
Oracle®
Transaction Manager for Microservices Quick
Start Guide

Release 24.2
F57110-06
June 2024

Oracle Transaction Manager for Microservices Quick Start Guide, Release 24.2

F57110-06

Copyright © 2022, 2024, Oracle and/or its affiliates.

Primary Author: Sylaja Kannan

Contributing Authors: Tulika Das

Contributors: Todd Little, Deepak Goel, Brijesh Kumar Deo, Bharath MC, Pruthvithej R, Satyanarayana Chillale, Atul
Dhiman, Chandrashekar Venkatachar, Deepak Kesawani, Himanshu Gaur, Shivanshu Singh

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1 About MicroTx

1.1 About the Distributed Transaction Protocols 1-1

1.2 Components of MicroTx 1-2

1.3 How MicroTx Works 1-3

1.4 Use MicroTx Library with Application Code 1-3

2 About the runme.sh Script

2.1 Considerations 2-1

3 Prerequisites

3.1 Download the Installation Bundle 3-1

3.2 Clone the Sample Code Files 3-1

3.3 Set Up XA-Compliant Resource Managers 3-2

4 Quick Start with Docker

4.1 Set Up the Required Software 4-2

4.2 Run XA Sample Applications 4-2

4.3 Run Saga Sample Applications 4-5

4.4 Run TCC Sample Applications 4-6

5 Quick Start with Minikube

5.1 Set Up the Required Software 5-1

5.2 Run XA Sample Applications 5-2

5.3 Run Saga Sample Applications 5-6

5.4 Run TCC Sample Applications 5-8

6 Quick Start with OKE

6.1 Set Up the Required Software 6-1

6.1.1 Use Oracle Identity Providers 6-3

iii

6.1.1.1 Use Oracle IAM as Identity Provider 6-3

6.1.1.2 Use Oracle IDCS as Identity Provider 6-5

6.1.2 Create an Access Token 6-6

6.2 Run XA Sample Applications 6-8

6.3 Run Saga Sample Applications 6-12

6.4 Run TCC Sample Applications 6-14

iv

1
About MicroTx

Oracle Transaction Manager for Microservices (MicroTx) enables enterprise users to adopt and
increase use of microservices architecture for mission-critical applications by providing
capabilities that make it easier to develop, deploy, and maintain such applications.

As organizations rush to adopt microservices architecture, they often run into problems
associated with data consistency as each microservice typically has its own database. In
monolithic applications, local transactions were enough as there were no other sources of data
that needed to be consistent with the database. An application would start a local transaction,
perform some updates, and then commit the local transaction to ensure the application moved
from one consistent state to another. Once the application’s state is spread across multiple
sources of data, some factors need to be considered. What happens if updates succeed in one
microservice, but it fails in another microservice as part of the same request? One solution is to
use a distributed transaction that spans the sources of data used by the microservices involved
in a request. Oracle Transaction Manager for Microservices provides a transaction coordination
microservice and libraries to maintain consistency in the state of microservices participating in
a transaction.

• About the Distributed Transaction Protocols
MicroTx supports the following distributed transaction protocols:

• Components of MicroTx
MicroTx contains two components: the transaction coordinator and the MicroTx library.

• How MicroTx Works

• Use MicroTx Library with Application Code

1.1 About the Distributed Transaction Protocols
MicroTx supports the following distributed transaction protocols:

• XA protocol, which is based upon The Open Group’s XA specification. For details about
the specification, see https://pubs.opengroup.org/onlinepubs/009680699/toc.pdf.

• Saga protocol, which is based on the Eclipse MicroProfile LRA specification. For details
about the specification, see https://download.eclipse.org/microprofile/microprofile-lra-1.0-
M1/microprofile-lra-spec.html.

• Try-Confirm/Cancel (TCC) protocol

Use XA when strong consistency is required, similar to consistency provided by the local
database transactions, where all the ACID properties of a transaction are present. For
example, financial applications. Use the Saga protocol for transactions that may take a long
time to complete. You can use the Saga protocol to mitigate locking issues. The TCC protocol
fits well for applications that use a reservation model, such as airline seats or hotel rooms.
Both Saga and TCC support long running transactions. Saga is far more general, but requires
application specific actions for both completing a successful Saga and compensating a failed
Saga. Whereas, compensation in TCC is performed by deleting the reservation, and then
returning whatever was reserved to the pool of available resources.

1-1

https://pubs.opengroup.org/onlinepubs/009680699/toc.pdf
https://download.eclipse.org/microprofile/microprofile-lra-1.0-M1/microprofile-lra-spec.html
https://download.eclipse.org/microprofile/microprofile-lra-1.0-M1/microprofile-lra-spec.html

1.2 Components of MicroTx
MicroTx contains two components: the transaction coordinator and the MicroTx library.

MicroTx, a containerized microservice, runs along with your application microservices. The
following figure shows how the components of MicroTx interact with your application
microservices.

Transaction Coordinator Server

The transaction coordinator manages transactions amongst the participant services.

MicroTx supports internal memory, Oracle Database, and etcd as a data store for persistence
of transaction state.

MicroTx library

Application microservices provide the business logic and demarcate transaction boundaries.
These services participate in a distributed transaction. They use MicroTx APIs to manage their
distributed transactions.

Application developers use different parts of the MicroTx client library depending on the
following factors:

• The development framework of the microservice, such as Helidon or Node.js.

• The selected transaction protocol, such as XA, Saga, or TCC.

• Whether the application initiates a transaction or participates in the transaction.

– Transaction initiator service - These applications start and end a transaction. In the
preceding figure, Microservice 1 is the transaction initiator service and it sends a
request to MicroTx to begin the transaction.

– Transaction participant service - These applications only join the transaction. They do
not initiate the transaction. In the preceding figure, Microservice 2 and Microservice 3
are the transaction participant services that are involved in the transaction.

Chapter 1
Components of MicroTx

1-2

1.3 How MicroTx Works
Here's a typical transaction workflow when you use MicroTx. The following figure shows how
MicroTx communicates with your application microservices to handle transactions.

1. Application developers use functions present in the MicroTx library with their application
code.

2. When a microservice or client initiates a transaction, it calls functions in the MicroTx library
to start a distributed transaction.

3. MicroTx library includes headers that enable the participant services to automatically enlist
in the transaction.

4. After all the tasks associated the original request made by the initiator service are
complete, the initiator service requests the transaction coordinator to either commit or roll
back all the changes.

5. The transaction coordinator sends a call to each participant service to either commit or roll
back the changes made by the participants as part of the distributed transaction.

1.4 Use MicroTx Library with Application Code

Chapter 1
How MicroTx Works

1-3

To use MicroTx to manage the transactions in your application, you need to make a few
changes to your existing application code to integrate the functionality provided by the MicroTx
libraries.

Let's use a sample Java application to understand the changes that you, as an application
developer need to make. The sample application is a banking teller application which transfers
an amount from one department to another. The sample XA application code files are available
in the xa folder in the microtx-samples GitHub repository. The MicroTx library is already
integrated with the sample application code.

The MicroTx library for Java performs the following functions:

• Enlists the participant service with the Transaction Coordinator in the transaction.

• Injects an XADataSource object for the participant application code to use through
dependency injection, and then calls start() on the associated XAResource. Participant
microservices, those microservices called in the context of an XA transaction, must use an
XA-compliant data source. In Java this means using an XADataSource object.
The MicroTx libraries automatically inject the configured data source into the participant
services, so the application developer must add the @Inject or @Context annotation to the
application code. The application code runs the DML using this connection.

• Calls the resource managers to perform operations.

This highlighted code lines, in bold, in the following code snippet of the sample XA application,
in Java, show the changes or additions that are typically made.

package com.oracle.mtm.sample.data;
...
/**
 * Include the Transaction Manager for Microservices library files.
 */

import com.oracle.mtm.sample.Configuration;
import com.oracle.mtm.sample.entity.Account;
import oracle.trm.jta.common.TrmSQLConnection;

/**
 * Service that connects to the accounts database and provides methods to
interact with the accounts
 */
@RequestScoped
public class AccountsService implements IAccountsService {

 /**
 * The database connection injected by the Transaction Manager for
Microservices library.
 * Use this connection object to execute SQLs (DMLs) within the
application code.
 */
 @Inject
 @TrmSQLConnection
 private Connection connection;

 @Inject
 private Configuration config;
...
 @Override

Chapter 1
Use MicroTx Library with Application Code

1-4

https://github.com/oracle-samples/microtx-samples

 public boolean withdraw(String accountId, double amount) throws
SQLException {
 String query = "UPDATE accounts SET amount=amount-? where
account_id=?";
 /**
 * Use the connection object that the Transaction Manager for
Microservices library
 * injects in the application code.
 */
 PreparedStatement statement = connection.prepareStatement(query);
 statement.setDouble(1, amount);
 statement.setString(2, accountId);
 return statement.executeUpdate() > 0;
 }
...

}

The sample code has been truncated with … to improve readability. To view the entire sample
code, see the sample XA application code files that are available in the installation bundle in
the GitHub repository.

Chapter 1
Use MicroTx Library with Application Code

1-5

2
About the runme.sh Script

Use the runme.sh script file to install Transaction Manager for Microservices (MicroTx) in
runtime platform, and then quickly run sample applications.

Caution:

Run this script only in test or development environments. Do not use this script in
production environments.

• Considerations
Consider the points discussed in this section before you use the runme.sh script file to run
sample applications in your test environment.

2.1 Considerations
Consider the points discussed in this section before you use the runme.sh script file to run
sample applications in your test environment.

Required Environment Details

The runme.sh script file is a bash script, so you can run it in environments that support Bash
shell.

To run the script and sample applications, ensure that at least 6114 MB of memory is available
on your local machine.

Supported Languages

Use the runme.sh script file to run sample applications coded in the following languages:

• TypeScript or JavaScript for Node.js

• Java

Supported Platforms

Use the runme.sh script file to run sample applications in the following development
environments:

• Docker

• Minikube

• Oracle Cloud Infrastructure Container Engine for Kubernetes (OKE)

Supported Resource Manager

Before you run the XA sample application, set up an Oracle Database as resource manager for
the transaction participant services. In XA transactions, MicroTx client libraries need to access
the resource manager's client libraries.

2-1

Supported Identity Providers

You can use the following identity providers to create the authentication information.

• Oracle IDCS

• Oracle IAM

• Keycloak

• Microsoft Azure Active Directory and Active Directory

This guide provides information about creating an access token using Oracle IAM and Oracle
IDCS. See Use Oracle Identity Providers.

If you want to use Keycloak or Microsoft AD as the identity provider, refer to their product
documentation for information about setting up the identity provider and creating an access
token.

Chapter 2
Considerations

2-2

3
Prerequisites

Before you begin, download the Transaction Manager for Microservices (MicroTx) installation
bundle to your local system.

If you plan to run XA sample application, set up the resource managers for the transaction
participant services.

• Download the Installation Bundle
Perform the following steps to download the MicroTx installation bundle to your local
system:

• Clone the Sample Code Files
Clone the sample application files from the git repo to your local system.

• Set Up XA-Compliant Resource Managers
If you want to run sample applications that use the XA transaction protocol, then you must
set up XA-compliant resource managers and create tables with sample values. Skip this
step if you don't want to run sample applications that use XA.

3.1 Download the Installation Bundle
Perform the following steps to download the MicroTx installation bundle to your local system:

1. Download the MicroTx installation bundle (.zip file) from https://www.oracle.com/database/
transaction-manager-for-microservices/.

2. Unzip the MicroTx installation bundle.

unzip otmm-<version>.zip

3. Run the following command to view the list of files that are extracted.

ls -lR otmm-<version>

The following folders are available.

• lib: This folder contains the MicroTx library files. You must use these library files in your
application code to use MicroTx to manage transactions amongst your application
microservices.

• otmm: This folder contains the MicroTx image and YAML files which you can use to install
and configure MicroTx.

• console: This folder contains the image file for the MicroTx console.

3.2 Clone the Sample Code Files
Clone the sample application files from the git repo to your local system.

1. Clone the git repo from https://github.com/oracle-samples/microtx-samples.

2. View the available files and folders.

3-1

https://www.oracle.com/database/transaction-manager-for-microservices/
https://www.oracle.com/database/transaction-manager-for-microservices/
https://github.com/oracle-samples/microtx-samples

This contains the source code for sample applications for different transaction protocols: XA,
Saga, and TCC.

3.3 Set Up XA-Compliant Resource Managers
If you want to run sample applications that use the XA transaction protocol, then you must set
up XA-compliant resource managers and create tables with sample values. Skip this step if
you don't want to run sample applications that use XA.

You can use any Oracle Database. For example, Autonomous Transaction Processing (ATP)
Database instances in Oracle Cloud, an Oracle Database running inside a Kubernetes cluster,
or an on-premises database. Ensure that application, when it is deployed, can access the
database.

Only if you use an Autonomous Database instance, perform the following steps to get the
Oracle client credentials (wallet files):

1. Download the wallet from the Autonomous Database instance. See Download Client
Credentials (Wallets) in Using Oracle Autonomous Database on Shared Exadata
Infrastructure.

A ZIP file is downloaded to your local machine. Let's consider that the name of the wallet
file is Wallet_database.zip.

2. Unzip the wallet file.

unzip Wallet_database.zip

The files are extracted to a folder. Note down the location of the wallet file as you will have
to provide this later.

Create database and tables with sample values

Run SQL script files to test the sample XA applications, create database and tables with
sample values for both the department applications. The SQL script files are available in the
microtx-samples GitHub repository. Run the SQL script using a client tool with which you
connect to the database. To run the scripts, you must either be a database administrator or
have the required privileges to create and run DMLs. You'll also need to provide database
credentials to establish a connection with the database and run the SQL script.

To use the SQL script to create a database, a table, and populate it with sample values:

1. Open the department.sql file in any code editor and replace <password> with the
database administrator's password. This file is located in the xa/java/department-
helidon folder in the microtx-samples GitHub repository.

2. Run the department.sql file by connecting to Oracle Database using SQL developer or
SQL plus.
This creates a database with the name department_helidon and a table with the name
accounts. It also populates the accounts table with sample values.

3. Open the department.sql file in any code editor and replace <password> with the
database administrator's password. This file is located in the xa/java/department-spring
folder in the microtx-samples GitHub repository.

4. Run the department.sql file by connecting to Oracle Database using SQL developer or
SQL plus.

Chapter 3
Set Up XA-Compliant Resource Managers

3-2

https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/connect-download-wallet.html#GUID-B06202D2-0597-41AA-9481-3B174F75D4B1
https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/connect-download-wallet.html#GUID-B06202D2-0597-41AA-9481-3B174F75D4B1
https://github.com/oracle-samples/microtx-samples
https://github.com/oracle-samples/microtx-samples

This creates a database with the name department_spring and a table with the name
accounts. It also populates the accounts table with sample values as provided in the
following table.

Account_ID Amount

account1 1000

account2 2000

account3 3000

account4 4000

account5 5000

Chapter 3
Set Up XA-Compliant Resource Managers

3-3

4
Quick Start with Docker

You can install Docker on your local machine, and then use the runme.sh script file to install
Transaction Manager for Microservices (MicroTx) and run sample applications.

After MicroTx is installed, the transaction coordinator runs in Docker and the sample apps run
in your local machine as operating system processes.

Caution:

The instructions provided in this section are specific to test or development
environments. Do not use these instructions to set up and use MicroTx in production
environments.

The runme.sh script runs the microservices in a non-secure mode.

Note:

As you run the runme.sh script only in test or development environments, you do not
need to provide any authentication details.

The runme.sh script installs MicroTx, builds the Docker images, and then installs the sample
application. You can also run the sample applications without automating these steps using the
runme.sh script file. See Deploy Sample Applications in Transaction Manager for Microservices
Developer Guide.

• Set Up the Required Software
Before you begin, ensure that the following software is available on your local machine
where you want to run Docker.

• Run XA Sample Applications
Run the XA sample application to transfer an amount from one department to another and
to understand how you can use MicroTx to coordinate XA transactions. The MicroTx library
files are already integrated with the sample application code.

• Run Saga Sample Applications
Run the Saga sample application to book a trip and understand how you can use MicroTx
to coordinate the transactions. The MicroTx library files are already integrated with the
sample application code.

• Run TCC Sample Applications
Run the TCC sample application to book a trip and understand how you can use MicroTx
to coordinate the transactions. The MicroTx library files are already integrated with the
sample application code.

4-1

4.1 Set Up the Required Software
Before you begin, ensure that the following software is available on your local machine where
you want to run Docker.

• Docker version 20.10.x. See https://docs.docker.com/engine/install/.

• npm version 7.x or later. See https://nodejs.org/en/download/.

• Maven version 3.6 or later. See https://maven.apache.org/download.cgi.

• Java JDK version 11 or later. See https://www.oracle.com/java/technologies/downloads/.

• cURL. See https://curl.se/download.html.

• jq. See https://stedolan.github.io/jq/download/.

Additionally, ensure that ports 8080 to 8083 are free as MicroTx and sample applications use
these ports for communication.

4.2 Run XA Sample Applications
Run the XA sample application to transfer an amount from one department to another and to
understand how you can use MicroTx to coordinate XA transactions. The MicroTx library files
are already integrated with the sample application code.

The sample application demonstrates how you can develop microservices that participate in
XA transactions while using MicroTx to coordinate the transactions. When you run the Teller
application, it withdraws money from one department and deposits it to another department by
creating an XA transaction. Within the XA transaction, all actions such as withdraw and deposit
either succeed, or they all are rolled back in case of a failure of any one or more actions. For
details about the sample XA application, see About the Sample XA Application in Transaction
Manager for Microservices Developer Guide.

Ensure that you have completed the prerequisites, such as setting up the resource manager.
See Prerequisites.

To run the sample XA application using the runme.sh script file:

1. Enter the following commands in a bash shell to run the runme.sh script file.

cd installation_directory/otmm-<version>
sh runme.sh

2. If you ran the runme.sh script file earlier and you want to reuse the environment details that
you had provided earlier, type Yes.

If you use this option, then you don't need to provide details for the applications to connect
with its resource manager.

3. Type 1 to run sample applications on Docker in your local machine.

The script loads the Docker image of MicroTx, and then installs MicroTx. After completing
the installation, the script runs the transaction coordinator and displays the URL of the
transaction coordinator.

4. Type 1 to run sample applications and MicroTx in non-secure mode in your test
environment.

Chapter 4
Set Up the Required Software

4-2

https://docs.docker.com/engine/install/
https://nodejs.org/en/download/
https://maven.apache.org/download.cgi
https://www.oracle.com/java/technologies/downloads/
https://curl.se/download.html
https://stedolan.github.io/jq/download/

You may have to wait for a few seconds while the script loads the images of the sample
applications, and then installs it.

When the script displays the full path that you must set for the KUBECONFIG environment
variable, you can perform the next step.

5. Type 1 to run the sample application that uses the XA transaction protocol.

6. Provide details for the Department One application to connect with its resource manager.

a. If you use Oracle Autonomous Database as the resource manager, enter the path to
the Oracle Autonomous Database wallet that you have previously downloaded and
extracted to your local machine. For example, installation_directory/xa/java/
department-helidon/Database_Wallet.

If you are using another Oracle Database, press Enter as you don't need to provide
details of the wallet.

b. Enter the connection string to the data store in Oracle Database.

• If you are using a non-autonomous Oracle Database (a database that does not
use a credential wallet), use the following format to enter the connection string:

jdbc:oracle:thin:@<publicIP>:<portNumber>/<database unique
name>.<host domain name>

For example:

jdbc:oracle:thin:@123.213.85.123:1521/
CustDB_iad1vm.sub05031027070.customervcnwith.oraclevcn.com

• If you are using Oracle Database Cloud Service with Oracle Cloud Infrastructure,
see Create the Oracle Database Classic Cloud Service Connection String in Using
Oracle Blockchain Platform.

• If you are using Oracle Autonomous Transaction Processing, use the following
format to enter the connection string:

jdbc:oracle:thin:@tcps://<host>:<port>/<service_name>?
wallet_location=<wallet_dir>

You can find the required details, such as host, port, and service name in the
tnsnames.ora file, which is located in folder where you have extracted the wallet.

For example:

jdbc:oracle:thin:@tcps://adb.us-phoenix-1.oraclecloud.com:7777/
unique_connection_string_low.adb.oraclecloud.com?
wallet_location=Database_Wallet

c. Enter the user name to access the Oracle Database, such as SYS.

d. Enter the password for the Oracle Database user.

The script installs and runs the Department One application.

7. Provide details for the Department Two application to connect with its resource manager.

a. If you use Oracle Autonomous Database as the resource manager, enter the path to
the Oracle Autonomous Database wallet that you have previously downloaded and

Chapter 4
Run XA Sample Applications

4-3

https://docs.oracle.com/en/database/other-databases/blockchain-enterprise/21.1/user/create-rich-history-database.html#GUID-21A8D3B6-7FDB-4FCB-AD1B-78609DEB5D50

extracted to your local machine. For example, installation_directory/xa/java/
department-helidon/Database_Wallet.

If you are using another Oracle Database, press Enter as you don't need to provide
details of the wallet.

b. Enter the connection string to the data store in Oracle Database.

• If you are using a non-autonomous Oracle Database (a database that does not
use a credential wallet), use the following format to enter the connection string:

jdbc:oracle:thin:@<publicIP>:<portNumber>/<database unique
name>.<host domain name>

For example:

jdbc:oracle:thin:@123.213.85.123:1521/
CustDB_iad1vm.sub05031027070.customervcnwith.oraclevcn.com

• If you are using Oracle Database Cloud Service with Oracle Cloud Infrastructure,
see Create the Oracle Database Classic Cloud Service Connection String in Using
Oracle Blockchain Platform.

• If you are using Oracle Autonomous Transaction Processing, use the following
format to enter the connection string:

jdbc:oracle:thin:@tcps://<host>:<port>/<service_name>?
wallet_location=<wallet_dir>

You can find the required details, such as host, port, and service name in the
tnsnames.ora file, which is located in folder where you have extracted the wallet.

For example:

jdbc:oracle:thin:@tcps://adb.us-phoenix-1.oraclecloud.com:7777/
unique_connection_string_low.adb.oraclecloud.com?
wallet_location=Database_Wallet

c. Enter the user name to access the Oracle Database, such as SYS.

d. Enter the password for the Oracle Database user.

The script installs and runs the Department Two application.

8. Type 1 to run the Teller application to transfer an amount from Department One to
Department Two by creating an XA transaction.

9. Enter the account number from which you want to withdraw an amount. The sample table
contains the following account numbers: account1 to account5. If you do not enter an
account number and press enter, the default value is account1.

The account balance is displayed.

10. Enter the name of the account to which you want to deposit the amount. The sample table
contains the following account numbers: account1 to account5. If you do not enter an
account number and press enter, the default value is account2.

The account balance is displayed.

Chapter 4
Run XA Sample Applications

4-4

https://docs.oracle.com/en/database/other-databases/blockchain-enterprise/21.1/user/create-rich-history-database.html#GUID-21A8D3B6-7FDB-4FCB-AD1B-78609DEB5D50

11. Enter the amount that you want to transfer. For example, 300. If you do not enter an
amount and press enter, the default value is 100.

The account balance of both accounts after the transaction are displayed on the screen.
You can compare the earlier account balance with the current balance to ensure that the
amount has been transferred.

12. Press any key to exit.

13. Type 1 to stop running all the microservices in the sample application and uninstall it.

14. Type 1 to uninstall MicroTx. If you want use the existing installation to run other sample
applications, type 2.

What's next?

• Use the Kiali dashboard to view how the MicroTx handles the flow of requests between the
sample microservices.

• Perform distributed tracing using Jaeger to trace the entire transaction. See Perform
Distributed Tracing with Jaeger.

• Run another sample application.

• View the source files of the sample application.

• View the log files to find more details about the transactions.

• Create and run your own application using MicroTx.

4.3 Run Saga Sample Applications
Run the Saga sample application to book a trip and understand how you can use MicroTx to
coordinate the transactions. The MicroTx library files are already integrated with the sample
application code.

The sample application demonstrates how you can develop microservices that participate in
Saga transactions while using MicroTx to coordinate the transactions. When you run the
application, it makes a provisional booking by reserving a hotel room and flight ticket. Only
when you provide approval to confirm the booking, the booking of the hotel room and flight
ticket is confirmed. If you cancel the provisional booking, the hotel room and flight ticket that
was blocked is released and the booking is canceled. By default, the hotel and flight service
permits only three confirmed bookings. To enable you to test the failure scenario, the services
reject any additional booking requests that are made after three confirmed bookings. This
leads to the cancellation (compensation) of a provisionally booked hotel or flight within the trip
and the trip is not booked. For details about the sample Saga application, see About the
Sample Saga Application in Transaction Manager for Microservices Developer Guide.

To run the sample Saga application using the runme.sh script file:

1. Enter the following commands in a bash shell to run the runme.sh script file.

cd installation_directory/otmm-<version>
sh runme.sh

2. Type 1 to run sample applications on Docker in your local machine.

The script loads the Docker image of MicroTx, and then installs MicroTx. After completing
the installation, the script runs the transaction coordinator and displays the URL of the
transaction coordinator.

Chapter 4
Run Saga Sample Applications

4-5

3. Type 1 to run sample applications and MicroTx in non-secure mode in your test
environment.

You may have to wait for a few seconds while the script loads the images of the sample
applications, and then installs it.

When the script displays the full path that you must set for the KUBECONFIG environment
variable, you can perform the next step.

4. Type 2 to run the sample application that uses the Saga transaction protocol.

The script installs the sample application.

5. Type 1 to confirm that you want to run the Saga sample application, and then press Enter.

The sample application provisionally books a hotel room and a flight ticket and displays the
details of the provisional booking. In case of any issues, the provisional booking is not
made and the status displayed is Failed Trip Booking.

6. Confirm or cancel the provisional booking. Type 1 to confirm a successful provisional
booking or type 2 to cancel a provisional booking, and then press Enter.

If you type 1, your booking is confirmed and information about your confirmed booking is
displayed.

7. Press any key to exit.

8. Type 1 to stop running all the microservices in the sample application and uninstall it.

9. Type 1 to uninstall MicroTx. If you want use the existing installation to run other sample
applications, type 2.

4.4 Run TCC Sample Applications
Run the TCC sample application to book a trip and understand how you can use MicroTx to
coordinate the transactions. The MicroTx library files are already integrated with the sample
application code.

The sample TCC application implements a scenario where the travel agent microservice books
a trip, flight booking service books a flight, and the hotel booking microservice books a hotel.
The travel agent service accesses both the flight and hotel booking services. When a customer
books a flight and a hotel, the booking is reserved until either the customer completes the
payment and confirms the booking. In case of any failure, the reserved resources are canceled
and the resources are returned back to the inventory. For details about the sample TCC
application, see About the Sample TCC Application in Transaction Manager for Microservices
Developer Guide.

To run the sample TCC application using the runme.sh script file:

1. Enter the following commands in a bash shell to run the runme.sh script file.

cd installation_directory/otmm-<version>
sh runme.sh

2. Type 1 to run sample applications on Docker in your local machine.

The script loads the Docker image of MicroTx, and then installs MicroTx. After completing
the installation, the script runs the transaction coordinator and displays the URL of the
transaction coordinator.

3. Type 1 to run sample applications and MicroTx in non-secure mode in your test
environment.

Chapter 4
Run TCC Sample Applications

4-6

You may have to wait for a few seconds while the script loads the images of the sample
applications, and then installs it.

When the script displays the full path that you must set for the KUBECONFIG environment
variable, you can perform the next step.

4. Type 3 to run the sample application that uses the TCC transaction protocol.

5. Type 1 to run Java applications or type 2 to run Node.js applications.

The script installs and then runs the three sample microservices: Flight booking, Hotel
booking, and Travel agent.

6. Type y to confirm that you want to run the TCC sample application, and then press Enter.

The sample application reserves a hotel room and a flight ticket and displays the
reservation details.

7. Confirm or cancel the booking. Type y to confirm the booking or type n to cancel the
booking, and then press Enter.

If you type y, the booking is confirmed and details about the confirmed booking are
displayed.

If you type n, the Travel Agent microservice cancels the reserved resources and returns
the resources back to the inventory.

8. Press any key to exit.

9. Type 1 to stop running all the microservices in the sample application and uninstall it.

10. Type 1 to uninstall MicroTx. If you want use the existing installation to run other sample
applications, type 2.

What's next?

• Use the Kiali dashboard to view how the MicroTx handles the flow of requests between the
sample microservices.

• Perform distributed tracing using Jaeger to trace the entire transaction. See Perform
Distributed Tracing with Jaeger.

• Run another sample application.

• View the source files of the sample application.

• View the log files to find more details about the transactions.

• Create and run your own application using MicroTx.

Chapter 4
Run TCC Sample Applications

4-7

5
Quick Start with Minikube

Follow the instructions in this section to configure Minikube, install Transaction Manager for
Microservices (MicroTx), and then run a sample application.

Caution:

The instructions provided in this section are specific to test or development
environments. Do not use these instructions to set up and use MicroTx in production
environments.

The runme.sh script runs the microservices in a non-secure mode.

Note:

As you run the runme.sh script only in test or development environments, you do not
need to provide any authentication details.

The runme.sh script installs MicroTx, builds the Docker images, and then installs the sample
application. You can also run the sample applications without automating these steps using the
runme.sh script file. See Deploy Sample Applications in Transaction Manager for Microservices
Developer Guide.

• Set Up the Required Software
Before you begin, ensure that the following software is available on your local system.

• Run XA Sample Applications
Run the XA sample application to transfer an amount from one department to another and
to understand how you can use MicroTx to coordinate XA transactions. The MicroTx library
files are already integrated with the sample application code.

• Run Saga Sample Applications
Run the Saga sample application to book a trip and understand how you can use MicroTx
to coordinate the transactions. The MicroTx library files are already integrated with the
sample application code.

• Run TCC Sample Applications
Run the TCC sample application to book a trip and understand how you can use MicroTx
to coordinate the transactions. The MicroTx library files are already integrated with the
sample application code.

5.1 Set Up the Required Software
Before you begin, ensure that the following software is available on your local system.

1. Install Docker version 20.10.x. See https://docs.docker.com/engine/install/.

2. After installing Docker, install Minikube. See https://minikube.sigs.k8s.io/docs/start/.

5-1

https://docs.docker.com/engine/install/
https://minikube.sigs.k8s.io/docs/start/

3. Run the following command to download Istio.

curl -sL https://istio.io/downloadIstioctl | sh -

When you run the runme.sh script, it installs Istio.

4. Add the istioctl client tool to the PATH environment variable of your local system. The
following example specifies the a sample value. Provide the path based on your
environment.

export PATH=$HOME/.istioctl/bin:$PATH

5. Install the following required software.

• npm version 7.x or later. See https://nodejs.org/en/download/.

• Maven version 3.6 or later. See https://maven.apache.org/download.cgi.

• Java JDK version 11 or later. See https://www.oracle.com/java/technologies/
downloads/.

• cURL. See https://curl.se/download.html.

• jq. See https://stedolan.github.io/jq/download/.

6. Install and configure Kubernetes command-line interface (Kubectl), 1.21.x or later versions,
to work with your Kubernetes cluster. See https://kubernetes.io/docs/tasks/tools/.

Use Kubectl to create and manage your deployments. Kubectl uses the Kubernetes APIs
to interact with the cluster.

7. Install the latest version of Helm 3.x on your local machine. For more information, see
https://helm.sh/docs/intro/install/.

Use Helm to make deployments easier as you can run a single command to install
applications and resources into Kubernetes clusters. Helm interacts with the Kubernetes
API server to install, upgrade, query, and remove Kubernetes resources.

8. Ensure that Java Development Kit (JDK) is installed on your local system, and then run the
following commands in the Bash shell to set the following environment variables.

export JAVA_HOME=jdk-install-dir
export PATH=$JAVA_HOME/bin:$PATH

5.2 Run XA Sample Applications
Run the XA sample application to transfer an amount from one department to another and to
understand how you can use MicroTx to coordinate XA transactions. The MicroTx library files
are already integrated with the sample application code.

The sample application demonstrates how you can develop microservices that participate in
XA transactions while using MicroTx to coordinate the transactions. When you run the Teller
application, it withdraws money from one department and deposits it to another department by
creating an XA transaction. Within the XA transaction, all actions such as withdraw and deposit
either succeed, or they all are rolled back in case of a failure of any one or more actions. For
details about the sample XA application, see About the Sample XA Application in Transaction
Manager for Microservices Developer Guide.

Before you begin, complete the following tasks:

Chapter 5
Run XA Sample Applications

5-2

https://nodejs.org/en/download/
https://maven.apache.org/download.cgi
https://www.oracle.com/java/technologies/downloads/
https://www.oracle.com/java/technologies/downloads/
https://curl.se/download.html
https://stedolan.github.io/jq/download/
https://kubernetes.io/docs/tasks/tools/
https://helm.sh/docs/intro/install/

• Complete the prerequisites and set up the required software. See Prerequisites.

• Set up resource managers for the two transaction participant services to run XA
applications. Set up Oracle Database as the resource manager. See Set Up XA-Compliant
Resource Managers.

• Note down the details required to connect to the database, such as credentials and
connection string.

To run the sample XA application using the runme.sh script file:

1. Enter the following commands in a bash shell to run the runme.sh script file.

cd installation_directory/otmm-<version>
sh runme.sh

2. Type 2 to run sample applications in the Minikube environment.

The script sets up Minikube, configures Istio service mesh, loads the Docker image of
MicroTx, and then installs MicroTx. After completing the installation, the script runs the
transaction coordinator and provides the URL of the transaction coordinator.

3. Type 1 to run sample applications and MicroTx in non-secure mode in your test
environment.

You may have to wait for a few seconds while the script loads the images of the sample
applications, and then installs it.

When the script displays the full path that you must set for the KUBECONFIG environment
variable, you can perform the next step.

4. Copy the command returned by the script, and then run the command in a new terminal.
Set KUBECONFIG to configure Kubectl to run commands on Minikube.

The script displays the actual command which you can copy and run as it is in a new
terminal. The following is a sample command. The actual command that the script returns
depends on the value of the $HOME variable.

export KUBECONFIG=$HOME/.kube/minikube

5. Run the following command in a new terminal to start a tunnel between Minikube and the
Istio ingress gateway.

$ minikube tunnel

If prompted, enter the password to access your local system, and then press any key to
continue running the script.

6. Type 1 to run the sample application that uses the XA transaction protocol.

7. Provide details for the Department One application to connect with its resource manager.

a. If you use Oracle Autonomous Database as the resource manager, enter the path to
the Oracle Autonomous Database wallet that you have previously downloaded and
extracted to your local machine. For example, installation_directory/xa/java/
department-helidon/Database_Wallet.

If you are using another Oracle Database, press Enter as you don't need to provide
details of the wallet.

b. Enter the connection string to the data store in Oracle Database.

Chapter 5
Run XA Sample Applications

5-3

• If you are using a non-autonomous Oracle Database (a database that does not
use a credential wallet), use the following format to enter the connection string:

jdbc:oracle:thin:@<publicIP>:<portNumber>/<database unique
name>.<host domain name>

For example:

jdbc:oracle:thin:@123.213.85.123:1521/
CustDB_iad1vm.sub05031027070.customervcnwith.oraclevcn.com

• If you are using Oracle Database Cloud Service with Oracle Cloud Infrastructure,
see Create the Oracle Database Classic Cloud Service Connection String in Using
Oracle Blockchain Platform.

• If you are using Oracle Autonomous Transaction Processing, use the following
format to enter the connection string:

jdbc:oracle:thin:@tcps://<host>:<port>/<service_name>?
wallet_location=<wallet_dir>

You can find the required details, such as host, port, and service name in the
tnsnames.ora file, which is located in folder where you have extracted the wallet.

For example:

jdbc:oracle:thin:@tcps://adb.us-phoenix-1.oraclecloud.com:7777/
unique_connection_string_low.adb.oraclecloud.com?
wallet_location=Database_Wallet

c. Enter the user name to access the Oracle Database, such as SYS.

d. Enter the password for the Oracle Database user.

The script installs and runs the Department One application.

8. Provide details for the Department Two application to connect with its resource manager.

a. If you use Oracle Autonomous Database as the resource manager, enter the path to
the Oracle Autonomous Database wallet that you have previously downloaded and
extracted to your local machine. For example, installation_directory/xa/java/
department-helidon/Database_Wallet.

If you are using another Oracle Database, press Enter as you don't need to provide
details of the wallet.

b. Enter the connection string to the data store in Oracle Database.

• If you are using a non-autonomous Oracle Database (a database that does not
use a credential wallet), use the following format to enter the connection string:

jdbc:oracle:thin:@<publicIP>:<portNumber>/<database unique
name>.<host domain name>

Chapter 5
Run XA Sample Applications

5-4

https://docs.oracle.com/en/database/other-databases/blockchain-enterprise/21.1/user/create-rich-history-database.html#GUID-21A8D3B6-7FDB-4FCB-AD1B-78609DEB5D50

For example:

jdbc:oracle:thin:@123.213.85.123:1521/
CustDB_iad1vm.sub05031027070.customervcnwith.oraclevcn.com

• If you are using Oracle Database Cloud Service with Oracle Cloud Infrastructure,
see Create the Oracle Database Classic Cloud Service Connection String in Using
Oracle Blockchain Platform.

• If you are using Oracle Autonomous Transaction Processing, use the following
format to enter the connection string:

jdbc:oracle:thin:@tcps://<host>:<port>/<service_name>?
wallet_location=<wallet_dir>

You can find the required details, such as host, port, and service name in the
tnsnames.ora file, which is located in folder where you have extracted the wallet.

For example:

jdbc:oracle:thin:@tcps://adb.us-phoenix-1.oraclecloud.com:7777/
unique_connection_string_low.adb.oraclecloud.com?
wallet_location=Database_Wallet

c. Enter the user name to access the Oracle Database, such as SYS.

d. Enter the password for the Oracle Database user.

The script installs and runs the Department Two application.

9. Type 1 to run the Teller application to transfer an amount from Department One to
Department Two by creating an XA transaction.

10. Enter the account number from which you want to withdraw an amount. The sample table
contains the following account numbers: account1 to account5. If you do not enter an
account number and press enter, the default value is account1.

The account balance is displayed.

11. Enter the name of the account to which you want to deposit the amount. The sample table
contains the following account numbers: account1 to account5. If you do not enter an
account number and press enter, the default value is account2.

The account balance is displayed.

12. Enter the amount that you want to transfer. For example, 300. If you do not enter an
amount and press enter, the default value is 100.

The account balance of both accounts after the transaction are displayed on the screen.
You can compare the earlier account balance with the current balance to ensure that the
amount has been transferred.

13. Press any key to exit.

14. Type 1 to stop running all the microservices in the sample application and uninstall it.

15. Type 1 to uninstall MicroTx. If you want use the existing installation to run other sample
applications, type 2.

16. Type 1 to uninstall Istio. If you want use the existing installation to run other sample
applications, type 2.

What's next?

Chapter 5
Run XA Sample Applications

5-5

https://docs.oracle.com/en/database/other-databases/blockchain-enterprise/21.1/user/create-rich-history-database.html#GUID-21A8D3B6-7FDB-4FCB-AD1B-78609DEB5D50

• Use the Kiali dashboard to view how the MicroTx handles the flow of requests between the
sample microservices.

• Perform distributed tracing using Jaeger to trace the entire transaction. See Perform
Distributed Tracing with Jaeger.

• Run another sample application.

• View the source files of the sample application.

• View the log files to find more details about the transactions.

• Create and run your own application using MicroTx.

5.3 Run Saga Sample Applications
Run the Saga sample application to book a trip and understand how you can use MicroTx to
coordinate the transactions. The MicroTx library files are already integrated with the sample
application code.

The sample application demonstrates how you can develop microservices that participate in
Saga transactions while using MicroTx to coordinate the transactions. When you run the
application, it makes a provisional booking by reserving a hotel room and flight ticket. Only
when you provide approval to confirm the booking, the booking of the hotel room and flight
ticket is confirmed. If you cancel the provisional booking, the hotel room and flight ticket that
was blocked is released and the booking is canceled. By default, the hotel and flight service
permits only three confirmed bookings. To enable you to test the failure scenario, the services
reject any additional booking requests that are made after three confirmed bookings. This
leads to the cancellation (compensation) of a provisionally booked hotel or flight within the trip
and the trip is not booked. For details about the sample Saga application, see About the
Sample Saga Application in Transaction Manager for Microservices Developer Guide.

To run the sample Saga application using the runme.sh script file:

1. Enter the following commands in a bash shell to run the runme.sh script file.

cd installation_directory/otmm-<version>
sh runme.sh

2. Type 2 to run sample applications in the Minikube environment.

The script sets up Minikube, configures Istio service mesh, loads the Docker image of
MicroTx, and then installs MicroTx. After completing the installation, the script runs the
transaction coordinator and provides the URL of the transaction coordinator.

3. Type 1 to run sample applications and MicroTx in non-secure mode in your test
environment.

You may have to wait for a few seconds while the script loads the images of the sample
applications, and then installs it.

When the script displays the full path that you must set for the KUBECONFIG environment
variable, you can perform the next step.

4. Copy the command returned by the script, and then run the command in a new terminal.
Set KUBECONFIG to configure Kubectl to run commands on Minikube.

Chapter 5
Run Saga Sample Applications

5-6

The script displays the actual command which you can copy and run as it is in a new
terminal. The following is a sample command. The actual command that the script returns
depends on the value of the $HOME variable.

export KUBECONFIG=$HOME/.kube/minikube

5. Run the following command in a new terminal to start a tunnel between Minikube and the
Istio ingress gateway.

$ minikube tunnel

If prompted, enter the password to access your local system, and then press any key to
continue running the script.

6. Type 2 to run the sample application that uses the Saga transaction protocol.

The script installs the sample application.

7. Type 1 to confirm that you want to run the Saga sample application, and then press Enter.

The sample application provisionally books a hotel room and a flight ticket and displays the
details of the provisional booking. In case of any issues, the provisional booking is not
made and the status displayed is Failed Trip Booking.

8. Confirm or cancel the provisional booking. Type 1 to confirm a successful provisional
booking or type 2 to cancel a provisional booking, and then press Enter.

If you type 1, your booking is confirmed and information about your confirmed booking is
displayed.

9. Press any key to exit.

10. Type 1 to stop running all the microservices in the sample application and uninstall it.

11. Type 1 to uninstall MicroTx. If you want use the existing installation to run other sample
applications, type 2.

12. Type 1 to uninstall Istio. If you want use the existing installation to run other sample
applications, type 2.

What's next?

• Use the Kiali dashboard to view how the MicroTx handles the flow of requests between the
sample microservices.

• Perform distributed tracing using Jaeger to trace the entire transaction. See Perform
Distributed Tracing with Jaeger.

• Run another sample application.

• View the source files of the sample application.

• View the log files to find more details about the transactions.

• Create and run your own application using MicroTx.

Chapter 5
Run Saga Sample Applications

5-7

5.4 Run TCC Sample Applications
Run the TCC sample application to book a trip and understand how you can use MicroTx to
coordinate the transactions. The MicroTx library files are already integrated with the sample
application code.

The sample TCC application implements a scenario where the travel agent microservice books
a trip, flight booking service books a flight, and the hotel booking microservice books a hotel.
The travel agent service accesses both the flight and hotel booking services. When a customer
books a flight and a hotel, the booking is reserved until either the customer completes the
payment and confirms the booking. In case of any failure, the reserved resources are canceled
and the resources are returned back to the inventory. For details about the sample TCC
application, see About the Sample TCC Application in Transaction Manager for Microservices
Developer Guide.

To run the sample TCC application using the runme.sh script file:

1. Enter the following commands in a bash shell to run the runme.sh script file.

cd installation_directory/otmm-<version>
sh runme.sh

2. Type 2 to run sample applications in the Minikube environment.

The script sets up Minikube, configures Istio service mesh, loads the Docker image of
MicroTx, and then installs MicroTx. After completing the installation, the script runs the
transaction coordinator and provides the URL of the transaction coordinator.

3. Type 1 to run sample applications and MicroTx in non-secure mode in your test
environment.

You may have to wait for a few seconds while the script loads the images of the sample
applications, and then installs it.

When the script displays the full path that you must set for the KUBECONFIG environment
variable, you can perform the next step.

4. Copy the command returned by the script, and then run the command in a new terminal.
Set KUBECONFIG to configure Kubectl to run commands on Minikube.

The script displays the actual command which you can copy and run as it is in a new
terminal. The following is a sample command. The actual command that the script returns
depends on the value of the $HOME variable.

export KUBECONFIG=$HOME/.kube/minikube

5. Run the following command in a new terminal to start a tunnel between Minikube and the
Istio ingress gateway.

$ minikube tunnel

If prompted, enter the password to access your local system, and then press any key to
continue running the script.

6. Type 3 to run the sample application that uses the TCC transaction protocol.

7. Type 1 to run Java applications or type 2 to run Node.js applications.

Chapter 5
Run TCC Sample Applications

5-8

The script installs and then runs the three sample microservices: Flight booking, Hotel
booking, and Travel agent.

8. Type y to confirm that you want to run the TCC sample application, and then press Enter.

The sample application reserves a hotel room and a flight ticket and displays the
reservation details.

9. Confirm or cancel the booking. Type y to confirm the booking or type n to cancel the
booking, and then press Enter.

If you type y, the booking is confirmed and details about the confirmed booking are
displayed.

If you type n, the Travel Agent microservice cancels the reserved resources and returns
the resources back to the inventory.

10. Press any key to exit.

11. Type 1 to stop running all the microservices in the sample application and uninstall it.

12. Type 1 to uninstall MicroTx. If you want use the existing installation to run other sample
applications, type 2.

13. Type 1 to uninstall Istio. If you want use the existing installation to run other sample
applications, type 2.

What's next?

• Use the Kiali dashboard to view how the MicroTx handles the flow of requests between the
sample microservices.

• Perform distributed tracing using Jaeger to trace the entire transaction. See Perform
Distributed Tracing with Jaeger.

• Run another sample application.

• View the source files of the sample application.

• View the log files to find more details about the transactions.

• Create and run your own application using MicroTx.

Chapter 5
Run TCC Sample Applications

5-9

6
Quick Start with OKE

Follow the instructions in this section to install Transaction Manager for Microservices
(MicroTx) in Oracle Container Engine for Kubernetes (OKE) and run a sample application.

The script deploys the sample applications on a single node in the Kubernetes cluster on which
you have deployed MicroTx.

In the test environment, create at least one node in the Kubernetes cluster to host MicroTx.
MicroTx supports Kubernetes 1.21.x or later versions.

The runme.sh script installs MicroTx, builds the Docker images, and then installs the sample
application. You can also run the sample applications without automating these steps using the
runme.sh script file. See Deploy Sample Applications in Transaction Manager for Microservices
Developer Guide.

• Set Up the Required Software
You must complete the following tasks before you begin running the sample applications in
OKE.

• Run XA Sample Applications
Run the XA sample application to transfer an amount from one department to another and
to understand how you can use MicroTx to coordinate XA transactions. The MicroTx library
files are already integrated with the sample application code.

• Run Saga Sample Applications
Run the Saga sample application to book a trip and understand how you can use MicroTx
to coordinate the transactions. The MicroTx library files are already integrated with the
sample application code.

• Run TCC Sample Applications
Run the TCC sample application to book a trip and understand how you can use MicroTx
to coordinate the transactions. The MicroTx library files are already integrated with the
sample application code.

6.1 Set Up the Required Software
You must complete the following tasks before you begin running the sample applications in
OKE.

1. Run the following command to download Istio.

curl -sL https://istio.io/downloadIstioctl | sh -

When you run the runme.sh script, it installs Istio.

2. Add the istioctl client tool to the PATH environment variable of your local system. The
following example specifies the a sample value. Provide the path based on your
environment.

export PATH=$HOME/.istioctl/bin:$PATH

6-1

3. Install the following required software.

• npm version 7.x or later. See https://nodejs.org/en/download/.

• Maven version 3.6 or later. See https://maven.apache.org/download.cgi.

• Java JDK version 11 or later. See https://www.oracle.com/java/technologies/
downloads/.

• cURL. See https://curl.se/download.html.

• jq. See https://stedolan.github.io/jq/download/.

• OpenSSL. See https://www.openssl.org/.

4. Install and configure Kubernetes command-line interface (Kubectl), 1.21.x or later versions,
to work with your Kubernetes cluster. See https://kubernetes.io/docs/tasks/tools/.
Use Kubectl to create and manage your deployments. Kubectl uses the Kubernetes APIs
to interact with the cluster.

5. Install the latest version of Helm 3.x on your local machine. See https://helm.sh/docs/intro/
install/.

6. Install Oracle Cloud Infrastructure (OCI) CLI. Ensure that OCI CLI is configured to connect
to the Kubernetes cluster. See https://docs.oracle.com/en-us/iaas/Content/API/SDKDocs/
cliinstall.htm.

7. Create a Kubernetes Cluster with OKE.

a. Log in to the Oracle OCI cloud console. See https://www.oracle.com/in/cloud/sign-
in.html.

b. Create a Kubernetes cluster in the OKE environment. See Quick Create Workflow to
Create a Cluster in Oracle Cloud Infrastructure documentation.

c. Set up local access to the Kubernetes cluster that you have created so that you can
access your OKE cluster environment from your local machine. See Setting Up Local
Access to Clusters in Oracle Cloud Infrastructure documentation.

8. Create an access token. To create an access token using Oracle IAM and Oracle IDCS,
see Use Oracle Identity Providers and Create an Access Token. If you want to use
Keycloak or Microsoft AD as the identity provider, refer to their product documentation for
information about setting up the identity provider and creating an access token.

9. Set up resource managers for the two transaction participant services to run the sample
XA application. Set up Oracle Database as the resource manager. See Set Up XA-
Compliant Resource Managers.

10. Ensure that Java Development Kit (JDK) is installed on your local system, and then run the
following commands in the Bash shell to set the following environment variables.

export JAVA_HOME=jdk-install-dir
export PATH=$JAVA_HOME/bin:$PATH

The JDK contains keytool, a utility to create and manage certificates. The runme.sh script
runs the keytool utility to generate a certificate to enable TLS to access MicroTx.

11. Ensure that you have sudo privileges to run commands in the Bash shell.

• Use Oracle Identity Providers
You can use Oracle Identity Cloud Service (IDCS) or Oracle IAM as an identity provider to
manage access to your application.

Chapter 6
Set Up the Required Software

6-2

https://nodejs.org/en/download/
https://maven.apache.org/download.cgi
https://www.oracle.com/java/technologies/downloads/
https://www.oracle.com/java/technologies/downloads/
https://curl.se/download.html
https://stedolan.github.io/jq/download/
https://www.openssl.org/
https://kubernetes.io/docs/tasks/tools/
https://helm.sh/docs/intro/install/
https://helm.sh/docs/intro/install/
https://docs.oracle.com/en-us/iaas/Content/API/SDKDocs/cliinstall.htm
https://docs.oracle.com/en-us/iaas/Content/API/SDKDocs/cliinstall.htm
https://www.oracle.com/in/cloud/sign-in.html
https://www.oracle.com/in/cloud/sign-in.html
https://docs.oracle.com/iaas/Content/ContEng/Tasks/contengcreatingclusterusingoke_topic-Using_the_Console_to_create_a_Quick_Cluster_with_Default_Settings.htm
https://docs.oracle.com/iaas/Content/ContEng/Tasks/contengcreatingclusterusingoke_topic-Using_the_Console_to_create_a_Quick_Cluster_with_Default_Settings.htm
https://docs.oracle.com/iaas/Content/ContEng/Tasks/contengdownloadkubeconfigfile.htm#localdownload
https://docs.oracle.com/iaas/Content/ContEng/Tasks/contengdownloadkubeconfigfile.htm#localdownload

• Create an Access Token
This topic provides details to create an access token when you use Oracle IDCS or Oracle
IAM as the identity provider.

6.1.1 Use Oracle Identity Providers
You can use Oracle Identity Cloud Service (IDCS) or Oracle IAM as an identity provider to
manage access to your application.

If you want to use Keycloak or Microsoft AD as the identity provider, refer to their product
documentation for information about setting up the identity provider and creating an access
token.

Oracle Cloud Infrastructure previously used Oracle IDCS as the identity provider. Now, Oracle
Cloud Infrastructure uses Oracle IAM as the identity provider.

To identify if your Oracle Cloud Infrastructure tenancy uses Oracle IDCS or Oracle IAM:

1. Log in to the Oracle Cloud Infrastructure console.

2. Open the navigation menu and click Identity & Security.

• Under Identity, if you see Users and Groups, your tenancy has not been migrated to
Oracle IAM. Your tenancy uses Oracle IDCS.

• Under Identity, if you see Domains, your tenancy has been migrated to Oracle IAM.

Based on whether your tenancy uses Oracle IDCS or Oracle IAM, you can use the relevant
information to create a confidential application and activate it.

• Use Oracle IAM as Identity Provider
You can use Oracle IAM as identity provider to manage access to your application.

• Use Oracle IDCS as Identity Provider
You can use Oracle IDCS as identity provider to manage access to your application.

6.1.1.1 Use Oracle IAM as Identity Provider
You can use Oracle IAM as identity provider to manage access to your application.

1. In the Oracle Cloud Infrastructure console, add your application as a confidential
application. See Adding a Confidential Application in Oracle Cloud Infrastructure
documentation.

Chapter 6
Set Up the Required Software

6-3

https://cloud.oracle.com/
https://docs.oracle.com/en-us/iaas/Content/Identity/applications/overview.htm#add-confidential-application

While adding a confidential application, perform the following tasks:

a. On the Configure OAuth pane, under Resource server configuration, click Skip for
later.

b. On the Configure OAuth pane, click Configure this application as a client now,
and then select the following options:

• Resource owner

• Client credentials

• JWT assertion

• Refresh token

• Authorization code

• Allow HTTP URLs: Optional. Select this option only if you want to add a redirect
URL without HTTPS. If you don't select this option, only HTTPS URLs are
supported.

• Add Redirect URL: Enter the application URL where the user is redirected after
authentication.

c. Skip web tier policy configuration.

The application is created.

2. Click Activate to activate the application.

3. Under General Information, note down the values for Client ID and Client secret.

4. Click Users, and then assign users to the application. See Assigning Users to Custom
Applications in Oracle Cloud Infrastructure documentation.

5. Open the navigation menu and click Identity & Security. Under Identity, click Domains.
Select the identity domain you want to work in.

The Domain information tab of the identity domain is displayed.

6. From this tab, copy the Domain URL. For example, https://idcs-
a83e4de370ea4db1b8c703a0b742ce74.identity.oraclecloud.com. You'll need this
information while running the Discovery URL.

Chapter 6
Set Up the Required Software

6-4

https://docs.oracle.com/en-us/iaas/Content/Identity/applications/overview.htm#assign-users-custom-applications
https://docs.oracle.com/en-us/iaas/Content/Identity/applications/overview.htm#assign-users-custom-applications

7. Enable client access for the signing certificate. By default, access is restricted to only the
signed-in users. To access this certificate in Docker, Kubernetes, and Istio, you must
enable client access.

a. Select the identity domain you want to work in and click Settings and then Domain
settings.

b. Turn on the switch under Access Signing Certificate to enable clients to access the
tenant signing certificate without logging in to IAM.

c. Click Save to save the default settings.

d. To check if you can access the certificate without logging in, type the following link in a
new browser window.

https://<yourtenant>.identity.oraclecloud.com/admin/v1/SigningCert/jwk

Where, <yourtenant> are the details of your Oracle Cloud Infrastructure tenancy.

You should be able to open the link without logging in to Oracle Cloud Infrastructure.

6.1.1.2 Use Oracle IDCS as Identity Provider
You can use Oracle IDCS as identity provider to manage access to your application.

1. In the Oracle Cloud Infrastructure console, add your application as a confidential
application. See Adding a Confidential Application in Administering Oracle Identity Cloud
Service.

While adding a confidential application, perform the following tasks:

a. On the Add Confidential Application wizard's Client page, click Configure this
application as a client now.

b. In the Authorization section, select the following options:

• Resource owner

• Client credentials

• JWT assertion

• Refresh token

• Authorization code

• Redirect URL: Enter the application URL where the user is redirected after
authentication.

c. Skip the next steps. Use the default selections, and then click Finish. The application
has been added in a deactivated state.

d. Record the Client ID and Client Secret that appear in the Application Added dialog
box. You will need to provide this information later.

e. Click Close.
The new application's details page is displayed.

f. At the top of the page, to the right of the application name, click Activate to activate
the application.

g. In the Activate Application? dialog box, click Activate Application.

2. Click Users, and then assign users to the application. See Assign Applications to the User
Account in Administering Oracle Identity Cloud Service.

Chapter 6
Set Up the Required Software

6-5

https://docs.oracle.com/en/cloud/paas/identity-cloud/uaids/add-confidential-application.html
https://docs.oracle.com/en/cloud/paas/identity-cloud/uaids/assign-applications-user-account.html
https://docs.oracle.com/en/cloud/paas/identity-cloud/uaids/assign-applications-user-account.html

3. Enable client access for the signing certificate. By default, access is restricted to only the
signed-in users. To allow clients to access the tenant signing certificate and the SAML
metadata without logging in to Oracle Identity Cloud Service, perform the following steps.

a. In the Identity Cloud Service console, expand the Navigation Drawer, click Settings,
and then click Default Settings.

b. Turn on the Access Signing Certificate option.

c. Click Save to save the default settings.

6.1.2 Create an Access Token
This topic provides details to create an access token when you use Oracle IDCS or Oracle IAM
as the identity provider.

If you want to use Keycloak or Microsoft AD as the identity provider, refer to their product
documentation for information about setting up the identity provider and creating an access
token.

API calls to the service require a valid authentication token. Create an access token which you
can specify in subsequent API calls to the service. In addition to the access token, you can
also specify the refresh token in subsequent API calls to the service. MicroTx uses the refresh
token to refresh an expired access token.

Before you begin, ensure that you have set up your identity provider and noted down the
values for client ID, client secret, and the domain URL.

1. Launch a terminal and enter the following command.

echo -n "clientid:clientsecret" | base64 -w 0

Where, replace clientid:clientsecret with the values in your environment. -w 0 is
added for Linux to the command to remove line breaks.

The base64 encoded value of the client ID and client secret is returned. Note down this
value as you will need to provide it later.

Based on your environment, you can use any base64 client to encode the
clientid:clientsecret.

2. Copy the value that is returned. You'll have to provide this value every time you want to
create an authentication token.

3. Get an authentication token using the base64-encoded value, as shown in the following
cURL command example. Run one of the following commands based on whether you want
to generate only the access token or the refresh token as well.

• The following command creates the access token.

Command syntax

curl -i
-H "Authorization:Basic {base64 encoded value of clientid:clientsecret}"
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
--request POST https://domain-url/oauth2/v1/token
-d
"grant_type=password&username=username&password&scope=urn:opc:idm:__mysc
opes__"

Chapter 6
Set Up the Required Software

6-6

Example

curl -i
-H "Authorization:Basic ZWY1N2E1OWUyZjY..."
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
--request POST https://idcs-
a83e4de370ea4db1b8c703a0b742ce74.identity.oraclecloud.com/oauth2/v1/
token
-d
"grant_type=password&username=acme@example.com&password&scope=urn:opc:id
m:__myscopes__"

• The following command creates the access token and the refresh token.

Command syntax

curl -i
-H "Authorization:Basic {base64 encoded value of clientid:clientsecret}"
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
--request POST https://domain-url/oauth2/v1/token
-d
"grant_type=password&scope=urn:opc:idm:__myscopes__+offline_access&usern
ame=username&password=password"

Example

curl -i
-H "Authorization:Basic ZWY1N2E1OWUyZjY..."
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
--request POST https://idcs-
a83e4de370ea4db1b8c703a0b742ce74.identity.oraclecloud.com/oauth2/v1/
token
-d
"grant_type=password&scope=urn:opc:idm:__myscopes__+offline_access&usern
ame=acme@example.com&password=password"

4. Copy the access_token value from the response as shown in the following example.

Example output

{
 "access_token":"eyJ4Lm...",
 "expires_in": 300,
 "refresh_expires_in": 1800,
 "refresh_token": "ey5Gkr...",
 "token_type": "Bearer",
 "not-before-policy": 0,
 "session_state": "c966d...",
 "scope": "profile email"
}

The example response has been truncated with ellipses (...) for readability.

Make sure to copy only the actual token, which is the access_token and refresh_token
values between the quotation marks.

Chapter 6
Set Up the Required Software

6-7

5. Store the authentication token and refresh tokens in environment variables, as shown in
the following example for a Linux host.

export TOKEN="eyJ4Lm..."
export REFRESH_TOKEN="ey5Gkr..."

6. Store the authentication cookie in an environment variable, as shown in the following
example for a Linux host.

export OTMM_COOKIE="eyJh...x_THw"

The example value has been truncated with ellipses (...) for readability.

After you obtain the OAuth 2.0 tokens, use the tokens in the authorization and refresh-
token headers while making subsequent API calls to the service.

6.2 Run XA Sample Applications
Run the XA sample application to transfer an amount from one department to another and to
understand how you can use MicroTx to coordinate XA transactions. The MicroTx library files
are already integrated with the sample application code.

The sample application demonstrates how you can develop microservices that participate in
XA transactions while using MicroTx to coordinate the transactions. When you run the Teller
application, it withdraws money from one department and deposits it to another department by
creating an XA transaction. Within the XA transaction, all actions such as withdraw and deposit
either succeed, or they all are rolled back in case of a failure of any one or more actions. For
details about the sample XA application, see About the Sample XA Application in Transaction
Manager for Microservices Developer Guide.

Before you begin, note down the following information:

• Name of the Oracle Cloud Infrastructure Registry to which you want the script to push the
Docker images of the sample applications.

• Details to connect to the database, such as credentials and connection string.

• Complete the prerequisites and set up the required software. See Prerequisites.

To run the sample XA application using the runme.sh script file:

1. Enter the following commands in a bash shell to run the runme.sh script file.

cd installation_directory/otmm-<version>
sh runme.sh

2. Type 3 to run sample applications in the OKE environment.

The script installs and configures Istio, and then prints the URL to access the Istio ingress
gateway.

3. You can deploy observability consoles, such as Kiali and Jaeger, to track and trace
distributed transactions in MicroTx. If these consoles are already deployed in the Istio
service mesh, the script skips this step.

a. Type 1 to deploy the consoles.

b. Type 1 to confirm that you want to deploy Kiali.

Chapter 6
Run XA Sample Applications

6-8

Kiali is deployed, along with the prerequisites such as Prometheus, and then the Kiali
dashboard is displayed in the default browser.

c. Type 1 to confirm that you want to deploy Jaeger.
Jaeger is deployed, and then the Jaeger dashboard is displayed in the default browser.

Kiali and Jaeger dashboards are displayed in the default browser only if you are
running the runme.sh script file on a system with graphical user interface. If you are
running the runme.sh script on a remote system and you have connected through a
console or terminal, then you must set up port forwarding to view the dashboards from
your system.

4. Provide the following information to enable the script to create a self-signed certificate. A
certificate is required to create a secure connection to access MicroTx using TLS.

a. Enter the password to access the Bash shell with sudo privileges.

b. Enter the password to access the Java KeyStore.

The script accesses the KeyStore and generates a self-signed certificate.

c. Type 1 to confirm that you trust the certificate.

d. Re-enter the password to access the Java KeyStore.

The script adds the certificate to the KeyStore.

5. Specify the name of the Oracle Cloud Infrastructure Registry in the format <region-
key>.ocir.io.

For example, iad.ocir.io. For information about region keys, see Regions and
Availability Domains in Oracle Cloud Infrastructure documentation.

6. Specify the name of the repository to which you want to push the Docker image of the
sample application in the format <region-key>.ocir.io/<repository_name>.

For example, iad.ocir.io/otmmrepo. The runme.sh script builds and pushes the images
to the specified repository. It also prefixes the specified value to the image name as a tag.

7. Enter user name to access the registry.

8. Enter the password to access the registry.

The script loads the Docker image of MicroTx, and then installs MicroTx.

9. Type 1 to run the sample application that uses the XA transaction protocol.

10. Provide details for the Department One application to connect with its resource manager.

a. If you use Oracle Autonomous Database as the resource manager, enter the path to
the Oracle Autonomous Database wallet that you have previously downloaded and
extracted to your local machine. For example, installation_directory/xa/java/
department-helidon/Database_Wallet.

If you are using another Oracle Database, press Enter as you don't need to provide
details of the wallet.

b. Enter the connection string to the data store in Oracle Database.

• If you are using a non-autonomous Oracle Database (a database that does not
use a credential wallet), use the following format to enter the connection string:

jdbc:oracle:thin:@<publicIP>:<portNumber>/<database unique
name>.<host domain name>

Chapter 6
Run XA Sample Applications

6-9

https://docs.oracle.com/en-us/iaas/Content/General/Concepts/regions.htm
https://docs.oracle.com/en-us/iaas/Content/General/Concepts/regions.htm

For example:

jdbc:oracle:thin:@123.213.85.123:1521/
CustDB_iad1vm.sub05031027070.customervcnwith.oraclevcn.com

• If you are using Oracle Database Cloud Service with Oracle Cloud Infrastructure,
see Create the Oracle Database Classic Cloud Service Connection String in Using
Oracle Blockchain Platform.

• If you are using Oracle Autonomous Transaction Processing, use the following
format to enter the connection string:

jdbc:oracle:thin:@tcps://<host>:<port>/<service_name>?
wallet_location=<wallet_dir>

You can find the required details, such as host, port, and service name in the
tnsnames.ora file, which is located in folder where you have extracted the wallet.

For example:

jdbc:oracle:thin:@tcps://adb.us-phoenix-1.oraclecloud.com:7777/
unique_connection_string_low.adb.oraclecloud.com?
wallet_location=Database_Wallet

c. Enter the user name to access the Oracle Database, such as SYS.

d. Enter the password for the Oracle Database user.

The script installs and runs the Department One application.

11. Provide details for the Department Two application to connect with its resource manager.

a. If you use Oracle Autonomous Database as the resource manager, enter the path to
the Oracle Autonomous Database wallet that you have previously downloaded and
extracted to your local machine. For example, installation_directory/xa/java/
department-helidon/Database_Wallet.

If you are using another Oracle Database, press Enter as you don't need to provide
details of the wallet.

b. Enter the connection string to the data store in Oracle Database.

• If you are using a non-autonomous Oracle Database (a database that does not
use a credential wallet), use the following format to enter the connection string:

jdbc:oracle:thin:@<publicIP>:<portNumber>/<database unique
name>.<host domain name>

For example:

jdbc:oracle:thin:@123.213.85.123:1521/
CustDB_iad1vm.sub05031027070.customervcnwith.oraclevcn.com

• If you are using Oracle Database Cloud Service with Oracle Cloud Infrastructure,
see Create the Oracle Database Classic Cloud Service Connection String in Using
Oracle Blockchain Platform.

Chapter 6
Run XA Sample Applications

6-10

https://docs.oracle.com/en/database/other-databases/blockchain-enterprise/21.1/user/create-rich-history-database.html#GUID-21A8D3B6-7FDB-4FCB-AD1B-78609DEB5D50
https://docs.oracle.com/en/database/other-databases/blockchain-enterprise/21.1/user/create-rich-history-database.html#GUID-21A8D3B6-7FDB-4FCB-AD1B-78609DEB5D50

• If you are using Oracle Autonomous Transaction Processing, use the following
format to enter the connection string:

jdbc:oracle:thin:@tcps://<host>:<port>/<service_name>?
wallet_location=<wallet_dir>

You can find the required details, such as host, port, and service name in the
tnsnames.ora file, which is located in folder where you have extracted the wallet.

For example:

jdbc:oracle:thin:@tcps://adb.us-phoenix-1.oraclecloud.com:7777/
unique_connection_string_low.adb.oraclecloud.com?
wallet_location=Database_Wallet

c. Enter the user name to access the Oracle Database, such as SYS.

d. Enter the password for the Oracle Database user.

The script installs and runs the Department Two application.

12. Type 1 to run the Teller application to transfer an amount from Department One to
Department Two by creating an XA transaction.

13. Enter the account number from which you want to withdraw an amount. The sample table
contains the following account numbers: account1 to account5. If you do not enter an
account number and press enter, the default value is account1.

The account balance is displayed.

14. Enter the name of the account to which you want to deposit the amount. The sample table
contains the following account numbers: account1 to account5. If you do not enter an
account number and press enter, the default value is account2.

The account balance is displayed.

15. Enter the amount that you want to transfer. For example, 300. If you do not enter an
amount and press enter, the default value is 100.

The account balance of both accounts after the transaction are displayed on the screen.
You can compare the earlier account balance with the current balance to ensure that the
amount has been transferred.

16. Press any key to exit.

17. Type 1 to stop running all the microservices in the sample application and uninstall it.

18. Type 1 to uninstall MicroTx. If you want use the existing installation to run other sample
applications, type 2.

19. Type 1 to uninstall Istio. If you want use the existing installation to run other sample
applications, type 2.

What's next?

• Use the Kiali dashboard to view how the MicroTx handles the flow of requests between the
sample microservices.

• Perform distributed tracing using Jaeger to trace the entire transaction. See Perform
Distributed Tracing with Jaeger.

• Run another sample application.

• View the source files of the sample application.

Chapter 6
Run XA Sample Applications

6-11

• View the log files to find more details about the transactions.

• Create and run your own application using MicroTx.

6.3 Run Saga Sample Applications
Run the Saga sample application to book a trip and understand how you can use MicroTx to
coordinate the transactions. The MicroTx library files are already integrated with the sample
application code.

The sample application demonstrates how you can develop microservices that participate in
Saga transactions while using MicroTx to coordinate the transactions. When you run the
application, it makes a provisional booking by reserving a hotel room and flight ticket. Only
when you provide approval to confirm the booking, the booking of the hotel room and flight
ticket is confirmed. If you cancel the provisional booking, the hotel room and flight ticket that
was blocked is released and the booking is canceled. By default, the hotel and flight service
permits only three confirmed bookings. To enable you to test the failure scenario, the services
reject any additional booking requests that are made after three confirmed bookings. This
leads to the cancellation (compensation) of a provisionally booked hotel or flight within the trip
and the trip is not booked. For details about the sample Saga application, see About the
Sample Saga Application in Transaction Manager for Microservices Developer Guide.

To run the sample Saga application using the runme.sh script file:

1. Enter the following commands in a bash shell to run the runme.sh script file.

cd installation_directory/otmm-<version>
sh runme.sh

2. Type 3 to run sample applications in the OKE environment.

The script installs and configures Istio, and then prints the URL to access the Istio ingress
gateway.

3. You can deploy observability consoles, such as Kiali and Jaeger, to track and trace
distributed transactions in MicroTx. If these consoles are already deployed in the Istio
service mesh, the script skips this step.

a. Type 1 to deploy the consoles.

b. Type 1 to confirm that you want to deploy Kiali.
Kiali is deployed, along with the prerequisites such as Prometheus, and then the Kiali
dashboard is displayed in the default browser.

c. Type 1 to confirm that you want to deploy Jaeger.
Jaeger is deployed, and then the Jaeger dashboard is displayed in the default browser.

Kiali and Jaeger dashboards are displayed in the default browser only if you are
running the runme.sh script file on a system with graphical user interface. If you are
running the runme.sh script on a remote system and you have connected through a
console or terminal, then you must set up port forwarding to view the dashboards from
your system.

4. Provide the following information to enable the script to create a self-signed certificate. A
certificate is required to create a secure connection to access MicroTx using TLS.

a. Enter the password to access the Bash shell with sudo privileges.

b. Enter the password to access the Java KeyStore.

The script accesses the KeyStore and generates a self-signed certificate.

Chapter 6
Run Saga Sample Applications

6-12

c. Type 1 to confirm that you trust the certificate.

d. Re-enter the password to access the Java KeyStore.

The script adds the certificate to the KeyStore.

5. Specify the name of the Oracle Cloud Infrastructure Registry in the format <region-
key>.ocir.io.

For example, iad.ocir.io. For information about region keys, see Regions and
Availability Domains in Oracle Cloud Infrastructure documentation.

6. Specify the name of the repository to which you want to push the Docker image of the
sample application in the format <region-key>.ocir.io/<repository_name>.

For example, iad.ocir.io/otmmrepo. The runme.sh script builds and pushes the images
to the specified repository. It also prefixes the specified value to the image name as a tag.

7. Enter user name to access the registry.

8. Enter the password to access the registry.

The script loads the Docker image of MicroTx, and then installs MicroTx.

9. Type 2 to run the sample application that uses the Saga transaction protocol.

The script installs the sample application.

10. Type 1 to confirm that you want to run the Saga sample application, and then press Enter.

The sample application provisionally books a hotel room and a flight ticket and displays the
details of the provisional booking. In case of any issues, the provisional booking is not
made and the status displayed is Failed Trip Booking.

11. Confirm or cancel the provisional booking. Type 1 to confirm a successful provisional
booking or type 2 to cancel a provisional booking, and then press Enter.

If you type 1, your booking is confirmed and information about your confirmed booking is
displayed.

12. Press any key to exit.

13. Type 1 to stop running all the microservices in the sample application and uninstall it.

14. Type 1 to uninstall MicroTx. If you want use the existing installation to run other sample
applications, type 2.

15. Type 1 to uninstall Istio. If you want use the existing installation to run other sample
applications, type 2.

What's next?

• Use the Kiali dashboard to view how the MicroTx handles the flow of requests between the
sample microservices.

• Perform distributed tracing using Jaeger to trace the entire transaction. See Perform
Distributed Tracing with Jaeger.

• Run another sample application.

• View the source files of the sample application.

• View the log files to find more details about the transactions.

• Create and run your own application using MicroTx.

Chapter 6
Run Saga Sample Applications

6-13

https://docs.oracle.com/en-us/iaas/Content/General/Concepts/regions.htm
https://docs.oracle.com/en-us/iaas/Content/General/Concepts/regions.htm

6.4 Run TCC Sample Applications
Run the TCC sample application to book a trip and understand how you can use MicroTx to
coordinate the transactions. The MicroTx library files are already integrated with the sample
application code.

The sample TCC application implements a scenario where the travel agent microservice books
a trip, flight booking service books a flight, and the hotel booking microservice books a hotel.
The travel agent service accesses both the flight and hotel booking services. When a customer
books a flight and a hotel, the booking is reserved until either the customer completes the
payment and confirms the booking. In case of any failure, the reserved resources are canceled
and the resources are returned back to the inventory. For details about the sample TCC
application, see About the Sample TCC Application in Transaction Manager for Microservices
Developer Guide.

To run the sample TCC application using the runme.sh script file:

1. Enter the following commands in a bash shell to run the runme.sh script file.

cd installation_directory/otmm-<version>
sh runme.sh

2. Type 3 to run sample applications in the OKE environment.

The script installs and configures Istio, and then prints the URL to access the Istio ingress
gateway.

3. You can deploy observability consoles, such as Kiali and Jaeger, to track and trace
distributed transactions in MicroTx. If these consoles are already deployed in the Istio
service mesh, the script skips this step.

a. Type 1 to deploy the consoles.

b. Type 1 to confirm that you want to deploy Kiali.
Kiali is deployed, along with the prerequisites such as Prometheus, and then the Kiali
dashboard is displayed in the default browser.

c. Type 1 to confirm that you want to deploy Jaeger.
Jaeger is deployed, and then the Jaeger dashboard is displayed in the default browser.

Kiali and Jaeger dashboards are displayed in the default browser only if you are
running the runme.sh script file on a system with graphical user interface. If you are
running the runme.sh script on a remote system and you have connected through a
console or terminal, then you must set up port forwarding to view the dashboards from
your system.

4. Provide the following information to enable the script to create a self-signed certificate. A
certificate is required to create a secure connection to access MicroTx using TLS.

a. Enter the password to access the Bash shell with sudo privileges.

b. Enter the password to access the Java KeyStore.

The script accesses the KeyStore and generates a self-signed certificate.

c. Type 1 to confirm that you trust the certificate.

d. Re-enter the password to access the Java KeyStore.

The script adds the certificate to the KeyStore.

Chapter 6
Run TCC Sample Applications

6-14

5. Specify the name of the Oracle Cloud Infrastructure Registry in the format <region-
key>.ocir.io.

For example, iad.ocir.io. For information about region keys, see Regions and
Availability Domains in Oracle Cloud Infrastructure documentation.

6. Specify the name of the repository to which you want to push the Docker image of the
sample application in the format <region-key>.ocir.io/<repository_name>.

For example, iad.ocir.io/otmmrepo. The runme.sh script builds and pushes the images
to the specified repository. It also prefixes the specified value to the image name as a tag.

7. Enter user name to access the registry.

8. Enter the password to access the registry.

The script loads the Docker image of MicroTx, and then installs MicroTx.

9. Type 3 to run the sample application that uses the TCC transaction protocol.

10. Type 1 to run Java applications or type 2 to run Node.js applications.

The script installs and then runs the three sample microservices: Flight booking, Hotel
booking, and Travel agent.

11. Type y to confirm that you want to run the TCC sample application, and then press Enter.

The sample application reserves a hotel room and a flight ticket and displays the
reservation details.

12. Confirm or cancel the booking. Type y to confirm the booking or type n to cancel the
booking, and then press Enter.

If you type y, the booking is confirmed and details about the confirmed booking are
displayed.

If you type n, the Travel Agent microservice cancels the reserved resources and returns
the resources back to the inventory.

13. Press any key to exit.

14. Type 1 to stop running all the microservices in the sample application and uninstall it.

15. Type 1 to uninstall MicroTx. If you want use the existing installation to run other sample
applications, type 2.

16. Type 1 to uninstall Istio. If you want use the existing installation to run other sample
applications, type 2.

What's next?

• Use the Kiali dashboard to view how the MicroTx handles the flow of requests between the
sample microservices.

• Perform distributed tracing using Jaeger to trace the entire transaction. See Perform
Distributed Tracing with Jaeger.

• Run another sample application.

• View the source files of the sample application.

• View the log files to find more details about the transactions.

• Create and run your own application using MicroTx.

Chapter 6
Run TCC Sample Applications

6-15

https://docs.oracle.com/en-us/iaas/Content/General/Concepts/regions.htm
https://docs.oracle.com/en-us/iaas/Content/General/Concepts/regions.htm

	Contents
	1 About MicroTx
	1.1 About the Distributed Transaction Protocols
	1.2 Components of MicroTx
	1.3 How MicroTx Works
	1.4 Use MicroTx Library with Application Code

	2 About the runme.sh Script
	2.1 Considerations

	3 Prerequisites
	3.1 Download the Installation Bundle
	3.2 Clone the Sample Code Files
	3.3 Set Up XA-Compliant Resource Managers

	4 Quick Start with Docker
	4.1 Set Up the Required Software
	4.2 Run XA Sample Applications
	4.3 Run Saga Sample Applications
	4.4 Run TCC Sample Applications

	5 Quick Start with Minikube
	5.1 Set Up the Required Software
	5.2 Run XA Sample Applications
	5.3 Run Saga Sample Applications
	5.4 Run TCC Sample Applications

	6 Quick Start with OKE
	6.1 Set Up the Required Software
	6.1.1 Use Oracle Identity Providers
	6.1.1.1 Use Oracle IAM as Identity Provider
	6.1.1.2 Use Oracle IDCS as Identity Provider

	6.1.2 Create an Access Token

	6.2 Run XA Sample Applications
	6.3 Run Saga Sample Applications
	6.4 Run TCC Sample Applications

