
Oracle® Tuxedo
Using Oracle Jolt with Oracle Weblogic
Server

Release 22c
F93306-02
August 2024

Oracle Tuxedo Using Oracle Jolt with Oracle Weblogic Server, Release 22c

F93306-02

Copyright © 1996, 2024, Oracle and/or its affiliates.

Primary Author: Preeti Gandhe

Contributing Authors: Tulika Das

Contributors: Maggie Li

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Documentation Accessibility vi

1 Introduction to Oracle Jolt for Oracle WebLogic Server

1.1 Key Features 1-1

1.2 How Jolt for WebLogic Works 1-1

1.2.1 Relationship Between Jolt for WebLogic and Tuxedo 1-2

1.2.2 Essential Components of the Jolt Architecture 1-2

1.2.3 WebLogic Server Startup 1-3

1.2.4 Connecting to a WebLogic Server from a Client Browser 1-4

1.2.5 How a Servlet Connects to Tuxedo 1-4

1.2.6 What Happens if the Request Fails 1-5

1.2.7 Responding to the Client Browser 1-5

1.2.8 Disconnecting from the Jolt Server 1-5

1.3 Using the Example Packages 1-5

2 Configuring Jolt for WebLogic Server

2.1 Configuring Jolt for Tuxedo 2-1

2.2 Configuring Jolt for WebLogic Server 2-1

2.2.1 Jolt Startup Class and Connection Pool 2-1

2.2.1.1 Jolt Connection Pool Attributes 2-2

2.2.2 Jolt Shutdown Class 2-4

2.3 Displaying Jolt in the WebLogic Administration Console 2-4

2.4 Resetting the Jolt Connection Pool 2-5

2.4.1 Command-line Method 2-5

2.4.2 Administration Console Method 2-5

3 Implementing Jolt for WebLogic

3.1 Importing Packages 3-1

3.2 Configuring a Session Pool 3-1

3.2.1 Accessing a Servlet Session Pool 3-2

iii

3.3 Using a Servlet Session Pool 3-3

3.3.1 Calling a Tuxedo Service 3-3

3.3.2 Sending a ServletDataSet 3-3

3.3.3 Adding Parameters to the Dataset 3-4

3.4 Accessing a Tuxedo Service Through Jolt 3-4

3.5 Converting Java Data Types to Tuxedo Data Types 3-4

3.6 Receiving Results from a Service 3-5

3.6.1 Using the Result.getValue() Method 3-5

3.6.2 Using the ServletResult.getStringValue() Method 3-6

3.7 Using a Transaction 3-6

3.7.1 Handling Exceptions 3-7

Part I Appendixes

iv

List of Figures

1-1 Oracle Jolt for Oracle WebLogic Server Architecture 1-3

2-1 WebLogic Server Console with Jolt Connection Pool 2-4

2-2 Resetting JOLT Connection Pool 2-6

1 simpapp.html Example 6

2 Output Stream Results Example 8

v

Preface

This preface introduces you to the Oracle Tuxedo Using Oracle Jolt with Oracle Weblogic
Server's Guide discussing how to enable Oracle Tuxedo services for the Web, by using Oracle
WebLogic Server as the front-end HTTP and application server, and to provide references to
related documentation.

The document includes the following chapters:

• Documentation Accessibility

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Introduction to Oracle Jolt for Oracle WebLogic
Server

Oracle Jolt is a Java-based client API that manages requests to Oracle Tuxedo services via a
Jolt Service Listener (JSL) running on the Tuxedo server. The Jolt API is embedded within the
WebLogic API, and is accessible from a servlet or any other Oracle WebLogic application.

Because Oracle Jolt for Oracle WebLogic Server is an extension to the Jolt Java class library,
the Jolt Java client class library can be used in HTTP servlets running in the WebLogic Server.
Oracle Jolt for Oracle WebLogic Server also uses Java HTTP servlets to provide an interface
between HTML browser clients and Oracle Tuxedo services.

Hereafter, Oracle Tuxedo is referred to as Tuxedo, Oracle Jolt is referred to as Jolt, and Oracle
WebLogic is referred to as WebLogic for readability.

This topic includes the following sections:

• Key Features

• How Jolt for WebLogic Works

• Using the Example Packages

1.1 Key Features
Key features of the Oracle Jolt for Oracle WebLogic Server architecture include:

• Enabling the use of Java HTTP servlets to provide a dynamic HTML front-end for Tuxedo
applications

• Providing session pooling to use Tuxedo resources efficiently

• Supporting transactions

• Integrating session pool management into the WebLogic Console

Note:

Jolt for WebLogic does not provide access to asynchronous Tuxedo event
notifications.

1.2 How Jolt for WebLogic Works
This section describes the major components used for communication in Jolt, and how Oracle
Jolt for Oracle WebLogic Server works, including:

• How the connection is initialized when the server is started

• The flow of information through:

– An end-user Web browser

1-1

– The WebLogic Server

– The Tuxedo transaction processing system

• Relationship Between Jolt for WebLogic and Tuxedo

• Essential Components of the Jolt Architecture

• WebLogic Server Startup

• Connecting to a WebLogic Server from a Client Browser

• How a Servlet Connects to Tuxedo

• What Happens if the Request Fails

• Responding to the Client Browser

• Disconnecting from the Jolt Server

1.2.1 Relationship Between Jolt for WebLogic and Tuxedo
Using Oracle Jolt for Oracle WebLogic Server, you can access your underlying Tuxedo system
from the Web. This access allows you to write Web-enabled applications that can interact with
other systems and databases in your Tuxedo domain.

The system described here is accessed through a standard Web browser. This Web browser is
served by the WebLogic Server, which uses a customized Java HTTP servlet to handle the
interactive HTTP requests of the browser. (An HTTP servlet is a Java class that handles an
HTTP request and delivers an HTTP response.) The custom HTTP servlet uses the Jolt for
WebLogic API to talk to a Jolt Server that can be on a remote machine or behind a security
firewall.

The Jolt Server lives within the Tuxedo domain and determines which Tuxedo services are
accessible to each client. The Jolt Server invokes the requested Tuxedo service and sends any
results back to the WebLogic Server. You can then compile the results into a servlet-generated
Web page, and send them to the browser. In doing so, you create a highly accessible and user
friendly interface to Tuxedo services from anywhere on the Internet or intranet.

1.2.2 Essential Components of the Jolt Architecture
The fundamental object types that maintain the communications connection from the WebLogic
Java HTTP servlet to the Jolt Server and from the Jolt Server to Tuxedo, are as follows:

• Session
A session object represents a physical connection with the Tuxedo system.

• SessionPool
A session pool contains one or more sessions. The sessions in the session pool are
reused for efficiency. Your WebLogic servlet uses sessions to invoke services in Tuxedo
through the methods of a session pool. Session pools are initialized by the WebLogic
server at startup and configured by attributes in the config.xml file.

Note:

For Oracle WebLogic Server 6.0 or later, the xml-based config.xml configuration
file has replaced the weblogic.properties file. For more information about the
config.xml file, refer to the Oracle WebLogic Server Administration Guide.

Chapter 1
How Jolt for WebLogic Works

1-2

• SessionPoolManager
Use the session pool manager to get a reference to a session pool and to create,
administer, and remove session pools. The session pool manager is created just before
the WebLogic Server initializes the first session pool.

The following figure shows the architecture for Oracle Jolt for Oracle WebLogic Server.

Figure 1-1 Oracle Jolt for Oracle WebLogic Server Architecture

1.2.3 WebLogic Server Startup
The WebLogic standards-based, pure-Java application server assembles, deploys, and
manages distributed Java applications. It supports distributed component services and
enterprise database access, including Enterprise JavaBeans, Remote Method Invocation
(RMI), distributed JavaBeans, and Java Database Connect (JDBC).

The WebLogic Server’s Administration Server is populated with JavaBean-like objects Sun
Microsystem’s Java Management Extension (JMX) standard. These objects provide
management access to domain resources.

The Administration Server contains both configuration MBeans and run-time MBeans.
Configuration MBeans provide both SET (write) and GET (read) access to configuration
attributes. Run-time MBeans provide a snapshot of information about domain resources, such
as current HTTP sessions or the load on a JDBC session pool. When a particular resource in
the domain (such as a Jolt connection pool) is instantiated, an MBean is created to collect
information about that resource.

Chapter 1
How Jolt for WebLogic Works

1-3

Note:

For more information about configuration and run-time MBeans, refer to the Oracle
WebLogic Server Administration Guide.

The WebLogic Server is configured to initialize the session pools at startup through the
config.xml file. A special startup class, PoolManagerStartUp, is invoked by the WebLogic
Server with a number of parameters. This class functions as follows:

• Creates a session pool manager if one does not already exist

• Creates a session pool according to the given parameters

• Adds the new session pool to the pool manager

Note:

If the JSL port is configured as non-SSL and Jolt 22c is used, the Java property -
DTM_ALLOW_NOTLS=Y must be set in WebLogic Server startup script. Otherwise, the
connections to JSL fails to established. Start the Jolt servers before attempting to
create a session pool; otherwise the startup classes will fail, and they will not attempt
to commit again.

The number of session pools created depends on the number of JoltConnectionPools that
are configured in the config.xml file.

1.2.4 Connecting to a WebLogic Server from a Client Browser
In addition to its other Java services, the WebLogic Server is a fully functional HTTP server
that supports Java HTTP servlets. In general, each servlet must be registered with a virtual
name in the config.xml file.

A servlet may be invoked directly, that is, may actually present HTML to the browser, or may be
invoked indirectly from an HTML form when the user submits the form. When the WebLogic
Server receives a request containing the registered virtual name of a servlet, it invokes the
appropriate servlet's service() method. For more information on HTTP servlets, refer to the
Programming WebLogic HTTP Servlets guide.

The HTTP servlet's service() method (which invokes either the servlet's doPost() or doGet()
method, depending on the context) is invoked and passes an HttpServletRequest object
containing the HTTP data sent from the browser. In the example packages described in “Using
the Example Packages”, the client's query data is used in a transaction call to Tuxedo, and the
response is built into the new HTML page.

1.2.5 How a Servlet Connects to Tuxedo
A servlet obtains a reference to the session pool manager that was created and initialized by
the WebLogic Server when it started. The pool manager is used to retrieve the session pool
that was configured in the config.xml file. This session pool references the appropriate Jolt
Server in a Tuxedo domain. A servlet uses the session pool to invoke a specific Tuxedo
service.

Chapter 1
How Jolt for WebLogic Works

1-4

Tuxedo services are described and exported (declared accessible) in the Oracle Tuxedo
Service Metadata Repository. In the Metadata Repository, the service’s expected input and
output parameter types are declared. A servlet must supply the expected input parameters;
Oracle Jolt for Oracle WebLogic Server uses specialized ServletSessionPool objects that can
accept their input directly from an HttpServletRequest object. The output is returned in a
ServletResult object.

1.2.6 What Happens if the Request Fails
The session pool distributes the requests equally among the sessions in the pool. It selects the
least busy session to call the Tuxedo service. If the selected session is terminated before the
Tuxedo service is called, the session pool redirects the service call to a different session, then
establishes a new session to replace the disconnected one. The session pool uses a round-
robin algorithm to select and establish a connection to a primary Jolt Server. If no primary Jolt
Servers responds, the session pool connects to a failover server.

If no sessions are available from a session pool, or the session pool is suspended, then a
SessionPoolException is thrown.

Multiple requests can be grouped into a single transaction. When a transaction fails, a
TransactionException is thrown. This exception should be caught by the servlet and handled
appropriately. (Usually, the servlet performs a rollback.)

1.2.7 Responding to the Client Browser
Provided the service call was successful, the following events occur:

• The desired results are extracted from the ServletResult object.

• The results are processed by the servlet and incorporated into an HTML page for
presentation to the user's browser. The HTML page can be built in one of two ways:

– With WebLogic's easy-to-use Java Server Pages (JSP) service that lets you embed
Java in a standard HTML page.

– Using a more sophisticated programmatic approach with WebLogic htmlKona.

• The WebLogic Server returns the HTML page to the client via the HttpServletResponse
object.

1.2.8 Disconnecting from the Jolt Server
The WebLogic Server is also configured to shut down the existing session pool connections to
Tuxedo through the config.xml file.

Register the class PoolManagerShutDown so that the Jolt session pool is cleaned up properly
when the WebLogic Server shuts down. PoolManagerShutDown does not require an attribute in
the config.xml file.

1.3 Using the Example Packages
Two example packages are included with Oracle Jolt for Oracle WebLogic Server. These
packages are described in the Simple Servlet Example and Servlet with Enterprise JavaBean
Example. They demonstrate how Jolt is used in WebLogic servlets to access Tuxedo services.
You can build, run, and inspect these examples to help you decide how to use WebLogic to
extend Tuxedo services to the Internet.

Chapter 1
Using the Example Packages

1-5

• Simple Servlet Example
A FORM-based HTML front end that submits a string to an HTTP servlet. The servlet in
turn sends this string to a Tuxedo service. The returned data is compiled into a
dynamically-generated HTML file, and sent back to the client browser.

• Servlet with Enterprise JavaBean Example
The Enterprise JavaBean (EJBean) example package contains the classes and other files
necessary to set up and run an EJBean stateful session to a Tuxedo Server that is using
Jolt.

Chapter 1
Using the Example Packages

1-6

2
Configuring Jolt for WebLogic Server

Configuring a Jolt Session Pool connection between Tuxedo and WebLogic Server requires
two procedures:

• Configuring Jolt for Tuxedo

• Configuring Jolt for WebLogic Server

• Displaying Jolt in the WebLogic Administration Console

• Resetting the Jolt Connection Pool

2.1 Configuring Jolt for Tuxedo
Refer to the Using Oracle Jolt for instructions on setting up a Jolt Service Listener (JSL) within
Tuxedo. In Using Oracle Jolt, it is assumed that JSL services have already been configured
within the Tuxedo domain. The guide only describes how to establish a session pool
connection to these services from WebLogic Server.

2.2 Configuring Jolt for WebLogic Server
This section describes how to set up an Oracle Jolt connection pool between the WebLogic
Server and the JSL in the Tuxedo domain. Your WebLogic Server must have access to the
host running the JSL.

• Jolt Startup Class and Connection Pool

• Jolt Shutdown Class

2.2.1 Jolt Startup Class and Connection Pool
You must instruct WebLogic Server to invoke the PoolManagerStartUp class whenever the
WebLogic Server is started or restarted. This invocation establishes the pool connection to
Tuxedo from the config.xml file, as shown in the following example.

Note:

For more information about the config.xml file, refer to the Oracle WebLogic Server
Administration Guide.

<StartupClass
 ClassName="bea.jolt.pool.servlet.weblogic.PoolManagerStartUp"
 FailureIsFatal="false"
 Name="MyStartup Class"
 Targets="myserver"
/>
<JoltConnectionPool
 ApplicationPassword="tuxedo"

2-1

 MaximumPoolSize="5"
 MinimumPoolSize="3"
 Name="MyJolt Connection Pool"
 PrimaryAddresses="//TUXSERVER:6309"
 RecvTimeout="300"
 SecurityContextEnabled="true"
 Targets="myserver"
 UserName="joltuser"
 UserPassword="jolttest"
 UserRole="clt"
/>

The startup class in the preceeding example instructs WebLogic Server to invoke the
PoolManagerStartUp class when the WebLogic Server starts. The JoltConnectionPool
specifies initialization arguments that are passed to the PoolManagerStartUp class. If you do
not want the SessionPool to try to reestablish the connection in case any of the JSL is forced
to shutdown, set the JVM property jolt.sessionPoolKeepAlive=false when starting up the
Weblogic Server.

• Jolt Connection Pool Attributes

2.2.1.1 Jolt Connection Pool Attributes
The Jolt connection pool attributes are defined as follows:

Attributes Description

Application Password (Optional) Tuxedo application password. This is
required only if the Tuxedo authentication level is
USER_AUTH or APP_PW.

MinimumPoolSize (Required) Specifies the initial session pool size
when the session pool is created.

MaximumPoolSize (Required) Specifies the maximum session pool
size. Each session within a pool can handle up to
50 outstanding requests at any one time.

Name (Optional) Defines a name for this session pool that
should be unique from the names of other session
pools. This is an optional argument, but it is
recommended that you use it to avoid ambiguity.
The SessionPoolManager allows only one
session pool to remain unnamed. You can access
this unnamed session pool from your application by
supplying null in place of the poolname string
argument to the getSessionPool() method

Note:

We strongly
recommend that you
name every session
pool.

Chapter 2
Configuring Jolt for WebLogic Server

2-2

Attributes Description

PrimaryAddresses (Required) Defines a list of the addresses of the
primary Jolt Server Listeners (JSLs) on the Tuxedo
system. These are defined in the format: //
hostname:port
where hostname is the name of the server where
the JSL is running, and port is the port on which
the JSL is configured to listen for requests. You can
specify multiple addresses in a semicolon-
separated (;) list

Note:

You must specify at
least one primary JSL
hostname:port
address.

Failover Addresses (Optional) You can specify a list of failover Jolt
Server Listeners in the same format used for
appaddrlist above. Jolt attempts to use these
failover JSL(s) if the primary JSLs listed above fail.
These JSLs need not reside on the same host as
the primary JSLs.

RecvTimeout (Required) Specifies the amount of time the client
should wait to receive a response before timing out.

SecurityContext Enabled (Optional) Enables or disables the security context
for this connection pool. This option should be
enabled if you want to implement authentication
propagation between WebLogic Server and Jolt. If
identity propagation is desired, then the Jolt
Service Handler (JSH) must be started with the -a
option. If this option is not set, but SecurityContext
is enabled, the JSH will not accept this request. If
the SecurityContext attribute is enabled, then the
Jolt client will pass the username of the caller to
the JSH.
If the JSH gets a message with the caller’s identity,
it calls impersonate_user() to get the appkey for
the user. JSH caches the appkey, so the next time
the caller makes a request, the appkey is retrieved
from the cache and the request is forwarded to the
service. A cache is maintained by each JSH, which
means that there will be a cache maintained for all
the session pools connected to the same JSH.

Targets (Required) Specifies the target servers for the
connection pool.

UserName (Optional) Tuxedo user name. This is required only
if the Tuxedo authentication level is USER_AUTH.

UserPassword (Optional) Tuxedo user password. This is required
only if the Tuxedo authentication level is
USER_AUTH.

Chapter 2
Configuring Jolt for WebLogic Server

2-3

Attributes Description

UserRole (Optional) Tuxedo user role. This is required only if
the Tuxedo authentication level is USER_AUTH or
APP_PW.

It is recommended that you configure one Jolt session pool for each application running on the
WebLogic Server.

2.2.2 Jolt Shutdown Class
To configure WebLogic Server to disconnect the Jolt session pools from Tuxedo when it shuts
down, add the following lines to the WebLogic Server config.xml file:

<ShutdownClass
 ClassName=”bea.jolt.pool.servlet.weblogic.PoolManagerShutDown”
/>

The shutdown class instructs WebLogic Server to invoke the PoolManagerShutDown class when
the WebLogic Server shuts down.

2.3 Displaying Jolt in the WebLogic Administration Console
If you are connecting to a WebLogic Server that has Jolt correctly installed and configured,
when you start the Administration Console you will see a configuration MBean for the Jolt
connection pool displayed in the Administration Console, as shown in the following figure.

Figure 2-1 WebLogic Server Console with Jolt Connection Pool

Chapter 2
Displaying Jolt in the WebLogic Administration Console

2-4

For each Jolt connection pool there is an individual MBean that displays the pool name,
maximum connections, pool state, and statistics about the connection status.

Note:

For more information about MBeans, refer to the Oracle WebLogic Server
Administration Guide.

2.4 Resetting the Jolt Connection Pool
You can reset the Jolt connection pool without having to restart WebLogic Server. The
resetConnectionPool() method calls the SessionPoolManager.stopSessionPool() method to
shut down all the connections in the pool. It then calls the
SessionPoolManager.createSessionPool() method to restart the connection pool.

• Command-line Method

• Administration Console Method

2.4.1 Command-line Method
To reset a connection pool, use the WebLogic Scripting Tool (WLST). The following is a sample
WLST code and instructions. The connection pool name must be JoltConnectionPool-0.

Compose a file named reset-joltpool.py with the following:

connect('username','PassID12','t3 ://10.10.1.1:2345'); # replace the values
according to your environment.
domainRuntime();
cd('ServerRuntimes/myserver/JoltRuntime/JoltService/ConnectionPools/
JoltConnectionPool-0');
cmo.resetConnectionPool();
exit()

Then, run the following commands to reset the Jolt connection pool:

$WL_HOME/wlserver/server/bin/setWLSEnv.sh
java weblogic.WLST <reset-joltpool.py

2.4.2 Administration Console Method
The Jolt connection pool can also be reset from the GUI console by using the following
method:

1. In the Administration Console, expand Interoperability and select Jolt Connection Pools.

2. On the Jolt Connection Pools page, click the name of a connection pool.

3. Select the Monitoring tab.

4. Click Pool Reset.

Chapter 2
Resetting the Jolt Connection Pool

2-5

Figure 2-2 Resetting JOLT Connection Pool

Chapter 2
Resetting the Jolt Connection Pool

2-6

3
Implementing Jolt for WebLogic

Setting up Jolt to connect to Tuxedo from your WebLogic application or servlet requires the
following steps:

See page B-1 for a simple example that establishes a connection and accesses a Tuxedo
service from an HTTP servlet.

• Importing Packages

• Configuring a Session Pool

• Using a Servlet Session Pool

• Accessing a Tuxedo Service Through Jolt

• Converting Java Data Types to Tuxedo Data Types

• Receiving Results from a Service

• Using a Transaction

3.1 Importing Packages
The Jolt Java class packages are automatically installed when you install Jolt for WebLogic
Server. To use Oracle Jolt for Oracle WebLogic Server, import the following class packages
that were installed with Jolt into your servlet:

bea.jolt.pool.*
bea.jolt.pool.servlet.*

There are other classes you must import into any servlet; for more information on writing Java
servlets, read the Programming WebLogic HTTP Servlets guide.

3.2 Configuring a Session Pool
You can access session pools through the SessionPoolManager class. WebLogic Server uses
a variation of the session pool called a servlet session pool. The servlet session pool provides
extra functionality that is convenient for use inside an HTTP servlet.

When you configure a servlet session pool through the WebLogic Administration Console, the
following information is added to the config.xml configuration file:

<StartupClass
 ClassName="bea.jolt.pool.servlet.weblogic.PoolManagerStartUp"
 FailureIsFatal="false"
 Name="MyStartup Class"
 Targets="myserver"
/>
<JoltConnectionPool
 ApplicationPassword="tuxedo"
 MaximumPoolSize="5"

3-1

 MinimumPoolSize="3"
 Name="MyJolt Connection Pool"
 PrimaryAddresses="//TUXSERVER:6309"
 RecvTimeout="300"
 SecurityContextEnabled="true"
 Targets="myserver"
 UserName="joltuser"
 UserPassword="jolttest"
 UserRole="clt"
/>

When WebLogic is started (or restarted), it invokes the PoolManagerStartUp class and its
associated startupArgs. On the first invocation, the PoolManagerStartUp class creates a
ServletSessionPoolManager object, which contains every ServletSessionPool configured in
the config.xml configuration file.

Subsequent calls add another ServletSessionPool to the same ServletSessionPoolManager.
You must add an entry for each session pool, using a unique virtual name binding for each, as
shown in the preceding example. The WebLogic Server creates a new ServletSessionPool as
defined in the config.xml file.

For additional information about property settings and a list of definitions, see “Jolt Startup
Class and Connection Pool”.

• Accessing a Servlet Session Pool

3.2.1 Accessing a Servlet Session Pool
Once a WebLogic Server is configured to set up a Jolt session pool on startup, you can access
and use the Jolt session pool from your Java application or servlet. As described earlier, in the
WebLogic Server all ServletSessionPool objects are managed by the same
ServletSessionPoolManager.

ServletSessionPoolManager poolMgr = (ServletSessionPoolManager)
 SessionPoolManager.poolmanager;

The WebLogic Server uses a ServletSessionPoolManager class that is derived from
SessionPoolManager. The ServletSessionPoolManager manages ServletSessionPool
objects, which offer additional HTTP servlet methods.

SessionPoolManager provides several methods for managing the administration of a session
pool. In the following example, the SessionPoolManager is used to retrieve the SessionPool
that has been named joltpoolname :

SessionPool sPool = poolMgr.getSessionPool("joltpoolname");

However, because the WebLogic Server uses the subclass ServletSessionPoolManager, the
above example actually returns a ServletSessionPool object in the guise of a SessionPool.

You must cast the SessionPool to a ServletSessionPool, as in the following code example:

ServletSessionPool ssPool =
 (ServletSessionPool) poolMgr.getSessionPool("joltpoolname");

Chapter 3
Configuring a Session Pool

3-2

Because WebLogic Server creates and configures the ServletSessionPoolManager, it is likely
that this is the only method you will use. Other SessionPoolManager methods allow you to
create, suspend, stop, or shut down individual or all the session pools it manages. We
recommend that you leave these administrative operations to the WebLogic Server by
configuring and managing your session pools using the WebLogic config.xml configuration
file.

3.3 Using a Servlet Session Pool
The reference to the named ServletSessionPool from the pool manager represents a pool of
sessions (or connections) to the Jolt Server in Tuxedo. The size of this pool and the Tuxedo
system to which it connects are abstracted from the application code and are defined in the
WebLogic config.xml configuration file. When you initiate a request, the SessionPool uses the
least-busy connection available.

• Calling a Tuxedo Service

• Sending a ServletDataSet

• Adding Parameters to the Dataset

3.3.1 Calling a Tuxedo Service
A Jolt request usually consists of a single call to a Tuxedo service using the call() method of
the SessionPool. You supply the name of the Tuxedo service and a set of parameters to the
call() method, and it returns a set of results from the Tuxedo service. It is possible to make
multiple calls within a single transaction, which allows a servlet to comply with transactional
demands of a Tuxedo application or preserve integrity between databases. This transaction is
described in more detail in “Using a Transaction”.

3.3.2 Sending a ServletDataSet
The ServletSessionPool provides overloaded call() methods for use inside an HTTP
servlet. These methods accept their input parameters in terms of an HttpServletRequest
object, and therefore can conveniently be passed the same HttpServletRequest object that
was passed into your HTTP servlet's doPost() or doGet() methods. However, in this instance,
you must ensure that the names of the HTTP posted name=value pairs correspond to those
expected by the Tuxedo service. The ordering is not important, because the data is ultimately
converted into a Java Hashtable. Other non-related data in the HttpServletRequest will not
disrupt the Tuxedo service.

A Tuxedo service is invoked from within an HTTP servlet with the following method:

ssPool.call("serviceName", request);

where ssPool is a reference to a ServletSessionPool, " serviceName " is the name of the
Tuxedo service you wish to call, and the request argument is the HttpServletRequest object
associated with the servlet.

The ServletSessionPool.call() method internally converts the HttpServletRequest into a
ServletDataSet, which can be submitted to a regular SessionPool.

Chapter 3
Using a Servlet Session Pool

3-3

3.3.3 Adding Parameters to the Dataset
You may wish to add extra data to the parameter set before calling the Tuxedo service. For
example, you may need to add a parameter representing the date and time of the request. You
would not expect to receive this parameter from the FORM data in the HttpServletRequest.
Instead, add it in the servlet, then submit the augmented data set to the Tuxedo service. The
following example illustrates this procedure:

// Create a new dataset
ServletDataSet dataset = new ServletDataSet();
// Import the HttpServletRequest into the dataset.
dataset.importRequest(request);
// Insert an extra parameter into the dataset.
dataset.setValue("REQUEST_TIME", (new Date()).toString());
// Send the dataset to the named service.
ssPool.call("service_name", dataset, null);

This code example demonstrates the manual conversion of the HttpServletRequest object
into a ServletDataSet object. In this new format you can add extra parameters using the
setValue() method. The new value is associated with a key, represented by a string. Next, the
call() method that is inherited from the SessionPool is invoked. This method accepts the
ServletDataSet class, but requires an extra argument for use with transactions. Supply null
for this last parameter, indicating that you are not using a transaction to group multiple session
calls. See “Using a Transaction” for more details.

3.4 Accessing a Tuxedo Service Through Jolt
To access an existing Tuxedo service through Jolt, you must define and export the service in
the Oracle Tuxedo Service Metadata Repository. For details, refer to the Using Oracle Jolt. The
Jolt service definition defines the parameters that are expected by the Tuxedo application
service.

3.5 Converting Java Data Types to Tuxedo Data Types
The following table is a mapping between Java types and Tuxedo parameter types required by
a Tuxedo service. Use the appropriate Java types for the value of the DataSet or
ServletDataSet. If you specify any parameter as a Java String, it is translated automatically
to the appropriate type according to the service definition in the Metadata Repository.

This feature is also used to convert all data inside an HttpServletRequest object, because all
parameters associated with the request are represented in string format. Otherwise, use the
type specified in the table below. Providing the correct data type may improve efficiency
because no lookup is required to convert from a string.

Oracle Tuxedo Type Java Type

char Byte

short Short

long Integar

float Float

double Double

Chapter 3
Accessing a Tuxedo Service Through Jolt

3-4

Oracle Tuxedo Type Java Type

char* String

CARRAY byte[]

XML byte[]

A Tuxedo CARRAY is specified in a Java string by describing each byte value as a two-digit
hexadecimal number. You specify multiple bytes by concatenating these hexadecimal digit-
pairs together. For example, the string "FF0A20" would represent the Tuxedo type CARRAY
{255,10,32}.

3.6 Receiving Results from a Service
The ServletSessionPool.call() method returns a ServletResult object that contains the
results from the Tuxedo service. If the service call fails, an exception is thrown. You should
always attempt to catch exceptions and handle them appropriately. Refer to “Appendix A,
Oracle Jolt Exceptions” in Using Oracle Jolt for details about the possible exceptions that can
occur.

The following example retrieves a ServletResult object using the
ServletSessionPool.call() method in an HTTP servlet:

ServletResult sResult = ssPool.call("service_name", request);

where ssPool is a ServletSessionPool, and request is an HttpServletRequest.

The ServletSessionPool.call() method returns a Result object that you must cast as a
ServletResult object. The ServletResult object provides extra methods for retrieving data as
Java Strings.

Provided the call was successful, the individual parameters can be retrieved from the Result or
ServletResult object using various forms of the getValue() method.

• Using the Result.getValue() Method

• Using the ServletResult.getStringValue() Method

3.6.1 Using the Result.getValue() Method
The data is retrieved from a ServletResult by providing a key that corresponds to the
parameter names of the Tuxedo service, as defined in the Metadata Repository. You supply the
key to the appropriate getValue() method, which returns the corresponding value object.

The Result.getValue() method also expects a default value object; this is returned if the key
lookup fails. It is your responsibility to cast the returned object to the appropriate type, as
defined by the Tuxedo service. For example, this line of code:

Integer answer = (Integer) resultSet.getValue("Age",null);

sets the integer answer to the returned value in the ServletResult identified by the key "Age",
or returns null if this key does not exist in the ServletResult. Refer to the table in “Converting
Java Data Types to Tuxedo Data Types” for the Java equivalents of the Tuxedo types.

Chapter 3
Receiving Results from a Service

3-5

It is possible to have an array of values associated with a key. In this case, the simple
getValue() method returns the first element of an array in this instance. Use this method
signature in that case:

public Object getValue(String name, int index, Object defVal)

to reference a particular indexed element in an array value.

3.6.2 Using the ServletResult.getStringValue() Method
ServletResult extends Result, and provides the additional methods:

public String getStringValue(String name,
 int index,
 String defVal)

public String getStringValue(String name,
 String defVal)

These methods behave like the getValue() methods of the Result class, except that they
always return a Java string equivalent of the value object expected. The CARRAY is converted
into a string of two digit hexadecimal byte values as described in “Converting Java Data Types
to Tuxedo Data Types”.

3.7 Using a Transaction
You can use a transaction object to group multiple service calls into an atomic action,
maintaining data integrity within your application logic. You obtain a transaction from a session
pool with the method:

Transaction trans = ssPool.startTransaction(timeout);

where the transaction object trans holds the reference to the transaction, ssPool is the
SessionPool or ServletSessionPool object, and the timeout argument for the transaction is
specified in seconds.

Once a transaction obtains a session, that session cannot be used by other transactions until
the transaction is committed, aborted, or times out. The session may, however, still be used by
single requests that are not part of a transaction. If a transaction fails to obtain a session from
the pool, this method throws a bea.jolt.pool.TransactionException. If the session pool is
suspended, the method throws a bea.jolt.pool.SessionPoolException.
Each time your application uses the call() method, you should supply the transaction object
as the last parameter. For example:

ssPool.call("svcName", request, trans);

You can make multiple calls in the same transaction. The calls will not complete until you either
commit or roll back the transaction using the methods of the transaction object. The
trans.commit() method completes the transaction. This method returns 0 if the commit was
successful, or throws a TransactionException if the transaction failed to commit.

Chapter 3
Using a Transaction

3-6

If you need to abort the transaction, use the Transaction.rollback() method. This method
attempts to abort the transaction. It returns 0 if successful; otherwise it throws a
TransactionException.

• Handling Exceptions

3.7.1 Handling Exceptions
Errors or failures that may occur when Jolt initiates a Tuxedo service call are reported to your
application through Java exceptions. Always enclose the call() method within a try / catch
block and attempt to deal with any exceptions appropriately. The call() method can throw any
of the following exceptions for the following reasons:

• bea.jolt.pool.ApplicationException
Thrown when an error occurs in the logic of the Tuxedo service. For example, a client illegally
attempts to use a withdrawal service to withdraw more money from an account than the current
balance. The ApplicationException is thrown when the Tuxedo service returns a TPESVCFAIL.
Application-specific information about the error can be included in the Result object that was
returned from the service invocation. You can access the Result object through the
ApplicationException.getResult() method.

Ensure to use the full package name of the bea.jolt.pool.ApplicationException, because
Jolt defines another exception whose full package name is bea.jolt.ApplicationException.
• bea.jolt.JoltException

A JoltException is the super class of all the following exceptions. These exceptions all
signify that a system error has occurred that is not part of the application logic.
JoltException is documented in Appendix A, “Oracle Jolt Exceptions,” in the Using Oracle
Jolt.

• bea.jolt.pool.SessionPoolException
Thrown when an error occurs in the Jolt SessionPool. For example, this may occur if all
sessions are busy, or if the session pool is suspended.

• bea.jolt.ServiceException
Thrown when an error occurs related to invoking the Tuxedo service that contains the
application. For example, a service timeout, or a non-existent service is called.

• bea.jolt.TransactionException
Thrown when a transaction cannot be either started, committed, or aborted.

Chapter 3
Using a Transaction

3-7

Appendixes

These appendixes consists of appendixes that discuss Class hierarchy reference information,
simple Servlet Example, and Servlet with Enterprise JavaBean Example.

This document contains the following appendixes:

• Class Hierarchy

• Simple Servlet Example

• Servlet with Enterprise JavaBean Example

Class Hierarchy

• Oracle Jolt Class Hierarchy for the Oracle WebLogic Server API

Oracle Jolt Class Hierarchy for the Oracle WebLogic Server API
The following listing shows the class hierarchy for the Oracle Jolt for Oracle WebLogic Server
API. Refer to the appropriate Java documentation for details about each class and method.

Package-bea.jolt.pool
Package-bea.jolt.pool.servlet
Package-bea.jolt.pool.servlet.weblogic

Class java.lang.Object
 Class bea.jolt.pool.Connection
 Class java.util.Dictionary
 Class java.util.Hashtable
 (implements java.lang.Cloneable, java.io.Serializable)
 Class bea.jolt.pool.DataSet
 Class bea.jolt.pool.Result
 Class bea.jolt.pool.servlet.ServletResult
 Class bea.jolt.pool.servlet.ServletDataSet
 Class bea.jolt.pool.SessionPoolManager
 Class bea.jolt.pool.servlet.ServletSessionPoolManager
 Class bea.jolt.pool.Factory
 Class bea.jolt.pool.SessionPool
 Class bea.jolt.pool.servlet.ServletSessionPool
 Class java.lang.Throwable
 (implements java.io.Serializable)
 Class java.lang.Exception
 Class java.lang.RuntimeException
 Class bea.jolt.pool.ApplicationException
Class bea.jolt.pool.Transaction
Class bea.jolt.pool.UserInfo

Simple Servlet Example

This example demonstrates how to use Oracle Jolt to connect to Oracle Tuxedo from a
WebLogic servlet. It uses the WebLogic Server to deliver an HTML FORM front end in a
standard Web browser.

Text entered by a user into the FORM is sent back to the WebLogic Server via the HTTP POST
method that is serviced by a registered WebLogic HTTP Servlet, which calls a Tuxedo service
using Oracle Jolt. The text received by the servlet is sent to a Tuxedo service, where it is
transposed to uppercase before being returned to the servlet. The form is compiled into a
dynamically-generated HTML page by the servlet, then sent back to the Web browser, where
the uppercase version of the original text is displayed.

This topic includes the following sections:

• Example Components and Prerequisites

• Using the Example

Example Components and Prerequisites
There are two parts to the simpapp example for Jolt for WebLogic Server:

• The HTTP servlet that is shipped with the examples that are installed in the samples
directory where Oracle Tuxedo is installed.

• The Tuxedo service application that is shipped with the Tuxedo examples that are installed
with Oracle Tuxedo. The Tuxedo simpapp server contains the TOUPPER service, which
converts a given string to uppercase.

The source code for the Jolt servlet simpapp example is located in the /samples/jolt/wls/
servlet/ directory in the Tuxedo distribution.

The simpapp sample directory contains the following files:

File Name Description

SimpAppServlet.java Sample source code that issues a call to Tuxedo
and returns an HTML page with the results

simpapp.html HTML form for user input

simpapp.rep REP file for repository bulk loading

web.xml Configuration XML file for Web applications

A complete listing of the Tuxedo server-side source code of the simpapp application service is
located in $TUXDIR/samples/atmi/simpapp on UNIX systems and in %TUXDIR%
\samples\atmi\simpapp on Windows 2003 systems (where TUXDIR is the Tuxedo home
directory).

To run this example, you should be familiar with:

• The Oracle Tuxedo architecture and the simpapp application

• Oracle Jolt

• HTML

• Java language and servlet API

• WebLogic Server HTTP servlets

Using the Example
The simpapp example is easy to follow. Just launch the simpapp.html page from the WebLogic
Server. The simpapp.html page loads an HTML form which contains a text field for entering
the string. Type in a string and click the Post button to submit the string as a post request. The
SimpAppServlet formats the string you typed for use with the Jolt for WebLogic class libraries,
and then dispatches the request to the Tuxedo TOUPPER service, which transposes the string to
uppercase and returns it for display in the browser.

Configuring the simpapp servlet example requires the following steps:

• Step 1. Perform Preparatory Steps

• Step 2. Start the WebLogic Server

• Step 3. Configure the Servlet in WebLogic Server

• Step 4. Stop and Restart the WebLogic Server

• Step 5. Compile the Servlet

• Step 6. Display the simpapp.html Form

• Step 7. Post the FORM Data from the Browser

• Step 8. Process the Request

• Step 9. Return the Results to the Client

Step 1. Perform Preparatory Steps
1. Check that you have a supported browser installed on your client machine:

• Netscape Communicator 4.7 or later

• Internet Explorer 5.0 or later

2. The client machine must have a network connection to the WebLogic Server that is used to
connect to the Tuxedo environment.

3. Configure and boot Tuxedo and the simpapp example.

4. Follow the directions in the Tuxedo user documentation to bring up the server-side
simpapp application. Ensure the TOUPPER service is available.

5. Set up the Jolt Server. Refer to the Using Oracle Jolt for information about how to
configure a Jolt Server.

• Note the hostname and port number associated with your Jolt Server Listener (JSL).

• Use the Jolt BulkLoader file to ensure that the TOUPPER service is defined in the
Metadata Repository.

• Use the Jolt BulkLoader file to ensure that the TOUPPER service is defined in the
Metadata Repository.

The simpapp example directory has a simpapp.rep file that contains the TOUPPER service
definition. Your system administrator should use the BulkLoader to add this service
definition to the existing Metadata Repository on the Tuxedo server. Refer to Using Oracle
Jolt for details.

On the Tuxedo server, the following code example uses the Jolt BulkLoader to add the
TOUPPER service definition:

java -DTM_ALLOW_NOTLS=Y bea.jolt.admin.jbld //host:port simpapp.rep
where host and port are the hostname and port number of your Jolt Server Listener
(JSL), and the simpapp.rep is the BulkLoader file provided by Oracle Jolt, in the current
directory. If the file simpapp.rsp is not located in current directory, please specify full path
of the file:

The Java property -DTM_ALLOW_NOTLS=Y is to specify non-SSL connection to JSL.

6. Confirm that you have properly set up your CLASSPATH during installation. The WebLogic
Server classes library contains the three .jar files that you will need to run this example:

• jolt.jar
• joltjse.jar
• joltwls.jar

Step 2. Start the WebLogic Server
If you are using a Windows 2003 system, you can start the WebLogic Server from the Start
menu. Otherwise, use the startWebLogic script on the command line, in the root directory of
the WebLogic Server distribution.

For more information on starting the WebLogic Server, see “Starting and Stopping the
WebLogic Server” in the Oracle WebLogic Server Administration Guide.

Step 3. Configure the Servlet in WebLogic Server
Configuration of the Jolt connection pool and startup class MBeans for WebLogic Server 6.0 or
later is done through Administration Console.

1. Copy the simpapp.html page into your WebLogic document root directory.
By default, this is the \config\mydomain\applications\simpapp directory in your
WebLogic Server distribution. The HTTP server built into WebLogic looks in this directory
for HTML pages and other MIME types.

2. Start the WebLogic Server Administration Console by typing the following address in your
browser:
http://hostname:listenport#/console

3. Open the Services folder in the left frame of the console, and then click the Jolt folder. The
Jolt Connection Pools table displays in the right frame showing all the Jolt connection
pools defined in the domain.

4. Click the Create a New Jolt Connection Pool link. A tabbed dialog box displays in the right
frame for configuring a new connection pool.

5. On the General tab, complete the following information:

a. Enter values in the Name, Minimum Pool Size, Maximum Pool Size, and the Recv
Timeout attribute fields.

b. Select the Security Context Enabled check box to enable security context (to
propagate the security information from the WebLogic Server environment to the
Tuxedo environment).

c. Click Create to create a connection pool instance with the name that you specified in
the Name field. The new instance is added under the Jolt node in the left frame.

6. Click the Config-Addresses and the Config-User tabs individually to change the attribute
fields or accept the default values as assigned, and then click Apply to save your changes.

7. Click the Targets tab and select an available server where you want the Jolt connection
pool started.

8. Under the Deployments folder in the left frame, click the Startup & Shutdown folder. The
Startup and Shutdown table displays in the right frame showing all the startup classes
defined for your domain.

9. Click the Create a New Startup Class link. In the tabbed dialog box that displays in the
right frame, configure a new startup class, as follows.

a. Enter values in the Name, Class Name, and Arguments attribute fields.

b. Select the Abort Startup on Failure check box to prevent starting the WebLogic Server
whenever a failure occurs.

c. For the Class Name, enter the following name:
bea.jolt.pool.servlet.weblogic.PoolManagerStartUp
There are no arguments for this startup class.

d. Click Create to create a startup-class instance with the name that you specified in the
Name field. The new instance is added under the Startup & Shutdown folder in the left
frame.

10. Register the simpapp servlet as a Web application, as follows:

a. Open the Deployments folder in the left frame of the console, and then click the Web
Applications icon.

b. On the Install or Update an Application dialog box, click the Install a New Web
Application link.

c. For Step 1, either accept the default a destination directory for the simpapp servlet or
select a different one.

d. For Step 2, enter the path to the simpapp servlet (or use the Browse feature), and then
click the Upload button.

The simpapp servlet is registered as a Web application in WebLogic and appears as an
icon under the Deployments\Web Applications folder.

Step 4. Stop and Restart the WebLogic Server
To start the Jolt session pool, you must shut down the WebLogic Server, and then restart it. For
more information on restarting the WebLogic Server, see “Starting and Stopping the WebLogic
Server” in the Oracle WebLogic Server Administration Guide.

Step 5. Compile the Servlet
After restarting the WebLogic Server, compile the SimpAppServlet file, as follows:

1. Under your WebLogic \config\mydomain\applications\simpapp document root directory,
create a new WEB-INF directory.

2. Copy the web.xml file from the Tuxedo installation directory \samples\jolt\wls\servlet\
into the new WEB-INF directory.

3. Compile the SimpAppServlet.java file, as follows:

javac -d %WL.HOME%\config\mydomain\applications\simpapp\WEB-INF\classes
SimpAppServlet.java

This step also copies the necessary java classes into a WEB-INF\classes directory.

Step 6. Display the simpapp.html Form
1. Open your browser.

2. Enter the URL for the simpapp.html file. For example, the default URL is:

http://localhost:port/simpapp/simpapp.html

where localhost is the host name of the WebLogic Server, and port is the port at which
the WebLogic Server is listening for login requests.

A page similar to the one shown in the following figure is displayed:

Figure 1 simpapp.html Example

If you have problems displaying the form, be sure that the simpapp.html file is in the
WebLogic document root.

Step 7. Post the FORM Data from the Browser
Enter some text into the text field on the HTML page and submit it by clicking the POST button.
Along with the text you entered, other parameters are submitted to the simpapp servlet class
running in WebLogic Server.

The following is the relevant section from the simpapp.html file that describes the HTML form:

<form name="simpapp" action="simpapp" method="post">
<input type="hidden" name="SVCNAME" value="TOUPPER">

<table bgcolor=#dddddd border=1>
<tr>

<td>Type some text here and click the Post button:
<input type="text" name="string">
</td></tr>

<tr>
<td align=center><input type="submit" value="Post!">
</td></tr>

This HTML form specifies two input fields: the text you enter and a hidden field. In this
example, the value of the hidden field actually specifies the name of the Tuxedo service to be
invoked. Although putting the name of the Tuxedo service within the HTML page is flexible and
efficient, it is not recommended for production use for security reasons. In this HTML page, you
can submit an HTTP request specifying a different service name as the hidden field.

Note:

Tuxedo service names are case-sensitive.

When the WebLogic Server receives the HTTP form request, it invokes the doPost() method
of the simpapp servlet and passes the form data into an HttpServletRequest.

Step 8. Process the Request
Before the first request to the simpapp servlet, WebLogic initializes the servlet by calling its
init() method. The Jolt session pool is established in the following manner:

ServletSessionPoolManager b_mgr =
 (ServletSessionPoolManager).SessionPoolManager.poolmanager;

Next, the servlet’s doPost() method is executed. This method contains the code to get a
connection from the simpapp session pool that was created during the startup of the WebLogic
Server. The following code snippet shows the code that is used to retrieve the simpapp session
pool.

// Get the "simpapp" session pool
ServletSessionPool session =
 (ServletSessionPool) b_mgr.getSessionPool("simpapp");

The Tuxedo service that will be called is identified in a hidden field, which is retrievable from
the request object. Retrieve the service name parameter as follows:

String svcnm[] = req.getParameterValues("SVCNAME");

You retrieve the value of the SVCNAME field in a string array that contains a single value; use
only the first element of the array. The value set for the SVCNAME hidden field in the form is
TOUPPER. This is the name of the Tuxedo service that the servlet invokes, which is passed to
the call() method as follows:

// Invoke a service and get the result.
result = session.call(svcnm[0], req);

The session object in this example is a ServletSessionPool that can accept the
HttpServletRequest object directly. Internally, it converts the data into a Jolt DataSet object,
which contains the parameters for the TOUPPER service.

Note:

The TOUPPER service expects a case-sensitive parameter called "STRING", so it is
essential for the text field within the HTML form to be labeled exactly the same, that
is, "STRING". Note also that the other data fields, such as the SVCNAME, are not
relevant as parameters but don't disrupt the Tuxedo service.

The form parameter is used to actually name the service, which you don't have to pass as a
service parameter. It is passed automatically because it is already contained in the
HttpServletRequest object.

The TOUPPER service converts the text in the "STRING" parameter to uppercase text and passes
it back to the servlet in a ServletResult object that contains the results of an executed call, as
well as details about exceptions if any are thrown during the service call.

Step 9. Return the Results to the Client
The final step constructs and sends an HTML page, which contains the results of the service
call, back to the client through the HttpResponse output stream. The uppercase result is
retrieved from the ServletResult object using the result.getValue() method.

The following is a simple example of passing this data back as HTML that the browser can
display:

out.println("<p><center>"+
 result.getValue("STRING", "")+
 "</center><p><hr
 width=80%>");

The output stream produces a page similar to the one shown in the following figure:

Figure 2 Output Stream Results Example

Servlet with Enterprise JavaBean Example

This example demonstrates how to use Oracle Jolt to connect to Oracle Tuxedo from a
WebLogic servlet. It uses the Servlet with Enterprise JavaBean example.

This topic includes the following sections:

• Servlet with Enterprise JavaBean Example

• About the Servlet with JavaBean Example

• Preparing to Use the Servlet with JavaBean Example

Servlet with Enterprise JavaBean Example
To use the Servlet with Enterprise JavaBean example, see the following sections:

This Enterprise JavaBean (EJBean) example package contains the classes and other files
necessary to set up and run an EJBean stateful session to a Tuxedo Server using Jolt. The
package contents are as follows:

• Client application (client application documentation and source)

• Deployment

– DeploymentDescriptor.txt
– manifest

• Interfaces

– Teller (remote interface documentation and source)

– TellerHome (home interface documentation and source)

– TellerResult (application-specific utility documentation and source)

– ProcessingErrorException (application-specific exception documentation and
source)

– TransactionErrorException (application-specific exception documentation and
source)

• Server (EJBean)

– TellerBean (EJBean documentation and source)

About the Servlet with JavaBean Example
This example demonstrates an Enterprise JavaBean (EJBean), and provides an example of a
simple interface for accessing the Tuxedo Server. You can find the source code for this
example in the /samples/jolt/wls/ejb/bankapp directory included in the Oracle Tuxedo
distribution.

Running this example before attempting to create your own EJBeans will show you the
different steps involved. The example is a stateful session EJBean called TellerBean that
contacts a Tuxedo Server using Jolt for WebLogic, and conducts transactions as follows:

• Contacts and calls a Tuxedo Server, and retrieves the returned results

• Uses a session EJBean

• Uses stateful persistence

• Uses application-defined exceptions and utilities

• Uses a client browser application

The client browser application performs these steps:

1. Contacts the teller home ("TellerHome") through JNDI to find the EJBean.

2. Creates a teller ("Terry").

3. The application then performs a series of transactions for the Teller that has just been
created:

• Gets the current balance for account 10000.

• Performs Transaction 1: Deposits $100 into the account, and displays the balance.

• Performs Transaction 2: Deposits $200 (more than the transaction limit of $300).

Note:

In Transaction 1, a single call is made, and is automatically committed. In
Transaction 2, a begin() and commit() bracket two separate requests (a
deposit and a withdrawal).

• Attempts to withdraw $100 more than the balance of the account.

• Catches an ApplicationException, retrieves the status messages embedded in the
exception, and rolls back Transaction 2.

• Gets the final balance for the account.

• Removes the teller.

You can see in Transaction 2 how the balance is successfully rolled back to what it was at the
end of Transaction 1.

Preparing to Use the Servlet with JavaBean Example
To get the most out of this example, first read through the source code files to see what is
happening. Start with DeploymentDescriptor.txt to find the general structure of the EJBean
and which classes are used for the different objects and interfaces, and then look at
Client.java to see how the application works.

The following sections provide details for using this example:

• Set Up Your Environment

• Build the Example

• Run the Servlet with JavaBean Example

Set Up Your Environment
You need to add a Jolt connection pool that connects to the public Tuxedo Server at Oracle, as
described in “Step 3. Configure the Servlet in WebLogic Server,” in Appendix B, Simple Servlet

Example. When you’re finished, the config.xml configuration file will contain the following
sections:

<StartupClass
 ClassName="bea.jolt.pool.servlet.weblogic.PoolManagerStartUp"
 FailureIsFatal="false"
 Name="MyStartup Class"
 Targets="myserver"
/>
<JoltConnectionPool
 ApplicationPassword="tuxedo"
 MaximumPoolSize="5"
 MinimumPoolSize="3"
 Name="MyJolt Connection Pool"
 PrimaryAddresses="//TUXSERVER:6309"
 RecvTimeout="300"
 SecurityContextEnabled="true"
 Targets="myserver"
 UserName="joltuser"
 UserPassword="jolttest"
 UserRole="clt"
/>|
<ShutdownClass
 ClassName=”bea.jolt.pool.servlet.weblogic.PoolManager
 ShutDown.”
/>

Build the Example
After configuring your WebLogic Server development environment, you need to build the
example. Oracle Jolt provides separate build scripts for Windows 2003 and UNIX, as follows:

• Windows 2003: %TUXDIR%\samples\jolt\wls\ejb\bankapp\build.cmd
• UNIX: $TUXDIR/samples/jolt/wls/ejb/bankapp/build.sh
The scripts build individual examples, such as this entry for Windows 2003:

$ build

To build under Microsoft’s JDK for Java, use:

$ build -ms

The scripts will build the example and place the files in the following default WebLogic Server
directories on a Windows 2003 system:

• Client files in: d:\bea\wlserver6.1\config\examples
• EJBean in: d:\bea\wlserver6.1\config\mydomain\applications

Run the Servlet with JavaBean Example
When WebLogic Server is started in the default \config\mydomain directory, the EJBean
example is automatically deployed in the \applications directory.

1. Start the WebLogic Server in the \config\mydomain directory. You can check that the
EJBean has been deployed correctly either by checking the server command-line window,
or by opening the Console and examining EJB under Deployments. You must see
ejb.jolt.bankapp deployed and must be able to monitor its activity.

2. Open a separate command-line window, and then run the client by entering the following
command:

$ java examples.jolt.ejb.bankapp.Client

If you are not running the WebLogic Server with its default settings, you will have to use
the following command line:

$ java examples.jolt.ejb.bankapp.Client "t3://WebLogicURL:Port"

where the following parameters are defined as follows:

• WebLogicURL—the domain address of the WebLogic Server

• Port—the port listening for connections (weblogic.system.ListenPort)

The following optional parameters are interpreted by the client in the order in which they
are listed:

• url—unique resource location of Server, such as t3://localhost:7001
• user—username, default null

• password—user password, default null

3. If you are running the Client example, you must get output that is similar to the following
from the client application:

4.Beginning jolt.bankapp.Client...
5.
6.Created teller Terry
7.
8.Getting current balance of Account 10000 for Erin
9.Balance: 27924.02
10.
11.Start Transaction 1 for Erin
12.
13. Depositing 100.0 for Erin
14. Balance: 28024.02
15.
16.End Transaction 1 for Erin
17.
18.Start Transaction 2 for Erin
19.
20. Depositing 200.0 for Erin
21. Balance: 28224.02
22.
23. Withdrawing 28324.02 for Erin
24. Transaction error:
25. examples.jolt.ejb.bankapp.TransactionErrorException: Teller error:
application
26. exception:
27.Account Overdraft

28.
29. Rolling back transaction for Erin
30.
31.End Transaction 2 for Erin
32.
33.Getting final balance of Account 10000 for Erin
34.Balance: 28024.02
35.
36.Removing teller Terry
37.
End jolt.bankapp.Client...

Note:

Note how the final balance shows that Transaction 2 was rolled back to the balance
at the end of Transaction 1.

You can read more about EJBs in the Programming WebLogic Enterprise JavaBeans guide. To
learn more about using Oracle Jolt, refer to the Using Oracle Jolt guide.

	Contents
	List of Figures
	Preface
	Documentation Accessibility

	1 Introduction to Oracle Jolt for Oracle WebLogic Server
	1.1 Key Features
	1.2 How Jolt for WebLogic Works
	1.2.1 Relationship Between Jolt for WebLogic and Tuxedo
	1.2.2 Essential Components of the Jolt Architecture
	1.2.3 WebLogic Server Startup
	1.2.4 Connecting to a WebLogic Server from a Client Browser
	1.2.5 How a Servlet Connects to Tuxedo
	1.2.6 What Happens if the Request Fails
	1.2.7 Responding to the Client Browser
	1.2.8 Disconnecting from the Jolt Server

	1.3 Using the Example Packages

	2 Configuring Jolt for WebLogic Server
	2.1 Configuring Jolt for Tuxedo
	2.2 Configuring Jolt for WebLogic Server
	2.2.1 Jolt Startup Class and Connection Pool
	2.2.1.1 Jolt Connection Pool Attributes

	2.2.2 Jolt Shutdown Class

	2.3 Displaying Jolt in the WebLogic Administration Console
	2.4 Resetting the Jolt Connection Pool
	2.4.1 Command-line Method
	2.4.2 Administration Console Method

	3 Implementing Jolt for WebLogic
	3.1 Importing Packages
	3.2 Configuring a Session Pool
	3.2.1 Accessing a Servlet Session Pool

	3.3 Using a Servlet Session Pool
	3.3.1 Calling a Tuxedo Service
	3.3.2 Sending a ServletDataSet
	3.3.3 Adding Parameters to the Dataset

	3.4 Accessing a Tuxedo Service Through Jolt
	3.5 Converting Java Data Types to Tuxedo Data Types
	3.6 Receiving Results from a Service
	3.6.1 Using the Result.getValue() Method
	3.6.2 Using the ServletResult.getStringValue() Method

	3.7 Using a Transaction
	3.7.1 Handling Exceptions

	Appendixes
	Class Hierarchy
	Oracle Jolt Class Hierarchy for the Oracle WebLogic Server API

	Simple Servlet Example
	Example Components and Prerequisites
	Using the Example
	Step 1. Perform Preparatory Steps
	Step 2. Start the WebLogic Server
	Step 3. Configure the Servlet in WebLogic Server
	Step 4. Stop and Restart the WebLogic Server
	Step 5. Compile the Servlet
	Step 6. Display the simpapp.html Form
	Step 7. Post the FORM Data from the Browser
	Step 8. Process the Request
	Step 9. Return the Results to the Client

	Servlet with Enterprise JavaBean Example
	Servlet with Enterprise JavaBean Example
	About the Servlet with JavaBean Example
	Preparing to Use the Servlet with JavaBean Example
	Set Up Your Environment
	Build the Example
	Run the Servlet with JavaBean Example

