
Oracle® Service Architecture
Leveraging Tuxedo (SALT)
Configuration Guide

Release 22c
G11153-04
March 2025

Oracle Service Architecture Leveraging Tuxedo (SALT) Configuration Guide, Release 22c

G11153-04

Copyright © 1996, 2025, Oracle and/or its affiliates.

Primary Authors: Priya Pathak, Tulika Das

Contributors: Maggie Li

Contents

1 Configuring a SALT Application

1.1 Configuring Oracle Tuxedo Web Services 1-1

1.1.1 Using Oracle Tuxedo Service Metadata Repository for SALT 1-1

1.1.1.1 Defining Service-Level Keywords for SALT 1-2

1.1.1.2 Defining Service Parameters for SALT 1-7

1.1.2 Configuring Native Oracle Tuxedo Services 1-10

1.1.2.1 Creating a Native WSDF 1-10

1.1.2.2 Using WS-Policy Files 1-14

1.1.2.3 Generating a WSDL File from a Native WSDF 1-15

1.1.2.4 Using Oracle Tuxedo Version-Based Routing (Inbound) 1-16

1.1.3 Configuring External Web Services 1-16

1.1.3.1 Web Console SALT Configuration 1-16

1.1.3.2 Manual SALT Configuration 1-17

1.1.3.3 Using Oracle Tuxedo Version-Based Routing (Outbound) 1-23

1.1.4 Configuring Multiple Bindings 1-23

1.1.4.1 SALT Inbound Services 1-23

1.1.4.2 SALT Outbound Services 1-24

1.1.5 Creating the SALT Deployment File 1-24

1.1.5.1 Importing the WSDF Files 1-24

1.1.5.2 Configuring the GWWS Servers 1-24

1.1.5.3 Configuring JWT Authentication and Customizing Error Messages 1-28

1.1.5.4 Configuring System-Level Resources 1-37

1.1.6 Configuring Advanced Web Service Messaging Features 1-39

1.1.6.1 Web Service Addressing 1-39

1.1.6.2 Web Service Reliable Messaging 1-41

1.1.6.3 Message Transmission Optimization Mechanism (MTOM) 1-43

1.1.7 Configuring Security Features 1-43

1.1.7.1 Configuring Transport-Level Security 1-43

1.1.7.2 Configuring Message-Level Web Service Security 1-45

1.1.7.3 Configuring SAML Single Sign-On 1-47

1.1.7.4 Configuring X.509-Based Authentication 1-52

1.1.8 Compiling SALT Configuration 1-58

1.1.9 Configuring the UBBCONFIG File for SALT 1-58

iii

1.1.9.1 Configuring the TMMETADATA Server in the *SERVERS Section 1-59

1.1.9.2 Configuring the GWWS Servers in the *SERVERS Section 1-59

1.1.9.3 Updating System Limitations in the UBBCONFIG File 1-60

1.1.9.4 Configuring Certificate Password Phrase For the GWWS Servers 1-61

1.1.9.5 Configuring Oracle Tuxedo Authentication for Web Service Clients 1-62

1.1.9.6 Configuring Oracle Tuxedo Security Level for Outbound HTTP Basic
Authentication 1-62

1.1.10 Configuring SALT In Oracle Tuxedo MP Mode 1-63

1.1.11 Migrating from SALT 1.1 1-63

1.1.11.1 Running GWWS servers with SALT 1.1 Configuration File 1-63

1.1.11.2 Adopting SALT 2.0 Configuration Style by Converting SALT 1.1
Configuration File 1-64

1.2 Configuring Service Contract Discovery 1-65

1.2.1 tpforward Support 1-66

1.2.2 Service Contract Text File Output 1-66

1.2.2.1 Examples 1-68

1.3 Configuring SALT WS-TX Support 1-69

1.3.1 Configuring Transaction Log Device 1-69

1.3.2 Registration Protocol 1-70

1.3.3 Configuring WS-TX Transactions 1-70

1.3.3.1 Configuring Incoming Transactions 1-71

1.3.3.2 Configuring Outbound Transactions 1-71

1.3.4 Configuring Maximum Number of Transactions 1-72

1.3.5 Configuring Policy Assertions 1-72

1.3.5.1 Policy.xml File 1-73

1.3.6 WSDL Generation 1-73

1.3.7 WSDL Conversion 1-74

1.4 Viewing and Modifying SALT Configuration 1-74

1.5 SALT Mainframe Transaction Publisher 1-74

1.5.1 Overview 1-74

1.5.2 Configuration 1-74

1.5.2.1 Command-Line 1-75

1.5.3 SOAP Inbound (Mainframe Transactions Exposed As A Web Service) 1-75

1.5.4 REST Inbound 1-77

1.5.5 SOAP Outbound (Mainframe Invoking An External Web Service) 1-78

1.5.6 REST Outbound 1-79

2 MIB Class Interface

2.1 T_WSRELOAD Class 2-1

2.2 T_WSGW Class 2-2

2.2.1 Attribute Semantics 2-4

2.3 T_WSWEBSERVICE Class 2-8

iv

2.3.1 Attribute Semantics 2-8

2.4 T_WSBINDING Class 2-9

2.4.1 Attribute Semantics 2-10

2.5 T_WSOPERATION Class 2-11

2.5.1 Attribute Semantics 2-12

2.6 T_WSHTTPSERVICE Class 2-15

2.6.1 Attribute Semantics 2-16

2.7 T_WSTRANSACTION Class 2-18

2.7.1 Attribute Semantics 2-19

3 Security

3.1 Configuring Configuration Tool Security 3-1

v

1
Configuring a SALT Application

This chapter contains the following topics:

• Configuring Oracle Tuxedo Web Services

• Configuring Service Contract Discovery

• Configuring SALT WS-TX Support

• Viewing and Modifying SALT Configuration

• SALT Mainframe Transaction Publisher

1.1 Configuring Oracle Tuxedo Web Services
This section contains the following topics:

• Using Oracle Tuxedo Service Metadata Repository for SALT

• Configuring Native Oracle Tuxedo Services

• Configuring External Web Services

• Configuring Multiple Bindings

• Creating the SALT Deployment File

• Configuring Advanced Web Service Messaging Features

• Configuring Security Features

• Compiling SALT Configuration

• Configuring the UBBCONFIG File for SALT

• Configuring SALT In Oracle Tuxedo MP Mode

• Migrating from SALT 1.1

1.1.1 Using Oracle Tuxedo Service Metadata Repository for SALT
SALT leverages the Oracle Tuxedo Service Metadata Repository to define service contract
information for both existing Oracle Tuxedo services and SALT proxy services. Service
contract information for all listed Oracle Tuxedo services is obtained by accessing the Oracle
Tuxedo Service Metadata Repository system service provided by the local Oracle Tuxedo
domain. Typically, SALT calls the TMMETADATA system as follows:

• During GWWS server run-time.
SALT calls the Oracle Tuxedo Service Metadata Repository to retrieve necessary Oracle
Tuxedo service definitions at the appropriate time.

• When tmwsdlgen generates a WSDL file.
SALT calls the Oracle Tuxedo Service Metadata Repository to retrieve necessary Oracle
Tuxedo service definitions and converts them to the WSDL description.

The following topics provide SALT-specific usage of Oracle Tuxedo Service Metadata
Repository keywords and parameters:

1-1

https://docs.oracle.com/en/database/oracle/tuxedo/22/otxcg/managing-oracle-tuxedo-service-metadata-repository.html#GUID-6EED65BF-17B7-4ADA-A6CA-FEF3DD236598
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/index.html

• Defining Service-Level Keywords for SALT

• Defining Service Parameters for SALT

1.1.1.1 Defining Service-Level Keywords for SALT
The following table lists Oracle Tuxedo Service Metadata Repository service-level keywords
used and interpreted by SALT.

Note:

Metadata Repository service-level keywords that are not listed have no relevance to
SALT and are ignored when SALT components load the Oracle Tuxedo Service
Metadata Repository.

Table 1-1 SALT Usage of Service-Level Keywords in Oracle Tuxedo Service Metadata
Repository

Service-Level Keyword SALT Usage

service The unique key value of the service. This value is
referenced in the SALT WSDF file.
For native Oracle Tuxedo services, this value can
be the same as the Oracle Tuxedo advertised
service name, or an alias name different from the
actual Oracle Tuxedo advertised service name.

For SALT proxy services, this value typically is the
Web service operation local name.

servicemode Determines the service mode (i.e., native Oracle
Tuxedo service or SALT proxy service).

The valid values are:

• tuxedo
Represents a native Oracle Tuxedo service

• webservice
Represents aSALT proxy service (i.e., a
service definition converted from a
wsdl:operation).

Do not use “webservice” to define a native Oracle
Tuxedo service. This value is always used to define
services converted from external Web services.

tuxservice The actual Oracle Tuxedo advertised service
name. If no value is specified, then the value is the
same as the value in the service keyword.
For native Oracle Tuxedo services, SALT invokes
the Oracle Tuxedo services defined using this
keyword.

For SALT proxy service, GWWS server advertises
the service name using this keyword value.

Chapter 1
Configuring Oracle Tuxedo Web Services

1-2

Table 1-1 (Cont.) SALT Usage of Service-Level Keywords in Oracle Tuxedo Service
Metadata Repository

Service-Level Keyword SALT Usage

servicetype Determines the service message exchange pattern
for the specified Oracle Tuxedo service.
The following values specify mapping rules
between the Oracle Tuxedo service types and the
Web Service message exchange pattern (MEP):

• service
Corresponds to request-response MEP.

• oneway
Corresponds to oneway request MEP.

• queue
Corresponds to request-response MEP.

inbuf Specifies the input buffer (request buffer), type for
the service.
For native Oracle Tuxedo services, the value can
be any Oracle Tuxedo typed buffers. The following
values are Oracle Tuxedo reserved buffer types:

STRING, CARRAY, XML, MBSTRING, VIEW,
VIEW32, FML, FML32, X_C_TYPE, X_COMMON,
X_OCTET, NULL (input buffer is empty)

Note:

The value is case
sensitive, if inbuf
specifies any
buffertype other than
the above mentioned
buffer types, the
buffer is treated as a
custom buffer type.

For SALT proxy services, the value is always
FML32.

Chapter 1
Configuring Oracle Tuxedo Web Services

1-3

Table 1-1 (Cont.) SALT Usage of Service-Level Keywords in Oracle Tuxedo Service
Metadata Repository

Service-Level Keyword SALT Usage

outbuf Specifies the output buffer (response buffer with
TPSUCCESS), type for the service.
For native Oracle Tuxedo services, the value can
be any Oracle Tuxedo typed buffer. The following
values are Oracle Tuxedo reserved buffer types:

STRING, CARRAY, XML, MBSTRING, VIEW,
VIEW32, FML, FML32, X_C_TYPE, X_COMMON,
X_OCTET, NULL (input buffer is empty)

Note:

The value is case
sensitive, if outbuf
specifies any buffer
type other than the
above mentioned
buffer types, the
buffer is treated as a
custom buffer type.

For SALT proxy services, the value is always
FML32.

errbuf Specifies the error buffer type(response buffer with
TPFAIL),for the service.
For native Oracle Tuxedo services, the value can
be any Oracle Tuxedo typed buffer. The following
values are Oracle Tuxedo reserved buffer types:

STRING, CARRAY, XML, MBSTRING, VIEW,
VIEW32, FML, FML32, X_C_TYPE, X_COMMON,
X_OCTET, NULL (input buffer is empty).

Note:

The value is case
sensitive, if errbuf
specifies any buffer
type other than the
above mentioned
buffer types, the
buffer is treated as a
custom buffer type.

For SALT proxy services, the value is always
FML32.

Chapter 1
Configuring Oracle Tuxedo Web Services

1-4

Table 1-1 (Cont.) SALT Usage of Service-Level Keywords in Oracle Tuxedo Service
Metadata Repository

Service-Level Keyword SALT Usage

inview Specifies the view name used by the service for
the following input buffer types:
VIEW, VIEW32, X_C_TYPE, X_COMMON
SALT requires that you specify the view name
rather than accept the default inview setting.

Note:

This keyword is for
native Oracle Tuxedo
services only.

outview Specifies the view name used by the service for
the following output buffer types:
VIEW, VIEW32, X_C_TYPE, X_COMMON
SALT requires that you specify the view name
rather than accept the default outview setting.

Note:

This keyword is for
native Oracle Tuxedo
services only.

errview Specifies the view name used by the service for
the following error buffer types:
VIEW, VIEW32, X_C_TYPE, X_COMMON
SALT requires that you specify the view name
rather than accept the default errview setting.

Note:

This keyword is for
native Oracle Tuxedo
services only.

Chapter 1
Configuring Oracle Tuxedo Web Services

1-5

Table 1-1 (Cont.) SALT Usage of Service-Level Keywords in Oracle Tuxedo Service
Metadata Repository

Service-Level Keyword SALT Usage

inbufschema Specifies external XML Schema elements
associated with the service input buffer. If this
value is specified, SALT incorporates the external
schema in the generated WSDL to replace the
default data type mapping rule for the service input
buffer.

Note:

This keyword is for
native Oracle Tuxedo
services only.

outbufschema Specifies external XML Schema elements
associated with the service output buffer. If this
value is specified, SALT incorporates the external
schema in the generated WSDL to replace the
default data type mapping rule for the service
output buffer.

Note:

This keyword is for
native Oracle Tuxedo
services only.

errbufschema Specifies external XML Schema elements
associated with the service error buffer. If this value
is specified, SALT incorporates the external
schema in the generated WSDL to replace the
default data type mapping rule for the service error
buffer.

Note:

This keyword is for
native Oracle Tuxedo
services only.

Chapter 1
Configuring Oracle Tuxedo Web Services

1-6

Table 1-1 (Cont.) SALT Usage of Service-Level Keywords in Oracle Tuxedo Service
Metadata Repository

Service-Level Keyword SALT Usage

RECORD Oracle Tuxedo RECORD typed buffers can
describe COBOL copybook information.
Generated COBOL types:

• RECORD
• COMP-2
• S9(18)
• 9(18)
• S9(9)
• 9(9)
• S9(4)
• S9(10)V9(10)
• X(1024)
• @binary=true

inrecord Specifies the record name used by the service for
the following input buffer types: RECORD. Oracle
SALT requires that you specify the record name
rather than accept the default in record setting.
This keyword is for native Tuxedo services only.

outrecord Specifies the record name used by the service for
the following output buffer types: RECORD. Oracle
SALT requires that you specify the record name
rather than accept the default outrecord setting.
This keyword is for native Tuxedo services only.

errrecord Specifies the record name used by the service for
the following error buffer types: RECORD. Oracle
SALT requires that you specify the record name
rather than accept the default errrecord setting.
This keyword is for native Tuxedo services only.

1.1.1.2 Defining Service Parameters for SALT
The Oracle Tuxedo Service Metadata Repository interprets parameters as sub-elements
encapsulated in an Oracle Tuxedo service typed buffer. Each parameter can have its own data
type, occurrences in the buffer, size restrictions, and other Oracle Tuxedo-specific restrictions.

Chapter 1
Configuring Oracle Tuxedo Web Services

1-7

Note:

• VIEW, VIEW32, X_C_TYPE, or X_COMMON typed buffers
Each parameter of the buffer should represent a VIEW/VIEW32 structure member.

• FML or FML32 typed buffers
Each buffer parameter should represent an FML/FML32 field element that may be
present in the buffer.

• STRING, CARRAY, XML, MBSTRING, and X_OCTET typed buffers
Oracle Tuxedo treats these buffers uniformly. At most, one parameter is
permitted for the buffer to define restrictions (such as buffer size threshold).

• Custom typed buffers
Parameters that facilitate describing details about the buffer type.

• FML32 typed buffersthat support embedded VIEW32 and FML32 buffers
Embedded parameters provide support.

• View32 typed buffers that support embedded VIEW32 buffers
Embedded parameters provide support.

The following table lists the Oracle Tuxedo Service Metadata Repository parameter-level
keywords used and interpreted by SALT.

Note:

Metadata Repository parameter-level keywords that are not listed have no relevance
to SALT and are ignored when SALT components load the Oracle Tuxedo Service
Metadata Repository.

Table 1-2 SALT Usage of Parameter-Level Keyword in Oracle Tuxedo Service Metadata
Repository

Parameter-level Keyword SALT Usage

param Specifies the parameter name.
• VIEW,VIEW32,X_C_TYPE,or X_COMMON

Specifies the view structure member name in
the param keyword.

• FML,FML32
Specifies the FML/FML32 field name in the
param keyword.

• STRING,CARRAY, XML, MBSTRING,or
X_OCTET

SALT ignores the parameter definitions.

type Specifies the data type of the parameter. Note:
SALT does not support dec_t and ptr data types.

Chapter 1
Configuring Oracle Tuxedo Web Services

1-8

Table 1-2 (Cont.) SALT Usage of Parameter-Level Keyword in Oracle Tuxedo Service
Metadata Repository

Parameter-level Keyword SALT Usage

subtype Specifies the view structure name if the parameter
type is view32. For any other typed parameter,
SALT ignores this value.

Note:

SALT requires this
value if the
parameter type is
view32

This keyword is for native Oracle Tuxedo service
only.

access The general definition applies for this parameter. To
support an Oracle Tuxedo TPFAIL scenario, the
access attribute value has been enhanced.
Original values: in, out, inout, noaccess.

New added values: err, inerr, outerr,
inouterr.

count The general definition applies for this parameter.
For SALT, the value for the count parameter must
be greater than or equal to requiredcount.

requiredcount The general definition applies for this parameter.
The default is 1. For SALT, the value for the count
parameter must be greater than or equal to
requiredcount.

size This optional keyword restricts the maximum byte
length of the parameter. It is only valid for the
following parameter types:
STRING, CARRAY, XML, and MBSTRING
If this keyword is not set, there is no maximum byte
length restriction for this parameter.

The value range is [0, 2147483647]
paramschema Specifies the corresponding XML Schema element

name of the parameter. It is generated by the SALT
WSDL converter. This keyword is for SALT proxy
service only. Do not specify this keyword for native
Oracle Tuxedo services.

primetype Specifies the corresponding XML primitive data
type of the parameter. It is generated by SALT
WSDL converter according to SALT pre-defined
XML-to-Tuxedo data type mapping rules. This
keyword is for SALT proxy service only. Do not
specify this keyword for native Oracle Tuxedo
services.

Chapter 1
Configuring Oracle Tuxedo Web Services

1-9

Table 1-2 (Cont.) SALT Usage of Parameter-Level Keyword in Oracle Tuxedo Service
Metadata Repository

Parameter-level Keyword SALT Usage

RECORD Oracle Tuxedo RECORD typed buffers can
describe COBOL copybook information.
Generated COBOL types:

• RECORD
• COMP-1
• COMP-2
• S9(18)
• 9(18)
• S9(9)
• 9(9)
• S9(4)
• S9(10)V9(10)
• X(1024)
• @binary=true

inheader Retrieved from the SOAP header portion of the
SOAP envelope message received. Message can
be a request (native Tuxedo service) or reply
(external web service call).

outheader Added to the SOAP header portion of the SOAP
envelope message sent. Message can be a reply
(native Tuxedo service) or request (external web
service call).

inoutheader Combination of inheader and outheader.This
parameter is both added to and retrieved from the
SOAP header portion of the SOAP message.

1.1.2 Configuring Native Oracle Tuxedo Services
This section describes the required and optional configuration tasks for exposing native Oracle
Tuxedo services as Web services:

• Creating a Native WSDF

• Using WS-Policy Files

• Generating a WSDL File from a Native WSDF

• Using Oracle Tuxedo Version-Based Routing (Inbound)

1.1.2.1 Creating a Native WSDF
To expose a set of Oracle Tuxedo services as Web services through one or more HTTP/S
endpoints, a native WSDF must be defined.

Each native WSDF must be defined with a unique WSDF name. A WSDF can define one or more
<WSBinding> elements for more Web service application details (such as SOAP protocol
details, the Oracle Tuxedo service list to be exposed as web service operations, and so on).

This section contains the following topics:

• Defining the SOAP Header

Chapter 1
Configuring Oracle Tuxedo Web Services

1-10

• Configuration Mode

• Defining WSBinding Object

• Defining Service Object

• Configuring Message Conversion Handler

1.1.2.1.1 Defining the SOAP Header
The mapsoapheader attribute is used to configure SOAP headers. It defines an FML32 field that
represents the SOAP header. It is TA_WS_SOAP_HEADER STRING type.

Note:

The mapsoapheader attribute It is defined in wssoapflds.h file shipped with SALT.

Following is an example of SOAP header definition:

Example 1-1 SOAP Header Definition

<Definition ...>
<WSBinding id="simpapp_binding">
<Servicegroup id="simpapp">
<Service name="toupper">
<Property name="mapsoapheader" value="true" />
</Service>
</Servicegroup>
....
</WSBinding>
</Definition>

The mapsoapheader attribute default value is "false" which indicates the GWWS does not
execute mapping between the SOAP header and FML fields.

If mapsoapheader is set to true, the mapping behavior is as follows for inbound and outbound
services:

• Inbound
For inbound services, the GWWS translates the SOAP header as shown in the example
below:

Example 1-2 GWWS Soap Header Translation

<cup:SoapHeader xmlns:cup='http://www.xxx.com/soa/esb/message/1_0'>
<cup:Head>
<cup:Name>xxx</cup:Name>
<cup:Value>xxx</cup:Value>
</cup:Head>
</cup:SoapHeader>

The string buffer is assigned to the TA_WS_SOAP_HEADER field and injects the target FML32
buffer. If the target buffer type is not FML32, the translation will not take effect.

• Out Bound

Chapter 1
Configuring Oracle Tuxedo Web Services

1-11

For outbound services, the GWWS receives the TA_WS_SOAP_HEADER from the request
buffer and places it in the SOAP header when the SOAP package is composed.

1.1.2.1.2 Configuration Mode
This mode requires the property headerMapping be set to true in the WSDF entry, at the
service level as shown in in the example below:

Example 1-3 Configuration Mode

<?xml version="1.0" encoding="UTF-8"?>
<wsdf:Definition xmlns:wsdf="http://www.bea.com/Tuxedo/WSDF/2007"
name="TuxAll" wsdlNamespace="urn:TuxAll.wsdl">
<wsdf:WSBinding id="TuxAll_Binding">
<wsdf:Servicegroup id="TuxAll_PortType">
<wsdf:Service name="strmap_val003"/>
<Property name="headerMapping" value="true"/>
</wsdf:Service>
</wsdf:Servicegroup>
<wsdf:SOAP>
<wsdf:AccessingPoints>
<wsdf:Endpoint address="http://localhost:12438/TuxAll"
id="TuxAll_TuxAll_HTTPPort"></wsdf:Endpoint>
<wsdf:Endpoint address="https://localhost:12448/TuxAll"
id="TuxAll_TuxAll_HTTPSPort"></wsdf:Endpoint>
</wsdf:AccessingPoints>
</wsdf:SOAP>
</wsdf:WSBinding>
</wsdf:Definition>

1.1.2.1.3 Defining WSBinding Object
Each WSBinding object is defined using the <WSBinding> element. Each WSBinding object
must be defined with a unique WSBinding id within the WSDF. The WSBinding id is a required
indicator for the SALTDEPLOY file reference used by the GWWS.

Each WSBinding object can be associated with SOAP protocol details by using the <SOAP>
sub- element. By default, SOAP 1.1, document/literal styled SOAP messages are applied to
the WSBinding object.

The example below shows how SOAP protocol details are redefined using the <SOAP> sub-
element.

Example 1-4 Defining SOAP Protocol Details for a WSBinding

<Definition ...>
 <WSBinding id="simpapp_binding">
 <Servicegroup id="simpapp">
 <Service name="toupper" />
 <Service name="tolower" />
 </Servicegroup>
 <SOAP version=”1.2” style=”rpc” use=”encoded”>
 <AccessingPoints>
 ...
 </AccessingPoints>
 </SOAP>

Chapter 1
Configuring Oracle Tuxedo Web Services

1-12

 </WSBinding>
</Definition>

Within the <SOAP> element, a set of access endpoints can be specified. The URL value of
these access endpoints are used by corresponding GWWS servers to create the listen HTTP/S
protocol port. It is recommended to specify one HTTP and HTTPS endpoint (at most), for each
GWWS server for an inbound WSBinding object.

Each WSBinding object must be defined with a group of Oracle Tuxedo services using the
<Servicegroup> sub-element. Each <Service> element under <Servicegroup> represents an
Oracle Tuxedo service that can be accessed from a Web service client.

1.1.2.1.4 Defining Service Object
Each service object is defined using the <Service> element. Each service must be specified
with the “name” attribute to indicate which Oracle Tuxedo service is exposed. Usually, the “name”
value is used as the key value for obtaining Oracle Tuxedo service contract information from
the Oracle Tuxedo Service Metadata Repository.

The following example shows how a group of services are defined for WSBinding:

Example 1-5 Defining a Group of Services for a WSBinding

<Definition ...>
 <WSBinding id="simpapp_binding">
 <Servicegroup id="simpapp">
 <Service name="toupper" />
 <Service name="tolower" />
 </Servicegroup>
 ...
 </WSBinding>
</Definition>

1.1.2.1.5 Configuring Message Conversion Handler
You can create your own plug-in functions to customize SOAP XML payloads and Oracle
Tuxedo typed buffer conversion routines. For more information, see Using SALT Plug-ins in
SALT Programming Web Services and Configuring Plug-in Libraries

Once a plug-in is created and configured, it can be referenced using the <service> element to
specify user-defined data mapping rules for that service. The <Msghandler> element can be
defined at the message level (<Input>, <Output> or<Fault>) to specify which implementation
of “P_CUSTOM_TYPE” category plug-in should be used to do the message conversion. The
<Msghandler> element content is the Plug-in name.

The following example shows a service that uses the MBCONV custom plug-in to convert input
and XMLCONV custom plug-in to convert output.

Example 1-6 Configuring Message Conversion Handler for a Service

<Definition ...>
 <WSBinding id="simpapp_binding">
 <Servicegroup id="simpapp">
 <Service name="toupper" >
 <Input>
 <Msghandler>MBCONV</Msghandler>

Chapter 1
Configuring Oracle Tuxedo Web Services

1-13

https://docs.oracle.com/cd/E72452_01/salt/docs1222/config/config.html

 </Input>
 <Output>
 <Msghandler>XMLCONV</Msghandler>
 </Output>
 </Service>
 </Servicegroup>
 ...
 </WSBinding>
</Definition>

1.1.2.2 Using WS-Policy Files
Advanced Web service features can be enabled by configuring WS-Policy files (for example,
Reliable Messaging and Web Service Message-Level Security). You may need to create WS-
Policy files to use these features. The Web Service Policy Framework specifications Web
Service Policy Framework specifications provides a general purpose model and syntax to
describe and communicate the policies of a Web Service.

To use WS-Policy files, the <Policy> element should be defined in the WSDF to incorporate
these separate WS-Policy files. The location attribute is used to specify the policy file path;
both abstract and relative file path are allowed. The use attribute is optionally used by
message-level assertion policy files to specify the applied messages, request (input) message,
response (output) message, fault message, or the combination of the three.

There are two different sub-elements in the WSDF that reference WS-Policy files:

• <Servicegroup>

– If a WS-Policy file consists of Web Service Endpoint-level Assertions (for example,
Reliable Messaging Assertion), the WS-Policy file applies to all endpoints serving the
<Servicegroup> element

– If a WS-Policy file consists of Web Service Operation-level Assertions (for example,
Security Identity Assertion), the WS-Policy file applies to all services listed in the
<Servicegroup> element.

– If a WS-Policy file consists of Web Service Message level Assertions (for example,
Security SignedParts Assertion), the WS-Policy file applies to input, output and/or fault
messages of all services listed in the <Servicegroup> element.

Note:

only supports request message-level assertions for the current release. You
must only specify use=”input” for message=level assertion policy files.

• <Service>

– If a WS-Policy file consists of Web Service Operation-level Assertions (for example,
Security Identity Assertion), the WS-Policy file applies to this particular service.

– If a WS-Policy file consists of Web Service Message-level Assertions, (for example,
Security SignedParts Assertion), the WS-Policy file applies to input, output and/or fault
messages of this particular service.

Chapter 1
Configuring Oracle Tuxedo Web Services

1-14

https://www.w3.org/submissions/2006/SUBM-WS-Policy-20060425/
https://www.w3.org/submissions/2006/SUBM-WS-Policy-20060425/

Note:

SALT only supports request message-level assertions for the current release.
You must specify use=”input” for message-level assertion policy files.

SALT provides some pre-packaged WS-Policy files for most frequently used cases. These WS-
Policy files are located under directory $TUXDIR/udataobj/salt/policy. These files can be
referenced using location=”salt:<policy_file_name>”

Following is an example of a sample of using WS-Policy Files in the native WSDF file.

Example 1-7 A Sample of Defining WS-Policy Files in the WSDF File

<Definition ...>
 <WSBinding id="simpapp_binding">
 <Servicegroup id="simpapp">
 <Policy location=”./endpoint_policy.xml” />
 <Policy location=”/usr/resc/all_input_msg_policy.xml” use=”input” />
 <Service name="toupper">
 <Policy location=”service_policy.xml” />
 <Policy location=”/usr/resc/input_message_policy.xml”
 use=”input” />
 </Service>
 <Service name="tolower" />
 </Servicegroup>

 </WSBinding>
</Definition>

For more information, see Specifying the Reliable Messaging Policy File in the WSDF File and
Using WS-Security Policy Files

1.1.2.3 Generating a WSDL File from a Native WSDF
Once an Oracle Tuxedo native WSDF is created, the corresponding WSDL file can be
generated using the SALT WSDL generation utility, tmwsdlgen. The following example
command generates a WSDL file named “app1.wsdl” from a given WSDF named “app1.wsdf”:

tmwsdlgen -c app1.wsdf -o app1.wsdl

Note:

Before executing tmwsdlgen, the TUXCONFIG environment variable must be set
correctly and the relevant Oracle Tuxedo application using TMMETADATA must be
booted.

You can optionally specify the output WSDL file name using the ‘-o’ option. Otherwise,
tmwsdlgen creates a default WSDL file named “tuxedo.wsdl”.

If the native WSDF file contains Oracle Tuxedo services that use CARRAY buffers, you can
specify tmwsdlgen options to generate different styled WSDL files for CARRAY buffer mapping.
By default, CARRAY buffers are mapped as xsd:base64Binary XML data types in the SOAP

Chapter 1
Configuring Oracle Tuxedo Web Services

1-15

message. For more information, see Data Type Mapping and Message Conversion in SALT
Programming Web Services and tmwsdlgen in the SALT Reference Guide.

1.1.2.4 Using Oracle Tuxedo Version-Based Routing (Inbound)
Using Oracle Tuxedo version-based routing with Oracle Tuxedo services exposed as Web
services involves the following:

• GWWS gets REQUEST_VERSION and VERSION_RANGE from the UBBCONFIG file.

• Calling service with request version

• If different settings are needed (such as specific traffic from specific gateway to be routed
to specific services), another gateway instance can be configured in a group with different
REQUEST_VERSION value and started for this.

Following is an example where GWWS inherits a request version "1" from its UBBCONFIG
settings, and therefore exposes services that are advertised by Oracle Tuxedo application
servers which include "1" in their VERSION_RANGE settings (such as GROUP1 here). If a service
exposed by GWWS is actually performed by a server in GROUP2, the result is a TPENOENT error
forwarded to the remote Web Services client.

Example 1-8 Using Tuxedo Version Based Routing with Tuxedo Services Exposed as
Web Services

...
GROUP1
LMID=L1 GRPNO=2 VERSION_RANGE="1-2"
GROUP2
LMID=L1 GRPNO=2 VERSION_RANGE="3-4"
GWWS_GRP
LMID=L1 GRPNO=3 REQUEST_VERSION=1
...
|mySERVER SRVGRP=GROUP2 SRVID=30
...
GWWS SRVGRP=GWWS_GRP SRVID=30
...

1.1.3 Configuring External Web Services
You can configure external web service via SALT web console or manually.

This section contains the following topics:

• Web Console SALT Configuration

• Manual SALT Configuration

• Using Oracle Tuxedo Version-Based Routing (Outbound)

1.1.3.1 Web Console SALT Configuration
A web console is a GUI based SALT configuration tool. One of its features is to import external
web services by providing a WSDL file.

The WSDL file is provided as input to the "Import External Web Services" in the SALT web
console main web page. The input file can exists locally from where the web console is
launched or on the server (remote) where the GWWS server is actively running.

Chapter 1
Configuring Oracle Tuxedo Web Services

1-16

The GWWS Server upon receiving the WSDL file uses the wsdlcvt tool to generate the
following files corresponding to their extensions in the APPDIR directory:

wsdlcvt -y -f -i <input_WSDL_file> -o <base_name>
XSD - XML schema file.

MIF - Metadata repository file.

FML32 - FML32 field table file.

WSDF - Non-native WSDF file.

Note:

Please note that the user has to just input the WSDL file the above files are
generated internally by the GWWS server without the intervention of the user.

After the files are successful generated, the user has to then set the following environment
variables in the APPDIR directory

FLDTBLDIR32
FIELDTBLS32
XSDDIR
XSDFILES
The GWWS server reloads the Service Metadata Repository and the SALT configuration file
(SALTCONFIG) with the new services/operations and Bindings that were imported from the
WSDL file.

The web services that were imported are displayed in the SALT web console main page under
the "Imported Web Services" section. For more information, see.

1.1.3.2 Manual SALT Configuration
This section contains the following topics:

• Converting a WSDL File into Oracle Tuxedo Definitions

• WSDL-to-Tuxedo Service Metadata Keyword Mapping

• WSDL-to-WSDF Mapping

• Post Conversion Tasks

1.1.3.2.1 Converting a WSDL File into Oracle Tuxedo Definitions
SALT provides a WSDL conversion command utility to convert external WSDL files into Oracle
Tuxedo definitions. The WSDL file is converted using Extensible Stylesheet Language
Transformations (XSLT) technology. Apache Xalan Java 2.7.0 is bundled in the SALT
installation package and is used as the default XSLT toolkit.

The SALT WSDL converter is composed of two parts:

• The xsl files, which process the WSDL file.

Chapter 1
Configuring Oracle Tuxedo Web Services

1-17

• The command utility, wsdlcvt<WSDF>, invokes the Xalan toolkit. This wrapper script
provides a user friendly WSDL Converter interface.

The following sample command converts an external WSDL file and generates Oracle Tuxedo
definition files.

wsdlcvt -i GoogleSearch.wsdl -o GSearch
The following table lists the Oracle Tuxedo definition files generated by SALT WSDL Converter.

Table 1-3 Tuxedo Definition Files generated by SALT WSDL Converter

Generated File Description

Oracle Tuxedo Service Metadata Repository input
file

SALT WSDL Converter converts each
wsdl:operation to a Oracle Tuxedo service
metadata syntax compliant service called SALT
proxy service. SALT proxy services are advertised
by GWWS servers to accept ATMI calls from Oracle
Tuxedo applications.

FML32 field table definition file SALT maps each wsdl:message to an Oracle
Tuxedo FML32 typed buffer. The SALT WSDL
Converter decomposes XML Schema of each
message and maps each basic XML snippet as an
FML32 field. The generated FML32 fields are
defined in a definition table file, and the field name
equals to the XML element local name by default.
To access an SALT proxy service, Oracle Tuxedo
applications must refer to the generated FML32
fields to handle the request and response
message. FML32 environment variables must be
set accordingly so that both Oracle Tuxedo
applications and GWWS servers can map between
field names and field identifier values.

Note:

You may want to re-
define the generated
field names due to
field name conflict or
some other reason.
In that case, both
Oracle Tuxedo
Service Metadata
Definition input file
and FML32 field table
definition file must be
changed accordantly.
For more information,
see Resolving
Naming Conflict For
the Generated SALT
Proxy Service
Definitions

Chapter 1
Configuring Oracle Tuxedo Web Services

1-18

Table 1-3 (Cont.) Tuxedo Definition Files generated by SALT WSDL Converter

Generated File Description

Non-native WSDF file SALT WSDL Converter converts the WSDL file into
a WSDF file, which can be deployed to GWWS
servers in the SALT deployment file for outbound
direction. The generated WSDF file is anon-native
WSDF file.

Note:

Please do not deploy
non-native WSDF
files for inbound
direction.

XML Schema files WSDL embedded XML Schema and imported XML
Schema (XML Schema content referenced with
<xsd:import>) are saved locally as .xsd files.
These files are used by GWWS servers and need
to be saved under the same directory.

Note:

New XML Schema
environment
variables XSDDIR
and XSDFILES must
be set accordingly so
that GWWS servers
can load these .xsd
files.

1.1.3.2.2 WSDL-to-Tuxedo Service Metadata Keyword Mapping
The following table lists WSDL Element-to-Tuxedo Service Metadata Definition Keyword
mapping rules.

Chapter 1
Configuring Oracle Tuxedo Web Services

1-19

Table 1-4 WSDL Element-to-Tuxedo Service Metadata Definition Mapping

WSDL Element Correspondi
ng Oracle
Tuxedo
Service
Metadata
Definition
Keyword

Note

/wsdl:definitions
 /wsdl:portType
 /wsdl:operation
 @name

service SALT proxy service name. The keyword value
equals to the operation local name.

tuxservice SALT proxy service advertised name in
Oracle Tuxedo system. If the wsdl operation
local name is less than 15 characters, the
keyword value equals to the operation local
name, otherwise the keyword value is the first
15 characters of the operation local name.

/wsdl:definitions
 /wsdl:portType
 /wsdl:operation
 /wsdl:input

inbuf=FML32 WSDL operation messages are always
mapped as Oracle Tuxedo FML32 buffer
types.
Please do not change the buffer type any way.

Note:

For more
information
about wsdl
message and
FML32 buffer
mapping, see
XML-to-Tuxedo
Data Type
Mapping for
External Web
Services in the
Oracle SALT
Programming
Web Services.

/wsdl:definitions
 /wsdl:portType
 /wsdl:operation
 /wsdl:output

outbuf=FML3
2

/wsdl:definitions
 /wsdl:portType
 /wsdl:operation
 /wsdl:fault

errbuf=FML3
2

1.1.3.2.3 WSDL-to-WSDF Mapping
The following table lists WSDL Element-to-WSDF Element mapping rules.

Table 1-5 WSDL Element-to-WSDF Element Mapping

WSDL Element WSDF Element Note

/wsdl:definitions
 @targetNamespace

/Definition
 @wsdlNamespace

Each wsdl:definition maps to a
WSDF Definition.

Chapter 1
Configuring Oracle Tuxedo Web Services

1-20

Table 1-5 (Cont.) WSDL Element-to-WSDF Element Mapping

WSDL Element WSDF Element Note

/wsdl:definitions
 /wsdl:binding

/Definition
 /WSBinding

Each wsdl:binding object
maps to a WSDF WSBinding
element.

/wsdl:definitions
 /wsdl:binding
 @type

/Definition
 /WSBinding
 /Servicegroup

Each wsdl:binding referenced
wsdl:portType object maps to
the Servicegroup element of the
corresponding WSBinding
element.

/wsdl:definitions
 /wsdl:binding
 /soap:binding

/Definition
 /WSBinding
 /SOAP
 @version

If namespace prefix “soap” refers
to URI “http://
schemas.xmlsoap.org/wsdl/
soap/”, the SOAP version
attribute value is “1.1”;
If namespace prefix “soap” refers
to URI “http://
schemas.xmlsoap.org/wsdl/
soap12/”, the SOAP version
attribute value is “1.2”.

/wsdl:definitions
 /wsdl:binding
 /soap:binding
 @style

/Definition
 /WSBinding
 /SOAP
 @style

The WSDF WSBinding SOAP
message style setting is equal to
the corresponding WSDL soap
binding message style setting
(“rpc ” or “document”).

/wsdl:definitions
 /wsdl:binding
 /wsdl:operation

/Definition
 /WSBinding
 /Servicegroup
 /Service

Each wsdl:operation object
maps to a Service element of
the corresponding WSBinding
element.

/wsdl:definitions
 /wsdl:port
 /soap:address

/Definition
 /WSBinding
 /SOAP
 /AccessingPoints
 /Endpoint

Each soap:address endpoint
defined for a wsdl:binding
object maps to a Endpoint
element of the corresponding
WSBinding element.

1.1.3.2.4 Post Conversion Tasks
The following post conversion tasks must be performed for configuring outbound Web service
applications:

• Resolving Naming Conflict For the Generated SALT Proxy Service Definitions

• Loading the Generated SALT Proxy Service Metadata Definitions

• Setting Environment Variables for GWWS Runtime

Chapter 1
Configuring Oracle Tuxedo Web Services

1-21

1.1.3.2.4.1 Resolving Naming Conflict For the Generated SALT Proxy Service Definitions

When converting a WSDL file, unexpected naming conflicts may arise due to truncation or lost
context information. Before using the generated Service Metadata Definitions and FML32 field
table files, the following potential naming conflicts must be eliminated first.

• Eliminating the duplicated service metadata keyword tuxservice definitions
The keyword tuxservice in the SALT proxy service metadata definition is the truncated
value of the original Web Service operation local name if the operation name is more than
15 characters.

The truncated tuxservice value may be duplicated for multiple SALT proxy service entries.
Since GWWS server uses tuxservice values as the advertised service names, you must
manually resolve the naming conflict among multiple SALT proxy services to avoid
uncertain service request delivery. To resolve the naming conflict, you should assign a
unique and meaningful name to tuxservice.

• Eliminating the duplicated FML32 field definitions
When converting an external WSDL file into Oracle Tuxedo definitions, each wsdl:message
is parsed and mapped as an FML32 buffer format which contains a set of FML32 fields to
represent the basic XML snippets of the wsdl:message. By default, The generated FML32
fields are named using the corresponding XML element local names.

The FML32 field definitions in the generated field table file are sorted by field name so that
duplicated names can be found easily. In order to achieve a certain SOAP/FML32
mapping, the field name conflicts must be resolved. You should modify the generated
duplicated field name with other unique and meaningful FML32 field name values. The
corresponding Service Metadata Keyword paramvalues in the generated SALT proxy
service definition must be modified accordingly. The generated comments of the FML32
fields and Service Metadata Keyword “param” definitions are helpful in locating the
corresponding nameand param.

1.1.3.2.4.2 Loading the Generated SALT Proxy Service Metadata Definitions

After potential naming conflicts are resolved, you should load the SALT proxy service metadata
definitions into the Oracle Tuxedo Service Metadata Repository through tmloadrepos utility. For
more information, see tmloadrepos, in the Oracle Tuxedo Command Reference Guide.

1.1.3.2.4.3 Setting Environment Variables for GWWS Runtime

Before booting GWWS servers for outbound Web services, the following environment variable
settings must be performed:

• Update FLDTBLDIR32 and FIELDTBLS32environment variables to add the generated FML32
field table files.

• Place all excerpted XML Schema files into one directory. and set the XSDDIR and XSDFILES
environment variables accordingly.

– The XSDDIR and XSDFILES environment variables, are introduced in the SALT 2.0
release. They are used by the GWWS server to load all external XML Schema files at run
time. Multiple XML Schema file names should be delimited with comma ‘,’. For
instance, if you placed XML Schema files: a.xsd, b.xsd and c.xsd in directory /home/
user/myxsd, you must set environment variable XSDDIR and XSDFILES as follows before
booting the GWWS server:
XSDDIR=/home/user/myxsd
XSDFILES=a.xsd,b.xsd,c.xsd

Chapter 1
Configuring Oracle Tuxedo Web Services

1-22

1.1.3.3 Using Oracle Tuxedo Version-Based Routing (Outbound)
When using Oracle Tuxedo version-based routing with External Web services imported into
Tuxedo using SALT, please note:

• Since one GWWS instance cannot advertise more than one service with same name, that
same service has to be in a different instance.

• Based on the above, the existing mechanism can simply be used; configure multiple
GWWS instances with VERSION_RANGE in its *GROUPsettings accordingly.

Following is an example where Oracle Tuxedo programs (client or server) call an external Web
service exposed by both GWWS in groups GROUP2 and GROUP3. Programs using version 1 or 2
are routed to the service exposed by GWWS in GROUP2 which may connect to endpoint 1, and
programs using version 3 or 4 are routed to the service exposed by GWWS in GROUP3 which
may connect to a different endpoint than GWWS in GROUP2.

Example 1-9 Oracle Tuxedo Version-Based Routing with External Web Services

...
GROUP2
LMID=L1 GRPNO=2 VERSION_RANGE="1-2"
GROUP3
LMID=L1 GRPNO=3 REQUEST_VERSION=1 VERSION_RANGE="3-4"
...
GWWS SRVGRP=GROUP2 SRVID=30
...
GWWS SRVGRP=GROUP3 SRVID=30
...

1.1.4 Configuring Multiple Bindings
This section contains the following topics:

• SALT Inbound Services

• SALT Outbound Services

1.1.4.1 SALT Inbound Services
The users are allowed to create multiple bindings for the same service group and service
operation. However, it does not allow creating multiple bindings for different service groups and
operation.

Multiple Bindings can be created for inbound services for the following:

• The users can add endpoint addresses for each of the binding created. This is useful when
there is "http" and "https" needed per service.

• The users can add more than one SOAP attribute values.

– To specify different SOAP versions. For example: SOAP version 1.1, or 1.2.

– To specify Encoding styles. For example: RPC/encoded or Doc/Literal.

You must use the web console to add multiple bindings.

Chapter 1
Configuring Oracle Tuxedo Web Services

1-23

1.1.4.2 SALT Outbound Services
The web services that are imported using the WSDL file are outbound services, where a
Tuxedo client can send a request and receive response from the external web service.

The users for the imported web service can change the value of the end point address via web
console and the Policy files. However, the users are not allowed to add any multiple bindings
or add SOAP attributes.

1.1.5 Creating the SALT Deployment File
The SALT Deployment file (SALTDEPLOY) defines a SALT Web service application. The
SALTDEPLOY file is the major input for Web service application in the binary SALTCONFIG file.

For more information, see SALT Deployment File Reference in the Oracle SALT Reference
Guide.

To create a SALTDEPLOY file, follow the steps below:

• Importing the WSDF Files

• Configuring the GWWS Servers

• Configuring JWT Authentication and Customizing Error Messages

• Configuring System-Level Resources

1.1.5.1 Importing the WSDF Files
You should import all your required WSDF files to the SALT deployment file. Each imported
WSDF file must have a unique WSDF name which is used by the GWWS servers to make
deployment associations. Each imported WSDF file must be accessible through the location
specified in the SALTDEPLOY file.

The following example shows how to import WSDF files in the SALTDEPLOY file:

Example 1-10 Importing WSDF Files in the SALTDEPLOY File

<Deployment ..>
 <WSDF>
 <Import location="/home/user/simpapp_wsdf.xml" />
 <Import location="/home/user/rmapp_wsdf.xml" />
 <Import location="/home/user/google_search.wsdf" />
 </WSDF>
 ...
</Deployment>

1.1.5.2 Configuring the GWWS Servers
Each GWWS server can be deployed with a group of inbound WSBinding objects and a group of
outbound WSBinding objects defined in the imported WSDF files. Each WSBinding object is
referenced using attribute “ref=<wsdf_name>:<WSBinding id>”. For inbound WSBinding
objects, each GWWS server must specify at least one access endpoint as an inbound endpoint
from the endpoint list in the WSBinding object. For outbound WSBinding objects, each GWWS
server can specify zero or more access endpoints as outbound endpoints from the endpoint list
in the WSBinding object.

Chapter 1
Configuring Oracle Tuxedo Web Services

1-24

The following example shows how to configure GWWS servers with both inbound and
outbound endpoints.

Example 1-11 GWWS Server Defined In the SALTDEPLOY File

<Deployment ..>
 ...
 <WSGateway>
 <GWInstance id="GWWS1">
 <Inbound>
 <Binding ref="app1:app1_binding">
 <Endpoint use="simpapp_GWWS1_HTTPPort" />
 <Endpoint use="simpapp_GWWS1_HTTPSPort" />
 </Binding>
 </Inbound>
 <Outbound>
 <Binding ref="app2:app2_binding">
 <Endpoint use=" simpapp_GWWS1_HTTPPort" />
 <Endpoint use=" simpapp_GWWS1_HTTPSPort" />
 </Binding>
 <Binding ref="app3:app3_binding" />
 </Outbound>
 </GWInstance>
 </WSGateway>
 ...
</ Deployment>

• Configuring GWWS Server-Level Properties

• Configuring Multiple Encoding Support

1.1.5.2.1 Configuring GWWS Server-Level Properties
The GWWS server can be configured with properties that can switch feature on/off or set an
argument to tune server performance.

Properties are configured in the <GWInstance> child element <Properties>. Each individual
property is defined by using the <Property> element which contains a “name” attribute and a
“value” attribute). Different “name” attributes represent different property elements that contain
a value.

The following table lists GWWS server-level properties:

Table 1-6 GWWS Server-Level Properties

Property Name Description Value Range Default

enableMultiEncoding Switch on/off the SOAP
message multiple
encoding support on/off.

“true”|“false” “false”

max_backlog Specifies socket backlog
control value.

[1, 255] 20

max_content_length Specifies the maximum
allowed incoming HTTP
message content length.

[0,1G](byte)
(Can set suffix
‘M’,’G’,
eample.1.5M, 0.2G)

0(means no limit)

Chapter 1
Configuring Oracle Tuxedo Web Services

1-25

Table 1-6 (Cont.) GWWS Server-Level Properties

Property Name Description Value Range Default

thread_pool_size Specifies the GWWS
server thread pool size.

[1,1024] 16

timeout Specifies the network
timeout in seconds.

[1,65535]
(unit:sec)

300

wsrm_acktime Specifies the Reliable
Messaging
Acknowledgement
message reply policy.
GWWS servers support
replying
acknowledgement
messages either after
receiving the SOAP
request from network
immediately or after the
Oracle Tuxedo service
returns the response
message.

“NETRECV” |
“RPLYRECV”

“NETRECV”

Note:

For more information, see Configuring Multiple Encoding Support

For more information, see Tuning the GWWS Server” in Administering SALT at Runtime.

Example 1-12 Configuring GWWS Server Properties

<Deployment ..>
 ...
 <WSGateway>
 <GWInstance id="GWWS1">

 <Properties>
 <Property name="thread_pool_size" value="20"/>
 <Property name="enableMultiEncoding" value="true"/>
 <Property name="timeout" value="600"/>
 </Properties>
 </GWInstance>
 </WSGateway>
 ...
</ Deployment>

1.1.5.2.2 Configuring Multiple Encoding Support
SALT supports multiple encoding SOAP messages and the encoding mappings between
SOAP message and Oracle Tuxedo buffer. SALT supports the following character encoding:

ASCII, BIG5, CP1250, CP1251, CP1252, CP1253, CP1254, CP1255, CP1256, CP1257,
CP1258, CP850, CP862, CP866, CP874, EUC-CN, EUC-JP, EUC-KR, GB18030, GB2312,
GBK, ISO-2022-JP, ISO-8859-1, ISO-8859-13, ISO-8859-15, ISO-8859-2, ISO-8859-3,

Chapter 1
Configuring Oracle Tuxedo Web Services

1-26

https://docs.oracle.com/cd/E72452_01/salt/docs1222/admin/admin.html

ISO-8859-4, ISO-8859-5, ISO-8859-6, ISO-8859-7, ISO-8859-8, ISO-8859-9, JOHAB, KOI8-R,
SHIFT_JIS, TIS-620, UTF-16, UTF-16BE, UTF-16LE, UTF-32, UTF-32BE, UTF-32LE, UTF-7,
UTF-8

To enable the GWWS multiple encoding support, GWWS server-level “enableMultiEncoding”
property should be set to “true” as shown in the example below:

Note:

GWWS internally converts non UTF-8 external messages into UTF-8. However,
encoding conversion hurts server performance. By default, encoding conversion is
turned off and messages that are not UTF-8 encoded are rejected.

Example 1-13 Configuring GWWS Server Multiple Encoding Property

<Deployment ..>
 ...
 <WSGateway>
 <GWInstance id="GWWS1">

 <Properties>
 <Property name="enableMultiEncoding" value="true"/>
 </Properties>
 </GWInstance>
 </WSGateway>
 ...
</ Deployment>

The following table explains the detailed SOAP message and Oracle Tuxedo buffer encoding
mapping rules if the GWWS server level multiple encoding switch is turned on.

Table 1-7 SALT Message Encoding Mapping Rules

Mapping from Mapping to Encoding Mapping Rule

SOAP/XML Oracle Tuxedo
Typed Buffer

string/mbstring/xml buffer or field character encoding
equals to SOAP xml encoding.

STRING Typed
Buffer

SOAP/XML GWWS sets the target SOAP message in UTF-8 encoding,
and assumes the original STRING buffer contains only UTF-8
encoding characters.

Note:

Oracle Tuxedo Developers must
ensure the STRING characters
are UTF-8 encoded.

MBSTRING/XML
Typed Buffer

SOAP/XML SOAP xml encoding equals to MBSTRING/XML encoding.

Chapter 1
Configuring Oracle Tuxedo Web Services

1-27

Table 1-7 (Cont.) SALT Message Encoding Mapping Rules

Mapping from Mapping to Encoding Mapping Rule

FML/32, VIEW/32
Typed Buffer that
containing the
same encoding
setting for multiple
FLD_MBSTRING
fields

SOAP/XML SOAP xml encoding is set to FLD_MBSTRING encoding, the
original Typed buffer field characters are not changed in the
SOAP message.

Note:

Oracle Tuxedo Developers must
ensure the FLD_STRING
characters in the same buffer
are consistent.

FML/32, VIEW/32
Typed Buffer that
containing the
different encoding
for multiple
FLD_MBSTRING
fields

SOAP/XML SOAP xml encoding is set to UTF-8, the original Typed buffer
FLD_MBSTRINGfield characters in other encoding are
converted into UTF-8 in the SOAP message.

Note:

Oracle Tuxedo Developers must
ensure the FLD_STRING
characters in the same buffer
are UTF-8 encoded.

1.1.5.3 Configuring JWT Authentication and Customizing Error Messages

GWWS now supports configurable JWT authentication and customizable response messages
for authentication failures. This functionality is enabled by specifying the jwtConfigFileLoc
property within the GWWS Server-Level Properties configuration. To do so, you need to set a
new property jwtConfigFileLoc while configuring GWWS Server-Level Properties. The
jwtConfigFileLoc property contains SALT JWT configuration details for handling additional
JWT error codes. In addition, jwtConfigFileLoc property specifies the location of the JWT
error mapping JSON file.

Note:

Setting this property is optional.

Value Type: String (absolute file path)

• Configuration Example

• Sample SALT JWT Configuration File

• JWT Configuration Parameters

• Mapping Rules JSON File

Chapter 1
Configuring Oracle Tuxedo Web Services

1-28

• Error Codes

1.1.5.3.1 Configuration Example

Following is an example of the JWT configuration file specified in the jwtConfigFileLoc
property for configurable JWT authentication and customizable response messages for
authentication failures. This file includes SALT JWT configuration details, such as JWT error
mappings and additional parameters for handling authentication failures.

Configuration Example

<Deployment>
 <WSGateway>
 <GWInstance id="GWWS1">
 <Properties>
 <Property name="jwtConfigFileLoc"
value="<path_to_salt_jwt_config>/saltjwt.config"/>
 </Properties>
 </GWInstance>
 </WSGateway>
</Deployment>

1.1.5.3.2 Sample SALT JWT Configuration File

Following is an example of the JWT configuration file (saltjwt.config), which displays the
structure and relevant parameters

JWT_AUD_CLAIM https://abc.oraclecloud.com, https://
xyz.oraclecloud.com
JWT_ISS_CLAIM https://identity.oraclecloud.com/
JWT_KEY_USE_HEADER SIGNING_KEY
JWT_HEADER_TYPE JWT
JWT_JTI_REPLAY_DETECTION ENABLE
JWT_INSECURE_ALGO HS256,HS384,RS512
JWT_ROLE_CLAIM admin
JWT_ROLE_CLAIM_NAME allow_roles
JWT_PERMISSION_CLAIM call,rest
JWT_PERMISSION_CLAIM_NAME permission
JWT_SCOPE_CLAIM urn:opc:idm:t.digitalid.abc, abc.com
JWT_ORIGIN_CLAIM https://oracle.com, https://abc.com
JWT_ERROR_MAPPING_FILE <path_to_jwt_error_file>/rulejwt.json

Each of the above parameter is optional. If a parameter is not specified in the SALT JWT
configuration file, then the validation for that parameter is not performed.

Syntax

<JWT_OPTION> <Value>
• JWT_OPTION (key) is a specific keyword such as, JWT_AUD_CLAIM, JWT_ISS_CLAIM

Value is the corresponding value for the JWT_OPTION
• JWT_OPTION cannot exceed 255 bytes, and its corresponding value should be < 4095

bytes.

Chapter 1
Configuring Oracle Tuxedo Web Services

1-29

When setting JWT_OPTION, ensure that values are specified without double quotes. For
example, if the intended values are "User Administrator","Global Viewer", then you need to
specify it as User Administrator,Global Viewer.

Note:

Double quotes are not supported for the Value fields and must be removed.

1.1.5.3.3 JWT Configuration Parameters

You can specify the following parameters in the JWT configuration file:

Table 1-8 JWT Configuration Parameters

Parameter Name Data Type
Supported in JWT
Token

Description

JWT_AUD_CLAIM String , String
Array

The value for this parameter must match the aud (audience)
claim in the JWT token.
Multiple values are supported, and a match is valid if any of
the specified values matches the aud claim.

JWT_ISS_CLAIM String This value must match the iss (issuer) claim in the JWT
token.
Only a single value is supported.

JWT_KEY_USE_HEA
DER

String This parameter value specifies the key usage type kid
expected in the JWT header.
For example, SIGNING_KEY.

Only a single value is supported.

JWT_HEADER_TYPE String This parameter defines the expected typ (type) value in the
JWT header, that should be JWT.
Only a single value is supported.

JWT_JTI_REPLAY_
DETECTION

String This parameter enables or disables JWT ID (jti) replay
detection to prevent token reuse.
By default it's disabled.

JWT_INSECURE_AL
GO

String This parameter lists cryptographic algorithms that are
considered insecure and are not permitted to be used.
Multiple values are supported.

JWT_ROLE_CLAIM String, String Array This parameter specifies the expected role value in the JWT
token.
Multiple values are supported, and a match is valid if any of
the specified values matches the JWT_ROLE_CLAIM_NAME
claim of the JWT token.

JWT_ROLE_CLAIM_
NAME

String This parameter defines the claim name in the JWT token
where the role information is stored . For example,
allow_roles.
Only a single value is supported

If JWT_PERMISSION_CLAIM is set, the default value of
JWT_PERMISSION_CLAIM_NAME is permissions.

Chapter 1
Configuring Oracle Tuxedo Web Services

1-30

Table 1-8 (Cont.) JWT Configuration Parameters

Parameter Name Data Type
Supported in JWT
Token

Description

JWT_PERMISSION_
CLAIM

String, String Array This parameter specifies the expected permission value(s) in
the JWT token.
Multiple values are supported, and a match is valid if any of
the specified values match the JWT_ROLE_CLAIM_NAME claim
of the JWT token.

JWT_SCOPE_CLAIM String, String Array This parameter specifies the expected scope value(s) in the
JWT token.
Multiple values are supported, and a match is valid if any of
the specified values match the scope claim of the JWT token.

JWT_ORIGIN_CLAI
M

String, String Array This parameter specifies the expected origin(s) of the JWT
token. such as the issuing domain.
For example, https://oracle.com

Multiple values are supported, and a match is valid if any of
the specified values match the origin claim of the JWT
token.

JWT_ERROR_MAPPI
NG_FILE

String This parameter specifies the path to the error mapping file
used for custom JWT error handling.

1.1.5.3.4 Mapping Rules JSON File

The JSON file defines mappings between internal JWT error codes and their corresponding
user-defined response messages.

Example sample JWT rule JSON file

{
 "TPED_JWT_AUTH_RC_CERT_INV": {
 "error": {
 "errorCode": "AUTH_RC_CERT_INV",
 "errorMessage": "Invalid cert"
 }
 },
 "TPED_JWT_AUTH_RC_SIG_INV": {
 "error": {
 "errorCode": "301",
 "errorMessage": "Signature verification failed"
 }
 },
 "TPED_JWT_AUTH_RC_DIG_INV": {
 "error": {
 "errorCode": "303",
 "errorMessage": "Digest mismatch during JWT signature
verification",
 "action": "Check if the token is signed by the correct private
key"
 }
 },
 "TPED_JWT_AUTH_RC_PASS_INV": {

Chapter 1
Configuring Oracle Tuxedo Web Services

1-31

 "error": {
 "errorCode": "AUTH_RC_PASS_INV"
 }
 },
 "TPED_JWT_AUTH_RC_PUBKEY_INV": {
 "error": {
 "errorMessage": "Public key invalid"
 }
 },
 "TPED_JWT_AUTH_RC_ALG_NOT_SUPPORTED": {
 "error": {
 "action": "Check the Algorithm, and provide the supported
Algorithm"
 }
 },
 "TPED_JWT_AUTH_RC_EOS": {
 "error": {
 "errorCode": "AUTH_RC_EOS",
 "errorMessage": "Internal system error"
 }
 },
 "TPED_JWT_AUTH_RC_DATA_INV": {
 "error": {
 "errorCode": "TPED_JWT_AUTH_RC_DATA_INV",
 "errorMessage": "JWT data format is invalid, or the token is
corrupted. The token cannot be parsed or processed."
 }
 },
 "TPED_JWT_AUTH_RC_TIME_INV": {
 "error": {
 "errorCode": "TPED_JWT_AUTH_RC_TIME_INV",
 "errorMessage": "JWT token is expired. The token's 'exp' claims
are outside the acceptable time range."
 }
 },
 "TPED_JWT_AUTH_RC_AUD_INV": {
 "error": {
 "errorCode": "TPED_JWT_AUTH_RC_AUD_INV",
 "errorMessage": "The audience (aud) claim does not match the
expected value."
 }
 },
 "TPED_JWT_AUTH_RC_ISS_INV": {
 "error": {
 "errorCode": "TPED_JWT_AUTH_RC_ISS_INV",
 "errorMessage": "The issuer (iss) claim does not match the
expected value."
 }
 },
 "TPED_JWT_AUTH_RC_INVALID_TYP": {
 "error": {
 "errorCode": "TPED_JWT_AUTH_RC_INVALID_TYP",
 "errorMessage": "The typ (type) claim in the JWT header is
incorrect."
 }
 },

Chapter 1
Configuring Oracle Tuxedo Web Services

1-32

 "TPED_JWT_AUTH_RC_SIG_ALG_BLACKLIST": {
 "error": {
 "errorCode": "TPED_JWT_AUTH_RC_SIG_ALG_BLACKLIST",
 "errorMessage": "The JWT is signed with a blacklisted or insecure
algorithm."
 }
 },
 "TPED_JWT_AUTH_RC_PRIVILEGE_INV": {
 "error": {
 "errorCode": "TPED_JWT_AUTH_RC_PRIVILEGE_INV",
 "errorMessage": "The claims do not meet the required privileges."
 }
 },
 "TPED_JWT_AUTH_RC_SCOPE_MISMATCH": {
 "error": {
 "errorCode": "TPED_JWT_AUTH_RC_SCOPE_MISMATCH",
 "errorMessage": "The token's scope does not match the required
scope for access."
 }
 },
 "TPED_JWT_AUTH_RC_NONCE_REPLAY": {
 "error": {
 "errorCode": "TPED_JWT_AUTH_RC_NONCE_REPLAY",
 "errorMessage": "Replay attack detected using jti (JWT ID) claim."
 }
 },
 "TPED_JWT_AUTH_RC_KEY_USE_INV": {
 "error": {
 "errorCode": "TPED_JWT_AUTH_RC_KEY_USE_INV",
 "errorMessage": "Incorrect key use during JWT validation."
 }
 },
 "TPED_AUTHORIZATION_HEADER_EMPTY": {
 "error": {
 "errorCode": "TPED_AUTHORIZATION_HEADER_EMPTY",
 "errorMessage": "Empty Authorization Header in Request."
 }
 },
 "TPED_JWT_AUTH_RC_CLOCK_SKEW": {
 "error": {
 "errorCode": "TPED_JWT_AUTH_RC_CLOCK_SKEW",
 "errorMessage": "JWT Token's 'nbf' claim is outside the
acceptable time range due to the clock skew or is not yet valid."
 }
 },
 "TPED_JWT_AUTH_RC_CROSS_ORIGIN_BLOCK": {
 "error": {
 "errorCode": "TPED_JWT_AUTH_RC_CROSS_ORIGIN_BLOCK",
 "errorMessage": "The JWT is being used in a different origin from
the one it was issued for."
 }
 },
 "TPED_JWT_DEFAULT_ERROR": {
 "error": {
 "errorCode": "TPED_JWT_DEFAULT_ERROR",
 "errorMessage": "JWT AuthN/AuthZ failed."

Chapter 1
Configuring Oracle Tuxedo Web Services

1-33

 }
 }
}

Structure of a JSON File

• Key: Internal JWT error code. For example, TPED_JWT_AUTH_RC_CERT_INV.

• Value: contains an object that can have any number of key/value pairs.

– errorCode: A short code representing the error.

– errorMessage: A descriptive message for the error.

– custom Message: any custom Message.
For example, "action" "Check if the token is signed by the correct private key")

Example sample JWT Error Code

 "TPED_JWT_AUTH_RC_CERT_INV":{
 "error": {
 "errorCode": "AUTH_RC_CERT_INV",
 "errorMessage": "Invalid cert"
 }
 },
inside the error object, we can have any key name and value for example

"TPED_JWT_AUTH_RC_CERT_INV": {
 "error": {
 "mykey1": "my value 1",
 "mykey2": "my value 2",
 "mykey3": "my value 3",
 "mykey4": "my value 4"
 }
 },

1.1.5.3.5 Error Codes

Table 1-9 JWT Error Codes

Error Code Error Code ID Description Cause

TPED_JWT_AUT
H_RC_CERT_IN
V

20 This error
occurs when
the JWT
certificate
validation fails.

This error is triggered when the aud (audience)
claim in the JWT does not match the expected
value. This typically happens when a JWT issued
for one service or API is mistakenly used for
another. Common causes include misconfiguration
in the issuing identity provider (IdP), incorrect
audience validation settings in the application, or
using a token intended for a different environment
(e.g., staging vs. production).

Chapter 1
Configuring Oracle Tuxedo Web Services

1-34

Table 1-9 (Cont.) JWT Error Codes

Error Code Error Code ID Description Cause

TPED_JWT_AUT
H_RC_SIG_INV

21 This error
occurs when
the JWT
signature
verification fails.
The token's
signature does
not match the
expected value.

The error is triggered when the cryptographic
signature of the token cannot be verified. Common
causes include the tampered token after signing,
an incorrect signing key, or the algorithm used to
sign and verify the token do not match.

TPED_JWT_AUT
H_RC_DIG_INV

22 This error
occurs when
there is Digest
mismatch
during JWT
token signature
verification.

This error is triggered when the digest (hash)
embedded in the token does not match the digest
computed from the token's payload. The common
causes include data corruption or intentional
modification of the token content.

TPED_JWT_AUT
H_RC_PUBKEY_
INV

24 JWT public key
is invalid or
does not match
the signing key.

This error is triggered when the public key provided
for signature verification is either improperly
formatted, corrupted or does not correspond to the
private key that was used to sign the token.

TPED_JWT_AUT
H_RC_ALG_NOT
_SUPPORTED

25 The JWT
signing
algorithm is not
supported. The
token was
signed using an
algorithm that
was not
recognized or
allowed.

This error is triggered when the token uses a
cryptographic algorithm that is either unsupported
or not enabled in the system's configuration.

TPED_JWT_AUT
H_RC_EOS

26 An internal
system error
occurred during
JWT validation.

This error is triggered when an unexpected internal
failure occurs during the processing or validation of
the JWT token. Common causes are memory
issues, or faulty system configurations.

TPED_JWT_AUT
H_RC_DATA_IN
V

27 The JWT data
format is
invalid, or the
token is
corrupted. The
token cannot be
parsed or
processed.

This error is triggered when the token structure
does not meet to the JWT standards. For example,
missing required fields or incorrect encoding.
Common causes are data corruption, manual
token manipulation, or incorrect token generation.

TPED_JWT_AUT
H_RC_TIME_IN
V

28 This error
occurs when
the JWT token
has expired or
is not yet valid.
Either the
token's 'exp'
claims are
outside the
acceptable time
range.

This error is triggered when the current time falls
outside the validity period defined in the token’s
claims. For example, if the token is used after its
expiration (exp).

Chapter 1
Configuring Oracle Tuxedo Web Services

1-35

Table 1-9 (Cont.) JWT Error Codes

Error Code Error Code ID Description Cause

TPED_JWT_AUT
H_RC_AUD_INV

34 This error
occurs when
the
audience(aud
) claim does
not match the
expected value.

Occurs when the aud (audience) claim in the JWT
does not match the expected value. For example:
The JWT was issued for a specific API
(urn:opc:lbaas:logicalguid=idcs-77848748
74hduhd1d0,https://
idcs-7djhdjhdh363hdh.identity.oracleclo
ud.com) but is being used for another API
(https://idcs-77cfdgg67d0.us-phoenix-
idcs-2.secure.identity.oraclecloud.com).

TPED_JWT_AUT
H_RC_ISS_INV

35 The issuer
(iss) claim
does not match
the expected
value.
For example:
The token was
issued by an
unauthorized
identity provider
(idp-xyz)
instead of the
configured idp-
abc.

This error is triggered when the iss (issuer) claim in
the JWT does not match the expected trusted
identity provider. This can occur when the token is
issued by an unauthorized or unrecognized IdP,
when the configured trust list does not include the
issuer, or if the JWT is tampered with to modify the
iss claim.

TPED_JWT_AUT
H_RC_INVALID
_TYP

36 The typ
(type) claim in
the JWT header
is incorrect.

For example, the token's header specifies an
unsupported type, such as typ: INVALID-TYPE
instead of typ: JWT

TPED_JWT_AUT
H_RC_SIG_ALG
_BLACKLIST

37 The JWT is
signed with a
blacklisted or
insecure
algorithm.
For example,
the JWT uses
an outdated
signing
algorithm like
HS256, which
has been
disabled for
security
reasons

This error is triggered when the JWT is signed
using an algorithm that is blacklisted or considered
insecure. This often occurs when the signing
algorithm is outdated, weak (e.g., HS256 when
only RS256 is allowed), or explicitly disallowed by
security policies. It may also happen if an attacker
attempts to use a downgraded algorithm to bypass
security controls.

TPED_JWT_AUT
H_RC_PRIVILE
GE_INV

38 The claims do
not meet the
required
privileges.

This error is triggered when the claims in the JWT
token do not meet the required role and permission
privileges.

TPED_JWT_AUT
H_RC_SCOPE_M
ISMATCH

39 The token's
scope does not
match the
required scope
for access.

This error is triggered when the token's scope does
not align with the required scope for access.
For example, the JWT's scope claim lists read, but
the API requires write permissions.

Chapter 1
Configuring Oracle Tuxedo Web Services

1-36

Table 1-9 (Cont.) JWT Error Codes

Error Code Error Code ID Description Cause

TPED_JWT_AUT
H_RC_NONCE_R
EPLAY

40 Replay attack
detected using
jti (JWT ID)
claim.

This error is triggered when a replay attack is
detected using the jti (JWT ID) claim.
For example, a previously used JWT with the same
jti value is sent again maliciously.

TPED_JWT_AUT
H_RC_KEY_USE
_INV

41 Incorrect key
use during JWT
validation.

This error occurs when the JWT is signed or
verified using a key for an incorrect purpose.
For example, the key's use claim is enc but is being
used for signing (sig) operations.

TPED_AUTHORI
ZATION_HEADE
R_EMPTY

42 Empty
Authorization
Header in
Request.

This error is triggered when the Authorization
header is missing or empty in the HTTP request.

TPED_JWT_AUT
H_RC_CLOCK_S
KEW

43 JWT Token's
'nbf' claim is
outside the
acceptable time
range due to
the clock skew
or is not yet
valid.

This error is triggered when the JWT token's nbf
(not before) claim is outside the acceptable time
range due to clock skew or is not yet valid.
For example,a JWT with nbf set to a future
timestamp is rejected because the server's clock is
slightly behind or misaligned.

TPED_JWT_AUT
H_RC_CROSS_O
RIGIN_BLOCK

44 The JWT is
being used in a
different origin
from the one it
was issued for.

This error is triggered in the JWT is used across
different origins from the one it was issued for. For
example, a JWT issued for example.com is used to
access another-example.com.

TPED_JWT_DEF
AULT_ERROR

NA JWT AuthN/
AuthZ failed.

This error is triggered when the JWT authentication
or authorization fails. For example, the server
cannot parse the JWT or encounters an unhandled
validation error.

1.1.5.4 Configuring System-Level Resources
SALT defines a set of global resources shared by all GWWS servers in theSALTDEPLOY file. The
following system-level resources can be configured in the SALTDEPLOY file:

• Configuring Certificates

• Configuring Plug-in Libraries

1.1.5.4.1 Configuring Certificates
Certificate information must be configured in order for the GWWS server to create an TLS listen
endpoint, or to use X.509 certificates for authentication and/or message signature. All GWWS
servers defined in the same deployment file shares the same certificate settings, including the
private key file, trusted certificate directory, and so on.

The private key file is configured using the <Certificate>/<PrivateKey> sub-element. The
private key file must be in PEM file format and stored locally. TLS clients can optionally be
verified if the <Certificate>/<VerifyClient> sub-element is set to true.

Chapter 1
Configuring Oracle Tuxedo Web Services

1-37

Note:

By default, the GWWS server does not verify TLS clients.

If TLS clients are to be verified, and/or the X.509 certificate authentication feature is enabled, a
set of trusted certificates must be stored locally and located by the GWWS server. There are two
ways to define GWWS server trusted certificates:

1. Include all certificates in one PEM format file and define the file path using the
<<Certificate>/<TrustedCert> sub-element.

2. Save separate certificate PEM format files in one directory and define the directory path
using the <<Certificate>/<CertPath> sub-element.

Note:

The "cn" attribute of a distinguished name is used as a key for certificate lookup.
Wildcards used in a name are not supported. Empty subject fields are not
allowed. This limitation is also found in Oracle Tuxedo.

The following example shows a SALTDEPLOY file segment configuring GWWS server certificates.

Example 1-14 Configuring Certificates In the SALTDEPLOY File

<Deployment ..>
 ...
 <System>
 <Plugin>
 <Interface lib=”plugin_1.so” />
 <Interface lib=”plugin_2.so” />
 </Plugin>
 </System>
</Deployment

1.1.5.4.2 Configuring Plug-in Libraries
A plug-in is a set of functions that are called when the GWWS server is running. SALT provides a
plug-in framework as a common interface for defining and implementing plug-ins. Plug-in
implementation is carried out through a dynamic library that contains the actual function code.
The implementation library can be loaded dynamically during GWWS server start up. The
functions are registered as the implementation of the plug-in interface.

In order for the GWWS server to load the library, the library must be specified using the
<Plugin>/<Interface> element in the SALTDEPLOY file.

The following example shows a SALTDEPLOY file segment configuring multiple customized plug-
in libraries to be loaded by the GWWS servers.

Example 1-15 Configuring Plug-in Libraries In the SALTDEPLOY File

<Deployment ..>
 ...
 <System>

Chapter 1
Configuring Oracle Tuxedo Web Services

1-38

 <Certificates>
 <PrivateKey>/home/user/gwws_cert.pem</PrivateKey>
 <VerifyClient>true</VerifyClient>
 <CertPath>/home/user/trusted_cert</CertPath>
 </Certificates>
 </System>
</Deployment

Note:

If the plug-in library is developed using the SALT 2.0 plug-in interface, the “id” and
“name”attributes for the interface do not need to be specified. These values can be
obtained through plug-in interfaces. For more information, see Using SALT Plug-Ins
in Oracle SALT Programming with Web Services.

1.1.6 Configuring Advanced Web Service Messaging Features
SALT currently supports the following advanced Web Service Messaging features:

• Web Service Addressing
Supports both inbound and outbound asynchronous Web service messaging.

• Web Service Reliable Messaging
Supports inbound Web Service reliable message delivery.

• Message Transmission Optimization Mechanism (MTOM)
Supports binary attachment in native and external web services.

This section contains the following topics:

• Web Service Addressing

• Web Service Reliable Messaging

• Message Transmission Optimization Mechanism (MTOM)

1.1.6.1 Web Service Addressing
SALT supports Web service addressing for both inbound and outbound services. The Web
service addressing (WS-Addressing) messages used by the GWWS server must comply with
the Web Service Addressing standard (W3C Member Submission 10 August 2004).Inbound
services do not require specific Web service addressing configuration. The GWWS server
accepts and responds accordingly to both WS-Addressing request messages and non WS-
Addressing request messages.

Outbound services require Web service addressing configuration as described in the following
sections:

• Configuring the Addressing Endpoint for Outbound Services

• Disabling WS-Addressing

1.1.6.1.1 Configuring the Addressing Endpoint for Outbound Services
For outbound services, Web service addressing is configured at the Web service binding level.
In the SALTDEPLOY file, each GWWS server can specify a WS-Addressing endpoint by using the

Chapter 1
Configuring Oracle Tuxedo Web Services

1-39

https://www.w3.org/submissions/2004/SUBM-ws-addressing-20040810/

<WSAddressing> element for any referenced outbound WSBinding object to enable WS-
Addressing.

Once the WS-Addressing endpoint is configured, the GWWS server creates a listen endpoint at
start up. All services defined in the outbound WSBinding are invoked with WS-Addressing
messages.

The following example shows a SALTDEPLOY file segment enabling WS-Addressing for a
referenced outbound Web service binding.

Example 1-16 WS-Addressing Endpoint Defined for Outbound Web Service Binding

<Deployment ..>
 ...
 <WSGateway>
 <GWInstance id="GWWS1">
 ...
 <Outbound>
 <Binding ref="app1:app1_binding">
 <WSAddressing>
 <Endpoint address=”https://myhost:8801/app1_async_point”
tlsversion=TLSv1.2>
 </WSAddressing>
 <Endpoint use=" simpapp_GWWS1_HTTPPort" />
 <Endpoint use=" simpapp_GWWS1_HTTPSPort" />
 </Binding>
 <Binding ref="app2:app2_binding">
 <WSAddressing>
 <Endpoint address=”https://myhost:8802/app2_async_point”
tlsversion=TLSv1.2>
 </WSAddressing>
 <Endpoint use=" simpapp_GWWS1_HTTPPort" />
 <Endpoint use=" simpapp_GWWS1_HTTPSPort" />
 </Binding>
 </Outbound>
 ...
 </GWInstance>
 </WSGateway>
 ...
</ Deployment>

Chapter 1
Configuring Oracle Tuxedo Web Services

1-40

Note:

In a GWWS server, each outbound Web Service binding can be associated with a
particular WS-Addressing endpoint address. These endpoints can be defined with the
same hostname and port number, but the context path portion of the endpoint
addresses must be different.
If the external Web service binding does not support WS-Addressing messages,
configuring Addressing endpoints may result in run time failure.

The attribute tlsversion specifies the TLS version used in an TLS network
connection. If the tlsversion attribute is not specified, GWWS endpoint uses TLS
version 1.2 in release 22.1.0.0.0 and TLS version 1.3 or 1.2 in release 22.1.1.0.0. In
the release 22.1.0.0.0, the tlsversion attribute supports TLS version 1.2 (TLSv1.2),
TLS version 1.1 (TLSv1.1), and TLS version 1.0 (TLSv1.0). In the release 22.1.1.0.0,
it supports TLS version 1.3 (TLSv1.3) and TLS version 1.2 (TLSv1.2).

1.1.6.1.2 Disabling WS-Addressing
If you create a WS-Addressing endpoint in the SALTDEPLOY file or not, you can explicitly disable
the Addressing capability for particular outbound services in the WSDF. To disable the
Addressing capability for a particular outbound service, you should use the property name
“disableWSAddressing” with a value set to “true” in the corresponding <Service> definition in
the WSDF file. This property has no impact on any inbound services.

The following example shows WSDF file segment disabling Addressing capability.

Example 1-17 Disabling Service-Level WS-Addressing

<Definition ...>
 <WSBinding id="simpapp_binding">
 <Servicegroup id="simpapp">
 <Service name="toupper">
 <Property name="disableWSAddressing" value=”true” />
 </Service>
 <Service name="tolower" />
 </Servicegroup>

 </WSBinding>
</Definition>

1.1.6.2 Web Service Reliable Messaging
SALT currently supports Reliable Messaging for inbound services only. To enable Reliable
Messaging functionality, you must create a Web Service Reliable Messaging policy file and
include the policy file in the WSDF. The policy file must comply with the WS-ReliableMessaging
Policy Assertion Specification (February 2005).

Note:

A WSDF containing a Reliable Messaging policy definition should be used by the
GWWS server for inbound direction only.

Chapter 1
Configuring Oracle Tuxedo Web Services

1-41

https://schemas.xmlsoap.org/ws/2005/02/rm/policy/
https://schemas.xmlsoap.org/ws/2005/02/rm/policy/

• Creating the Reliable Messaging Policy File

• Specifying the Reliable Messaging Policy File in the WSDF File

1.1.6.2.1 Creating the Reliable Messaging Policy File
A Reliable Messaging Policy file is a general WS-Policy file containing WS-ReliableMessaging
Assertions. The WS-ReliableMessaging Assertion is an XML segment that describes features
such as the version of the supported WS-ReliableMessage specification, the source endpoint’s
retransmission interval, the destination endpoint’s acknowledge interval, and so on.

For more information, see the SALT WS-ReliableMessaging Policy Assertion Reference in the
SALT Reference Guide.

Following is an example of Reliable Messaging Policy File:

Example 1-18 Reliable Messaging Policy File Example

<?xml version="1.0"?>
<wsp:Policy wsp:Name="ReliableSomeServicePolicy"
 xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"
 xmlns:wsp=”http://schemas.xmlsoap.org/ws/2004/09/policy”
 xmlns:beapolicy="http://www.bea.com/wsrm/policy">
 <wsrm:RMAssertion>
 <wsrm:InactivityTimeout Milliseconds="600000" />
 <wsrm:AcknowledgementInterval Milliseconds="2000" />
 <wsrm:BaseRetransmissionInterval Milliseconds="500"/>
 <wsrm:ExponentialBackoff />
 <beapolicy:Expires Expires="P1D" />
 <beapolicy:QOS QOS=”ExactlyOnce InOrder" />
 </wsrm:RMAssertion>
</wsp:Policy>

1.1.6.2.2 Specifying the Reliable Messaging Policy File in the WSDF File
You must reference the WS-ReliableMessaging policy file at the <Servicegroup> level in the
native WSDF file.

The following example shows how to reference the WS-ReliableMessaging policy file:

Example 1-19 Reference the WS-ReliableMessaging Policy At the Endpoint Level

<Definition ...>
 <WSBinding ...>
 <Servicegroup ...>
 <Policy location=”RMPolicy.xml” />
 <Service ... />
 <Service ... />
 ...
 </Servicegroup ...>
 </WSBinding>
</Definition>

Chapter 1
Configuring Oracle Tuxedo Web Services

1-42

Note:

Reliable Messaging in SALT does not support process/system failure scenarios,
which means SALT does not store the message in a persistent storage area. SALT
works in a direct mode with the SOAP client. Usually, system failure recovery
requires business logic synchronization between the client and server.

1.1.6.3 Message Transmission Optimization Mechanism (MTOM)
SALT supports binary attachments for CARRAY typed buffers or CARRAY fields in fielded
buffers (VIEW, VIEW32, FML or FML32). By default binary buffers/fields are base64 encoded.
As shown in the example below, in order to enable MTOM the configuration must be added to
a service or service group in a WSDF file.

Example 1-20 <Policy location="salt:ws-mtom.xml"/>

<Definition ...>
 <WSBinding id="simpapp_binding">
 <Servicegroup id="simpapp">
 <Service name="toupper">
 <Policy location="salt:ws-mtom.xml"/>
 </Service>
 <Service name="tolower" />
 </Servicegroup>

 </WSBinding>
</Definition>

1.1.7 Configuring Security Features
SALT provides security support at both the transport level and SOAP message level. The
following topics explains how to configure security features for each level:

Note:

Starting Oracle Tuxedo (22.1.1.0.0) introduces support for TLS version 1.3.

• Configuring Transport-Level Security

• Configuring Message-Level Web Service Security

• Configuring SAML Single Sign-On

• Configuring X.509-Based Authentication

1.1.7.1 Configuring Transport-Level Security
SALT provides point-to-point security using TLS link-level security and supports HTTP basic
authentication mechanisms for both inbound and outbound service authentication.

This section contains the following topics:

• Setting Up TLS Link-Level Security

Chapter 1
Configuring Oracle Tuxedo Web Services

1-43

• Configuring Inbound HTTP Basic Authentication

• Configuring Outbound HTTP Basic Authentication

1.1.7.1.1 Setting Up TLS Link-Level Security
To set up link-level security using TLS at inbound endpoints, you can simply specify the
endpoint address with prefix “https://”. The GWWS server who uses this inbound endpoint
creates TLS listen port and make TLS secured connections with Web Service Clients. TLS
features need to specify certificates settings. For more information, see Configuring
Certificates

The GWWS server automatically creates TLS secured connection to outbound endpoints that
are published with URLs that having prefix “https://”.

1.1.7.1.2 Configuring Inbound HTTP Basic Authentication
SALT depends on the Oracle Tuxedo security framework for Web Service client authentication.
There is no special SALT configuration required to enable inbound HTTP Basic Authentication.
If the Oracle Tuxedo system requires user credentials, HTTP Basic Authentication is an
alternative for Web Service client programs to carry user credentials.

The GWWS gateway supports Oracle Tuxedo domain security configuration for the following two
authentication patterns:

• Application password (APP_PW)

• User-level authentication (USER_AUTH)

The GWWS server passes the following string from the HTTP header of the client SOAP request
for Oracle Tuxedo authentication.

Authorization: Basic <base64Binary of username:password>
The following is an example of a string from the HTTP header:

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==
In this example, the client sends the Oracle Tuxedo username “Aladdin” and the password
“open sesame”, and uses this paired value for Oracle Tuxedo authentication.

• Using Application Password (APP_PW)
If Oracle Tuxedo uses APP_PW, then the HTTP username value is ignored and the GWWS
server only uses the password string as the Oracle Tuxedo application password to check
the authentication.

• Using User-level Authentication (USER_AUTH)
If Oracle Tuxedo uses USER_AUTH, then both the HTTP username and password value are
used. In this case, the GWWS server does not check the Oracle Tuxedo application
password.

1.1.7.1.3 Configuring Outbound HTTP Basic Authentication
SALT supports authentication plug-in development to prepare user credentials for outbound
HTTP Basic Authentication. Outbound HTTP Basic Authentication is configured at Endpoint-
level. If an outbound Endpoint requires a user profile in the HTTP message, you must specify
the HTTP Realm for the HTTP endpoint in the WSDF file. The GWWS server invokes the
authentication plug-in library to prepare usernames and passwords, and sends them using
HTTP Basic Authentication mechanism in the request message.

Chapter 1
Configuring Oracle Tuxedo Web Services

1-44

The following example shows how to enable HTTP Basic Authentication for the outbound
endpoints:

Example 1-21 Enabling HTTP Basic Authentication For the Outbound Endpoint

<Definition ...>
 <WSBinding id="simpapp_binding">
 <SOAP>
 <AccessingPoints>
 <Endpoint id=”...” address=”...”>
 <Realm>SIMP_REALM</Realm>
 </Endpoint>
 </AccessingPoints>
 </SOAP>
 <Servicegroup id="simpapp">

 </Servicegroup>

 </WSBinding>

</Definition>

Once a service request is sent to an outbound endpoint using <Realm> element, the GWWS
server passes the Oracle Tuxedo client uid and gid to the authentication plug-in function, so
that the plug-in can determine HTTP Basic Authentication username/password according to the
Oracle Tuxedo client information. To obtain Oracle Tuxedo client uid / gid for HTTP basic
authentication username/password mapping, Oracle Tuxedo security level may also need to be
configured in the UBBCONFIG file.

For more information, see Configuring Oracle Tuxedo Security Level for Outbound HTTP Basic
Authentication and Programming Outbound Authentication Plug-Ins in the SALT Programming
Web Services.

1.1.7.2 Configuring Message-Level Web Service Security
SALT supports Web Service Security 1.0 and 1.1 specification for message level security. You
can use message-level security in SALT to assure:

• Authentication, by requiring (username or X.509) tokens

• Inbound request message integrity, by requiring the soap body signature

This section contains the following topics:

• Main Use Cases of Web Service Security

• Using WS-Security Policy Files

1.1.7.2.1 Main Use Cases of Web Service Security
SALT implementation of the Web Service Security: SOAP Message Security specification
supports the following use cases:

• Include a token (username, or X.509) in the SOAP message for authentication.

• Include a token (X.509) and the soap body signature in the SOAP message for integrity.

Chapter 1
Configuring Oracle Tuxedo Web Services

1-45

1.1.7.2.2 Using WS-Security Policy Files
SALT includes a number of WS-Security Policy 1.0 and 1.2 files you can use for message level
security use cases.

The WS-Policy files can be found at $TUXDIR/udataobj/salt/policy once you have
successfully installed SALT.

Following example lists WS-Security Policy files bundled by SALT:

Table 1-10 WS-Security Policy Files Provided By SALT

File Name Purpose

wssp1.0-username-auth.xml WS-Security Policy 1.0. Plain Text Username
Token for Service Authentication

wssp1.0-x509v3-auth.xml WS-Security Policy 1.0. X.509 V3 Certificate Token
for Service Authentication

wssp1.0-signbody.xml WS-Security Policy 1.0. Signature on SOAP:Body
for verification of X.509 Certificate Token

wssp1.2-Wss1.0-UsernameToken-plain-
auth.xml

WS-Security Policy 1.2. Plain Text Username
Token for Service Authentication

wssp1.2-Wss1.1-X509V3-auth.xml WS-Security Policy 1.2. X.509 V3 Certificate Token
for Service Authentication

wssp1.2-signbody.xml WS-Security Policy 1.2. Signature on SOAP:Body
for verification of X.509 Certificate Token

The above policy files (with the exception of the WS-Security Policy 1.2 UserToken file), can be
referenced using<Servicegroup> or <Service> elements in the native WSDF file. The WSSP 1.2
UserToken file can only be referenced using <Servicegroup>
The following is an example of policy assignment making that the service “TOUPPER” requires
client send a UsernameToken (in plain text format) and an X509v3Token in request, and also
requires the SOAP:Body part of message to be signed with the X.509 token. The sample
“wsseapp” shows how to clip the WSSP 1.2 UserToken file used in the <Service> element .
Example 1-22 WS-Security Policy Usage

<Definition ...>
 <WSBinding id="simpapp_binding">

 <Servicegroup id="simpapp">
 <Policy location="salt:wssp1.2-Wss1.1-X509V3-auth.xml"/>
 <Service name="TOUPPER" >
 <Policy location="D:/wsseapp/wssp1.2-UsernameToken-Plain.xml"/>
 <Policy location="salt:wssp1.2-signbody.xml" use="input"/>
 </Service>
 </Servicegroup>

 </WSBinding>

</Definition>

Chapter 1
Configuring Oracle Tuxedo Web Services

1-46

Policy is referred using the “location” attribute of the <Policy> element. A prefix “salt:” means
an SALT default bundled policy file is used. User-defined policy file can be used by directly
specifying the file path.

Note:

If a policy is referred at the <Servicegroup> level, it applies to all services in this
service group.
The “signbody” policy must be used with the attribute “use” set as “input”, which
specifies the policy applied only for input message. This is necessary because the
SOAP:Body of the output message is not signed.

1.1.7.3 Configuring SAML Single Sign-On
SALT supports SAML 1.1 and SAML 2.0 Single Sign-On (SSO). You can use Single Sign-On to
process a secure incoming request by performing authentication on behalf of the end user,
without having to request their credentials.

The SALT implementation of SAML SSO supports the sender-vouches confirmation method.
With this method, SALT represents a back-end system, and a Web Service intermediary sits
between the back-end and the end user. In this case, the Web Service intermediary "vouches"
for the end user using SAML token mechanisms.

Note:

In order to use SAML SSO, make sure you have correctly configured the
<Certificates> element in the SALTDEPLOY file.

• Transport Protection

• SAML Key File

1.1.7.3.1 Transport Protection
Although it is not required to use TLS as a transport to carry an SAML security token to access
Oracle Tuxedo through GWWS, it is recommended that the Web Service intermediary use TLS
to access Oracle Tuxedo through GWWS using an SAML security token. The use of TLS
ensures the SOAP message content from being disclosed or modified without detection This is
particularly important when accessing Oracle Tuxedo services through a wide area network
outside of a fire wall.

1.1.7.3.2 SAML Key File
The public key certificate of trusted SAML assertion issuers must be located in the $APPDIR
directory. These certificates must be in PEM format. The name of the certificate must reflect
the issuer name. For instance, if the issuer id is "ws_1" then the certificate name should be
ws_1.pem.

However, for long issuer names the key file provides the ability to correlate between the real
issue name and its local reference name so that the PEM file name can be much more concise
but still remain useful to the administrator.

Chapter 1
Configuring Oracle Tuxedo Web Services

1-47

For example, if the assertion issuer name is web.abc.com/saml/authenticator, then the PEM
file name for its public key certificate can be called "abc.pem" instead of "www.abc.com/saml/
authenticator.pem".

This is especially useful when in a UNIX environment where the "/" symbol also works as a
path separator. This translation is required when confusion like this may arise.

The key file name is fixed to"saml_key.meta". It should be located in the same file folder
specified by "CertPath". This file should be protected by the file system and is in XML format.

This section contains the following topics:

• Key File Format

• File Information

• GWWS Key

• Assertion Issuer Information

• Key File Generation

• Procedure to Manage Key File

• WS-Policy Files

• Mapping SAML Elements with Oracle Tuxedo Security

1.1.7.3.2.1 Key File Format

The key file is an XML file. There are three types of information stored in this file:

file information, GWWS key, and issuer information.

Note:

You should not modify this file manually since this will cause the file to fail integrity
checking.

1.1.7.3.2.2 File Information

The file information section contains the version number of the tool generated this file, a
random key, administrative password, and digital signature.

1.1.7.3.2.3 GWWS Key

This GWWS key section contains one GWWS symmetric key. There can be only one
symmetric configured for GWWS to simplify the validation task. This key is encrypted with
obfuscated key. This section is optional and is missing if no GWWS symmetric key is
configured.

In MP configuration with multiple GWWS on different machine nodes, this file needs to be
replicated on each node; however, if a different GWWS key is desired, then a similar key file
but with a different GWWS key record can be copied to a different node.

1.1.7.3.2.4 Assertion Issuer Information

This section contains multiple records, one for each trusted assertion issuer. It contains issuer
identifier, local issuer identifier, symmetric key, and whether a public key certificate also exists
or not.

Chapter 1
Configuring Oracle Tuxedo Web Services

1-48

The issuer identifier is the value presented in the "issuer" attribute of "<saml:Assertion>"
element in the WSSE security header.

The local issuer identifier is the abbreviated name for the issuer. The purpose is to make any
long issuer identifier become shorter and easier to memorize, but still remain locally unique.
This data is optional; if it exists and a certificate also exists, then the certificate must take the
name of this local issuer identifier with 'pem" as file extension.

The symmetric key is the shared secret that issuer used to sign the assertion. This data is
optional. The length of the key also dictates which algorithm can be used for signing.

The public key certificate exists field tells whether a public key certificate exists. If it exists, the
certificate should be located in the folder specified by the "CertPath" element. This field can
be true while the symmetric key field also exists. At runtime, GWWS detects which key to use
to validate the signature.

1.1.7.3.2.5 Key File Generation

A new command is added to wsadmin to manage the key file. This new command is used to
generate new key file, add new record, delete existing record, and modify record. The name of
the file it managed is "saml_key.meta" in the current working directory.

To create the key file issues the following wsadmin command:

saml create -p password
Where the "-p password" is for the administrative password to access the newly created key
file. A key file with name "saml_key.meta" is created in the current working directory.

To add a trusted issuer, input the following command:

saml add -i -n authority.abc.com -l abc -c -p password
Where "-i" tells it to add an issuer with name "authority.abc.com" with short local reference
name "abc" and the access password to access the key file. The key file saml_key.meta" must
exist in current working directory. Since "-c" option is given, a public key certificate named
"abc.pem" must exist in the "CertPath".

For more information, see wsadmin topic in the the SALT Command Reference guide.

1.1.7.3.2.6 Procedure to Manage Key File

The following procedure describes a SALT administrator setting up GWWS to be able to
handle SAML assertion for the first time.

1. Change directory to $APPDIR and start wsadmin.

2. Use "saml create" command to create the key file.

3. Use "saml add -g" command to add GWWS record.

4. Use "saml add -i" command to add trusted assertion issuer record for every trusted
assertion issuer.

5. Copy the file "saml_key.meta" to the directory described in the SALT deployment
descriptor file "CertPath" element under "Certificate".

6. Change directory to Oracle Tuxedo application domain, and use "tmboot -y" to boot the
Oracle Tuxedo application domain.

Chapter 1
Configuring Oracle Tuxedo Web Services

1-49

In MP mode configuration, it is possible to have a different GWWS record in the key file for a
different GWWS instance. The following procedure creates the key file for a GWWS instance
on a different node.

1. Copy the original key file to different directory or machine.

2. Use "saml delete -g" to delete existing GWWS record.

3. Use "saml add -g" to add a different GWWS record.

4. Boot Oracle Tuxedo.

1.1.7.3.2.7 WS-Policy Files

SALT includes a number of WS-Policy files that you can use for configuring services for SAML
SSO as listed in Table below:

Table 1-11 SAML SSO Policy Files

File Name Purpose

Wssp1.2-2007-Saml1.1-SenderVouches-Https.xml SAML 1.1 support (with TLS)

Wssp1.2-2007-Saml2.0-SenderVouches-Https.xml SAML 2.0 support (with TLS)

Wssp1.2-2007-Saml1.1-SenderVouches.xml SAML 1.1 support (without TLS)

Wssp1.2-2007-Saml2.0-SenderVouches.xml SAML 2.0 support (without TLS)

The above files can be referenced at the <ServiceGroup> or <Service> level in the native
WSDF file.

This policy may be combined with other WS-Security policies (such as inbound body
signature). For more information, see Configuring Message-Level Web Service Security

Following is an example of the SAML 1.1 policy file with supported capabilities outlined.

Example 1-23 SAML 1.1 Policy File

<?xml version="1.0"?>

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <sp:AsymmetricBinding>
 <wsp:Policy>
 <sp:InitiatorToken>
 <wsp:Policy>
 <sp:X509Tokensp:IncludeToken="http://docs.oasis-open.org/ws-
sx/ws-securitypolicy/200512/IncludeToken/Always">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:InitiatorToken>
 <sp:RecipientToken>
 <wsp:Policy>
 <sp:X509Token sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200512/IncludeToken/Never">
 <wsp:Policy>

Chapter 1
Configuring Oracle Tuxedo Web Services

1-50

 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:RecipientToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:ProtectTokens/>
 </wsp:Policy>
 </sp:AsymmetricBinding>
 <sp:SignedSupportingTokens>
 <wsp:Policy>
 <sp:SamlToken
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/
IncludeToken/AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssSamlV11Token10/>
 </wsp:Policy>
 </sp:SamlToken>
 </wsp:Policy>
 </sp:SignedSupportingTokens>
</wsp:Policy>

1.1.7.3.2.8 Mapping SAML Elements with Oracle Tuxedo Security

The following table lists what optional SAML assertion elements must present.

Table 1-12 Optional SAML Assertion Elements

Oracle Tuxedo Security and SAML Assertion Correspondence

Oracle Tuxedo SECURITY
Level

Additional SAML Assertion
Elements Required

Access Principal

NONE None Anonymous, Subject/NameID

APP_PW None Anonymous, Subject/NameID

USER_PW Subject Subject/NameID

ACL Subject Subject/NameID

MANDATORY_ACL Subject Subject/NameID

In NONE and APP_PW cases, if the optional element "Subject"exists, then "NameID"is used to
access Oracle Tuxedo. If the optional element "Subject"does not exist, then the client
assumes anonymous user identity to access Oracle Tuxedo. If the anonymous access is not
allowed (i.e. no credential mapping for anonymous), then the request fails.

Chapter 1
Configuring Oracle Tuxedo Web Services

1-51

If the SAML assertion does not contain a "Subject" element and Tuxedo SECURITY level is
configured at USER_PW, ACL, or MANDATORY_ACL, then the request is rejected.

1.1.7.4 Configuring X.509-Based Authentication
A X.509 V3 public key certificate is required for X.509 based authentication for an outbound
GWWS SOAP message. The public key certificate used for this purpose can be configured as
either one certificate for all the requests targeted for the same Web Service or per request
invocation if Tuxedo SECURITY is set at USER_AUTH or higher. In the later case, the
certificate must have the same name as the Tuxedo user identification or the mapped remote
user name if identity mapping plug-in is installed.

The configured X.509 public key certificate will be used for:

1. Mutual Authentication for Transport Layer security (that is,TLS).

2. Message signing.

3. Part of the SOAP message that can be used to authenticate user at message-level (as
oppose to transport layer).

Whether all 3 tasks will be performed or only partial of the 3 tasks depends on the WS policy
used by the Web Service.

Since message encryption will not be supported as it is not required it is recommended to use
TLS as the preferred transport mechanism to protect the integrity and privacy of the message.
The X.509 Public Key certificate used for TLS can be different from the one used for signing
depends on how user configure it.

When GWWS received a request from client it will process the message, optionally it will sign
the message and attach the certificate as the binary security token to the SOAP request
message if WS policy requires it; and then send the request to remote Web Service through
TLS. Depends on the WS policy this TLS connection can be either one-way or two-way TLS.

During the TLS connection establishing process the application server will validate the client
certificate if the connection is two-way TLS; and forward the request to Web Service.

When Web Service received the request it will validate the certificate, verify the signature if
Web Service requires it. If the request is good it will send reply back. The reply send back by
Web Service may be also signed depends on WS policy.

When GWWS received the reply it will forward reply back to actual SALT client. In the case that
reply is signed GWWS will validate the certificate and verify the signature before forwarding the
reply back to SALT client.

Example 1-24 SOAP message based on X.509 Authentication

<S11:Envelope xmlns:S11="…" >
<S11:Header>
<wsse:Security xmlns:wsse="…" xmlns:wsu="…">
<wsse:BinarySecurityToken
wsu:id="binarytoken"
ValueType="wsse:X590v3"
EncodingType="wsse:Base64Binary">
MIIEzzCCA9CgAwIBAgIQEmtJZc0…
</wsse:BinarySecurityToken>
<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:SignedInfo>
<ds:Reference URI="#body">…</ds:Reference>
<ds:Reference URI="#binarytoken">…</ds:Reference>

Chapter 1
Configuring Oracle Tuxedo Web Services

1-52

</ds:SignedInfo>
…
</ds:Signature>
</wsse:Security>
</S11:Header>
<S11:Body wsu:Id="body" xmlns:wsu="…">
…
</S11:Body>
</S11:Envelope>

For user to successfully access Web Service through GWWS user must configure a valid client
certificate and private key that is accessible to GWWS at runtime. This certificate and private
key can be used by transport level security or message level security, or even both depend on
Web Service' requirement.

Currently Tuxedo SALT only support single certificate which is configured through the "System"
element in the deployment descriptor, with this limitation all the requests going through different
instances of GWWS gateway 1 will use same certificate to establish TLS connection.
Invariably, in the eyes of the Web Service they all come from the same user; thus same access
privilege. This new feature will remove this constraint and make it possible to use different
certificate to represent different client or gateway.

SALT configuration consists of a deployment descriptor (DEP) and multiple web service
definition files (WSDF). This new feature will use "Property" to configure default user identity to
be used for this purpose, or to instruct GWWS to how to use filters/mappers to map Tuxedo
user identity to a X.509 certificate. The "Property" which is used for configuration is an XML
element that is available as configurable child element to both "GWInstance" and "Service".
"GWInstance" is configured in SALT deployment descriptor while "Service" is configured in
SALT web service definition file.

When a Web Service' WS-Security policy requires message level security, GWWS will use the
private key to perform message signing, and attach the certificate to the SOAP message as
Binary Security Token to be used by target Web Service to validate the message and
authenticate the user. Otherwise, it will only use the certificate and private key to create a
secured transport layer connection, i.e. TLS.

Whether a service request will use "X.509" security token for user identity is determined by the
WS Security Policy associated with the Web Service.

Note:

This feature only supports X.509 V3 Public Key Certificate; other versions are not
supported.

• Certificate Sources

• Properties

1.1.7.4.1 Certificate Sources
The X.509 V3 Public Key Certificate used for message level security can come from one of the
following sources:

1. The X.509 Certificate configured for the transport security.

2. The X.509 Certificate associates with a particular instance of GWWS gateway.

Chapter 1
Configuring Oracle Tuxedo Web Services

1-53

3. The X.509 Certificate associates with the preset principal of the Web Service.

4. The X.509 Certificates associate with SALT clients.

1.1.7.4.2 Properties
There are three new properties added to the configuration to aid different security
configurations. All 3 properties are available in "GWInstance" and "Service". The "Service"
element is available in WSDF, and the "GWInstance" is available in SALT deployment
descriptor.

• defaultClientIdentification

• useSingleClientIdentification

• allowAnonymousAccess

1.1.7.4.2.1 defaultClientIdentification

This property defines the default client name to be used for X.509 certificate lookup. The one
configured in the "Service" has precedence over the one configured in "GWInstance".

The following example shows the effective default client name will be "catalina" for service
"GetData".

Example 1-25 defaultClientIdentification

<?xml version="1.0" encoding="UTF-8" ?>
<!- Sample.wsdf
-->
<Definition …>
<WSBinding id="sample_Binding">
<SOAP>
<AccessingPoiints>
…
</AccessingPoint>
</SOAP>
<ServiceGroup id="SampleSrvGrp">
<Service name="GetData">
<Property name="defaultClientIdentification" value="catalina"/>
</Service>
</ServiceGroup>
</WSBinding>
</Definition>

Example 1-26 defaultClientIdentification

<?xml version="1.0" encoding="UTF-8"?>
<!- sample.dep
-->
<Deployment xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007">
<WSDF>
<Import location="c:/salt/x.509/Sample.wsdf"></Import>
</WSDF>
<WSGateway>
<GWInstance id="INSTANCE1">
<Outbound>

Chapter 1
Configuring Oracle Tuxedo Web Services

1-54

…
</Outbound>
<Properties>
<Property name="defaultClientIdentification" value="melbourne"/>
</Properties>
</GWInstance>
</WSGateway>
<System>
<Certificate>
…
</Certificate>
</System>
</Deployment>

For all other services provided by GWWS instance "INSTANCE1" without their own
"defaultClientId" configured then they will use the default client id of the GWWS and in this
case it will be "melbourne".

1.1.7.4.2.2 useSingleClientIdentification

"useSingleClientIdentification" tells whether it is desirable for any Web Service use the same
client X.509 certificate. When the decision is to enable this filter then all the SALT client request
will use the identity configured in "defaultClientIdentification", if "defaultCleintIdentification" is
not configured then it is a configuration error and "wsloadcf" will issue an error. By default it is
disabled.

This filter only affects the runtime client X.509 certificate selection when Tuxedo "SECURITY"
is configured at least at "USER_AUTH" level. If Tuxedo SECURITY is configured as "NONE" or
"APP_PW" then this filter will not be used for client certificate selection. The error condition
described in previous paragraph will still be true even if this attribute is disabled at runtime.

The following table is a matrix table for decision to enable this single client identification filter:

Table 1-13 Single Client Identification Filter Matrix

Service GWInstance Decision

Unconfigured Unconfigured Disable
Unconfigured Configured TRUE Enabled
Unconfigured Configured FALSE Disabled
Configure TRUE Unconfigured Enabled
Configure TRUE Configured TRUE Enabled
Configure TRUE Configured FALSE Enabled
Configure FALSE Unconfigured Disable
Configure FALSE Configured TRUE Disable
Configure FALSE Configured FALSE Disable

The example in the previous section has this filter "disabled" since both places omitted this
property.

The following example will have this filter "enabled".

Chapter 1
Configuring Oracle Tuxedo Web Services

1-55

Example 1-27 Filter Enabled

<?xml version="1.0" encoding="UTF-8" ?>
<!- Sample.wsdf
-->
<Definition …>
<WSBinding id="sample_Binding">
<SOAP>
<AccessingPoints>
…
</AccessingPoints>
</SOAP>
<ServiceGroup id="SampleSrvGrp">
<Service name="GetData">
<Property name="defaultClientIdentification" value="catalina"/>
<Property name="useSingleClientIdentification" value="true" />
</Service>
</ServiceGroup>
</WSBinding>
</Definition>

Example 1-28 Filter Enabled

<?xml version="1.0" encoding="UTF-8"?>
<!- sample.dep
-->
<Deployment xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007">
<WSDF>
<Import location="c:/salt/x.509/Sample.wsdf"></Import>
</WSDF>
<WSGateway>
<GWInstance id="INSTANCE1">
<Outbound>
…
</Outbound>
<Properties>
<Property name="defaultClientIdentification" value="melbourne"/>
</Properties>
</GWInstance>
</WSGateway>
<System>
<Certificate>
…
</Certificate>
</System>
</Deployment>

1.1.7.4.2.3 allowAnonymousAccess

This property only affects the X.509 certificate selection when Tuxedo SECURITY is configured
at least at "USER_AUTH" level. This property allows users without their own X.509 certificate
to use a default client identification when access a Web Service. By default it is disabled.

The following is the matrix table for decision to enable this anonymous client access filter:

Chapter 1
Configuring Oracle Tuxedo Web Services

1-56

Table 1-14 Anonymous Client Access Filter Matrix

Service GWInstance Decision

Unconfigured Unconfigured Disabled

Unconfigured Configured TRUE Enabled

Unconfigured Configured FALSE Disabled

Configure TRUE Unconfigured Enabled

Configure TRUE Configured TRUE Enabled

Configure TRUE Configured FALSE Enabled

Configure FALSE Unconfigured Disabled

Configure FALSE Configured TRUE Disabled

Configure FALSE Configured FALSE Disabled

If the decision is to enable this filter then "defaultClientIdentification" must be configured; if
"defaultClientIdentification" is not configured then "wsloadcf" will fail and return an error.

The following is the sample configuration.

Example 1-29 defaultClientIdentification Configured

<?xml version="1.0" encoding="UTF-8" ?>
<!- Sample.wsdf
-->
<Definition …>
<WSBinding id="sample_Binding">
<SOAP>
<AccessingPoints>
…
</AccessingPoints>
</SOAP>
<Servicegroup id="SampleSrvGrp">
<Service name="GetData">
<Property name="defaultClientIdentification" value="catalina"/>
<Property name="allowAnonymousAccess" value="true" />
</Service>
</Servicegroup>
</WSBinding>
</Definition>

Example 1-30 defaultClientIdentification not configured

<?xml version="1.0" encoding="UTF-8"?>
<!- sample.dep
-->
<Deployment xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007">
<WSDF>
<Import location="c:/salt/x.509/Sample.wsdf"></Import>
</WSDF>
<WSGateway>
<GWInstance id="INSTANCE1">
<Outbound>
…

Chapter 1
Configuring Oracle Tuxedo Web Services

1-57

</Outbound>
<Properties>
<Property name="defaultClientIdentification" value="melbourne"/>
<Property name="allowAnonymousAccess" value="false" />
</Properties>
</GWInstance>
</WSGateway>
<System>
<Certificate>
…
</Certificate>
</System>
</Deployment>

1.1.8 Compiling SALT Configuration
Compiling a SALT configuration file means generating a binary version of the file
(SALTCONFIG) from the XML version SALTDEPLOY file. To compile a configuration file, run the
wsloadcf command. wsloadcf parses a deployment file and loads the binary file.

wsloadcf reads a deployment file and all imported WSDF files and WS-Policy files referenced
in the deployment file, checks the syntax according to the XML schema of each file format, and
optionally loads a binary configuration file called SALTCONFIG. The SALTCONFIG and
(optionally) SALTOFFSET environment variables point to the SALTCONFIG file and (optional)
offset where the information should be stored.

wsloadcf validates the given SALT configuration files according to the predefined XML Schema
files. XML Schema files needed by SALT can be found at directory: $TUXDIR/udataobj/salt.
wsloadcf can execute for validating purpose only without generating the binary version
SALTCONFIG once option “-n” is specified.

For more information, see wsloadcf reference in the SALT Reference Guide

1.1.9 Configuring the UBBCONFIG File for SALT
After configuring and compiling the SALT configuration, the Oracle Tuxedo UBBCONFIG file
needs to be updated to apply SALT components in the Oracle Tuxedo application. The
following table lists the UBBCONFIG file configuration tasks for SALT.

Table 1-15 UBBCONFIG File Configuration Tasks for SALT

Configuration Tasks Required Optional

Configuring the TMMETADATA
Server in the *SERVERS Section

X -

Configuring the GWWS Servers
in the *SERVERS Section

X -

Updating System Limitations in
the UBBCONFIG File

X -

Configuring Certificate Password
Phrase For the GWWS Servers

- X

Configuring Oracle Tuxedo
Authentication for Web Service
Clients

- X

Chapter 1
Configuring Oracle Tuxedo Web Services

1-58

Table 1-15 (Cont.) UBBCONFIG File Configuration Tasks for SALT

Configuration Tasks Required Optional

Configuring Oracle Tuxedo
Security Level for Outbound
HTTP Basic Authentication

- X

• Configuring the TMMETADATA Server in the *SERVERS Section

• Configuring the GWWS Servers in the *SERVERS Section

• Updating System Limitations in the UBBCONFIG File

• Configuring Certificate Password Phrase For the GWWS Servers

• Configuring Oracle Tuxedo Authentication for Web Service Clients

• Configuring Oracle Tuxedo Security Level for Outbound HTTP Basic Authentication

1.1.9.1 Configuring the TMMETADATA Server in the *SERVERS Section
SALT requires at least one TMMETADATA server defined in the UBBCONFIG file. Multiple
TMMETADATA servers are also allowed to increase the throughput of accessing the Oracle
Tuxedo service definitions.

The following is an example of a segment of the UBBCONFIG file that shows how to define
TMMETADATA servers in an Oracle Tuxedo application.

Example 1-31 TMMETADATA Servers Defined In the UBBCONFIG File *SERVERS
Section

......
*SERVERS
TMMETADATA SRVGRP=GROUP1 SRVID=1
 CLOPT="-A -- –f domain_repository_file -r"
TMMETADATA SRVGRP=GROUP1 SRVID=2
 CLOPT="-A -- –f domain_repository_file"
......

Note:

Maintaining only one Service Metadata Repository file for the entire Oracle Tuxedo
domain is highly recommended. To ensure this, multiple TMMETADATAservers running
in the Oracle Tuxedo domain must point to the same repository file.
For more information, see Managing the Oracle Tuxedo Service Metadata Repository
in the Oracle Tuxedo documentation.

1.1.9.2 Configuring the GWWS Servers in the *SERVERS Section
To boot GWWS instances defined in the SALTDEPLOY file, the GWWS servers must be defined
in the *SERVERS section of the UBBCONFIG file. You can define one or more GWWS server
instances concurrently in the UBBCONFIG file. Each GWWS server must be assigned with a
unique instance id with the option “-i” within the Oracle Tuxedo domain. The instance id must

Chapter 1
Configuring Oracle Tuxedo Web Services

1-59

be present in the XML version SALTDEPLOY file and the generated binary version SALTCONFIG
file.

The following is an example of a segment of the UBBCONFIG file that shows how to define
GWWS servers in an Oracle Tuxedo application:

Example 1-32 GWWS Servers Defined In the UBBCONFIG File *SERVERS Section

......
*SERVERS
GWWS SRVGRP=GROUP1 SRVID=10
 CLOPT="-A -- –i GW1"
GWWS SRVGRP=GROUP1 SRVID=11
 CLOPT="-A -- –i GW2"
GWWS SRVGRP=GROUP2 SRVID=20
 CLOPT="-A -- -c saltconf_2.xml –i GW3"
......

For more information, see GWWS in the Oracle SALT Reference Guide

Note:

Be sure that the TMMETADATA system server is set up in the UBBCONFIG file to
start before the GWWS server boots. Because the GWWS server calls services
provided by TMMETADATA, it must boot after TMMETADATA.
To ensure TMMETADATA is started prior to being called by the GWWS server, put
TMMETADATA before GWWS in the UBBCONFIG file or use SEQUENCE parameters in
*SERVERS definition in the UBBCONFIG file.

SALT configuration information is pre-compiled with wsloadcf to generate
theSALTCONFIG file binary. GWWS server reads the SALTCONFIG file at start up.The
SALTCONFIGenvironment variable must be set correctly with the SALTCONFIG file entity
before booting GWWS servers.

Option “-c” is deprecated in the current version SALT. In SALT 1.1 release, option “-
c” is used to specify SALT 1.1 configuration file for the GWWS server. In SALT 2.0, GWWS
server reads SALTCONFIG file at start up. GWWS server specified with this option can be
booted with a warning message to indicate this deprecation. The specified file can be
arbitrary and is not read by the GWWS server.

1.1.9.3 Updating System Limitations in the UBBCONFIG File
When configuring the Oracle Tuxedo domain with SALT GWWS servers, you must plan and
update Oracle Tuxedo system limitations defined in the UBBCONFIG file according to your SALT
application requirements.

Chapter 1
Configuring Oracle Tuxedo Web Services

1-60

Tip:

• Define an adequate MAXSERVERS number in the *RESOURCES section
SALT requires the following system servers to be started in an Oracle Tuxedo
domain: TMMETADATA and GWWS. The number of TMMETADATA and GWWS server
must be accounted for in the MAXSERVERS value.

• Define an adequate MAXSERVICES number in the *RESOURCES section
When the GWWS server working in the outbound direction, external wsdl
operations are mapped with Oracle Tuxedo services and advertised via the
GWWS servers. The number of the advertised services by all GWWS servers must
be accounted for in the MAXSERVICES value.

• Define an adequate MAXACCESSERS number in the *RESOURCES section
The MAXACCESSERS value is used to specify the default maximum number of
clients and servers that can be simultaneously connected to the Oracle Tuxedo
bulletin board on any particular machine in this application. The number of
TMMETADATA and GWWS server, maximum concurrent Web Service client requests
must be accounted for in the MAXACCESSERS value.

• Define an adequate MAXWSCLIENTS number in the *MACHINES section
When the GWWS server operating in the inbound direction, each Web Service
client is deemed a workstation client in the Oracle Tuxedo system; therefore,
MAXWSCLIENTS must be configured with a valid number in the UBBCONFIG file for
the machine where the GWWS server is deployed. The number is shared.

1.1.9.4 Configuring Certificate Password Phrase For the GWWS Servers
Configuring a security password phrase is required when setting up certificates for SALT. The
certificates setting is desired when the GWWS servers enable TLS link-level encryption and/or
Web Service Security X.509 Token and signature features. The certificate private key file must
be created and encrypted with a password phrase.

When GWWS servers are specified with certificate-related features, they are required to read the
private key file and decrypt it using the password phrase. To configure a password phrase for
each GWWS server, the keywords SEC_PRINCIPAL_NAME and SEC_PRINCIPAL_PASSVAR must be
specified under each desired GWWS server entry in the *SERVERS section. During compiling the
UBBCONFIG file with tmloadcf, the administrator must type the password phrase, which can be
used to decrypt the private key file correctly.

Note:

Only one private key file can be specified in the SALT deployment file. All the GWWS
servers defined in the SALT deployment file must be provided the same password
phrase for the private key file decryption.

The example shows a segment of the UBBCONFIG file that defines a security password phrase
for the GWWS servers.

Chapter 1
Configuring Oracle Tuxedo Web Services

1-61

Example 1-33 Security Password Phrase Defined in the UBBCONFIG File For the
GWWS Servers

......
*SERVERS
GWWS SRVGRP=GROUP1 SRVID=10
 SEC_PRINCIPAL_NAME="gwws_certkey"
 SEC_PRINCIPAL_VAR="gwws_certkey"
 CLOPT="-A -- –i GW1"
GWWS SRVGRP=GROUP1 SRVID=11
 SEC_PRINCIPAL_NAME="gwws_certkey"
 SEC_PRINCIPAL_PASSVAR="gwws_certkey"
 CLOPT="-A -- –i GW2"
......

For more information, see UBBCONFIG(5) in the Oracle Tuxedo documentation

1.1.9.5 Configuring Oracle Tuxedo Authentication for Web Service Clients
SALT GWWS servers rely on Oracle Tuxedo authentication framework to check the validity of the
Web Service clients. If your existing Oracle Tuxedo application is already applied, Web Service
clients must send user credentials using one of the following:

• HTTP Basic Authentication in the HTTP message header

• Web Service Security Username Token in the SOAP message header

Contrarily, if you want to authenticate Web Service clients for SALT, you must configure Oracle
Tuxedo authentication in the Oracle Tuxedo domain.

For more information, see administering_authentication in the Oracle Tuxedo 22c
Documentation

1.1.9.6 Configuring Oracle Tuxedo Security Level for Outbound HTTP Basic
Authentication

To obtain Oracle Tuxedo client uid/gid for outbound HTTP Basic Authentication username /
password mapping, you must configure the Oracle Tuxedo Security level as USER_AUTH, ACL or
MANDATORY_ACL in the UBBCONFIG file.

The following example shows a segment of the UBBCONFIG file that defines security-level ACL
in the UBBCONFIG file.

Example 1-34 Security-Level ACL Defined in the UBBCONFIG File For Outbound HTTP
Basic Authentication

*RESOURCES
IPCKEY ...
......
SECURITY ACL
......

Chapter 1
Configuring Oracle Tuxedo Web Services

1-62

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#3370051

1.1.10 Configuring SALT In Oracle Tuxedo MP Mode
To set up GWWS servers running on multiple machines within an MP mode Oracle Tuxedo
domain, each Oracle Tuxedo machine must be defined with a separate SALTDEPLOY file and a
set of separate other components.

You must propagate the following global resources across different machines:

• Certificates.
Private key file and the trusted certificate files must be accessible from each machine
according to the settings defined in the SALTDEPLOY file.

• Plug-in load libraries
Plug-in shared libraries must be compiled on each machine and must be accessible
according to the settings defined in the SALTDEPLOY file.

You may define two GWWS servers running on different machine with the same functionality by
associating the same WSDF files. But it requires manual propagation of the following artifacts:

• The WSDF files

• The WS-Policy files

• FML32 field table definition files if Oracle Tuxedo Services consume FML32 typed buffers

• XML Schema files excerpted by wsdlcvt

1.1.11 Migrating from SALT 1.1
This section describes the following two possible migrating approaches for SALT 1.1
customers who plan to upgrade to SALT 2.0 release:

• Running GWWS servers with SALT 1.1 Configuration File

• Adopting SALT 2.0 Configuration Style by Converting SALT 1.1 Configuration File

1.1.11.1 Running GWWS servers with SALT 1.1 Configuration File
After upgrading from SALT 1.1 to SALT 2.0 release, you may still want to run your existing
SALT applications with the original SALT 1.1 configuration file. This is supported in SALT 2.0.

The SALT configuration compiler utility, wsloadcf, supports loading the binary version
SALTCONFIG from one SALT 1.1 format configuration file.

To run SALT 2.0 GWWS servers with SALT 1.1 configuration file, you must perform the following
steps:

1. Load the binary version SALTCONFIG from the SALT 1.1 format configuration file via
wsloadcf

2. Set the SALTCONFIG environment variable before booting the GWWS servers.

3. Boot the GWWS servers associated with this SALT 1.1 configuration file.

Chapter 1
Configuring Oracle Tuxedo Web Services

1-63

Note:

If you have more than one SALT 1.1 configuration files defined in an Oracle
Tuxedo domain, you must follow steps 1 - 3 to generate more binary SALTCONFIG
files and boot corresponding GWWS servers.

1.1.11.2 Adopting SALT 2.0 Configuration Style by Converting SALT 1.1 Configuration
File

When wsloadcf loads a binary SALTCONFIG from a SALT 1.1 configuration file, it also converts
this SALT 1.1 configuration file into one WSDF file and one SALTDEPLOY file.

It is highly recommended to start using the SALT 2.0 styled configuration once you get the
converted files from SALT 1.1 configuration. If you want to incorporate more than one SALT 1.1
configuration file into one SALT 2.0 deployment, you must manually edit the SATLDEPLOY file for
importing the other WSDF files.

The following example shows the converted SALTDEPLOY file and WSDF file from a given SALT
1.1 configuration file.

Example 1-35 A Sample of SALT 1.1 Configuration File (simpapp.xml)

<Configuration xmlns=" http://www.bea.com/Tuxedo/Salt/200606">
 <Servicelist id="simpapp">
 <Service name="toupper" />
 <Service name="tolower" />
 </Servicelist>
 <Policy />
 <System />
 <WSGateway>
 <GWInstance id="GWWS1">
 <HTTP address="//127.0.0.1:7805" />
 <HTTPS address="127.0.0.1:7806" />
 <Property name="timeout" value="300" />
 </GWInstance>
 </WSGateway>
</Configuration>

The converted SALT 2.0 WSDF file and deployment file are shown in the following examples:

Example 1-36 Converted WSDF File for SALT 1.1 Configuration File
(simpapp.xml.wsdf)

<Definition name="simpapp" wsdlNamespace="urn:simpapp.wsdl"
 xmlns=" http://www.bea.com/Tuxedo/WSDF/2007">
 <WSBinding id="simpapp_binding">
 <Servicegroup id="simpapp">
 <Service name="toupper" />
 <Service name="tolower" />
 </Servicegroup>
 <SOAP>
 <AccessingPoints>
 <Endpoint id="simpapp_GWWS1_HTTPPort"
 address=http://127.0.0.1:7805/simpapp />

Chapter 1
Configuring Oracle Tuxedo Web Services

1-64

 <Endpoint id=" simpapp_GWWS1_HTTPSPort"
 address=https://127.0.0.1:7806/simpapp tlsversion=TLSv1.2/>
 </AccessingPoints>
 </SOAP>
 </WSBinding>
</Definition>

Example 1-37 Converted SALTDEPLOY File for SALT 1.1 Configuration File
(simpapp.xml.dep)

<Deployment xmlns=" http://www.bea.com/Tuxedo/SALTDEPLOY/2007">
 <WSDF>
 <Import location="/home/myapp/simpapp.wsdf" />
 </ WSDF>
 <WSGateway>
 <GWInstance id="GWWS1">
 <Inbound>
 <Binding ref="simpapp:simpapp_binding">
 <Endpoint use=" simpapp_GWWS1_HTTPPort" />
 <Endpoint use=" simpapp_GWWS1_HTTPSPort" />
 </Binding>
 </Inbound>
 <Properties>
 <Property name="timeout" value="300" />
 </Properties>
 </GWInstance>
 </WSGateway>
</ Deployment>

1.2 Configuring Service Contract Discovery
When discovery is activated for a service, the server that provides the service collects service
contract information and sends the information to an internal service implemented by
TMMETADATA(5). The same service contract is only sent once to reduce communication
overhead.

The TMMETADATA server summarizes the collected data and generates a service contract. The
contract information can either can be stored in the metadata repository, or output to a text file
(which is then loaded to the metadata repository using tmloadrepos). SALT uses the tmscd
command to control the service contract runtime collection. For more information, see tmscd in
the SALT Command Reference Guide

Generated service contract information contains the service name, request buffer information,
response buffer information, and error buffer information if there is a failure. The collected
service contract information is discarded if it fails to send information to the TMMETADATA server.
The buffer information includes buffer type and subtype, and field information for FML/FML32
(name,type,subtype).

Discovery is supported for any embedded buffer in FML32 buffer. For FML/FML32 field
occurrences, the discovery automatically updates the pattern for the count/requiredcount in
metadata repository. Field occurrence does not impact the pattern, but the minimum
occurrence is the "requiredcount".The maximum occurrence is the "count" of the entire
contract discovery period.

Chapter 1
Configuring Service Contract Discovery

1-65

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#3133627

For VIEW/VIEW32/X_C_TYPE/X_COMMON, only the view name is discovered. SALT can
generate a detailed description by view name when using metadata repository.

Note:

Patterns flagged with autodiscovery (see Table 1-16) are compared.
If the same autodiscovery pattern already exists in the metatdata repository, then
the newer pattern is ignored.

Only application ATMI services (local, or imported via /TDOMAIN gateway) are supported.
Service contract discovery does not support the following services:

• system services (name starts with '.' or '..')

• conversational services

• CORBA services

• /Q and SALT proxy services

Note:

Services without a reply are mapped as "oneway" services in the metadata
repository.

• tpforward Support

• Service Contract Text File Output

1.2.1 tpforward Support
If a service issues tpforward() instead of tpreturn(), its reply buffer information is the same
as the reply buffer of the service which it forwards to. For example:

• client calls SVCA with a STRING typed buffer

• SVCA processes the request, and then creates a new FML32 typed buffer as the request
is forwarded to SVCB

• SVCB handles the request and returns a STRING buffer to the client. The SVCA contract
is STRING+STRING. The SVCB contract is FML32+STRING

1.2.2 Service Contract Text File Output
If you want collected service contract discovery information logged to a file instead of directly to
the metadata repository, you must use the TMMETADATA(5) -o<filename> option and then
use tmloadrepos to manually load the file to the metadata repository. For more information,
see tmloadrepos in the Oracle Tuxedo Command Reference Guide.

The output complies with the format imposed by tmloadrepos if a file is used as storage
instead of the metadata repository. The file contains a service header section and a parameter
section for each parameter. Service header contains items listed in the table below:

Chapter 1
Configuring Service Contract Discovery

1-66

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#3133627

The "service" field format is <TuxedoServiceName>+'_'+<SequenceNo>. The suffix
<SequenceNo> is used to avoid name conflict when multiple patterns are recognized for an
Oracle Tuxedo service.

Note:

<SequenceNo> starts from the last <SequenceNo> number already stored in the
metadata repository.

Service parameter contains information is listed in the following table:

Table 1-16 Service Level Attributes

Keyword (abbreviation) Sample Value Description

service(sv) TOUPPER_1 <RealServiceName>_<Sequenc
eNo>.

tuxservice(tsv) TOUPPER The service name.

servicetype(st) service|oneway one way if TPNOREPLY is set.

inbuf(bt) STRING FML, FML32, VIEW, VIEW32,
STRING, CARRAY, XML,
X_OCTET, X_COMMON,
X_C_TYPE, MBSTRING or other
arbitrary string representing an
application defined custom buffer
type.

outbuf(BT) FML32 set to "NULL" if it is an error
reply.

errbuf(ebt) STRING present only when it is an error
reply.

inview - View name. Present only when
inbuf is of type VEW or VIEW32.

outview - View name. Present only when
outbuf is of type VIEW or
VIEW32.

errview - View name. Present only when
errbuf is of type VIEW or
VIEW32.

autodiscovery true Set to "true".

Table 1-17 Parameter Level Attributes

Keyword
(abbreviation)

Sample Description

param(pn) USER_INFO -

paramdescriptio
n(pd)

service parameter -

access(pa) in A combination of {in}{out}
{err}.

Chapter 1
Configuring Service Contract Discovery

1-67

Table 1-17 (Cont.) Parameter Level Attributes

Keyword
(abbreviation)

Sample Description

type(pt) fml32 byte, short, integer, float,
double, string, carray, dec_t,
xml, ptr, fml32, view32,
mbstring.

subtype(pst) - A view name for a view or
view32 typed parameter.

count 100 The maximum occurrence of
FML/FML32 field watched
during the collection period

requiredcount 1 The minimum occurrence of
FML/FML32 field watched
during the collection period.

• Examples

1.2.2.1 Examples
Example 1:

Input: service=SVC, request=STRING, reply = TPSUCCESS + STRING
Output Pattern:
service=SVC_1,tuxservice=SVC,inbuf=STRING,outbuf=STRINGservice=SVC_1,tuxservice=S
VC,inbuf=STRING,outbuf=STRING
Example 2:

Input: SVC, request=STRING, reply = TPFAIL+ STRING
Output Pattern (partial): Service=SVC_1,
tuxservice=SVC,inbuf=STRING,outbuf=NULL,errbuf=STRING
Example 3:

Input:

service=SVC, request=STRING, reply = TPSUCCESS + STRING
service=SVC, request=STRING, reply = TPFAIL+ STRING
Output Pattern:

service=SVC_1,tuxservice=SVC,inbuf=STRING,outbuf=STRING
Service=SVC_2, tuxservice=SVC,inbuf=STRING,outbuf=NULL,errbuf=STRING
Example 4:

Input:

service=FMLS,request=FML32(name,pwd),reply=TPSUCCESS+FML32(id)
Output Pattern:

service=FMLS_1,tuxservice=FMLS,inbuf=FML32,outbuf=FML32

Chapter 1
Configuring Service Contract Discovery

1-68

param: input(name, pwd), output(id)
Example 5:

Input:

service=FMLS,request=FML32(name,pwd),reply=TPSUCCESS+FML32(id)
service=FMLS,request=FML32(name,pwd,token),reply=TPSUCCESS+FML32(id)
Output Pattern:

service=FMLS_1,tuxservice=FMLS,inbuf=FML32,outbuf=FML32
param: input(name, pwd), output(id)
service=FMLS_2,tuxservice=FMLS,inbuf=FML32,outbuf=FML32
param: input(name, pwd,token), output(id)

1.3 Configuring SALT WS-TX Support

Note:

These configuration changes are summarized in the SALTDEPLOY additions pseudo-
schema and WSDF additions pseudo-schema Appendix.

For additional information, see the SALT Interoperability Guide

This section contains the following topics:

• Configuring Transaction Log Device

• Registration Protocol

• Configuring WS-TX Transactions

• Configuring Maximum Number of Transactions

• Configuring Policy Assertions

• WSDL Generation

• WSDL Conversion

1.3.1 Configuring Transaction Log Device
The GWWS system server must be configured using the transaction log (TLogDevice) element
(similar to the Oracle Tuxedo or /Domains TLog files). The TLOGDevice element is added to the
SALTCONFIG source file (SALTDEPLOY) as shown in the example below:

A TLOGName element is also added to allow sharing the same TLog device across GWWS
instances.

Only one TLog device per Web services Gateway instance is permitted (that is, the transaction
log element is a child element of /Deployment/WSGateway/GWInstance).

Chapter 1
Configuring SALT WS-TX Support

1-69

Example 1-38 TLOG Element Added to SALTDEPLOY File

<Deployment xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007">
<WSDF>
...
</WSDF>
<WSGateway>
<GWInstance id="GW1">
<TLogDevice location="/app/GWTLOG"/>
<TLogName id="GW1TLOG"/>
...
</GWInstance>
</WSGateway>
...
</Deployment>

1.3.2 Registration Protocol
Oracle Tuxedo-based services are registered with a Durable 2PC protocol with coordinators.

When Oracle Tuxedo is the coordinator (outbound direction), the GWWS system server allows
either Volatile 2PC or Durable 2PC registration requests and handles them accordingly.

1.3.3 Configuring WS-TX Transactions
The following figure illustrates the application and protocol flows of a typical WS-AT context
service invocation.

Figure 1-1 WS-AT Service Invocation

Chapter 1
Configuring SALT WS-TX Support

1-70

The configuration steps and runtime behavior of the SALT GWWS gateway are outlined in the
following sections (depending on the role of the Oracle Tuxedo domain as shown in figure
above:

• Configuring Incoming Transactions

• Configuring Outbound Transactions

1.3.3.1 Configuring Incoming Transactions
Oracle Tuxedo services exposed as Web services do not require any specific configuration
other than creating a transaction log file and adding it to the GWWS deploy configuration file in
order to initiate a local transaction associated with an incoming WS-AT transaction request.

To ensure a transaction can be propagated into an Oracle Tuxedo domain, do the following
steps:

1. Ensure that the Oracle Tuxedo service called supports transactions

2. Configure a transaction log g file in the GWWS deployment file. For more information, see
Configuring Transaction Log Device

3. Configure a policy file containing a WS-AT Assertion corresponding to the desired behavior
with respect to the external Web Service called. For more information, see Configuring
Policy Assertions

4. Incoming calls containing a CoordinationContext element creates an Oracle Tuxedo
global transaction.

• Error Conditions

1.3.3.1.1 Error Conditions
Error conditions are handled as follows:

• No log file is configured for the gateway. A wscoor:InvalidState fault is sent back to the
caller. The Detail field contains a corresponding message.

• The target Oracle Tuxedo service does not support transactions. An application fault with a
TPETRAN error code is returned to the caller.

• For all other applications, configuration (such as TPENOENT) or system errors are handled
the same way that normal (non-transactional) requests are handled.

1.3.3.2 Configuring Outbound Transactions
In order for Oracle Tuxedo clients to propagate an Oracle Tuxedo global transaction to external
Web services, do the following steps:

1. Configure a transaction log g file in the GWWS deployment file. For more information, see
Configuring Transaction Log Device

2. Configure a policy file containing a WS-AT Assertion corresponding to the desired behavior
with respect to the external Web Service called. For more information, see Configuring
Policy Assertions

3. Depending on the assertion setting and presence of an Oracle Tuxedo transaction context,
a CoordinationContext element is created and sent in the SOAP header along with the
application request.

4. An endpoint reference is automatically generated and sent along with the
CoordinationContext element for the remote RegistrationService element to enlist in

Chapter 1
Configuring SALT WS-TX Support

1-71

the transaction. This step, along with the protocol exchanges (Prepare/Commit or Rollback
etc.) is transparent on both sides

• Error Conditions

1.3.3.2.1 Error Conditions
Error conditions are handled as follows:

• If the remote system does not support transactions and the WS-AT Assertion/transaction
context call has must create transaction semantics, a TPESYSTEM error is returned to the
client.

• Errors generated remotely are returned to the Oracle Tuxedo client in the same manner as
regular, non-transactional calls. The fault Reason and Detail fields returned describe the
nature of the failure (which is environment dependent).

1.3.4 Configuring Maximum Number of Transactions
The MaxTran element allows you to configure the size of the internal transaction table as
shown in the example below. The default is MAXGTT.

Note:

The MaxTran value is optional. If the configured value is greater than MAXGTT, it is
ignored and MAXGTT is used instead

Example 1-39 MAxTran Element

<Deployment xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007">
<WSDF>
...
</WSDF>
<WSGateway>
<GWInstance id="GW1">
...
<MaxTran value="500"/>
...
</GWInstance>
</WSGateway>
...
</Deployment>

1.3.5 Configuring Policy Assertions
WS-AT defines a policy assertion that allows requests to indicate whether an operation call
must or may be made as part of an Atomic Transaction.

• Policy.xml File

Chapter 1
Configuring SALT WS-TX Support

1-72

1.3.5.1 Policy.xml File
The policy.xml file includes WS-AT policy elements. WS-AT defines the ATAssertion
element, with an Optional attribute, as follows: /wsat:ATAssertion/@wsp:Optional="true" as
shown in the example below:

Example 1-40 Policy.XML ATAssertion Element

<?xml version="1.0"?>
<wsp:Policy wsp:Name="TransactionalServicePolicy"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wsat="http://docs.oasis-open.org/ws-tx/wsat/2006/06">
<wsat:ATAssertion wsp:Optional="true"/>
</wsp:Policy>

Note:

In order to correctly import external WSDL files, the wsdlcvt command is modified to
generate a policy.xml file containing the ATAssertionelement when one is present
in the WSDL. For outbound requests, a policy.xml file containing an ATAssertion
element must be created and properly pointed to in the SALTDEPLOY source.

• Inbound Transactions

• Outbound Transactions

1.3.5.1.1 Inbound Transactions
For inbound transactions, no particular behavior change takes place at runtime. The client
consuming the WSDL takes the decision based on the configured value and runtime behavior
is the same for the normal cases.

1.3.5.1.2 Outbound Transactions
• When an ATAssertion with no "Optional=true" is configured, the call must be made in a

transaction. If no corresponding XA transaction exists, the WS-TX transaction is initiated
but not associated with any Oracle Tuxedo XA transaction. If an XA transaction exists,
there is no change in behavior.

• When an ATAssertion with "Optional=true" is configured, an outbound transaction
context is requested only if a corresponding Oracle Tuxedo XA transaction exists in the
context of the call.

• When no ATAssertion is configured for this service, the corresponding service call is made
outside of any transaction. If a call is made to an external Web service in the context of an
Oracle Tuxedo XA transaction, the Web service call will not propagate the transaction.
This allows excluding certain Web service calls from a global transaction, and represents
the default for most existing Web services calls (that do not support WS-TX).

1.3.6 WSDL Generation
WSDL generation is enhanced to generate an ATAssertion element corresponding to the
assertion configured in the policy file for the corresponding service.

Chapter 1
Configuring SALT WS-TX Support

1-73

1.3.7 WSDL Conversion
For outbound requests, the WSDL conversion tool, wsdlcvt, generates a policy.xml file
containing the ATAssertion element when one is present in the processed WSDL. You must
properly configure the location of the policy.xml file in the SALTDEPLOY source.

1.4 Viewing and Modifying SALT Configuration
You can use Oracle Tuxedo Services Console to view and modify your configuration.

For more information, see Using Oracle Tuxedo Services Console

Note:

The original SALT configuration tool is deprecated.

1.5 SALT Mainframe Transaction Publisher
This section contains the following topics:

• Overview

• Configuration

• SOAP Inbound (Mainframe Transactions Exposed As A Web Service)

• REST Inbound

• SOAP Outbound (Mainframe Invoking An External Web Service)

• REST Outbound

1.5.1 Overview
This feature will provide support for generation of SALT configuration artifacts based on
COBOL copybook in the inbound direction, and generate configuration artifacts and COBOL
copybook in the outbound direction. A new command-line tool (wscobolcvt) is provided to
convert COBOL copybook into SALT artifacts. In addition to runtime support, the configuration
tool is enhanced as follows:

• Provides the same level of functionality as command-line tools with a graphical users
interface.

• Allows you to restrict input/output fields so these are not part of the interface. Defaulting
rules apply in this case as you are not permitted to set/retrieve the values.

1.5.2 Configuration
This section contains the following topics:

• Command-Line

Chapter 1
Viewing and Modifying SALT Configuration

1-74

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/ada/addcon.html

1.5.2.1 Command-Line
wscobolcvt

A new command-line tool that converts COBOL copybook into SALT artifacts.

wsdlcvt

The wsdlcvt command adds the capability of generating a COBOL copybook based on the
structure of the schema contained in the imported WSDL.

In this mode, wsdlcvt also generate servicetype=sna (as opposed to webservice), so that the
corresponding Tuxedo service can be invoked by GWSNAX. The service maps to an external
web service and functions the same as servicetype=webservice.

You can automate the COBOL copybook import process, generate a web service based on it,
and import an external Web Service by Tuxedo Services Console

1.5.3 SOAP Inbound (Mainframe Transactions Exposed As A Web Service)
The wscobolcvt command converts COBOL copybook to service metadata (MIF) with record
type buffers. It parses COBOL and generates service metadata in the MIF format as shown in
figure below:

For more information, see Using Oracle Tuxedo Service Metadata Repository for SALT, and
Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

Chapter 1
SALT Mainframe Transaction Publisher

1-75

https://docs.oracle.com/cd/E72452_01/salt/docs1222/ref/comref.html
https://docs.oracle.com/cd/E72452_01/salt/docs1222/ref/comref.html

Figure 1-2 SOAP Inbound (Mainframe Transactions Exposed As A Web Service)

The following steps are performed:

1. wscobolcvt takes the COBOL source and the following additional information as
arguments:

• service name advertised by TMA corresponding to the mainframe transaction.

• service metadata repository where the MIF definition is added.

• wscobolcvt support targeting the same MIF service in order to expose multiple
transactions in the same WSDL service.

2. wscobolcvt generates service metadata and WSDF file.

3. Optionally, wscobolcvt automatically configures DMCONFIG file entries with domain IDs and
CRM address as shown in the example below:

4. You can add generated files and references to the configuration and deploy them.

Example 1-41 DMCONFIG File Entries With Domain IDs and CRM Address

*DM_LOCAL_DOMAINS

CRMDOM
GWGRP=CRMGRP
TYPE=SNAX
DOMAINID="CRMDOM"

Chapter 1
SALT Mainframe Transaction Publisher

1-76

*DM_REMOTE_DOMAINS

CICSDOM
TYPE=SNAX
DOMAINID="CICSDOM"

*DM_SNACRM

CRMDOM
SNACRMADDR="//wasa:1234"
NWDEVICE="/dev/tcp"
LDOM="CRMDOM"

1.5.4 REST Inbound
The steps to expose a mainframe transaction as a REST inbound service are similar to SOAP
(using wscobolcvt) as shown in Figure below. Note the following differences:

• the wsdf file is not required.

• services are only be added to SALTDEP as shown in the example below:

Figure 1-3 REST Inbound

Chapter 1
SALT Mainframe Transaction Publisher

1-77

Example 1-42 SALTDEP

<Deployment xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007">
<WSDF>
<Import location="GWWS_conf.xml.wsdf"></Import>
</WSDF>
<WSGateway>
<GWInstance id="TuxAll">
<Inbound>
<Binding ref="TuxAll:TuxAll_Binding">
<Endpoint use="TuxAll_TuxAll_HTTPPort"></Endpoint>
</Binding>
<HTTP>
<Network http="localhost:2211" https=""/>
<Service name="MF_BANK">
<Method name="GET" reposservice="BALANCE" service="BALANCE"
inputbuffer="RECORD"/>
<Method name="POST" reposservice="DEPOSIT" service="DEPOSIT"
inputbuffer="RECORD"/>
</Service>
...

1.5.5 SOAP Outbound (Mainframe Invoking An External Web Service)
The wsdlcvt command is used to generate COBOL copybook from WSDL/schema. Outbound
services are invoked using RECORD payloads and are automatically detected and converted
using GWWS.

You can invoke wsdlcvt using the -C argument to generate MIF with RECORD type definitions,
WSDF, XSD, RECORD files and COBOL copybook source files.

wsdlcvt has the -D option to specify a string length to use when xsd:string types are not
constrained by size. Otherwise the default for strings is 256(PIC X(256)).

The generated MIF entry servicetype is set to "sna".

Chapter 1
SALT Mainframe Transaction Publisher

1-78

Figure 1-4 SOAP Outbound (Mainframe Invoking An External Web Service)

1.5.6 REST Outbound
REST outbound services do not have the equivalent of wsdlcvt as shown in Figure 6. You
simply add service endpoints to be accessed in the /Outbound/HTTP section as shown in the
example below:

Chapter 1
SALT Mainframe Transaction Publisher

1-79

Figure 1-5 REST Outbound

Example 1-43 /Outbound/HTTP Section

<Deployment xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007">
<WSDF>
...
</WSDF>
<WSGateway>
<GWInstance id="GW1">
...
<Outbound>
<Binding ref="bankapp:bankapp_binding">
<Endpoint use="http1"/>
<Endpoint use="https1" />
</Binding>
<HTTP>
<Service name="BANK_GET"
method="GET"
address="http://some.org/bankAccount"
content-type="JSON"
outputbuffer="RECORD"/>

Chapter 1
SALT Mainframe Transaction Publisher

1-80

See Also:

• tmadmin

• tmloadrepos

• ubbconfig

• WSDF documentation

• SALT Programming Guide

• SALT Command Reference

• SALT Interoperability Guide

Chapter 1
SALT Mainframe Transaction Publisher

1-81

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1971834
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1789066
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#3370051
https://docs.oracle.com/cd/E72452_01/salt/docs1222/ref/comref.html

2
MIB Class Interface

SALT MIB interface is called using tpcall(".wm" + GWWSID,...). It provides the following
classes defined:

• T_WSRELOAD Class

• T_WSGW Class

• T_WSWEBSERVICE Class

• T_WSBINDING Class

• T_WSOPERATION Class

• T_WSHTTPSERVICE Class

• T_WSTRANSACTION Class

2.1 T_WSRELOAD Class
Invoking this class with GET operation will result in reloading of the SALTCONFIG file. This will
be equivalent to re-starting GWWS, but without actually shutting it down then re-booting it.

Usage

Example 2-1 T_WSRELOAD Class Usage

$ ud32 < reload.ud32
with reload.ud32 containing:
SRVCNM .wmGW1
TA_OPERATION GET

TA_CLASS T_WSRELOAD

".wmGW1" above is this particular instance and must match the gateway id as
specified in the UBBCONFIG file in the "-i" option of the GWWS system server.
Example of a reply:
RTN pkt(1) is :

TA_ERROR 0

TA_MORE 0

TA_OCCURS 1
TA_CLASS T_WSRELOAD

TA_STATUS Config reloaded

• All Other Classes

2-1

Example 2-2 Example of call, to get T_SALTGW information, in ud32 format

$ ud32 < saltgw.ud32
SENT pkt(1) is :
SRVCNM .wmgw1
TA_CLASS T_SALTGW
TA_OPERATION GET

RTN pkt(1) is :
TA_ERROR 0
TA_MORE 0
TA_OCCURS 1
TA_INSTANCEID gw1
TA_TLOGDEVICE
TA_TLOGNAME
TA_WSATENDPOINT
TA_MAXTRAN
TA_SOCKSADDRLIST
TA_MAXCONTENTLEN 0
TA_THREADPOOLSIZE 16
TA_TIMEOUT 300
TA_MAXBACKLOG 20
TA_ENABLEMULTIENC true
TA_ENABLESOAPVAL false
TA_PRIVATEKEY
TA_VERIFYCLIENT
TA_TRUSTEDCERT
TA_CERTPATH
TA_PLUGINLIBRARIES
TA_PLUGINPARAMS
TA_RESTHTTPADDRESS localhost:1111
TA_RESTHTTPSADDRESS

2.2 T_WSGW Class
The T_WSGW class represents attributes of gateway instances such as number of threads,
TLOG device and name.

Table 2-1 T_WSGW Class Attributes

Attribute Type Permissions Values Default

TA_INSTANCEID(k
)

string r--r--r-- string[1..12]

TA_TLOGDEVICE string r--r--r-- string[0..256]
TA_TLOGNAME string r--r--r-- string
TA_WSATENDPOINT string r--r--r-- string
TA_MAXTRAN long r--r--r-- 1 <= num <=

MAXGTT
MAXGTT

TA_SOCKSADDRLIS
T

string r--r--r-- string

Chapter 2
T_WSGW Class

2-2

Table 2-1 (Cont.) T_WSGW Class Attributes

Attribute Type Permissions Values Default

TA_MAXCONTENTLE
N

string r--r--r-- 1b = string
byte size = 1G

TA_THREADPOOLSI
ZE

long r--r--r-- 1 <= num <=
1024

16

TA_NWTIMEOUT long r--r--r-- 1 <= num <=
65535

300

TA_MAXBACKLOG long r--r--r-- 1 <= num <=
1024

16

TA_ENABLEMULTIE
NC

string r--r--r-- {true, false}

TA_ENABLESOAPVA
L

string r--r--r-- {true, false}

TA_PRIVATEKEY string r--r--r-- string[0..128]
TA_VERIFYCLIENT string r--r--r-- {true,false} false
TA_TRUSTEDCERT string r--r--r-- string[0..128]
TA_CERTPATH string r--r--r-- string[0..128]
TA_PLUGINLIBRAR
IES

string r--r--r-- string[0..256]

TA_PLUGINPARAMS string r--r--r-- string[0..256]
TA_RESTHTTPADDR
ESS

string r--r--r-- string[0..256]

TA_RESTHTTPSADD
RESS

string r--r--r-- string[0..256]

TA_WS_REQREPDON
E

long r--r--r-- 1 <= num <=
MAXLONG

TA_WS_REQREPFAI
L

long r--r--r-- 1 <= num <=
MAXLONG

TA_WS_ONEWAYDON
E

long r--r--r-- 1 <= num <=
MAXLONG

TA_WS_ONEWAYFAI
L

long r--r--r-- 1 <= num <=
MAXLONG

TA_WS_OUTBOUNDD
ONE

long r--r--r-- 1 <= num <=
MAXLONG

TA_WS_OUTBOUNDF
AIL

long r--r--r-- 1 <= num <=
MAXLONG

TA_WS_OUTBOUND_
ONEWAYDONE

long r--r--r-- 1 <= num <=
MAXLONG

TA_WS_OUTBOUND_
ONEWAYFAIL

long r--r--r-- 1 <= num <=
MAXLONG

TA_WS_INBOUNDTI
ME

long r--r--r-- 1 num <=
MAXLONG

TA_WS_OUTBOUNDT
IME

long r--r--r-- 1 <= num <=
MAXLONG

TA_WS_THREADS long r--r--r-- 1 <= num <=
MAXLONG

Chapter 2
T_WSGW Class

2-3

Table 2-1 (Cont.) T_WSGW Class Attributes

Attribute Type Permissions Values Default

TA_WS_TOTALPEND
ING

long r--r--r-- 1 <= num <=
MAXLONG

TA_WS_RESTDONE long r--r--r-- 1 <= num <=
MAXLONG

TA_WS_RESTFAIL long r--r--r-- 1 <= num <=
MAXLONG

TA_WS_RESTPENDI
NG

long r--r--r-- 1 <= num <=
MAXLONG

TA_WS_RESTTIME long r--r--r-- 1 <= num <=
MAXLONG

• Attribute Semantics

2.2.1 Attribute Semantics
TA_INSTANCEID
Gateway instance identifier. This attribute value may contain a maximum of 12 characters
(excluding the terminating NULL character). The identifier value must be unique within the
SALTDEPLOY file

TA_TLOGDEVICE
One attribute "location" describes the location of the Transaction file. This is required if WS-TX
transaction support is required.

TA_TLOGNAME
One attribute "id" describes the name of the transaction log inside a Transaction file. This is
required if WS-TX transaction support is required.

TA_WSATENDPOINT
One attribute "address" describes the WS-AT protocol end point.

TA_MAXTRAN
One attribute "value" describes the maximum number of concurrent WS-TX transactions
allowed. This is bounded by Oracle Tuxedo MAXGTT.

TA_SOCKSADDRLIST
String type containing a list of proxy server URLs. For example:
proxy.server1.com,10.123.1.1:1080

TA_MAXCONTENTLENGTH
Enables the GWWS server to deny the HTTP requests when the content length is larger than
the property setting. If not specified, the GWWS server does not check for it. The string value
can be one of the following three formats:

Integer number in bytes. No suffix means the unit is bytes.

Float number in kilobytes. The suffix must be 'K'. For instance, 10.4K, 40K, etc.

Float number in megabytes. The suffix must be 'M'. For instance, 100M, 20.6M, etc.

Chapter 2
T_WSGW Class

2-4

TA_THREADPOOLSIZE
Specifies the maximum thread pool size for the GWWS server.

Note:

This value defines the maximum possible threads that may be spawned in the
GWWS server. When the GWWS server is running, the actual spawned threads may
be less than this value.

TA_NWTIMEOUT
Specifies the network time-out value, in seconds.

TA_MAXBACKLOG
Specifies the backlog listen socket value. It controls the maximum queue length of pending
connections by operating system.

Note:

Generally no tuning is needed for this value.

TA_ENABLEMULTIENC
Toggles on/off multiple encoding message support for the GWWS server. If multiple encoding
support property is turned off, only UTF-8 HTTP / SOAP messages can be accepted by the
GWWS server.

TA_ENABLESOAPVAL
Toggles on/off XML Schema validation for inbound SOAP request messages if the
corresponding Tuxedo input buffer is associated with a customized XML Schema.

TA_PRIVATEKEY
Oracle SALT does not have the concept of a security principal name like Oracle Tuxedo does,
so the Wallet is located in the specified directory and not in a sub-directory. When using an
Oracle wallet, specifies the location of a directory that contains an Oracle Wallet.
This element is mandatory if the parent ;Certificate; element is configured.

Chapter 2
T_WSGW Class

2-5

Note:

To configure server identity certificates (SALT deploy configuration file <PrivateKey>
element), it is required that the root certificate authority be present in the SSL
configuration file. Proper configuration is:
root CA certificate
intermediate certificate(s) (if any)
server certificate
server private key
in PEM format.
When using the legacy security credentials format, specifies the PEM format private
key file. The key file path is specified as the text value for this element. The server
certificate is also stored in this private key file. The value of this element may contain
a maximum of 256 characters (excluding the terminating NULL character).
With either security credential format, the password for the Oracle Wallet or the
GWWS private key file is specified in the TUXCONFIG file using the
SEC_PRINCIPAL_PASSVAR= environment_variable_name" parameter. The
TUXCONFIG file must also set the SEC_PRINCIPAL_NAME= any_non-
null_string(not_used) parameter so that SEC_PRINCIPAL_PASSVAR will be
properly processed in the configuration file.

TA_VERIFYCLIENT
Optional.

Specifies if Web service clients are required to send a certificate via HTTP over SSL
connections. The valid element values are "true" and "false".

TA_TRUSTEDCERT
Optional.

Specifies the file name of the trusted PEM format certificate files. The value of this element
may contain a maximum of 256 characters (excluding the terminating NULL character).

TA_CERTPATH
Specifies the local directory where the trusted certificates are located. The value of this
element may contain a maximum of 256 characters (excluding the terminating NULL
character).

This element is optional.

Note:

If TA_VERIFYCLIENT is set to "true", or if WS-Addressing is used with SSL, trusted
certificates must be stored in the directory setting with this element.

TA_PLUGINLIBRARIES
Comma-separated list of local shared library file paths.

TA_PLUGINPARAMS
Comma-separated list specifying string values that are passed to the library when initialized by
the GWWS server at boot time.

Chapter 2
T_WSGW Class

2-6

Each item in the list is passed in order to the corresponding item in the
TA_PLUGINLIBRARIES attribute.

Note:

The statistics fields below may not be present if no corresponding action has been
performed. For example if no one-way call has been made T_WS_ONEWAYDONE
will not be returned.

TA_WS_REQREPDONE
Number of inbound request-reply calls performed.

TA_WS_REQREPFAIL
Number of inbound failed request-reply calls.

TA_WS_ONEWAYDONE
Number of inbound one-way calls performed.

TA_WS_ONEWAYFAIL
Number of inbound failed one-way calls.

TA_WS_OUTBOUNDDONE
Number of outbound request-reply calls performed.

TA_WS_OUTBOUNDFAIL
Number of outbound failed request-reply calls.

TA_WS_OUTBOUND_ONEWAYDONE
Number of outbound one-way calls performed.

TA_WS_OUTBOUND_ONEWAYFAIL
Number of outbound failed one-way calls.

TA_WS_INBOUNTIME
Average processing time of inbound calls.

TA_WS_OUTBOUNTIME
Average processing time of outbound calls.

TA_WS_THREADS
Number of active threads.

TA_WS_TOTALPENDING
Total average processing time across all SOAP services.

TA_RESTINBOUNDDONE
Number of successful inbound REST calls.

TA_RESTINBOUNDFAIL
Number of failed outbound REST calls.

TA_RESTINBOUNDTIME
Total average processing time for inbound REST calls.

TA_RESTOUTBOUNDDONE
Number of successful inbound REST calls.

Chapter 2
T_WSGW Class

2-7

TA_RESTOUTBOUNDFAIL
Number of failed outbound REST calls.

TA_RESTOUTBOUNDTIME
Total average processing time for inbound REST calls.

Limitations
None

2.3 T_WSWEBSERVICE Class
The T_WSWEBSERVICE class represents configuration attributes of SOAP Web Services.
Each Web Service identified by a WSDFNAME can contain one or more instance of bindings,
which will be returned as one or more instances of this class, for example for a Web Service
named 'ACCOUNT':

• TA_OCCURS
• TA_WSDFNAME
• TA_WSDFNAME
• TA_BINDINGID
• TA_BINDINGID

Table 2-2 T_WSWEBSERVICE Class Attributes

Attribute Type Permissions Values Default

TA_WSDFNAME(k) string r--r--r-- string[1..30]
TA_BINDINGID(k) string r--r--r-- string[1..78]
TA_INSTANCEID string r--r--r-- string[1..12]
TA_WSDFDIRECTIO
N

string r--r--r-- {INBOUND|
OUTBOUND}

TA_ENDPOINTIDLI
ST

string r--r--r-- string[1..1024]

TA_WSAENDPOINT string r--r--r-- string[1..1024]
TA_REALM string r--r--r-- string[1..1024]

• Attribute Semantics

2.3.1 Attribute Semantics
TA_WSDFNAME
WSDF name. Identifies this web service definition.

TA_BINDINGID
Binding id. Links with a T_SALTBINDING class instance, see T_SALTBINDING class
definition.

TA_INSTANCEID
Gateway instance identifier of gateway this web service is deployed on.

Chapter 2
T_WSWEBSERVICE Class

2-8

TA_WSDFDIRECTION
Native Web Service: this attribute will contain the "INBOUND" value.

Non-native Web Service: this attribute will contain the "OUTBOUND" value.

TA_ENDPOINTIDLIST
Comma-separated list of WSBinding object endpoint references.

If the referenced endpoint is specified as an inbound endpoint, the GWWS server creates the
corresponding HTTP and/or HTTPS listen endpoint. At least one inbound endpoint must be
specified for one inbound WSBinding object.

If the referenced endpoint is specified as an outbound endpoint, the GWWS server creates
HTTP and/or HTTPS connections per SOAP requests for the outbound WSBinding object.

If an outbound endpoint is not specified for the outbound WSBinding object, the first 10
endpoints (at most) are auto-selected.

The referenced endpoint must already be defined in the TA_SALTWSDF class.

TA_WSAENDPOINT (outbound only)
Specifies the WS-Addressing listen endpoint address

If this attribute is not empty, by default all SOAP messages are sent out with a Web Service
Addressing message header.

The address value must be in the following format:

http(s)://<host>:<port>/<context_path>;

The GWWS server creates listen endpoints and usage for receiving WS-Addressing SOAP
response messages.

TA_REALM (outbound only)
Specifies the HTTP Realm attribute of an HTTP and/or HTTP/S endpoint. If this element is
configured for one endpoint, the GWWS tries to incorporate HTTP basic authentication
information in the request messages when issuing outbound calls through this endpoint.

Limitations
None

2.4 T_WSBINDING Class
The T_WSBINDING class represents configuration attributes of SOAP bindings.

Required key fields: TA_BINDINGID and TA_WSDFNAME

Table 2-3 T_WSBINDING Class Attributes

Attribute Type Permissions Values Default

TA_BINDINGID(k) string r--r--r-- string[1..78]
TA_WSDFNAME(k) string r--r--r-- string[1..30]
TA_SOAPVERSION string r--r--r-- {1.1|1.2} 1.1
TA_SOAPSTYLE string r--r--r-- {rpc|document} document

Chapter 2
T_WSBINDING Class

2-9

Table 2-3 (Cont.) T_WSBINDING Class Attributes

Attribute Type Permissions Values Default

TA_SOAPENCODING string r--r--r-- {encoded|
literal}

literal

TA_POLICIES string r--r--r-- string[1..2570]
TA_ENDPOINTS string r--r--r-- string[1..2570]

• Attribute Semantics

2.4.1 Attribute Semantics

TA_BINDINGID
Identifies the WSBinding object. The value must be unique within the WSDF.

Native WSDF: the value is specified by customers and is used as the wsdl:binding name in
the generated WSDL document.

Non-native WSDF: the value is the wsdl:binding name defined in the external WSDL
document.

TA_WSDFNAME
WSDF name. Links with a T_SALTWSDF class instance, see T_SALTWSDF class definition.

TA_SOAPVERSION
Specifies SOAP version for this WSBinding object.

TA_SOAPSTYLE
Specifies SOAP message style for this WSBinding object.

TA_SOAPENCODING
Specifies SOAP message encoding style for this WSBinding object.

TA_POLICIES
Specifies a comma-separated list of local file paths for the referenced WS-Policy file(s).

Specifically, Oracle SALT pre-defines WS-Policy template files for typical WS-* scenarios.
These files can be found under the $TUXDIR/udataobj/salt/policy directory. These template
files can be referenced using the string format salt:<template_file_name>

For example, the SALT WS-SecurityPolicy 1.0 template file "wssp1.0-signbody.xml"is
represented as the following string value in the TA_POLICIES attribute:

salt:wssp1.0-signbody.xml

TA_ENDPOINTS
Comma-separated list of endpoints representing each access endpoint for this
TA_SALTBIDING class instance.

Limitations
None

Chapter 2
T_WSBINDING Class

2-10

2.5 T_WSOPERATION Class
The T_WSOPERATION class represents configuration attributes of SOAP operations.

Required key fields: TA_BINDINGID and TA_WSDFNAME.

Table 2-4 T_WSOPERATION Class Attributes

Attribute Type Permissions Values Default

TA_BINDINGID(k) string r--r--r-- string[1..30]
TA_SERVICENAME(
k)

string r--r--r-- string[1..255]

TA_WSDFNAME(k) string r--r--r-- string[1..255]
TA_TUXEDOREF string r--r--r-- string[1..128]
TA_NAMESPACE string r--r--r-- string[1..255]
TA_SOAPACTION string r--r--r-- string[1..255]
TA_POLICIES string r--r--r-- string[1..2570]
TA_ASYNCTIMEOUT long r--r--r-- 0 <= num <=

32767
60

TA_DISABLEWSA string r--r--r-- {True|False} False
TA_INPUTMSGNAME string r--r--r-- string[1..30]
TA_INPUTWSAACTI
ON

string r--r--r-- string[1..30]

TA_INPUTMSGHAND
LER

string r--r--r-- string[1..30]

TA_OUTPUTMSGNAM
E

string r--r--r-- string[1..30]

TA_OUTPUTWSAACT
ION

string r--r--r-- string[1..30]

TA_OUTPUTMSGHAN
DLER

string r--r--r-- string[1..30]

TA_ERRMSGNAME string r--r--r-- string[1..30]
TA_ERRWSAACTION string r--r--r-- string[1..30]
TA_ERRMSGHANDLE
R

string r--r--r-- string[1..30]

TA_WS_REQREPFAI
L

long r--r--r-- 1 <= num <=
MAXLONG

TA_WS_REQREPDON
E

long r--r--r-- 1 <= num <=
MAXLONG

TA_WS_ONEWAYFAI
L

long r--r--r-- 1<= num <=
MAXLONG

TA_WS_ONEWAYDON
E

long r--r--r-- 1 <= num <=
MAXLONG

TA_WS_INBOUNDTI
ME

long r--r--r-- 1 <= num <=
MAXLONG

TA_WS_OUTBOUNDF
AIL

long r--r--r-- 1 <= num <=
MAXLONG

Chapter 2
T_WSOPERATION Class

2-11

Table 2-4 (Cont.) T_WSOPERATION Class Attributes

Attribute Type Permissions Values Default

TA_WS_OUTBOUNDD
ONE

long r--r--r-- 1 <= num <=
MAXLONG

TA_WS_OUTBOUND_
ONEWAYFAIL

long r--r--r-- 1 <= num <=
MAXLONG

TA_WS_OUTBOUND_
ONEWAYDONE

long r--r--r-- 1 <= num <=
MAXLONG

TA_WS_OUTBOUNDT
IME

long r--r--r-- 1 <= num <=
MAXLONG

• Attribute Semantics

2.5.1 Attribute Semantics
TA_BINDINGID
Binding id. Links with a T_SALTBINDING class instance, see T_SALTBINDING class
definition.

TA_SERVICENAME
Specifies the service name.

Native WSDF: the service name value is used as the wsdl:operation name in the generated
WSDL document.

Non-native WSDF: the service name is equal to the wsdl:operation name defined in the
external WSDL document.

TA_WSDFNAME
WSDF name. Links with a T_SALTWSDF class instance, see T_SALTWSDF class definition.

TA_TUXEDOREF
An optional attribute used to reference the service definition in the Tuxedo Service Metadata
Repository.

If not specified, attribute TA_SERVICENAME value is used as the reference value.

TA_NAMESPACE
Specifies service namespace attribute. This is a non-native WSDF attribute. It is used to save
the namespace setting for each wsdl:operation defined in the external WSDL document.

Note:

Do not specify this attribute for a native WSDF.

TA_SOAPACTION
Specifies the service soapAction attribute. This is a non-native WSDF attribute. It is used to
save the soapAction setting for each wsdl:operation defined in the external WSDL document.

Chapter 2
T_WSOPERATION Class

2-12

Note:

Do not specify this attribute for a native WSDF.

TA_POLICIES
Specifies a comma-separated list of local file paths for the referenced WS-Policy file(s).

Specifically, Oracle SALT pre-defines WS-Policy template files for typical WS-* scenarios.
These files can be found under the $TUXDIR/udataobj/salt/policy directory. These template
files can be referenced using the string format salt:;template_file_name;

For example, the SALT WS-SecurityPolicy 1.0 template file "wssp1.0-signbody.xml"is
represented as the following string value in the TA_POLICIES attribute:

salt:wssp1.0-signbody.xml

TA_ASYNCTIMEOUT
Outbound service: Specifies a time in seconds to wait for a SOAP response.

Inbound service: No behavior impact.

TA_DISABLEWSA
Outbound service: Disables explicit Web Service Addressing requests with this property.

Inbound service: No behavior impact.

TA_INPUTMSGNAME
Specifies the service input message name attribute. This is a non-native WSDF attribute. It is
used is used to save the name for the input wsdl:message defined in the external WSDL
document.

Note:

Do not specify this attribute for a native WSDF.

TA_INPUTWSAACTION
Specifies the service input message wsaAction attribute. This is a non-native WSDF attribute.
It is used is used to save the wsaAction attribute of the input wsdl:message defined in the
external WSDL document.

Note:

Do not specify this attribute for a native WSDF.

TA_INPUTMSGHANDLER
Specifies a customized message conversion handler.
Optional for < Input>, <Output> and/or <Fault> elements of any service. The value of this
element is the handler name.

Chapter 2
T_WSOPERATION Class

2-13

The GWWS server looks for the message conversion handler from all known message
conversion plug-in shared libraries using the handler name. The message conversion handler
allows you to develop customized Tuxedo buffer and SOAP message payload transformation
functions to replace the default GWWS message conversions.

TA_OUTPUTMSGNAME
Specifies the service output message name attribute. This is a non-native WSDF attribute. It is
used to save the name for the output wsdl::message defined in the external WSDL document.

Note:

Do not specify this attribute for a native WSDF.

TA_OUTPUTWSAACTION
Specifies the service output message name attribute. This is a non-native WSDF attribute. It is
used to save the wsaAction attribute of the output wsdl::message defined in the external
WSDL document.

Note:

Do not specify this attribute for a native WSDF.

TA_OUTPUTMSGHANDLER
Specifies a customized message conversion handler. Optional for < Input>, <Output>; and/or
<Fault >; elements of any service. The value of this element is the handler name.

The GWWS server looks for the message conversion handler from all known message
conversion plug-in shared libraries using the handler name. The message conversion handler
allows you to develop customized Tuxedo buffer and SOAP message payload transformation
functions to replace the default GWWS message conversions.

TA_FAULTMSGNAME
Specifies the service fault message name attribute. This is a non-native WSDF attribute. It is
used to save the name for the fault wsdl:message defined in the external WSDL document.

Note:

Do not specify this attribute for a native WSDF.

TA_FAULTWSAACTION
Specifies the service fault message wsaAction attribute. This is a non-native WSDF attribute.
It is used to save the wsaAction attribute of the fault wsdl:message defined in the external
WSDL document.

Note:

Do not specify this attribute for a native WSDF.

Chapter 2
T_WSOPERATION Class

2-14

TA_FAULTMSGHANDLER
Specifies a customized message conversion handler. Optional for <Input>, <Output>; and/or
<Fault> elements of any service. The value of this element is the handler name.

The GWWS server looks for the message conversion handler from all known message
conversion plug-in shared libraries using the handler name. The message conversion handler
allows you to develop customized Tuxedo buffer and SOAP message payload transformation
functions to replace the default GWWS message conversions.

Note:

The statistics fields below may not be present if no corresponding action has been
performed. For example if no one-way call has been made T_WS_ONEWAYDONE
will not be returned.

TA_WS_REQREPDONE
Number of inbound request-reply calls performed.

TA_WS_REQREPFAIL
Number of inbound failed request-reply calls.

TA_WS_ONEWAYDONE
Number of inbound one-way calls performed.

TA_WS_ONEWAYFAIL
Number of inbound failed one-way calls.

TA_WS_INBOUNTIME
Average processing time of inbound calls.

TA_WS_OUTBOUNDDONE
Number of outbound request-reply calls performed.

TA_WS_OUTBOUNDFAIL
Number of outbound failed request-reply calls.

TA_WS_OUTBOUND_ONEWAYDONE
Number of outbound one-way calls performed.

TA_WS_OUTBOUND_ONEWAYFAIL
Number of outbound failed one-way calls.

TA_WS_OUTBOUNTIME
Average processing time of outbound calls.

Limitations
None

2.6 T_WSHTTPSERVICE Class
The T_WSHTTPSERVICE class represents configuration attributes of SALT REST services.

Chapter 2
T_WSHTTPSERVICE Class

2-15

Table 2-5 T_WSHTTPSERVICE Class Attributes

Attribute Type Permissions Values Default

TA_HTTPSVCNAME(
k)

string r--r--r-- string[1..256]

TA_HTTPDIRECTIO
N

string r--r--r-- string[1..8]

TA_HTTPMETHOD string r--r--r-- string[1..10]
TA_HTTPOUTBUF string r--r--r-- string[1..17]
TA_HTTPOUTADDRE
SS

string r--r--r-- string[0..256]

TA_HTTPCONTENTT
YPE

string r--r--r-- string[0..256]

TA_HTTPPOSTSERV
ICE

string r--r--r-- string[1..256]

TA_HTTPPUTSERVI
CE

string r--r--r-- string[1..256]

TA_HTTPGETSERVI
CE

string r--r--r-- string[1..256]

TA_HTTPDELETESE
RVICE

string r--r--r-- string[1..256]

TA_HTTPPOSTINBU
F

string r--r--r-- string[1..17]

TA_HTTPPUTINBUF string r--r--r-- string[1..17]
TA_HTTPGETINBUF string r--r--r-- string[1..17]
TA_HTTPDELETEIN
BUF

string r--r--r-- string[1..17]

TA_HTTPPOSTTUXR
EF

string r--r--r-- string[1..256]

TA_HTTPPUTTUXRE
F

string r--r--r-- string[1..256]

TA_HTTPGETTUXRE
F

string r--r--r-- string[1..256]

TA_HTTPDELETETU
XREF

string r--r--r-- string[1..256]

TA_HTTP_DONE long r--r--r-- 1<= num ;=
MAXLONG

TA_HTTP_FAIL long r--r--r-- 1<= num <=
MAXLONG

TA_HTTP_TIME long r--r--r-- 1<= num <=
MAXLONG

• Attribute Semantics

2.6.1 Attribute Semantics

Chapter 2
T_WSHTTPSERVICE Class

2-16

TA_RESTSVCNAME
Name to be used in URL to call a Tuxedo service.
Note that this is not the actual Tuxedo service, that is configured using the <Method> element
described below:

TA_RESTPOSTSERVICE
Name of Tuxedo service being mapped to the HTTP POST method.

TA_RESTPUTSERVICE
Name of Tuxedo service being mapped to the HTTP PUT method.

TA_RESTGETSERVICE
Name of Tuxedo service being mapped to the HTTP GET method.

TA_RESTDELETESERVICE
Name of Tuxedo service being mapped to the HTTP DELETE method.

TA_RESTPOSTINBUF
Tuxedo buffer type/optionally subtype used for input conversion. Values will be the same as all
existing Tuxedo buffer types. For VIEW/VIEW32 buffer types, the notion of subtype will be
conveyed by using the notation: {VIEW|VIEW32}/<Subtype>. For example: 'VIEW32/
customer'.

This is the value associate with the HTTP POST method for this REST service.

TA_RESTPUTINBUF
Tuxedo buffer type/optionally subtype used for input conversion. Values will be the same as all
existing Tuxedo buffer types. For VIEW/VIEW32 buffer types, the notion of subtype will be
conveyed by using the notation: {VIEW|VIEW32}/<Subtype> For example: 'VIEW32/customer'.

This is the value associate with the HTTP PUT method for this REST service.

TA_RESTGETINBUF
Tuxedo buffer type/optionally subtype used for input conversion. Values will be the same as all
existing Tuxedo buffer types. For VIEW/VIEW32 buffer types, the notion of subtype will be
conveyed by using the notation: {VIEW|VIEW32}/<Subtype>. For example: 'VIEW32/
customer'.

This is the value associate with the HTTP GET method for this REST service.

TA_RESTDELETEINBUF
Tuxedo buffer type/optionally subtype used for input conversion. Values will be the same as all
existing Tuxedo buffer types. For VIEW/VIEW32 buffer types, the notion of subtype will be
conveyed by using the notation: {VIEW|VIEW32}/<Subtype>. For example: 'VIEW32/
customer'.

This is the value associate with the HTTP DELETE method for this REST service.

TA_RESTPOSTTUXREF
Reference to a metadata repository entry. This is used to associate interface data with a
REST service and method. One use is for the configuration tool to generate automatic test
code based on service metadata (interface).

This is the value associate with the HTTP POST method for this REST service.

Chapter 2
T_WSHTTPSERVICE Class

2-17

TA_RESTPUTTUXREF
Reference to a metadata repository entry. This is used to associate interface data with a
REST service and method. One use is for the configuration tool to generate automatic test
code based on service metadata (interface).

This is the value associate with the HTTP PUT method for this REST service.

TA_RESTGETTUXREF
Reference to a metadata repository entry. This is used to associate interface data with a
REST service and method. One use is for the configuration tool to generate automatic test
code based on service metadata (interface).

This is the value associate with the HTTP GET method for this REST service.

TA_RESTDELETETUXREF
Reference to a metadata repository entry. This is used to associate interface data with a
REST service and method. One use is for the configuration tool to generate automatic test
code based on service metadata (interface).

This is the value associate with the HTTP DELETE method for this REST service.

TA_RESTDONE
Number of successful calls.

TA_RESTFAIL
Number of failed calls.

TA_RESTPENDING
Number of requests being processed.

TA_RESTTIME
Average time processing time.

Limitations
None

2.7 T_WSTRANSACTION Class
The T_WSTRANSACTION class represents runtime attributes of WS-TX transactions.

Table 2-6 T_WSTRANSACTION Class Attributes

Attribute Type Permissions Values Default

TA_INSTANCEID(k
)

string r--r--r-- string [1..12] -

TA_WS_TRANPROCE
SSID

long r--r--r-- 1 <= num <=
MAXLONG

-

TA_WS_TRANSVCNA
ME

string r--r--r-- string[1..256] -

TA_WS_TRANGTRID string r--r--r-- string[1..78] -

TA_WS_TRANCOORC
ONTEXT

string r--r--r-- string[1..256] -

TA_WS_TRANTRANI
D(*)

string r--r--r-- string[1..78] -

Chapter 2
T_WSTRANSACTION Class

2-18

Table 2-6 (Cont.) T_WSTRANSACTION Class Attributes

Attribute Type Permissions Values Default

TA_STATE(k) string R-XR-XR-- GET:"{ACT | COM
| REA | HEU |
HEH}"
SET:"{FORget}

-

TA_WS_TRANTIMES
TAMP

long r--r--r-- 1 <= num <=
MAXLONG

-

TA_WS_TRANBRANC
HES

fml32 r--r--r-- - -

TA_WS_TRANBRANC
H

string r--r--r-- string[1..256] -

• Attribute Semantics

2.7.1 Attribute Semantics

TA_INSTANCEID
Gateway instance identifier.

TA_WS_TRANPROCESSID
Process id of the gateway.

TA_WS_TRANSVCNAME
Currently unused.

TA_WS_TRANGTRID
Tuxedo side global transaction identifier.

TA_WS_TRANCOORCONTEXT
Web services side coordination context.

TA_STATE
GET: "{ACTive | COMcalled | REAdy | HEUristic | HEuristic Hazard }"

A GET operation will retrieve run-time information for the selected T_WSTRANSACTION
object(s). The following states indicate the meaning of a TA_STATE returned in response to a
GET request.

SET: "{FORget}"
A SET operation will update run-time information for the selected T_WSTRANSACTION
object. The following states indicate the meaning of a TA_STATE set in a SET request.
States not listed may not be set.

FORget: Resolve a Heuristic or Heuristic Hazard transaction by removing its transaction log
record. State change allowed only when in the HEUristic or HEuristic Hazard state.

TA_WS_TRANTIMESTAMP
Transaction time stamp.

TA_WS_BRANCHES
Comma-separated transaction branch identifiers.

Chapter 2
T_WSTRANSACTION Class

2-19

Limitations
None

Chapter 2
T_WSTRANSACTION Class

2-20

3
Security

Note:

It is recommended that you use SSL/TLS to protect user name and password in
order to integrate the SALT Configuration Tool with Oracle Tuxedo security.

For Oracle Tuxedo application domains that requires ACL or MANDATORY_ACL security, a console
service must be configured in the Oracle Tuxedo security data files. This added information is
used for Oracle Tuxedo access control to the Configuration Tool service. By default, the
Configuration Tool service name is "SALTWEBCONSOLE", but you can modify it using the GWWS
option -C <CONSOLE SERVICE NAME>. For example:

GWWS SRVGRP=GROUP1 SRVID=3
 CLOPT="-A -- -iGWWS1 -a
http://server.company.com:3333/admin -C CONSOLE

Note:

You should also use "tpacladd" to add this Web Console service into the security
data file. For example: $ tpacladd -g 1000 CONSOLE
This will add CONSOLE as an Oracle Tuxedo SERVICE into the security data file and
restrict the access only to user belongs to the group with group id 1000.

• Configuring Configuration Tool Security

3.1 Configuring Configuration Tool Security
No Security
Without configuring SECURITY in the "*RESOURCES" section of the UBBCONFIG file or configuring
it with a value of "NONE", no security is used for accessing the SALT Configuration Tool.
Anyone who knows the URL of the tool can access it. The following example shows a
UBBCONFIG file "*RESOURCES" section example.

Example 3-1 No Security UBBCONFIG *RESOURCES Section

*RESOURCES
IPCKEY 15301
DOMAIN mydomain
MASTER machine1
MAXACCESSERS 50
MAXSERVERS 10
MAXSERVICES 40

3-1

MODEL SHM
LDBAL N

Application Password Security
Configuring SECURITY in the "*RESOURCES" section with a value of APP_PW causes Oracle
Tuxedo application password security to be enabled. Users who want to access the SALT
configuration tool are requested to present this password; failure to do so results in denied
access. The following example shows a UBBCONFIG file "*RESOURCES" section example.

Example 3-2 Application Password Security UBBCONFIG *RESOURCES Section

*RESOURCES
IPCKEY 15301
DOMAIN mydomain
MASTER machine1
MAXACCESSERS 50
MAXSERVERS 10
MAXSERVICES 40
MODEL SHM
LDBAL N
SECURITY APP_PW

User Authentication Security
Configuring SECURITY in the "*RESOURCES" section with a value of USER_AUTH causes Oracle
Tuxedo user authentication security to be enabled. To access the SALT configuration tool
users are requested to present a valid Oracle Tuxedo user name and password; failure to do
so results in denied access. The following example shows a UBBCONFIG file "*RESOURCES"
section example.

Example 3-3 User Authentication Security UBBCONFIG *RESOURCES Section

*RESOURCES
IPCKEY 15301
DOMAIN mydomain
MASTER machine1
MAXACCESSERS 50
MAXSERVERS 10
MAXSERVICES 40
MODEL SHM
LDBAL N
SECURITY USER_AUTH

A user can be added using the "tpusradd" command. The following example adds user "tom"
to the group with group id 1000 in the Oracle Tuxedo application domain.

$ tpusradd -u 2503 -g 1000 tom

Access Control List Security
Configuring SECURITY in the "*RESOURCES" section with a value of ACL causes Oracle Tuxedo
access control list security to be enabled. Anyone who wants to access the SALT
configuration tool is requested to present a valid Oracle Tuxedo user name and password that
belongs to the group(s) allowed to access the Web Console; failure to do so results in denied
access. The following example shows a UBBCONFIG file "*RESOURCES" section example.

Chapter 3
Configuring Configuration Tool Security

3-2

Example 3-4 Access Control List Security UBBCONFIG *RESOURCES Section

*RESOURCES
IPCKEY 15301
DOMAIN mydomain
MASTER machine1
MAXACCESSERS 50
MAXSERVERS 10
MAXSERVICES 40
MODEL SHM
LDBAL N
SECURITY ACL

Access control to the configuration tool can be added using the "tpacladd" command. The
following example adds Configuration Tool service "SALTWEBCONSOLE" to the access control list
in an Oracle Tuxedo application domain.

$ tpacladd -g 1000 SALTWEBCONSOLE
If the service is not added to the Oracle Tuxedo access control security data file, any user with
a valid Oracle Tuxedo user name and password can access the SALT Web Console.

Mandatory Access Control List Security
Configuring SECURITY in the "*RESOURCES" section with a value of MANDATORY_ACL causes
Oracle Tuxedo access control list security to be enabled. Anyone who wants to access the
SALT configuration tool is requested to present a valid Oracle Tuxedo user name and
password that belongs to the group(s) allowed to access the configuration tool; failure to do so
results in denied access. The following example shows a UBBCONFIG file "*RESOURCES" section
example.

Example 3-5 Mandatory Access Control List Security UBBCONFIG *RESOURCES
Section

*RESOURCES
IPCKEY 15301
DOMAIN mydomain
MASTER machine1
MAXACCESSERS 50
MAXSERVERS 10
MAXSERVICES 40
MODEL SHM
LDBAL N
SECURITY MANDATORY_ACL

Access control to the configuration tool can be added using the "tpacladd" command. The
following example adds the configuration tool service "SALTWEBCONSOLE" to the access control
list in the Oracle Tuxedo application domain.

$ tpacladd -g 1000 SALTWEBCONSOLE
If the service is not added to the Oracle Tuxedo access control security data file, then you
cannot access the SALT Web Console.

See Also:

tmadmin

Chapter 3
Configuring Configuration Tool Security

3-3

https://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/rfcm/rfcmd.html#1971834

tmloadrepos

UBBCONFIG(5)

WSDF documentation

SALT Programming Guide

SALT Reference Guide

SALT Interoperability

Chapter 3
Configuring Configuration Tool Security

3-4

https://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/rfcm/rfcmd.html#1789066
https://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/rf5/rf5.html#3370051
https://docs.oracle.com/cd/E53645_01/salt/docs12cr2/ref/comref.html
https://docs.oracle.com/cd/E53645_01/salt/docs12cr2/prog/index.html
https://docs.oracle.com/cd/E53645_01/salt/docs12cr2/ref/index.html
https://docs.oracle.com/cd/E53645_01/salt/docs12cr2/interop/interop.html#49794

	Contents
	1 Configuring a SALT Application
	1.1 Configuring Oracle Tuxedo Web Services
	1.1.1 Using Oracle Tuxedo Service Metadata Repository for SALT
	1.1.1.1 Defining Service-Level Keywords for SALT
	1.1.1.2 Defining Service Parameters for SALT

	1.1.2 Configuring Native Oracle Tuxedo Services
	1.1.2.1 Creating a Native WSDF
	1.1.2.1.1 Defining the SOAP Header
	1.1.2.1.2 Configuration Mode
	1.1.2.1.3 Defining WSBinding Object
	1.1.2.1.4 Defining Service Object
	1.1.2.1.5 Configuring Message Conversion Handler

	1.1.2.2 Using WS-Policy Files
	1.1.2.3 Generating a WSDL File from a Native WSDF
	1.1.2.4 Using Oracle Tuxedo Version-Based Routing (Inbound)

	1.1.3 Configuring External Web Services
	1.1.3.1 Web Console SALT Configuration
	1.1.3.2 Manual SALT Configuration
	1.1.3.2.1 Converting a WSDL File into Oracle Tuxedo Definitions
	1.1.3.2.2 WSDL-to-Tuxedo Service Metadata Keyword Mapping
	1.1.3.2.3 WSDL-to-WSDF Mapping
	1.1.3.2.4 Post Conversion Tasks
	1.1.3.2.4.1 Resolving Naming Conflict For the Generated SALT Proxy Service Definitions
	1.1.3.2.4.2 Loading the Generated SALT Proxy Service Metadata Definitions
	1.1.3.2.4.3 Setting Environment Variables for GWWS Runtime

	1.1.3.3 Using Oracle Tuxedo Version-Based Routing (Outbound)

	1.1.4 Configuring Multiple Bindings
	1.1.4.1 SALT Inbound Services
	1.1.4.2 SALT Outbound Services

	1.1.5 Creating the SALT Deployment File
	1.1.5.1 Importing the WSDF Files
	1.1.5.2 Configuring the GWWS Servers
	1.1.5.2.1 Configuring GWWS Server-Level Properties
	1.1.5.2.2 Configuring Multiple Encoding Support

	1.1.5.3 Configuring JWT Authentication and Customizing Error Messages
	1.1.5.3.1 Configuration Example
	1.1.5.3.2 Sample SALT JWT Configuration File
	1.1.5.3.3 JWT Configuration Parameters
	1.1.5.3.4 Mapping Rules JSON File
	1.1.5.3.5 Error Codes

	1.1.5.4 Configuring System-Level Resources
	1.1.5.4.1 Configuring Certificates
	1.1.5.4.2 Configuring Plug-in Libraries

	1.1.6 Configuring Advanced Web Service Messaging Features
	1.1.6.1 Web Service Addressing
	1.1.6.1.1 Configuring the Addressing Endpoint for Outbound Services
	1.1.6.1.2 Disabling WS-Addressing

	1.1.6.2 Web Service Reliable Messaging
	1.1.6.2.1 Creating the Reliable Messaging Policy File
	1.1.6.2.2 Specifying the Reliable Messaging Policy File in the WSDF File

	1.1.6.3 Message Transmission Optimization Mechanism (MTOM)

	1.1.7 Configuring Security Features
	1.1.7.1 Configuring Transport-Level Security
	1.1.7.1.1 Setting Up TLS Link-Level Security
	1.1.7.1.2 Configuring Inbound HTTP Basic Authentication
	1.1.7.1.3 Configuring Outbound HTTP Basic Authentication

	1.1.7.2 Configuring Message-Level Web Service Security
	1.1.7.2.1 Main Use Cases of Web Service Security
	1.1.7.2.2 Using WS-Security Policy Files

	1.1.7.3 Configuring SAML Single Sign-On
	1.1.7.3.1 Transport Protection
	1.1.7.3.2 SAML Key File
	1.1.7.3.2.1 Key File Format
	1.1.7.3.2.2 File Information
	1.1.7.3.2.3 GWWS Key
	1.1.7.3.2.4 Assertion Issuer Information
	1.1.7.3.2.5 Key File Generation
	1.1.7.3.2.6 Procedure to Manage Key File
	1.1.7.3.2.7 WS-Policy Files
	1.1.7.3.2.8 Mapping SAML Elements with Oracle Tuxedo Security

	1.1.7.4 Configuring X.509-Based Authentication
	1.1.7.4.1 Certificate Sources
	1.1.7.4.2 Properties
	1.1.7.4.2.1 defaultClientIdentification
	1.1.7.4.2.2 useSingleClientIdentification
	1.1.7.4.2.3 allowAnonymousAccess

	1.1.8 Compiling SALT Configuration
	1.1.9 Configuring the UBBCONFIG File for SALT
	1.1.9.1 Configuring the TMMETADATA Server in the *SERVERS Section
	1.1.9.2 Configuring the GWWS Servers in the *SERVERS Section
	1.1.9.3 Updating System Limitations in the UBBCONFIG File
	1.1.9.4 Configuring Certificate Password Phrase For the GWWS Servers
	1.1.9.5 Configuring Oracle Tuxedo Authentication for Web Service Clients
	1.1.9.6 Configuring Oracle Tuxedo Security Level for Outbound HTTP Basic Authentication

	1.1.10 Configuring SALT In Oracle Tuxedo MP Mode
	1.1.11 Migrating from SALT 1.1
	1.1.11.1 Running GWWS servers with SALT 1.1 Configuration File
	1.1.11.2 Adopting SALT 2.0 Configuration Style by Converting SALT 1.1 Configuration File

	1.2 Configuring Service Contract Discovery
	1.2.1 tpforward Support
	1.2.2 Service Contract Text File Output
	1.2.2.1 Examples

	1.3 Configuring SALT WS-TX Support
	1.3.1 Configuring Transaction Log Device
	1.3.2 Registration Protocol
	1.3.3 Configuring WS-TX Transactions
	1.3.3.1 Configuring Incoming Transactions
	1.3.3.1.1 Error Conditions

	1.3.3.2 Configuring Outbound Transactions
	1.3.3.2.1 Error Conditions

	1.3.4 Configuring Maximum Number of Transactions
	1.3.5 Configuring Policy Assertions
	1.3.5.1 Policy.xml File
	1.3.5.1.1 Inbound Transactions
	1.3.5.1.2 Outbound Transactions

	1.3.6 WSDL Generation
	1.3.7 WSDL Conversion

	1.4 Viewing and Modifying SALT Configuration
	1.5 SALT Mainframe Transaction Publisher
	1.5.1 Overview
	1.5.2 Configuration
	1.5.2.1 Command-Line

	1.5.3 SOAP Inbound (Mainframe Transactions Exposed As A Web Service)
	1.5.4 REST Inbound
	1.5.5 SOAP Outbound (Mainframe Invoking An External Web Service)
	1.5.6 REST Outbound

	2 MIB Class Interface
	2.1 T_WSRELOAD Class
	2.2 T_WSGW Class
	2.2.1 Attribute Semantics

	2.3 T_WSWEBSERVICE Class
	2.3.1 Attribute Semantics

	2.4 T_WSBINDING Class
	2.4.1 Attribute Semantics

	2.5 T_WSOPERATION Class
	2.5.1 Attribute Semantics

	2.6 T_WSHTTPSERVICE Class
	2.6.1 Attribute Semantics

	2.7 T_WSTRANSACTION Class
	2.7.1 Attribute Semantics

	3 Security
	3.1 Configuring Configuration Tool Security

