
Oracle® Tuxedo
Using Oracle Jolt

Release 22c
F93280-01
July 2024

Oracle Tuxedo Using Oracle Jolt, Release 22c

F93280-01

Copyright © 1996, 2024, Oracle and/or its affiliates.

Primary Author: Preeti Gandhe

Contributing Authors: Tulika Das

Contributors: Maggie Li

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Documentation Accessibility xii

1 Introducing Oracle Jolt

1.1 Oracle Jolt Components 1-1

1.2 Key Features 1-2

1.3 How Oracle Jolt Works 1-3

1.3.1 Jolt Servers and Repository Servers 1-4

1.3.1.1 Jolt Servers 1-5

1.3.1.2 Repository Servers 1-5

1.3.2 Jolt Class Library 1-5

1.3.3 JoltBeans 1-7

1.3.4 Jolt Server and Jolt Client Communication 1-7

1.3.5 Oracle Tuxedo Service Metadata Repository 1-8

1.3.6 Jolt Internet Relay 1-8

1.4 Creating a Jolt Client to Access Oracle Tuxedo Applications 1-9

2 Bulk Loading Oracle Tuxedo Services

2.1 Using the Bulk Loader 2-1

2.1.1 Activating the Bulk Loader 2-1

2.1.1.1 Command-line Options 2-2

2.1.2 The Bulk Load File 2-2

2.2 Syntax of the Bulk Loader Data Files 2-2

2.2.1 Guidelines for Using Keywords 2-2

2.2.2 Keyword Order in the Bulk Loader Data File 2-3

2.2.3 Using Service-Level Keywords and Values 2-4

2.2.4 Using Parameter-Level Keywords and Values 2-4

2.3 Troubleshooting 2-5

2.4 Sample Bulk Load Data 2-5

iii

3 Configuring the Oracle Jolt System

3.1 Quick Configuration 3-1

3.1.1 Editing the UBBCONFIG File 3-1

3.1.2 Configuring the Tuxedo Service Metadata Repository 3-2

3.1.3 Initializing Services That Use Oracle Tuxedo and the Repository Editor 3-2

3.1.4 Configuring the Oracle Tuxedo TMUSREVT Server for Event Subscription 3-2

3.1.5 Configuring Jolt Relay 3-3

3.1.5.1 On UNIX 3-3

3.1.5.2 On UNIX and Windows 3-3

3.2 Jolt Background Information 3-4

3.2.1 Jolt Server 3-4

3.2.2 Starting the JSL 3-5

3.2.3 Shutting Down the JSL 3-5

3.2.4 Restarting the JSL 3-5

3.2.5 Configuring the JSL 3-5

3.2.6 JSL Command-line Options 3-6

3.2.7 Security and Encryption 3-9

3.3 Jolt Relay 3-10

3.3.1 Jolt Relay Failover 3-11

3.3.1.1 Jolt Client to JRLY Connection Failover 3-11

3.3.1.2 JRLY to JRAD Adapter Connection Failover 3-11

3.3.2 Jolt Relay Process 3-11

3.3.2.1 Starting the JRLY on UNIX 3-12

3.3.3 JRLY Command-line Options for Windows 3-12

3.3.4 JRLY Command-line Option for UNIX 3-14

3.3.5 JRLY Configuration File 3-15

3.4 Jolt Relay Adapter 3-16

3.4.1 JRAD Configuration 3-16

3.4.2 Network Address Configurations 3-18

3.5 Oracle Tuxedo Service Metadata Repository 3-19

3.5.1 Initializing Services By Using Oracle Tuxedo and the Repository Editor 3-19

3.6 Event Subscription 3-19

3.6.1 Configuring for Event Subscription 3-20

3.6.2 Filtering Oracle Tuxedo FML or VIEW Buffers 3-20

3.6.2.1 Buffer Types 3-20

3.6.2.2 FML Buffer Example 3-21

3.7 Oracle Tuxedo Background Information 3-21

3.7.1 Configuration File 3-21

3.7.2 Creating the UBBCONFIG File 3-22

3.7.2.1 Configuration File Format 3-22

3.7.2.2 MACHINES Section 3-23

iv

3.7.2.3 GROUPS Section 3-24

3.7.2.4 SERVERS Section 3-24

3.7.2.5 Parameters Usable with JSL 3-25

3.7.2.6 Optional Parameters 3-26

3.7.2.7 Run-time Parameters 3-27

3.7.2.8 Parameters Associated with RESTART 3-29

3.7.2.9 Entering Parameters 3-29

3.8 Sample Applications in Oracle Jolt Online Resources 3-30

4 Using the Jolt Class Library

4.1 Class Library Functionality Overview 4-1

4.1.1 Java Applications Versus Java Applets 4-2

4.1.2 Jolt Class Library Features 4-2

4.1.3 Error and Exception Handling 4-2

4.1.4 Jolt Client/Server Relationship 4-2

4.2 Jolt Object Relationships 4-4

4.3 Jolt Class Library Walkthrough 4-5

4.3.1 Logon and Logoff 4-5

4.3.2 Synchronous Service Calling 4-6

4.3.3 Transaction Begin, Commit, and Rollback 4-6

4.4 Using Oracle Tuxedo Buffer Types with Jolt 4-9

4.4.1 Using the STRING Buffer Type 4-10

4.4.1.1 Define TOUPPER in the Repository Editor 4-11

4.4.1.2 ToUpper.java Client Code 4-13

4.4.2 Using the CARRAY Buffer Type 4-14

4.4.2.1 Define the Tuxedo Service in the Repository Editor 4-14

4.4.2.2 tryOnCARRAY.java Client Code 4-14

4.4.3 Using the FML Buffer Type 4-15

4.4.3.1 tryOnFml.java Client Code 4-16

4.4.3.2 FML Field Definitions 4-17

4.4.3.3 Define PASSFML in the Repository Editor 4-17

4.4.3.4 tryOnFml.c Server Code 4-17

4.4.4 Using the VIEW Buffer Type 4-19

4.4.4.1 Define VIEW in the Repository Editor 4-19

4.4.4.2 simpview.java Client Code 4-19

4.4.4.3 VIEW Field Definitions 4-20

4.4.4.4 simpview.c Server Code 4-21

4.4.5 Using the XML Buffer Type 4-22

4.4.5.1 Define the Tuxedo Service in the Repository Editor 4-23

4.4.5.2 simpxml.java Client Code 4-23

4.4.6 Using the MBSTRING Buffer Type 4-24

v

4.5 Multithreaded Applications 4-25

4.5.1 Threads of Control 4-26

4.5.1.1 Preemptive Threading 4-26

4.5.1.2 Non-Preemptive Threading 4-26

4.5.2 Using Jolt with Non-Preemptive Threading 4-26

4.5.3 Using Threads for Asynchronous Behavior 4-27

4.5.4 Using Threads with Jolt 4-27

4.6 Event Subscription and Notifications 4-30

4.6.1 Event Subscription Classes 4-30

4.6.2 Notification Event Handler 4-31

4.6.3 Connection Modes 4-31

4.6.4 Notification Data Buffers 4-32

4.6.5 Oracle Tuxedo Event Subscription 4-32

4.6.5.1 Supported Subscription Types 4-32

4.6.5.2 Subscribing to Notifications 4-32

4.6.5.3 Unsubscribing from Notifications 4-33

4.6.6 Using the Jolt API to Receive Oracle Tuxedo Notifications 4-33

4.7 Clearing Parameter Values 4-34

4.8 Reusing Objects 4-36

4.9 Deploying and Localizing Jolt Applets 4-38

4.9.1 Deploying a Jolt Applet 4-39

4.9.2 Client Considerations 4-39

4.9.3 Web Server Considerations 4-39

4.9.4 Localizing a Jolt Applet 4-40

4.10 Using SSL 4-40

5 Using JoltBeans

5.1 Overview of Jolt Beans 5-1

5.1.1 JoltBeans Terms 5-2

5.1.2 Adding JoltBeans to Your Java Development Environment 5-2

5.1.3 Using Development and Run-time JoltBeans 5-3

5.2 Basic Steps for Using JoltBeans 5-3

5.3 JavaBeans Events and Oracle Tuxedo Events 5-4

5.3.1 Using Oracle Tuxedo Event Subscription and Notification with JoltBeans 5-4

5.4 How JoltBeans Use JavaBeans Events 5-4

5.5 The JoltBeans Toolkit 5-5

5.5.1 JoltSessionBean 5-6

5.5.2 JoltServiceBean 5-6

5.5.3 JoltUserEventBean 5-7

5.6 Jolt-Aware GUI Beans 5-7

5.6.1 JoltTextField 5-7

vi

5.6.2 JoltLabel 5-8

5.6.3 JoltList 5-8

5.6.4 JoltCheckbox 5-8

5.6.5 JoltChoice 5-8

5.7 Using the Property List and the Property Editor to Modify the JoltBeans Properties 5-9

5.8 JoltBeans Class Library Walkthrough 5-10

5.8.1 Building the Sample Form 5-11

5.8.1.1 Placing JoltBeans onto the Form Designer 5-12

5.8.2 Wiring the JoltBeans Together 5-16

5.8.2.1 Step 1: Wire the JoltSessionBean Logon 5-17

5.8.2.2 Step 2: Wire JoltSessionBean to JoltServiceBean Using PropertyChange 5-20

5.8.2.3 Step 3: Wire the accountID JoltTextField as Input to the JoltServiceBean
Using JoltInputEvent 5-24

5.8.2.4 Step 4: Wire Button to JoltServiceBean Using JoltAction 5-27

5.8.2.5 Step 5: Wire JoltServiceBean to the Balance JoltTextField Using
JoltOutputEvent 5-29

5.8.2.6 Step 6: Wire the JoltSessionBean Logoff 5-32

5.8.2.7 Step 7: Compile the Applet 5-34

5.8.2.8 Running the Sample Application 5-34

5.9 Using the Oracle Tuxedo Service Metadata Repository and Setting the Property
Values 5-35

5.10 JoltBeans Programming Tasks 5-37

5.10.1 Using Transactions with JoltBeans 5-37

5.10.2 Using Custom GUI Elements with the JoltService Bean 5-38

6 Using Servlet Connectivity for Oracle Tuxedo

6.1 What Is a Servlet? 6-1

6.2 How Servlets Work with Jolt 6-2

6.2.1 The Jolt Servlet Connectivity Classes 6-2

6.3 Writing and Registering HTTP Servlets 6-2

6.4 Jolt Servlet Connectivity Sample 6-3

6.4.1 Viewing the Sample Servlet Applications 6-3

6.4.2 SimpApp Sample 6-3

6.4.2.1 Requirements for Running the SimpApp Sample 6-4

6.4.2.2 Installing the SimpApp Sample 6-4

6.4.3 BankApp Sample 6-5

6.4.3.1 Requirements for Running the BankApp Sample 6-5

6.4.3.2 Installation Instructions 6-5

6.4.4 Admin Sample 6-6

6.4.4.1 Requirements for Running the Admin Sample 6-6

6.4.4.2 Installation Instructions 6-7

vii

6.5 Additional Information on Servlets 6-7

7 Migrating from Jolt Repository to Oracle Tuxedo Service Metadata
Repository

7.1 Replacing JREPSVR with TMMETADATA in UBBCONFIG 7-1

7.2 Loading Jolt Repository to Oracle Tuxedo Service Metadata Repository 7-2

7.3 Sample: joltapp Migration 7-2

A Oracle Jolt Exceptions

Index

viii

List of Figures

1-1 Oracle Jolt Architecture 1-4

1-2 Jolt-Related Server and Repository Components 1-5

1-3 Using the Jolt Class Library to Access Oracle Tuxedo Services 1-6

1-4 Distributing Oracle Tuxedo Services Through Jolt 1-8

1-5 Creating a Jolt Application 1-10

3-1 Jolt Internet Relay Path 3-10

4-1 Jolt Client/Server Relationship 4-3

4-2 Jolt Object Relationships 4-5

5-1 Possible Interrelationships Among JoltBeans 5-5

5-2 Property List: Ellipsis Button 5-9

5-3 Custom Property Editor Dialog Box 5-10

5-4 Sample Inquiry Applet 5-11

5-5 JoltBeans and the Form Designer in Visual Café 5-12

5-6 Visual Café 3.0 Form Designer 5-13

5-7 Example of JoltTextField Property List and Custom Property Editor 5-14

5-8 Revised JoltFieldName in the JoltTextField Property List 5-15

5-9 Example of JoltBeans on the Form Designer with Property Changes 5-16

5-10 Sequence in Which JoltBeans Are Wired 5-17

5-11 Wire the Applet to the Jolt Session Bean 5-18

5-12 Select ComponentShown Event 5-19

5-13 Select Logon to the Tuxedo System Action 5-20

5-14 Wire the JoltSessionBean to the JoltServiceBean 5-21

5-15 Select propertyChange Event 5-22

5-16 Select Handle a Jolt property change event 5-23

5-17 Select joltSesssionBean1 5-24

5-18 Select dataChanged Event 5-25

5-19 Select inquiry Object and Handle a Jolt input event Action 5-26

5-20 Select accountId Object and Get the current Jolt Input Event Action 5-27

5-21 Select action Performed Event 5-28

5-22 Select inquiry Object and Invoke the TUXEDO Service... Action 5-29

5-23 Select ServiceReturned Event 5-30

5-24 Select balance Object and Handle a service returned event Action 5-31

5-25 Select inquiry Object and Get the JoltOutputEvent object Action 5-32

5-26 Select componentHidden Event 5-33

5-27 Select joltSessionBean1 Object and Logoff from the Tuxedo System Action 5-34

5-28 JoltServiceBean Property Editor 5-35

ix

5-29 Custom Property Editor for ServiceName 5-36

5-30 JoltBeans Repository Logon 5-36

5-31 Property Editor with Selected Service 5-37

x

List of Tables

1-1 Using the Jolt Class Library 1-6

1-2 Mapping Relationship Between Jolt Repository Database and Tuxedo Services Data Types 1-9

2-1 Bulk Loader Command-line Options 2-2

2-2 Guidelines for Using Keywords 2-3

2-3 Service-Level Keywords and Values 2-4

2-4 Parameter-Level Keywords and Values 2-5

2-5 Bulk Loader Troubleshooting Table 2-5

3-1 JSL Command-line Options 3-6

3-2 RLY Command-line Options for Windows 3-13

3-3 RLY Command-line Option for UNIX 3-14

3-4 Host Name and Port Number Formats 3-16

3-5 JRAD CLOPT Parameter Descriptions 3-17

3-6 Jolt Internet Relay Network Address Configuration Criteria 3-19

3-7 Oracle Tuxedo Buffer Types 3-20

3-8 UBBCONFIG File Sections 3-23

4-1 Jolt Client/Server Interaction 4-3

5-1 JoltSessionBean Properties and Descriptions 5-6

5-2 JoltServiceBean Properties and Descriptions 5-7

5-3 JoltUserEventBean Properties and Descriptions 5-7

5-4 Required Form Elements 5-11

5-5 Required and Recommended Property Values 5-13

5-6 JoltBean Specific Properties 5-35

xi

Preface

This document describes how to leverage existing Oracle Tuxedo services and extend your
transaction environment to the corporate intranet or world-wide Internet and provides
references to related documentation.

The document includes the following chapters:

• Introducing Oracle Jolt

• #unique_13

• #unique_14

• #unique_15

• #unique_16

• #unique_17

• #unique_18

• Documentation Accessibility

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Preface

xii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Introducing Oracle Jolt

Oracle Jolt is a Java-based interface to the Oracle Tuxedo system that extends the
functionality of existing Oracle Tuxedo applications to include Intranet- and Internet-wide
availability. Using Jolt, you can now easily transform any Oracle Tuxedo application so that its
services are available to customers using an ordinary browser on the Internet. Jolt interfaces
with existing and new Oracle Tuxedo applications and services to allow secure, scalable,
intranet/Internet transactions between client and server. Jolt enables you to build client
applications and applets that can remotely invoke existing Oracle Tuxedo services, such as
application messaging, component management, and distributed transaction processing.

Because you develop your applications with the Jolt API, which use Oracle Tuxedo and the
Java programming language, the Jolt documentation is written with the assumption that you
are familiar with Oracle Tuxedo and Java programming. This documentation is intended for
system administrators, network administrators, and developers.

• Oracle Jolt Components

• Key Features

• How Oracle Jolt Works

• Creating a Jolt Client to Access Oracle Tuxedo Applications

1.1 Oracle Jolt Components
Oracle Jolt is a Java class library and API that provides an interface to Oracle Tuxedo from
remote Java clients. Oracle Jolt consists of the following components for creating Java-based
client programs that access Oracle Tuxedo services:

• Jolt Servers and Repository Servers—one or more Jolt servers listen for network
connections from clients, translate Jolt messages, multiplex multiple clients into a single
process, and submit and retrieve requests to and from Oracle Tuxedo-based applications
running on one or more Oracle Tuxedo servers.

• Jolt Class Library—the Jolt class library is a Java package containing the class files that
implement the Jolt API. These classes enable Java applications and applets to invoke
Oracle Tuxedo services. The Jolt class library includes functionality to set, retrieve,
manage, and invoke communication attributes, notifications, network connections,
transactions, and services.

• JoltBeans—Oracle JoltBeans provides a JavaBeans-compliant interface to Oracle Jolt.
JoltBeans are Beans components that you can use in JavaBeans-enabled integrated
development environments (IDEs) to construct Oracle Jolt clients. Jolt Beans consists of
two sets of Java Beans: JoltBeans toolkit (a JavaBeans-compliant interface to Oracle Jolt
that includes the JoltServiceBean, JoltSessionBean, and JoltUserEventBean) and Jolt GUI
beans, which consist of Jolt-aware Abstract Window Toolkit (AWT) and Swing-based
beans.

• Jolt Internet Relay—the Jolt Internet Relay is a component that routes messages from a
Jolt client to a Jolt Server Listener (JSL) or Jolt Server Handler (JSH). This component
eliminates the need for the JSH and Oracle Tuxedo to run on the same machine as the
Web server. The Jolt Internet Relay consists of the Jolt Relay (JRLY) and the Jolt Relay
Adapter (JRAD).

1-1

• Jolt ECID —The Jolt call process is as follows: JOLT client --> JSL/JSH --> tuxedo
server --> service.

1. Jolt Connection Pool supports ECID propagation between Weblogic and Oracle Tuxedo.
ECID is propagated and inserted into a request message if java option "-
Dtuxedo.ECID_ENABLE" or environment variable "ECID_ENABLE" is set to 'y'. Java option
"-Dtuxedo.ECID_ENABLE" has higher priority than environment variable "ECID_ENABLE".
ECID also can be sent back within a reply message from Oracle Tuxedo.

2. ECID relies on DMS (Dynamic Monitoring Service), ECID is not supported for standalone
jolt client by default. If you want ECID to be created, DMS should be installed first.

3. Jolt ECID does not impact JRLY and JRAD. The format for ECID in jolt client trace is as
follows:

000915:30475@slc05are:1: ECID <0000KqPMc659XbHpIsT4if1LPfwR000001>: atmi:
{ JoltSession.send(len 132)

1.2 Key Features
With Oracle Jolt, you can leverage existing Oracle Tuxedo services and extend your
transaction environment to the corporate intranet or world-wide Internet. The key feature of Jolt
architecture is its simplicity. You can build, deploy, and maintain robust, modular, and scalable
electronic commerce systems that operate over the Internet.

Oracle Jolt includes the following features:

• Java-based API for simplified development — with its Java-based API, Oracle Jolt
simplifies application design by providing well-designed object interfaces. Jolt supports the
Java 2 Software Development Kit (SDK) and is fully compatible with Java threads. Jolt
enables Java programmers to build graphical front-ends that use the Oracle Tuxedo
application and transaction services without having to understand detailed transactional
semantics or rewrite existing Oracle Tuxedo applications.

• Pure Java client development — using Jolt, you can build a pure Java client that runs in
any Java-enabled browser. Jolt automatically converts from Java to native Oracle Tuxedo
data types and buffers, and from Oracle Tuxedo back to Java. As a pure Java client, your
applet or application does not need resident client-side libraries or installation; thus, you
can download client applications from the network.

• Easy access to Oracle Tuxedo services through Oracle Tuxedo Service Metadata
Repository — the Oracle Tuxedo Service Metadata Repository facilitates Java application
development by managing and presenting Oracle Tuxedo service definitions that you can
use in your Java client. A bulk loading utility lets you quickly integrate your existing Oracle
Tuxedo services into the Jolt development environment. Jolt and Oracle Tuxedo simplify
network and application scalability, while encouraging the reuse of application
components. You can also use tmloadrepos to create or update the binary Tuxedo Service
Metadata Repository file and load it with service parameter information. See
tmloadrepos(1) for more information.

• GUI-Based maintenance and distribution of Oracle Tuxedo services— the GUI lets
you manage Oracle Tuxedo service definitions such as service names, inputs and outputs.
The GUI provides support for different input and output names for services defined in the
Metadata Repository.

• Encryption for secure transaction processing — Oracle Jolt allows you to encrypt data
transmitted between Jolt clients and the JSL/JSH. Jolt encryption helps ensure secure
Internet transaction processing.

Chapter 1
Key Features

1-2

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#wp1789066

• Added security through Internet Relay —network administrators can use the Oracle Jolt
Internet Relay component to separate their Web server and Oracle Tuxedo application
server. Web servers are generally considered insecure because they often exist outside a
corporate firewall. Using the Jolt Internet Relay, you can locate your Oracle Tuxedo server
in a secure location or environment on your network, yet still handle transactions from Jolt
clients on the Internet.

• Event Subscription Support —Jolt Event Subscription enables you to receive event
notifications from Oracle Tuxedo services and Oracle Tuxedo clients. Jolt Event
Subscription lets you subscribe to two types of Oracle Tuxedo application events:

– Unsolicited Event Notifications—a Jolt client can receive these notifications when an
Oracle Tuxedo client or service subscribes to unsolicited events and an Oracle Tuxedo
client issues a broadcast or a directly targeted message.

– Brokered Event Notifications—the Jolt client receives these notifications through the
Oracle Tuxedo Event Broker. The Jolt client receives these notifications only when it
subscribes to an event and any Oracle Tuxedo client or server posts an event.

• Jolt Trace —If java option -Dtuxedo.TMTRACE is set, JOLT client prints out trace as the
trace format. JOLT trace format is the same as Oracle Tuxedo. Four trace categories,
"atmi", "inet", "trace" and "*" are supported.

atmi
Trace points for explicit application calls to the ATMI and TX interfaces.

inet
Trace points related to network.

trace
Trace points related to the tracing feature itself, including message dyeing.

*
All trace points.

Listing Jolt Trace Category Example

-Dtuxedo.TMTRACE=trace_spec atmi/inet:jtrace
-Dtuxedo.JTRACEPATH=path_to_trace_file (optional, if not set, use
user.dir)
-Dtuxedo.ECID_ENABLE=y|n (optional)

Usage:
atmi+inet+trace:jtrace:dye
atmi+inet:jtrace:dye
*:jtrace:dye
atmi-inet:jtrace:undye

Output file name:
Jtrace.yyyymmdd

1.3 How Oracle Jolt Works
Oracle Jolt connects Java clients to applications that are built using the Oracle Tuxedo system.
The Oracle Tuxedo system provides a set of modular services, each offering specific
functionality related to the application as a whole.

Chapter 1
How Oracle Jolt Works

1-3

The end-to-end view of the Oracle Jolt architecture, as well as related Oracle Tuxedo
components and their interactions, is illustrated in the figure “Oracle Jolt Architecture”.

Using the following figure as an example, a simple banking application might have services
such as INQUIRY, WITHDRAW, TRANSFER, and DEPOSIT. Typically, service requests are
implemented in C or COBOL as a sequence of calls to a program library. Accessing a library
from a native program means installing the library for the specific combination of CPU and
operating system release on the client machine, a situation that Java was expressly designed
to avoid. The Jolt Server implementation acts as a proxy for the Jolt client, invoking the Oracle
Tuxedo service on behalf of the client. The Oracle Jolt Server accepts requests from the Jolt
clients and maps those requests into Oracle Tuxedo service requests.

Figure 1-1 Oracle Jolt Architecture

• Jolt Servers and Repository Servers

• Jolt Class Library

• JoltBeans

• Jolt Server and Jolt Client Communication

• Oracle Tuxedo Service Metadata Repository

• Jolt Internet Relay

1.3.1 Jolt Servers and Repository Servers
• Jolt Servers

• Repository Servers

Chapter 1
How Oracle Jolt Works

1-4

1.3.1.1 Jolt Servers
The following Jolt Server components act in concert to pass Jolt client transaction processing
requests to the Oracle Tuxedo application.

• Jolt Server Listener (JSL)
The JSL handles the initial Jolt client connection, and assigns a Jolt client to the Jolt
Server Handler.

• Jolt Server Handler (JSH)
The JSH manages network connectivity, executes service requests on behalf of the client
and translates Oracle Tuxedo buffer data into the Jolt buffer, as well as Jolt buffer data into
the Tuxedo buffer.

1.3.1.2 Repository Servers
• TMMETADATA Server

TMMETADATA server retrieves Jolt service definitions from the Tuxedo Service Metadata
Repository and returns the service definitions to the JSH. The TMMETADATA server also
updates or adds Jolt service definitions.

The following figure illustrates the Jolt-related server and repository components.

Figure 1-2 Jolt-Related Server and Repository Components

1.3.2 Jolt Class Library
The Oracle Jolt Class Library is a set of classes that you can use in your Java application or
applet to make service requests to the Oracle Tuxedo system from a Java-enabled client. You
access Oracle Tuxedo transaction services by using Jolt class objects.

When developing a Jolt client application, you only need to know about the classes that Jolt
provides and the Oracle Tuxedo services that are exported by the Metadata Repository. Jolt
hides the underlying application details. To use Jolt and the Jolt Class Library, you do not need
to understand: the underlying transactional semantics, the language in which the services were
coded, buffer manipulation, the location of services, or the names of databases used.

The Jolt API is a Java class library and has the benefits that Java provides: applets are
downloaded dynamically and are only resident during run time. As a result, there is no need for

Chapter 1
How Oracle Jolt Works

1-5

client installation, administration, management, or version control. If services are changed, the
client application notes the changes at the next call to the Metadata Repository.

The following figure shows the flow of activity from a Jolt client to and from the Oracle Tuxedo
system. The call-out numbers correspond to descriptions of the activity in the following table
“Using the Jolt Class Library”.

Figure 1-3 Using the Jolt Class Library to Access Oracle Tuxedo Services

The following table briefly describes the flow of activity involved in using the Jolt Class Library
to access Oracle Tuxedo services, as shown in the previous figure “Using the Jolt Class
Library to Access Oracle Tuxedo Services.”

Table 1-1 Using the Jolt Class Library

Process Step Action

Connection 1 A Java-enabled Web browser
uses HTTP protocol to download
an HTML page.

... 2 A Jolt applet is downloaded and
executed in the Java Virtual
Machine on the client.

... 3 The first Java applet task is to
open a separate connection to
the Jolt Server.

Request 4 The Jolt client now knows the
signature of the service (such as
name, parameters, types); can
build a service request object
based on Jolt class definitions,
and make a method call.

Chapter 1
How Oracle Jolt Works

1-6

Table 1-1 (Cont.) Using the Jolt Class Library

Process Step Action

... 5 The request is sent to the Jolt
Server, which translates the Java-
based request into an Oracle
Tuxedo request and forwards the
request to the Oracle Tuxedo
environment.

Reply 6 The Oracle Tuxedo system
processes the request and
returns the information to the Jolt
Server, which translates it back to
the Java applet.

1.3.3 JoltBeans
Oracle Jolt now includes JoltBeans, Java beans components that you use in a Java-enabled
integrated development environment (IDE) to construct Oracle Jolt clients. Using JoltBeans,
and popular JavaBeans-enabled development tools such as Symantec Visual Café, you can
graphically create client applications.

Oracle JoltBeans provide a JavaBeans-compliant interface to Oracle Jolt that enables you to
develop a fully functional Oracle Jolt client without writing any code. You can drag and drop
JoltBeans from the component palette of a development tool and position them on the Java
form (or forms) of the Jolt client application you are creating. You can populate the properties
of the beans and graphically establish event source-listener relationships between various
beans of the application or applet. Typically, the development tool is used to generate the
event hook-up code, or you can code the hook-up manually. Client development with
JoltBeans is integrated with the Oracle Tuxedo Service Metadata Repository, which provides
easy access to available Oracle Tuxedo functions.

1.3.4 Jolt Server and Jolt Client Communication
The Jolt system handles all communication between the Jolt Server and the Jolt client using
the Oracle Jolt Protocol. The communication process between the Jolt Server and the Jolt
client applet or applications functions as follows:

1. Oracle Tuxedo service requests and associated parameters are packaged into a message
buffer and delivered over the network to the Jolt Server.

2. The Jolt Server unpacks the data from the message and performs necessary data
conversions, such as numeric format conversions or character set conversions.

3. The Jolt Server makes the appropriate service request to the application service requested
by the Jolt client.

4. Once a service request enters the Oracle Tuxedo system, it is executed in exactly the
same manner as requests issued by any other Oracle Tuxedo client.

5. The results are then returned to the Oracle Jolt Server, which packages the results and
any error information into a message that is sent to the Jolt client.

6. The Jolt client then maps the contents of the message into the various Jolt client interface
objects, completing the request.

Chapter 1
How Oracle Jolt Works

1-7

1.3.5 Oracle Tuxedo Service Metadata Repository
Jolt uses the Oracle Tuxedo Service Metadata Repository as the database where Oracle
Tuxedo services are defined, such as name, number, type, parameter size, and permissions.
The repository functions as a central database of definitions for Oracle Tuxedo services and
permits new and existing Oracle Tuxedo services to be made available to Jolt client
applications. An Oracle Tuxedo application can have many services or service definitions, such
as ADD_CUSTOMER, GET_ACCOUNTBALANCE, CHANGE_LOCATION, and
GET_STATUS. All or only a few of these definitions can be exported to the Metadata
Repository. Within the Metadata Repository, the developer or system administrator uses the
Metadata Editor to export these services to the Jolt client application. The original Jolt
Repository is deprecated now and all service definitions that it stores can be loaded to Oracle
Tuxedo Service Metadata Repository. For more information, see Migrating from Jolt Repository
to Oracle Tuxedo Service Metadata Repository.

All Repository services that are exported to one client are exported to all clients. Oracle
Tuxedo handles the cases where subsets of services may be needed for one client and not
others.

The following figure illustrates how the Metadata Repository brokers Oracle Tuxedo services to
multiple Jolt client applications. (Four Oracle Tuxedo services are shown; however, the
WITHDRAW service is not defined in the repository and the TRANSFER service is defined but
not exported.)

Figure 1-4 Distributing Oracle Tuxedo Services Through Jolt

1.3.6 Jolt Internet Relay
The Jolt Internet Relay is a component that routes messages from a Jolt client to the Jolt
Server. The Jolt Internet Relay consists of the Jolt Relay (JRLY) and the Jolt Relay Adapter
(JRAD). JRLY is a stand-alone software component that routes Jolt messages to the Jolt Relay
Adapter. Requiring only minimal configuration to work with Jolt clients, the Jolt Relay eliminates
the need for the Oracle Tuxedo system to run on the same machine as the Web server.

The JRAD is an Oracle Tuxedo system server, but does not include any Oracle Tuxedo
services. It requires command-line arguments to allow it to work with the JSH and the Oracle
Tuxedo system. JRAD receives client requests from JRLY, and forwards the request to the
appropriate JSH. Replies from the JSH are forwarded back to the JRAD, which sends the
response back to the JRLY. A single Jolt Internet Relay (JRLY/JRAD pair) handles multiple
clients concurrently.

Chapter 1
How Oracle Jolt Works

1-8

1.4 Creating a Jolt Client to Access Oracle Tuxedo Applications
The main steps for creating and deploying a Jolt client, are described in the following
procedure and in the following figure.

1. Ensure you have created an Oracle Tuxedo system application.

2. Install the Jolt system.

3. Use the Bulk Loader utility to load Tuxedo services into the Jolt Repository Database.
The following table shows the mapping relationship between the Jolt repository data types
and Tuxedo services data types.

Table 1-2 Mapping Relationship Between Jolt Repository Database and Tuxedo
Services Data Types

Tuxedo Data Type Jolt Respository Data Type

char (byte) byte
short short
int integar
float float
double double
bool boolean
long long long
struct nestedstructname view32
string string
string string

Note:

The long type size of Tuxedo service can be 32 bits or 64 bits. If the Tuxedo
service uses 32-bit long type, map it to integer in Jolt Client. Otherwise, if the
Tuxedo service uses 64-bit long type, map it to long in the Jolt Client.

Since Java does not support unsigned data type, to use the unsigned data types in Tuxedo
services, you need to map them to Jolt data types, which have the same storage space.
For example, "unsigned int" should be mapped to "integer" in Jolt client. Besides, if you
want to show the exact value of unsigned data type in Jolt client, you need to do additional
casting works in Java.

4. Create a client application by using the Jolt Class Library.
The following documentation shows you how to program your client application using the
Jolt Class Library:

• Using the Jolt Class Library

• Oracle Jolt API Reference

5. Run the Jolt-based client applet or application.

Chapter 1
Creating a Jolt Client to Access Oracle Tuxedo Applications

1-9

Figure 1-5 Creating a Jolt Application

Chapter 1
Creating a Jolt Client to Access Oracle Tuxedo Applications

1-10

2
Bulk Loading Oracle Tuxedo Services

As a systems administrator, you may have an existing Oracle Tuxedo application with multiple
Oracle Tuxedo services. Manually creating these definitions in the repository database may
take hours to complete. The Bulk Loader is a command utility that allows you to load multiple,
previously defined Oracle Tuxedo services to the Oracle Tuxedo Service Metadata Repository
database in a single step. Using the jbld program, the Bulk Loader utility reads the Oracle
Tuxedo service definitions from the specified text file and bulk loads them into the Metadata
Repository. The services are loaded to the repository database in one “bulk load.” After the
services populate the Metadata Repository, you can create, edit, and group services with the
Metadata Editor.

This topic includes the following sections:

• Using the Bulk Loader

• Syntax of the Bulk Loader Data Files

• Troubleshooting

• Sample Bulk Load Data

2.1 Using the Bulk Loader
The jbld program is a Java application. Before running the jbld command, set the CLASSPATH
environment variable (or its equivalent) to point to the directory where the Jolt class directory
(that is, jolt.jar andjoltadmin.jar) is located. If the CLASSPATH variable is not set, the Java
Virtual Machine (JVM) cannot locate any Jolt classes.

For security reasons, jbld does not use command-line arguments to specify user
authentication information (user password or application password). Depending on the server’s
security level, jbld automatically prompts the user for passwords.

The Bulk Loader utility gets its input from command-line arguments and from the input file.

• Activating the Bulk Loader

• The Bulk Load File

2.1.1 Activating the Bulk Loader
1. Type the following at the prompt (with the correct options):

java bea.jolt.admin.jbld [-n][-p package][-u usrname][-r usrrole]
//host:port filename

Note:

For //host: port, use a non-TLS port and set the Java property -
DTM_ALLOW_NOTLS=Y.

2-1

2. Use the following table to correctly specify the command-line options.

• Command-line Options

2.1.1.1 Command-line Options

Table 2-1 Bulk Loader Command-line Options

Option Description

-u usrname Specifies the username (default is your account
name). (Mandatory if required by security.)

-r usrrole Specifies the user role (default is admin).
(Mandatory if required by security.)

-n Validates input file against the current repository;
no updates are made to the repository. (Optional)

//host:port Specifies the JRLY or JSL address (host name and
IP port number). (Mandatory). Use a non-TLS port
along with the Java property -
DTM_ALLOW_NOTLS=Y.

filename Specifies the file containing the service definitions.
(Mandatory)

2.1.2 The Bulk Load File
The bulk load file is a text file that defines services and their associated parameters. The Bulk
Loader loads the services defined in the bulk loader file into the Metadata Repository using the
package name “BULKPKG” by default.

If a service exists in a package other than the package you name that uses the -p option, the
Bulk Loader reports the conflict and does not load a service from the bulk loader file into the
repository. Use the Repository Editor to remove duplicate services and load the bulk loader file
again.

2.2 Syntax of the Bulk Loader Data Files
Each service definition consists of service properties and parameters that have a set number
of parameter properties. Each property is represented by a keyword and a value.

Keywords are divided into two levels:

• Service-level

• Parameter-level

• Guidelines for Using Keywords

• Keyword Order in the Bulk Loader Data File

• Using Service-Level Keywords and Values

• Using Parameter-Level Keywords and Values

2.2.1 Guidelines for Using Keywords
The jbld program reads the service definitions from a text file. To use the keywords, observe
the guidelines in the following table.

Chapter 2
Syntax of the Bulk Loader Data Files

2-2

Table 2-2 Guidelines for Using Keywords

Guideline Example

Each keyword must be followed by an equal sign
(=) and the value.

Correct: type=string
Incorrect: type

Only one keyword is allowed on each line. Correct: type=string
Incorrect: type=string access=out

Any lines not having an equal sign (=) are ignored. Correct: type=string
Incorrect: type string

Certain keywords only accept a well-defined set of
values.

The keyword access accepts only these values: in,
out, inout, noaccess

The input file can contain multiple service
definitions.

service=INQUIRY
<service keywords and values>
service=DEPOSIT
<service keywords and values>
service=WITHDRAWAL
<service keywords and values>
service=TRANSFER
<service keywords and values>

Each service definition consists of multiple
keywords and values.

service=DEPOSIT
export=true
inbuf=VIEW32
outbuf=VIEW32
inview=INVIEW
outview=OUTVIEW

2.2.2 Keyword Order in the Bulk Loader Data File
Keyword order must be maintained within the data files to ensure an error-free transfer during
the bulk load.

The first keyword definition in the bulk loader data text file must be the initial service=<NAME>
keyword definition (shown in the listing “Keyword Hierarchical Order in a Data File”). Following
the service=<NAME> keyword, all remaining service keywords that apply to the named service
must be specified before the first param=<NAME> definition. These remaining service keywords
can be in any order.

All parameters associated with the service must be specified. Following each param=<NAME>
keywords are all the parameter keywords that apply to the named parameter until the next
occurrence of a parameter definition. These remaining parameter keywords can be in any
order. When all the parameters associated with the first service are defined, specify a new
service=<NAME> keyword definition.

The following listing lists the keyword hierarchical order in a data file.

Listing Keyword Hierarchical Order in a Data File

service=<NAME>
<service keyword>=<value>
<service keyword>=<value>

Chapter 2
Syntax of the Bulk Loader Data Files

2-3

<service keyword>=<value>
param=<NAME>
<parameter keyword>=<value>
<parameter keyword>=<value>
param=<NAME>
<parameter keyword>=<value>
<parameter keyword>=<value>

2.2.3 Using Service-Level Keywords and Values
A service definition must begin with the service=<NAME> keyword. Services using CARRAY,
STRING, or XML buffer types should only have one parameter in the service. The
recommended parameter name for a service that uses a CARRAY buffer type is CARRAY with
carray as the data type. For a service that uses a STRING buffer type, the recommended
parameter name is STRING with string as the data type. For a service that uses a XML buffer
type, the recommended parameter name is XML with xml as the data type.

The following table contains the guidelines for use of the service-level keywords and
acceptable values for each.

Table 2-3 Service-Level Keywords and Values

Keyword Value

service Any Oracle Tuxedo service name

export True or false (default is false)

inbuf/outbuf Select one of these buffer types:
FML
FML32
VIEW
VIEW32
STRING
CARRAY
XML
X_OCTET
X_COMMON
X_C_TYPE

inview Any view name for input parameters (This keyword
is optional only if one of the following buffer types is
used: VIEW, VIEW32, X_COMMON, X_C_TYPE.)

outview Any view name for output parameters (Optional)

2.2.4 Using Parameter-Level Keywords and Values
A parameter begins with the param=<NAME> keyword followed by a number of parameter
keywords. It ends when another param or service keyword, or end-of-file is encountered. The
parameters can be in any order after the param=<NAME> keyword.

The following table contains the guidelines for use of the parameter-level keywords and
acceptable values for each.

Chapter 2
Syntax of the Bulk Loader Data Files

2-4

Table 2-4 Parameter-Level Keywords and Values

Keyword Values

param Any parameter name

type byte
short
integer
float
string
carray
xml
boolean
long
view32

access in
out
inout
noaccess

count Maximum number of occurrences (default is 1). The value for unlimited
occurrences is 0. Used only by the Repository Editor to format test screens.

Subtype
"(" and ")"

If the parameter is of view32 type, this field specifies the view structure
name. Otherwise, this field is ignored. All the sub-parameters of nested
view32 are enclosed in parentheses.

2.3 Troubleshooting
If you encounter problems using the Bulk Loader utility, refer to the following table. For a
complete list of Bulk Loader utility error messages and solutions, see “System Messages.”

Table 2-5 Bulk Loader Troubleshooting Table

If . . . Then . . .

The data file is not found Check to ensure that the path is correct.

The keyword is invalid Check to ensure that the keyword is valid for the
package, service, or parameter.

The value of the keyword is null Type a value for the keyword.

The value is invalid Check to ensure that the value of a parameter is within
the allocated range for that parameter.

The data type is invalid Check to ensure that the parameter is using a valid data
type.

2.4 Sample Bulk Load Data
Listing contains a sample data file in the correct format using the UNIX command cat
servicefile. This sample loads TRANSFER, LOGIN, and PAYROLL service definitions to the
BULKPKG.

Chapter 2
Troubleshooting

2-5

Listing Sample Bulk Load Data

service=TRANSFER
export=true
inbuf=FML
outbuf=FML
param=ACCOUNT_ID
type=integer
access=in
count=2
param=SAMOUNT
type=string
access=in
param=SBALANCE
type=string
access=out
count=2
param=STATLIN
type=string
access=out

service=LOGIN
inbuf=VIEW
inview=LOGINS
outview=LOGINR
export=true
param=user
type=string
access=in
param=passwd
type=string
access=in
param=token
type=integer
access=out

service=PAYROLL
inbuf=FML
outbuf=FML
param=EMPLOYEE_NUM
type=integer
access=in
param=SALARY
type=float
access=inout
param=HIRE_DATE
type=string
access=inout

service=QUERY
export=true
inbuf=VIEW32
outbuf=VIEW32
inview=MYVIEW2
outview=MYVIEW2
 param=Long1

Chapter 2
Sample Bulk Load Data

2-6

 type=long
 access=inout
 count=1

 param=Myview1
 type=view32
 subtype=MYVIEW1
 access=inout
 count=1
(
 param=Float1
 type=float
 access=inout
 count=1

 param=Double1
 type=double
 access=inout
 count=1

 param=Long1
 type=long
 access=inout
 count=3

 param=String1
 type=string
 access=inout
 count=2
)

Chapter 2
Sample Bulk Load Data

2-7

3
Configuring the Oracle Jolt System

This chapter describes how to configure Oracle Jolt. “Quick Configuration” is for users who are
familiar with Jolt. The other sections provide more detailed information. It is presumed that
readers are system administrators or application developers who have experience with the
operating systems and workstation platforms on which they are configuring Oracle Jolt.

This topic includes the following sections:

• Quick Configuration

• Jolt Background Information

• Jolt Relay

• Jolt Relay Adapter

• Oracle Tuxedo Service Metadata Repository

• Event Subscription

• Oracle Tuxedo Background Information

• Sample Applications in Oracle Jolt Online Resources

3.1 Quick Configuration
If you are already familiar with Oracle Jolt and Oracle Tuxedo, it provides efficient guidelines
for the configuration procedure. If you have not used Jolt, refer to “Jolt Background
Information” before you begin any configuration procedures.

Quick Configuration contains the information you need to configure the Jolt Server Listener
(JSL) on Oracle Tuxedo and covers the following procedures:

• Editing the UBBCONFIG File

• Configuring the Tuxedo Service Metadata Repository

• Initializing Services That Use Oracle Tuxedo and the Repository Editor

• Configuring the Oracle Tuxedo TMUSREVT Server for Event Subscription

• Configuring Jolt Relay

3.1.1 Editing the UBBCONFIG File
1. In the MACHINES section, specify MAXWSCLIENTS= number (Required).

Note:

If MAXWSCLIENTS is not set, JSL does not boot.

2. In the GROUPS section, set GROUPNAME required parameters [optional parameters].

3. Set the SERVERS section (Required).

3-1

Lines within this section have the form:

JSL required parameters [optional parameters]
where JSL specifies the file (string_value) to be executed by tmboot(1).

4. Set the required parameters for JSL.
Required parameters are:

SVRGRP=string_value
SRVID=number
CLOPT=”-A... -n... //host port”

5. Set other parameters for JSL.
You can use the following parameters with the JSL, but you need to understand how doing
so affects your application. Refer to “Parameters Usable with JSL” for additional
information.

MAX # of JSHs

MIN # of JSHs

3.1.2 Configuring the Tuxedo Service Metadata Repository
See Managing the Oracle Tuxedo Service Metadata Repository for more information about
configuring the Tuxedo Service Metadata Repository.

3.1.3 Initializing Services That Use Oracle Tuxedo and the Repository Editor
Define the Oracle Tuxedo services that use Oracle Tuxedo and Oracle Jolt in order to make
the Jolt services available to the client.

1. Build the Oracle Tuxedo server that contains the service.

2. Access the Oracle Tuxedo Service Metadata Repository Editor.

3.1.4 Configuring the Oracle Tuxedo TMUSREVT Server for Event
Subscription

Jolt Event Subscription receives event notifications from either Oracle Tuxedo services or other
Oracle Tuxedo clients. Configure the Oracle Tuxedo TMUSREVT server and modify the
application UBBCONFIG file. The following listing, “TMUSREVT Parameters in the UBBCONFIG
File,” shows the relevant TMUSREVT parameters in the UBBCONFIG file:

Listing TMUSREVT Parameters in the UBBCONFIG File

TMUSREVT SRVGRP=EVBGRP1 SRVID=40 GRACE=3600
 ENVFILE="/usr/tuxedo/bankapp/TMUSREVT.ENV"
 CLOPT="-e tmusrevt.out -o tmusrevt.out -A --
 -f /usr/tuxedo/bankapp/tmusrevt.dat"
 SEQUENCE=11

In the SERVERS sections of the UBBCONFIG file, specify the SRVGRP and SRVID.

Chapter 3
Quick Configuration

3-2

https://docs.oracle.com/en/database/oracle/tuxedo/22/otxcg/managing-oracle-tuxedo-service-metadata-repository.html#GUID-6EED65BF-17B7-4ADA-A6CA-FEF3DD236598

3.1.5 Configuring Jolt Relay
• On UNIX

• On UNIX and Windows

3.1.5.1 On UNIX
Start the JRLY process on UNIX by typing the following command at the system prompt:

jrly -f <config_file_path>

If the configuration file does not exist or cannot be opened, the JRLY writes a message to
standard error, attempts to log the startup failure in the error log, then exits.

3.1.5.2 On UNIX and Windows
The format of the configuration file is a TAG=VALUE format. Blank lines or lines starting with a
“#” are ignored. The following listing, “Formal Configuration File Specifications,” is an example
of the formal specifications of the configuration file.

Listing Formal Configuration File Specifications

LOGDIR=<LOG_DIRECTORY_PATH>
ACCESS_LOG=<ACCESS_FILE_NAME in LOGDIR>
ERROR_LOG=<ERROR_FILE_NAME in LOGDIR>
LISTEN=<IP:Port combination where JRLY will accept comma-separated
connections>
CONNECT=<IP:Port1, IP:Port2...IP:PortN:Port(List of IP:Port combinations
associated with JRADs: can be 1...N)>

• On Windows Only (Optional)

• Start the Jolt Relay Adapter (JRAD)

• Configure the JRAD

3.1.5.2.1 On Windows Only (Optional)
SOCKETTIMEOUT is the time in seconds for which JRLY Windows service blocks for network
activity (new connections, data to be read, closed connections). SOCKETTIMEOUT also affects the
Service Control Manager (SCM). When the SCM requests the Windows service to stop, the
SCM must wait for at least SOCKETTIMEOUT seconds before quitting.

Note:

The format for directory and filenames is determined by the operating system. UNIX
systems use the forward slash (/). Windows systems use the backslash (\). If any files
specified in LOGDIR, ACCESS_LOG, or ERROR_LOG cannot be opened for writing, JRLY
prints an error message on stderr and exits. The formats for the host names and the
port numbers are shown in the following table.

Chapter 3
Quick Configuration

3-3

3.1.5.2.2 Start the Jolt Relay Adapter (JRAD)
1. Type tmloadcf -y <UBBFILE>.
2. Type tmboot.

3.1.5.2.3 Configure the JRAD
A single JRAD process can only be connected to a single JRLY. A JRAD can be configured to
communicate with only one JSL and its associated JSH. However, multiple JRADs can be
configured to communicate with one JSL. The CLOPT parameter for Oracle Tuxedo services
must be included in the UBBCONFIG file.

1. Type -l hexadecimal format (The JSL port to which the JRLY connects on behalf of the
client.)

2. Type-c hexadecimal format (The address of the corresponding JSL to which JRAD
connects.)

Note:

The format is 0x0002PPPNNN, or, in dot notation, 100.100.10.100.

3. Configure networked components.
Jolt is now configured.

3.2 Jolt Background Information
This section contains additional information on Jolt components.

• Jolt Server

• Starting the JSL

• Shutting Down the JSL

• Restarting the JSL

• Configuring the JSL

• JSL Command-line Options

• Security and Encryption

3.2.1 Jolt Server
The Jolt Server is a listener that supports one or more handlers.

Jolt Server Listener (JSL) —the JSL is configured to support clients on an IP/port
combination. The JSL works with the Jolt Server Handler (JSH) to provide client connectivity to
the back-end of the Oracle Jolt system. The JSL runs as an Oracle Tuxedo server.

Jolt Server Handler (JSH) —the JSH is a program that runs on an Oracle Tuxedo server
machine to provide a network connection point for remote clients. The JSH works with the JSL
to provide client connectivity residing on the back-end of the Oracle Jolt system. More than one
JSH can be available to the JSL, up to 32,767. (Refer to the description of the -M command-
line option in “JSL Command-line Options” for additional information.)

Chapter 3
Jolt Background Information

3-4

System Administrator Responsibilities—the system administrator’s responsibilities for the
server components of Oracle Jolt include:

• Determining the JSL network address.

• Determining the number of Jolt clients to be serviced. (The number of clients to be
serviced is limited by MAXWSCLIENTS in UBB.)

• Determining the minimum and maximum number of JSHs.

3.2.2 Starting the JSL
To start all administrative and server processes in the UBBCONFIG file:

1. Type tmloadcf.
This command parses the configuration file and loads the binary version of the
configuration file.

2. Type tmboot -y.
This command activates the application specified in the configuration file.

If you do not enter any options, a prompt asks you if you really want to overwrite your
TUXCONFIG file.

See Administering an Oracle Tuxedo Application at Run Time or the Oracle Tuxedo Command
Reference for information about tmloadcf and tmboot.

3.2.3 Shutting Down the JSL
All shutdown requests to the Jolt servers are initiated by the Oracle Tuxedo command:

tmshutdown -y

During shutdown:

• No new client connections are accepted.

• All current client connections are terminated. Oracle Tuxedo rolls back in-flight
transactions. Each client receives an error message indicating that the service is
unavailable.

3.2.4 Restarting the JSL
Oracle Tuxedo monitors the JSL and restarts it in the event of a failure. When Oracle Tuxedo
restarts the listener process, the following events occur:

• Clients attempting a listener connection must try to reconnect. Clients attempting a handler
connection receive a timeout or a time delay.

• Clients currently connected to a handler are disconnected (JSH exits when its
corresponding JSL exits normally

3.2.5 Configuring the JSL
The Jolt Server Listener (JSL) is an Oracle Tuxedo server responsible for distributing
connection requests from Jolt to the Jolt Server Handler (JSH). Oracle Tuxedo must be running
on the host machine where the JSL and JREPSVR are located.

Chapter 3
Jolt Background Information

3-5

Note:

The way the JSL selects ports for the JSH is different than the process for the Oracle
Tuxedo Workstation Server Listener (WSL). For detailed information regarding on
properly configuring JSL ports, refer to the “SERVERS Section” of “Creating the
UBBCONFIG File”.

3.2.6 JSL Command-line Options
The server may need to obtain information from the command line. The CLOPT parameter
allows you to specify command-line options that can change some defaults in the server. The
JSL command-line options are described in the following table.

Table 3-1 JSL Command-line Options

Option Description

[-a] Enables or disables the security context for a Jolt connection pool. This option
should be enabled if you want to implement authentication propagation between
WebLogic Server and Jolt. If identity propagation is desired, then the Jolt Service
Handler (JSH) must be started with this option. If the -a option is not set, but
SecurityContext is enabled, the JSH will not accept this request. If the
SecurityContext attribute is enabled, then the Jolt client will pass the username of
the caller to the JSH.
If the JSH, gets a message with the caller’s identity, it calls impersonate_user()
to get the appkey for the user. JSH caches the appkey, so the next time the caller
makes a request, the appkey is retrieved from the cache and the request is
forwarded to the service. A cache is maintained by each JSH, which means that
there will be a cache maintained for all the session pools connected to the same
JSH.

[-A] Specifies that certificate-based authentication should be required when accepting
an SSL connection from a remote application.

Note:

The JSL -A option is equivalent to the ISL(5) and
WSL(5) -a option. For more information see, Section
5 - File Formats, Data Descriptions, MIBs, and
System Processes Reference.

[-c
compression_thr
eshold]

Enables application data sent between a Jolt client and a Jolt server (JSH) to be
compressed during transmission over the network.
compression_threshold is a number that you specify between 0 and
2,147,483,647 bytes. Any messages that are larger than the specified compression
threshold are compressed before transmission.

The default is no compression; that is, if no compression threshold is specified,
Oracle Jolt does not compress messages on client or server.

[-d
device_name]

The device for platforms using the Transport Layer Interface. There is no default.
Required. (Optional for sockets)

Chapter 3
Jolt Background Information

3-6

Table 3-1 (Cont.) JSL Command-line Options

Option Description

[-H external
netaddr]

Specifies the network address mask Jolt clients use to connect to the application
when there is network address translation. The JSL process uses this address to
listen for clients attempting to connect at this address. If the external address mask
is 0x0002MMMMdddddddd and the JSH network address is 0x00021111ffffffff,
the known (or external) network address is 0x00021111dddddddd. If the address
starts with "//" network address, the type is IP based and the TCP/IP port number
of the JSH network address is copied into the address to form the combined
network address.
The external IP address mask must be specified in the following form: -H //
external ip address:MMMM
(Optional for JSL in Oracle Tuxedo)

Note:

The option does not support IPv6.

[-I init-
timeout]

The time (in seconds) that a Jolt client is allowed to complete initialization through
the JSH before it is timed out by the JSL. Default is 60 seconds. (Optional)

[-j
connection_mode
]

The following connection modes from clients are allowed:

RETAINED
The network connection is retained for the full duration of a session.

RECONNECT
The client establishes and brings down a connection when an idle timeout is
reached, reconnecting for multiple requests within a session.

ANY
The server allows a client to request either a RETAINED or RECONNECT type of
connection for a session.

The default is ANY. That is, if no option is specified, the server allows a client to
request either a RETAINED or RECONNECT type of connection. (Optional)

[-K {client |
handler | both
| none}]

The -K option turns on the network keep-alive feature for the client, the handler, or
both. You can turn off this option for both the client and handler by specifying none.

[-m minh] The minimum number of JSHs that are available in conjunction with the JSL at one
time. The range of this parameter is from 0 through 255. Default is 0. (Optional)

[-M maxh] The maximum number of JSHs that are available in conjunction with the JSL at one
time. If this option is not specified, the parameter defaults to the MAXWSCLIENTS
divided by the -x multiplexing factor (MPX), with the result rounded up. If specified,
the -M option takes a value from 1 to 32,767. (Optional)

Chapter 3
Jolt Background Information

3-7

Table 3-1 (Cont.) JSL Command-line Options

Option Description

[-n netaddr] Network address used by the Oracle Jolt listener with Oracle Tuxedo , and
WebLogic Server.
TCP/IP addresses may be specified in the following formats:

• IPv4
//IP:port
//hostname:port_number
//#.#.#.#:port_number
The domain finds an address for hostname by using the local name
resolution facilities (usually DNS). hostname must be the local machine, and
the local name resolution facilities must unambiguously resolve hostname to
the address of the local machine

The “#.#.#.#” is in dotted decimal format. In dotted decimal format, each #
should be a number from 0 to 255. This dotted decimal number represents the
IP address of the local machine. In both of the above formats, port_number is
the TCP port number at which the domain process listens for incoming
requests. port_number can either be a number between 0 and 65535 or a
name.

• IPv6
//[IPv6 address]:port
//hostname:port_number

Note:

IPv6 does not support hexadecimal format.

• SDP
sdp://IB_IP:port

[-R
renegotiation-
interval]

Specifies the renegotiation interval in minutes. After the specified number of
minutes have elapsed without renegotiation of the SSL encryption parameters for a
particular SSL session, the SSL encryption parameters will be renegotiated on the
next exchange of data, as described in the SSL and TLS standards. The default is
0 minutes which results in no periodic session renegotiation.

Note:

If the -R parameter is specified and the -S parameter
is not specified or set to 0, the JSL sends a warning
message to the userlog.

[-S Client-
timeout]

The idle time (in minutes) when the client does not have any outstanding requests.
In other words, when the client is “snoozing.”
This option can be used together with the -T option. When either timeout reached,
JSH will close the session.

If a parameter is not specified, the default is no timeout. (Optional)

Chapter 3
Jolt Background Information

3-8

Table 3-1 (Cont.) JSL Command-line Options

Option Description

[-s secure-
port]

Specifies the port number that the JSL should use to listen for secure connections
using the SSL protocol. You can configure the JSL to allow only secure
connections by setting the port numbers specified by the -s and options to the
same value.
This option cannot be used if the JRLY and JRAD processes are used.

The JSL -s option is equivalent to the ISL(5) and WSL(5) -S option. For more
information see, Section 5 - File Formats, Data Descriptions, MIBs, and System
Processes Reference.

[-T Client-
timeout]

The time (in minutes) allowed for a client to stay idle. If a client does not make any
requests during this time, the JSH disconnects the client and the session is
terminated. If an argument is not supplied, the session does not timeout.
When the -j ANY or -j RECONNECT option is used, always specify -T with an idle
timeout value. If -T is not specified and the connection is suspended, JSH does not
automatically terminate the session. The session never terminates if a client
abnormally ends the session.

If a parameter is not specified, the default is no timeout. (Optional)

[-w JSH] This command-line option indicates the Jolt Server Handler. Default is JSH.
(Optional)

[-x mpx-factor] This is the number of clients that one JSH can service. Use this parameter to
control the degree of multiplexing within each JSH process. If specified, this
parameter takes a value from 1 to 32767 for UNIX and Windows 2003. Default
value is 10. (Optional)

[-z 0|56|128|
256]

Specifies the minimum level of encryption when establishing a network connection
between a Jolt client and the JSH. 0 means no encryption while 56, 128, and 256
specify the length (in bits) of the encryption key. If this minimum level of encryption
cannot be met, a connection will not be established.

[-Z 0|56|128|
256]

When a network link between a Jolt client and the JSH is being established, this
option allows encryption up to the specified level. The initial 0 means no DH nodes,
no RC4. The numbers 56, 128, and 256 specify the length (in bits) of the
encryption key. Either SSL or the DH key exchange is needed to generate keys.
Session keys are not transmitted over the network. The default value is 0.

Note:

A 0-bit maximum encryption level is not compatible
with the -s SSL connection option.

3.2.7 Security and Encryption
When LLE is used for Jolt security and encryption, authentication and key exchange data are
transmitted between Jolt clients and the JSL/JSH using the Diffie-Hellman key exchange. All
subsequent exchanges are encrypted using RC4 encryption. International packages use a
DES key exchange and a 128 bit key, with 40 bits encrypted and 88 bits exposed.

When SSL is used for Jolt security and encryption, the SSL protocol is used for authentication,
key exchange, and data exchange.

Chapter 3
Jolt Background Information

3-9

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

3.3 Jolt Relay
The combination of the Jolt Relay (JRLY) and its associated Jolt Relay Adapter (JRAD) is
typically referred to as the Internet Relay. Jolt Relay routes messages from a Jolt client to a
JSL or JSH. This eliminates the need for the JSH and Oracle Tuxedo to run on the same
machine as the Web server (which is generally considered insecure). The Jolt Relay consists
of the two components illustrated in the following figure.

• Jolt Relay (JRLY)—the JRLY is the Jolt Relay front-end. It is not an Oracle Tuxedo client
or server and is not dependent on the Oracle Tuxedo version. It is a stand-alone software
component. It requires only minimal configuration to allow it to work with Jolt clients.

• Jolt Relay Adapter (JRAD)—the JRAD is the Jolt Relay back-end. It is an Oracle Tuxedo
system server, but does not include any Oracle Tuxedo services. It requires command-line
arguments to allow it to work with the JSL and the Oracle Tuxedo system.

Note:

The Jolt Relay is transparent to Jolt clients and Jolt servers. A Jolt server can
simultaneously connect to intranet clients directly, or through the Jolt Relay to
Internet clients.
Tuxedo supports SSL for Jolt clients and the JSL/JSH; however, SSL support has not
been implemented for the JRAD and JRLY. Therefore, Tuxedo Jolt configurations
using SSL cannot make use of the JRAD and JRLY processes.

Figure 3-1 Jolt Internet Relay Path

Chapter 3
Jolt Relay

3-10

This figure illustrates how a browser connects to the Web server software and downloads the
Oracle Jolt applets. The Jolt applet or client connects to the JRLY on the Web server machine.
The JRLY forwards the Jolt messages across the firewall to the JRAD. The JRAD selectively
forwards messages to the JSL or appropriate JSH.

• Jolt Relay Failover

• Jolt Relay Process

• JRLY Command-line Options for Windows

• JRLY Command-line Option for UNIX

• JRLY Configuration File

3.3.1 Jolt Relay Failover
There are two points of failover associated with JRLY:

• Jolt Client to JRLY Connection Failover

• JRLY to JRAD Adapter Connection Failover

3.3.1.1 Jolt Client to JRLY Connection Failover
If one server address does not result in a successful session, the failover function allows the
Jolt Client API to connect to the next free (unconnected) JRLY specified in the argument list of
the API. To enable this failover in a Windows environment, multiple Windows JRLY services
can be executed. In a non-Windows environment, multiple JRLY processes are executed. Each
JRLY (service or process) has its own configuration file. This type of failover is handled by the
client API features in Oracle Jolt, which allow you to specify a list of Jolt server addresses (JSL
or JRLY).

3.3.1.2 JRLY to JRAD Adapter Connection Failover
Each JRLY configuration file has a list of JRAD addresses. When a JRAD is unavailable, JRLY
tries to connect to the next free (unconnected) JRAD, in a round-robin fashion. Two JRLYs
cannot connect to the same JRAD. Given these facts, you can make the connection efficient by
giving different JRAD address orders. That is, if you make one extra JRAD available on
standby, the first JRLY that loses its JRAD connects to the extra JRAD. This type of failover is
handled by JRLY alone.

If any of the listed JRADs are not executing when JRLY is started, the initial connection fails.
When a Jolt client tries to connect to JRLY, the JRLY again tries to connect to the JRAD.

To accommodate the failover functionality, you have to boot multiple JRADs by configuring
them in the UBBCONFIG file.

3.3.2 Jolt Relay Process
The JRLY (front-end relay) process can be started before or after the JRAD is started. If the
JRAD is not available when the JRLY is started, the JRLY attempts to connect to the JRAD
when it receives a client request. If JRLY is still unable to connect to the JRAD, the client is
denied access and a warning is written to the JRLY error log file.

• Starting the JRLY on UNIX

Chapter 3
Jolt Relay

3-11

3.3.2.1 Starting the JRLY on UNIX
Start the JRLY process by typing the command name at a system prompt.

jrly -f config_file_path

If the configuration file does not exist or cannot be opened, the JRLY prints an error message.

If the JRLY is unable to start, it writes a message to standard error and attempts to log the
startup failure in the error log, then exits.

3.3.3 JRLY Command-line Options for Windows
This section describes command-line options that are available from the Windows version of
JRLY.exe.

Note the following:

• JRLY as a Windows service is available only for Windows.

• When the display suffix is optional (when [display_suffix] is shown), all operations are
performed on the default JRLY Windows service instance.

• For manually installed, additional JRLY services, a suffix (any string) is required. Also, you
can install the default service manually by omitting the optional string suffix.

• Each instance of JRLY Windows service uses the same binary executable file.

• A new process is started for each instance of JRLY Windows service.

• The syntax for these options is:jrly -command.
• Text specified within brackets ([]) is optional.

• All commands in the following list of command options except -start and -stop require
that you have write access to Windows Registry.

• The-start and -stop commands require that you have Windows Service control access.
These requirements are based on Windows user restrictions.

The JRLY command-line options are detailed in the following table:

Chapter 3
Jolt Relay

3-12

Table 3-2 RLY Command-line Options for Windows

Option Description

jrly -install
[display_suffix]

Install jrly as a Windows service.
Example 1:
jrly -install
In this example, the default JRLY is installed as a
Windows Service and is displayed in the Service
Control Manager (SCM) as

Jolt Relay.
Example 2:
jrly -install MASTER
In this case, an instance of JRLY is installed as a
Windows Service and is displayed in the SCM as
Jolt Relay_master. The suffix, master, does not
have any significance; it is only used to uniquely
identify various instances of JRLYs.

At this point, this instance of JRLY is not ready to
start. It must be assigned the configuration file (see
the set command discussion) that specifies the
listening TCP/IP port, JSH connection TCP/IP port,
log files, and sockettimeout. This file should not
be shared between various instances of JRLY.

jrly -remove
[display_suffix] | -all

Remove one or all instances of JRLY from
Windows service.
If [display_suffix] is specified, this command
removes the specified JRLY service.

If [display_suffix] is not specified, this
command removes the default JRLY from being a
Windows Service.

If the -all option is specified, all JRLY Windows
Services are removed. Related Windows registry
entries under

HKEY_LOCAL_MACHINE\System\
CurrentControlSet\Services\Oracle
JoltRelay
and
HKEY_LOCAL_MACHINE\Software\
Oracle Systems\Jolt\x.x
are removed.

Chapter 3
Jolt Relay

3-13

Table 3-2 (Cont.) RLY Command-line Options for Windows

Option Description

jrly -set
[-d display_suffix] -f config_file

Update the registry with the full path of a new
configuration file.
Example 1:
jrly -set -f
c:\tux71\udataobj\jolt\jrly.con
In this example, the default JRLY Windows Service
(Jolt Relay) is assigned a configuration file called
jrly.con that is located in:
c:\tuxdir\udataobj\jolt directory.

Example 2:
jrly -set -d MASTER -f
c:\tuxdir\udataobj\jolt\master.con
Here, the JRLY Windows Service instance, called
Jolt Relay_master is assigned a configuration file
called jrly_master.con that is located in
c:\tuxdir\udataobj\jolt directory.

jrly -manual [display_suffix] Set the start/stop to manual.
This command sets the specified JRLY instance to
be manually controlled, using either the command-
line options or the SCM.

jrly -auto [display_suffix] Set the start/stop to automatic.
This command sets all the operations for a
specified Windows Service to be automatically
started when the OS boots and stopped when the
OS shuts down.

jrly -start [display_suffix] Start the specified JRLY.

jrly -stop [display_suffix] Stop the specified JRLY.

jryl -version Print the current version of JRLY binary.

jrly -help Print command-line options with brief descriptions.

3.3.4 JRLY Command-line Option for UNIX
There is only one JRLY command-line option for UNIX as shown in the following table:

Table 3-3 RLY Command-line Option for UNIX

Option Description

jrly -f config_file_path Start the JRLY process.
This option starts the JRLY process. If the
configuration file does not exist or cannot be
opened, the JRLY prints an error message. If the
JRLY cannot start, it writes a message to standard
error, attempts to log the startup failure in the error
log, then exits.

Chapter 3
Jolt Relay

3-14

3.3.5 JRLY Configuration File
The format of the configuration file is a TAG=VALUE format. Blank lines or lines starting with a
“#” are ignored. The following listing contains an example of the formal specifications of the
configuration file.

Listing Specification of Configuration File

LOGDIR=<LOG_DIRECTORY_PATH>
ACCESS_LOG=<ACCESS_FILE_NAME in LOGDIR>
ERROR_LOG=<ERROR_FILE_NAME in LOGDIR>
LISTEN=<IP:Port combination where JRLY will accept connections>
CONNECT=<IP:Port combination associated with JRAD>
SOCKETTIMEOUT=<Seconds for socket accept()function>

Note:

SOCKETTIMEOUT is the duration (in seconds) of which the relay Windows service
blocks the establishment of new socket connections to allow network activity (new
connections, data to be read, closed connections). It is valid only on Windows
machines. SOCKETTIMEOUT also affects the SCM. When the SCM requests that the
service stop, the SCM needs to wait at least SOCKETTIMEOUT seconds before doing
so.

The following listing shows an example of the JRLY configuration file. The CONNECT line
specifies the IP address and port number of JRAD machine.

Listing Example of JRLY Configuration File

LOGDIR=/usr/log/relay
ACCESS_LOG=access_log
ERROR_LOG=errorlog
jrly will listen on port 4444
LISTEN=200.100.10.100:4444
CONNECT=machine1:port1
CONNECT=machine2:port2
SOCKETTIMEOUT=30 //See text under listing

The format for directory and filenames is determined by the operating system. UNIX systems
use the forward slash (/). Windows systems use the backslash (\). If any file specified in
LOGDIR, ACCESS_LOG or ERROR_LOG cannot be opened for writing, the JRLY prints an error
message on stderr and exits.

The formats for host names and port numbers are shown in the following table.

Note:

JRLY supports IPv6.

Chapter 3
Jolt Relay

3-15

Table 3-4 Host Name and Port Number Formats

IPv4 IPv6

//IP:port
IP is a dotted notation IP address, port is a
decimal number

//[IPv6 address]:port

//hostname:port_number
IP is a dotted notation IP address, port is a
decimal number

//hostname:port_number

//#.#.#.#:port_number Hex format is not supported

3.4 Jolt Relay Adapter
The Jolt Relay Adapter (back-end relay) is an Oracle Tuxedo system server. The Jolt Relay
Adapter (JRAD) server may or may not be located on the same Oracle Tuxedo host machine in
single host mode (SHM) and server group to which the JSL server is connected.

The JRAD can be started independently of its associated JRLY. JRAD tracks its startup and
shutdown activity in the Oracle Tuxedo log file.

• JRAD Configuration

• Network Address Configurations

3.4.1 JRAD Configuration
A single JRAD process can only be connected to a single JRLY. A JRAD can be configured to
communicate with only one JSL and its associated JSHs. However, multiple JRADs can be
configured to communicate with one JSL. The CLOPT parameter for the Oracle Tuxedo servers
must be included in the UBBCONFIG file. A sample of the file is shown in the listing “Sample
JRAD Entry in UBBCONFIG File” on page 3‑22.

The following table contains additional information about the CLOPT parameters.

Chapter 3
Jolt Relay Adapter

3-16

Table 3-5 JRAD CLOPT Parameter Descriptions

CLOPT Parameter Description

-l netaddr Port to listen for the JRLY to connect on behalf of
the client.
• IPv4

//IP:port
//hostname:port_number
//#.#.#.#:port_number
The domain finds an address for hostname by
using the local name resolution facilities
(usually DNS). hostname must be the local
machine, and the local name resolution
facilities must unambiguously resolve
hostname to the address of the local machine.
In the second example, the “ #.#.#.# ” is in
dotted decimal format. In dotted decimal
format, each # should be a number from 0 to
255. This dotted decimal number represents
the IP address of the local machine. In both of
the above formats, port_number is the TCP
port number at which the domain process
listens for incoming requests. port_number
can either be a number between 0 and 65535
or a name.

• IPv6
//[IPv6 address]:port
//hostname:port_number

Note:

IPv6 does not support hexadecimal
format.

-c netaddr The address of the corresponding JSL to which
JRAD connects.

Ipv4 and IPv6 address format same as -l
netaddr.

Chapter 3
Jolt Relay Adapter

3-17

Table 3-5 (Cont.) JRAD CLOPT Parameter Descriptions

CLOPT Parameter Description

-H netaddr The listening address for an external proxy. An
external proxy is one that runs on a client host.
This proxy handles HTTP and other protocols. The
other end of the proxy connects to JRLY, which
connects to JSL/JSH.
In order for the proxy to work for Jolt clients
(specifically applets that connect to JRLY), the
JRAD passes the -H argument to an applet,
instructing it to connect to the proxy address
instead of the JRLY address.

Note:

Unlike the JSL -H
option, the JRAD -H
option is not used as
a network address
translator, nor is it
used as an address
mask. IPv6 does not
support the JRAD -H
option.

The address for the JRAD CLOPT parameters can be specified in either of the following
formats:

//hostname:port
0x0002pppphhhhhhhh

(where pppp is the port number and hhhhhhhh is the hexadecimal IP address).

The following listing shows the sample JRAD entry in UBBCONFIG file.

Listing Sample JRAD Entry in UBBCONFIG File

JRAD host 200.100.100.10 listens at port 2000, connects to JSL port 8000
on the same host
JRAD SRVGRP=JSLGRP SRVID=60
 CLOPT="-A -- -l 0x000207D0C864640A –c 0x00021f40C864640A"

3.4.2 Network Address Configurations
A Jolt Internet Relay configuration requires that several networked components work together.
Prior to configuration, review the criteria in the following table and record the information to
minimize the possibility of misconfiguration.

Chapter 3
Jolt Relay Adapter

3-18

Table 3-6 Jolt Internet Relay Network Address Configuration Criteria

JRLY JRAD JSL

LISTEN: Location where the
clients connect.

-l: Location where the
listener connects to the
JRLY.

-n: Location of JSL. Must
match -c parameter of JRAD.

CONNECT: Location of your
JRAD. Must match the -l
parameter of JRAD.

-c: Location of JSL. Must
match -n parameter of JSL.

3.5 Oracle Tuxedo Service Metadata Repository
The Oracle Tuxedo Service Metadata Repository contains Oracle Tuxedo service definitions
that allow Jolt clients to access Oracle Tuxedo services. See Managing The Oracle Tuxedo
Service Metadata Repository for the instructions.

• Initializing Services By Using Oracle Tuxedo and the Repository Editor

3.5.1 Initializing Services By Using Oracle Tuxedo and the Repository Editor
Define the Oracle Tuxedo services by using Oracle Tuxedo and Oracle Tuxedo Service
Metadata Repository Editor in order to make the Jolt services available to the client.

1. Build the Oracle Tuxedo server containing the service. See Administering an Oracle
Tuxedo Application at Run Time or Programming Oracle Tuxedo ATMI Applications Using
C for additional information on the following:

• Building the Oracle Tuxedo application server

• Editing the UBBCONFIG file

• Updating the TUXCONFIG file

• Administering the tmboot command

2. Access the Metadata Repository Editor.

3.6 Event Subscription
Jolt Event Subscription receives event notifications from either Oracle Tuxedo services or other
Oracle Tuxedo clients:

• Unsolicited Event Notifications —a Jolt client receives these notifications as a result of a
Oracle Tuxedo client or service subscribing to unsolicited events, and an Oracle Tuxedo
client issuing a broadcast (using either a tpbroadcast() or a directly targeted message via
a tpnotify() ATMI call). Unsolicited event notifications do not need the TMUSREVT server.

• Brokered Event Notifications —a Jolt client receives these notifications through the
Oracle Tuxedo Event Broker. The notifications are only received when both Jolt clients
subscribe to an event and any Oracle Tuxedo client or server posts an event using
tppost(). Brokered event notifications require the TMUSREVT server.

• Configuring for Event Subscription

• Filtering Oracle Tuxedo FML or VIEW Buffers

Chapter 3
Oracle Tuxedo Service Metadata Repository

3-19

https://docs.oracle.com/en/database/oracle/tuxedo/22/otxcg/managing-oracle-tuxedo-service-metadata-repository.html#GUID-6EED65BF-17B7-4ADA-A6CA-FEF3DD236598
https://docs.oracle.com/en/database/oracle/tuxedo/22/otxcg/managing-oracle-tuxedo-service-metadata-repository.html#GUID-6EED65BF-17B7-4ADA-A6CA-FEF3DD236598

3.6.1 Configuring for Event Subscription
Configure the Oracle Tuxedo TMUSREVT server and modify the application UBBCONFIG file. The
following listing shows the relevant sections of TMUSREVT parameters in the UBBCONFIG file. See
Programming Oracle Tuxedo ATMI Applications Using C for information about the syntax of the
entries for the file.

Listing UBBCONFIG File

TMUSREVT SRVGRP=EVBGRP1 SRVID=40 GRACE=3600
 ENVFILE="/usr/tuxedo/bankapp/TMUSREVT.ENV"
 CLOPT="-e tmusrevt.out -o tmusrevt.out -A --
 -f /usr/tuxedo/bankapp/tmusrevt.dat"
 SEQUENCE=11

In the SERVERS section of the UBBCONFIG file, modify the SRVGRP and SRVID parameters as
needed.

3.6.2 Filtering Oracle Tuxedo FML or VIEW Buffers
Filtering is a process that allows you to customize a subscription. If you require additional
information about the Oracle Tuxedo Event Broker, subscribing to events, or filtering, refer to
Programming Oracle Tuxedo ATMI Applications Using C.

To filter Oracle Tuxedo FML or VIEW buffers, the field definition file must be available to Oracle
Tuxedo at run time.

Note:

There are no special requirements for filtering STRING buffers.

• Buffer Types

• FML Buffer Example

3.6.2.1 Buffer Types
The following table shows the Oracle Tuxedo types.

Table 3-7 Oracle Tuxedo Buffer Types

Buffer Type Description

FML Attribute, value pair. Explicit.

VIEW C structure. Very precise offsetting. Implicit.

STRING Length and offset are different values. All readable.

CARRAY Character array. BLOB of binary data. Only client
and server know - JSL doesn’t.

X_C_TYPE Equivalent to VIEW.

X_COMMON Equivalent to VIEW, but used for both COBOL and
C.

Chapter 3
Event Subscription

3-20

Table 3-7 (Cont.) Oracle Tuxedo Buffer Types

Buffer Type Description

X_OCTET Equivalent to CARRAY.

XML Well-formed XML documents. Similar to CARRAY.

3.6.2.2 FML Buffer Example
The listing “FIELDTBLS Variable in the TMUSREVT.ENV File” shows an example that uses the
FML buffer. The FML field definition table is made available to Oracle Tuxedo by setting the
FIELDTBLS and FLDTBLDIR variables.

To filter a field found in the my.flds file:

1. Copy the my.flds file to /usr/me/bankapp directory.

2. Add my.flds to theFIELDTBLS variable in the TMUSREVT.ENV file as shown in the following
listing:

Listing FIELDTBLS Variable in the TMUSREVT.ENV File

FIELDTBLS=Usysflds,bank.flds,credit.flds,event.flds,my.flds
FLDTBLDIR=/usr/tuxedo/me/T6.2/udataobj:/usr/me/bankapp

If ENVFILE="/usr/me/bankapp/TMUSREVT.ENV" is included in the definition of the UBBCONFIG file
(shown in the listing “UBBCONFIG File”), the FIELDTBLS and FLDTBLDIR definitions are taken
from theTMUSREVT.ENV file and not from your environment variable settings.

If you remove the ENVFILE="/usr/me/bankapp/TMUSREVT.ENV" definition, the FIELDTBLS and
FLDTBLDIR definitions are taken from your environment variable settings. The FIELDTBLS and
FLDTBLDIR definitions must be set to the appropriate value prior to booting the Oracle Tuxedo
system.

For additional information on event subscriptions and the Oracle Jolt Class Library, refer to
Chapter 4, “Using the Jolt Class Library.”.

3.7 Oracle Tuxedo Background Information
The following sections provide detailed configuration information. Even if you are familiar with
Oracle Tuxedo, you should refer to this section for information concerning Jolt Service Handler
(JSL) configuration.

• Configuration File

• Creating the UBBCONFIG File

3.7.1 Configuration File
The Oracle Tuxedo configuration file for your application exists in two forms, the ASCII file,
UBBCONFIG, and a compiled version called TUXCONFIG. Once you create a TUXCONFIG, consider
your UBBCONFIG as a backup.

You can make changes to the UBBCONFIG file with your preferred text editor. Then, at a time
when your application is not running, and when you are logged in to your MASTER machine,

Chapter 3
Oracle Tuxedo Background Information

3-21

you can recompile your TUXCONFIG by running tmloadcf(1). System/T prompts you to make
sure you really want to overwrite your existing TUXCONFIG file. (If you enter the command with
the -y option, the prompt is suppressed.)

3.7.2 Creating the UBBCONFIG File
A binary configuration file called the TUXCONFIG file contains information used by tmboot(1) to
start the servers and initialize the bulletin board of an Oracle Tuxedo system in an orderly
sequence. The binary TUXCONFIG file cannot be created directly. Initially, you must create a
UBBCONFIG file. That file is parsed and loaded into the TUXCONFIG using tmloadcf(1). Then
tmadmin(1) uses the configuration file or a copy of it in its monitoring activity. tmshutdown(1)
references the configuration file for information needed to shut down the application.

• Configuration File Format

• MACHINES Section

• GROUPS Section

• SERVERS Section

• Parameters Usable with JSL

• Optional Parameters

• Run-time Parameters

• Parameters Associated with RESTART

• Entering Parameters

3.7.2.1 Configuration File Format
The UBBCONFIG file can consist of up to nine specification sections. Lines beginning with an
asterisk (*) indicate the beginning of a specification section. Each such line contains the name
of the section immediately following the *. Allowable section names are: RESOURCES,
MACHINES, GROUPS, NETGROUPS, NETWORK, SERVERS, SERVICES, INTERFACES, and ROUTING.

Note:

The RESOURCES (if used) and MACHINES sections must be the first two sections, in that
order; the GROUPS section must be ahead of SERVERS,SERVICES, and ROUTING.

To configure the JSL, you must modify the UBBCONFIG file. For further information about Oracle
Tuxedo configuration, refer to Administering an Oracle Tuxedo Application at Run Time.

The following listing shows relevant portions of the UBBCONFIG file.

Listing UBBCONFIG File

*MACHINES
MACH1 LMID=SITE1
 MAXWSCLIENTS=40
*GROUPS
JSLGRP GRPNO=95 LMID=SITE1
*SERVERS

Chapter 3
Oracle Tuxedo Background Information

3-22

JSL SRVGRP=JSLGRP SRVID=30 CLOPT= “ -- -n 0x0002PPPPNNNNNNNN -d
/dev/tcp -m2 -M4 -x10”

The parameters shown in the following table are the only parameters that must be designated
for the Jolt Server groups and Jolt Servers. You are not required to specify any other
parameters.

Change the sections of the UBBCONFIG file as shown in the following table.

Table 3-8 UBBCONFIG File Sections

Section Parameters to be specified

MACHINES MAXWSCLIENTS
GROUPS GRPNO, LMID
SERVERS SRVGRP, SRVID, CLOPT

3.7.2.2 MACHINES Section
The MACHINES section specifies the logical names for physical machines for the configuration. It
also specifies parameters specific to a given machine. The MACHINES section must contain an
entry for each physical processor used by the application. Entries have the form:

 ADDRESS or NAME required parameters [optional parameters]

where ADDRESS is the physical name of the processor, for example, the value produced by the
UNIX system uname -n command.

LMID=string_value

This parameter specifies that the string_value is to be used in other sections as the symbolic
name for ADDRESS. This name cannot contain a comma, and must be 30 characters or less.
This parameter is required. There must be an LMID line for every machine used in a
configuration.

MAXWSCLIENTS =number

The MAXWSCLIENTS parameter is required in the MACHINES section of the configuration file. It
specifies the number of accesser entries on this processor to be reserved for Jolt and
Workstation clients only. The value of this parameter must be between 0 and 32,768, inclusive.

The Jolt Server and Workstation use MAXWSCLIENTS in the same way. For example, if 200 slots
are configured for MAXWSCLIENTS, this number configures Oracle Tuxedo for the total number of
remote clients used by Jolt and Workstation.

Ensure to specify MAXWSCLIENTS in the configuration file. If it is not specified, the default is 0.

Note:

If MAXWSCLIENTS is not set, the JSL does not boot.

Chapter 3
Oracle Tuxedo Background Information

3-23

3.7.2.3 GROUPS Section
This section provides information about server groups, and must have at least one server
group defined in it. A server group entry provides a logical name for a collection of servers
and/or services on a machine. The logical name is used as the value of the SRVGRP parameter
in the SERVERS section to identify a server as part of this group. SRVGRP is also used in the
SERVICES section to identify a particular instance of a service with its occurrences in the group.
Other GROUPS parameters associate this group with a specific resource manager instance (for
example, the employee database). Lines within the GROUPS section have the form:

GROUPNAMErequired parameters [optional parameters]

where GROUPNAME specifies the logical name (string_value) of the group. The group name must
be unique within all group names in the GROUPS section andLMID values in the MACHINES
section. The group name cannot contain an asterisk(*), comma, or colon, and must be 30
characters or less.

A GROUPS entry is required for the group that includes the Jolt Server Listener (JSL). Make the
GROUPS entry as follows:

1. The group name is selected by the application, for example: JSLGRP and JREPGRP.
2. Specify the same identifiers given as the value of the LMID parameter in the MACHINES

section.

3. Specify the value of the GRPNO between 1 and 30,000 in the *GROUPS section.

Note:

Ensure that Resource Managers are not assigned as a default value for all groups in
the GROUPS section of your UBBCONFIG file. Making Resource Managers the default
value assigns a Resource Manager to the JSL and you receive an error during
tmboot. In the SERVERS section, default values for RESTART, MAXGEN, etc., are
acceptable defaults for the JSL.

3.7.2.4 SERVERS Section
This section provides information on the initial conditions for servers started in the system. The
notion of a server as a process that continually runs and waits for a server group’s service
requests to process may or may not apply to a particular remote environment. For many
environments, the operating system, or perhaps a remote gateway, is the sole dispatcher of
services. When either of these is the case, you need only specify SERVICE entry points for
remote program entry points, and not SERVER table entries. Oracle Tuxedo system gateway
servers would advertise and queue remote domain service requests. Host-specific reference
pages must indicate whether or not UBBCONFIG server table entries apply in their particular
environments, and if so, the corresponding semantics. Lines within the SERVERS section have
the form:

AOUT required parameters [optional parameters]
where AOUT specifies the file (string_value) to be executed by tmboot(1). tmboot executes
AOUT on the machine specified for the server group to which the server belongs. tmboot
searches for the AOUT file on its target machine, thus, AOUT must exist in a file system on that

Chapter 3
Oracle Tuxedo Background Information

3-24

machine. (Of course, the path to AOUT can include RFS connections to file systems on other
machines.) If a relative pathname for a server is given, the search for AOUT is done sequentially
in APPDIR, TUXDIR/bin, /bin , and then in path, where <path> is the value of the last PATH=
line appearing in the machine environment file, if one exists. The values for APPDIR and TUXDIR
are taken from the appropriate machine entry in the TUXCONFIG file.

Clients connect to Oracle Jolt applications through the Jolt Server Listener (JSL). Services are
accessed through the Jolt Server Handler (JSH). The JSL supports multiple clients and acts as
a single point of contact for all the clients to connect to the application at the network address
that is specified on the JSL command line. The JSL schedules work for handler processes. A
handler process acts as a substitute for clients on remote workstations within the
administrative domain of the application. The handler uses a multiplexing scheme to support
multiple clients on one port concurrently.

The network address specified for the JSL designates a TCP/IP address for both the JSL and
any JSH processes associated with that JSL. The port number identified by the network
address specifies the port number on which the JSL accepts new client connections. Each JSH
associated with the JSL uses consecutive port numbers at the same TCP/IP address. For
example, if the initial JSL port number is 8000 and there are a maximum of three JSH
processes, the JSH processes use ports 8001, 8002, and 8003.

Note:

Misconfiguration of the subsequent JSL results in a port number collision.

3.7.2.5 Parameters Usable with JSL
In addition to the parameters specified in the previous sections, the following parameters can
be used with the JSL, although you need to understand how doing so would affect your
application.

SVRGRP=string_value

This parameter specifies the group name for the group in which the server is to run.
string_value must be the logical name associated with a server group in the *GROUPS section,
and must be 30 characters or less. This association with an entry in the *GROUPS section means
that AOUT is executed on the machine with the LMID specified for the server group. This
association also specifies the GRPNO for the server group and parameters to pass when the
associated resource manager is opened. All server entries must have a server group
parameter specified.

SRVID=number

This parameter specifies an identifier, an integer between 1 and 30,000, inclusive, that
identifies this server within its group. This parameter is required on every server entry, even if
the group has only one server. If multiple occurrences of servers are desired, do not use
consecutive numbers for SRVIDs; leave enough room for the system to assign additional
SRVIDs up to MAX.

Chapter 3
Oracle Tuxedo Background Information

3-25

3.7.2.6 Optional Parameters
The optional parameters of the SERVERS section are divided into boot parameters and run-time
parameters.

• Boot Parameters

3.7.2.6.1 Boot Parameters
Boot parameters are used by tmboot when it executes a server. Once running, a server reads
its entry from the configuration file to determine its run-time options. The unique server
identification number is used to find the right entry. The following are boot parameters.

CLOPT=string_value

The CLOPT parameter specifies a string of command-line options to be passed to AOUT when
booted. The servopts(5) page in the File Formats, Data Descriptions, MIBs, and System
Processes Reference lists the valid parameters.

Some of the available options apply primarily to servers under development. For example, the-
r option directs the server to write a record to its standard error file each time a service request
begins or ends.

Other command-line options can be used to direct the server’s standard out (stdout) and
standard error (stderr) to specific files, or to start the server so that it initially advertises a
limited set of its available services.

The default value for the CLOPT parameter is -A, which means that the server is started with all
available services advertised.

The maximum length of the CLOPT parameter value is 256 characters; it must be enclosed in
double quotes.

SEQUENCE=number

This parameter specifies when to shut down or boot relative to other servers. If SEQUENCE is not
specified, servers are booted in the order found in the SERVERS section (and shut down in the
reverse order). If some servers have sequence numbers specified and others do not, all
servers with sequence numbers are booted first from low to high sequence number, then all
servers without sequence numbers are booted in the order in which they appear in the
configuration file. Sequence numbers range between 1 and 9999. If the same sequence
number is assigned to more than one server, tmboot may boot those servers in parallel.

MIN=number

The MIN parameter specifies the minimum number of occurrences of the server to boot by
tmboot. If an RQADDR is specified, and MIN is greater than 1, the servers form a multiple servers
single queue (MSSQ) set. The identifiers for the servers are SRVID up to (SRVID + (MAX -1)). All
occurrences of the server have the same sequence numbers as well as any other server
parameters. The value range for MIN is 0 to 1000. If MIN is not specified, the default value is 1.

MAX=number

Chapter 3
Oracle Tuxedo Background Information

3-26

The MAX parameter sets the maximum number of occurrences of the server to be booted.
Initially, tmboot boots MIN servers, and additional servers can be booted up to MAX occurrences
using the -i option of tmboot to specify the associated server identifier. The value range for
MAX is 0 to 1000. If no value is specified for MAX, the default is the same as for MIN, or 1.

• tmboot starts MIN occurrences unless you explicitly call for more with the -i SRVID option
of tmboot.

• If RQADDR is specified and MIN is greater than one, an MSSQ set is formed

• If MIN is not specified, the default is 1.

• If MAX is not specified, the default is MIN.
• MAX is especially important for conversational servers because they are spawned

automatically as needed.

3.7.2.7 Run-time Parameters
The server uses run-time parameters after it is started by tmboot. As indicated previously,
tmboot uses the values found in the TUXDIR, APPDIR and ENVFILE parameters for the MACHINES
section when booting the server. It also sets thePATH for the server to:

 “APPDIR:TUXDIR/bin:/bin:path”

where path is the value of the last PATH= line appearing in the ENVFILE file. The following
parameters are run-time parameters.

ENVFILE=string_value

You can use the ENVFILE parameter for a server to add values to the environment established
by tmboot during initialization of the server. You can optionally set variables specified in the file
named in the SERVERS ENVFILE parameter after you set those in the MACHINES ENVFILE used by
tmboot. These files cannot be used to override TUXDIR, APDIR, TUXCONFIG, or TUSOFFSET. The
best policy is to include in the server’s ENVFILE only those variable assignments known to be
needed to ensure proper running of the application.

On the server, the ENVFILE file is processed after the server starts. Therefore, it cannot be
used to set the pathnames used to find executable or dynamically loaded files needed to
execute the server. If you need to perform these tasks, use the machine ENVFILE instead.

Within ENVFILE only lines of the form VARIABLE =string are allowed. VARIABLE must start with
an underscore or alphabetic character and can contain only underscore or alphanumeric
characters. If the server is associated with a server group that can be migrated to a second
machine, the ENVFILE must be in the same location on both machines.

CONV={Y | N}

CONV specifies whether the server is a conversational server.CONV takes a Y value if a
conversational server is being defined. Connections can only be made to conversational
servers. For a request/response server, you can either set CONV=N, which is the default, or omit
the parameter.

RQADDR=string_value

Chapter 3
Oracle Tuxedo Background Information

3-27

RQADDR assigns a symbolic name to the request queue of this server. MSSQ sets are
established by using the same symbolic name for more than one server (or by specifying MIN
greater than 1). All members of an MSSQ set must offer an identical set of services and must
be in the same server group.

If RQADDR is not specified, the system assigns a unique key to serve as the queue address for
this server. However,tmadmin commands that take a queue address as an argument are easier
to use if queues are given symbolic names.

RQPERM =number

Use the RQPERM parameter to assign UNIX-style permissions to the request queue for this
server. The value of number can be between 0001 and 0777, inclusive. If no parameter is
specified, the permissions value of the bulletin board, as specified by PERM in the RESOURCES
section, is used. If no value is specified there, the default of 0666 is used (the default exposes
your application to possible use by any login on the system, so consider this carefully).

REPLYQ={ Y | N }

The REPLYQ parameter specifies whether a reply queue, separate from the request queue,
should be established for AOUT. If N is specified, the reply queue is created on the same LMID
as the AOUT. If only one server is using the request queue, replies can be retrieved from the
request queue without causing problems. However, if the server is a member of an MSSQ set
and contains services programmed to receive reply messages, REPLYQ should be set to Y so
that an individual reply queue is created for this server. If set toN, the reply is sent to the
request queue shared by all servers for the MSSQ set, and you cannot ensure that the reply
will be picked up by the server that is waiting for it.

It should be standard practice for all member servers of an MSSQ set to specify REPLYQ=Y if
replies are anticipated. Servers in an MSSQ set are required to have identical offerings of
services, so it is reasonable to expect that if one server in the set expects replies, any server in
the set can also expect replies.

RPPERM=number

Use the RPPERM parameter to assign permissions to the reply queue. number is specified in the
usual UNIX fashion (for example, 0600); the value can be between 0001 and 0777, inclusive. If
RPPERM is not specified, the default value 0666 is used. This parameter is useful only when
REPLYQ=Y. If requests and replies are read from the same queue, only RQPERM is needed;
RPPERM is ignored.

RESTART={ Y | N }

The RESTART parameter takes a Y or N to indicate whether AOUT is restartable. The default is N.
If the server is in a group that can be migrated, RESTART must be Y. A server started with a
SIGTERM signal cannot be restarted; it must be rebooted.

An application’s policy on restarting servers might vary according to whether the server is in
production or not. During the test phase of application development it is reasonable to expect
that a server might fail repeatedly, but server failures should be rare events once the
application has been put into production. You might want to set more stringent parameters for
restarting servers once the application is in production.

Chapter 3
Oracle Tuxedo Background Information

3-28

3.7.2.8 Parameters Associated with RESTART

RCMD=string_value

If AOUT is restartable, this parameter specifies the command that should be executed when
AOUT abnormally terminates. The string, up to the first space or tab, must be the name of an
executable UNIX file, either a full pathname or relative to APPDIR. (Do not attempt to set a shell
variable at the beginning of the command.) Optionally, the command name can be followed by
command-line arguments. Two additional arguments are appended to the command line: the
GRPNO and SRVID associated with the restarting server. string_value is executed in parallel
with restarting the server.

You can use the RCMD parameter to specify a command to be executed in parallel with the
restarting of the server. The command must be an executable UNIX system file residing in a
directory on the server’s PATH. An example is a command that sends a customized message to
the userlog to mark the restarting of the server.

MAXGEN=number

If AOUT is restartable, this parameter specifies that it can be restarted at most (number - 1) times
within the period specified by GRACE. The value must be greater than 0 and less than 256. If not
specified, the default is 1 (which means that the server can be started once, but not restarted).
If the server is to be restartable, MAXGEN must be equal to or greater than 2. RESTART must be Y
or MAXGEN is ignored.

GRACE=number

If RESTART is Y, the GRACE parameter specifies the time period (in seconds) during which this
server can be restarted, (MAXGEN - 1) times. The number assigned must be equal to or greater
than 0, and less than 2,147,483,648 seconds (or a little more than 68 years). If GRACE is not
specified the default is 86,400 seconds (24 hours). Setting GRACE to 0 removes all limitations;
the server can be restarted an unlimited number of times.

3.7.2.9 Entering Parameters
You can use Oracle Tuxedo parameters, includingRESTART,RQADDR, and REPLYQ, with the JSL.
(See Administering an Oracle Tuxedo Application at Run Time for additional information
regarding run-time parameters.) Enter the following parameters:

1. To identify the SRVGRP parameter, type the previously defined group name value from the
GROUPS section.

2. To indicate the SRVID, type a number between 1 and 30,000 that identifies the server within
its group.

3. Verify that the syntax for the CLOPT parameter is as follows:

CLOPT= “-- -n 0x0002PPPPNNNNNNNN -d /dev/tcp -m2 -M4 -x10”

Chapter 3
Oracle Tuxedo Background Information

3-29

Note:

The CLOPT parameters may vary. Refer to the table “JSL Command-line Options”
for pertinent command-line information.

4. If necessary, type the optional parameters:

• Type the SEQUENCE parameter to determine the order that the servers are booted.

• Specify Y to permit release of the RESTART parameter.

• Type 0 to permit an infinite number of server restarts using the GRACE parameter.

3.8 Sample Applications in Oracle Jolt Online Resources
You can access sample code that can be modified for use with Oracle Jolt through the Oracle
Jolt product Web page at:

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/interm/jolt.html

These samples demonstrate and utilize Oracle Jolt features and functionality.

Other Web sites with Java-related information include:

• Javasoft Home page (http://www.java.com)

• Newsgroups in the comp.lang.java hierarchy. These groups contain lists of past articles
and communications regarding Java, and are a valuable source of archival material.

Chapter 3
Sample Applications in Oracle Jolt Online Resources

3-30

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/interm/jolt.html.
http://www.java.com

4
Using the Jolt Class Library

The Oracle Jolt Class Library provides developers with a set of object-oriented Java language
classes for accessing Oracle Tuxedo services. The class library contains the class files that
implement the Jolt API. Using these classes, you can extend applications for Internet and
intranet transaction processing. You can use the Jolt Class Library to customize access to
Oracle Tuxedo services from Java applets.

To use the information in the following sections, you need to be generally familiar with the Java
programming language and object-oriented programming concepts. All the programming
examples are in Java code.

Note:

All program examples are only fragments used to illustrate Jolt capabilities. They are
not intended to be compiled and run as provided. These program examples require
additional code to be fully executable.

This topic includes the following sections:

• Class Library Functionality Overview

• Jolt Object Relationships

• Jolt Class Library Walkthrough

• Using Oracle Tuxedo Buffer Types with Jolt

• Multithreaded Applications

• Event Subscription and Notifications

• Clearing Parameter Values

• Reusing Objects

• Deploying and Localizing Jolt Applets

• Using SSL

4.1 Class Library Functionality Overview
The Jolt Class Library gives the Oracle Tuxedo application developer the tools to develop
client-side applications or applets that run as independent Java applications or in a Java-
enabled Web browser. The bea.jolt package contains the Jolt Class Library. To use the Jolt
Class Library, the client program or applet must import this package. For an example of how to
import the bea.jolt package, refer to the listing “Jolt Transfer of Funds Example
(SimXfer.java)”.

• Java Applications Versus Java Applets

• Jolt Class Library Features

• Error and Exception Handling

4-1

• Jolt Client/Server Relationship

4.1.1 Java Applications Versus Java Applets
Java programs that run in a browser are called applets. Applets are small, easily downloaded
parts of an overall application that perform specific functions. Many popular browsers impose
limitations on the capabilities of Java applets in order to provide a high degree of security for
the users of the browser. Applets have the following restrictions:

• An applet ordinarily cannot read or write files on any host system.

• An applet cannot start any program on the host (client) that is executing the applet.

• An applet can make a network connection only to the host from which the applet
originated; it cannot make other network connections, not even to the client machine.

Programming workarounds exist for most restrictions on Java applets. Check your browser’s
Web site (for example, www.netscape.com or www.microsoft.com) or developer documentation
for specific information about the applet capabilities that the browser supports or restricts. You
can also use Jolt Relay to work around some of the network connection restrictions.

A Java application, however, is not run in the context of a browser and is not restricted in the
same ways. For example, a Java application can start another application on the host machine
where it is executing. While an applet relies on the windowing environment of a browser or
appletviewer for much of its user interface, a Java application requires that you create your
own user interface. An applet is designed to be small and highly portable. A Java application,
on the other hand, can operate much like any other non-Java program. The security
restrictions for applets imposed by various browsers and the scope of the two program types
are the most important differences between a Java application and a Java applet.

4.1.2 Jolt Class Library Features
The Jolt Class Library has the following characteristics:

• Features fully thread-safe classes.

• Encapsulates typical transaction functions such as logon, synchronous calling, transaction
begin, commit, rollback, and logoffs as Java objects.

• Contains methods that allow you to set idle timeouts for continuous and intermittent client
network connections.

• Features methods that allow a Jolt client to subscribe to and receive event-based
notifications.

4.1.3 Error and Exception Handling
The Jolt Class Library returns both Jolt interpreter and Oracle Tuxedo errors as exceptions.
The Jolt Class Library Reference contains the Jolt classes and lists the errors or exceptions
thrown for each class. The Oracle Jolt API Reference contains the Error and Exception Class
Reference.

4.1.4 Jolt Client/Server Relationship
Oracle Jolt works in a distributed client/server environment and connects Java clients to Oracle
Tuxedo-based applications.

The following figure illustrates the client/server relationship between a Jolt program and the
Jolt Server.

Chapter 4
Class Library Functionality Overview

4-2

Figure 4-1 Jolt Client/Server Relationship

As illustrated in the figure, the Jolt Server acts as a proxy for a native Oracle Tuxedo client,
implementing functionality available through the native Oracle Tuxedo client. The Oracle Jolt
Server accepts requests from Oracle Jolt clients and maps those requests into Oracle Tuxedo
service requests through the Oracle Tuxedo ATMI interface. Requests and associated
parameters are packaged into a message buffer and delivered over the network to the Oracle
Jolt Server. The Oracle Jolt Connection Manager handles all communication between the
Oracle Jolt Server and the Oracle Jolt applet using the Oracle Jolt Transaction Protocol. The
Oracle Jolt Server unpacks the data from the message, performs any necessary data
conversions, such as numeric format conversions or character set conversions, and makes the
appropriate service request to Oracle Tuxedo as specified by the message.

Once a service request enters the Oracle Tuxedo system, it is executed in exactly the same
manner as any other Oracle Tuxedo request. The results are returned through the ATMI
interface to the Oracle Jolt Server, which packages the results and any error information into a
message that is sent to the Oracle Jolt client applet. The Oracle Jolt client then maps the
contents of the message into the various Oracle Jolt client interface objects, completing the
request.

On the client side, the user program contains the client application code. The Jolt Class Library
packages a JoltSession and JoltTransaction, which in turn handle service requests.

The following table describes the client-side requests and Jolt Server-side actions in a simple
example program.

Table 4-1 Jolt Client/Server Interaction

Jolt Client Jolt Server

1 attr=new JoltSessionAttributes();
attr.setString(attr.APPADDRESS, “//
myhost:8000”);

Binds the client to the Oracle Tuxedo environment

2 session=new JoltSession(attr,
username, userRole, userPassword,
appPassword);

Logs the client onto Oracle Tuxedo

3 withdrawal=new
JoltRemoteService(servname, session);

Looks up the service attributes in the Repository

Chapter 4
Class Library Functionality Overview

4-3

Table 4-1 (Cont.) Jolt Client/Server Interaction

Jolt Client Jolt Server

4 withdrawal.addString(“accountnumber”,
“123”); withdrawal.addFloat(“amount”,
(float) 100.00);

Populates variables in the client (no Jolt Server
activity)

5 trans=new JoltTransaction(time-out,
session);

Begins a new Tuxedo transaction

6 withdrawal.call(trans); Executes the Oracle Tuxedo service

7 trans.commit() or trans.rollback(); Completes or rolls back transaction

8
balance=withdrawal.getFloatDef(“balance
,” (float) 0.0);

Retrieves the results (no Jolt Server activity)

9 session.endSession(); Logs the client off of Oracle Tuxedo

The following tasks summarize the interaction shown in the previous table, “Jolt Client/Server
Interaction.”

1. Bind the client to the Oracle Tuxedo environment using the JoltSessionAttributes class.

2. Establish a session.

3. Set variables.

4. Perform the necessary transaction processing.

5. Log the client off of the Oracle Tuxedo system.

Each of these activities is handled through the use of the Jolt Class Library classes. These
classes include methods for setting and clearing data and for handling remote service actions.
“Jolt Object Relationships” describes the Jolt Class Library classes in more detail.

4.2 Jolt Object Relationships
The following figure illustrates the relationship between the instantiated objects of the Jolt
Class Library classes.

Chapter 4
Jolt Object Relationships

4-4

Figure 4-2 Jolt Object Relationships

As objects, the Jolt classes interact in various relationships with each other. In the previous
figure, the relationships are divided into three basic categories:

• Contains-a relationship — at the class level an object can contain other objects. For
example, a JoltTransaction stores (or contains) a JoltSession object.

• Is-a relationship — the is-a relationship usually occurs at the class instance or sub-object
level and denotes that the object is an instance of a particular object.

• Uses-a relationship— an object can use another object without containing it. For example,
a JoltSession can use the JoltSessionAttributes object to obtain the host and port
information.

4.3 Jolt Class Library Walkthrough
Use Jolt classes to perform the basic functions of transaction processing: logon/logoff;
synchronous service calling; transaction begin, commit, and rollback. The following sections
describe how Jolt classes are used to perform these functions.

You can also use the Jolt class library to develop multithreaded applications, define Tuxedo
buffer types, and subscribe to events and unsolicited messages. These functions are
discussed in later sections.

• Logon and Logoff

• Synchronous Service Calling

• Transaction Begin, Commit, and Rollback

4.3.1 Logon and Logoff
The client application must log on to the Oracle Tuxedo environment prior to initiating any
transaction activity. The Jolt Class Library provides the JoltSessionAttributes class and
JoltSession class to establish a connection to an Oracle Tuxedo system.

Chapter 4
Jolt Class Library Walkthrough

4-5

The JoltSessionAttributes class will contain the connection properties of Jolt and Oracle
Tuxedo systems as well as various other properties of the two systems. To establish a
connection, the client application must create an instance of the JoltSession class. This
instance is the JoltSession object. After the developer instantiates a Jolt Session and Oracle
Tuxedo object, the Jolt and Oracle Tuxedo logon capability is enabled. Calling the endSession
method ends the session and allows the user to log off.

4.3.2 Synchronous Service Calling
Transaction activities such as requests and replies are handled through a JoltRemoteService
object (an instance of the JoltRemoteService class). Each JoltRemoteService object refers to
an exported Oracle Tuxedo request/reply service. You must provide a service name and a
JoltSession object to instantiate a JoltRemoteService object before it can be used.

To use a JoltRemoteService object:

1. Set the input parameters.

2. Invoke the service.

3. Examine the output parameters.

For efficiency, Jolt does not make a copy of any input parameter object; only the references to
the object (for example, string and byte array) are saved. Because JoltRemoteService object is
a stateful object, its input parameters and the request attributes are retained throughout the life
of the object. You can use the clear() method to reset the attributes and input parameters
before reusing the JoltRemoteService object.

Because Jolt is designed for a multithreaded environment, you can invoke multiple
JoltRemoteService objects simultaneously by using the Java multithreading capability. Refer to
“Multithreaded Applications” on page 4‑35 for additional information.

4.3.3 Transaction Begin, Commit, and Rollback
In Jolt, a transaction is represented as an object of the class JoltTransaction. The transaction
begins when the transaction object is instantiated. The transaction object is created with a
timeout and JoltSession object parameter:

trans = new JoltTransaction(timeout, session)

Jolt uses an explicit transaction model for any services involved in a transaction. The
transaction service invocation requires a JoltTransaction object as a parameter. Jolt also
requires that the service and the transaction belong to the same session. Jolt does not allow
you to use services and transactions that are not bound to the same session.

The sample code in the listing “Jolt Transfer of Funds Example (SimXfer.java)” describes how
to use the Jolt Class Library and includes the use of the JoltSessionAttributes, JoltSession,
JoltRemoteService, and JoltTransaction classes.

The same sample combines two user-defined Oracle Tuxedo services (WITHDRAWAL and
DEPOSIT) to perform a simulated TRANSFER transaction. If the WITHDRAWAL operation
fails, a rollback is performed. Otherwise, a DEPOSIT is performed and a commit completes the
transaction.

The following programming steps describe the transaction process shown in the sample code
listing “Jolt Transfer of Funds Example (SimXfer.java)”:

Chapter 4
Jolt Class Library Walkthrough

4-6

1. Set the connection attributes like hostname and portnumber in the JoltSessionAttribute
object.
Refer to this line in the following code listing:

sattr = new JoltSessionAttributes();
2. The sattr.checkAuthenticationLevel() allows the application to determine the level of

security required to log on to the server.
Refer to this line in the following code listing:

switch (sattr.checkAuthenticationLevel())
3. The logon is accomplished by instantiating a JoltSession object.

Refer to these lines in the following code listing:

session = new JoltSession (sattr, userName, userRole,
userPassword, appPassword);

This example does not explicitly catch SessionException errors.

4. All JoltRemoteService calls require a service to be specified and the session key returned
from JoltSession(). Refer to these lines in the following code listing:

withdrawal = new JoltRemoteService(“WITHDRAWAL”, session);

deposit = new JoltRemoteService(“DEPOSIT”, session);

These calls bind the service definition of both the WITHDRAWAL and DEPOSIT services,
which are stored in the Oracle Tuxedo Service Metadata Repository, to the withdrawal and
deposit objects, respectively. The services WITHDRAWAL and DEPOSIT must be defined
in the Metadata Repository; otherwise a ServiceException is thrown. This example does
not explicitly catch ServiceException errors.

5. Once the service definitions are returned, the application-specific fields such as account
number ACCOUNT_ID and withdrawal amount SAMOUNT are automatically populated.
Refer to these lines in the following code listing:

withdrawal.addInt(“ACCOUNT_ID”, 100000);

withdrawal.addString(“SAMOUNT”, “100.00”);

The add*() methods can throw IllegalAccessError or NoSuchFieldError exceptions.

6. The JoltTransaction call allows a timeout to be specified if the transaction does not
complete within the specified time.
Refer to this line in the following code listing:

trans = new JoltTransaction(5,session);
7. Once the withdrawal service definition is automatically populated, the withdrawal service is

invoked by calling the withdrawal.call(trans) method.
Refer to this line in the following code listing:

withdrawal.call(trans);
8. A failed WITHDRAWAL can be rolled back.

Refer to this line in the following code listing:

Chapter 4
Jolt Class Library Walkthrough

4-7

trans.rollback();
9. Otherwise, once the DEPOSIT is performed, all the transactions are committed. Refer to

these lines in the following code listing:
deposit.call(trans);
trans.commit();

The following listing shows an example of a simple application for the transfer of funds using
the Jolt classes.

Listing Jolt Transfer of Funds Example (SimXfer.java)

/* Copyright 1999 Oracle Systems, Inc. All Rights Reserved */
import bea.jolt.*;
public class SimXfer
{
 public static void main (String[] args)
 {

 JoltSession session;
 JoltSessionAttributes sattr;
 JoltRemoteService withdrawal;
 JoltRemoteService deposit;
 JoltTransaction trans;
 String userName=null;
 String userPassword=null;
 String appPassword=null;
 String userRole=”myapp”;

 sattr = new JoltSessionAttributes();
 sattr.setString(sattr.APPADDRESS, “//bluefish:8501”);

 switch (sattr.checkAuthenticationLevel())
 {
 case JoltSessionAttributes.NOAUTH:
 System.out.println(“NOAUTH\n”);
 break;
 case JoltSessionAttributes.APPASSWORD:
 appPassword = “appPassword”;
 break;
 case JoltSessionAttributes.USRPASSWORD:
 userName = “myname”;
 userPassword = “mysecret”;
 appPassword = “appPassword”;
 break;
 }
 sattr.setInt(sattr.IDLETIMEOUT, 300);
 session = new JoltSession(sattr, userName, userRole,
 userPassword, appPassword);
 // Simulate a transfer
 withdrawal = new JoltRemoteService(“WITHDRAWAL”, session);
 deposit = new JoltRemoteService(“DEPOSIT”, session);

 withdrawal.addInt(“ACCOUNT_ID”, 100000);
 withdrawal.addString(“SAMOUNT”,“100.00”);

 // Begin the transaction w/ a 5 sec timeout

Chapter 4
Jolt Class Library Walkthrough

4-8

 trans = new JoltTransaction(5, session);
 try
 {
 withdrawal.call(trans);
 }
 catch (ApplicationException e)
 {
 e.printStackTrace();
 // This service uses the STATLIN field to report errors
 // back to the client application.
 System.err.println(withdrawal.getStringDef(“STATLIN”,”NO
 STATLIN”));
 System.exit(1);
 }
 String wbal = withdrawal.getStringDef(“SBALANCE”, “$-1.0”);

 // remove leading “$” before converting string to float
 float w = Float.valueOf(wbal.substring(1)).floatValue();
 if (w < 0.0)
 {
 System.err.println(“Insufficient funds”);
 trans.rollback();
 System.exit(1);
 }

 else // now attempt to deposit/transfer the funds

 {

 deposit.addInt(“ACCOUNT_ID”, 100001);
 deposit.addString(“SAMOUNT”,“100.00”);

 deposit.call(trans);
 String dbal = deposit.getStringDef(“SBALANCE”, “-1.0”);
 trans.commit();

 System.out.println(“Successful withdrawal”);
 System.out.println(“New balance is: “ + wbal);

 System.out.println(“Successful deposit”);
 System.out.println(“New balance is: “ + dbal);
 }

 session.endSession();
 System.exit(0);
 } // end main
 } // end SimXfer

4.4 Using Oracle Tuxedo Buffer Types with Jolt
Jolt supports the following built-in Oracle Tuxedo buffer types:

• FML, FML32

• VIEW, VIEW32

Chapter 4
Using Oracle Tuxedo Buffer Types with Jolt

4-9

• X_COMMON

• X_C_TYPE

• CARRAY

• X_OCTET

• STRING

• XML

• MBSTRING

Note:

X_OCTET is used identically to CARRAY.
X_COMMON and X_C_TYPE are used identically to VIEW.

Of the Oracle Tuxedo built-in buffer types, the Jolt programmer should be particularly aware of
how Jolt handles the CARRAY (character array) and STRING buffer types:

• The CARRAY type is used to handle data opaquely (that is, the characters of a CARRAY
data type are not interpreted in any way). Therefore, no data conversion is performed
between a Jolt client and Oracle Tuxedo service.

• The STRING data type is character and, unlike CARRAY, you can determine its
transmission length by counting the number of characters in the buffer until reaching the
null character. Therefore, data is automatically converted when data is exchanged by
machines with different character sets.

For more information about all the Oracle Tuxedo typed buffers, data types, and buffer types,
refer to the following documents:

• Programming Oracle Tuxedo ATMI Applications Using C

• Oracle Tuxedo ATMI C Function Reference

• Oracle Tuxedo ATMI FML Function Reference

• File Formats, Data Descriptions, MIBs, and System Processes Reference

• Using the STRING Buffer Type

• Using the CARRAY Buffer Type

• Using the FML Buffer Type

• Using the VIEW Buffer Type

• Using the XML Buffer Type

• Using the MBSTRING Buffer Type

4.4.1 Using the STRING Buffer Type
The STRING buffer type is an array of non-null characters that terminates with a null character.
Unlike CARRAY, you can determine its transmission length by counting the number of
characters in the buffer until reaching the null character. Since the STRING buffer is self-
describing, the Oracle Tuxedo System can convert data automatically when data is exchanged
by machines with different character sets.

Chapter 4
Using Oracle Tuxedo Buffer Types with Jolt

4-10

Note:

During the data conversion from Jolt to STRING, the null terminator is automatically
appended to the end of the STRING buffers because a Java string is not null-
terminated.

Using the STRING buffer type requires two main steps:

1. Define the Tuxedo service that you will be using with the buffer type.

2. Write the code that uses the STRING buffer type.

The next two sections provide examples that demonstrate these steps.

The ToUpper code fragment shown in the listing “Use of the STRING Buffer Type
(ToUpper.java)” illustrates how Jolt works with a service whose buffer type is STRING. The
ToUpper Oracle Tuxedo Service is available in the Oracle Tuxedo simpapp example.

• Define TOUPPER in the Repository Editor

• ToUpper.java Client Code

4.4.1.1 Define TOUPPER in the Repository Editor
Before running the ToUpper.java example, you need to define the TOUPPER service through the
Metadata Repository Editor.

Chapter 4
Using Oracle Tuxedo Buffer Types with Jolt

4-11

Chapter 4
Using Oracle Tuxedo Buffer Types with Jolt

4-12

4.4.1.2 ToUpper.java Client Code
The ToUpper.java Java code fragment in the following listing illustrates how Jolt works with a
service with a buffer type of STRING. The example shows a Jolt client using a STRING buffer
to pass data to a server. The Oracle Tuxedo server would take the buffer, convert the string to
all uppercase letters, and pass the string back to the client. The following example assumes
that a session object was already instantiated.

Listing Use of the STRING Buffer Type (ToUpper.java)

/* Copyright 1996 Oracle Systems, Inc. All Rights Reserved */
import bea.jolt.*;
public class ToUpper
 {
 public static void main (String[] args)
 {
 JoltSession session;
 JoltSessionAttributes sattr;
 JoltRemoteService toupper;
 JoltTransaction trans;
 String userName=null;
 String userPassword=null;
 String appPassword=null;
 String userRole=”myapp”;
 String outstr;

 sattr = new JoltSessionAttributes();
 sattr.setString(sattr.APPADDRESS, “//myhost:8501”);

 switch (sattr.checkAuthenticationLevel())
 {
 case JoltSessionAttributes.NOAUTH:
 break;
 case JoltSessionAttributes.APPASSWORD:
 appPassword = “appPassword”;
 break;
 case JoltSessionAttributes.USRPASSWORD:
 userName = “myname”;
 userPassword = “mysecret”;
 appPassword = “appPassword”;
 break;
 }

 sattr.setInt(sattr.IDLETIMEOUT, 300);
 session = new JoltSession(sattr, userName, userRole,
 userPassword, appPassword);
 toupper = new JoltRemoteService (“TOUPPER”, session);
 toupper.setString(“STRING”, “hello world”);
 toupper.call(null);
 outstr = toupper.getStringDef(“STRING”, null);
 if (outstr != null)
 System.out.println(outstr);
 session.endSession();
 System.exit(0);

Chapter 4
Using Oracle Tuxedo Buffer Types with Jolt

4-13

 } // end main
 } // end ToUpper

4.4.2 Using the CARRAY Buffer Type
The CARRAY buffer type is a simple character array buffer type that is built into the Oracle
Tuxedo system. Because the system does not interpret the data (although the data type is
known) when you use the CARRAY buffer type, you must specify a data length in the Jolt client
application. The Jolt client must specify a data length when passing this buffer type.

For example, if an Oracle Tuxedo service uses a CARRAY buffer type and the user sets a 32-
bit integer (in Java the integer is in big-endian byte order), then the data is sent unmodified to
the Oracle Tuxedo service.

To use the CARRAY buffer type, you first define the Tuxedo service that you will be using with
the buffer type. Then, write the code that uses the buffer type. The next two sections
demonstrate these steps.

Note:

X_OCTET is used identically to CARRAY.

• Define the Tuxedo Service in the Repository Editor

• tryOnCARRAY.java Client Code

4.4.2.1 Define the Tuxedo Service in the Repository Editor
Before running the ECHO example, you must write and boot a Tuxedo ECHO service. The
ECHO service takes a buffer and passes it back to the Jolt client. You need to define the
ECHO service in the Metadata Repository Editor (see Define TOUPPER in the Repository
Editor for an example).

4.4.2.2 tryOnCARRAY.java Client Code
The code in the following listing illustrates how Jolt works with a service with a buffer type of
CARRAY. Because Jolt does not look into the CARRAY data stream, it is the programmer's
responsibility to ensure that the data formats between the Jolt client and the CARRAY service
match. The example in the following listing assumes that a session object was already
instantiated.

Listing CARRAY Buffer Type Example

/* Copyright 1996 Oracle Systems, Inc. All Rights Reserved */
 /* This code fragment illustrates how Jolt works with a service
 * whose buffer type is CARRAY.
 */
import java.io.*;
import bea.jolt.*;
class ...
{
 ...
 public void tryOnCARRAY()
 {

Chapter 4
Using Oracle Tuxedo Buffer Types with Jolt

4-14

 byte data[];
 JoltRemoteService csvc;
 DataInputStream din;
 DataOutputStream dout;
 ByteArrayInputStream bin;
 ByteArrayOutputStream bout;
 /*
 * Use java.io.DataOutputStream to put data into a byte array
 */
 bout = new ByteArrayOutputStream(512);
 dout = new DataOutputStream(bout);
 dout.writeInt(100);
 dout.writeFloat((float) 300.00);
 dout.writeUTF("Hello World");
 dout.writeShort((short) 88);
 /*
 * Copy the byte array into a new byte array "data". Then
 * issue the Jolt remote service call.
 */
 data = bout.toByteArray();
 csvc = new JoltRemoteService("ECHO", session);
 csvc.setBytes("CARRAY", data, data.length);
 csvc.call(null);
 /*
 * Get the result from JoltRemoteService object and use
 * java.io.DataInputStream to extract each individual value
 * from the byte array.
 */
 data = csvc.getBytesDef("CARRAY", null);
 if (data != null)
 {
 bin = new ByteArrayInputStream(data);
 din = new DataInputStream(bin);
 System.out.println(din.readInt());
 System.out.println(din.readFloat());
 System.out.println(din.readUTF());
 System.out.println(din.readShort());
 }
 }
}

4.4.3 Using the FML Buffer Type
FML (Field Manipulation Language) is a flexible data structure that can be used as a typed
buffer. The FML data structure stores tagged values that are typed, variable in length, and may
have multiple occurrences. The typed buffer is treated as an abstract data type in FML.

FML gives you the ability to access and update data values without having to know how the
data is structured and stored. In your application program, you simply access or update a field
in the fielded buffer by referencing its identifier. To perform the operation, the FML run time
determines the field location and data type.

FML is especially suited for use with Jolt clients because the client and server code can be in
two languages (for example, Java and C); the client/server platforms can have different data
type specifications; or the interface between the client and the server can change frequently.

Chapter 4
Using Oracle Tuxedo Buffer Types with Jolt

4-15

The following tryOnFml examples illustrate the use of the FML buffer type. The examples show
a Jolt client using FML buffers to pass data to a server. The server takes the buffer, creates a
new FML buffer to store the data, and passes that buffer back to the Jolt client. The examples
consist of the following components.

• The listing “tryOnFml.java Code Example” is a Jolt client that contains a PASSFML service.

• The listing “tryOnFml.f16 Field Definitions” is an Oracle Tuxedo FML field definitions table
used by the PASSFML service.

• The listing “tryOnFml.c Code Example” is a server code fragment that contains the server
side C code for handling the data sent by the Jolt client.

• tryOnFml.java Client Code

• FML Field Definitions

• Define PASSFML in the Repository Editor

• tryOnFml.c Server Code

4.4.3.1 tryOnFml.java Client Code
The tryOnFml.java Java code fragment in the following listing illustrates how Jolt works with a
service whose buffer type is FML. In this example, it is assumed that a session object was
already instantiated.

Listing tryOnFml.java Code Example

/* Copyright 1997 Oracle Systems, Inc. All Rights Reserved */

import bea.jolt.*;
class ...
{

 ...
 public void tryOnFml ()
 {
 JoltRemoteService passFml;
 String outputString;
 int outputInt;
 float outputFloat;
 ...
 passFml = new JoltRemoteService("PASSFML",session);
 passFml.setString("INPUTSTRING", "John");
 passFml.setInt("INPUTINT", 67);
 passFml.setFloat("INPUTFLOAT", (float)12.0);
 passFml.call(null);
 outputString = passFml.getStringDef("OUTPUTSTRING", null);
 outputInt = passFml.getIntDef("OUTPUTINT", -1);
 outputFloat = passFml.getFloatDef("OUTPUTFLOAT", (float)-1.0);
 System.out.print("String =" + outputString);
 System.out.print(" Int =" + outputInt);
 System.out.println(" Float =" + outputFloat);
 }
}

Chapter 4
Using Oracle Tuxedo Buffer Types with Jolt

4-16

4.4.3.2 FML Field Definitions
The entries in the following listing,“tryOnFml.f16 Field Definitions,” show the FML field
definitions for the previous listing, “tryOnFml.java Code Example.”

Listing tryOnFml.f16 Field Definitions

#
FML field definition table
#
*base 4100
INPUTSTRING 1 string
INPUTINT 2 long
INPUTFLOAT 3 float
OUTPUTSTRING 4 string
OUTPUTINT 5 long
OUTPUTFLOAT 6 float

4.4.3.3 Define PASSFML in the Repository Editor
The BULKPKG package contains the PASSFML service, which is used with the tryOnFml.java and
tryOnFml.c code. Before running the tryOnFml.java example, you need to modify the PASSFML
service through the Metadata Repository Editor (see Define TOUPPER in the Repository Editor
for an example).

4.4.3.4 tryOnFml.c Server Code
The following listing illustrates the server side code for using the FML buffer type. The
PASSFML service reads in an input FML buffer and outputs a FML buffer.

Listing tryOnFml.c Code Example

/*
* tryOnFml.c
*
* Copyright (c) 1997 Oracle Systems, Inc. All rights reserved
*
* Contains the PASSFML Oracle Tuxedo server.
*
*/
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/stat.h>
#include <malloc.h>
#include <math.h>
#include <string.h>
#include <fml.h>
#include <fml32.h>
#include <Usysflds.h>
#include <atmi.h>

Chapter 4
Using Oracle Tuxedo Buffer Types with Jolt

4-17

#include <userlog.h>
#include "tryOnFml.f16.h"
/*
 * PASSFML service reads in a input fml buffer and outputs a fml buffer.
 */
void
PASSFML(TPSVCINFO *rqst)
{
 FLDLEN len;
 FBFR *svcinfo = (FBFR *) rqst->data;
 char inputString[256];
 long inputInt;
 float inputFloat;
 FBFR *fml_ptr;
 int rt;
 if (Fget(svcinfo, INPUTSTRING, 0, inputString, &len) < 0) {
 (void)userlog("Fget of INPUTSTRING failed %s",
 Fstrerror(Ferror));
 tpreturn(TPFAIL, 0, rqst->data, 0L, 0);
}
 if (Fget(svcinfo, INPUTINT, 0, (char *) &inputInt, &len) < 0) {
 (void)userlog("Fget of INPUTINT failed %s",Fstrerror(Ferror));
 tpreturn(TPFAIL, 0, rqst->data, 0L, 0);
}
 if (Fget(svcinfo, INPUTFLOAT, 0, (char *) &inputFloat, &len) < 0) {
 (void)userlog("Fget of INPUTFLOAT failed %s",
 Fstrerror(Ferror));
 tpreturn(TPFAIL, 0, rqst->data, 0L, 0);
}
 /* We could just pass the FML buffer back as is, put lets*/
 /* store it into another FML buffer and pass it back.*/
 if ((fml_ptr = (FBFR *)tpalloc("FML",NULL,rqst->len))==(FBFR *)NULL) {
 (void)userlog("tpalloc failed in PASSFML %s",
 tpstrerror(tperrno));
 tpreturn(TPFAIL, 0, rqst->data, 0L, 0);
}
 if(Fadd(fml_ptr, OUTPUTSTRING, inputString, (FLDLEN)0) == -1) {
 userlog("Fadd failed with error: %s", Fstrerror(Ferror));
 tpfree((char *)fml_ptr);
 tpreturn(TPFAIL, 0, NULL, 0L, 0);
}
 if(Fadd(fml_ptr, OUTPUTINT, (char *)&inputInt, (FLDLEN)0) == -1) {
 userlog("Fadd failed with error: %s", Fstrerror(Ferror));
 tpfree((char *)fml_ptr);
 tpreturn(TPFAIL, 0, NULL, 0L, 0);
}
 if(Fadd(fml_ptr, OUTPUTFLOAT, (char *)&inputFloat, (FLDLEN)0) == -1) {
 userlog("Fadd failed with error: %d\n", Fstrerror(Ferror));
 tpfree((char *)fml_ptr);
 tpreturn(TPFAIL, 0, NULL, 0L, 0);
}
 tpreturn(TPSUCCESS, 0, (char *)fml_ptr, 0L, 0);
}

Chapter 4
Using Oracle Tuxedo Buffer Types with Jolt

4-18

4.4.4 Using the VIEW Buffer Type
VIEW is a built-in Oracle Tuxedo typed buffer. The VIEW buffer provides a way to use C
structures and COBOL records with the Oracle Tuxedo system. The VIEW typed buffer
enables the Oracle Tuxedo run-time system to understand the format of C structures and
COBOL records based on the view description that is read at run time.

When allocating a VIEW, your application specifies a VIEW buffer type and a subtype that
matches the name of the view (the name that appears in the view description file). The
parameter name must match the field name in that view. Because the Oracle Tuxedo run-time
system can determine the space needed based on the structure size, your application need not
provide a buffer length. The run-time system can also automatically handle such things as
computing how much data to send in a request or response, and handle encoding and
decoding when the message transfers between different machine types.

The following examples show the use of the VIEW buffer type with a Jolt client and its server-
side application.

• The listing “simpview.java Code Example” is the Jolt client that contains the code used to
connect to Oracle Tuxedo and uses the VIEW buffer type.

• The listing “simpview.v16 Field Definitions” contains the Oracle Tuxedo VIEW field
definitions.

• The listing “simpview.c Code Example” contains the server side C code for handling the
input from the Jolt client.

The Jolt client treats a null character in a VIEW buffer string format as an end-of-line character
and truncates any part of the string that follows the null.

• Define VIEW in the Repository Editor

• simpview.java Client Code

• VIEW Field Definitions

• simpview.c Server Code

4.4.4.1 Define VIEW in the Repository Editor
Before running the simpview.java and simpview.c examples, you need to define the
SIMPVIEW service through the Metadata Repository Editor (see Define TOUPPER in the
Repository Editor for an example).

4.4.4.2 simpview.java Client Code
The listing “simpview.java Code Example” illustrates how Jolt works with a service whose
buffer type is VIEW. The client code is identical to the code used for accessing an FML service.

Note: The code in the following listing does not catch any exceptions. Because all Jolt
exceptions are derived from java.lang.RunTimeException, the Java Virtual Machine (JVM)
catches these exceptions if the application does not. (A well-written application will catch these
exceptions and take appropriate actions.)

Before running the example in the following listing, you need to add the VIEW service to the
SIMPAPP package using the Metadata Repository Editor and write the simpview.c Oracle
Tuxedo application. This service takes the data from the client VIEW buffer, creates a new
buffer and passes it back to the client as a new VIEW buffer. The following example assumes
that a session object has already been instantiated.

Chapter 4
Using Oracle Tuxedo Buffer Types with Jolt

4-19

Listing simpview.java Code Example

/* Copyright 1997 Oracle Systems, Inc. All Rights Reserved */
/*
 * This code fragment illustrates how Jolt works with a service whose buffer
 * type is VIEW.
 */
import bea.jolt.*;
class ...
{
 ...
 public void simpview ()
 {
 JoltRemoteService ViewSvc;
 String outString;
 int outInt;
 float outFloat;
 // Create a Jolt Service for the Oracle Tuxedo service "SIMPVIEW"
 ViewSvc = new JoltRemoteService("SIMPVIEW",session);
 // Set the input parameters required for SIMPVIEW
 ViewSvc.setString("inString", "John");
 ViewSvc.setInt("inInt", 10);
 ViewSvc.setFloat("inFloat", (float)10.0);
 // Call the service. No transaction required, so pass
 // a "null" parameter
 ViewSvc.call(null);
 // Process the results
 outString = ViewSvc.getStringDef("outString", null);
 outInt = ViewSvc.getIntDef("outInt", -1);
 outFloat = ViewSvc.getFloatDef("outFloat", (float)-1.0);
 // And display them...
 System.out.print("outString=" + outString + ",");
 System.out.print("outInt=" + outInt + ",");
 System.out.println("outFloat=" + outFloat);
 }
}

4.4.4.3 VIEW Field Definitions
The “simpview.v16 Field Definitions” listing shows the Oracle Tuxedo VIEW field definitions for
the simpview.java example that were shown in the previous listing.

Listing simpview.v16 Field Definitions

#
VIEW for SIMPVIEW. This view is used for both input and output. The
service could also have used separate input and output views.
The first 3 params are input params, the second 3 are outputs.
#
VIEW SimpView
$
#type cname fbname count flag size null
string inString - 1 - 32 -
long inInt - 1 - - -
float inFloat - 1 - - -

Chapter 4
Using Oracle Tuxedo Buffer Types with Jolt

4-20

string outString - 1 - 32 -
long outInt - 1 - - -
float outFloat - 1 - - -
END

4.4.4.4 simpview.c Server Code
In the following listing, the input and output buffers are VIEW. The code accepts the VIEW
buffer data as input and outputs the same data as VIEW.

Listing simpview.c Code Example

/*
* SIMPVIEW.c
*
* Copyright (c) 1997 Oracle Systems, Inc. All rights reserved
*
* Contains the SIMPVIEW Oracle Tuxedo server.
*
*/
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/stat.h>
#include <malloc.h>
#include <math.h>
#include <string.h>
#include <fml.h>
#include <fml32.h>
#include <Usysflds.h>
#include <atmi.h>
#include <userlog.h>
#include "simpview.h"
/*
 * Contents of simpview.h.
 *
 *struct SimpView {
 *
 * char inString[32];
 * long inInt;
 * float inFloat;
 * char outString[32];
 * long outInt;
 * float outFloat;
 *};
 */
/*
 * service reads in a input view buffer and outputs a view buffer.
 */
void
SIMPVIEW(TPSVCINFO *rqst)
{

Chapter 4
Using Oracle Tuxedo Buffer Types with Jolt

4-21

 /*
 * get the structure (VIEWSVC) from the TPSVCINFO structure
 */
 struct SimpView*svcinfo = (struct SimpView *) rqst->data;
 /*
 * print the input params to the UserLog. Note there is
 * no error checking here. Normally a SERVER would perform
 * some validation of input and return TPFAIL if the input
 * is not correct.
 */
 (void)userlog("SIMPVIEW: InString=%s,InInt=%d,InFloat=%f",
 svcinfo->inString, svcinfo->inInt, svcinfo->inFloat);
 /*
 * Populate the output fields and send them back to the caller
 */
 strcpy (svcinfo->outString, "Return from SIMPVIEW");
 svcinfo->outInt = 100;
 svcinfo->outFloat = (float) 100.00;
 /*
 * If there was an error, return TPFAIL
 * tpreturn(TPFAIL, ErrorCode, (char *)svcinfo, sizeof (*svcinfo), 0);
 */
 tpreturn(TPSUCCESS, 0, (char *)svcinfo, sizeof (*svcinfo), 0);
}

4.4.5 Using the XML Buffer Type
The XML buffer type enables Oracle Tuxedo applications to use XML documents for
exchanging data within and between applications. Oracle Tuxedo applications can send and
receive XML buffers, and route those buffers to the appropriate servers. All logic for dealing
with XML documents, including parsing, resides in the application.

A well-formed XML document consists of:

• Text in the form of a sequence of encoded characters, including proper headings, opening
and closing tags, etc.

• A description of the logical structure of the document and information about that structure.

To use the XML buffer type, you first define the Tuxedo service that you will be using with the
buffer type, and then write the code that uses the buffer type. The next two sections
demonstrate these steps.

Note:

Similar to CARRAY, the XML buffer type is treated as a byte arrary, not a STRING.
Therefore, no data conversion takes place between a Jolt client and an Oracle
Tuxedo service.

• Define the Tuxedo Service in the Repository Editor

• simpxml.java Client Code

Chapter 4
Using Oracle Tuxedo Buffer Types with Jolt

4-22

4.4.5.1 Define the Tuxedo Service in the Repository Editor
Before running the XML example, you must write and boot a Tuxedo XML service. The XML
service takes a buffer and passes it back to the Jolt client. You need to define the XML service
in the Metadata Repository Editor (see Define TOUPPER in the Repository Editor for an
example).

4.4.5.2 simpxml.java Client Code
The code in the following listing illustrates how Jolt works with a service with an XML type
buffer. Because Jolt does not look into the XML data stream, it is the programmer's
responsibility to ensure that the data formats between the Jolt client and the XML service
match. The example in the following listing assumes that a session object was already
instantiated.

Listing XML Buffer Type Example

/* Copyright 2001 Oracle Systems, Inc. All Rights Reserved */
/*
 * This code fragment illustrates how Jolt works with a service whose buffer
 * type is XML.
 */
import java.io.*;
import java.lang.*;
import bea.jolt.*;

public class xmldoc {

 public static void main (String[] args) {
 JoltSessionAttributes sattr;
 JoltSession session;
 JoltRemoteService echo_xml;
 String inString = "<?xml version=\"1.0\"
encoding=\"UTF-8\"?><ORDER><HEADER DATE=\"05/13/1999\"
ORDERNO=\"22345\"/><COMPANY>ACME</COMPANY><LINE><ITEM MODEL=\"Pabc\"
QUANTITY=\"5\">LAPTOP</ITEM></LINE><LINE><ITEM MODEL=\"P500\"
QUANTITY=\"15\">LAPTOP</ITEM></LINE></ORDER>";

 byte data[];
 DataInputStream din;
 DataOutputStream dout;
 ByteArrayInputStream bin;
 ByteArrayOutputStream bout;

 byte odata[];
 String outString = null;
 String appAddress = null;

 //...Create Jolt Session
 try {
 /*
 * Use java.io.DataOutputStream to put data
 * into a byte array
 */
 bout = new ByteArrayOutputStream(inString.length());

Chapter 4
Using Oracle Tuxedo Buffer Types with Jolt

4-23

 dout = new DataOutputStream(bout);
 dout.writeBytes(inString);
 /*
 * Copy the byte array into a new byte array "data".
 * Then issue the Jolt remote service call.
*/
 data = bout.toByteArray();
 } catch (Exception e) {
 System.out.println("toByteArray error");
 return;
}
try {
 echo_xml = new JoltRemoteService("ECHO_XML", session);
 System.out.println("JoltRemoteService Created");
 echo_xml.setBytes("XML", data, data.length);
} catch (Exception e) {
 System.out.println("RemoteService call error" + e);
 return;
}
echo_xml.call(null);
System.out.println("Service Call Returned");
odata = echo_xml.getBytesDef("XML", null);

try {
 System.out.println("Return String is:" + new
String(odata));
 } catch (Exception e) {
 System.err.println("getByteDef Error");
 }
 }
}
// end of class

4.4.6 Using the MBSTRING Buffer Type
Starting with Tuxedo 9.0, Jolt supports the MBSTRING buffer type which is already supported
by Tuxedo ATMI as of Tuxedo 8.1.

Since Java uses Unicode as the standard for multi byte character encoding and provides
String class for handling Unicode string data, Jolt MBSTRING support will use the String class
as the MBSTRING container on the Java client side. Jolt automatically converts the Unicode
MBSTRING data in a String object between byte array MBSTRING data, which is the ATMI’s
MBSTRING representation, when the data is transferred between a Jolt client and a Tuxedo
server.

The following methods are added to bea.jolt.Message interface and to
bea.jolt.JoltMessage and bea.jolt.JoltRemoteService classes.

addMBString
setMBString
setMBStringItem
getMBStringDef
getMBStringItemDef

Chapter 4
Using Oracle Tuxedo Buffer Types with Jolt

4-24

The usage of the MBSTRING buffer type is very similar to the STRING buffer type except that
the buffer type specified in the Metadata Repository Editor is “MBSTRING” and the Java
methods used for setting and getting the MBSTRING data are listed above.

In addition, the following Java system properties are used to specify the character encoding
name for MBSTRING data sent to Tuxedo servers.

bea.jolt.mbencoding
The Tuxedo encoding name used for converting Unicode MBSTRING data to the
corresponding byte array MBSTRING data while sending MBSTRING data to a Tuxedo server.
If this property is not specified, the Java default character encoding name is used and mapped
to the corresponding Tuxedo encoding name. For example, the default Japanese Windows
encoding name “MS932” should be mapped to the corresponding Tuxedo encoding name
“CP932” and specified in this property.

bea.jolt.mbencodingmap
The full path name for the file which specifies character encoding name mapping between Jolt
clients and Tuxedo servers. This mapping is necessary because the character encoding name
for the same character encoding is sometimes different between Java and Tuxedo. For
example, the default Japanese Windows encoding name is MS932 in Java, but in Tuxedo it is
CP932. If this property is not specified, mapping is not done.

This means that the Java character encoding name is directly set in the MBSTRING data sent
to the Tuxedo server, and the encoding name which is set in the received MBSTRING data
from the Tuxedo server is used as the Java encoding name. This may cause a conversion
error if the encoding name is not supported by Java or Tuxedo.

To specify the bea.jolt.mbencoding or bea.jolt.mbencodingmap, jolti18n.jar must be
included in the CLASSPATH. If jolti18n.jar is not included in the CLASSPATH, the encoding
name is set to “ISO-8859-1” and no encoding name is done between Java and Tuxedo even if
these properties are specified in the Java command line.

4.5 Multithreaded Applications
As a Java-based set of classes, Jolt supports multithreaded applications; however, various
implementations of the Java language differ with respect to certain language and environment
features. Jolt programmers need to be aware of the following:

• The use of preemptive and non-preemptive threads when creating applications or applets
with the Jolt Class Library.

• The use of threads to get asynchronous behavior similar to the tpacall() function in
Oracle Tuxedo.

“Threads of Control” describes the issues arising from using threads with different Java
implementations and is followed by an example of the use of threads in a Jolt program.

Note:

Most Java implementations provide preemptive rather than non-preemptive threads.
The difference between these two models can lead to very different performance and
programming requirements.

• Threads of Control

• Using Jolt with Non-Preemptive Threading

Chapter 4
Multithreaded Applications

4-25

• Using Threads for Asynchronous Behavior

• Using Threads with Jolt

4.5.1 Threads of Control
Each concurrently operating task in the Java virtual machine is a thread. Threads exist in
various states, the important ones being RUNNING, RUNNABLE, or BLOCKED.

• A RUNNING thread is a currently executing thread.

• A RUNNABLE thread can be run once the current thread has relinquished control of the
CPU. There can be many threads in the RUNNABLE state, but only one can be in the
RUNNING state. Running a thread means changing the state of a thread from RUNNABLE
to RUNNING, and causing the thread to have control of the Java Virtual Machine (VM).

• A BLOCKED thread is a thread that is waiting on the availability of some event or resource.

Note:

The Java VM schedules threads of the same priority to run in a round-robin mode.

• Preemptive Threading

• Non-Preemptive Threading

4.5.1.1 Preemptive Threading
The main performance difference between the two threading models arises in telling a running
thread to relinquish control of the Java VM. In a preemptive threading environment, the usual
procedure is to set a hardware timer that goes off periodically. When the timer goes off, the
current thread is moved from the RUNNING to the RUNNABLE state, and another thread is
chosen to run.

4.5.1.2 Non-Preemptive Threading
In a non-preemptive threading environment, a thread must volunteer to give up control of the
CPU and move to the RUNNABLE state. Many methods in the Java language classes contain
code that volunteers to give up control, and are typically associated with actions that might
take a long time. For example, reading from the network generally causes a thread to wait for a
packet to arrive. A thread that is waiting on the availability of some event or resource is in the
BLOCKED state. When the event occurs or the resource becomes available, the thread
becomes RUNNABLE.

4.5.2 Using Jolt with Non-Preemptive Threading
If your Jolt-based Java program is running on a non-preemptive threading Virtual Machine
(such as Sun Solaris), the program must either:

• Occasionally call a method that blocks the thread, or

• Explicitly give up control of the CPU using the Thread.yield() method

Chapter 4
Multithreaded Applications

4-26

The typical usage is to make the following call in all long-running code segments or potentially
time-consuming loops:

Thread.currentThread.yield();

Without sending this message, the threads used by the Jolt Library may never get scheduled
and, as such, the Jolt operation is impaired.

The only virtual machine known to use non-preemptive threading is the Java Developer’s Kit
(JDK) machine running on a Sun platform. If you want your applet to work on JDK 1.3, you
must make sure to send the yield messages. As mentioned earlier, some methods contain
yields. An important exception is the System.in.read method. This method does not cause a
thread switch. Rather than rely on these messages, we suggest using yields explicitly.

4.5.3 Using Threads for Asynchronous Behavior
You can use threads in Jolt to get asynchronous behavior that is analogous to the tpacall()
function in Oracle Tuxedo. With this capability, you do not need an asynchronous service
request function. You can get this functionality because Jolt is thread-safe. For example, the
Jolt client application can start one thread that sends a request to an Oracle Tuxedo service
function and then immediately start another thread that sends another request to an Oracle
Tuxedo service function. So even though the Jolt tpacall() is synchronous, the application is
asynchronous because the two threads are running at the same time.

4.5.4 Using Threads with Jolt
A Jolt client-side program or applet is fully thread-safe. Jolt support of multithreaded
applications includes the following client characteristics:

• Multiple sessions per client

• Multithreaded within a session

• Client application manages threads, not asynchronous calls

• Performs synchronous calls

The following listing illustrates the use of two threads in a Jolt application.

Listing Using Multiple Threads with Jolt (ThreadBank.java)

/* Copyright 1996 Oracle Systems, Inc. All Rights Reserved */
import bea.jolt.*;
public class ThreadBank
{
 public static void main (String [] args)
 {
 JoltSession session;
 try
 {
 JoltSessionAttributes dattr;
 String userName = null;
 String userPasswd = null;
 String appPasswd = null;
 String userRole = null;
 // fill in attributes required
 dattr = new JoltSessionAttributes();

Chapter 4
Multithreaded Applications

4-27

 dattr.setString(dattr.APPADDRESS,”//bluefish:8501”);
 // instantiate domain
 // check authentication level
 switch (dattr.checkAuthenticationLevel())
 {
 case JoltSessionAttributes.NOAUTH:
 System.out.println(“NOAUTH\n”);
 break;
 case JoltSessionAttributes.APPASSWORD:
 appPasswd = “myAppPasswd”;
 break;
 case JoltSessionAttributes.USRPASSWORD:
 userName = “myName”;
 userPasswd = “mySecret”;
 appPasswd = “myAppPasswd”;
 break;
}
 dattr.setInt(dattr.IDLETIMEOUT, 60);
 session = new JoltSession (dattr, userName, userRole,
 userPasswd, appPasswd);
 T1 t1 = new T1 (session);
 T2 t2 = new T2 (session);

 t1.start();
 t2.start();
 Thread.currentThread().yield();
 try
 {
 while (t1.isAlive() && t2.isAlive())
 {
 Thread.currentThread().sleep(1000);
 }
}
catch (InterruptedException e)
{
 System.err.println(e);
 if (t2.isAlive())
 {
 System.out.println(“job 2 is still alive”);
 try
 {
 Thread.currentThread().sleep(1000);
 }
 catch (InterruptedException e1)
 {
 System.err.println(e1);
 }
}
else if (t1.isAlive())
{ System.out.println(“job1 is still alive”);
 try
 {
 Thread.currentThread().sleep(1000);
 }
 catch (InterruptedException e1)
 {

Chapter 4
Multithreaded Applications

4-28

 System.err.println(e1);
 }
 }
}
 session.endSession();
 }
 catch (SessionException e)
 {
 System.err.println(e);
 }
 finally
 {
 System.out.println(“normal ThreadBank term”);
 }
 }
}

class T1 extends Thread
{
JoltSession j_session;
JoltRemoteService j_withdrawal;

public T1 (JoltSession session)
{
 j_session=session;
 j_withdrawal= new JoltRemoteService(“WITHDRAWAL”,j_session);
}
public void run()
{
 j_withdrawal.addInt(“ACCOUNT_ID”,10001);
 j_withdrawal.addString(“SAMOUNT”,”100.00”);
try
{
 System.out.println(“Initiating Withdrawal from account 10001”);
 j_withdrawal.call(null);
 String W = j_withdrawal.getStringDef(“SBALANCE”,”-1.0”);
 System.out.println(“-->Withdrawal Balance: “ + W);
 }
 catch (ApplicationException e)
 {
 e.printStackTrace();
 System.err.println(e);
 }
 }
}
class T2 extends Thread
{
 JoltSession j_session;
 JoltRemoteService j_deposit;
 public T2 (JoltSession session)
{
 j_session=session;
 j_deposit= new JoltRemoteService(“DEPOSIT”,j_session);
}
public void run()
{

Chapter 4
Multithreaded Applications

4-29

 j_deposit.addInt(“ACCOUNT_ID”,10000);
 j_deposit.addString(“SAMOUNT”,”100.00”);
try
{
 System.out.println(“Initiating Deposit from account 10000”);
 j_deposit.call(null);
 String D = j_deposit.getStringDef(“SBALANCE”,”-1.0”);
 System.out.println(“-->Deposit Balance: “ + D);
 }
 catch (ApplicationException e)
 {
 e.printStackTrace();
 System.err.println(e);
 }
 }
}

4.6 Event Subscription and Notifications
Programmers developing client applications with Jolt can receive event notifications from either
Oracle Tuxedo Services or other Oracle Tuxedo clients. The Jolt Class Library contains
classes that support the following types of Oracle Tuxedo notifications for handling event-
based communication:

• Unsolicited Event Notifications —these are notifications that a Jolt client receives as a
result of an Oracle Tuxedo client or service issuing a broadcast using either a
tpbroadcast() or a directly targeted message via a tpnotify() ATMI call.

• Brokered Event Notifications —these notifications are received by a Jolt client through
the Oracle Tuxedo Event Broker. The notifications are only received when the Jolt client
subscribes to an event and any Oracle Tuxedo client or server issues a system-posted
event or tppost() call.

• Event Subscription Classes

• Notification Event Handler

• Connection Modes

• Notification Data Buffers

• Oracle Tuxedo Event Subscription

• Using the Jolt API to Receive Oracle Tuxedo Notifications

4.6.1 Event Subscription Classes
The Jolt Class Library provides four classes that implement the asynchronous notification
mechanism for Jolt client applications:

• JoltSession—the JoltSession class includes an onReply() method for receiving
notifications and notification messages.

• JoltReply—the JoltReply class gives the client application access to any messages
received with an event or notification.

• JoltMessage—the JoltMessage class provides get() methods for obtaining information
about the notification or event.

Chapter 4
Event Subscription and Notifications

4-30

• JoltUserEvent—the JoltUserEvent class supports subscription to both unsolicited and
event notification types.

For additional information about these classes refer to the Oracle Jolt API Reference.

4.6.2 Notification Event Handler
For both unsolicited notifications and a brokered event notification, the Jolt client application
requires an event handler routine that is invoked upon receipt of a notification. Jolt only
supports a single handler per session. In Oracle Tuxedo versions, you cannot determine which
event generated a notification. Therefore, you cannot invoke an event-specific handler based
on a particular event.

The client application must provide a single handler (by overriding the onReply() method) per
session that will be invoked for all notifications received by that client for that session. The
single handler call-back function is used for both unsolicited and event notification types. It is
up to the (user-supplied) handler routine to determine what event caused the handler
invocation and to take appropriate action. If the user does not override the session handler,
then notification messages are silently discarded by the default handler.

The Jolt client provides the call back function by subclassing the JoltSession class and
overriding the onReply() method with a user-defined onReply() method.

In Oracle Tuxedo/ATMI clients, processing in the handler call-back function is limited to a
subset of ATMI calls. This restriction does not apply to Jolt clients. Separate threads are used
to monitor notifications and run the event handler method. A Jolt client can perform all Jolt-
supported functionality from within the handler. All the rules that apply to a normal Jolt client
program apply to the handler, such as a single transaction per session at any time.

Each invocation of the handler method takes place in a separate thread. The application
developer should ensure that the onReply() method is either synchronized or written thread-
safe, because separate threads could be executing the method simultaneously.

Jolt uses an implicit model for enabling the handler routine. When a client subscribes to an
event, Jolt internally enables the handler for that client, thus enabling unsolicited notifications
as well. A Jolt client cannot subscribe to event notifications without also receiving unsolicited
notifications. In addition, a single onReply() method is invoked for both types of notifications.

4.6.3 Connection Modes
Jolt supports notification receipts for clients working in either connection-retained or
connection-less modes of operation. Connection-retained clients receive all notifications. Jolt
clients working in connection-less mode receive notifications while they have an active network
connection to the Jolt Session Handler (JSH). When the network connection is closed, the JSH
logs and drops notifications destined for the client. Jolt clients operating in a connection-less
mode do not receive unsolicited messages or notifications while they do not have an active
network connection. All messages received during this time are logged and discarded by the
JSH.

Connection mode notification handling includes acknowledged notifications for Jolt clients in
the Oracle Tuxedo environment. If a JSH receives an acknowledged notification for a client and
the client does not have an active network connection, the JSH logs an error and returns a
failure acknowledgment to the notification.

Chapter 4
Event Subscription and Notifications

4-31

4.6.4 Notification Data Buffers
When a client receives notification, it is accompanied by a data buffer. The data buffer can be
of any Oracle Tuxedo data buffer type. Jolt clients (for example, the handler) receive these
buffers as a JoltMessage object and should use the appropriate JoltMessage class get*()
methods to retrieve the data from this object.

The Oracle Tuxedo Service Metadata Repository does not need to have the definition of the
buffers used for notification. However, the Jolt client application programmer needs to know
field names.

The Jolt system does not provide functionality equivalent to tptypes() in Oracle Tuxedo. For
FML and VIEW buffers, the data is accessed using the get*() methods with the appropriate
field name, for example:

getIntDef ("ACCOUNT_ID", -1);

For STRING and CARRAY buffers, the data is accessed by the same name as the buffer type:

getStringDef ("STRING", null);
getBytesDef ("CARRAY", null);

STRING and CARRAY buffers contain only a single data element. This complete element is
returned by the preceding get*() methods.

4.6.5 Oracle Tuxedo Event Subscription
Oracle Tuxedo brokered event notification allows Oracle Tuxedo programs to post events
without knowing what other programs are supposed to receive notification of an event’s
occurrence. The Jolt event notification allows Jolt client applications to subscribe to Oracle
Tuxedo events that are broadcast or posted using the Oracle Tuxedo tpnotify() or
tpbroadcast() calls.

Jolt clients can only subscribe to events and notifications that are generated by other
components in Oracle Tuxedo (such as an Oracle Tuxedo service or client). Jolt clients can not
send events or notifications.

• Supported Subscription Types

• Subscribing to Notifications

• Unsubscribing from Notifications

4.6.5.1 Supported Subscription Types
Jolt only supports notification types of subscriptions. The Jolt onReply() method is called when
a subscription is fulfilled. The Jolt API does not support dispatching a service routine or
enqueueing a message to an application queue when a notification is received.

4.6.5.2 Subscribing to Notifications
If a Jolt client subscribes to a single event notification, the client receives both unsolicited
messages and event notification. Subscribing to an event implicitly enables unsolicited
notification. This means that if the application creates a JoltUserEvent object for Event "X", the

Chapter 4
Event Subscription and Notifications

4-32

client automatically receives notifications directed to it as a result of tpnotify() or
tpbroadcast().

Note:

Subscribing to single event notification is not the recommended method for enabling
unsolicited notification. If you want unsolicited notification, the application should
explicitly subscribe to unsolicited notifications (as described in the JoltUserEvent
class). The next section is about unsubscribing from notifications.

4.6.5.3 Unsubscribing from Notifications
To stop subscribing to event notifications and/or unsolicited messages, you need to use the
JoltUserEvent unsubscribe method. In Jolt, disabling unsolicited notifications with an
unsubscribe method does not turn off all subscription notifications. This differs from Oracle
Tuxedo. In Oracle Tuxedo the use of tpsetunsol() with a NULL handler turns off all
subscription notifications.

When unsubscribing, the following considerations apply:

• If a client is subscribed to a single event, unsubscribing from notification disables both
event notification and unsolicited messages.

• If a client has multiple subscriptions, then unsubscribing from any single subscription
disables only that single subscription. Unsolicited notifications continue. Only the last
subscription to be unsubscribed causes unsolicited notification to stop.

• If a client subscribes to both unsolicited and event notifications, then unsubscribing to only
the unsolicited notification will not stop either type of notification from continuing. In
addition, this unsubscribe does not throw an exception. However, the Jolt API notes that an
unsubscribe has taken place, and a subsequent unsubscribe to the remaining event
disables both event notification and unsolicited messages.

If you want to stop unsolicited messages in your client application, you need to make sure that
you have unsubscribed to all events.

4.6.6 Using the Jolt API to Receive Oracle Tuxedo Notifications
The “Asynchronous Notification” listing shows how to use the Jolt Class Library for receiving
notifications and includes the use of the JoltSession, JoltReply, JoltMessage and
JoltUserEvent classes.

Listing Asynchronous Notification

class EventSession extends JoltSession
{
 public EventSession(JoltSessionAttributes attr, String user,
 String role, String upass, String apass)
{
 super(attr, user, role, upass, apass);
}
/**
 * Override the default unsolicited message handler.
 * @param reply a place holder for the unsolicited message
 * @see bea.jolt.JoltReply

Chapter 4
Event Subscription and Notifications

4-33

 */
 public void onReply(JoltReply reply)
{
 // Print out the STRING buffer type message which contains
 // only one field; the field name must be "STRING". If the
 // message uses CARRAY buffer type, the field name must be
 // "CARRAY". Otherwise, the field names must conform to the
 // elements in FML or VIEW.

 JoltMessage msg = (JoltMessage) reply.getMessage();
 System.out.println(msg.getStringDef("STRING", "No Msg"));
}
public static void main(Strings args[])
{
 JoltUserEvent unsolEvent;
 JoltUserEvent helloEvent;
 EventSession session;
 ...
 // Instantiate my session object which can print out the
 // unsolicited messages. Then subscribe to HELLO event
 // and Unsolicited Notification which both use STRING
 // buffer type for the unsolicited messages.

 session = new EventSession(...);

 helloEvent = new JoltUserEvent("HELLO", null, session);
 unsolEvent = new JoltUserEvent(JoltUserEvent.UNSOLMSG, null,
 session);
 ...
 // Unsubscribe the HELLO event and unsolicited notification.
 helloEvent.unsubscribe();
 unsolEvent.unsubscribe();
 }
}

4.7 Clearing Parameter Values
The Jolt Class Library contains the clear() method, which allows you to remove existing
attributes from an object and, in effect, provides for the reuse of the object. The “Jolt Object
Reuse (reuseSample.java)” listing illustrates how to use the clear() method to clear
parameter values and how to reuse the JoltRemoteService parameter values; you do not have
to destroy the service to reuse it. Instead, the svc.clear(); statement is used to discard the
existing input parameters before reusing the addString() method.

Listing Jolt Object Reuse (reuseSample.java)

/* Copyright 1999 Oracle Systems, Inc. All Rights Reserved */
import java.net.*;
import java.io.*;
import bea.jolt.*;
/*
 * This is a Jolt sample program that illustrates how to reuse the
 * JoltRemoteService after each invocation.
 */
class reuseSample

Chapter 4
Clearing Parameter Values

4-34

{
 private static JoltSession s_session;
 static void init(String host, short port)
 {
 /* Prepare to connect to the Tuxedo domain. */
 JoltSessionAttributes attr = new JoltSessionAttributes();
 attr.setString(attr.APPADDRESS,”//”+ host+”:” + port);

 String username = null;
 String userrole = “sw-developer”;
 String applpasswd = null;
 String userpasswd = null;
 /* Check what authentication level has been set. */
 switch (attr.checkAuthenticationLevel())
 {
 case JoltSessionAttributes.NOAUTH:
 break;
 case JoltSessionAttributes.APPASSWORD:
 applpasswd = “secret8”;
 break;
 case JoltSessionAttributes.USRPASSWORD:
 username = “myName”;
 userpasswd = “BEA#1”;
 applpasswd = “secret8”;
 break;
 }
 /* Logon now without any idle timeout (0). */
 /* The network connection is retained until logoff. */
 attr.setInt(attr.IDLETIMEOUT, 0);
 s_session = new JoltSession(attr, username, userrole,
 userpasswd, applpasswd);
 }
 public static void main(String args[])
 {
 String host;
 short port;
 JoltRemoteService svc;
 if (args.length != 2)
 {
 System.err.println(“Usage: reuseSample host port”);
 System.exit(1);
 }
 /* Get the host name and port number for initialization. */
 host = args[0];
 port = (short)Integer.parseInt(args[1]);
 init(host, port);
 /* Get the object reference to the DELREC service. This
 * service has no output parameters, but has only one input
 * parameter.
 */
 svc = new JoltRemoteService(“DELREC”, s_session);
 try
 {
 /* Set input parameter REPNAME. */
 svc.addString(“REPNAME”, “Record1”);
 svc.call(null);

Chapter 4
Clearing Parameter Values

4-35

 /* Change the input parameter before reusing it */
 svc.setString(“REPNAME”, “Record2”);
 svc.call(null);
 /* Simply discard all input parameters */
 svc.clear();
 svc.addString(“REPNAME”, “Record3”);
 svc.call(null);
 }
 catch (ApplicationException e)
 {
 System.err.println(“Service DELREC failed: “+
 e.getMessage()+” “+ svc.getStringDef(“MESSAGE”, null));
 }
 /* Logoff now and get rid of the object. */
 s_session.endSession();
 }
}

4.8 Reusing Objects
The following listing, “Extending Jolt Remote Service (extendSample.java),” illustrates one way
to subclass the JoltRemoteService class. In this case, a TransferService class is created by
subclassing the JoltRemoteService class. The TransferService class extends the
JoltRemoteService class, adding a Transfer feature that makes use of the Oracle Tuxedo
BANKAPP funds TRANSFER service.

The following listing uses the extends keyword from the Java language. The extends keyword
is used in Java to subclass a base (parent) class. The following code shows one of many ways
to extend from JoltRemoteService.

Listing Extending Jolt Remote Service (extendSample.java)

/* Copyright 1999 Oracle Systems, Inc. All Rights Reserved */
import java.net.*;
import java.io.*;
import bea.jolt.*;
/*
 * This Jolt sample code fragment illustrates how to customize
 * JoltRemoteService. It uses the Java language “extends” mechanism
 */
class TransferService extends JoltRemoteService
{
 public String fromBal;
 public String toBal;
 public TransferService(JoltSession session)
 {
 super(“TRANSFER”, session);
 }
public String doxfer(int fromAcctNum, int toAcctNum, String amount)
{
 /* Clear any previous input parameters */
 this.clear();
 /* Set the input parameters */
 this.setIntItem(“ACCOUNT_ID”, 0, fromAcctNum);
 this.setIntItem(“ACCOUNT_ID”, 1, toAcctNum);

Chapter 4
Reusing Objects

4-36

 this.setString(“SAMOUNT”, amount);
try
{
 /* Invoke the transfer service. */
 this.call(null);
 /* Get the output parameters */
 fromBal = this.getStringItemDef(“SBALANCE”, 0, null);
 if (fromBal == null)
 return “No balance from Account “ +
 fromAcctNum;
 toBal = this.getStringItemDef(“SBALANCE”, 1, null);
 if (toBal == null)
 return “No balance from Account “ + toAcctNum;
 return null;
}
catch (ApplicationException e)
{
 /* The transaction failed, return the reason */
 return this.getStringDef(“STATLIN”, “Unknown reason”);
 }
 }
}
class extendSample
{
 public static void main(String args[])
 {
 JoltSession s_session;
 String host;
 short port;
 TransferService xfer;
 String failure;

 if (args.length != 2)
 {
 System.err.println(“Usage: reuseSample host port”);
 System.exit(1);
 }
 /* Get the host name and port number for initialization. */
 host = args[0];
 port = (short)Integer.parseInt(args[1]);
 /* Prepare to connect to the Tuxedo domain. */
 JoltSessionAttributes attr = new JoltSessionAttributes();
 attr.setString(attr.APPADDRESS,”//”+ host+”:” + port);

 String username = null;
 String userrole = “sw-developer”;
 String applpasswd = null;
 String userpasswd = null;
 /* Check what authentication level has been set. */
 switch (attr.checkAuthenticationLevel())
 {
 case JoltSessionAttributes.NOAUTH:
 break;
 case JoltSessionAttributes.APPASSWORD:
 applpasswd = “secret8”;
 break;

Chapter 4
Reusing Objects

4-37

 case JoltSessionAttributes.USRPASSWORD:
 username = “myName”;
 userpasswd = “BEA#1”;
 applpasswd = “secret8”;
 break;
}
/* Logon now without any idle timeout (0). */
/* The network connection is retained until logoff. */
attr.setInt(attr.IDLETIMEOUT, 0);
s_session = new JoltSession(attr, username, userrole,
userpasswd, applpasswd);
/*
 * TransferService extends from JoltRemoteService and uses the
 * standard Oracle Tuxedo BankApp TRANSFER service. We invoke this
 * service twice with different parameters. Note, we assume
 * that “s_session” is initialized somewhere before.
 */
xfer = new TransferService(s_session);
if ((failure = xfer.doxfer(10000, 10001, “500.00”)) != null)
 System.err.println(“Tranasaction failed: “ + failure);
else
{
 System.out.println(“Transaction is done.”);
 System.out.println(“From Acct Balance: “+xfer.fromBal);
 System.out.println(“ To Acct Balance: “+xfer.toBal);
}
if ((failure = xfer.doxfer(51334, 40343, “$123.25”)) != null)
 System.err.println(“Tranasaction failed: “ + failure);
else
{
 System.out.println(“Transaction is done.”);
 System.out.println(“From Acct Balance: “+xfer.fromBal);
 System.out.println(“ To Acct Balance: “+xfer.toBal);
}
}
}

4.9 Deploying and Localizing Jolt Applets
Using the Jolt Class Library, you can build Java applications that execute from within a client
Web browser. For these types of applications, perform the following application development
tasks:

• Deploy your Jolt applet in an HTML page.

• Localize your Jolt applets for different languages and character sets.

The following sections describe these application development considerations.

• Deploying a Jolt Applet

• Client Considerations

• Web Server Considerations

• Localizing a Jolt Applet

Chapter 4
Deploying and Localizing Jolt Applets

4-38

4.9.1 Deploying a Jolt Applet
When you deploy a Jolt applet, consider the following:

• Installation and configuration requirements for the Oracle Tuxedo server and Jolt Server

• Client-side execution of the applet

• Requirements for the Web server that downloads the Java applet

Information for configuring the Oracle Tuxedo server and Jolt server to work with Jolt is
available in Installing the Oracle Tuxedo System. The following sections describe common
client and Web server considerations for deploying Jolt applets.

4.9.2 Client Considerations
When you write a Java applet that incorporates Jolt classes, the applet works just as any other
Java applet in an HTML page. A Jolt applet can be embedded in an HTML page using the
HTML applet tag:

<applet code=“applet_name.class”> </applet>

If the Jolt applet is embedded in an HTML page, the applet is downloaded when the HTML
page loads. You can code the applet to run immediately after it is downloaded, or you can
include code that sets the applet to run based upon a user action, a timeout, or a set interval.
You can also create an applet that downloads in the HTML page, but opens in another window
or, for instance, simply plays a series of sounds or musical tunes at intervals. The programmer
has a large degree of freedom in coding the applet initialization procedure.

Note:

If the user loads a new HTML page into the browser, the applet execution is stopped.

4.9.3 Web Server Considerations
When you use the Jolt classes in a Java applet, the Jolt Server must run on the same machine
as the Web server that downloads the Java applet unless you install Jolt Relay on the Web
server.

When a webmaster sets up a Web server, a directory is specified to store all the HTML files.
Within that directory, a sub directory named “classes” must be created to contain all Java class
files and packages. For example:

<html-dir>/classes/bea/jolt

Or, you can set the CLASSPATH to include the jolt.jar file that contains all the Jolt classes.

Chapter 4
Deploying and Localizing Jolt Applets

4-39

Note:

You can place the Jolt classes sub directory anywhere. For convenient access, you
may want to place it in the same directory as the HTML files. The only requirement
for the Jolt classes sub directory is that the classes must be made available to the
Web server.

The HTML file for the Jolt applet should refer the codebase to the jolt.jar file or the classes
directory. For example:

/export/html/
 |___ classes/
 | |_____ bea/
 | | |______ jolt/
 | | |_____ JoltSessionAttributes.class
 | | |_____ JoltRemoteServices.class
 | | |_____ ...
 | |_____ mycompany/
 | |________ app.class
 |___ ex1.html
 |___ ex2.html

The webmaster may specify the “app” applet in ex1.html as:

<applet codebase=“classes” code=mycompany.app.class width=400 height=200>

4.9.4 Localizing a Jolt Applet
If your Jolt application is intended for international use, you must address certain localization
issues. Localization considerations apply to applications that execute from a client Web
browser and applications that are designed to run outside a Web browser environment.
Localization tasks can be divided into two categories:

• Adapting an application from its original language to a target language.

• Translating strings from one language to another. This sometimes requires specifying a
different alphabet or a character set from the one used in the original language.

For localization, the Jolt Class Library package relies on the conventions of the Java language
and the Oracle Tuxedo system. Jolt transfers Java 16-bit Unicode characters to the JSH. The
JSH provides a mechanism to convert Unicode to the local character set.

For information about the Java implementation for Unicode and character escapes, refer to
your Java Development Kit (JDK) documentation.

4.10 Using SSL
Jolt can use SSL as the preferred secure transport mechanism instead of default Link Level
Encryption. To enable Jolt to use SSL, the JSL must be configured with '-s secure_port' in the
TUXEDO UBBCONFIG file.

Chapter 4
Using SSL

4-40

Jolt client library automatically chooses SSL if the JSL connection port is the SSL port. The
SSL requires Jolt client to provide information about the location of the X.509 certificate, the
private key, and passphrase that is used to encrypt the passphrase.

There are five attributes added to the JoltSessionAttributes class to handle these
requirement:

• KEYSTORE—file path for client private key and X.509 certificate

• KSPASSPHRASE—key store passphrase

• TRUSTSTORE—trust store file path for trusted X.509 certificates

• TSPASSPHRASE—trust store passphrase

• KEYPASSPHRASE—private key passphrase

Jolt client library uses the third-party Java Secure Socket Extension (JSSE) implementation for
SSL communication. The following JSSE implementations have been tested:

• Sun JSSE implementation bundled in Sun JRE 8.0

• Sun JSSE implementation bundled in HP JRE 8.0

• IBM JSSE implementation bundled in IBM JRE 8.0

Note:

Starting with JDK release 8u31, the SSLv3 protocol is deactivated and is not available
by default. If SSLv3 is required, the protocol can be reactivated by removing "SSLv3"
from the jdk.tls.disabledAlgorithms property in the <JRE_HOME>/lib/security/
java.security file, or by dynamically setting this Security property to "true" before
JSSE is initialized.

The following listing 4‑15 shows a Jolt client code example that makes it possible to use SSL
when communicating with JSL/JSH.

Listing Using SSL in Jolt Client Code

import java.util.*;
import bea.jolt.*;

public class simpcl extends Object {
 private String userName = null;
 private String userRole = null;
 private String appPassword = null;
 private String userPassword = null;
 private JoltSessionAttributes attr = null;
 private JoltSession session = null;
 private JoltRemoteService toupper = null;
 private JoltTransaction trans = null;

 // JSL is configured with '-s 5555'
 // the communication between jolt client and JSH will use SSL
 private String address = new String('//cerebrum:5555');

 public static void main(String args[]) {
 simpcl c = new simpcl();

Chapter 4
Using SSL

4-41

 c.doTest();
}
 public void doTest() {
 attr = new JoltSessionAttributes();

 // adding these session attribute
 attr.setString(attr.APPADDRESS, address);
 attr.setString(attr.TRUSTSTORE,'c:\\samples\\samplecacerts');
 attr.setString(attr.KEYSTORE, 'c:\\samples\\client\\testkeys');

 // Only key store and key will be protected by passphrase in this
sample.
 // But optionly the trust store can also be protected by a passphrase
 // although it is not in this sample.
 attr.setString(attr.KSPASSPHRASE, 'passphrase');
 attr.setString(attr.KEYPASSPHRASE, 'passphrase');
 attr.setInt(attr.IDLETIMEOUT, 300);

 userName = 'juser';
 userRole = 'JUSER';
 userPassword = 'abcd';
 appPassword = 'abcd';

 session = new JoltSession(attr, userName, userRole, userPassword,
 appPassword);
 // access a Tuxedo TOUPPER service
 toupper = new JoltRemoteService('TOUPPER', session);
 toupper.addString('STRING', 'string');
 trans = new JoltTransaction(60, session);
 try {
 toupper.call(trans);
 } catch (ApplicationException ae) {
 ae.printStackTrace();
 System.exit(1);
 }

 String retString = toupper.getStringDef('STRING', null);
 trans.commit();
 System.out.println(' returned: ' + retString);
 session.endSession();
 return;
 }
}

Chapter 4
Using SSL

4-42

5
Using JoltBeans

Formerly available as an add on, JoltBeans are included in Oracle Jolt and are as easy to use
as JavaBeans. They are JavaBeans components you use in Java development environments
to construct Jolt clients.

You can use popular Java-enabled development tools such as Symantec Visual Café to
graphically construct client applications. JoltBeans provide a JavaBeans-compliant interface to
Oracle Jolt. You can develop a fully functional Oracle Jolt client without writing any code.

This topic includes the following sections:

• Overview of Jolt Beans

• Basic Steps for Using JoltBeans

• JavaBeans Events and Oracle Tuxedo Events

• How JoltBeans Use JavaBeans Events

• The JoltBeans Toolkit

• Jolt-Aware GUI Beans

• Using the Property List and the Property Editor to Modify the JoltBeans Properties

• JoltBeans Class Library Walkthrough

• Using the Oracle Tuxedo Service Metadata Repository and Setting the Property Values

• JoltBeans Programming Tasks

5.1 Overview of Jolt Beans
JoltBeans consists of two sets of Java Beans. The first set, the JoltBeans Toolkit, is a beans
version of the Jolt API. The second set consists of GUI beans, which include Jolt-aware AWT
beans and Jolt-aware Swing beans. These GUI components are a “Jolt-enabled” version of
some of the standard Java AWT and Swing components, and help you build a Jolt client GUI
with minimal or no coding.

You can drag and drop JoltBeans from the component palette of a development tool and
position them on the Java form (or forms) of the Jolt client application you are creating. You
can populate the properties of the beans and graphically establish event source-listener
relationships between various beans of the application or applet. Typically, the development
tool is used to generate the event hook-up code, or you can code the hook-up manually. Client
development using JoltBeans is integrated with the Oracle Tuxedo Service Metadata
Repository, providing easy access to available Oracle Tuxedo services.

Note:

Currently, Symantec Visual Café 3.0 is the only IDE that is certified by Oracle for use
with JoltBeans. However, JoltBeans are also compatible with other Java development
environments such as Visual Age.

5-1

To use the JoltBeans Toolkit, it is recommended that you be familiar with JavaBeans-enabled,
integrated development environments (IDEs). The walkthrough in this chapter is based on
Symantec’s Visual Café 3.0 IDE and illustrates the basic steps of building a sample applet.

• JoltBeans Terms

• Adding JoltBeans to Your Java Development Environment

• Using Development and Run-time JoltBeans

5.1.1 JoltBeans Terms
JoltBeans uses the following terms to describe its functionality:

JavaBeans
Portable, platform-independent, reusable software components that are graphically displayed
in a development environment.

JoltBeans
Two sets of Java Beans: JoltBeans toolkit and Jolt aware GUI beans.

Custom GUI element
A Java GUI class that communicates with JoltBeans. The means of communication can be
JavaBeans events, methods, or properties offered by JoltBeans.

Jolt-Aware Bean
A bean that is the source of JoltInputEvents, listener of JoltOutputEvents, or both. Jolt-aware
beans are a subset of Custom GUI elements that follow beans guidelines.

Jolt-Aware GUI Beans
Two packages of GUI components Abstract Window Toolkit (AWT) and Swing, both containing
the JoltList, JoltCheckBox, JoltTextField, JoltLabel, and JoltChoice components.

JoltBeans Toolkit
A JavaBeans-compliant interface to Oracle Jolt, which includes the JoltServiceBean,
JoltSessionBean, and JoltUserEventBean.

Wiring
The process of connecting beans together so that one bean is registered as a listener of
events from another bean.

5.1.2 Adding JoltBeans to Your Java Development Environment
Before you can use JoltBeans, set up your Java development environment to include
JoltBeans:

• Set the CLASSPATH in your development environment to include all Jolt classes.

• Add JoltBeans to the Component Library of your development environment.

The method of setting the CLASSPATH can vary, depending on the development environment
you use.

JoltBeans includes a set of .jar files containing all of the JoltBeans. You can add these .jar
files to your preferred Java development environment so that JoltBeans are available in the
component library of your Java tool. For example, using Symantec Visual Café, you can set the
CLASSPATH so that the .jar files are visible in the Component Library window of Visual Café.
You only need to set the CLASSPATH of these .jar files in your development environment once.
After you place these .jar files in the CLASSPATH of your development environment, you can

Chapter 5
Overview of Jolt Beans

5-2

then add JoltBeans to the Component Library. Then you can simply drag and drop any
JoltBean directly onto the Java form on which you are developing your Jolt client application.

To set the CLASSPATH in your Java development environment, follow the instructions in the
product documentation for your development environment. Navigate from the IDE of your
development tool to the directory where the jolt.jar file resides. The jolt.jar file is typically
found in the directory called %TUXDIR%\udatadoj\jolt. The jolt.jar file contains the main Jolt
classes. Set the CLASSPATH to include these classes. The JoltBean .jar files do not need to be
added to the CLASSPATH. To use them, you only need to add them as components in your IDE.

After you have set the CLASSPATH to include the Jolt classes, you can add JoltBeans to the
Component Library of your development environment. See the documentation for your
particular development environment for instructions on populating the Component Library.

When you are ready to add JoltBeans to the Component Library of your development
environment, add only the development version of JoltBeans. Refer to “Using Development
and Run-time JoltBeans” for complete details.

5.1.3 Using Development and Run-time JoltBeans
The .jar files containing JoltBeans contain two versions of each JoltBean, a development
version and a run-time version. The development version of each JoltBean name ends with the
suffix Dev. The run-time version of each class name ends with the suffix Rt. For example, the
development version of the class, JoltBean, is JoltBeanDev, while the run-time version of the
same class is JoltBeanRt.

Use the development version of JoltBeans during the development process. The development
JoltBeans have additional properties that enhance development in a graphic IDE. For example,
the JoltBeans have graphic properties (“bean information”) that allow you to work with them as
graphic icons in your development environment.

The run-time version of JoltBeans does not have these additional properties. You do not need
the additional development properties of the beans at run time. The run-time beans are simply
a pared down version of the development JoltBeans.

When you compile your application in your development environment, it is compiled using the
development beans. However, if you want to run it from a command line outside of your
development environment, it is recommended that you set the CLASSPATH so that the run-time
beans are used when compiling your application.

5.2 Basic Steps for Using JoltBeans
The basic steps for using JoltBeans are as follows:

1. Add the development version of JoltBeans to the Component Library of your Java
development environment, as described in “Adding JoltBeans to Your Java Development
Environment.”

2. Drag the beans from the JoltBeans component palette of your development environment to
the Java form-designer for a Jolt client application or applet.

3. Populate the properties of the beans and set up the event-source listener relationships
between the beans of the application or applet (“wire” the beans together). The
development tool generates the event hook-up code.

4. Add the application logic to the event callbacks.

These steps are explained in more detail in later sections. The JoltBeans walkthrough
demonstrates each of these steps with an example.

Chapter 5
Basic Steps for Using JoltBeans

5-3

5.3 JavaBeans Events and Oracle Tuxedo Events
JavaBeans communicate through events. An event in an Oracle Tuxedo system is different
from an event in a JavaBeans environment. In an Oracle Tuxedo application, an event is raised
from one part of an application to another part of the same application. JoltBeans events are
communicated between beans.

• Using Oracle Tuxedo Event Subscription and Notification with JoltBeans

5.3.1 Using Oracle Tuxedo Event Subscription and Notification with
JoltBeans

Oracle Tuxedo supports brokered and unsolicited event notification. Jolt provides a mechanism
for Jolt clients to receive Oracle Tuxedo events. JoltBeans also include this capability.

Note:

Oracle Tuxedo event subscription and notification is different from JavaBeans events.

The following procedure illustrates how the Oracle Tuxedo asynchronous notification
mechanism is used in JoltBeans applications.

1. Use the setEventName() and setFilter() methods of the JoltUserEventBean to specify
the Oracle Tuxedo event to which you want to subscribe.

2. The component that receives the event notifications registers itself as a JoltOutputListener
to the JoltSessionBean.

3. The subscribe() method is called on JoltUserEventBean.

4. When the actual Oracle Tuxedo event notification arrives, JoltSessionBean sends a
JoltOutputEvent to its listeners by calling serviceReturned() on them. The
JoltOutputEvent object contains the data of the Oracle Tuxedo event.

When the client no longer needs to receive the event, it calls unsubscribe() on the
JoltUserEventBean.

Note:

If the client will only subscribe to unsolicited events, use setEventName ("\
\.UNSOLMSG"), which can be set using the property sheet. EventName and Filter are
properties of the JoltUserEventBean.

5.4 How JoltBeans Use JavaBeans Events
A Jolt client applet or application that is built using JoltBeans typically consists of Jolt-aware
GUI beans, such as JoltTextField or JoltList, and JoltBeans, such as JoltServiceBean and
JoltSessionBean. The main mode of communication between Beans is by JavaBeans events.

Jolt-aware beans are sources of JoltInputEvents or listeners of JoltOutputEvents or both.
JoltServiceBeans are sources of JoltOutputEvents and listeners of JoltInputEvents.

Chapter 5
JavaBeans Events and Oracle Tuxedo Events

5-4

The Jolt-aware GUI Beans expose properties and methods so you can link the beans directly
to the parameters of an Oracle Tuxedo service (represented by a JoltServiceBean). Jolt-aware
beans notify the JoltServiceBean via a JoltInputEvent when their content changes. The
JoltServiceBean sends a JoltOutputEvent to all registered Jolt-aware beans when the reply
data is available after the service call. The Jolt-aware GUI Beans contain logic that updates
their contents with the corresponding output parameter of the service.

The following figure represents the possible relationships among the JoltBeans.

Figure 5-1 Possible Interrelationships Among JoltBeans

5.5 The JoltBeans Toolkit
The JoltBeans Toolkit includes the following beans:

These components transform the complete Jolt Class Library into beans components, with all
of the features of any typical JavaBean, including easy reuse and graphic development.

Refer to the online Oracle Jolt API Reference for specific descriptions of the JoltBeans classes,
constructors, and methods.

The following sections provide information about the properties of each bean.

• JoltSessionBean

• JoltServiceBean

• JoltUserEventBean

Chapter 5
The JoltBeans Toolkit

5-5

5.5.1 JoltSessionBean
The JoltSessionBean, which represents the Oracle Tuxedo session, encapsulates the
functionality of the JoltSession, JoltSessionAttributes, and JoltTransaction classes. The
JoltSessionBean has properties that you use to set session and security attributes, such as
sending a timeout or an Oracle Tuxedo username, as well as methods to open and close an
Oracle Tuxedo session.

The JoltSessionBean sends a PropertyChange event when the Oracle Tuxedo session is
established or closed. PropertyChange is a standard bean event defined in the java.beans
package. The purpose of this event is to signal other beans about a change of the value of a
property in the source bean. In this case, the source is the JoltSessionBean; the targets are
JoltServiceBeans or JoltUserEventBeans; and the property changing is the LoggedOn property
of the JoltSessionBean. When a logon is successful and a session is established, LoggedOn is
set to true. After the logoff is successful and the session is closed, the LoggedOn property is
set to false.

The JoltSessionBean provides methods to control transactions, including beginTransaction(),
commitTransaction(), and rollbackTransaction().

The following table shows the JoltSessionBean properties and descriptions.

Table 5-1 JoltSessionBean Properties and Descriptions

Property Description

AppAddress Set the IP address (host name) and port number of the JSL or the Jolt Relay. The
format is //host:port number (for example, myhost:7000).

AppPassword Set the Oracle Tuxedo application password used at logon, if required.

IdleTimeOut Set the IDLETIMEOUT value.

inTransaction Indicate true or false depending if a transaction has been started and not
committed or aborted.

LoggedOn Indicate true or false if an Oracle Tuxedo session does or does not exist.

ReceiveTimeOut Set the RECVTIMEOUT value

SendTimeOut Set the SENDTIMEOUT value.

SessionTimeOut Set the SESSIONTIMEOUT value.

UserName Indicate the Oracle Tuxedo username, if required.

UserPassword Indicate the Oracle Tuxedo user password, if required.

UserRole Indicate the Oracle Tuxedo user role, if required.

5.5.2 JoltServiceBean
The JoltServiceBean represents a remote Oracle Tuxedo service. The name of the service is
set as a property of the JoltServiceBean. The JoltServiceBean listens to JoltInputEvents from
other beans to populate its input buffer. JoltServiceBean offers the callService() method to
invoke the service. JoltServiceBean is an event source for JoltOutputEvents that carry
information about the output of the service. After a successful callService(), listener beans
are notified via a JoltOutputEvent that carries the reply message.

Although the primary way of changing and querying the underlying message buffer of the
JoltServiceBean is via events, the JoltServiceBean also provides methods to access the
underlying message buffer directly (setInputValue(…), getOutputValue(…)).

The following table shows the JoltServiceBean properties and descriptions.

Chapter 5
The JoltBeans Toolkit

5-6

Table 5-2 JoltServiceBean Properties and Descriptions

Property Description

ServiceName The name of the Oracle Tuxedo service represented by this JoltServiceBean.

Session The JoltSessionBean associated with the bean that allows access to the Oracle
Tuxedo client session.

Transactional Set to true if this JoltServiceBean is to be included in the transaction that was
started by its JoltSessionBean.

5.5.3 JoltUserEventBean
The JoltUserEventBean provides access to Oracle Tuxedo events. You define the Oracle
Tuxedo event to which you subscribe or unsubscribe by setting the appropriate properties of
this bean (event name and event filter). The actual event notification is delivered in the form of
a JoltOutputEvent from the JoltSessionBean.

The following table shows the JoltUserEventBean properties and descriptions.

Table 5-3 JoltUserEventBean Properties and Descriptions

Property Description

EventName Set the name of the user event represented by the bean.

Filter Set the event filter.

Session The JoltSessionBean associated with the bean that allows access to the Oracle
Tuxedo client session.

5.6 Jolt-Aware GUI Beans
The Jolt-aware GUI Beans consist of Java AWTbeans and Swing beans, and are inherited
from the Java Abstract Windowing Toolkit. They include:

Note:

To avoid errors when compiling, it is recommended that you use only the AWT beans
together, or the Swing beans together, rather than mixing beans from these two
packages.

• JoltTextField

• JoltLabel

• JoltList

• JoltCheckbox

• JoltChoice

5.6.1 JoltTextField
This is a Jolt-aware extension of java.awt.TextField and Swing JTextfield. JoltTextField
contains parts of the input for a service. A JoltServiceBean can listen to events raised by a

Chapter 5
Jolt-Aware GUI Beans

5-7

JoltTextField. JoltTextField sends JoltInputEvents to its listeners (typically JoltServiceBeans)
when its contents changes.

JoltTextField displays output from a service. In this case, JoltTextField listens to
JoltOutputEvents from JoltServiceBeans and updates its contents according to the occurrence
of the field to which it is linked.

5.6.2 JoltLabel
This is a Jolt-aware extension of java.awt.Label and Swing JLabel that is linked to a specific
field in the Jolt output buffer by its JoltFieldName property. If the field occurs multiple times, the
occurrence to which this textfield is linked is specified by the occurrenceIndex property of this
bean. JoltLabel can be connected with JoltServiceBeans to display output from a service. A
JoltLabel listens to JoltOutputEvents from JoltServiceBeans and updates its contents
according to the occurrence of the field to which it is linked.

5.6.3 JoltList
This is a Jolt-aware extension of java.awt.List and Swing Jlist that is linked to a specific
Jolt field in the Jolt input or output buffer by its JoltFieldName property. If the field occurs
multiple times in the Jolt input buffer, the occurrence this list is linked to is specified by the
occurrenceIndex property of this bean. JoltList can be connected with JoltServiceBeans in two
ways:

• JoltList contains parts of the input for a service. A JoltServiceBean listens to events raised
by a JoltList. JoltList sends JoltInputEvents to its listeners when the selection in the listbox
changes. The JoltInputEvent, in this case, is populated with the single value of the selected
item.

• JoltList displays output from a service. When used to display the output of a service,
JoltList listens to JoltOutputEvents from JoltServiceBeans and updates its contents
accordingly with all occurrences of the field to which it is linked.

5.6.4 JoltCheckbox
JoltCheckbox is a Jolt-aware extension of java.awt.Checkbox and Swing JCheckBox that is
linked to a specific field in the Jolt input buffer by its JoltFieldName property. If the field occurs
multiple times, the occurrence to which this checkbox is linked is specified by the
occurrenceIndex property of this bean.

JoltCheckbox can be connected with JoltServiceBeans to contain parts of the input for a
service. A JoltServiceBean listens to events raised by a JoltCheckbox. JoltCheckbox sends
JoltInputEvents to its listeners (typically JoltServiceBeans) when the selection in the checkbox
changes. The JoltInputEvent in this case is populated with the TrueValue property of data type
String (if the box is selected) or FalseValue (if the box is unselected).

5.6.5 JoltChoice
JoltChoice provides a Jolt-aware extension of java.awt.Choice and Swing JChoice that is
linked to a specific field in the Jolt input buffer by its JoltFieldName property. If the field occurs
multiple times, the occurrence to which this choice is linked is specified by the occurrenceIndex
property of this bean.

JoltChoice can be connected to JoltServiceBeans to contain parts of the input for a service. A
JoltServiceBean can listen to events raised by a JoltChoice. JoltChoice sends JoltInputEvents

Chapter 5
Jolt-Aware GUI Beans

5-8

to its listeners (typically JoltServiceBeans) when the selection in the choicebox changes. The
JoltInputEvent in this case is populated with the single value of the selected item.

Note:

For a detailed description of these classes, see the Oracle Jolt API Reference.

5.7 Using the Property List and the Property Editor to Modify the
JoltBeans Properties

The values of most JoltBeans properties can be modified by editing the right column of the
Property List in your integrated development environment (IDE), such as Visual Café, as
shown in the following figure.

Custom property editors are provided for some properties of JoltBeans.

The custom property editors, accessed from the Property List, include dialog boxes that you
use to modify the property values. You can invoke the custom property editors from the
Property List by clicking the button with the ellipsis (“...”) that is next to the value of the
corresponding property value.

Figure 5-2 Property List: Ellipsis Button

When you click the ellipsis button, the Property Editor shown in the following figure is
displayed.

Chapter 5
Using the Property List and the Property Editor to Modify the JoltBeans Properties

5-9

Figure 5-3 Custom Property Editor Dialog Box

The Custom Property Editor of JoltBeans reads cached information. Initially, no cached
information is available, so when the Property Editor is used for the first time, the dialog box is
empty. Log on to the Oracle Tuxedo Service Metadata Repository and load the property editor
cache from the repository.

For details about the logon and using the Property List and Property Editor, see “Using the
Oracle Tuxedo Service Metadata Repository and Setting the Property Values”.

5.8 JoltBeans Class Library Walkthrough
This walkthrough describes how to build an applet that you use to:

• Enter an account ID

• Click on the Inquiry button

• Display the balance of the account (shown in the following figure)

The following figure shows an example of a completed Java form containing JoltBeans. The
applet implements the client functionality for the INQUIRY service of the BANKAPP sample
that is included with Oracle Tuxedo. To run this sample, the Oracle Tuxedo server must be
running.

Chapter 5
JoltBeans Class Library Walkthrough

5-10

Figure 5-4 Sample Inquiry Applet

Refer to the figure “Visual Café 3.0 Form Designer” on page 5‑18 for an example of each item
required by the Java form. Each item in that figure is described in the following table.

Table 5-4 Required Form Elements

Element Purpose

Applet (or JApplet,
if JFC applet is
chosen

A form used to paint the beans in your development environment.

JoltSessionBean Logs on to an Oracle Tuxedo session.

JoltTextField Gets input from the user (in this case, ACCOUNT_ID).

JoltTextField Displays the result (in this case, SBALANCE).

JoltServiceBean Accesses an Oracle Tuxedo service. (In this case, INQUIRY from BANKAPP).

Button Initiates an action.

Label Describes the field on the applet.

• Building the Sample Form

• Wiring the JoltBeans Together

5.8.1 Building the Sample Form
The sample form is created using an integrated development environment (IDE), in this
example, Visual Café 3.0. The example demonstrates how to build an applet that allows you to
enter an account ID and use an Oracle Tuxedo service to get and show the account balance.

Follow the basic steps below to create this sample.

1. In Visual Café, choose File →New Project and select either JFC Applet or AWT
application. This step provides you with the basic form designer on which you drop the
JoltBeans.

Chapter 5
JoltBeans Class Library Walkthrough

5-11

2. Drag and drop all of the JoltBeans you want to use in your applet from the Component
Library onto the form designer.

3. Modify or customize each bean using the property list or the custom property editor.

4. Wire the beans together using the Interaction Wizard.

5. Compile the applet.

These steps are described in detail in the following sections.

Note:

The graphic interface of previous versions of Visual Café differ from the look of Visual
Café 3.0. You can complete this sample applet in a previous version of Visual Café;
however, the steps executed in the Interaction Wizard differ slightly from this
example.

• Placing JoltBeans onto the Form Designer

5.8.1.1 Placing JoltBeans onto the Form Designer
1. Choose File→New Project, and choose JFC Applet.

2. Drag and drop the beans from the Component Library (shown in the following figure) onto
the palette of the form designer.

Figure 5-5 JoltBeans and the Form Designer in Visual Café

Chapter 5
JoltBeans Class Library Walkthrough

5-12

The following figure “Visual Café 3.0 Form Designer” illustrates how JoltBeans appear
when they are placed on the palette of the Form Designer.

Figure 5-6 Visual Café 3.0 Form Designer

3. Set the properties of each bean. To modify or customize the buttons, labels or fields, use
the property list. Some JoltBeans use a Custom Property Editor.
The following figure,“Example of JoltTextField Property List and Custom Property Editor,”
shows how selecting the JoltFieldName of the button property list displays the Custom
Property Editor.

4. Set the properties of the beans (for example, set the JoltFieldName property of the
JoltTextField to ACCOUNT_ID).

Note:

For complete information on setting and modifying the properties of the
JoltBeans, refer to “Using the Oracle Tuxedo Service Metadata Repository and
Setting the Property Values”.

The following table specifies the property values that should be set. Values specified in
bold and italic text are required, and those in plain text are recommended.

Table 5-5 Required and Recommended Property Values

Bean Property Value

label1 Text Account ID

label2 Text Balance

JoltTextField1 Name accountId

JoltTextField1 JoltFieldName ACCOUNT_ID

JoltTextField2 Name balance

JoltTextField2 JoltFieldName SBALANCE

JoltSessionBean1 AppAddress //tuxserv:2010

Chapter 5
JoltBeans Class Library Walkthrough

5-13

Table 5-5 (Cont.) Required and Recommended Property Values

Bean Property Value

JoltServiceBean1 Name inquiry

JoltServiceBean1 ServiceName INQUIRY

button1 Label Inquiry

Note:

In this walkthrough, the default occurrenceIndex of 0 works for both
JoltTextFields.

Refer to the following figure “Example of JoltTextField Property List and Custom Property
Editor”and “Using the Oracle Tuxedo Service Metadata Repository and Setting the
Property Values” for general guidelines about JoltBean properties.

Figure 5-7 Example of JoltTextField Property List and Custom Property Editor

5. To change the value of the JoltFieldName property, click on the ellipsis button of the
JoltFieldName in the Property List.
The Custom Property Editor is displayed.

6. Select or type the new field name (in this example, “ACCOUNT_ID”) and click OK.
The change is reflected in the Property List shown in the following figure “Revised
JoltFieldName in the JoltTextField Property List”and on the text field shown on the figure
“Example of JoltBeans on the Form Designer with Property Changes”.

Chapter 5
JoltBeans Class Library Walkthrough

5-14

Note:

The properties that are visible in the Custom Property Editor are cached locally;
therefore, if the source database is modified you must use the Refresh button to
see the current, available properties.

Figure 5-8 Revised JoltFieldName in the JoltTextField Property List

The following figure “Example of JoltBeans on the Form Designer with Property Changes”
illustrates how the text on the button and the textfield changes after the text is added to the
property list fields for these beans.

Chapter 5
JoltBeans Class Library Walkthrough

5-15

Figure 5-9 Example of JoltBeans on the Form Designer with Property Changes

7. After you set the properties to the right values (refer to the table “Required and
Recommended Property Values” for additional information), define how the beans will
interact by wiring them together using the Visual Café Interaction Wizard. Refer to “Wiring
the JoltBeans Together” for details.

5.8.2 Wiring the JoltBeans Together
After all the beans are positioned on your form and the properties are set, you must wire the
beans and their events together. The following figure illustrates an example of the flow to help
you determine the correct order in which to wire the beans.

Wiring the beans allows you to establish event source-listener relationships between various
beans on the form. For example, the JoltServiceBean is a listener of ActionEvents from the
button and invokes callService() when the event is received. Use the Visual Café Interaction
Wizard to wire the beans together.

The following figure shows the sequence in which you will wire the beans together to create
this sample applet. The numbers in this figure correspond to the numbered steps that follow.

Chapter 5
JoltBeans Class Library Walkthrough

5-16

Figure 5-10 Sequence in Which JoltBeans Are Wired

The steps below correspond to the callouts shown in the figure “Sequence in Which JoltBeans
Are Wired”. Each of the steps below is detailed in the sections that follow.

• Step 1: Wire the JoltSessionBean Logon

• Step 2: Wire JoltSessionBean to JoltServiceBean Using PropertyChange

• Step 3: Wire the accountID JoltTextField as Input to the JoltServiceBean Using
JoltInputEvent

• Step 4: Wire Button to JoltServiceBean Using JoltAction

• Step 5: Wire JoltServiceBean to the Balance JoltTextField Using JoltOutputEvent

• Step 6: Wire the JoltSessionBean Logoff

• Step 7: Compile the Applet

• Running the Sample Application

5.8.2.1 Step 1: Wire the JoltSessionBean Logon
1. In the Form Designer window, click the Interaction Wizard button.

2. Click in the applet window and drag a line to the JoltSessionBean as shown in the
following figure.

Chapter 5
JoltBeans Class Library Walkthrough

5-17

Figure 5-11 Wire the Applet to the Jolt Session Bean

The Interaction Wizard window is displayed as shown in the following figure, with the
prompt:

What event in JApplet1 do you want to start the interaction?

3. Select componentShown in the Interaction Wizard window as the event with which you
want to start the interaction, as shown in the following Figure.

Chapter 5
JoltBeans Class Library Walkthrough

5-18

Figure 5-12 Select ComponentShown Event

4. Click Next.
The Interaction Wizard window is displayed, as shown in the following figure, with the
prompt:

What do you want to happen when Japplet1 fires componentShown event?

5. With the Perform an action radio button enabled, select the action Logon to the
TUXEDO system, as shown in the following figure.

Chapter 5
JoltBeans Class Library Walkthrough

5-19

Figure 5-13 Select Logon to the Tuxedo System Action

6. Click Finish.

Completing “Step 1: Wire the JoltSessionBean Logon” enables the logon() method of the
JoltSessionBean to be triggered by an applet (for example, ComponentShown) that is sent
when the applet is opened for the first time.

5.8.2.2 Step 2: Wire JoltSessionBean to JoltServiceBean Using PropertyChange
1. Click the Interaction Tool icon in the toolbar of the Visual Café Form Designer window to

display the bean components.

2. Click on the JoltSessionBean and drag a line to the JoltServiceBean, as shown in the
following figure.

Chapter 5
JoltBeans Class Library Walkthrough

5-20

Figure 5-14 Wire the JoltSessionBean to the JoltServiceBean

The Interaction Wizard window is displayed as shown in the following figure, with the
prompt:

What event in joltSessionBean1 do you want to start the interaction?

3. Select propertyChange as the event that starts the interaction, as shown in the following
figure.

Chapter 5
JoltBeans Class Library Walkthrough

5-21

Figure 5-15 Select propertyChange Event

4. Click Next.
The Interaction Wizard window is displayed as shown in the following figure, with the
prompt:

What do you want to happen when joltSessionBean1 fires propertyChange event?

5. Select Handle a Jolt property change event as the method, as shown in the following
figure.

Chapter 5
JoltBeans Class Library Walkthrough

5-22

Figure 5-16 Select Handle a Jolt property change event

6. Click Next.
The Interaction Wizard window is displayed as shown in the following figure, with the
prompt:

How do you want to supply the parameter to this method?

and a list of available objects and actions from which to choose.

7. Select joltSessionBean1 as the object that supplies the action, as shown in the following
figure.

8. Select Get the current Property Change Event object as the action, also as shown in the
following figure.

Chapter 5
JoltBeans Class Library Walkthrough

5-23

Figure 5-17 Select joltSesssionBean1

9. Click Finish.

Completing “Step 2: Wire JoltSessionBean to JoltServiceBean Using PropertyChange”enables
the JoltSessionBean to send a propertyChange event when logon() completes. The
JoltServiceBean listens to this event and associates its service with this session.

5.8.2.3 Step 3: Wire the accountID JoltTextField as Input to the JoltServiceBean
Using JoltInputEvent

1. Click the Interaction Wizard icon in the Visual Café Form Designer window.

2. Select the accountID JoltTextField bean and drag a line to the JoltServiceBean.
The Interaction Wizard window is displayed, as shown in the following figure, with the
prompt:

What event in accountId do you want to start the interaction?

3. Select dataChanged as the event, as shown in the following figure.

Chapter 5
JoltBeans Class Library Walkthrough

5-24

Figure 5-18 Select dataChanged Event

4. Click Next.
The Interaction Wizard window is displayed as shown in the following figure, with the
prompt:

What do you want to happen when accountId fires dataChanged event?

5. Select the joltServiceBean inquiry as the object supplying the parameter, as shown in the
following figure

6. Select Handle a jolt input event as the action, also as shown in the following figure.

Chapter 5
JoltBeans Class Library Walkthrough

5-25

Figure 5-19 Select inquiry Object and Handle a Jolt input event Action

7. Click Next.
The Interaction Wizard window is displayed as shown in “Select accountId Object and Get
the current Jolt Input Event Action”, with the prompt:

How do you want to supply the parameter to this method?

and a list of available objects and actions from which to choose.

8. Select accountId as the object, as shown in the following figure.

9. Select get the current Jolt Input Event as the action, also as shown in the following
figure.

Chapter 5
JoltBeans Class Library Walkthrough

5-26

Figure 5-20 Select accountId Object and Get the current Jolt Input Event Action

10. Click Finish.

Completing “Step 3: Wire the accountID JoltTextField as Input to the JoltServiceBean Using
JoltInputEvent” enables you to type the account number in the first text field. The
JoltFieldName property of this JoltTextField is set to “ACCOUNT_ID”. Whenever the text inside
this text box changes, it sends a JoltInputEvent to the JoltServiceBean. (The JoltServiceBean
listens to JoltInputEvents from this text box.) The JoltInputEvent object contains the name,
value, and occurrence index of the field.

5.8.2.4 Step 4: Wire Button to JoltServiceBean Using JoltAction
1. Click the Interaction Wizard icon in the Visual Café Form Designer window.

2. Click the Inquiry Button and drag a line to the JoltServiceBean.
The Interaction Wizard window is displayed as shown in the following figure, with the
prompt:

What event in button1 do you want to start the interaction?

3. Select actionPerformed as the event, as shown in the following figure.

Chapter 5
JoltBeans Class Library Walkthrough

5-27

Figure 5-21 Select action Performed Event

4. Click Next.
The Interaction Wizard window is displayed, as shown in the following figure, with the
prompt:

What do you want to happen when button1 fires actionPerformed event?

5. Select inquiry as the object, as shown in the following figure.

6. Select Invoke the TUXEDO Service represented by this Bean as the action, also as
shown in the following figure.

Chapter 5
JoltBeans Class Library Walkthrough

5-28

Figure 5-22 Select inquiry Object and Invoke the TUXEDO Service... Action

7. Click Finish.

Completing “Step 4: Wire Button to JoltServiceBean Using JoltAction” enables the
callService() method of the JoltServiceBean to be triggered by an ActionEvent from the
Inquiry button.

5.8.2.5 Step 5: Wire JoltServiceBean to the Balance JoltTextField Using
JoltOutputEvent

1. Click the Interaction Wizard icon in the Visual Café Form Designer window.

2. Select the JoltServiceBean and drag a line to the AmountJoltTextField bean.
The Interaction Wizard is displayed, as shown in the following figure, with the prompt:

What event in inquiry do you want to start the interaction?

3. Select serviceReturned as the event, as shown in the following figure.

Chapter 5
JoltBeans Class Library Walkthrough

5-29

Figure 5-23 Select ServiceReturned Event

4. Click Next.
The Interaction Wizard window is displayed, as shown in the figure

“Select balance Object and Handle a service returned event Action”, with the prompt:What
do you want to happen when inquiry fires serviceReturned event?

5. Select balance as the object, as shown in the following figure.

6. Select Handle a service returned event... as the action, also as shown in the following
figure.

Chapter 5
JoltBeans Class Library Walkthrough

5-30

Figure 5-24 Select balance Object and Handle a service returned event Action

7. Click Next.
The Interaction Wizard window is displayed, as shown in the figure

“Select inquiry Object and Get the JoltOutputEvent object Action”, with the prompt: How
do you want to supply the parameter to this method?

8. Select inquiry as the object, as shown in the following figure.

9. Select Get the JoltOutputEvent object as the action, also as shown in Figure 5‑25.

Chapter 5
JoltBeans Class Library Walkthrough

5-31

Figure 5-25 Select inquiry Object and Get the JoltOutputEvent object Action

10. Click Finish.

Completing “Step 5: Wire JoltServiceBean to the Balance JoltTextField Using
JoltOutputEvent”allows the JoltServiceBean to send a JoltOutputEvent when it receives reply
data from the remote service. The JoltOutputEvent object contains methods to access fields in
the output buffer. The JoltTextField displays the result of the INQUIRY service.

5.8.2.6 Step 6: Wire the JoltSessionBean Logoff
1. Click the Interaction Wizard icon in the Visual Café Form Designer window.

2. Click in the applet window (not on another bean) and drag a line to the JoltSessionBean.
The Interaction Wizard is displayed, as shown in the following figure, with the prompt:

What event in JApplet1 do you want to start the interaction?

3. Select componentHidden as the event, as shown in the following figure.

Chapter 5
JoltBeans Class Library Walkthrough

5-32

Figure 5-26 Select componentHidden Event

4. Click Next.
The Interaction Wizard window is displayed, as shown in the figure

“Select joltSessionBean1 Object and Logoff from the Tuxedo System Action”, with the
prompt: What do you want to happen when JApplet1 fires componentHidden event?

5. Select joltSessionBean1 as the object, as shown in the following figure.

6. Select Logoff from the TUXEDO system as the action, also as shown in the following
figure.

Chapter 5
JoltBeans Class Library Walkthrough

5-33

Figure 5-27 Select joltSessionBean1 Object and Logoff from the Tuxedo System
Action

7. Click Finish.

Completing “Step 6: Wire the JoltSessionBean Logoff” enables the logoff() method of the
JoltSessionBean to be triggered by an applet (for example, componentHidden) that is sent
when the applet gets hidden.

5.8.2.7 Step 7: Compile the Applet
After wiring the JoltBeans together, compile the applet. It is also recommended that you fill in
the empty catch blocks for exceptions. Check the message window for any compilation errors
and exceptions.

For additional information see the following section “Using the Oracle Tuxedo Service
Metadata Repository and Setting the Property Values.” Also refer to the table “JoltBean
Specific Properties” and the figure “JoltServiceBean Property Editor”.

5.8.2.8 Running the Sample Application
To run the sample application, you must have the Oracle Tuxedo server running. Then enter an
account number in the Account ID textfield. You can use any of the account numbers included
in the BANKAPP database. Following are two examples of account numbers you can use to
test the sample application:

• 80001

• 50050

Chapter 5
JoltBeans Class Library Walkthrough

5-34

5.9 Using the Oracle Tuxedo Service Metadata Repository and
Setting the Property Values

Custom Property Editors are provided for the following properties:

• JoltFieldName (Jolt-aware AWT beans)

• serviceName (JoltServiceBean)

The Property Editor, accessed from the Property List, includes dialog boxes that are used to
add or modify the properties. You can invoke the boxes from the Property List by selecting the
button with the ellipsis (...) that is next to the value of the corresponding property value.

Some JoltBeans require input to the Property List field. The beans are listed in the following
table.

Table 5-6 JoltBean Specific Properties

JoltBean Property Input Description

JoltSessionBean appAddress
userName,
Password or
AppPassword

e.g., //host:port
Type your Oracle Tuxedo username and passwords.

JoltServiceBean serviceName
isTransactional

INQUIRY, for example. Set to true if the service needs to be
executed within a transaction. Set is Transactional to false if
the service does not require a transaction.

JoltUserEventBean eventName filter Refer to the Oracle Tuxedo tpsubscribe calls.

All Jolt-aware GUI
beans

joltFieldName
occurrenceIndex

ACCOUNT_ID, for example
Multiple fields of the same name.

Index starts at 0.

JoltCheckbox TrueValue and
FalseValue

The field value corresponding to the state of the checkbox.

The property editor reads cached information from the repository and returns names of the
available services and data elements in a list box. An example of the ServiceName property
editor is shown in the following figure “JoltServiceBean Property Editor.”

To add or modify a property bean, follow these steps:

1. Select the service name by clicking on the ellipsis in the ServiceName field shown in the
following figure.

Figure 5-28 JoltServiceBean Property Editor

Chapter 5
Using the Oracle Tuxedo Service Metadata Repository and Setting the Property Values

5-35

The Custom Property Editor for ServiceName shown in the following figure is displayed.

Figure 5-29 Custom Property Editor for ServiceName

Note:

If you cannot or do not want to connect to the Repository database, type the
service name in the text box and skip to Step 7.

2. If you are not logged on, make sure the Jolt Server is running and select Logon.
The JoltBeans Repository Logon shown in the following figure is displayed.

Figure 5-30 JoltBeans Repository Logon

3. Type the Oracle Tuxedo or Jolt Relay Machine name in the Server field and the JSL or Jolt
Relay in the Port number field.

Chapter 5
Using the Oracle Tuxedo Service Metadata Repository and Setting the Property Values

5-36

4. Type the password and username information (if required) and click Logon.
The Custom Property Editor loads its cache from the repository and is displayed, as shown
in the following figure “Property Editor with Selected Service.”

5. Select the appropriate service name from the list box, as shown in the following figure.

6. Enter the property value (service or field name) directly.
A text box is provided.

7. Click OK in the Custom Property Editor dialog.
The bean property is set with the contents of the text box.

Figure 5-31 Property Editor with Selected Service

8. Click OK in the Custom Property Editor dialog box again.

5.10 JoltBeans Programming Tasks
Additional programming tasks include:

• Using Transactions with JoltBeans

• Using Custom GUI Elements with the JoltService Bean

5.10.1 Using Transactions with JoltBeans
Your Oracle Tuxedo application services may have functionality that updates your database. If
so, you can use transactions with JoltBeans (for example, in the sample, BANKAPP, the
services TRANSFER and WITHDRAWAL update the database of BANKAPP). If your
application service is read-only (such as INQUIRY), you do not need to use transactions.

The following example shows how to use transactions with JoltBeans.

1. The setTransactional (true) method is called on the JoltServiceBean. (isTransactional
is a Boolean property of the JoltServiceBean.)

2. The beginTransaction() method is called on the JoltSessionBean.

Chapter 5
JoltBeans Programming Tasks

5-37

3. The callService() method is called on the JoltServiceBean.

4. Depending on the outcome of the service call, the commitTransaction() or
rollbackTransaction() method is called on the JoltSessionBean.

5.10.2 Using Custom GUI Elements with the JoltService Bean
JoltBeans provides a limited set of Jolt-enabled GUI components. You can also use controls
that are not Jolt-enabled together with the JoltServiceBean. You can link controls to the
JoltServiceBean that display output information of the service represented by the
JoltServiceBean. You can also link controls that display input information.

For example, a GUI element that uses an adapter class to implement the JoltOutputListener
interface can listen to JoltOutputEvents. The JoltServiceBean as the event source for
JoltOutputEvents calls the serviceReturned() method of the adapter class when it sends a
JoltOutputEvent. Inside serviceReturned(), the control’s internal data is updated using
information from the event object.

The development tool generates the adapter class when the JoltServiceBean and the GUI
element are wired together.

As another example, a GUI element can call the setInputTextValue() method on the
JoltServiceBean. The GUI element contains input data for the Oracle Tuxedo service
represented by the JoltServiceBean.

As a third example, a GUI element can implement the required methods
(addJoltInputListener() and removeJoltInputListener()) to act as event sources for
JoltInputEvents. The JoltServiceBean acts as an event listener for these events. The control
sends a JoltInputEvent when its own state changes to keep the JoltServiceBean updated with
the input information.

Chapter 5
JoltBeans Programming Tasks

5-38

6
Using Servlet Connectivity for Oracle Tuxedo

With Oracle Jolt servlet connectivity, you can use HTTP servlets to perform server-side Java
tasks in response to HTTP requests. Jolt certifies servlet connectivity with the Java Web
Server versions 1.1.3 and up, and supports most other standard servlet engines. Using the Jolt
session pool classes, a simple HTML client can connect to any Web server that supports
generic servlets. Thus, all Jolt transactions are handled by a servlet on the Web server rather
than being handled by a client applet or application.

This capability enables HTML clients to invoke Oracle Tuxedo services without directly
connecting to Oracle Tuxedo. HTML clients can instead connect to a Web server, through
HTTP, where the Oracle Tuxedo service request is executed by a generic servlet. Using a Jolt
session, the servlet on the Web server administers the Oracle Tuxedo service request by
connecting to the Oracle Tuxedo Server through the Jolt Server Handler (JSH) or the Jolt
Server Listener (JSL), which then makes the Oracle Tuxedo service request.

This capability allows many types of HTML clients to make remote Oracle Tuxedo service
requests. All Jolt transactions are handled on the server side without requiring any change to
the original HTML client. Thus, HTML clients are allowed to be very simple and require little
maintenance.

This topic includes the following sections:

• What Is a Servlet?

• How Servlets Work with Jolt

• Writing and Registering HTTP Servlets

• Jolt Servlet Connectivity Sample

• Additional Information on Servlets

6.1 What Is a Servlet?
A servlet is any Java class that can be invoked and executed on a server, usually on behalf of
a client. A servlet works on the server, while an applet works on the client. An HTTP servlet is
a Java class that handles an HTTP request and delivers an HTTP response. HTTP servlets
reside on an HTTP server and must extend the JavaSoft javax.servlet.http.Http Servlet Class
so that they can run in a generic servlet engine framework.

Some advantages of using HTTP servlets are:

• They are written in a well-formed, and compiled language (Java), so are more robust than
“interpreted” scripts.

• They are an integral part of the HTTP server that supports them.

• They can be protected by the robust security of the server, unlike some CGI scripts that
are hazardous.

• They interact with the HTTP request through a well-developed programmatic interface, and
so are easier to write and less prone to errors.

6-1

6.2 How Servlets Work with Jolt
With Jolt servlet connectivity, any generic HTTP servlet allows you to take advantage of the
Jolt features. Jolt servlets handle HTTP requests using the following Jolt classes:

• ServletDataSet

• ServletPoolManagerConfig

• ServletResult

• ServletSessionPool

• ServletSessionPoolManager

• The Jolt Servlet Connectivity Classes

6.2.1 The Jolt Servlet Connectivity Classes
Following are descriptions of the Jolt servlet connectivity classes.

ServletDataSet
This class contains data elements that represent the input and output parameters of an Oracle
Tuxedo service. It provides a method to import the HTML field names and values from a
javax.servlet.http.HttpServletRequest object.

ServletPoolManagerConfig
This class is the startup class for a Jolt Session Pool Manager and one or more associated
Jolt session pools. It creates the session pool manager if needed and starts a session pool
with a minimum number of sessions. Jolt Session Pool Manager internally keeps track of one
or more named session pools.

This class is derived from bea.jolt.pool.PoolManagerConfig and allows the caller to pass a
Properties or Hashtable object to the static startup() method to create a session pool and
the static getSessionPoolManager() method to get the session pool manager of
bea.jolt.pool.servlet.ServletSessionPoolManager class.

ServletResult
This class provides methods to retrieve each field in a ServletResult object as a String.

ServletSessionPool
This class provides a session pool for use in a Java servlet. A session pool represents one or
more connections (sessions) to an Oracle Tuxedo system. This class provides call methods
that accept input parameters for an Oracle Tuxedo service as a
javax.servlet.http.HttpServletRequest object.

ServletSessionPoolManager
This class is a servlet-specific session pool manager. It manages a collection of one or more
session pools of class ServletSessionPool. This class provides methods that are used to
create both the ServletSessionPoolManager itself and the session pools that it contains.
These methods are part of the administrative API for a session pool.

6.3 Writing and Registering HTTP Servlets
Before writing and registering HTTP servlets, you must first import the packages that support
Jolt servlet connectivity (jolt.jar, joltjse.jar, servlet.jar). HTTP servlets must extend

Chapter 6
How Servlets Work with Jolt

6-2

javax.servlet.http.HttpServlet. After you write your HTTP servlets, you register them with a Web
server that supports generic servlets. Your custom servlets are treated exactly like the standard
HTTP servlets that provide the HTTP capabilities.

Each HTTP servlet is registered against a specific URL pattern, so that when a matching URL
is requested, the corresponding servlet is called upon to handle the request.

Refer to the documentation for your particular Web server for instructions on how to register
servlets.

6.4 Jolt Servlet Connectivity Sample
The Jolt software includes three sample applications that demonstrate servlet connectivity
using the Jolt servlet classes. The three samples are:

Refer to these samples to see code examples of how to use the Jolt servlet classes in your
own servlets.

• Viewing the Sample Servlet Applications

• SimpApp Sample

• BankApp Sample

• Admin Sample

6.4.1 Viewing the Sample Servlet Applications
To view the code for the Jolt sample applications, you need to install the Jolt API client classes
(usually chosen as an option when installing Jolt). Once the classes are installed in your
directory of choice, navigate to the following directory to see the sample application files:

<Installation directory>\udataobj\jolt\examples\servlet

To view the sample code, use a text editor such as Microsoft Notepad to open the Java files for
each sample application.

6.4.2 SimpApp Sample
A sample application named simpapp is included with Jolt. The simpapp application illustrates
how the servlet uses Servlet Connectivity for Oracle Tuxedo. The following servlet tasks are
illustrated by the SimpApp sample:

• Using a property file to create a session pool

• Getting the session pool manager

• Retrieving the session pool by name

• Invoking an Oracle Tuxedo service

• Processing the result set

This example demonstrates how a servlet can connect to Oracle Tuxedo and call upon one of
its services; it should be invoked from the simpapp.html file. The servlet creates a session pool
manager at initialization, which is used to obtain a session when the doPost() method is
invoked. This session is used to connect to a service in Oracle Tuxedo with a name described
by the posted “SVCNAME” argument. In this example the service is called "TOUPPER", which

Chapter 6
Jolt Servlet Connectivity Sample

6-3

transposes the posted “STRING” argument text into uppercase, and returns the result to the
client browser within some generated HTML.

Note:

The WebLogic Server is used in this example.

• Requirements for Running the SimpApp Sample

• Installing the SimpApp Sample

6.4.2.1 Requirements for Running the SimpApp Sample
The requirements for running the SimpApp sample are:

• Any Web application server with Servlet JSDK 1.1 or above

• Oracle Tuxedo 8.0 or later with SimpApp sample running

• Oracle Jolt

6.4.2.2 Installing the SimpApp Sample
1. Install the Jolt class library (jolt.jar) and Servlet Connectivity for Oracle Tuxedo class

library (joltjse.jar) on the Web application server. Extract the class files if it is required
by your Web application server.

2. Compile the SimpAppServlet.java. Ensure that you include the standard JDK
classes.zip, Jolt class library, and Servlet Connectivity for Oracle Tuxedo class library in
the classpath.

3. Put the simpapp.html and simpapp.properties files in the public HTML directory.

javac -classpath $(JAVA_HOME)/lib/classes.zip:$(JSDK)/lib/servlet.jar:
$(JOLTHOME)/jolt.jar:$(JOLTHOME)/joltjse.jar:./classes
-d ./classes SimpAppServlet.java

Note:

The package name of the SimpAppServlet is examples.jolt.servlet.simpapp.

4. Modify the simpapp.properties file. Change the “appaddrlist” and “failoverlist” with
the proper Jolt server hosts and ports. Specify the proper Oracle Tuxedo authentication
information if the SimpApp has security turned on. For example:

#simpapp
#Fri Apr 16 00:43:30 PDT 1999
poolname=simpapp
appaddrlist=//host:7000,//host:8000
failoverlist=//backup:9000
minpoolsize=1
maxpoolsize=3
userrole=tester
apppassword=appPass

Chapter 6
Jolt Servlet Connectivity Sample

6-4

username=guest
userpassword=myPass

5. Register “Simpapp” for the SimpAppServlet. Consult your Web application server for
details. If you are using Oracle WebLogic Server, add the following section of the
config.xml file:

<Application
 Deployed="true"
 Name="simpapp"
 Path=".\config\mydomain\applications"
>
 <WebAppComponent
 Name="simpapp"
 Targets="myserver"
 URI="simpapp"
 />
</Application>

6. To access the SimpApp initial page “simpapp.html,” type: http://mywebserver:8080/
simpapp.html

6.4.3 BankApp Sample
The bankapp application illustrates how the servlet is written with PageCompiledServlet with
Servlet Connectivity for Oracle Tuxedo. bankapp illustrates how to:

• Use a property file to create a session pool

• Get the session pool manager

• Retrieve a session pool by name

• Invoke an Oracle Tuxedo service

• Process the result set

• Requirements for Running the BankApp Sample

• Installation Instructions

6.4.3.1 Requirements for Running the BankApp Sample
Following are the requirements for running the BankApp sample:

• Any Web application server with Servlet JSDK 1.1 or above

• Oracle Tuxedo 8.0 or later with BankApp sample running

• Oracle Jolt

6.4.3.2 Installation Instructions
1. Install the Jolt class library (jolt.jar) and Servlet Connectivity for Oracle Tuxedo class

library (joltjse.jar) to the Web application server. Extract the class files if it is required
by your Web application server.

Chapter 6
Jolt Servlet Connectivity Sample

6-5

http://mywebserver:8080/simpapp.html
http://mywebserver:8080/simpapp.html

2. Copy all HTML, JHTML and bankapp.properties files to the public HTML directory of the
Web application server (for example, $WEBLOGIC/myserver/public_html for WebLogic):

bankapp.properties
tellerForm.html
inquiryForm.html
depositForm.html
withdrawalForm.html
transferForm.html
InquiryServlet.jhtml
DepositServlet.jhtml
WithdrawalServlet.jhtml
TransferServlet.jhtml

3. Modify the bankapp.properties file. Change the “appaddrlist” and “failoverlist” with
the proper Jolt server hosts and ports. Specify the proper Oracle Tuxedo authentication
information if the BankApp has security turned on. For example:

#bankapp
#Fri Apr 16 00:43:30 PDT 1999
poolname=bankapp
appaddrlist=//host:8000,//host:7000
failoverlist=//backup:9000
minpoolsize=2
maxpoolsize=10
userrole=teller
apppassword=appPass
username=JaneDoe
userpassword=myPass

4. If applicable, turn on the automatic page compilation for JHTML from your servlet engine.
Consult the user manual of your Web application server for details.

5. To access BankApp through Servlet Connectivity for Oracle Tuxedo, use the following URL
in your favorite browser:
http://mywebserver:8080/tellerForm.html

6.4.4 Admin Sample
The Admin sample application illustrates the following servlet tasks:

• Using the administrative API to control the session pools

• Retrieving the statistics through PageCompiledServlet in Servlet Connectivity for Oracle
Tuxedo

• Requirements for Running the Admin Sample

• Installation Instructions

6.4.4.1 Requirements for Running the Admin Sample
Following are the requirements for running the Admin sample:

• Any Web application server with Servlet JSDK 1.1 or above

• Oracle Jolt

Chapter 6
Jolt Servlet Connectivity Sample

6-6

http://mywebserver:8080/tellerForm.html

6.4.4.2 Installation Instructions
1. Install the Jolt class library and Servlet Connectivity for Oracle Tuxedo class library on the

Web application server.

2. Copy all JHTML files to the public HTML directory (for example, $WEBLOGIC/myserver/
public_html for WebLogic):

PoolList.jhtml
PoolAdmin.jhtml

3. To get a list of session pools, use the following URL in your favorite browser:
http://mywebserver:8080/PoolList.jhtml

6.5 Additional Information on Servlets
For more information on writing and using servlets, refer to the following sites:

Oracle WebLogic Servlet Documentation
Understanding Servlets

Creating and Configuring Servlets

Servlet Programming Tasks

Java Servlets
Java Servlet Technology

Chapter 6
Additional Information on Servlets

6-7

https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/wbapp/basics.html#GUID-BAEE4B4D-3FA1-47B2-8911-572A91A5CD18
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/wbapp/configureservlet.html
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/wbapp/progservlet.html
https://www.oracle.com/java/technologies/java-servlet-tec.html

7
Migrating from Jolt Repository to Oracle
Tuxedo Service Metadata Repository

Jolt Repository is deprecated in this release. All service definitions stored in Jolt repository can
be loaded in the Tuxedo metadata repository using the bulk loader tool.

The original Jolt repository server JREPSVR is also deprecated, and all services that JREPSVR
provided are now provided by TMMETADATA. If tmloadcf detects presence of JREPSR in ubbconfig,
it automatically removes JREPSVR and adds TMETADATA if not already configured.

Using one repository (Tuxedo metadata repository) and one server (TMMETADATA) improve
operational effectiveness and reduces the risk of service definitions getting out of sync.

Note:

• TMMETADATA must run on Oracle Tuxedo 12c Release 2 (12.2.2) or later.

• Oracle Tuxedo Service Metadata Repository does not support package function.

• Bulk Loader is still supported but some behaviors are changed.

– Do not support for deleting service definitions. You must use tmloadrepos -d
service[...] or the Metadata Editor to delete services.

– Do not support for deleting service definitions. You must use tmloadrepos -d
service[...] or the Metadata Editor to delete services.

– The servicetype must be "service"; otherwise you cannot update this
service definition.

This topic includes the following sections:

• Replacing JREPSVR with TMMETADATA in UBBCONFIG

• Loading Jolt Repository to Oracle Tuxedo Service Metadata Repository

• Sample: joltapp Migration

7.1 Replacing JREPSVR with TMMETADATA in UBBCONFIG
Oracle Tuxedo command tmloadcf browses your UBBCONFIG and creates a new one (you can
compare these two UBBCONFIG files to see the difference after invoking tmloadcf).

In your UBBCONFIG,

• If JREPSVR is configured, tmloadcf automatically replaces JREPSVR with TMMETADATA when
creating the new UBBCONFIG.

7-1

In this scenario, tmloadcf prints a prompt like this:

CMDTUX_CAT:8401: WARNING: The JoltRepository Server has been deprecated
and replaced with the Tuxedo Servicata server

• If both JREPSVR and TMMETADATA are configured, tmloadcf just ignores JREPSVR when
creating the new UBBCONFIG.
In this scenario, tmloadcf prints a prompt like this:

CMDTUX_CAT:8401: WARNING: The JoltRepository Server has been deprecated
and replaced with the Tuxedo Service Metadata Server

You can use tmloadrepos/tmunloadrepos to load Jolt Repository file to Metadata Repository
file; this loading is necessary because you can access to Jolt Repository only after it is loaded
to Metadata Repository. If you want to update the loaded Metadata Repository, you must
remove -r option from TMMETADATA in UBBCONFIG. For more information, see tmloadcf(1).

7.2 Loading Jolt Repository to Oracle Tuxedo Service Metadata
Repository

You must use Oracle Tuxedo command tmunloadrepos to display Jolt Repository in plain text,
which tmloadrepos can parse. See tmloadrepos(1) and tmunloadrepos(1) for more
information in the Section 1 - Commands.

Two parameter-level keywords, fieldname and fieldindex, are added to the Oracle Tuxedo
Service Metadata Repository for this loading (and for FML/FML32 only). See Creating The
Oracle Tuxedo Service Metadata Repository for more information.

7.3 Sample: joltapp Migration
This is a sample for migrating joltapp from Jolt Repository to Oracle Tuxedo Service Metadata
Repository.

1. Use tmloadcf to compile UBBCONFIG, which handles JREPSVR automatically. See the
following listing Example for Compiling UBBCONFIG for an example.

2. Use tmunloadrepos to load Jolt Repository file named jrep (see Listing Example for jrep)
to Oracle Tuxedo Service Metadata Repository file named jolt.metarepos (see Listing
Example for jolt.metarepos).

3. Use tmloadrepos to insert the above jolt.metarepos file into the original Metadata
Repository file. See the listing Example for Inserting jolt.metarepos to the Original
Metadata Repository File for an example.

Listing Example for Compiling UBBCONFIG

$ tmloadcf -y ubb
$ tmunloadcf #to check whether JREPSVR still existed.

Listing Example for jrep

$ cat jrep
!JOLT1.0
add SVC/.NUMRECS:vs=1:ex=0:bt=FML32:\

Chapter 7
Loading Jolt Repository to Oracle Tuxedo Service Metadata Repository

7-2

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#wp1330826
https://docs-uat.us.oracle.com/en/database/oracle/tuxedo/22/otxcr/index.html
https://docs-uat.us.oracle.com/en/database/oracle/tuxedo/22/otxcg/managing-oracle-tuxedo-service-metadata-repository.html#GUID-81992BC2-CF5D-417B-9821-0B261C7E541A
https://docs-uat.us.oracle.com/en/database/oracle/tuxedo/22/otxcg/managing-oracle-tuxedo-service-metadata-repository.html#GUID-81992BC2-CF5D-417B-9821-0B261C7E541A

 bp:pn=NRECS:pt=integer:pf=33554435:pa=rd:ep:\
 bp:pn=STATLIN:pt=string:pf=167772163:pa=rd:ep:
add SVC/.GETREC:vs=1:ex=0:bt=FML32:\
 bp:pn=REPNAME:pt=string:pf=167772161:pa=wr:ep:\
 bp:pn=REPVALUE:pt=string:pf=167772162:pa=rd:ep:\
 bp:pn=STATLIN:pt=string:pf=167772163:pa=rd:ep:
add SVC/.GETSVC:vs=1:ex=0:bt=FML32:\
 bp:pn=REPNAME:pt=string:pf=167772161:pa=wr:ep:\
 bp:pn=REPVALUE:pt=string:pf=167772162:pa=rd:ep:\
 bp:pn=STATLIN:pt=string:pf=167772163:pa=rd:ep:
add SVC/.ADDREC:vs=1:ex=0:bt=FML32:\
 bp:pn=REPVALUE:pt=string:pf=167772162:pa=wr:ep:\
 bp:pn=STATLIN:pt=string:pf=167772163:pa=rd:ep:
add SVC/.DELREC:vs=1:ex=0:bt=FML32:\
 bp:pn=REPNAME:pt=string:pf=167772161:pa=wr:ep:\
 bp:pn=STATLIN:pt=string:pf=167772163:pa=rd:ep:
add SVC/.GETKEYS:vs=1:ex=1:bt=FML32:\
 bp:pn=PATTERN:pt=string:pf=167772164:pa=wr:ep:\
 bp:pn=NRECS:pt=integer:pf=33554435:pa=rd:ep:\
 bp:pn=REPNAME:pt=string:pf=167772161:po=0:pa=rd:ep:
add SVC/.GETALL:vs=1:ex=0:bt=FML32:\
 bp:pn=PATTERN:pt=string:pf=167772164:pa=wr:ep:\
 bp:pn=NRECS:pt=integer:pf=33554435:pa=rd:ep:\
 bp:pn=REPVALUE:pt=string:pf=167772162:po=0:pa=rd:ep:
add SVC/.FLUSHCACHE:vs=1:ex=0:bt=FML32:\
 bp:pn=REPNAME:pt=string:pf=167772161:po=200:pa=wr:ep:
add SVC/.GARBAGECOLLECT:vs=1:ex=0:bt=FML32:\
 bp:pn=STATLIN:pt=string:pf=167772163:pa=rd:ep:
add SVC/INQUIRY:vs=1:ex=1:bt=FML:\
 bp:pn=ACCOUNT_ID:pt=integer:pf=33554436:pa=wr:ep:\
 bp:pn=SBALANCE:pt=string:pf=167772164:pa=rd:ep:\
 bp:pn=STATLIN:pt=string:pf=167772163:pa=rd:ep:\
 bp:pn=FORMNAM:pt=string:pf=167772165:pa=rd:ep:
add SVC/WITHDRAWAL:vs=1:ex=1:bt=FML:\
 bp:pn=ACCOUNT_ID:pt=integer:pf=33554436:pa=wr:ep:\
 bp:pn=SAMOUNT:pt=string:pf=167772166:pa=wr:ep:\
 bp:pn=SBALANCE:pt=string:pf=167772164:pa=rd:ep:\
 bp:pn=STATLIN:pt=string:pf=167772163:pa=rd:ep:\
 bp:pn=FORMNAM:pt=string:pf=167772165:pa=rd:ep:
add SVC/DEPOSIT:vs=1:ex=1:bt=FML:\
 bp:pn=ACCOUNT_ID:pt=integer:pf=33554436:pa=wr:ep:\
 bp:pn=SAMOUNT:pt=string:pf=167772166:pa=wr:ep:\
 bp:pn=SBALANCE:pt=string:pf=167772164:pa=rd:ep:\
 bp:pn=BALANCE:pt=float:pf=100663303:pa=rd:ep:\
 bp:pn=STATLIN:pt=string:pf=167772163:pa=rd:ep:\
 bp:pn=BALANCE:pt=float:pf=100663303:pa=rd:ep:\
 bp:pn=STATLIN:pt=string:pf=167772163:pa=rd:ep:\
 bp:pn=FORMNAM:pt=string:pf=167772165:pa=rd:ep:
add SVC/TRANSFER:vs=1:ex=1:bt=FML:\
 bp:pn=ACCOUNT_ID:pt=integer:pf=33554436:po=2:pa=wr:ep:\
 bp:pn=SAMOUNT:pt=string:pf=167772166:pa=wr:ep:\
 bp:pn=SBALANCE:pt=string:pf=167772164:po=2:pa=rd:ep:\
 bp:pn=STATLIN:pt=string:pf=167772163:pa=rd:ep:\
 bp:pn=FORMNAM:pt=string:pf=167772165:pa=rd:ep:
add PKG/BANKAPP:INQUIRY:DEPOSIT:WITHDRAWAL:TRANSFER:
add SVC/TOUPPER:vs=1:ex=1:bt=STRING:\

Chapter 7
Sample: joltapp Migration

7-3

 bp:pn=STRING:pt=string:pf=167772161:pa=rw:ep:
add PKG/SIMPSERV:TOUPPER:

Listing Example for jolt.metarepos

$ tmunloadrepos jrep >jolt.metarepos

#Generated from Repository file :
/u01/common/patches/huchchen/TUX13c64/LC/bld/qa/sanity_tests/apps/joltapp/
jrep
#

#####################
service : .GETALL
#####################

service=.GETALL
export=N
inbuf=FML32
outbuf=FML32
version=1
param=PATTERN
type=string
access=in
param=NRECS
type=integer
access=out
param=REPVALUE
count=0
type=string
access=out

######################
service : .GETKEYS
######################

service=.GETKEYS
export=Y
inbuf=FML32
outbuf=FML32
version=1
param=PATTERN
type=string
access=in
param=NRECS
type=integer
access=out
param=REPNAME
count=0
type=string
access=out

#####################
service : .ADDREC

Chapter 7
Sample: joltapp Migration

7-4

#####################

service=.ADDREC
export=N
inbuf=FML32
outbuf=FML32
version=1
param=REPVALUE
type=string
access=in
param=STATLIN
type=string
access=out

######################
service : TRANSFER
######################

service=TRANSFER
export=Y
inbuf=FML
outbuf=FML
version=1
param=ACCOUNT_ID
count=2
type=integer
access=in
param=SAMOUNT
type=string
access=in
param=SBALANCE
count=2
type=string
access=out
param=STATLIN
type=string
access=out
param=FORMNAM
type=string
access=out

########################
service : WITHDRAWAL
########################

service=WITHDRAWAL
export=Y
inbuf=FML
outbuf=FML
version=1
param=ACCOUNT_ID
type=integer
access=in
param=SAMOUNT
type=string
access=in

Chapter 7
Sample: joltapp Migration

7-5

param=SBALANCE
type=string
access=out
param=STATLIN
type=string
access=out
param=FORMNAM
type=stringaccess=out

#############################
service : .GARBAGECOLLECT
#############################

service=.GARBAGECOLLECT
export=N
inbuf=FML32
outbuf=FML32
version=1
param=STATLIN
type=string
access=out

#####################
service : TOUPPER
#####################

service=TOUPPER
export=Y
inbuf=STRING
outbuf=STRING
version=1
param=STRING
type=string
access=inout

#####################
service : .DELREC
#####################

service=.DELREC
export=N
export=N
inbuf=FML32
outbuf=FML32
version=1
param=REPNAME
type=string
access=in
param=STATLIN
type=string
access=out

#########################
service : .FLUSHCACHE
#########################

Chapter 7
Sample: joltapp Migration

7-6

service=.FLUSHCACHE
export=N
inbuf=FML32
outbuf=FML32
version=1
param=REPNAME
count=200
type=string
access=in

######################
service : .NUMRECS
######################

service=.NUMRECS
export=N
inbuf=FML32
outbuf=FML32
version=1
param=NRECS
type=integer
access=out
param=STATLIN
type=string
access=out

#####################
service : INQUIRY
#####################

service=INQUIRY
export=Y
inbuf=FML
outbuf=FML
version=1
param=ACCOUNT_ID
type=integer
access=in
param=SBALANCE
type=string
access=out
param=STATLIN
type=string
access=out
param=FORMNAM
type=string
access=out

#####################
service : DEPOSIT
#####################

service=DEPOSIT
export=Y
inbuf=FML
outbuf=FML

Chapter 7
Sample: joltapp Migration

7-7

version=1
param=ACCOUNT_ID
type=integer
access=in
param=SAMOUNT
type=string
access=in
param=SBALANCE
type=string
access=out
param=BALANCE
type=float
access=out
param=STATLIN
type=string
access=out
param=FORMNAM
type=string
access=out

#####################
service : .GETSVC
#####################

service=.GETSVC
export=N
inbuf=FML32
outbuf=FML32
version=1
param=REPNAME
type=string
access=in
param=REPVALUE
type=string
access=out
param=STATLIN
type=string
access=out

#####################
service : .GETREC
#####################

service=.GETREC
export=N
inbuf=FML32
outbuf=FML32
version=1
param=REPNAME
type=string
access=in
param=REPVALUE
type=string
access=out
param=STATLIN

Chapter 7
Sample: joltapp Migration

7-8

type=string
access=out

Listing Example for Inserting jolt.metarepos to the Original Metadata Repository File

tmloadrepos -i meta.data jolt.metarepos

Chapter 7
Sample: joltapp Migration

7-9

A
Oracle Jolt Exceptions

This appendix describes all the Oracle Jolt exceptions that you may encounter. Keep in mind
that the Jolt Class Library returns both Oracle Jolt and Oracle Tuxedo exceptions.

For details about Oracle Tuxedo exceptions, refer to the appropriate document in the following
list:

• Oracle Tuxedo Command Reference

• Oracle Tuxedo ATMI C Function Reference

• Oracle Tuxedo ATMI COBOL Function Reference

• Oracle Tuxedo ATMI FML Function Reference

• File Formats, Data Descriptions, MIBs, and System Processes Reference

The Jolt Class Library exceptions are listed for each class, constructor, and method listed in
the Oracle Jolt API Reference.

The following table lists the Oracle Jolt and Oracle Tuxedo exceptions that you may encounter
while running Oracle Jolt. Each exception includes a possible cause (or causes) and a
recommended action (wherever possible) to help resolve the situation.

Exceptions Description

1.TPEABORT A transaction could not commit

Cause This exception occurs because a transaction could not commit on the
server side. This exception may also occur if the JSH performs a
message resend for a commit that has timed out due to a previous
blocking condition. In Oracle Tuxedo, you can get this exception if
tpcommit() is called with outstanding replies or open conversation
connections.

Action Check transaction failures on the server side. Oracle Jolt clients should
resend the request after the transaction problem has been fixed on the
server side.

2.TPEBADDES
C

This exception should not occur in Oracle Jolt.

Cause In Oracle Tuxedo, this exception usually occurs when an invalid caller
descriptor is given to tpgetrply() or tpsend().

Action None.

3. TPEBLOCK A blocking condition has occurred and the TPNOBLOCK flag is specified in
Oracle Tuxedo.

Cause This exception occurs because the server is backed up.

Action You may need to re-examine and re-architect the application to handle
extreme load cases.

4.TPEINVAL Invalid arguments were given by the application.

A-1

https://docs-uat.us.oracle.com/en/database/oracle/tuxedo/22/otxcr/index.html
https://docs-uat.us.oracle.com/en/database/oracle/tuxedo/22/atmir/index.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/pdf/rf3cbl.pdf
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/pdf/rf3fml.pdf
https://docs.oracle.com/cd/E13203_01/tuxedo/tux91/rf5/rf5.htm

Exceptions Description

Cause This exception occurs if a new JoltSession class is processed before
performing the security protocol. In Jolt’s URL handler routine, this
exception occurs when a invalid challenge response is received by the
openConnection() method. The TPEINVAL exception can also occur if
you specified a hexadecimal address for the JSL -H option without a
leading “0x” , or if you entered a wrong address in UBBCONFIG file. In
addition, the GETREC(), DELREC() and GETSVC() services in JREPSVR
can return TPEINVAL if the REPNAME is missing. Also, the ADDREC()
service in JREPSVR can return TPEINVAL if the REPVAL is not specified.

Action This type of exception should have been handled during the application
development cycle. You should not receive this exception in a production
environment.

5.TPELIMIT The maximum number of outstanding requests or subscriptions has been
reached.

Cause The maximum number of outstanding requests has been reached. This
exception could also mean that the Oracle Tuxedo System Event
Broker's maximum number of subscriptions (50 internally defined for
now) has been reached.

Action You may need to re-examine and re-architect the application to handle
load extreme cases.

6.TPENOENT The requested service is not available.

Cause Usually, the requested service is not booted or advertised on the Oracle
Tuxedo server side. It is also possible that the requested service is not
defined in the Oracle Tuxedo Service Metadata Repository. This
exception could also indicate that you could not access the Oracle
Tuxedo System Event Broker.

Action You need to check the server side to see if the service is booted or
advertised. Otherwise, check to see if the requested service is defined in
the Oracle Tuxedo Service Metadata Repository. After the service is
available on the server side, Jolt clients should resend the request.

7.TPEOS An operating system exception has occurred.

Cause The exact nature of the problem is described in the ULOG file. Typically,
you can get this exception due to the memory allocation failures, wrong
network address, or failure to attach to the Bulletin Board for the JSL.

Action Try fixing the problem as described in the ULOG file. Jolt clients might
need to reconnect or resend the request after the problem has been
fixed.

8.TPEPERM There is a permission problem when attempting to join a session.

Cause In the JoltSession class, this exception occurs because the Jolt client
does not have the permission to join the application. Permission may be
denied based on an invalid application password, failure to pass
application specific authentication, or the use of restricted client names.
In the Jolt URL handler routing, this exception occurs when a bad
challenge response is received on the openConnection() method. If
the Oracle Tuxedo Service Metadata Repository is set to read-only, the
ADDREC() and DELREC() services, or the GARBAGECOLLECT() service
in JREPSVR, also return the TPEPERM exception.

Action This type of exception should have been handled during the application
development cycle. You should not receive this exception in a production
environment.

9.TPEPROTO A function was called in an improper context.

Appendix A

A-2

Exceptions Description

Cause For this exception, an improper context could include a rollback() or
commit() method called by a participant, an unsubscribe event that is
called while “unsubscribe all” is in progress, or when the caller is not a
client.

Action This type of exception should have been handled during the application
development cycle. You should not receive this exception in a production
environment.

10.TPESVCER
R

A service routine has encountered an exception during tpreturn() or
tpforward() in Oracle Tuxedo.

Cause The service routine is returning application-level failures, which may
include any of the following: an application calls tpreturn() or
tpforward() with invalid flags, the caller descriptor is no longer valid,
or there are invalid return values.

Action This type of exception should have been handled during the application
development cycle. You should not receive this exception in a production
environment.

11.TPESVCFA
IL

The service routine sending the caller's reply called tpreturn() with TPFAIL.

Cause The service routine is returning application-level failures.

Action This type of exception should have been handled during the application
development cycle. You should not receive this exception in a production
environment.

12.TPESYSTE
M

An Oracle Tuxedo system exception has occurred.

Cause The exact nature of the exception is written to the ULOG file. For
example, when performing the Diffie-Hellman encryption, this exception
occurs if the JSH is unable to send negotiation parameters. The JSL
fails to send the reply challenge call to the Jolt client. The Jolt client
sends an incorrect timestamp value, an incorrect number of encrypted
bits value, an incorrect ticket value, or timestamp mismatches in
reconnect protocol. The JSL fails to initialize network protocol
information, or could not establish a listening address on a network. The
JSH receives a network message with an unknown context or receives a
message with a different connection.

Action In most cases, you need to find out the exact nature of the exception
from the ULOG file on the server side. In case of hardware or network
failures, you can try to reconnect if a hardware or network failover is
available.

13.TPETIME A transaction timeout has occurred.

Cause There is a transaction timeout on the server side.

Action This type of exception should be addressed on the application server
side. Jolt clients should resend the request after the server side problem
has been resolved.

14.TPETRAN The requested service belongs to a server that does not support transactions and
TPNOTRAN is not set.

Cause A transaction is not supported for the requested service.

Action This type of exception should be addressed on the application server
side. Jolt clients should resend the request after the server side problem
has been resolved.

15.TPGOTSIG An unexpected signal was received

Cause A signal was received and the TPSIGSTRT flag was not specified.

Action None.

Appendix A

A-3

Exceptions Description

16.TPERMERR A resource manager failed to open or close correctly on the server side

Cause The resource manager might not be available; or all the resource might
not be released or committed before close.

Action Check the ULOG file for reasons why the resource manager failed to
open or close on the server side.

17.TPEITYPE For the JoltRemoteService class, the requested Oracle Tuxedo service does not
recognize the type and subtype of the input data.

Cause The type and subtype of input data is not defined in the Oracle Tuxedo
Service Metadata Repository.

Action The type and subtype of input data should be defined in the Oracle
Tuxedo Service Metadata Repository. This type of exception should have
been handled during the application development cycle. You should not
receive this exception in a production environment.

18. TPEOTYPE For the JoltRemoteService class, the Oracle Tuxedo caller does not recognize the
type and the subtype of the reply data.

Cause The type and subtype of output data is not defined in the Oracle Tuxedo
Service Metadata Repository.

Action The type and subtype of output data should be defined in the Oracle
Tuxedo Service Metadata Repository. This type of exception should have
been handled during the application development cycle. You should not
receive this exception in a production environment.

19.TPERELEA
SE

This exception should not occur in Oracle Jolt.

Cause Usually, this exception occurs when an unsolicited notification message
is sent from a server with the TPACK flag set, and the target is a Jolt
client from an older release of Oracle Jolt that does not support the
acknowledgment protocol.

Action Verify that the correct version of Oracle Jolt is installed on your machine.
This type of exception should have been handled during the application
development cycle. You should not receive this exception in an
production environment.

20.TPEHAZAR
D

Due to some failure, the work done on behalf of the transaction may have been
heuristically completed.

Cause Check the ULOG file on the server side for details.

Action None.

21.TPEHEURI
STIC

Due to a heuristic decision, the work done on behalf of the transaction was
partially committed and partially aborted.

Cause Check the ULOG file on the server side for details.

Action None.

22.TPEEVENT This exception should not occur in Oracle Jolt.

Cause Usually, this exception means that an event has occurred when sending
or receiving a message in a conversational connection in Oracle Tuxedo.
However, conversational server connections are not available in Oracle
Jolt.

Action None.

23. TPEMATCH The JoltUserEvent class has implemented a subscription to an asynchronous
notification event, but the subscription has failed because it matches an existing
subscription.

Cause The subscription failed because it matched one already listed with the
Oracle Tuxedo System Event Broker.

Action None.

Appendix A

A-4

Exceptions Description

24.TPEDIAGN
OSTIC

This exception should not occur in Oracle Jolt.

Cause Usually, this exception occurs when enqueuing or dequeuing a message
from the specified queue fails in Oracle Tuxedo. However, enqueing and
dequeing of messages is not available in Oracle Jolt.

Action None.

25.TPEMIB This exception should not occur in Oracle Jolt.

Cause Usually, this exception occurs when an administrative request via
tpadmcall() has failed in Oracle Tuxedo. However, TMIB calls are not
available in Oracle Jolt.

Action None.

26.TPEJOLT This exception indicates there is a problem in Oracle Jolt.

Cause The TPEJOLT exception could occur for any of the following reasons:
• JoltSession class—the send(), recv() or cancel() methods

throw TPEJOLT if the session object or message ID is invalid.

• JoltSession class—throws TPEJOLT when TPINIT data conversion
fails.

• bea.jolt.pool.connection class—throws TPEJOLT when a run-time
exception occurs.

• JoltRemoteService—the call() method throws TPEJOLT when the
buffer conversion between Oracle Jolt and Oracle Tuxedo fails, the
requested service is not defined in the Oracle Tuxedo Service
Metadata Repository, the requested service does not the right
version, or the reply data conversion fails.

• JoltUserEvent class—throws TPEJOLT when event name
conversion fails, an invalid message ID is encountered, or
unsolicited message data conversion fails.

Action This type of exception should have been handled during the application
development cycle. You should not receive this exception in a production
environment.

Appendix A

A-5

Glossary

Glossary-1

Index

Index-1

	Contents
	List of Figures
	List of Tables
	Preface
	Documentation Accessibility

	1 Introducing Oracle Jolt
	1.1 Oracle Jolt Components
	1.2 Key Features
	1.3 How Oracle Jolt Works
	1.3.1 Jolt Servers and Repository Servers
	1.3.1.1 Jolt Servers
	1.3.1.2 Repository Servers

	1.3.2 Jolt Class Library
	1.3.3 JoltBeans
	1.3.4 Jolt Server and Jolt Client Communication
	1.3.5 Oracle Tuxedo Service Metadata Repository
	1.3.6 Jolt Internet Relay

	1.4 Creating a Jolt Client to Access Oracle Tuxedo Applications

	2 Bulk Loading Oracle Tuxedo Services
	2.1 Using the Bulk Loader
	2.1.1 Activating the Bulk Loader
	2.1.1.1 Command-line Options

	2.1.2 The Bulk Load File

	2.2 Syntax of the Bulk Loader Data Files
	2.2.1 Guidelines for Using Keywords
	2.2.2 Keyword Order in the Bulk Loader Data File
	2.2.3 Using Service-Level Keywords and Values
	2.2.4 Using Parameter-Level Keywords and Values

	2.3 Troubleshooting
	2.4 Sample Bulk Load Data

	3 Configuring the Oracle Jolt System
	3.1 Quick Configuration
	3.1.1 Editing the UBBCONFIG File
	3.1.2 Configuring the Tuxedo Service Metadata Repository
	3.1.3 Initializing Services That Use Oracle Tuxedo and the Repository Editor
	3.1.4 Configuring the Oracle Tuxedo TMUSREVT Server for Event Subscription
	3.1.5 Configuring Jolt Relay
	3.1.5.1 On UNIX
	3.1.5.2 On UNIX and Windows
	3.1.5.2.1 On Windows Only (Optional)
	3.1.5.2.2 Start the Jolt Relay Adapter (JRAD)
	3.1.5.2.3 Configure the JRAD

	3.2 Jolt Background Information
	3.2.1 Jolt Server
	3.2.2 Starting the JSL
	3.2.3 Shutting Down the JSL
	3.2.4 Restarting the JSL
	3.2.5 Configuring the JSL
	3.2.6 JSL Command-line Options
	3.2.7 Security and Encryption

	3.3 Jolt Relay
	3.3.1 Jolt Relay Failover
	3.3.1.1 Jolt Client to JRLY Connection Failover
	3.3.1.2 JRLY to JRAD Adapter Connection Failover

	3.3.2 Jolt Relay Process
	3.3.2.1 Starting the JRLY on UNIX

	3.3.3 JRLY Command-line Options for Windows
	3.3.4 JRLY Command-line Option for UNIX
	3.3.5 JRLY Configuration File

	3.4 Jolt Relay Adapter
	3.4.1 JRAD Configuration
	3.4.2 Network Address Configurations

	3.5 Oracle Tuxedo Service Metadata Repository
	3.5.1 Initializing Services By Using Oracle Tuxedo and the Repository Editor

	3.6 Event Subscription
	3.6.1 Configuring for Event Subscription
	3.6.2 Filtering Oracle Tuxedo FML or VIEW Buffers
	3.6.2.1 Buffer Types
	3.6.2.2 FML Buffer Example

	3.7 Oracle Tuxedo Background Information
	3.7.1 Configuration File
	3.7.2 Creating the UBBCONFIG File
	3.7.2.1 Configuration File Format
	3.7.2.2 MACHINES Section
	3.7.2.3 GROUPS Section
	3.7.2.4 SERVERS Section
	3.7.2.5 Parameters Usable with JSL
	3.7.2.6 Optional Parameters
	3.7.2.6.1 Boot Parameters

	3.7.2.7 Run-time Parameters
	3.7.2.8 Parameters Associated with RESTART
	3.7.2.9 Entering Parameters

	3.8 Sample Applications in Oracle Jolt Online Resources

	4 Using the Jolt Class Library
	4.1 Class Library Functionality Overview
	4.1.1 Java Applications Versus Java Applets
	4.1.2 Jolt Class Library Features
	4.1.3 Error and Exception Handling
	4.1.4 Jolt Client/Server Relationship

	4.2 Jolt Object Relationships
	4.3 Jolt Class Library Walkthrough
	4.3.1 Logon and Logoff
	4.3.2 Synchronous Service Calling
	4.3.3 Transaction Begin, Commit, and Rollback

	4.4 Using Oracle Tuxedo Buffer Types with Jolt
	4.4.1 Using the STRING Buffer Type
	4.4.1.1 Define TOUPPER in the Repository Editor
	4.4.1.2 ToUpper.java Client Code

	4.4.2 Using the CARRAY Buffer Type
	4.4.2.1 Define the Tuxedo Service in the Repository Editor
	4.4.2.2 tryOnCARRAY.java Client Code

	4.4.3 Using the FML Buffer Type
	4.4.3.1 tryOnFml.java Client Code
	4.4.3.2 FML Field Definitions
	4.4.3.3 Define PASSFML in the Repository Editor
	4.4.3.4 tryOnFml.c Server Code

	4.4.4 Using the VIEW Buffer Type
	4.4.4.1 Define VIEW in the Repository Editor
	4.4.4.2 simpview.java Client Code
	4.4.4.3 VIEW Field Definitions
	4.4.4.4 simpview.c Server Code

	4.4.5 Using the XML Buffer Type
	4.4.5.1 Define the Tuxedo Service in the Repository Editor
	4.4.5.2 simpxml.java Client Code

	4.4.6 Using the MBSTRING Buffer Type

	4.5 Multithreaded Applications
	4.5.1 Threads of Control
	4.5.1.1 Preemptive Threading
	4.5.1.2 Non-Preemptive Threading

	4.5.2 Using Jolt with Non-Preemptive Threading
	4.5.3 Using Threads for Asynchronous Behavior
	4.5.4 Using Threads with Jolt

	4.6 Event Subscription and Notifications
	4.6.1 Event Subscription Classes
	4.6.2 Notification Event Handler
	4.6.3 Connection Modes
	4.6.4 Notification Data Buffers
	4.6.5 Oracle Tuxedo Event Subscription
	4.6.5.1 Supported Subscription Types
	4.6.5.2 Subscribing to Notifications
	4.6.5.3 Unsubscribing from Notifications

	4.6.6 Using the Jolt API to Receive Oracle Tuxedo Notifications

	4.7 Clearing Parameter Values
	4.8 Reusing Objects
	4.9 Deploying and Localizing Jolt Applets
	4.9.1 Deploying a Jolt Applet
	4.9.2 Client Considerations
	4.9.3 Web Server Considerations
	4.9.4 Localizing a Jolt Applet

	4.10 Using SSL

	5 Using JoltBeans
	5.1 Overview of Jolt Beans
	5.1.1 JoltBeans Terms
	5.1.2 Adding JoltBeans to Your Java Development Environment
	5.1.3 Using Development and Run-time JoltBeans

	5.2 Basic Steps for Using JoltBeans
	5.3 JavaBeans Events and Oracle Tuxedo Events
	5.3.1 Using Oracle Tuxedo Event Subscription and Notification with JoltBeans

	5.4 How JoltBeans Use JavaBeans Events
	5.5 The JoltBeans Toolkit
	5.5.1 JoltSessionBean
	5.5.2 JoltServiceBean
	5.5.3 JoltUserEventBean

	5.6 Jolt-Aware GUI Beans
	5.6.1 JoltTextField
	5.6.2 JoltLabel
	5.6.3 JoltList
	5.6.4 JoltCheckbox
	5.6.5 JoltChoice

	5.7 Using the Property List and the Property Editor to Modify the JoltBeans Properties
	5.8 JoltBeans Class Library Walkthrough
	5.8.1 Building the Sample Form
	5.8.1.1 Placing JoltBeans onto the Form Designer

	5.8.2 Wiring the JoltBeans Together
	5.8.2.1 Step 1: Wire the JoltSessionBean Logon
	5.8.2.2 Step 2: Wire JoltSessionBean to JoltServiceBean Using PropertyChange
	5.8.2.3 Step 3: Wire the accountID JoltTextField as Input to the JoltServiceBean Using JoltInputEvent
	5.8.2.4 Step 4: Wire Button to JoltServiceBean Using JoltAction
	5.8.2.5 Step 5: Wire JoltServiceBean to the Balance JoltTextField Using JoltOutputEvent
	5.8.2.6 Step 6: Wire the JoltSessionBean Logoff
	5.8.2.7 Step 7: Compile the Applet
	5.8.2.8 Running the Sample Application

	5.9 Using the Oracle Tuxedo Service Metadata Repository and Setting the Property Values
	5.10 JoltBeans Programming Tasks
	5.10.1 Using Transactions with JoltBeans
	5.10.2 Using Custom GUI Elements with the JoltService Bean

	6 Using Servlet Connectivity for Oracle Tuxedo
	6.1 What Is a Servlet?
	6.2 How Servlets Work with Jolt
	6.2.1 The Jolt Servlet Connectivity Classes

	6.3 Writing and Registering HTTP Servlets
	6.4 Jolt Servlet Connectivity Sample
	6.4.1 Viewing the Sample Servlet Applications
	6.4.2 SimpApp Sample
	6.4.2.1 Requirements for Running the SimpApp Sample
	6.4.2.2 Installing the SimpApp Sample

	6.4.3 BankApp Sample
	6.4.3.1 Requirements for Running the BankApp Sample
	6.4.3.2 Installation Instructions

	6.4.4 Admin Sample
	6.4.4.1 Requirements for Running the Admin Sample
	6.4.4.2 Installation Instructions

	6.5 Additional Information on Servlets

	7 Migrating from Jolt Repository to Oracle Tuxedo Service Metadata Repository
	7.1 Replacing JREPSVR with TMMETADATA in UBBCONFIG
	7.2 Loading Jolt Repository to Oracle Tuxedo Service Metadata Repository
	7.3 Sample: joltapp Migration

	A Oracle Jolt Exceptions
	Glossary
	Index

