
Oracle® Tuxedo
Using the Tuxedo .NET Workstation Client

Release 22c (22.1.0.0.0)
G19497-02
March 2025

Oracle Tuxedo Using the Tuxedo .NET Workstation Client, Release 22c (22.1.0.0.0)

G19497-02

Copyright © 1996, 2025, Oracle and/or its affiliates.

Primary Author: Preeti Gandhe

Contributing Authors: Tulika Das

Contributors: Maggie Li

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Documentation Accessibility v

1 Oracle Tuxedo Using the Tuxedo .NET Workstation Client

1.1 Overview 1-1

1.1.1 Limitations 1-2

1.2 How Tuxedo .NET Workstation Client Works 1-2

1.2.1 Microsoft .NET Framework 1-3

1.2.2 Developing Tuxedo .NET Workstation Client Applications 1-4

1.3 Programming Tuxedo .NET Workstation Clients 1-4

1.3.1 Tuxedo .NET Workstation Client Namespaces 1-4

1.3.2 Using AppContext Class 1-5

1.3.3 Using Typed Buffers 1-6

1.3.3.1 Using STRING Typed Buffers 1-7

1.3.3.2 Using FML/FML32 Typed Buffers 1-7

1.3.3.3 Using VIEW/VIEW32 Typed Buffers 1-8

1.3.4 Programming with Visual Basic (VB) 1-10

1.3.5 Building .NET Workstation Clients 1-11

1.3.6 Managing Errors 1-11

1.4 Tuxedo .NET Workstation Client Samples 1-11

1.5 See Also 1-12

Index

iii

List of Figures

1-1 How Tuxedo .NET Workstation Client Works 1-3

1-2 Tuxedo .NET Workstation Client Typed Buffer Class Hierarchy 1-6

iv

Preface

This guide describes how to use the Tuxedo .NET Workstation Client.

• Documentation Accessibility

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Oracle Tuxedo Using the Tuxedo .NET
Workstation Client

This topic includes the following sections:

• Overview

• How Tuxedo .NET Workstation Client Works

• Programming Tuxedo .NET Workstation Clients

• Tuxedo .NET Workstation Client Samples

• See Also

1.1 Overview
For Microsoft .NET programmers, Tuxedo .NET Workstation Client is a facilitating tool that will
help to efficiently develop Tuxedo .NET Workstation Client applications. Besides providing a
set of Object Oriented (OO) interfaces to .NET programmers, this tool allows you to design and
write code in OO styles.

For Tuxedo programmers, the Tuxedo .NET Workstation Client inherits most ATMI function
invocation behavior which makes it easier to understand and use .NET Client classes to write
applications. Because the Tuxedo .NET Workstation Client is published as a .NET assembly, it
also leverages the benefit of .NET Framework. It can be used with many .NET programming
languages (for example, C#, J#, VB .NET, and ASP.NET).

Note:

The Tuxedo Workstation Client has been tested with and officially supports Microsoft
Framework 4.8.

The Tuxedo .NET Workstation Client enables you to write Tuxedo client applications
using .NET programming languages to access Tuxedo services. It also provides connectivity
between .NET workstation applications and Tuxedo services.

The Tuxedo .NET Workstation Client contains the following components:

• A wrapper assembly: libwsclient.dll
This Microsoft .NET Framework .dll assembly wraps Tuxedo ATMI and FML functions for
developing Tuxedo .NET workstation clients.

• A set of utilities: viewcs, viewcs32; mkfldcs, mkfldcs32; and buildnetclient
These executable utilities help to develop C# code using Tuxedo VIEW/VIEW32 and FML/
FML32 typed buffer and compile C# code to Tuxedo .NET Workstation Client executable
assemblies. For more information, see viewcs,viewcs32(1), mkfldcs,mkfldcs32(1),
buildnetclient(1), refer to Section 1 - Commands.

• Sample applications: callapp, fmlviewapp, and unsolapp

1-1

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html

These three samples explain how to create Tuxedo .NET Workstation Client application
using C#. See Tuxedo .NET Workstation Client Samples.

• Limitations

1.1.1 Limitations
The Tuxedo .NET Workstation Client has the following limitations:

• It exclusively supports developing Tuxedo workstation clients with .NET languages. It does
not support developing Tuxedo native clients or Tuxedo servers in a .NET environment.

• The MBSTRING data type is not supported; the FLD_MBSTRING type is not supported in FML
or VIEW buffers.

• New ATMI functions introduced in Tuxedo 11gR1 and later are not included in the
Tuxedo .NET Workstation Client package (for example, tpxmltofml32(3) and
tpfmltoxml32(3)).

• Tx Transaction interfaces (for example: tx_open(), tx_close(), and tx_begin()), are not
supported by Tuxedo .NET Workstation Client. Only Tuxedo TP transaction functions can
be used.

• Tuxedo .NET workstation Client implementation requires ATMI client functionality. During
the Tuxedo installation, the Full Install Set and .NET Client Install Set automatically include
the ATMI Client Install Set.
For more Tuxedo .NET Client installation and Tuxedo install set information, see Installing
the Oracle Tuxedo System.

• Microsoft .NET Framework 4.8 must be installed in order to use the Tuxedo .NET
Workstation Client. Microsoft .NET Framework is not bundled with the Tuxedo .NET
Workstation Client package.
To download Microsoft .NET Framework and for more Microsoft .NET Framework
information, see Microsoft’s .NET Developer Center.

1.2 How Tuxedo .NET Workstation Client Works
The Tuxedo .NET Workstation Client works as an intermediate layer or wrapper between
your .NET applications and underlying Tuxedo workstation shared libraries
(libwsc.dll,libengine.dll, and libfml.dll). The following figure illustrates how the
Tuxedo .NET Workstation client works.

The . NET assembly libwscdnet.dll contains the wrapper API classes for Tuxedo .NET
Workstation Client and implements a set of object-oriented-styled interfaces that wrap around
Tuxedo ATMI functions and FML functions.

buildnetclient references libwscdnet.dll in order to build Tuxedo workstation clients
written in . NET programming languages. It targets the Common Language Runtime (CLR)
environment, and is invoked by the assemblies (for example, client executables, libraries)
depending on it at runtime.

The win32 shared library, libwdi.dll, implements platform specific functions that
libwscdnet.dll uses.

Chapter 1
How Tuxedo .NET Workstation Client Works

1-2

Note:

libwdi.dll is only required by libwscdnet.dll at runtime and is not necessary
when buildnetclient builds the application source files into .NET executables.
This library is reserved for future use if Microsoft’s .NET Framework is ported to
platforms other than the Microsoft Windows family.

Figure 1-1 How Tuxedo .NET Workstation Client Works

• Microsoft .NET Framework

• Developing Tuxedo .NET Workstation Client Applications

1.2.1 Microsoft .NET Framework
The Tuxedo .NET Workstation Client requires Microsoft .NET Framework 4.8 SDK installation
on your system. The Oracle Tuxedo installer program automatically checks to see if .NET
Framework is installed or not. If installed, libwscdnet.dll is automatically registered in
the .NET Framework global assembly cache.

If .NET Framework is not installed, you must install it. You can download the .NET Framework
from Microsoft’s .NET Developer Center. After you have installed .NET Framework, manually
registering libwscdnet.dll in the global assembly cache is highly recommended.

You can register/un-register libwscdnet.dll from the command line.

To register enter:

• For VS2022 (.NET 4.8): "C:/Program Files (x86)/Microsoft SDKs/Windows/
v10.0A/bin/NETFX 4.8 Tools/x64/gacutil.exe" /i %TUXDIR%\bin\libwscdnet.dll

To unregister enter:

Chapter 1
How Tuxedo .NET Workstation Client Works

1-3

• For VS2022 (.NET 4.8): "C:/Program Files (x86)/Microsoft SDKs/Windows/
v10.0A/bin/NETFX 4.8 Tools/x64/gacutil.exe" /u %TUXDIR%\bin\libwscdnet.dll

1.2.2 Developing Tuxedo .NET Workstation Client Applications
Programmers developing Tuxedo .NET Workstation Client applications must:

1. Use the .NET wrapper classes/interfaces

2. Set up a Tuxedo workstation client environment

3. Access Tuxedo services via Tuxedo /WS protocol.

The Tuxedo .NET Workstation Client provides development utilities that can aid programmers
using Tuxedo FML/VIEW typed buffer and building .NET executable files. See Using FML/
FML32 Typed Buffers and Using VIEW/VIEW32 Typed Buffers.

1.3 Programming Tuxedo .NET Workstation Clients
Main changes in Tuxedo .NET Workstation Client interface (compared to Tuxedo ATMI and
FML C functions), are as follows:

• Class AppContext is used to organize almost all ATMI C functions.

• A Tuxedo transaction is encapsulated as a class. All transaction related functions are
defined as methods of

Class
 Transaction

, (for example, tpbegin(), tpcommit(), and so on).

• Exception classes control error handling

• Tuxedo typed buffer encapsulation is handled using class TypedBuffer and its derived
classes. See Using Typed Buffers.

• Tuxedo .NET Workstation Client Namespaces

• Using AppContext Class

• Using Typed Buffers

• Programming with Visual Basic (VB)

• Building .NET Workstation Clients

• Managing Errors

1.3.1 Tuxedo .NET Workstation Client Namespaces
Tuxedo .NET Workstation Client namespaces are divided into two categories. The first
category includes two namespaces, Bea.Tuxedo.ATMI and Bea.Tuxedo.FML that bundles ATMI
and FML wrapper classes.

The second category uses the Bea.Tuxedo.Autogen namespace to bundle all auto-
generated .NET classes using .NET Client utilities.

These namespaces include all the classes and structures related to the functions listed in the
Tuxedo .NET Workstation Client API Reference.

Chapter 1
Programming Tuxedo .NET Workstation Clients

1-4

1.3.2 Using AppContext Class
The AppContext class is a key class used to perform Tuxedo service access functions.
AppContext leverages the OO programming style in a multi-contexted client application.

Note:

For more multi-context information, see Programming a Multithreaded and
Multicontexted ATMI Application in Programming an Oracle Tuxedo ATMI Application
Using C.

Most Tuxedo ATMI C functions (for example, tpcall(), and tpnotify()), are defined as
AppContext class methods. Creating an AppContext class instance is a key component in
connecting to a Tuxedo domain and call services provided by that Tuxedo domain.

In a multi-contexted application written in C or COBOL, programmers typically have to switch
between different Tuxedo context using two ATMI functions, tpgetctxt() and tpsetctxt().
This is not required using the Tuxedo .NET Workstation Client. Creating a class AppContext
instance also creates specific Tuxedo context instance.

Operations on a particular AppContext will not impact other AppContext instances. You can
develop multi-context applications and easily switch between them.

To create a Tuxedo context instance you need to invoke the static class method,
AppContext.tpinit(TPINIT), instead of the class constructor.

Note:

Tuxedo context instances are not destroyed automatically. You must invoke
AppContext.tpterm() before a Tuxedo context instance is destroyed, otherwise you
may encounter the following:

• The garbage collector (gc) may destroy AppContext class instances without
terminating the Tuxedo context session.

• The client and WSH connection remains live until it times-out.

The following C# Code snippet illustrates the how to connect to a single context client Tuxedo
domain.

……

TypedTPINIT tpinfo = new TypedTPINIT();

AppContext ctx1 = AppContext.tpinit(tpinfo); // connect to Tuxedo domain

……

ctx1.tpterm(); // disconnect from Tuxedo domain

Chapter 1
Programming Tuxedo .NET Workstation Clients

1-5

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/pgc/pgthr.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/pgc/pgthr.html

The following C# Code snippet illustrates how to connect to a multi-context client Tuxedo
domain .

……

TypedTPINIT tpinfo = new TypedTPINIT();

tpinfo.flags = TypedTPINIT.TPMULTICONTEXTS; // set multi context flag

// connect to the first Tuxedo domain

AppContext ctx1 = AppContext.tpinit(tpinfo);

Utils.tuxputenv("WSNADDR=//10.2.0.5:1001");

// connect to the second Tuxedo domain

AppContext ctx2 = AppContext.tpinit(tpinfo);

……

ctx1.tpterm(); // disconnect from the first Tuxedo domain

ctx2.tpterm(); // disconnect from the second Tuxedo domain

1.3.3 Using Typed Buffers
The Tuxedo .NET Workstation Client supports the following built-in Oracle Tuxedo buffer types:
FML, FML32, VIEW, VIEW32, CARRAY, and STRING. The following figure provides an illustration of
the Tuxedo .NET Workstation Client typed buffer class hierarchy.

The Tuxedo .NET Workstation Client class TypedBuffer is the base class of all concrete
Tuxedo buffer types and provides some low level functions to all derived classes. Class
TypedBuffer is an abstract class and cannot be used to create instances.

Figure 1-2 Tuxedo .NET Workstation Client Typed Buffer Class Hierarchy

Chapter 1
Programming Tuxedo .NET Workstation Clients

1-6

• Using STRING Typed Buffers

• Using FML/FML32 Typed Buffers

• Using VIEW/VIEW32 Typed Buffers

1.3.3.1 Using STRING Typed Buffers
The Tuxedo .NET Workstation Client uses class TypedString to define STRING typed buffer
characters. TypedString instances can be used directly to communicate with AppContext
methods such astpcall(). See the following code snippet illustrates Using TypedString Class
(C# code example).

……

TypedString snd_str = new TypedString ("Hello World");

TypedString rcv_str = new TypedString(1000);

AppContext ctx = AppContext.tpinit(null);

……

ctx.tpcall("TOUPPER", snd_str, rcv_str, 0);

……

ctx.tpterm();

……

1.3.3.2 Using FML/FML32 Typed Buffers
The Tuxedo .NET Workstation Client uses class TypedFML/TypedFML32 to define most FML C
functions. You should do the following steps to develop Tuxedo .NET applications using FML
typed buffers:

1. Define FML field table files.
Compile field table files into C# source files using the mkfldcs Tuxedo .NET Workstation
Client utility. The generated C# files contain public classes including definitions of every
FML field ID defined in the field table files. See also mkfldcs(1)

2. Write your .NET application.
Use TypeFML class methods to create and access FML data.

For more FML typed buffer programming information, see Programming a Tuxedo ATMI
Application Using FML.

Note:

.NET Workstation Client supports the FLD_MBSTRING field in FML32 buffer. For more
information, refer to Fmbpack32() and Fmbunpack32(). refer to Section 3fml - FML
Functions.

Chapter 1
Programming Tuxedo .NET Workstation Clients

1-7

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3fml/rf3fml.html#wp1182217
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3fml/rf3fml.html#wp1182217

The following code snippet illustrates the FML Auto-Generated Code Using mkfldcs (C# code
example)

using Bea.Tuxedo.FML;

namespace Bea.Tuxedo.Autogen {

public class fnext_flds {

public static readonly FLDID F_short = 110; // number: 110 type: short

public static readonly FLDID F_view32 = 369098863; // number: 111 type: view32
public static readonly FLDID F_double = 134217840; // number: 112 type: double
public static readonly FLDID F_ptr = 301990001; // number: 113 type: ptr

}

} // namespace Bea.Tuxedo.Autogen

The following code snippet illustrates the using TypedFML Class (C# code example)

……

TypedFML fmlbuf = new TypedFML(2048);

short s = 123;

fmlbuf.Fadd(fnext_flds.F_short, s);

……

fmlbuf.Resize(3000);

……

fmlbuf.Dispose();

……

1.3.3.3 Using VIEW/VIEW32 Typed Buffers
The Tuxedo .NET Workstation Client uses class TypedVIEW to create and access VIEW/
VIEW32 data. You should do the following steps to develop Tuxedo .NET Workstation Client
applications using VIEW/VIEW32 typed buffers:

1. Define the VIEW definition file (.v).

2. Use the Tuxedo .NET Workstation Client viewcs utility to compile the VIEW definition file
into a VIEW binary file (.VV). For more information, see viewc(1),viewcs(1).

3. Use the Tuxedo .NET Workstation Client viewcs utility to generate class TypedVIEW derived
definition C# code and corresponding .dll library (if necessary) from the View binary file.

4. Use class TypedVIEW to write your .NET application.
Using class TypedVIEW provides you with two options:

Chapter 1
Programming Tuxedo .NET Workstation Clients

1-8

• Option 1: No Environment Variables
This is the most common usage of TypedVIEW.

Use the viewcs utility to generate derived class TypedVIEW definition C# code from the
xxx.VV file, then compile the C# code into an .exe file. No additional environment
variables are required.

See the following example:

viewcs(32) view1.VV view2.VV
buildnetclient -o simpapp.exe simpapp.cs view1.cs view2.cs

• Option 2: Use .NET Assembly Environment Variables
You can use the viewcs utility along with .NET assembly environment variables to
generate .dll libraries. The .NET assembly environment variables ASSFILES, ASSDIR
(ASSFILES32, ASSDIR32 for view32) must be set accordingly in order to view viewcs-
generated .dll libraries.

Note:

TypedView must link to .dll libraries instead of C# code in the .NET
environment. This is because it compiles the class type into .dll libraries
or .exe files. If the definition is compiled into both .dll libraries and .exe
files, the output binaries for these two files are not the same.

Using these environment variables, .dll libraries can be generated automatically or
manually:

Automatic viewcs -generated .dll libraries

This method may be used when many xxx.VV files exist. To simplify management of
TypedVIEW C# code, these xxx.VV files can be compiled into a .dll library.

Use the viewcs utility to generate derived class TypedVIEW definition C# code and
corresponding .dll library from the xxx.VV files. Manually register the libwscdnet.dll
assembly, and then compile your client application using the .dll library.

See the following example:

viewcs(32) view.dll view1.VV view2.VV
gacutil.exe /i view.dll
buildnetclient -o simpapp.exe simpapp.cs view.dll
set ASSFILES(32)=view.dll
set ASSDIR(32)=%APDIR%

Manual-generated .dll Libraries

In certain integrated programming environments (for example, VB .NET, and
ASP.NET). the framework provides the executing environment. Client applications are
integrated as .dll files. In this case it is best to manually generate .dll libraries.

Use the viewcs utility to generate derived class TypedVIEW definition C# code from the
xxx.VV file, then compile the C# code into an application .dll.

Chapter 1
Programming Tuxedo .NET Workstation Clients

1-9

The .NET assembly environment variables ASSFILES, ASSDIR (ASSFILES32, ASSDIR32
for view32) must be set to application .dll libraries and directories that have
TypedVIEW defined.

See the following example:

viewcs(32) view1.VV view2.VV
csc /t:library /out:simpapp.dll /r:%TUXDIR%\bin\libwscdnet.dll
simpapp.cs
view1.cs view2.cs
set ASSFILES(32)=simpapp.dll
set ASSDIR(32)=%APDIR%

The Typed Buffer Samples file (included in the Tuxedo . NET Workstation Client package)
demonstrates how to use FML and VIEW typed buffers.

1.3.4 Programming with Visual Basic (VB)
One benefit of the .NET Framework environment is language integration. Once a .NET
assembly is generated, you can use any .NET supported language to develop applications
using that assembly. Accordingly, you can also use J#, VB, C++ or other .NET supported
languages to develop Tuxedo .NET Workstation Client applications.

The following code snippet illustrates a Visual Basic .NET Code Example language code
example:

Imports System
Imports Bea.Tuxedo.ATMI

Module Main
Sub Main()

Dim sndstr, rcvstr As TypedString
Dim ac As AppContext
Dim info As TypedTPINIT

info = New TypedTPINIT()
info.cltname = "vb client"

Try
ac = AppContext.tpinit(info)

sndstr = New TypedString("hello world")
rcvstr = new TypedString(1000)

ac.tpcall("TOUPPER", sndstr, rcvstr, 0)

Console.WriteLine("rcvstr = {0}"
...rcvstr.GetString(0,1000))

ac.tpterm()

Catch e as ApplicationException

Console.WriteLine("Got Exception = {0}", e)

Chapter 1
Programming Tuxedo .NET Workstation Clients

1-10

End Try

End Sub

End Module

1.3.5 Building .NET Workstation Clients
The buildnetclient utility is provided to help compile C# source files into a .NET executable
files. See also buildnetclient(1).

Note:

Link editing must be done by running the buildnetclient utility.

The following is a buildnetclient syntax example:

buildnetclient -v -o simpapp.exe simpapp.cs

1.3.6 Managing Errors
The error code return mechanism used with Tuxedo ATMI C and FML C functions is replaced
with an exception mechanism in the Tuxedo .NET Workstation Client. You can use the try
statement to handle errors using the Tuxedo .NET Workstation Client. Errors are defined into
two categories: TPException and FException.

The following code snippet illustrates the Exception Handling (C# Code Example)

……

try {

……
TypedTPINIT tpinfo = new TypedTPINIT();
AppContext ctx1 = AppContext.tpinit(tpinfo); // connect to Tuxedo domain

……
ctx1.tpterm(); // disconnect from Tuxedo domain

……
} catch (ApplicationException e) {

Console.WriteLine("******Error******, e = {0}", e);

}
……

1.4 Tuxedo .NET Workstation Client Samples
Three sample applications are bundled with Tuxedo .NET Workstation Client package:

Chapter 1
Tuxedo .NET Workstation Client Samples

1-11

• Basic Sample
Describes how to develop Tuxedo .NET Workstation Client applications

• Typed Buffer Sample
Demonstrates FML/VIEW typed buffer usage in Tuxedo .NET Workstation Client
applications

• Unsolicited Message Sample
Demonstrates how to register unsolicited message handler in Tuxedo .NET Workstation
Client applications

You must do the following steps to access the sample applications:

1. Read the readme.nt file in each sample application directory.

2. Run setenv.cmd to set Tuxedo environment variable.

3. Run nmake -f xxx.nt to build the Tuxedo .NET Workstation Client application, Tuxedo
server program and Tuxedo TUXCONFIG file.

4. Run tmboot -y to start Tuxedo application.

5. Run Tuxedo .NET Workstation Client application.

1.5 See Also
• viewc, viewc32(1); viewcs, viewcs32(1) and mkfldhdr, mkfldhdr32(1); mkfldcs,

mkfldcs32(1), refer Oracle® Tuxedo Command Reference

• Oracle® Tuxedo Programming an Oracle Tuxedo ATMI Application Using C

• Oracle® Tuxedo ATMI C Function Reference

• Oracle Tuxedo ATMI FML Function Reference

• File Formats, Data Descriptions, MIBs, and System Processes Reference

Chapter 1
See Also

1-12

https://docs.oracle.com/en/database/oracle/tuxedo/22/otxcr/index.html
https://docs.oracle.com/en/database/oracle/tuxedo/22/otxac/oracle-tuxedo-programming-oracle-tuxedo-atmi-application-using-c.pdf
https://docs.oracle.com/en/database/oracle/tuxedo/22/atmir/index.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3fml/index.html
https://docs.oracle.com/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html

Glossary

Glossary-1

Index

Index-1

	Contents
	List of Figures
	Preface
	Documentation Accessibility

	1 Oracle Tuxedo Using the Tuxedo .NET Workstation Client
	1.1 Overview
	1.1.1 Limitations

	1.2 How Tuxedo .NET Workstation Client Works
	1.2.1 Microsoft .NET Framework
	1.2.2 Developing Tuxedo .NET Workstation Client Applications

	1.3 Programming Tuxedo .NET Workstation Clients
	1.3.1 Tuxedo .NET Workstation Client Namespaces
	1.3.2 Using AppContext Class
	1.3.3 Using Typed Buffers
	1.3.3.1 Using STRING Typed Buffers
	1.3.3.2 Using FML/FML32 Typed Buffers
	1.3.3.3 Using VIEW/VIEW32 Typed Buffers

	1.3.4 Programming with Visual Basic (VB)
	1.3.5 Building .NET Workstation Clients
	1.3.6 Managing Errors

	1.4 Tuxedo .NET Workstation Client Samples
	1.5 See Also

	Glossary
	Index

