
Oracle® Tuxedo
Scaling, Distributing, and Tuning CORBA
Applications Guide

Release 22c
F97748-01
March 2025

Oracle Tuxedo Scaling, Distributing, and Tuning CORBA Applications Guide, Release 22c

F97748-01

Copyright © 1996, 2025, Oracle and/or its affiliates.

Primary Author: Preeti Gandhe

Contributing Authors: Tulika Das

Contributors: Maggie Li

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Documentation Accessibility ix

1 Scaling, Distributing, and Tuning CORBA Applications

1.1 About Scaling Oracle Tuxedo CORBA Applications 1-1

1.1.1 Application Scalability Requirements 1-1

1.1.2 Oracle Tuxedo Scalability Features 1-2

1.2 Using Object State Management 1-2

1.2.1 CORBA Object State Models 1-2

1.2.1.1 Method-bound Objects 1-3

1.2.1.2 Process-bound Objects 1-3

1.2.1.3 Transaction-bound Objects 1-3

1.2.2 Implementing Stateless and Stateful Objects 1-3

1.2.2.1 About Stateless and Stateful Objects 1-3

1.2.2.2 When to Use Stateless Objects 1-4

1.2.2.3 When to Use Stateful Objects 1-4

1.2.3 Parallel Objects 1-5

1.3 Replicating Server Processes and Server Groups 1-5

1.3.1 About Replicating Server Processes and Server Groups 1-6

1.3.2 Configuration Options 1-6

1.3.3 Replicating Server Processes 1-7

1.3.3.1 Benefits 1-7

1.3.3.2 Guidelines 1-7

1.3.4 Replicating Server Groups 1-7

1.4 Using Multithreaded Servers 1-8

1.4.1 About Multithreaded CORBA Servers 1-8

1.4.2 When to Use Multithreaded CORBA Servers 1-8

1.4.3 Coding Recommendations 1-9

1.4.4 Configuring a Multithreaded CORBA Server 1-9

1.5 Using Factory-Based Routing (CORBA Servers Only) 1-9

1.5.1 About Factory-based Routing 1-10

1.5.2 Characteristics of Factory-based Routing 1-10

1.5.3 How Factory-based Is Implemented 1-10

iii

1.5.4 Configuring Factory-based Routing in the UBBCONFIG File 1-11

1.6 Using Parallel Objects 1-11

1.6.1 About Parallel Objects 1-11

1.6.2 Configuring Parallel Objects 1-14

1.7 Multiplexing Incoming Client Connections 1-15

1.7.1 IIOP Listener and Handler 1-15

1.7.2 Increasing the Number of ISH Processes 1-15

2 Scaling CORBA Server Applications

2.1 About Scaling the Production Sample Application 2-1

2.1.1 Design Goals 2-1

2.1.2 How the Application Has Been Scaled 2-1

2.2 Changing the OMG IDL 2-2

2.3 Using a Stateless Object Model 2-2

2.4 Scaling by Replicating Server Processes and Server Groups 2-3

2.4.1 Replicating Server Processes in the Production Application 2-3

2.4.2 Replicating Server Groups in the Production Application 2-4

2.4.3 Configuring Replicated Server Processes and Groups in the Production
Application 2-6

2.5 Scaling with Factory-based Routing 2-7

2.5.1 About Factory-based Routing in the Production Application 2-7

2.5.2 Configuring Factory-based Routing in the UBBCONFIG File 2-7

2.5.3 Implementing Factory-based Routing in a Factory 2-9

2.5.4 What Happens at Run Time 2-10

2.6 Additional Design Considerations 2-11

2.6.1 About the Additional Design Considerations 2-11

2.6.2 Instantiating the Registrar and Teller Objects 2-11

2.6.3 Ensuring That Student Registration Occurs in the Correct Server Group 2-12

2.6.4 Ensuring That the Teller Object Is Instantiated in the Correct Server Group 2-13

2.7 Scaling the Application Further 2-14

3 Distributing CORBA Applications

3.1 Why Distribute an Application? 3-1

3.1.1 About Distributing an Application 3-1

3.1.2 Benefits of a Distributed Application 3-1

3.1.3 Characteristics of Distributing an Application 3-2

3.2 Using Data-dependent Routing (Oracle Tuxedo ATMI Servers Only) 3-2

3.2.1 About Data-dependent Routing 3-3

3.2.2 Characteristics of Data-dependent Routing 3-3

3.2.3 Sample Distributed Application 3-3

iv

3.2.4 Example of UBBCONFIG Sections in a Distributed Application 3-4

3.3 Configuring the UBBCONFIG File 3-4

3.3.1 About the UBBCONFIG File in Distributed Applications 3-5

3.3.2 Modifying the GROUPS Section 3-5

3.3.3 Modifying the SERVICES Section 3-6

3.3.3.1 Parameters to Modify 3-6

3.3.3.2 Sample SERVICES Section 3-7

3.3.4 Modifying the INTERFACES Section 3-7

3.3.4.1 Parameters to Modify 3-7

3.3.4.2 Sample INTERFACES Section 3-8

3.3.5 Creating the ROUTING Section 3-8

3.4 Configuring the factory_finder.ini (CORBA Applications Only) 3-9

3.5 Modifying the Domain Gateway Configuration File to Support Routing 3-9

3.5.1 About the Domain Gateway Configuration File 3-9

3.5.2 Parameters in the DM_ROUTING Section of the DMCONFIG File (Oracle
Tuxedo ATMI Only) 3-9

3.5.2.1 Parameters to Specify 3-10

3.5.2.2 Routing Field Description 3-11

3.5.2.3 Example of a Five-Site Domain Configuration Using Routing 3-11

4 Tuning CORBA Applications

4.1 Maximizing Application Resources 4-1

4.2 When to Use MSSQ Sets (Oracle Tuxedo ATMI Servers Only) 4-2

4.3 Enabling System-controlled Load Balancing 4-2

4.4 Configuring Replicated Server Processes and Groups 4-3

4.5 Configuring Multithreaded Servers 4-4

4.5.1 Setting the OPENINFO Parameter for Database Interoperation 4-4

4.5.2 Parameters Used to Configure Multithreaded Servers 4-4

4.5.3 Assigning Priorities to Interfaces 4-5

4.5.3.1 About Priorities to Interfaces 4-5

4.5.3.2 Characteristics of the PRIO Parameter 4-5

4.6 Bundling Services into Servers (Oracle Tuxedo ATMI Servers Only) 4-5

4.6.1 About Bundling Services 4-6

4.6.2 When to Bundle Services 4-6

4.7 Performance Options 4-6

4.8 Enhancing Efficiency with Application Parameters 4-7

4.8.1 MAXDISPATCHTHREADS 4-7

4.8.2 MINDISPATCHTHREADS 4-8

4.8.3 Setting the MAXACCESSERS, MAXOBJECTS, MAXSERVERS,
MAXINTERFACES, and MAXSERVICES Parameters 4-8

4.8.4 Setting the MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE Parameters 4-9

v

4.8.5 Setting the SANITYSCAN, BLOCKTIME, BBLQUERY, and DBBLWAIT
Parameters 4-9

4.9 Setting Application Parameters 4-9

4.10 Determining IPC Requirements 4-10

4.11 Measuring System Traffic 4-11

4.11.1 About System Traffic and Bottlenecks 4-11

4.11.2 Example of Detecting a System Bottleneck 4-12

4.11.3 Detecting Bottlenecks on UNIX 4-12

4.11.4 Detecting Bottlenecks on Windows 4-13

Index

vi

List of Figures

1-1 Using Stateful Business Objects 1-13

1-2 Using Stateless Business Objects 1-14

2-1 Replicated Server Groups in the Production Sample 2-4

2-2 Replicating Server Groups Across Machines 2-5

vii

List of Tables

2-1 Parameters Specified in the ROUTING Section 2-8

3-1 Data-dependent Routing Criteria for Sample Distributed Application 3-3

3-2 Parameters Specified in the GROUPS Section 3-5

3-3 Parameters Specified in the SERVICES Section 3-6

3-4 Parameters Specified in the INTERFACES Section 3-7

3-5 Parameters Specified in the DM_ROUTING Section 3-10

4-1 When and When Not to Use MSSQ Sets 4-2

4-2 Parameters Specified in the SERVERS Section 4-3

4-3 Performance Options 4-6

4-4 System Parameters for Application Tuning 4-9

4-5 Tuning IPC Parameters 4-10

4-6 sar(1) Command Options (Continued) 4-12

viii

Preface

This document provides information about the Scaling, Distributing, and Tuning CORBA
Applications.

• Documentation Accessibility

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

ix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Scaling, Distributing, and Tuning CORBA
Applications

This topic introduces key concepts and tasks for scaling Oracle Tuxedo CORBA applications.

For more detailed information and examples for Oracle Tuxedo CORBA applications, see
Scaling CORBA Server Applications .

Note:

The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo
CORBA Java client and Oracle Tuxedo CORBA Java client ORB text references,
associated code samples, must only be used to help implement/run third party Java
ORB libraries, and for programmer reference only.
Technical support for third party CORBA Java ORBs must be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

This topic includes the following sections:

• About Scaling Oracle Tuxedo CORBA Applications

• Using Object State Management

• Replicating Server Processes and Server Groups

• Using Multithreaded Servers

• Using Factory-Based Routing (CORBA Servers Only)

• Using Parallel Objects

• Multiplexing Incoming Client Connections

1.1 About Scaling Oracle Tuxedo CORBA Applications
This topic includes the following sections:

• Application Scalability Requirements

• Oracle Tuxedo Scalability Features

1.1.1 Application Scalability Requirements
Many applications perform adequately in an environment where between 1 to 10 server
processes and 10 to 100 client applications are running. However, in an enterprise
environment, applications may need to support hundreds of execution contexts (where the
context can be a thread or a process), tens of thousands of client applications, and millions of
objects at satisfactory performance levels.

1-1

Subjecting an application to exponentially increasing demands quickly reveals any resource
shortcomings and performance bottlenecks in the application. Scalability is therefore an
essential characteristic of Oracle Tuxedo applications.

You can build highly scalable Oracle Tuxedo applications by:

• Adding parallel processing capability to enable the Oracle Tuxedo domain to process
multiple client requests simultaneously.

• Sharing the processing load on the server applications across multiple machines.

1.1.2 Oracle Tuxedo Scalability Features
Oracle Tuxedo supports large-scale application deployments by:

• Optimizing object state management

• Load balancing objects and requests across replicated server processes and server
groups

• Using multithreaded servers, which are appropriate for certain types of applications and
processing environments

• For CORBA applications, using factory-based routing

• Using data-dependent routing (Oracle Tuxedo ATMI only)

• Multiplexing incoming client connections

1.2 Using Object State Management
Object state management is a fundamental concern for large-scale client/server systems
because they must achieve optimized throughput and response time. For more detailed
information about using object state management, see Using a Stateless Object Model and the
technical article Process-Entity Design Pattern.

• CORBA Object State Models

• Implementing Stateless and Stateful Objects

• Parallel Objects

1.2.1 CORBA Object State Models
Oracle Tuxedo CORBA supports three object state management models:

• Method-bound Objects

• Process-bound Objects

• Transaction-bound Objects

See Also:

Creating CORBA Server Applications for more information about these models.

Chapter 1
Using Object State Management

1-2

https://docs.oracle.com/cd/E15261_01/tuxedo/docs11gr1/pdf/tech_articles.pdf
https://docs.oracle.com/cd/E13161_01/tuxedo/docs10gr3/cservers/concepts.html

1.2.1.1 Method-bound Objects
Method-bound objects are loaded into the machine’s memory only for the duration of the client
invocation. When the invocation is complete, the object is deactivated and any state data for
that object is flushed from memory. In this document, a method-bound object is considered to
be a stateless object.

You can use method-bound objects to create a stateless server model in your application. By
using a stateless server model, you move requests that are already directed to active objects
to any available server, which allows concurrent execution for thousands and even millions of
objects. From the client application view, all the objects are available to service requests.
However, because the server application maps objects into memory only for the duration of
client invocations, few of the objects managed by the server application are in memory at any
given moment.

1.2.1.2 Process-bound Objects
Process-bound objects remain in memory beginning when they are first invoked until the
server process in which they are running is shut down. A process-bound object can be
activated upon a client invocation or explicitly before any client invocation (a preactivated
object). Applications can control the deactivation of process-bound objects. In this document, a
process-bound object is considered to be a stateful object.

When appropriate, process-bound objects with a large amount of state data can remain in
memory to service multiple client invocations, thereby avoiding reading and writing the object’s
state data on each client invocation.

1.2.1.3 Transaction-bound Objects
Transaction-bound objects can also be considered stateful because, within the scope of a
transaction, they can remain in memory between invocations. If the object is activated within
the scope of a transaction, the object remains active until the transaction is either committed or
rolled back. If the object is activated outside the scope of a transaction, its behavior is the
same as that of a method-bound object (it is loaded for the duration of the client invocation).

1.2.2 Implementing Stateless and Stateful Objects
In general, application developers need to balance the costs of implementing stateless objects
against the costs of implementing stateful objects.

• About Stateless and Stateful Objects

• When to Use Stateless Objects

• When to Use Stateful Objects

1.2.2.1 About Stateless and Stateful Objects
The decision to use stateless or stateful objects depends on various factors. In the case where
the cost to initialize an object with its durable state is expensive—because, for example, the
object’s data takes up a great deal of space, or the durable state is located on a disk very
remote from the servant that activates it—it may make sense to keep the object stateful, even
if the object is idle during a conversation. In the case where the cost to keep an object active is
expensive in terms of machine resource usage, it may make sense to make such an object
stateless.

Chapter 1
Using Object State Management

1-3

By managing object state in a way that is efficient and appropriate for your application, you can
maximize your application’s ability to support large numbers of simultaneous client applications
that use large numbers of objects. The way that you manage object state depends on the
specific characteristics and requirements of your application. For CORBA applications, you
manage object state by assigning the method activation policy to these objects, which has the
effect of deactivating idle object instances so that machine resources can be allocated to other
object instances.

1.2.2.2 When to Use Stateless Objects
Stateless objects generally provide good performance and optimal usage of server resources,
because server resources are never used when objects are idle. Using stateless objects is a
good approach to implementing server applications and are particularly appropriate when:

• The client application waits for user input between invocations on the object.

• The client request contains all the data needed by the server application, and the server
can process the client request using only that data.

• The object has high access rates, but low access rates from any one particular client
application.

By making an object stateless, you can generally assure that server application resources are
not being reserved unnecessarily while waiting for input from the client application.

An application that employs a stateless object model has the following characteristics:

• Information about and associated with an invocation is not maintained after the server
application has finished executing a client request.

• An incoming client request is sent to the first available server process. After the request
has been satisfied, the application state disappears and the server application is available
for another client application request.

• Durable state information for the object exists outside the server process. With each
invocation on this object, the durable state is read into memory.

• Successive requests on an object from a given client application may be processed by a
different server process.

• The overall system performance of a machine that is running stateless objects is usually
enhanced.

1.2.2.3 When to Use Stateful Objects
A stateful object, once activated, remains in memory until a specific event occurs, such as the
process in which the object exists is shut down, or the transaction in which the object is
activated is completed.

Using stateful objects is recommended when:

• An object is used frequently by a large number of client applications, such as long-lived,
well-known objects. When the server application keeps these objects active, the client
application typically experiences minimal response time in accessing them. These active
objects are shared by many client applications, and therefore relatively few objects of this
type exist in memory.

Chapter 1
Using Object State Management

1-4

Note:

You must carefully consider how objects will potentially be involved in a
transaction. An object can be bound to a particular process temporarily
(transaction-bound) or permanently (process-bound). An object that is involved in
a transaction cannot be invoked by another client application or object (Oracle
Tuxedo will likely return an error indicating that the object is busy). Stateful
objects that are intended to be used by a large number of client applications can
create bottlenecks if they are involved in transactions frequently or for long
durations.

• A client application must invoke successive operations on an object to complete a
transaction, and the client application is not idle while it waits for user input between
invocations. If the object were deactivated between invocations, there would be a
degradation of response time because state would be written and read between each
invocation.

Stateful objects have the following behavior:

• State information is maintained between server invocations, and the object typically
remains dedicated to a given client application for a specified duration. Even though data is
sent and received between the client and server applications, the server process maintains
additional context or application state information in memory.

• When one or more stateful objects use a lot of machine resources, server performance for
tasks and processes not associated with the stateful object may be lower than with a
stateless server model.
For example, if an object has a lock on a database and is caching large amounts of data in
memory, that database and the memory used by that stateful object are unavailable to
other objects, potentially for the entire duration of a transaction.

1.2.3 Parallel Objects
Parallel objects are, by definition, stateless objects so they can exist concurrently on more than
one server. In release 8.0 of Oracle Tuxedo, you can use the Implementation Configuration File
(ICF) to force all objects in a specific implementation to be parallel objects. The effect is to
improve performance. For more information on parallel objects, see Using Parallel Objects.

1.3 Replicating Server Processes and Server Groups
This topic includes the following sections:

• About Replicating Server Processes and Server Groups

• Configuration Options

• Replicating Server Processes

• Replicating Server Groups

Chapter 1
Replicating Server Processes and Server Groups

1-5

See Also:

For more detailed information about replicating server processes and server groups,
see the following topics:

• Configuring Replicated Server Processes and Groups

• Scaling by Replicating Server Processes and Server Groups

1.3.1 About Replicating Server Processes and Server Groups
The Oracle Tuxedo CORBA environment allows CORBA objects to be deployed across
multiple servers to provide additional failover reliability and to split the client’s workload through
load balancing. Oracle Tuxedo CORBA load balancing is enabled by default. For more
information about configuring load balancing, see Enabling System-controlled Load Balancing.
For more information about distributing the application workload using Oracle Tuxedo CORBA
features, see Distributing CORBA Applications.

The Oracle Tuxedo architecture provides the following server organization:

• Groups—individual servers can be combined to form a group. A group of servers runs on a
single machine. Typically, the servers in a group access common resources (such as a
database).

• Domains—machines can be combined to form a domain. A domain is administered
centrally. Multiple domains are administered separately. Domains can also be
interconnected and requests can be transparently routed from one domain to another.
However, each domain is independently administered.

This architecture allows new servers, groups, or machines to be dynamically added or
removed, to adapt the application to high- or low-demand periods, or to accommodate internal
changes required to the application. The Oracle Tuxedo run time provides load balancing and
failover by routing requests across available servers.

System administrators can scale an Oracle application by:

• Replicating Server Processes: Increase the number of server processes to support more
active objects within a group and load balancing among servers.

• Replicating Server Groups: Increase the number of server groups so that Oracle can
balance the load by distributing processing requests across multiple server machines.

1.3.2 Configuration Options
You can configure server applications as:

• A single machine with one or more server processes implementing one or more interfaces.
The servers can be single-threaded or multithreaded.

• Multiple machines with multiple server processes and multiple interfaces.

You can add more parallel processing capability to client/server applications by replicating
server processes or add more threads. You can add more server groups to split processing
across resource managers. For CORBA applications, you can implement factory-based
routing, as described in Using Factory-Based Routing (CORBA Servers Only).

Chapter 1
Replicating Server Processes and Server Groups

1-6

1.3.3 Replicating Server Processes
System administrators can scale an application by replicating the servers to support more
concurrent active objects, or process more concurrent requests, on the server node. To
configure replicated server processes, see Configuring Replicated Server Processes and
Groups .

Note:

Release 8.0 of Oracle supports the user-controlled concurrency model for active
objects. For a discussion of the concurrency policy feature, see Parallel Objects.

• Benefits

• Guidelines

1.3.3.1 Benefits
The benefits of using replicated server processes include:

• Load balancing incoming requests.

• Processing client requests on any server within a group. As requests arrive in the Oracle
domain for the server group, Oracle routes the request to the least busy server process
within that group.

• Improving the server application’s performance by using multiple server processes. Instead
of having one server process handling one client request at one time, multiple server
processes are available to handle multiple client requests simultaneously.

• Providing failover protection in the event that one of the server processes stops.

1.3.3.2 Guidelines
To achieve the maximum benefit of using replicated server processes, make sure that the
CORBA objects instantiated by your server application have unique object IDs. This allows a
client invocation on an object to cause the object to be instantiated on demand, within the
bounds of the number of server processes that are available, and not queued up for an already
active object.

You must also consider the trade-off between providing better application recovery by using
multiple processes versus more efficient performance using threads (for some types of
application patterns and processing environments).

Better failover occurs only when you add processes, not threads. For information about using
single-threaded and multithreaded servers, see When to Use Multithreaded CORBA Servers.

1.3.4 Replicating Server Groups
Server groups are unique to Oracle and are key to the scalability features of Oracle. A group
contains one or more servers on a single node. System administrators can scale an Oracle
application by replicating server groups and configuring load balancing within a domain.

Replicating a server group involves defining another server group with the same type of
servers and resource managers to provide parallel access to a shared resource (such as a

Chapter 1
Replicating Server Processes and Server Groups

1-7

database). CORBA applications, for example, can use factory-based routing to split processing
across the database partitions.

The UBBCONFIG file specifies how server groups are configured and where they run. By using
multiple server groups, Oracle can:

• Spread the processing load for a given application or set of applications across additional
machines.

• For CORBA applications, use factory-based routing to send one set of requests on a given
interface to one group, and another set of requests on the same interface to another group.

To configure replicated server groups, see Configuring Replicated Server Processes and
Groups.

1.4 Using Multithreaded Servers
This topic includes the following sections:

• About Multithreaded CORBA Servers

• When to Use Multithreaded CORBA Servers

• Coding Recommendations

• Configuring a Multithreaded CORBA Server

See Also:

Configuring Multithreaded Servers for instructions on how to configure servers for
multithreading.

1.4.1 About Multithreaded CORBA Servers
System administrators can scale an Oracle application by enabling multithreading in CORBA
servers, and by tuning configuration parameters (the maximum number of server threads that
can be created) in the application’s UBBCONFIG file.

Oracle CORBA supports the ability to configure multithreaded CORBA applications. A
multithreaded CORBA server can service multiple object requests simultaneously, while a
single-threaded CORBA server runs only one request at a time.

Server threads are started and managed by the Oracle CORBA software rather than an
application program. Internally, Oracle CORBA manages a pool of available server threads. If a
CORBA server is configured to be multithreaded, then when a client request is received, an
available server thread from the thread pool is scheduled to execute the request. While the
object is active, the thread is busy. When the request is complete, the thread is returned to the
pool of available threads.

1.4.2 When to Use Multithreaded CORBA Servers
Designing an application to use multiple, independent threads provides concurrency within an
application and can improve overall throughput. Using multiple threads enables applications to
be structured efficiently with threads servicing several independent tasks in parallel.
Multithreading is particularly useful when:

Chapter 1
Using Multithreaded Servers

1-8

• There is a set of lengthy operations that do not necessarily depend on other processing.

• The amount of data to be shared is small and identifiable.

• You can break the task into various activities that can be executed in parallel.

• There are occasions where objects must be reentrant.

Some computer operations take a substantial amount of time to complete. A multithreaded
application design can significantly reduce the wait time between the request and completion
of operations. This is true in situations when operations perform a large number of I/O
operations such as when accessing a database, invoking operations on remote objects, or are
CPU-bound on a multiprocessor machine. Implementing multithreading in a server process can
increase the number of requests a server processes in a fixed amount of time.

The primary requirement for multithreaded server applications is the simultaneous handling of
multiple client requests. For more information on the requirements and benefits of using
multithreaded servers, see Using Multithreaded Servers.

1.4.3 Coding Recommendations
So as to be able to analyze the performance of multithreaded servers, include one of the
following identifiers in each message if your client or server application sends messages to the
user log (ULOG):

• Object ID

• Transaction ID (if the object is transactional)

1.4.4 Configuring a Multithreaded CORBA Server
To configure a multithreaded CORBA server, you change settings in the application’s
UBBCONFIG file. For information about defining the UBBCONFIG parameters to implement a
multithreaded server, see Configuring Multithreaded Servers.

1.5 Using Factory-Based Routing (CORBA Servers Only)
This section discusses factory-based routing in Oracle CORBA applications in the following
sections:

• About Factory-based Routing

• Characteristics of Factory-based Routing

• How Factory-based Is Implemented

• Configuring Factory-based Routing in the UBBCONFIG File

See Also:

Configuring Factory-based Routing in the UBBCONFIG File for more information
about using factory-based routing

Chapter 1
Using Factory-Based Routing (CORBA Servers Only)

1-9

1.5.1 About Factory-based Routing
Factory-based routing enables you to a specify what server group is associated with an object
reference. As a result, you can define the group and machine in which a given object is
instantiated and then distribute the processing load for a given application across multiple
machines.

With factory-based routing, routing is performed when a factory creates an object reference.
The factory specifies field information in its call to the Oracle CORBA TP Framework to create
an object reference. The TP Framework executes the routing algorithm based on the routing
criteria that is defined in the ROUTING section of an application’s UBBCONFIG file. The resulting
object reference has, as its target, an appropriate server group for the handling of method
invocations on the object reference. Any server that implements the interface in that server
group is eligible to activate the servant for the object reference.

Thus, the activation of CORBA objects can be distributed by server group based on the
defined criteria and different implementations of CORBA interfaces can be supplied in different
groups. So you can replicate the same CORBA interface across multiple server groups, based
on defined, group-specific differences.

The primary benefit of factory-based routing is that it provides a simple means to scale an
application, and invocations on a given interface in particular, across a growing deployment
environment. Distributing the deployment of an application across additional machines is
strictly an administrative function that does not require you to recode or rebuild the application.

1.5.2 Characteristics of Factory-based Routing
Factory-based routing has the following characteristics:

• The factory object implementation can indirectly control the location of the created CORBA
object by supplying application-specific routing information.

• An implementation of a particular CORBA interface can exist in more than one server
process, as shown in Configuring Factory-based Routing in the UBBCONFIG File.

• Multiple CORBA interfaces can reside in a single server group.

• All server processes in a particular server group do not need to use the same CORBA
interfaces.

• All object instances that offer a given interface within a group must support the same
version of the implementation.

• Routing uses the bulletin board criteria and occurs in a server call.

1.5.3 How Factory-based Is Implemented
To implement factory-based routing, you must change the way your factories create object
references. First, you must coordinate with the system designer to determine the fields and
values to be used as the basis for routing. Then, for each interface, you must configure factory-
based routing such that the interface definition for the factory specifies the parameter that
represents the routing criteria that is used to determine the group ID.

To configure factory-based routing, define the following information in the UBBCONFIG file:

• Routing criteria identifier for a CORBA interface in the INTERFACES section.

• As many server groups as are required for distributing the system in the GROUPS section.

Chapter 1
Using Factory-Based Routing (CORBA Servers Only)

1-10

• Routing criteria in the ROUTING section.

• Groups, machines, and databases as required.

Note:

When implementing factory-based routing, remember that an object with a given
interface and OID can be simultaneously active in two different groups if those two
groups both contain the same object implementation. This can be avoided if your
factories generate unique OIDs. To guarantee that only one object instance of a
given interface name and OID is available at any one time in your domain, you must
either:

• Use factory-based routing to ensure that objects with a particular OID are always
routed to the same group, or

• Configure your domain so that a given object implementation is in only one
group.

If multiple clients have an object reference that contains a given interface name and
OID, the reference will always be routed to the same object instance.

Thereafter, the object reference will contain additional information that is used to
provide an indication of where the target server exists. Factory-based routing is
performed once per CORBA object, when the object reference is created.

1.5.4 Configuring Factory-based Routing in the UBBCONFIG File
Routing criteria specify the data values used to route requests to a particular server group. To
configure factory-based routing, you define routing criteria in the ROUTING section of the
UBBCONFIG file (for each interface for which requests are routed). For more detailed information
about configuring factory-based routing, see Configuring Factory-based Routing in the
UBBCONFIG File.

To configure factory-based routing across multiple domains, you must also configure the
factory_finder.ini file to identify factory objects that are used in the current (local) domain
but that are resident in a different (remote) domain. For more information, see “Configuring
Multiple Domains for CORBA Applications” in the Using the Oracle Tuxedo Domains
Component .

1.6 Using Parallel Objects
This topic includes the following sections:

• About Parallel Objects

• Configuring Parallel Objects

1.6.1 About Parallel Objects
Support for parallel objects has been added in release 8.0 of Oracle Tuxedo as a performance
enhancement. The parallel objects feature enables you to designate all business objects in
particular application as stateless objects. The effect is that, unlike stateful business objects,
which can only run on one server in a single domain, stateless business objects can run on all
servers in a single domain. Thus, the benefits of parallel objects are as follows:

Chapter 1
Using Parallel Objects

1-11

Note:

You enable the parallel objects feature by setting the concurrency policy option to
user_controlled in the ICF file. For more information, see Configuring Parallel
Objects.

• Parallel objects, which are stateless, can run on multiple servers in the same
domain at the same time. The resulting utilization of all servers to service
concurrent multiple requests improves performance.

• When Oracle Tuxedo services requests to parallel business objects, it always
looks for an available server to the local machine first. If all servers on the local
machine are busy processing the requested business object, Oracle Tuxedo
looks for an available server on other machines in the local domain. Thus, if there
are multiple servers on the local machine, network traffic is reduced and
performance is improved.

As illustrated in the following figure, if a stateful business object is active on a server on
Machine 2, all subsequent requests to that business object will be sent to Group 2 on Machine
2. If the active object on Machine 2 is busy processing another request, the request is queued.
Even after the business object stops processing requests on Machine 2, all subsequent
requests on that stateful business object will still be sent to Group 2. After the object is
deactivated on Machine 2, subsequent requests will be sent to Group 2 on Machine 2 and can
be processed by other servers in Group 2.

Chapter 1
Using Parallel Objects

1-12

Figure 1-1 Using Stateful Business Objects

As illustrated in the following figure, if a parallel object is running on all the servers in Group 1
on Machine 1 (multiple instances of stateless, user-controlled business objects can run on
multiple servers at the same time), subsequent requests to that business object will be sent to
Machine 2 and distributed to the servers in Group 2 until a server becomes available in Group
1. As long as there is a server available on the local machine, requests will be distributed to the
servers on Machine 1, unless the Oracle Tuxedo load-balancing feature determines that, due
to loads on the servers, the request must be serviced by a server in Group 2. To make this
determination, the load-balancing feature uses the LOAD parameter, which is set in the
INTERFACES section of the

Chapter 1
Using Parallel Objects

1-13

Figure 1-2 Using Stateless Business Objects

UBBCONFIG file. For information on the LOAD parameter, see Modifying the INTERFACES
Section.

1.6.2 Configuring Parallel Objects
Support for parallel objects was added to Oracle Tuxedo in release 8.0. You use the ICF file to
implement parallel objects for a particular CORBA application. The ICF includes a user-
controlled concurrency policy option that sets all business objects implemented in the
application, to which the ICF file applies, to stateless objects.

The concurrency policy determines whether the Active Object Map (AOM) is used to guarantee
that an object is active in only one server at any one time. In previous releases, use of the
AOM was mandatory, not optional. Use of the AOM is referred to as system-controlled
concurrency. Unlike the system-controlled concurrency model, the user-controlled model,
which does not use the AOM, allows the same object to be active in more than one server at a
time. Thus, user-controlled concurrency can be used to improve performance and load
balancing. For more information about configuring user-controlled concurrency for parallel
objects, see Parallel Objects in the CORBA Programming Reference.

Chapter 1
Using Parallel Objects

1-14

1.7 Multiplexing Incoming Client Connections
System administrators can scale an Oracle Tuxedo application by increasing, in the UBBCONFIG
file, the number of incoming client connections that an application site supports. Oracle Tuxedo
provides a multicontexted, multistated gateway of listener/handlers to handle the multiplexing
of all the requests issued by the client.

This topic includes the following sections:

• IIOP Listener and Handler

• Increasing the Number of ISH Processes

1.7.1 IIOP Listener and Handler
The IIOP Listener (ISL) enables access to Oracle Tuxedo CORBA objects by remote Oracle
Tuxedo CORBA clients that use IIOP. The ISL is a process that listens for remote CORBA
clients requesting IIOP connections. The IIOP Handler (ISH) is a multiplexor process that acts
as a surrogate on behalf of the remote CORBA client. Both the ISL and ISH run on the
application site. An application site can have one or more ISL processes and multiple
associated ISH processes. Each ISH is associated with a single ISL.

The client connects to the ISL process using a known network address. The ISL balances the
load among ISH processes by selecting the best available ISH and passing the connection
directly to it. The ISL/ISH manages the context on behalf of the application client. For more
information about ISL and ISH, see the description of ISL in the File Formats, Data
Descriptions, MIBs, and System Processes Reference.

1.7.2 Increasing the Number of ISH Processes
System administrators can scale an Oracle Tuxedo CORBA application by increasing the
number of ISH processes on an application site, thereby enabling the ISL to load balance
among more ISH processes. By default, an ISH can handle up to 10 client connections. To
increase this number, pass the optional CLOPT -x mpx-factor parameter to the ISL command,
specifying in mpx-factor the number of ISH client connections each ISH can handle (up to
4096), and therefore the degree of multiplexing, for the ISH. Increasing the number of ISH
processes may affect application performance as the application site services more concurrent
processes.

System administrators can tune other ISH options as well to scale Oracle Tuxedo applications.
For more information, see the description of ISL in the File Formats, Data Descriptions, MIBs,
and System Processes Reference.

Chapter 1
Multiplexing Incoming Client Connections

1-15

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

2
Scaling CORBA Server Applications

Using the Production sample application as an example, this topic demonstrates scaling an
CORBA C++ application to increase its processing capability. Ensure to read the following
before you begin:

• About Scaling Oracle Tuxedo CORBA Applications for a comprehensive introduction to
tuning and scaling Oracle Tuxedo CORBA applications.

• Production Sample Application in the Oracle Tuxedo online documentation.

This topic includes the following sections:

• About Scaling the Production Sample Application

• Changing the OMG IDL

• Using a Stateless Object Model

• Scaling by Replicating Server Processes and Server Groups

• Scaling with Factory-based Routing

• Additional Design Considerations

• Scaling the Application Further

2.1 About Scaling the Production Sample Application
The Production sample application provides the same end-user functionality as the Wrapper
sample application. The Production sample application demonstrates how to use features of
the Oracle Tuxedo software to scale an existing Oracle Tuxedo application.

This section includes the following topics:

• Design Goals

• How the Application Has Been Scaled

2.1.1 Design Goals
The primary design goal of the Production sample application is to significantly increase the
number of client applications it can accommodate by:

• Processing, in parallel and on one machine, client requests on multiple objects that
implement the same interface.

• Directing requests on behalf of certain students to one machine, and other students to
other machines.

• Adding more machines to share the processing load.

2.1.2 How the Application Has Been Scaled
To accommodate these design goals, the Production sample application has been scaled by:

2-1

https://docs.oracle.com/cd/E13203_01/tuxedo/tux91/usamples/production.htm

• Implementing a stateless object model to scale up the number of client requests the server
process can manage simultaneously.

• Replicating the University, Billing, and Oracle Tuxedo Teller Application server processes
within the groups in which they are configured (the ORA_GRP and APP_GRP server groups
defined in the UBBCONFIG file).

• Replicating the ORA_GRP and APP_GRP server groups on an additional server machine,
Production Machine 2, and also partitioning the database.

• Assigning unique object IDs (OIDs) to the following objects so that they can be instantiated
multiple times simultaneously in their respective groups.

• RegistrarFactory
• Registrar
• TellerFactory
• Teller

This makes these objects available on a per-client application (and not per-process) basis,
thereby accommodating a parallel processing capability.

• Implementing factory-based routing to direct client requests on behalf of some students to
one machine, and other students to another machine.

Note:

To make the Production sample application easy to use, this application is configured
on the Oracle Tuxedo software kit to run on one machine, using one database. The
examples shown in this chapter, however, show running this application on two
machines using two databases. The Production sample application is designed so
that it can be configured to run on several machines and to use multiple databases.
Changing the configuration to multiple machines and databases involves modifying
the UBBCONFIG file and partitioning the databases, which is described in Scaling the
Application Further.

The sections that follow describe how the Production sample application uses replicated server
processes and server groups, object state management, and factory-based routing to meet its
scalability goals.

2.2 Changing the OMG IDL
The only OMG IDL changes for the Production sample application are limited to the
find_registrar() and find_teller() operations on, respectively, the RegistrarFactory and
TellerFactory objects. These two operations need to be modified to require, respectively, a
student ID and account number, which are needed to implement factory-based routing. See
Scaling with Factory-based Routing to read about how the Production sample application
implements and uses factory-based routing.

2.3 Using a Stateless Object Model
This section describes how object state management is used with the Registrar and Teller
objects in the Production sample applications to increase the application’s scalability. For an
introduction to object state management, see Using Object State Management.

Chapter 2
Changing the OMG IDL

2-2

To increase scalability, the Registrar and Teller objects are configured in the Production
server application with the method activation policy. The method activation policy assigned to
these two objects results in the following behavior changes:

• Whenever these objects are invoked, they are instantiated by the Oracle Tuxedo domain in
the appropriate server group.

• After the invocation is complete, the Oracle Tuxedo domain deactivates these objects.

With the Basic through the Wrapper sample applications, the Registrar object was process-
bound (process activation policy). All client requests on the Registrar object invariably went to
the same object instance in the memory of the server machine. The Basic sample application
design may be adequate for a small-scale deployment. However, as client application
demands increase, client requests on the Registrar object eventually become queued, and
response time drops.

However, when the Registrar and Teller objects are stateless (method activation policy), and
the server processes that manage these objects are replicated, the Registrar and Teller
objects can process multiple client requests in parallel. The only constraint on the number of
simultaneous client requests that these objects can handle is the number of server processes
that are available that can instantiate the Registrar and Teller objects. These stateless
objects, thereby, make for more efficient use of machine resources and reduced client
response time.

Most importantly, so that Oracle Tuxedo CORBA can instantiate copies of the Registrar and
Teller objects in each of the replicated server processes, each copy of these objects must be
unique. To make each instance of these objects unique, the factories for those objects must
assign unique object IDs to them.

For the Oracle Tuxedo application to instantiate copies of the Registrar and Teller objects in
each of the replicated server application processes, each copy of the Registrar and Teller
objects have an unique object ID (OID). The factories that create these objects are responsible
for assigning them unique OIDs. For information about generating unique object IDs, see
Creating CORBA Server Applications. For more information about other design considerations,
see Additional Design Considerations.

2.4 Scaling by Replicating Server Processes and Server Groups
This topic includes the following sections:

This topic describes how the Production sample application was scaled by replicating server
processes and server groups. For an introduction to this topic, see Scaling by Replicating
Server Processes and Server Groups.

• Replicating Server Processes in the Production Application

• Replicating Server Groups in the Production Application

• Configuring Replicated Server Processes and Groups in the Production Application

2.4.1 Replicating Server Processes in the Production Application
This section describes how the Production sample application replicates server applications.
For an introduction to this feature, see Replicating Server Processes.

The following figure shows the replicated ORA_GRP and APP_GRP groups running on a single
machine.

Chapter 2
Scaling by Replicating Server Processes and Server Groups

2-3

• The University server application, Oracle Tuxedo Teller Application, and Oracle7 TMS
server processes are replicated within the ORA_GRP group.

• The Billing server process is replicated within the APP_GRP group.

Figure 2-1 Replicated Server Groups in the Production Sample

When a request arrives for either of these groups, the Oracle Tuxedo domain has several
server processes available that can process the request, and the Oracle Tuxedo domain can
choose the server process that is the least busy.

In following figure, note the following points:

• At any time, there may be no more than one instance of the RegistrarFactory,
Registrar, TellerFactory, or Teller objects within a given server process.

• There may be any number of CourseSynopsisEnumerator objects in any University server
process.

2.4.2 Replicating Server Groups in the Production Application
This section describes how the Production sample application replicates server groups. For an
introduction to this feature, see Replicating Server Groups.

The following figure shows the Production sample application groups replicated on another
machine, as specified in the application’s UBBCONFIG file, as ORA_GRP2 and APP_GRP2.

Chapter 2
Scaling by Replicating Server Processes and Server Groups

2-4

Figure 2-2 Replicating Server Groups Across Machines

In following figure, the only difference between the content of the groups on Production
Machines 1 and 2 is the database:

• The database on Production Machine 1 contains student and account information for
students with IDs between 100001 and 100005.

• The database on Production Machine 2 contains student and account information for
students with IDs between 100006 and 100010.

Note:

The course information table in both databases is identical.

The student information in a given database may be completely unrelated to the account
information in the same database.

For more information about how the Production sample application uses factory-based routing
to distribute the application’s processing load across multiple machines, see Scaling with
Factory-based Routing.

Chapter 2
Scaling by Replicating Server Processes and Server Groups

2-5

2.4.3 Configuring Replicated Server Processes and Groups in the
Production Application

The following code snippet shows excerpts from the GROUPS and SERVERS sections of the
UBBCONFIG file for the Production sample application.

*GROUPS
 APP_GRP1
 LMID = SITE1
 GRPNO = 2
 TMSNAME = TMS
 APP_GRP2
 LMID = SITE1
 GRPNO = 3
 TMSNAME = TMS
 ORA_GRP1
 LMID = SITE1
 GRPNO = 4
 OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/..."
 CLOSEINFO = ""
 TMSNAME = "TMS_ORA"
 ORA_GRP2
 LMID = SITE1
 GRPNO = 5
 OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/..."
 CLOSEINFO = ""
 TMSNAME = "TMS_ORA"

*SERVERS
 # By default, activate 2 instances of each server
 # and allow the administrator to activate up to 5
 # instances of each server
 DEFAULT:
 MIN = 2
 MAX = 5
 tellp_server
 SRVGRP = ORA_GRP1
 SRVID = 10
 RESTART = N
 tellp_server
 SRVGRP = ORA_GRP2
 SRVID = 10
 RESTART = N

 billp_server
 SRVGRP = APP_GRP1
 SRVID = 10
 RESTART = N
 billp_server
 SRVGRP = APP_GRP2
 SRVID = 10
 RESTART = N
 univp_server
 SRVGRP = ORA_GRP1

Chapter 2
Scaling by Replicating Server Processes and Server Groups

2-6

 SRVID = 20
 RESTART = N
 univp_server
 SRVGRP = ORA_GRP2
 SRVID = 20
 RESTART = N

2.5 Scaling with Factory-based Routing
This topic describes how the Production sample application was scaled using factory-based
routing. For an introduction to factory-based routing, see Using Factory-Based Routing
(CORBA Servers Only).

This topic includes the following sections:

• About Factory-based Routing in the Production Application

• Configuring Factory-based Routing in the UBBCONFIG File

• Implementing Factory-based Routing in a Factory

• What Happens at Run Time

2.5.1 About Factory-based Routing in the Production Application
This section describes how the Production sample application uses a factory-based routing.
For an introduction to this feature, see Using Factory-Based Routing (CORBA Servers Only).

You can use factory-based routing to expand the load-balancing and scalability features of
Oracle Tuxedo CORBA. In the Production sample application, you can use factory-based
routing to send requests to register one subset of students to one machine, and requests for
another subset of students to another machine. As you increase your application’s processing
capability, you can easily modify the factory-based routing in your application to add more
machines.

The primary design consideration regarding implementing factory-based routing in the
Production sample application is in choosing the value on which routing is based. The
Production sample application uses factory-based routing in the following ways:

• Requests from client applications to the Registrar object are routed based on the student
ID. Requests from student ID 100001 to 100005 go to Production Machine 1. Requests
from student ID 100006 to 100010 go to Production Machine 2.

• Requests from the Registrar object to the Teller object are routed based on account
number. Billing requests for account 200010 to 200014 go to Production Machine 1. Billing
requests for account 200015 to 200019 go to Production Machine 2.

2.5.2 Configuring Factory-based Routing in the UBBCONFIG File
The University Production sample application demonstrates how to implement factory-based
routing. The INTERFACES, ROUTING, and GROUPS sections from the ubb_b.nt configuration file
show how you can implement factory-based routing in an Oracle Tuxedo CORBA application.
You can find the ubb_p.nt or ubb_p.mk UBBCONFIG files for this sample in the directory where
the Oracle Tuxedo software is installed (see the \samples\corba\university\production
subdirectory).

Chapter 2
Scaling with Factory-based Routing

2-7

The UBBCONFIG file must specify the following data in the INTERFACES and ROUTING sections, as
well as how groups and machines are identified.

1. The INTERFACES section lists the names of the interfaces for which you want to enable
factory-based routing. For each interface, this section specifies the kinds of criteria on
which the interface routes. This section specifies the routing criteria via an identifier,
FACTORYROUTING, as shown in the following code snippet.

INTERFACES
"IDL:beasys.com/UniversityP/Registrar:1.0"
FACTORYROUTING = STU_ID
"IDL:beasys.com/BillingP/Teller:1.0"
FACTORYROUTING = ACT_NUM

The following listing shows the fully qualified interface names for the two interfaces in the
Production sample in which factory-based routing is used. The FACTORYROUTING identifier
specifies the names of the routing values, which are STU_ID and ACT_NUM, respectively.

2. The ROUTING section specifies the parameters in the following table for each routing value.

Table 2-1 Parameters Specified in the ROUTING Section

Parameter Description

TYPE Specifies the type of routing. In the Production sample, the type of routing is
factory-based routing. Therefore, this parameter is defined as FACTORY.

FIELD Specifies the variable name that the factory inserts in the routing value. In the
Production sample, the field parameters are student_id and
account_number, respectively.

FIELDTYPE Specifies the data type of the routing value. In the Production sample, the field
types for student_id and account_number are long.

RANGES Specifies the values that are routed to each group.

The following code snippet shows the ROUTING section of the UBBCONFIG file used in the
Production sample application.

ROUTING
 STU_ID
 FIELD = "student_id"
 TYPE = FACTORY
 FIELDTYPE = LONG
 RANGES = "100001-100005:ORA_GRP1,100006-100010:ORA_GRP2"
 ACT_NUM
 FIELD = "account_number"
 TYPE = FACTORY
 FIELDTYPE = LONG
 RANGES = "200010-200014:APP_GRP1,200015-200019:APP_GRP2"

The following listing shows that Registrar object references for students with IDs in one
range are routed to one server group, and Registrar object references for students with
IDs in another range are routed to another group. Likewise, Teller object references for
accounts in one range are routed to one server group, and Teller object references for
accounts in another range are routed to another group.

Chapter 2
Scaling with Factory-based Routing

2-8

3. The groups specified by the RANGES identifier in the ROUTING section of the UBBCONFIG file
need to be identified and configured. For example, the Production sample specifies four
groups: APP_GRP1, APP_GRP2, ORA_GRP1, and ORA_GRP2. These groups need to be
configured, and the machines on which they run need to be identified.
The following code snippet shows the GROUPS section of the Production sample UBBCONFIG
file, in which the ORA_GRP1 and ORA_GRP2 groups are configured. Notice how the names in
the GROUPS section match the group names specified in the RANGES parameter in the
ROUTING section. This is critical for factory-based routing to work correctly. Furthermore,
any change in the way groups are configured in an application must be reflected in the
ROUTING section. (

Note:

The Production sample packaged with the Oracle Tuxedo software is configured
to run entirely on one machine. However, you can easily configure this
application to run on multiple machines.)

*GROUPS
 APP_GRP1
 LMID = SITE1
 GRPNO = 2
 TMSNAME = TMS
 APP_GRP2
 LMID = SITE1
 GRPNO = 3
 TMSNAME = TMS
 ORA_GRP1
 LMID = SITE1
 GRPNO = 4
 OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/
tiger+SesTm=100+LogDir=.+MaxCur=5"
 CLOSEINFO = ""
 TMSNAME = "TMS_ORA"
 ORA_GRP2
 LMID = SITE1
 GRPNO = 5
OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/
tiger+SesTm=100+LogDir=.+MaxCur=5"
 CLOSEINFO = ""
 TMSNAME = "TMS_ORA"

2.5.3 Implementing Factory-based Routing in a Factory
Factories implement factory-based routing in the way the invocation to the
TP::create_object_reference() operation is implemented. This operation has the C++
binding for create_object_reference in the following code snippet.

CORBA::Object_ptr TP::create_object_reference (
 const char* interfaceName,
 const PortableServer::oid &stroid,
 CORBA::NVlist_ptr criteria);

Chapter 2
Scaling with Factory-based Routing

2-9

The third parameter to this operation, criteria, specifies a list of named values to be used for
factory-based routing. To implement factory-based routing in a factory, you need to build the
NVlist. The use of factory-based routing is optional and is dependent on this argument.
Instead of using factory-based routing, you can pass a value of 0 (zero) for this argument.

As stated previously, the RegistrarFactory object in the Production sample application
specifies the value STU_ID. This value must exactly match the following information in the
UBBCONFIG file:

• The routing name, type, and allowable values specified by the FACTORYROUTING identifier in
the INTERFACES section.

• The routing criteria name, field, and field type specified in the ROUTING section.

The RegistrarFactory object inserts the student ID into the NVlist using the code shown in
the following code snippet.

// put the student id (which is the routing criteria)
// into a CORBA NVList:
CORBA::NVList_var v_criteria;
TP::orb()->create_list(1, v_criteria.out());
CORBA::Any any;
any <<= (CORBA::Long)student;
v_criteria->add_value("student_id", any, 0);

The RegistrarFactory object has an invocation to the TP::create_object_reference()
operation, as shown in the following code snippet. The following code snippet passes the
NVlist created.

// create the registrar object reference using
// the routing criteria :
CORBA::Object_var v_reg_oref =
 TP::create_object_reference(
 UniversityP::_tc_Registrar->id(),
 object_id,
 v_criteria.in()
);

The Production sample application also uses factory-based routing in the TellerFactory
object to determine the group in which Teller objects should be instantiated based on an
account number.

2.5.4 What Happens at Run Time
When you implement factory-based routing in a factory, Oracle Tuxedo CORBA generates an
object reference. The following example shows how the client application gets an object
reference to a Registrar object when factory-based routing is implemented.

1. The client application invokes the RegistrarFactory object, requesting a reference to a
Registrar object. The request includes a student ID.

2. The RegistrarFactory inserts the student ID into an NVlist, which is used as the routing
criteria.

3. The RegistrarFactory invokes the TP::create_object_reference() operation, passing
the Registrar interface name, a unique OID, and the NVlist.

Chapter 2
Scaling with Factory-based Routing

2-10

4. Oracle Tuxedo CORBA compares the contents of the routing tables with the value in the
NVlist to determine a group ID.

5. Oracle Tuxedo CORBA inserts information about the group into the object reference.

When the client application subsequently invokes an object using the object reference, Oracle
Tuxedo CORBA routes the request to the group specified in the object reference.

Note:

If you use the process-entity design pattern, you should use caution in how you
implement factory-based routing. The object can service only those entities that are
contained in the group’s database.

2.6 Additional Design Considerations
This topic includes the following sections:

• About the Additional Design Considerations

• Instantiating the Registrar and Teller Objects

• Ensuring That Student Registration Occurs in the Correct Server Group

• Ensuring That the Teller Object Is Instantiated in the Correct Server Group

2.6.1 About the Additional Design Considerations
When designing the Registrar and Teller objects, you should ensure that:

• The Registrar and Teller objects work properly for the Production deployment
environment; namely, across multiple replicated server processes and multiple groups.
Given that the University and Billing server processes are replicated, the design must
consider how these two objects should be instantiated.

• Client requests for registration and billing operations for a given student go to the correct
server group, given that the two server groups in the Production Oracle Tuxedo domain
each deal with different databases.

These objects must have unique object IDs (OIDs) and must be method-bound (that is, they
must have the method activation policy assigned to them).

2.6.2 Instantiating the Registrar and Teller Objects
In the University server applications that are less sophisticated than the Production sample
application, the run-time behavior of the Registrar and Teller objects was simpler:

• Each object was process-bound, meaning that each was activated the first time it was
invoked, and it stayed in memory until the server process in which it ran was shut down.

• Since there was only one server group running in the Oracle Tuxedo domain, and only one
University and Billing server process in the group, all client requests were directed to the
same objects. As multiple client requests arrived in the Oracle Tuxedo domain, these
objects each processed one client request at one time.

• Because there was only one instance of each object in the server processes in which they
ran, neither object needed a unique OID. The OID for each object specified only the
Interface Repository ID.

Chapter 2
Additional Design Considerations

2-11

However, because the University and Billing server processes are now replicated, Oracle
Tuxedo CORBA must be able to differentiate among multiple instances of the Registrar and
Teller objects. For example, if there are two University server processes running in a group,
Oracle Tuxedo CORBA must have a means to distinguish between the Registrar object
running in the first University server process and the Registrar object running in the second
University server process. To distinguish multiple instances of these objects, each object
instance must be unique.

To make each Registrar and Teller object unique, the factories for those objects must
change the way in which they make object references to them. For example, when the
RegistrarFactory object in the Basic sample application created an object reference to the
Registrar object, the TP::create_object_reference() operation specified an OID that
consisted only of the string registrar. However, in the Production sample application, the
same TP::create_object_reference() operation uses a generated unique OID instead.

As a result of giving each Registrar and Teller object a unique OID, multiple instances of
these objects may be running simultaneously in the Oracle Tuxedo domain. This characteristic
is typical of the stateless object model, and is an example of how the Oracle Tuxedo domain
can be highly scalable while it offers high performance.

Finally, because unique Registrar and Teller objects need to be brought into memory for
each client request on them, it is critical that these objects be deactivated when the invocations
on them are completed so that any object state associated with them does not remain idle in
memory. The Production server application addresses this issue by assigning the method
activation policy to these two objects in the Implementation Configuration File (ICF).

2.6.3 Ensuring That Student Registration Occurs in the Correct Server
Group

The primary scalability advantage of using replicated server groups is being able to distribute
processing across multiple machines. However, if your application interacts with a database,
which is the case with the University sample applications, it is critical that you consider the
impact of these multiple server groups on the database interactions.

In many cases, you may have one database associated with each machine in your
deployment. If your server application is distributed across multiple machines, you must
consider how you set up your databases.

The Production sample application, as described in this chapter, uses two databases.
However, this application can easily be configured to accommodate more. The system
administrator can decide on how many databases to use.

In the Production sample application, the student and account information is partitioned across
the two databases, but course information is identical. Having identical course information in
both databases is not a problem because the course information is read-only for the purposes
of course registration. However, the student and account information is read-write. If multiple
databases were also to contain identical data for students and accounts (that is, the database
is not partitioned), the application would need to deal with the overhead of synchronizing the
updates to student and account information across all the databases each time any student or
account information were to change.

The Production sample application uses factory-based routing to send one set of requests to
one machine, and another set to the other machine. How factory-based routing is implemented
in the RegistrarFactory object depends on the way in which references to Registrar objects
are created.

Chapter 2
Additional Design Considerations

2-12

For example, when the client application sends a request to the RegistrarFactory object to
get an object reference to a Registrar object, the client application includes a student ID in
that request. The client application must use the object reference that the RegistrarFactory
object returns to make all subsequent invocations on a Registrar object on a particular
student’s behalf, because the object reference returned by the factory is group-specific.
Therefore, for example, when the client application subsequently invokes the
get_student_details() operation on the Registrar object, the client application can be
assured that the Registrar object is active in the server group associated with the database
containing data for that student.

To show how this works, consider the following execution scenario, which is implemented in
the Production sample application:

1. The client application invokes the find_registrar() operation on the RegistrarFactory
object. Included in this invocation is the student ID 1000003.

2. Oracle Tuxedo CORBA routes the client request to any RegistrarFactory object.

3. The RegistrarFactory object uses the student ID to create an object reference to a
Registrar object in ORA_GRP1, based on the routing information in the UBBCONFIG file, and
returns that object reference to the client application.

4. The client application invokes the register_for_courses() operation on the Registrar
object.

5. Oracle Tuxedo CORBA receives the client request and routes it to the server group
specified in the object reference. In this case, the client request goes to the University
server process in ORA_GRP1, which is on Production Machine1.

6. The University server process instantiates a Registrar object and sends the client
invocation to it.

The RegistrarFactory object from the preceding scenario returns to the client application a
unique reference to a Registrar object that can be instantiated only in ORA_GRP1, which runs
on Production Machine 1 and has a database containing student data for students with IDs in
the range 100001 to 100005. Therefore, when the client application sends subsequent requests
to this Registrar object on behalf of a given student, the Registrar object interacts with the
correct database.

2.6.4 Ensuring That the Teller Object Is Instantiated in the Correct Server
Group

When the Registrar object needs a Teller object, the Registrar object invokes the
TellerFactory object, using the TellerFactory object reference cached in the University Server
object.

However, because factory-based routing is used in the TellerFactory object, the Registrar
object passes the student’s account number when the Registrar object requests a reference
to a Teller object. This way, the TellerFactory object creates a reference to a Teller object
in the group that has the correct database.

Chapter 2
Additional Design Considerations

2-13

Note:

For the Production sample application to work properly, it is essential that the system
administrator configures the server groups and the databases properly. In particular,
the system administrator must make sure that a match exists between the routing
criteria specified in the routing tables and the databases to which requests using
those criteria are routed. Using the Production sample as an example, the database
in a given group must contain the correct student and account information for the
requests that are routed to that group.

2.7 Scaling the Application Further
In the future, the system administrator of the Production sample application may want to add
capacity to the Oracle Tuxedo domain. For example, the University may eventually experience
a large increase in the student population, or the Production application may be scaled up to
accommodate the course registration process for an entire state university system,
encompassing several campuses. This can be done without modifying or rebuilding the
application.

The system administrator can continually add capacity by:

• Replicating the server groups in the Production sample application across additional
machines.
The system administrator must modify the UBBCONFIG file to specify the additional server
groups, the server processes that run in those groups, and the machines on which the
server groups run.

• Changing the factory-based routing tables.
For example, instead of routing to the two existing groups in the Production sample
application, the system administrator can modify the routing rules in the UBBCONFIG file to
partition the application further among additional server groups added to the Oracle
Tuxedo domain. Any modification to the routing tables must match the information for the
configured server groups and machines in the UBBCONFIG file.

Note:

If you add capacity to an existing Oracle Tuxedo CORBA application that uses a
database, you must also consider the impact on how the database is set up,
particularly when you are using factory-based routing. For example, if the Production
sample application is distributed across six machines, the database on each machine
must be set up appropriately and in accordance with the routing tables in the
UBBCONFIG file.

Chapter 2
Scaling the Application Further

2-14

3
Distributing CORBA Applications

This topic describes how to distribute applications in the Oracle Tuxedo CORBA environment,
using a CORBA application as an example.

Note:

The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo
CORBA Java client and Oracle Tuxedo CORBA Java client ORB text references,
associated code samples, must only be used to help implement/run third party Java
ORB libraries, and for programmer reference only.
Technical support for third party CORBA Java ORBs must be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

This topic includes the following sections:

• Why Distribute an Application?

• Using Data-dependent Routing (Oracle Tuxedo ATMI Servers Only)

• Configuring the UBBCONFIG File

• Configuring the factory_finder.ini (CORBA Applications Only)

• Modifying the Domain Gateway Configuration File to Support Routing

3.1 Why Distribute an Application?
This topic includes the following sections:

• About Distributing an Application

• Benefits of a Distributed Application

• Characteristics of Distributing an Application

3.1.1 About Distributing an Application
Distributing an application enables you to select which parts of an application must be grouped
together logically and where these groups must run. You distribute an application by creating
more than one entry in the GROUPS section of the UBBCONFIG file, and by dividing application
resources or tasks among the groups. Creating groups of servers enables you to partition a
very large application into its component business applications, and to assure that each of
these into logical components is of a manageable size and in an optimal location.

3.1.2 Benefits of a Distributed Application
The benefits of a distributed application include:

3-1

• Scalability—to increase the load that an application can sustain:

– Place extra server processes in a group.

– Add machines to the application and redistribute the groups across the machines.

– Replicate a group onto other machines within the application and use load balancing.

– Segment a database and use data-dependent routing to reach the groups dealing with
these separate database segments (the Oracle Tuxedo ATMI system).

With the Oracle Tuxedo CORBA system, you can use factory-based routing to distribute the
processing of a particular CORBA interface across multiple server groups and, if desired,
across multiple machines. This feature allows you to distribute the processing load, which can
prevent the processing bottlenecks that occur when concurrent, resource-intensive
applications compete for the available CPU, memory, disk I/O, and network resources. For an
example of using factory-based routing, see Scaling with Factory-based Routing.

For more information about Oracle Tuxedo CORBA scalability features, see Scaling,
Distributing, and Tuning CORBA Applications.

• Ease of Development and Maintenance—the separation of the business application logic
into services or components that communicate through well-defined messages or
interfaces allows both development and maintenance to be similarly separated and thereby
simplified.

• Reliability—when multiple machines are in use and one fails, the remainder can continue
operation. Similarly, when multiple server processes are within a group and one fails, the
others are available to perform work. Finally, if a machine must fail, but there are multiple
machines within the application, these other machines can be used to handle the load.

• Coordination of Autonomous Actions—if you have separate applications, you can
coordinate autonomous actions, as a single logical unit of work, among applications.
Autonomous actions are actions that involve multiple server groups and multiple resource
manager interfaces.

3.1.3 Characteristics of Distributing an Application
A distributed application:

• Enlarges the client and/or server model.

• Establishes multiple server groups.

• Enables transparent access to Oracle Tuxedo services or Oracle Tuxedo CORBA
interfaces.

• In Oracle Tuxedo, allows data-dependent partitioning of data.

• In Oracle Tuxedo CORBA, allows partitioning of CORBA objects in multiple groups across
multiple machines, or distributing application factory interfaces and application interfaces.

• Enables management of multiple resources.

• Supports a networked model.

3.2 Using Data-dependent Routing (Oracle Tuxedo ATMI Servers
Only)

This topic applies to Oracle Tuxedo servers only.

This topic includes the following sections:

Chapter 3
Using Data-dependent Routing (Oracle Tuxedo ATMI Servers Only)

3-2

• About Data-dependent Routing

• Characteristics of Data-dependent Routing

• Sample Distributed Application

• Example of UBBCONFIG Sections in a Distributed Application

3.2.1 About Data-dependent Routing
Data-dependent routing is a mechanism whereby a service request is routed by a client (or a
server acting as a client) to a server within a specific group based on a data value contained
within the buffer that is sent. Within the internal code of a service call, Oracle Tuxedo chooses
a destination server by comparing a data field with the routing criteria it finds in the bulletin
board shared memory.

For any given service, a routing criteria identifier can be specified in the SERVICES section of
the UBBCONFIG file. The routing criteria identifier (in particular, the mapping of data ranges to
server groups) is specified in the ROUTING section.

3.2.2 Characteristics of Data-dependent Routing
Data-dependent routing has the following characteristics:

• The service request assigned to a server in the group is based on a data value.

• Routing uses the bulletin board criteria and occurs in a server call.

• The routing criteria identifier for a service is specified in the SERVICES section of the
UBBCONFIG file.

• The routing criteria identifier is defined in the ROUTING section of the UBBCONFIG file.

3.2.3 Sample Distributed Application
The following table illustrates how client requests are routed to servers. In this example, a
banking application called bankapp uses data-dependent routing. For bankapp, there are three
groups (BANKB1, BANKB2, and BANKB3), and two routing criteria (Account_ID and Branch_ID).
The services WITHDRAW, DEPOSIT, and INQUIRY are routed using the Account_ID field. The
services OPEN and CLOSE are routed using the Branch_ID field.

Table 3-1 Data-dependent Routing Criteria for Sample Distributed Application

Server
Group

Routing Criteria Services

BANKB1 Account_ID:
10000 - 49999

WITHDRAW, DEPOSIT, and INQUIRY

Branch_ID: 1 -
4

OPEN and CLOSE

BANKB2 Account_ID:
50000 - 79999

WITHDRAW, DEPOSIT, and INQUIRY

Branch_ID: 5 -
7

OPEN and CLOSE

BANKB3 Account_ID:
80000 -109999

WITHDRAW, DEPOSIT, and INQUIRY

Chapter 3
Using Data-dependent Routing (Oracle Tuxedo ATMI Servers Only)

3-3

Table 3-1 (Cont.) Data-dependent Routing Criteria for Sample Distributed Application

Server
Group

Routing Criteria Services

Branch_ID: 8 -
10

OPEN and CLOSE

3.2.4 Example of UBBCONFIG Sections in a Distributed Application
The following code snippet shows a sample UBBCONFIG file that contains the GROUPS, SERVICES,
and ROUTING sections of a configuration file to accomplish data-dependent routing in the Oracle
Tuxedo system.

*GROUPS
BANKB1 GRPNO=1
BANKB2 GRPNO=2
BANKB3 GRPNO=3
#
*SERVICES
WITHDRAW ROUTING=ACCOUNT_ID
DEPOSIT ROUTING=ACCOUNT_ID
INQUIRY ROUTING=ACCOUNT_ID
OPEN_ACCT ROUTING=BRANCH_ID
CLOSE_ACCT ROUTING=BRANCH_ID
#
*ROUTING
ACCOUNT_ID FIELD=ACCOUNT_ID BUFTYPE="FML"
 RANGES="MIN - 9999:*,
 10000-49999:BANKB1,
 50000-79999:BANKB2,
 80000-109999:BANKB3,
 :"
BRANCH_ID FIELD=BRANCH_ID BUFTYPE="FML"
 RANGES="MIN - 0:*,
 1-4:BANKB1,
 5-7:BANKB2,
 8-10:BANKB3,
 :"

3.3 Configuring the UBBCONFIG File
For more information about the UBBCONFIG file, see Creating a Configuration Filein Oracle®
Tuxedo Application Configuration Guide.

This topic includes the following sections:

• About the UBBCONFIG File in Distributed Applications

• Modifying the GROUPS Section

• Modifying the SERVICES Section

• Modifying the INTERFACES Section

• Creating the ROUTING Section

Chapter 3
Configuring the UBBCONFIG File

3-4

https://docs-uat.us.oracle.com/en/database/oracle/tuxedo/22/otxcg/creating-configuration-file.html#GUID-A05E3B40-2466-4155-9CD0-30870754F2FA

3.3.1 About the UBBCONFIG File in Distributed Applications
The UBBCONFIG file contains a description of either data-dependent routing (Oracle Tuxedo) or
factory-based routing (Oracle Tuxedo CORBA), as follows:

• The GROUPS section is populated with as many server groups as are required for
distributing the system. This allows the system to route a request to a server in a specific
group. These groups can all reside on the same site (SHM mode) or, if there is networking,
the groups can reside on different sites (MP mode).

• For data-dependent routing in Oracle Tuxedo, the SERVICES section must list the routing
criteria for each service that uses the ROUTING parameter.

Note:

If a service has multiple entries, each with a different SRVGRP parameter, all such
entries must set ROUTING the same way to ensure consistency for that service. A
service can route only on one field, which must be the same for all the same
services.

• For factory-based routing in Oracle Tuxedo CORBA, the INTERFACES section must list the
name of the routing criteria for each CORBA interface that uses the FACTORYROUTING
parameter. This parameter is set to the name of a routing criteria defined in the ROUTING
section.

• Add a ROUTING section to the configuration file to show mappings between data ranges and
groups so that the system can send the request to a server in a specific group. Each
ROUTING section item contains an identifier that is used in the INTERFACES section (for
Oracle Tuxedo ATMI) or in the SERVICES section (for Oracle Tuxedo).

3.3.2 Modifying the GROUPS Section
The parameters in the GROUPS section implement two important aspects of distributed
transaction processing:

• They associate a group of servers with a particular LMID and a particular instance of a
resource manager.

• By allowing a second LMID to be associated with the server group, they name an alternate
machine to which a group of servers can be migrated if the MIGRATE option is specified.

The following table describes the parameters in the GROUPS section.

Table 3-2 Parameters Specified in the GROUPS Section

Paramet
er

Meaning

LMID LMID must be assigned in the MACHINES section to indicate that this server group runs on this
particular machine. A second LMID value can be specified (separated from the first by a
comma) to name an alternate machine to which this server group can be migrated if the
MIGRATE option has been specified. Servers in the group must specify RESTART=Y to migrate.

Chapter 3
Configuring the UBBCONFIG File

3-5

Table 3-2 (Cont.) Parameters Specified in the GROUPS Section

Paramet
er

Meaning

GRPNO Associates a numeric group number with this server group. The number must be greater than
zero (0) and less than 30000. It must be unique among entries in the GROUPS section in this
configuration file. (Required)

TMSNAME Specifies which transaction management server (TMS) must be associated with this server
group.

TMSCOUN
T

Specifies how many copies of TMSNAME must be started for this server group. The minimum
value is 2. If not specified, the default is 3. All TMSNAME servers started for a server group are
automatically set up in an MSSQ set. (Optional)

OPENINF
O

Specifies information needed to open a particular instance of a particular resource manager,
or it indicates that such information is not required for this server group. When a resource
manager is named in the OPENINFO parameter, information such as the name of the database
and the access mode is included. The entire value string must be enclosed in double quotes
and must not be more than 256 characters. The format of the OPENINFO string is dependent
on the requirements of the vendor providing the underlying resource manager. The string
required by the vendor must be prefixed with rm_name:, which is the published name of the
vendor's transaction (XA) interface followed immediately by a colon (:).
The OPENINFO parameter is ignored if TMSNAME is not set or is set to TMS. If TMSNAME is set
but the OPENINFO string is set to the null string ("") or if this parameter does not appear on
the entry, it means that a resource manager exists for the group but does not require any
information for executing an open operation.

CLOSEIN
FO

Specifies information the resource manager needs when closing a database. The parameter
can be omitted or the null string can be specified. The default is the null string.

3.3.3 Modifying the SERVICES Section
The SERVICES section contains parameters that control the way application services are
handled. An entry line in this section is associated with a service by its identifier name.
Because the same service can be link edited with more than one server, the SRVGRP parameter
is provided to tie the parameters for an instance of a service to a particular group of servers.

• Parameters to Modify

• Sample SERVICES Section

3.3.3.1 Parameters to Modify
Two parameters in the SERVICES section are particularly related to distributed transaction
processing (DTP) for Oracle Tuxedo CORBA applications that use Oracle Tuxedo ATMI
services: AUTOTRAN, and TRANTIME.

The following table describes the parameters in the SERVICES section.

Table 3-3 Parameters Specified in the SERVICES Section

Parameter Meaning

AUTOTRAN Determines whether a transaction must be started automatically if a message
received by this service is not already in transaction mode. The default is N. Use of
the parameter must be coordinated with the programmers that code the services
for your application.

Chapter 3
Configuring the UBBCONFIG File

3-6

Table 3-3 (Cont.) Parameters Specified in the SERVICES Section

Parameter Meaning

TRANTIME Specifies a timeout value, in seconds, for transactions automatically started in this
service. The default is 30 seconds. Required only if AUTOTRAN=Y and another
timeout value is required.

3.3.3.2 Sample SERVICES Section
The following code snippet shows a sample SERVICES section.

*SERVICES

 # Publish Tuxedo Teller application services
 #
 DEBIT
 AUTOTRAN=Y
 CREDIT
 AUTOTRAN=Y
 CURRBALANCE
 AUTOTRAN=Y

3.3.4 Modifying the INTERFACES Section
The INTERFACES section contains parameters that control the way application interfaces are
handled. An entry line in this section is associated with an interface by its identifier name.
Because the same interface can be link edited with more than one server, the SRVGRP
parameter is provided to tie the parameters for an instance of a interface to a particular group
of servers.

• Parameters to Modify

• Sample INTERFACES Section

3.3.4.1 Parameters to Modify
Three parameters in the INTERFACES section are particularly related to distributed transaction
processing (DTP): FACTORYROUTING, AUTOTRAN, and TRANTIME.

The following table describes the parameters in the INTERFACES section.

Table 3-4 Parameters Specified in the INTERFACES Section

Parameter Meaning

FACTORYROUT
ING =
criterion-
name

Specifies the name of the routing criteria to be used for factory-based routing for this
Oracle Tuxedo CORBA interface. You must specify a FACTORYROUTING parameter for
interfaces requesting factory-based routing.

Chapter 3
Configuring the UBBCONFIG File

3-7

Table 3-4 (Cont.) Parameters Specified in the INTERFACES Section

Parameter Meaning

AUTOTRAN Determines whether a transaction should be started automatically if a message received
by this interface is not already in transaction mode. The default is N. Use of this
parameter should be coordinated with the programmers that code the interface for your
application so that it matches the setting of the transaction policy option in the
application’s ICF file.

TRANTIME Specifies a timeout value, in seconds, for transactions automatically started in this
interface. The default is 30 seconds. Required only if AUTOTRAN=Y and a timeout value
other than the default is required.

LOAD =
number

Specifies an arbitrary number between 1 and 100 that represents the relative load that
the CORBA interface is expected to impose on the system. The numbering scheme is
relative to the LOAD numbers assigned to other CORBA interfaces used by this
application. The default is 50. This number is used by the Oracle Tuxedo system to
select the best server to which to route the request

3.3.4.2 Sample INTERFACES Section
The following code snippet shows a sample INTERFACES section.

*INTERFACES
 "IDL:beasys.com/UniversityP/Registrar:1.0"
 FACTORYROUTING = STU_ID
 AUTOTRAN=Y
 TRANTIME=50

 "IDL:beasys.com/BillingP/Teller:1.0"
 FACTORYROUTING = ACT_NUM
 AUTOTRAN=Y

3.3.5 Creating the ROUTING Section
For information about ROUTING parameters that support Oracle Tuxedo data-dependent routing
or Oracle Tuxedo CORBA factory-based routing, see Creating a Configuration File in Oracle®
Tuxedo Application Configuration Guide.

The following code snippet shows the ROUTING section of the UBBCONFIG file used in the
Production sample application for factory-based routing.

*ROUTING

 STU_ID
 FIELD = "student_id"
 TYPE = FACTORY
 FIELDTYPE = LONG
 RANGES = "100001-100005:ORA_GRP1,100006-100010:ORA_GRP2"

 ACT_NUM
 FIELD = "account_number"
 TYPE = FACTORY
 FIELDTYPE = LONG
 RANGES = "200010-200014:APP_GRP1,200015-200019:APP_GRP2"

Chapter 3
Configuring the UBBCONFIG File

3-8

https://docs.oracle.com/en/database/oracle/tuxedo/22/otxcg/creating-configuration-file.html#GUID-B35439D6-1EDE-4F74-A599-5E460EA83C78

3.4 Configuring the factory_finder.ini (CORBA Applications Only)
For CORBA applications, to configure factory-based routing across multiple domains, you must
configure the factory_finder.ini file to identify factory objects that are used in the current
(local) domain but that are resident in a different (remote) domain. For more information, see
Configuring Multiple Domains Multiple Domains for CORBA Applications in Using the Oracle
Tuxedo Domains Component.

3.5 Modifying the Domain Gateway Configuration File to Support
Routing

This section is specific to Oracle Tuxedo and explains how and why you need to modify the
domain gateway configuration to support routing. For more information about the domain
gateway configuration file, see Configuring Multiple Domains Multiple Domains for CORBA
Applications in Using the Oracle Tuxedo Domains Component.

This topic includes the following sections:

• About the Domain Gateway Configuration File

• Parameters in the DM_ROUTING Section of the DMCONFIG File (Oracle Tuxedo ATMI
Only)

3.5.1 About the Domain Gateway Configuration File
The Domain gateway configuration information is stored in a binary file called BDMCONFIG. The
DMCONFIG file (ASCII) is created and edited with any text editor. The compiled BDMCONFIG file
can be updated while the system is running by using the dmadmin(1) command.

You must have one BDMCONFIG file for each Oracle Tuxedo application that requires the
Domains functionality. System access to the BDMCONFIG file is provided through the Domains
administrative server, DMADM(5). When a gateway group is booted, the gateway administrative
server, GWADM(5), requests from the DMADM server a copy of the configuration required by that
group. The GWADM server and the DMADM server also ensure that run-time changes to the
configuration are reflected in the corresponding Domain gateway groups.

Note:

For more information about the domain gateway configuration file, see Configuring
Multiple Domains Multiple Domains for CORBA Applications in Using the Oracle
Tuxedo Domains Component.

3.5.2 Parameters in the DM_ROUTING Section of the DMCONFIG File
(Oracle Tuxedo ATMI Only)

The DM_ROUTING section provides information for data-dependent routing of service requests
using FML, VIEW, X_C_TYPE, and X_COMMON typed buffers. Lines within the DM_ROUTING section
have the form CRITERION_NAME, where CRITERION_NAME is the (identifier) name of the routing

Chapter 3
Configuring the factory_finder.ini (CORBA Applications Only)

3-9

https://docs.oracle.com/en/database/oracle/tuxedo/22/otxdc/introduction-planning-and-configuring-corba-domains.html#GUID-23489388-1B57-49E3-AC06-CC80A039EEBE
https://docs.oracle.com/en/database/oracle/tuxedo/22/otxdc/introduction-planning-and-configuring-corba-domains.html#GUID-23489388-1B57-49E3-AC06-CC80A039EEBE
https://docs.oracle.com/en/database/oracle/tuxedo/22/otxdc/introduction-planning-and-configuring-corba-domains.html#GUID-23489388-1B57-49E3-AC06-CC80A039EEBE
https://docs.oracle.com/en/database/oracle/tuxedo/22/otxdc/introduction-planning-and-configuring-corba-domains.html#GUID-23489388-1B57-49E3-AC06-CC80A039EEBE
https://docs.oracle.com/en/database/oracle/tuxedo/22/otxdc/introduction-planning-and-configuring-corba-domains.html#GUID-23489388-1B57-49E3-AC06-CC80A039EEBE

entry specified in the SERVICES section. The CRITERION_NAME entry may contain no more than
15 characters.

• Parameters to Specify

• Routing Field Description

• Example of a Five-Site Domain Configuration Using Routing

3.5.2.1 Parameters to Specify
The following table describes the parameters in the DM_ROUTING section.

Table 3-5 Parameters Specified in the DM_ROUTING Section

Parameter Description

FIELD =
identifier

Specifies the name of the routing field. It must contain 30 characters or fewer. This
field is assumed to be a field name identified in an FML field table (for FML buffers)
or an FML VIEW table (for VIEW, X_C_TYPE, or X_COMMON buffers). The FLDTBLDIR
and FIELDTBLS environment variables are used to locate FML field tables; the
VIEWDIR and VIEWFILES environment variables are used to locate FML VIEW
tables. If a field in an FML32 buffer is used for routing, it must have a field number
less than or equal to 8191.

BUFTYPE =
"type1[:subtype
1[,subtype2 . .
.]]
[;type2[:subtyp
e3[, . . .]]]
. . ."

Specifies list of types and subtypes of data buffers for which this routing entry is
valid. The types are restricted to FML, VIEW, X_C_TYPE, and X_COMMON.
No subtype can be specified for type FML, and subtypes are required for the other
types (* is not allowed).

Duplicate type/subtype pairs cannot be specified for the same routing criteria
name; more than one routing entry can have the same criteria name as long as the
type/subtype pairs are unique. This parameter is required.

If multiple buffer types are specified for a single routing entry, the data types of the
routing field for each buffer type must be the same. (If the field value is not set (for
FML buffers), or does not match any specific range, and a wildcard range has not
been specified, then an error is returned to the application process that requested
the execution of the remote service.) No routing is allowed on CORBA and EJB
(TGIOP is not a valid buffer type).

RANGES
="range1:rdom1[
,rang
e2:rdom2 ...]"

Specifies the ranges and associated remote domain names (RDOM) for the routing
field. The string must be enclosed in double quotes, with the format of a comma-
separated ordered list of range/RDOM pairs.
A range is either a single value (signed numeric value or character string in single
quotes), or a range of the form lower - upper (where lower and upper are both
signed numeric values or character strings in single quotes). The value of lower
must be less than or equal to upper. A single quote embedded in a character string
value (such as “O'Brien”), must be preceded by two backslashes (“O\\'Brien”).

• Use MIN to indicate the minimum value for the data type of the associated
FIELD. For strings and carrays, it is the null string; for character fields, it is 0;
for numeric values, it is the minimum numeric value that can be stored in the
field.

• Use MAX to indicate the maximum value for the data type of the associated
FIELD. For strings and carrays, it is effectively an unlimited string of octal-255
characters; for a character field, it is a single octal-255 character; for numeric
values, it is the maximum numeric value that can be stored in the field.

Thus, MIN - -5 is all numbers less than or equal to -5, and 6 - MAX is all
numbers greater than or equal to 6.

The metacharacter * (wildcard) in the position of a range indicates any values not
covered by the other ranges previously seen in the entry. Only one wildcard range
is allowed per entry and it should be last (ranges following it are ignored).

Chapter 3
Modifying the Domain Gateway Configuration File to Support Routing

3-10

3.5.2.2 Routing Field Description
The routing field can be of any data type supported in FML or VIEW. A numeric routing field must
have numeric range values, and a string routing field must have string range values.

String range values for string, carray, and character field types must be placed inside a pair of
single quotation marks and cannot be preceded by a sign. Short and long integer values are a
string of digits, optionally preceded by a plus (+) or minus (-) sign. Floating point numbers are
of the form accepted by the C compiler or atof(): an optional sign, followed by a string of
digits optionally containing a decimal point, and an optional e or E followed by an optional sign
or space, and an integer.

When a field value matches a range, the associated RDOM value specifies the remote domain to
which the request must be routed. An RDOM value of * indicates that the request can go to any
remote domain known by the gateway group. Within a range/RDOM pair, the range is separated
from the RDOM by a colon (:).

3.5.2.3 Example of a Five-Site Domain Configuration Using Routing
The following code snippet shows a configuration file that defines a five-site domain
configuration. It has four bank branch domains communicating with a Central Bank Branch.
Three of the bank branches run within other Oracle Tuxedo system domains. The fourth
branch runs under the control of another TP domain, and OSI-TP is used in the communication
with that domain. The example shows the Oracle Tuxedo Domain gateway configuration file
from the Central Bank point of view. In the DM_TDOMAIN section, this example shows a mirrored
gateway for b01.

BEA TUXEDO DOMAIN CONFIGURATION FILE FOR THE CENTRAL BANK
#
#
*DM_LOCAL_DOMAINS
<local domain name> <Gateway Group name> <domain type> <domain id> <log
device>
[<audit log>] [<blocktime>]
[<log name>] [<log offset>] [<log size>]
[<maxrdom>] [<maxrdtran>] [<maxtran>]
[<maxdatalen>] [<security>]
[<tuxconfig>] [<tuxoffset>]

#
#
DEFAULT: SECURITY = NONE
c01 GWGRP = bankg1
 TYPE = TDOMAIN
 DOMAINID = "BA.CENTRAL01"
 DMTLOGDEV = "/usr/apps/bank/DMTLOG"
 DMTLOGNAME = "DMTLG_C01"
c02 GWGRP = bankg2
 TYPE = OSITP
 DOMAINID = "BA.CENTRAL01"
 DMTLOGDEV = "/usr/apps/bank/DMTLOG"
 DMTLOGNAME = "DMTLG_C02"
 NWDEVICE = "OSITP"
 URCH = "ABCD"

Chapter 3
Modifying the Domain Gateway Configuration File to Support Routing

3-11

#
*DM_REMOTE_DOMAINS
#<remote domain name> <domain type> <domain id>
#
b01 TYPE = TDOMAIN
 DOMAINID = "BA.BANK01"
b02 TYPE = TDOMAIN
 DOMAINID = "BA.BANK02"
b03 TYPE = TDOMAIN
 DOMAINID = "BA.BANK03"
b04 TYPE = OSITP
 DOMAINID = "BA.BANK04"
 URCH = "ABCD"
#
*DM_TDOMAIN
#
<local or remote domainname> <network address> [nwdevice]
#
Local network addresses
c01 NWADDR = "//newyork.acme.com:65432" NWDEVICE ="/dev/tcp"
c02 NWADDR = "//192.76.7.47:65433" NWDEVICE ="/dev/tcp"
Remote network addresses: second b01 specifies a mirrored gateway
b01 NWADDR = "//192.11.109.5:1025" NWDEVICE = "/dev/tcp"
b01 NWADDR = "//194.12.110.5:1025" NWDEVICE = "/dev/tcp"
b02 NWADDR = "//dallas.acme.com:65432" NWDEVICE = "/dev/tcp"
b03 NWADDR = "//192.11.109.156:4244" NWDEVICE = "/dev/tcp"
#
*DM_OSITP
#
#<local or remote domain name> <apt> <aeq>
[<aet>] [<acn>] [<apid>] [<aeid>]
[<profile>]
#
c02 APT = "BA.CENTRAL01"
 AEQ = "TUXEDO.R.4.2.1"
 AET = "{1.3.15.0.3},{1}"
 ACN = "XATMI"
b04 APT = "BA.BANK04"
 AEQ = "TUXEDO.R.4.2.1"
 AET = "{1.3.15.0.4},{1}"
 ACN = "XATMI"
*DM_LOCAL_SERVICES
#<service_name> [<Local Domain name>] [<access control>] [<exported svcname>]
[<inbuftype>] [<outbuftype>]
#
open_act ACL = branch
close_act ACL = branch
credit
debit
balance
loan LDOM = c02 ACL = loans
*DM_REMOTE_SERVICES
#<service_name> [<Remote domain name>] [<local domain name>]
[<remote svcname>] [<routing>] [<conv>]
[<trantime>] [<inbuftype>] [<outbuftype>]
#

Chapter 3
Modifying the Domain Gateway Configuration File to Support Routing

3-12

tlr_add LDOM = c01 ROUTING = ACCOUNT
tlr_bal LDOM = c01 ROUTING = ACCOUNT
tlr_add RDOM = b04 LDOM = c02 RNAME ="TPSU002"
tlr_bal RDOM = b04 LDOM = c02 RNAME ="TPSU003"
*DM_ROUTING
<routing criteria> <field> <typed buffer> <ranges>
#
ACCOUNT FIELD = branchid BUFTYPE ="VIEW:account"
 RANGES ="MIN - 1000:b01, 1001-3000:b02, *:b03"
*DM_ACCESS_CONTROL
#<acl name> <Remote domain list>
#
branch ACLIST = b01, b02, b03
loans ACLIST = b04

Chapter 3
Modifying the Domain Gateway Configuration File to Support Routing

3-13

4
Tuning CORBA Applications

Note:

The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo
CORBA Java client and Oracle Tuxedo CORBA Java client ORB text references,
associated code samples, must only be used to help implement/run third party Java
ORB libraries, and for programmer reference only.
Technical support for third party CORBA Java ORBs must be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

This topic includes the following sections:

• Maximizing Application Resources

• When to Use MSSQ Sets (Oracle Tuxedo ATMI Servers Only)

• Enabling System-controlled Load Balancing

• Configuring Replicated Server Processes and Groups

• Configuring Multithreaded Servers

• Bundling Services into Servers (Oracle Tuxedo ATMI Servers Only)

• Performance Options

• Enhancing Efficiency with Application Parameters

• Setting Application Parameters

• Determining IPC Requirements

• Measuring System Traffic

See Also:

Monitoring a Runtime System for more information about monitoring Oracle Tuxedo
applications, see in the Oracle® Tuxedo Run-Time Application Administrator's Guide

4.1 Maximizing Application Resources
Making correct decisions in the following areas can improve the functioning of your Oracle
Tuxedo applications:

• When to Use MSSQ Sets (Oracle Tuxedo ATMI Servers Only)

• How to assign load factors.

4-1

https://docs-uat.us.oracle.com/en/database/oracle/tuxedo/22/otxrt/monitoringyouoracletuxedoapplication.html#GUID-B4C1A52B-DFD7-408E-AF2D-E69AD62E6209

• How to package interfaces and/or services into servers.

• How to set application parameters.

• How to tune operating system IPC parameters.

• How to detect and eliminate bottlenecks.

4.2 When to Use MSSQ Sets (Oracle Tuxedo ATMI Servers
Only)

Note:

Multiple Servers, Single Queue (MSSQ) sets are not supported in Oracle Tuxedo
CORBA servers.

The following table describes when to use MSSQ sets with Oracle Tuxedo servers.

Table 4-1 When and When Not to Use MSSQ Sets

Use MSSQ Sets When Do Not Use MSSQ Sets When

There are several, but not too many servers. There is a large number of servers. (A compromise
is to use many MSSQ sets.)

Buffer sizes are not too large. Buffer sizes are large enough to exhaust one
queue.

The servers offer identical sets of services. Services are different for each server.

The messages involved are reasonably sized. Long messages are being passed to the services
causing the queue to be exhausted. This causes
non-blocking sends to fail, or blocking sends to
block.

Optimization and consistency of service turnaround
time is paramount.

Optimization and consistency of service turnaround
time is not critical.

The following two analogies help to show why using MSSQ sets is sometimes, but not always,
beneficial:

• An application in which MSSQ sets are used appropriately is similar to a bank, where all
the tellers offer the same services and customers wait in line for the first available teller.
This efficient arrangement ensures the best use of available services.

• An application in which it is better to avoid using MSSQ sets is similar to a supermarket,
where each cashier offers a different set of services: some accept cash only, some accept
credit cards, and still others serve only customers buying fewer than ten items.

4.3 Enabling System-controlled Load Balancing
You can control whether a load-balancing algorithm is used on the Oracle Tuxedo system as a
whole. When load balancing is used, a load factor is applied to each service within the system,
allowing you to track the total load on every server. Every service request is sent to the
qualified server that is least loaded.

Chapter 4
When to Use MSSQ Sets (Oracle Tuxedo ATMI Servers Only)

4-2

Note:

On Oracle Tuxedo CORBA systems, system-controlled load balancing is enabled
automatically. You cannot disable load balancing by specifying LDBAL=N.

To determine how to assign load factors (located in the SERVICES section), run an application
continually and calculate the average time it takes for each service to be performed. Assign a
LOAD value of 50 (LOAD=50) to any service that requires the average amount of time that you
calculated. Any service taking longer to execute than the calculated average must have a
LOAD>50. Any service taking less to execute than the calculated average must have a LOAD<50.

A LOAD factor is assigned to each service performed, which keeps track of the total load of
services that each server has performed. Each service request is routed to the server with the
smallest total load. The routing of that request causes the server's total to be increased by the
LOAD factor of the service requested.

You can also apply LOAD factors to interfaces. For more information about LOAD factors, see
Creating a Configuration File in the Oracle® Tuxedo Application Configuration Guide

4.4 Configuring Replicated Server Processes and Groups
To configure replicated server processes and groups in the Oracle Tuxedo domain, complete
the following steps:

1. Edit the application’s UBBCONFIG file using a text editor.

2. In the GROUPS section, specify the names of the groups you want to configure.

3. In the SERVERS section, specify the parameters in the following table for the server
process you want to replicate.

Table 4-2 Parameters Specified in the SERVERS Section

Parameter Description

Server application
name

Specifies the name of the executable file that contains the application server.

GROUP Specifies the name of the group to which the server process belongs. If you are
replicating a server process across multiple groups, specify the server process
once for each group.

SRVID Specifies a numeric identifier, giving the server process a unique identity.

MIN Specifies the number of instances of the server process to start when you start
the application.

MAX Specifies the maximum number of server processes that can be running at any
one time.

The MIN and MAX parameters determine the degree to which a given server application can
process requests on a given interface in parallel. During run time, the system administrator
can examine resource bottlenecks and start additional server processes, if necessary,
thereby scaling the application. For more information, see Monitoring a Running
Application in the Oracle® Tuxedo Run-Time Application Administrator's Guide

The MAX parameter controls the maximum number of instances. However, Oracle Tuxedo
does not spawn instances automatically. The system will automatically start up to the
specified MIN number of instances. Between MIN and MAX, the system administrator will

Chapter 4
Configuring Replicated Server Processes and Groups

4-3

https://docs-uat.us.oracle.com/en/database/oracle/tuxedo/22/otxcg/creating-configuration-file.html#GUID-B35439D6-1EDE-4F74-A599-5E460EA83C78
https://docs-uat.us.oracle.com/en/database/oracle/tuxedo/22/otxrt/monitoringyouoracletuxedoapplication.html#GUID-B4C1A52B-DFD7-408E-AF2D-E69AD62E6209
https://docs-uat.us.oracle.com/en/database/oracle/tuxedo/22/otxrt/monitoringyouoracletuxedoapplication.html#GUID-B4C1A52B-DFD7-408E-AF2D-E69AD62E6209

need to spawn new instances manually. Once MAX is reached, an error will be returned by
tmboot, tmadmin, or the TMIB API.

4.5 Configuring Multithreaded Servers
This topic includes the following sections:

Note:

Using Multithreaded Servers for more information about multithreaded servers.

• Setting the OPENINFO Parameter for Database Interoperation

• Parameters Used to Configure Multithreaded Servers

• Assigning Priorities to Interfaces

4.5.1 Setting the OPENINFO Parameter for Database Interoperation
To enable the use of threads by a multithreaded server when interoperating with the Oracle XA
database software, you must add Threads=true to the OPENINFO parameter in the GROUPS
section of the UBBCONFIG file, as shown in the following code snippet. For more information, see
the Oracle XA online documentation.

OPENINFO="ORACLE_XA:Oracle_XA+Acc=P/scott/
tiger+SesTm=100+LogDir=.+MaxCur=5+Threads=true"

4.5.2 Parameters Used to Configure Multithreaded Servers
The following parameters are used configure multithreaded CORBA servers. These
parameters are set in UBBCONFIG file:

• MAXOBJECTS

Note:

While the MAXOBJECTS parameter does not specifically apply to threads, you may want
to increase this parameter because multithreaded applications have the potential to
activate more objects at any point in time than single-threaded applications.

• MAXACCESSERS

• MAXDISPATCHTHREADS

• MINDISPATCHTHREADS

• THREADSTACKSIZE

• CONCURR_STRATEGY

For a description how to set these parameters, see the following topics:

• see Creating a Configuration File and How to Configure the Oracle Tuxedo System to Take
Advantage of Thread in the Oracle® Tuxedo Application Configuration Guide

Chapter 4
Configuring Multithreaded Servers

4-4

https://docs-uat.us.oracle.com/en/database/oracle/tuxedo/22/otxcg/creating-configuration-file.html#GUID-B35439D6-1EDE-4F74-A599-5E460EA83C78
https://docs-uat.us.oracle.com/en/database/oracle/tuxedo/22/otxcg/creating-configuration-file.html#GUID-5B97B242-E026-4570-BC63-0E15235FF597
https://docs-uat.us.oracle.com/en/database/oracle/tuxedo/22/otxcg/creating-configuration-file.html#GUID-5B97B242-E026-4570-BC63-0E15235FF597

• Setting the MAXACCESSERS, MAXSERVERS, MAXINTERFACES, and MAXSERVICES
Parameters in Oracle Tuxedo Run-Time Application Administrator's Guide

4.5.3 Assigning Priorities to Interfaces
This topic includes the following sections:

• About Priorities to Interfaces

• Characteristics of the PRIO Parameter

4.5.3.1 About Priorities to Interfaces
You can exert significant control over the flow of data in an application by assigning priorities to
Oracle Tuxedo Interfaces using the PRIO parameter. For a CORBA application running on an
Oracle Tuxedo system, you can specify the PRIO parameter for each interface named in the
INTERFACES section of the application’s UBBCONFIG file.

For example, Server 1 offers Interfaces A, B, and C. Interfaces A and B have a priority of 50
and Interface C has a priority of 70. An interface requested for C is always dequeued before a
request for A or B. Requests for A and B are dequeued equally with respect to one another.
The system dequeues every tenth request in first in first out (FIFO) order to prevent a message
from waiting indefinitely on the queue.

You can also dynamically change a priority with the tpsprio() call. Only preferred clients must
be able to increase the interface priority. In a system on which servers perform interface
request, the server can call tpsprio() to increase the priority of its interface so the user does
not wait in line for every interface request that is required.

4.5.3.2 Characteristics of the PRIO Parameter
The PRIO parameter must be used carefully. Depending on the order of messages on the
queue (for example, A, B, and C), some (such as A and B) will be dequeued only one in ten
times. This means reduced performance and potential slow turnaround time on the service.

The characteristics of the PRIO parameter are as follows:

• It determines the priority of an interface on the server’s queue.

• The highest assigned priority gets first preference. This interface must occur less
frequently.

• A lower priority message does not remain forever enqueued, because every tenth
message is retrieved on a FIFO basis. Response time must not be a concern of the lower
priority interface.

Assigning priorities enables you to provide more efficient service to the most important
requests and slower service to the less important requests. You can also give priority to
specific users or in specific circumstances.

4.6 Bundling Services into Servers (Oracle Tuxedo ATMI Servers
Only)

This topic includes the following sections:

• About Bundling Services

Chapter 4
Bundling Services into Servers (Oracle Tuxedo ATMI Servers Only)

4-5

https://docs-uat.us.oracle.com/en/database/oracle/tuxedo/22/otxrt/tuninganoracletuxedoatmiapplication.html#GUID-9603A9AD-3EE5-46E1-ACBD-2D903B8CAD99
https://docs-uat.us.oracle.com/en/database/oracle/tuxedo/22/otxrt/tuninganoracletuxedoatmiapplication.html#GUID-9603A9AD-3EE5-46E1-ACBD-2D903B8CAD99

• When to Bundle Services

4.6.1 About Bundling Services
The easiest way to package services into server executables is to not package them at all.
Unfortunately, if you do not package services, the number of server executables, and also
message queues and semaphores, rises beyond an acceptable level. There is a trade-off
between not bundling services and bundling services too much.

4.6.2 When to Bundle Services
You must bundle services for the following reasons:

• Functional similarity—if some services are similar in their role in the application, you can
bundle them in the same server. The application can offer all or none of them at a given
time. An example is the bankapp application, in which the WITHDRAW, DEPOSIT, and INQUIRY
services are all teller operations. Administration of services becomes simpler.

• Similar libraries—for example, if you have three services that use the same 100K library
and three services that use different 100K libraries, bundling the first three services saves
200K. Often, functionally equivalent services have similar libraries.

• Filling the queue—bundle only as many services into a server as the queue can handle.
Each service added to an unfilled MSSQ set may add relatively little to the size of an
executable, and nothing to the number of queues in the system. Once the queue is filled,
however, the system performance degrades and you must create more executables to
compensate.

• Placement of call-dependent services—avoid placing, in the same server, two (or more)
services that call each other. If you do so, the server will issue a call to itself, causing a
deadlock.

4.7 Performance Options
Performance options were added to Oracle Tuxedo in release 8.0. These options enable you to
turn off specific features in the Oracle Tuxedo infrastructure. You must turn off these features
only if they are not required by your CORBA or ATMI applications. The following table
describes these options.

Table 4-3 Performance Options

Option Description How to set . . .

Service and
Interface Caching
options
(SICACHEENTRIE
SMAX and

TMSICACHEENTR
IESMAX)

This option enables
you to cache
service and
interface entries,
and to use the
cached copies of
the service or
interface without
locking the bulletin
board.

For more information about these options, see Administering
an Oracle Tuxedo Application at Run Time and
UBBCONFIG(5) and TM_MIB(5), and tuxenv(5) in the File
Formats, Data Descriptions, MIBs, and System Processes
Reference.

Chapter 4
Performance Options

4-6

Table 4-3 (Cont.) Performance Options

Option Description How to set . . .

Turning off threads
(TMNOTHREADS)

Set this option to
yes to turn off
multithreaded
processing. For
applications that do
not use threads,
turning them off
should significantly
improve
performance.

You use the tuxenv(5) to set this option. For more
information, see Administering an Oracle Tuxedo Application
at Run Time and tuxenv(5) in the File Formats, Data
Descriptions, MIBs, and System Processes Reference.

Turning off auditing
and authorization
(Options
{[NO_AA]})

Setting this option
disables the
auditing and
authorization
functions on a per
application basis.

You set this option in the RESOURCES section of the
UBBCONFIG file. For more information, see Administering an
Oracle application at Run Time and OPTION in the
RESOURCES section of UBBCONFIG(5) in the File Formats,
Data Descriptions, MIBs, and System Processes Reference.

Turning off XA
Transactions
(NO_XA)

Setting this option
turns Off XA
Transactions.

For more information about the NO_XA option, see
Administering an Oracle Tuxedo Application at Run Time and
UBBCONFIG(5) and TM_MIB(5) in the File Formats, Data
Descriptions, MIBs, and System Processes Reference.

See Also:

For more information about UBBCONFIG(5), tuxenv(5), and TM_MIB(5) see, Section 5
- File Formats, Data Descriptions, MIBs, and System Processes Reference

4.8 Enhancing Efficiency with Application Parameters
You can set these application parameters to enhance the efficiency of your system.

This topic includes the following sections:

• MAXDISPATCHTHREADS

• MINDISPATCHTHREADS

• Setting the MAXACCESSERS, MAXOBJECTS, MAXSERVERS, MAXINTERFACES, and
MAXSERVICES Parameters

• Setting the MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE Parameters

• Setting the SANITYSCAN, BLOCKTIME, BBLQUERY, and DBBLWAIT Parameters

4.8.1 MAXDISPATCHTHREADS
The MAXDISPATCHTHREADS parameter determines the maximum number of concurrently
dispatched threads that each server process can spawn. When specifying this parameter,
consider the following:

• The value for MAXDISPATCHTHREADS determines the maximum size that the thread pool can
grow to be, as it increases in size to accommodate incoming requests.

Chapter 4
Enhancing Efficiency with Application Parameters

4-7

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

• The default value for MAXDISPATCHTHREADS is 1. If you specify a value greater than 1, the
system creates and uses a special dispatcher thread. This dispatcher thread is not
included in the number of threads determining the maximum size of the thread pool.

• Specifying a value of 1 for the MAXDISPATCHTHREADS parameter indicates that the server
application must be configured as a single-threaded server. A value greater than 1
indicates that the server application must be configured as a multithreaded server.

• The value you specify for the MAXDISPATCHTHREADS parameter must not be less than the
value you specify for the MINDISPATCHTHREADS parameter.

• The operating system resources limit the maximum number of threads that can be created
in a process. MAXDISPATCHTHREADS must be less than that limit, minus the number of
application managed threads that your application requires.

The value of the MAXDISPATCHTHREADS parameter affects other parameters. For example, the
MAXACCESSORS parameter controls the number of simultaneous accesses to the Oracle Tuxedo
system, and each thread counts as one accessor. For a multithreaded server application, you
must account for the number of system-managed threads that each server is configured to run.
A system-managed thread is a thread that is started and managed by the Oracle Tuxedo
software, as opposed to threads started and managed by an application. Internally, Oracle
Tuxedo manages a pool of available system-managed threads. When a client request is
received, an available system-managed thread from the thread pool is scheduled to execute
the request. When the request is completed, the system-managed thread is returned to the
pool of available threads.

For example, if that you have 4 multithreaded servers in your system and each server is
configured to run 50 system-managed threads, the accessor requirement for these servers is
the sum total of the accessors, calculated as follows:

50 + 50 + 50 + 50 = 200 accessors

4.8.2 MINDISPATCHTHREADS
Use the MINDISPATCHTHREADS parameter to specify the number of server dispatch threads that
are started when the server is initially booted. When you specify this parameter, consider the
following:

• The value for MINDISPATCHTHREADS determines the initial allocation of threads in the thread
pool.

• The separate dispatcher thread that is created when MAXDISPATCHTHREADS is greater than 1
is not counted as part of the MINDISPATCHTHREADS limit.

• The value you specify for MINDISPATCHTHREADS must not be greater than the value you
specify for MAXDISPATCHTHREADS.

• The default value for MINDISPATCHTHREADS is 0.

4.8.3 Setting the MAXACCESSERS, MAXOBJECTS, MAXSERVERS,
MAXINTERFACES, and MAXSERVICES Parameters

The MAXACCESSERS, MAXOBJECTS, MAXSERVERS, MAXINTERFACES, and MAXSERVICES parameters
increase semaphore and shared memory costs, so you must choose the minimum value that
satisfies the needs of the system. You must also allow for the variation in the number of clients
accessing the system at the same time. Defaults may be appropriate for a generous allocation

Chapter 4
Enhancing Efficiency with Application Parameters

4-8

of IPC resources. However, it is prudent to set these parameters to the lowest appropriate
values for the application.

For multithreaded servers, you must account for the number of threads that each server is
configured to run. The MAXACCESSERS parameter sets the maximum number of concurrent
accessors of an Oracle Tuxedo system. Accessors include native and remote clients, servers,
and administration processes. For more information on setting the MAXACCESSERS parameter,
see MAXDISPATCHTHREADS.

4.8.4 Setting the MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE
Parameters

You must increase the value of the MAXGTT parameter if the product of multiplying the number
of clients in the system times the percentage of time they are committing a transaction is close
to 100. This may require a great number of clients, depending on the speed of commit. If you
increase MAXGTT, you must also increase TLOGSIZE accordingly for every machine. You must
set MAXGTT to 0 for applications that do not use distributed transactions.

You can limit the number of buffer types and subtypes allowed in the application with the
MAXBUFTYPE and MAXBUFSTYPE parameters, respectively. The current default for MAXBUFTYPE is
16. Unless you are creating many user-defined buffer types, you can omit MAXBUFTYPE.
However, if you intend to use many different VIEW subtypes, you may want to set MAXBUFSTYPE
to exceed its current default of 32.

4.8.5 Setting the SANITYSCAN, BLOCKTIME, BBLQUERY, and DBBLWAIT
Parameters

If a system is running on slower processors (for example, due to heavy usage), you can
increase the timing parameters: SANITYCAN, BLOCKTIME, and individual transaction timeouts. If
networking is slow, you can increase the value of the BLOCKTIME, BBLQUERY, and DBBLWAIT
parameters.

4.9 Setting Application Parameters
The following table describes the system parameters available for tuning an application.

Table 4-4 System Parameters for Application Tuning

Parameters Action

MAXACCESSERS, MAXOBJECTS, MAXSERVERS,
MAXINTERFACES, and MAXSERVICES

Set the smallest satisfactory value because of IPC
cost. Allow for extra clients.

MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE Increase MAXGTT for many clients; set MAXGTT
to 0 for nontransactional applications.
Use MAXBUFTYPE only if you create eight or more
user-defined buffer types.

If you use many different VIEW subtypes, increase
the value of MAXBUFSTYPE.

BLOCKTIME, TRANTIME, and SANITYSCAN Increase the value for a slow system.

BLOCKTIME, TRANTIME, BBLQUERY, and
DBBLWAIT

Increase values for slow networking.

Chapter 4
Setting Application Parameters

4-9

4.10 Determining IPC Requirements
The values of different system parameters determine IPC requirements. You can use the
tmboot -c command to test a configuration’s IPC needs. The values of the following
parameters affect the IPC needs of an application:

• MAXACCESSERS
• REPLYQ
• RQADDR (that allows MSSQ sets to be formed)

• MAXSERVERS
• MAXSERVICES
• MAXGTT
The following table describes the system parameters that affect the IPC needs of an
application.

Table 4-5 Tuning IPC Parameters

Parameter (s) Action

MAXACCESSERS Equals the number of semaphores. Number of
message queues is almost equal to
MAXACCESSERS + the number of servers with reply
queues (the number of servers in MSSQ set + the
number of MSSQ sets).

MAXSERVERS,MAXSERVICES,
and MAXGTT

While MAXSERVERS, MAXSERVICES, MAXGTT, and
the overall size of the ROUTING, GROUP, and
NETWORK sections affect the size of shared
memory, an attempt to devise formulas that
correlate these parameters can become complex.
Instead, simply run tmboot -c or tmloadcf -c to
calculate the minimum IPC resource requirements
for your application.

Chapter 4
Determining IPC Requirements

4-10

Table 4-5 (Cont.) Tuning IPC Parameters

Parameter (s) Action

Queue-related kernel parameters Require to be tuned to manage the flow of buffer
traffic between clients and servers. The maximum
total size of a queue in bytes must be large enough
to handle the largest message in the application,
and to typically be 75 to 85 percent full. A smaller
percentage is wasteful.
A larger percentage causes message sends to
block too frequently.

Set the maximum size for a message to handle the
largest buffer that the application sends.

Maximum queue length (the largest number of
messages that are allowed to sit on a queue at
once) must be adequate for the application’s
operations.

Simulate or run the application to measure the
average fullness of a queue or its average length.
This may be a trial and error process in which
tunables are estimated before the application is run
and are adjusted after running under performance
analysis.

For a large system, analyze the effect of parameter
settings on the size of the operating system kernel.
If unacceptable, reduce the number of application
processes or distribute the application to more
machines to reduce MAXACCESSERS.

4.11 Measuring System Traffic
This topic includes the following sections:

• About System Traffic and Bottlenecks

• Example of Detecting a System Bottleneck

• Detecting Bottlenecks on UNIX

• Detecting Bottlenecks on Windows

See Also:

Monitoring a Running Systemfor more information about monitoring Oracle Tuxedo
applications and measuring traffic in the Oracle® Tuxedo Run-Time Application
Administrator's Guide.

4.11.1 About System Traffic and Bottlenecks
Bottlenecks can occur in your system when traffic volume nears resource capacity. You can
measure service traffic using a global counter in your implementation code.

Chapter 4
Measuring System Traffic

4-11

https://docs-uat.us.oracle.com/en/database/oracle/tuxedo/22/otxrt/index.html

For example, in Tuxedo applications, when tpsvrinit() is invoked at boot time, you can
initialize a global counter and record a starting time. Subsequently, each time a particular
service is called, the counter is incremented. When the server is shut down by invoking the
tpsvrdone() function, the final count and the ending time are recorded. This mechanism
allows you to determine how busy a particular service is over a specified period of time.

Note:

For CORBA C++ applications, use the Server::initialize() and
Server::release() operations.

In Oracle Tuxedo, bottlenecks can originate from data flow patterns. The quickest way to
detect bottlenecks is to begin with the client and measure the amount of time required by
relevant services.

4.11.2 Example of Detecting a System Bottleneck
Suppose Client 1 requires 4 seconds to print to the screen. Calls to time(2) determine that the
tpcall to service A is the culprit with a 3.7 second delay. Service A is monitored at the top and
bottom and takes 0.5 seconds. This implies that a queue may be clogged, which was
determined by using the pq command.

On the other hand, suppose service A takes 3.2 seconds. The individual parts of Service A can
be bracketed and measured. Perhaps Service A issues a tpcall to Service B, which requires
2.8 seconds. It must then be possible to isolate queue time or message send blocking time.
Once the relevant amount of time has been identified, the application can be retuned to handle
the traffic.

Using time(2), you can measure the duration of the following:

• The entire client program.

• A client service request only.

• The entire service function.

• The service function making a service request (if any).

4.11.3 Detecting Bottlenecks on UNIX
On UNIX systems, the sar(1) command provides valuable performance information that can be
used to find system bottlenecks. You can use the sar(1) command to:

• Sample cumulative activity counters in the operating system at predetermined intervals.

• Extract data from a system file.

The following table describes the sar(1) command options.

Table 4-6 sar(1) Command Options (Continued)

Option Description

-u Gathers CPU utilization numbers, including the portion of the time running in user
mode, running in system mode, idle with some process waiting for block I/O, and
otherwise idle.

Chapter 4
Measuring System Traffic

4-12

Table 4-6 (Cont.) sar(1) Command Options (Continued)

Option Description

-b Reports buffer activity, including transfers per second of data between system
buffers and disk, or other block devices.

-c Reports system call activity. This includes system calls of all types, as well as
specific system calls such as fork(2) and exec(2).

-w Monitors system swapping activity. This includes the number of transfers for swap-
ins and swap-outs.

-q Reports average queue lengths while occupied and the percent of time occupied.

-m Reports message and system semaphore activities, including the number of
primitives per second.

-p Reports paging activity, including the address translation page faults, page faults
and protection errors, and the valid pages reclaimed for free lists.

-r Reports unused memory pages and disk blocks, including the average number of
pages available to user processes and the disk blocks available for process
swapping.

Note:

Some UNIX platforms do not provide the sar(1) command, but offer equivalent
commands instead. BSD, for example, offers the iostat(1) command. Sun
Microsystems, Inc. offers perfmeter(1).

4.11.4 Detecting Bottlenecks on Windows
On Windows, use the Performance Monitor to collect system information and detect
bottlenecks. Click the Start button and select Programs, then Administration Tools, and then
click Performance Monitor.

Chapter 4
Measuring System Traffic

4-13

Glossary

Glossary-1

Index

Index-1

	Contents
	List of Figures
	List of Tables
	Preface
	Documentation Accessibility

	1 Scaling, Distributing, and Tuning CORBA Applications
	1.1 About Scaling Oracle Tuxedo CORBA Applications
	1.1.1 Application Scalability Requirements
	1.1.2 Oracle Tuxedo Scalability Features

	1.2 Using Object State Management
	1.2.1 CORBA Object State Models
	1.2.1.1 Method-bound Objects
	1.2.1.2 Process-bound Objects
	1.2.1.3 Transaction-bound Objects

	1.2.2 Implementing Stateless and Stateful Objects
	1.2.2.1 About Stateless and Stateful Objects
	1.2.2.2 When to Use Stateless Objects
	1.2.2.3 When to Use Stateful Objects

	1.2.3 Parallel Objects

	1.3 Replicating Server Processes and Server Groups
	1.3.1 About Replicating Server Processes and Server Groups
	1.3.2 Configuration Options
	1.3.3 Replicating Server Processes
	1.3.3.1 Benefits
	1.3.3.2 Guidelines

	1.3.4 Replicating Server Groups

	1.4 Using Multithreaded Servers
	1.4.1 About Multithreaded CORBA Servers
	1.4.2 When to Use Multithreaded CORBA Servers
	1.4.3 Coding Recommendations
	1.4.4 Configuring a Multithreaded CORBA Server

	1.5 Using Factory-Based Routing (CORBA Servers Only)
	1.5.1 About Factory-based Routing
	1.5.2 Characteristics of Factory-based Routing
	1.5.3 How Factory-based Is Implemented
	1.5.4 Configuring Factory-based Routing in the UBBCONFIG File

	1.6 Using Parallel Objects
	1.6.1 About Parallel Objects
	1.6.2 Configuring Parallel Objects

	1.7 Multiplexing Incoming Client Connections
	1.7.1 IIOP Listener and Handler
	1.7.2 Increasing the Number of ISH Processes

	2 Scaling CORBA Server Applications
	2.1 About Scaling the Production Sample Application
	2.1.1 Design Goals
	2.1.2 How the Application Has Been Scaled

	2.2 Changing the OMG IDL
	2.3 Using a Stateless Object Model
	2.4 Scaling by Replicating Server Processes and Server Groups
	2.4.1 Replicating Server Processes in the Production Application
	2.4.2 Replicating Server Groups in the Production Application
	2.4.3 Configuring Replicated Server Processes and Groups in the Production Application

	2.5 Scaling with Factory-based Routing
	2.5.1 About Factory-based Routing in the Production Application
	2.5.2 Configuring Factory-based Routing in the UBBCONFIG File
	2.5.3 Implementing Factory-based Routing in a Factory
	2.5.4 What Happens at Run Time

	2.6 Additional Design Considerations
	2.6.1 About the Additional Design Considerations
	2.6.2 Instantiating the Registrar and Teller Objects
	2.6.3 Ensuring That Student Registration Occurs in the Correct Server Group
	2.6.4 Ensuring That the Teller Object Is Instantiated in the Correct Server Group

	2.7 Scaling the Application Further

	3 Distributing CORBA Applications
	3.1 Why Distribute an Application?
	3.1.1 About Distributing an Application
	3.1.2 Benefits of a Distributed Application
	3.1.3 Characteristics of Distributing an Application

	3.2 Using Data-dependent Routing (Oracle Tuxedo ATMI Servers Only)
	3.2.1 About Data-dependent Routing
	3.2.2 Characteristics of Data-dependent Routing
	3.2.3 Sample Distributed Application
	3.2.4 Example of UBBCONFIG Sections in a Distributed Application

	3.3 Configuring the UBBCONFIG File
	3.3.1 About the UBBCONFIG File in Distributed Applications
	3.3.2 Modifying the GROUPS Section
	3.3.3 Modifying the SERVICES Section
	3.3.3.1 Parameters to Modify
	3.3.3.2 Sample SERVICES Section

	3.3.4 Modifying the INTERFACES Section
	3.3.4.1 Parameters to Modify
	3.3.4.2 Sample INTERFACES Section

	3.3.5 Creating the ROUTING Section

	3.4 Configuring the factory_finder.ini (CORBA Applications Only)
	3.5 Modifying the Domain Gateway Configuration File to Support Routing
	3.5.1 About the Domain Gateway Configuration File
	3.5.2 Parameters in the DM_ROUTING Section of the DMCONFIG File (Oracle Tuxedo ATMI Only)
	3.5.2.1 Parameters to Specify
	3.5.2.2 Routing Field Description
	3.5.2.3 Example of a Five-Site Domain Configuration Using Routing

	4 Tuning CORBA Applications
	4.1 Maximizing Application Resources
	4.2 When to Use MSSQ Sets (Oracle Tuxedo ATMI Servers Only)
	4.3 Enabling System-controlled Load Balancing
	4.4 Configuring Replicated Server Processes and Groups
	4.5 Configuring Multithreaded Servers
	4.5.1 Setting the OPENINFO Parameter for Database Interoperation
	4.5.2 Parameters Used to Configure Multithreaded Servers
	4.5.3 Assigning Priorities to Interfaces
	4.5.3.1 About Priorities to Interfaces
	4.5.3.2 Characteristics of the PRIO Parameter

	4.6 Bundling Services into Servers (Oracle Tuxedo ATMI Servers Only)
	4.6.1 About Bundling Services
	4.6.2 When to Bundle Services

	4.7 Performance Options
	4.8 Enhancing Efficiency with Application Parameters
	4.8.1 MAXDISPATCHTHREADS
	4.8.2 MINDISPATCHTHREADS
	4.8.3 Setting the MAXACCESSERS, MAXOBJECTS, MAXSERVERS, MAXINTERFACES, and MAXSERVICES Parameters
	4.8.4 Setting the MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE Parameters
	4.8.5 Setting the SANITYSCAN, BLOCKTIME, BBLQUERY, and DBBLWAIT Parameters

	4.9 Setting Application Parameters
	4.10 Determining IPC Requirements
	4.11 Measuring System Traffic
	4.11.1 About System Traffic and Bottlenecks
	4.11.2 Example of Detecting a System Bottleneck
	4.11.3 Detecting Bottlenecks on UNIX
	4.11.4 Detecting Bottlenecks on Windows

	Glossary
	Index

