Oracle® Database
SODA for PL/SQL Developer's Guide

ORACLE"

Oracle Database SODA for PL/SQL Developer's Guide, Release 19c¢
E96231-02

Copyright © 2018, 2021, Oracle and/or its affiliates.

Primary Author: Drew Adams

Contributors: Douglas McMahon, Maxim Orgiyan, Srikrishnan Suresh

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience viii
Documentation Accessibility viii
Diversity and Inclusion viii
Related Documents iX
Conventions iX

1 SODA for PL/SQL Prerequisites

2 SODA for PL/SQL Overview

3 Using SODA for PL/SQL
3.1 Getting Started with SODA for PL/SQL 3-3
3.2 Creating a Document Collection with SODA for PL/SQL 3-6
3.3 Opening an Existing Document Collection with SODA for PL/SQL 3-8
3.4 Checking Whether a Given Collection Exists with SODA for PL/SQL 3-8
3.5 Discovering Existing Collections with SODA for PL/SQL 3-9
3.6 Dropping a Document Collection with SODA for PL/SQL 3-10
3.7 Creating Documents with SODA for PL/SQL 3-11
3.8 Inserting Documents into Collections with SODA for PL/SQL 3-16
3.9 Saving Documents Into a Collection with SODA for PL/SQL 3-18
3.10 SODA for PLSQL Read and Write Operations 3-20
3.11 Finding Documents in Collections with SODA for PL/SQL 3-22
3.12 Replacing Documents in a Collection with SODA for PL/SQL 3-29
3.13 Removing Documents from a Collection with SODA for PL/SQL 3-33
3.14 Truncating a Collection (Removing All Documents) with SODA for PL/SQL 3-35
3.15 Indexing the Documents in a Collection with SODA for PL/SQL 3-36
3.16 Getting a Data Guide for a Collection with SODA for PL/SQL 3-39
3.17 Creating a View from a Data Guide with SODA for PL/SQL 3-41

ORACLE

3.18 Handling Transactions with SODA for PL/SQL 3-42

4 SODA Collection Configuration Using Custom Metadata

4.1 Getting the Metadata of an Existing Collection 4-2
4.2 Creating a Collection That Has Custom Metadata 4-2
Index

ORACLE" iv

List of Examples

3-1 Getting Started Run-Through

3-2 Sample Output for Getting Started Run-Through

3-3 Creating a Collection That Has the Default Metadata

3-4 Opening an Existing Document Collection

3-5 Checking for a Collection with a Given Name

3-6 Printing the Names of All Existing Collections

3-7 Dropping a Document Collection

3-8 Creating a Document with JSON Content

3-9 Creating a Document with Document Key and JSON Content

3-10 Inserting a Document into a Collection

3-11 Inserting a Document into a Collection and Getting the Result Document

3-12 Saving Documents Into a Collection with SODA for PL/SQL

3-13 Finding All Documents in a Collection

3-14 Finding the Unique Document That Has a Given Document Key

3-15 Finding Multiple Documents with Specified Document Keys

3-16 Finding Documents with a Filter Specification

3-17 Specifying Pagination Queries with Methods skip() and limit()

3-18 Specifying Document Version

3-19 Counting the Number of Documents Found

3-20 Retrieving the Documents of a Collection at a Time in the Past (Flashback)

3-21 Replacing a Document, Given Its Key, and Getting the Result Document Using SODA For
PL/SQL

3-22 Replacing a Particular Version of a Document Using SODA For PL/SQL

3-23 Locking a Document For Update (Replacement) Using SODA For PL/SQL

3-24 Removing a Document from a Collection Using a Document Key

3-25 Removing a Particular Version of a Document

3-26 Removing Documents from a Collection Using Document Keys

3-27 Removing JSON Documents from a Collection Using a Filter

3-28 Truncating a Collection

3-29 Creating a B-Tree Index for a JSON Field with SODA for PL/SQL

3-30 JSON Search Indexing with SODA for PL/SQL

3-31 Dropping an Index with SODA for PL/SQL

3-32 Creating a Data Guide Dynamically with SODA for PL/SQL

3-33 Creating a Data Guide Using a JSON Search Index with SODA for PL/SQL

3-34 Creating a Relational View from a JSON Data Guide with SODA for PL/SQL

ORACLE

3-4

35

3-7

3-8

39

39
3-11
3-14
3-15
3-17
3-17
3-19
3-23
3-24
3-25
3-25
3-27
3-27
3-28
3-28

3-30
3-31
3-32
3-33
3-34
3-34
3-35
3-35
3-37
3-37
3-38
3-40
3-41
3-41

3-35 Transaction Involving SODA Document Insertion and Replacement 3-43
4-1 Getting the Metadata of a Collection 4-2
4-2 Creating a Collection That Has Custom Metadata 4-3

ORACLE vi

List of Tables

3-1 Getter Methods for Documents (SODA_DOCUMENT_T) 3-13

ORACLE" vii

Preface

Preface

Audience

This document describes how to use Simple Oracle Document Access (SODA) for C.
* Audience

e Documentation Accessibility

e Diversity and Inclusion

* Related Documents

e Conventions

This document is intended for users of Simple Oracle Document Access (SODA) for
PL/SQL.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Diversity and Inclusion

ORACLE

Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

Related Documents

For more information, see these Oracle resources:

» https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/ for complete
information about SODA and its implementations

* Oracle Database Introduction to Simple Oracle Document Access (SODA) for general
information about SODA

* Oracle as a Document Store for general information about using JSON data in Oracle
Database, including with SODA

* Oracle Database JSON Developer’s Guide for information about using SQL and PL/SQL
with JSON data stored in Oracle Database

To download free release notes, installation documentation, white papers, or other collateral,
please visit the Oracle Technology Network (OTN). You must register online before using
OTN,; registration is free and can be done at OTN Registration.

If you already have a user name and password for OTN then you can go directly to the
documentation section of the OTN Web site at OTN Documentation.

Conventions

ORACLE

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/

SODA for PL/SQL Prerequisites

ORACLE

SODA for PL/SQL is an integral part of Oracle Database, starting with Release 18c (18.1).
The database is the only prerequisite for using SODA for PL/SQL, but some features are
available only starting with particular database releases.

The following features were added to SODA for PL/SQL in Oracle Database Release 18.3.
You need that database release or later to use them:

+ Data-type SODA_OPERATI ON_T
* Indexing

e JSON data guide

1-1

SODA for PL/SQL Overview

ORACLE

SODA for PLISQL is a PL/SQL API that implements Simple Oracle Document Access
(SODA). You can use it with PL/SQL to perform create, read (retrieve), update, and delete
(CRUD) operations on documents of any kind, and you can use it to query JSON documents.

SODA is a set of NoSQL-style APlIs that let you create and store collections of documents in
Oracle Database, retrieve them, and query them, without needing to know Structured Query
Language (SQL) or how the data in the documents is stored in the database.

Oracle Database supports storing and querying JSON data. To access this functionality, you
need structured query language (SQL) with special JSON SQL operators. SODA for PL/SQL
hides the complexities of SQL/JSON programming.

The remaining topics of this document describe various features of SODA for PL/SQL.

Note:

e This book provides information about using SODA with PL/SQL applications,
and it describes all SODA features currently available for use with PL/SQL. To
use SODA for PL/SQL you also need to understand SODA generally. For such
general information, please consult Oracle Database Introduction to Simple
Oracle Document Access (SODA). Some features described in that book are
not yet available with SODA for PL/SQL.

e This book does not provide general information about PL/SQL, including
reference information about the SODA for PL/SQL methods and constants. For
such information, please consult Oracle Database PL/SQL Language
Reference.

¢ See Also:

Oracle Database JSON Developer’s Guide for information about using SQL and
PL/SQL with JSON data stored in Oracle Database

2-1

Using SODA for PL/SQL

ORACLE

How to access SODA for PL/SQL is described, as well as how to use it to perform create,
read (retrieve), update, and delete (CRUD) operations on collections.

(CRUD operations are also called “read and write operations” in this document.)

* Getting Started with SODA for PL/SQL
How to access SODA for PL/SQL is described, as well as how to use it to create a
database collection, insert a document into a collection, and retrieve a document from a
collection.

e Creating a Document Collection with SODA for PL/SQL
You can use PL/SQL function DBMS_SODA. creat e_col | ecti on to create a document
collection with the default metadata.

* Opening an Existing Document Collection with SODA for PL/SQL
You can use PL/SQL function DBMS_SODA. open_col | ecti on to open an existing document
collection.

» Checking Whether a Given Collection Exists with SODA for PL/SQL
You can use PL/SQL function DBM5_SODA. open_col | ecti on to check for the existence of
a given collection. It returns a SQL NULL value if a collection with the specified name does
not exist; otherwise, it returns the collection object.

» Discovering Existing Collections with SODA for PL/SQL
You can use PL/SQL function DBM5S_SODA. | i st _col | ecti on_names to discover existing
collections.

* Dropping a Document Collection with SODA for PL/SQL
You use PL/SQL function DBM5_SQODA. drop_col | ecti on to drop a document collection.

» Creating Documents with SODA for PL/SQL
You use a constructor for PL/SQL object type SODA_ DOCUMENT _T to create SODA
documents.

e Inserting Documents into Collections with SODA for PL/SQL
To insert a document into a collection, you invoke SODA_COLLECTI ON_T method (member
function) insert_one() or insert_one_and_get(). These methods create document keys
automatically, unless the collection is configured with client-assigned keys and the input
document provides the key.

» Saving Documents Into a Collection with SODA for PL/SQL
You can use SODA DOCUMENT _T method save() or save_and_get () to save documents
into a collection, which means inserting them if they are new or updating them if they
already belong to the collection. (Such an operation is sometimes called "upserting".)

e SODA for PLSQL Read and Write Operations
A SCDA_OPERATI ON_T instance is returned by method fi nd() of SODA COLLECTI ON_T. You
can chain together SODA_OPERATI ON_T methods, to specify read and write operations
against a collection.

e Finding Documents in Collections with SODA for PL/SQL
You can use SODA_OPERATI ON_T terminal method get _one() or get _cursor () to find
one or multiple documents in a collection, respectively. You can use terminal method

3-1

ORACLE

Chapter 3

count () to count the documents in a collection. You can use nonterminal methods,
such as key(), keys(),andfilter(), to specify conditions for a find operation.

Replacing Documents in a Collection with SODA for PL/SQL

You can chain together SODA_OPERATI ON_T replace-operation method

repl ace_one() orrepl ace_one_and_get () with nonterminal method key() to
uniquely identify a document to be replaced. You can optionally make use of
additional nonterminal methods such as version() andfilter(). You can use
nonterminal method acqui re_| ock() to lock a document for updating.

Removing Documents from a Collection with SODA for PL/SQL

You can remove documents from a collection by chaining together
SODA_OPERATI ON_T method r enove() with nonterminal method key(), keys(), or
filter() toidentify documents to be removed. You can optionally make use of
additional nonterminal methods such as version() .

Truncating a Collection (Removing All Documents) with SODA for PL/SQL
You can use SODA COLLECTI ON_T method truncat e() to empty, or truncate, a
collection, which means remove all of its documents.

Indexing the Documents in a Collection with SODA for PL/SQL

You index the documents in a SODA collection with SODA_COLLECTI ON_T method
create_index(). Its input parameter is a textual JSON index specification. This
can specify support for B-tree, spatial, full-text, and ad hoc indexing, and it can
specify support for a JSON data guide.

Getting a Data Guide for a Collection with SODA for PL/SQL

You can use SODA_CCOLLECTI ON_T method get _dat a_gui de() or terminal
SODA_OPERATI ON_T method get _dat a_gui de() to obtain a data guide for a
collection. A data guide is a JSON document that summarizes the structural and
type information of the JSON documents in the collection. It records metadata
about the fields used in those documents.

Creating a View from a Data Guide with SODA for PL/SQL

You can use SODA COLLECTI ON_T method creat e_vi ew from dg() to create a
database view with relational columns, whose names and values are taken from
the scalar JSON fields specified in the data guide. A data guide-enabled JSON
search index is not required for this; the data guide itself is passed to the method.

Handling Transactions with SODA for PL/SQL

As usual in PL/SQL and SQL, you can treat individual SODA read and write
operations, or groups of them, as a transaction. To commit a transaction, use a
SQL COW T statement. If you want to roll back changes, use a SQL ROLLBACK
statement.

3-2

Chapter 3
Getting Started with SODA for PL/SQL

3.1 Getting Started with SODA for PL/SQL

How to access SODA for PL/SQL is described, as well as how to use it to create a database
collection, insert a document into a collection, and retrieve a document from a collection.

Note:

Don't worry if not everything in this topic is clear to you on first reading. The
necessary concepts are developed in detail in other topics. This topic should give
you an idea of what is involved overall in using SODA.

Follow these steps to get started with SODA for PL/SQL:

1.

ORACLE

Ensure that the prerequisites have been met for using SODA for PL/SQL. See SODA for
PL/SQL Prerequisites.

Identify the database schema (user account) used to store collections, and grant
database role SODA APP to that schema:

GRANT SODA _APP TO schemaNaneg;

Use PL/SQL code such as that in Example 3-1 to do the following:

a.

Create and open a collection (an instance of PL/SQL object type
SODA_COLLECTI ON_T), using the default collection configuration (metadata).

Create a document with particular JSON content, as an instance of PL/SQL object
type SODA_DOCUMENT _T.

Insert the document into the collection.

Get the inserted document back. Its other components, besides the content, are
generated automatically.

Print the unique document key, which is one of the components generated
automatically.

Commit the document insertion.
Find the document in the collection, by providing its key.

Print some of the document components: key, content, creation timestamp, last-
modified timestamp, and version.

Drop the collection, cleaning up the database table that is used to store the collection and
its metadata:

SELECT DBMS_SODA. drop_collection(' nyCol | ecti onNane') AS drop_status FROM
DUAL;

3-3

Chapter 3
Getting Started with SODA for PL/SQL

Caution:

Do not use SQL to drop the database table that underlies a collection.
Dropping a collection involves more than just dropping its database
table. In addition to the documents that are stored in its table, a
collection has metadata, which is also persisted in Oracle Database.
Dropping the table underlying a collection does not also drop the
collection metadata.

Note:

e If a PL/SQL subprogram that you write invokes subprograms that are in
package DBMS_SCDA, and if your subprogram has definer (owner) rights,
then your subprogram must be granted role SODA_APP. For example, this
code grants role SODA APP to procedure my_soda_proc, which is owned
by database schema (user) my_db_schena:

GRANT SODA_APP TO PROCEDURE ny_db_schena. ny_soda_proc;

» DBMS_SCDA subprograms run with invoker's right. They require the invoker
to have the necessary privileges. For example, procedure
create_col | ecti on needs privilege CREATE TABLE. (It is needed to
create the table that backs the collection.)

In general, such privileges can be granted to the invoker either directly or
through a database role. However, when a subprogram that is created
with definer's rights invokes a DBMS_SODA subprogram, the relevant
privileges must be granted directly, not through a role, to the user who
defined that definer's-rights subprogram.

See Also:

Predefined Roles in an Oracle Database Installation in Oracle Database
Security Guide for information about role SCDA_APP

Example 3-1 Getting Started Run-Through

DECLARE
col lection SCDA COLLECTION_T;
docunent SCDA DOCUMENT T,

f oundDocunent SCDA DOCUMENT T,
result _document SODA DOCUMENT T,

docKey VARCHAR2('100) ;
status NUMBER;
BEG N

-- Create a collection.
col l ection : = DBVM5_SCDA. create_collection(' nyCol | ecti onName');

ORACLE 3-4

Chapter 3
Getting Started with SODA for PL/SQL

-- The default collection has BLOB content, so create a BLOB-based
docunent .
document := SODA_DOCUMENT_T(
b_content => utl_raw.cast_to_raw(' {"nane" :
"Al exander"}"));

-- Insert the document and get it back.
resul t _docunent := collection. insert_one_and_get(document);

-- The result document has auto-generated conmponents, such as key and

version,
-- in addition to the content. Print the auto-generated docunent key.
docKey := result_docunent. get_key;
DBMS_QUTPUT. put _|ine(" Aut o-generated key is ' || docKey);

-- Commit the insert
COMMIT;

-- Find the document in the collection by its key
foundDocument : = col |l ection. find_one(docKey);

-- Cet and print sonme docunment conponents: key, content, etc.
DBVS_QUTPUT. put _I i ne(' Docunment conponents:');
DBVS_QUTPUT. put _line(" Key: ' || foundDocunent.get_key);
DBMS_QUTPUT. put _line(* Content: '
|
utl_raw.cast_to_varchar2(foundDocunent . get _blob));
DBMS _QUTPUT. put _line(' Creation timestanp: ' ||
foundDocurrent . get_created_on) ;
DBMS_QUTPUT. put _line(' Last-nodified tinestanp: '
|| foundDocument.get last modified);
DBMS_QUTPUT. put _line(' Version: ' || foundDocunent.get version);
END;
/

Example 3-2 Sample Output for Getting Started Run-Through

Example 3-1 results in output similar to this. The values of the auto-generated components
will differ in any actual execution.

Aut o- generat ed key i s 96F35328CD3B4F96BF3CD01BCE9EBDF5
Docunent conponents:
Key: 96F35328CD3B4F96BF3CD01BCE9EBDFS
Content: {"name" : "Al exander"}
Creation tinestanp: 2017-09-19T01: 05: 06. 160289Z
Last-nodified tinestanp: 2017-09-19T01: 05: 06. 160289Z
Version: FD69FB6ACE73FA735EC7922CA4A02DDE0690462583F9EA2AF754D7E342B3EET8

ORACLE 3-5

Chapter 3
Creating a Document Collection with SODA for PL/SQL

3.2 Creating a Document Collection with SODA for PL/SQL

You can use PL/SQL function DBMS_SODA. creat e_col | ecti on to create a document
collection with the default metadata.

Example 3-3 uses PL/SQL function DBMS_SODA. create_collection to create a
collection that has the default metadata.

The default collection metadata has the following characteristics.

* Each document in the collection has these document components:
- Key
— Content
— Creation timestamp
— Last-modified timestamp
— Version
* The collection can store only JSON documents.

* Document keys are automatically generated for documents that you add to the
collection.

The default collection configuration is recommended in most cases, but collections are
highly configurable. When you create a collection you can specify things such as the
following:

e Storage details, such as the name of the table that stores the collection and the
names and data types of its columns.

» The presence or absence of columns for creation timestamp, last-modified
timestamp, and version.

* Whether the collection can store only JSON documents.

» Methods of document key generation, and whether document keys are client-
assigned or generated automatically.

* Methods of version generation.

This configurability also lets you map a new collection to an existing database table.

To configure a collection in a nondefault way, supply custom collection metadata,
expressed in JSON, as the second argument to DBMS_SODA. create_col | ecti on.

If you do not care about the details of collection configuration then pass only the
collection name to DBMS_SQODA. create_col | ecti on — no second argument. That
creates a collection with the default configuration.

If a collection with the same name already exists then it is simply opened and its
handle is returned. If custom metadata is provided and it does not match the metadata
of the existing collection then the collection is not opened and an error is raised. (To
match, all metadata fields must have the same values.)

ORACLE 3-6

Chapter 3
Creating a Document Collection with SODA for PL/SQL

< Note:

Unless otherwise stated, the remainder of this documentation assumes that a
collection has the default configuration.

¢ See Also:

« Default Naming of a Collection Table in Oracle Database Introduction to Simple
Oracle Document Access (SODA) for information about the default naming of a
collection table

e CREATE_COLLECTION Function in Oracle Database PL/SQL Packages and
Types Reference for information about PL/SQL function
DBMS_SODA. create_col I ection

Example 3-3 Creating a Collection That Has the Default Metadata

This example creates collection myCol | ect i onNanme with the default metadata.

DECLARE

collection SODA Collection_ T;
BEG N

col l ection : = DBVM5_SCDA. create_collection(' nyCol | ecti onName');
END;

/

Related Topics

* Getting the Metadata of an Existing Collection
You use SODA COLLECTI ON_T method get _met adat a() to get all of the metadata for a
collection, as a JSON document.

e Creating a Collection That Has Custom Metadata
To create a document collection that has custom metadata, you pass its metadata, as
JSON data, to PL/SQL function DBMS_SODA. create_col | ecti on.

* Checking Whether a Given Collection Exists with SODA for PL/SQL
You can use PL/SQL function DBM5S_SODA. open_col | ecti on to check for the existence of
a given collection. It returns a SQL NULL value if a collection with the specified name does
not exist; otherwise, it returns the collection object.

ORACLE .

Chapter 3
Opening an Existing Document Collection with SODA for PL/SQL

3.3 Opening an Existing Document Collection with SODA for
PL/SQL

You can use PL/SQL function DBMS_SCDA. open_col | ecti on to open an existing
document collection.

¢ See Also:

OPEN_COLLECTION Function in Oracle Database PL/SQL Packages and
Types Reference for information about PL/SQL function
DBMS_SODA. open_col | ection

Example 3-4 Opening an Existing Document Collection

This example uses PL/SQL function DBMS_SODA. open_col | ecti on to open the
collection named nyCol | ect i onName and returns a SODA_COLLECTI ON_T instance that
represents this collection. If the value returned is NULL then there is no existing
collection named nyCol | ect i onNane.

DECLARE
collection SODA COLLECTION T;
BEG N
col I ection : = DBVM5_SCDA. open_collection(' nyCol | ecti onNane');
END;
/

3.4 Checking Whether a Given Collection Exists with SODA
for PL/SQL

You can use PL/SQL function DBMS_SODA. open_col | ecti on to check for the existence
of a given collection. It returns a SQL NULL value if a collection with the specified name
does not exist; otherwise, it returns the collection object.

" See Also:

OPEN_COLLECTION Function in Oracle Database PL/SQL Packages and
Types Reference for information about PL/SQL function
DBMS_SODA. open_col | ection

ORACLE 3-8

Chapter 3
Discovering Existing Collections with SODA for PL/SQL

Example 3-5 Checking for a Collection with a Given Name

This example uses DBM5_SODA. open_col | ecti on to try to open an existing collection named
nmyCol | ecti onNarre. It prints a message if no such collection exists.

DECLARE
col l ection SODA COLLECTION T;
BEG N
col I ection : = DBM5_SCDA. open_collection(' nyCol | ecti onNane');
IF collection IS NULL THEN
DBMS_QUTPUT. put _Ii ne(" Col | ection does not exist');
END I F;
END;
/

Related Topics

» Creating a Document Collection with SODA for PL/SQL
You can use PL/SQL function DBMS_SODA. creat e_col | ecti on to create a document
collection with the default metadata.

3.5 Discovering Existing Collections with SODA for PL/SQL

ORACLE

You can use PL/SQL function DBMS_SODA. | i st _col | ection_names to discover existing
collections.

¢ See Also:

LIST _COLLECTION_NAMES Function in Oracle Database PL/SQL Packages and
Types Reference for information about PL/SQL function
DBMS_SQODA. | i st _col | ection_names

Example 3-6 Printing the Names of All Existing Collections

This example uses PL/SQL function DBM5S_SODA. | i st _col | ecti on_nanes to obtain a list of the
collection names. It then iterates over that list, printing out the names.

DECLARE
coll _Iist SODA COLLNAME_LIST_T;
BEG N
coll list := DBMS_SODA. list_collection_names;
DBMS_QUTPUT. put _li ne(" Number of collections: ' ||
to_char(coll _list.count));

DBMS_QUTPUT. put _line(' Collection List: ");
IF (coll_list.count > 0) THEN
-- Loop over the collection name |ist

FORi IN
coll list.first .. coll _|ist.|ast
LOooP
DBMS_QUTPUT. put _line(coll _list(i));
END LOOP;
ELSE

3-9

Chapter 3
Dropping a Document Collection with SODA for PL/SQL

DBMS_QUTPUT. put _I'ine(" No col | ections found');

END | F,

END;
/

3.6 Dropping a Document Collection with SODA for PL/SQL

You use PL/SQL function DBM5_SODA. drop_col | ecti on to drop a document collection.

ORACLE

Caution:

Do not use SQL to drop the database table that underlies a collection.
Dropping a collection involves more than just dropping its database table. In
addition to the documents that are stored in its table, a collection has
metadata, which is also persisted in Oracle Database. Dropping the table
underlying a collection does not also drop the collection metadata.

Note:

Day-to-day use of a typical application that makes use of SODA does not
require that you drop and re-create collections. But if you need to do that for
any reason then this guideline applies.

Do not drop a collection and then re-create it with different metadata if there
is any application running that uses the collection in any way. Shut down any
such applications before re-creating the collection, so that all live SODA
objects are released.

There is no problem just dropping a collection. Any read or write operation on
a dropped collection raises an error. And there is no problem dropping a
collection and then re-creating it with the same metadata. But if you re-create
a collection with different metadata, and if there are any live applications
using SODA objects, then there is a risk that a stale collection is accessed,
and no error is raised in this case.

Note:

Commit all writes to a collection before using DBMS_SCDA. dr op_col | ecti on.
For the drop to succeed, all uncommitted writes to the collection must first be
either committed or rolled back — you must explicitly use SQL COWM T or
ROLLBACK. Otherwise, an exception is raised.

3-10

Chapter 3
Creating Documents with SODA for PL/SQL

¢ See Also:

DROP_COLLECTION Function in Oracle Database PL/SQL Packages and Types
Reference for information about PL/SQL function DBMS_SCDA. dr op_col | ecti on

Example 3-7 Dropping a Document Collection

This example uses PL/SQL function DBVS_SODA. dr op_col | ecti on to drop collection
myCol | ecti onNane.

If the collection cannot be dropped because of uncommitted write operations then an
exception is thrown. If the collection is dropped successfully, the returned status is 1;
otherwise, the status is 0. In particular, if a collection with the specified name does not exist,
the returned status is 0 — no exception is thrown.

DECLARE
status NUMBER : = 0;
BEG N
status := DBMS_SODA. drop_collection(' myCol | ecti onNane');
END;
/

Related Topics

» Handling Transactions with SODA for PL/SQL
As usual in PL/SQL and SQL, you can treat individual SODA read and write operations,
or groups of them, as a transaction. To commit a transaction, use a SQL COWM T
statement. If you want to roll back changes, use a SQL ROLLBACK statement.

e Inserting Documents into Collections with SODA for PL/SQL
To insert a document into a collection, you invoke SODA_ COLLECTI ON_T method (member
function) insert_one() or insert_one_and_get(). These methods create document keys
automatically, unless the collection is configured with client-assigned keys and the input
document provides the key.

¢ Replacing Documents in a Collection with SODA for PL/SQL
You can chain together SODA_OPERATI ON_T replace-operation method r epl ace_one() or
repl ace_one_and_get () with nonterminal method key() to uniquely identify a document
to be replaced. You can optionally make use of additional nonterminal methods such as
version() andfilter(). You can use nonterminal method acquire_| ock() to lock a
document for updating.

3.7 Creating Documents with SODA for PL/SQL

ORACLE

You use a constructor for PL/SQL object type SODA_DOCUMENT _T to create SODA documents.

SODA for PL/SQL represents a document using an instance of PL/SQL object type
SCODA_DOCUMENT _T. This object is a carrier of document content and other document
components, such as the document key.

3-11

ORACLE

Chapter 3
Creating Documents with SODA for PL/SQL

Here is an example of the content of a JSON document:

{ "name" : " Al exander",
"address" : "1234 Main Street",
"city" " Anyt own"

"state" : "CA",
"zip" "12345"
}

A document has these components:

e Key

« Content

e Creation time stamp

e Last-modified time stamp

* Version

e Mediatype ("application/json" for ISON documents)

You create a document by invoking one of the SODA_DOCUMENT_T constructors. The
constructors differ according to the content type of the documents they create:
VARCHAR2, CLOB, or BLCB.

You can write a document of a given content type only to a collection whose content
column has been defined for documents of that type. For example, you can write
(insert or replace) only a document with content type BLOB to a collection whose
cont ent Col utm has a sql Type value of BLOB. (BLOB is the default content type for a
collection.)

There are different ways to invoke a document constructor:

* You can provide the document key, as the first argument.

In a collection, each document must have a key. You must provide the key when
you create the document only if you expect to insert the document into a collection
that does not automatically generate keys for inserted documents. By default,
collections are configured to automatically generate document keys.

* You must provide the document content. If you also provide the document key
then the content is the second argument to the constructor.

If you provide only the content then you must specify both the formal and actual
content parameters, separated by the association arrow (=>): v_content =>
actual , c_content => actual, or b_content => actual, for content of type
VARCHAR2, CLOB, or BLOB, respectively.

* You can provide the document media type, which defaults to "appl i cati on/j son".
Unless you provide all of the parameters (key, content, and media type) you must
specify both the formal and actual media-type parameters, , separated by the
association arrow (=>): media_type => actual .

Parameters that you do not provide explicitly default to NULL.

Providing only the content parameter can be useful for creating documents that you
insert into a collection that automatically generates document keys. Providing only the
key and content can be useful for creating documents that you insert into a collection
that has client-assigned keys. Providing (the content and) the media type can be

3-12

ORACLE

Chapter 3
Creating Documents with SODA for PL/SQL

useful for creating non-JSON documents (using a media type other than "appl i cati on/
j son").

However you invoke a SODA DOCUMENT _T constructor, doing so sets the components that you
provide (the content, possibly the key, and possibly the media type) to the values you provide
for them. And it sets the values of the creation time stamp, last-modified time stamp, and
version to a SQL NULL value.

Object type SODA_DOCUMENT _T provides getter methods (also known as getters), which each
retrieve a particular component from a document. (Getter get _dat a_t ype() actually returns
information about the content component, rather than the component itself.)

Table 3-1 Getter Methods for Documents (SODA_DOCUMENT_T)
]

Getter Method Description

get_created_on() Get the creation time stamp for the document, as
a VARCHAR? value.

get_key() Get the unique key for the document, as a
VARCHAR2 value.

get_last modified() Get the last-modified time stamp for the document,
as a VARCHAR? value.

get_media_type() Get the media type for the document, as a
VARCHARZ value.

get_version() Get the document version, as a VARCHARZ value.

get_blob() Get the document content, as a BLOB value.

The document content must be BLOB data, or else
an error is raised.

get_clob() Get the document content, as a CLOB value.
The document content must be CLOB data, or else
an error is raised.

get_varchar2() Get the document content, as a VARCHAR? value.

The document content must be VARCHAR2 data, or
else an error is raised.

get_data_type() Get the data type of the document content, as a
PLS_I NTEGER value. The value is
DBMS_SODA.DOC_VARCHAR2 for VARCHAR2
content, DBMS_SODA.DOC_BLOB for BLOB content,
and DBMS_SODA.DOC_CLOB for CLOB content.

Immediately after you create a document, the getter methods return these values:

* Values provided to the constructor

e "application/json", for method get _nedi a_type(), if the media type was not provided
e NULL for other components

Each content storage data type has an associated content-component getter method. You
must use the getter method that is appropriate to each content storage type: get _var char 2()
for VARCHAR2 storage, get _cl ob() for CLOB storage, and get _bl ob() for BLOB storage.
Otherwise, an error is raised.

Example 3-8 creates a SODA DOCUMENT _T instance, providing only content. The media type
defaults to "appl i cation/j son", and the other document components default to NULL.

3-13

Chapter 3
Creating Documents with SODA for PL/SQL

Example 3-9 creates a SODA DOCUMENT _T instance, providing the document key and
content. The media type defaults to "appl i cati on/j son", and the other document
components default to NULL.

See Also:

e Oracle Database Introduction to Simple Oracle Document Access
(SODA) for an overview of SODA documents

e Oracle Database Introduction to Simple Oracle Document Access
(SODA) for restrictions that apply for SODA documents

e Oracle Database PL/SQL Packages and Types Reference for
information about object type SODA DOCUMENT _T constructors and getter
methods

Example 3-8 Creating a Document with JISON Content

This example uses SODA_DOCUMENT _T constructors to create three documents, one of
each content type. The example provides only the document content (which is the
same for each).

The content parameter is different in each case; it specifies the SQL data type to use
to store the content. The first document creation here uses content parameter

v_cont ent, which specifies VARCHAR2 content; the second uses parameter c¢_cont ent,
which specifies CLOB content; the third uses parameter b_cont ent , which specifies
BLOB content.

After creating each document, the example uses getter methods to get the document
content. Note that the getter method that is appropriate for each content storage type
is used: get bl ob() for BLOB content, and so on.

The document with content type BLOB would be appropriate for writing to the collection
created in Example 3-3, because that collection (which has the default metadata)
accepts documents with (only) BLOB content. The other two documents would not be
appropriate for that collection; trying to insert them would raise an error.

DECLARE
v_doc SCDA DOCUMENT _T;
b_doc SODA DOCUMENT_T;
c_doc SODA DOCUMENT _T;
BEG N
-- Create VARCHAR2 document
v_doc := SODA DOCUMENT T(v_content => '{"name" : "Alexander"}");
DBVMS_QUTPUT. put _li ne("' Varchar2 Doc content: ' ||
v_doc. get_varchar2);

-- Create BLOB docunent
b_doc : = SODA_DOCUMENT_T(
b_content => utl_raw.cast to_raw('{"nane" :
"Al exander"}'));
DBVS_QUTPUT. put _line(' Blob Doc content: ' ||
utl _raw cast _to_varchar2(b_doc. get blob));

ORACLE 3-14

ORACLE

Chapter 3
Creating Documents with SODA for PL/SQL

-- Create CLOB docunent
c_doc := SODA_DOCUMENT T(c_content => '{"nane" : "Alexander"}");
DBMS_QUTPUT. put _line(' Clob Doc content: ' || c_doc.get_clob);
END;
/

Example 3-9 Creating a Document with Document Key and JSON Content

This example is similar to Example 3-8, but it provides the document key (myKey) as well as
the document content.

DECLARE
v_doc SODA DOCUMENT T;
b_doc SODA DOCUMENT T;
c_doc SODA DOCUMENT T;
BEG N
-- Create VARCHAR2 document
v_doc := SODA DOCUMENT T('myKey' , v_content =>'{"name" :
" Al exander"}');
DBMS_QUTPUT. put _line(' Varchar2 Doc key: ' || v_doc.get key);
DBMS_QUTPUT. put _li ne("' Varchar2 Doc content: ' || v_doc.get_varchar?2);

-- Create BLOB docunent
b_doc := SODA DOCUMENT _T(' myKey' ,
b_content => utl _raw. cast_to raw('{"nane" :
"Al exander"}'));
DBVMS_QUTPUT. put _line(' Blob Doc key: ' || b_doc.get key);
DBMS_QUTPUT. put _line(' Blob Doc content: ' ||
utl _raw. cast _to_varchar2(b_doc. get bl ob));

-- Create CLOB docunent
c_doc := SCDA DOCUMENT T(' myKey' , c_content =>"'{"nane" :
" Al exander"}');
DBMS_QUTPUT. put _line(' Clob Doc key: ' || c_doc.get key);
DBMS_QUTPUT. put _line(' Clob Doc content: ' || c_doc.get clob);
END;
/

Related Topics

* Inserting Documents into Collections with SODA for PL/SQL
To insert a document into a collection, you invoke SODA_COLLECTI ON_T method (member
function) insert_one() or insert_one_and_get(). These methods create document keys
automatically, unless the collection is configured with client-assigned keys and the input
document provides the key.

* Finding Documents in Collections with SODA for PL/SQL
You can use SODA OPERATI ON_T terminal method get _one() or get _cursor () to find
one or multiple documents in a collection, respectively. You can use terminal method
count () to count the documents in a collection. You can use nonterminal methods, such
as key(), keys(),andfilter(), to specify conditions for a find operation.

* Replacing Documents in a Collection with SODA for PL/SQL
You can chain together SCDA_COPERATI ON_T replace-operation method r epl ace_one() or
repl ace_one_and_get () with nonterminal method key() to uniquely identify a document

3-15

Chapter 3
Inserting Documents into Collections with SODA for PL/SQL

to be replaced. You can optionally make use of additional nonterminal methods
such asversion() andfilter(). You can use nonterminal method
acquire_l ock() to lock a document for updating.

* Removing Documents from a Collection with SODA for PL/SQL
You can remove documents from a collection by chaining together
SCDA_OPERATI ON_T method r enove() with nonterminal method key(), keys(), or
filter() toidentify documents to be removed. You can optionally make use of
additional nonterminal methods such as versi on() .

3.8 Inserting Documents into Collections with SODA for

PL/SQL

ORACLE

To insert a document into a collection, you invoke SODA_COLLECTI ON_T method
(member function) insert_one() or insert_one_and_get(). These methods create
document keys automatically, unless the collection is configured with client-assigned
keys and the input document provides the key.

Both method i nsert _one() and method i nsert _one_and_get () insert a document
into a collection and automatically set the values of the creation time stamp, last-
modified time stamp, and version (if the collection is configured to include these
components and to generate the version automatically, as is the case by default).

When you insert a document, any document components that currently have NULL
values (as a result of creating the document without providing those component
values) are updated to have appropriate, automatically generated values. Thereatfter,
other SODA operations on a document can automatically update the last-modified
timestamp and version components.

In addition to inserting the document, i nsert _one_and_get returns a result document,
which contains the generated document components, such as the key, and which does
not contain the content of the inserted document.

¢ Note:

If the collection is configured with client-assigned document keys (which is
not the default case), and the input document provides a key that identifies
an existing document in the collection, then these methods throw an
exception.

Method i nsert _one_and_get () accepts an optional second argument, hi nt, whose
value is passed as a hint to the SQL code that underlies SODA. The VARCHAR2 value
for the argument uses the SQL hint syntax (that is, the hint text, without the enclosing
SQL comment syntax / *+...*/). Use only hint MONI TOR (turn on monitoring) or
NO_MONI TOR (turn off monitoring).

(You can use this to pass any SQL hints, but MONI TOR and NO_MONI TOR are the useful
ones for SODA, and an inappropriate hint can cause the optimizer to produce a
suboptimal query plan.)

3-16

ORACLE

Chapter 3
Inserting Documents into Collections with SODA for PL/SQL

¢ See Also:

e INSERT_ONE Function in Oracle Database PL/SQL Packages and Types
Reference for information about SODA_COLLECTI ON_T method i nsert _one()

e SODA_COLLECTION_T Type in Oracle Database PL/SQL Packages and
Types Reference for information about SODA COLLECTI ON_T method
insert_one_and_get ()

e SODA_DOCUMENT_T Type in Oracle Database PL/SQL Packages and Types
Reference for information about SODA_DOCUMENT _T getter methods

« Monitoring Database Operations in Oracle Database SQL Tuning Guide for
complete information about monitoring database operations

« MONITOR and NO_MONITOR Hints in Oracle Database SQL Tuning Guide for
information about the syntax and behavior of SQL hints MONI TOR and
NO_MONI TOR

Example 3-10 Inserting a Document into a Collection

This example creates a document and inserts it into a collection using SODA COLLECTI ON_T
method i nsert _one() .

DECLARE
collection SODA COLLECTION T;
docunent SODA DOCUMENT _T;
status NUMBER;
BEG N
-- Open the collection
col l ection : = DBMS_SCDA. open_col I ection(' nyCol | ecti onNane');

docunent : =
SODA_DOCUMENT _T(
b _content => utl _raw. cast_to raw('{"nane" : "Alexander"}'));

-- Insert a docunment

status := collection. insert_one(docunent);
END;
/

Example 3-11 Inserting a Document into a Collection and Getting the Result
Document

This example creates a document and inserts it into a collection using method

i nsert_one_and_get (). It then gets (and prints) each of the generated components from the
result document (which contains them). To obtain the components it uses SODA DOCUVENT _T
methods get _key(), get_created_on(), get _last_nodified(), and get_version().

DECLARE
collection SODA COLLECTION T;
docunent SODA DOCUMENT _T;
i ns_doc SODA DOCUMENT _T;
BEG N
-- Open the collection

3-17

Chapter 3
Saving Documents Into a Collection with SODA for PL/SQL

col l ection := DBM5_SCDA. open_col I ection(' nyCol | ecti onNane');

document : =
SODA_DOCUMENT _T(
b_content => utl_raw cast_to_raw('{"nane" : "Alexander"}"));
ins_doc := collection. insert_one_and_get(docunent);

-- Insert the document and get its components
| F ins_doc IS NOT NULL THEN
DBMS_QUTPUT. put _line(" I nserted docunent conponents:');
DBMS_QUTPUT. put _line("Key: ' || ins_doc.get_key);
DBMS_QUTPUT. put _line(' Creation tinestanp: '
|| ins_doc.get_created on);
DBMS_QUTPUT. put _line(" Last modified tinmestanp: '
|| ins_doc.get_last _modified);
DBMS_QUTPUT. put _|ine("Version: ' || ins_doc.get version);
END | F;
END;
/

Related Topics

* Handling Transactions with SODA for PL/SQL
As usual in PL/SQL and SQL, you can treat individual SODA read and write
operations, or groups of them, as a transaction. To commit a transaction, use a
SQL COW T statement. If you want to roll back changes, use a SQL ROLLBACK
statement.

e Dropping a Document Collection with SODA for PL/SQL
You use PL/SQL function DBMS_SQODA. drop_col | ecti on to drop a document
collection.

* Replacing Documents in a Collection with SODA for PL/SQL
You can chain together SODA_OPERATI ON_T replace-operation method
repl ace_one() orrepl ace_one_and_get () with nonterminal method key() to
uniquely identify a document to be replaced. You can optionally make use of
additional nonterminal methods such as version() andfilter(). You can use
nonterminal method acqui re_| ock() to lock a document for updating.

3.9 Saving Documents Into a Collection with SODA for

PL/SQL

ORACLE

You can use SODA DOCUMENT T method save() or save_and_get () to save documents
into a collection, which means inserting them if they are new or updating them if they
already belong to the collection. (Such an operation is sometimes called "upserting".)

Method save_and_get () is equivalenttoinsert (), and save_and_get () is equivalent
toi nsert_one_and_get (), with this difference: If client-assigned keys are used, and if
the document with the specified key already belongs to the collection, that document is
replaced with the input document.

When inserting, these methods create the key automatically, unless the collection is
configured with client-assigned keys and the key is provided in the input document.

Method save_and_get () accepts an optional second argument, hi nt , whose value is
passed as a hint to the SQL code that underlies SODA. The VARCHAR? value for the

3-18

Chapter 3
Saving Documents Into a Collection with SODA for PL/SQL

argument uses the SQL hint syntax (that is, the hint text, without the enclosing SQL comment
syntax / *+...*/). Use only hint MONI TOR (turn on monitoring) or NO_MONI TOR (turn off
monitoring).

(You can use this to pass any SQL hints, but MONI TOR and NO_MONI TOR are the useful ones for
SODA, and an inappropriate hint can cause the optimizer to produce a suboptimal query
plan.)

¢ See Also:

e Monitoring Database Operations in Oracle Database SQL Tuning Guide for
complete information about monitoring database operations

¢ MONITOR and NO_MONITOR Hints in Oracle Database SQL Tuning Guide for
information about the syntax and behavior of SQL hints MONI TOR and
NO_MONI TOR

Example 3-12 Saving Documents Into a Collection with SODA for PLISQL

This example creates a collection and two documents, and saves the documents to the
collection using method save(), inserting them. The example then changes the content of the
documents and saves them again, which replaces the existing documents.

DECLARE
coll SODA COLLECTION T;
nd VARCHAR2(4000) ;
doca SODA DOCUMENT T;
doch SODA DOCUMENT T;
n NUVBER;
BEG N
-- Create a collection and print its netadata
md ;= '{"keyCol um":{"assi gnnent Met hod":"CLIENT"}}";
coll := DBMS_SODA. create collection(' SODAPLS SAVEO1l', nd);
DBVMS _QUTPUT. put _line(' Coll: " |]
json_query(coll.get nmetadata, '$' pretty));

-- Create two docunents.
doca := SODA DOCUMENT T('a', b_content =>

utl raw cast to raw('{"a" : "value A" }"));
docbh := SODA DOCUMENT T('b', b_content =>
utl _raw cast to raw('{"b" : "value B" }'));

-- Save the docunments. They are new, so this inserts them
n := coll.save(doca);

DBVMS QUTPUT. put _line(' Status: ' || n);
n := coll.save(doch);
DBVMS QUTPUT. put _line(' Status: ' || n);

-- Rewite the content of the documents

doca := SODA DOCUMENT T('a', b_content =>

utl _raw cast to raw('{"a" : "new value A" }'));
docbh := SODA DOCUMENT T('b', b_content =>

utl _raw cast _to raw('{"b" : "new value B" }'));

ORACLE 3-19

Chapter 3
SODA for PLSQL Read and Write Operations

-- Save the existing documents, replacing them

n := coll.save(doca);
DBMS _QUTPUT. put _line(' Status: ' || n);
n := coll.save(doch);
DBVMS _QUTPUT. put _line(' Status: ' || n);

END;

3.10 SODA for PLSQL Read and Write Operations

A SODA_OPERATI ON_T instance is returned by method fi nd() of SODA_COLLECTI ON_T.
You can chain together SODA_OPERATI ON_T methods, to specify read and write
operations against a collection.

Note:

Data type SODA_OPERATI ON_T was added to SODA for PL/SQL in Oracle
Database 18.3. You need that database release or later to use it.

You typically use SODA_OPERATI ON_T to specify all SODA read operations, and all write
operations other than document insertions and saves into a collection. You chain
together SODA_ OPERATI ON_T nonterminal methods to narrow the scope or otherwise
condition or qualify a read or write operation.

Nonterminal methods return the same SODA_OPERATI ON_T instance on which they are
invoked, which allows you to chain them together. The nonterminal methods are these:

e acquire_|l ock() — Lock documents (pessimistic locking).

 as_of _scn() — Access documents as of a given System Change Number (SCN).
This uses Oracle Flashback Query: SELECT AS CF.

 as_of tinmestanp() — Access documents as of a given date and time. This uses
Oracle Flashback Query: SELECT AS CF.

« filter() — Filter documents using a query-by-example (QBE, also called a filter
specification).

e hint() — Provide a hint, to turn real-time SQL monitoring of queries on and off.

The VARCHAR2 value for the argument uses the SQL hint syntax (that is, the hint
text, without the enclosing SQL comment syntax / *+...*/). Use only hint MONI TOR
(turn on monitoring) or NO_MONI TOR (turn off monitoring). The hint is simply passed
down to the SQL code that underlies SODA.

(You can use this to pass any SQL hints, but MONI TOR and NO_MONI TOR are the
useful ones for SODA, and an inappropriate hint can cause the optimizer to
produce a suboptimal query plan.)

* key() — Specify a particular document by its unique key.
e keys() — Specify particular documents by their unique keys.

The maximum number of keys passed as argument must not exceed 1000, or else
a runtime error is raised.

ORACLE 3-20

Chapter 3
SODA for PLSQL Read and Write Operations

e limt() — Limit how many documents a read operation can return.
e skip() — Specify how many documents to skip when reading, before returning others.
» version() — Specify a particular version of a specified document.

A SODA_OPERATI ON_T terminal method at the end of the chain carries out the actual read or
write operation. The terminal methods for read operations are these.

e count () — Count the documents found by the read operation.
e get_cursor() — Retrieve multiple documents. (Get a cursor over read operation results.)

e get_data_guide() — Obtain a data guide for the documents found by the read
operation.

e get_one() — Retrieve a single document.

The terminal methods for write operations are these:

* renove() — Remove documents from a collection.
* replace_one() — Replace one document in a collection.

e replace_one_and_get () — Replace one document and return the new (result)
document.

Unless documentation states otherwise, you can chain together any nonterminal methods,
and you can end the chain with any terminal method. However, not all combinations make
sense. For example, it does not make sense to chain method ver si on() together with
methods that do not uniquely identify the document, such as keys() .

Related Topics

e Finding Documents in Collections with SODA for PL/SQL
You can use SODA_OPERATI ON_T terminal method get _one() or get _cursor () to find
one or multiple documents in a collection, respectively. You can use terminal method
count () to count the documents in a collection. You can use nonterminal methods, such
as key(), keys(),andfilter(), to specify conditions for a find operation.

e Replacing Documents in a Collection with SODA for PL/SQL
You can chain together SODA_OPERATI ON_T replace-operation method r epl ace_one() or
repl ace_one_and_get () with nonterminal method key() to uniquely identify a document
to be replaced. You can optionally make use of additional nonterminal methods such as
version() andfilter(). You can use nonterminal method acquire_| ock() to lock a
document for updating.

* Removing Documents from a Collection with SODA for PL/SQL
You can remove documents from a collection by chaining together SODA_ OPERATI ON_T
method renove() with nonterminal method key(), keys(), orfilter() to identify
documents to be removed. You can optionally make use of additional nonterminal
methods such as version().

ORACLE 3-21

Chapter 3
Finding Documents in Collections with SODA for PL/SQL

¢ See Also:

e Using Oracle Flashback Query (SELECT AS OF) in Oracle Database
SQL Language Reference for information about Oracle Flashback Query

e SODA_OPERATION_T Type in Oracle Database PL/SQL Packages and
Types Reference for information about SODA OPERATI ON_T, including
each of its methods

e Monitoring Database Operations in Oracle Database SQL Tuning Guide
for complete information about monitoring database operations

e MONITOR and NO_MONITOR Hints in Oracle Database SQL Tuning
Guide for information about the syntax and behavior of SQL hints
MONI TOR and NO_MONI TOR

e SODA Restrictions (Reference) in Oracle Database Introduction to
Simple Oracle Document Access (SODA) for information about SODA
restrictions

3.11 Finding Documents in Collections with SODA for

PL/SQL

ORACLE

You can use SODA_OPERATI ON_T terminal method get _one() or get _cursor () to find
one or multiple documents in a collection, respectively. You can use terminal method
count () to count the documents in a collection. You can use nonterminal methods,
such as key(), keys(),and filter(), to specify conditions for a find operation.

You can use nonterminal SODA_OPERATI ON_T method hi nt () to provide a SQL hint
to turn SQL monitoring on or off. You can use nonterminal methods as_of scn() and
as_of _timestanp() to access documents as of a given system change number (SCN)
or a given date and time.

< Note:

Data type SODA_OPERATI ON_T was added to SODA for PL/SQL in Oracle
Database 18.3. You need that database release or later to use it.

3-22

ORACLE

Chapter 3
Finding Documents in Collections with SODA for PL/SQL

¢ See Also:

e FIND Function in Oracle Database PL/SQL Packages and Types Reference for
information about SODA_COLLECTI ON_T method fi nd()

e SODA_OPERATION_T Type in Oracle Database PL/SQL Packages and Types
Reference for information about data type SODA OPERATI ON T and its methods

e SODA DOCUMENT_T Type in Oracle Database PL/SQL Packages and Types
Reference for information about SODA_DOCUMENT _T getter methods

* JSON_QUERY in Oracle Database SQL Language Reference for information
about SQL/JSON function j son_query

« Monitoring Database Operations in Oracle Database SQL Tuning Guide for
complete information about monitoring database operations

« MONITOR and NO_MONITOR Hints in Oracle Database SQL Tuning Guide for
information about the syntax and behavior of SQL hints MONI TOR and
NO_MONI TOR

Example 3-13 Finding All Documents in a Collection

This example uses SODA_COLLECTI ON_T method fi nd() and SODA OPERATI ON_T method
get Cur sor () to obtain a cursor for a query result list that contains each document in a
collection. It then uses the cursor in a WHI LE statement to get and print the content of each
document in the result list, as a string. Finally, it closes the cursor.

It uses SODA_DOCUMENT T methods get _key(), get bl ob(), get _created_on(),

get last_modified(),and get_version(), to get the document components, which it prints.
It passes the document content to SQL/JSON function j son_query to pretty-print (using
keyword PRETTY).

Note:

To avoid resource leaks, close any cursor that you no longer need.

DECLARE
col l ection SODA COLLECTION T;
docunent SODA DOCUMENT _T;
cur SODA_CURSCOR _T;
status BOOLEAN;

BEG N

-- Open the collection to be queried
col I ection := DBMS_SCDA. open_col | ection(' nyCol | ecti onNang');

-- Open the cursor to fetch the docunents.
cur := collection. find().get cursor();

-- Loop through the cursor

VWHI LE cur. has_next
LooP

3-23

Chapter 3
Finding Documents in Collections with SODA for PL/SQL

docunent := cur.next;
| F document |'S NOT NULL THEN
DBMS_QUTPUT. put _I'i ne(' Document conponents:');
DBMS_QUTPUT. put _line(' Key: ' || document.get key);
DBMS_QUTPUT. put _|ine(' Content:
|| Json_query(document.get blob, '$' PRETTY));
DBMS_QUTPUT. put _line(' Creation tinestanp: '
|| document.get created_on);
DBMS_QUTPUT. put _line(' Last nmodified timestanp: '
|| document.get_last modified);

DBMS_QUTPUT. put _line('Version: ' || docunent.get_version);
END I F;
END LOOP;
-- | MPORTANT: You nust close the cursor, to release resources.
status := cur.close;
END,

/

Example 3-14 Finding the Unique Document That Has a Given Document Key

This example uses SODA_COLLECTI ON_T methods fi nd(), key(), and get _one() to find
the unique document whose key is "key1".

DECLARE
collection SODA COLLECTION T;
docunent SCDA _DOCUMENT _T;
BEG N
-- Open the collection
col I ection : = DBM5_SCDA. open_col I ection(' nyCol | ecti onNane');

-- Find a docunent using a key
docunent : = col |l ection. find(). key(' keyl'). get _one;

| F docurment 1S NOT NULL THEN
DBMS_QUTPUT. put _I i ne(" Docunent conponents:');
DBMS_QUTPUT. put _line(" Key: ' || document.get_key);
DBMS_QUTPUT. put _line(" Content:
|| JSON_QUERY(document.get _blob, '$' PRETTY));
DBMS_QUTPUT. put _line(' Creation tinestanp: '
|| document. get_created_on);
DBMS_QUTPUT. put _|i ne(" Last nodified tinmestanp: '
|| document.get _|ast_nodified);
DBMS_QUTPUT. put _line(" Version: ' || docunent.get_version);
END I F;
END;
/

ORACLE 3-24

ORACLE

Chapter 3
Finding Documents in Collections with SODA for PL/SQL

Example 3-15 Finding Multiple Documents with Specified Document Keys

This example defines key list myKeys, with (string) keys "keyl", "key2", and "key3". It then
finds the documents that have those keys, and it prints their components.
SODA_COLLECTI ON_T method keys() specifies the documents with the given keys.

DECLARE
col lection SODA COLLECTION T;
docunent SCDA_DOCUMENT _T;

cur SCDA_CURSOR_T;

status BOOLEAN;

nmyKeys SCDA KEY LI ST T;
BEG N

-- Open the collection
col I ection : = DBM5_SCDA. open_col I ection(' nyCol | ecti onNane');

-- Set the keys |ist
myKeys := SCDA KEY_LIST_T("keyl®, T"key2", "key3");

-- Find documents using keys
cur := collection. find(). keys(nyKeys). get_cursor;

-- Loop through the cursor
VWH LE cur. has_next
LOooP
docunent := cur.next;
| F docurment |'S NOT NULL THEN
DBMS_QUTPUT. put _I i ne(" Docunment conponents:');
DBMS_QUTPUT. put _line(' Key: ' || document.get_key);
DBMS_QUTPUT. put _|i ne(" Content:
|| json_query(document.get_blob, '$ PRETTY));
DBMS_QUTPUT. put _line(" Creation tinestanp: '
|| document.get_created_on);
DBMS_QUTPUT. put _li ne(' Last nodified timestanmp: '
|| document.get_|ast_nodified);

DBMS_QUTPUT. put _line("Version: ' || docunent.get_version);
END I F;
END LOOP;
status := cur.cl ose;

END;
/

Example 3-16 Finding Documents with a Filter Specification

SODA_OPERATI ON_T method fil ter () provides a powerful way to filter JSON documents in a
collection. Its parameter is a JSON query-by-example (QBE, also called a filter specification).

The syntax of filter specifications is an expressive pattern-matching language for JSON
documents. This example uses only a very simple QBE, just to indicate how you make use of
one in SODA for PL/SQL.

This example does the following:

1. Creates a filter specification that looks for all JSON documents whose nane field has
value " Al exander".

3-25

ORACLE

Chapter 3
Finding Documents in Collections with SODA for PL/SQL

2. Uses the filter specification to find the matching documents.
3. Prints the components of each document.
DECLARE

collection SODA COLLECTION T;
docunent SODA DOCUMENT _T;

cur SCDA_CURSOR_T;

status BOOLEAN;

gbe VARCHAR2(1128) ;
BEG N

-- Open the collection
col l ection : = DBVM5_SCDA. open_col l ection(' nyCol | ecti onNane');

-- Define the filter specification (QBE)
gbe := "{"name" : "alexander"} ;

-- Open a cursor for the filtered documents
cur := collection. find(). filter(qgbe). get_cursor;

-- Loop through the cursor
VWHI LE cur. has_next
LooP
document := cur.next;
| F document |'S NOT NULL THEN
DBMS_QUTPUT. put _|'i ne(' Docurent conponents:');
DBMS_QUTPUT. put _line(' Key: ' || docunent.get key);
DBMS_QUTPUT. put _|ine(' Content:
|| JSON QUERY(document.get blob, '$' PRETTY));
DBMS_QUTPUT. put _|ine(' Creation tinestanp: '
|| docurent.get created on);
DBMS_QUTPUT. put _|ine(' Last modified timestanp: '
|| docurent.get |ast nodified);
DBVMS_QUTPUT. put _line(' Version: ' || docunent.get_version);
END I F;
END LOOP;
status := cur.close;
END;
/

¢ See Also:

e Overview of SODA Filter Specifications (QBES) in Oracle Database
Introduction to Simple Oracle Document Access (SODA) for an
introduction to SODA filter specifications

e SODA Filter Specifications (Reference) in Oracle Database Introduction
to Simple Oracle Document Access (SODA) for reference information
about SODA filter specifications

3-26

Chapter 3
Finding Documents in Collections with SODA for PL/SQL

Example 3-17 Specifying Pagination Queries with Methods skip() and limit()

This example uses SODA_OPERATI ON_T methods filter(),skip() andlinmit() ina
pagination query.

DECLARE

collection SODA COLLECTION T;
docunent SODA DOCUMENT _T;

cur SCDA Cursor _T;

stat us BOOLEAN;

gbe VARCHAR2(1128) ;
BEG N

END;

/

-- Open the collection
col I ection : = DBM5_SCDA. open_col I ection(' nyCol | ecti onNane');

-- Define the filter
gbe := "{"name" : "Alexander"}";

-- Find all documents that match the QBE, skip over the first 1000
-- of them limt the nunber of returned docunents to 100
cur := collection. find(). filter(gbe). skip(1000). I'imit(100). get_cursor;

-- Loop through the cursor
VWHI LE cur. has_next
LooP
document := cur.next;
| F docurment |'S NOT NULL THEN
DBMS_QUTPUT. put _I'i ne(' Docurment conponents:');
DBMS_QUTPUT. put _line(' Key: ' || docunent.get _key);
DBMS_QUTPUT. put _line(' Content: ' ||
JSON_QUERY(document . get _blob, '$' PRETTY));
DBMS_QUTPUT. put _line(' Creation tinmestamp: ' ||
docunent . get _created_on);
DBMS_QUTPUT. put _line('Last nmodified timestanmp: ' ||
docunent. get | ast _nodified);
DBVMS_CQUTPUT. put _line(' Version: ' || docunent.get_version);
END I F;
END LOOP;
status := cur.close;

Example 3-18 Specifying Document Version

This example uses SODA_OPERATI ON_T method ver si on() to specify the document version.
This is useful for implementing optimistic locking, when used with the terminal methods for
write operations.

You typically use ver si on() together with method key() , which specifies the document. You
can also use ver si on() with methods keyLi ke() and filter(), provided they identify at
most one document.

DECLARE
collection SODA COLLECTION T;
docunent SCDA DOCUMENT _T;

ORACLE 3-27

ORACLE

Chapter 3
Finding Documents in Collections with SODA for PL/SQL

BEG N
-- Open the collection
col l ection := DBM5_SCDA. open_col I ection(' nyCol | ecti onNane');

-- Find a particular version of the document that has a given key
docunent :=

col l ection. find() . key(' keyl1'). version(' versionl').get one;

| F document 1S NOT NULL THEN
DBMS_QUTPUT. put _I'i ne(" Docunent conponents:');
DBMS_QUTPUT. put _line("Key: ' || document.get_key);
DBMS_QUTPUT. put _line(" Content: ' ||
JSON_QUERY(docunent. get _blob, '$' PRETTY));
DBMS_QUTPUT. put _line(' Creation tinestanp: '
|| document.get _created_on);
DBMS_QUTPUT. put _line(" Last modified tinmestanp: '
|| document.get |ast_nodified);
DBMS_QUTPUT. put _line("Version: ' || docunent.get version);
END | F;
END;
/

Example 3-19 Counting the Number of Documents Found

This example uses SODA_OPERATI ON_T method count () to get a count of all of the
documents in the collection. It then gets a count of all of the documents that are
returned by a filter specification (QBE).

DECLARE
collection SODA COLLECTION T;
num docs NUVBER;
gbe VARCHAR2(128) ;
BEG N
-- Open the collection
col I ection := DBM5_SCDA. open_col I ection(' nyCol | ecti onNane');

-- Count of all documents in the collection
num docs := col lection.find().count;
DBMS_QUTPUT. put _line(' Count (all): ' || num.docs);

-- Set the filter
gbe := '"{"name" : "Alexander"}";

-- Count of all documents in the collection that match
-- afilter spec

num docs := collection.find(). filter(gbe). count;
DBMS_QUTPUT. put _line(' Count (filtered): ' || num.docs);

Example 3-20 Retrieving the Documents of a Collection at a Time in the Past
(Flashback)

This code uses SODA_OPERATI ON_T method as_of _timestanp() to open a cursor for
the documents that were in collection nyCol | ect i onName on April 27th, 2021 at UTC

3-28

Chapter 3
Replacing Documents in a Collection with SODA for PL/SQL

time 5:00, that is, the time represented by 1ISO 8601 date-time string 2021- 04- 27T05: 00: 00Z.

DECLARE
col | SODA_COLLECTI ON_T;
cur SODA_CURSOR _T;
b BOCLEAN,
BEG N
-- Open the collection to be queried
col | := DBMS_SODA. open_col | ection(' myCol | ecti onName');

-- Specify SCNto retrieve docunents as it existed then
cur := coll.find().as_of _timestamp(' 2021-04-27T05:00:00Z'). get _cursor;
b := cur.close;

END;

/

Similarly, this code uses SODA_OPERATI ON_T method as_of _scn() to access the documents
present at a particular time using an Oracle Database system change number (SCN), which
is a logical, internal time stamp.

DECLARE
col | SODA_COLLECTI ON_T;
cur SODA_CURSCR _T;
b BOCLEAN,
BEG N
-- Open the collection to be queried
col | := DBMS_SODA. open_col | ection(' myCol | ecti onName');

-- Specify SCNto retrieve docunents as it existed then
cur := coll.find().as_of _scn(2068287). get_cursor;
b := cur.close;

END;

/

Related Topics

* SODA for PLSQL Read and Write Operations
A SCDA_COPERATI ON_T instance is returned by method fi nd() of SODA_COLLECTI ON_T. You
can chain together SODA_ OPERATI ON_T methods, to specify read and write operations
against a collection.

3.12 Replacing Documents in a Collection with SODA for
PL/SQL

You can chain together SCDA_COPERATI ON_T replace-operation method r epl ace_one() or
repl ace_one_and_get () with nonterminal method key() to uniquely identify a document to
be replaced. You can optionally make use of additional nonterminal methods such as

ORACLE 3-29

Example 3-21

Chapter 3
Replacing Documents in a Collection with SODA for PL/SQL

version() andfilter(). You can use nonterminal method acquire_| ock() to lock a
document for updating.

Note:

Data type SODA_OPERATI ON_T was added to SODA for PL/SQL in Oracle
Database 18.3. You need that database release or later to use it.

In addition to replacing the content, methods r epl ace_one() and
repl ace_one_and_get () update the values of the last-modified timestamp and the
version. Replacement does not change the document key or the creation timestamp.

¢ See Also:

e FIND Function in Oracle Database PL/SQL Packages and Types
Reference for information about SODA_COLLECTI ON_T method fi nd()

e SODA_OPERATION_T Type in Oracle Database PL/SQL Packages and
Types Reference for information about data type SODA OPERATI ON_T and
its methods

 REPLACE_ONE Function in Oracle Database PL/SQL Packages and
Types Reference for information about SODA_ OPERATI ON_T method
repl ace_one()

« REPLACE_ONE_AND_GET Function in Oracle Database PL/SQL
Packages and Types Reference for information about SODA_ OPERATI ON_T
method repl ace_one_and_get ()

¢ ACQUIRE_LOCK Function in Oracle Database PL/SQL Packages and
Types Reference for information about SODA_OPERATI ON_T method
acquire_| ock()

e SODA _DOCUMENT_T Type in Oracle Database PL/SQL Packages and
Types Reference for information about SODA DOCUMENT _T getter methods

Replacing a Document, Given Its Key, and Getting the Result Document Using

SODA For PL/ISQL

DECLARE
col l ection
docunent
new_doc

BEG N
col l ection
docunent

ORACLE

This example replaces a document in a collection, given its key. It then gets (and
prints) the key and the generated components from the result document. To obtain the
components it uses SODA DOCUMENT T methods get _key(), get_created_on(),

get last_modified(),andget _version().

SODA_COLLECTI ON_T;
SODA DOCUMENT _T;
SODA DOCUMENT _T;

: = DBMS_SCDA. open_col | ection(' nmyCol | ecti onNane');

: = SODA_DOCUMENT _T(

b _content => utl _raw. cast_to raw('{"name" : "Sriky"}'));

3-30

Chapter 3
Replacing Documents in a Collection with SODA for PL/SQL

new doc := collection.find().key(' keyl').replace one_and_get(docunent);

| F new doc |'S NOT NULL THEN
DBMS_QUTPUT. put _I'i ne(" Docunent conponents:');

DBMS_QUTPUT. put _line(" Key: ' || new_ doc. get_key);
DBMS_QUTPUT. put _line(' Creation tinestanp: ' || new_doc. get_created on);
DBMS_QUTPUT. put _|ine('Last modified timestamp: ' ||

new doc. get_last_modified);
DBMS_QUTPUT. put _|ine("Version: ' || new doc.get version);
END | F;
END;
/

Example 3-22 Replacing a Particular Version of a Document Using SODA For PL/ISQL

To implement optimistic locking when replacing a document, you can chain together
methods key() and version(), as in this example. The write operation

(repl ace_one_and_get) optimistically tries to modify the latest version known (ver si onl,
here).

If the write were to fail (returning NULL) because some other transaction modified the
document since we last read it, then we would need to repeatedly try again until writing
succeeds: reread the document, get its new version, and specify that version in a new write
attempt. This example shows only a single write attempt.

DECLARE
collection SODA COLLECTION T,
docunent SODA DOCUMENT _T;
new _doc SODA DOCUMENT _T;
BEG N
-- Open the collection
col l ection := DBMS_SCDA. open_col | ection(' nyCol | ecti onNang');

-- Replace content of version 'versionl' of the document that has key 'keyl'
new doc := SODA DOCUMENT T(
b _content => utl raw.cast _to raw('{"nane" : "Sriky"}'));
docunent : =
col lection.find(). key('keyl').version('versionl').replace one_and _get(new doc);

| F document 1S NOT NULL THEN
DBMS_QUTPUT. put _|i ne(' Docunent conponents:');
DBVS_CUTPUT. put _line(' Key: ' || document.get_key);
DBVS_QUTPUT. put _line(' Content: ' ||
JSON_QUERY(docunent.get _blob, '$ PRETTY));
DBVMS_QUTPUT. put _line(' Creation tinestanp: ' || document.get_created_on);
DBVS_QUTPUT. put _line(' Last nodified timestamp: ' ||
docunent. get last _nodified);
DBVMS_QUTPUT. put _line(' Version: ' || docunent.get_version);
END | F;
END;
/

ORACLE 3-31

ORACLE

Chapter 3
Replacing Documents in a Collection with SODA for PL/SQL

Example 3-23 Locking a Document For Update (Replacement) Using SODA For
PL/SQL

This example uses nonterminal method acqui re_| ock() to lock a document while
replacing it. The document is selected by its key. Method acqui re_| ock() provides
pessimistic locking, which prevents other users from interfering with the update
operation. A commit or a rollback releases the lock. The example rolls back the
transaction for the operation if any error was raised.

DECLARE
col | SODA_COLLECTI ON_T;
docl SODA_DOCUMENT T
doc2 SODA_DOCUMENT T:

k VARCHAR2(255) := 'key-0';
n NUVBER;
BEG N
col | := DBMS_SODA. open_col | ection(' myCol | ecti onName');

-- Get the document with a lock, using its key.
docl := coll.find().key(k).acquire_lock(). get _One;

-- Construct a new, replacenent docunent.
doc2 := SODA_DOCUMENT_T(
key => Kk,
b_content => utl_raw.cast_to raw('{"nanme" : "Scott", "age" : 35}'));

-- Replace the docunent, specifying its key.
n := coll.replace_one(k, doc2);

-- Commit the transaction, releasing the |ock.
COMMIT;
DBMS_QUTPUT. put _line(' Transaction is committed');

-- Catch exceptions and roll back if an error was raised.
EXCEPTI ON
VWHEN OTHERS THEN
DBMS_QUTPUT. put _l i ne (SQLERRM) ;
ROLLBACK;
DBMS_QUTPUT. put _|i ne(" Transaction has been rolled back');
END;
/

Related Topics

e SODA for PLSQL Read and Write Operations
A SODA_OPERATI ON T instance is returned by method fi nd() of
SODA _COLLECTI ON_T. You can chain together SODA_OPERATI ON_T methods, to
specify read and write operations against a collection.

Related Topics

* Handling Transactions with SODA for PL/SQL
As usual in PL/SQL and SQL, you can treat individual SODA read and write
operations, or groups of them, as a transaction. To commit a transaction, use a
SQL COW T statement. If you want to roll back changes, use a SQL ROLLBACK
statement.

3-32

Chapter 3
Removing Documents from a Collection with SODA for PL/SQL

* Dropping a Document Collection with SODA for PL/SQL
You use PL/SQL function DBM5_SODA. dr op_col | ecti on to drop a document collection.

e Inserting Documents into Collections with SODA for PL/SQL
To insert a document into a collection, you invoke SODA_ COLLECTI ON_T method (member
function) insert_one() or insert_one_and_get(). These methods create document keys
automatically, unless the collection is configured with client-assigned keys and the input
document provides the key.

3.13 Removing Documents from a Collection with SODA for
PL/SQL

You can remove documents from a collection by chaining together SODA_OPERATI ON_T method
renmove() with nonterminal method key(), keys(), orfilter() to identify documents to be
removed. You can optionally make use of additional nonterminal methods such as versi on() .

Note:

Data type SODA_OPERATI ON_T was added to SODA for PL/SQL in Oracle Database
18.3. You need that database release or later to use it.

" See Also:

« FIND Function in Oracle Database PL/SQL Packages and Types Reference for
information about SODA_ COLLECTI ON_T method fi nd()

e SODA_OPERATION_T Type in Oracle Database PL/SQL Packages and Types
Reference for information about data type SODA_OPERATI ON_T and its methods

< REMOVE Function in Oracle Database PL/SQL Packages and Types
Reference for information about SODA_OPERATI ON_T method r emove()

« REMOVE_ONE Function in Oracle Database PL/SQL Packages and Types
Reference for information about SODA_COLLECTI ON_T method r enove_one()

e SODA_DOCUMENT_T Type in Oracle Database PL/SQL Packages and Types
Reference for information about SODA_DOCUMENT _T getter methods

Example 3-24 Removing a Document from a Collection Using a Document Key

This example removes the document whose document key is "key1". The removal status (1
if the document was removed; 0 if not) is returned and printed.

DECLARE
collection SODA COLLECTION T;
docunent SODA DOCUMENT _T;
status NUMBER;
BEG N
-- Open the collection
col l ection := DBMS_SCDA. open_col | ection(' nyCol | ecti onNane');

ORACLE 3-33

ORACLE

Chapter 3
Removing Documents from a Collection with SODA for PL/SQL

-- Renove docunent that has key 'keyl'
status := collection.find().key('keyl'). remove;

-- Count is 1 if document was found
IF status = 1 THEN
DBMS_QUTPUT. put _I'i ne(" Docunent was renoved!"');
END | F;
END;

Example 3-25 Removing a Particular Version of a Document

To implement optimistic locking when removing a document, you can chain together
methods key() and version(), as in this example.

DECLARE
collection SODA COLLECTION T;
docunent SODA_DOCUMENT _T;
stat us NUMBER,
BEG N
-- Open the collection
col I ection : = DBM5_SCDA. open_col I ection(' nyCol | ectionNane');

-- Renove version 'versionl' of the document that has key 'keyl'.
status := collection.find().key('keyl').version('versionl'). remove;

-- Count is 1, if specified version of docunent with key 'keyl' is
found
IF status = 1 THEN
DBMS_QUTPUT. put _|'i ne(' Docunent was renoved!");
END | F;
END;
/

Example 3-26 Removing Documents from a Collection Using Document Keys

This example removes the documents whose keys are keyl, key2, and key3.

DECLARE
collection SODA COLLECTION T;
docunent SODA DOCUMENT _T;

cur SCDA_CURSOR_T;

num docs NUMBER,;

nyKeys SODA KEY_LIST_T;
BEG N

-- Open the collection
col I ection := DBVMS_SCDA. open_col l ection(' nyCol | ecti onNane');

-- Define the keys list
nmyKeys := SODA KEY_LIST_T(' keyl','key2','key3');

-- Renove docunents using keys
num docs := col l ection.find().keys(nyKeys). remove;

3-34

Chapter 3
Truncating a Collection (Removing All Documents) with SODA for PL/SQL

DBMS_QUTPUT. put _li ne(" Number of documents removed: ' || num.docs);
END;
/

Example 3-27 Removing JSON Documents from a Collection Using a Filter

This example uses a filter to remove the JSON documents whose gr eet i ng field has value
"hel | 0". It then prints the number of documents removed.

DECLARE
collection SODA COLLECTION T;
num docs NUMBER,
gbe VARCHAR2(128) ;
BEG N
-- Open the collection
col I ection : = DBM5_SCDA. open_col I ection(' nyCol | ecti onNane');

-- Define the filter specification
gbe :="'{ "greeting” : "hello™ }';

-- Get a count of all documents in the collection that match the QBE

num docs := collection.find(). filter(gbe). remove;

DBMS_QUTPUT. put _li ne(" Number of documents removed: ' || num.docs);
END;

Related Topics

* SODA for PLSQL Read and Write Operations
A SODA_OPERATI ON T instance is returned by method fi nd() of SODA COLLECTI ON_T. You
can chain together SODA_OPERATI ON_T methods, to specify read and write operations
against a collection.

3.14 Truncating a Collection (Removing All Documents) with
SODA for PL/SQL

ORACLE

You can use SODA _COLLECTI ON_T method truncat e() to empty, or truncate, a collection,
which means remove all of its documents.

Example 3-28 Truncating a Collection

This example uses SODA_COLLECTI ON_T method t runcat e() to remove all documents from
col |l ection.

DECLARE
col l ection SODA COLLECTION T;
docunent SODA DOCUMENT _T;
stat us NUMBER;
BEG N
-- Open the collection
col l ection := DBMS_SCDA. open_col I ection(' nyCol | ecti onNane');

3-35

Chapter 3
Indexing the Documents in a Collection with SODA for PL/SQL

-- Truncate the collection
status := col | ection. truncate;

-- Count is 1 if docurment was found
IF status = 1 THEN
DBMS_QUTPUT. put _line(" Col l ection was truncated!");
END | F;
END;

3.15 Indexing the Documents in a Collection with SODA for

PL/SQL

ORACLE

You index the documents in a SODA collection with SODA_COLLECTI ON_T method
create_index(). Its input parameter is a textual JSON index specification. This can
specify support for B-tree, spatial, full-text, and ad hoc indexing, and it can specify
support for a JISON data guide.

Note:

SODA for PL/SQL support for indexing was added in Oracle Database 18.3.
You need that database release or later to use this SODA feature.

A JSON search index is used for full-text and ad hoc structural queries, and for
persistent recording and automatic updating of JSON data-guide information.

An Oracle Spatial and Graph index is used for GeoJSON (spatial) data.

You can drop an index on a SODA collection with SODA_COLLECTI ON_T method
drop_I ndex().

3-36

ORACLE

Chapter 3
Indexing the Documents in a Collection with SODA for PL/SQL

¢ See Also:

e Overview of SODA Indexing in Oracle Database Introduction to Simple Oracle
Document Access (SODA) for an overview of using SODA indexing

* SODA Index Specifications (Reference) in Oracle Database Introduction to
Simple Oracle Document Access (SODA) for information about SODA index
specifications

e JSON Search Index for Ad Hoc Queries and Full-Text Search in Oracle
Database JSON Developer’s Guide for information about JSON search indexes

e Persistent Data-Guide Information: Part of a JSON Search Index in Oracle
Database JSON Developer’s Guide for information about persistent data-guide
information as part of a JSON search index

e Using GeoJSON Geographic Data in Oracle Database JSON Developer’s
Guide for information about spatial indexing of GeoJSON data

« Database Object Naming Rules in Oracle Database SQL Language Reference
for information about database identifier syntax

Example 3-29 Creating a B-Tree Index for a JSON Field with SODA for PL/SQL

This example creates a B-tree non-unique index for numeric field addr ess. zi p of the JSON
documents in collection nmyCol | ect i onNane.

DECLARE
collection SODA COLLECTION T;
spec VARCHAR2(700) ;
stat us NUMBER;

BEG N

-- Open the collection
col I ection := DBVM5_SCDA. open_col I ection(' nyCol | ecti onNane');

-- Define the index specification

spec := "{"name" » "ZI PCCDE_I DX",
“fields" : [{"path" . "address.zip",
"datatype" : "number",
"order" . "asc"}]}';

-- Create the index

status := collection. create_index(spec);

DBMS QUTPUT. put _Line(' Status: ' || status);
END;

Example 3-30 JSON Search Indexing with SODA for PL/ISQL

This example indexes the documents in collection nyCol | ect i onNane for ad hoc queries and
full-text search (queries using QBE operator $cont ai ns), and it automatically accumulates

3-37

ORACLE

Chapter 3
Indexing the Documents in a Collection with SODA for PL/SQL

and updates data-guide information about your JSON documents (aggregate structural
and type information). The index specification has only field narme (no field f i el ds).

DECLARE
collection SODA COLLECTION T;
spec VARCHAR2(700) ;
status NUVBER;

BEG N

-- Open the collection
col l ection : = DBM5_SCDA. open_col I ection(' nyCol | ecti onNane');

-- Define the index specification
indexSpec := '{"name" : "SEARCH_AND_DATA GUIDE_IDX"}";

-- Create the index

status := collection.create_index(indexSpec);

DBMS_QUTPUT. put _Line(' Status: ' || status);
END;

The simple index specification it uses is equivalent to this one, which makes explicit
the default values:

{"name" : "SEARCH AND DATA GUI DE | DX",
"dataguide" : "on",
"search_on" : "text value"}

If you instead wanted only ad hoc (search) indexing then you would explicitly specify a
value of "of f" for field dat agui de. If you instead wanted only data-guide support then
you would explicitly specify a value of "none" for field sear ch_on.

Note:

To create a data guide-enabled JSON search index, or to data guide-enable
an existing JSON search index, you need database privilege CTXAPP and
Oracle Database Release 12c (12.2.0.1) or later.

Example 3-31 Dropping an Index with SODA for PL/SQL

This example uses SODA_COLLECTI ON_T method dr op_i ndex() to drop index nyl ndex
on collection nyCol | ect i onNarre.

DECLARE
col SCDA COLLECTION_T;
status NUMBER,

BEG N

-- Open the collection
coll := dbns_soda. open_Col | ection(' myCol | ecti onName');

-- Drop the index using nane
status := coll.drop_index("mylndex®);

3-38

Chapter 3
Getting a Data Guide for a Collection with SODA for PL/SQL

DBMS_QUTPUT. put _Line(' Status: ' || status);
END;
/

3.16 Getting a Data Guide for a Collection with SODA for
PL/SQL

You can use SODA COLLECTI ON_T method get _dat a_gui de() or terminal SODA OPERATI ON_T
method get _dat a_gui de() to obtain a data guide for a collection. A data guide is a JSON
document that summarizes the structural and type information of the JSON documents in the
collection. It records metadata about the fields used in those documents.

Note:

SODA for PL/SQL support for JSON data guide was added in Oracle Database
18.3. You need that database release or later to use this SODA feature.

There are two alternative ways to create a data guide for a collection, using two different
methods named get _dat a_gui de():

* Use terminal SODA_OPERATION_T method get _dat a_gui de() together with a query-by-
example (QBE) filter() operation. This creates a data guide dynamically from scratch,
for only the documents selected by your query. You can thus limit the set of documents
on which the data guide is based. Example 3-32 illustrates this.

(This method corresponds to using SQL function j son_dat agui de.)

e Use SODA_COLLECTION_T method get _dat a_gui de() . This always creates a data guide
based on all documents in the collection. Example 3-33 illustrates this.

This method makes use of persistent data-guide information that is stored as part of a
JSON search index, so before you can use this method you must first create a data
guide-enabled JSON search index on the collection. Example 3-30 shows how to do that.
The data-guide information in the index is persistent, and is updated automatically as
new JSON content is added.

(This method corresponds to using PL/SQL function get _i ndex_dat agui de.)

The index-based SCDA COLLECTI ON_T method incurs an ongoing cost of updating relevant
data persistently: document writes (creation and updating) entail index updates. But because
data-guide information is readily available in the index, it need not be gathered from scratch
when generating the data-guide document.

Because the SODA_OPERATI ON_T method starts from scratch each time, a typical use of it
involves applying the method to only the documents that satisfy some filter, as shown in
Example 3-32.

ORACLE 3-39

ORACLE

Chapter 3
Getting a Data Guide for a Collection with SODA for PL/SQL

¢ See Also:

e JSON Data Guide in Oracle Database JSON Developer’s Guide

e GET_DATA_GUIDE Function for type SODA_OPERATI ON_T in Oracle
Database PL/SQL Packages and Types Reference

e GET_DATA_GUIDE Function for type SODA COLLECTI ON_T in Oracle
Database PL/SQL Packages and Types Reference

Example 3-32 Creating a Data Guide Dynamically with SODA for PL/SQL

This example uses SODA_OPERATI ON_T terminal method get _dat a_gui de(), together
with a query-by-example (QBE) fil ter() operation, to obtain a data guide for only
some documents in collection MyCol | ect i onNane: those that satisfy the filter.

The example then pretty-prints the content of the data-guide document in the flat
format. Finally, it frees the temporary LOB used for the data-guide document.

DECLARE
col | SODA_COLLECTION_T;
gbe VARCHAR2(100) ;
dat agui de CLOB;
dofl ag PLS_| NTEGER,
dgf or mat PLS | NTEGER,
BEG N
-- Qpen the collection.
col | := DBMS_SODA. open_Col | ection(' myCol I ectionNane');
-- Define the filter specification (QBE)
gbe c= "{"name" : "alexander"}';
dgfl ag = DBMS_SODA.DATAGUIDE_PRETTY;
dgformat := DBMS_SODA.DATAGUIDE_FORMAT FLAT;

-- Cet dynamic data guide for the collection.
dataguide : = coll.find(). filter(gbe).get data_guide(flag =>

dgfl ag,

format =>

dgformat);

DBMS_QUTPUT. put _|i ne(dat agui de);

-- Inmportant: Free the tenporary LOB.
| F DBMS_LOB. i sTenporary(dataguide) =1
THEN

DBMS_LOB. freeTenpor ar y(dat agui de) ;
end if;

END;

3-40

Chapter 3
Creating a View from a Data Guide with SODA for PL/SQL

¢ See Also:

« Data-Guide Formats and Ways of Creating a Data Guide in Oracle Database
JSON Developer’s Guide for information about flat and hierarchical data-guide
formats

¢ A Flat Data Guide For Purchase-Order Documents in Oracle Database JSON
Developer’s Guide for an example of a pretty-printed flat-format data guide

Example 3-33 Creating a Data Guide Using a JSON Search Index with SODA for
PL/SQL

This example uses SODA_COLLECTI ON_T method get dat a_gui de() to obtain a data guide for
all documents in collection MyCol | ecti onNane. To use this method, a data guide-enabled
JSON search index must be defined on the collection.

The example uses SQL/JSON function j son_query to pretty-print the content of the data-
guide document. Finally, it frees the temporary LOB used for the data-guide document.

DECLARE
col l ection SODA COLLECTION T;
dat agui de CLOB;
BEG N
-- Open the collection.
col l ection : = DBM5_SCDA. open_Col I ection(' nyCol | ecti onNane');

-- Cet the data guide for the collection.
dat agui de := coll ection. get_data_guide;
DBVMS_QUTPUT. put _li ne(j son_query(dataguide, '$' pretty));

-- Inmportant: Free the tenporary LOB.
| F DBMS_LOB. i sTenporary(dataguide) =1
THEN
DBMS_LOB. freeTenpor ar y(dat agui de) ;
end if;
END;

3.17 Creating a View from a Data Guide with SODA for PL/SQL

ORACLE

You can use SODA COLLECTI ON_T method creat e_vi ew from dg() to create a database view
with relational columns, whose names and values are taken from the scalar JSON fields
specified in the data guide. A data guide-enabled JSON search index is not required for this;
the data guide itself is passed to the method.

Example 3-34 Creating a Relational View from a JSON Data Guide with SODA for
PL/SQL

This example, like Example 3-33, gets and pretty-prints a JSON data guide for a collection. It
then uses create_view from dg() to create a relational view with columns that are based on

3-41

Chapter 3
Handling Transactions with SODA for PL/SQL

the scalar JSON fields in the data guide. Finally, it frees the temporary LOB used for
the data-guide document.

DECLARE
coll SODA COLLECTION T;
dg CLOB;
n NUMBER;

BEG N

-- Open a collection
col | := DBMS_SODA. open_col I ection(' myCol | ecti onNane');

-- Cet and print the data guide for the collection
dg := coll.get data guide;
DBMS_QUTPUT. put i ne(json_query(dg, '$' pretty));

-- Create view fromdata guide
n = coll.create_view from dg(' M_VIEWFROM DG , dg);

-- Free the tenporary LOB containing the data guide
if DBMS_LOB.isTenporary(dg) =1
then
DBMS _LOB. freeTenporary(dg);
end if;
END;

3.18 Handling Transactions with SODA for PL/SQL

As usual in PL/SQL and SQL, you can treat individual SODA read and write
operations, or groups of them, as a transaction. To commit a transaction, use a SQL
COW T statement. If you want to roll back changes, use a SQL ROLLBACK statement.

SODA operations DBM5_SODA. create_col | ection and DBMS_SODA. drop_col | ection
do not automatically commit before or after they perform their action. This differs from
the behavior of SQL DDL statements, which commit both before and after performing
their action.

One consequence of this is that, before a SODA collection can be dropped, any
outstanding write operations to it must be explicitly committed or rolled back — you
must explicitly use SQL COW T or ROLLBACK. This is because

DBMS_SODA. drop_col | ecti on does not itself issue commit before it performs its action.
In this, the behavior of DBMS_SCDA. drop_col | ect i on differs from that of a SQL DROP
TABLE statement.

ORACLE 3-42

ORACLE

Chapter 3
Handling Transactions with SODA for PL/SQL

¢ See Also:

e COMMIT in Oracle Database SQL Language Reference for information about
the SQL COW T statement

¢« ROLLBACK in Oracle Database SQL Language Reference for information
about the SQL ROLLBACK statement

e SODA _COLLECTION_T Type in Oracle Database PL/SQL Packages and
Types Reference for information about SODA_COLLECTI ON_T method
insert_one()

Example 3-35 Transaction Involving SODA Document Insertion and Replacement

This example shows the use of SQL COW T and ROLLBACK statements in an anonymous
PL/SQL block. It opens a SODA collection, inserts a document, and then replaces its content.
The combination of the document insertion and document content replacement operations is
atomic: a single transaction.

DECLARE
col l ection SODA COLLECTION T;
st at us NUMBER;

BEG N
col l ection : = DBM5_SCDA. open_col I ection(' nyCol | ecti onNane');
status := collection. insert_one(
SODA Docunent _T(
b_content => utl_raw. cast_to raw'{"a":"aval", "b":"bval",
"c":"cval"}')));
status := collection. replace_one(
"keyl',
SCODA_DOCUMENT _T(
b_content => utl_raw. cast_to raw('{"x":"xval",
tytityvalt}')));
-- Conmmit the transaction
COMMIT;

DBMS_QUTPUT. put _line(' Transaction is comitted');
-- Catch exceptions and roll back if an error is raised
EXCEPTI ON
WHEN OTHERS THEN
DBMS_QUTPUT. put _|ine (SQLERRM ;
ROLLBACK;
DBMS_QUTPUT. put _|i ne(' Transaction has been rolled back');
END;
/

Related Topics

» Dropping a Document Collection with SODA for PL/SQL
You use PL/SQL function DBM5_SODA. dr op_col | ecti on to drop a document collection.

e Inserting Documents into Collections with SODA for PL/SQL
To insert a document into a collection, you invoke SODA_ COLLECTI ON_T method (member
function) insert_one() or insert_one_and_get(). These methods create document keys

3-43

ORACLE

Chapter 3
Handling Transactions with SODA for PL/SQL

automatically, unless the collection is configured with client-assigned keys and the
input document provides the key.

Replacing Documents in a Collection with SODA for PL/SQL

You can chain together SODA_OPERATI ON_T replace-operation method

repl ace_one() orreplace_one_and_get () with nonterminal method key() to
uniquely identify a document to be replaced. You can optionally make use of
additional nonterminal methods such as version() andfilter(). You can use
nonterminal method acqui re_| ock() to lock a document for updating.

3-44

SODA Collection Configuration Using Custom
Metadata

SODA collections are highly configurable. You can customize collection metadata, to obtain
different behavior from that provided by default.

" Note:

You can customize collection metadata to obtain different behavior from that
provided by default. However, changing some components requires familiarity with
Oracle Database concepts, such as SQL data types. Oracle recommends that you
do not change such components unless you have a compelling reason. Because
SODA collections are implemented on top of Oracle Database tables (or views),
many collection configuration components are related to the underlying table
configuration.

For example, if you change the content column type from the default value to
VARCHAR?2, then you must understand the implications: content size for VARCHAR? is
limited to 32K bytes, character-set conversion can take place, and so on.

* Getting the Metadata of an Existing Collection
You use SODA COLLECTI ON_T method get _met adat a() to get all of the metadata for a

collection, as a JSON document.

» Creating a Collection That Has Custom Metadata
To create a document collection that has custom metadata, you pass its metadata, as
JSON data, to PL/SQL function DBMS_SODA. creat e_col | ection.

¢ See Also:

* Overview of SODA Document Collections in Oracle Database Introduction to
Simple Oracle Document Access (SODA) for general information about SODA
document collections and their metadata

e SODA Collection Metadata Components (Reference) in Oracle Database
Introduction to Simple Oracle Document Access (SODA) for reference
information about collection metadata components

ORACLE 4-1

Chapter 4
Getting the Metadata of an Existing Collection

4.1 Getting the Metadata of an Existing Collection

You use SODA COLLECTI ON_T method get _met adat a() to get all of the metadata for a
collection, as a JSON document.

¢ See Also:

e« GET_METADATA Function in Oracle Database PL/SQL Packages and
Types Reference for information about SODA CCOLLECTI ON_T method
get netadata()

¢« JSON_QUERY in Oracle Database SQL Language Reference for
information about SQL/JSON function j son_query

Example 4-1 Getting the Metadata of a Collection

This example shows the result of invoking SODA COLLECTI ON_T method

get _net adat a() on the collection with the default configuration that was created using
Example 3-3. (It also uses SQL/JSON function j son_query, with keyword PRETTY, to
pretty-print the JSON data obtained.)

DECLARE
collection SODA COLLECTION T;
BEG N
col l ection := DBVMS_SCDA. open_col I ection(' nyCol | ecti onNang');
I F collection IS NULL THEN
DBMS_QUTPUT. put _|ine(' Collection does not exist');
ELSE
DBMS_QUTPUT. put _|ine(' Metadata:
|| json_query(collection.get metadata, '$'
PRETTY));
END | F;
END;
/

The default metadata for a collection is presented in Default Collection Metadata in
Oracle Database Introduction to Simple Oracle Document Access (SODA).

4.2 Creating a Collection That Has Custom Metadata

ORACLE

To create a document collection that has custom metadata, you pass its metadata, as
JSON data, to PL/SQL function DBMS_SODA. create_col | ecti on.

The optional second argument to PL/SQL function DBMS_SCODA. create_col | ectionis a
SODA collection specification. It is JSON data that specifies the metadata for the
new collection.

If a collection with the same name already exists then it is simply opened and its
handle is returned. If the custom metadata provided does not match the metadata of

4-2

ORACLE

Chapter 4
Creating a Collection That Has Custom Metadata

the existing collection then the collection is not opened and an error is raised. (To match, all
metadata fields must have the same values.)

¢ See Also:
e Oracle Database PL/SQL Packages and Types Reference for information about
PL/SQL function DBMS_SCDA. create_col | ection

e Oracle Database PL/SQL Packages and Types Reference for information about
SODA_COLLECTI ON_T method get _net adat a()

e Oracle Database SQL Language Reference for information about SQL/JSON
function j son_query

Example 4-2 Creating a Collection That Has Custom Metadata

This example creates a collection with custom metadata that specifies two metadata
columns, named KEY (for document keys), and JSON (for document content type JSON). The
key assignment method is CLI ENT, and the content-column SQL data type is VARCHAR2. The
example uses SCDA_COLLECTI ON_T method get _net adat a() to get the complete metadata
from the newly created collection, which it passes to SQL/JSON function j son_query to
pretty-print (using keyword PRETTY).

DECLARE
col l ection SODA COLLECTION T;
metadata VARCHAR2(4000) :=
"{"keyColumn" : {"name" : "KEY", "assignmentMethod": "CLIENT" },
"contentColumn” : { "name" : "JSON', "sqlType": "VARCHAR2" } }';

BEG N
col l ection : = DBVMS_SODA. create_collection(' nyCustonCol | ection',
metadata) ;

DBMS_QUTPUT. put _li ne("' Col | ection specification: ' ||
json_query(collection.get metadata, '$' PRETTY));
END;
/

This is the pretty-printed output. The values of fields for keyCol urm and cont ent Col unn that
are not specified in the collection specification are defaulted. The values of fields other than
those provided in the collection specification (keyCol urm and cont ent Col urm) are also
defaulted. The value of field t abl eNane is defaulted from the collection name. The value of
field schemaNane is the database schema (user) that is current when the collection is created.

Col | ection specification: {

"schemaNane" : "mySchenmaNane",
"tabl eName" : "nyCustontCol | ection”,
"keyColumn" :
{

"name" : "KEY",

"sql Type" : "VARCHAR2",
"maxLength" : 255,
"assignmentMethod" : "CLI ENT"

b

4-3

ORACLE

Chapter 4
Creating a Collection That Has Custom Metadata

"contentColumn" :

{
"name" : "JSON',

"sgqlType" : "VARCHAR2",
"maxLength" : 4000,
"val i dation" : "STANDARD'

}1
"readOnly" : false

Related Topics

» Creating a Document Collection with SODA for PL/SQL
You can use PL/SQL function DBMS_SODA. create_col | ecti on to create a

document collection with the default metadata.

4-4

Index

A

acquire_lock() SODA_OPERATION_T method,
3-29

as_of _scn() SODA_OPERATION_T method,
3-22

as_of _timestamp() SODA_OPERATION_T
method, 3-22

C

chaining together SODA_OPERATION_T
methods, 3-20
collection configuration, 4-1
collection metadata
custom, 4-1, 4-2
getting, 4-2
collections
checking existence, 3-8
creating, 3-6
with custom metadata, 4-2
discovering, 3-9
dropping, 3-10
opening, 3-8
during creation, 3-6
truncating, 3-35
committing a transaction, 3-42
components of SODA documents, 3-11
count() SODA_OPERATION_T method, 3-22
create_collection function
transaction handling, 3-42
create_index() SODA COLLECTION_T method,
3-36
creating collections, 3-6
with custom metadata, 4-2
creating documents, 3-11

D

data guide
creating relational view from, 3-41
getting for a collection, 3-39
database role SODA_APP, 3-3

ORACLE

DBMS_SODA package subprograms
create_collection
example, 3-6
transaction handling, 3-42
drop_collection
example, 3-10
transaction handling, 3-42
list_collection_names
example, 3-9
open_collection
example, 3-8
DBMS_SODA.DOC_BLOB constant, 3-11
DBMS_SODA.DOC_CLOB constant, 3-11
DBMS_SODA.DOC_VARCHAR? constant, 3-11
deleting collections
See dropping collections
deleting documents from collections
See removing documents from collections
discovering collections
checking existence, 3-8
listing, 3-9
documents
components, 3-11
creating, 3-11
finding in collections, 3-22
inserting into collections, 3-16
metadata, 3-11
removing from collections, 3-33
replacing in collections, 3-29
drop_collection function
example, 3-10
transaction handling, 3-42
drop_index() SODA_COLLECTION_T method,
3-36
dropping collections, 3-10

E

emptying a collection, 3-35
existing collection, checking for, 3-8

F

filter() SODA_OPERATION_T method, 3-22
find() SODA_COLLECTION_T method, 3-22

Index-1

finding documents in collections, 3-22
flashback querying of collection data, 3-22

G

Index

L

get_blob() SODA_DOCUMENT_T method, 3-11

get_clob() SODA_DOCUMENT_T method, 3-11

get_created_on() SODA_DOCUMENT_T
method, 3-11

get_cursor() SODA_OPERATION_T method,
3-22

get_data_guide() SODA_COLLECTION_T
method, 3-39

get_data_guide() SODA_OPERATION_T
method, 3-39

get_data_type() SODA_DOCUMENT _T method,
3-11

get_key() SODA_DOCUMENT_T method, 3-11

get_last_modified() SODA_DOCUMENT_T
method, 3-11

get_media_type() SODA DOCUMENT_T
method, 3-11

get_metadata() SODA_COLLECTION_T method,

4-2

get_one() SODA_OPERATION_T method, 3-22

get_varchar2() SODA_DOCUMENT_T method,
3-11

get_version() SODA_DOCUMENT_T method,
3-11

getter methods, document, 3-11

getting collection metadata, 4-2

getting document components, 3-11

H

list_collection_names function
example, 3-9

listing collections, 3-9

locking documents
pessimistic, 3-29

M

metadata of collections
getting, 4-2
metadata of documents
getting, 3-11
metadata, custom, 4-1
MONITOR SQL hint, 3-16, 3-18, 3-22

N

nonterminal SODA methods, definition, 3-20

O

open_collection function
example, 3-8

opening collections, 3-8
during creation, 3-6

P

prerequisites for using SODA for PL/SQL, 1-1

R

handling transactions, 3-42
hint
SQL monitoring, 3-16, 3-18, 3-22
hint() SODA_OPERATION_T method, 3-22

insert_one_and_get() SODA COLLECTION_T
method, 3-16

insert_one() SODA_COLLECTION_T method,
3-16

inserting documents into collections, 3-16

J

JSON data guide
creating relational view from, 3-41
getting for a collection, 3-39

ORACLE

read and write operations, 3-20

relational view, created from collection data
guide, 3-41

remove() SODA_OPERATION_T method, 3-33

removing all documents from a collection, 3-35

removing documents from collections, 3-33

replace_one_and_get() SODA_OPERATION_T
method, 3-29

replace_one() SODA_OPERATION_T method,
3-29

replacing documents in collections, 3-29

role SODA_APP, 3-3

rolling back a transaction, 3-42

S

SODA_APP database role, 3-3

SODA_COLLECTION_T methods
create_index(), 3-36
drop_index(), 3-36

Index-2

SODA_COLLECTION_T methods (continued)

find(), 3-22
get_data_guide(), 3-39
get_metadata(), 4-2
insert_one_and_get(), 3-16
insert_one(), 3-16

SODA_DOCUMENT_T methods

get_blob(), 3-11
get_clob(), 3-11

SODA_OPERATION_T methods (continued)

filter(), 3-22

get_cursor(), 3-22
get_data_guide(), 3-39
get_one(), 3-22

hint(), 3-22

remove(), 3-33
replace_one_and_get(), 3-29
replace_one(), 3-29

Index

get_created_on(), 3-11
get_data_type(), 3-11 T
get_key(), 3-11
get_last_modified(), 3-11
get_media_type(), 3-11
get_varchar2(), 3-11
get_version(), 3-11
SODA_DOCUMENT_T object type and
constructors, 3-11
SODA_OPERATION_T methods, 3-20
acquire_lock(), 3-29
as_of_scn(), 3-22
as_of_timestamp(), 3-22 W
count(), 3-22

terminal SODA methods, definition, 3-20
transaction handling, 3-42
truncating a collection, 3-35

V

view, created from collection data guide, 3-41

write and read operations, 3-20

ORACLE Index-3

	Contents
	List of Examples
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	1 SODA for PL/SQL Prerequisites
	2 SODA for PL/SQL Overview
	3 Using SODA for PL/SQL
	3.1 Getting Started with SODA for PL/SQL
	3.2 Creating a Document Collection with SODA for PL/SQL
	3.3 Opening an Existing Document Collection with SODA for PL/SQL
	3.4 Checking Whether a Given Collection Exists with SODA for PL/SQL
	3.5 Discovering Existing Collections with SODA for PL/SQL
	3.6 Dropping a Document Collection with SODA for PL/SQL
	3.7 Creating Documents with SODA for PL/SQL
	3.8 Inserting Documents into Collections with SODA for PL/SQL
	3.9 Saving Documents Into a Collection with SODA for PL/SQL
	3.10 SODA for PLSQL Read and Write Operations
	3.11 Finding Documents in Collections with SODA for PL/SQL
	3.12 Replacing Documents in a Collection with SODA for PL/SQL
	3.13 Removing Documents from a Collection with SODA for PL/SQL
	3.14 Truncating a Collection (Removing All Documents) with SODA for PL/SQL
	3.15 Indexing the Documents in a Collection with SODA for PL/SQL
	3.16 Getting a Data Guide for a Collection with SODA for PL/SQL
	3.17 Creating a View from a Data Guide with SODA for PL/SQL
	3.18 Handling Transactions with SODA for PL/SQL

	4 SODA Collection Configuration Using Custom Metadata
	4.1 Getting the Metadata of an Existing Collection
	4.2 Creating a Collection That Has Custom Metadata

	Index

