Oracle® Tuxedo
Mainframe Adapter for SNA Reference Guide

Release 22c
F87403-02
October 2023

ORACLE"

Oracle Tuxedo Mainframe Adapter for SNA Reference Guide, Release 22c
F87403-02

Copyright © 2016, 2023, Oracle and/or its affiliates.

Primary Author: Priya Pathak

Contributing Authors: Tulika Das

Contributors: Maggie Li

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 ATMI to CPI-C Function Mapping

1.1 tpcall() 1-1
1.2 tpacall() 1-2
1.3 tpgetrply() 1-2
1.4 tpservice() 1-3
1.5 tpreturn() 1-4
1.6 tpcancel() 1-4
1.7 tpconnect() 1-4
1.8 tpsend() 1-5
1.9 tprecv() 1-6
1.10 tpdiscon() 1-7
1.11 tpforward() 1-7
2 Application-to-Application Programming Examples
2.1 Distributed Program Link (DPL) Examples 2-1
2.1.1 ATMI Client Request/Response to CICS/ESA DPL 2-2
2.1.2 ATMI Client Asynchronous Request/Response to CICS/ESA DPL 2-3
2.1.3 ATMI Client Asynchronous Request/Response with No Reply to CICS/ESA
DPL 2-4
2.1.4 CICS/ESA DPL to ATMI Request/Response Server 2-5
2.1.5 CICS/ESA DPL to ATMI Request/Response Server, Service in Autonomous
Transaction 2-6
2.1.6 ATMI Client Request/Response to CICS/ESA DPL, Autonomous Transaction 2-7
2.1.7 Transactional ATMI Client Multiple Requests/Responses to CICS/ESA DPL 2-8
2.1.8 Transactional CICS/ESA DPL to ATMI Request/Response Server 2-9
2.1.9 CICS/ESA DPL to ATMI Requests/Responses Server for Channel /Container 2-10
2.2 Distributed Transaction Processing (DTP) Examples 2-11
2.2.1 ATMI Client Request/Response to CICS/ESA DTP 2-12
2.2.2 ATMI Client Asynchronous Request/Response to CICS/ESA DTP 2-13
2.2.3 ATMI Client Asynchronous Request/Response with No Reply to CICS/ESA
DTP 2-14
2.2.4 ATMI Conversational Client to CICS/ESA DTP, Server Gets Control 2-15

ORACLE

2.2.5
2.2.6
2.2.7
2.2.8
2.2.9
2.2.10

2211

ATMI Conversational Client to CICS/ESA DTP, Client Sends/Receives Data
ATMI Conversational Client to CICS/ESA DTP, Client Grants Control
CICS/ESA DTP to ATMI Conversational Server, Client Retains Control
CICS/ESA DTP to ATMI Conversational Server, Client Relinquishes Control
Transactional ATMI Client Request/Response to CICS/ESA DTP

Transactional ATMI Conversational Client to CICS/ESA DTP, Server Gets
Control

Transactional CICS/ESA DTP to ATMI Conversational Server, Host Client
Relinquishes Control

2.3 CPI-C Programming Examples

231
2.3.2
2.3.3
234
235
2.3.6
2.3.7
2.3.8
2.3.9
2.3.10
23.11
2.3.12

2.3.13

ATMI Client Request/Response to Host CPI-C
ATMI Client Asynchronous Request/Response to Host CPI-C
ATMI Client Asynchronous Request/Response to Host CPI-C with No Reply
ATMI Conversational Client to Host CPI-C, Server Gets Control
ATMI Conversational Client To Host CPI-C, Client Retains Control
ATMI Conversational Client to Host CPI-C, Client Grants/gets Control
Host CPI-C to ATMI Asynchronous Request/Response Server with No Reply
Host CPI-C to ATMI Server Request/Response
Host CPI-C to ATMI Conversational Service, Client Retains Control
Host CPI-C ATMI to Conversational Service, Client Grants Control
Transactional ATMI Client Request/Response to Host CPI-C

Transactional Host CPI-C to ATMI Conversational Server, Client Grants
Control

Transactional ATMI Conversational Client to Host CPI-C, Server Gets Control

2.4 CICS/ESA Mirror Transaction Examples

24.1
24.2
243

Implicit Attachment of TRANSID (Outbound Requests Only)
Explicit Attachment of TRANSID for Outbound Requests
Explicit Attachment of TRANSID for Inbound Requests

2.5 Additional Information

ORACLE

2-16
2-18
2-19
2-21
2-22

2-24

2-25
2-26
2-27
2-28
2-29
2-30
2-31
2-33
2-34
2-35
2-37
2-38
2-39

2-41
2-42
2-43
2-44
2-45
2-46
2-46

List of Figures

Implicit Attachment of TRANSID (Outbound Requests Only)
Explicit Attachment of TRANSID for Outbound Requests

2-1 DMCONFIG File Entry
2-2 DMCONFIG File Entry
2-3 DMCONFIG File Entry
2-4 DMCONFIG File Entry
2-5 DMCONFIG File Entry
2-6 DMCONFIG File Entry
2-7 DMCONFIG File Entry
2-8 DMCONFIG File Entry
2-9 DMCONFIG File Entry
2-10 DMCONFIG File Entry
2-11 DMCONFIG File Entry
2-12 DMCONFIG File Entry
2-13 DMCONFIG File Entry
2-14 DMCONFIG File Entry
2-15 DMCONFIG File Entry
2-16 DMCONFIG File Entry
2-17 DMCONFIG File Entry
2-18 DMCONFIG File Entry
2-19 DMCONFIG File Entry
2-20 DMCONFIG File Entry
2-21 DMCONFIG File Entry
2-22 DMCONFIG File Entry
2-23 DMCONFIG File Entry
2-24 DMCONFIG File Entry
2-25 DMCONFIG File Entry
2-26 DMCONFIG File Entry
2-27 DMCONFIG File Entry
2-28 DMCONFIG File Entry
2-29 DMCONFIG File Entry
2-30 DMCONFIG File Entry
2-31 DMCONFIG File Entry
2-32 DMCONFIG File Entry
2-33 DMCONFIG File Entry
2-34

2-35

ORACLE

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9
2-10
2-12
2-13
2-14
2-15
2-16
2-18
2-19
2-21
2-22
2-24
2-25
2-27
2-28
2-29
2-30
2-31
2-33
2-34
2-35
2-37
2-38
2-39
2-41
2-42
2-44
2-45

2-36 Explicit Attachment of TRANSID for Inbound Requests 2-46

ORACLE vi

List of Tables

1-1 tpcall()

1-2 tpacall()
1-3 tpgetrply()
1-4 tpservice()
1-5 tpreturn()
1-6 tpcancel()
1-7 tpconnect()
1-8 tpsend()
1-9 tprecv()
1-10 tpdiscon()
1-11 tpforward()
ORACLE

1-1
1-2
1-2
1-3
1-4
1-4
1-4
1-5
1-6
1-7
1-7

Vii

ATMI to CPI-C Function Mapping

The tables show the parameters of the ATMI call, the contents or meaning of the parameters,
and notes on usage with the CPI-C verbs

The following tables lists the most common ATMI function calls and show how their
parameters map to CPI-C verbs. The mappings are listed by function call in the following
order:

o tpcall()

tpacall()

* tpgetrply()
* tpservice()
e tpreturn()

e tpcancel()

e tpconnect()
* tpsend()

* tprecv()

e tpdiscon()

e tpforward()

1.1 tpcall()

ORACLE

Table 1-1 tpcall()

tpcall() Parameters | Contents CPI-C Notes
svc - Service Name Used in CMALLC to identify the CICS
transaction to be invoked.
idata - User data This data is sent in CMSENDs until
completely transmitted.
len - Length of User data -
odata - Reply data CMRCYV receives the data until it has
been completely transmitted
(data_received is set to
CM_COMPLETE_DATA_RECEIVED)
and return code is set to CM_OK or
CM_DEALLOCATE_NORMAL.
olen - Reply data length -
flags TPNOTRAN Not part of a transaction | -
TPNOCHANGE | N/A Local
TPNOBLOCK | N/A Local
TPNOTIME N/A Local

1-1

Chapter 1
tpacall()

Table 1-1 (Cont.) tpcali()

- __|
tpcall() Parameters | Contents CPI-C Notes

TPSIGRSTRT |N/A Local

1.2 tpacall()

Table 1-2 tpacall()

tpacall() Parameter | Contents CPIC Notes

svc - Service Name Used in CMALLC to identify the
CICS transaction to be invoked.

data - User data This data is sent in CMSENDSs until
completely transmitted.

len - Length of user data -

flags TPNOREPLY | false The last data is sent with a
CMSEND with send_type set to
CMSEND_AND_PREP_TO_RECEI
VE. This changes the state of the
conversation to receive and a
CMRCV is issued to await the reply.

true Since no reply is expected, a

CMDEAL deallocates the
conversation after all data has been

received.
TPNOTRAN Not part of a -
transaction
TPNOBLOCK | N/A Local
TPNOTIME N/A Local
TPSIGRSTR | N/A Local

T

1.3 tpgetrply()

Table 1-3 tpgetrply()

- ___________________________________|
tpgetrply() Parameters | Contents CPIC Notes

cd - call descriptor The call descriptor is mapped to the
CONVID returned by the CMINIT
when the LU6.2 was initiated.

data - User data Data received from CMRCYV if
WHAT_RECEIVED set to
DATA_COMPLETE.

len - Length of user data -

ORACLE 1-2

Table 1-3 (Cont.) tpgetrply()

Chapter 1
tpservice()

tpgetrply()

Parameters

Contents

CPIC Notes

flags

TPGETANY

If true, data is
returned from any
conversation. If false,
data is returned from
conversation
associated with the cd

Data available on any conversation
is returned to the requestor.

TPNOCHANG | Local to the requestor | Limited buffer types supported.
E

TPNOBLOCK | N/A Local

TPNOTIME N/A Local

TPSIGRSTR | N/A Local

T

1.4 tpservice()

Table 1-4

tpservice()

tpservice() Parameters | Contents CPIC Notes
svcinfo - Service information and | User Data captured from a CMRCV
data populates the TPSVCINFO structure
user data area. Service characteristics
are obtained from the service attributes
in the DMCONFIG and UBBCONFIG
files.
name - Service name The service name associated with the 8
character RNAME sent from CICS.
data - User data Data captured from CMRCV.
len - Length of user data -
cd - call descriptor The call descriptor associated with the
CONVID returned by the CMINIT when
the LU6.2 was initiated.
appkey - 32-bit key (if used) For security.
cltid - set by Oracle Tuxedo For security.
flags TPCONV If true, service is -
conversational.
TPTRAN N/A -
TPNOREPLY If true, requestor not The conversation is terminated with a
expecting a reply. CMDEAL normal.
TPSENDONLY | N/A If set, the CPIC conversation in CICS
should be in receive state. If not set, the
CICS CPIC conversation state will be in
send state.
TPRECVONLY | N/A If set, the CPIC conversation in CICS
remains in send state.

ORACLE

1-3

Chapter 1
tpreturn()

1.5 tpreturn()

Table 1-5 tpreturn()

tpreturn() Parameters | Contents CPIC Notes

rval TPSUCCESS Set to TPSUCCESS when
conversation terminates with a
normal deallocation.

TPSVCERR Set to TPESVCERR when the
conversation has terminated with a
non-normal deallocation type or
other error.

rcode - Set by the application | N/A

data - User data Data is returned to the CICS
transaction from a successful
CMRCYV with data received set to
CM_DATA_COMPLETE and return
code of
CM_DEALLOCATE_NORMAL. If the
service fails, no data is returned to
the caller and the conversation is
deallocated abnormally.

len - Length of data 0 < data <= 32K
returned
flags - N/A N/A

1.6 tpcancel()

Table 1-6 tpcancel()

tpcancel() Parameters Contents CPIC Notes
cd - The connection CMDEAL abnormal is
descriptor on which a | issued on the
tpgetreply () is conversation with
waiting. CONVID mapped from
call descriptor.

1.7 tpconnect()

Table 1-7 tpconnect()
. ____________________ |

tpconnect() Parameters | Contents CPIC Notes
svC - The local service The name is used to find the
name representing RNAME. The RNAME should match
the service to be the TPName in CICS and will be
invoked. in CICS used by CMINIT and CMALLC to
initiate and allocate the
conversation.

ORACLE 1-4

ORACLE

Table 1-7 (Cont.) tpconnect()

Chapter 1
tpsend()

tpconnect() Parameters | Contents CPIC Notes
data - User data This data is sent in CMSENDs until
completely transmitted.
len - Length of User data -
flags TPNOTRAN True -
TPSENDONL | If true, the The conversation remains in send
Y conversation stays in | state. This is the default.

or changes to send
state

1.8 tpsend()

TPRECVONL | If true, the Immediately after the allocate Oracle
Y conversation stays in | Tuxedo sends a CMSEND with no
or changes to receive | data and send_type set to
state CM_SEND_AND_PREP_TO_RECEI
VE.
TPNOBLOCK | N/A Local
TPNOTIME N/A Local
TPSIGRSTR | N/A Local
T
Table 1-8 tpsend()
. __|
tpsend() Parameters | Contents CPIC Notes
cd - The connection This locally assigned connection
descriptor descriptor has been mapped to the
CONVID returned in the CMINIT and
CMALLC on behalf of the
tpconnect ().
data - User data ASCII/EBCDIC conversion may be
required before sending to CICS.
len - Length of User data -
flags TPRECVONLY | If true, the conversation | The state of the conversation changes
changes to receive from send to receive. A CMSEND is
state. sent with send_type set to
CM_SEND_AND_PREP_TO_RECEIVE
TPNOBLOCK N/A Local
TPNOTIME N/A Local
TPSIGRSTRT |N/A Local
revent TPEV_DISCO | If set, the LU6G.2 If the return code from a CMRCV is
NIMM conversation has been | deallocate_abnormal, the conversation
terminated abnormally. | is terminated. A disconnect event is
sent to the sending process.
TPEV_SVCER | If set, the LU6.2 Any return code other than CM_OK or
R conversation has been | CM_DEALLOCATE_NORMAL is
terminated abnormally. |treated as a TPEV_SVCERR.

1-5

Chapter 1
tprecv()

Table 1-8 (Cont.) tpsend()

tpsend() Parameters | Contents CPIC Notes
TPEV_SVCFA | If set, the LU6.2 If the return code from CMRCYV is
IL conversation has been | CM_TP_NOT_AVAIL_NO_RETRY or

terminated abnormally. | CM_TP_RESOURCE_FAILURE_NO_R
ETRY, revent is set to
TPEV_SVCFAIL.

1.9 tprecv()

ORACLE

Table 1-9 tprecv()

tprecv() Parameters Contents CPIC Notes

cd - The connection This locally assigned
descriptor connection descriptor

has been mapped to
the CONVID returned
in the CMINIT and
CMALLC issued by
the initiator of this
conversation.

data - User data Date to be received

using a
CMRCV_immediate
and returned to the
Oracle Tuxedo
service.

len - Length of User data -

flags TPNOCHANGE Local Must be a supported

buffer type.

- TPNOBLOCK N/A Local

- TPNOTIME N/A Local

- TPSIGRSTRT N/A Local

revent TPEV DISCONIMM If set, the LUG.2 If the return code from
conversation has a CMSEND is
been terminated deallocate_abnormal,
abnormally. the conversation is

terminated. A
disconnect event is
sent to the sending
process.

- TPEV_SENDONLY If set, the LU6.2 The sending partner
conversation changes | has sent a CMSEND
to send if partner with send_type set to
allows it. CM_SEND_AND_PR

EP_TO_RECEIVE.

- TPEV_SVCERR If set, the LUG.2 Any return code other
conversation has than CM_OK or
been terminated CM_DEALLOCATE_N
abnormally. ORMAL is treated as

a TPEV_SVCERR.

1-6

Chapter 1
tpdiscon()

Table 1-9 (Cont.) tprecv()
|

tprecv() Parameters Contents CPIC Notes

- TPEV_SVCFAIL - If the return code from
CMRCV is
CM_TP_NOT_AVAIL_
NO_RETRY or

CM_TP_RESOURCE
_FAILURE_NO_RET
RY, revent is set to
TPEV_SVCFAIL.

- TPEV_SVCSUCC If set, the The return code from
conversation has CMRCV was set to
completed normally. CM_DEALLOCATE_N

ORMAL. This

indicates that the
sending TP has
completed and
deallocated the
conversation normally.

1.10 tpdiscon()

Table 1-10 tpdiscon()
. __ |

tpdiscon() Parameters Contents CPIC Notes
cd - The connection This connection
descriptor descriptor in mapped to

the CONVID returned
from CMINIT or

CMACCP to the
originator of the
conversation.
Table 1-11 tpforward()

tpforward () Parameters Contents CPIC Notes

svc - Service name tpforward() is treated as
if it were a tpacall ().
A CMINIT and
subsequent CMALLC

are issued to initialize
and allocate a session
for a conversation.
ClientID must be
propagated to the CICS
transaction in a
TPSVCINFO record.

ORACLE e

ORACLE

Chapter 1
tpforward()

Table 1-11 (Cont.) tpforward()

- ___|
tpforward () Parameters Contents CPIC Notes

data - User data Data is sent using
CMSEND. The last
CMSEND is sent with
send_type of
deallocate_normalL.

len - Length of data returned

flags - Refer to tpacall () -

1-8

Application-to-Application Programming
Examples

This section provides the following transaction scenarios for the programming environments
supported by Oracle Tuxedo Mainframe Adapter for SNA. Each example provides a graphical
illustration of the scenario followed by a description of each step of the scenario.

Caution: The scenarios in this section demonstrate how ATMI calls relate to CICS/ESA
programming structures. They are not intended for use in developing application code, or for
the replacement of existing application code. The use of any of these examples in actual
situations may have unpredictable results.

Following are the transaction scenarios for the programming environments supported by
Oracle Tuxedo Mainframe:

Distributed Program Link (DPL) Examples
Distributed Transaction Processing (DTP) Examples
CPI-C Programming Examples

CICS/ESA Mirror Transaction Examples

Additional Information

2.1 Distributed Program Link (DPL) Examples

The examples in this section represent a few of the many programming scenarios available
for using DPL and ATMI service invocations. These examples employ the most natural and
efficient approaches.

ORACLE

ATMI Client Request/Response to CICS/ESA DPL

ATMI Client Asynchronous Request/Response to CICS/ESA DPL

ATMI Client Asynchronous Request/Response with No Reply to CICS/ESA DPL
CICS/ESA DPL to ATMI Request/Response Server

CICS/ESA DPL to ATMI Request/Response Server, Service in Autonomous Transaction
ATMI Client Request/Response to CICS/ESA DPL, Autonomous Transaction
Transactional ATMI Client Multiple Requests/Responses to CICS/ESA DPL
Transactional CICS/ESA DPL to ATMI Request/Response Server

CICS/ESA DPL to ATMI Requests/Responses Server for Channel /Container

2-1

Chapter 2

Distributed Program Link (DPL) Examples

2.1.1 ATMI Client Request/Response to CICS/ESA DPL

Figure 2-1 DMCONFIG File Entry

. Coupsrv

{ .

tpecall [(“SIMPDFL™,
idata
ilen
odata,
olen
0y ;

DMCONFIG File Entry

DM_EEMOTE _SEEVICES

SIMFDFL BHAME=TOUFDCFPLS FUNCTICH=DFL COMNV=H

1. ATMI client invokes toupsrv service.

HOST
Mirror
Transaction

TCOUFDFLS _,*

FROGRAM

... {manipulate
commareal - . .

EXEC CICE RETUEH

2. The toupsrv service issues tpcall for SIMPDPL, which is advertised in the
DM REMOTE SERVICES section of the DMCONFIG file.

3. Host mirror transaction starts TOUPDPLS program and passes idata buffer contents

for processing.

4. The TOUPDPLS program processes data.

5. The CICS/ESA server returns the commarea into the client’s odata buffer.

ORACLE"

2-2

Chapter 2
Distributed Program Link (DPL) Examples

2.1.2 ATMI Client Asynchronous Request/Response to CICS/ESA DPL

Figure 2-2 DMCONFIG File Entry

~ ATMI Service el
‘toupclt Transaction
. Coupsrv TOUPDPLE .‘
{ . PROGRAM
cd=tpacall
I:"”'SII!\J!'IE']:IP‘L"'1
idata .
ilen ... (manipulate
0h; commarea) ...

cpgetreply (cd, .
odata, EXEC CICS RETURHN
olen,
Q)

DMCONFIG File Entry

DM_REMCTE_SEEVICES

SIMFDFL BRHAME=TOUFDFLS FUNCTICH=DFL CONV=HN

1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpacall for SIMPDPL, which is advertised in the
DM REMOTE SERVICES section of DMCONFIG file.

3. Host mirror transaction starts TOUPDPLS program and passes idata buffer contents for
processing.

4. The TOUPDPLS program processes data.

5. The CICS/ESA system returns the commarea into the client’s tpgetreply odata buffer.

ORACLE" 2-3

Chapter 2
Distributed Program Link (DPL) Examples

2.1.3 ATMI Client Asynchronous Request/Response with No Reply to
CICS/ESA DPL

Figure 2-3 DMCONFIG File Entry

ATMI
~ ATMI Service et
toupclt Transaction
. toupsrv TOUPDEPLE
{ . PROGERAM *
cd tpacall i
[("SIMPOEL™, <
idata N) @

ilen ... {manipulate
TFHCREPLY) commarsa)l .. .

EXEC CICE RETUEH

DMCONFIG File Entry

DM_EEMOTE _SEEVICES

SIMFDFL BHAME=TOUFDCFPLS FUNCTICH=DFL COMNV=H

1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpacall for SIMPDPL, which is advertised in the
DM REMOTE SERVICES section of DMCONFIG file. The toupsrv service uses
TPNOREPLY to specify that no reply is expected.

3. Host mirror transaction starts TOUPDPLS program and passes idata buffer contents
for processing.

4. The TOUPDPLS program processes data.

ORACLE' 2.4

Chapter 2
Distributed Program Link (DPL) Examples

2.1.4 CICS/ESA DPL to ATMI Request/Response Server

Figure 2-4 DMCONFIG File Entry

ATMI
ﬁTMISnmm User Transaction
 MIRROR HOPL
e @ i

cpevoinfo)

1

+.. imanipulate EXEC CICE LINE

cpsvoinfo data) ... PROGRAM ["MIBRRDPLE")
COMMABREA (COMM-AREA)

tpreturn i DATALENETH (COMM-LEM)

[TPSUCCESS, e LENGTIH [COMM-LEH]

D, SYNCOMEETURI

tpevocinfo->data

tpevcinfo-rlen) ;

]

DMCONFIG File Entry

DM_LoCAL SERVICES

HMIRRCR RHAME=MIREDFLS COHNWV=H

1. User-entered HOPL invokes MIRRDPLC program.

2. The EXEC CICS LINK command causes the advertised service mapped to MIRRDPLS (in
the DM_LOCAL_SERVICES section of the DMCONFIG file) to execute.

3. The MIRROR service processes the data received in the service TPSVCINFO data buffer
from the EXEC CICS LINK.

4. The tpreturn call returns the data into the coMM-AREA buffer.

ORACLE" 2-5

Chapter 2
Distributed Program Link (DPL) Examples

2.1.5 CICS/ESA DPL to ATMI Request/Response Server, Service in
Autonomous Transaction

Figure 2-5 DMCONFIG File Entry

ATMI
ATMI Service
MIRROR HDPLZ
(resverres (2) s
tpavcinfo)

| .'
tpbegin(l; @ .
EXEC CICS LINK

A ':“"‘j""ll—-"-‘latE PROGRAM ("MIRRDFLS ™)
tpsvoinfo datal... COMMARER (COMM-AREA)

] i DATALENGTH (COMM—LELT)
tpoommit {3 ; LEWNGTH [COMM-LEM)
SYNCOWRETURN
tpreturn (TESUCCESS, - o

O, EXEC CICS RETUEN
tpsvocinfo—>data,

tpsvcinfo->1len);

DMCOMNFIG File Entry
OM_LOCAL_SERVICES

HMIFECE ENAME=MIRRDFPLC CONV=H

User-entered HOPL invokes MIRRDPLC program.

The EXEC CICS LINK command causes the advertised service mapped to
MIRRDPLS (in the DM_LOCAL_SERVICES section of the DMCONFIG file) to
execute. The SYNCONRETURN option indicates that the invoked service will not
participate in the CICS/ESA transaction.

The MIRROR service request tpbegin incorporates all further operations in a
transaction.

The MIRROR service processes the data.

The tpcommit indicates the end of the transaction; all updates performed within
the service transaction are to be committed.

ORACLE"

2-6

Chapter 2
Distributed Program Link (DPL) Examples

6. The tpreturn call returns the data into the commarea buffer.

7. The EXEC CICS SYNCPOINT is an explicit commit request. All updated resources in the
CICS/ESA transaction are committed.

2.1.6 ATMI Client Request/Response to CICS/ESA DPL, Autonomous
Transaction

Figure 2-6 DMCONFIG File Entry

ATMI
ATMI Service Host Mirror Transaction

1)- toupelt DPL
toupsry TOUFDELS j
[@ Frogram

tpbkegin(D, 0] f :

Htpcall ("SIMECEL",

idata, .. (manipulate commarea) ..
ilen,

adata, EXEC CICS SYMNCPOINT
alen, .
TFHOTRAL] EXEC CICS RETUEHM

tpoommit

DMCONFIG File Entry
CM_REMOTE_SERVICES

SIMFDFL ERMAME=TICUFDFLS FUMCTION=DFL COHV=H

1. ATMI client invokes toupsrv service.
2. The toupsrv service issues tpbegin to start the transaction.

3. The toupsrv service issues tpcall for SIMPDPL, which is advertised in the
DM_REMOTE_SERVICES section of the DMCONFIG file. The TPNOTRAN parameter
indicates the CICS/ESA application does not participate in the service transaction.

4. Host mirror transaction starts TOUPDPLS program and passes idata buffer contents for
processing.

ORACLE 2.7

Chapter 2
Distributed Program Link (DPL) Examples

The TOUPDPLS program processes data.

The EXEC CICS SYNCPOINT is an explicit commit request. All updated resources in
the CICS/ESA transaction are committed.

The CICS/ESA server returns the commarea into the client’s odata buffer.

The toupsrv service tpcommit request signals the successful completion of the
transaction, causing a commit of its own updated resources.

2.1.7 Transactional ATMI Client Multiple Requests/Responses to
CICS/ESA DPL

Figure 2-7 DMCONFIG File Entry

ATMI
e HOST
e irror
loup Transaction
Coup=Ervw TOUFPDFLE
{ FROGEAM -..
tpbegin (0,00 ; @ -
dof . .
... ({manipulate
. commarea) .. .
cpcall [“EIMPDPL"{
idata,
ilen, .
cdata, * EXEC CICE EETUREN
clen, :

03z

- @
twhile (WCTEHND) ;
cpoommit

DMCONFIG File Entry
DM_REMOTE,_SERVICES

SIMPDFL BHAME=TOUFDPLS FUNCTICH=DFL CONV=I

ATMI client invokes toupsrv service.
The toupsrv service issues tpbegin to start the transaction.

The toupsrv service issues tpcall for SIMPDPL, which is advertised in the
DM REMOTE SERVICES section of the DMCONFIG file. The tpcall is requested
multiple times within the same transaction.

ORACLE"

2-8

Chapter 2
Distributed Program Link (DPL) Examples

4. Host mirror transaction starts TOUPDPLS program and passes idata buffer contents for

processing. The host mirror transaction remains as a long-running task to service all
further requests on the transaction.

5. The TOUPDPLS program processes data.
6. The CICS/ESA system returns the commarea into the client’s odata buffer.

7. Step 3 through Step 6 are repeated until the toupsrv service loop end conditions are
met.

8. The tpcommit request indicates the successful completion of the transaction, causing a

commit of its own resources and the resources held by the host mirror transaction.

2.1.8 Transactional CICS/ESA DPL to ATMI Request/Response Server

Figure 2-8 DMCONFIG File Entry

ATMI
MIRROR H2PL
T;ETS:INE’G* | MIRRDFLC ‘j
:psvcinfnj i 9 E'?DGRHM

i
e Emanipulata@

tpsvwcinfo data) ... EXEC CICS LINK

FROGRAM ("MIRRDPLS")
tpreturn (TPSUCCESS COMHMARER (comm—areal)
a,

tpsvocinfo-»data,

LEMGTH (comm—are=a)

tpsvoinfo->len); o EVEC CICS SYNCPOIWT

EXEC CICS RETUEREN

DMCONFIG File Entry
CM_LoCAL SERVICES

HIRRCE ENAME=MIEROESERV CONV=H

1. User-entered H2PL invokes MIRRDPLC program.

ORACLE"

2-9

Chapter 2
Distributed Program Link (DPL) Examples

2. The EXEC CICS LINK command causes the advertised service mapped to
MIRRDPLS (in the DM_LOCAL_SERVICES section of the DMCONFIG file) to
execute. The invoked service participates in the CICS/ESA transaction.

3. The MIRROR service processes the data.
4. The tpreturn call returns the data into the commarea buffer.

5. The EXEC CICS SYNCPOINT is an explicit commit request indicating a successful
end of the conversation. All updated resources in the transaction are committed.

2.1.9 CICS/ESA DPL to ATMI Requests/Responses Server for
Channel /Container

Figure 2-9 DMCONFIG File Entry

ATMI Service CICS Transaction
CHAN1 KNC1
Fget3Z{channel_ name] : T
For (i=0; y
i<Fococurs32 (1 i++) [o
Fget3Z (container_name) FUT containerd

Fget3Z2(container data) LINE CHANCONS at remote

process data

GET container3

Fchg32 (container_data) SET container?
; GET containerl
tpreturn

DMCOMNFIG File Entry
*DM_LOCAL_SERVICES
CHAN]
Canv=m
RNAME="KNC1: CHANCOUS"
INBUFTYPE="FML32"

CUTBEUFTYFE="FML3Z"

ORACLE" 2-10

Chapter 2
Distributed Transaction Processing (DTP) Examples

User-entered KNC1 invokes CHANCONC program.
Three containers are put in a channel.

The EXEC CICS LINK command causes the advertised service mapped to CHANCONS to
execute.

The CHAN1 service gets all containers from the channel, processes data of them, and puts
them back to channel.

The tpreturn call returns the data into the commarea buffer.

The CHANCONC gets all containers from the channel and CICS RETRUN.

2.2 Distributed Transaction Processing (DTP) Examples

The following examples represent programming scenarios for using DTP and ATMI service
invocations.

ORACLE

Although it is most suited for the DPL environment, the tpcall is usually used for the DPL
environment, it can also be used for a request/response to a DTP server.

The examples in this section represent some of the programming scenarios available for
using DTP and ATMI service invocations. These examples employ the most natural and
efficient approaches.

ATMI Client Request/Response to CICS/ESA DTP

ATMI Client Asynchronous Request/Response to CICS/ESA DTP

ATMI Client Asynchronous Request/Response with No Reply to CICS/ESA DTP
ATMI Conversational Client to CICS/ESA DTP, Server Gets Control

ATMI Conversational Client to CICS/ESA DTP, Client Sends/Receives Data
ATMI Conversational Client to CICS/ESA DTP, Client Grants Control

CICS/ESA DTP to ATMI Conversational Server, Client Retains Control
CICS/ESA DTP to ATMI Conversational Server, Client Relinquishes Control
Transactional ATMI Client Request/Response to CICS/ESA DTP

Transactional ATMI Conversational Client to CICS/ESA DTP, Server Gets Control

Transactional CICS/ESA DTP to ATMI Conversational Server, Host Client Relinquishes
Control

2-11

Chapter 2
Distributed Transaction Processing (DTP) Examples

2.2.1 ATMI Client Request/Response to CICS/ESA DTP

Figure 2-10 DMCONFIG File Entry

User Transaction
DTPS
toupsIv TCUPDTIFE *l‘
[FROGRAM
tpoall (MEIMPDTE " p— = tmcu;e eibtrmid to
idata 5 conw—id] . ..
ilen
ocdata, EXEC CICS RECEIVE
clen COMVID (CONV-ID)
ol INTO (IW-BUFFEER)

FLENGTH {IN-LEM)

... |process data) ...

EXEC CICS SEND
FROM [(CUI-BUFFER]
FLENGTH (CQUT-LEMSTH)
COMNVID (CONV-ID)
LAST WAIT

DMCOMNFIG File Entry
OM_REMOTE_SERVICES

SIMFDTF RMAME=DTPS FUNCTIOU=RPPC COMNV=I

1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpcall for SIMPDTP, which is advertised in the
DM REMOTE SERVICES section of DMCONFIG file.

3. User transaction DTPS starts TOUPDTPS program.

4. ltis recommended you save the eibtrmid to a program variable. This value may
be used to identify the specific conversation in your CICS/ESA APPC verbs.

5. The EXEC CICS RECEIVE command receives the idata buffer contents for
processing.

6. The TOUPDTPS program processes data.

ORACLE"

2-12

Chapter 2
Distributed Transaction Processing (DTP) Examples

7. The EXEC CICS SEND command returns the OUT-BUFFER contents into the clients odata
buffer. LAST indicates the conversation is finished. WAIT suspends processing until the

data has successfully been received.

2.2.2 ATMI Client Asynchronous Request/Response to CICS/ESA DTP

Figure 2-11 DMCONFIG File Entry

ATMI

ATMI Service
‘toupclt

tOUpEIV

[

cd=tpacall
{"SIMFDIE",

idata, ——1
ilen,

0

tpgetreply (cd,

-:}clal:a,-"—

clen,
ay;

User Transaction
DTPS

TOUPDTRE -l
PROGRAM

e .. imove EIBTREMID to
CONYV-ID) ...

EXEC CICS BECEIVE
COMNVID (CONV-ID)
INTO (IWN-BUFFEER)

1-'1@[—1 {IN-LEM)

... lprocess data) ...

EXEC CICS SEND
FROM [(OUTI-BUFFER)
FLENGTH (OUI_LEMSTH)
CONVID (CONV-ID)
LAST WARIT

EXEC CICS BRETURH

DMCONFIG File Entry

DM _EEMOTE SERVICES

SIMPDTF PHAME=DTFS FUNCTIOHN=APPC CONV=N

1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpacall for SIMPDTP, which is advertised in the
DM REMOTE SERVICES section of the DMCONFIG file.

3. User transaction DTPS starts TOUPDTPS program.

4. Itis recommended you save the EIBTRMID to a program variable. This value may be used
to identify the specific conversation in your CICS/ESA APPC verbs.

5. The EXEC CICS RECEIVE command receives the idata buffer contents for processing.

6. The TOUPDTPS program processes data.

ORACLE"

2-13

Chapter 2
Distributed Transaction Processing (DTP) Examples

7. The EXEC CICS SEND command returns the OUT-BUFFER contents into the clients
tpgetreply odata buffer. LAST indicates the conversation is finished. WAIT
suspends processing until the data has successfully been received.

2.2.3 ATMI Client Asynchronous Request/Response with No Reply to
CICS/ESA DTP

Figure 2-12 DMCONFIG File Entry

ATMI Service User Transaction
‘toupelt DTPS

toupsrv TCUPDTIFS -l

[- PROGRAM

cd=tpacall ...{move EIBIRMID to
("SIMPDIE" p——y CONV-ID) ...
idata, ;
ilen, 5 EXEC CICS BECEIVE
TFHNOREFLY] ; COMVID (COoONV-ID)

] INTO (IW-BUFFER]
FLENGTH {IN-LEM)

.+« |process data) ...

EXEC CICS RETURH

DMCONFIG File Entry
OM_FEMOTE_SERVICES

SIMFDTF BHNAME=DTIFS FUNCTION=APPC COMV=H

1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpacall with a TPNOREPLY request for STMPDTP, which
is advertised in the DM_REMOTE SERVICES section of DMCONFIG file.

3. User transaction DTPS starts TOUPDTPS program.

4. Itis recommended you save the EIBTRMID to a program variable. This value may
be used to identify the specific conversation on your CICS/ESA APPC verbs.

5. The EXEC CICS RECEIVE command receives the idata buffer contents for
processing.

6. The TOUPDTPS program processes data.

ORACLE" 2-14

Chapter 2
Distributed Transaction Processing (DTP) Examples

2.2.4 ATMI Conversational Client to CICS/ESA DTP, Server Gets Control

Figure 2-13 DMCONFIG File Entry

ATMI
ATMI Service User Transaction
toupeclt DTPS
toupary TOUPDTFS -l

[PROGRAM

cd=tpconnect « .. lmove EIBIRMID to

["EIMPODIE" COMW—ID) ...

idata,

ilen, EXEC CICS RECEIVE
TFRECVONLY) ;

COMVID (CoONV-ID)
INTO ([IN-BUFFER]
FLENGTH ({IN-LEM)

tprecv [(od,

.. lprocess data) ...

revent);

EXEC CICS SEND

J FROM (CUI-BUFFER)
FLENGTH (CUT-LEN)
WAIT LAST

EXEC CICS RETURHN

DMCONFIG File Entry

DM _REMCOTE _SERVICES

SIMFDTF BWAME=DTFS FUNCTIQN=ARPFC CONV=Y

1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpconnect for SIMPDTP, which is advertised in the
DM REMOTE SERVICES section of DMCONFIG file. The TPRECVONLY flag indicates the
server gets control and the first conversation verb toupsrv can issue is tprecv. Data is
sent on the tpconnect in the idata buffer.

3. User transaction DTPS starts TOUPDTPS program.

4. lItis recommended you save the EIBTRMID to a program variable. This value may be used
to identify the specific conversation on your CICS/ESA APPC verbs.

5. The EXEC CICS RECEIVE command receives the idata buffer contents for processing.

ORACLE 2.15

Chapter 2
Distributed Transaction Processing (DTP) Examples

6. The TOUPDTPS program processes data.

7. The EXEC CICS SEND command returns the OUT-BUFFER contents into the clients
tprecv odata buffer. WAIT suspends processing in TOUPDTPS until the data has
successfully been received. LAST indicates the conversation is finished and is
communicated to the tprecv as TPEV_SVCSUCC.

2.2.5 ATMI Conversational Client to CICS/ESA DTP, Client Sends/
Receives Data

Figure 2-14 DMCONFIG File Entry

toupclt
toupsrv TOUFDTES g
{ . FPROGRAEM
cd=tpoonnect 0 [r@eibt rmid to conv-—
[("SIMPDIE", id] ...
idata, B EXEC CICS RECEIVE
ilen, . COMVID (CONV-ID)
TFSENDONLY) INTC (IN-EUFFER)

FLEWGTH [IN-LEW)

tpzend (od, = hed [p@ss data) ...

idata,
ilen, R
o, EXEC CICS RECEIVE
TPRECWONLY) ; i COMNVID (CONV-ID)
tprecv (od, —.ff———— IMNTC> (IN-EUFFER)
ocdata, FLEWGTIH [IN-LEL)
olen, R
revent] ; .
tpreturni() ; ... [process data) ...

H

EXEC CICS SEND
CONVID (CCONV-ID) WAIT LAST
FROM (OQUI-EUFFER)
FLEWGTIH [(QUI-LENGIH]

EXEC CICS EETUEHN

DMCONFIG File Entry
OM_EEMOTE_SERVICES

SIMFDTP BRHBME=DTPS FUNCTIOMN=RPPC CONV=Y

1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpconnect for SIMPDTP, which is advertised in the
DM REMOTE SERVICES section of DMCONFIG file. The TPSENDONLY indicates the

ORACLE" 2-16

ORACLE

Chapter 2
Distributed Transaction Processing (DTP) Examples

client retains control and continues to send data. Data is sent on the tpconnect in the
idata buffer.

User transaction DTPS starts TOUPDTPS program.

It is recommended you save the EIBTRMID to a program variable. This value may be used
to identify the specific conversation on your CICS/ESA APPC verbs.

The EXEC CICS RECEIVE command receives the tpconnect idata buffer contents for
processing.

The TOUPDTPS program processes data.

The EXEC CICS RECEIVE command receives the tpsend idata contents into the server’s
IN-BUFFER.

The server processes the data.

The EXEC CICS SEND WAIT LAST returns OUT-BUFFER data in the tprecv odata buffer,
along with notification that the conversation is over.

2-17

Chapter 2

Distributed Transaction Processing (DTP) Examples

2.2.6 ATMI Conversational Client to CICS/ESA DTP, Client Grants

Figure 2-15 DMCONFIG File Entry
ATMI Service User Transaction
toupclt
touperv ICUFPDIES
{ PROGRAM
cd=tpconnect @
(“SIMPDIE™, ... lmo EIBIEMID to
MULL, COMV-ID) ...
0,
TFRECVOMNLY) ; EXEC CICS RECEIVE
CONVID (CONV-ID)
tprecv (cod, INTO (IN-EUFFER]
odat a - FLEMGTH (IN-LEM)
olen
0,
revent)
EXECZ CICE SEND
- FROM (CUI-EUFFER)
Fpaend’ Led, FLEMGTH (OUT-LEN)
idata, INVITE
ilen,
0, EXECZ CICE FEECEIVE
TFRECVCONLY] ; COMVID {conv—id)
tprecy (cd, - INTO {(IN-BUFFEE]
dummy , FLEMNGTH (IN-LEN)
dumlen
ad, EXECZ CICE FRETURN
resvent] ;
tpreturnl] ;
}
DMCONFIG File Entry
OM_ _REMCIE_SERVICES
EIMFOTF BEHAME=DTFS FUNCTIOW=RPPFZ COMNV=Y
ATMI client invokes toupsrv service.
The toupsrv service issues tpconnect for SIMPDTP, which is advertised in the
DM REMOTE SERVICES section of DMCONFIG file. The TPRECVONLY indicates the
server gets control and the first conversation verb toupsrv can issue is tprecv.
User transaction DTPS starts TOUPDTPS program.
It is recommended you save the EIBTRMID to a program variable. This value may
be used to identify the specific conversation on your CICS/ESA APPC verbs.
ORACLE 2-18

Chapter 2
Distributed Transaction Processing (DTP) Examples

5. The EXEC CICS RECEIVE command receives a send state indicator from the tpconnect
TPRECVONLY flag. No data is received into the INBUFFER.

6. The EXEC CICS SEND command returns the OUT-BUFFER contents into the clients tprecv
odata buffer. The EXEC CICS SEND command relinquishes control to the client by using
the INVITE option. This is communicated to the tprecv as TPEV_SENDONLY.

7. The EXEC CICS RECEIVE command receives the tpsend idata contents into the server’s
IN-BUFFER, along with notification that the server has relinquished control.

8. The EXEC CICS RETURN ends the conversation, communicated to the tprecv as
TPEV_SVCSUCC.

2.2.7 CICS/ESA DTP to ATMI Conversational Server, Client Retains
Control

Figure 2-16 DMCONFIG File Entry

ATMI Service User Transaction
MIERORE MIBRDIFC
[TPSVCINEFO* PROGRAM
tpavocinfo) .
{ :
EXEC S ALLCCATE
@ EYSID (“EEL")
manipulate . i[mowe EIBRSRCE to
tpsvoinfo—->data CONV-ID) ...
) EXEC CICS
Lprecwy CONHECT PROCESS
itpsvoinfo—=od, FPREOCHAME (Y“MIBRORSERVT)
odata, FROCLEWGTH (10)
alen, SYNCLEVEL (0]
o, EXEC CICS SEND

TEVENL)} g

«- . [pTOCESSs data) .. @)

FROM (CUI-BUEF)
FLEMGTH (CUT-LEM)
CONVID (CONV-ID)
WALT

tpreturn EXEC CICS SEHD
[TFSUCCESE, INVITE WAIT
o, FROM (CUI-BUFF)
idata, FLEMGTH (CUI-LEM)
ilen, CONVID (CONV-ID)
[KH EXEC CICS RECW

SET (FIR)
FLEMGTH (LENGTH])
EXEC CICS RETUEHN

DMCONFIG File Entry

DM_LOCAL SERVICES

MIRROFE BEHAME=MIRRCRSERY CCOHWV=Y

ORACLE"

2-19

ORACLE

Chapter 2
Distributed Transaction Processing (DTP) Examples

User-entered HOTP invokes MIRRDTPC program.
The EXEC CICS ALLOCATE acquires a session to the remote Tuxedo domain.

Save the conversation ID returned in EIBRSRCE to a program variable. This value is
used to identify the specific conversation in your CICS/ESA APPC verbs.

The EXEC CICS CONNECT PROCESS command initiates the advertised service
mapped to MIRROR in the DM_LOCAL_SERVICES section of the DMCONFIG file.

Execute the EXEC CICS SEND command to send the contents of the OUT-BUFFER to
the Tuxedo service in the tpsvcinfo->data buffer. The contents might be sent
immediately.

The EXEC CICS SEND INVITE WAIT command sends out-buff contents into the
tprecv odata buffer. The INVITE parameter relinquishes control of the
conversation, seen as a TPEV_SENDONLY in the reevent parameter on the tprecv
command. The data is sent immediately, along with the data from the previous
SEND operation.

The Tuxedo service processes data.
The CICS/ESA server processes data.

The ATMI tpreturn data returns data to the EXEC CICS RECEIVE, along with
notification that the conversation completed successfully.

2-20

Chapter 2
Distributed Transaction Processing (DTP) Examples

2.2.8 CICS/ESA DTP to ATMI Conversational Server, Client Relinquishes

Control
Figure 2-17 DMCONFIG File Entry
ATMI Service User Transaction
MIRROR = HOTP
MIEROE MIREDTEPC
[TPSVCINFO* " FPROGRAM
tpavcinfal
| &
EXEC CICS ALLOCATE
S¥YEID (“BEA™])
e ...[move EIERSECE t:@
(tpsvocinfo—=od, CONV-ID] ...
idata,
ilen, EXEC CICS CONNECT PRCOCESS
o, FRCOCHAME (“MIRRORSERVT)
revent); FROCLEWGTH (10)
SYMCLEVEL (D)
cpreturn() ;
@ EXEC CICS SEND
1 IMVITE WAIT
EXEC CICS RECEIVE
COMNVID (CoNV-ID)
INIC (IN-BUFFER])
FLEWGTH {(IN-LEL)
EXEC CICS RETURRN
DMCONFIG File Entry
DM _LOCAL SERVICES
MIERCE FHAME=MIERRORSERV COHNWV=Y
1. User-entered HOTP invokes MIRRDTPC program.
2. The EXEC CICS ALLOCATE acquires a session to the remote Tuxedo domain.
3. Save the conversation ID returned in EIBRSRCE to a program variable. This value is used
to identify the specific conversation in your CICS/ESA APPC verbs.
4. The EXEC CICS CONNECT PROCESS command initiates the advertised service mapped to
MIRROR in the DM_LOCAL_SERVICES section of the DMCONFIG file.
5. The EXEC CICS SEND command relinquishes control with the INVITE WAIT option.
6. The EXEC CICS RECEIVE command receives the tpsend idata buffer contents into the
IN-BUFFER.
ORACLE 2.21

Chapter 2
Distributed Transaction Processing (DTP) Examples

7. The tpreturn request tears down the conversation and indicates on the EXEC
CICS RECEIVE that the conversation is over.

2.2.9 Transactional ATMI Client Request/Response to CICS/ESA DTP

Figure 2-18 DMCONFIG File Entry

ATMI *ICS
ATMI Service User Transaction
‘toupclt DTPS
?Dupsrv TOUPDTES -l

cphegin (0, d) FROGRAF
cpcall [(“SIMFDIE",
idata .
ilen _—(6 ... imove EIBIRMID to
odata, 3 CoOMV-ID) ...
clen -
1N} EXEC CICS BECEIVE
CONVID (CONV-ID)
cpocommit () ;) INTO (IN-BUFFER])

FLENGTH {IN-LEM)

1 ’ (S) ... lprocesa datal ...

EXEC CICS SEMD
FROM ([CUI-BUFFER]
9 FLENGTH (OUT_LEMSTH)
COMNVID (CONV-ID)
CONFIEM INVITE

EXEC CICS BECEIVE
INTO [(DUMMY]
INLEMGTH (DUMMY-LEW)

EXEC CICES RETURH

DMCONFIG File Entry
CM_REMOTE_SERVICES

SIMPDTF RMAME=DTIFE FUNCTICH=AFFC COCIW=H

Note:

This is not the recommended method of performing a DTP transactional
service. Please refer to the transactional DPL using request/response for the
recommended method.

1. ATMI client toupclt invokes toupsrv service. (Note that each tpcall made in the
program must be bookended with a tpbegin and a tpcommit.)

ORACLE" 2-22

ORACLE

Chapter 2
Distributed Transaction Processing (DTP) Examples

The service issues tpbegin to start a transaction.

The toupsrv service issues tpcall for SIMPDTP, which is advertised in the
DM REMOTE SERVICES section of the DMCONFIG file.

User transaction DTPS starts TOUPDTPS program.

Save the EIBTRMID to a program variable. This value is used to identify the specific
conversation on your CICS/ESA APPC verbs.

The EXEC CICS RECEIVE command receives the idata buffer contents for processing.
The TOUPDTPS program processes data.

The EXEC CICS SEND command returns the OUT-BUUFER contents into the clients odata
buffer. CONFIRM indicates the conversation is finished. INVITE allows the client to respond
with a COMMIT request.

The toupsrv service issues tpcommit to end the transaction. The COMMIT is received on
the EXEC CICS RECEIVE verb and the server issues EXEC CICS RETURN to commit the
resources, terminate the transaction, and free the outstanding conversation.

2-23

Chapter 2

Distributed Transaction Processing (DTP) Examples

2.2.10 Transactional ATMI Conversational Client to CICS/ESA DTP,
Server Gets Control

Figure 2-19 DMCONFIG File Entry

ATMI

ATMI Service
toupclt
tOUpEIv

[
tpbegin (0,0) @

cd=tpconnect
[("=SIMPDIE",
idata,

—_—

ilen,
TFRECVOMLY) ;

tprecv [od,
odata,
olen,
o,
revent);

(5)
O,

(o)
tpcommit u

I

D _FEMOIE_SERVICES

User Transaction
DTPS

TOUPDIFS =l
PROGRAHM

c.. lmove eibtrmid to
conv—id] ...

EXEC CICS BECEIVE
CONVID (CONV-ID)
INTO [(IW-BUFFER]
FLEWNGTH {IN-LEM)

... |lprfess data) ...

EXEC CICS SEHMD
FROM [(DUT-BUFFER]
FLENGTH (OUTI-LEM)
CONFIEM INVITE

EXEC CICS RECEIVE
INTO [(DUMMY]
INLEMNGTH (DUMMY-LEW)

EXEC CICS RETURH

DMCONMFIG File Entry

SIMPDTF EHNAME=DIPS FUNCTICH=APFC CONV=Y

The toupsrv service issues tpconnect for SIMPDTP, which is advertised in the

DM REMOTE SERVICES section of DMCONFIG file. The TPRECVONLY indicates the
server gains control and the first conversation verb toupsrv can issue is tprecv.

1. ATMI client invokes toupsrv service.
2. The toupsrv service issues tpbegin to start the transaction.
3.
Data is sent on the tpconnect in the idata buffer.
4. User transaction DTPS starts TOUPDTPS program.
5.

It is recommended you save the EIBTRMID to a program variable. This value may

be used to identify the specific conversation on your CICS/ESA APPC verbs.

ORACLE"

2-24

Chapter 2
Distributed Transaction Processing (DTP) Examples

6. The EXEC CICS RECEIVE command receives the idata buffer contents for processing.

7. The TOUPDTPS program processes data.

8. The EXEC CICS SEND command returns the OUT-BUFFER contents into the clients tprecv
odata buffer. CONFIRM indicates that the conversation is finished and is communicated to
the tprecv as TPEV_SVCSUCC. INVITE enables the client to respond with a COMMIT request.

9. The toupsrv service issues tpcommit to end the transaction. The COMMIT is received on
the EXEC CICS RECEIVE verb and the server issues EXEC CICS RETURN to commit the
resources, terminate the transaction, and free the outstanding conversation.

2.2.11 Transactional CICS/ESA DTP to ATMI Conversational Server, Host

Client Relinquishes Control

Figure 2-20 DMCONFIG File Entry

ATMI

ATMI Service
MIRROR

MIEROE
[TESVCINFOY
tpaveinfal

cpsend
[tpsvecinfo—>cd,
idata,
ilen,
0y

-

—-f—

revent) ;
cpreturn() ;

1

DM _LOCAL SERWVICES

MIRROR BHNAME=MIFRCRSERV COWV=Y

User Transaction

H2TP ——
MIERDIFC «.—@J
PROGEAM

EXEC CICS ALLOCAT
EYSID (“BEA™)
.. [mowe EIBRSRCE to CONV-

T i

EXEC CICS CONMECT FRCCESE
FROCHAME ("“MIRRORSERV"™)
FROCLEMGTH (10)
EYMCLEVEL (2]

EXEC CICS SEND
INVITE WAIT

EXEC CICS RECEIVE
COMNVID (CONV-ID)
INTCD (IMN-BUFFER]
FLEWGTH (IN-LEL)

EXEC CICS ISSUE CONEFIEMATICH
CONVID (CONV-ID)

EXEC CICS RECEIVE

COMNVID (CONV-ID)
EXEC CICS SYHNCPOINT

EXEC CICS FREE
COMNVID (CONV-ID)
EXEC CICS RETUEN

DMCONFIG File Entry

ORACLE"

2-25

Chapter 2
CPI-C Programming Examples

1. User-entered H2TP invokes MIRRDTPC program.
2. The EXEC CICS ALLOCATE acquires a session to the remote Tuxedo domain.

3. Save the conversation ID returned in EIBRSRCE to a program variable. This value is
used to identify the specific conversation on your CICS/ESA APPC verbs.

4. The EXEC CICS CONNECT PROCESS command initiates the advertised service
mapped to MIRRDTPS. The SYNCLEVEL (2) parameter indicates the inclusion of the
ATMI service in the CICS/ESA transaction.

5. The EXEC CICS SEND INVITE WAIT command causes the client to immediately
relinquish control to the Tuxedo server. This is communicated to the service in
TPSVCINFO as TPSENDONLY. No data is sent to the server on this request.

6. The EXEC CICS RECEIVE command receives the tpsend idata buffer contents into
the IN-BUFFER. The EXEC CICS RECEIVE command receives a confirm request
indicating the conversation should be terminated.

7. The EXEC CICS ISSUE CONFIRMATION verb responds positively to the confirm
request.

8. The EXEC CICS SYNCPOINT is an explicit commit request to end the conversation
and update all resources in the transaction.

9. The EXEC CICS FREE verb explicitly frees the outstanding conversation.

2.3 CPI-C Programming Examples

ORACLE

The examples in this section show the protocol exchanges between the local ATMI
platform and remote host application program. The type of ATMI service request
determines the nature of the client/server communication model. For requests initiated
by the host application, the configuration information for the local service determines
the protocol exchanges on the conversation.

Although it is most suited for the DPL environment, the tpcall is usually used in the
DPL environment but can also be used for a request/response to an APPC server.

The examples in this section represent a few of the many programming scenarios
available for using CPI-C and ATMI service invocations. These examples employ the
most natural and efficient approaches.

* ATMI Client Request/Response to Host CPI-C

e ATMI Client Asynchronous Request/Response to Host CPI-C

* ATMI Client Asynchronous Request/Response to Host CPI-C with No Reply
* ATMI Conversational Client to Host CPI-C, Server Gets Control

* ATMI Conversational Client To Host CPI-C, Client Retains Control

* ATMI Conversational Client to Host CPI-C, Client Grants/gets Control

* Host CPI-C to ATMI Asynchronous Request/Response Server with No Reply
* Host CPI-C to ATMI Server Request/Response

* Host CPI-C to ATMI Conversational Service, Client Retains Control

* Host CPI-C ATMI to Conversational Service, Client Grants Control

» Transactional ATMI Client Request/Response to Host CPI-C

2-26

Chapter 2
CPI-C Programming Examples

* Transactional Host CPI-C to ATMI Conversational Server, Client Grants Control

e Transactional ATMI Conversational Client to Host CPI-C, Server Gets Control

2.3.1 ATMI Client Request/Response to Host CPI-C

Figure 2-21 DMCONFIG File Entry

ATMI Service Remote Service
toupclt - tpname = TPNCPIC
toupsrv () TOUPCPIC g (3)
{ FROGRAM o/
tpcall ("SIMBCPIC", | it £
idata, ——' 5 \ [
ilen, cmaccp (convid, rocode)
cdats, - - cmrov (conwvid, ibuffer, .. ;
clen,
] 0hi ... lprocesa dataj)... @

cmsst {. .) jCM_SEND_AND_DEALLCCATE

cm=end (convid, obuffer);

DMCOMNFIG File Entry
CM_REMOTE_SERWICES

STMPCPIC RHAME=TPHCFIC FUNCTIIOH=AFFC CONV=H

1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpcall for SIMPCPIC, which is advertised in the
DM_REMOTE_SERVICES section of the DMCONFIG file.

3. The remote service with the tpname TPNCPIC invokes TOUPCPIC program.

4. The server accepts the conversation with the cmaccp call. The conversation id returned
on the request in convid is used for all other requests on this conversation.

5. The cmrcv request receives the idata buffer contents for processing.

6. The TOUPCPIC program processes data.

ORACLE 2.27

Chapter 2
CPI-C Programming Examples

7. The cmsst request prepares the next send request by setting the send type to
CM SEND AND DEALLOCATE.

8. The cmsend request returns the obuffer contents into the client odata buffer. The
buffer is flushed, and the conversation ended.

2.3.2 ATMI Client Asynchronous Request/Response to Host CPI-C

Figure 2-22 DMCONFIG File Entry

ATMI Service Remote Service
toupclt _ tpname = TPNCPIC
CoupsTw il TOUFCPIC
1 FROGRAM
cd=tpacall ("sIMPCPIT™ main(
idata, v———_1 5]
;%en, cmaccp ([convid, rocode) ;
L3

cmrov (convid, ibuffer, ..

tpgetreply (od,

v ... [process data) ...
odata, .q.____< T
olen, s

cmeend ([convid,
01 cbuffer, ...);

cmdeal (convid, rcode);

DMCONFIG File Entry
CM_REMCTE SERVICES

SIMPCPIC RMAME=TPHMCFIC FUNCTIOMN=AFFC CONV=IN

1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpacall for SIMPCPIC, which is advertised in the
DM_REMOTE_SERVICES section of the DMCONFIG file.

3. The remote service with tpname TPNCPIC invokes TOUPCPIC program.

4. The server accepts the conversation with the cmaccp call. The conversation id
returned on the request in convid is used for all other requests on this
conversation.

ORACLE" 2-28

Chapter 2
CPI-C Programming Examples

5. The cmrcv request receives the idata buffer contents for processing.
6. The TOUPCPIC program processes data.

7. The cmsendcommand returns the obuffer contents into the client tpgetreply odata

buffer. The data may not be immediately sent to the tpgetreply odata buffer on this
request.

8. The cmdeal flushes the data to the client, and indicates the conversation is finished.

2.3.3 ATMI Client Asynchronous Request/Response to Host CPI-C with No
Reply

Figure 2-23 DMCONFIG File Entry

ATMI
ATMI Service Remote Service
- toupsrv. tpname = TPNCPIC
Ctoupsev () TOUFPCEIC
i { FROGRAM
|{tpacall ("SIMPCPICT - main)
idata, : 5 1
ilen,

cmaccp (convid, rocode) ;
cmrov {convid, ibuffer, ..

TFHOREFLY) ;

... [process data) ...

]

DMCONFIG File Entry

CHM REMOTE_SERVICES

SIMPCFIC RHAME=TFHCFIC FUNCTION=APFC COHW=H

1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpacall with a TPNOREPLY request for SIMPCPIC, which is
advertised in the DM_REMOTE_SERVICES section of the DMCONFIG file.

ORACLE" 2-29

Chapter 2
CPI-C Programming Examples

3. The remote service with tpname TPNCPIC invokes TOUPCPIC program.

4. The server accepts the conversation with the cmaccp call. The conversation id
returned on the request in convid is used for all other requests on this
conversation.

5. The cmrcv request receives the idata buffer contents for processing, and
notification that the conversation has ended with the return code value of
CM DEALLOCATED NORMAL.

6. The TOUPCPIC program processes data.

2.3.4 ATMI Conversational Client to Host CPI-C, Server Gets Control

Figure 2-24 DMCONFIG File Entry

ATMI Service Remote Service
toupclt tpname = TPNCPIC
toupsev () TOUFCPIC
1 PROGEAM
‘cd=tpCconnect main ()
("SIMFCEPIC™, —— f
idata, cmaccp (convid, roode) ;
ilen,

TFPRECVONLY) »

cmrow (convid, idbuffer, .. ;

tprecwy{ocd,
odata,
olen,
4]
revent) ;

... lprocess data) ...

cmest (.) jCM_SEND_AWD_FLUSH

cmeend (convid, ckbuffer);
cmdeal (convid, roode);

DMCONFIG File Entry

CM REMOTE SERVICES

STIMPCFPIC RHAME=TFHCFIC FUNCIIOH=AFFC CONV=Y

1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpconnect for SIMPCPIC, which is advertised in the
DM_REMOTE_SERVICES section of the DMCONFIG file. The TPRECVONLY

ORACLE" 2-30

Chapter 2
CPI-C Programming Examples

indicates the server gains control and the first conversation verb the toupsrv can issue is
tprecv. Data is sent on the tpconnect in the idata buffer.

3. The remote service with tpname TPNCPIC invokes TOUPCPIC program.

4. The server accepts the conversation with the cmaccp call. The conversation ID returned
on the request in convid is used for all other requests on this conversation.

5. The cmrcv request receives the idata buffer contents for processing.

6. The TOUPCPIC program processes data.

7. The cmsst request prepares the next send request by setting the send type to

CM_SEND AND FLUSH.

8. The cmsend command returns the obuf fer contents into the client tprecv odata buffer.
The data is immediately flushed on the send request.

9. The cmdeal request ends the conversation.

2.3.5 ATMI Conversational Client To Host CPI-C, Client Retains Control

Figure 2-25 DMCONFIG File Entry

ATMI

-t oupsEv ()
[
cd=tpoonnect
] ("5IMPCPIC™, oo
o,
o,
TPEENDONLY) ;

Htpsend(cd,
] odata, _________(:?
alen, .

o
TFRECVOHLY) ;

tprecwv (cod,
idata,
iler
0,
revent) ;

Remote Service
tpname = TPNCPIC

ToUOBPCEPIC
FROGEAM
main{)

cmaccp (convid, rcode) ;

cmrcv {convid, ibuffer, ..} ;

-+ .{process data)...

cmaend (conwvid,
obuffer...)

cmdeal (conwid,
roode) §

b

DMCONFIG File Entry

DM REFOTE_SERVICES

SIMFCFIC BHNAME=TFNCFIC FUNCTICW=APPC CONV=Y

ORACLE"

2-31

ORACLE

Chapter 2
CPI-C Programming Examples

ATMI client invokes toupsrv service.

The toupsrv service issues tpconnect for SIMPCPIC, which is advertised in the
DM_REMOTE_SERVICES section of the DMCONFIG file. The TPSENDONLY
indicates the client retains control and continues to send data. No data is sent with
the tpconnect.

The remote service with tpname TPNCPIC invokes TOUPCPIC program.

The server accepts the conversation with the cmaccp call. The conversation id
returned on the request in convid is used for all other requests on this
conversation.

The cmrcv request receives the tpsend idata buffer contents for processing. The
conversation is relinquished with the TPRECVONLY flag.

The TOUPCPIC program processes data.

The cmsend returns a response in the tprecv idata buffer, along with notification
from the cmdeal command that the conversation is over. The cmdeal flushes the
data buffer and the tprecv reevent parameter is set to TPEV_SUCCESS.

2-32

Chapter 2
CPI-C Programming Examples

2.3.6 ATMI Conversational Client to Host CPI-C, Client Grants/gets Control

Figure 2-26 DMCONFIG File Entry

| ATIUII__
ATMI Service

Ctoupsrvil)

i

cd=tpoonnect
("SIMFCFIC", —
Qp
B
TPRECVOMNLY) ;

tprecv {cd,
odata, ﬂ.——————r-_
olen,
4]
revent])

tprecv {cd,

olen,

4]

revent]) ;
tpsend (cd,

odata, 7

idata, 9

ilen,
8]
IPRECVOMNLY) ;

tprecvicd, -
dumptr,
dumplen,
o,
revent);

amnta Service
tpname = TPNCPIC

TOUOFCFIC

FROGEREAM

maini)

i

cmaccp (conwvid, roode) ;
cmrov (convid, ibuffer, ..]

cmsend {convid,
obuffer, ...);

cmsend (coenvid,
obuffer, ...);

cmptr (convid, roede) ;

cmrcov (convid, ibuffer,

L I

cmdsal (conwvid,
roode]) ;

]

DMCONFIG File Entry

CM _BREMOTE SERVICES

STMPCPIC EFEMAME=TPHCFIC FUNCTION=APPL CONV=Y

ATMI client invokes toupsrv service.

The toupsrv service issues tpconnect for SIMPCPIC, which is advertised in the
DM_REMOTE_SERVICES section of the DMCONFIG file. The TPRECVONLY indicates
the server gains control and the first conversation verb the toupsrv canissue is tprecv.

The remote service with tpname TPNCPIC invokes TOUPCPIC program.

The server accepts the conversation with the cmaccp request. The conversation id
returned on the request in convid is used for all other requests on this conversation.

The cmrcv requests receives the indicator that control has been granted to the server.

The cmsend request returns its obuf fer contents into the first client tprecv odata buffer.
The data may not immediately be sent.

ORACLE"

2-33

Chapter 2
CPI-C Programming Examples

7. The cmsend request returns its obuffer contents into the second client tprecv
odata buffer. The data may not immediately be sent.

8. The cmptr request flushes the data to the client, and grants control to the client.

9. The cmrcv request receives the tpsend idata buffer contents for processing. The
TPRECVONLY is passed to the tprecv, relinquishing control of the conversation.

10. The cmdeal indicates a successful completion of the conversation to the tprecv;
no data is passed.

2.3.7 Host CPI-C to ATMI Asynchronous Request/Response Server
with No Reply

Figure 2-27 DMCONFIG File Entry

ATMI
MIRROR Environment
MIRRCE () MIRRCFIC qj
[TESVCINFO* tpsvcinfo)l - EROGREAM

1 maini)
tpsvocinfo-»flags ==] I
TFHOREFLY

cminit {convid, "MIBERSIDE",
roode] ;

manipulate

tpsveinfo-»data cmalle{convid, roode) ;

(ﬁ:ltpreturntTPsUEEEEE, Oy cmzend{convid, cbufer,
MULL, O, 0); Y

1 cmdeal {convid, rcode);

DMCONFIG File Entry

CM LOCAL SERVICES

MIRECE BHAME=MIERECORSEERV CONV=I

1. The CPI-C application program MIRRCPIC is invoked using environment start-up
specifications.

ORACLE" 2-34

Chapter 2
CPI-C Programming Examples

6.

The MIRRCPIC client requests cminit to establish conversation attributes and receive a
conversation ID that will be used on all other requests on this conversation. The remote
server and service are named in the CPI-C side information entry MIRRSIDE.

The cmallc request initiates the advertised service mapped to MIRRORSERYV in the
DM_LOCAL_SERVICES section of the DMCONFIG file.

The cmsend request sends the contents of obuffer to the ATMI service in the tpsvcinfo-
>data buffer.

The cmdeal request flushes the data, and indicates the conversation is finished with the
TPNOREPLY in the tpsvcinfo->flag field.

The service completes with the tpreturn.

2.3.8 Host CPI-C to ATMI Server Request/Response

Figure 2-28 DMCONFIG File Entry

ATMI
'ATMI Service
MIRROR Environment
MIRROR () MIRRCFIC j
(TPEVCINEO* tpsvoinfo) |(-fe— PROGRAM

1 maini)
manipulate I

tpavoinfo-rdata cminit (conwid, "MIRRSIDE",

roode] ;
tpreturn (IFSUCCESS, 0O,
odata, cmalle{convid, roode) ;
alen,
01y

cmest {...)CH_SEND_FREF_TO_RECEIVE

] 5
cmeend {convid, cbufer,

PEr

——————fi (i :_ cmrov (conwid, ibuffer...);

]

DMCONFIG File Entry
CM_LoCAL_SERVICES

HIFPRCE ENAME=MIEROESERV CONV=N

ORACLE"

2-35

ORACLE

Chapter 2
CPI-C Programming Examples

The CPI-C application program MIRRCPIC is invoked using environment start-up
specifications.

The MIRRCPIC client requests cminit to establish conversation attributes and
receive a conversation id that will be used on all other requests on this
conversation. The remote server and service are named in the CPI-C side
information entry MIRRSIDE.

The cmallc request initiates the advertised service mapped to MIRRORSERYV in the
DM_LOCAL_SERVICES section of the DMCONFIG file.

The cmsst request prepares the next send request by setting the send type to
CM SEND AND PREP TO RECEIVE.

The cmsend request immediately sends the contents of obuffer to the ATMI
service in the tpsvcinfo->data buffer and relinquishes control to the mirrorserv
service.

The cmrcv request receives the contents of the odata returned on the ATMI
tpreturn service, and naotification that the conversation has ended with the return
code value of CM_DEALLOCATED NORMAL.

2-36

Chapter 2
CPI-C Programming Examples

2.3.9 Host CPI-C to ATMI Conversational Service, Client Retains Control

Figure 2-29 DMCONFIG File Entry

ATMI

'ATMI Service

MIRROR Environment
MIRROR () @ MIRRCFIC J

[TEEVCINEO* tpsvoinfal

FPROGEAM

i main (]

tpavocinfo-»flags == I
TFCONV+TFHOREFLY + cminit {(convid, "MIRRSIDE",
TFRECVCOHNLY roode] ;

manipulate

cmallec {convid, rocode) ;

tpsvocinfo->data

tpreturn {IFSUCCESS, 0O,

cmeend {convid, cbuffer,
MULL, 0, 0];

P |
cmdeal {convid, roode);

]
]

DMCOMNFIG File Entry
OM_LOCAL_SERVICES

HMIFRCE ENAME=MIEROESERV COMNV=[

The CPI-C application program MIRRCPIC is invoked using environment start-up
specifications.

The MIRRCPIC client requests cminit to establish conversation attributes and receive a
conversation id that will be used on all other requests on this conversation. The remote
server and service are named in the CPI-C side information entry MIRRSIDE.

The cmallc request initiates the advertised service mapped to MIRRORSERYV in the
DM_LOCAL_SERVICES section of the DMCONFIG file.

The cmsend request sends the contents of obuffer to the ATMI service in the tpsvcinfo-
>data buffer.

The cmdeal request flushes the data and ends the conversation, as indicated by
TPNOREPLY in the tpsvcinfo->flag field.

ORACLE"

2-37

Chapter 2
CPI-C Programming Examples

2.3.10 Host CPI-C ATMI to Conversational Service, Client Grants
Control

Figure 2-30 DMCONFIG File Entry

ATMI

MIRROR Environment
MIRROR () MIRRCFIC J
(TPSVCINFO* tpsvcinfc-]"'i-@» PROGRAM
i main()

tpavocinfo->flags == I
TFCONY+TESENDCHLY

cminit {convid, "MIRRSIDE",

) roode] ;
... manipulate

tpsvocinfo->data. ..

cmalle {convid, rocode) ;

tpsend (tpsvcinfo-rcd, |

cmptr (convid, roode)
odata, —< 5
olen, ’ ibuffer, ..)

cmrov (conwvid,
Or

revent]) ;

tpreturn {IFSUCCESS, 0O,
NULL, 0, 0);

DMCONFIG File Entry
OCM_LoCAL_SERVICES

HIFRRCE ENAME=MIEROESERV CONV=Y

1. The CPI-C application program MIRRCPIC is invoked using environment start-up
specifications.

2. The MIRRCPIC client requests cminit to establish conversation attributes and
receive a conversation ID that will be used on all other requests on this
conversation. The remote server and service are named in the CPI-C side
information entry MIRRSIDE.

3. The cmallc request initiates the advertised service mapped to MIRROR in the
DM_LOCAL_SERVICES section of the DMCONFIG file.

ORACLE" 2-38

Chapter 2
CPI-C Programming Examples

4. The cmptr relinquishes control of the conversation to the ATMI service indicated as

TPSENDONLY in the tpsvcinfo->flag field. No data is passed in the tpsvcinfo->data
field.

5. The cmrcv receives the contents of the tpsend odata into the ibuffer. The end of the
conversation is passed from the tpreturn service as return code value
CM DEALLOCATED NORMAL.

2.3.11 Transactional ATMI Client Request/Response to Host CPI-C

Figure 2-31 DMCONFIG File Entry

ATMI Service Remote Service

toupeclt tpname = TPNCPIC —
Loupsry ToupcepIc 4
1 ; Frogram u
tpkegin (0, 0) ; maini)

i

tpcall ("EIMPCRICY, e cmaccp (convid, roode)

idata, 6

ilen, cmrov (convid, ibuffer. . .)

odata,

olen, cmsst (conwvid,

01

CM_SEWD_AND_FREF_TC_RECEIVE, ..)
cmspt T {convid, I
1 CM_PFREP_TC RECEIVE _COMFIRM, ...}

tpoommit;

cmsend {convid, cbuffer...)

9 cmrov (conwvid, .. .)
srrcomit (rroode]

DMCONFIG File Entry

CM REMOTE ZSERVICES

SIMPCFPIC EMAME=TFHCFIC FUNCTION=AFPC COHNV=N

1. ATMI client invokes toupsrv service.
2. The toupsrv service issues tpbegin to start the transaction.

3. The toupsrv service issues tpcall for SIMPCPIC, which is advertised in the
DM_REMOTE_SERVICES section of the DMCONFIG file. Data is sent from the idata
buffer on the tpconnect.

ORACLE" 2-39

ORACLE

Chapter 2
CPI-C Programming Examples

The remote service with tpname TPNCPIC invokes TOUPCPIC program.

The server accepts the conversation with the cmaccp call. The conversation ID
returned on the request in convid is used for all other requests during this
conversation.

The cmrcv request receives the idata buffer contents for processing.

The cmsst and cmsptr prepare the next send request by setting the send type to
CM SEND AND PREP TO RECEIVE and by setting the prepare-to-receive type to
CM PREP TO RECEIVE CONFIRM.

The cmsend request immediately returns the obuffer contents into the client’s
odata buffer. The server relinquishes control to the server and indicates the end of
the conversation with the CONFIRM request.

The toupsrv issues the tpcommit to successfully complete the transaction and

commit all updated resources. The cmrcv request receives the commit request,
and responds explicitly to the request with the SAA Resource/Recovery commit
call srremit. The conversation is ended after the successful commit exchange.

2-40

Chapter 2
CPI-C Programming Examples

2.3.12 Transactional Host CPI-C to ATMI Conversational Server, Client
Grants Control

Figure 2-32 DMCONFIG File Entry

“ATMI Service Environment

MIRROR

BUCRIELIE : MIRRCFIC

(TPSVCINFOY tpsvoinfo)f Frogram

1 I main()

tpsend (tpsvocinfeo-»cd, I
odata, { 6 ; cminit (conwid,
Elen; \._J "MIRRSIDE",

roode) ;
reevent) ; cmesl (convid,

tpreturn (IPSOCCESS, CM_SYHWCEOINT,..];
(chart)WULL, cmalle(convid, roode)
o,
o : cmept T {convid,

] CM_FREF_TO RECEIVE_FLUSH, ..);

i cmptr (convid, roode) ;

cmrov [cenwid,

ibuffer...);
cmofmd {confid, roode)

cmdeal (convid, rocode)

srrcmit (rrcode)
1

DMCONFIG File Entry
OCM_LoCAL_SERVICES

HIFRRCE ENAME=MIEROESERV CONV=Y

The CPI-C application program MIRRCPIC is invoked using environment start-up
specifications.

The MIRRCPIC client requests cminit to establish conversation attributes and receive a
conversation ID that will be used on all other requests on this conversation. The remote
server and service are named in the CPI-C side information entry MIRRSIDE.

The cmss1 sets the conversation attributes to sync-level 2 with CM_SYNCPOINT. This allows
the ATMI service to participate in the transaction.

The cmallc request initiates the advertised service mapped to MIRRORSERYV in the
DM_LOCAL_SERVICES section of the DMCONFIG file.

ORACLE"

2-41

Chapter 2
CPI-C Programming Examples

The MIRRCPIC causes the client to relinquish control to the ATMI server with a
prepare-to-receive request. The cmsptr sets the prepare-to-receive type to
CM_RECEIVE_AND_FLUSH. The cmptr request immediately relinquishes control.

The MIRROR service sends the data contents of the odata buffer to the cmrcv
ibuffer. The cmrcv receives a confirm request from the server indicating the
conversation should be terminated.

The client replies positively to the confirm request with cmcfmd.

The MIRRCPIC client prepares to free the conversation with the cmdeal request.
The conversation in CM_DEALLOCATE_SYNC_LEVEL commits all updated
resources in the transaction and waits for the SAA resource recovery verb,
srrcmit. After the commit sequence has completed, the conversation terminates.

2.3.13 Transactional ATMI Conversational Client to Host CPI-C,
Server Gets Control

Figure 2-33 DMCONFIG File Entry

ORACLE

ATMI HOST
ATMI Service : Remote Service
toupclt — = tpname = TPNCPIC —‘
toupsrv TOUFCEIC "‘—‘ : }7

{ Program
tpbegin(l,0); main ()
1

cd=tpoconnect ("SIMFCFIC™ =
idata,

ilen,
IPRECVONLY)

cmaccp (convid, rcode);
cmrecw {convid, ibuffer...)

I

@. .. [process data) ...

odata g s : cmsend {convid, cbuffer...)
olen, _d’ (9):msptricnnvid,

o, CM_FPREP_TC_RECEIVE_CONF IRM) 8

| tprecyicd,

resvent) ;

tpCommit () cmptr{convid, ...}

; cmrov(convid, ...}

scrromit (rroode) ;

1

DMCONMFIG File Entry
CM_REMOTE_SERVICES

SIMPCPIC EMAME=TPHCPFIC FUNCTION=RPPC CONV=Y

2-42

10.

Chapter 2
CICS/ESA Mirror Transaction Examples

ATMI client invokes toupsrv service.
The toupsrv service issues tpbegin to start the transaction.

The toupsrv service issues a tpconnect service request for SIMPCPIC, which is
advertised in the DM_REMOTE_SERVICES section of the DMCONFIG file. Data is sent
in the idata buffer on the tpconnect.

The remote service with tpname TPNCPIC invokes TOUPCPIC program.

The server accepts the conversation with the cmaccp call. The conversation ID returned
on the request in convid is used for all other requests during this conversation.

The cmrcv request receives the idatabuffer contents sent on the tpconnect for
processing.

The TOUPCPIC program processes the data.

The cmsend returns the obuffer contents into the client’s tprecv odata buffer. The buffer
contents may not be sent immediately.

The cmsptr prepares the prepare-to-receive request with CM PREP TO RECEIVE CONFIRM.
The cmptr request with CONFIRM indicates that the conversation is finished and is
communicated to the tprecv as TPEV_SVCSUCC.

The toupsrv issues the tpcommit to successfully complete the transaction and commit all
updated resources. The cmrcv request receives the commit request and responds
explicitly to the request with the SAA Resource/Recovery commit call srremit. The
conversation is ended after the successful commit exchange.

2.4 CICS/ESA Mirror Transaction Examples

This chapter contains the following topics:

ORACLE

Implicit Attachment of TRANSID (Outbound Requests Only)
Explicit Attachment of TRANSID for Outbound Requests
Explicit Attachment of TRANSID for Inbound Requests

2-43

Chapter 2
CICS/ESA Mirror Transaction Examples

2.4.1 Implicit Attachment of TRANSID (Outbound Requests Only)

Figure 2-34 Implicit Attachment of TRANSID (Outbound Requests Only)

CICS/ESA
Region

tpcall(*“TRN1DATA",..)
Tuxedo DFHMIRS

Mainframe EXEC CICS LINK
A ﬁ‘dapter PHDG{ SVCH }...
[
b]
I
DMEONFIG
File
[]

DM_HEMPTE_SEHVICES;

TRM1DATA
RMAME=5VCA1
FUNMCTION=DPL

The following list describes the process for implicit attachment as illustrated in the
figure above:

1.

The ATMI service makes a request to the service TRN1DATA, which is advertised as
a remote service in the DMCONFIG file. It is a DPL request to a program named SvC1
in the CICS/ESA region.

The first four characters of the remote service tag name (TRN1) are extracted and
passed to the CICS/ESA region as the invoking TRANSID. No CICS/ESA resource
definition for the TRANSID is required in the region.

The mirror transaction CSMI is attached in the CICS/ESA region, starting the
mirror program DFHMIRS. The program performs the DTP requests for the service.

The mirror program now attaches the invoking TRANSID (TRN1) and then invokes
the application service program svC1.The program can interrogate the EIBTRNID
field to find this value.

ORACLE"

2-44

Chapter 2
CICS/ESA Mirror Transaction Examples

2.4.2 Explicit Attachment of TRANSID for Outbound Requests

Figure 2-35 Explicit Attachment of TRANSID for Outbound Requests

CICS/ESA
Region

tpcall(“SERVICE1",...)

Tuxedo

Mainframe

‘ Adapter DFHMIRS

N EXEC CICS LINK
' PROG(SVC1)...

DMCONFIG
v

s File
SVCi1
EIBTRMID=TRM1

¥
DM_REMOTE SERVICES:
SERVICE1

RMAME=TRMN1.SERVICE1
FUMCTIOM=DPL

The following list describes the process for explicit attachment as illustrated in the figure
above:

1. The ATMI program makes a service request for SERVICEL, which is advertised as a
remote service in the DMCONFIG file. The FUNCTION option indicates the remote service is
invoked as a DPL.

2. The request extracts TRN1 as an alternate mirror transaction ID for the remote region,
along with the remote program name SERVICE1.

3. The TRrN1 ID is attached instead of the default mirror transaction, CSMI or CvMI. The TRN1
ID must be defined as a transaction resource in the remote region and must point to the
mirror transaction program DFHMIRS.

4. The mirror program DFMMIRS calls the server application program, passing the TRN1 ID in
the EIBTRNID field.

ORACLE 2.45

Chapter 2
Additional Information

2.4.3 Explicit Attachment of TRANSID for Inbound Requests

Figure 2-36 Explicit Attachment of TRANSID for Inbound Requests

CICS/ESA
Region

SERVICE1(ipsvcinio...)

Tuxedo EXEC CICS LINK

Mainframe ' PROGRAM("INSVC1")
. Adapter SYSID{"AIX1™)
2 TRANSID({"TRN1")
Ii)
DNMCONFIG
r File
r
DM_LCpAL_SEHVICES:
SERVICEA

RMAME=TRMN1:INSVCA

The following list describes the process for implicit attachment as illustrated in the
figure above:

1. The CICS/ESA program makes a request to INSVC1, which is a local ATMI service.
The SYSID and PROGRAM values in the request identify the local system and the
name of the local service. The TRANSID option indicates the mirror transaction to
be initiated.

2. The PROGRAM and mirror TRANSID are extracted from the DPL request and are used
to find an exact RNAME match in the DM _LOCAL SERVICES section of the DMCONFIG
file.

3. The service SERVICE1, which is advertised locally in the ATMI platform application,
is initiated.

2.5 Additional Information

Additional information about CICS/ESA Intersystem Communications may be found in
the following IBM publications:

* CICS/ESA Intercommunication Guide, I1BM publication No. SC33-0657

* CICS/ESA Distributed Transaction Programming Guide, IBM publication No.
SC33-00783

ORACLE" 2-46

Chapter 2
Additional Information

* CICS/ESA Recovery and Restart Guide, I1BM publication No. SC33-0658

ORACLE 2-47

	Contents
	List of Figures
	List of Tables
	1 ATMI to CPI-C Function Mapping
	1.1 tpcall()
	1.2 tpacall()
	1.3 tpgetrply()
	1.4 tpservice()
	1.5 tpreturn()
	1.6 tpcancel()
	1.7 tpconnect()
	1.8 tpsend()
	1.9 tprecv()
	1.10 tpdiscon()
	1.11 tpforward()

	2 Application-to-Application Programming Examples
	2.1 Distributed Program Link (DPL) Examples
	2.1.1 ATMI Client Request/Response to CICS/ESA DPL
	2.1.2 ATMI Client Asynchronous Request/Response to CICS/ESA DPL
	2.1.3 ATMI Client Asynchronous Request/Response with No Reply to CICS/ESA DPL
	2.1.4 CICS/ESA DPL to ATMI Request/Response Server
	2.1.5 CICS/ESA DPL to ATMI Request/Response Server, Service in Autonomous Transaction
	2.1.6 ATMI Client Request/Response to CICS/ESA DPL, Autonomous Transaction
	2.1.7 Transactional ATMI Client Multiple Requests/Responses to CICS/ESA DPL
	2.1.8 Transactional CICS/ESA DPL to ATMI Request/Response Server
	2.1.9 CICS/ESA DPL to ATMI Requests/Responses Server for Channel /Container

	2.2 Distributed Transaction Processing (DTP) Examples
	2.2.1 ATMI Client Request/Response to CICS/ESA DTP
	2.2.2 ATMI Client Asynchronous Request/Response to CICS/ESA DTP
	2.2.3 ATMI Client Asynchronous Request/Response with No Reply to CICS/ESA DTP
	2.2.4 ATMI Conversational Client to CICS/ESA DTP, Server Gets Control
	2.2.5 ATMI Conversational Client to CICS/ESA DTP, Client Sends/Receives Data
	2.2.6 ATMI Conversational Client to CICS/ESA DTP, Client Grants Control
	2.2.7 CICS/ESA DTP to ATMI Conversational Server, Client Retains Control
	2.2.8 CICS/ESA DTP to ATMI Conversational Server, Client Relinquishes Control
	2.2.9 Transactional ATMI Client Request/Response to CICS/ESA DTP
	2.2.10 Transactional ATMI Conversational Client to CICS/ESA DTP, Server Gets Control
	2.2.11 Transactional CICS/ESA DTP to ATMI Conversational Server, Host Client Relinquishes Control

	2.3 CPI-C Programming Examples
	2.3.1 ATMI Client Request/Response to Host CPI-C
	2.3.2 ATMI Client Asynchronous Request/Response to Host CPI-C
	2.3.3 ATMI Client Asynchronous Request/Response to Host CPI-C with No Reply
	2.3.4 ATMI Conversational Client to Host CPI-C, Server Gets Control
	2.3.5 ATMI Conversational Client To Host CPI-C, Client Retains Control
	2.3.6 ATMI Conversational Client to Host CPI-C, Client Grants/gets Control
	2.3.7 Host CPI-C to ATMI Asynchronous Request/Response Server with No Reply
	2.3.8 Host CPI-C to ATMI Server Request/Response
	2.3.9 Host CPI-C to ATMI Conversational Service, Client Retains Control
	2.3.10 Host CPI-C ATMI to Conversational Service, Client Grants Control
	2.3.11 Transactional ATMI Client Request/Response to Host CPI-C
	2.3.12 Transactional Host CPI-C to ATMI Conversational Server, Client Grants Control
	2.3.13 Transactional ATMI Conversational Client to Host CPI-C, Server Gets Control

	2.4 CICS/ESA Mirror Transaction Examples
	2.4.1 Implicit Attachment of TRANSID (Outbound Requests Only)
	2.4.2 Explicit Attachment of TRANSID for Outbound Requests
	2.4.3 Explicit Attachment of TRANSID for Inbound Requests

	2.5 Additional Information

