>
</tr>
<tr>
<td>nmfs.nonnegative.scoring</td>
</tr>
<tr>
<td>nmfs.num.iterations</td>
</tr>
<tr>
<td>nmfs.random.seed</td>
</tr>
<tr>
<td>prep.auto</td>
</tr>
</tbody>
</table>

Features:

| FEATURE_ID ATTRIBUTE_NAME ATTRIBUTE_VALUE  COEFFICIENT |
|---------|---------|------------------|
| 1       | 1       | K               | 0 3.723468e-01 |
| 2       | 1       | K               | 1 1.761670e-01 |
| 3       | 1       | N               | 0 7.469067e-01 |
| 4       | 1       | N               | 1 1.085058e-02 |
| 5       | 1       | P               | 0 5.730082e-01 |
| 6       | 1       | P               | 1 2.797865e-02 |
| 7       | 2       | K               | 0 4.107375e-01 |
| 8       | 2       | K               | 1 2.193757e-01 |
| 9       | 2       | N               | 0 8.065393e-03 |
| 10      | 2       | N               | 1 8.569538e-01 |
| 11      | 2       | P               | 0 4.005661e-01 |
| 12      | 2       | P               | 1 4.124996e-02 |
| 13      | 3       | K               | 0 1.918852e-01 |
| 14      | 3       | K               | 1 3.311137e-01 |
| 15      | 3       | N               | 0 1.547561e-01 |
| 16      | 3       | N               | 1 1.283887e-01 |
| 17      | 3       | P               | 0 9.791965e-06 |
| 18      | 3       | P               | 1 9.113922e-01 |
The `ore.dmOC` function builds an OML4SQL model using the Orthogonal Partitioning Cluster (O-Cluster) algorithm.

The O-Cluster algorithm builds a hierarchical grid-based clustering model, that is, it creates axis-parallel (orthogonal) partitions in the input attribute space. The algorithm operates recursively. The resulting hierarchical structure represents an irregular grid that tessellates the attribute space into clusters. The resulting clusters define dense areas in the attribute space.

The clusters are described by intervals along the attribute axes and the corresponding centroids and histograms. The `sensitivity` argument defines a baseline density level. Only areas that have a peak density above this baseline level can be identified as clusters.

The `k`-Means algorithm tessellates the space even when natural clusters may not exist. For example, if there is a region of uniform density, `k`-Means tessellates it into `n` clusters (where `n` is specified by the user). O-Cluster separates areas of high density by placing cutting planes through areas of low density. O-Cluster needs multi-modal histograms (peaks and valleys). If an area has projections with uniform or monotonically changing density, O-Cluster does not partition it.

The clusters discovered by O-Cluster are used to generate a Bayesian probability model that is then used during scoring by the `predict` function for assigning data points to clusters. The generated probability model is a mixture model where the mixture components are represented by a product of independent normal distributions for numeric attributes and multinomial distributions for categorical attributes.

If you choose to prepare the data for an O-Cluster model, keep the following points in mind:

- The O-Cluster algorithm does not necessarily use all the input data when it builds a model. It reads the data in batches (the default batch size is 50000). It only reads another batch if it believes, based on statistical tests, that there may still exist clusters that it has not yet uncovered.
- Because O-Cluster may stop the model build before it reads all of the data, it is highly recommended that the data be randomized.
- Binary attributes should be declared as categorical. O-Cluster maps categorical data to numeric values.
- The use of OML4SQL equi-width binning transformation with automated estimation of the required number of bins is highly recommended.
- The presence of outliers can significantly impact clustering algorithms. Use a clipping transformation before binning or normalizing. Outliers with equi-width
binning can prevent O-Cluster from detecting clusters. As a result, the whole population appears to fall within a single cluster.

The specification of the formula argument has the form \$ \sim \$ terms where terms are the column names to include in the model. Multiple terms items are specified using + between column names. Use \$ \sim \$ if all columns in data should be used for model building. To exclude columns, use \$ - \$ before each column name to exclude.

For information on the ore.odmOC function arguments, invoke help(ore.odmOC).

**Example 4-22  Using the ore.odmOC Function**

This example creates an O-Cluster model on a synthetic data set. The figure following the example shows the histogram of the resulting clusters.

```r
x <- rbind(matrix(rnorm(100, mean = 4, sd = 0.3), ncol = 2),
 matrix(rnorm(100, mean = 2, sd = 0.3), ncol = 2))
colnames(x) <- c("x", "y")
x_of <- ore.push (data.frame(ID=1:100,x))
rownames(x_of) <- x_of$ID
oc.mod <- ore.odmOC(~., x_of, num.centers=2)
summary(oc.mod) # ... Intervening rows not shown.
```

**Listing for This Example**

R> x <- rbind(matrix(rnorm(100, mean = 4, sd = 0.3), ncol = 2),
+            matrix(rnorm(100, mean = 2, sd = 0.3), ncol = 2))
R> colnames(x) <- c("x", "y")
R> x_of <- ore.push (data.frame(ID=1:100,x))
R> rownames(x_of) <- x_of$ID
R> oc.mod <- ore.odmOC(~., x_of, num.centers=2)
R> summary(oc.mod)

Call:
ore.odmOC(formula = ~., data = x_of, num.centers = 2)

Settings:

<table>
<thead>
<tr>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>clus.num.clusters</td>
</tr>
<tr>
<td>max.buffer</td>
</tr>
<tr>
<td>sensitivity</td>
</tr>
<tr>
<td>prep.auto</td>
</tr>
</tbody>
</table>

Clusters:

<table>
<thead>
<tr>
<th>CLUSTER_ID</th>
<th>ROW_CNT</th>
<th>PARENT_CLUSTER_ID</th>
<th>TREE_LEVEL</th>
<th>DISPERSION</th>
<th>IS_LEAF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>100</td>
<td>NA</td>
<td>1</td>
<td>FALSE</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>56</td>
<td>1</td>
<td>2</td>
<td>TRUE</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>43</td>
<td>1</td>
<td>2</td>
<td>TRUE</td>
</tr>
</tbody>
</table>

Centers:

<table>
<thead>
<tr>
<th>MEAN.x</th>
<th>MEAN.y</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.185444</td>
<td>1.941195</td>
</tr>
<tr>
<td>4.04511</td>
<td>4.11740</td>
</tr>
</tbody>
</table>
R> histogram(oc.mod)
R> predict(oc.mod, x_of, type=c("class","raw"), supplemental.cols=c("x","y"))

\$ \sim \$
4.2.13 Build a Singular Value Decomposition Model

The `ore.odmSVD` function creates a model that uses the OML4SQL Singular Value Decomposition (SVD) algorithm.

Singular Value Decomposition (SVD) is a feature extraction algorithm. SVD is orthogonal linear transformations that capture the underlying variance of the data by decomposing a rectangular matrix into three matrixes: 'U', 'D', and 'V'. Matrix 'D' is a diagonal matrix and its singular values reflect the amount of data variance captured by the bases.
Example 4-23 Using the ore.odmSVD Function

```
IRIS <- ore.push(cbind(Id = seq_along(iris[[1L]]), iris))

svd.mod <- ore.odmSVD(~. -Id, IRIS)
summary(svd.mod)
d(svd.mod)
v(svd.mod)
head(predict(svd.mod, IRIS, supplemental.cols = "Id"))

svd.pmod <- ore.odmSVD(~. -Id, IRIS,
 odm.settings = list(odms_partition_columns = "Species"))
summary(svd.pmod)
d(svd.pmod)
v(svd.pmod)
head(predict(svd.pmod, IRIS, supplemental.cols = "Id"))
```

Listing for This Example

```
R> IRIS <- ore.push(cbind(Id = seq_along(iris[[1L]]), iris))
R>
R> svd.mod <- ore.odmSVD(~. -Id, IRIS)
R> summary(svd.mod)
Call:
 ore.odmSVD(formula = ~. - Id, data = IRIS)
Settings:
 value
odms.missing.value.treatment odms.missing.value.auto
do...9.d...9.m...9.i...9.n...9.g...9.i...9.n...9.s...9.9.p...9.a...9.t...9.e...9.m
prep.auto ON
scoring.mode scoring.svd
u.matrix.output u.matrix.disable
d:
 FEATURE_ID VALUE
 1 1 96.2182677
 2 2 19.0780817
 3 3 7.2270380
 4 4 3.1502152
 5 5 1.8849634
 6 6 1.1474731
 7 7 0.5814097

v:
 ATTRIBUTE_NAME ATTRIBUTE_VALUE '1' '2' '3' '4' '5' '6' '7'
 1 Petal.Length <NA> 0.51162932 0.65943465 -0.004420703 0.05479795
 2 Sepal.Width <NA> 0.16745698 0.32071102 0.146484369 0.46553390
 3 Sepal.Length <NA> 0.74909171 -0.26482593 -0.102057243 -0.49272847
 4 Petal.Width <NA> 0.37906736 -0.50824062 0.142810811
```
Chapter 4
Build Oracle Machine Learning for SQL Models

Warning message:
In u.ore.odmSVD(object) : U matrix is not calculated.
R> d(svd.mod)

<table>
<thead>
<tr>
<th>FEATURE_ID</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>96.2182677</td>
</tr>
<tr>
<td>2</td>
<td>19.0780817</td>
</tr>
<tr>
<td>3</td>
<td>7.2270380</td>
</tr>
<tr>
<td>4</td>
<td>3.1502152</td>
</tr>
<tr>
<td>5</td>
<td>1.8849634</td>
</tr>
<tr>
<td>6</td>
<td>1.1474731</td>
</tr>
<tr>
<td>7</td>
<td>0.5814097</td>
</tr>
</tbody>
</table>

Warning message:
ORE object has no unique key - using random order
R> v(svd.mod)

<table>
<thead>
<tr>
<th>ATTRIBUTE_NAME</th>
<th>ATTRIBUTE_VALUE</th>
<th>'1'</th>
<th>'2'</th>
<th>'3'</th>
<th>'4'</th>
<th>'5'</th>
<th>'6'</th>
<th>'7'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Petal.Length</td>
<td>&lt;NA&gt;</td>
<td>0.51162932</td>
<td>0.65943465</td>
<td>-0.004420703</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.05479795</td>
<td>-0.51969015</td>
<td>0.17392232</td>
<td>-0.005674672</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Petal.Width</td>
<td>&lt;NA&gt;</td>
<td>0.16745698</td>
<td>0.32071102</td>
<td>0.146484369</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.46553390</td>
<td>0.72685033</td>
<td>0.31962337</td>
<td>-0.021274748</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Sepal.Length</td>
<td>&lt;NA&gt;</td>
<td>0.74909171</td>
<td>-0.26482593</td>
<td>-0.102057243</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.49272847</td>
<td>0.31969417</td>
<td>-0.09379235</td>
<td>-0.067308615</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Sepal.Width</td>
<td>&lt;NA&gt;</td>
<td>0.37906736</td>
<td>-0.50824062</td>
<td>0.142810811</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.69139828</td>
<td>-0.25849391</td>
<td>-0.1760699</td>
<td>-0.041908520</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Species</td>
<td>setosa</td>
<td>0.03170407</td>
<td>-0.32247642</td>
<td>0.184499940</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.12245506</td>
<td>0.76017824</td>
<td>0.497502783</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Species</td>
<td>versicolor</td>
<td>0.04288799</td>
<td>0.04054823</td>
<td>-0.780684855</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.19827972</td>
<td>0.07363250</td>
<td>-0.12354271</td>
<td>0.571881302</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Species</td>
<td>virginica</td>
<td>0.05018593</td>
<td>0.16796988</td>
<td>0.551546107</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.07177990</td>
<td>0.08109974</td>
<td>0.647048040</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Warning message:
ORE object has no unique key - using random order
R> head(predict(svd.mod, IRIS, supplemental.cols = "Id"))

<table>
<thead>
<tr>
<th>Id</th>
<th>'1'</th>
<th>'2'</th>
<th>'3'</th>
<th>'4'</th>
<th>'5'</th>
<th>'6'</th>
<th>'7'</th>
<th>FEATURE_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.06161595</td>
<td>-0.1291839</td>
<td>0.02586865</td>
<td>-0.01449182</td>
<td>1.536727e-05</td>
<td>-0.023495349</td>
<td>-0.007998605</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0.05808905</td>
<td>-0.1130876</td>
<td>0.01881265</td>
<td>-0.09294788</td>
<td>3.466226e-02</td>
<td>0.069569113</td>
<td>0.051195429</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0.05678818</td>
<td>-0.1190959</td>
<td>0.02565027</td>
<td>-0.01950986</td>
<td>8.851560e-04</td>
<td>0.040073030</td>
<td>0.060908867</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>0.05667915</td>
<td>-0.1081308</td>
<td>0.02496402</td>
<td>-0.02233741</td>
<td>5.750222e-02</td>
<td>0.093904181</td>
<td>0.077741713</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>0.06123138</td>
<td>-0.1304597</td>
<td>0.02925687</td>
<td>0.02309694</td>
<td>3.065834e-02</td>
<td>-0.030664898</td>
<td>-0.003629897</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>0.06747071</td>
<td>-0.1302726</td>
<td>0.03340671</td>
<td>0.06114966</td>
<td>-9.547838e-03</td>
<td>-0.008210224</td>
<td>-0.081807741</td>
<td>2</td>
</tr>
</tbody>
</table>

R>
R> svd.pmod <- ore.odmSVD(~. - Id, IRIS, 
+     odm.settings = list(odms_partition_columns = 
+     "Species"))
R> summary(svd.pmod)
$setosa

Call:
ore.odmSVD(formula = ~. - Id, data = IRIS, odm.settings = 
list(odms_partition_columns = "Species"))

Settings:

value
odms.max.partitions                              1000
odms.missing.value.treatment odms.missing.value.auto
odms.partition.columns                     "Species"
odms.sampling                  odms.sampling.disable
prep.auto                                         ON
scoring.mode                             scoring.svd
u.matrix.output                     u.matrix.disable

d:  
   FEATURE_ID      VALUE
1          1 44.2872290
2          2  1.5719162
3          3  1.1458732
4          4  0.6836692

v:  
   ATTRIBUTE_NAME ATTRIBUTE_VALUE   '1'    '2'    '3'    '4'
1   Petal.Length            <NA> 0.2334487  0.46456598  0.8317440 
    -0.19463332
2   Petal.Width            <NA> 0.0395488  0.04182015  0.1946750
    0.97917752
3   Sepal.Length            <NA> 0.8010073  0.40303704 -0.4410167
    0.03811461
4   Sepal.Width            <NA> 0.5498408 -0.78739486  0.2753323
    -0.04331888

$versicolor

Call:
ore.odmSVD(formula = ~. - Id, data = IRIS, odm.settings = 
list(odms_partition_columns = "Species"))

Settings:

value
odms.max.partitions                              1000
odms.missing.value.treatment odms.missing.value.auto

R> # xyz
R> d(svd.pmod)

PARTITION_NAME FEATURE_ID      VALUE
1          setosa          1 44.2872290
2          setosa          2  1.5719162
3          setosa          3  1.1458732
4          setosa          4  0.6836692
5 versicolor 1.562523412
6 versicolor 2.19106625
7 versicolor 3.17015929
8 versicolor 4.6986103
9 virginica 1.662734064
10 virginica 2.4318639
11 virginica 3.6007740
12 virginica 4.12958261

Warning message:
ORE object has no unique key - using random order

R> v(svd.pmod)
PARTITION_NAME ATTRIBUTE_NAME ATTRIBUTE_VALUE       ©1©
©2©         ©3©         ©4©
'1' '2' '3' '4'
1 setosa Petal.Length <NA> 0.2334487 0.46456598
0.83174398 -0.19463332
2 setosa Petal.Width <NA> 0.0395488 0.04182015
0.19467497 0.97917752
3 setosa Sepal.Length <NA> 0.8010073 0.40303704
-0.44101672 0.03811461
4 setosa Sepal.Width <NA> 0.5498408 -0.78739486
0.27533228 -0.04331888
5 versicolor Petal.Length <NA> 0.5380908 0.49576111
-0.60174021 -0.32029352
6 versicolor Petal.Width <NA> 0.1676394 0.36693207
-0.03448373 0.91436795
7 versicolor Sepal.Length <NA> 0.7486029 -0.64738491
0.06943054 0.12516311
8 versicolor Sepal.Width <NA> 0.3492119 0.44774385
0.79492074 -0.21372297
9 virginica Petal.Length <NA> 0.5948985 -0.26368708
0.65157671 -0.38988802
10 virginica Petal.Width <NA> 0.2164036 0.59106806
0.42921836 0.64774968
11 virginica Sepal.Length <NA> 0.7058813 -0.27846153
-0.53436210 0.37235450
12 virginica Sepal.Width <NA> 0.3177999 0.70962445
-0.32507927 -0.53829342

Warning message:
ORE object has no unique key - using random order

R> head(predict(svd.pmod, IRIS, supplemental.cols = "Id"))
Id FEATURE_ID
1 1 0.1432539 -0.26487881 -0.071688339 -0.04956008 1
2 2 0.1334289 0.172689424 -0.114854368 -0.02902893 2
3 3 0.1317675 -0.008327214 -0.062409295 -0.02438248 1
4 4 0.1297716 0.075232572 0.097222019 -0.08055912 1
5 5 0.1426868 -0.102219140 -0.009172782 -0.06147133 1
6 6 0.1554060 -0.055950655 0.160698708 0.14286095 3
4.2.14 Build a Support Vector Machine Model

The `ore.odmSVM` function builds an OML4R Support Vector Machine (SVM) model.

SVM is a powerful, state-of-the-art algorithm with strong theoretical foundations based on the Vapnik-Chervonenkis theory. SVM has strong regularization properties. Regularization refers to the generalization of the model to new data.

SVM models have similar functional form to neural networks and radial basis functions, both popular machine learning techniques.

SVM can be used to solve the following problems:

- **Classification**: SVM classification is based on decision planes that define decision boundaries. A decision plane is one that separates between a set of objects having different class memberships. SVM finds the vectors (“support vectors”) that define the separators that give the widest separation of classes.
  
  SVM classification supports both binary and multiclass targets.

- **Regression**: SVM uses an epsilon-insensitive loss function to solve regression problems.

  SVM regression tries to find a continuous function such that the maximum number of data points lie within the epsilon-wide insensitivity tube. Predictions falling within epsilon distance of the true target value are not interpreted as errors.

- **Anomaly Detection**: Anomaly detection identifies identify cases that are unusual within data that is seemingly homogeneous. Anomaly detection is an important tool for detecting fraud, network intrusion, and other rare events that may have great significance but are hard to find.

  Anomaly detection is implemented as one-class SVM classification. An anomaly detection model predicts whether a data point is typical for a given distribution or not.

The `ore.odmSVM` function builds each of these three different types of models. Some arguments apply to classification models only, some to regression models only, and some to anomaly detection models only.

For information on the `ore.odmSVM` function arguments, invoke `help(ore.odmSVM)`.

**Example 4-24  Using the ore.odmSVM Function and Generating a Confusion Matrix**

This example demonstrates the use of SVM classification. The example creates `mtcars` in the database from the R `mtcars` data set, builds a classification model, makes predictions, and finally generates a confusion matrix.

```r
m <- mtcars
m$gear <- as.factor(m$gear)
m$cyl <- as.factor(m$cyl)
m$vs <- as.factor(m$vs)
m$ID <- 1:nrow(m)
mtcars_of <- ore.push(m)
svm.mod <- ore.odmSVM(gear ~ .-ID, mtcars_of, "classification")
summary(svm.mod)
svm.res <- predict (svm.mod, mtcars_of,"gear")
with(svm.res, table(gear, PREDICTION)) # generate confusion matrix
```

4-63
Listing for This Example

R> m <- mtcars
R> m$gear <- as.factor(m$gear)
R> m$cyl <- as.factor(m$cyl)
R> m$vs <- as.factor(m$vs)
R> m$ID <- 1:nrow(m)
R> mtcars_of <- ore.push(m)
R>
R> svm.mod <- ore.odmSVM(gear ~ .-ID, mtcars_of, "classification")
R> summary(svm.mod)
Call:
ore.odmSVM(formula = gear ~ . - ID, data = mtcars_of, type = "classification")

Settings:

<table>
<thead>
<tr>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>prep.auto</td>
</tr>
<tr>
<td>active.learning</td>
</tr>
<tr>
<td>complexity.factor</td>
</tr>
<tr>
<td>conv.tolerance</td>
</tr>
<tr>
<td>kernel.cache.size</td>
</tr>
<tr>
<td>kernel.function</td>
</tr>
<tr>
<td>std.dev</td>
</tr>
</tbody>
</table>

Coefficients:
[1] No coefficients with gaussian kernel
R> svm.res <- predict(svm.mod, mtcars_of,"gear")
R> with(svm.res, table(gear, PREDICTION))  # generate confusion matrix

Example 4-25 Using the ore.odmSVM Function and Building a Regression Model

This example demonstrates SVM regression. The example creates a data frame, pushes it to a table, and then builds a regression model; note that ore.odmSVM specifies a linear kernel.

x <- seq(0.1, 5, by = 0.02)
y <- log(x) + rnorm(x, sd = 0.2)
dat <-ore.push(data.frame(x=x, y=y))

# Build model with linear kernel
svm.mod <- ore.odmSVM(y~x,dat,"regression", kernel.function="linear")
summary(svm.mod)
coef(svm.mod)
svm.res <- predict(svm.mod,dat, supplemental.cols="x")
head(svm.res,6)

Listing for This Example

R> x <- seq(0.1, 5, by = 0.02)
R> y <- log(x) + rnorm(x, sd = 0.2)
R> dat <-ore.push(data.frame(x=x, y=y))
R>
R> # Build model with linear kernel
R> svm.mod <- ore.odmSVM(y~x,dat,"regression", kernel.function="linear")
R> summary(svm.mod)
Example 4-26  Using the ore.odmSVM Function and Building an Anomaly Detection Model

This example demonstrates SVN anomaly detection. It uses mtcars_of created in the classification example and builds an anomaly detection model.

```
svm.mod <- ore.odmSVM(~ . - ID, mtcars_of, "anomaly.detection")
summary(svm.mod)
svm.res <- predict(svm.mod, mtcars_of, "ID")
head(svm.res)
table(svm.res$PREDICTION)
```

Listing for This Example

```
R> svm.mod <- ore.odmSVM(~ . - ID, mtcars_of, "anomaly.detection")
R> summary(svm.mod)
```

Call:
```
ore.odmSVM(formula = ~ - ID, data = mtcars_of, type = "anomaly.detection")
```

Settings:
```
value
prep.auto on
active.learning al.enable
```

Residuals:
```
 Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.79130 -0.28210 -0.05592 -0.01420 0.21460 1.58400
```

Coefficients:
```
variable value estimate
1 x 0.6637951
2 (Intercept) 0.3802170
```

R> coef(svm.mod)
```
variable value estimate
1 x 0.6637951
2 (Intercept) 0.3802170
```

R> svm.res <- predict(svm.mod, mtcars_of, supplemental.cols="x")
R> head(svm.res,6)
```
x PREDICTION
1 0.10 -0.7384312
2 0.12 -0.7271410
3 0.14 -0.7158507
4 0.16 -0.7045604
5 0.18 -0.6932702
6 0.20 -0.6819799
```
conv.tolerance        1e-04
kernel.cache.size  50000000
kernel.function    gaussian
outlier.rate             .1
std.dev            0.719126

Coefficients:
[1] No coefficients with gaussian kernel

R> svm.res  <- predict (svm.mod, mtcars_of, "ID")
R> head(svm.res)
   '0'       '1' ID PREDICTION
Mazda RX4  0.4999405 0.5000595  1          1
Mazda RX4 Wag 0.4999794 0.5000206  2          1
Datsun 710  0.4999618 0.5000382  3          1
Hornet 4 Drive 0.4999819 0.5000181  4          1
Hornet Sportabout 0.4949872 0.5050128  5          1
Valiant     0.4999415 0.5000585  6          1
R> table(svm.res$PREDICTION)
   0  1
  5 27

4.3 Cross-Validate Models

Cross-validation is a model improvement technique that avoids the limitations of a
single train-and-test experiment by building and testing multiple models through
repeated sampling from the available data.

Predictive models are usually built on given data and verified on held-aside or unseen
data. The purpose of cross-validation is to offer better insight into how well the model
would generalize to new data and to avoid over-fitting and deriving wrong conclusions
from misleading peculiarities of the seen data.

The ore.CV utility R function uses Oracle Machine Learning for R for performing cross-
validation of regression and classification models.

For a select set of algorithms and cases, the function ore.CV performs cross-validation
for models that were generated by OML4R regression and classification functions
using in-database data.

The ore.CV function works with models generated by the following OML4R functions:

• ore.lm
• ore.stepwise
• ore.glm
• ore.neural
• ore.odmDT
• ore.odmGLM
• ore.odmNB
• ore.odmSVM

You can also use ore.CV to cross-validate models generated with some R regression
functions through OML4R embedded R execution. Those R functions are the
following:
• lm
• glm
• svm

To download the function `ore.CV`, and for more information on and examples of using `ore.CV`, see the blog post:

Model cross-validation with `ore.CV()`
5 Prediction With R Models

Use the Oracle Machine Learning for R function `ore.predict` on an OML4R model to predict future behavior.

- **About the `ore.predict` Function**
  Predictive models allow you to predict future behavior based on past behavior.

- **Use the `ore.predict` Function**
  These examples demonstrate the use of the `ore.predict` function.

5.1 About the `ore.predict` Function

Predictive models allow you to predict future behavior based on past behavior.

After you build a model, you use it to score new data, that is, to make predictions.

R allows you to build many kinds of models. When you score data to predict new results using an R model, the data to score must be in an R `data.frame`. With the `ore.predict` function, you can use an R model to score database-resident data in an `ore.frame` object.

The `ore.predict` function provides the fastest way to operationalize R-based models for scoring in Oracle Database. The function has no dependencies on PMML or any other plug-ins.

Some advantages of using the `ore.predict` function to score data in the database are the following:

- Uses R-generated models to score in-database data.
  The data to score is in an `ore.frame` object.

- Maximizes the use of Oracle Database as a compute engine.
  The database provides a commercial grade, high performance, scalable scoring engine.

- Simplifies application workflow.
  You can go from a model to SQL scoring in one step.

The `ore.predict` function is a generic function. It has the following usage:

```r
ore.predict(object, newdata, ...)
```

The value of the `object` argument is one of the model objects listed in Table 5-1. The value of the `newdata` argument is an `ore.frame` object that contains the data to score. The `ore.predict` function has methods for use with specific R model classes. The `...` argument represents the various additional arguments that are accepted by the different methods.

Function `ore.predict` has methods that support the model objects listed in Table 5-1.
Table 5-1  Models Supported by the ore.predict Function

<table>
<thead>
<tr>
<th>Class of Model</th>
<th>Description of Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>glm</td>
<td>Generalized linear model</td>
</tr>
<tr>
<td>kmeans</td>
<td>k-Means clustering model</td>
</tr>
<tr>
<td>lm</td>
<td>Linear regression model</td>
</tr>
<tr>
<td>matrix</td>
<td>A matrix with no more than 1000 rows, for use in an hclust hierarchical clustering model</td>
</tr>
<tr>
<td>multinom</td>
<td>Multinomial log-linear model</td>
</tr>
<tr>
<td>nnet</td>
<td>Neural network model</td>
</tr>
<tr>
<td>ore.model</td>
<td>An OML4R model from the OREModels package</td>
</tr>
<tr>
<td>prcomp</td>
<td>Principal components analysis on a matrix</td>
</tr>
<tr>
<td>princomp</td>
<td>Principal components analysis on a numeric matrix</td>
</tr>
<tr>
<td>rpart</td>
<td>Recursive partitioning and regression tree model</td>
</tr>
</tbody>
</table>

For the function signatures of the `ore.predict` methods, invoke the `help` function on the following, as in `help("ore.predict-kmeans")`:

- `ore.predict-glm`
- `ore.predict-kmeans`
- `ore.predict-lm`
- `ore.predict-matrix`
- `ore.predict-multinom`
- `ore.predict-nnet`
- `ore.predict-ore.model`
- `ore.predict-prcomp`
- `ore.predict-princomp`
- `ore.predict-rpart`

5.2 Use the ore.predict Function

These examples demonstrate the use of the `ore.predict` function.

Example 5-1  Using the ore.predict Function on a Linear Regression Model

This example builds a linear regression model, `irisModel`, using the `lm` function on the `iris` data.frame. It pushes the data set to the database as the temporary table IRIS and the corresponding `ore.frame` proxy, IRIS. The example scores the model by invoking `ore.predict` on it and then combines the prediction with IRIS `ore.frame` object. Finally, it displays the first six rows of the resulting object.

```r
IRISModel <- lm(Sepal.Length ~ ., data = iris)
IRIS <- ore.push(iris)
IRIS_pred <- ore.predict(IRISModel, IRIS, se.fit = TRUE,
 interval = "prediction")
```
IRIS <- cbind(IRIS, IRIS_pred)
head(IRIS)

**Listing for This Example**

R> IRISModel <- lm(Sepal.Length ~ ., data = iris)
R> IRIS <- ore.push(iris)
R> IRIS_pred <- ore.predict(IRISModel, IRIS, se.fit = TRUE,
+ interval = "prediction")
R> IRIS <- cbind(IRIS, IRIS_pred)
R> head(IRIS)

<table>
<thead>
<tr>
<th>Sepal.Length</th>
<th>Sepal.Width</th>
<th>Petal.Length</th>
<th>Petal.Width</th>
<th>Species</th>
<th>PRED</th>
<th>SE.PRED</th>
<th>LOWER.PRED</th>
<th>UPPER.PRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>3.5</td>
<td>1.4</td>
<td>0.2</td>
<td>setosa</td>
<td>5.004788</td>
<td>0.04479188</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>3.0</td>
<td>1.4</td>
<td>0.2</td>
<td>setosa</td>
<td>4.756844</td>
<td>0.05514933</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>3.2</td>
<td>1.3</td>
<td>0.2</td>
<td>setosa</td>
<td>4.773097</td>
<td>0.04690495</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>3.1</td>
<td>1.5</td>
<td>0.2</td>
<td>setosa</td>
<td>4.889357</td>
<td>0.05135928</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>3.6</td>
<td>1.4</td>
<td>0.2</td>
<td>setosa</td>
<td>5.054377</td>
<td>0.04736842</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>3.9</td>
<td>1.7</td>
<td>0.4</td>
<td>setosa</td>
<td>5.388886</td>
<td>0.05592364</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 5-2 Using the ore.predict Function on a Generalized Linear Regression Model

This example builds a generalized linear model using the infert data set and then invokes the ore.predict function on the model.

infertModel <-
  glm(case ~ age + parity + education + spontaneous + induced,
      data = infert, family = binomial())
INFERT <- ore.push(infert)
INFERTpred <- ore.predict(infertModel, INFERT, type = "response",
                  se.fit = TRUE)
INFERT <- cbind(INFERT, INFERTpred)
head(INFERT)

**Listing for This Example**

R> infertModel <-
+     glm(case ~ age + parity + education + spontaneous + induced,
Example 5-3  Using the ore.predict Function on an ore.model Model

This example pushes the iris data set to the database as the temporary table IRIS and the corresponding ore.frame proxy, IRIS. The example builds a linear regression model, IRISModel2, using the ore.lm function. It scores the model and adds a column to IRIS.

IRIS <- ore.push(iris)
IRISModel2 <- ore.lm(Sepal.Length ~ ., data = IRIS)
IRIS$PRED <- ore.predict(IRISModel2, IRIS)
head(IRIS, 3)

Listing for This Example

R> IRIS <- ore.push(iris)
R> IRISModel22 <- ore.lm(Sepal.Length ~ ., data = IRIS)
R> IRIS$PRED <- ore.predict(IRISModel, IRIS)
R> head(IRIS, 3)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species     PRED
1          5.1         3.5          1.4         0.2  setosa 5.004788
2          4.9         3.0          1.4         0.2  setosa 4.756844
3          4.7         3.2          1.3         0.2  setosa 4.773097
6

Use Oracle Machine Learning for R Embedded R Execution

Embedded R execution in OML4R enables you to invoke R scripts in R sessions that run on the Oracle Database server.

These topics discuss embedded R execution:

- **About Oracle Machine Learning for R Embedded R Execution**
  In OML4R, embedded R execution is the ability to run R scripts in R engines that are dynamically started and managed by the database.

- **R Interface for Embedded R Execution**
  Oracle Machine Learning for R provides functions that invoke R scripts that run in one or more R engines that are embedded in the Oracle database.

- **SQL Interface for Embedded R Execution**
  The SQL interface for Oracle Machine Learning for R embedded R execution allows you to execute R functions in production database applications.

### 6.1 About Oracle Machine Learning for R Embedded R Execution

In OML4R, embedded R execution is the ability to run R scripts in R engines that are dynamically started and managed by the database.

You can store R scripts in the OML4R script repository and to invoke such scripts with embedded R functions. When invoked, a script executes in one or more R engines that run on the database server. OML4R provides both an R interface and a SQL interface for embedded R execution. From the same R script you can get structured data, an XML representation of R objects and images, and even PNG images through a BLOB column in a database table.

The following topics describe embedded R execution:

- **Benefits of Embedded R Execution**
  Embedded R execution has the following benefits:

- **APIs for Embedded R Execution**
  Oracle Machine Learning for R provides R and SQL application programming interfaces for embedded R execution.

- **Security for Scripts**
  Because R scripts allow access to the database server, the creation of scripts must be controlled.

- **Support for Parallel Execution**
  Some of the Oracle Machine Learning for R embedded R execution functions support the use of parallel execution in the database.
6.1.1 Benefits of Embedded R Execution

Embedded R execution has the following benefits:

- Eliminates moving data from the Oracle Database server to your local R session. As well as being more secure, the transfer of database data between Oracle Database and an internal R engine is much faster than to a separate client R engine.
- Uses the database server to start, manage, and control the execution of R scripts in R engines running on the server.
- Leverages the memory and processing power of the database server machine for R engine execution, which provides better scalability and performance.
- Enables data-parallel and task-parallel execution of user-defined R functions that correspond to special cases of Hadoop Map-Reduce jobs.
- Provides parallel simulations capability.
- Allows the use of open source CRAN packages in R scripts running on the database server.
- Provides the ability to develop and operationalize comprehensive scripts for analytical applications in a single step, without leaving the R environment.
- You can directly integrate R scripts used in exploratory analysis into application tasks. You can also immediately invoke R scripts in production to drastically reduce time to market by eliminating porting and enabling instantaneous updates of changes to application code.
- Executing R scripts from SQL enables integration of R script results with Oracle Business Intelligence Enterprise Edition (OBIEE), Oracle BI Publisher, and other SQL-enabled tools for structured data, R objects, and images.

6.1.2 APIs for Embedded R Execution

Oracle Machine Learning for R provides R and SQL application programming interfaces for embedded R execution.

The following table lists the R functions and the equivalent SQL functions and procedures for embedded R execution and OML4R script repository management. The function \( f \) refers to a named R function or an R function defined in a script in the OML4R script repository.

<table>
<thead>
<tr>
<th>R API</th>
<th>SQL API</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ore.doEval</td>
<td>rqEval</td>
<td>Executes ( f ) with no automatic transfer of data.</td>
</tr>
<tr>
<td>ore.tableApply</td>
<td>rqTableEval</td>
<td>Executes ( f ) by passing all rows of the provided input ( \text{ore.frame} ) as the first argument of ( f ). Provides the first argument of ( f ) as a ( \text{data.frame} ).</td>
</tr>
</tbody>
</table>
Table 6-1  (Cont.) R and SQL APIs for Embedded R Execution

<table>
<thead>
<tr>
<th>R API</th>
<th>SQL API</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ore.groupApply</td>
<td>rqGroupEval</td>
<td>Executes $f$ by partitioning data according to the values of a grouping column. Provides each data partition as a data.frame in the first argument of $f$. Supports parallel execution of each $f$ invocation in the pool of database server-side R engines.</td>
</tr>
<tr>
<td>ore.rowApply</td>
<td>rqRowEval</td>
<td>Executes $f$ by passing a specified number of rows (a chunk) of the provided input ore.frame. Provides each chunk as a data.frame in the first argument of $f$. Supports parallel execution of each $f$ invocation in the pool of database server-side R engines.</td>
</tr>
<tr>
<td>ore.indexApply</td>
<td>No equivalent.</td>
<td>Executes $f$ with no automatic transfer of data but provides the index of the invocation, 1 through $n$, where $n$ is the number of times to invoke the function. Supports parallel execution of each $f$ invocation in the pool of R engines running on the database server.</td>
</tr>
<tr>
<td>ore.grant</td>
<td>rqGrant</td>
<td>Grants read privilege access to a datastore or script.</td>
</tr>
<tr>
<td>ore.revoke</td>
<td>rqRevoke</td>
<td>Revokes read privilege access to a datastore or script.</td>
</tr>
<tr>
<td>ore.scriptCreate</td>
<td>sys.rqScriptCreate</td>
<td>Adds the provided R function into the OML4R script repository with the provided name.</td>
</tr>
<tr>
<td>ore.scriptDrop</td>
<td>sys.rqScriptDrop</td>
<td>Removes the named R function from the OML4R script repository.</td>
</tr>
<tr>
<td>ore.scriptList</td>
<td>ALL_RQ_SCRIPTS</td>
<td>Lists information about scripts.</td>
</tr>
<tr>
<td>ore.scriptList</td>
<td>USER_RQ_SCRIPTS</td>
<td>Lists information about scripts.</td>
</tr>
<tr>
<td>ore.scriptLoad</td>
<td>No equivalent.</td>
<td>Loads the R function of a script into the R environment.</td>
</tr>
</tbody>
</table>

See Also:

- “R Interface for Embedded R Execution”
- “SQL Interface for Embedded R Execution”

6.1.3 Security for Scripts

Because R scripts allow access to the database server, the creation of scripts must be controlled.

The RQADMIN role is a collection of Oracle Database privileges that a user must have to create scripts and store them in the Oracle Machine Learning for R script repository or drop scripts from the repository.

The installation of OML4R on the database server creates the RQADMIN role. The role must be explicitly granted to a user. To grant RQADMIN to a user, start SQL*Plus as sysdba and enter a GRANT statement such as the following, which grants the role to the user OML_USER:

```
GRANT RQADMIN to OML_USER
```
6.1.4 Support for Parallel Execution

Some of the Oracle Machine Learning for R embedded R execution functions support the use of parallel execution in the database.

The `ore.groupApply`, `ore.rowApply`, `rq.groupEval`, and `rq.rowEval` functions support data-parallel execution and the `ore.indexApply` function supports task-parallel execution. This parallel execution capability enables a script to take advantage of high-performance computing hardware such as an Oracle Exadata Database Machine.

The `parallel` argument of the `ore.groupApply`, `ore.rowApply`, and `ore.indexApply` functions specifies the degree of parallelism to use in the embedded R execution. The value of the argument can be one of the following:

- A positive integer greater than or equal to 2 for a specific degree of parallelism
- `FALSE` or 1 for no parallelism
- `TRUE` for the default parallelism of the `data` argument
- `NULL` for the database default for the operation

The default value of the argument is the value of the global option `ore.parallel` or `FALSE` if `ore.parallel` is not set.

A user-defined R function invoked using `ore.doEval` or `ore.tableApply` is not executed in parallel. The function executes in a single R engine.

For the `rq.groupEval`, and `rq.rowEval` functions, the degree of parallelism is specified by a `PARALLEL` hint in the input cursor argument.

In data-parallel execution for the `ore.groupApply` and `rq.groupEval` functions, one or more R engines perform the same R function, or task, on different partitions of data. This functionality enables the building of large numbers of models, for example building tens or hundreds of thousands of predictive models, one model per customer.
In data-parallel execution for the `ore.rowApply` and `rq.rowEval` functions, one or more R engines perform the same R function on disjoint chunks of data. This functionality enables scalable model scoring and predictions on large data sets.

In task-parallel execution for the `ore.indexApply` function, one or more R engines perform the same or different calculations, or task. A number, associated with the index of the execution, is provided to the function. This functionality is valuable in a variety of operations, such as in performing simulations.

Oracle Database handles the management and control of potentially multiple R engines at the database server, automatically partitioning and passing data to R engines executing in parallel. It ensures that all of the R function executions for all of the partitions complete; if not, the OML4R function returns an error. The result from the execution of each user-defined embedded R function is gathered in an `ore.list`. This list remains in the database until the user requires the result.

Embedded R execution also allows for data-parallel execution of user-defined R functions that may use functions from an open source R package from The Comprehensive R Archive Network (CRAN) or other third-party R package. However, third-party packages do not leverage in-database parallelism and are subject to the parallelism constraints of R. Third-party packages can benefit from the data-parallel and task-parallel execution supported in embedded R execution.

---

**See Also:**

Oracle Machine Learning for R Global Options

---

6.1.5 Install a Third-Party Package for Use in Embedded R Execution

Embedded R execution allows the use of CRAN or other third-party packages in user-defined R functions executed on the Oracle Database server.

To use a third-party package in embedded R execution, the package must be installed on the database server. If you are going to use the package from the R interface for embedded R execution, then the package must also be installed on the client, as well. To avoid incompatibilities, you must install the same version of the package on both the client and server machines.

An Oracle Database Administrator (DBA) can install a package on a database server so that it can be used by embedded R execution functions or by any R user. The DBA can install a package on a single database server or on multiple database servers.

A DBA would typically do the following:

1. Download and install the package from CRAN. Downloading a package from CRAN requires an Internet connection.

2. In an Oracle Machine Learning for R session running on the server, load the package. Verify that the package is installed correctly by using a function in the package.

To install a package on a single database server, do one of the following:
• In an OML4R session running on the server, invoke the `install.packages` function, as shown in Example 6-1. The function downloads the package and installs dependencies automatically.

• Download the package source from CRAN using `wget`. If the package depends on any packages that are not in the R distribution in use, then download those packages, also.

  From the operating system command line, use the `ORE CMD INSTALL` command to install the package or packages in the same location as the OML4R packages, which is `$ORACLE_HOME/R/library`. See Example 6-2.

To install a package, and any dependent packages, on multiple database servers, such as those in an Oracle Real Application Clusters (Oracle RAC) or a multinode Oracle Exadata Database Machine environment, use the Exadata Distributed Command Line Interface (DCLI) utility, as shown in Example 6-3.

To verify that the package is installed correctly, load the package and use a function in the package, as shown in Example 6-4.

**Example 6-1 Installing a Package for a Single Database in an OML4R Session**

This example invokes the `install.packages` function to download the `C50` package from CRAN and to install it. The `C50` package contains functions for creating C5.0 decision trees and rule-based models for pattern recognition.

The output this example, which is not shown, is almost identical to the output of the `ORE CMD INSTALL` command in Example 6-2.

```
install.packages("c50")
```

**Example 6-2 Installing a Package for a Single Database from the Command Line**

This example demonstrates downloading the `C50` package from CRAN and installing it with `ORE CMD INSTALL` from a Linux command line.

```
wget http://cran.r-project.org/src/contrib/C50_0.1.0-19.tar.gz
ORE CMD INSTALL C50_0.1.0-19.tar.gz
```

**Listing for This Example**

```
$ wget http://cran.r-project.org/src/contrib/C50_0.1.0-19.tar.gz
The output of wget is not shown.
$ ORE CMD INSTALL C50_0.1.0-19.tar.gz
* installing to library '/example/dbhome_1/R/library'
* installing *source* package 'C50' ...
** package 'C50' successfully unpacked and MD5 sums checked
checking for gcc... gcc
checking whether the C compiler works... yes
checking for C compiler default output file name... a.out
checking for suffix of executables... o
checking whether we are cross compiling... no
checking for suffix of object files... o
checking whether we are using the GNU C compiler... yes
checking whether gcc accepts -g... yes
checking for gcc option to accept ISO C89... none needed
configure: creating ./config.status
config.status: creating src/Makevars
** libs
```

```
gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include ```
gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include -ffloat-store -g -fpic -g -O2 -c
update.c -o update.o
gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include -ffloat-store -g -fpic -g -O2 -c utility.c -o utility.o
gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include -ffloat-store -g -fpic -g -O2 -c xval.c -o xval.o
gcc -m64 -std=gnu99 -shared -L/usr/local/lib64 -o C50.so attwinnow.o classify.o confmat.o construct.o continuo o discr.o formrules.o formtree.o getdata.o getnames.o global.o hash.o hooks.o implicitt.o info.o mcost.o modelfiles.o p-thresh.o prune.o rc50.o redefine.o rsample.o rulebasedmodels.o rules.o rul etree.o sifrules.o sort.o strbuf.o subset.o top.o trees.o update.o utility.o xval.o -L/usr/lib64/R/lib -lR
installing to /example/dbhome_1/R/library/C50/libs
** R
** data
** preparing package for lazy loading
** help
*** installing help indices
 converting help for package 'C50'
 finding HTML links ... done
C5.0
C5.0Control
churn
predict.C5.0
summary.C5.0
varImp.C5.0
** building package indices
** testing if installed package can be loaded
* DONE (C50)

Example 6-3 Installing a Package Using DCLI

This example shows the DLCI command for installing the C50 package. The dcli -g flag designates a file containing a list of nodes to install on, and the -l flag specifies the user ID to use when executing the commands.

dcli -g nodes -l oracle R CMD INSTALL C50_0.1.0-19.tar.gz

Example 6-4 Using a C50 Package Function

This example shows starting R, connecting to OML4R on the server, loading the C50 package, and using a function in the package. The example starts R by executing the ORE command from the Linux command line. The example connects to OML4R and then loads the C50 package. It invokes the demo function to look for example programs in the package. Because the package does not have examples, this example then gets help for the C5.0 function. The example invokes example code from the help.

ORE

library(ORE)
ore.connect(user = "OML_USER", sid = "orcl", host = "myhost",
 password = "oml_userStrongPassword", port = 1521, all=TRUE)

library(C50)
demo(package = "C50")
?C5.0
data(churn)
treeModel <- C5.0(x = churnTrain[, -20], y = churnTrain$schurn)
treeModel

Listing for This Example
$ ORE

R> library(ORE)
Loading required package: OREbase

Attaching package: 'OREbase'

The following objects are masked from 'package:base':

cbind, data.frame, eval, interaction, order, paste, pmax, pmin, rbind, table

Loading required package: OREembed
Loading required package: OREstats
Loading required package: MASS
Loading required package: OREgraphics
Loading required package: OREeda
Loading required package: OREmodels
Loading required package: OREdm
Loading required package: lattice
Loading required package: OREpredict
Loading required package: ORExml

> ore.connect(user = "OML_USER", sid = "orcl", host = "myhost",
+ password = "oml_userStrongPassword", port = 1521, all=TRUE)
Loading required package: ROracle
Loading required package: DBI

R> library(C50)
R> demo(package = "C50")
nodemos found
R> ?C5.0 # Output not shown.
R> data(churn)
R> treeModel <- C5.0(x = churnTrain[, -20], y = churnTrain$churn)
R> treeModel
Call:
C5.0.default(x = churnTrain[, -20], y = churnTrain$churn)

Classification Tree
Number of samples: 3333
Number of predictors: 19

Tree size: 27

Non-standard options: attempt to group attributes

See Also:

- **Using a Third-Party Package on the Client**
- Using DCLI to Install Oracle R Enterprise on Exadata in *Oracle Machine Learning for R Installation and Administration Guide*
- **R Administration and Installation**
- Installing R packages
6.2 R Interface for Embedded R Execution

Oracle Machine Learning for R provides functions that invoke R scripts that run in one or more R engines that are embedded in the Oracle database.

Other functions create and store an R function as a script in the OML4R script repository, grant or revoke read access to a script, list the available scripts, load a script function into the R environment, or drop a script from the repository. This section describes these functions in the following topics:

- Arguments for Functions that Run Scripts
 The Oracle Machine Learning for R embedded R execution functions ore.doEval, ore.tableApply, ore.groupApply, ore.rowApply, and ore.indexApply have arguments that are common to some or all of the functions.

- Manage Scripts in R
 Embedded R execution functions can invoke R functions that are stored as scripts in the OML4R script repository. You can use the R functions described in this topic to create and manage scripts.

- Use the ore.doEval Function
 The ore.doEval function executes the specified input function using data that is generated by the input function.

- Use the ore.tableApply Function
 The ore.tableApply function invokes an R script with an ore.frame as the input data.

- Use the ore.groupApply Function
 The ore.groupApply function invokes an R script with an ore.frame as the input data.

- Use the ore.rowApply Function
 The ore.rowApply function invokes an R script with an ore.frame as the input data.

- Use the ore.indexApply Function
 The ore.indexApply function executes the specified user-defined input function using data that is generated by the input function.

6.2.1 Arguments for Functions that Run Scripts

The Oracle Machine Learning for R embedded R execution functions ore.doEval, ore.tableApply, ore.groupApply, ore.rowApply, and ore.indexApply have arguments that are common to some or all of the functions.

Some of the functions also have an argument that is unique to the function. The following topics describe these arguments:

- Input Function to Execute
 The embedded R execution functions all require an R function to apply during the execution of the script.

- Optional and Control Arguments
 All of the embedded R execution functions take optional arguments, which can be named or not.
• **Structure of Return Value**
 Another argument that applies to all of the embedded R execution functions is `FUN.VALUE`.

• **Input Data**
 The `ore.doEval` and `ore.indexApply` functions do not automatically receive any data from the database.

• **Parallel Execution**
 The `parallel` argument specifies the degree of parallelism to use in the embedded R execution of the input function.

• **Unique Arguments**
 The `ore.groupApply`, `ore.indexApply`, and `ore.rowApply` functions each take an argument that is unique to the function.

See Also:

- For function signatures and more details about function arguments, see the online help displayed by invoking `help(ore.doEval)`
- For examples of the use of the arguments, see Using the `ore.doEval` Function and the other topics on using the embedded R execution functions

6.2.1.1 Input Function to Execute

The embedded R execution functions all require an R function to apply during the execution of the script.

You specify the input function with one of the following mutually exclusive arguments:

- **FUN**
- **FUN.NAME** (and optional **FUN.OWNER**)

The `FUN` argument takes a function object as a directly specified function or as one assigned to an R variable. Only a user with the RQADMIN role can use the `FUN` argument when invoking an embedded R function.

The `FUN.NAME` argument specifies a script that is stored in the OML4R R script repository. A stored script contains the function to apply when the script runs. Any OML4R user can use the `FUN.NAME` argument when invoking an embedded R function.

The optional argument `FUN.OWNER` specifies the owner of a script in the R script repository. The owner is the user who created the script. Use this argument only with the `FUN.NAME` argument. When `FUN.NAME` is a private script to which you have been granted read privilege access, use `FUN.OWNER` to specify the owner of the private script.

The RQSYS schema is the owner of public scripts and the predefined OML4R scripts. For a list of the predefined scripts, invoke `help("ore.doEval")` and see the description of the `FUN.NAME` argument. If `FUN.OWNER` is not specified or is `NULL`, then OML4R looks for the owner in the following order: user of the current session, RQSYS. If the owner of the script is not current user or RQSYS, then an error occurs.
Note:
The OML4R functions in the OREmodels package, ore.glm, ore.lm, ore.neural, and ore.randomForest, use the embedded R execution framework internally and cannot be used in embedded R execution functions.

6.2.1.2 Optional and Control Arguments

All of the embedded R execution functions take optional arguments, which can be named or not.

Oracle Machine Learning for R passes user-defined optional arguments to the input function. You can pass any number of optional arguments to the input function, including complex R objects such as models.

Arguments that start with ore. are special control arguments. OML4R does not pass them to the input function, but instead uses them to control what happens before or after the execution of that function. The following control arguments are supported:

• ore.connect controls whether to automatically connect to OML4R inside the embedded R execution function. This is equivalent to doing an ore.connect call with the same credentials as the client session. The default value is FALSE.

If an automatic connection is enabled, the following functionality occurs:

– The embedded R script is connected to the database.
– The connection has the same credentials as the session that invokes the embedded R SQL function.
– The script runs in an autonomous transaction.
– ROracle queries can work with the automatic connection.
– OML4R transparency layer functionality is enabled in the embedded script.

• ore.drop controls the input data. If the option value is TRUE, a one column data.frame is converted to a vector. The default value is TRUE.

• ore.envAsEmptyenv controls whether an environment referenced in an object is replaced with an empty environment during serialization. Some types of input parameters and returned objects, such as list and formula, are serialized before being saved to the database. If the control argument value is TRUE, then the referenced environment in the object is replaced with an empty environment whose parent is .GlobalEnv and the objects in the original referenced environment are not serialized. In some cases, this can significantly reduce the size of serialized objects. If the control argument value is FALSE, then all of the objects in the referenced environment are serialized and can be unserialized and recovered later. The default value is regulated by the global option ore.envAsEmptyenv.

• ore.na.omit controls the handling of missing values in the input data. If you specify ore.na.omit = TRUE, then rows or vector elements, depending on the ore.drop setting, that contain missing values are removed from the input data. If all of the rows in a chunk contain missing values, then the input data for that chunk will be an empty data.frame or vector. The default value is FALSE.
• `ore.graphics` controls whether to start a graphical driver and look for images. The default value is `TRUE`.

• `ore.png.*` specifies additional arguments for the `png` graphics driver if `ore.graphics` is `TRUE`. The naming convention for these arguments is to add an `ore.png.` prefix to the arguments of the `png` function. For example, if `ore.png.height` is supplied, argument `height` is passed to the `png` function. If not set, the standard default values for the `png` function are used.

See Also:
For more details about control arguments, see the online help displayed by invoking `help(ore.doEval)`

6.2.1.3 Structure of Return Value

Another argument that applies to all of the embedded R execution functions is `FUN.VALUE`.

If the `FUN.VALUE` argument is `NULL`, then the `ore.doEval` and `ore.tableApply` function can return a serialized R object as an `ore.object` class object, and the `ore.groupApply`, `ore.indexApply`, and `ore.rowApply` functions return an `ore.list` object. However, if you specify a `data.frame` or an `ore.frame` with the `FUN.VALUE` argument, then the function returns an `ore.frame` that has the structure of the specified `data.frame` or `ore.frame` object.

To specify that the corresponding output column of an `ore.frame` have a CLOB or BLOB database data type, you can apply the attribute `ora.type` to a column of a `FUN.VALUE` `data.frame`. For an example of using `ora.type`, see Example 6-11.

6.2.1.4 Input Data

The `ore.doEval` and `ore.indexApply` functions do not automatically receive any data from the database.

They simply execute the function specified by the `FUN` or `FUN.NAME` argument. Any data needed by the input function is either generated within that function or explicitly retrieved from a data source such as Oracle Database, other databases, or flat files. The input function can load data from a file or a table using the `ore.pull` function or other transparency layer function.

The `ore.tableApply`, `ore.groupApply`, and `ore.rowApply` functions require a database table as input data. The table is represented by an `ore.frame`. You supply that data with an `ore.frame` object that you specify with the `X` argument, which is the first argument to the embedded R execution function. The embedded R execution function passes the `ore.frame` object to the user-defined input function as the first argument to that function.
6.2.1.5 Parallel Execution

The `parallel` argument specifies the degree of parallelism to use in the embedded R execution of the input function.

The `parallel` argument is accepted by the `ore.groupApply`, `ore.indexApply`, and `ore.rowApply` functions.

See Support for Parallel Execution.

6.2.1.6 Unique Arguments

The `ore.groupApply`, `ore.indexApply`, and `ore.rowApply` functions each take an argument that is unique to the function.

The `ore.groupApply` function takes the `INDEX` argument, which specifies the name of a column by which the rows of the input data are partitioned for processing by the input function.

The `ore.indexApply` function takes the `times` argument, which specifies the number of times to execute the input function.

The `ore.rowApply` function takes the `rows` argument, which specifies the number of rows to pass to each invocation of the input function.

6.2.2 Manage Scripts in R

Embedded R execution functions can invoke R functions that are stored as scripts in the OML4R script repository. You can use the R functions described in this topic to create and manage scripts.

The embedded R execution functions can take a `FUN_NAME` argument, which specifies the name of a script in the OML4R script repository. Scripts in the R script repository are also available through the SQL API for embedded R execution.

The R functions for managing scripts are the following:

- `ore.grant`
- `ore.revoke`
- `ore.scriptCreate`
- `ore.scriptList`
- `ore.scriptLoad`
- `ore.scriptDrop`
These functions are described in the following sections:

- Adding a Script
- Granting or Revoking Read Access to a Script
- Listing the Available Scripts
- Loading a Script into an R Environment
- Dropping a Script

For an example that uses these functions, see Example 6-5.

Adding a Script

To add an R function as a script in the OML4R script repository, use the `ore.createScript` function. To evoke this function, you must have the RQADMIN role.

The `ore.createScript` function has the following syntax:

```r
ore.scriptCreate(name, FUN, global, overwrite)
```

The arguments are the following:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>A name for the script in the OML4R script repository.</td>
</tr>
<tr>
<td>fun</td>
<td>An R function.</td>
</tr>
<tr>
<td>global</td>
<td>A logical value that indicates whether the script is public (global) or private. FALSE (the default) specifies that the script is not public and is visible only to the owner or to users to whom the owner has granted read privilege access; TRUE specifies that the script is public and therefore visible to all users.</td>
</tr>
<tr>
<td>overwrite</td>
<td>A logical value that indicates whether to replace the R function of the script with the function specified in by the <code>fun</code> argument. TRUE specifies replacing the function, if it exists; FALSE (the default) specifies that the existing contents cannot be replaced.</td>
</tr>
</tbody>
</table>

If `overwrite = FALSE`, an error condition occurs if a script by the same name already exists in the OML4R script repository; otherwise, `ore.scriptCreate` returns `NULL`.

Granting or Revoking Read Access to a Script

The creator of a script can use the `ore.grant` function to grant read access privilege to the script and the `ore.revoke` function to revoke that access. Those functions have the following syntax:

```r
ore.grant(name, type = "rqscript", user)
ore.revoke(name, type = "rqscript", user)
```

The arguments are the following:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>The name of a script in the OML4R script repository.</td>
</tr>
<tr>
<td>type</td>
<td>For a script, the type is rqscript.</td>
</tr>
<tr>
<td>user</td>
<td>The user to whom to grant or revoke read privilege access.</td>
</tr>
</tbody>
</table>
The name and type arguments are required. If argument user is not specified, then read privilege access is granted to or revoked from all users.

An error occurs when one of the following is true:

- The named script is not in the OML4R script repository.
- The type argument is not specified.
- The user is not found.
- The read privilege has already been granted to or revoked from the user.
- The named script is public.

Listing the Available Scripts

To list the scripts available to you, use ore.scriptList. You can list scripts by name, by a pattern, or by type. If you have the RQADMIN role, you can list system scripts, as well. The function has the following syntax:

ore.scriptList(name, pattern, type)

The arguments are the following:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>The name of a script in the OML4R script repository. Cannot be used when argument pattern is specified.</td>
</tr>
<tr>
<td>pattern</td>
<td>A regular expression pattern. Scripts that match the pattern are listed. Cannot be used when argument name is specified.</td>
</tr>
<tr>
<td>type</td>
<td>The type of the script, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• user, which lists scripts owned by the current user</td>
</tr>
<tr>
<td></td>
<td>• global, which lists public scripts, which are visible to all users</td>
</tr>
<tr>
<td></td>
<td>• grant, which lists the scripts to which the current user has granted read access to others</td>
</tr>
<tr>
<td></td>
<td>• granted, which lists the scripts to which the current user has been granted read access by another user</td>
</tr>
<tr>
<td></td>
<td>• all, which lists all of the user, public, and granted scripts</td>
</tr>
</tbody>
</table>

The ore.scriptList function returns a data.frame that contains the names of the scripts in the OML4R script repository and the function in the script.

Loading a Script into an R Environment

To load the R function of a script into an R environment, use ore.scriptLoad, which has the following syntax:

ore.scriptLoad(name, owner, newname, envir)

The arguments are the following:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>The name of a script in the OML4R script repository.</td>
</tr>
<tr>
<td>owner</td>
<td>The owner of the script.</td>
</tr>
</tbody>
</table>
Specifying the owner of a script is useful when access to the script has been granted to the user who is invoking `ore.scriptLoad`.

Specifying a new function name is useful when the name of the script in the OML4R script repository is not a valid R function name.

An error occurs when one of the following is true:

- The script is not in the OML4R script repository.
- The current user does not have read access to the script.
- The function specified by the `name` argument is not a valid R function name.
- The `newname` argument is not a valid R function name.

Dropping a Script

To remove a script from the OML4R script repository, use the `ore.scriptDrop` function. To invoke this function, you must have the RQADMIN role. The `ore.scriptDrop` function has the following syntax:

```
ore.scriptDrop(name, global, silent)
```

The arguments are the following:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>A name for the script in the OML4R script repository.</td>
</tr>
<tr>
<td>global</td>
<td>A logical value that indicates whether the script is global (public) or private. TRUE specifies dropping a global script; FALSE (the default) specifies dropping a script owned by the current user.</td>
</tr>
<tr>
<td>silent</td>
<td>A logical value that indicates whether to display an error message if <code>ore.scriptDrop</code> encounters an error condition. TRUE specifies the display of error messages; FALSE (the default) specifies no display.</td>
</tr>
</tbody>
</table>

An error condition occurs when one of the following is true:

- The script is not in the OML4R script repository.
- If `global = TRUE`, the script is a private script.
- If `global = FALSE`, the script is a public script.

If successful, `ore.scriptDrop` returns `NULL`.

Example 6-5 Using the R Script Management Functions

```r
# Create an ore.frame object from the data.frame for the iris data set.
IRIS <- ore.push(iris)

# Create a private R script for the current user.
ore.scriptCreate("myRandomRedDots", function(divisor = 100){
  id <- 1:10
```

Chapter 6

R Interface for Embedded R Execution

6-17
```r
plot(1:100, rnorm(100), pch = 21, bg = "red", cex = 2 )
data.frame(id = id, val = id / divisor)

# Create another private R script.
ore.scriptCreate("MYLM",
    function(data, formula, ...) lm(formula, data, ...))

# Create a public script, available to any user.
ore.scriptCreate("GLBGLM",
    function(data, formula, ...) glm(formula = formula, data = data, ...),
    global = TRUE)

# List only my private scripts.
ore.scriptList()

# List my private scripts and the public scripts.
ore.scriptList(type = "all")

# List my private scripts that have the specified pattern.
ore.scriptList(pattern = "MY")

# Grant read access to a private script to all users.
ore.grant("MYLM", type = "rqscript")

# Grant read access to a private script to a specific user.
ore.grant("myRandomRedDots", user = "SCOTT", type = "rqscript")

# List the granted scripts.
ore.scriptList(type = "grant")

# Use the MYLM script in an embedded R execution function.
ore.tableApply(IRIS[1:4], FUN.NAME = "MYLM",
    formula = Sepal.Length ~ .)

# Use the GLBGLM script in an embedded R execution function.
ore.tableApply(IRIS[1:4], FUN.NAME = "GLBGLM",
    formula = Sepal.Length ~ .)

# Load an R script to an R function object
ore.scriptLoad(name = "MYLM")

# Invoke the function.
MYLM(iris, formula = Sepal.Length ~ .)

# Load another R script to an R function object
ore.scriptLoad(name = "GLBGLM", newname = "MYGLM")

# Invoke the function.
MYGLM(iris, formula = Sepal.Length ~ .)

# Drop some scripts.
ore.scriptDrop("MYLM")
ore.scriptDrop("GLBGLM", global = TRUE)

# List all scripts.
ore.scriptList(type = "all")
```

Listing for This Example
R> # Create an ore.frame object from the data.frame for the iris data set.
R> IRIS <- ore.push(iris)
R>
R> # Create a private R script for the current user.
R> ore.scriptCreate("myRandomRedDots", function(divisor = 100){
R+ id <- 1:10
R+ plot(1:100, rnorm(100), pch = 21, bg = "red", cex = 2)
R+ data.frame(id = id, val = id / divisor)
R+ })
R>
R> # Create another private R script.
R> ore.scriptCreate("MYLM", +
R+ function(data, formula, ...) lm(formula, data, ...))
R>
R> # Create a public script, available to any user.
R> ore.scriptCreate("GLBGLM", +
R+ function(data, formula, ...)
R+ glm(formula = formula, data = data, ...),
R+ global = TRUE)
R>
R> # List only my private scripts.
R> ore.scriptList()
R> NAME SCRIPT
R> 1 MYLM function (data, formula, ...)
lm(formula, data, ...)
R>
R> # List my private scripts and the public scripts.
R> ore.scriptList(type = "all")
R> OWNER NAME SCRIPT
R> 1 RQSYS MYLM function (data, formula, ...)
lm(formula, data, ...)
R> 2 OML_USER GLBGLM function (data, formula, ...)
R> 3 OML_USER MYLM function (data, formula, ...)
lm(formula, data, ...)
R> 4 OML_USER myRandomRedDots function (divisor = 100)
{
 id < 1:10
 plot(1:100, rnorm(100), pch = 21, bg = "red", cex = 2)
 data.frame(id = id, val = id/divisor)
}
R>
R> # List my private scripts that have the specified pattern.
R> ore.scriptList(pattern = "MY")
R> NAME SCRIPT
R> 1 MYLM function (data, formula, ...)
lm(formula, data, ...)
R>
R> # Grant read access to a private script to all users.
R> ore.grant("MYLM", type = "rqscript")
R>
R> # Grant read access to a private script to a specific user.
R> ore.grant("myRandomRedDots", user = "SCOTT", type = "rqscript")
R>
R> # List the granted scripts.
R> ore.scriptList(type = "grant")
R> NAME GRANTEE
R> 1 MYLM PUBLIC
R> 2 myRandomRedDots SCOTT
R>
R> # Use the MYLM script in an embedded R execution function.
R> ore.tableApply(IRIS[,], FUN.NAME = "MYLM", +
R+ formula = Sepal.Length ~ .)
R>
Call:
lm(formula = formula, data = data)

Coefficients:

(Intercept) Sepal.Width Petal.Length Petal.Width
1.8560 0.6508 0.7091 -0.5565

R>
R> # Use the GLBGLM script in an embedded R execution function.
R> ore.tableApply(IRIS[1:4], FUN.NAME = "GLBGLM",
+ formula = Sepal.Length ~ .)

Call: glm(formula = formula, data = data)

Coefficients:

(Intercept) Sepal.Width Petal.Length Petal.Width
1.8560 0.6508 0.7091 -0.5565

Degrees of Freedom: 149 Total (i.e. Null); 146 Residual
Null Deviance: 102.2
Residual Deviance: 14.45 AIC: 84.64

R>
R> # Load an R script to an R function object
R> ore.scriptLoad(name="MYLM")
R>
R> # Invoke the function.
R> MYLM(iris, formula = Sepal.Length ~ .)
R>
R> # Load another R script to an R function object
R> ore.scriptLoad(name = "GLBGLM", newname = "MYGLM")
R>
R> # Invoke the function.
R> MYGLM(iris, formula = Sepal.Length ~ .)
R>
R> # Drop some scripts.
R> ore.scriptDrop("MYLM")
R> ore.scriptDrop("GLBGLM", global = TRUE)
R>
R> # List all scripts.
R> ore.scriptList(type = "all")

OWNER NAME SCRIPT
OML_USER myRandomRedDots function (divisor = 100) \n\n id < 10
plot(1:100, rnorm(100), pch = 21, bg = "red", cex =
2)\n data.frame(id = id, val = id/divisor)\n
See Also:

- Input Function to Execute
- Using the ore.doEval Function for examples that use the
 myRandomRedDots script
- Example 6-14 for another example of using ore.scriptCreate and
 ore.scriptDrop
- Manage Scripts in SQL
6.2.3 Use the ore.doEval Function

The ore.doEval function executes the specified input function using data that is generated by the input function.

It returns an ore.frame object or a serialized R object as an ore.object object.

The syntax of the ore.doEval function is the following:

ore.doEval(FUN, ..., FUN.VALUE = NULL, FUN.NAME = NULL, FUN.OWNER = NULL)

See Also:
Arguments for Functions that Run Scripts for descriptions of the arguments to function ore.doEval

Example 6-6 Using the ore.doEval Function

In this example, RandomRedDots gets a function that has an argument and that returns a data.frame object that has two columns and that plots 100 random normal values. The example then invokes ore.doEval function and passes it the RandomRedDots function object. The image is displayed at the client, but it is generated by the database server R engine that executed the RandomRedDots function.

RandomRedDots <- function(divisor = 100){
 id<- 1:10
 plot(1:100, rnorm(100), pch = 21, bg = "red", cex = 2)
 data.frame(id=id, val=id / divisor)
}
ore.doEval(RandomRedDots)

Listing for This Example

R> RandomRedDots <- function(divisor = 100){
 + id<- 1:10
 + plot(1:100, rnorm(100), pch = 21, bg = "red", cex = 2)
 + data.frame(id=id, val=id / divisor)
 + }
R> ore.doEval(RandomRedDots)
 id val
 1 1 0.01
 2 2 0.02
 3 3 0.03
 4 4 0.04
 5 5 0.05
 6 6 0.06
 7 7 0.07
 8 8 0.08
 9 9 0.09
 10 10 0.10
Example 6-7 Using the ore.doEval Function with an Optional Argument

You can provide arguments to the input function as optional arguments to the doEval function. This example invokes the doEval function with an optional argument that overrides the divisor argument of the RandomRedDots function.

ore.doEval(RANDOMREDDOTS, divisor = 50)

Listing for This Example

R> ore.doEval(RandomRedDots, divisor = 50)
 id val
1 1 0.02
2 2 0.04
3 3 0.06
4 4 0.08
5 5 0.10
6 6 0.12
7 7 0.14
8 8 0.16
Example 6-8 Using the ore.doEval Function with the FUN.NAME Argument

If the input function is stored in the OML4R script repository, then you can invoke the ore.doEval function with the FUN.NAME argument. This example first invokes ore.scriptDrop to ensure that the script repository does not contain a script with the name myRandomRedDots. The example adds the RandomRedDots function from Example 6-6 to the repository under the name myRandomRedDots. This example invokes the ore.doEval function and specifies myRandomRedDots. The result is assigned to the variable res.

The return value of the RandomRedDots function is a data.frame but in this example the ore.doEval function returns an ore.object object. To get back the data.frame object, the example invokes ore.pull to pull the result to the client R session.

```r
ore.scriptDrop("myRandomRedDots")
ore.scriptCreate("myRandomRedDots", RandomRedDots)
res <- ore.doEval(FUN.NAME = "myRandomRedDots", divisor = 50)
class(res)
res.local <- ore.pull(res)
class(res.local)
```

Listing for This Example

```
R> ore.scriptDrop("myRandomRedDots")
R> ore.scriptCreate("myRandomRedDots", RandomRedDots)
R> res <- ore.doEval(FUN.NAME = "myRandomRedDots", divisor = 50)
R> class(res)
[1] "ore.object"
attr(,"package")
[1] "OREembed"
R> res.local <- ore.pull(res)
R> class(res.local)
[1] "data.frame"
```

Example 6-9 Using the ore.doEval Function with the FUN.VALUE Argument

To have the doEval function return an ore.frame object instead of an ore.object, use the argument FUN.VALUE to specify the structure of the result, as shown in this example.

```r
res.of <- ore.doEval(FUN.NAME="myRandomRedDots", divisor = 50,
                      FUN.VALUE= data.frame(id = 1, val = 1))
class(res.of)
```

Listing for Example 6-9

```
R> res.of <- ore.doEval (FUN.NAME="myRandomRedDots", divisor = 50,
                        + FUN.VALUE= data.frame(id = 1, val = 1))
R> class(res.of)
[1] "ore.frame"
attr(,"package")
[1] "OREbase"
```

Example 6-10 Using the doEval Function with the ore.connect Argument

This example demonstrates using the special optional argument ore.connect to connect to the database in the embedded R function, which enables the use of objects
stored in a datastore. The example creates the `RandomRedDots2` function object, which is the same as the `RandomRedDots` function from Example 6-6 except the `RandomRedDots2` function has an argument that takes the name of a datastore. The example creates the `myVar` variable and saves it in the datastore named `datastore_1`. The example then invokes the `doEval` function and passes it the name of the datastore and passes the `ore.connect` control argument set to `TRUE`.

```r
RandomRedDots2 <- function(divisor = 100, datastore.name = "myDatastore"){
  id <- 1:10
  plot(1:100, rnorm(100), pch = 21, bg = "red", cex = 2 )
  ore.load(datastore.name) # Contains the numeric variable `myVar`.
  data.frame(id = id, val = id / divisor, num = myVar)
}
myVar <- 5
ore.save(myVar, name = "datastore_1")
ore.doEval(RandomRedDots2, datastore.name = "datastore_1", ore.connect = TRUE)
```

Listing for This Example

```r
R> RandomRedDots2 <- function(divisor = 100, datastore.name = "myDatastore"){
+   id <- 1:10
+   plot(1:100, rnorm(100), pch = 21, bg = "red", cex = 2 )
+   ore.load(datastore.name) # Contains the numeric variable `myVar`.
+   data.frame(id = id, val = id / divisor, num = myVar)
+ }
R> ore.doEval(RandomRedDots2, datastore.name = "datastore_1", ore.connect = TRUE)
    id  val num
1   1 0.01   5
2   2 0.02   5
3   3 0.03   5
4   4 0.04   5
5   5 0.05   5
6   6 0.06   5
7   7 0.07   5
8   8 0.08   5
9   9 0.09   5
10 10 0.10   5
# The graph displayed by the plot function is not shown.
```

Example 6-11 Using the ora.type Attribute

This example demonstrates using the `ora.type` attribute to specify database data types of CLOB and BLOB for columns in the `data.frame` object specified by the `FUN.VALUE` argument.

```r
eval1 <- ore.doEval(function() "Hello, world")
eval2 <-
  ore.doEval(function()
    data.frame(x = "Hello, world", stringsAsFactors = FALSE))
eval3 <-
  ore.doEval(function()
    data.frame(x = "Hello, world", stringsAsFactors = FALSE),
    FUN.VALUE =
    data.frame(x = character(), stringsAsFactors = FALSE))
out.df <- data.frame(x = character(), y = raw(), stringsAsFactors = FALSE)
attr(out.df$x, "ora.type") <- "clob"
attr(out.df$y, "ora.type") <- "blob"
eval4 <-
  ore.doEval(function() {
    res <- data.frame(x = "Hello, world", stringsAsFactors = FALSE)
    res$y[[1L]] <- charToRaw("Hello, world")
  })
```

Chapter 6
R Interface for Embedded R Execution
6-24
res},
FUN.VALUE = out.df)
eval1
class(eval1) # ore.object
eval2
class(eval2) # ore.object
eval3
class(eval3) # ore.frame
eval4$x
rawToChar(ore.pull(eval4$y))

Listing for This Example

R> eval1 <- ore.doEval(function() "Hello, world")
R> eval2 <-
+ ore.doEval(function()
+ data.frame(x = "Hello, world", stringsAsFactors = FALSE))
R> eval3 <-
+ ore.doEval(function()
+ data.frame(x = "Hello, world", stringsAsFactors = FALSE),
+ FUN.VALUE =
+ data.frame(x = character(), stringsAsFactors = FALSE))
R> out.df <- data.frame(x = character(), y = raw(), stringsAsFactors = FALSE)
R> attr(out.df$x, "ora.type") <- "clob"
R> attr(out.df$y, "ora.type") <- "blob"
R> eval4 <-
+ ore.doEval(function() {
+ res <- data.frame(x = "Hello, world",stringsAsFactors = FALSE)
+ res$y[[1L]] <- charToRaw("Hello, world")
+ res},
+ FUN.VALUE = out.df)
R> eval1
[1] "Hello, world"
R> class(eval1)
[1] "ore.object"
attr("package")
[1] "OREembed"
R> eval2
x
1 Hello, world
R> class(eval2)
[1] "ore.object"
attr("package")
[1] "OREembed"
R> eval3
x
1 Hello, world
Warning message:
ORE object has no unique key - using random order
R> class(eval3)
[1] "ore.frame"
attr("package")
[1] "OREbase"
R> eval4$x
[1] "Hello, world"
Warning message:
ORE object has no unique key - using random order
R> rawToChar(ore.pull(eval4$y))
[1] "Hello, world"
Warning message:
ORE object has no unique key - using random order
6.2.4 Use the ore.tableApply Function

The ore.tableApply function invokes an R script with an ore.frame as the input data.

The ore.tableApply function passes the ore.frame to the user-defined input function as the first argument to that function. The ore.tableApply function returns an ore.frame object or a serialized R object as an ore.object object.

The syntax of the ore.tableApply function is the following:

```r
ore.tableApply(X, FUN, ..., FUN.VALUE = NULL, FUN.NAME = NULL, FUN.OWNER = NULL)
```

See Also:
Arguments for Functions that Run Scripts for descriptions of the arguments to function ore.tableApply

Example 6-12 Using the ore.tableApply Function

This example uses the ore.tableApply function to build a Naive Bayes model on the iris data set. The naiveBayes function is in the e1071 package, which must be installed on both the client and database server machine R engines. As the first argument to the ore.tableApply function, the ore.push(iris) invocation creates a temporary database table and an ore.frame that is a proxy for the table. The second argument is the input function, which has as an argument dat. The ore.tableApply function passes the ore.frame table proxy to the input function as the dat argument.

The input function creates a model, which the ore.tableApply function returns as an ore.object object.

```r
library(e1071)
nbmod <- ore.tableApply(
  ore.push(iris),
  function(dat) {
    library(e1071)
    dat$Species <- as.factor(dat$Species)
    naiveBayes(Species ~ ., dat)
  })
class(nbmod)
nbmod
```

Listing for This Example

```r
R> nbmod <- ore.tableApply(
+   ore.push(iris),
+   function(dat) {
+     library(e1071)
+     dat$Species <- as.factor(dat$Species)
+     naiveBayes(Species ~ ., dat)
+   })
R> class(nbmod)
[1] "ore.object"
attr("package")
[1] "OREembed"
R> nbmod
```
Naive Bayes Classifier for Discrete Predictors

Call:
naiveBayes.default(x = X, y = Y, laplace = laplace)

A-priori probabilities:
Y
 setosa versicolor virginica
0.3333333 0.3333333 0.3333333

Conditional probabilities:
<table>
<thead>
<tr>
<th></th>
<th>Sepal.Length</th>
<th>Sepal.Width</th>
<th>Petal.Length</th>
<th>Petal.Width</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[,1]</td>
<td>[,2]</td>
<td>[,1]</td>
<td>[,2]</td>
</tr>
<tr>
<td>setosa</td>
<td>5.006 0.3524897</td>
<td>3.428 0.3790644</td>
<td>1.462 0.1736640</td>
<td>0.246 0.1053856</td>
</tr>
<tr>
<td>versicolor</td>
<td>5.936 0.5161711</td>
<td>2.770 0.3137983</td>
<td>4.260 0.4699110</td>
<td>1.326 0.1977527</td>
</tr>
<tr>
<td>virginica</td>
<td>6.588 0.6358796</td>
<td>2.974 0.3224966</td>
<td>5.552 0.5518947</td>
<td>2.026 0.2746501</td>
</tr>
</tbody>
</table>

6.2.5 Use the `ore.groupApply` Function

The `ore.groupApply` function invokes an R script with an `ore.frame` as the input data.

The `ore.groupApply` function passes the `ore.frame` to the user-defined input function as the first argument to that function. The `INDEX` argument to the `ore.groupApply` function specifies the name of a column of the `ore.frame` by which Oracle Database partitions the rows for processing by the user-defined R function. The `ore.groupApply` function can use data-parallel execution, in which one or more R engines perform the same R function, or task, on different partitions of data.

The syntax of the `ore.groupApply` function is the following:

```r
ore.groupApply(X, INDEX, FUN, ..., FUN.VALUE = NULL, FUN.NAME = NULL, FUN.OWNER = NULL,
               parallel = getOption("ore.parallel", NULL))
```

The `ore.groupApply` function returns an `ore.list` object or an `ore.frame` object.

Examples of the use of the `ore.groupApply` function are in the following topics:

- **Partition on a Single Column**
 This example uses the `ore.groupApply` function and partitions the data on a single column.
6.2.5.1 Partition on a Single Column

This example uses the `ore.groupApply` function and partitions the data on a single column.

The example uses the `C50` package, which has functions that build decision tree and rule-based models. The package also provides training and testing data sets. The example builds C5.0 models on the `churnTrain` training data set from the `churn` data set of the `C50` package, with the goal of building one churn model on the data for each state. The example does the following:

- Loads the `C50` package and then the `churn` data set.
- Uses the `ore.create` function to create the `CHURN_TRAIN` database table and its proxy `ore.frame` object from `churnTrain`, a `data.frame` object.
- Specifies `CHURN_TRAIN`, the proxy `ore.frame` object, as the first argument to the `ore.groupApply` function and specifies the `state` column as the `INDEX` argument. The `ore.groupApply` function partitions the data on the `state` column and invokes the user-defined function on each partition.
- Creates the variable `modList`, which gets the `ore.list` object returned by the `ore.groupApply` function. The `ore.list` object contains the results from the execution of the user-defined function on each partition of the data. In this case, it is one C5.0 model per state, with each model stored as an `ore.object` object.
- Specifies the user-defined function. The first argument of the user-defined function receives one partition of the data, which in this case is all of the data associated with a single state.

The user-defined function does the following:

- Loads the `C50` package so that it is available to the function when it executes in an R engine in the database.
- Deletes the `state` column from the `data.frame` so that the column is not included in the model.
- Converts the columns to factors because, although the `ore.frame` defined factors, when they are loaded to the user-defined function, factors appear as character vectors.
- Builds a model for a state and returns it.
- Uses the `ore.pull` function to retrieve the model from the database as the `mod.MA` variable and then invokes the `summary` function on it. The class of `mod.MA` is `C5.0`.

Example 6-13 Using the `ore.groupApply` Function

```r
library(C50)
data("churn")

ore.create(churnTrain, "CHURN_TRAIN")

modList <- ore.groupApply(
  CHURN_TRAIN,
  INDEX=CHURN_TRAIN$state,
  function(dat) {
```

library(C50)
dat$state <- NULL
dat$churn <- as.factor(dat$churn)
dat$area_code <- as.factor(dat$area_code)
dat$international_plan <- as.factor(dat$international_plan)
dat$voice_mail_plan <- as.factor(dat$voice_mail_plan)
C5.0(churn ~ ., data = dat, rules = TRUE)
}
mod.MA <- ore.pull(modList$MA)
summary(mod.MA)

Listing for This Example

R> library(C50)
R> data(churn)
R>
R> ore.create(churnTrain, "CHURN_TRAIN")
R>
R> modList <- ore.groupApply(
+ CHURN_TRAIN,
+ INDEX=CHURN_TRAIN$state,
+ function(dat) {
+ library(C50)
+ dat$state <- NULL
+ dat$churn <- as.factor(dat$churn)
+ dat$area_code <- as.factor(dat$area_code)
+ dat$international_plan <- as.factor(dat$international_plan)
+ dat$voice_mail_plan <- as.factor(dat$voice_mail_plan)
+ C5.0(churn ~ ., data = dat, rules = TRUE)
+ })
R> mod.MA <- ore.pull(modList$MA)
R> summary(mod.MA)

Call:
C5.0.formula(formula = churn ~ ., data = dat, rules = TRUE)

Class specified by attribute `outcome`

Read 65 cases (19 attributes) from undefined.data

Rules:

Rule 1: (52/1, lift 1.2)
 international_plan = no
 total_day_charge <= 43.04
 -> class no [0.963]

Rule 2: (5, lift 5.1)
 total_day_charge > 43.04
 -> class yes [0.857]

Rule 3: (6/1, lift 4.4)
 area_code in {area_code_408, area_code_415}
 international_plan = yes
 -> class yes [0.750]

Default class: no
Evaluation on training data (65 cases):

<table>
<thead>
<tr>
<th>Rules</th>
<th>No</th>
<th>Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>2 (3.1%)</td>
</tr>
</tbody>
</table>

(a) (b) <-classified as

---- ----
53 1 (a): class no
1 10 (b): class yes

Attribute usage:

89.23% international_plan
87.69% total_day_charge
9.23% area_code

Time: 0.0 secs

6.2.5.2 Partition on Multiple Columns

This example uses the ore.groupApply function and partitions the data on multiple columns.

The ore.groupApply function takes a single column or multiple columns as the INDEX argument. The following example uses data from the CHURN_TRAIN data set to build an rpart model that produces rules on the partitions of data specified, which are the voice_mail_plan and international_plan columns. The example uses the R table function to show the number of rows to expect in each partition.

The example invokes the ore.scriptDrop function to ensure that no script by the specified name exists in the OML4R script repository. It then uses the ore.scriptCreate function to define a script named my_rpartFunction and to store it in the repository. The stored script defines a function that takes a data source and a prefix to use for naming OML4R datastore objects. Each invocation of the function my_rpartFunction receives data from one of the partitions identified by the values in the voice_mail_plan and international_plan columns. Because the source partition columns are constants, the function sets them to NULL. It converts the character vectors to factors, builds a model to predict churn, and saves it in an appropriately named datastore. The function creates a list to return the specific partition column values, the distribution of churn values, and the model itself.

The example then loads the rpart library, sets the datastore prefix, and invokes ore.groupApply using the values from the voice_mail_plan and international_plan columns as the INDEX argument and my_rpartFunction as the value of the FUN.NAME argument to invoke the user-defined function stored in the script repository. The ore.groupApply function uses an optional argument to pass the datastorePrefix variable to the user-defined function. It uses the optional argument ore.connect to connect to the database when executing the user-defined function. The ore.groupApply function returns an ore.list object as the variable res.
The example displays the first entry in the list returned. It then invokes the `ore.load` function to load the model for the case where the customer has both the voice mail plan and the international plan.

Example 6-14 Using ore.groupApply for Partitioning Data on Multiple Columns

```r
library(C50)
data(churn)
ore.drop("CHURN_TRAIN")
ore.create(churnTrain, "CHURN_TRAIN")
table(CHURN_TRAIN$international_plan, CHURN_TRAIN$voice_mail_plan)
options(width = 80)
head(CHURN_TRAIN, 3)
ore.scriptDrop("my_rpartFunction")
ore.scriptCreate("my_rpartFunction",
  function(dat, datastorePrefix) {
    library(rpart)
vmp <- dat[1, "voice_mail_plan"]
ip <- dat[1, "international_plan"]
datastoreName <- paste(datastorePrefix, vmp, ip, sep = "_")
dat$voice_mail_plan <- NULL
dat$international_plan <- NULL
dat$state <- as.factor(dat$state)
dat$churn <- as.factor(dat$churn)
dat$area_code <- as.factor(dat$area_code)
dat$churn <- as.factor(dat$churn)
mod <- rpart(churn ~ ., data = dat)
ore.save(mod, name = datastoreName, overwrite = TRUE)
list(voice_mail_plan = vmp,  
   international_plan = ip,  
   churn.table = table(dat$churn),  
   rpart.model = mod)
})
library(rpart)
datastorePrefix = "my.rpartModel"
res <- ore.groupApply(CHURN_TRAIN,  
  INDEX = CHURN_TRAIN[, c("voice_mail_plan", "international_plan")],  
  FUN.NAME = "my_rpartFunction",  
  datastorePrefix = datastorePrefix,  
  ore.connect = TRUE)
res[[1]]
ore.load(name=paste(datastorePrefix, "yes", "yes", sep = "_")))  
mod
```

Listing for This Example

```r
R> library(C50)
R> data(churn)
R> ore.drop("CHURN_TRAIN")
R> ore.create(churnTrain, "CHURN_TRAIN")
R>
R> table(CHURN_TRAIN$international_plan, CHURN_TRAIN$voice_mail_plan)

  no   yes
 no 2180  830
yes  231   92
R>
```
R> options(width = 80)
R> head(CHURN_TRAIN, 3)

state account_length area_code international_plan voice_mail_plan
1 KS 128 area_code_415 no yes
2 OH 107 area_code_415 no yes
3 NJ 137 area_code_415 no no

number_vmail_messages total_day_minutes total_day_calls total_day_charge
1 25 265.1 110 45.07
2 26 161.6 123 27.47
3 0 243.4 114 41.38

total_eve_minutes total_eve_calls total_eve_charge total_night_minutes
1 197.4 99 16.78 244.7
2 195.5 103 16.62 254.4
3 121.2 110 10.30 162.6

total_night_calls total_night_charge total_intl_minutes total_intl_calls
1 91 11.01 10.0 3
2 103 11.45 13.7 3
3 104 7.32 12.2 5

total_intl_charge number_customer_service_calls churn
1 2.70 1 no
2 3.70 1 no
3 3.29 0 no

Warning messages:
1: ORE object has no unique key - using random order
2: ORE object has no unique key - using random order
R>
R> ore.scriptDrop("my_rpartFunction")
R> ore.scriptCreate("my_rpartFunction",
+ function(dat, datastorePrefix) {
+ library(rpart)
+ vmp <- dat[1, "voice_mail_plan"]
+ ip <- dat[1, "international_plan"]
+ datastoreName <- paste(datastorePrefix, vmp, ip, sep = ".")
+ dat$voice_mail_plan <- NULL
+ dat$international_plan <- NULL
+ dat$state <- as.factor(dat$state)
+ dat$churn <- as.factor(dat$churn)
+ dat$area_code <- as.factor(dat$area_code)
+ mod <- rpart(churn ~ ., data = dat)
+ ore.save(mod, name = datastoreName, overwrite = TRUE)
+ list(voice_mail_plan = vmp,
+ international_plan = ip,
+ churn.table = table(dat$churn),
+ rpart.model = mod)
+ })
R>
R> library(rpart)
R> datastorePrefix = "my.rpartModel"
R>
R> res <- ore.groupApply(CHURN_TRAIN,
+ INDEX = CHURN_TRAIN[, c("voice_mail_plan", "international_plan")],
+ FUN.NAME = "my_rpartFunction",
+ datastorePrefix = datastorePrefix,
+ ore.connect = TRUE)
R> res[[1]]
$voice_mail_plan
[1] "no"

$international_plan
[1] "no"
<table>
<thead>
<tr>
<th>churn.table</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
</tr>
<tr>
<td>1878</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>rpart.model</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 2180</td>
</tr>
</tbody>
</table>

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 2180 302 no (0.86146789 0.13853211)
2) total_day_minutes< 263.55 2040 192 no (0.90588235 0.09411765)
4) number_customer_service_calls< 3.5 1876 108 no (0.94243070 0.05756930)
8) total_day_minutes< 223.25 1599 44 no (0.97248280 0.02751720) *
9) total_day_minutes>=223.25 277 64 no (0.76895307 0.23104693)
18) total_eve_minutes< 242.35 210 18 no (0.91428571 0.08571429) *
19) total_eve_minutes>=242.35 67 21 yes (0.31343284 0.68656716)
38) total_night_minutes< 174.2 17 4 no (0.76470588 0.23529412) *
39) total_night_minutes>=174.2 50 8 yes (0.16000000 0.84000000) *
5) number_customer_service_calls>=3.5 164 80 yes (0.48780488 0.51219512)
10) total_day_minutes>=160.2 95 22 no (0.76842105 0.23157895)
20) state=AL,AZ,CA,CO,DC,DE,FL,HI,KS,KY,MA,MD,ME,MI,NC,ND,NE,NH,NM,OK,OR,SC,TN,VA,VT,WY 56 2 no (0.96428571 0.03571429) *
21) state=AK,AR,CT,GA,IA,ID,MN,MO,NJ,NV,NY,OH,RI,UT,WA,WV 39 19 yes (0.48717949 0.51282051)
42) total_day_minutes< 182.3 21 5 no (0.76190476 0.23809524) *
43) total_day_minutes>=182.3 18 3 yes (0.16666667 0.83333333) *
11) total_day_minutes< 160.2 69 7 yes (0.10144928 0.89855072) *
3) total_day_minutes>=263.55 140 30 yes (0.21428571 0.78571429)
6) total_eve_minutes< 167.3 29 7 no (0.75862069 0.24137931)
12) state=AK,AR,AZ,CO,CT,FL,HI,IN,KS,LA,MD,ND,NM,NY,OH,UT,WA,WV 21 0 no (1.00000000 0.00000000) *
13) state=IA,MA,MN,PA,SD,TX,WI 8 1 yes (0.12500000 0.87500000) *
7) total_eve_minutes>=167.3 111 8 yes (0.07207207 0.92792793) *

R> ore.load(name = paste(datastorePrefix, "yes", "yes", sep = "_"))) [1] "mod"
R> mod
n = 92
node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 92 36 no (0.60869565 0.39130435)
2) total_intl_minutes< 13.1 71 15 no (0.78873239 0.21126761)
4) total_intl_calls< 2.5 60 4 no (0.93333333 0.06666667) *
8) state=AK,AR,AZ,CO,CT,DC,DE,FL,GA,HI,ID,IL,IN,KS,MD,MI,MO,MS,MT,NC,ND,NE,NH,NJ,OH,SC,SD,UT,VA,WA,WV 53 0 no (1.00000000 0.00000000) *
9) state=ME,NH,VT,WA,WV 7 3 yes (0.42857143 0.57142857) *
5) total_intl_calls>= 2.5 11 0 yes (0.00000000 1.00000000) *
3) total_intl_minutes>=13.1 21 0 yes (0.00000000 1.00000000) *
6.2.6 Use the ore.rowApply Function

The ore.rowApply function invokes an R script with an ore.frame as the input data.

The ore.rowApply function passes the ore.frame to the user-defined input function as the first argument to that function. The rows argument to the ore.rowApply function specifies the number of rows to pass to each invocation of the user-defined R function. The last chunk or rows may have fewer rows than the number specified. The ore.rowApply function can use data-parallel execution, in which one or more R engines perform the same R function, or task, on different partitions of data.

The syntax of the ore.rowApply function is the following:

```
ore.rowApply(X, FUN, ..., FUN.VALUE = NULL, FUN.NAME = NULL, rows = 1,
FUN.OWNER = NULL, parallel = getOption("ore.parallel", NULL))
```

The ore.rowApply function returns an ore.list object or an ore.frame object.

See Also:

- [Arguments for Functions that Run Scripts](#) for descriptions of the arguments to function ore.rowApply

Example 6-15 Using the ore.rowApply Function

This example uses the e1071 package, previously downloaded from CRAN. The example does the following:

- Loads the package e1071.
- Pushes the iris data set to the database as the IRIS temporary table and ore.frame object.
- Creates the Naive Bayes model nbmod.
- Creates a copy of IRIS as IRIS_PRED and adds the PRED column to IRIS_PRED to contain the predictions.
- Invokes the ore.rowApply function, passing the IRIS ore.frame as the data source for user-defined R function and the user-defined R function itself. The user-defined function does the following:
 - Loads the package e1071 so that it is available to the R engine or engines that run in the database.
 - Converts the Species column to a factor because, although the ore.frame defined factors, when they are loaded to the user-defined function, factors appear as character vectors.
 - Invokes the predict method and returns the res object, which contains the predictions in the column added to the data set.
- Pulls the model to the client R session.
- Passes IRIS_PRED as the argument FUN.VALUE, which specifies the structure of the object that the ore.rowApply function returns.
- Specifies the number of rows to pass to each invocation of the user-defined function.
- Displays the class of res, and invokes the table function to display the Species column and the PRED column of the res object.

```r
library(e1071)
IRIS <- ore.push(iris)
nbmod <- ore.tableApply(
  ore.push(iris),
  function(dat) {
    library(e1071)
    dat$Species <- as.factor(dat$Species)
    naiveBayes(Species ~ ., dat)
  })
)
IRIS_PRED <- IRIS
IRIS_PRED$PRED <- "A"
res <- ore.rowApply(
  IRIS,
  function(dat, nbmod) {
    library(e1071)
    dat$Species <- as.factor(dat$Species)
    dat$PRED <- predict(nbmod, newdata = dat)
    dat
  },
  nbmod = ore.pull(nbmod),
  FUN.VALUE = IRIS_PRED,
  rows = 10)
class(res)
table(res$Species, res$PRED)
```

Listing for This Example

```r
R> library(e1071)
R> IRIS <- ore.push(iris)
R> nbmod <- ore.tableApply(
+  ore.push(iris),
+  function(dat) {
+    library(e1071)
+    dat$Species <- as.factor(dat$Species)
+    naiveBayes(Species ~ ., dat)
+  })
)
R> IRIS_PRED <- IRIS
R> IRIS_PRED$PRED <- "A"
R> res <- ore.rowApply(
+  IRIS ,
+  function(dat, nbmod) {
+    library(e1071)
+    dat$Species <- as.factor(dat$Species)
+    dat$PRED <- predict(nbmod, newdata = dat)
+    dat
+  },
+  nbmod = ore.pull(nbmod),
+  FUN.VALUE = IRIS_PRED,
+  rows = 10)
R> class(res)
[1] "ore.frame"
attr("package")
[1] "OREbase"
R> table(res$Species, res$PRED)

setosa   versicolor  virginica
```

"setosa" "versicolor" "virginica"

Chapter 6
R Interface for Embedded R Execution
6-35
This example uses the C50 package to score churn data (that is, to predict which customers are likely to churn) using C5.0 models. The example partitions the data by a number of rows. It scores the customers from the specified state in parallel. It uses datastores and saves functions to the OML4R script repository, which allows the functions to be used by the OML4R SQL API functions.

The example first loads C50 package and the data sets. It deletes the datastores with names containing myC5.0modelFL, if they exist. It invokes ore.drop to delete the CHURN_TEST table, if it exists, and then invokes ore.create to create the CHURN_TEST table from the churnTest data set.

The example next invokes ore.getLevels, which returns a list of the levels for each factor column. The invocation excludes the first column, which is state, because the levels for that column are not needed. Getting the levels first can ensure that all possible levels are provided during model building, even if some rows do not have values for some of the levels. The ore.delete invocation ensures that no datastore with the specified name exists and the ore.save invocation saves the xlevels object in the datastore named myXLevels.

The example creates a user-defined function, myC5.0FunctionForLevels, that generates a C5.0 model. The function uses the list of levels returned by function ore.getXlevels instead of computing the levels using the as.factor function. It uses the levels to convert the column type from character vector to factor. The function myC5.0FunctionForLevels returns the value TRUE. The example saves the function in the script repository.

The example next gets a list of datastores that have names that include the specified string and deletes those datastores if they exist.

The example then invokes ore.groupApply, which invokes function myC5.0FunctionForLevels on each state in the CHURN_TEST data. To each myC5.0FunctionForLevels invocation, ore.groupApply passes the datastore that contains the xlevels object and a prefix to use in naming the datastore generated by myC5.0FunctionForLevels. It also passes the ore.connect control argument to connect to the database in the embedded R function, which enables the use of objects stored in a datastore. The ore.groupApply invocation returns a list that contains the results of all of the invocations of myC5.0FunctionForLevels.

The example pulls the result over to the local R session and verifies that myC5.0FunctionForLevels returned TRUE for each state in the data source.

The example next creates another user-defined another function, myScoringFunction, and stores it in the script repository. The function scores a C5.0 model for the levels of a state and returns the results in a data.frame.

The example then invokes function ore.rowApply. It filters the input data to use only data for the state of Massachusetts. It specifies myScoringFunction as the function to invoke and passes that user-defined function the name of the datastore that contains the xlevels object and a prefix to use in loading the datastore that contains the C5.0 model for the state. The ore.rowApply invocation specifies invoking myScoringFunction on 200 rows of the data set in each parallel R engine. It uses the FUN.VALUE argument so that ore.rowApply returns an ore.frame that contains the
results of all of the `myScoringFunction` invocations. The variable `scores` gets the results of the `ore.rowApply` invocation.

Finally, the example prints the `scores` object and then uses the `table` function to display the confusion matrix for the scoring.

See Also:

Example A-8 for an invocation of the SQL `rqRowEval` function that produces the same result as the `ore.rowApply` function in this example

Example 6-16 Using the `ore.rowApply` Function with Datastores and Scripts

```r
library(C50)
data(churn)

ore.drop("CHURN_TEST")
ore.create(churnTest, "CHURN_TEST")

xlevels <- ore.getXlevels(~ ., CHURN_TEST[, -1])
ore.delete("myXLevels")
ore.save(xlevels, name = "myXLevels")

ore.scriptDrop("myC5.0FunctionForLevels")
ore.scriptCreate("myC5.0FunctionForLevels",
               function(dat, xlevelsDatastore, datastorePrefix) {
                   library(C50)
                   state <- dat[1, "state"]
                   datastoreName <- paste(datastorePrefix, dat[1, "state"], sep = "_")
                   dat$state <- NULL
                   ore.load(name = xlevelsDatastore)
                   for (j in names(xlevels))
                       dat[[j]] <- factor(dat[[j]], levels = xlevels[[j]])
                   c5mod <- C5.0(churn ~ ., data = dat, rules = TRUE)
                   ore.save(c5mod, name = datastoreName)
                   TRUE
               })

d.v <- ore.datastore(pattern = "myC5.0modelFL")$datastore.name
for (ds in d.v) ore.delete(name = ds)

res <- ore.groupApply(CHURN_TEST,
                      INDEX = CHURN_TEST$state,
                      FUN.NAME = "myC5.0FunctionForLevels",
                      xlevelsDatastore = "myXLevels",
                      datastorePrefix = "myC5.0modelFL",
                      ore.connect = TRUE)
res <- ore.pull(res)
all(as.logical(res) == TRUE)

ore.scriptDrop("myScoringFunction")
ore.scriptCreate("myScoringFunction",
               function(dat, xlevelsDatastore, datastorePrefix) {
                   library(C50)
                   state <- dat[1, "state"]
                   datastoreName <- paste(datastorePrefix, state, sep = "_")
                   dat$state <- NULL
                   })
```
ore.load(name = xlevelsDatastore)
for (j in names(xlevels))
 dat[[j]] <- factor(dat[[j]], levels = xlevels[[j]])
ore.load(name = datastoreName)
res <- data.frame(pred = predict(c5mod, dat, type = "class"),
 actual = dat$churn,
 state = state)

res
}

scores <- ore.rowApply(
 CHURN_TEST[CHURN_TEST$state == "MA"],
 FUN.NAME = "myScoringFunction",
 xlevelsDatastore = "myXLevels",
 datastorePrefix = "myC5.0modelFL",
 ore.connect = TRUE, parallel = TRUE,
 FUN.VALUE = data.frame(pred = character(0),
 actual = character(0),
 state = character(0)),
 rows=200)
scores
table(scores$actual, scores$pred)

Listing for This Example

R> library(C50)
R> data(churn)
R>
R> ore.drop("CHURN_TEST"
R> ore.create(churnTest, "CHURN_TEST")
R>
R> xlevels <- ore.getXlevels(~ ., CHURN_TEST[, -1])
R> ore.delete("myXLevels")
[1] "myXLevels"
R> ore.save(xlevels, name = "myXLevels")
R>
R> ore.scriptDrop("myC5.0FunctionForLevels")
R> ore.scriptCreate("myC5.0FunctionForLevels",
+ function(dat, xlevelsDatastore, datastorePrefix) {
+ library(C50)
+ state <- dat[1,"state"]
+ datastoreName <- paste(datastorePrefix, dat[1, "state"], sep = "_")
+ dat$state <- NULL
+ ore.load(name = xlevelsDatastore)
+ for (j in names(xlevels))
+ dat[[j]] <- factor(dat[[j]], levels = xlevels[[j]])
+ c5mod <- C5.0(churn ~ ., data = dat, rules = TRUE)
+ ore.save(c5mod, name = datastoreName)
+ TRUE
+ })
R>
R> ds.v <- ore.datastore(pattern="myC5.0modelFL")$datastore.name
R> for (ds in ds.v) ore.delete(name=ds)
R>
R> res <- ore.groupApply(CHURN_TEST,
+ INDEX=CHURN_TEST$state,
+ FUN.NAME="myC5.0FunctionForLevels",
+ xlevelsDatastore = "myXLevels",
+ datastorePrefix = "myC5.0modelFL",
+ ore.connect = TRUE)
R> res <- ore.pull(res)
R> all(as.logical(res) == TRUE)
[1] TRUE
R>
R> ore.scriptDrop("myScoringFunction")
R> ore.scriptCreate("myScoringFunction",
+ function(dat, xlevelsDatastore, datastorePrefix) {
+ library(C50)
+ state <- dat[1,"state"]
+ datastoreName <- paste(datastorePrefix,state,sep="_")
+ dat$state <- NULL
+ ore.load(name = xlevelsDatastore)
+ for (j in names(xlevels))
+ dat[[j]] <- factor(dat[[j]], levels = xlevels[[j]])
+ ore.load(name = datastoreName)
+ res <- data.frame(pred = predict(c5mod, dat, type="class"),
+ actual = dat$churn,
+ state = state)
+ res
+ }
+)
+
R> scores <- ore.rowApply(
+ CHURN_TEST[CHURN_TEST$state == "MA",],
+ FUN.NAME = "myScoringFunction",
+ xlevelsDatastore = "myXLevels",
+ datastorePrefix = "myC5.0modelFL",
+ ore.connect = TRUE, parallel = TRUE,
+ FUN.VALUE = data.frame(pred=character(0),
+ actual=character(0),
+ state=character(0)),
+ rows=200
R>
R> scores
 pred actual state
 1 no no MA
 2 no no MA
 3 no no MA
 4 no no MA
 5 no no MA
 6 no yes MA
 7 yes yes MA
 8 yes yes MA
 9 no no MA
 10 no no MA
 11 no no MA
 12 no no MA
 13 no no MA
 14 no no MA
 15 yes yes MA
 16 no no MA
 17 no no MA
 18 no no MA
 19 no no MA
 20 no no MA
 21 no no MA
 22 no no MA
 23 no no MA
 24 no no MA
 25 no no MA
 26 no no MA
27 no no MA
28 no no MA
29 no yes MA
30 no no MA
31 no no MA
32 no no MA
33 yes yes MA
34 no no MA
35 no no MA
36 no no MA
37 no no MA
38 no no MA

Warning message:
ORE object has no unique key - using random order

R> table(scores$actual, scores$pred)

 no yes
no 32 0
yes 2 4

6.2.7 Use the ore.indexApply Function

The ore.indexApply function executes the specified user-defined input function using data that is generated by the input function.

The function supports task-parallel execution, in which one or more R engines perform the same or different calculations, or task. The times argument to the ore.indexApply function specifies the number of times that the input function executes in the database. Any required data must be explicitly generated or loaded within the input function.

The syntax of the ore.indexApply function is the following:

ore.indexApply(times, FUN, ..., FUN.VALUE = NULL, FUN.NAME = NULL, FUN.OWNER = NULL, parallel = getOption("ore.parallel", NULL))

The ore.indexApply function returns an ore.list object or an ore.frame object.

See Also:

• Arguments for Functions that Run Scripts for descriptions of the arguments to function ore.indexApply

Examples of the use of the ore.indexApply function are in the following topics:

• Simple Example of Using the ore.indexApply Function
 The example invokes ore.indexApply and specifies that it execute the input function five times in parallel.

• Column-Parallel Use Case
 The example uses the R summary function to compute in parallel summary statistics on the first four numeric columns of the iris data set.

• Simulations Use Case
 You can use the ore.indexApply function in simulations, which can take advantage of high-performance computing hardware like an Oracle Exadata Database Machine.
6.2.7.1 Simple Example of Using the ore.indexApply Function

The example invokes `ore.indexApply` and specifies that it execute the input function five times in parallel.

Example 6-17 Using the ore.indexApply Function

This example displays the class of the result, which is `ore.list`, and then displays the result.

```r
res <- ore.indexApply(5,
    function(index) {
        paste("IndexApply: ", index)
    },
    parallel = TRUE)
class(res)
res
```

Listing for This Example

```r
R> res <- ore.indexApply(5,
+    function(index) {
+        paste("IndexApply: ", index)
+    },
+    parallel = TRUE)
R> class(res)
[1] "ore.list"
attr("package")
[1] "OREembed"
R> res
$`1`
[1] "IndexApply: 1"

$`2`
[1] "IndexApply: 2"

$`3`
[1] "IndexApply: 3"

$`4`
[1] "IndexApply: 4"

$`5`
[1] "IndexApply: 5"
```

6.2.7.2 Column-Parallel Use Case

The example uses the R `summary` function to compute in parallel summary statistics on the first four numeric columns of the `iris` data set.

Example 6-18 Using the ore.indexApply Function and Combining Results

The example combines the computations into a final result. The first argument to the `ore.indexApply` function is 4, which specifies the number of columns to summarize in parallel. The user-defined input function takes one argument, `index`, which will be a value between 1 and 4 and which specifies the column to summarize.

The example invokes the `summary` function on the specified column. The `summary` invocation returns a single row, which contains the summary statistics for the column.
The example converts the result of the `summary` invocation into a `data.frame` and adds the column name to it.

The example next uses the `FUN.VALUE` argument to the `ore.indexApply` function to define the structure of the result of the function. The result is then returned as an `ore.frame` object with that structure.

```r
res <- NULL
res <- ore.indexApply(4,
  function(index) {
    ss <- summary(iris[, index])
    attr.names <- attr(ss, "names")
    stats <- data.frame(matrix(ss, 1, length(ss)))
    names(stats) <- attr.names
    stats$col <- names(iris)[index]
    stats
  },
  FUN.VALUE=data.frame(Min. = numeric(0),
    "1st Qu." = numeric(0),
    Median = numeric(0),
    Mean = numeric(0),
    "3rd Qu." = numeric(0),
    Max. = numeric(0),
    Col = character(0)),
  parallel = TRUE)
res
```

Listing for This Example

```r
R> res <- NULL
R> res <- ore.indexApply(4,
+ function(index) {
+   ss <- summary(iris[, index])
+   attr.names <- attr(ss, "names")
+   stats <- data.frame(matrix(ss, 1, length(ss)))
+   names(stats) <- attr.names
+   stats$col <- names(iris)[index]
+   stats
+ },
+ FUN.VALUE=data.frame(Min. = numeric(0),
+   "1st Qu." = numeric(0),
+   Median = numeric(0),
+   Mean = numeric(0),
+   "3rd Qu." = numeric(0),
+   Max. = numeric(0),
+   Col = character(0)),
+ parallel = TRUE)
R> res
   Min.  1st.Qu.  Median   Mean  3rd.Qu.   Max.         Col
1  2.00   2.80   3.00   3.06   3.30   4.40 Sepal.Width
2  4.30   5.10   5.80   5.84   6.40   7.90 Sepal.Length
3  0.10   0.30   1.30   1.19   1.80   2.50  Petal.Width
4  1.00   1.60   4.35   3.76   5.10   6.90  Petal.Length
Warning message:
ORE object has no unique key - using random order
```

6.2.7.3 Simulations Use Case

You can use the `ore.indexApply` function in simulations, which can take advantage of high-performance computing hardware like an Oracle Exadata Database Machine.
Example 6-19 Using the ore.indexApply Function in a Simulation

This example takes multiple samples from a random normal distribution to compare the distribution of the summary statistics. Each simulation occurs in a separate R engine in the database, in parallel, up to the degree of parallelism allowed by the database. The example defines variables for the sample size, the mean and standard deviations of the random numbers, and the number of simulations to perform. The example specifies `num.simulations` as the first argument to the `ore.indexApply` function. The `ore.indexApply` function passes `num.simulations` to the user-defined function as the `index` argument. This input function then sets the random seed based on the index so that each invocation of the input function generates a different set of random numbers.

The input function next uses the `rnorm` function to produce `sample.size` random normal values. It invokes the `summary` function on the vector of random numbers, and then prepares a `data.frame` as the result it returns. The `ore.indexApply` function specifies the `FUN.VALUE` argument so that it returns an `ore.frame` that structures the combined results of the simulations. The `res` variable gets the `ore.frame` returned by the `ore.indexApply` function.

To get the distribution of samples, the example invokes the `boxplot` function on the `data.frame` that is the result of using the `ore.pull` function to bring selected columns from `res` to the client.

```r
res <- NULL
classic = 1000
mean.val = 100
std.dev.val = 10
num.simulations = 1000

res <- ore.indexApply(num.simulations,
  function(index, sample.size = 1000, mean = 0, std.dev = 1) {
    set.seed(index)
    x <- rnorm(sample.size, mean, std.dev)
    ss <- summary(x)
    attr.names <- attr(ss, "names")
    stats <- data.frame(matrix(ss, 1, length(ss))
    names(stats) <- attr.names
    stats$index <- index
    stats
  },
  FUN.VALUE=data.frame(Min. = numeric(0),
                       "1st Qu." = numeric(0),
                       Median = numeric(0),
                       Mean = numeric(0),
                       "3rd Qu." = numeric(0),
                       Max. = numeric(0),
                       Index = numeric(0)),
  parallel = TRUE,
  sample.size = sample.size,
  mean = mean.val, std.dev = std.dev.val)
options("ore.warn.order" = FALSE)
head(res, 3)
tail(res, 3)
boxplot(ore.pull(res[, 1:6]),
        main=sprintf("Boxplot of %d rnorm samples size %d, mean=%d, sd=%d","num.simulations, sample.size, mean.val, std.dev.val))
```

Listing for This Example
R> res <- ore.indexApply(num.simulations,
+ function(index, sample.size = 1000, mean = 0, std.dev = 1) {
+ set.seed(index)
+ x <- rnorm(sample.size, mean, std.dev)
+ ss <- summary(x)
+ attr.names <- attr(ss, "names")
+ stats <- data.frame(matrix(ss, 1, length(ss)))
+ names(stats) <- attr.names
+ stats$index <- index
+ stats
+ },
+ FUN.VALUE=data.frame(Min. = numeric(0),
+ "1st Qu." = numeric(0),
+ Median = numeric(0),
+ Mean = numeric(0),
+ "3rd Qu." = numeric(0),
+ Max. = numeric(0),
+ Index = numeric(0)),
+ parallel = TRUE,
+ sample.size = sample.size,
+ mean = mean.val, std.dev = std.dev.val)
R> options("ore.warn.order" = FALSE)
R> head(res, 3)
 Min. X1st.Qu. Median Mean X3rd.Qu. Max. Index
1 67.56 93.11 99.42 99.30 105.8 128.0 847
2 67.73 94.19 99.86 100.10 106.3 130.7 258
3 65.58 93.15 99.78 99.82 106.2 134.3 264
R> tail(res, 3)
 Min. X1st.Qu. Median Mean X3rd.Qu. Max. Index
1 65.02 93.44 100.2 100.20 106.9 134.0 5
2 71.60 93.34 99.6 99.66 106.4 131.7 4
3 69.44 93.15 100.3 100.10 106.8 135.2 3
R> boxplot(ore.pull(res[, 1:6]),
+ main=sprintf("Boxplot of %d rnorm samples size %d, mean=%d, sd=%d",
+ num.simulations, sample.size, mean.val, std.dev.val))
6.3 SQL Interface for Embedded R Execution

The SQL interface for Oracle Machine Learning for R embedded R execution allows you to execute R functions in production database applications.

The SQL interface has procedures for the following actions:

- Adding and removing a script from the OML4R script repository
- Granting or revoking read privilege access to a script by the owner to other users
- Executing an R script in an embedded R session
- Deleting an OML4R datastore

Data dictionary views provide information about scripts and datastores.

This SQL interface is described in the following topics:

- **About Oracle Machine Learning for R SQL Table Functions**
 OML4R provides SQL table functions that are equivalents of most of the R interface functions for embedded R execution.
• **Manage Scripts in SQL**
 This topic lists the PL/SQL procedures and Oracle Database data dictionary views for creating and managing R scripts.

• **Manage Datastores in SQL**
 Oracle Machine Learning for R provides PL/SQL procedures and Oracle Database data dictionary views for the basic management of datastores in SQL.

6.3.1 About Oracle Machine Learning for R SQL Table Functions

OML4R provides SQL table functions that are equivalents of most of the R interface functions for embedded R execution.

Executing a SELECT FROM TABLE statement and specifying one of the table functions results in the invocation of the specified R script. The script runs in one or more R engines on the Oracle Database server.

The SQL table functions for embedded R execution are:

- `rqEval`
- `rqGroupEval`
- `rqRowEval`
- `rqTableEval`

The R interface functions and the SQL equivalents are listed in Table 6-1.

For the `rqGroupEval` function, OML4R provides a generic implementation of the group apply functionality in SQL. You must write a table function that captures the structure of the input cursor.

See the reference pages for the functions for information about them, including examples of their use.

Some general aspects of the SQL table functions are described in the following topics:

- **Parameters of the SQL Table Functions**
 The SQL table functions have some parameters in common and some functions have parameters that are unique to that function.

- **Return Value of SQL Table Functions**
 The Oracle Machine Learning for R SQL table functions return a table.

- **Connect to Oracle Machine Learning for R in Embedded R Execution**
 To establish a connection to OML4R on the Oracle Database server during the embedded R execution, you can specify the control argument `ore.connect` in the parameters cursor.

6.3.1.1 Parameters of the SQL Table Functions

The SQL table functions have some parameters in common and some functions have parameters that are unique to that function.

The parameters of the SQL table functions are the following.
Table 6-2 SQL Table Function Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INP_CUR</td>
<td>A cursor that specifies the data that is input to the R function specified by EXP_NAM. For all of the SQL table functions except rqEval, the first argument is a cursor that specifies input data for the R function.</td>
</tr>
<tr>
<td>PAR_CUR</td>
<td>A cursor that specifies arguments to pass to the R function. The parameters cursor consists of a single row of scalar values. An argument can be a string or a numeric value. You can specify multiple arguments in the cursor. Arguments to an R function are case sensitive, so you should put names, such as a column name, in double quotes. In the cursor, you can also specify as scalar values an OML4R control argument or the names of serialized R objects, such as predictive models, that are in an OML4R datastore. The value of this parameters cursor can be NULL if you are not passing any arguments to the R function or any control arguments.</td>
</tr>
<tr>
<td>OUT_QRY</td>
<td>An output table definition. The value of this argument can be NULL or a string that defines the structure of the R data.frame returned by the R function specified by EXP_NAM. The string can be a SELECT statement, 'XML', or 'PNG'.</td>
</tr>
<tr>
<td>GRP_COL</td>
<td>For the rqGroupEval function, the name of the grouping column.</td>
</tr>
<tr>
<td>ROW_NUM</td>
<td>For the rqRowEval function, the number of rows to pass to each invocation of the R function.</td>
</tr>
<tr>
<td>EXP_NAM</td>
<td>The name of a script in the OML4R script repository.</td>
</tr>
</tbody>
</table>

Related Topics
- Manage Scripts in SQL
 This topic lists the PL/SQL procedures and Oracle Database data dictionary views for creating and managing R scripts.
- Manage Datastores in SQL
 Oracle Machine Learning for R provides PL/SQL procedures and Oracle Database data dictionary views for the basic management of datastores in SQL.

6.3.1.2 Return Value of SQL Table Functions

The Oracle Machine Learning for R SQL table functions return a table. The structure and contents of the table are determined by the results of the R function passed to the SQL table function and by the OUT_QRY parameter. The R function can return a data.frame object, other R objects, and graphics. The structure of the table that represents the results of the R function is specified by one of the following OUT_QRY values:
- NULL, which results in a table that has a serialized object that can contain both data and image objects.
A table signature specified in a SELECT statement, which results in a table that has the defined structure. The result of the R function must be a data.frame. No images are returned.

The string 'XML', which results in a table that has a CLOB that can contain both structured data and graph images in an XML string. The non-image R objects, such as data.frame or model objects, are provided first, followed by the base 64 encoding of a PNG representation of the image.

The string 'PNG', which results in a table that has a BLOB that contains graph images in PNG format. The table has the column names name, id, and image.

6.3.1.3 Connect to Oracle Machine Learning for R in Embedded R Execution

To establish a connection to OML4R on the Oracle Database server during the embedded R execution, you can specify the control argument ore.connect in the parameters cursor.

Doing so establishes a connection using the credentials of the user who invoked the embedded R function. It also automatically loads the ORE package. Establishing an OML4R connection is required to save objects in an OML4R R object datastore or to load objects from a datastore. It also allows you to explicitly use the OML4R transparency layer.

See Also:
Optional and Control Arguments for information on other control arguments

6.3.2 Manage Scripts in SQL

This topic lists the PL/SQL procedures and Oracle Database data dictionary views for creating and managing R scripts.

The functions in the SQL API for embedded R execution require as an argument a named script that is stored in the OML4R script repository. The PL/SQL procedures sys.rqScriptCreate and sys.rqScriptDrop create and drop scripts. To create a script or drop one from the script repository requires the RQADMIN role.

When using the sys.rqScriptCreate function, you must specify a name for the script and an R function script that contains a single R function definition. Calls to the functions sys.rqScriptCreate and sys.rqScriptDrop must be wrapped in a BEGIN-END PL/SQL block. The script repository stores the R function as a character large object (a CLOB), so you must enclose the function definition in single quotes to specify it as a string.

The owner of a script can use the rqGrant procedure to grant to another user read privilege access to a script or use the rqRevoke procedure to revoke the privilege. To use a script granted to you by another user, you must specify the owner by prepending the owner’s name and a period to the name of the script, as in the following:

```sql
select * from table(rqEval(NULL, 'select 1 x from dual', 'owner_name.script_name'));
```
The owner prefix is not required for a public script or for a script owned by the user.

The following tables list the PL/SQL procedures for managing script repository scripts and the data dictionary views that contain information about scripts.

Table 6-3 PL/SQL Procedures for Managing Scripts

<table>
<thead>
<tr>
<th>PL/SQL Procedure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rqGrant</td>
<td>Grants read privilege access to a datastore or script.</td>
</tr>
<tr>
<td>rqRevoke</td>
<td>Revokes read privilege access to a datastore or script.</td>
</tr>
<tr>
<td>sys.rqScriptCreate</td>
<td>Adds the provided R function into the script repository with the provided name.</td>
</tr>
<tr>
<td>sys.rqScriptDrop</td>
<td>Removes the named R function from the script repository.</td>
</tr>
</tbody>
</table>

Table 6-4 Data Dictionary Views for Scripts

<table>
<thead>
<tr>
<th>Data Dictionary View</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL_RQ_SCRIPTS</td>
<td>Describes the scripts in the OML4R script repository that are available to the current user</td>
</tr>
<tr>
<td>USER_RQSCRIPTS</td>
<td>Describes the scripts in the script repository that are owned by the current user.</td>
</tr>
<tr>
<td>USER_RQ_SCRIPT_PRIVS</td>
<td>Describes the scripts in the script repository to which the current user has granted read access and the users to whom access has been granted.</td>
</tr>
<tr>
<td>SYS.RQ_SCRIPTS</td>
<td>Describes the system scripts in the script repository.</td>
</tr>
</tbody>
</table>

Example 6-20 Create a Script with the SQL APIs

This example uses the `sys.rqScriptCreate` procedure to create a script in the Oracle Machine Learning for R script repository.

The example creates the user-defined function named `myRandomRedDots2`. The user-defined function accepts two arguments, and it returns a `data.frame` object that has two columns and that plots the specified number of random normal values. The `sys.rqScriptCreate` function stores the user-defined function in the OML4R script repository.

```sql
-- Create a script named myRandomRedDots2 and add it to the script repository.
-- Specify that the script is private and to overwrite a script with the same name.
BEGIN
    sys.rqScriptCreate('myRandomRedDots2',
        'function(divisor = 100, numDots = 100) {
            id <- 1:10
            plot(1:numDots, rnorm(numDots), pch = 21, bg = "red", cex = 2)
            data.frame(id = id, val = id / divisor)}',
        v_global => FALSE,
        v_overwrite => TRUE);
END;
/

-- Grant read privilege access to Scott.
```
BEGIN
 rqGrant('myRandomRedDots2', 'rqscript', 'SCOTT');
END;
/

-- View the users granted read access to myRandomRedDots2.
select * from USER_RQ_SCRIPT_PRIVS;

NAME GRANTEE
---------------- -------
myRandomRedDots SCOTT

-- Revoke the read privilege access from Scott.
BEGIN
 rqRevoke('myRandomRedDots2', 'rqscript', 'SCOTT');
END;
/

-- Remove the script from the script repository.
BEGIN
 sys.rqScriptDrop('myRandomRedDots2');
END;
/

Related Topics
• SQL APIs for Oracle Machine Learning for R
 The OML4R SQL APIs comprise SQL table functions for executing R functions in
 one or more embedded R sessions on the OML4R Server database, and PL/SQL
 procedures for managing OML4R datastores and for managing scripts in the
 OML4R script repository.
• Oracle Database Views for Oracle Machine Learning for R
 Oracle Database has several data dictionary views that contain information about
 OML4R datastores and scripts in the OML4R script repository.
• Manage Scripts in R
 Embedded R execution functions can invoke R functions that are stored as scripts
 in the OML4R script repository. You can use the R functions described in this topic
to create and manage scripts.

6.3.3 Manage Datastores in SQL

Oracle Machine Learning for R provides PL/SQL procedures and Oracle Database
data dictionary views for the basic management of datastores in SQL.

The following tables list the procedures and views.

Table 6-5 PL/SQL Procedures for Managing Datastores

<table>
<thead>
<tr>
<th>PL/SQL Procedures</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rqGrant</td>
<td>Grants read privilege access to a datastore or script.</td>
</tr>
<tr>
<td>rqRevoke</td>
<td>Revokes read privilege access to a datastore or script.</td>
</tr>
<tr>
<td>rqDropDataStore</td>
<td>Deletes a datastore.</td>
</tr>
</tbody>
</table>
Table 6-6 Data Dictionary Views for Datastores

<table>
<thead>
<tr>
<th>Views</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL_RQ_DATASTORES</td>
<td>Describes the datastores available to the current user, including whether the datastore is grantable.</td>
</tr>
<tr>
<td>RQUSER_DATASTORELIST</td>
<td>Describes the datastores in the Oracle Database schema.</td>
</tr>
<tr>
<td>RQUSER_DATASTORECONTENTS</td>
<td>Describes the objects in the datastores in the Oracle Database schema.</td>
</tr>
<tr>
<td>USER_RQ_DATASTORE_PRIVS</td>
<td>Describes the datastores and the users to whom the current user has granted read privilege access.</td>
</tr>
<tr>
<td>USER_RQ_DATASTORES</td>
<td>Describes the datastores owned by the current user, including whether the datastore is grantable.</td>
</tr>
</tbody>
</table>

Related Topics

- **SQL APIs for Oracle Machine Learning for R**
 The OML4R SQL APIs comprise SQL table functions for executing R functions in one or more embedded R sessions on the OML4R Server database, and PL/SQL procedures for managing OML4R datastores and for managing scripts in the OML4R script repository.

- **Oracle Database Views for Oracle Machine Learning for R**
 Oracle Database has several data dictionary views that contain information about OML4R datastores and scripts in the OML4R script repository.
SQL APIs for Oracle Machine Learning for R

The OML4R SQL APIs comprise SQL table functions for executing R functions in one or more embedded R sessions on the OML4R Server database, and PL/SQL procedures for managing OML4R datastores and for managing scripts in the OML4R script repository.

The SQL APIs for OML4R are described in the following topics:

- **rqDropDataStore Procedure**
 The `rqDropDataStore` procedure deletes a datastore from an Oracle Database schema.

- **rqEval Function**
 The `rqEval` function executes the R function in the script specified by the `EXP_NAM` parameter.

- **rqGrant Procedure**
 The `rqGrant` procedure grants read privilege access to an OML4R datastore or to a script in the OML4R script repository.

- **rqGroupEval Function**
 The `rqGroupEval` function is a user-defined function that identifies a grouping column.

- **rqRevoke Procedure**
 The `rqRevoke` procedure revokes read privilege access to an OML4R datastore or to a script in the OML4R script repository.

- **rqRowEval Function**
 The `rqRowEval` function executes the R function in the script specified by the `EXP_NAM` parameter.

- **rqTableEval Function**
 The `rqTableEval` function executes the R function in the script specified by the `EXP_NAM` parameter.

- **sys.rqScriptCreate Procedure**
 The `sys.rqScriptCreate` procedure creates a script and adds it to the OML4R script repository.

- **sys.rqScriptDrop Procedure**
 The `sys.rqScriptDrop` procedure removes a script from the OML4R script repository.

A.1 rqDropDataStore Procedure

The `rqDropDataStore` procedure deletes a datastore from an Oracle Database schema.
Syntax

rqDropDataStore (
 DS_NAME VARCHAR2 IN)

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS_NAME</td>
<td>The name of the datastore to drop.</td>
</tr>
</tbody>
</table>

Example A-1 Dropping a Datastore

This example deletes the datastore datastore_1 from the current user schema.

rqDropDataStore('datastore_1')

Related Topics

- Manage Datastores in SQL
 Oracle Machine Learning for R provides PL/SQL procedures and Oracle Database data dictionary views for the basic management of datastores in SQL.
- Oracle Database Views for Oracle Machine Learning for R

A.2 rqEval Function

The rqEval function executes the R function in the script specified by the EXP_NAM parameter.

You can pass arguments to the R function with the PAR_CUR parameter.

The rqEval function does not automatically receive any data from the database. The R function generates the data that it uses or it explicitly retrieves it from a data source such as Oracle Database, other databases, or flat files.

The R function returns an R data.frame object, which appears as a SQL table in the database. You define the form of the returned value with the OUT_QRY parameter.

Syntax

rqEval (
 PAR_CUR REF CURSOR IN
 OUT_QRY VARCHAR2 IN)
 EXP_NAM VARCHAR2 IN)

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAR_CUR</td>
<td>A cursor that contains argument values to pass to the R function specified by the EXP_NAME parameter.</td>
</tr>
</tbody>
</table>
rqEval Function

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT_QRY</td>
<td>One of the following:</td>
</tr>
<tr>
<td></td>
<td>• NULL, which returns a serialized object that can contain both data and image objects.</td>
</tr>
<tr>
<td></td>
<td>• A SQL SELECT statement that specifies the column names and data types of the table returned by rqEval. Any image data is discarded. You can provide a prototype row using the dual dummy table or you can base the SELECT statement on an existing table or view. The R function must return a data.frame.</td>
</tr>
<tr>
<td></td>
<td>• The string 'XML', which specifies that the table returned contains a CLOB that is an XML string. The XML can contain both structured data and images, with structured or semi-structured R objects first, followed by the image or images generated by the R function. Images are returned as a base 64 encoding of the PNG representation.</td>
</tr>
<tr>
<td></td>
<td>• The string 'PNG', which specifies that the table returned contains a BLOB that has the image or images generated by the R function in PNG format.</td>
</tr>
<tr>
<td>EXP_NAM</td>
<td>The name of a script in the OML4R script repository.</td>
</tr>
</tbody>
</table>

Return Value

Function `rqEval` returns a table that has the structure specified by the `OUT_QRY` parameter value.

Examples

Example A-2 Using rqEval

This example creates the script `myRandomRedDots2`. The value of the first parameter to `rqEval` is NULL, which specifies that no arguments are supplied to the function `myRandomRedDots2`. The value of second parameter is a string that specifies a SQL statement that describes the column names and data types of the data.frame returned by rqEval. The value of third parameter is the name of the script in the OML4R script repository.

```r
-- Create a script named myRandomRedDots2 and add it to the script repository.
-- Specify that the script is private and to overwrite a script with the same name.
BEGIN
  sys.rqScriptCreate('myRandomRedDots2',
    'function(divisor = 100, numDots = 100) {
      id <- 1:10
      plot(1:numDots, rnorm(numDots), pch = 21, bg = "red", cex = 2 )
      data.frame(id = id, val = id / divisor})',
    v_global => FALSE,
    v_overwrite => TRUE);
END;
/

SELECT *
```
FROM table(rqEval(NULL, 'SELECT 1 id, 1 val FROM dual', 'myRandomRedDots2'));

In Oracle SQL Developer, the results of the SELECT statement are:

<table>
<thead>
<tr>
<th>ID</th>
<th>VAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.01</td>
</tr>
<tr>
<td>2</td>
<td>.02</td>
</tr>
<tr>
<td>3</td>
<td>.03</td>
</tr>
<tr>
<td>4</td>
<td>.04</td>
</tr>
<tr>
<td>5</td>
<td>.05</td>
</tr>
<tr>
<td>6</td>
<td>.06</td>
</tr>
<tr>
<td>7</td>
<td>.07</td>
</tr>
<tr>
<td>8</td>
<td>.08</td>
</tr>
<tr>
<td>9</td>
<td>.09</td>
</tr>
<tr>
<td>10</td>
<td>.1</td>
</tr>
</tbody>
</table>

10 rows selected

Example A-3 Passing Arguments to the R Function invoked by rqEval

This example provides arguments to the R function by specifying a cursor as the first parameter to rqEval. The cursor specifies multiple arguments in a single row of scalar values.

SELECT *
FROM table(rqEval(cursor(SELECT 50 "divisor", 500 "numDots" FROM dual), 'SELECT 1 id, 1 val FROM dual', 'myRandomRedDots2'));

In Oracle SQL Developer, the results of the SELECT statement are:

<table>
<thead>
<tr>
<th>ID</th>
<th>VAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.02</td>
</tr>
<tr>
<td>2</td>
<td>.04</td>
</tr>
<tr>
<td>3</td>
<td>.06</td>
</tr>
<tr>
<td>4</td>
<td>.08</td>
</tr>
<tr>
<td>5</td>
<td>.1</td>
</tr>
<tr>
<td>6</td>
<td>.12</td>
</tr>
<tr>
<td>7</td>
<td>.14</td>
</tr>
<tr>
<td>8</td>
<td>.16</td>
</tr>
<tr>
<td>9</td>
<td>.18</td>
</tr>
<tr>
<td>10</td>
<td>.2</td>
</tr>
</tbody>
</table>

10 rows selected

Example A-4 Specifying PNG as the Output Table Definition

This example creates a script named PNG_Example and stores it in the script repository. The invocation of rqEval specifies an OUT_QRY value of 'PNG'.

BEGIN
sys.rqScriptDrop('PNG_Example');
sys.rqScriptCreate('PNG_Example', 'function()
 dat <- data.frame(y = log(1:100), x = 1:100)
 plot(lm(y ~ x, dat))
)');
END;
/ SELECT *
 FROM table(rqEval(NULL,'PNG','PNGExample'));

In Oracle SQL Developer, the results of the SELECT statement are:

<table>
<thead>
<tr>
<th>NAME</th>
<th>ID</th>
<th>IMAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>(BLOB)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>(BLOB)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>(BLOB)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>(BLOB)</td>
</tr>
</tbody>
</table>

A.3 rqGrant Procedure

The rqGrant procedure grants read privilege access to an OML4R datastore or to a script in the OML4R script repository.

Syntax

rqGrant (
 V_NAME VARCHAR2 IN
 V_TYPE VARCHAR2 IN
 V_USER VARCHAR2 IN DEFAULT)

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_NAME</td>
<td>The name of an OML4R datastore or a script in the OML4R script repository.</td>
</tr>
<tr>
<td>V_TYPE</td>
<td>For a datastore, the type is datastore; for a script, the type is rqscript.</td>
</tr>
<tr>
<td>V_USER</td>
<td>The name of the user to whom to grant access.</td>
</tr>
</tbody>
</table>

Example A-5 Granting Read Access to a Script

```sql
-- Grant read privilege access to Scott.
BEGIN
  rqGrant('myRandomRedDots2', 'rqscript', 'SCOTT');
END;
/
```

Related Topics

-_rqRevoke Procedure_

A.4 rqGroupEval Function

The rqGroupEval function is a user-defined function that identifies a grouping column.

The user defines an rqGroupEval function in PL/SQL using the SQL object rqGroupEvalImpl, which is a generic implementation of the group apply functionality in SQL. The implementation supports data-parallel execution, in which one or more R
engines perform the same R function, or task, on different partitions of data. The data is partitioned according to the values of the grouping column.

Only one grouping column is supported. If you have multiple columns, then combine the columns into one column and use the new column as the grouping column.

The `rqGroupEval` function executes the R function in the script specified by the `EXP_NAM` parameter. You pass data to the R function with the `INP_CUR` parameter. You can pass arguments to the R function with the `PAR_CUR` parameter.

The R function returns an R `data.frame` object, which appears as a SQL table in the database. You define the form of the returned value with the `OUT_QRY` parameter.

To create an `rqGroupEval` function, you create the following two PL/SQL objects:

- A PL/SQL package that specifies the types of the result to return.
- A function that takes the return value of the package and uses the return value with `PIPELINED_PARALLEL_ENABLE` set to indicate the column on which to partition data.

Syntax

```sql
rqGroupEval (
    INP_CUR     REF CURSOR     IN
    PAR_CUR     REF CURSOR     IN
    OUT_QRY     VARCHAR2       IN
    GRP_COL     VARCHAR2       IN
    EXP_NAM     VARCHAR2       IN)
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INP_CUR</td>
<td>A cursor that specifies the data to pass to the R function specified by the <code>EXP_NAME</code> parameter.</td>
</tr>
<tr>
<td>PAR_CUR</td>
<td>A cursor that contains argument values to pass to the R function.</td>
</tr>
<tr>
<td>OUT_QRY</td>
<td>One of the following:</td>
</tr>
<tr>
<td></td>
<td>- NULL, which returns a serialized object that can contain both data and image objects.</td>
</tr>
<tr>
<td></td>
<td>- A SQL SELECT statement that specifies the column names and data types of the table returned by <code>rqEval</code>. Any image data is discarded. You can provide a prototype row using the dual dummy table or you can base the SELECT statement on an existing table or view. The R function must return a <code>data.frame</code>.</td>
</tr>
<tr>
<td></td>
<td>- The string 'XML', which specifies that the table returned contains a CLOB that is an XML string. The XML can contain both structured data and images, with structured or semi-structured R objects first, followed by the image or images generated by the R function. Images are returned as a base 64 encoding of the PNG representation.</td>
</tr>
<tr>
<td></td>
<td>- The string 'PNG', which specifies that the table returned contains a BLOB that has the image or images generated by the R function in PNG format.</td>
</tr>
<tr>
<td>GRP_COL</td>
<td>The name of the grouping column by which to partition the data.</td>
</tr>
<tr>
<td>EXP_NAM</td>
<td>The name of a script in the OML4R script repository.</td>
</tr>
</tbody>
</table>
Return Value

The user-defined `rqGroupEval` function returns a table that has the structure specified by the `OUT_QRY` parameter value.

Examples

This example has a PL/SQL block that drops the script `myC5.0Function` to ensure that the script does not exist in the OML4R script repository. It then creates a function and stores it as the script `myC5.0Function` in the script repository.

The R function accepts two arguments: the data on which to operate and a prefix to use in creating datastores. The function uses the C50 package to build C5.0 models on the churn data set from C50. The function builds one churn model on the data for each state.

The `myC5.0Function` function loads the C50 package so that the function body has access to it when the function executes in an R engine on the database server. The function then creates a datastore name using the datastore prefix and the name of a state. To exclude the state name from the model, the function deletes the column from the data.frame. Because factors in the data.frame are converted to character vectors when they are loaded in the user-defined embedded R function, the `myC5.0Function` function explicitly converts the character vectors back to R factors.

The `myC5.0Function` function gets the data for the state from the specified columns and then creates a model for the state and saves the model in a datastore. The R function returns `TRUE` to have a simple value that can appear as the result of the function execution.

The example next creates a PL/SQL package, `churnPkg`, and a user-defined function, `churnGroupEval`. In defining an `rqGroupEval` function implementation, the `PARALLEL_ENABLE` clause is optional but the `CLUSTER BY` clause is required.

Finally, the example executes a SELECT statement that invokes the `churnGroupEval` function. In the `INP_CUR` argument of the `churnGroupEval` function, the SELECT statement specifies the `PARALLEL` hint to use parallel execution of the R function and the data set to pass to the R function. The `INP_CUR` argument of the `churnGroupEval` function specifies connecting to OML4R and the datastore prefix to pass to the R function. The `OUT_QRY` argument specifies returning the value in XML format, the `GRP_NAM` argument specifies using the state column of the data set as the grouping column, and the `EXP_NAM` argument specifies the `myC5.0Function` script in the script repository as the R function to invoke.

For each of 50 states plus Washington, D.C., the SELECT statement returns from the `churnGroupEval` table function the name of the state and an XML string that contains the value `TRUE`.

Example A-6 Using an `rqGroupEval` Function

```
BEGIN
    sys.rqScriptDrop('myC5.0Function');
    sys.rqScriptCreate('myC5.0Function',
        'function(dat, datastorePrefix) {
            library(C50)
            datastoreName <- paste(datastorePrefix, dat[,1, "state"], sep = ",")
            dat$state <- NULL
            dat$churn <- as.factor(dat$churn)
            dat$area_code <- as.factor(dat$area_code)
        }
    );
```
A.5 rqRevoke Procedure

The rqRevoke procedure revokes read privilege access to an OML4R datastore or to a script in the OML4R script repository.

Syntax

rqRevoke (
 V_NAME VARCHAR2 IN
 V_TYPE VARCHAR2 IN
 V_USER VARCHAR2 IN DEFAULT)

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_NAME</td>
<td>The name of an OML4R datastore or a script in the OML4R script repository.</td>
</tr>
<tr>
<td>V_TYPE</td>
<td>For a datastore, the type is datastore; for a script, the type is rqscript.</td>
</tr>
<tr>
<td>V_USER</td>
<td>The name of the user from whom to revoke access.</td>
</tr>
</tbody>
</table>
Example A-7 Revoking Read Access to a Script

```sql
-- Revoke read privilege access to Scott.
BEGIN
  rqRevoke('myRandomRedDots2', 'rqscript', 'SCOTT');
END;
/
```

Related Topics

- rqGrant Procedure

A.6 rqRowEval Function

The `rqRowEval` function executes the R function in the script specified by the `EXP_NAM` parameter.

You pass data to the R function with the `INP_CUR` parameter. You can pass arguments to the R function with the `PAR_CUR` parameter. The `ROW_NUM` parameter specifies the number of rows that should be passed to each invocation of the R function. The last chunk may have fewer rows than the number specified.

The `rqRowEval` function supports data-parallel execution, in which one or more R engines perform the same R function, or task, on disjoint chunks of data. Oracle Database handles the management and control of the potentially multiple R engines that run on the database server machine, automatically chunking and passing data to the R engines executing in parallel. Oracle Database ensures that R function executions for all chunks of rows complete, or the `rqRowEval` function returns an error.

The R function returns an R `data.frame` object, which appears as a SQL table in the database. You define the form of the returned value with the `OUT_QRY` parameter.

Syntax

```sql
rqRowEval (INP_CUR, PAR_CUR, OUT_QRY, ROW_NUM, EXP_NAM)
```

Parameters

Table A-1 Parameters of the rqRowEval Function

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INP_CUR</td>
<td>A cursor that specifies the data to pass to the R function specified by the <code>EXP_NAME</code> parameter.</td>
</tr>
<tr>
<td>PAR_CUR</td>
<td>A cursor that contains argument values to pass to the R function.</td>
</tr>
</tbody>
</table>
Table A-1 (Cont.) Parameters of the rqRowEval Function

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| OUT_QRY | One of the following:
 - NULL, which returns a serialized object that can contain both data and image objects.
 - A SQL SELECT statement that specifies the column names and data types of the table returned by `rqEval`. Any image data is discarded. You can provide a prototype row using the dual dummy table or you can base the SELECT statement on an existing table or view. The R function must return a `data.frame`.
 - The string 'XML', which specifies that the table returned contains a CLOB that is an XML string. The XML can contain both structured data and images, with structured or semi-structured R objects first, followed by the image or images generated by the R function. Images are returned as a base 64 encoding of the PNG representation.
 - The string 'PNG', which specifies that the table returned contains a BLOB that has the image or images generated by the R function in PNG format. |
| ROW_NUM | The number of rows to include in each invocation of the R function. |
| EXP_NAM | The name of a script in the OML4R script repository. |

Return Value

Function `rqRowEval` returns a table that has the structure specified by the `OUT_QRY` parameter value.

Examples

This example uses the C50 package to score churn data (that is, to predict which customers are likely to churn) using C5.0 decision tree models. The example scores the customers from the specified state in parallel. This example produces the same result as the invocation of function `ore.rowApply` in Example 6-16.

Tip:

This example uses the `CHURN_TEST` table and the `myXLevels` datastore created by Example 6-16 so in R you should invoke the functions that create the table and that get the `xlevels` object and save it in the `myXLevels` datastore in Example 6-16 before running this example.

Example A-8 Using an rqRowEval Function

This example creates a user-defined function and saves the function in the OML4R script repository. The user-defined function creates a C5.0 model for a state and saves the model in a datastore. In this example, the user-defined function `myC5.0FunctionForLevels` uses the list of levels created in Example 6-16. The function `myC5.0FunctionForLevels` returns the value `TRUE`.
This example creates the PL/SQL package churnPkg and the function churnGroupEval. The example declares a cursor to get the names of the datastores that include the string myC5.0modelFL and then executes a PL/SQL block that deletes those datastores. The example next executes a SELECT statement that invokes the churnGroupEval function. The churnGroupEval function invokes the myC5.0FunctionForLevels function to generate the C5.0 models and save them in datastores.

The example then creates the myScoringFunction function and stores it in the script repository. The function scores a C5.0 model for the levels of a state and returns the results in a data.frame.

Finally, the example executes a SELECT statement that invokes the rqRowEval function. The input cursor to the rqRowEval function uses the PARALLEL hint to specify the degree of parallelism to use. The cursor specifies the CHURN_TEST table as the data source and filters the rows to include only those for Massachusetts. All rows processed use the same predictive model.

The parameters cursor specifies the ore.connect control argument to connect to OML4R on the database server and specifies values for the datastorePrefix and xlevelsDatastore arguments to the myScoringFunction function.

The SELECT statement for the OUT_QRY parameter specifies the format of the output. The ROW_NUM parameter specifies 200 as the number of rows to process at a time in each parallel R engine. The EXP_NAME parameter specifies myScoringFunction in the script repository as the R function to invoke.

BEGIN
 sys.rqScriptDrop('myC5.0FunctionForLevels');
 sys.rqScriptCreate('myC5.0FunctionForLevels',
 'function(dat, xlevelsDatastore, datastorePrefix) {
 library(C50)
 state <- dat[1,"state"]
 datastoreName <- paste(datastorePrefix, dat[1, "state"], sep = "_")
 dat$state <- NULL
 ore.load(name = xlevelsDatastore) # To get the xlevels object.
 for (j in names(xlevels))
 dat[[j]] <- factor(dat[[j]], levels = xlevels[[j]])
 c5mod <- C5.0(churn ~ ., data = dat, rules = TRUE)
 ore.save(c5mod, name = datastoreName)
 TRUE
 }');
END;
/

CREATE OR REPLACE PACKAGE churnPkg AS
 TYPE cur IS REF CURSOR RETURN CHURN_TEST%ROWTYPE;
END churnPkg;
/
CREATE OR REPLACE FUNCTION churnGroupEval(
 inp_cur churnPkg.cur,
 par_cur SYS_REFCURSOR,
 out_qry VARCHAR2,
 grp_col VARCHAR2,
 exp_txt CLOB)
RETURN SYS.AnyDataSet PIPELINED PARALLEL_ENABLE (PARTITION inp_cur BY HASH ("state")) CLUSTER inp_cur BY ("state") USING rqGroupEvalImpl;
DECLARE
CURSOR c1
IS
SELECT dsname FROM RQUSER_DATASTORELIST WHERE dsname like 'myC5.0modelFL%';
BEGIN
FOR dsname_st IN c1
LOOP
rqDropDataStore(dsname_st.dsname);
END LOOP;
END;

SELECT *
FROM table(churnGroupEval(
 cursor(SELECT * /*+ parallel(t,4) */ FROM CHURN_TEST t),
 cursor(SELECT 1 AS "ore.connect",
 'myXLevels' as "xlevelsDatastore",
 'myC5.0modelFL' AS "datastorePrefix" FROM dual),
 'XML', 'state', 'myC5.0FunctionForLevels'));
BEGIN
sys.rqScriptDrop('myScoringFunction');
sys.rqScriptCreate('myScoringFunction',
 'function(dat, xlevelsDatastore, datastorePrefix) {
 library(C50)
 state <- dat[1, "state"]
 datastoreName <- paste(datastorePrefix, state, sep = "_")
 dat$state <- NULL
 ore.load(name = xlevelsDatastore) # To get the xlevels object.
 for (j in names(xlevels))
 dat[[j]] <- factor(dat[[j]], levels = xlevels[[j]])
 ore.load(name = datastoreName)
 res <- data.frame(pred = predict(c5mod, dat, type = "class"),
 actual = dat$churn,
 state = state)
 res
 }');
END;
/

SELECT * FROM table(rqRowEval(
 cursor(select /*+ parallel(t, 4) */ *
 FROM CHURN_TEST t
 WHERE "state" = 'MA'),
 cursor(SELECT 1 as "ore.connect",
 'myC5.0modelFL' as "datastorePrefix",
 'myXLevels' as "xlevelsDatastore" FROM dual),
 'SELECT '"aaa' '"pred', '"aaa' '"actual', '"aa' '"state" FROM dual',
 200, 'myScoringFunction'));

In Oracle SQL Developer, the results of the last SELECT statement are:

<table>
<thead>
<tr>
<th>pred</th>
<th>actual</th>
<th>state</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>no</td>
<td>MA</td>
</tr>
</tbody>
</table>
The `rqTableEval` function executes the R function in the script specified by the `EXP_NAM` parameter.

You pass data to the R function with the `INP_CUR` parameter. You can pass arguments to the R function with the `PAR_CUR` parameter.

The R function returns an R `data.frame` object, which appears as a SQL table in the database. You define the form of the returned value with the `OUT_QRY` parameter.

Syntax

```sql
rqTableEval (INP_CUR     REF CURSOR     IN,
             PAR_CUR     REF CURSOR     IN,
             OUT_QRY     VARCHAR2       IN,
             EXP_NAM     VARCHAR2       IN)
```
Parameters

Table A-2 Parameters of the rqTableEval Function

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INP_CUR</td>
<td>A cursor that specifies the data to pass to the R function specified by the EXP_NAME parameter.</td>
</tr>
<tr>
<td>PAR_CUR</td>
<td>A cursor that contains argument values to pass to the input function.</td>
</tr>
</tbody>
</table>
| OUT_QRY | One of the following:
 • NULL, which returns a serialized object that can contain both data and image objects.
 • A SQL SELECT statement that specifies the column names and data types of the table returned by rqEval. Any image data is discarded. You can provide a prototype row using the dual dummy table or you can base the SELECT statement on an existing table or view. The R function must return a data.frame.
 • The string 'XML', which specifies that the table returned contains a CLOB that is an XML string. The XML can contain both structured data and images, with structured or semi-structured R objects first, followed by the image or images generated by the R function. Images are returned as a base 64 encoding of the PNG representation.
 • The string 'PNG', which specifies that the table returned contains a BLOB that has the image or images generated by the R function in PNG format. |
| EXP_NAM | The name of a script in the OML4R script repository. |

Return Value

Function rqTableEval returns a table that has the structure specified by the OUT_QRY parameter value.

Examples

This example first has a PL/SQL block that drops the script myNaiveBayesModel to ensure that the script does not exist in the OML4R script repository. It then creates a function and stores it as the script myNaiveBayesModel in the repository.

The R function accepts two arguments: the data on which to operate and the name of a datastore. The function builds a Naive Bayes model on the iris data set. Naive Bayes is found in the e1071 package.

The myNaiveBayesModel function loads the e1071 package so that the function body has access to it when the function executes in an R engine on the database server. Because factors in the data.frame are converted to character vectors when they are loaded in the user-defined embedded R function, the myNaiveBayesModel function explicitly converts the character vector to an R factor.

The myNaiveBayesModel function gets the data from the specified column and then creates a model and saves it in a datastore. The R function returns TRUE to have a simple value that can appear as the result of the function execution.
The example next executes a SELECT statement that invokes the rqTableEval function. In the INP_CUR argument of the rqTableEval function, the SELECT statement specifies the data set to pass to the R function. The data is from the IRIS table that was created by invoking ore.create(iris, "IRIS"), which is not shown in the example. The INP_CUR argument of the rqTableEval function specifies the name of a datastore to pass to the R function and specifies the ore.connect control argument to establish an OML4R connection to the database during the embedded R execution of the user-defined R function. The OUT_QRY argument specifies returning the value in XML format, and the EXP_NAM argument specifies the myNaiveBayesModel script in the script repository as the R function to invoke.

Example A-9 Using the rqTableEval Function

BEGIN
 sys.rqScriptDrop('myNaiveBayesModel');
 sys.rqScriptCreate('myNaiveBayesModel',
 'function(dat, datastoreName) {
 library(e1071)
 dat$Species <- as.factor(dat$Species)
 nbmod <- naiveBayes(Species ~ ., dat)
 ore.save(nbmod, name = datastoreName)
 TRUE
 }');
END;
/

SELECT *
FROM table(rqTableEval(
cursor(SELECT * FROM IRIS),
 cursor(SELECT 'myNaiveBayesDatastore' "datastoreName",
 1 as "ore.connect" FROM dual),
 'XML', 'myNaiveBayesModel'));

The SELECT statement returns from the rqTableEval table function an XML string that contains the value TRUE.

The myNaiveBayesDatastore datastore now exists and contains the object nbmod, as shown by the following SELECT statement.

SQL> SELECT * from RQUSER_DATASTORECONTENTS
2 WHERE dsname = 'myNaiveBayesDatastore';

<table>
<thead>
<tr>
<th>DSNAME</th>
<th>OBJNAME</th>
<th>CLASS</th>
<th>OBJSIZE</th>
<th>LENGTH</th>
<th>NROW</th>
<th>NCOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>myNaiveBayesDatastore</td>
<td>nbmod</td>
<td>naiveBayes</td>
<td>1485</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In a local R session, you could load the model and display it, as in the following:

R> ore.load("myNaiveBayesDatastore")
[1] "nbmod"
R> nbmod
$apriori
Y
 setosa versicolor virginica
 50 50 50

$tables
$tables$Sepal.Length

Y
 [,1] [,2]
A.8 sys.rqScriptCreate Procedure

The `sys.rqScriptCreate` procedure creates a script and adds it to the OML4R script repository.

Syntax

```r
sys.rqScriptCreate (
  V_NAME          VARCHAR2    IN,
  V_SCRIPT        CLOB        IN,
  V_GLOBAL        BOOLEAN     IN     DEFAULT,
  V_OVERWRITE     BOOLEAN     IN     DEFAULT)
```

Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_NAME</td>
<td>A name for the script in the OML4R script repository.</td>
</tr>
<tr>
<td>V_SCRIPT</td>
<td>The R function definition to store in the script.</td>
</tr>
<tr>
<td>V_GLOBAL</td>
<td>TRUE specifies that the script is public; FALSE specifies that the script is private.</td>
</tr>
</tbody>
</table>
V_OVERWRITE
If the OML4R script repository already has a script with the same name as V_NAME, then TRUE replaces the content of that script with V_SCRIPT and FALSE does not replace it.

Related Topics
- Manage Scripts in SQL

A.9 sys.rqScriptDrop Procedure

The sys.rqScriptDrop procedure removes a script from the OML4R script repository.

Syntax

```sql
sys.rqScriptCreate (  
  V_NAME          VARCHAR2    IN  
  V_GLOBAL        BOOLEAN     IN     DEFAULT  
  V_SILENT        BOOLEAN     IN     DEFAULT)
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_NAME</td>
<td>A name for the script in the OML4R script repository.</td>
</tr>
<tr>
<td>V_GLOBAL</td>
<td>TRUE (the default) specifies that the script is public; FALSE specifies that the script is private.</td>
</tr>
<tr>
<td>V_SILENT</td>
<td>FALSE (the default) specifies that sys.rqqScriptDrop displays an error message if it encounters an error in dropping the specified R script. TRUE specifies that the procedure does display an error message.</td>
</tr>
</tbody>
</table>

Related Topics
- Manage Scripts in SQL
Oracle Database has several data dictionary views that contain information about OML4R datastores and scripts in the OML4R script repository.

The following topics describe these views.

- **ALL_RQ_DATASTORES**
 ALL_RQ_DATASTORES describes the datastores available to the current user.

- **ALL_RQ_SCRIPTS**
 ALL_RQ_SCRIPTS describes the scripts in the OML4R script repository that are available to the current user.

- **RQUSER_DATASTORECONTENTS**
 RQUSER_DATASTORECONTENTS contains information about the contents of Oracle Machine Learning for R datastores.

- **RQUSER_DATASTORELIST**
 RQUSER_DATASTORELIST contains information about Oracle Machine Learning for R datastores.

- **USER_RQ_DATASTORE_PRIVS**
 USER_RQ_DATASTORE_PRIVS describes the datastores and the users to whom the current user has granted read privilege access.

- **USER_RQ_DATASTORES**
 USER_RQ_DATASTORES describes datastores created by the current user.

- **USER_RQ_SCRIPT_PRIVS**
 USER_RQ_SCRIPT_PRIVS describes the scripts in the OML4R script repository to which the current user has granted read access and the users to whom access has been granted.

- **USER_RQ_SCRIPTS**
 USER_RQ_SCRIPTS describes the scripts in the OML4R script repository that are owned by the current user.

Related Topics

- **Manage Scripts in SQL**
 This topic lists the PL/SQL procedures and Oracle Database data dictionary views for creating and managing R scripts.

- **Manage Datastores in SQL**
 Oracle Machine Learning for R provides PL/SQL procedures and Oracle Database data dictionary views for the basic management of datastores in SQL.
B.1 ALL_RQ_DATASTORES

ALL_RQ_DATASTORES describes the datastores available to the current user.

<table>
<thead>
<tr>
<th>Column</th>
<th>Datatype</th>
<th>Null</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSOWNER</td>
<td>VARCHAR2(256)</td>
<td>NOT</td>
<td>The owner of the datastore.</td>
</tr>
<tr>
<td>DSNAMES</td>
<td>VARCHAR2(128)</td>
<td>NOT</td>
<td>The name of the datastore.</td>
</tr>
<tr>
<td>NOBJ</td>
<td>NUMBER</td>
<td>NOT</td>
<td>The number of objects in the datastore.</td>
</tr>
<tr>
<td>DSSIZE</td>
<td>NUMBER</td>
<td>NOT</td>
<td>The size of the datastore.</td>
</tr>
<tr>
<td>CDATE</td>
<td>DATE</td>
<td>NOT</td>
<td>The creation date of the datastore.</td>
</tr>
<tr>
<td>GRANTABLE</td>
<td>VARCHAR2(1)</td>
<td>NOT</td>
<td>Whether read privilege access to the datastore can be granted by the owner to another user.</td>
</tr>
</tbody>
</table>

Related Topics

- [About OML4R Datastores](#)
 - Each database schema has a table that stores named OML4R datastores.

- [Manage Datastores in SQL](#)
 - Oracle Machine Learning for R provides PL/SQL procedures and Oracle Database data dictionary views for the basic management of datastores in SQL.

B.2 ALL_RQ_SCRIPTS

ALL_RQ_SCRIPTS describes the scripts in the OML4R script repository that are available to the current user.

<table>
<thead>
<tr>
<th>Column</th>
<th>Datatype</th>
<th>Null</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OWNER</td>
<td>VARCHAR2(256)</td>
<td>NOT</td>
<td>The owner of the script.</td>
</tr>
<tr>
<td>NAME</td>
<td>VARCHAR2(128)</td>
<td>NOT</td>
<td>The name of the script.</td>
</tr>
<tr>
<td>SCRIPT</td>
<td>CLOB</td>
<td>NOT</td>
<td>The R function of the script.</td>
</tr>
</tbody>
</table>

Related Topics

- [USER_RQ_SCRIPT_PRIVS](#)
- [USER_RQ_SCRIPTS](#)
B.3 RQUSER_DATASTORECONTENTS

RQUSER_DATASTORECONTENTS contains information about the contents of Oracle Machine Learning for R datastores.

<table>
<thead>
<tr>
<th>Column</th>
<th>Datatype</th>
<th>Null</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSNAME</td>
<td>VARCHAR2(128)</td>
<td>NOT NULL</td>
<td>The name of the datastore.</td>
</tr>
<tr>
<td>OBJNAME</td>
<td>VARCHAR2(128)</td>
<td>NOT NULL</td>
<td>The names of the objects in the datastore.</td>
</tr>
<tr>
<td>CLASS</td>
<td>VARCHAR2(128)</td>
<td>NOT NULL</td>
<td>The R class of an object.</td>
</tr>
<tr>
<td>DSSIZE</td>
<td>NUMBER</td>
<td>NOT NULL</td>
<td>The size of an object.</td>
</tr>
<tr>
<td>LENGTH</td>
<td>NUMBER</td>
<td>NOT NULL</td>
<td>The size of an object.</td>
</tr>
<tr>
<td>NROW</td>
<td>NUMBER</td>
<td>NULL</td>
<td>The number of rows in an object.</td>
</tr>
<tr>
<td>NCOL</td>
<td>NUMBER</td>
<td>NULL</td>
<td>The number of columns in an object.</td>
</tr>
</tbody>
</table>

Related Topics

• ALL_RQ_DATASTORES
• RQUSER_DATASTORELIST

B.4 RQUSER_DATASTORELIST

RQUSER_DATASTORELIST contains information about Oracle Machine Learning for R datastores.

<table>
<thead>
<tr>
<th>Column</th>
<th>Datatype</th>
<th>Null</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSNAME</td>
<td>VARCHAR2(128)</td>
<td>NOT NULL</td>
<td>The name of the datastore.</td>
</tr>
<tr>
<td>NOBJ</td>
<td>NUMBER</td>
<td>NOT NULL</td>
<td>The number of objects in a datastore.</td>
</tr>
<tr>
<td>DSSIZE</td>
<td>NUMBER</td>
<td>NOT NULL</td>
<td>The size of the datastore.</td>
</tr>
<tr>
<td>CDATE</td>
<td>DATE</td>
<td>NOT NULL</td>
<td>The date the datastore was created.</td>
</tr>
</tbody>
</table>

Related Topics

• Manage Datastores in SQL

Oracle Machine Learning for R provides PL/SQL procedures and Oracle Database data dictionary views for the basic management of datastores in SQL.

B.5 USER_RQ_DATASTORE_PRIVS

USER_RQ_DATASTORE_PRIVS describes the datastores and the users to whom the current user has granted read privilege access.

<table>
<thead>
<tr>
<th>Column</th>
<th>Datatype</th>
<th>Null</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSNAME</td>
<td>VARCHAR2(128)</td>
<td>NOT NULL</td>
<td>The name of a datastore.</td>
</tr>
</tbody>
</table>
USER_RQ_DATASTORES

Column	**Datatype**	**Null**	**Description**
GRANTEE | VARCHAR2(30) | NOT NULL | The user to whom read privilege access has been granted. |

Related Topics

- **About OML4R Datastores**
 Each database schema has a table that stores named OML4R datastores.

- **Manage Datastores in SQL**
 Oracle Machine Learning for R provides PL/SQL procedures and Oracle Database data dictionary views for the basic management of datastores in SQL.

- **ALL_RQ_DATASTORES**

- **USER_RQ_DATASTORES**

USER_RQ_DATASTORES describes datastores created by the current user.

Column	**Datatype**	**Null**	**Description**
DSNAME | VARCHAR2(128)| NOT NULL| The name of a datastore. |
NOBJ | NUMBER | NOT NULL| The number of objects in the datastore. |
DSSIZE | NUMBER | NOT NULL| The size of the datastore. |
CDATE | DATE | NOT NULL| The creation date of the datastore. |
GRANTABLE | VARCHAR2(1) | NOT NULL| Whether read privilege access to the datastore can be granted by the owner to another user. |

Related Topics

- **About OML4R Datastores**
 Each database schema has a table that stores named OML4R datastores.

- **Manage Datastores in SQL**
 Oracle Machine Learning for R provides PL/SQL procedures and Oracle Database data dictionary views for the basic management of datastores in SQL.

- **ALL_RQ_DATASTORES**

- **USER_RQ_DATASTORE_PRIVS**
B.7 USER_RQ_SCRIPT_PRIVS

USER_RQ_SCRIPT_PRIVS describes the scripts in the OML4R script repository to which the current user has granted read access and the users to whom access has been granted.

<table>
<thead>
<tr>
<th>Column</th>
<th>Datatype</th>
<th>Null</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>VARCHAR2 (128)</td>
<td>NOT NULL</td>
<td>The name of the script to which read access has been granted.</td>
</tr>
<tr>
<td>GRANTEE</td>
<td>VARCHAR2 (128)</td>
<td>NOT NULL</td>
<td>The user to whom read access has been granted.</td>
</tr>
</tbody>
</table>

Related Topics

- ALL_RQ_SCRIPTS
- USER_RQ_SCRIPTS

B.8 USER_RQ_SCRIPTS

USER_RQ_SCRIPTS describes the scripts in the OML4R script repository that are owned by the current user.

<table>
<thead>
<tr>
<th>Column</th>
<th>Datatype</th>
<th>Null</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>VARCHAR2 (128)</td>
<td>NOT NULL</td>
<td>The name of the script.</td>
</tr>
<tr>
<td>SCRIPT</td>
<td>CLOB</td>
<td>NOT NULL</td>
<td>The R function of the script.</td>
</tr>
</tbody>
</table>

Related Topics

- ALL_RQ_SCRIPTS
- USER_RQ_SCRIPT_PRIVS
The OML4R packages support many R operators and functions that you can use with OML4R objects.

This appendix lists the R operators and functions that OML4R supports.

The OML4R sample programs include several examples using each category of these functions with OML4R data types.

You are not restricted to using this list of functions. If a specific function that you need is not supported by OML4R, you can pull data from the database into the R engine memory using `ore.pull` to create an in-memory R object first, and use any R function.

The following operators and functions are supported. See R documentation for syntax and semantics of these operators and functions. Syntax and semantics for these items are unchanged when used on a corresponding database-mapped data type (also known as an OML4R data type).

- **Mathematical transformations**: `abs`, `sign`, `sqrt`, `ceiling`, `floor`, `trunc`, `cummax`, `cummin`, `cumprod`, `cumsum`, `log`, `loglo`, `log10`, `log2`, `acos`, `acosh`, `asin`, `asinh`, `atan`, `atan2`, `tanh`, `gamma`, `lgamma`, `digamma`, `trigamma`, `factorial`, `lfactorial`, `round`, `signif`, `pmin`, `pmax`, `zapsmall`, `rank`, `diff`, `besselI`, `besselJ`, `besselK`, `besselY`

- **Basic statistics**: `mean`, `summary`, `min`, `max`, `sum`, `any`, `all`, `median`, `range`, `IQR`, `fivenum`, `mad`, `quantile`, `sd`, `var`, `table`, `tabulate`, `rowSums`, `colSums`, `rowMeans`, `colMeans`, `cor`, `cov`

- **Arithmetic operators**: `+`, `-`, `*`, `/`, `^`, `%`, `/`

- **Comparison operators**: `==`, `>`, `<`, `!=`, `<`, `>=`

- **Logical operators**: `&`, `|`, `xor`

- **Set operations**: `unique`, `%in%`, `subset`

- **String operations**: `tolower`, `toupper`, `casefold`, `toString`, `chartr`, `sub`, `gsub`, `substr`, `substring`, `paste`, `nchar`, `grepl`

- **Combine Data Frame**: `cbind`, `rbind`, `merge`

- **Combine vectors**: `append`

- **Vector creation**: `ifelse`

- **Subset selection**: `[`, `[[`, `$`, `head`, `tail`, `window`, `subset`, `Filter`, `na.omit`, `na.exclude`, `complete.cases`

- **Subset replacement**: `<-`, `[[<-`, `$<-`

- **Data reshaping**: `split`, `unlist`

- **Data processing**: `eval`, `with`, `within`, `transform`

- **Apply variants**: `tapply`, `aggregate`, `by`
• **Special value checks**: is.na, is.finite, is.infinite, is.nan
• **Metadata functions**: nrow, NROW, ncol, NCOL, nlevels, names, names<-, row, col, dimnames, dimnames<-, dim, length, row.names, row.names<-, rownames, rownames<-, colnames, levels, reorder
• **Graphics**: arrows, boxplot, cdplot, co.intervals, coplot, hist, identify, lines, matlines, matplot, matpoints, pairs, plot, points, polygon, polypath, rug, segments, smoothScatter, sunflowerplot, symbols, text, xspline, xy.coords
• **Conversion functions**: as.logical, as.integer, as.numeric, as.character, as.vector, as.factor, as.data.frame
• **Type check functions**: is.logical, is.integer, is.numeric, is.character, is.vector, is.factor, is.data.frame
• **Character manipulation**: nchar, tolower, toupper, casefold, chartr, sub, gsub, substr
• **Other ore.frame functions**: data.frame, max.col, scale
• **Hypothesis testing**: binom.test, chisq.test, ks.test, prop.test, t.test, var.test, wilcox.test
• **Various Distributions**: Density, cumulative distribution, and quantile functions for standard distributions
• **ore.matrix function**: show, is.matrix, as.matrix, %*% (matrix multiplication), t, crossprod (matrix cross-product), tcrossprod (matrix cross-product A times transpose of B), solve (invert), backsolve, forwardsolve, all appropriate mathematical functions (abs, sign, and so on), summary (max, min, all, and so on), mean

Related Topics

• **Transparency Layer Support for R Data Types and Classes**
Oracle Machine Learning for R transparency layer has classes and data types that map R data types to Oracle Database data types.
A

access control
 for datastores, 2-20, 6-50
 for scripts, 6-14, 6-48
accessor functions, 3-16
aggregate function, 1-6, 3-7
aggregating data, 3-7, 3-56
aggregation functions, 3-16, 3-56
algorithms
 Apriori, 4-23
 association rules, 4-23
 attribute importance, 4-26
 Decision Tree, 4-27
 Expectation Maximization, 4-29
 Explicit Semantic Analysis, 4-34
 Extensible R, 4-38
 Generalized Linear Models, 4-45
 k-Means, 4-48
 Minimum Description Length, 4-26
 Naive Bayes, 4-52
 Non-Negative Matrix Factorization, 4-54
 Orthogonal Partitioning Cluster, 4-56
 Singular Value Decomposition, 4-58
 Support Vector Machine, 4-63
ALL_RQ_DATASTORES view, B-2
ALL_RQ_SCRIPTS view, B-2
Apriori algorithm, 4-23
arima function, 3-16
arrange function
 description, 3-43
 example, 3-46, 3-49
arrange_function
 description, 3-43
as.Date function, 3-16
as.difftime function, 3-16
as.integer function, 3-16
as.ore class, 3-16
as.ore function, 1-11
as.ore.character function, 1-11, 3-16
as.ore.date function, 3-16
association models, 4-23
attaching a schema, 2-5
attribute importance models, 4-26

C

C50 package, 6-5, 6-28, 6-34, A-5, A-9
class inheritance, 1-6
columns
 deriving, 3-8
 partitioning on, 6-30
combining data, 3-6
Comprehensive R Archive Network
 See CRAN packages
connecting an R session, 2-26
connection types, 2-27
connections, specifying, 2-27
control arguments for embedded R execution, 6-12
count function
 description, 3-56
 example, 3-56
CRAN packages, 1-2, 3-2, 3-72, 6-5
creating a table, 2-15
creating proxy objects, 2-2
cross-validating models, 4-66
ctx.settings argument, 4-14
cume_dist function
 description, 3-60
 examples, 3-60

D
data
 aggregating, 3-56
 distribution analysis of, 3-39
 exploring, 3-22
 grouping, 3-52
 indexing, 3-6
 joining, 3-6, 3-51
 partitioning, 3-15
 preparing, 1-2, 3-2
 ranking, 3-35, 3-60
 sampling, 3-11, 3-58
 scoring, 1-2
 selecting, 3-2, 3-43
 sorting, 3-36
 summarizing, 3-7, 3-38, 3-56
data (continued)
transforming, 3-8
transmuting, 3-43

data types
coercing to another type, 3-16

datastores
about, 2-18
access control, 2-20
deleting, 2-26
getting information about, 2-21
in embedded R execution, 2-26, 6-34, A-5, A-9, A-13
managing in SQL, 6-50
restoring objects from, 2-24
saving objects in, 2-16, 2-18
date and time objects, 3-16
DCLI, 6-5
Decision Tree algorithm, 4-27
decision tree models, 4-27
dense_rank function
description, 3-60
examples, 3-60
density estimation algorithm, 4-29
desc function
description, 3-43
example, 3-49
detaching a schema, 2-5
diff function, 3-16
distinct function
description, 3-43
example, 3-46
distinct_function
description, 3-43
example, 3-46
dplyr package, 3-43
dropping a table, 2-15

e
E1071 package, 6-26
easy connect string, specifying, 2-28
embedded R execution, 1-3
about, 6-1
APIs for, 6-2
control arguments, 6-12
parallel execution, 6-4, 6-14
R interface for, 6-10
security, 6-3
SQL interface for, 6-45
executing SQL statements, 2-8
expectation maximization model, 4-29
explicit semantic analysis model, 4-29
exploratory data analysis
data set for examples, 3-24
exponential smoothing models, 3-31

extensible R algorithm model, 4-38

F

feature extraction algorithm, 4-34, 4-58
filter function
description, 3-43
example, 3-47
examples, 3-49
filter_function
description, 3-43
filtering data, 2-15
forecast package, 3-31
formatting data, 3-8
full_join function
description, 3-51
example of, 3-51

G
generalized linear models, 4-5, 4-45
glm function, 4-6
global options, 1-12, 2-8
ore.envAsEmptyenv, 1-13
ore.na.extract, 1-13
ore.parallel, 1-13
ore.sep, 1-13
ore.trace, 1-13
ore.warn.order, 1-13
graph analysis, 3-63
group_by function
description, 3-52
examples, 3-52
group_size function
description, 3-52
examples, 3-52
groups function
description, 3-52
examples, 3-52

H
Hadoop cluster, 2-27
HIVE connection type, 2-27

I
indexing data, 3-6
inner_join function
description, 3-51
example of, 3-51
install.packages function, 3-72
IRLS algorithm, 4-5
is.null function, 2-7
k-Means models, 4-48
kernlab package, 2-8, 3-72
keys
 ordering with, 2-8
kyphosis data set, 4-6

lapply function, 3-11
least squares regression, 4-3
left_join function
 description, 3-51
 example of, 3-51
library function, 3-72
linear regression model, 4-3
longley data set, 4-3

machine learning models, 4-11
map/reduce operations, 4-5
max function, 3-16
min function, 3-16
min_rank function
 description, 3-60
 examples, 3-60
Minimum Description Length algorithm, 4-26
models
 association, 4-23
 attribute importance, 4-26
 cross-validating, 4-66
 decision tree, 4-27
 expectation maximization, 4-29
 explicit semantic analysis, 4-34
 extensible R algorithm, 4-38
 generalized linear, 4-5, 4-45
 k-Means, 4-48
 linear regression, 4-3
 Naive Bayes, 4-52
 neural network, 4-8
 non-negative matrix factorization, 4-54
OML4SQL, 4-11
orthogonal partitioning cluster, 4-56
parametric, 4-45
predictive, 5-1
randomForest, 4-9
singular value decomposition, 4-58
Support Vector Machine, 4-63
mutate function
 description, 3-43
 examples, 3-50, 3-60
mutate_ function
 description, 3-43
n_groups function
 description, 3-52
 examples, 3-52
Naive Bayes models, 4-52
naming conventions, 1-11
NARROW data set, 3-24
neural network models, 4-1, 4-8
NMF models, 4-54
ntile function
 description, 3-60
 examples, 3-60
O-Cluster models, 4-56
OAAgraph package, 3-63
odm.settings argument, 4-14
OML4R script repository, 6-14, 6-48
OML4SQL models, 4-1, 4-11
 partitioned, 4-14
 settings, 4-14
open source R packages, 3-72, 6-5
ORACLE connection type, 2-27
Oracle Data Mining rebranded, ix
Oracle Machine Learning for Spark, 2-27
Oracle R Advanced Analytics for Hadoop rebranded, ix
Oracle R Enterprise rebranded, ix
Oracle Wallet, 2-27, 2-28
ordering ore.frame objects, 1-9, 2-6
ore_attach function, 2-2, 2-5
ore.character objects, 3-16
ore.connect control argument for embedded R execution, 6-12
ore.connect function, 2-27
ore.corr function, 3-23, 3-24
ore.create function, 2-15
ore.crosstab function, 3-23, 3-26
ore.CV function, 4-66
ore.datastore function, 2-17, 2-21
ore.datastoreSummary function, 2-17, 2-21
ore.date objects, 3-16
ore.datetime objects, 3-16
ore.delete function, 2-26
 ore.grant function, 2-17
 ore.detach function, 2-5
ore.disconnect function, 2-27, 2-28
ore.doEval function, 6-21
ore.drop control argument for embedded R execution, 6-12
ore.drop function, 2-15
ore.envAsEmptyenv control argument for embedded R execution, 6-12
ore.envAsEmptyenv global option, 1-13
ore.esm function, 3-23, 3-31
ore.exists function, 2-2
ore.frame objects
 about, 1-9
 as proxy for a table, 2-2
 column naming conventions, 1-11
 ordering, 1-9
 subclass of data.frame, 1-6
ore.freq function, 3-23, 3-31
ore.get function, 2-5
ore.glm function, 4-2, 4-5
ore.grant, 2-20
ore.grant function, 6-14
ore.graphics control argument for embedded R execution, 6-13
ore.groupApply function, 3-15, 6-27
ore.hour function, 3-16
ore.indexApply function, 3-15
ore.integer objects, 3-16
ore.is.connected function, 2-27
ore.is.list function, 3-16
ore.load function, 2-17
ore.load function, 2-17, 2-24
ore.logical class, 3-16
ore.ls function, 2-2
ore.mday function, 3-16
ore.minute function, 3-16
ore.month function, 3-16
ore.na.extract global option, 1-13
ore.na.omit control argument for embedded R execution, 6-12
ore.neural function, 4-2, 4-8
ore.odmAI function, 4-26
ore.odmAssocRules function, 4-23
ore.odmDT function, 4-27
ore.odmEM function, 4-29
ore.odmESA function, 4-34
ore.odmGLM function, 4-45
ore.odmKM function, 4-48
ore.odmNB function, 4-52
ore.odmNMF function, 4-54
ore.odmOC function, 4-56
ore.odmRAlg function, 4-38
ore.odmsVD function, 4-58
ore.odmSVM function, 4-63
ore.parallel global option, 1-13
ore.push control arguments for embedded R execution, 6-13
ore.push function, 1-11, 2-14, 3-16
ore.push function, 1-11, 2-14, 4-3
ore.randomForest function, 4-9
ore.rank function, 3-23, 3-35
ore.revoke, 2-17, 2-20
ore.revoke function, 6-14
ore.rm function, 2-2
ore.rolmean function, 3-16
ore.rolsd function, 3-16
ore.rowApply function, 6-34
ore.save function, 2-17, 2-18
 examples, 2-18, 6-34, A-5, A-9
ore.scriptCreate function, 6-14
ore.scriptDrop function, 6-14
ore.scriptList function, 6-14
ore.scriptLoad function, 6-14
ore.second function, 3-16
ore.sep global option, 1-13, 2-8
ore.sort function, 3-23, 3-36
ore.stepwise function, 4-2, 4-3
ore.summary function, 3-23, 3-38
ore.sync function, 2-2, 2-3, 2-5, 2-8, 3-3
ore.tableApply function, 6-26
ore.trace global option, 1-13
ore.univariate function, 3-23, 3-39
ore.warn.order global option, 1-13, 2-8
ore.year function, 3-16
OREbase package, 1-6
OREdm package, 2-17, 4-11
OREdplyr package, 3-43
OREeda package, 3-23
OREgraphics package, 1-6
OREmodels package, 4-1
OREpredict package, 5-1
OREstats package, 1-6

P
packages
 C50, 6-5, 6-28, 6-34, A-5, A-9
dplyr, 3-43
e1071, 6-26
forecast, 3-31
kernlab, 2-8, 3-72
OAAgraph, 3-63
OML4R, 1-3
OREbase, 1-6
OREdm, 2-17, 4-11
OREdplyr, 3-43
OREeda, 3-23
OREgraphics, 1-6
OREmodels, 4-1
OREpredict, 5-1
OREstats, 1-6
rpart, 4-6
third-party, 3-72, 6-5
TTR, 3-31
parallel execution, 6-4, 6-14
parametric models, 4-45
partitioning
 OML4SQL models, 4-14
partitions function, 4-14
percent_rank function
description, 3-60
time series, 3-60
persisting proxy objects, 2-17
PGX, 3-63
PL/SQL procedures
 rqDropDataStore, A-1
 rqGrant, A-5
 rqRevoke, A-8
 sys.rqScriptCreate, A-16
 sys.rqScriptDrop, A-17
prcomp function, 3-40
preparing data, 1-2
time series, 3-16
primary keys
 ordering with, 2-8
principal component analysis, 3-40
princomp function, 3-40
proxy objects
 for database tables, 2-2
Q
 quantile function, 3-16
R
 randomForest model, 4-9
 range function, 3-11
 rbind function, 3-11
 rebranding
 Oracle Data Mining, ix
 Oracle R Advanced Analytics for Hadoop, ix
 Oracle R Enterprise, ix
 regression models, 4-1
 removing proxy objects, 2-2
 rename function
description, 3-43
example, 3-44
rename_ function
description, 3-43
repository, OML4R script, 6-14
right_join function
description, 3-51
example of, 3-51
row names
 ordering with, 2-10
rpart package, 4-6
RQADMIN role, 6-3
rqDropDataStore procedure, A-1
rqEval function, 6-46, A-2
rqGrant procedure, A-5
rqGroupEval function, 6-46, A-5
rqRevoke procedure, A-8
rqRowEval function, 6-46, A-9
rqTableEval function, 6-46, A-13
RQUSER_DATASTORECONTENTS view, B-3
RQUSER_DATASTORELIST view, B-3
S
 sample function, 3-11, 3-15
 sampling
 cluster, 3-11
 in-database data, 3-11
 stratified, 3-11
 sample_frac function
description, 3-58
example, 3-58
 sample_n function
description, 3-58
example, 3-58
 saving objects, 2-16
 schema
 attaching, 2-5
 default, 2-5
 detaching, 2-5
 scoring data, 1-2
 script repository, 6-14
 scripts
 dropping, A-17
 embedded R execution of, 6-1
 executing in database, 1-3
 managing in SQL, 6-48
 search path
 adding an environment to, 2-5
 removing a schema from, 2-5
 security for embedded R execution scripts, 6-3
 select function
description, 3-43
example, 3-44
select_ function
description, 3-43
example, 3-45
 seq function, 3-11, 3-16
 settings
 OML4SQL model parameter, 4-14
settings function, 4-14
 singular value decomposition, 3-42
 singular value decomposition model, 4-58
 slice function
description, 3-43
example, 3-47
slice_ function
description, 3-43
sort function, 3-16
 SQL functions for embedded R execution, 6-46
<table>
<thead>
<tr>
<th>SQL statements, executing</th>
<th>2-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQL table functions</td>
<td>6-46</td>
</tr>
<tr>
<td>stepwise least squares regression</td>
<td>4-3</td>
</tr>
<tr>
<td>summarize function</td>
<td>description</td>
</tr>
<tr>
<td></td>
<td>example</td>
</tr>
<tr>
<td>summary function</td>
<td>4-6</td>
</tr>
<tr>
<td>supported R operators and functions</td>
<td>C-1</td>
</tr>
<tr>
<td>svd function</td>
<td>3-42</td>
</tr>
<tr>
<td>SVM models</td>
<td>4-63</td>
</tr>
<tr>
<td>synchronizing database tables</td>
<td>2-2</td>
</tr>
<tr>
<td>sys.rqScriptCreate procedure</td>
<td>A-16</td>
</tr>
<tr>
<td>sys.rqScriptDrop procedure</td>
<td>A-17</td>
</tr>
</tbody>
</table>

T

<table>
<thead>
<tr>
<th>table functions</th>
<th>6-46</th>
</tr>
</thead>
<tbody>
<tr>
<td>tables</td>
<td>creating a database</td>
</tr>
<tr>
<td></td>
<td>dropping a database</td>
</tr>
<tr>
<td></td>
<td>making visible in R</td>
</tr>
<tr>
<td></td>
<td>proxy objects for</td>
</tr>
<tr>
<td>tally function</td>
<td>description</td>
</tr>
<tr>
<td></td>
<td>example</td>
</tr>
<tr>
<td>text processing</td>
<td>4-14</td>
</tr>
<tr>
<td>third-party packages</td>
<td>3-72, 6-5</td>
</tr>
<tr>
<td>transform function</td>
<td>examples of</td>
</tr>
<tr>
<td>transmute function</td>
<td>description</td>
</tr>
<tr>
<td></td>
<td>example of</td>
</tr>
</tbody>
</table>

transmute_ function (continued)

<table>
<thead>
<tr>
<th>transparency layer</th>
<th>1-2, 1-6, 2-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ts function</td>
<td>3-16</td>
</tr>
<tr>
<td>TTR package</td>
<td>3-31</td>
</tr>
</tbody>
</table>

U

<table>
<thead>
<tr>
<th>ungroup function</th>
<th>description</th>
<th>3-52</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>examples</td>
<td>3-52</td>
</tr>
<tr>
<td>unique function</td>
<td>3-16</td>
<td></td>
</tr>
<tr>
<td>use.keys argument to ore.sync</td>
<td>2-7</td>
<td></td>
</tr>
<tr>
<td>USER_RQ_DATASTORE_PRIVS view</td>
<td>B-3</td>
<td></td>
</tr>
<tr>
<td>USER_RQ_DATASTORES view</td>
<td>B-4</td>
<td></td>
</tr>
<tr>
<td>USER_RQ_SCRIPT_PRIVS view</td>
<td>B-5</td>
<td></td>
</tr>
<tr>
<td>USER_RQ_SCRIPTS view</td>
<td>B-5</td>
<td></td>
</tr>
</tbody>
</table>

V

<table>
<thead>
<tr>
<th>views</th>
<th>B-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL_RQ_DATASTORES</td>
<td>B-2</td>
</tr>
<tr>
<td>ALL_RQ_SCRIPTS</td>
<td>B-2</td>
</tr>
<tr>
<td>making visible in R</td>
<td>2-5</td>
</tr>
<tr>
<td>RQUSER_DATASTORECONTENTS</td>
<td>B-3</td>
</tr>
<tr>
<td>RQUSER_DATASTORELIST</td>
<td>B-3</td>
</tr>
<tr>
<td>USER_RQ_DATASTORE_PRIVS</td>
<td>B-3</td>
</tr>
<tr>
<td>USER_RQ_DATASTORES</td>
<td>B-4</td>
</tr>
<tr>
<td>USER_RQ_SCRIPT_PRIVS</td>
<td>B-5</td>
</tr>
<tr>
<td>USER_RQ_SCRIPTS</td>
<td>B-5</td>
</tr>
</tbody>
</table>

W

<table>
<thead>
<tr>
<th>wallets, Oracle</th>
<th>2-27, 2-28</th>
</tr>
</thead>
<tbody>
<tr>
<td>window functions</td>
<td>3-16</td>
</tr>
</tbody>
</table>