Oracle® REST Data Services
SODA for REST Developer's Guide

ORACLE"

Oracle REST Data Services SODA for REST Developer's Guide, Release 1
E85825-06

Copyright © 2018, 2022, Oracle and/or its affiliates.

Primary Author: Drew Adams

Contributing Authors: Sheila Moore

Contributors: Douglas McMahon, Maxim Orgiyan, Josh Spiegel

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and madifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience iX
Documentation Accessibility iX
Diversity and Inclusion iX
Related Documents iX
Conventions X

1 SODA for REST Overview

1.1 Overview of the Representational State Transfer (REST) Architectural Style 1-2

2 Installing SODA for REST

3 Using SODA for REST

3.1 Creating a Document Collection with SODA for REST 3-2
3.2 Discovering Existing Collections with SODA for REST 3-4
3.3 Dropping a Document Collection with SODA for REST 3-4
3.4 Inserting a Single Document into a Collection with SODA for REST 3-5
3.5 Inserting Multiple Documents into a Collection with SODA for REST 3-6
3.6 Finding Documents in Collections with SODA for REST 3-8
3.7 Replacing Documents in a Collection with SODA for REST 3-9
3.8 Removing a Single Document from a Collection with SODA for REST 3-10
3.9 Removing Multiple Documents from a Collection with SODA for REST 3-11
3.10 Listing the Documents in a Collection with SODA for REST 3-12
3.11 Indexing the Documents in a Collection with SODA for REST 3-14
3.12 Querying Using a Filter Specification with SODA for REST 3-15

3.12.1 QBE.l.json 3-16

3.12.2 QBE.2.json 3-17

3.12.3 QBE.3.json 3-17

3.12.4 QBE.4.json 3-18
3.13 Patching a Single JSON Document with SODA for REST 3-18

ORACLE iii

3.14 Patching Multiple JSON Documents in a Collection with SODA for REST 3-20

4 SODA for REST HTTP Operations

4.1 SODA for REST HTTP Operation URIs 4-2
4.2 SODA for REST HTTP Operation Response Bodies 4-3
4.3 GET catalog 4-5
4.3.1 URL Pattern for GET catalog 4-6
4.3.2 Response Codes for GET catalog 4-6
4.4 GET user collections 4-7
4.4.1 URL Pattern for GET user collections 4-7
4.4.2 Response Codes for GET user collections 4-7
4.5 GET JSON schema for collection 4-8
45.1 URL Pattern for GET JSON schema for collection 4-8
4.5.2 Response Codes for GET JSON schema for collection 4-9
4.6 GET actions 4-11
4.6.1 URL Pattern for GET actions 4-11
4.7 GET collection 4-11
4.7.1 URL Pattern for GET collection 4-12
4.7.2 Response Codes for GET collection 4-12
4.7.3 Links Array for GET collection 4-14
4.8 GET object 4-14
4.8.1 URL Pattern for GET object 4-15
4.8.2 Request Headers for GET object 4-15
4.8.3 Response Codes for GET object 4-15
4.9 DELETE collection 4-16
4.9.1 URL Pattern for DELETE collection 4-16
4.9.2 Response Codes for DELETE collection 4-16
4.10 DELETE object 4-17
4.10.1 URL Pattern for DELETE object 4-17
4.10.2 Response Codes for DELETE object 4-17
4.11 PATCH JSON document 4-18
4.11.1 URL Pattern for PATCH JSON document 4-18
4.11.2 Request Headers for PATCH JSON document 4-19
4.11.3 Request Body for PATCH JSON document 4-19
4.11.4 Response Codes for PATCH JSON Document 4-19
4.12 POST object 4-20
4.12.1 URL Pattern for POST object 4-20
4.12.2 Request Body for POST object 4-20
4.12.3 Response Codes for POST object 4-20
4.13 POST query 4-21

ORACLE iv

6 Security

4.13.1 URL Pattern for POST query 4-22
4.13.2 Request Body for POST query 4-22
4.13.3 Response Codes for POST query 4-23
4.14 POST bulk insert 4-23
4.14.1 URL Pattern for POST bulk insert 4-23
4.14.2 Request Body for POST bulk insert 4-24
4.14.3 Response Codes for POST bulk insert 4-24
4.15 POST bulk delete 4-25
4.15.1 URL Pattern for POST bulk delete 4-25
4.15.2 Request Body for POST bulk delete (Optional) 4-26
4.15.3 Response Codes for POST bulk delete 4-26
4.16 POST bulk update (patch) 4-27
4.16.1 URL Pattern for POST bulk update (patch) 4-27
4.16.2 Request Body for POST bulk update (patch) 4-28
4.16.3 Response Codes for POST bulk update (patch) 4-28
4.17 POST index 4-28
4.17.1 URL Pattern for POST index 4-29
4.17.2 Request Body for POST index 4-29
4.17.3 Response Codes for POST index 4-30
4.18 POST unindex 4-30
4.18.1 URL Pattern for POST unindex 4-30
4.18.2 Request Body for POST unindex 4-31
4.18.3 Response Codes for POST unindex 4-31
4.19 PUT collection 4-31
4.19.1 URL Pattern for PUT collection 4-32
4.19.2 Request Body for PUT collection (Optional) 4-32
4.19.3 Response Codes for PUT collection 4-32
4.20 PUT object 4-32
4.20.1 URL Pattern for PUT object 4-33
4.20.2 Request Body for PUT object 4-33
4.20.3 Response Codes for PUT object 4-33
5 SODA Collection Configuration Using Custom Metadata
5.1 Getting the Metadata of an Existing Collection 5-1
5.2 Creating a Collection That Has Custom Metadata 5-2
6.1 Authentication Mechanisms 6-2

ORACLE

6.2 Security Considerations for Development and Testing

A SODA Entries In ORDS Configuration File

Index

ORACLE"

Vi

List of Examples

3-1 Bulk-Inserting Documents into a Collection Using a JSON Array of Objects
3-2 Checking an Inserted Document

3-3 Bulk-Removing Matching Documents from a Collection

3-4 Bulk-Removing All Documents from a Collection

3-5 Creating a B-Tree Index for a JSON Field with SODA for REST

3-6 B-Tree Index Specification for Field Requestor (file indexSpecl.json)

3-7 JSON Patch Specification (File poPatchSpec.json)

3-8 JSON Document Before Patching

3-9 JSON Document After Patching

3-10 QBE for Patching Multiple JSON Documents Using QBE Operator $patch
3-11 Patching Multiple JSON Documents Using HTTP POST with patch Action
4-1 Response Body

5-1 Getting the Metadata of a Collection

5-2 Creating a Collection That Has Custom Metadata

ORACLE

3-6

3-7
3-11
3-11
3-15
3-15
3-19
3-19
3-20
3-21
3-22

5-2
5-2

Vii

List of Tables

4-1 Fields That Can Appear in Response Bodies 4-4
4-2 Additional Response Body Fields for Operations that Return Objects 4-4
4-3 Relationship of GET collection Parameters to Mode and Links Array 4-14

ORACLE viii

Preface

Audience

This document explains how to use the Oracle SODA for REST API.

* Audience

e Documentation Accessibility
e Diversity and Inclusion

* Related Documents

e Conventions

This document is intended for SODA for REST users.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

Related Documents

ORACLE

For more information, see these Oracle resources:

» https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/ for complete
information about SODA and its implementations

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/

Preface

* Oracle Database Introduction to Simple Oracle Document Access (SODA) for
general information about SODA

* Oracle as a Document Store for general information about using JSON data in
Oracle Database, including with SODA

* Oracle Database JSON Developer’s Guide for information about using SQL and
PL/SQL with JSON data

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE X

http://www.oracle.com/technetwork/database/application-development/oracle-document-store/index.html

SODA for REST Overview

ORACLE

SODA for REST uses the representational state transfer (REST) architectural style to
implement Simple Oracle Document Access (SODA). You can use this API to perform
create, read, update, and delete (CRUD) operations on documents of any kind, and you can
use it to query JSON documents.

Your application can use the API operations to create and manipulate JSON objects that it
uses to persist application objects and state. To generate the JSON documents, your
application can use JSON serialization techniques. When your application retrieves a
document object, a JSON parser converts it to an application object.

Note:

SODA for REST is distributed as part of Oracle REST Data Services (ORDS).
Oracle recommends that you always use the latest version of ORDS.

Oracle also recommends that you use JSON data type for JSON data. To do that
with SODA for REST you need ORDS version 20.4.1 or later. Database initialization
parameter compatible also needs to be at least 20 (the database needs to be
release 21c or later), in which case JSoN type is used by default for SODA
collections.

For more information about the minimum required version of ORDS needed for
SODA for REST, see SODA Drivers in Oracle Database Introduction to Simple
Oracle Document Access (SODA).

SODA is a set of NoSQL-style APlIs that let you create and store collections of documents in
Oracle Database, retrieve them, and query them, without needing to know Structured Query
Language (SQL) or how the data in the documents is stored in the database.

In the context of SODA for REST, a document in a collection is sometimes called an object.
Typically it is a JSON document, but it can instead be a Multipurpose Internet Mail Extensions
(MIME) type — image, audio, or video, for example. An application often uses a given
collection to hold instances of a particular type of document. A SODA collection is thus
roughly analogous to a table in a relational database: one database column stores document
keys, and another column stores document content.

Familiarity with the following can help you take advantage of the information presented here:

e Oracle Database relational database management system (RDBMS)
e JavaScript Object Notation (JSON)
e Hypertext Transfer Protocol (HTTP)

The remaining topics of this document describe various features of SODA for REST.

1-1

Chapter 1
Overview of the Representational State Transfer (REST) Architectural Style

< Note:

This book provides information about using SODA with REST applications.
To use SODA for REST you also need to understand SODA generally. For
such general information, please consult Oracle Database Introduction to
Simple Oracle Document Access (SODA).

* Overview of the Representational State Transfer (REST) Architectural Style
The REST architectural style was used to define HTTP 1.1 and Uniform Resource
Identifiers (URIS). A REST-based API strongly resembles the basic functionality
provided by an HTTP server, and most REST-based systems are implemented
using an HTTP client and an HTTP server.

Related Topics

* SODA for REST HTTP Operations
The SODA for REST HTTP operations are described.

¢ See Also:

e https://docs.oracle.com/en/database/oracle/simple-oracle-document-
access/ for complete information about SODA and its implementations

e Oracle as a Document Store for general information about using JSON
data in Oracle Database, including with SODA

e Oracle Database SODA for Java Developer's Guide, which explains how
to use the Java client APl on which SODA for REST is built

e Oracle Database JSON Developer’s Guide for information about using
SQL and PL/SQL with JSON data stored in Oracle Database

1.1 Overview of the Representational State Transfer (REST)
Architectural Style

ORACLE

The REST architectural style was used to define HTTP 1.1 and Uniform Resource
Identifiers (URIs). A REST-based API strongly resembles the basic functionality
provided by an HTTP server, and most REST-based systems are implemented using
an HTTP client and an HTTP server.

A typical REST implementation maps create, read, update, and delete (CRUD)
operations to HTTP verbs POST, GET, PUT, and DELETE, respectively.

A key characteristic of a REST-based system is that it is stateless: the server does not
track or manage client object state. Each operation performed against a REST-based
server is atomic; it is considered a transaction in its own right. In a typical REST-based
system, many facilities that are taken for granted in an RDBMS environment, such as
locking and concurrency control, are left to the application to manage.

1-2

https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/
https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/
http://www.oracle.com/technetwork/database/application-development/oracle-document-store/index.html

ORACLE

Chapter 1
Overview of the Representational State Transfer (REST) Architectural Style

A main advantage of a REST-based system is that its services can be used from almost any
modern programming platform, including traditional programming languages (such as C, C#,

C++, JAVA, and PL/SQL) and modern scripting languages (such as JavaScript, Perl, Python,
and Ruby).

To ensure secure operation, REST deployments should encrypt the network traffic to and
from the REST server using Transport Layer Security (TLS). For deployments using the
HTTP protocol, this means configuring the server for HTTPS operation.

See Also:
e Principled Design of the Modern Web Architecture, by Roy T. Fielding and
Richard N. Taylor

* Installing SODA for REST for information about configuring Oracle REST Data
Services (ORDS)

1-3

Installing SODA for REST

ORACLE

Complete instructions are provided for installing SODA for REST.

" Note:

SODA for REST is distributed as part of Oracle REST Data Services (ORDS).
Oracle recommends that you always use the latest version of ORDS.

Oracle also recommends that you use JSON data type for JSON data. To do that
with SODA for REST you need ORDS version 20.4.1 or later. Database initialization
parameter compatible also needs to be at least 20 (the database needs to be
release 21c or later), in which case JSoN type is used by default for SODA
collections.

For more information about the minimum required version of ORDS needed for
SODA for REST, see SODA Drivers in Oracle Database Introduction to Simple
Oracle Document Access (SODA).

1. Ensure that you have one of the following Oracle Database releases installed:

Oracle Database 12c Release 2 (12.2) or later

Oracle Database 12c Release 1 (12.1.0.2) with Merge Label Request (MLR) bundle
patch 20885778 (patch 20885778 obsoletes patch 20080249)

Obtain this patch from My Oracle Support (My Oracle Support). Select tab Patches &
Updates. Search for the patch number, 20885778, or access it directly at this URL:
https://support.oracle.com/rs?type=patch&id=20885778.

2. Start the database.

3. Download Oracle REST Data Services (ORDS), and extract the zip file.
4. Configure ORDS.

If the database uses standard port 1521:
java -jar ords.war install
If the database uses a nonstandard port (any port except 1521):

java -jar ords.war install advanced

2-1

https://support.oracle.com/rs?type=patch&id=20885778

ORACLE

Chapter 2

< Note:

When prompted:

e Do not skip the step of verifying/installing the Oracle REST Data
Services schema.

e Skip the steps that configure the PL/SQL Gateway.

e Skip the steps that configure Application Express RESTful Services
database users.

* Decline to start the standalone server.

e For greater security, choose HTTPS, not HTTP, at least for
production applications.

Connect to the database schema (user account) that you want ORDS to access.

Enable ORDS in that database schema by executing this SQL command:

EXEC ords.enable schema;
COMMIT;

Grant role SODA_APP to the database schema (user account) database-schema that
you enabled in step 6:

GRANT SODA APP TO database-schema;

Only if you are in a development environment:

a.

Remove the default security constraints:

BEGIN
ords.delete privilege mapping(
'oracle.soda.privilege.developer',
"/soda/*");
COMMIT;
END;

" Note:

This enables anonymous access to the service, which is not
recommended for production systems.

Start ORDS in standalone mode:

java -jar ords.war standalone

2-2

ORACLE

Chapter 2

< Note:

Running ORDS in standalone mode is not recommended for production
systems.

In a web browser, open:

http://localhost:8080/ords/database-schema/soda/latest/

Where database-schema is the lowercase name of the database schema in which you
enabled ORDS in step 6. If the installation succeeded, you see:

{"items":[], "more":false}

Related Topics

Security
ORDS, including SODA for REST, uses role-based access control, to secure services.
The roles and privileges you need for SODA for REST are described here.

SODA Entries In ORDS Configuration File
You use <entry> elements in the Oracle REST Data Services (ORDS) configuration file,

default.xml, to configure SODA for REST behavior.

¢ See Also:

e Installing and Configuring Oracle REST Data Services in Oracle REST Data
Services Installation and Configuration Guide for complete information about
downloading and extracting the ORDS zip archive, and about installing and
configuring ORDS

e Configuring Oracle REST Data Services (Advanced) in Oracle REST Data
Services Installation and Configuration Guide for in-depth information about
configuring ORDS

* Deploying and Monitoring REST Data Services in Oracle REST Data Services
Installation and Configuration Guide for information about deploying ORDS and
starting ORDS in standalone mode

2-3

Using SODA for REST

ORACLE

A step-by-step walkthrough is provided for the basic SODA for REST operations, using
examples that you can run. The examples use command-line tool cURL to send REST
requests to the server.

The examples assume that you started Oracle REST Data Services (ORDS) as instructed in
Installing SODA for REST, enabling ORDS in database-schema.

The examples here generally use http, not https. Which you use depends on how ORDS is
configured. For greater security, configure it to use HTTPS, and then use https, not http in
your code, at least for production applications.

Some examples here use the sample JSON documents included in the zip file that you
downloaded in installation step 3. They are in directory ORDS_HOME/examples/soda/getting-
started.

e Creating a Document Collection with SODA for REST
How to use SODA for REST to create a new document collection is explained.

e Discovering Existing Collections with SODA for REST
An example is given of listing the existing collections.

e Dropping a Document Collection with SODA for REST
An example is given of dropping a collection.

e Inserting a Single Document into a Collection with SODA for REST
An example is given of inserting a document into a collection.

e Inserting Multiple Documents into a Collection with SODA for REST
You can bulk-insert a set of documents into a collection using a JSON array of objects.
Each object corresponds to the content of one of the inserted documents.

e Finding Documents in Collections with SODA for REST
An example is given of retrieving a document from a collection by providing its key.

e Replacing Documents in a Collection with SODA for REST
An example is given of replacing a document in a collection with a newer version. For
this, you use HTTP operation PUT.

e Removing a Single Document from a Collection with SODA for REST
You can use HTTP operation DELETE to remove a single document from a collection.

* Removing Multiple Documents from a Collection with SODA for REST
You can remove multiple JSON documents from a collection with HTTP operation POST,
using custom-action delete or truncate in the request URL. Use truncate to remove all
JSON documents from the collection. Use delete together with a QBE to delete only the
documents that match that filter.

» Listing the Documents in a Collection with SODA for REST
An example is given of listing the documents in a collection, using a GET operation.

3-1

Chapter 3
Creating a Document Collection with SODA for REST

* Indexing the Documents in a Collection with SODA for REST
You can index the documents in a collection with HTTP operation POST, using
custom-action index in the request URL. The request body contains an index
specification. It can specify B-tree, spatial, full-text, and ad hoc indexing, and it can
specify support for a JSON data guide.

* Querying Using a Filter Specification with SODA for REST
Examples are given of using a filter specification, or query-by-example (QBE), to
define query criteria for selecting documents from a collection.

e Patching a Single JSON Document with SODA for REST
You can selectively update (patch) parts of a single JSON document using HTTP
operation PATCH. You specify the update using a JSON Patch specification.

e Patching Multiple JSON Documents in a Collection with SODA for REST
You can update (patch) multiple JSON documents in a collection by querying the
collection to match those documents and specifying the changes to be made. You
specify the update with a JSON Patch specification, using QBE operator $patch.
You use HTTP operation POST with custom-action update in the request URL.

" See Also:

e http://curl.haxx.se/ for information about command-line tool cURL

e About cURL and Testing RESTful Services in Oracle REST Data
Services Developer's Guide for information about cURL and testing
RESTful services with ORDS

3.1 Creating a Document Collection with SODA for REST

ORACLE

How to use SODA for REST to create a new document collection is explained.

To create a new collection, run this command, where MyCollection is the name of the
collection. (Replace localhost with your host name and 8080 with the appropriate port
number.)

curl -i -X PUT http://localhost:8080/ords/database-schema/soda/latest/
MyCollection

The preceding command sends a PUT request with URL http://localhost:8080/
ords/database-schema/soda/latest/MyCollection, to create a collection named
MyCollection. The -i command-line option causes cURL to include the HTTP
response headers in the output. If the operation succeeds then the output looks similar
to this:

HTTP/1.1 201 Created

Cache-Control: private,must-revalidate,max-age=0

Location: http://localhost:8080/ords/database-schema/soda/latest/
MyCollection/

Content-Length: 0

3-2

Chapter 3
Creating a Document Collection with SODA for REST

Response code 201 indicates that the operation succeeded. A PUT operation that results in
the creation of a new collection—a PUT collection operation—returns no response body.

A successful PUT collection operation creates a database table to store the new collection.
One way to see the details of this table is using SQL*Plus command describe:

SQL> describe "MyCollection"

Name Null? Type
ID NOT NULL VARCHARZ (255)
CREATED ON NOT NULL TIMESTAMP (6)
LAST MODIFIED NOT NULL TIMESTAMP (6)
VERSION NOT NULL VARCHARZ (255)
JSON_DOCUMENT BLOB

The preceding table reflects the default collection configuration. The table name was
defaulted from the collection name. In this case, the name is mixed-case, so double quotation
marks are needed around it. To create a custom collection configuration, provide a collection
specification as the body of the PUT operation.

If a collection with the same name already exists then it is simply opened. If custom metadata
is provided and it does not match the metadata of the existing collection then the collection is
not opened and an error is raised. (To match, all metadata fields must have the same values.)

Caution:

To drop a collection, proceed as described in Dropping a Document Collection with
SODA for REST. Do not use SQL to drop the database table that underlies a
collection. Collections have persisted metadata, in addition to the documents that
are stored in the collection table.

Related Topics

e PUT collection
PUT collection creates a collection if it does not exist.

» Discovering Existing Collections with SODA for REST
An example is given of listing the existing collections.

e Creating a Collection That Has Custom Metadata
You use a PUT collection operation to create a document collection that has custom
metadata. You provide the metadata in the request body.

¢ See Also:

Oracle Database Introduction to Simple Oracle Document Access (SODA) for
information about the default naming of a collection table

ORACLE 3-3

Chapter 3
Discovering Existing Collections with SODA for REST

3.2 Discovering Existing Collections with SODA for REST

An example is given of listing the existing collections.

To obtain a list of the collections available in database-schema, run this command:

curl -X GET http://localhost:8080/ords/database-schema/soda/latest

That sends a GET request with the URL http://localhost:8080/ords/database-
schema/soda/latest and returns this response body:

{ "items"
[{ "name":"MyCollection",
"properties": { "schemaName":"SCHEMA",
"tableName":"MyCollection",
}
"links" :
[{ "rel™ : "canonical",

"href"
"http://localhost:8080/ords/database-schema/soda/latest/
MyCollection” } 1 } 1,
"more" : false }

The response body includes all available collections in database-schema, which in this
case is only collection MyCollection.

A successful GET collection operation returns response code 200, and the response
body is a JSON object that contains an array of available collections and includes the
collection specification for each collection.

Related Topics

* GET user collections
GET user collections gets all or a subset of the collection names for a given
database schema (user account).

* Dropping a Document Collection with SODA for REST
An example is given of dropping a collection.

3.3 Dropping a Document Collection with SODA for REST

An example is given of dropping a collection.

To delete MyCollection, run this command:

curl -i -X DELETE http://localhost:8080/ords/database-schema/soda/latest/MyCollection

ORACLE 3-4

Chapter 3
Inserting a Single Document into a Collection with SODA for REST

The preceding command sends a DELETE request with the URL http://localhost:8080/
ords/database-schema/soda/latest/MyCollection and returns:

HTTP/1.1 200 OK
Cache-Control: private,must-revalidate,max-age=0
Content-Length: 0

Response code 200 indicates that the operation succeeded. A DELETE operation that results
in the deletion of a collection—a DELETE collection operation—returns no response body.

To verify that the collection was deleted, get the list of available collections in database-
schema:

curl -X GET http://localhost:8080/ords/database-schema/soda/latest

If MyCollection was deleted, the preceding command returns this:

{ "items" : [],
"more" : false }

Create MyCollection again, so that you can use it in the next step:

curl -X PUT http://localhost:8080/ords/database-schema/soda/latest/
MyCollection

Related Topics

e DELETE collection
DELETE collection deletes a collection.

* Inserting a Single Document into a Collection with SODA for REST
An example is given of inserting a document into a collection.

3.4 Inserting a Single Document into a Collection with SODA for

REST

ORACLE

An example is given of inserting a document into a collection.

The example uses file po.json, which was included in the download. The file contains a
JSON document that contains a purchase order. To load the JSON document into
MyCollection, run this command:

curl -X POST --data-binary @po.json -H "Content-Type: application/json"
http://localhost:8080/ords/database-schema/soda/latest/MyCollection

The preceding command sends a POST request with the URL http://localhost:8080/0rds/
database-schema/soda/latest/MyCollection. It outputs something like this:

{ "items" : [

{ "id" : "2FFD968C531C49BI9ATEAC4398DFCO2EE",
"etag"

3-5

Chapter 3
Inserting Multiple Documents into a Collection with SODA for REST

"C1354F27A5180FF7B828F01CBBC84022DCF5F7209DBFOE6DFFCC626E3B0400C3",
"lastModified":"2014-09-22T21:25:19.5643947Z",

"created":"2014-09-22T721:25:19.564394z" } 1,
"hasMore" : false,
"count" : 1 }

A successful POST object operation returns response code 200. The response body is
a JSON document that contains the identifier that the server assigned to the document
when you inserted it into the collection, as well as the current ETag and last-modified
time stamp for the inserted document.

Note:

If you intend to retrieve the document then copy the document identifier (the
value of field "id"), to use for retrieval.

Related Topics

 POST object
POST object inserts an uploaded object into a specified collection, assigning and
returning its key. The collection must use server-assigned keys.

e Finding Documents in Collections with SODA for REST
An example is given of retrieving a document from a collection by providing its key.

e Inserting Multiple Documents into a Collection with SODA for REST
You can bulk-insert a set of documents into a collection using a JSON array of
objects. Each object corresponds to the content of one of the inserted documents.

3.5 Inserting Multiple Documents into a Collection with
SODA for REST

ORACLE

You can bulk-insert a set of documents into a collection using a JSON array of objects.
Each object corresponds to the content of one of the inserted documents.

Example 3-1 inserts a JSON array of purchase-order objects into a collection as a set
of documents, each object constituting the content of one document. Example 3-2
checks an inserted document.

A successful POST bulk-insert operation returns response code 200. The response
body is a JSON document that contains the identifier, ETag, and last-modified time
stamp for each inserted document.

Example 3-1 Bulk-Inserting Documents into a Collection Using a JSON Array
of Objects

This example uses file POList . json, which is included in the download. The file
contains a JSON array of purchase-order objects. This command loads the purchase
orders into collection MyCollection as documents.

curl -X POST --data-binary @POList.json -H "Content-Type: application/
json"

3-6

Chapter 3
Inserting Multiple Documents into a Collection with SODA for REST

http://localhost:8080/ords/database-schema/soda/latest/custom-actions/insert/
MyCollection/

Action insert causes the array to be inserted as a set of documents, rather than as a single
document.

(You can alternatively use the equivalent URL http://localhost:8080/ords/database-
schema/soda/latest/MyCollection?action=insert.)

The command sends a POST request with the URL http://localhost:8080/ords/database-
schema/soda/latest/MyCollection. It outputs something like this:

"items" : [
{
"id" : "6DEAF8F011FD43249E5F60A93B850ABO",
"etag"
"49205D7TE916EAEDS14465FCFF029B2795885A1914966E0AE82DA4CCDBBE2EAFSE",
"lastModified" : "2014-09-22T22:39:15.5464352",
"created" : "2014-09-22T22:39:15.5464352"
b
{
"id" : "C9FF7685D48E4E4B8641D8401EDOFB68",

"etag"
"F3EB514BEDE6A6CC337ADAOFSBEGDEFCS5DA51E68CE645729224BB6707FBELF4AF",

"lastModified" : "2014-09-22T22:39:15.5464352",
"created":"2014-09-22T22:39:15.546435Z"

b

1y

"hasMore":false,

"count":70

Example 3-2 Checking an Inserted Document

You can check an inserted document by copying an id field value returned by your own POST
bulk-insert operation (not a value from Example 3-1) and querying the collection for a
document that has that id value. Using SQL*Plus or SQL Developer, substitute your copied
value for placeholder identifier here:

SELECT json value(json document FORMAT JSON, '$.Reference')
FROM "MyCollection" WHERE id = 'identifier';

JSON_VALUE (JSON_DOCUMENTFORMATJSON, '$.REFERENCE')

MSULLIVA-20141102

ORACLE 3.7

Chapter 3
Finding Documents in Collections with SODA for REST

< Note:

In the SQL SELECT statement here, you must specify the table name
MyCollection as a quoted identifier, because it is mixed-case (the table
name is the same as the collection name).

Because MyCollection has the default configuration, which stores the JSON
document in a BLOB column, you must include FORMAT JSON when using SQL/
JSON function json_value. You cannot use the simplified, dot-notation
JSON syntax.

Related Topics

e POST bulk insert
POST bulk insert inserts an array of objects into a specified collection, assigning

and returning their keys.

» Listing the Documents in a Collection with SODA for REST
An example is given of listing the documents in a collection, using a GET operation.

e Inserting a Single Document into a Collection with SODA for REST
An example is given of inserting a document into a collection.

¢ See Also:

Oracle Database Introduction to Simple Oracle Document Access (SODA)
for information about the default naming of a collection table

3.6 Finding Documents in Collections with SODA for REST

An example is given of retrieving a document from a collection by providing its key.

To retrieve the document that was inserted in Inserting a Single Document into a
Collection with SODA for REST, run this command, where id is the document key that

you copied when inserting the document:

curl -X GET http://localhost:8080/ords/database-schema/soda/latest/
MyCollection/id

A successful GET document operation returns response code 200. The response body
contains the retrieved document.

If id does not exist in MyCollection then the response code is 404, as you can see by
changing id to such an identifier:

curl -X GET http://localhost:8080/ords/database-schema/soda/latest/MyCollection/
2FFD968C531C49B9ATEACA398DFCO2EF

ORACLE 3-8

Chapter 3
Replacing Documents in a Collection with SODA for REST

"type" : "http://www.w3.org/Protocols/rfc2616/rfc2616-secl0.html#secl0.4.1",
"status" : 404,
"title" : "Key 2FFD968C531C49BOATEAC4398DFCO2EF not found in collection MyCollection.",

"o:errorCode"

"REST-02001"

Related Topics

* GET object
GET object gets a specified object from a specified collection.

* Removing a Single Document from a Collection with SODA for REST
You can use HTTP operation DELETE to remove a single document from a collection.

* Inserting a Single Document into a Collection with SODA for REST
An example is given of inserting a document into a collection.

3.7 Replacing Documents in a Collection with SODA for REST

An example is given of replacing a document in a collection with a newer version. For this,
you use HTTP operation PUT.

The behavior of operation PUT for a nonexistent document depends on the key-assignment
method used by the collection.

» If the collection uses server-assigned keys (as does collection MyCollection) then an
error is raised if you try to update a nonexistent document (that is, you specify a key that
does not belong to any document in the collection).

« If the collection uses client-assigned keys, then trying to update a nonexistent document
inserts into the collection a new document with the specified key.

Retrieve a document from MyCollection by running this command, where id is the document
identifier that you copied in Listing the Documents in a Collection with SODA for REST:

curl -X GET http://localhost:8080/ords/database-schema/soda/latest/
MyCollection/id

The preceding command outputs the retrieved document.

To replace this document with the content of file poUpdated. json, which was included in the
download, execute this command:

curl -i -X PUT --data-binary @poUpdated.json -H "Content-Type: application/json"
http://localhost:8080/ords/database-schema/soda/latest/MyCollection/id

ORACLE

The preceding command outputs something like this:

HTTP/1.1 200 OK

Cache-Control: no-cache,must-revalidate,no-store,max-age=0

ETag: AOBO7E0A6D000358C546DC5D8D5059D9CB548A1A5F6F2CAD66E2180B579CCB6D
Last-Modified: Mon, 22 Sep 2014 16:42:35 PDT

Location: http://localhost:8080/ords/database-schema/soda/latest/
MyCollection/023C4A6581D84B71A5C0D5D364CE8484/

Content-Length: 0

3-9

Chapter 3
Removing a Single Document from a Collection with SODA for REST

The response code 200 indicates that the operation succeeded. A PUT operation that
results in the successful update of a document in a collection — a PUT object
operation — returns no response body.

To verify that the document has been updated, rerun this command:

curl -X GET http://localhost:8080/ords/database-schema/soda/latest/
MyCollection/id

The preceding command returns:

"PONumber": 1,
"Content" : "This document has been updated...."

Related Topics

 PUT object
PUT object replaces a specified object in a specified collection with an uploaded
object (typically a new version). If the collection has client-assigned keys and the
uploaded object is not already in the collection, then pUT inserts the uploaded
object into the collection.

e Querying Using a Filter Specification with SODA for REST
Examples are given of using a filter specification, or query-by-example (QBE), to
define query criteria for selecting documents from a collection.

e Listing the Documents in a Collection with SODA for REST
An example is given of listing the documents in a collection, using a GET operation.

3.8 Removing a Single Document from a Collection with
SODA for REST

You can use HTTP operation DELETE to remove a single document from a collection.

To remove, from MyCollection, the document that you retrieved in Finding Documents
in Collections with SODA for REST, run this command (where idis the document
identifier):

curl -i -X DELETE http://localhost:8080/ords/database-schema/soda/latest/MyCollection/

id

ORACLE

The preceding command sends a DELETE request with URL http://localhost:8080/
ords/database-schema/soda/latest/MyCollection/id, and it returns this:

HTTP/1.1 200 OK
Cache-Control: private,must-revalidate,max-age=0
Content-Length: 0

3-10

Chapter 3
Removing Multiple Documents from a Collection with SODA for REST

Response code 200 indicates that the operation succeeded. A DELETE operation that results
in the removal of an object from a collection—a DELETE object operation—returns no
response body.

Related Topics

e DELETE object
DELETE object deletes a specified object from a specified collection.

* Removing Multiple Documents from a Collection with SODA for REST
You can remove multiple JSON documents from a collection with HTTP operation POST,
using custom-action delete or truncate in the request URL. Use truncate to remove all
JSON documents from the collection. Use delete together with a QBE to delete only the
documents that match that filter.

3.9 Removing Multiple Documents from a Collection with SODA

for REST

ORACLE

You can remove multiple JSON documents from a collection with HTTP operation POST, using
custom-action delete oOr truncate in the request URL. Use truncate to remove all JSON
documents from the collection. Use delete together with a QBE to delete only the documents
that match that filter.

Example 3-3 removes the documents where User field has value TGATES from collection
MyCollection.Example 3-4 removes all documents from collection MyCollection.

Example 3-3 Bulk-Removing Matching Documents from a Collection

This example uses the QBE that is in file QBE.1.json to match the nine documents that have
"TGATES" as the value of field User. It removes (only) those documents from collection
MyCollection.

curl -X POST --data-binary @QBE.l.json -H "Content-Type: application/json"
http://localhost:8080/ords/database-schema/soda/latest/custom-actions/delete/
MyCollection/

(You can alternatively use the equivalent URL http://localhost:8080/ords/database-
schema/soda/latest/MyCollection?action=delete.)

WARNING:

If you specify delete as the action, and you use the empty object, {}, as the filter
specification, then the operation deletes all objects from the collection.

Example 3-4 Bulk-Removing All Documents from a Collection

This example removes all documents from collection MyCollection.

curl -X POST -H "Content-Type: application/json"
http://localhost:8080/ords/database-schema/soda/latest/custom-actions/
truncate/MyCollection/

3-11

Chapter 3
Listing the Documents in a Collection with SODA for REST

(You can alternatively use the equivalent URL http://localhost:8080/ords/
database-schema/soda/latest/MyCollection?action=truncate.)

3.10 Listing the Documents in a Collection with SODA for
REST

An example is given of listing the documents in a collection, using a GET operation.
You can use parameters to control the result. For example, you can:

e Limit the number of documents returned

* Return only document identifiers (keys), only document contents, or both keys and
contents

* Return a range of documents, based on keys or last-modified time stamps
» Specify the order of the list of returned documents
To list the documents in MyCollection, returning their keys and other metadata but not

their content, run the following command.

curl -X GET http://localhost:8080/ords/database-schema/soda/latest/MyCollection?
fields=id

The preceding command outputs something like this:

{ "items"
[{ "id" : "023C4A6581D84B71A5COD5D364CE8484",
"etag" :
"3484DFB604DDA3FBCOC681C37972E7TDD8C5F4457ACE32BD16960D4388C5A7COE",
"lastModified" : "2014-09-22T22:39:15.546435z2",
"created" : "2014-09-22T722:39:15.546435z2" 1},
{ "ig" : "06DD0319148E40ATB8ARA4BE39ET739184",
"etag" :
"A19A1E9A3A38BIBAE3EES52B93350FBD76309CBFC4072A2BECDO5BCA44D4849DD",
"lastModified" : "2014-09-22T22:39:15.546435z2",
"created" : "2014-09-22T722:39:15.546435z2" 1},
]I
"hasMore" . false,
"count" : 70,
"offset" . 0,
"limit" : 100,

"totalResults" :70 }

A successful GET collection operation returns response code 200, and the response
body is a JSON document that lists the documents in the collection. If the collection is
empty, the response body is an empty items array.

To list at most 10 documents in MyCollection, returning their keys, content, and other
metadata, run this command:

curl -X GET "http://localhost:8080/ords/database-schema/soda/latest/MyCollection?
fields=all&limit=10"

ORACLE 3-12

Chapter 3
Listing the Documents in a Collection with SODA for REST

The preceding command outputs something like this:

{ "items" [... 1,

"hasMore" : true,

"count" . 10,

"offset" : O,

"limit" : 10,

"links"

[{ "rel™ : "next",
"href" :
"http://localhost:8080/ords/database-schema/soda/latest/MyCollection?

offset=10&1imit=10" }] }
" Note:

ORACLE

Including document content makes the response body much larger. Oracle
recommends including the content in the response body only if you will need the
content later. Retrieving the content from the response body is more efficient that
retrieving it from the server.

The metadata in the response body shows that 10 documents were requested

("limit™ : 10)) and 10 documents were returned ("count" : 10)), and that more
documents are available ("hasMore" : true). To fetch the next set of documents, you can
use the URL in the field "1inks"."href".

The maximum number of documents returned from a collection by the server is controlled by
the following:

* URL parameter limit

e Configuration parameters soda.maxLimit and soda.defaultLimit

< Note:

If you intend to update the document then copy the document identifier (value of
field "id"), to use for updating.

Related Topics

e GET collection
GET collection gets all or a subset of objects from a collection, using parameters to specify
the subset. You can page through the set of returned objects.

e Replacing Documents in a Collection with SODA for REST
An example is given of replacing a document in a collection with a newer version. For
this, you use HTTP operation PUT.

e Querying Using a Filter Specification with SODA for REST
Examples are given of using a filter specification, or query-by-example (QBE), to define
query criteria for selecting documents from a collection.

3-13

Chapter 3
Indexing the Documents in a Collection with SODA for REST

* SODA Entries In ORDS Configuration File
You use <entry> elements in the Oracle REST Data Services (ORDS)
configuration file, default.xml, to configure SODA for REST behavior.

¢ See Also:

Understanding Configurable Parameters in Oracle REST Data Services
Installation, Configuration, and Development Guide for information about the
SODA for REST configuration parameters

3.11 Indexing the Documents in a Collection with SODA for
REST

You can index the documents in a collection with HTTP operation POST, using custom-
action index in the request URL. The request body contains an index specification. It
can specify B-tree, spatial, full-text, and ad hoc indexing, and it can specify support for
a JSON data guide.

Note:

To create an index with SODA you need Oracle Database Release 12c
(12.2.0.1) or later. But to create a B-tree index that for a DATE or TIMESTAMP
value you need Oracle Database Release 18c (18.1) or later.

A JSON search index is used for full-text search and ad hoc structural queries, and for
persistent recording and automatic updating of JSON data-guide information. An
Oracle Spatial and Graph index is used for GeoJSON (spatial) data.

¢ See Also:

e Oracle Database Introduction to Simple Oracle Document Access
(SODA) for an overview of using SODA indexing

e Oracle Database Introduction to Simple Oracle Document Access
(SODA) for information about SODA index specifications

e Oracle Database JSON Developer’s Guide for information about JSON
search indexes

e Oracle Database JSON Developer’s Guide for information about
persistent data-guide information as part of a JSON search index

e Oracle Database JSON Developer’s Guide for information about spatial
indexing of GeoJSON data.

ORACLE 3-14

Chapter 3
Querying Using a Filter Specification with SODA for REST

Example 3-5 Creating a B-Tree Index for a JSON Field with SODA for REST

This example indexes the documents in collection MyCollection according to the index
specification in file indexSpecl.json (see Example 3-6).

curl -i -X POST --data-binary @indexSpecl.json -H "Content-Type: application/
json" http://localhost:8080/ords/database-schema/soda/latest/custom-actions/
index/MyCollection/

This request, using the alternative URI syntax, is equivalent:

curl -i -X POST --data-binary @indexSpecl.json -H "Content-Type: application/
json" http://localhost:8080/ords/database-schema/soda/latest/MyCollection?
action=index

Example 3-6 B-Tree Index Specification for Field Requestor (file indexSpecl.json)
This example shows the B-tree index specification in file indexSpecl.json.

The index is named REQUESTOR IDX, and it indexes field Requestor. The data type is not
specified, so it is VARCHAR2, the default. Because field scalarRequired is specified as true, if
the collection contains a document that lacks the indexed field then an error is raised when
the index creation is attempted.

{ "name" : "REQUESTOR_IDX",
"scalarRequired" : true,
"fields" : [{"path" : "Requestor", "order" : "asc"}] }

3.12 Querying Using a Filter Specification with SODA for REST

ORACLE

Examples are given of using a filter specification, or query-by-example (QBE), to define query
criteria for selecting documents from a collection.

The examples use the QBE. *. json files that are included in the zip file that you downloaded
in installation step 3. They are in directory ORDS_HOME/examples/soda/getting-started.

« QBE.l.json
The query-by-example (QBE) in file 0BE.1.json returns a list of nine documents, each of
which has "TGATES" as the value of field User.

« QBE.2.json
The query-by-example (QBE) in file 0BE.2.json selects documents where the value of
field UPCCode equals "13023015692". UPCCode is a field of object Part, which is a field of
array LineItems. Because no array offset is specified for LineItens, the query searches
all elements of the array.

QBE.3json
The query-by-example (QBE) in file 0BE. 3. json selects documents where the value of
field TtemNumber, in an element of array LineItems, is greater than 4. QBE operator field
"Sgt" is required.

3-15

Chapter 3
Querying Using a Filter Specification with SODA for REST

* QBE.4.json
The query-by-example (QBE) in file 0BE. 4. json selects documents where the
value of field UPCCode equals "13023015692" and the value of field TtemNumber
equals 3. QBE operator field sand is optional.

Related Topics

« POST query
POST query gets all or a subset of objects from a collection, using a filter.

¢ See Also:

e Oracle Database Introduction to Simple Oracle Document Access
(SODA) for an overview of filter specifications and QBE

e Oracle Database Introduction to Simple Oracle Document Access
(SODA) for reference information about filter specifications and QBE

3.12.1 QBE.1.json

The query-by-example (QBE) in file QBE.1.json returns a list of nine documents, each
of which has "TGATES" as the value of field User.

This is the query in file QBE.1.json:!

{ "User" : "TGATES" }

To execute the query, run this command:

curl -X POST --data-binary @QBE.l.json -H "Content-Type: application/
json"
http://localhost:8080/ords/database-schema/soda/latest/custom-actions/
query/MyCollection/

(You can alternatively use the equivalent URL http://localhost:8080/ords/
database-schema/soda/latest/MyCollection?action=query).

A successful POST query operation returns response code 200 and a list of documents
that satisfy the query criteria.

Because the command has no fields parameter, the default value fields=all
applies, and the response body contains both the metadata and the content of each
document.

1 An equivalent composite-filter QBE explicitly uses QBE operator Squery: { $Squery : { "User" :
"TGATES" } }.

ORACLE 3-16

Chapter 3
Querying Using a Filter Specification with SODA for REST

< Note:

Including document content makes the response body much larger. Oracle
recommends including the content in the response body only if you need the
content for a subsequent operation. Retrieving the content from the response body
is more efficient that retrieving it from the server.

To execute the queries in the other QBE. *. json files, run commands similar to the preceding
one.

3.12.2 QBE.2.json

The query-by-example (QBE) in file 0BE. 2. json selects documents where the value of field
UPCCode equals "13023015692". UPCCode is a field of object part, which is a field of array
LineItems. Because no array offset is specified for LineItens, the query searches all
elements of the array.

This is the query in file QBE.2.json. It has an implied use of operator field "Seg".

{ "LineItems.Part.UPCCode" : "13023015692" }

¢ See Also:

Oracle Database Introduction to Simple Oracle Document Access (SODA) for more
information

3.12.3 QBE.3.json

ORACLE

The query-by-example (QBE) in file 0BE. 3. json selects documents where the value of field
ItemNumber, in an element of array LineItems, is greater than 4. QBE operator field "sgt" is
required.

This is the query in file QBE. 3. json:

{ "LineItems.ItemNumber" : { "S$gt" : 4 } }

3-17

Chapter 3
Patching a Single JSON Document with SODA for REST

3.12.4 QBE.4.json

The query-by-example (QBE) in file 0BE. 4. json selects documents where the value of
field uUpCCode equals "13023015692" and the value of field TtemNumber equals 3. QBE
operator field $and is optional.

This is the query in file QBE. 4. json:

{ ll$andll : [
{ "LinelItems.Part.UPCCode" : "13023015692" },
{ "LineItems.ItemNumber" : 311}

¢ See Also:

Oracle Database Introduction to Simple Oracle Document Access (SODA)

3.13 Patching a Single JSON Document with SODA for
REST

You can selectively update (patch) parts of a single JSON document using HTTP
operation PATCH. You specify the update using a JSON Patch specification.

< Note:

To use operation HTTP operation PATCH you need Oracle Database Release
18c or later.

JSON Patch is a format for specifying a sequence of operations to apply to a JSON
document. It is identified by media type application/json-patch+json, and it is
suitable for use with HTTP operation PATCH.

Use the QBE that is in file QBE. 5. json to retrieve the single document from
MyCollection that has field PONumber with a value of 1:

curl -X POST --data-binary QQBE.5.json -H "Content-Type: application/json" http://
localhost:8080/ords/database-schema/soda/latest/custom-actions/query/MyCollection/
This is the content of file QBE.5.json: { "PONumber" : 1 }.
The preceding command outputs the retrieved document.

To update that document according to the JSON Patch specification in file
poPatchSpec.json (see Example 3-7), execute this command, where key is the key of

ORACLE 3-18

Chapter 3
Patching a Single JSON Document with SODA for REST

the document returned by the preceding command (POST operation for the QBE in file
QBE.5.json).

curl -i -X PATCH --data-binary @poPatchSpec.json -H "Content-Type: application/json-
patch+json"
http://localhost:8080/ords/database-schema/soda/latest/MyCollection/key

If successful, the preceding command returns a 200 HTTP status code.

If unsuccessful, patching is not performed. In particular, if any step (any operation) fails then
patching of that document fails. The document is unchanged from its state before attempting
the PATCH HTTP operation.

Example 3-8 shows an example document before successful patching with Example 3-7, and
Example 3-9 shows the same document after patching (changes are indicated in bold type).

¢ See Also:

JSON Patch (RFC 6902) for information about the JSON Patch format for
describing changes to a JSON document

Example 3-7 JSON Patch Specification (File poPatchSpec.json)

[{ "op" : "test",

"path" : "/ShippingInstructions/Address/street",
"value" : "200 Sporting Green" },

{ "op" : "replace",
"path"™ : "/ShippingInstructions/Address/street",
"value" : "Winchester House, Heatley Rd" },

{ "op" : "copy",
"from" : "/ShippingInstructions/Phone/0",
"path" : "/ShippingInstructions/Phone/1" },

{ "op" : "replace",
"path" : "/ShippingInstructions/Phone/1/number",
"value" : "861-555-8765" }]

Example 3-8 JSON Document Before Patching

{ "PONumber" 1,
"Reference" : "MSULLIVA-20141102",
"Requestor" : "Martha Sullivan",
"User" : "MSULLIVA",
"CostCenter" . "A50",
"ShippingInstructions™ : {
"name" : "Martha Sullivan",
"Address" : { "street" : "200 Sporting Green",
"city" : "South San Francisco",
"state" . "CA",
"zipCode" : 99236,
"country" : "United States of America" 1},
"Phone" [{ "type" : "Office",

ORACLE 3-19

Chapter 3
Patching Multiple JSON Documents in a Collection with SODA for REST

"numper" : "979-555-6598" }] }

Example 3-9 JSON Document After Patching

{ "PONumber" 1,

"Reference" : "MSULLIVA-20141102",
"Requestor" : "Martha Sullivan",
"User" : "MSULLIVA",
"CostCenter" . "A50",
"ShippingInstructions" : {

"name" : "Martha Sullivan",

"Address" : { "city": "South San Francisco",

"state": "CA",
"zipCode": 99236,

"country": "United States of America",
"street": "Winchester House, Heatley Rd4" },
"Phone" [{ "type" : "Office",
"number" : "979-555-6598" },

{ "type": "Office",
"number": "861-555-8765" }] }

Related Topics

e PATCH JSON document
pPATCH JSON document replaces a specified object with an patched (edited) copy
of it.

e Patching Multiple JSON Documents in a Collection with SODA for REST
You can update (patch) multiple JSON documents in a collection by querying the
collection to match those documents and specifying the changes to be made. You
specify the update with a JSON Patch specification, using QBE operator $patch.
You use HTTP operation POST with custom-action update in the request URL.

3.14 Patching Multiple JSON Documents in a Collection with
SODA for REST

ORACLE

You can update (patch) multiple JSON documents in a collection by querying the
collection to match those documents and specifying the changes to be made. You
specify the update with a JSON Patch specification, using QBE operator $patch. You
use HTTP operation POST with custom-action update in the request URL.

" Note:

To use QBE operator $Spatch you need Oracle Database Release 18c or
later.

Operator $patch is specific to SODA for REST; it is not used by other SODA
implementations. It is used in a composite filter, at the same level as Squery

3-20

Chapter 3
Patching Multiple JSON Documents in a Collection with SODA for REST

and sorderby. (If operators $patch and $orderby are both present in a composite filter
then Sorderby is ignored.)

The operand of operator Spatch is a JSON Patch specification: a JSON array with object
elements that list the patch operations to apply to each document targeted by the query.

JSON Patch is a format for specifying a sequence of operations to apply to a JSON
document. It is identified by media type application/json-patch+json, and it is suitable for
use with HTTP operation PATCH.

If any update step (any operation) specified for patching is unsuccessful for a given document
then no patching is performed on that document. Patching continues for other targeted
documents, however.

Example 3-10 shows a QBE for patching documents where User field has value TGATES.
Example 3-11 shows a command that uses that QBE to perform the update operation.

¢ See Also:

e Oracle Database Introduction to Simple Oracle Document Access (SODA) for
information about composite filter specifications

e JSON Patch (RFC 6902) for information about the JSON Patch format for
describing changes to a JSON document

Example 3-10 QBE for Patching Multiple JSON Documents Using QBE
Operator $patch

This example shows the QBE that is the content of file gbePatch. json in the download. The
QBE matches the same documents as QBE.1.json. It updates the street address and the first
phone number in each document, using the same new values for each document.

Because operator $patch is used, the query part of the QBE must be specified using
operator $query. The value of operator Spatch is a JSON Patch specification. It replaces
street address "200 Sporting Green" with "176 Gateway Blvd" and the first number in array
Phone with 999-999-9990.

{ "Squery" : {"User" : "TGATES" },
"$patch" : [{ "op" : "test",
"path" : "/ShippingInstructions/Address/street",
"value" : "200 Sporting Green" 1},
{ "op" : "replace",
"path" : "/ShippingInstructions/Address/street",
"value" : "176 Gateway Blvd" },
{ "op" : "replace",
"path" : "/ShippingInstructions/Phone/0/number",
"value" : "999-999-9999" }] }

ORACLE 3-21

Chapter 3
Patching Multiple JSON Documents in a Collection with SODA for REST

Example 3-11 Patching Multiple JISON Documents Using HTTP POST with patch Action

This command updates documents according to the QBE of Example 3-10. Each
document matching the $query value is updated.

curl -X POST --data-binary @gbePatch.json -H "Content-Type: application/json"
http://localhost:8080/ords/database-schema/soda/latest/custom-actions/update/
MyCollection

Related Topics

e POST bulk update (patch)
The POST bulk update operation updates (patches) the objects of a specified
collection.

» Patching a Single JSON Document with SODA for REST
You can selectively update (patch) parts of a single JISON document using HTTP
operation PATCH. You specify the update using a JSON Patch specification.

ORACLE 3-22

SODA for REST HTTP Operations

ORACLE

The SODA for REST HTTP operations are described.

SODA for REST HTTP Operation URIs
A SODA for REST HTTP operation is specified by a Universal Resource Identifier (URI).

SODA for REST HTTP Operation Response Bodies
If a SODA for REST HTTP operation returns information or objects, it does so in a
response body.

GET catalog
GET catalog gets all of the collection names for a given database schema (user account),
along with information about each collection.

GET user collections
GET user collections gets all or a subset of the collection names for a given database
schema (user account).

GET JSON schema for collection
This operation gets a JSON schema that describes the structure and type information of
the JSON documents in a given collection.

GET actions
GET actions gets all of the available custom actions.

GET collection
GET collection gets all or a subset of objects from a collection, using parameters to specify
the subset. You can page through the set of returned objects.

GET object
GET object gets a specified object from a specified collection.

DELETE collection
DELETE collection deletes a collection.

DELETE object
DELETE object deletes a specified object from a specified collection.

PATCH JSON document
PATCH JSON document replaces a specified object with an patched (edited) copy of it.

POST object
POST object inserts an uploaded object into a specified collection, assigning and returning
its key. The collection must use server-assigned keys.

POST query
POST query gets all or a subset of objects from a collection, using a filter.

POST bulk insert
POST bulk insert inserts an array of objects into a specified collection, assigning and
returning their keys.

4-1

Chapter 4
SODA for REST HTTP Operation URIs

* POST bulk delete
POST bulk delete deletes all or a subset of objects from a specified collection, using
a filter to specify the subset.

e POST bulk update (patch)
The posT bulk update operation updates (patches) the objects of a specified
collection.

e POST index
POST index creates indexes on the documents in a specified collection.

* POST unindex
POST unindex deletes indexes on objects in a specified collection.

* PUT collection
PUT collection creates a collection if it does not exist.

* PUT object
PUT object replaces a specified object in a specified collection with an uploaded
object (typically a new version). If the collection has client-assigned keys and the
uploaded object is not already in the collection, then PUT inserts the uploaded
object into the collection.

4.1 SODA for REST HTTP Operation URIs

ORACLE

A SODA for REST HTTP operation is specified by a Universal Resource Identifier
(URI).

The URI has any of these forms:
/ords/database-schema/soda/ [version/[metadata-catalog/[collection]]]

/ords/database-schema/soda/[version/[custom-actions/action/[collection/
[keyl]]]

/ords/database-schema/soda/ [version/[collection/[{key|?
action=action}]]]

where:

e ords is the directory of the Oracle REST Data Services (ORDS) listener, of which
SODA for REST is a component.

* database-schema is the name of an Oracle Database schema (user account) that
has been configured as an end point for SODA for REST.

* soda is the name given to the Oracle Database JSON service when mapped as a
template within ORDS.

* versionis the version number of soda.

* custom-actions is the name for the set of possible SODA actions.

* metadata-catalog is the name for the catalog of SODA collections.

* collectionisthe name of a collection (set) of objects stored in database-schema.
* key is a string that uniquely identifies (specifies) an object in collection.

e actionis either query, index, unindex, insert, update, delete, Or truncate.

4-2

Chapter 4
SODA for REST HTTP Operation Response Bodies

< Note:

In the SODA for REST URI syntax, after the version component, you can use
custom-actions, metadata-catalog, or a particular collection name. When you use
custom-actions Or metadata-catalog, the next segment in the URI, if there is one,
is a collection name.

Because of this syntax flexibility, you cannot have a collection named either
custom-actions Or metadata-catalog. An error is raised if you try to create a
collection with either of those nhames using SODA for REST.

In other SODA implementations, besides SODA for REST, nothing prevents you
from creating and using a collection named custom-actions or metadata-catalog.
But for possible interoperability, best practice calls for not using these names for
collections.

These two syntax possibilities are equivalent:
/ords/database-schema/soda/version/custom-actions/action/collection/

/ords/database-schema/soda/version/collection/?action=action

Actions can only be used with a P0ST HTTP operation. (This applies to both URI syntaxes for
performing actions.)

For some SODA for REST operations the path component of the URI syntax can be followed
by an optional query component, which is preceded by a question mark (?). The query
component is composed of one or more parameter—value pairs separated by ampersand (&)
guery delimiters.

In this URI, for example, the query component (?action=insert) is composed of the single
parameter—value pair action=insert:

/ords/myUser/soda/v1.0/MyCollection/?action=insert

And in this URI, the query component is composed of two parameter—value pairs,
fromID=MyCollection and limit=2:

/ords/myUser/soda/v1.0/metadata-catalog/?fromID=MyCollection&limit=2

4.2 SODA for REST HTTP Operation Response Bodies

ORACLE

If a SODA for REST HTTP operation returns information or objects, it does so in a response
body.

For operation GET object, the response body is a single object.

Table 4-1 lists and describes fields that can appear in response bodies.

4-3

Chapter 4
SODA for REST HTTP Operation Response Bodies

Table 4-1 Fields That Can Appear in Response Bodies
|

Field Description

key String that uniquely identifies an object (typically a JSON document) in a
collection.

etag HTTP entity tag (ETag)—checksum or version.

created Created-on time stamp.

lastModified Last-modified time stamp.

value Object contents (applies only to JSON object).

mediaType HTTP Content-Type (applies only to non-JSON object).

bytes HTTP Content-Length (applies only to non-JSON object).

items List of one or more collections or objects that the operation found or created.

This field can be followed by the fields in Table 4-2.

If an operation creates or returns objects, then its response body can have the
additional fields in Table 4-2. The additional fields appear after field items.

Table 4-2 Additional Response Body Fields for Operations that Return Objects
|

Field Description

name Name of collection. This field appears only in the response body of GET
user collections.

properties Properties of collection. This field appears only in the response body of
GET user collections.

hasMore true if 1imit was reached before available objects were exhausted, false
otherwise. This field is always present.

limit Server-imposed maximum collection (row) limit.

offset Offset of first object returned (if known).

count Number of objects returned. This is the only field that can appear in the

response body of POST bulk delete.
totalResults Number of objects in collection (if requested)

links Possible final field for GET collection operation. For details, see GET
collection.

Example 4-1 Response Body

This example shows the structure of a response body that returns 25 objects. The first
object is a JSON object and the second is a jpeg image. The collection that contains
these objects contains additional objects.

{ "items" : [{ "id" : "key of object 1",
"etag" : "etag of object 1",
"lastModified" : "lastmodified timestamp of object 1",
"value" : { object 11} 1},
{ "id" : "key of object 2",
"etag" : "etag of object 2",
"lastModified" : "lastmodified timestamp of object 2",

ORACLE 4-4

Chapter 4
GET catalog

"mediaType" : "image/jpeg",
"bytes" : 1234
}I
R I
"hasMore" : true,
"limit" : 100,
"offset"™ : 50,
"count" : 25
"links" N R

Related Topics

* GET object
GET object gets a specified object from a specified collection.

* GET user collections
GET user collections gets all or a subset of the collection names for a given database

schema (user account).

e POST bulk delete
POST bulk delete deletes all or a subset of objects from a specified collection, using a filter

to specify the subset.

* GET collection
GET collection gets all or a subset of objects from a collection, using parameters to specify

the subset. You can page through the set of returned objects.

4.3 GET catalog

GET catalog gets all of the collection names for a given database schema (user account),
along with information about each collection.

This information includes links to collection descriptions and a link to a JSON schema that
describes the structure and type information of the JSON documents in the collection.

" Note:

The existence of a JSON schema requires the collection to have a JSON search
index with data-guide support, which requires Oracle Database Release 12c
(12.2.0.1) or later.

* URL Pattern for GET catalog
The URL pattern for GET catalog is described.

* Response Codes for GET catalog
The response codes for GET catalog are described.

Related Topics

* Getting the Metadata of an Existing Collection
You use a GET catalog operation to get all of the metadata for a collection, as a JSON

document.

ORACLE 4.5

Chapter 4
GET catalog

4.3.1 URL Pattern for GET catalog

The URL pattern for GET catalog is described.

/ords/database-schema/soda/version/metadata-catalog

Without parameters, operation GET catalog gets catalog information for all collections
in database-schema.

You can include one or more parameter—value pairs at the end of the URL, preceded
by a question mark (?) and separated by ampersand (&) query delimiters.

Parameter Description

limit=n Limits number of collections to n.

fromID=collection Starts getting with collection (inclusive).

4.3.2 Response Codes for GET catalog

The response codes for GET catalog are described.

200

Success — response body contains names and properties of collections in database
schema (user account), ordered by name. For example:

{ "items": [
{ "name" : "employees",
"properties" : { .. .},
"links" H
{ "rel" : "describes",
"href" :
"http://host:port/.../database-schema/soda/version/employees" },
{ "rel" : "canonical",
"href" :

"http://host:port/.../database-schema/soda/version/metadata-catalog/employees",

"mediaType" : "application/json" },
{ "rel" : "alternate",
"href" :

"http:host:port/.../database-schema/soda/version/metadata-catalog/employees"

"mediaType":"application/schema+json" }]
: "departments",

{ "name"

"properties" :

R

"links"

{ "name"

"properties" :

R

"links"
"hasMore":false

ORACLE

}

b

(... b

: "regions",

(... b
I

If hasMore is true, then to get the next batch of collection names specify
fromID=last returned collection. (Inthe preceding example,
last returned collectionis "regions™).

400

Parameter value is not valid.

4-6

Chapter 4
GET user collections

401
Access is not authorized.

Related Topics

e Security
ORDS, including SODA for REST, uses role-based access control, to secure services.
The roles and privileges you need for SODA for REST are described here.

4.4 GET user collections

GET user collections gets all or a subset of the collection names for a given database schema
(user account).

* URL Pattern for GET user collections
The URL pattern for GET user collections is described.

* Response Codes for GET user collections
The response codes for GET user collections are described.

Related Topics

» Listing the Documents in a Collection with SODA for REST
An example is given of listing the documents in a collection, using a GET operation.

4.4.1 URL Pattern for GET user collections

The URL pattern for GET user collections is described.
/ords/database-schema/soda/version/

Without parameters, GET user collections gets all collection names in database-schema.

You can include one or more parameter—value pairs at the end of the URL, preceded by a
guestion mark (?) and separated by ampersand (&) query delimiters.

Parameter Description
limit=n Limits number of listed collection names to n.
fromID=collection Starts getting with collection (inclusive).

4.4.2 Response Codes for GET user collections

ORACLE

The response codes for GET user collections are described.

200

Success — response body contains names and properties of collections in database schema
(user account), ordered by name. For example:

{ "items" : [
{ "name" : "employees",
"properties" : {...} },

4-7

{

Chapter 4
GET JSON schema for collection

"name" : "departments",

"properties" : {...} },

"name" : "regions",

"properties" : {...} } 1,
"hasMore" : false }

If hasMore is true, then to get the next batch of collection names specify
fromID=last returned collection. (Inthe preceding example,
last returned collectionis "regions").

400

Parameter value is not valid.

401

Access is not authorized.

404

The database schema (user) was not found.

4.5 GET JSON schema for collection

This operation gets a JSON schema that describes the structure and type information
of the JSON documents in a given collection.

< Note:

The existence of a JSON schema requires the collection to have a JISON
search index with data-guide support, which requires Oracle Database
Release 12c¢ (12.2.0.1) or later.

Besides a JSON schema for the collection, the operation also returns the collection
metadata, as the value of field properties.

URL Pattern for GET JSON schema for collection
The URL pattern for getting a JSON schema for a given collection is described.

Response Codes for GET JSON schema for collection
The response codes for getting a JSON schema for a given collection are
described.

4.5.1 URL Pattern for GET JSON schema for collection

The URL pattern for getting a JSON schema for a given collection is described.

/ords/database-schema/soda/version/metadata-catalog/collection

No parameters.

ORACLE

4-8

Chapter 4
GET JSON schema for collection

4.5.2 Response Codes for GET JSON schema for collection

The response codes for getting a JSON schema for a given collection are described.

ORACLE

200

Success. The response body contains a JSON schema for the collection, as the value of field
schema, and the collection metadata, as the value of field properties.

For example:
{"name" "employees",
"properties" : {
"schemaName" "MYUSER",
"tableName" "EMPLOYEES",
"keyColumn" {"name" "ip",
"sqlType" "VARCHAR2",
"maxLength" 24,
"path" "oid",
"assignmentMethod" "MONGO" },
"contentColumn" {"name" "DOCUMENT",
"sqlType" "VARCHAR2",
"maxLength" 4000,
"validation" "STRICT"},
"versionColumn" {"name" "CHECKSUM",
"type" "String",
"method" : "UUID"},
"lastModifiedColumn" {"name" "LAST MODIFIED",
"index" : "PEOPLE T1"},
"readOnly" false},
"schema" R
"type" "object",
"properties" {
"dob" {"type" "string",
"o:length" 16,
"o:preferred column name" "dob"},
"name" {"type" "string",
"o:length" 16,
"o:preferred column name" "name"},
"email" {"type" "array",
"o:length" 64,
"o:preferred column name" "email",
"items" {
"type" "string",
"o:length" 32,
"o:preferred column name" "scalar string"}},
"empno" {"type" "number",
"o:length" 8,
"o:preferred column name" "empno"},
"title" {"type" "string",
"o:length" 16,
"o:preferred column name" "title"},
"salary" {"type" "number",
"o:length" 8,

4-9

Chapter 4
GET JSON schema for collection

"o:preferred column name" "salary"},
"spouse" {"type" "null",
"o:length" 4,
"o:preferred column name" "spouse"},
"address" {"type" "object",
"o:length" 128,
"o:preferred column name" "address",
"properties" {
"city" {"type" "string",
"o:length" 16,
"o:preferred column name" "city"},
"state" {"type" : "string",
"o:length" : 2,
"o:preferred column name" "state"},
"street" {"type" "string",
"o:length" 32,
"o:preferred column name"
"street"}}},
"company" {"type" "string",
"o:length" 16,
"o:preferred column name" "company"},
"location" {"type" "object",
"o:length" 64,
"o:preferred column name" : "location",
"properties" {
"type" |
"type" "string",
"o:length" 8,
"o:preferred column name" "type"},
"coordinates" : {
"type" "array",
"o:length" 32,
"o:preferred column name" "coordinates",
"items" {
"type" "numper",

"o:length" : 8,

"o:preferred column name"

"scalar number"}}}},

"string",
16,
"department"}}},

//host:port/.../database-schema/soda/version/employees"},

"department" {"type"
"o:length"
"o:preferred column name"
"links" : [
{"rel" "describes",
"href"
"http :
{"rel" "canonical",
"href" :
"http : //host:port/.../database-schema/soda/version/metadata-
catalog/employees",
"mediaType" "application/json"},
{"rel" "alternate",
"href" :
"http : //host:port/.../database-schema/soda/version/metadata-
catalog/employees",
"mediaType" "application/schema+json"}]}

ORACLE

4-10

Chapter 4
GET actions

401

Access is not authorized.

404
The collection does not exist.

Related Topics

e Security
ORDS, including SODA for REST, uses role-based access control, to secure services.
The roles and privileges you need for SODA for REST are described here.

4.6 GET actions

GET actions gets all of the available custom actions.

* URL Pattern for GET actions
The URL pattern for GET actions is described.

4.6.1 URL Pattern for GET actions

The URL pattern for GET actions is described.

/ords/database-schema/soda/version/custom-actions/

No parameters.

4.7 GET collection

GET collection gets all or a subset of objects from a collection, using parameters to specify the
subset. You can page through the set of returned objects.

* URL Pattern for GET collection
The URL pattern for GET collection is described.

» Response Codes for GET collection
The response codes for GET collection are described.

e Links Array for GET collection
The 1links array for GET collection is described.

Related Topics

e POST query
POST query gets all or a subset of objects from a collection, using a filter.

e Listing the Documents in a Collection with SODA for REST
An example is given of listing the documents in a collection, using a GET operation.

ORACLE 4-11

Chapter 4
GET collection

4.7.1 URL Pattern for GET collection

The URL pattern for GET collection is described.

/ords/database-schema/soda/version/collection/

Note:

For non-JSON objects in the collection, GET collection returns, instead of
document content, the media type and (if known) the size in bytes.

You can include one or more parameter—value pairs at the end of the URL, preceded
by a question mark (?) and separated by ampersand (&) query delimiters.

Parameter Description
limit=n Limits number of objects returned to a maximum of n.
offset=n Skips n (default: 0) objects before getting the first of those

fields={id|valuelall}

totalResults=true
fromID=key
toID=key
after=key
before=key

since=timestamp

until=timestamp

g=filter

returned.

Gets only object id fields (keys), only object value fields
(content), or all fields (both key and content).

Regardless of the fields value, GET collection returns the
other metadata that the collection stores for each document.

Returns number of objects in collection. Note: Inefficient
Starts getting objects after key, in ascending order.
Stops getting objects before key, in descending order.
Starts getting objects after key, in ascending order.
Stops getting objects before key, in descending order.

Gets only objects with a 1astModified time stamp later than
timestamp.

Gets only objects with a 1astModified time stamp earlier
than timestamp.

Equivalent to a POST query action where filteris a QBE
that is passed in the body of the request.

Related Topics

e Links Array for GET collection
The 1links array for GET collection is described.

4.7.2 Response Codes for GET collection

The response codes for GET collection are described.

ORACLE

4-12

ORACLE

200

Chapter 4
GET collection

Success—response body contains the specified objects from collection (or only their keys,
if you specified fields=1id). For example:

"lastmodified timestamp of object 1",

"lastmodified timestamp of object 2",

"lastmodified timestamp of object 3",

{ "items" : [

{ "id" "key of object 1",
"etag" "etag of object 1",
"lastModified"

"value" { object 11} },

{ "id" "key of object 2",
"etag" "etag of object 2",
"lastModified"

"value" { object 2} },

{ "id" "key of object 3",
"etag" "etag of object 3",
"lastModified"

"mediaType" "image/jpeg",
"bytes" 1234 3},
1,

"hasMore" : true,

"limit" : 100,

"offset" : 50,

"count" : 25

"links" : [}

If hasMore is true, then to get the next batch of objects repeat the operation with an
appropriate parameter. For example:

offset=n if the response body includes the offset

tolD=last returned key Of before=last returned key if the response body includes

descending=true

fromID=last returned key Of after=last returned key if the response body does not
include descending=true

400

Parameter value is not valid.

401

Access is not authorized.

404
Collection was not found.

Related Topics

* Links Array for GET collection
The links array for GET collection is described.

e Security

ORDS, including SODA for REST, uses role-based access control, to secure services.

The roles and privileges you need for SODA for REST are described here.

4-13

Chapter 4
GET object

4.7.3 Links Array for GET collection

The links array for GET collection is described.

The existence and content of the 1inks array depends on the mode of the GET
collection operation, which is determined by its parameters.

When the 1inks array exists, it has an element for each returned object. Each element
contains links from that object to other objects. The possible links are:

e first, which links the object to the first object in the collection
* prev, which links the object to the previous object in the collection
* next, which links the object to the next object in the collection

Using prev and next links, you can page through the set of returned objects.

Table 4-3 shows how GET collection parameters determine mode and the existence
and content of the 1inks array.

Table 4-3 Relationship of GET collection Parameters to Mode and Links Array
|

Parameter Mode Links Array
fields=id Keys-only Does not exist (regardless of other parameters).
offset=n Offset Has an element for each returned object. Each element

has these links, except as noted:
« first (except for first object)
e prev (except for first object)
* next (except for last object)

fromID=key Keyed Has an element for each returned object. Each element
toID=key has these links, except as noted:

after=key « prev (except for first object)

before=key e next (except for last object)

since=timestamp lastModifie Does not exist.

until=timestamp d Timestamp

q=0BE Query Does not exist.

Related Topics

e Response Codes for GET collection
The response codes for GET collection are described.

4.8 GET object

ORACLE

GET object gets a specified object from a specified collection.

e URL Pattern for GET object
The URL pattern for GET object is described.

e Request Headers for GET object
The request headers for GET object are described.

4-14

Chapter 4
GET object

* Response Codes for GET object
The response codes for GET object are described.

Related Topics

* Finding Documents in Collections with SODA for REST
An example is given of retrieving a document from a collection by providing its key.

4.8.1 URL Pattern for GET object

The URL pattern for GET object is described.

/ords/database-schema/soda/version/collection/key

4.8.2 Request Headers for GET object

The request headers for GET object are described.

Operation GET object accepts these optional request headers:

Header Description

If-Modified-Since=timestamp Returns response code 304 if object has not changed since
timestamp. If timestamp is notin the HTTP format specified

by RFC 2616 then an error is raised.

If-None-Match=etag Returns response code 304 if the etag (object version) value
you set in the header matches the etag value of the
document.

¢ See Also:

Hypertext Transfer Protocol - HTTP/1.1, RFC 2616

4.8.3 Response Codes for GET object

The response codes for GET object are described.

200

Success—response body contains object identified by the URL pattern.
204

Object content is null.

304

The object was not modified.

401

Access is not authorized.

ORACLE 4-15

https://www.w3.org/Protocols/rfc2616/rfc2616.html

Chapter 4
DELETE collection

404
Collection or object was not found.

Related Topics

* Request Headers for GET object
The request headers for GET object are described.

e Security
ORDS, including SODA for REST, uses role-based access control, to secure
services. The roles and privileges you need for SODA for REST are described
here.

4.9 DELETE collection

DELETE collection deletes a collection.

To delete all objects from a collection, but not delete the collection itself, use POST
bulk delete.

* URL Pattern for DELETE collection
The URL pattern for DELETE collection is described.

* Response Codes for DELETE collection
The response codes for DELETE collection are described.

Related Topics

e Dropping a Document Collection with SODA for REST
An example is given of dropping a collection.

4.9.1 URL Pattern for DELETE collection

The URL pattern for DELETE collection is described.

/ords/database-schema/soda/version/collection/

No parameters.

4.9.2 Response Codes for DELETE collection

ORACLE

The response codes for DELETE collection are described.
200

Success—collection was deleted.

401

Access is not authorized.

404

Collection was not found.

4-16

Chapter 4
DELETE object

Related Topics

Security
ORDS, including SODA for REST, uses role-based access control, to secure services.
The roles and privileges you need for SODA for REST are described here.

4.10 DELETE object

DELETE object deletes a specified object from a specified collection.

URL Pattern for DELETE object
The URL pattern for DELETE object is described.

Response Codes for DELETE object
The response codes for DELETE object are described.

Related Topics

Removing a Single Document from a Collection with SODA for REST
You can use HTTP operation DELETE to remove a single document from a collection.

Removing Multiple Documents from a Collection with SODA for REST

You can remove multiple JSON documents from a collection with HTTP operation POST,
using custom-action delete oOr truncate in the request URL. Use truncate to remove all
JSON documents from the collection. Use delete together with a QBE to delete only the
documents that match that filter.

4.10.1 URL Pattern for DELETE object

The URL pattern for DELETE object is described.

ORACLE

/ords/database-schema/soda/version/collection/key

No parameters.

4.10.2 Response Codes for DELETE object

The response codes for DELETE object are described.

200

Success—object was deleted.

401

404

Access is not authorized.

Collection or bject was not found.

405

Collection is read-only.

4-17

Chapter 4
PATCH JSON document

Related Topics

Security

ORDS, including SODA for REST, uses role-based access control, to secure
services. The roles and privileges you need for SODA for REST are described
here.

4.11 PATCH JSON document

pATCH JSON document replaces a specified object with an patched (edited) copy of it.

" Note:

To use operation PATCH JSON document you need Oracle Database Release
18c or later.

URL Pattern for PATCH JSON document
The URL pattern for PATCH JSON document is described.

Request Headers for PATCH JSON document
Use header Content-Type=application/json-patch+json for operation PATCH
JSON document.

Request Body for PATCH JSON document

The request body for PATCH JSON document contains a JSON Patch specification,
that is, an array of objects, each of which specifies a JSON Patch step (operation).
The operations are performed successively in array order.

Response Codes for PATCH JSON Document
The response codes for PATCH JSON document are described.

Related Topics

Patching a Single JSON Document with SODA for REST
You can selectively update (patch) parts of a single JISON document using HTTP
operation PATCH. You specify the update using a JSON Patch specification.

Patching Multiple JSON Documents in a Collection with SODA for REST

You can update (patch) multiple JSON documents in a collection by querying the
collection to match those documents and specifying the changes to be made. You
specify the update with a JSON Patch specification, using QBE operator $patch.
You use HTTP operation POST with custom-action update in the request URL.

4.11.1 URL Pattern for PATCH JSON document

The URL pattern for PATCH JSON document is described.

/ords/database-schema/soda/version/collection/key

No parameters.

ORACLE

4-18

Chapter 4
PATCH JSON document

4.11.2 Request Headers for PATCH JSON document

Use header Content-Type=application/json-patch+json for operation PATCH JSON
document.

4.11.3 Request Body for PATCH JSON document

The request body for PATCH JSON document contains a JSON Patch specification, that is, an
array of objects, each of which specifies a JSON Patch step (operation). The operations are
performed successively in array order.

The syntax and meaning of a JSON Patch specification, which describes changes to a JISON
document, are specified in the JSON Patch standard, RFC 6902. Paths to parts of a JSON
document that are referenced in a JSON Patch specification are specified using the JISON
Pointer standard, RFC 6901.

¢ See Also:

e JSON Patch (RFC 6902)
e JSON Pointer (RFC 6901) for information about JSON Pointer paths

4.11.4 Response Codes for PATCH JSON Document

The response codes for PATCH JSON document are described.

200

Success — document was patched (updated).
401

Access is not authorized.

404

Document or collection not found.

405

Collection is read-only.

Related Topics

* Security
ORDS, including SODA for REST, uses role-based access control, to secure services.
The roles and privileges you need for SODA for REST are described here.

ORACLE 4-19

Chapter 4
POST object

4.12 POST object

POST object inserts an uploaded object into a specified collection, assigning and
returning its key. The collection must use server-assigned keys.

If the collection uses client-assigned keys, use PUT object.

URL Pattern for POST object
The URL pattern for POST object is described.

Request Body for POST object
The request body for POST object is the uploaded object to be inserted in the

collection.

Response Codes for POST object
The response codes for POST object are described.

Related Topics

PUT object

PUT object replaces a specified object in a specified collection with an uploaded
object (typically a new version). If the collection has client-assigned keys and the
uploaded object is not already in the collection, then pUT inserts the uploaded
object into the collection.

Inserting a Single Document into a Collection with SODA for REST
An example is given of inserting a document into a collection.

4.12.1 URL Pattern for POST object

The URL pattern for POST object is described.

ORACLE

/ords/database-schema/soda/version/collection/

No parameters.

4.12.2 Request Body for POST object

The request body for POST object is the uploaded object to be inserted in the collection.

4.12.3 Response Codes for POST object

The response codes for POST object are described.

201

Success — object is in collection; response body contains server-assigned key and
possibly other information. For example:

{ "items" : [{ "id" : "key",
"etag" . "etag",
"lastModified" : "last modified timestamp"
"created" : "created timestamp" } 1,
"hasMore" : false }

4-20

Chapter 4
POST query

202

Object was accepted and queued for asynchronous insertion; response body contains server-
assigned key.

401

Access is not authorized.

405

Collection is read-only.

501
Unsupported operation (for example, no server-side key assignment).

Related Topics

e Security
ORDS, including SODA for REST, uses role-based access control, to secure services.
The roles and privileges you need for SODA for REST are described here.

4.13 POST query

ORACLE

POST query gets all or a subset of objects from a collection, using a filter.

A links section is not returned for a POST query operation, so you cannot directly do next and
previous paging.

" Note:

As an alternative to using POST query with a filter in the request body you can use
GET collection, passing the same filter as the value of URL parameter q. For
example, these two commands are equivalent, where the content of file 0BE.1.json
iS { "User" : "TGATES" }:

curl -X POST --data-binary @QBE.l.json -H "Content-Type: application/
json" http://localhost:8080/ords/database-schema/soda/latest/custom-
actions/query/MyCollection/

curl -X GET -H "Content-Type: application/json" http://
localhost:8080/ords/database-schema/soda/latest/MyCollection/?
q={%20%22User%22%20:%20%22TGATES%22%20}

* URL Pattern for POST query
The URL pattern for POST query is described.

* Request Body for POST query
The request body for a POST query action is a QBE (a filter-specification).

4-21

Chapter 4
POST query

* Response Codes for POST query
The response codes for POST query are described.

Related Topics

e GET collection
GET collection gets all or a subset of objects from a collection, using parameters to
specify the subset. You can page through the set of returned objects.

* Querying Using a Filter Specification with SODA for REST
Examples are given of using a filter specification, or query-by-example (QBE), to
define query criteria for selecting documents from a collection.

4.13.1 URL Pattern for POST query

The URL pattern for POST query is described.

Query a collection using a filter, with either of these URI patterns:

/ords/database-schema/soda/version/custom-actions/query/collection
/ords/database-schema/soda/version/collection?action=query

You can include one or more parameter—value pairs at the end of the URL, preceded
by a question mark (?) and separated by ampersand (&) query delimiters. Parameters
are optional, except as noted.

Parameter Description

action=query Required, if the second syntax form is used. Specifies that the
kind of action is a query.

limit=n Limit number of returned objects to n.

offset=n Skip n objects before returning objects.

fields={id|valuelall} Return object id (key) only, object value (content) only, or

all (object key and content). Default: all

4.13.2 Request Body for POST query

The request body for a POST query action is a QBE (a filter-specification).

The request body cannot be empty, but it can be the empty object, {}. Ifitis {} then all
objects in the collection are returned.

" See Also:

Oracle Database Introduction to Simple Oracle Document Access (SODA)
for information about SODA filter specifications.

ORACLE 4-22

Chapter 4
POST bulk insert

4.13.3 Response Codes for POST query

The response codes for POST query are described.

200

Success—object is in collection; response body contains all objects in collection that match
filter.

401

Access is not authorized.

404
The collection was not found.

Related Topics

e Security
ORDS, including SODA for REST, uses role-based access control, to secure services.
The roles and privileges you need for SODA for REST are described here.

4.14 POST bulk insert

POST bulk insert inserts an array of objects into a specified collection, assigning and returning
their keys.

* URL Pattern for POST bulk insert
The URL pattern for POST bulk insert is described.

e Request Body for POST bulk insert
The request body for POST bulk insert is an array of objects.

* Response Codes for POST bulk insert
The response codes for POST bulk insert are described.

Related Topics

* Inserting Multiple Documents into a Collection with SODA for REST
You can bulk-insert a set of documents into a collection using a JSON array of objects.
Each object corresponds to the content of one of the inserted documents.

4.14.1 URL Pattern for POST bulk insert

ORACLE

The URL pattern for POST bulk insert is described.

Insert one or more objects into a collection, using either of these URI patterns:

/ords/database-schema/soda/version/custom-actions/insert/collection
/ords/database-schema/soda/version/collection?action=insert

You can include one or more parameter—value pairs at the end of the URL, preceded by a
question mark (?) and separated by ampersand (&) query delimiters.

4-23

Chapter 4
POST bulk insert

Parameter Description

action=insert Required, if the second syntax form is used. Specifies that the
kind of action is a bulk insert.

4.14.2 Request Body for POST bulk insert

The request body for POST bulk insert is an array of objects.

4.14.3 Response Codes for POST bulk insert

The response codes for POST bulk insert are described.

200

Success — response body contains an array with the assigned keys for inserted
objects. For example:

{ "items" : [{ "id" : "12345678",
"etag" HELLL
"lastModified" : "..."
"created" R

{ "id" : "23456789",
"etag" HELLL
"lastModified" : "..."
"created" HEL T I
"hasMore" : false }

401

Access is not authorized.

404

Collection was not found.

405
Collection is read-only.

Related Topics

e Security
ORDS, including SODA for REST, uses role-based access control, to secure
services. The roles and privileges you need for SODA for REST are described
here.

ORACLE 4-24

Chapter 4
POST bulk delete

4.15 POST bhulk delete

POST bulk delete deletes all or a subset of objects from a specified collection, using a filter to
specify the subset.

" Note:

If you delete all objects from a collection, the empty collection continues to exist. To
delete the collection itself, use DELETE collection.

There are two bulk-delete operations, with the HTTP POST actions delete and truncate,
respectively. Action delete is more general; you can use it to delete some or all objects in a
collection. Action truncate always deletes all objects from the collection. Action delete is
driven by a filter, which selects the objects to delete.

* URL Pattern for POST bulk delete
The URL pattern for POST bulk delete is described.

* Request Body for POST bulk delete (Optional)

* Response Codes for POST bulk delete
The response codes for POST bulk delete are described.

Related Topics

« DELETE collection
DELETE collection deletes a collection.

4.15.1 URL Pattern for POST bulk delete

ORACLE

The URL pattern for POST bulk delete is described.

Delete some or all objects from a collection, as determined by a filter using either of these
URI patterns:

/ords/database-schema/soda/version/custom-actions/delete/collection

/ords/database-schema/soda/version/collection?action=delete

Delete all objects from a collection (truncate the collection) using either of these URI patterns:
/ords/database-schema/soda/version/custom-actions/truncate/collection

/ords/database-schema/soda/version/collection?action=truncate

You can include one or more parameter—value pairs at the end of the URL, preceded by a
qguestion mark (?) and separated by ampersand (&) query delimiters.

4-25

Chapter 4
POST bulk delete

Action Description

delete Required. Specifies the deletion of all or a subset of objects
from collection, using a filter to specify the subset. (The filter
must be present, but it can be the empty object, {}.)

truncate Required. Specifies the deletion of all objects from
collection. Does not use a filter.

WARNING:

If you specify delete as the action, and you use the empty object, {}, as the
filter specification, then the operation deletes all objects from the collection.

4.15.2 Request Body for POST bulk delete (Optional)

If the action is delete (not truncate) then the request body contains the filter (QBE)
that specifies which documents to delete from the collection.

¢ See Also:

Oracle Database Introduction to Simple Oracle Document Access (SODA)
for information about SODA filter specifications

4.15.3 Response Codes for POST bulk delete

The response codes for POST bulk delete are described.

200

Success — response body contains the number of deleted objects, as the value of
fields count and itemsDeleted. For example:

{ "count" : 42,
"itemsDeleted : 42 }

401

Access is not authorized.

404

Collection not found.

405

Collection is read-only.

ORACLE 4-26

Chapter 4
POST bulk update (patch)

Related Topics

Security
ORDS, including SODA for REST, uses role-based access control, to secure services.
The roles and privileges you need for SODA for REST are described here.

4.16 POST bulk update (patch)

The posT bulk update operation updates (patches) the objects of a specified collection.

Objects that match a QBE are patched according to a JSON Patch specification.

Note:

To use operation POST bulk update you need Oracle Database Release 18c or later.

URL Pattern for POST bulk update (patch)
The URL pattern for POST bulk update is described.

Request Body for POST bulk update (patch)
The request body for POST bulk update is an array of objects.

Response Codes for POST bulk update (patch)
The response codes for POST bulk update are described.

Related Topics

Patching Multiple JSON Documents in a Collection with SODA for REST

You can update (patch) multiple JSON documents in a collection by querying the
collection to match those documents and specifying the changes to be made. You specify
the update with a JSON Patch specification, using QBE operator $patch. You use HTTP
operation POST with custom-action update in the request URL.

4.16.1 URL Pattern for POST bulk update (patch)

The URL pattern for POST bulk update is described.

Update one or more objects of a collection, using either of these URI patterns:

/ords/database-schema/soda/version/custom-actions/update/collection
/ords/database-schema/soda/version/collection?action=update

You can include one or more parameter—value pairs at the end of the URL, preceded by a
guestion mark (?) and separated by ampersand (&) query delimiters.

Parameter Description

action=update Required, if the second syntax form is used. Specifies that the kind of

action is a bulk update.

ORACLE

4-27

Chapter 4
POST index

4.16.2 Request Body for POST bulk update (patch)

The request body for POST bulk update is an array of objects.

The request body is a QBE that has a $patch field whose value is a JSON Patch
specification, as in Example 3-10.

4.16.3 Response Codes for POST bulk update (patch)

The response codes for POST bulk update are described.

200

Success — response body contains the number of objects updated, as the value of
fields count and itemsUpdated. For example:

{ "count" : 42,
"itemsUpdated : 42

401

Access is not authorized.

405
Not allowed: collection is read-only.

Related Topics

e Security
ORDS, including SODA for REST, uses role-based access control, to secure
services. The roles and privileges you need for SODA for REST are described
here.

4.17 POST index

POST index creates indexes on the documents in a specified collection.

" Note:

To create an index with SODA you need Oracle Database Release 12¢
(12.2.0.1) or later. But to create a B-tree index that for a DATE or TIMESTAMP
value you need Oracle Database Release 18c (18.1) or later.

* URL Pattern for POST index
The URL pattern for POST index is described.

e Request Body for POST index
The request body for POST index is a SODA index specification.

* Response Codes for POST index
The response codes for POST index are described.

ORACLE 4-28

Chapter 4
POST index

4.17.1 URL Pattern for POST index

The URL pattern for POST index is described.

Index one or more objects of a collection, using either of these URI patterns:

/ords/database-schema/soda/version/custom-actions/index/collection
/ords/database-schema/soda/version/collection?action=index

You can include one or more parameter—value pairs at the end of the URL, preceded by a
guestion mark (?) and separated by ampersand (&) query delimiters.

Parameter Description

action=index Required, if the second syntax form is used. Specifies that the action
is an indexing action.

4.17.2 Request Body for POST index

ORACLE

The request body for POST index is a SODA index specification.

A SODA index specification is a JSON object that specifies a particular kind of Oracle
Database index, which is used for operations on JSON documents. You can specify these
kinds of index:

* B-tree: Used to index scalar JSON values.
e Spatial: Used to index GeoJSON geographic data.
e Search: Used for one or both of the following:

— Ad hoc structural queries or full-text searches

— JSON data guide

Note:

To create a data guide-enabled JSON search index, or to data guide-enable an
existing JSON search index, you need database privilege cCTxapp and Oracle
Database Release 12c (12.2.0.1) or later.

¢ See Also:

e Oracle Database Introduction to Simple Oracle Document Access (SODA) for
an overview of using SODA indexing

e Oracle Database Introduction to Simple Oracle Document Access (SODA) for
information about SODA index specifications

4-29

Chapter 4
POST unindex

4.17.3 Response Codes for POST index

The response codes for POST index are described.

200

Success.

401

Access is not authorized.

404
Collection was not found.

Related Topics

e Security
ORDS, including SODA for REST, uses role-based access control, to secure
services. The roles and privileges you need for SODA for REST are described
here.

4.18 POST unindex

POST unindex deletes indexes on objects in a specified collection.

e URL Pattern for POST unindex
The URL pattern for POST unindex is described.

* Request Body for POST unindex
The request body for POST unindex is a SODA index specification. But only the
name of the index need be specified — the rest of the index specification is
ignored.

* Response Codes for POST unindex
The response codes for POST unindex are described.

4.18.1 URL Pattern for POST unindex

The URL pattern for POST unindex is described.

Unindex one or more objects of a collection, using either of these URI patterns:

/ords/database-schema/soda/version/custom-actions/unindex/collection
/ords/database-schema/soda/version/collection?action=unindex

You can include one or more parameter—value pairs at the end of the URL, preceded
by a question mark (?) and separated by ampersand (&) query delimiters.

Parameter Description

action=unindex Required, if the second syntax form is used. Specifies that the
action is an unindexing action.

ORACLE 4-30

Chapter 4
PUT collection

4.18.2 Request Body for POST unindex

The request body for POST unindex is a SODA index specification. But only the name of the
index need be specified — the rest of the index specification is ignored.

¢ See Also:

Oracle Database Introduction to Simple Oracle Document Access (SODA) for
information about SODA index specifications

4.18.3 Response Codes for POST unindex

The response codes for POST unindex are described.

200

Success.

401

Access is not authorized.

404

Collection was not found.

Related Topics

Security
ORDS, including SODA for REST, uses role-based access control, to secure services.
The roles and privileges you need for SODA for REST are described here.

4.19 PUT collection

PUT collection creates a collection if it does not exist.

URL Pattern for PUT collection
The URL pattern for PUT collection is described.

Request Body for PUT collection (Optional)

The request body for PUT collection optionally contains a collection specification, which
defines the metadata of the collection that is created. (If no specification is present then
the default metadata is used.)

Response Codes for PUT collection
The response codes for PUT collection are described.

Related Topics

ORACLE

Creating a Document Collection with SODA for REST
How to use SODA for REST to create a new document collection is explained.

4-31

Chapter 4
PUT object

» Creating a Collection That Has Custom Metadata
You use a PUT collection operation to create a document collection that has custom
metadata. You provide the metadata in the request body.

4.19.1 URL Pattern for PUT collection

The URL pattern for PUT collection is described.

/ords/database-schema/soda/version/collection

No parameters.

4.19.2 Request Body for PUT collection (Optional)

The request body for PUT collection optionally contains a collection specification, which
defines the metadata of the collection that is created. (If no specification is present
then the default metadata is used.)

4.19.3 Response Codes for PUT collection

The response codes for PUT collection are described.

200

Collection with the same name and properties already exists.

201

Success—collection was created.

401
Access is not authorized.

Related Topics

e Security
ORDS, including SODA for REST, uses role-based access control, to secure
services. The roles and privileges you need for SODA for REST are described
here.

4.20 PUT object

ORACLE

PUT object replaces a specified object in a specified collection with an uploaded object
(typically a new version). If the collection has client-assigned keys and the uploaded
object is not already in the collection, then PUT inserts the uploaded object into the
collection.

e URL Pattern for PUT object
The URL pattern for PUT object is described.

* Request Body for PUT object
The request body for PUT object is the uploaded object.

4-32

Chapter 4
PUT object

* Response Codes for PUT object
The response codes for PUT object are described.

Related Topics

* Replacing Documents in a Collection with SODA for REST
An example is given of replacing a document in a collection with a newer version. For
this, you use HTTP operation PUT.

4.20.1 URL Pattern for PUT object

The URL pattern for PUT object is described.
There are two forms of the URL pattern:

» Pattern for a collection that has client-assigned keys:
/ords/database-schema/soda/version/collection/key

« Pattern for a collection that has system-assigned keys:
/ords/database-schema/soda/version/collection/

No parameters.

4.20.2 Request Body for PUT object

The request body for PUT object is the uploaded object.

4.20.3 Response Codes for PUT object

The response codes for PUT object are described.

200
Success—object was replaced.

401

Access is not authorized.

405
Collection is read-only.

Related Topics

e Security
ORDS, including SODA for REST, uses role-based access control, to secure services.
The roles and privileges you need for SODA for REST are described here.

ORACLE 4-33

SODA Collection Configuration Using Custom
Metadata

SODA collections are highly configurable. You can customize collection metadata, to obtain
different behavior from that provided by default.

" Note:

You can customize collection metadata to obtain different behavior from that
provided by default. However, changing some components requires familiarity with
Oracle Database concepts, such as SQL data types. Oracle recommends that you
do not change such components unless you have a compelling reason. Because
SODA collections are implemented on top of Oracle Database tables (or views),
many collection configuration components are related to the underlying table
configuration.

For example, if you change the content column type from the default value to
VARCHAR?, then you must understand the implications: content size for VARCHAR? is
limited to 32K bytes, character-set conversion can take place, and so on.

* Getting the Metadata of an Existing Collection
You use a GET catalog operation to get all of the metadata for a collection, as a JSON

document.

e Creating a Collection That Has Custom Metadata
You use a PUT collection operation to create a document collection that has custom

metadata. You provide the metadata in the request body.

¢ See Also:

* Overview of SODA Document Collections in Oracle Database Introduction to
Simple Oracle Document Access (SODA) for general information about SODA
document collections and their metadata

e SODA Collection Metadata Components (Reference) in Oracle Database
Introduction to Simple Oracle Document Access (SODA) for reference
information about collection metadata components

5.1 Getting the Metadata of an Existing Collection

You use a GET catalog operation to get all of the metadata for a collection, as a JSON
document.

ORACLE 5-1

Chapter 5
Creating a Collection That Has Custom Metadata

Example 5-1 Getting the Metadata of a Collection

This example shows the result of using operation GET catalog on the collection (named
MyCollection) with the default configuration created in Creating a Document
Collection with SODA for REST. (Replace localhost with your host name and 8080
with the appropriate port number.)

curl -X GET http://localhost:8080/ords/database-schema/soda/latest/metadata-catalog/
MyCollection

The default metadata for a collection is presented in Default Collection Metadata in
Oracle Database Introduction to Simple Oracle Document Access (SODA).

Related Topics

e GET catalog
GET catalog gets all of the collection names for a given database schema (user
account), along with information about each collection.

5.2 Creating a Collection That Has Custom Metadata

You use a PUT collection operation to create a document collection that has custom
metadata. You provide the metadata in the request body.

The request body of a PUT collection operation is a SODA collection specification. It
is JSON data that specifies the metadata for the new collection. If the body is empty
then the collection is created using the default metadata.

If a collection with the same name already exists then it is simply opened. If the
custom metadata provided does not match the metadata of the existing collection then
the collection is not opened and an error is raised. (To match, all metadata fields must
have the same values.)

Example 5-2 Creating a Collection That Has Custom Metadata

This example creates a collection with the custom metadata that is in file
metadata.json.

curl -i -X PUT --data-binary @metadata.json -H "Content-Type: application/json"
http://localhost:8080/ords/database-schema/soda/latest/MyCustomCollection

Here is example content of file metadata.json. It is the same as the default metadata,
except that the key column assignment method is set to CLIENT. (The default metadata
for a collection is presented in Default Collection Metadata in Oracle Database
Introduction to Simple Oracle Document Access (SODA).)

{ "keyColumn" : { "name" : "ID",
"assignmentMethod" : "CLIENT" },
"contentColumn" : { "name" : "JSON DOCUMENT"},
"versionColumn" : { "name" : "VERSION",
"method" : "UUID" },
"lastModifiedColumn" : { "name" : "LAST MODIFIED" },
"creationTimeColumn" : { "name" : "CREATED ON" } }

ORACLE 5-2

Chapter 5
Creating a Collection That Has Custom Metadata

Related Topics

PUT collection
PUT collection creates a collection if it does not exist.

ORACLE' 5.3

Security

ORACLE

ORDS, including SODA for REST, uses role-based access control, to secure services. The
roles and privileges you need for SODA for REST are described here.

You should be familiar with the ORDS security features before reading this section.

Database role SODA_APP must be granted to database users before they can use REST
SODA. In addition, when a database schema (user account) is enabled in ORDS using
ords.enable schema, a privilege is created such that only users with the application-server
role SODA Developer can access the service. Specifically, ords.enable schema creates the
following privilege mapping:

exec ords.create role('SODA Developer');
exec ords.create privilege(p name => 'oracle.soda.privilege.developer',
p_role name => 'SODA Developer');

exec ords.create privilege mapping('oracle.soda.privilege.developer', '/soda/
)

This has the effect that, by default, a user must have the application-server role SODA
Developer to access the JSON document store.

You can also add custom privilege mappings. For example:

declare
1 patterns owa.vc_arr;
begin
1 patterns(l) := '/soda/latest/employee';
1 patterns(2) := '/soda/latest/employee/*';
ords.create role('EmployeeRole');
ords.create privilege(p name => 'EmployeePrivilege',

p_role name => 'EmployeeRole');
ords.create privilege mapping(p privilege name => 'EmployeePrivilege',
p_patterns => 1 patterns);
commit;
end;

This example creates a privilege mapping that specifies that only users with role
EmployeeRole can access the employee collection.

When multiple privilege patterns apply to the same resource, the privilege with the most
specific pattern overrides the others. For example, patterns ' /soda/latest/employees/*'
and '/soda/*' both match the request URL, http://example.org/ords/quine/soda/
latest/employee/idl.

Since '/soda/latest/employees/*' iS more specific than '/soda/*"', only privilege
EmployeePrivilege applies to the request.

6-1

Chapter 6
Authentication Mechanisms

< Note:

SODA APP is an Oracle Database role. SODA Developer is an application-
server role.

Note:

For greater security, configure ORDS to use HTTPS, and then use https, not
http in your code, at least for production applications.

e Authentication Mechanisms
ORDS supports many different authentication mechanisms. JSON document store
REST services are intended to be used in server-to-server interactions. Therefore,
two-legged OAuth (the client-credentials flow) is the recommended authentication
mechanism to use with the JSON document store REST services. However, other
mechanisms such as HTTP basic authentication, are also supported.

» Security Considerations for Development and Testing
Security considerations for development and testing are presented.

¢ See Also:

Configuring Secure Access to RESTful Services in Oracle REST Data
Services Developer's Guide for information about configuring secure access
to RESTful services

6.1 Authentication Mechanisms

ORDS supports many different authentication mechanisms. JSON document store
REST services are intended to be used in server-to-server interactions. Therefore,
two-legged OAuth (the client-credentials flow) is the recommended authentication
mechanism to use with the JSON document store REST services. However, other
mechanisms such as HTTP basic authentication, are also supported.

See Also:

Configuring Secure Access to RESTful Services in Oracle REST Data
Services Developer's Guide for information about configuring secure access
to RESTful services

ORACLE 6-2

Chapter 6
Security Considerations for Development and Testing

6.2 Security Considerations for Development and Testing

ORACLE

Security considerations for development and testing are presented.

You can disable security and allow anonymous access by removing the default privilege
mapping:

exec ords.delete privilege mapping('oracle.soda.privilege.developer', '/
soda/*")

However, Oracle does not recommend that you allow anonymous access in production
systems. That would allow an unauthenticated user to read, update, or drop any collection.

You can also use command ords.war user to create test users that have particular roles. In
this example, replace placeholders <user name>and <password> with an appropriate user
name and <password>:

Create a user with role SODA Developer.
(Be sure to replace placeholder <user name> here.)
java -jar ords.war user <user name> "SODA Developer"

Access the JSON document store using basic authentication.

(Be sure to replace placeholders <user name> and <password> here.)
curl -u <user name>:<password> https://example.com/ords/scott/soda/latest/

6-3

SODA Entries In ORDS Configuration File

You use <entry> elements in the Oracle REST Data Services (ORDS) configuration file,
default.xml, to configure SODA for REST behavior.

You specify an <entry> element as follows in configuration file default.xml. This particular
entry specifies the value of 1000 for configuration parameter soda.maxLimit.

<entry key="soda.maxLimit">1000</entry>

These are the values of entry attribute key that affect SODA behavior:

ORACLE

soda.maxLimit (default: 1000) — The maximum number of records that can be returned
at a time, when listing all documents in a collection or using a query-by-example (QBE).

This limit takes precedence over a 1imit parameter value used in a REST HTTP
operation. For example, if soda.maxLimit is 1000 and the value of parameter 1imit is
2000 in a given GET collection operation, to list the documents in a collection, then at
most 1000 documents are listed.

soda.defaultLimit (default; 100) — The default number of records to return at a time,
when listing all documents in a collection or using a query-by-example (QBE).

This limit is overridden by soda.maxLimit.

soda.cachingEnabled (default: "false") — Whether to enable ("true") or disable
("false") caching of collection metadata. Caching can improve performance by avoiding
round-trips when opening a collection. For a production system Oracle recommends
setting this to "true".

Note:

If caching is enabled and you drop a collection and then re-create it, Oracle
recommends that you then shut down and then restart ORDS. Otherwise, the
collection cache could retain stale entries, which can make SODA operations
raise errors or return unpredictable results. For this reason, Oracle
recommends a "true" value only for a production system, where collections
are not being dropped and re-created.

soda.disableDropCollection (default: "false™) — Whether to disable ("true™) or
enable ("false") collection dropping. When disabled (attribute value "true"), attempting
to drop a collection raises an error.

A-1

Appendix A

¢ See Also:

Understanding Configurable Parameters in Oracle REST Data Services
Installation, Configuration, and Development Guide for information about the
SODA for REST configuration parameters

ORACLE A-2

Index

B

bulk insert of JSON documents, 3-6
bulk patch (update) of JSON documents, 3-20
bulk update (patch) of JSON documents, 3-20

C

cachingEnabled configuration parameter, A-1
collection configuration, 5-1
collection metadata

custom, 5-1, 5-2

getting, 5-1
collections

creating, 3-2

with custom metadata, 5-2

deleting, 3-4

listing, 3-4

listing documents in, 3-12

removing documents from, 3-10
configuration file, default.xml, A-1
creating collections

with custom metadata, 5-2

D

database role
SODA_APP, 6-1
defaultLimit configuration parameter, A-1
DELETE collection operation, 4-16
DELETE object operation, 4-17
deleting a single document from a collection,
3-10
deleting collections, 3-4
deleting documents from a collection, 4-25
disableDropCaollection configuration parameter,
A-1
documents
filtering in collections, 3-15
inserting into a collection
in bulk from JSON array, 3-6
inserting into collections
one at a time, 3-5
listing in collections, 3-12
removing from collections, 3-10

ORACLE

documents (continued)
replacing in collections, 3-9
retrieving from collections, 3-8

F

filtering documents in collections, 3-15

G

GET actions operation, 4-11

GET catalog operation, 5-1

GET collection operation, 4-11
GET object operation, 4-14

GET user collections operation, 4-7
getting collection metadata, 5-1

inserting documents into a collection
in bulk from JSON array, 3-6

inserting documents into collections
one at a time, 3-5

installing SODA for REST, 2-1

J

JSON Patch specification, 3-18, 3-20, 4-19
JSON Pointer, 4-19

L

listing collections in a database schema, 3-4
listing documents in collections, 3-12

M

maxLimit configuration parameter, A-1
metadata of collections

getting, 5-1
metadata, custom, 5-1, 5-2

Index-1

O

ORDS configuration file, default.xml, A-1

P

PATCH operation for a JSON document, 4-18

patching (updating) multiple JSON documents,
3-20

patching a single JSON document, 3-18

POST bulk delete operation, 4-25

POST bulk insert operation, 4-23

POST bulk patch (update) operation, 4-27

POST bulk truncate (delete all) operation, 4-25

POST bulk update (patch) operation, 4-27

POST index operation, 4-28

POST object operation, 4-20

POST query operation, 4-21

POST unindex operation, 4-30

PUT collection operation, 4-31

PUT object operation, 4-32

Q

query-by-example (QBE)
examples, 3-15

R

removing a single document from a collection,
3-10

ORACLE

Index

replacing a document in a collection, 3-9
REST architectural style, 1-2
retrieving documents from collections, 3-8

S

security, 6-1
SODA for REST HTTP operations, 4-1
response bodies, 4-3
URI forms for, 4-2
SODA_APP database role, 6-1
soda.cachingEnabled configuration parameter,
A-1
soda.defaultLimit configuration parameter, A-1
soda.disableDropCollection configuration
parameter, A-1
soda.maxLimit configuration parameter, A-1

U

updating (patching) a single JSON document,
3-18

updating (patching) multiple JSON documents,
3-20

URIs used for SODA for REST operations, 4-2

Index-2

	Contents
	List of Examples
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	1 SODA for REST Overview
	1.1 Overview of the Representational State Transfer (REST) Architectural Style

	2 Installing SODA for REST
	3 Using SODA for REST
	3.1 Creating a Document Collection with SODA for REST
	3.2 Discovering Existing Collections with SODA for REST
	3.3 Dropping a Document Collection with SODA for REST
	3.4 Inserting a Single Document into a Collection with SODA for REST
	3.5 Inserting Multiple Documents into a Collection with SODA for REST
	3.6 Finding Documents in Collections with SODA for REST
	3.7 Replacing Documents in a Collection with SODA for REST
	3.8 Removing a Single Document from a Collection with SODA for REST
	3.9 Removing Multiple Documents from a Collection with SODA for REST
	3.10 Listing the Documents in a Collection with SODA for REST
	3.11 Indexing the Documents in a Collection with SODA for REST
	3.12 Querying Using a Filter Specification with SODA for REST
	3.12.1 QBE.1.json
	3.12.2 QBE.2.json
	3.12.3 QBE.3.json
	3.12.4 QBE.4.json

	3.13 Patching a Single JSON Document with SODA for REST
	3.14 Patching Multiple JSON Documents in a Collection with SODA for REST

	4 SODA for REST HTTP Operations
	4.1 SODA for REST HTTP Operation URIs
	4.2 SODA for REST HTTP Operation Response Bodies
	4.3 GET catalog
	4.3.1 URL Pattern for GET catalog
	4.3.2 Response Codes for GET catalog

	4.4 GET user collections
	4.4.1 URL Pattern for GET user collections
	4.4.2 Response Codes for GET user collections

	4.5 GET JSON schema for collection
	4.5.1 URL Pattern for GET JSON schema for collection
	4.5.2 Response Codes for GET JSON schema for collection

	4.6 GET actions
	4.6.1 URL Pattern for GET actions

	4.7 GET collection
	4.7.1 URL Pattern for GET collection
	4.7.2 Response Codes for GET collection
	4.7.3 Links Array for GET collection

	4.8 GET object
	4.8.1 URL Pattern for GET object
	4.8.2 Request Headers for GET object
	4.8.3 Response Codes for GET object

	4.9 DELETE collection
	4.9.1 URL Pattern for DELETE collection
	4.9.2 Response Codes for DELETE collection

	4.10 DELETE object
	4.10.1 URL Pattern for DELETE object
	4.10.2 Response Codes for DELETE object

	4.11 PATCH JSON document
	4.11.1 URL Pattern for PATCH JSON document
	4.11.2 Request Headers for PATCH JSON document
	4.11.3 Request Body for PATCH JSON document
	4.11.4 Response Codes for PATCH JSON Document

	4.12 POST object
	4.12.1 URL Pattern for POST object
	4.12.2 Request Body for POST object
	4.12.3 Response Codes for POST object

	4.13 POST query
	4.13.1 URL Pattern for POST query
	4.13.2 Request Body for POST query
	4.13.3 Response Codes for POST query

	4.14 POST bulk insert
	4.14.1 URL Pattern for POST bulk insert
	4.14.2 Request Body for POST bulk insert
	4.14.3 Response Codes for POST bulk insert

	4.15 POST bulk delete
	4.15.1 URL Pattern for POST bulk delete
	4.15.2 Request Body for POST bulk delete (Optional)
	4.15.3 Response Codes for POST bulk delete

	4.16 POST bulk update (patch)
	4.16.1 URL Pattern for POST bulk update (patch)
	4.16.2 Request Body for POST bulk update (patch)
	4.16.3 Response Codes for POST bulk update (patch)

	4.17 POST index
	4.17.1 URL Pattern for POST index
	4.17.2 Request Body for POST index
	4.17.3 Response Codes for POST index

	4.18 POST unindex
	4.18.1 URL Pattern for POST unindex
	4.18.2 Request Body for POST unindex
	4.18.3 Response Codes for POST unindex

	4.19 PUT collection
	4.19.1 URL Pattern for PUT collection
	4.19.2 Request Body for PUT collection (Optional)
	4.19.3 Response Codes for PUT collection

	4.20 PUT object
	4.20.1 URL Pattern for PUT object
	4.20.2 Request Body for PUT object
	4.20.3 Response Codes for PUT object

	5 SODA Collection Configuration Using Custom Metadata
	5.1 Getting the Metadata of an Existing Collection
	5.2 Creating a Collection That Has Custom Metadata

	6 Security
	6.1 Authentication Mechanisms
	6.2 Security Considerations for Development and Testing

	A SODA Entries In ORDS Configuration File
	Index

