
Oracle® Database
Using Oracle Blockchain Platform

Release 21.1.2
F20801-05
April 2021

Oracle Database Using Oracle Blockchain Platform, Release 21.1.2

F20801-05

Copyright © 2019, 2021, Oracle and/or its affiliates.

Primary Author: Oracle Blockchain Platform development, product management, and quality assurance
teams

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience ix

Documentation Accessibility ix

Related Documents ix

Conventions ix

1 What's Oracle Blockchain Platform?

What's a Blockchain? 1-1

Why Should I Use Blockchain? 1-2

What Are the Advantages of Oracle Blockchain Platform? 1-3

What Do I Get with Oracle Blockchain Platform? 1-4

2 Get Started Using Samples

What Are Chaincode Samples? 2-1

Explore Oracle Blockchain Platform Using Samples 2-1

3 Manage the Organization and Network

What's the Console? 3-1

Modify the Console Timeout Setting 3-4

Find and Understand Your Oracle Blockchain Platform Version Number 3-4

Monitor the Network 3-5

How Can I Monitor the Blockchain Network? 3-5

What Type of Information Is on the Dashboard? 3-6

View Network Activity 3-7

Manage Nodes 3-7

What Types of Nodes Are in a Network? 3-8

Find Information About Nodes 3-9

View General Information About Nodes 3-9

Access Information About a Specific Node 3-10

View a Diagram of the Peers and Channels in the Network 3-10

iii

Find Node Configuration Settings 3-11

Start and Stop Nodes 3-11

Restart a Node 3-12

Set the Log Level for a Node 3-12

Manage Channels 3-12

What Are Channels? 3-13

View Channels 3-13

Create a Channel 3-14

View a Channel’s Ledger Activity 3-15

View or Update a Channel’s Organizations List 3-16

Join a Peer to a Channel 3-17

Add an Anchor Peer 3-17

Change or Remove an Anchor Peer 3-18

View Information About Instantiated Chaincodes 3-19

Work With Channel Policies and ACLs 3-19

What Are Channel Policies? 3-19

Add or Modify a Channel's Policies 3-21

Delete a Channel's Policies 3-21

What Are Channel ACLs? 3-22

Update Channel ACLs 3-22

Add or Remove Orderers To or From a Channel 3-23

Set the Orderer Administrator Organization 3-23

Edit Ordering Service Settings for a Channel 3-23

Manage Certificates 3-24

Typical Workflows to Manage Certificates 3-25

Export Certificates 3-25

Import Certificates to Add Organizations to the Network 3-26

What's a Certificate Revocation List? 3-27

View and Manage Certificates 3-28

Revoke Certificates 3-28

Apply the CRL 3-29

Manage Ordering Service 3-29

What is the Ordering Service? 3-29

Join the Participant or Scaled-Out OSNs to the Founder's Ordering Service 3-31

Edit Ordering Service Settings for the Network 3-32

View Ordering Service Settings 3-33

4 Understand and Manage Nodes by Type

Manage CA Nodes 4-1

View and Edit the CA Node Configuration 4-1

iv

View Health Information for a CA Node 4-2

Manage the Console Node 4-2

View and Edit the Console Node Configuration 4-2

View Health Information for the Console Node 4-3

Manage Orderer Nodes 4-3

View and Edit the Orderer Node Configuration 4-3

View Health Information for an Orderer Node 4-4

Add an Orderer Node 4-4

Manage Peer Nodes 4-4

View and Edit the Peer Node Configuration 4-5

List Chaincodes Installed on a Peer Node 4-5

View Health Information for a Peer Node 4-5

Export and Import Peer Nodes 4-6

Manage REST Proxy Nodes 4-7

How's the REST Proxy Used? 4-7

Add Enrollments to the REST Proxy 4-7

View and Edit the REST Proxy Node Configuration 4-8

View Health Information for a REST Proxy Node 4-9

5 Extend the Network

Add Oracle Blockchain Platform Participant Organizations to the Network 5-1

Typical Workflow to Join a Participant Organization to an Oracle Blockchain
Platform Network 5-1

Join a Network 5-4

Add Fabric Organizations to the Network 5-5

Typical Workflow to Join a Fabric Organization to an Oracle Blockchain Platform
Network 5-5

Create a Fabric Organization's Certificates File 5-6

Prepare the Fabric Environment to Use the Oracle Blockchain Platform Network 5-7

Add Organizations with Third-Party Certificates to the Network 5-9

Typical Workflow to Join an Organization with Third-Party Certificates to an
Oracle Blockchain Platform Network 5-9

Third-Party Certificate Requirements 5-11

Create an Organization's Third-Party Certificates File 5-18

Prepare the Third-Party Environment to Use the Oracle Blockchain Platform
Network 5-19

6 Develop Chaincodes

Write a Chaincode 6-1

Use a Mock Shim to Test a Chaincode 6-3

v

Deploy a Chaincode on a Peer to Test the Chaincode 6-5

7 Deploy and Manage Chaincodes

Typical Workflow to Deploy Chaincodes 7-1

Use Quick Deployment 7-2

Use Advanced Deployment 7-3

Update REST Proxy Settings for Running Chaincodes 7-4

Instantiate a Chaincode 7-6

Specify an Endorsement Policy 7-7

View an Endorsement Policy 7-8

Find Information About Chaincodes 7-8

Manage Chaincode Versions 7-9

Upgrade a Chaincode 7-9

What Are Private Data Collections? 7-10

Add Private Data Collections 7-11

View Private Data Collections 7-13

8 Develop Blockchain Applications

Before You Develop an Application 8-1

Use the Hyperledger Fabric SDKs to Develop Applications 8-2

Update the Hyperledger Fabric SDKs to Work with Oracle Blockchain Platform 8-4

Use the REST APIs to Develop Applications 8-6

9 Work With Databases

Query the State Database 9-1

What's the State Database? 9-1

State Database Indexes 9-2

Differences in the Validation of Rich Queries 9-4

Supported Rich Query Syntax 9-4

SQL Rich Query Syntax 9-4

CouchDB Rich Query Syntax 9-7

Create the Rich History Database 9-8

What's the Rich History Database? 9-8

Create the Oracle Database Classic Cloud Service Connection String 9-9

Enable and Configure the Rich History Database 9-10

Modify the Connection to the Rich History Database 9-12

Configure the Channels that Write Data to the Rich History Database 9-13

Monitor the Rich History Status 9-14

Limit Access to Rich History 9-14

vi

Rich History Database Tables and Columns 9-15

A Node Configuration

CA Node Attributes A-1

Console Node Attributes A-2

Orderer Node Attributes A-2

Peer Node Attributes A-4

REST Proxy Node Attributes A-8

B Using the Fine-Grained Access Control Library Included in the
Marbles Sample

Fine-Grained Access Control Library Functions B-3

Example Walkthough Using the Fine-Grained Access Control Library B-9

Fine-Grained Access Control Marbles Sample B-12

C Using Blockchain App Builder for Oracle Blockchain Platform

Using the Blockchain App Builder Command Line Interface C-1

Install and Configure Blockchain App Builder CLI C-2

Create a Chaincode Project with the Blockchain App Builder CLI C-7

Input Specification File C-8

Scaffolded TypeScript Chaincode Project C-18

Scaffolded Go Chaincode Project C-34

Deploy Your Chaincode Using the CLI C-50

Deploy Your Chaincode to a Local Hyperledger Fabric Network C-51

Deploy Your Chaincode to a Remote Oracle Blockchain Platform Network C-55

Package Your Chaincode Project for Manual Deployment to Oracle
Blockchain Platform C-58

Test Your Chaincode Using the CLI C-59

Test Your Chaincode on a Local Hyperledger Fabric Network C-59

Test Your Chaincode on a Remote Oracle Blockchain Platform Network C-63

Execute Berkeley DB SQL Rich Queries C-64

Synchronize Specification File Changes With Generated Source Code C-65

Writing Unit Test Cases and Coverage Reports for the Chaincode Project C-66

Using the Blockchain App Builder Extension for Visual Studio Code C-67

Install and Configure the Blockchain App Builder Extension for Visual Studio
Code C-68

Create a Chaincode Project with the Blockchain App Builder VS Code Extension C-71

Input Specification File C-73

Scaffolded TypeScript Chaincode Project C-83

vii

Scaffolded Go Chaincode Project C-99

Deploy Your Chaincode Using Visual Studio Code C-115

Deploy the Chaincode to a Local Hyperledger Fabric Network C-116

Deploy Your Chaincode to a Remote Oracle Blockchain Platform Network C-119

Package Your Chaincode Project for Manual Deployment to Oracle
Blockchain Platform C-121

Test Your Chaincode Using Visual Studio Code C-121

Test Your Chaincode on a Local Hyperledger Fabric Network C-121

Testing Lifecycle Operations on a Remote Oracle Blockchain Platform
Network C-122

Execute Berkeley DB SQL Rich Queries C-122

Synchronize Specification File Changes With Generated Source Code C-123

Debugging from Visual Studio Code C-124

Troubleshoot Blockchain App Builder VS Code Extension C-125

Migrating Chaincode Between Blockchain App Builder Versions C-126

D Run Solidity Smart Contracts with EVM on Oracle Blockchain
Platform

viii

Preface

Administering Oracle Blockchain Platform explains how to provision and maintain
Oracle Blockchain Platform instances.

Topics:

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This guide is intended for administrators responsible for using and managing Oracle
Blockchain Platform blockchains .

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information, see these Oracle resources:

• Administering Oracle Blockchain Platform

Conventions
The following text conventions are used in this document:

ix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

x

1
What's Oracle Blockchain Platform?

This topic contains information to help you understand what Oracle Blockchain
Platform Enterprise Edition is.

Topics:

• What's a Blockchain?

• Why Should I Use Blockchain?

• What Are the Advantages of Oracle Blockchain Platform?

• What Do I Get with Oracle Blockchain Platform?

What's a Blockchain?
A blockchain is a system for maintaining distributed ledgers of facts and the history
of the ledger’s updates. A blockchain is a continuously growing list of records, called
blocks, that are linked and secured using cryptography.

This allows organizations that don't fully trust each other to agree on the updates
submitted to a shared ledger by using peer to peer protocols rather than a central
third party or manual offline reconciliation process. Blockchain enables real-time
transactions and securely shares tamper-proof data across a trusted business
network.

A blockchain network has a founder that creates and maintains the network, and
participants that join the network. All organizations included in the network are called
members.

Oracle Blockchain Platform is a permissioned blockchain, which provides a closed
ecosystem where only invited organizations (or participants) can join the network and
keep a copy of the ledger. Permissioned blockchains use an access control layer to
enforce which organizations have access to the network. The founding organization,
or blockchain network owner, determines the participants that can join the network. All
nodes in the network are known and use consensus protocol to ensure that the next
block is the only version of truth. There are three steps to consensus protocol:

• Endorsement — This step determines whether to accept or reject a transaction.

• Ordering — This step sorts all transactions within a time period into a sequence
or block.

• Validation — This step verifies that the required endorsement are gotten in
compliance with the endorsement policy and organization permissions.

Blockchain's key properties

Shared, transparent, and decentralized— The network maintains a distributed
ledger of facts and update history. All network participants see consistent data.
Data is distributed and replicated across the network’s organizations. Any authorized
organizations can access data.

1-1

Immutable and irreversible — Each new block contains a reference to the previous
block, which creates a chain of data. Data is distributed among the network
organizations. Blockchain records can only be appended and can't be undetectably
altered or deleted. Consensus is required before blocks or transactions are written to
the ledger. Therefore, the existence and validity of a data record can't be denied. After
endorsement policies are satisfied and consensus is reached, data is grouped into
blocks and blocks are appended to the ledger with cryptographically secured hashes
that provide immutability. Only those members authorized to have the corresponding
encryption keys can view data.

Encryption — All records are encrypted.

Closed ecosystem — Joined organizations can have a copy of the ledger.
Organizations are known in the real world. Consensus protocols depend on knowing
who the organizations are.

Speed — Transactions are verified in minutes. Network members interact directly.

Blockchain example

An example of an organization that benefits from using blockchain is a supply chain
contract manufacturing company. Suppose this company is located in the United
States and uses a third-party company in Mexico to source materials for and produce
electronic components. With a blockchain network, the manufacturing company can
quickly know the answers to the following questions:

• Where is the product in the production cycle?

• Where is the product being produced?

• Does the product contain ethically sourced materials?

• Does the product meet specifications and exporting compliance rules?

• When is ownership transferred?

• Does the invoice match and should the organization pay it?

• How should the organization handle any exceptions to the manufacturing,
shipping, or receiving process?

Why Should I Use Blockchain?
Implementing blockchain can help you manage and bring efficiency to many aspects of
your business practices.

The key benefits of using a blockchain are:

Increase Business Velocity — You can create a trusted network for business-
to-business transactions and extend and automate your operations beyond the
enterprise. With blockchain, you can optimize business decisions by providing real-
time information visibility across your company's ecosystem.

Reduce Operation Costs — Use blockchain to accelerate transactions and eliminate
cumbersome offline reconciliations by using a trusted shared fabric of common
information. Blockchains help you eliminate intermediaries and related costs, possible
single points of failure, and time delay by using a peer to peer business network.

Reduce the cost of fraud and regulatory compliance — Blockchain allows you to
gain the security of knowing that business critical records are made tamper-proof with

Chapter 1
Why Should I Use Blockchain?

1-2

securely replicated, cryptographically linked blocks that protect against single point of
failure and insider tampering.

What Are the Advantages of Oracle Blockchain Platform?
Using Oracle Blockchain Platform to create and manage your blockchain network has
many advantages over other available blockchain products.

As a preassembled platform, Oracle Blockchain Platform includes all the
dependencies required to support a blockchain network: compute, storage, containers,
identity services, event services, and management services. Oracle Blockchain
Platform includes the blockchain network console to support integrated operations.
This helps you start developing applications within minutes, and enables you to
complete a proof of concept in days or weeks rather than months.

How Oracle Blockchain Platform Adds Value to Hyperledger Fabric

Oracle Blockchain Platform is based on the Hyperledger Fabric project from the Linux
Foundation, and it extends the open source version of Hyperledger Fabric in many
ways.

Enhances Security

• Uses data in-transit encryption based on TLS 1.2, prioritizing forward-secrecy
ciphers in the TLS cipher-suite.

• Uses data at-rest encryption for all configuration and ledger data.

• Provides audit logging of all API calls to the blockchain resources, with records
available through an authenticated, filterable query API.

Adds REST Proxy

• Supports a rich set of Fabric APIs through REST calls for simpler transaction
integration. See REST API for Oracle Blockchain Platform.

• Enables synchronous and asynchronous invocations. Enables events and
callbacks and DevOps operations.

• Simplifies integration and insulates applications from underlying changes in
transaction flow.

Provides the Management and Operations Console

• Provides a comprehensive, intuitive web user interface and wizards to
automate many administration tasks. For example, adding organizations to the
network, adding new nodes, creating new channels, deploying and instantiating
chaincodes, browsing the ledger, and more.

• Enables DevOps through REST APIs for administration and monitoring of
blockchain.

• Dynamically handles configuration updates without node restart.

• Includes dashboards, ledger browser, and log viewers for monitoring and
troubleshooting.

Replaces Ledger DB World State Store With Oracle Berkeley DB

• Provides Couch DB rich query support at Level DB performance.

Chapter 1
What Are the Advantages of Oracle Blockchain Platform?

1-3

• Provides SQL-based rich query support. See What's the State Database?

• Validates query results at commit time to ensure ledger integrity and avoid
phantom reads.

Integrates Rich History Database

• Enables transparent shadowing of transaction history to Autonomous Data
Warehouse or Database as a Service and the use of Analytics or Business
Intelligence (for example, Oracle Analytics Cloud or third-party tools) on
blockchain transaction history and world state data. See Create the Rich History
Database.

• Supports standard tables and blockchain tables for storing rich history. Blockchain
tables are tamperproof append-only tables, which can be used as a secure ledger
while also being available for transactions and queries with other tables.

Highly Available Architecture and Resilient Infrastructure

Built for business-critical enterprise applications, Oracle Blockchain Platform is
designed for continuous operation as a highly secure, resilient, scalable platform.
This platform provides continuous monitoring and autonomous recovery of all network
components based on continuous backup of the ledger blocks and configuration
information.

Each customer instance uses a framework of multiple managed VMs and containers to
ensure high availability. This framework includes:

• Peer node containers distributed across multiple VMs to ensure resiliency if one of
the VMs is unavailable or is being patched.

• Orderers, fabric-ca, console, and REST proxy nodes are replicated in all VMs for
transparent takeover to avoid outages.

• A highly available Raft/Zookeeper cluster, leveraging multi-VM deployment
topology.

• Isolated VM environments for customer chaincode execution containers for greater
security and stability.

What Do I Get with Oracle Blockchain Platform?
Your instance includes everything you need to build, run, and monitor a complete
production-ready blockchain network based on Hyperledger Fabric.

Your Oracle Blockchain Platform instance is defined by the options you selected
when you created your instance. Your instance includes validating peer nodes, a
membership services provider (MSP), and an ordering service.

In addition, REST proxy nodes are provided and a default channel is created. Use
the console user interface to further configure, administer, and monitor the network, as
well as install, instantiate, and upgrade smart contracts (also known as chaincodes).
The Developer Tools tab contains sample chaincodes that you can deploy and run to
help you quickly understand how the blockchain network works.

Oracle Blockchain Platform is pre-assembled with underlying services, including
containers, compute, storage, LDAP for authentication, object store for embedded
archiving, and management and log analytics for operations and troubleshooting.
You can configure multiple peer nodes and channels for availability, scalability, and

Chapter 1
What Do I Get with Oracle Blockchain Platform?

1-4

confidentiality, and Oracle Blockchain Platform will automatically handle the underlying
dependencies.

Chapter 1
What Do I Get with Oracle Blockchain Platform?

1-5

2
Get Started Using Samples

This topic contains information about the samples included in your instance. Using
samples is the fastest way for you to get familiar with Oracle Blockchain Platform.

Topics

• What Are Chaincode Samples?

• Explore Oracle Blockchain Platform Using Samples

What Are Chaincode Samples?
Oracle Blockchain Platform includes chaincode samples written in Go and Node.js to
help you learn how to implement and manage your network’s chaincodes.

To get to the Chaincode Samples page in the Oracle Blockchain Platform console,
open the Developer Tools tab and select Samples.

The Chaincode Samples page contains:

• The Balance Transfer sample is a simple chaincode representing two parties
with account balances and operations to query the balances and transfer funds
between parties.

• The Marbles sample includes a chaincode to create marbles where each marble
has a color and size attribute. You can assign a marble to an owner and enable
operations to query status and trade marbles by name or color between owners.

• The Car Dealer sample includes a chaincode to manage the production, transfer,
and querying of vehicle parts; the vehicles assembled from these parts; and
transfer of the vehicles.

In this sample, a large auto maker and its dealers and buyers have created a
blockchain network to streamline its supply chain activities. Blockchain helps them
reduce the time required to reconcile issues with the vehicle and parts audit trail.

Use the Download sample here links under each sample to download the sample
chaincode. The download contains the Go and Node.js versions of the chaincode.

The download also contains a Java version of the chaincode.

For information about installing, instantiating, and invoking the samples on your
instance, see Explore Oracle Blockchain Platform Using Samples.

Explore Oracle Blockchain Platform Using Samples
You can install, instantiate, and invoke the sample chaincodes included in Oracle
Blockchain Platform.

 Tutorial

2-1

https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:25325

You must be an administrator to install and instantiate sample chaincodes. If you've
got user permissions, then you can invoke sample chaincodes.

1. Go to the console and select the Developer Tools tab.

2. Click the Samples pane.

The Blockchain Samples page is displayed.

3. Locate the sample chaincode and install it.

a. Choose the sample chaincode that you want to use and click the
corresponding Install button.

b. In the Install Chaincode dialog, specify one or more peers to install the
chaincode on, and select which chaincode language you want to use (Go,
Node.js, or Java). Click Install.

4. Instantiate the chaincode.

a. Click the chaincode’s Instantiate button.

b. In the Instantiate Chaincode dialog select the channel you want to instantiate
the chaincode to, and specify any required parameters. Click Instantiate and
Enable in REST Proxy.

5. Go to the Channels tab and click the name of the channel that you instantiated the
sample chaincode to.

a. In the Channel Information page, click the Instantiated Chaincodes pane to
confirm the chaincode's deployment on the channel.

b. You can use the Ledger area to locate information about individual
transactions on the channel.

6. Click the Ledger pane and confirm the following.

• The Ledger Summary indicates one deployment occurred.

• In the Ledger table, locate the block with the Type of data (sys).

• Click the block and in the Transactions table, click the arrow icon to display
more information about the block. Confirm that the Function Name field
displays “deploy.”

7. If needed, go to the Chaincodes tab and instantiate the chaincode on other
channels.

If you're working on a network that contains multiple members and have
instantiated the chaincode on the founder, then you don’t have to instantiate the
chaincode on the participants where you installed the same chaincode. In such
cases, the chaincode is already instantiated and running on the participants.

a. Locate the name of the chaincode you want to instantiate in the table and click
it.

b. In the Chaincode Information page, click the Instantiate on a New
Chaincode button.

c. In the Instantiate Chaincode dialog specify the required information.

8. Invoke the chaincode.

a. Go to the Blockchain Samples page, locate the chaincode you're working with,
and click its Invoke button.

b. In the Invoke Chaincode dialog, select a channel to run the transaction on.

Chapter 2
Explore Oracle Blockchain Platform Using Samples

2-2

c. In the Action field, specify an action to execute the chaincode.

d. Click Execute. The Transaction Results shows returned values, and the API
details field displays the detailed log of all blockchain processes performed
from invoking the transaction.

9. Confirm whether the chaincode invoked successfully.

a. Go to the Channels tab, and locate and click the channel the chaincode was
installed on.

b. Confirm that the Ledger pane is selected, and in the Query Ledger table,
locate the block number indicating that an invocation occurred.

c. Click the block and confirm that in the Transactions table you see “Success” in
the Status column.

10. If needed, go to the Samples page and invoke any other operations on the
chaincode.

Chapter 2
Explore Oracle Blockchain Platform Using Samples

2-3

3
Manage the Organization and Network

This topic contains information to help you understand the console and how you can
use it to manage the channels and nodes that make up your organization and the
blockchain network.

Topics

• What's the Console?

• Modify the Console Timeout Setting

• Find and Understand Your Oracle Blockchain Platform Version Number

• Monitor the Network

• Manage Nodes

• Manage Channels

• Manage Certificates

• Manage Ordering Service

What's the Console?
The Oracle Blockchain Platform console helps you monitor the blockchain network and
perform day to day administrative tasks.

When you provisioned your Oracle Blockchain Platform instance, all of the capabilities
you need to begin work on your blockchain network were added to the console.

You can use the console to perform tasks such as managing nodes, configuring
network channels and policies, and deploying and instantiating chaincodes. You can
also monitor and troubleshoot the network, view node status, view ledger blocks, and
find and view log files.

In most cases, each member of your network has its own console that they use
to manage their organization and monitor the blockchain network. Your role in the
network (founder or participant) determines the tasks you can perform in your console.
For example, if you're a participant, then you can’t add another participant to the
network. Only the founder can add a participant to the network.

Also, what you can do in the console is determined by your access privileges (either
Administrator or User). For example, only an Administrator can set an anchor peer or
create a new channel.

Your instance includes sample chaincodes that you can use to get started. See
Explore Oracle Blockchain Platform Using Samples.

The console is divided into tabs.

3-1

Dashboard Tab

Use the Dashboard tab for an overview of the network’s performance. See What Type
of Information Is on the Dashboard?

On the Dashboard tab, you’ll find:

• A banner showing you how many different components are on your network. For
example, how many channels and chaincodes.

• The number of user transactions on a channel during a specific time range.

• The number of nodes that are running or stopped.

• The number of endorsements and commits by peers.

• Utilization statistics for your instance's partitions.

Network Tab

The Network tab is where you view a list of the members in your network. The first
time you use the Network tab after setting up your instance, you’ll see the nodes you
created during set up.

You can use the Network tab to:

• Find the organization IDs of the members in your network, their Membership
Service Provider (MSP) IDs, and roles.

• Add a participant to the network.

• See a graphical representation of the network’s structure.

• Configure, view, or import the orderer settings.

• Manage certificates.

• Add new orderering service node into network.

• Export the network config block.

Nodes Tab

Go to the Nodes tab to view a list of the nodes in your network. The first time you use
the Nodes tab after setting up your instance, you’ll see:

• The console node.

• The number of peer nodes you requested when provisioning.

• The number of orderer nodes associated with your instance type. Standard has
three orderer nodes and cannot be scaled up, while Enterprise has three and
additional can be added.

• One Fabric certificate authority (CA) node representing the membership service.

• One REST proxy node.

During the founder instance provisioning a default channel was created and all peers
were added to it.

Use the Nodes tab to:

• View and set node configurations.

• Export and import peers.

Chapter 3
What's the Console?

3-2

• Start, stop, and restart nodes.

• Configure and start a new orderer node.

• See a graphical representation of which peer nodes are using which channels.

• Click a node's name to find more information about it.

Channels Tab

The Channels tab shows you the channels in your network, the peers using the
channels, and the chaincodes instantiated on the channels. The first time you use the
Channels tab after setting up your instance, you’ll see the default channel that was
created and all of the peers in your network added to it.

Use the Channels tab to:

• Add new channels.

• See the number of chaincodes instantiated on a channel.

• Click a channel's name to find more information about it, such as its ledger
summary, the peers and OSNs joined to the channel, and the channel's policies
and ACLs.

• Join peers to the channel.

• Manage the ordering service of the channel.

• Add or remove an ordering service node (OSN) for a channel.

• View and update the ordering service’s settings.

• Configure rich history for the channel.

Chaincodes Tab

Note that Oracle Blockchain Platform refers to smart contracts as chaincodes.

Go to the Chaincodes tab to view a list of the chaincodes installed on the instance.
The first time you use the Chaincodes tab after setting up your instance, no
chaincodes display in the list because no chaincodes were included during set up.
You must add the needed chaincodes.

You can use the Chaincodes tab to:

• Install, instantiate, and deploy a chaincode using the Quick or Advanced deploy
option.

• See how many peers have a chaincode installed.

• Find out how many channels a chaincode was instantiated on.

• Upgrade a chaincode.

• Find the chaincode’s path.

Developer Tools Tab

The Developer Tools tab is designed to help you learn blockchain fundamentals like
how to write chaincodes and create blockchain applications.

You can use the Developer Tools tab to:

Chapter 3
What's the Console?

3-3

• Find templates and the Hyperledger Fabric mock shim to help you create
chaincodes.

• Link to the SDKs and APIs that you need to write blockchain applications.

• Use the sample chaincodes to learn about chaincodes. Install, instantiate, and
invoke the sample chaincodes.

• Download the Blockchain App Builder for Oracle Blockchain Platform - a set of
tools and samples to help you create, test, and debug chaincode projects using a
command line interface or a Visual Studio Code extension.

Modify the Console Timeout Setting
The Oracle Blockchain Platform console attempts to contact the nodes on the network
for 600 seconds before it times out.

In most cases you won’t have to adjust this setting, but if the console is frequently not
responding, then consider increasing the timeout value. Oracle doesn’t recommend
decreasing the timeout value.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab go to the nodes table and locate the console node. Use the
nodes table’s type column to find the Console node.

3. Click the node’s More Actions menu and then click Edit Configuration.

The Configure dialog is displayed.

4. In the Request Timeout (s) field, type or use the arrow buttons to indicate the
timeout length in seconds.

5. Click Submit.

The timeout length changes immediately, and you don’t have to restart the
console.

Find and Understand Your Oracle Blockchain Platform
Version Number

Use this topic to find and understand your Oracle Blockchain Platform instance's
version number.

1. Go to the console and in the top right of the screen, locate and click your user
name.

2. Select About.

Your instance's version number will look similar to:

20.3.1

where:

• 20 is year

• 3 is the quarter

• 1 is the minor release number

Chapter 3
Modify the Console Timeout Setting

3-4

Monitor the Network
This topic contains general information about monitoring the blockchain network.

Topics:

• How Can I Monitor the Blockchain Network?

• What Type of Information Is on the Dashboard?

• View Network Activity

How Can I Monitor the Blockchain Network?
The console provides several ways for you to monitor the activity and health of your
blockchain network.

For example, you can find summary information about the total number of blocks
submitted to the ledger, or you can search for and locate information about specific
chaincode transactions that happened on a specific channel.

You can use the console to locate the following sources of information to help you
understand what’s happening on your network.

Network Overview Information

Use the Dashboard tab if you need at-a-glance information about how well the whole
network is working and to spot any general issues such as a high rate of failing
transactions. See View Network Activity .

Ledger Summary

For information about the runtime statistics for transactions on a specific channel, go
to the channel’s Ledger Summary area. You can drill into a specific transaction for
more information about it, such as which member initiated the transaction and which
peer endorsed it. See View a Channel’s Ledger Activity.

Node Health

Use a node’s Health Summary area to help you understand how the node is
performing on the network. For example, CPU utilization and memory utilization. See:

• View Health Information for a CA Node

• View Health Information for the Console Node

• View Health Information for an Orderer Node

• View Health Information for a Peer Node

• View Health Information for a REST Proxy Node

Chapter 3
Monitor the Network

3-5

What Type of Information Is on the Dashboard?
The console’s Dashboard tab provides an overview of how well your network is
functioning. You can use this information to identify any issue and to navigate to other
tabs in the console where you can learn more about and resolve any issues.

Summary Bar

This section shows the components in your network (for example, how many nodes
and chaincodes). You can click a component number to go to the console tab for
more information or to perform tasks related to the component. If your instance is a
development instance, then “Development mode” is displayed in the bottom right of
the summary bar.

At the top of the console, you’ll see what type of instance you’re working with. If you’re
a network founder, then you’ll see “(Founder)”. If you’re a participant in a network,
then the top of your console displays the name of the network you’re joined to. For
example, “(Participant of <foundername>)”.

Health

This section shows how many nodes are running and how many are stopped in the
network. Click the node numbers to go to the Nodes tab to investigate why a node
might be stopped, or for more information about the nodes in the network.

The nodes in your network are partitioned inside of a virtual machine (VM). This
section also shows the percentage of the partition memory used, and the percentage
of CPU and disk used. If the memory percentage is relatively low (for example, 50%
or lower), then you can create another peer node without your system’s performance
decreasing significantly. If the percentage is close to 100, then your system most likely
can’t support another peer node.

Channel Activity

This area shows how many blocks have been created and how many transactions
have been executed based on the number of blocks created. Note that you might see
more blocks created than user transactions. For example, if you create a new channel
or you instantiate a chaincode, then those are classified as system-level transactions
and are included in blocks, but not classified as user transactions. This area shows
the top four channels that have handled the most transactions, and for each channel
shows the number of transactions that have succeeded and failed.

Note the following information:

• User transactions are transactions that were invoked as part of the chaincode’s
execution, and not underlying actions such as setting up the network, creating
channels, and installing and instantiating chaincodes.

• A block can contain multiple user transactions.

You can filter the amount of activity information that is displayed. You can select a set
time range (for example, last hour or last week), or you can select Custom and pick
the dates you want activity information for.

Chapter 3
Monitor the Network

3-6

Peer Activity

This area shows the number of endorsement and commits completed by the network’s
peer nodes. This area shows the top four peer nodes that have endorsed and
committed the most transactions, and for each of those four peers, this area shows
the number of endorsements and commits that have succeeded and failed.

Note the following information:

• A transaction is an endorsement, and a commit is when a transaction is written to
the block.

• Commits can be either user transactions or system transactions

• Commits are the number of transactions that have been committed to the block.
Commits aren’t blocks.

• Only specific peers must do endorsements, but all peers must do commits.

You can filter the amount of activity information that is displayed. You can select a set
time range (for example, last hour or last week), or you can select Custom and pick
the dates you want activity information for.

View Network Activity
Use the console’s Dashboard tab to find information about your blockchain network’s
activities, such as percentage of nodes that are running or stopped, and how
successfully the network is executing chaincode transactions.

You can use this information as a starting place and then use the other tabs in the
console to drill into any issues that you discover. For information about what displays
in the Dashboard tab, see What Type of Information Is on the Dashboard?

1. Go to the console and select the Dashboard tab.

2. To see channel and peer activity information that occurred at a specific time such
as for the last week or month, go to the filter dropdown menu and select the time
range you want. Select Custom to enter specific begin and end dates and click
Apply.

Manage Nodes
This topic contains general information about managing the nodes in your network.

Topics

• What Types of Nodes Are in a Network?

• Find Information About Nodes

• Start and Stop Nodes

• Restart a Node

• Set the Log Level for a Node

Chapter 3
Manage Nodes

3-7

What Types of Nodes Are in a Network?
A blockchain network contain console, peer, orderer, certification authority (CA), and
REST proxy nodes. The nodes that display in your console depend upon if you're the
founder of or a participant in a network.

For example, if you're a participant in a network, your console won’t display an orderer
node for that network. If you're a founder, your console displays all node types.

What nodes are included in a new instance?

After you provision your instance and access the Nodes tab for the first time, you’ll
see:

• One console node.

• The number of peers you requested during set up. These peers display with the
Peer(Member) type. The maximum number of peer nodes that can be included
with an instance is 16.

• An orderer node representing an ordering service. Starting in version 20.3.1, both
founder and participant instances can have ordering service nodes (OSNs).

• A Fabric certificate authority (CA) representing the membership service.

• A REST proxy node.

I need more information about the different node types

Use this table to find more information about nodes.

Node Type What Does This Node Do? Displays In
Founder or
Participant
Instance

Number of
Nodes per
Instance

Can I Add
Another Node
After
Provisioning
My Instance?

CA This node provides and
manages peer node
credentials and member
credentials.

Founder

Participant

1 No

Console This node is the console
component.

Founder

Participant

1 No

Orderer This node provides
communication between
nodes. It guarantees the
delivery of transactions into
blocks and blocks into the
blockchain.

If you're a participant,
then you must import the
founder’s ordering service
setting into your instance
so that all peer nodes can
communicate.

Founder

Participant

3 Enterprise
Edition: Yes

Standard
Edition: No

Chapter 3
Manage Nodes

3-8

Node Type What Does This Node Do? Displays In
Founder or
Participant
Instance

Number of
Nodes per
Instance

Can I Add
Another Node
After
Provisioning
My Instance?

Peer This node contains a copy
of the ledger and writes
transactions to the ledger.
This node can also endorse
transactions.

Your network can contain
member or remote peers.

Founder

Participant

2 to 16
The number of
peer nodes you
can add was
specified when
your instance
was created.

Yes

REST Proxy This node maps an
application identity to
a blockchain member,
which allows users and
applications to call the
Oracle Blockchain Platform
REST APIs.

Founder

Participant

1 No

Find Information About Nodes
This topic contains information about where in the console you can find information
about the nodes in your instance and network.

Topics:

• View General Information About Nodes

• Access Information About a Specific Node

• View a Diagram of the Peers and Channels in the Network

• Find Node Configuration Settings

View General Information About Nodes
Use the Nodes tab to view general information about all of the nodes in your network.
For example, Name, Route, Type, and Status.

You can also use the Nodes tab to drill into details about a specific node. For more
information about node types, see What Types of Nodes Are in a Network?

1. Go to the console and select the Nodes tab.

2. In the Nodes tab confirm that the List View (and not the Topology View) is
displaying.

Column Description

Route Oracle Blockchain Platform generated the URLs when you provisioned
your instance or when you create new nodes.
If you use the Hyperledger Fabric SDK, then you need these URLs to
specify which peers you want the SDK to interact with.

Type Indicates the node type.

MSP ID Membership Service Provider ID.

Chapter 3
Manage Nodes

3-9

Column Description

Status Indicates if the node is running or down. Also indicates if there's an
unapplied configuration change for the node. Note the following statuses:
• Up — The node is running and working normally.
• Down — The node is stopped.
• N/A — This status displays for remote peers because your instance

doesn’t have the permissions required to get the peer’s status.

IsConfigured If the node’s configuration was updated you need to restart the node for
the updates to take effect. Nodes with the yes status are running (and not
stopped).

More Actions
Menu

Your permissions determine the options available from the More Actions
menu. If you're an administrator, this button provides links to modify the
node’s configuration. Administrators and users can stop, start, and restart
nodes.

Access Information About a Specific Node
Use the Nodes tab to access information about a specific. For example, health
information or log files.

1. Go to the console and select the Nodes tab.

2. Click a node’s name to go to the Node Information page. The panes that display in
the Node Information page depend on the node type you select.

Pane Available
for Which
Node
Types?

What can I do in this pane?

Health All View metrics to help you understand how the node is
performing on the network. Example of metrics include CPU
Utilization and Memory Utilization.
For a Peer node, this pane displays information about
endorsed and committed transactions.

Channels Peer View a list of channels the selected peer node is using for
its communications with other nodes. Join the peer node to
other existing channels as needed. Go to the Channel page to
create a new channel and specify which peer nodes can join it.

Chaincodes Peer View the chaincodes that are installed on the peer node. Go to
the Chaincode page to install a new chaincode or upgrade an
existing chaincode.

Transaction
Statistics

REST proxy View the total queries, failed queries, total invocations, and
failed invocations handled by the REST proxy.

View a Diagram of the Peers and Channels in the Network
Use the Topology view to access an interactive diagram that shows which network
peers are using which channels.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, click Topology View to see a diagram showing the peer nodes
in your network and which channels they’re using.

3. Hover over a peer to highlight it and the channels it’s using.

Chapter 3
Manage Nodes

3-10

Find Node Configuration Settings
Use the Nodes tab to find a specific node’s configuration settings. If you’re an
administrator, then you can update a node’s configuration settings. If you’re a user,
then you can view a node’s configuration settings.

1. Go to the console and select the Nodes tab.

2. Go to the Nodes table, locate the node that you want configuration setting
information for, and click the node’s More Actions button.

3. The configuration option is determined by your permissions. If you're an
administrator, locate and click Edit Configuration. If you're a user, locate and
click View.

The Configure dialog is displayed, showing the attributes specific to the node type
you selected. See Node Configuration.

Start and Stop Nodes
You can start or stop CA, orderer, peer, and the REST proxy nodes in your network.
You can’t start or stop the console node or remote peer nodes.

You can start and stop nodes depending upon the traffic in your network. For example,
if network traffic is light, then you can stop unneeded peer nodes and orderer nodes.

You can also restart a node. See Restart a Node.

When you stop a peer node, Oracle Blockchain Platform removes the peer’s listing on
the Channel tab and Chaincodes tab. If you stop all peers that have the chaincode
installed, then the Chaincodes tab doesn’t list the chaincode. If you stop all peers
joined to a channel, then the Channels tab lists the channel, but its information isn't
available to view.
Before stopping a node for an extended period of time, you should transfer all this
peer's responsibilities to other running peers, and then remove all the responsibilities
this peer has.

• Check all other peers' gossip bootstrap address lists, remove the peer address,
and add another running peer's address if needed. After peer configuration
change, restart the peer.

• Check all channels' anchor peer lists, remove the peer from the anchor peer lists,
and add another running peer to the anchor peer list if needed.

• If a channel or chaincode is only joined or instantiated in this peer, you should
consider using another running peer to join the same channel and instantiate the
same chaincode.

You must be an administrator to perform this task.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, go to the Nodes table, locate the node that you want to start or
stop, and click the node’s More Actions button.

3. Click either the Start or Stop option. The node’s status changes to either up or
down and information is written to the node’s log file.

Chapter 3
Manage Nodes

3-11

Restart a Node
You can restart the CA, orderer, peer, and REST proxy nodes in your network. You
can’t restart the console node or remote peer nodes.

You should restart a node if it's not responding or running properly, or if you’ve updated
a node’s configuration. You can also start or stop a node. See Start and Stop Nodes.

You must be an administrator to perform this task.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, go to the Nodes table, locate the node that you want to restart,
and click the node’s More Actions button.

3. Click Restart.

The node’s status changes to restarting and information is written to the log file.

Set the Log Level for a Node
If you’re an administrator, then you can specify the type of information you want to
include in a node’s log files. For example, ERROR, WARNING, INFO, or DEBUG.

By default, every node’s log level is set to INFO. When developing and testing your
network, Oracle suggests that you set the logging level to DEBUG. If you're working in
a production environment, then use ERROR.

Only an administrator can change a node’s log level setting. If you're a user, then you
can view a node’s log level settings.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, go to the nodes table, locate the node you want to update, click
its More Actions menu, and click Edit Configuration.

If you have user permissions, then your console will have the View option that you
click to see the node’s log level setting and other configuration settings.

The Configure dialog is displayed.

3. In the Log Level field, select the log level you want to use.

4. Click Submit.

Manage Channels
This topic contains information about managing the channels in your network.

Topics

• What Are Channels?

• View Channels

• Create a Channel

• View a Channel’s Ledger Activity

• View or Update a Channel’s Organizations List

• Join a Peer to a Channel

Chapter 3
Manage Channels

3-12

• Add an Anchor Peer

• Change or Remove an Anchor Peer

• View Information About Instantiated Chaincodes

• Work With Channel Policies and ACLs

• Add or Remove Orderers To or From a Channel

• Set the Orderer Administrator Organization

• Edit Ordering Service Settings for a Channel

What Are Channels?
Channels partition and isolate peers and ledger data to provide private and
confidential transactions on the blockchain network.

Members define and structure channels to allow specific peers to conduct private and
confidential transactions that other members on the same blockchain network can't
see or access. Each channel includes:

• Peers

• Shared ledger

• Chaincodes instantiated on the channel

• One or more ordering service nodes

• Channel policy definitions and ACLs where the definitions are applied

Each peer that joins a channel has its own identity that authenticates it to the channel
peers and services. Although peers can belong to multiple channels, the information
on transactions, ledger state, and channel membership is restricted to peers within
each channel.

You can use the Oracle Blockchain Platform console or the Hyperledger Fabric SDK to
create channels on your blockchain network. See View Channels.

View Channels
Members in your network use channels to privately communicate blockchain
transactions information.

Use the Channel tab to view a list of the channels in your network, create and monitor
channels, specify anchor peers, and upgrade the instantiated chaincodes used on
your channels.

1. Go to the console and select the Channels tab.

The Channels tab is displayed and the channel table contains a list of all of the
channels on your network.

2. In the channel table, click the channel name you want information about. Note that
if all peers joined to the channel are stopped, then the channel is listed but its
information isn't available to view.

The Channel Information page is displayed.

3. Click through the Channel Information page's panes to find information about the
channel.

Chapter 3
Manage Channels

3-13

Section What can I do in this pane?

Ledger Get information about the channel’s ledger activity such as
block number and the number of user transactions in the
block. Click a block number to drill into information about its
transactions. You can use the filter field to specify the summary
information that you want to see (for example, information from
the last day or last month), or use the custom option to enter
start and end times. See View a Channel’s Ledger Activity.

Instantiated Chaincodes View the list of chaincodes that have been instantiated on the
channel.

Orderers View a list of the orderers currently active, and allows you to
add a new OSN to join the channel.

Peers View the list of peers that are joined to the channel. Use this
section to set anchor peers for the channel.

Organizations View the list of network members whose peers are using the
channel to communicate.

Channel Policies View the list of the standard policies and any policies that you
created for the channel. Use this section to add, modify, and
delete policies.

ACLs View the access control lists (ACLs) and the policies used
to manage which organizations and roles can access the
channel's resources.

Create a Channel
You can add channels to the network and specify which members can use the
channel, and which peers can join the channel. You can’t delete channels.

You must be an administrator to perform this task.

1. Go to the console and select the Channels tab.

2. In the Channels tab, click Create a New Channel.

3. In the Channel Name field, enter a unique name for the channel. The channel's
name can be up to 128 characters long.

4. In the Application Capabilities field, select 1_4_2 as the capabilities level for the
channel. Don't select 1_1 or 1_3 - they were used in earlier versions of the product
and selecting them will remove support for newer product features.

5. In the Creator Organization field, select the parent or child organization that you
want to administer the channel.

6. In the Organizations section, select any additional members that you want to
communicate on the channel.

If you’re working in a participant instance, you need to add the founder to your
instance before the founder’s MSP ID displays in the Organization section. To add
the founder organization, go to the Network tab and click the Add Organization
button to upload the founder’s certificates.

7. In the MSP ID ACL section, specify the organizations that have access to the
channel and permissions for each selected organization. Note that you can add
more organizations to or delete them from the channel later, as needed.

Your organization’s permissions are set to write (ReaderWriter) and you can't
modify this setting. By default, other member’s permissions are set to write
(ReaderWriter), but you can change them to read (ReaderOnly) if you don’t want

Chapter 3
Manage Channels

3-14

the members to invoke chaincodes and to only read channel information and
blocks on the channel.

8. (Optional) In the Peers to Join Channel field, select one or more peers. Note the
following information:

• Your instance has two VMs (Partition 1 and Partition 2) and Oracle
recommends that you join one peer from each partition to the channel.
This is because if one VM is unavailable that the channel can still process
endorsements and commits. A peer’s name tells you which partition it's
located in. For example, peer0–1 and peer1–1 are located in Partition 1. And
peer0–2 and peer1–2 are located in Partition 2.

• You can join a maximum of seven peers from Partition 1 and seven peers from
Partition 2.

• If your network contains participants, the participants’ peers don’t display in
this list. Participants must use their consoles to join peers to the channel. A
participant can’t join its peers to the channel unless its organization was added
to the channel’s MSP ID ACL section.

• If you want to create the channel only, then don’t select any peers. You can
add peers to the channel later.

9. Click Submit.

The channel table displays the new channel.

After you create the channel, you can:

• Instantiate a chaincode on the channel. See Instantiate a Chaincode.

• If the network contains participants, then they use their consoles to join member
peers to the channel. See Join a Peer to a Channel.

View a Channel’s Ledger Activity
Use the ledger to find summary information and runtime statistics for transactions on a
specific channel.

1. Go to the console and select the Channels tab.

2. In the channel table, click the channel name that you want transaction information
about. In the Channel Information page, confirm that the Ledger pane is selected.

3. Use the Ledger Summary area to find at a glance information about the channel’s
activity, such as the total number of blocks in the ledger’s chain and the total
number of user transactions on the channel.

4. To see blockchain activity that occurred at a specific time such as for the last day
or week, go to the filter dropdown menu to select the time range that you want. To
locate and drill into a specific set of transactions, select Custom and enter search
criteria in the Start Time and End Time fields, or click the calendar icon and pick
the dates that you want. Click Apply.

If you select a specific time period (for example, Last day) and then select it again
to re-run the query, the query doesn’t re-run. To get the latest information, click the
Refresh button.

Note the following transaction types that can display for a block:

• genesis — The transaction that runs the configuration block to initialize the
channel.

Chapter 3
Manage Channels

3-15

• data (sys) — The transaction that starts the chaincode’s container to make the
chaincode available for use.

• data — A chaincode transaction called for execution on the channel.

5. To find more information about a specific transaction, locate the transaction in the
query ledger table and click it. The transactions table displays the transaction’s
details.

Transaction Detail Description

TxID The unique alphanumeric ID assigned to the transaction. The
TxID is constructed as a hash of a nonce concatenated with
the signing identity's serialized bytes.

Time The transaction’s time stamp (date and time that the
transaction occurred).

Chaincode Displays the name of the chaincode that executed the
transaction. This field can show the name of a chaincode that
you wrote, installed, and instantiated, but can also show a
system chaincode.
System chaincode options are:

• LSCC — For lifecycle requests, such as instantiate, install,
and upgrade.

• QSCC — For querying. This chaincode includes APIs for
ledger query.

Status Shows if the transaction succeeded or failed.

6. Click the triangle next to the TxID to view in depth information about the
transaction, such as function name, arguments, validation results, response
status, the initiator and the endorser.

Note that if a transaction failed, then you can use the TxID to search error logs in
the peer node or orderer nodes for more information.

View or Update a Channel’s Organizations List
You can view the list of the organizations that have access to the channel. If you
created the channel, then you can change an organization’s permissions on the
channel, and you can add organizations to or remove them from the channel

1. Go to the console and select the Channels tab.

The Channels tab is displayed and the channel table contains a list of all of the
channels in your network.

2. In the channels table, locate the channel that you want information about, click the
channels More Actions button, and click Edit Channel Organizations.

The Edit Organizations page is displayed.

3. In the MSP ID ACL section, you can do the following:

• Modify an organization’s permissions. The organization that created the
channel is set to write (ReaderWriter). You can't change this setting.

• If you’re the network founder, then clear an organization’s checkbox to delete it
from the channel. If you’re a network participant, then use the Delete button to
delete an organization from the channel. If you delete an organization from a
channel, then the organization and its peers can no longer query, invoke, and

Chapter 3
Manage Channels

3-16

instantiate a chaincode on the channel. And the removed organization’s peers
can’t join the channel.

• Click an organization’s checkbox to add the organization to the channel and
set its permissions. By default, each member’s permissions is set to write
(ReaderWriter), but you can change it to read (ReaderOnly) if you don’t want
the member to invoke chaincodes and to only read channel information and
blocks on the channel.

4. Click Submit to save the changes.

Join a Peer to a Channel
You can add a peer node to a channel so that the node can use it to exchange private
transaction information with other peer nodes on the channel.

Note the following information:

• When you create a channel, you specify which local peer nodes can join the
channel.

• If you’re creating a network containing a participant, then you can select the
participant as a member on the channel. Or you can add the participant after the
channel is created.

• Your instance has multiple availability domains or fault domains, and Oracle
recommends that you join one peer from each partition to the channel. This
is because if one VM is unavailable that the channel is still available for
endorsements and commits. To determine which domain a peer is located in,
in the More Actions menu select Show AD Info to see the availability domain
information.

• You can join a maximum of seven peers from each domain.

See Create a Channel.

You must be an administrator to perform this task.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, click the peer node that you want to add to a channel.

3. In the Node Information page, click the Channels pane to view the list of channels
the peer is already using.

4. Click Join New Channels.

The Join New Channels dialog is displayed.

5. Click the Channel Name field and from the list select the name of the channel to
join. Click the field again to select another channel. Click Join.

Add an Anchor Peer
Each member using a channel must designate at least one anchor peer. Anchor peers
are primary network contact points, and are used to discover and communicate with
other network peers on the channel.

You can designate one or more peers in your organization as an anchor peer on a
channel. For a high availability network, you can specify two or more anchor peers. All

Chapter 3
Manage Channels

3-17

members using the network channel must use their console to designate one or more
of their peer nodes as anchor peers.

You must be an administrator to perform this task.

1. Go to the console and select the Channels tab.

The Channels tab is displayed and the channel table contains a list of all of the
channels on your network.

2. In the channels table, click the channel name you want to add anchor peers to.

The Channel Information page is displayed.

3. In the Channel Information page, click the Peers pane.

4. Locate the peer or peers that you want to designate as anchor peers and click
their Anchor Peer checkboxes to select them.

5. Click the Apply button.

Change or Remove an Anchor Peer
(New in 19.2.1) You can change or remove a channel's anchor peers. Anchor peers
are primary network contact points, and are used to discover and communicate with
other network peers on the channel.

Before you change or remove the channel's anchor peers, note the following
information:

• To communicate on the channel, you must designate one or more peers in your
organization as an anchor peer.

• For a high availability network, you can specify two or more anchor peers.

• All members using the network channel must use their console to designate one or
more of their peer nodes as anchor peers.

You must be an administrator to perform this task.

1. Go to the console and select the Channels tab.

The Channels tab is displayed and the channel table contains a list of all of the
channels on your network.

2. In the channels table, click the channel name you want to remove anchor peers
from.

The Channel Information page is displayed.

3. In the Channel Information page, click the Peers pane.

4. Locate the peer or peers that you want to remove as anchor peers and clear their
Anchor Peer checkboxes. Alternatively, to add another peer as an anchor peer,
click its Anchor Peer checkbox to select it.

5. Click the Apply button.

Chapter 3
Manage Channels

3-18

View Information About Instantiated Chaincodes
You can view information about the chaincodes instantiated on the different channels
in your network.

Some examples of when you need information about instantiated chaincodes are to
determine if you need to upgrade the chaincode, or to find out which channels the
chaincode was instantiated on.

1. Go to the console and select the Channels tab.

2. In the channels table, click the channel name with the chaincode that you want to
view information for.

3. In the Channel Information page, confirm that the Instantiated Chaincodes pane is
selected

4. In the chaincode table, you can:

• Click the chaincode to go to the Chaincodes tab to learn more information
about it, for example the peers that the chaincode is installed on and the
channels that the chaincode is instantiate on.

• In a chaincode’s More Actions menu, click View Endorsement Policy to
find details about the chaincode’s endorsement policy, for example who must
endorse the chaincode and the signed by expression string.

5. (Optional) If you see a channel listing without a chaincode, then you can go to
the Chaincodes tab and instantiate a chaincode to the channel. See Instantiate a
Chaincode.

Work With Channel Policies and ACLs
(19.1.3 and later versions only) This topic contains information about a channel's
policies and ACLs.

Topics:

• What Are Channel Policies?

• Add or Modify a Channel's Policies

• Delete a Channel's Policies

• What Are Channel ACLs?

• Update Channel ACLs

What Are Channel Policies?
A policy defines a set of conditions. The required parties must meet the policy's
conditions before their signatures are considered valid and the corresponding request
happens on the network.

The blockchain network is managed by these policies. Policies check the identity
associated with a request against the policy associated with the resource needed to
fulfill the request. Policies are located in the channel's configuration.

After you configure the channel's policies, you assign them to the channel's ACLs
resources to determine which members are required to sign before a change or

Chapter 3
Manage Channels

3-19

action can happen on the channel. For example, suppose you modified the Writers
policy to include members from Organization A or Organization B. Then you assigned
the Writers policy to the channel's cscc/GetConfigBlock ACL resource. Now only a
member from Organization A or Organization B can call GetConfigBlock on the cscc
component.

What Are the Policy Types?

There are two policy types: Signature and ImplicitMeta.

• Signature — Specifies a combination of evaluation rules. It supports combinations
of AND, OR, and NOutOf. For example, you could define something like “An
admin of org A and 2 other admins" or "11 of 20 org admins.”
Note that when you modify the Oracle Blockchain Platform's default Admins policy,
which was created as an ImplicitMeta policy, you'll use the Signature policy. Any
new policies you create will be Signature policies.

• ImplicitMeta — This policy type is only valid in the context of configuration. It
aggregates the result of evaluating policies deeper in the configuration hierarchy,
which are defined by Signature policies. It supports default rules, for example “A
majority of the organization admin policies.”
Oracle Blockchain Platform uses the ImplicitMeta policy type to create the Admins
policy. When you modify the Admins policy, you'll use the Signature policy. You
can't create or modify any policies using the ImplicitMeta policy. Oracle Blockchain
Platform only supports modifying or creating policies using the Signature policy
type.

When Are Policies Created?

When you add a channel to the network, Oracle Blockchain Platform created new
default policies. The default policies are: Admins (ImplicitMeta policy), Creator, Writers,
and Readers (Signature policies). If needed, you can modify these policies or create
new policies.

Note the following important issues about channel policies:

• You can use the console to create a channel and set your organization's ACL to
ReaderOnly. After you save the new channel, you can't update this ACL setting
from the channel's Edit Organization option.

However, you can use the console's Manage Channel Policies functionality to add
your organization to the Writers policy, which overwrites the channel's ReaderOnly
ACL setting.

• When you use the Hyperledger Fabric SDKs to create a channel, Fabric uses
the ImplicitMeta policies as the default channel policies for Readers and Writers.
When the channel uses these policies, the Oracle Blockchain Platform console
can't guarantee that the administrative operations (for example, edit organization)
will be successfully processed.

To correct this issue, update the readers and writers policies to Signature
policies, and define the policy rules as needed. See https://hyperledger-
fabric.readthedocs.io/en/release-1.3/access_control.html

• When you use the Hyperledger Fabric SDKs or CLI to create a channel, the
Creator policy isn't included in the configtx.yaml file. The Creator policy is required
by Oracle Blockchain Platform to allow the channel creator to edit a channel's
configuration. You must manually edit the configtx.yaml file and add the Creator
policy.

Chapter 3
Manage Channels

3-20

https://hyperledger-fabric.readthedocs.io/en/release-1.3/access_control.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/access_control.html

Add or Modify a Channel's Policies
(19.1.3 and later versions only) You can add or modify a channel's policy to specify
which members are required to perform a specific action on the channel. After you
define policies, you assign them to the channel's ACLs.

Before you add or update policies, you need to understand how Oracle Blockchain
Platform creates default channel policies. See What Are Channel Policies?

You must be an administrator to perform this task.

1. Go to the console and select the Channels tab.
The Channels tab is displayed and the channel table contains a list of all of the
channels on your network.

2. In the channels table, click the channel name that you want to add policies to or
modify policies for.
The Channel Information page is displayed.

3. In the Channel Information page, click the Channel Policies pane.

4. Do one of the following:

• To add a new policy, click the Create a New Policy button. The Create
Policy dialog is displayed. Enter a name in the Policy Name field and select
Signature in the Policy Type field. Expand the Signature Policy section.

• To modify an existing policy, click a policy's name. The Update Policy dialog
is displayed.

5. Click the Add Identity button to add an organization. Or modify an existing
signature policy as needed. Note the following information:

Field Description

MSP ID From the dropdown menu, select the
organization that must sign the policy.

Role Select the corresponding peer role required
by the policy. Usually this will be member.
You can find a peer’s role by viewing its
configuration information.

Policy Expression Mode In most cases, you’ll use Basic. Select
Advanced to write an expression string
using AND, OR, and NOutOf. See the
Hyperledger Fabric documentation for
information about how to write a valid policy
expression string.

Signed By Select how many members must sign the
policy to fulfill the request.

6. If you're adding a new policy, then click Create. If you're modifying a policy, then
click Update.

Delete a Channel's Policies
(19.1.3 and later versions only) You can delete a policy from a channel.

You can't delete a channel policy if it is assigned to an ACL. Before you try to delete a
channel policy, confirm that the policy isn't assigned.

Chapter 3
Manage Channels

3-21

You must be an administrator to perform this task.

1. Go to the console and select the Channels tab.
The Channels tab is displayed and the channel table contains a list of all of the
channels on your network.

2. In the channels table, click the channel that you want to delete a policy from.
The Channel Information page is displayed.

3. In the Channel Information page, click the Channel Policies pane.

4. Locate the policy that you want to delete and click its More Options button.

5. Click Remove and confirm the deletion.

What Are Channel ACLs?
(19.1.3 and later versions only) Access control lists (ACLs) use policies to manage
which organizations and roles can access a channel's resources.

Users interact with the blockchain network by targeting components such as the query
system chaincode (qscc), lifecycle system chaincode (lscc), configuration system
chaincode (cscc), peer, and event. These components are associated with specific
resources (for example, GetConfigBlock or GetChaincodeData) that you can assign
policies to at the channel level. These policies are a part of the channel's configuration.

A policy defines which organizations and roles can request a resource. When a
request is made, the policy tells the system to check the requester's identity and
determine if it's authorized to make the request. When you create a channel, Oracle
Blockchain Platform includes the default Hyperledger Fabric ACLs with the channel.
Oracle Blockchain Platform also creates four default policies (Admin, Creator, Writers,
and Readers) for the channel. You can modify these policies or create new policies as
needed. See What Are Channel Policies?

Update Channel ACLs
(19.1.3 and later versions only) You can update the channel's ACLs by assigning
policies to the channel's resources. A policy defines which organizations and roles can
request a resource

Before you update a channel's ACLs, you should understand what policies and ACLs
are. See What Are Channel Policies? and What Are Channel ACLs?

1. Go to the console and select the Channels tab.
The Channels tab is displayed and the channel table contains a list of all of the
channels on your network.

2. In the channels table, click the name of the channel that you want to update ACLs
for.
The Channel Information page is displayed.

3. In the Channel Information page, click the ACLs pane.

4. In the Resources table, locate the resource that you want to update. Click the
resource's Expand button and select the policy that you want to assign to the
resource.

5. Modify the other resource's policies as needed.

6. Click Update ACLs.

Chapter 3
Manage Channels

3-22

Add or Remove Orderers To or From a Channel
The orderer admin organization can add or remove orderers from a channel.

To add orderers to a channel:

1. In the founder console, open the Channels tab and select the channel to see its
details view.

2. Open the Orderers subtab. All orderer nodes currently joined to the channel are
listed.

3. Click Join Channel. Select an OSN not yet in this channel and click Join.

To remove orderers from a channel:

1. In the founder console, open the Channels tab and select the channel to see its
details view.

2. Open the Orderers subtab. All orderer nodes currently joined to the channel are
listed.

3. Select the orderer you want to remove from the channel and from its More Actions
menu select Remove.

Set the Orderer Administrator Organization
You can assign the administration of OSNs in a channel to any organization. Normally
either the founder or the channel creator would be assigned.

1. In the founder console, open the Channels tab.

2. Select the channel for which you want to set the orderer administrator
organization, and from the Action menu select Manage OSNs Admin.

3. Select from the list of available organizations, and click Submit.

Edit Ordering Service Settings for a Channel
You can update the ordering service settings for a particular channel.

Note the following important information about editing the ordering service settings for
a channel:

• Separately you can update the ordering service settings for the entire network as
described in Edit Ordering Service Settings for the Network.

• If you change the ordering service settings and there are applications running
against the network, then those applications must be manually updated to use the
revised ordering service settings.

• It isn’t common, but in some situations, you might expose a different ordering
service to some of the network participants. In this case, you’ll export the updated
network config block and the required participants will import the revised settings.
See Join the Participant or Scaled-Out OSNs to the Founder's Ordering Service.

You must be an administrator to perform this task.

1. Go to the founder’s console and select the Channels tab.

Chapter 3
Manage Channels

3-23

2. Locate the channel, click the More Actions menu, and select Update Ordering
Service Settings.

The Ordering Service Settings dialog is displayed.

3. Update the settings as needed.

Field Description

Batch Timout (ms) Specify the amount of time in milliseconds
that the system should wait before creating
a batch. Enter a number between 1 and
3600000.

Max Message Count Specify the maximum number of message to
include in a batch. Enter a number between
1 and 4294967295.

Absolute Message Bytes Specify the maximum number of bytes
allowed for the serialized messages in a
batch.
This number must be larger than the value
you enter in the Preferred Message Bytes
field.

Preferred Message Bytes Specify the preferred number of bytes
allowed for the serialized messages in a
batch. A message larger than this size
results in a larger batch, but the batch size
will be equal to or less than the number of
bytes you specified in the Absolute Message
Bytes field.
Oracle recommends that you set this value
to 1 MB or less.

The value that you enter in this field must
be smaller than the value you enter in the
Absolute Message Bytes field.

Snapshot Interval Size Defines number of MB per which a snapshot
is taken.

4. Click Update.

The updated settings are saved.

Manage Certificates
This topic contains information about how to manage your network’s certificates.

Topics:

• Typical Workflows to Manage Certificates

• Export Certificates

• Import Certificates to Add Organizations to the Network

• What's a Certificate Revocation List?

• View and Manage Certificates

• Revoke Certificates

• Apply the CRL

Chapter 3
Manage Certificates

3-24

Typical Workflows to Manage Certificates
Here are the common tasks for managing your network’s certificates.

Adding Organizations to the Network

You must be an administrator to perform these tasks.

Task Description More Information

Export or prepare an
organization's certificates

The organization that wants to
join the network either outputs
or writes its certificates file
and gives it to the founder.

Export Certificates

Create a Fabric Organization's
Certificates File

Create an Organization's
Third-Party Certificates File

Import member certificates The founder imports the
organization's certificates file
to add the organization to the
network.

Import Certificates to Add
Organizations to the Network

View certificates The founder can view
and manage the network’s
certificates.

View and Manage Certificates

Revoking Certificates

You must be an administrator to perform these tasks.

Task Description More Information

Decide which certificates to
revoke

View the certificates on your
system to determine which
ones to revoke to keep the
network secure.

View and Manage Certificates

Select the certificates to
revoke

Revoke the certificates in your
CA.

Revoke Certificates

Apply CRL Generates and applies an
updated CRL to ensure
that clients with revoked
certificates can’t access
channels.

Apply the CRL

Export Certificates
Founders and participant organizations must import and export certificate JSON files
to create the network.

Note the following information:

• For the founder to add a participant organization to the blockchain network, the
participant must export its certificates file and make it available to the founder. The
founder then uploads the certificates file to add the participant organization to the
network.

• The certificate export file contains admincerts, cacerts, and tlscacerts.

Chapter 3
Manage Certificates

3-25

• You might need to export certificates for blockchain or application developers. For
example, a client application needs the TLS certificate to interact with peers or
orderers.

For information about writing certificate files required to add Hyperledger Fabric or
Third-Party organizations to the network, see Extend the Network.

1. Go to the console and select the Network tab.

2. In the Network tab, go to the Organizations table, locate the member that you want
to export certificates for, and click its More Actions button.

3. Click Export Certificates.

Note that files exported by the console and REST APIs are only compatible for
import with the same component. That is you can't successfully use the REST API
to import an export file created with the console. Likewise, you can't successfully
use the console to import an export file created with the REST API.

4. Specify where to save the file. Click OK to save the certificates file.

5. Send the certificates JSON file to the founder for import. See Import Certificates to
Add Organizations to the Network.

Import Certificates to Add Organizations to the Network
To add an organization to the network, the founder must import a certificates file that
was exported or prepared by the organization that wants to join the network.

You can import certificates for the following organization types.

Type Description

Oracle Blockchain Platform Participant Organization You can import a participant organization into a Oracle
Blockchain Platform network. You upload the certificates
that the participant organization exported from the
console and sent to you.
For information about creating certificates for upload and
a list of the other steps that you need to perform to
successfully set up a participant organization on the
network, see Join the Participant or Scaled-Out OSNs
to the Founder's Ordering Service.

Hyperledger Fabric Organization You can import a Hyperledger Fabric organization into
an Oracle Blockchain Platform network. To successfully
upload a Fabric organization’s certificates file, you must
modify the certificates file to replace all instances of \n
with the newline character.
See Typical Workflow to Join a Fabric Organization to an
Oracle Blockchain Platform Network.

Third-Party Certificate Organization You can import an organization that is using certificates
generated from a third-party CA server. To successfully
upload a third-party organization’s certificates file, you
must modify the certificates file to replace all instances
of \n with the newline character.
See Typical Workflow to Join an Organization with
Third-Party Certificates to an Oracle Blockchain Platform
Network.

You must be an administrator to import certificates.

Chapter 3
Manage Certificates

3-26

1. Go to the console and select the Network tab.

2. In the Network tab, click Add Organizations. The Add Organizations page is
displayed.

Note that files exported by the console and REST APIs are only compatible for
import with the same component. That is you can't successfully use the REST API
to import an export file created with the console. Likewise, you can't successfully
use the console to import an export file created with the REST API.

3. Click Upload Organization Certificates. The File Upload dialog is displayed.

4. Browse for and select the JSON file containing the certificate information for
the organization you want to add to the network. Usually this file is named
certs.json. Click Open.

5. (Optional) Click the plus (+) icon to locate and upload another organization’s
certificate information.

6. Click Add. The organizations that you added are displayed in the Organization
table.

Note the following information for Oracle Blockchain Platform participant,
Hyperledger Fabric, and third-party certificate organizations. Even though the
founder uploaded the certificate information, the added organization can’t use
the ordering service to communicate on the network until it imports the founder’s
ordering service settings. The founder must export its ordering service settings
and give the resulting file to the joining organizations for import. See one of the
following:

• For Oracle Blockchain Platform participants, see Join the Participant or
Scaled-Out OSNs to the Founder's Ordering Service.

• For Hyperledger Fabric organizations, see Prepare the Fabric Environment to
Use the Oracle Blockchain Platform Network.

• For third-party certificate organizations, see Prepare the Third-Party
Environment to Use the Oracle Blockchain Platform Network.

What's a Certificate Revocation List?
You use a certificate revocation list (CRL) to help manage the certificates throughout
your network.

A CRL is a list of digital certificates that the issuing Certificate Authority (CA) has
revoked before their scheduled expiration date and should no longer be trusted and
used on the network. For example, you should revoke any certificates that have been
lost, stolen, or compromised.

After you use the Manage Certificates functionality to revoke certificates for users,
Oracle Blockchain Platform creates the CRL. To ensure that the certificates are
revoked throughout the network, you’ll need to:

• Use the Apply CRL functionality after you join peers to a channel created by
another network member. Apply CRL prevents clients with revoked certificates
from accessing the channel. See Apply the CRL.

Chapter 3
Manage Certificates

3-27

View and Manage Certificates
Use the console to view and manage the user certificates in your instance and any of
the certificates you imported when building the network.

1. Go to the console and select the Network tab.

2. In the Network tab, locate your organization’s ID and click its More Actions
button. Select Manage Client Certificates.

Note that the Certificate Summary table will be empty until you add users to your
instance. Also, the administrator’s certificate doesn’t display in this table. This is to
prevent you from accidentally revoking the administrator’s certificate.

Organizations with third-party certificates or Hyperledger Fabric organization with
revoked certificates won't display in this table. In such cases, you must use the
native Hyperledger Fabric CLI or SDK to import the organization's certificate
revocation list (CRL) file.

The Certificates Summary dialog is displayed and shows a list of the certificates in
your instance.

3. As needed, perform any of the following tasks:

• Revoke certificates. See Revoke Certificates.

• If you’ve revoked certificates and are working in a network with multiple
members, then use Apply CRL after you join peers to a channel created by
another network member. Apply CRL prevents clients with revoked certificates
from accessing the channel. See Apply the CRL.

Revoke Certificates
An organization can revoke certificates for any of its users. To ensure that the
network remains secure, you should revoke certificates in case they’re lost, stolen,
or compromised.

You must be an administrator to perform this task.

1. Go to the console and select the Network tab.

2. In the Network tab, locate your organization’s ID and click its More Actions
button. Select Manage Client Certificates.

The Certificates Summary dialog is displayed.

3. In the Certificates Summary dialog, locate and select the IDs of the users that you
want to revoke certificates for.

4. Click Revoke and confirm that you want to permanently revoke certificates for the
selected users.

The users with revoked certificate display in the table and are added to the CRL.

5. If you’re working in a network with other members, then to ensure that their
revoked certificates are cleaned up across the network, you must do the following:

• If you’re working in a network with multiple members, then apply the CRL after
you join peers to a channel created by another network member. Apply CRL
prevents clients with revoked certificates from accessing the channel. See
Apply the CRL.

Chapter 3
Manage Certificates

3-28

Apply the CRL
If you're working in a network, then you must apply the CRL after you join peers to
a channel created by another network member. Apply CRL prevents members with
revoked certificates from accessing the channel.

You must do the following tasks before applying the CRL:

• Revoke certificates. See Revoke Certificates

You must be an administrator to perform this task.

1. Go to the console and select the Network tab.

2. In the Network tab, locate your organization’s ID and click its More Actions
button. Select Manage Client Certificates.

The Certificates Summary dialog is displayed.

3. Click the Apply CRL button and confirm that you want to apply the CRL.

Manage Ordering Service
This topic contains information about how founders and participants manage the
ordering service.

Topics:

• What is the Ordering Service?

• Join the Participant or Scaled-Out OSNs to the Founder's Ordering Service

• Edit Ordering Service Settings for the Network

• View Ordering Service Settings

Additionally, several channel-specific tasks for the orderer nodes can be performed on
the Channels page of the console. See:

• Add or Remove Orderers To or From a Channel

• Set the Orderer Administrator Organization

• Edit Ordering Service Settings for a Channel

What is the Ordering Service?
In Oracle Blockchain Platform v20.3.1 and later, we support Raft as our consensus
type.

For more information on the Raft protocol, see: The Ordering Service - Raft.

With the older Kafka consensus type, the whole network can have at most two orderer
nodes, and they have to join all channels. In some cases, they may be overloaded,
and cannot be scaled out. With the Raft consensus type, the network can have an
arbitrary number of orderer nodes, and each channel can define its own orderer node
set. Different channels can use different orderer nodes, and orderer nodes will no
longer be the bottleneck.

However, the Raft consensus type can be complicated to configure properly. There
are rules about what can or can't be done, and if these rules are not followed the

Chapter 3
Manage Ordering Service

3-29

https://hyperledger-fabric.readthedocs.io/en/release-1.4/orderer/ordering_service.html#raft

channel and even the network may not work. The following guidelines should reduce
the problems you encounter:

Keep the Majority of the Ordering Service Nodes (OSN) Alive

The Raft consensus algorithm requires that the majority of ordering service nodes
(OSNs) are working; otherwise no consensus can be made. Majority means greater
than 50%. For example, for five OSNs, there must be at least three OSNs working; for
six OSNs, there must be at least four OSNs working.

• If there are 50% or less OSNs working in the network, network management will
no longer be functional. No new channels can be created, no new orderer nodes
can be added into network, no orderer can be removed from network, and so on.

• If there are 50% or less OSNs working in the application channel, no transaction
can be submitted to this application channel. Queries may still function correctly,
however administrative operations such as adding a new organization, changing
the access control list, or instantiating chaincodes will fail.

Be cautious when adding a new OSN to the network or an application channel. Ensure
the owner is trustworthy and the OSN is robust.

When removing OSNs or an organization, ensure that more than 50% of the OSNs
will remain working. For example, if you had 2 organizations with 3 OSNs each, if
you removed one organization, during the removal it would be interpreted as only
50% of the OSNs being functional. Add an OSN to the remaining organization before
deleting the extraneous organization to ensure that you always exceed 50% of the
OSNs working.

Do Not Add or Remove Orderers Frequently

Every time a new OSN is added into a network or channel, or an existing OSN is
removed from a channel, the current Raft OSN cluster will briefly become unstable.
During this period, no transactions can be handled, and an error message similar to
the following may indicate such a status:

UNKNOWN: Stream removed
SERVICE UNAVAILABLE
BAD REQUEST

This may last a few minutes. If you have removed the previous Raft leader OSN from
the channel, this may last as long as 20 minutes.

Ensure that you aren't adding or removing orderers frequently. If multiple orderers
must be added or removed, do one at a time ensuring that the network has returned to
operational status before making the next change.

Ensure the New Orderer is Started As Soon As Possible

When adding a new orderer into network, usually two organizations will be involved:
the founder and the owner of the new orderer. Both parties must follow the instructions
in Join the Participant or Scaled-Out OSNs to the Founder's Ordering Service all the
way to completion or the founder won't be able to manage the network.

Chapter 3
Manage Ordering Service

3-30

Join the Participant or Scaled-Out OSNs to the Founder's Ordering
Service

When you provision a participant instance, it is created with 3 orderers. There orderers
are inactive until they are joined to a network. When you scale out a founder, the new
orderers are also inactive until they are joined to a network.

If multiple orderers must be added or removed, do one at a time ensuring that
the network has returned to operational status before making the next change. See
What is the Ordering Service? for additional important details about adding, removing,
starting, and stopping Raft orderers.

Export the OSN Settings From the Participant or Scaled-Out Orderers

To join the participant or scaled-out orderers to a network, you need to export their
settings and import them into the founder.

1. In the participant console (or the founder console for scaled-out orderers), on the
Node tab find the orderer node (or the first orderer node if multiple nodes exist).
Select the Action menu for this node and select Export OSN Settings.

This will generate a JSON file with the settings and save the file. The file contains
the organization's certificate and the selected orderer service node (OSN) settings
signed by the private key of the administrator of the participant organization. This
file needs to be sent to the administrator of the founder instance.

Applications being run on channels using this OSN also require this exported TLS
certificate. See Before You Develop an Application.

2. In the founder console, open the Network tab. Click Add OSN. A window opens
prompting you for the location of the JSON file provided by the participant. Select
to upload the file and click Add.

The participant organization or newly scaled-out orderer will be added to the
orderer organization section of the system channel list.

Export the Founder's Configuration Settings

Once the participant or scaled-out orderers have been added to the founder, you
need to export the founder's settings and import them to the participant or scaled-out
orderer.

1. In the founder console, open the Network tab. Click Export Network Config
Block.

The network configuration block contains the latest system channel configuration
block. This can be saved and sent to the participant administrator.

2. In the participant console (or the founder console for scaled-out orderers), on the
Node tab find the orderer node (or the first orderer node if multiple nodes exist).
Select the Action menu for this node and select Import Network Config Block.

You'll be prompted for the file sent by the founder instance administrator.

3. In the participant console, refresh the Node tab. The orderer node status should
be listed as "down". From the Action menu select Start.

Each orderer node started will be added to the Raft cluster in the founder.

Chapter 3
Manage Ordering Service

3-31

Each time a new OSN is added by scaling out the orderer (as described in Scale Your
Instance) these steps need to be repeated to add the new OSN to the Raft cluster.

Note:

You can't add multiple OSNs into a network in a single batch. Ensure only 1
OSN is added at a time.

Edit Ordering Service Settings for the Network
You can update the ordering service settings for the founder instance.

Note the following important information about editing the ordering service settings:

• The updated settings are used when you create new channels and are not applied
to existing channels.

• Separately you can update the ordering service settings for an individual existing
channels as described in Edit Ordering Service Settings for a Channel.

• If you change the ordering service settings and there are applications running
against the network, then those applications must be manually updated to use the
revised ordering service settings.

• It isn’t common, but in some situations, you might expose a different ordering
service to some of the network participants. In this case, you’ll export the updated
network config block and the required participants will import the revised settings.
See Join the Participant or Scaled-Out OSNs to the Founder's Ordering Service.

You must be an administrator to perform this task.

1. Go to the founder’s console and select the Network tab.

2. Click the Ordering Service Settings button.

The Ordering Service Settings dialog is displayed.

3. Update the settings as needed.

Field Description

Batch Timout (ms) Specify the amount of time in milliseconds
that the system should wait before creating
a batch. Enter a number between 1 and
3600000.

Max Message Count Specify the maximum number of message to
include in a batch. Enter a number between
1 and 4294967295.

Absolute Message Bytes Specify the maximum number of bytes
allowed for the serialized messages in a
batch.
This number must be larger than the value
you enter in the Preferred Message Bytes
field.

Chapter 3
Manage Ordering Service

3-32

Field Description

Preferred Message Bytes Specify the preferred number of bytes
allowed for the serialized messages in a
batch. A message larger than this size
results in a larger batch, but the batch size
will be equal to or less than the number of
bytes you specified in the Absolute Message
Bytes field.
Oracle recommends that you set this value
to 1 MB or less.

The value that you enter in this field must
be smaller than the value you enter in the
Absolute Message Bytes field.

Snapshot Interval Size Defines number of MB per which a snapshot
is taken.

4. Click Update.

The updated settings are saved.

View Ordering Service Settings
You can view the founder's ordering service settings that were imported into a
participant’s Oracle Blockchain Platform instance.

If the founder changes the ordering service settings the new settings must be ported
to the participant as described in Join the Participant or Scaled-Out OSNs to the
Founder's Ordering Service. If there are applications running against the network,
then those applications must be manually updated to use the revised ordering service
settings.

1. Go to the participant’s console and select the Network tab.

2. Click Ordering Service Settings and click View.

The Ordering Settings dialog is displayed.

Chapter 3
Manage Ordering Service

3-33

4
Understand and Manage Nodes by Type

This topic contains information to help you understand the different node types and
where you can get more information about how the nodes are performing in the
network.

Topics:

• Manage CA Nodes

• Manage the Console Node

• Manage Orderer Nodes

• Manage Peer Nodes

Manage CA Nodes
This topic contains information about certificate authority (CA) nodes.

Topics

• View and Edit the CA Node Configuration

• View Health Information for a CA Node

View and Edit the CA Node Configuration
A certificate authority (CA) node’s configuration determines how the node performs
and behaves on the network.

Only administrators can change a node’s configuration. If you've got user permissions,
then you can view a node’s configuration settings. See CA Node Attributes.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, go to the Nodes table, locate the CA node that you want
configuration information for, and click the node’s More Actions button.

3. The configuration option is determined by your permissions. If you're an
administrator, locate and click Edit Configuration. If you're a user, locate and
click View.

The Configure dialog is displayed.

4. If you're an administrator, then modify the node’s settings as needed.

5. Click Submit to save the configuration changes, or click X to close the Configure
dialog.

6. Restart the node to apply any changes that you made.

4-1

View Health Information for a CA Node
You can check a certificate authority (CA) node’s metrics to see how the node
is performing on the blockchain network. This information helps you discover and
diagnose performance problems.

The Health pane displays the node’s performance metrics: CPU utilization and
memory utilization.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, click the name of the CA node you want to see health
information for.

The Node Information page is displayed.

3. Click the Health pane to view the node’s performance metrics.

If the utilization percentages are consistently high, then contact Oracle Support.

Manage the Console Node
This topic contains information about the console node.

Topics:

• View and Edit the Console Node Configuration

• View Health Information for the Console Node

View and Edit the Console Node Configuration
The console node’s configuration determines how it performs and behaves on the
network.

Only administrators can change a node’s configuration. If you've got user permissions,
then you can view a node’s configuration settings. See Console Node Attributes.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, go to the Nodes table, locate the console node and click its
More Actions button.

3. The configuration option is determined by your permissions. If you're an
administrator, locate and click Edit Configuration. If you're a user, locate and
click View.

The Configure dialog is displayed.

4. If you're an administrator, then modify the node’s settings as needed.

5. Click Submit to save the configuration changes, or click X to close the Configure
dialog.

6. Restart the node to apply any changes that you made.

Chapter 4
Manage the Console Node

4-2

View Health Information for the Console Node
You can check the console node’s metrics to see how it's performing on the blockchain
network. This information helps you discover and diagnose performance problems.

The Health Overview pane displays these performance metrics: CPU utilization and
memory utilization.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, click the console node.

The Node Information page is displayed.

3. Click the Health Overview pane to view the node’s performance metrics.

Note the following information:

• If the CPU Utilization percentage is too high, then it might be because too
many users are trying to access the console at the same time, or that the
console is having technical issues.

• If the utilization percentages are consistently high, then contact Oracle
Support

Manage Orderer Nodes
This topic contains information about orderer nodes.

Topics

• View and Edit the Orderer Node Configuration

• View Health Information for an Orderer Node

• Add an Orderer Node

View and Edit the Orderer Node Configuration
An orderer node’s configuration determines how the node performs and behaves on
the network.

Only administrators can change a node’s configuration. If you've got user permissions,
then you can view a node’s configuration settings. See Orderer Node Attributes.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, go to the Nodes table, locate the orderer node that you want
configuration information for, and click the node’s More Actions button.

3. The configuration option is determined by your permissions. If you're an
administrator, locate and click Edit Configuration. If you're a user, locate and
click View.

The Configure dialog is displayed.

4. If you're an administrator, then modify the node’s settings as needed.

5. Click Submit to save the configuration changes, or click X to close the Configure
dialog.

Chapter 4
Manage Orderer Nodes

4-3

6. Restart the node to apply any changes that you made.

View Health Information for an Orderer Node
You can check an orderer node’s metrics to see how the node is performing on the
blockchain network. This information helps you discover and diagnose performance
problems.

The Health Overview pane displays these performance metrics: CPU utilization and
memory utilization.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, click the name of the orderer node you want to see health
information for.

The Node Information page is displayed.

3. Click the Health pane to view the node’s performance metrics.

If the utilization percentages are consistently high, then contact Oracle Support. If
the Disk Utilization percentage is too high, then the ledger might not get stored on
the node properly.

Add an Orderer Node
Founder instances are provisioned with 3 OSNs, all of which are active after instance
creation. Additional OSNs can be scaled out as described in Scale Your Instance.
These OSNs will not be started automatically. You must start them and export the
updated network configuration block to the partipant instances as described in Join the
Participant or Scaled-Out OSNs to the Founder's Ordering Service.

Participant instances are created with 3 OSNs, but none of these OSNs are joined
to the network or started when the instance is provisioned. You must follow the
instructions in Join the Participant or Scaled-Out OSNs to the Founder's Ordering
Service in order to join them to the network and start the nodes. If you want to scale
out the participant OSNs these steps must be repeated.

Manage Peer Nodes
This topic contains information about peer nodes.

Topics

• View and Edit the Peer Node Configuration

• List Chaincodes Installed on a Peer Node

• View Health Information for a Peer Node

• Export and Import Peer Nodes

Chapter 4
Manage Peer Nodes

4-4

View and Edit the Peer Node Configuration
A peer node’s configuration determines how the node performs and behaves on the
network.

Only administrators can change a node’s configuration. If you've got user permissions,
then you can view a node’s configuration settings. See Peer Node Attributes.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, go to the Nodes table, locate the peer node that you want
configuration information for, and click the node’s More Actions button.

3. The configuration option is determined by your permissions. If you're an
administrator, locate and click Edit Configuration. If you're a user, locate and
click View.

The Configure dialog is displayed.

4. If you're an administrator, then modify the node’s settings as needed.

5. Click Submit to save the configuration changes, or click X to close the Configure
dialog.

6. Restart the node to apply any changes that you made.

List Chaincodes Installed on a Peer Node
You can view a list of the chaincodes and their versions installed on a specific peer
node in your network.

If you don’t see the chaincode or the chaincode version you were expecting, then you
can install a chaincode or upgrade a chaincode to the peer node. You must be an
administrator to install or upgrade a chaincode.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, click the name of the peer node you want to see information for.

The Node Information page is displayed.

3. Click the Chaincodes pane to view a list of chaincodes installed on the selected
peer node.

View Health Information for a Peer Node
You can check a peer node’s metrics to see how the node is performing on the
blockchain network. This information helps you discover and diagnose performance
problems.

The Health Overview pane displays these performance metrics: CPU utilization,
memory utilization, user transactions endorsed, and user transactions committed.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, click the name of the peer node you want to see health
information for.

The Node Information page is displayed.

3. Click the Health Overview pane to view the node’s performance metrics.

Chapter 4
Manage Peer Nodes

4-5

Note the following information:

• If the CPU Utilization and Memory Utilization percentages are too high, then
it might be because the peer is overloaded with endorsement requests.
Consider adding another peer or changing the endorsement policy.

• If the Disk Utilization percentage is too high, then the ledger might not get
stored on the node properly.

• The User Transactions Endorsed and User Transaction Committed metrics
are collected and refreshed every ten minutes. The counts you see are
cumulative.

• If the utilization percentages are consistently high, then contact Oracle
Support.

Export and Import Peer Nodes
If you want to run the blockchain transactions through the REST proxy, then after
you’ve added a participant to the network, you must export its peer nodes and import
them into the founder.

You need to do this export and import step because the REST proxy’s end point
configuration needs to know about the peers from both members. After you’ve
completed this step then you’ll have to update the founder and participants’ REST
proxy nodes to add the peers so that the requests can be routed as required by the
endorsement policy.

See Typical Workflow to Join a Participant Organization to an Oracle Blockchain
Platform Network.

1. Go to the participant’s console and select the Nodes tab.

2. Click Export/Import Peers and select Export.

The Export Nodes dialog is displayed.

3. In the Peer List field, select the peer nodes that you want to export. Click Export.

Note that files exported by the console and REST APIs are only compatible for
import with the same component. That is you can't successfully use the REST API
to import an export file created with the console. Likewise, you can't successfully
use the console to import an export file created with the REST API.

4. To import, go to the founder’s Oracle Blockchain Platform console and select the
Nodes tab.

5. Click Export/Import Peers and select Import.

The Import Remote Nodes dialog is displayed.

6. Click Upload remote nodes configurations and browse for and select the
JSON file containing the node configuration information. Usually this file is named
<instance name>-exported-nodes.json.

Note that files exported by the console and REST APIs are only compatible for
import with the same component. That is you can't successfully use the REST API
to import an export file created with the console. Likewise, you can't successfully
use the console to import an export file created with the REST API.

7. Click the plus icon to upload another node configuration file for import.

8. Click Import.

Chapter 4
Manage Peer Nodes

4-6

9. To confirm that the nodes were added successfully, you can:

• Go to the founder’s Nodes tab and in the nodes table locate the names of the
imported peer nodes. Note that the imported nodes type is Remote Peer. You
can’t view or edit a remote peer’s configuration information.

• Go to the founder’s Network tab and click Topology View and locate the
names of the imported peer nodes.

Manage REST Proxy Nodes
This topic contains information to help you understand, set up, and manage the REST
proxy nodes.

Topics

• How's the REST Proxy Used?

• Add Enrollments to the REST Proxy

• View and Edit the REST Proxy Node Configuration

• View Health Information for a REST Proxy Node

How's the REST Proxy Used?
The REST proxy maps an application identity to a blockchain member, which allows
users and applications to call the Oracle Blockchain Platform REST APIs.

Instead of using the native Hyperledger Fabric APIs, Oracle Blockchain Platform can
use the REST proxy to interact with the Hyperledger Fabric network. When you use
the native Hyperledger Fabric APIs, you connect to the peers and orderer directly.
However, the REST proxy allows you to query or invoke a Fabric chaincode through
the RESTful protocol.

Add Enrollments to the REST Proxy
Enrollments allow users to call the REST proxy without an enrollment certificate.
Enrollements require a new user group to be defined on your authentication server.

Adding Enrollments When Using Microsoft Active Directory as Your
Authentication Server

Adding an enrollment to the REST Proxy requires a new user group to be added
to Active Directory: <Rest Proxy Client Users group name>_<custom enrolment
name>. You can then use the Blockchain Platform console to map the enrollment to this
group.

1. Create a new Active Directory group called <Rest Proxy Client Users group
name>_<custom enrolment name>.

2. Add any users needing to use the custom enrollment to this group.

3. Go to the Blockchain Platform console and select the Nodes tab.

4. In the Nodes tab, find the REST proxy node you want to add an enrollment to and
open the More Actions menu.

5. Click View or create enrollments to see a list of the node’s current enrollments.

Chapter 4
Manage REST Proxy Nodes

4-7

6. Click Create New Enrollment.

7. In the User Name field, enter <custom enrolment name> from the first step. Note
that this is case-sensitive and must match the user group you created. Click
Enroll.

• The enrollment is created and displays in the Enrollments table.

• The new enrollment is copied to each REST proxy node in the network.

Adding Enrollments When Using OpenLDAP or Oracle Internet Directory as Your
Authentication Server

Adding an enrollment to the REST Proxy creates a new user role in the
OBP_<platform-name>_<instance-name>_REST_<custom-enrollment> group on your
LDAP server.
After the enrollment is created in the console, the Administrator uses the LDAP server
to assign the required users to this role.

For information about how users access the REST resources, see REST API for
Oracle Blockchain Platform.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, find the REST proxy node you want to add an enrollment to and
open the More Actions menu.

3. Click View or create enrollments to see a list of the node’s current enrollments.

4. Click Create New Enrollment.

The Create New Enrollment dialog is displayed.

5. In the User Name field, enter a name for the enrollment. Click Enroll.

After you click Enroll:

• The enrollment is created and displays in the Enrollments table.

• The new enrollment is copied to each REST proxy node in the network.

• A new user role in the OBP_<platform-name>_<instance-
name>_REST_<custom-enrollment> group on your LDAP server.

View and Edit the REST Proxy Node Configuration
A REST proxy node’s configuration determines how the node performs and behaves
on the network.

Only administrators can change a node’s configuration. If you've got user permissions,
then you can view a node’s configuration settings. See REST Proxy Node Attributes.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, go to the Nodes table, locate the REST proxy node that you
want configuration information for, and click the node’s More Actions button.

3. The configuration option is determined by your permissions. If you're an
administrator, locate and click Edit Configuration. If you're a user, locate and
click View.

The Configure dialog is displayed.

Chapter 4
Manage REST Proxy Nodes

4-8

4. If you're an administrator, then modify the node’s Proposal Wait Time (ms) and
Transaction Wait Time (ms) attributes as needed.

5. Click Submit to save the configuration changes, or click X to close the Configure
dialog.

View Health Information for a REST Proxy Node
You can check a REST proxy node’s metrics to see how the node is performing on the
blockchain network. This information helps you discover and diagnose performance
problems.

The Health pane displays these performance metrics: CPU utilization and memory
utilization.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, click the REST proxy node you want to see health information
for.

The Node Information page is displayed.

3. Click the Health pane to view the node’s performance metrics.

If the utilization percentages are consistently high, then contact Oracle Support.

Chapter 4
Manage REST Proxy Nodes

4-9

5
Extend the Network

This topic contains information to help founders add organizations to the blockchain
network. This topic also contains information to help organizations join a network.

Topics

• Add Oracle Blockchain Platform Participant Organizations to the Network

• Add Fabric Organizations to the Network

• Add Organizations with Third-Party Certificates to the Network

Add Oracle Blockchain Platform Participant Organizations to
the Network

This topic contains information about joining an Oracle Blockchain Platform participant
organization to an Oracle Blockchain Platform network.

Topics:

• Typical Workflow to Join a Participant Organization to an Oracle Blockchain
Platform Network

Typical Workflow to Join a Participant Organization to an Oracle
Blockchain Platform Network

Here are the tasks the founder and participants organizations need to perform to set
up a blockchain network.

Adding Participant Organizations to a Blockchain Network

Task Who Does This? Description More Information

Export the participant
organization's certificates
and import them into the
network

Participant organization
outputs certificates

Founder organization
uploads certificates

In the participant
organization's instance,
use the wizard to output
the certificates into a JSON
file and send them to the
founder organization.

The founder uploads the
certificates to add the
participant to the network.

Import Certificates to
Add Organizations to the
Network

5-1

Task Who Does This? Description More Information

Export the participant
organization's ordering
service node (OSN)
settings and send to the
founder administrator

Participant organization
outputs a settings file

Founder organization
uploads the settings

In the participant
organization's instance,
export the settings into a
JSON file and sends them
to the founder organization.

The founder uploads the
settings to add the ordering
service.

Join the Participant or
Scaled-Out OSNs to the
Founder's Ordering Service

Export the founder
organization's network
configuration block and
upload it to the participant
organization

Founder organization
exports network
configuration block
information

Participant organization
uploads network
configuration block
information

In the founder’s
instance, download the
network configuration block
information (JSON file).

Then in the participant’s
instance, upload the
network configuration
block.

Join the Participant or
Scaled-Out OSNs to the
Founder's Ordering Service

Export and import the
participant organization's
peer nodes

Participant organization
exports peers

Founder organization
imports peers

In the participant’s
instance, export the peers
that you want to use on the
network.

Then in the founder’s
instance, import the peer
nodes.

Export and Import Peer
Nodes

Join Participant Organizations to the Channel and Set Anchor Peers

Task Who Does This? Description More Information

Create a channel Founder organization In the founder’s instance,
create a channel that the
founder and participants
use to communicate. Add
the founder’s peers to the
channel.

You must select any newly
added participants and
assign them permissions
on the channel.

Note that instead of
creating a new channel,
you can add participants to
an existing channel.

Create a Channel

Join participants to the
channel

Participant organization In the participant’s
instance, join the channel
that was created in the
founder’s instance.

Join a Peer to a Channel

Set anchor peers on the
founder and participants

Founder organization

Participant organization

In the founder and
participant instances,
specify which peers you
want to use as anchor
peers. You must select at
least one anchor peer for
each member.

Add an Anchor Peer

Chapter 5
Add Oracle Blockchain Platform Participant Organizations to the Network

5-2

Deploy the Chaincode Across the Blockchain Network

Task Who Does This? Description More Information

Install the chaincode on the
founder

Founder organization In the founder’s instance,
upload and install the
chaincode. Choose the
peers to install the
chaincode on.

Use Quick Deployment

Instantiate the chaincode
and specify an
endorsement policy on the
founder

Founder organization In the founder’s instance,
instantiate the chaincode to
activate it on the network.

An endorsement policy is
required to specify the
number of members that
must approve chaincode
transactions before they’re
submitted to the ledger.

Instantiate a Chaincode
Specify an Endorsement
Policy

Install the chaincode on the
participant

Participant organization In the participant’s
instance, install the
chaincode that your
network will use.

Because you’ll install the
same chaincode that you
installed and instantiated
on the founder, you
don’t need to instantiate
the chaincode on the
participant. When the
participant installs the
chaincode, it’s already
instantiated.

Use Quick Deployment

Expose the Chaincode’s REST API and Run Transactions

Task Who Does This? Description More Information

Configure the founder’s
REST proxy node

Founder organization In the founder’s instance,
modify the REST proxy
node’s attributes to specify
the channel, chaincode,
and peers that the network
will use for transactions.

View and Edit the REST
Proxy Node Configuration

Configure the participant’s
REST proxy node

Participant organization In the participant’s
instance, modify the REST
proxy node’s attributes
to specify the channel,
chaincode, and peers that
the network will use for
transactions.

View and Edit the REST
Proxy Node Configuration

Chapter 5
Add Oracle Blockchain Platform Participant Organizations to the Network

5-3

Task Who Does This? Description More Information

Invoke the chaincode and
monitor network activity
and ledger updates

Founder organization

Participant organization

Begin using your network’s
chaincode for transactions.

Both the founder and
the participants can use
their consoles to find
out information about the
activity on the network.
Specifically, you can use
the console’s Channels tab
to locate information about
specific ledger transactions

Find Information About
Nodes
View a Channel’s Ledger
Activity

Join a Network
Participant organization are required to complete a wizard to join a blockchain
network. The wizard displays the first time the participant organization opens its
instance.

The wizard assists the participant organization with exporting the certificates to a
JSON file to give to the network founder. The wizard also helps the participant import
the founder’s ordering service settings. For more information about the steps the
founder and participant must complete to create a network, see Typical Workflow to
Join a Participant Organization to an Oracle Blockchain Platform Network.

The participant’s dashboard won’t display until the wizard has been completed. If
you're a network founder, then this wizard is never displayed.

1. Open the participant organization's console.

The wizard that you’ll use to join a network is displayed.

2. In the wizard, click Export Certificates and click the Export button.

The Export dialog is displayed and includes the name of the JSON file the export
will create.

3. Specify where to save the file. Click OK to save the certificates file.

4. Send the certificates JSON file to the network’s founder. The network founder will
import the participant’s certificates file into the network.

5. Get the ordering services settings JSON file from the network founder. You'll
import this file into your instance.

6. In the wizard, click Import Ordering Service Settings.

7. Click Upload Ordering Service Settings.

The File Upload dialog is displayed.

8. In the File Upload dialog, browse for and select the JSON file containing
the founder’s ordering service settings information. Usually this file is named
<founderinstancename>-orderer-settings.json. Click Open.

The Current Orderer Address field updates with the address that Oracle
Blockchain Platform extracted from the JSON file.

9. Click Submit.

Your console’s Dashboard tab is displayed.

Chapter 5
Add Oracle Blockchain Platform Participant Organizations to the Network

5-4

Add Fabric Organizations to the Network
This topic contains information about joining Hyperledger Fabric organizations to an
Oracle Blockchain Platform network.

Topics:

• Typical Workflow to Join a Fabric Organization to an Oracle Blockchain Platform
Network

• Create a Fabric Organization's Certificates File

• Prepare the Fabric Environment to Use the Oracle Blockchain Platform Network

Typical Workflow to Join a Fabric Organization to an Oracle
Blockchain Platform Network

Here are the tasks that a Fabric organization and the Oracle Blockchain Platform
founder organization need to perform to join a Fabric organization to the Oracle
Blockchain Platform network.

Task Who Does This? Description More Information

Create the certificate file for
the Fabric organization

Fabric organization Find the Fabric
organization’s Admin, CA,
and TLS certificate
information and use it
to compose a JSON
certificates file.

Create a Fabric
Organization's Certificates
File

Upload Fabric
organization's certificate
file to the Oracle
Blockchain Platform
network

Founder organization Use the console to upload
and import the Fabric
organization's certificate
file to add the Fabric
organization to the
network.

Import Certificates to
Add Organizations to the
Network

Create a channel Founder organization Create a new channel and
add the Fabric organization
to it.

Create a Channel

Export the ordering service
settings from founder

Founder organization Output the founder’s
ordering services settings
to a JSON file and send
the file to the Fabric
organization.

Join the Participant or
Scaled-Out OSNs to the
Founder's Ordering Service

Chapter 5
Add Fabric Organizations to the Network

5-5

Task Who Does This? Description More Information

Compose orderer
certificate file

Fabric organization Create a file named
orderer.pem that includes
the tlscacert information.
Go to the exported
ordering service settings
file and copy the tlscacert
information. After you paste
the tlscacert information
into the orderer.pem file,
you must replace all
instances of \n with the
newline character.

The orderer.pem file must
have the following format:

-----BEGIN
CERTIFICATE-----
...
...
...
-----END
CERTIFICATE-----

Create a Fabric
Organization's Certificates
File

Provide ordering service
settings

Founder organization Open the ordering service
settings file and find the
ordering service’s address
and port and give them to
the Fabric organization. For
example:

"orderingServiceNod
es": [
{
"address":
"grpcs://
example_address:777
7",
...
}]

NA

Add the Fabric organization
to the network

Fabric organization The Fabric organization
copies certificates into
its environment, sets
environment variables,
fetches the genesis block,
joins the channel, and
installs the chaincode.

Prepare the Fabric
Environment to Use the
Oracle Blockchain Platform
Network

Create a Fabric Organization's Certificates File
For a Fabric organization to join an Oracle Blockchain Platform network, it must write
a certificates file containing its admincerts, cacerts, and tlscacerts information. The

Chapter 5
Add Fabric Organizations to the Network

5-6

Oracle Blockchain Platform founder organization imports this file to add the Fabric
organization to the network.

The Fabric certificates information is stored in PEM files located in the
Fabric organization’s MSP folder. For example, network_name_example/crypto-
config/peerOrganizations/example_org.com/msp/.

The certificate file must be in written in JSON and contain the following fields:

• mspid — Specifies the name of the Fabric organization.

• type — Indicates that the organization is a network participant. This value must be
Participant.

• admincert — Contains the contents of the organization’s Admin certificates
file: Admin@example_org.com-cert.pem. When you copy the certificates
information into the JSON file, you must replace each new line with \n.

• cacert — Contains the contents of the organization’s CA certificates file:
ca.example_org-cert.pem. When you copy the certificates information into
the JSON file, you must replace each new line with \n.

• tlscert — Contains the contents of the organization’s TLS certificate file:
tlsca.example_org-cert.pem. When you copy the certificates information
into the JSON file, you must replace each new line with \n.

This is how the file needs to be structured:

{
 "mspID": "examplemspID",
 "type": "Participant",
 "certs": {
 "admincert": "-----BEGIN CERTIFICATE-----
\nexample_certificate\nexample_certificate==\n-----END CERTIFICATE-----
\n",
 "cacert": "-----BEGIN CERTIFICATE-----
\nexample_certificate\nexample_certificate==\n-----END CERTIFICATE-----
\n",
 "tlscacert": "-----BEGIN CERTIFICATE-----
\nexample_certificate\nexample_certificate==\n-----END CERTIFICATE-----
\n"
 }
}

Prepare the Fabric Environment to Use the Oracle Blockchain
Platform Network

You must modify the Fabric organization’s environment before it can use the Oracle
Blockchain Platform network.

Confirm that the following prerequisite tasks were completed. For more information,
see Typical Workflow to Join a Fabric Organization to an Oracle Blockchain Platform
Network.

• The Fabric organization’s certificate file was created and sent to the Oracle
Blockchain Platform network founder.

Chapter 5
Add Fabric Organizations to the Network

5-7

• The network founder uploaded the certificates file to add the Fabric organization to
the network.

• The network founder created a new channel and added the Fabric organization to
it.

• The network founder downloaded its ordering service settings and sent them to
the Fabric organization.

• The Fabric organization created the orderer certificate file.

• The network founder gave the ordering service address and port to the Fabric
organization.

You must add the Fabric organization and install and test the chaincode.

1. Navigate to the Fabric network directory and launch the peer container.

2. Fetch the channel’s genesis block with this command:

peer channel fetch 0 mychannel.block -o ${orderer_addr}:$
{orderer_port} -c mychannel --tls --cafile orderer.pem --logging-
level debug

Where:

• {orderer_addr} is the Founder’s orderer address.

• {orderer_port} is the Founder’s port number.

• -c mychannel is the name of the channel that the Founder created. This is
the channel where the Fabric organization will send and receive transactions
on the Oracle Blockchain Platform network.

• orderer.pem is the Founder’s orderer certificate file.

3. Join the channel with this command:

peer channel join -b mychannel.block -o ${orderer_addr}:$
{orderer_port} --tls --cafile orderer.pem --logging-level debug

4. Install the chaincode with this command:

peer chaincode install -n mycc -v 1.0 -l "golang" -p ${CC_SRC_PATH}

Where CC_SRC_PATH is the folder that contains the chaincode.

5. Instantiate the chaincode with this command:

peer chaincode instantiate -o ${orderer_addr}:${orderer_port} --
tls --cafile orderer.pem -C mychannel -n mycc -l golang -v
1.0 -c '{"Args":["init","a","100","b","200"]}' -P <policy_string> --
logging-level debug

6. Invoke the chaincode with this command:

peer chaincode invoke -o ${orderer_addr}:${orderer_port} --tls
true --cafile orderer.pem -C mychannel -n mycc -c '{"Args":
["invoke","a","b","10"]}' --logging-level debug

Chapter 5
Add Fabric Organizations to the Network

5-8

7. Query the chaincode with this command:

peer chaincode query -C mychannel -n mycc -c '{"Args":
["query","a"]}' --logging-level debug

Add Organizations with Third-Party Certificates to the
Network

This topic contains information about joining organizations using third-party certificates
to an Oracle Blockchain Platform network.

Topics:

• Typical Workflow to Join an Organization with Third-Party Certificates to an Oracle
Blockchain Platform Network

• Third-Party Certificate Requirements

• Create an Organization's Third-Party Certificates File

• Prepare the Third-Party Environment to Use the Oracle Blockchain Platform
Network

Typical Workflow to Join an Organization with Third-Party Certificates
to an Oracle Blockchain Platform Network

Organization with certificates issued by a third-party certificate authority (CA) can join
the Oracle Blockchain Platform network as participants.

Client-only Organizations

These participants are client-only organizations and have no peers or orderers. They
cannot create channels, join peers or install chaincode.

After joining the network, these organizations can use an SDK or a Hyperledger Fabric
CLI to:

• Instantiate, invoke, and query chaincode if they're a client organization
administrator.

• Invoke and query chaincode if they're a client organization non-administrator.

To control who can instantiate and invoke chaincode when client-only organizations
are part of the network:

• The chaincode owner who installs the chaincode onto peers can decide who
can instantiate the chaincode by using the Hyperledger Fabric peer chaincode
package -i instantiation policy command to set the instantiation policy for the
chaincode.

• The chaincode instantiator can use the Hyperledger Fabric peer chaincode
instantiate -P endorsement policy command to set the endorsement policy
controlling who can invoke the chaincode.

• The channel owner can decide who can invoke or query a chaincode by setting
the channel proposal and query access control list. See Hyperledger Fabric
Access Control Lists and What Are Channel Policies?.

Chapter 5
Add Organizations with Third-Party Certificates to the Network

5-9

https://hyperledger-fabric.readthedocs.io/en/release-1.4/access_control.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/access_control.html

Workflow

Here are the tasks that an organization with third-party certificates and the Oracle
Blockchain Platform founder need to perform to join the organization to an Oracle
Blockchain Platform network.

Task Who Does This? Description More Information

Get the third-party
certificates

Third-party certificates
(participant) organization

Go to the third-party CA
server and generate the
required certificates files.
Format the files as needed
for import into the network.

Third-Party Certificate
Requirements

Create the certificates file
for import

Third-party certificates
(participant) organization

Find the participant’s
Admin and CA certificate
information and use it
to compose a JSON
certificates file.

Create an Organization's
Third-Party Certificates File

Upload a certificate file for
the third-party (participant)
organization

Founder organization Use the console to upload
and import the participant’s
certificate file to add the
participant to the network.

Import Certificates to
Add Organizations to the
Network

Export the ordering service
settings from network
founder and provide
them to the third-party
(participant) organization

Founder organization Output the founder’s
ordering services settings
to a JSON file and send the
file to the participant.
Open the ordering service
settings file and find the
ordering service’s address
and port and give them
to the participant. For
example:

"orderingServiceNod
es": [
{
"address":
"grpcs://
example_address:777
7"
...
}]

Join the Participant or
Scaled-Out OSNs to the
Founder's Ordering Service

Create the channel Founder Create a new channel and
add the participant to it.

Create a Channel

Install and instantiate the
chaincode

Founder In the founder’s instance,
upload, install, and
instantiate the chaincode.
Choose the network peers
to install the chaincode on.

Use Quick Deployment

Chapter 5
Add Organizations with Third-Party Certificates to the Network

5-10

Task Who Does This? Description More Information

Set up the third-party
(participant) organization's
environment

Third-party certificates
(participant) organization

To query or invoke
chaincodes, the participant
must:
• Add the founder's

ordering service's
address and port
to the participant's
environment.

• Configure the
environment to use
Hyperledger Fabric
CLI or SDKs.

• Install the chaincode
on peers.

Prepare the Third-Party
Environment to Use the
Oracle Blockchain Platform
Network

Third-Party Certificate Requirements
To successfully join the network, an organization must generate the required
third-party certificates. The information in these certificates is used to create the
organization's certificates file, which is then imported into the founder's instance.

Which Certificates Do Organizations Need to Provide?

You must generate the following certificates from your CA server:

• Client Public Certificate

• CA Root Certificate

What Are the Requirements for These Certificates?

The certificates must meet the following requirements:

• When generating the private key, you must use the Elliptic Curve Digital Signature
Algorithm (ECDSA). This algorithm is the only accepted algorithm for Fabric MSP
keys.

• The Subject Key Identifier (SKI) is mandatory and you must indicate it as x509
extensions in the extension file.

• You must convert the key files from the .key to the .pem format.

• You must convert the certificates from the .crt to the .pem format.

Creating the Certificates

The following walkthrough is an example of how to use OpenSSL or the Hyperledger
Fabric cryptogen utility to generate your certificates. For detailed information on the
commands used, refer to:

• OpenSSL documentation

• cryptogen utility documentation

To create your certificates using OpenSSL:

Chapter 5
Add Organizations with Third-Party Certificates to the Network

5-11

https://www.openssl.org/docs/man1.1.1/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/commands/cryptogen.html

1. Create a self-signed CA certificate/key:

openssl ecparam -name prime256v1 -genkey -out ca.key
openssl pkcs8 -topk8 -inform PEM -in ca.key -outform pem -nocrypt
-out ca-key.pem
openssl req -new -key ca-key.pem -out ca.csr
openssl x509 -req -days 365 -in ca.csr -signkey ca-key.pem -out
ca.crt -extensions x509_ext -extfile opensslca.conf
openssl x509 -in ca.crt -out ca.pem -outform PEM

Our example opensslca.conf file:

[req]
default_bits = 2048
distinguished_name = subject
req_extensions = req_ext
x509_extensions = x509_ext
string_mask = utf8only

[subject]
countryName = CN
#countryName_default = US

stateOrProvinceName = Beijing
#stateOrProvinceName_default = NY

localityName = Beijing
#localityName_default = New York

organizationName = thirdpartyca, LLC
#organizationName_default = Example, LLC

Use a friendly name here because its presented to the user. The
server's DNS
names are placed in Subject Alternate Names. Plus, DNS names
here is deprecated
by both IETF and CA/Browser Forums. If you place a DNS name
here, then you
must include the DNS name in the SAN too (otherwise, Chrome and
others that
strictly follow the CA/Browser Baseline Requirements will fail).
commonName = thirdpartyca
#commonName_default = Example Company

emailAddress = ca@thirdpartyca.com

Section x509_ext is used when generating a self-signed
certificate. I.e., openssl req -x509 ...
[x509_ext]

Chapter 5
Add Organizations with Third-Party Certificates to the Network

5-12

subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid,issuer

You only need digitalSignature below. *If* you don't allow
RSA Key transport (i.e., you use ephemeral cipher suites), then
omit keyEncipherment because that's key transport.
basicConstraints = CA:TRUE
keyUsage = Certificate Sign, CRL Sign, digitalSignature,
keyEncipherment
subjectAltName = @alternate_names
nsComment = "OpenSSL Generated Certificate"

RFC 5280, Section 4.2.1.12 makes EKU optional
CA/Browser Baseline Requirements, Appendix (B)(3)(G) makes me
confused
In either case, you probably only need serverAuth.
extendedKeyUsage = serverAuth, clientAuth

Section req_ext is used when generating a certificate signing
request. I.e., openssl req ...
[req_ext]

subjectKeyIdentifier = hash

basicConstraints = CA:FALSE
keyUsage = digitalSignature, keyEncipherment
subjectAltName = @alternate_names
nsComment = "OpenSSL Generated Certificate"

RFC 5280, Section 4.2.1.12 makes EKU optional
CA/Browser Baseline Requirements, Appendix (B)(3)(G) makes me
confused
In either case, you probably only need serverAuth.
extendedKeyUsage = serverAuth, clientAuth

[alternate_names]

DNS.1 = localhost
DNS.2 = thirdpartyca.com
#DNS.3 = mail.example.com
#DNS.4 = ftp.example.com

Add these if you need them. But usually you don't want them or
need them in production. You may need them for development.
DNS.5 = localhost
DNS.6 = localhost.localdomain
DNS.7 = 127.0.0.1

2. Create a user certificate/key using above CA key:

openssl ecparam -name prime256v1 -genkey -out user.key
openssl pkcs8 -topk8 -inform PEM -in user.key -outform pem -nocrypt
-out user-key.pem
openssl req -new -key user-key.pem -out user.csr

Chapter 5
Add Organizations with Third-Party Certificates to the Network

5-13

openssl x509 -req -days 365 -sha256 -CA ca.pem -CAkey ca-key.pem
-CAserial ca.srl -CAcreateserial -in user.csr -out user.crt -
extensions x509_ext -extfile openssl.conf
openssl x509 -in user.crt -out user.pem -outform PEM

Our example openssl.conf file:

[req]
default_bits = 2048
default_keyfile = tls-key.pem
distinguished_name = subject
req_extensions = req_ext
x509_extensions = x509_ext
string_mask = utf8only

The Subject DN can be formed using X501 or RFC 4514 (see RFC 4519
for a description).
Its sort of a mashup. For example, RFC 4514 does not provide
emailAddress.
[subject]
countryName = CN
#countryName_default = US

stateOrProvinceName = Beijing
#stateOrProvinceName_default = NY

localityName = Beijing
#localityName_default = New York

organizationName = thirdpartyca, LLC
#organizationName_default = Example, LLC

Use a friendly name here because its presented to the user. The
server's DNS
names are placed in Subject Alternate Names. Plus, DNS names
here is deprecated
by both IETF and CA/Browser Forums. If you place a DNS name
here, then you
must include the DNS name in the SAN too (otherwise, Chrome and
others that
strictly follow the CA/Browser Baseline Requirements will fail).
commonName = admin@thirdpartyca.com
#commonName_default = Example Company

emailAddress = admin@thirdpartyca.com
#emailAddress_default = test@example.com

Section x509_ext is used when generating a self-signed
certificate. I.e., openssl req -x509 ...
[x509_ext]
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid,issuer

You only need digitalSignature below. *If* you don't allow

Chapter 5
Add Organizations with Third-Party Certificates to the Network

5-14

RSA Key transport (i.e., you use ephemeral cipher suites), then
omit keyEncipherment because that's key transport.
basicConstraints = CA:FALSE
keyUsage = digitalSignature, keyEncipherment

subjectAltName = @alternate_names
nsComment = "OpenSSL Generated Certificate"

RFC 5280, Section 4.2.1.12 makes EKU optional
CA/Browser Baseline Requirements, Appendix (B)(3)(G) makes me
confused
In either case, you probably only need serverAuth.
#extendedKeyUsage = Any Extended Key Usage
#extendedKeyUsage = serverAuth, clientAuth

Section req_ext is used when generating a certificate signing
request. I.e., openssl req ...
[x509_ca_ext]
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid,issuer

You only need digitalSignature below. *If* you don't allow
RSA Key transport (i.e., you use ephemeral cipher suites), then
omit keyEncipherment because that's key transport.
basicConstraints = CA:TRUE
keyUsage = Certificate Sign, CRL Sign, digitalSignature,
keyEncipherment
subjectAltName = @alternate_names
nsComment = "OpenSSL Generated Certificate"

RFC 5280, Section 4.2.1.12 makes EKU optional
CA/Browser Baseline Requirements, Appendix (B)(3)(G) makes me
confused
In either case, you probably only need serverAuth.
#extendedKeyUsage = Any Extended Key Usage
extendedKeyUsage = serverAuth, clientAuth

Section req_ext is used when generating a certificate signing
request. I.e., openssl req ...
[req_ext]
subjectKeyIdentifier = hash
basicConstraints = CA:FALSE
keyUsage = digitalSignature, keyEncipherment
subjectAltName = @alternate_names
nsComment = "OpenSSL Generated Certificate"

RFC 5280, Section 4.2.1.12 makes EKU optional
CA/Browser Baseline Requirements, Appendix (B)(3)(G) makes me
confused
In either case, you probably only need serverAuth.

Chapter 5
Add Organizations with Third-Party Certificates to the Network

5-15

#extendedKeyUsage = Any Extended Key Usage
#extendedKeyUsage = serverAuth, clientAuth

[alternate_names]
DNS.1 = localhost
DNS.3 = 127.0.0.1
DNS.4 = 0.0.0.0
Add these if you need them. But usually you don't want them or
need them in production. You may need them for development.
DNS.5 = localhost
DNS.6 = localhost.localdomain
DNS.7 = 127.0.0.1
IPv6 localhost
DNS.8 = ::1

To create your certificates using the Hyperledger Fabric cryptogen utility:

• The following cryptogen commands are used to create Hyperledger Fabric key
material:

cryptogen generate --config=./crypto-config.yaml

Our example crypto-config.yaml file:

Copyright IBM Corp. All Rights Reserved.
#
SPDX-License-Identifier: Apache-2.0
#

--

"PeerOrgs" - Definition of organizations managing peer nodes

--

PeerOrgs:
 #
--

 # Org1
 #
--

 - Name: Org1
 Domain: org1.example.com
 EnableNodeOUs: true
 #
--

 # "Specs"
 #
--

Chapter 5
Add Organizations with Third-Party Certificates to the Network

5-16

 # Uncomment this section to enable the explicit definition of
hosts in your
 # configuration. Most users will want to use Template, below
 #
 # Specs is an array of Spec entries. Each Spec entry consists
of two fields:
 # - Hostname: (Required) The desired hostname, sans the
domain.
 # - CommonName: (Optional) Specifies the template or explicit
override for
 # the CN. By default, this is the template:
 #
 # "{{.Hostname}}.{{.Domain}}"
 #
 # which obtains its values from the
Spec.Hostname and
 # Org.Domain, respectively.
 #
--

 # Specs:
 # - Hostname: foo # implicitly "foo.org1.example.com"
 # CommonName: foo27.org5.example.com # overrides Hostname-
based FQDN set above
 # - Hostname: bar
 # - Hostname: baz
 #
--

 # "Template"
 #
--

 # Allows for the definition of 1 or more hosts that are created
sequentially
 # from a template. By default, this looks like "peer%d" from 0
to Count-1.
 # You may override the number of nodes (Count), the starting
index (Start)
 # or the template used to construct the name (Hostname).
 #
 # Note: Template and Specs are not mutually exclusive. You may
define both
 # sections and the aggregate nodes will be created for you.
Take care with
 # name collisions
 #
--

 Template:
 Count: 2
 # Start: 5
 # Hostname: {{.Prefix}}{{.Index}} # default
 #
--

Chapter 5
Add Organizations with Third-Party Certificates to the Network

5-17

 # "Users"
 #
--

 # Count: The number of user accounts _in addition_ to Admin
 #
--

 Users:
 Count: 1
 #
--

 # Org2: See "Org1" for full specification
 #
--

 - Name: Org2
 Domain: org2.example.com
 EnableNodeOUs: true
 Template:
 Count: 2
 Users:
 Count: 1

What's Next?

After confirming that you’ve outputted and updated the proper files, you can then
create the certificates file for import into the Oracle Blockchain Platform network. See
Create an Organization's Third-Party Certificates File.

Create an Organization's Third-Party Certificates File
To join an Oracle Blockchain Platform network, the organization must write a
certificates file containing its admincert and cacert information. The network founder
imports this file to add the organization to the network.

Go to the certificates files that you generated from the CA server to find the
information that you need to create the certificates file. See Third-Party Certificate
Requirements.

The certificates file must be in written in JSON and contain the following fields:

• mspid — Specifies the name of the organization.

• type — Indicates that the organization is a network participant. This value must be
Participant.

• admincert — Contains the contents of the organization’s Admin certificates file.
When you copy the certificates information into the JSON file, you must replace
each new line with \n.

• cacert — Contains the contents of the organization’s CA certificates file. When
you copy the certificates information into the JSON file, you must replace each
new line with \n.

Chapter 5
Add Organizations with Third-Party Certificates to the Network

5-18

This is how the file needs to be structured:

{
 "mspID": "examplemspID",
 "type": "Participant",
 "certs": {
 "admincert": "-----BEGIN CERTIFICATE-----
\nexample_certificate\nexample_certificate==\n-----END CERTIFICATE-----
\n",
 "cacert": "-----BEGIN CERTIFICATE-----
\nexample_certificate\nexample_certificate==\n-----END CERTIFICATE-----
\n"
 }
}

Prepare the Third-Party Environment to Use the Oracle Blockchain
Platform Network

You must set up the third-party organization's environment before it can use the Oracle
Blockchain Platform network.

Confirm that the following prerequisite tasks were completed. For information, see
Typical Workflow to Join an Organization with Third-Party Certificates to an Oracle
Blockchain Platform Network.

• The third-party organization’s certificate file was created and sent to the Oracle
Blockchain Platform network founder.

• The network founder uploaded the certificates file to add the third-party
organization to the network.

• The network founder exported the orderer service's settings and gave the service's
address and port to the third-party organization and the organization added them
to the environment.

• The network founder created a new channel and added the third-party
organization to it.

• The network founder installed and instantiated the chaincode.

Setup organization's Environment

Before the third-party organization can successfully use the Oracle Blockchain
Platform network, it must set up its environment to use Hyperledger Fabric CLI or
SDKs. See Welcome to Hyperledger Fabric.

Install the Chaincode

The third-party organization must install the chaincode on the peers. These peers
must then be joined to the channel so that the chaincode can be invoked.

Instantiate the Chaincode

Chapter 5
Add Organizations with Third-Party Certificates to the Network

5-19

If needed, the third-party organizations can instantiate the chaincode on the channel.
For example:

export CORE_PEER_TLS_ENABLED=true
export CORE_PEER_TLS_ROOTCERT_FILE=$PWD/tls-ca.pem
export CORE_PEER_MSPCONFIGPATH=$PWD/crypto-config/peerOrganizations/
customerorg1.com/users/Admin@customerorg1.com/msp
export CORE_PEER_LOCALMSPID="customerorg1"

gets channel name from input###
CHANNEL_NAME=$1

echo "######### going to instantiate chaincode on channel $
{CHANNEL_NAME} ##########"
CORE_PEER_ADDRESS=${peer_host}:${port} peer chaincode instantiate
-o ${peer_host}:${port} --tls $CORE_PEER_TLS_ENABLED --cafile
./tls-ca.pem -C ${CHANNEL_NAME} -n obcs-example02 -v v0 -c '{"Args":
["init","a","100","b","200"]}'

Invoke the Chaincode

Third-party organizations use the Hyperledger Fabric CLI or SDKs to invoke the
chaincode. For example:

export CORE_PEER_TLS_ENABLED=true
export CORE_PEER_TLS_ROOTCERT_FILE=$PWD/tls-ca.pem
export CORE_PEER_MSPCONFIGPATH=$PWD/crypto-config/peerOrganizations/
customerorg1.com/users/User1@customerorg1.com/msp
export CORE_PEER_LOCALMSPID="customerorg1"

gets channel name from input
CHANNEL_NAME=$1

do query or invoke on chaincode

CORE_PEER_ADDRESS=${peer_host}:${port} peer chaincode query -C
${CHANNEL_NAME} -n $2 -c '{"Args":["query","a"]}'

CORE_PEER_ADDRESS=${peer_host}:${port} peer chaincode invoke -o
${peer_host}:${port} --tls $CORE_PEER_TLS_ENABLED --cafile ./tls-
ca.pem -C ${CHANNEL_NAME} -n $2 -c '{"Args":["invoke","a","b","10"]}'

Chapter 5
Add Organizations with Third-Party Certificates to the Network

5-20

6
Develop Chaincodes

This topic contains information to help you understand how to write and test
chaincodes for use in Oracle Blockchain Platform.

Topics

• Write a Chaincode

• Use a Mock Shim to Test a Chaincode

• Deploy a Chaincode on a Peer to Test the Chaincode

Write a Chaincode
A chaincode is written in Go, Node.js, or Java and then packaged into a ZIP file that is
installed on the Oracle Blockchain Platform network.

Chaincodes define the data schema in the ledger, initialize it, perform updates
when triggered by applications, and respond to queries. Chaincodes can also post
events that allow applications to be notified and perform downstream operations. For
example, after purchase orders, invoices, and delivery records have been matched by
a chaincode, it can post an event so that a subscribing application can process related
payments and update an internal ERP system.

Resources for Chaincode Development

Oracle Blockchain Platform uses Hyperledger Fabric as its foundation. Use the
Hyperledger Fabric documentation to help you write valid chaincodes.

• Welcome to Hyperledger Fabric. The Key Concepts and Tutorials sections should
be read before you write you own chaincode.

• Go Programming Language. The Go compilers, tools, and libraries provide a
variety of resources that simplify writing chaincodes.

• Package shim. Package shim provides APIs for the chaincode to access its
state variables, transaction context and call other chaincodes. This documents
the actual syntax required for your chaincode.

Oracle Blockchain Platform provides downloadable samples that help you understand
how to write chaincodes and applications. See What Are Chaincode Samples?

You can add rich-query syntax to your chaincodes to query the state database. See
SQL Rich Query Syntax and CouchDB Rich Query Syntax.

Package and Zip a Go Chaincode

Once you've written your chaincode, place it in a ZIP file. You don't need to create
a package for the Go chaincode or sign it — the Oracle Blockchain Platform install
and instantiation process does this for you as described in Typical Workflow to Deploy
Chaincodes.

6-1

https://hyperledger-fabric.readthedocs.io/en/latest/
https://golang.org/dl/
https://pkg.go.dev/github.com/hyperledger/fabric-chaincode-go/shim?tab=doc

If your chaincode has any external dependencies, you can place them in the vendor
directory of your ZIP file.

Package and Zip a Node.js Chaincode

If you're writing a Node.js chaincode, you need to create a package.json file with
two sections:

• The scripts section declares how to launch the chaincode.

• The dependencies section specifies the dependencies.

The following is a sample package.json for a Node.js chaincode:

{
 "name": "chaincode_example02",
 "version": "1.0.0",
 "description": "chaincode_example02 chaincode implemented in
Node.js",
 "engines": {
 "node": ">=8.4.0",
 "npm": ">=5.3.0"
 },
 "scripts": { "start" : "node chaincode_example02.js" },
 "engine-strict": true,
 "license": "Apache-2.0",
 "dependencies": {
 "fabric-shim": "~1.3.0"
 }
}

The packaging rules for a Node.js chaincode are:

• package.json must be in the root directory.

• The entry JavaScript file can be located anywhere in the package.

• If "start" : "node <start>.js" isn't specified in the package.json,
server.js must be in the root directory.

Place the chaincode and package file in a zip file to install it on Oracle Blockchain
Platform.

Package and Zip a Java Chaincode

If you're writing a Java chaincode, you can choose Gradle or Maven to build the
chaincode.

If you're using Gradle, place the chaincode, build.gradle, and settings.gradle in a zip
file to install it on Oracle Blockchain Platform. The following is a sample file list of a
chaincode zip package:

Archive: example_gradle.zip
 Length Date Time Name
--------- ---------- ----- ----
 610 02-14-2019 01:36 build.gradle
 54 02-14-2019 01:28 settings.gradle
 0 02-14-2019 01:28 src/
 0 02-14-2019 01:28 src/main/
 0 02-14-2019 01:28 src/main/java/

Chapter 6
Write a Chaincode

6-2

 0 02-14-2019 01:28 src/main/java/org/
 0 02-14-2019 01:28 src/main/java/org/hyperledger/
 0 02-14-2019 01:28 src/main/java/org/hyperledger/fabric/
 0 02-14-2019 01:28 src/main/java/org/hyperledger/fabric/example/
 5357 02-14-2019 01:28 src/main/java/org/hyperledger/fabric/example/
SimpleChaincode.java
--------- -------
 6021 10 files

If you're using Maven, place the chaincode and pom.xml in a zip file to install it on
Oracle Blockchain Platform. The following is a sample file list of a chaincode zip
package:

Archive: example_maven.zip
 Length Date Time Name
--------- ---------- ----- ----
 3313 02-14-2019 01:52 pom.xml
 0 02-14-2019 01:28 src/
 0 02-14-2019 01:28 src/chaincode/
 0 02-14-2019 01:28 src/chaincode/example/
 4281 02-14-2019 01:28 src/chaincode/example/SimpleChaincode.java
--------- -------
 7594 5 files

Testing a Chaincode

After you write your chaincode, then you need to test it. See:

• Use a Mock Shim to Test a Chaincode

• Deploy a Chaincode on a Peer to Test the Chaincode

Installing and Instantiating a Chaincode

Once you’ve tested your chaincode, you can deploy it following the information in
Typical Workflow to Deploy Chaincodes.

Upgrading a Chaincode

A chaincode may be upgraded any time by changing its version. The chaincode name
must be the same or it would be considered a totally different chaincode.

1. Change the chaincode version

2. Follow the instructions in Upgrade a Chaincode to install and upgrade the new
version of the chaincode.

Use a Mock Shim to Test a Chaincode
This method of testing involves using a mock version of the stub
shim.ChaincodeStubInterface. With this you can simulate some functionality of your
chaincode before deploying it to Oracle Blockchain Platform. You can also use this
library to build unit tests for your chaincode.

Manually Vendor the Shim with a Chaincode

This applies to Oracle Blockchain Platform 19.1.1, 19.1.3, 19.2.1, and 19.2.3.

In Hyperledger Fabric, the fabric-ccenv image contains the github.com/
hyperledger/fabric/core/chaincode/shim (shim) package. This allows you
to package a chaincode without needing to include the shim. However, this may cause

Chapter 6
Use a Mock Shim to Test a Chaincode

6-3

issues in future Hyperledger Fabric releases, and it may cause issues when using
packages that are included with the shim.

Workaround: To avoid potential issues, you should manually vendor the shim package
with the chaincode prior to using the peer command-line interface for packaging
and installing a chaincode, or packaging or installing a chaincode. See https://
jira.hyperledger.org/browse/FAB-5177.

Use a Mock Shim to Test a Chaincode

1. Create a test file that matches the name of the chaincode file.

For example, if car_dealer.go is the actual implementation code for you smart
contract, you would create a test suite called car_dealer_test.go containing all
the tests for car_dealer.go. The test suite filename should be in the *_test.go
format.

2. Create your package and import statements.

package main

import (
 "fmt"
 "testing"

 "github.com/hyperledger/fabric/core/chaincode/shim"
)

3. Create your unit test.

/*
* TestInvokeInitVehiclePart simulates an initVehiclePart
transaction on the CarDemo cahincode
 */
func TestInvokeInitVehiclePart(t *testing.T) {
 fmt.Println("Entering TestInvokeInitVehiclePart")

 // Instantiate mockStub using CarDemo as the target chaincode
to unit test
 stub := shim.NewMockStub("mockStub", new(CarDemo))
 if stub == nil {
 t.Fatalf("MockStub creation failed")
 }

 var serialNumber = "ser1234"

 // Here we perform a "mock invoke" to invoke the function
"initVehiclePart" method with associated parameters
 // The first parameter is the function we are invoking
 result := stub.MockInvoke("001",
 [][]byte{[]byte("initVehiclePart"),
 []byte(serialNumber),
 []byte("tata"),
 []byte("1502688979"),
 []byte("airbag 2020"),
 []byte("aaimler ag / mercedes")})

Chapter 6
Use a Mock Shim to Test a Chaincode

6-4

https://jira.hyperledger.org/browse/FAB-5177
https://jira.hyperledger.org/browse/FAB-5177

 // We expect a shim.ok if all goes well
 if result.Status != shim.OK {
 t.Fatalf("Expected unauthorized user error to be returned")
 }

 // here we validate we can retrieve the vehiclePart object we
just committed by serianNumber
 valAsbytes, err := stub.GetState(serialNumber)
 if err != nil {
 t.Errorf("Failed to get state for " + serialNumber)
 } else if valAsbytes == nil {
 t.Errorf("Vehicle part does not exist: " + serialNumber)
 }
}

Note:

Not all interfaces of the stub are implemented. Stub functions

• GetQueryResult

• GetHistoryForKey

are not supported, and attempting to call either of these will result in an error.

Deploy a Chaincode on a Peer to Test the Chaincode
After you create a chaincode, you must install, instantiate, and invoke it to test that it
works correctly.

If you need help writing a chaincode, see Write a Chaincode.

Follow these steps to deploy and test your chaincode.

1. Identify the channel or create a new channel and add peers to it. See Join a Peer
to a Channel.

2. Install the chaincode on the peers and instantiate it on the channel. See Use Quick
Deployment.

3. Use the Invoke and query REST APIs to test the chaincode with cURL through
the REST proxy. See REST API for Oracle Blockchain Platform for descriptions of
each endpoint and correct cURL syntax to invoke each operation.

4. Go to the Channels tab in the console and locate and click the name of the
channel running the blockchain.

5. In the channel’s Ledger pane, view the chaincode’s ledger summary.

Chapter 6
Deploy a Chaincode on a Peer to Test the Chaincode

6-5

7
Deploy and Manage Chaincodes

This topic contains information to help you deploy (install, instantiate, upgrade, and
enable in the REST proxy), monitor, and find information about the chaincodes on the
network.

Topics

• Typical Workflow to Deploy Chaincodes

• Use Quick Deployment

• Use Advanced Deployment

• Update REST Proxy Settings for Running Chaincodes

• Instantiate a Chaincode

• Specify an Endorsement Policy

• View an Endorsement Policy

• Find Information About Chaincodes

• Manage Chaincode Versions

• Upgrade a Chaincode

• What Are Private Data Collections?

• Add Private Data Collections

• View Private Data Collections

Typical Workflow to Deploy Chaincodes
Here are the common tasks for deploying chaincodes.

You must be an administrator to perform these tasks.

Task Description More Information

Use the wizard to fully or
partially deploy a chaincode

For testing, use Quick
Deployment to perform the
deployment in one step, using
default settings.
For production, use Advanced
Deployment to specify the
deployment settings such
as which peers to install
the chaincode on and
the endorsement policy
you want to use. With
Advanced Deployment you
can instantiate the chaincode
and enable it in the REST
proxy now or later.

Use Quick Deployment

Use Advanced Deployment

7-1

Task Description More Information

Instantiate a chaincode Instantiate the chaincode after
you’ve installed it.

Instantiate a Chaincode

Upgrade the chaincode Upload and instantiate a
newer version of a chaincode,
or pick an older version of the
chaincode to use.

Upgrade a Chaincode

Use Quick Deployment
Use the quick deployment option to perform a one-step chaincode deployment. This
option is recommended for chaincode testing.

The quick deployment uses default settings, installs the chaincode on all peers in the
channel, instantiates the chaincode using the default endorsement policy, and enables
the chaincode in the REST proxy.

Note the following information:

• The process to deploy sample chaincodes is different than the process described
in this topic. See Explore Oracle Blockchain Platform Using Samples.

• You can use the advanced deployment option to put your chaincode into
production on the network. See Use Advanced Deployment.

• You can’t delete a chaincode from the network.

You must be an administrator to perform this task.

1. Go to the console and select the Chaincodes tab.

2. In the Chaincodes tab, click Deploy a New Chaincode.

The Deploy Chaincode page is displayed.

3. Click Quick Deployment.

The Deploy Chaincode (Quick) page is displayed.

4. In the Chaincode Name field, enter a unique name for the chaincode. In the
Version field enter a string value to specify the chaincode’s version number.

The Oracle Blockchain Platform chaincode name and version requirements are
different than the Hyperledger Fabric requirements. You must use the Oracle
Blockchain Platform naming requirements. Use these guidelines when naming the
chaincode:

• Use ASCII alphanumeric characters, ('') quotes, dashes (-), and underscores
(_).

• The name must start and end only with ASCII alphanumeric characters. For
example, you can't use names like _mychaincode or mychaincode_.

• Dashes (-) and underscores (_) must be followed with ASCII alphanumeric
characters. For example, you can't use names like my--chaincode or my-
_chaincode.

• The name must be 1 to 64 characters long.

• A chaincode version can contain a period (.).

5. Review the other default settings and modify them as needed.

Chapter 7
Use Quick Deployment

7-2

6. Click the Chaincode Source field and browse for the chaincode ZIP file to upload
and deploy.

7. Click Submit.

The chaincode is installed on the channel’s peers, instantiated, and enabled in the
REST proxy. The deployed chaincode’s name is displayed in the Chaincode tab’s
table.

Use Advanced Deployment
Use the advanced deployment option to specify the parameters required to deploy a
chaincode into a production environment. For example, you’ll specify which peers to
install the chaincode on and the endorsement policy to use.

With the advanced deployment wizard, you’ll install the chaincode on the peers you
select.

Note the following information:

• The process to deploy sample chaincodes is different than the process described
in this topic. See Explore Oracle Blockchain Platform Using Samples.

• You can use the quick deployment option for chaincode testing. Quick deployment
is a one-step deployment that uses default settings, installs the chaincode on all
peers in the channel, and instantiates the chaincode using a default endorsement
policy. See Use Quick Deployment.

• You can’t delete a chaincode from the network.

You must be an administrator to perform this task.

1. Go to the console and select the Chaincodes tab.

2. In the Chaincodes tab, click Deploy a New Chaincode.

The Deploy Chaincode page is displayed.

3. Click Advanced Deployment.

The Deploy Chaincode (Advanced) Step 1 of 3: Install page is displayed.

4. In the Chaincode Name field, enter a unique name for the chaincode. In the
Version field, enter the chaincode’s version number.

The Oracle Blockchain Platform chaincode name and version requirements are
different than the Hyperledger Fabric requirements. You must use the Oracle
Blockchain Platform naming requirements. Use these guidelines when naming the
chaincode:

• Use ASCII alphanumeric characters, ('') quotes, dashes (-), and underscores
(_).

• The name must start and end only with ASCII alphanumeric characters. For
example, you can't use names like _mychaincode or mychaincode_.

• Dashes (-) and underscores (_) must be followed with ASCII alphanumeric
characters. For example, you can't use names like my--chaincode or my-
_chaincode.

• The name must be 1 to 64 characters long.

• A chaincode version can contain a period (.).

Chapter 7
Use Advanced Deployment

7-3

5. Select one or more network peers to install the chaincode onto. To provide high
availability, Oracle suggests that you choose the appropriate number of peers from
each partition. Also, the peers you choose must be joined to the channel that you’ll
instantiate the chaincode on.

6. Click the Chaincode Source field and browse for the chaincode ZIP file to upload
and deploy. Click Next.

The chaincode is installed and the Deploy Chaincode (Advanced) Step 2 of 3:
Instantiate page is displayed.

7. Decide if you want to instantiate the chaincode now or later.

• Click Close to close the wizard and instantiate later.

• To instantiate now, select the channel to instantiate the chaincode on and
the peers to instantiate the chaincode to. If required, enter initial parameters,
an endorsement policy, transient map, and private data collections. Note the
following information:

– Instantiation compiles, builds, and initializes the chaincode on the peers.

– If you leave the endorsement policy blank, then Oracle Blockchain
Platform uses the default endorsement policy. The default endorsement
policy gets an endorsement from any peer on the network.

– When instantiation is complete, the peers are able to accept chaincode
invocations and can endorse transactions.

Click Next.

The chaincode is instantiated.

Update REST Proxy Settings for Running Chaincodes
If you're using Node.js or Java chaincodes which are dependent on external libraries,
a few proxy settings must be updated.

You must complete these steps before you instantiate the chaincode. See Instantiate a
Chaincode.

Node.js Chaincode

When your Node.js chaincode is instantiated, npm is used to install all dependency
libraries from the internet, so in an Oracle Blockchain Platform instance, if there is
such a dependancy, you need to ensure the bcs/fabric-ccenv image has internet
access.

Set the HTTP proxy for the bcs/fabric-ccenv image following these steps:

1. Create a Docker file in any location in your VM with the following content (where
http://hostname:port is your HTTP proxy access entry):

FROM bcs/fabric-ccenv:latest
ENV npm_config_proxy http://hostname:port

2. Build the image again:

docker build -f Dockerfile -t bcs/fabric-ccenv:latest

Chapter 7
Update REST Proxy Settings for Running Chaincodes

7-4

Java Chaincode

To configure the proxy to run Java chaincode:

1. Gradle-only: Create gradle.properties in a local directory, and add the following
content in it:

systemProp.http.proxyHost=[proxy host]
systemProp.http.proxyPort=[proxy port]
systemProp.https.proxyHost=[proxy host]
systemProp.https.proxyPort=[proxy port]

2. Maven-only: Create settings.xml in a local directory, and add the following
content in it:

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
https://maven.apache.org/xsd/settings-1.0.0.xsd">
<localRepository/>
<interactiveMode/>
<usePluginRegistry/>
<offline/>
<pluginGroups/>
<servers/>
<mirrors/>
<proxies>
<proxy>
<id>httpproxy</id>
<active>true</active>
<protocol>http</protocol>
<host>[proxy host]</host>
<port>[proxy port]</port>
</proxy>
<proxy>
<id>httpsproxy</id>
<active>true</active>
<protocol>https</protocol>
<host>[proxy host]</host>
<port>[proxy port]</port>
</proxy>
</proxies>
<profiles/>
<activeProfiles/>
</settings>

3. Create a Docker file and add the following to it:

FROM bcs/fabric-javaenv:latest
COPY gradle.properties /root/.gradle/
COPY settings.xml /root/.m2/

Chapter 7
Update REST Proxy Settings for Running Chaincodes

7-5

4. Create a new image:

docker build -f dockerfile -t bcs/fabric-javaenv:latest

Instantiate a Chaincode
Instantiating a chaincode compiles, builds, and initializes the chaincode on the peers
where the chaincode is installed. When instantiation is complete, the peers are able to
accept chaincode invocations and can endorse transactions.

Note the following information:

• You must install the chaincode on the required peers before you can instantiate it.

• If you're working on a channel that contains multiple members and have
instantiated the chaincode on one member, then you don’t have to instantiate the
chaincode on the other members where you installed the same chaincode. In such
cases, the chaincode is already instantiated and running on all members on the
channel.

• You can instantiate more than one chaincode on a channel.

• The process to instantiate the sample chaincodes is different than the instantiation
process described in this topic. See Explore Oracle Blockchain Platform Using
Samples.

• After you instantiate the chaincode, then you can optionally enable it in the REST
proxy.

You must be an administrator to perform this task.

1. Go to the console and select the Chaincodes tab.

2. In the Chaincodes tab, click the arrow to expand the chaincode’s version list.

3. Locate the chaincode version and click its More Actions menu, and select
Instantiate.

The Instantiate Chaincode dialog is displayed.

4. Enter information about where and how to instantiate the chaincode.

Field Description

Channel Select the channel for the chaincode to run on.

Peers Select the peer or peers you want to use the chaincode. This list shows
the peers that you installed the chaincode onto.

Initial
Parameter

Enter the input parameters that you want to pass to the chaincode. Go to
the chaincode to find the initial parameters values.

Endorsement
Policy

In this section, specify the number and role of members required to
endorse the chaincode.
If you don’t specify an endorsement policy, then the default endorsement
policy is used. The default endorsement policy gets an endorsement from
any peer on the network.

Chapter 7
Instantiate a Chaincode

7-6

Field Description

Transient Map The data that is passed into the chaincode is the transaction payload and
the transient map. The transaction payload is recorded in the ledger and
is visible to anyone who can access the ledger through the query system
chaincode. Use a transient map to pass private data such as keys that you
don't want stored in the ledger.

In this section, provide the required keys and values. The information you
provide is maintained on the peer node and is sent to the chaincode when
a transaction is executed.

If you're adding private data collections, then specify a transient map to
pass the private data from the client to the peers for endorsement.

(New in
v19.1.3)
Private Data
Collections

In this section, add one or more private data collections. Private data
collections specify subsets of organizations that endorse, commit, or query
private data on the channel you instantiate the chaincode on.

5. Click Instantiate.

The chaincode is instantiated.

6. To confirm that the chaincode was instantiated, go to the Channels tab and
click the name of the channel that you instantiated the chaincode on. Go to
the Instantiated Chaincodes tab and confirm that the chaincode is listed in the
summary table.

Specify an Endorsement Policy
You can add an endorsement policy when you instantiate a chaincode. An
endorsement policy specifies the members with peers that must approve, or properly
endorse, a chaincode transaction before it’s added to a block and submitted to the
ledger.

Endorsement guarantees the legitimacy of a transaction. When you instantiate a
chaincode on a channel, you can specify an endorsement policy. If you don’t specify
an endorsement policy, then the default endorsement policy is used. The default
endorsement policy gets an endorsement from any peer on the network.

A member’s endorsing peers must have ReaderWriter permissions on the channel.
When a transaction is processed, each endorsing peer returns a signed read-write
set. After the client has enough endorsements to meet the endorsement policy
requirements, then the client bundles the common read-write set with the signature
from the endorsing peers and sends everything to the ordering service, which orders
and commits the transactions into blocks and then to the ledger.

You can go to the Channels tab to view an instantiated chaincode’s endorsement
policy. See View an Endorsement Policy. You can’t modify an instantiated chaincode's
endorsement policy. If you need to change an endorsement policy, then you must
reinstantiate the chaincode or upgrade it to another version and specify a different
endorsement policy.

You must be an administrator to perform this task.

1. Go to the console and select the Chaincodes tab.

2. Locate the chaincode that you want to instantiate and begin the instantiation
process.

3. Expand the Endorsement Policy section. Click Add Identity to add members to
the policy as needed.

Chapter 7
Specify an Endorsement Policy

7-7

Field Description

MSP ID From the dropdown menu, select the endorser peer’s organization.

Role Select the corresponding peer role required by the endorsement policy.
Usually this will be member. You can find a peer’s role by viewing its
configuration information.

Policy
Expression
Mode

In most cases, you’ll use Basic. Select Advanced to provide an
expression string. See the Hyperledger Fabric documentation for
information about how to write a valid expression string.

Signed By Select how many members with endorsing peers (peers with
ReaderWriter permissions) on the channel must endorse the chaincode
transactions to make them valid.

4. Complete the other fields on the Instantiate Chaincode page as needed.

5. Click Instantiate.

View an Endorsement Policy
You can view an instantiated chaincode's endorsement policy.

You might need to view an instantiated chaincode's endorsement policy to see how it
was set up, how you need to choose transaction endorsers based on the policy, or to
help resolve an endorsement failure.

You can’t modify the endorsement policy for an instantiated chaincode. If you need to
change an endorsement policy, then you must reinstantiate the chaincode or upgrade
it to another version and specify a different endorsement policy.

1. Go to the console and select the Chaincodes tab.

The Chaincodes tab is displayed and the table lists the chaincodes installed on the
network.

2. Locate the chaincode that you want to view endorsement policy information for
and expand it in the table.

3. Click the chaincode version that you want.

The Chaincode Version Information page is displayed.

4. In the Instantiated on Channels tab, locate the channel that you want, click More
Actions, and select View Endorsement Policy.

The Chaincode Endorsement Policy page is displayed.

Find Information About Chaincodes
You can find information about the chaincodes in your network. For example, how
many peers the chaincode is installed on and if the chaincode has been instantiated.

You can’t delete a chaincode from the network.

1. Go to the console and select the Chaincodes tab.

The Chaincodes tab is displayed and the chaincode table lists the chaincodes and
versions installed on the network.

2. In the chaincode table, locate the chaincode that you want information for and
expand it to see information about its versions, path, how many peers it’s installed
on, and how many channels it’s instantiated on.

Chapter 7
View an Endorsement Policy

7-8

Note the following information:

• When you stop a peer node, Oracle Blockchain Platform removes the peer’s
listing on the Chaincodes tab.

• If you stop all peers that have the chaincode installed, then the Chaincodes
tab doesn’t list the chaincode. To list the chaincode, start at least one peer
node that has the chaincode installed on it.

3. Use the chaincode table as a starting point to perform chaincode-related tasks,
such as instantiate, enable it in the REST proxy, and upgrade to a new version.

Manage Chaincode Versions
Each chaincode that you install or upgrade has a version number. Once installed, a
chaincode and any of its versions can’t be deleted.

1. Go to the console and select the Chaincodes tab.

The Chaincodes tab is displayed and the chaincode table lists the chaincodes
installed on the network.

2. Locate the chaincode that you want version information for and expand it to see a
list of versions.

3. Click a version number. The Chaincode Version Information page is displayed.

4. Click the Installed on Peers pane to see which peers the chaincode is installed on.
You can click the peer to view more information about it.

5. Click the Instantiated on Channels pane to see which channels the chaincode is
instantiated on. You can click a channel to view more information about it.

From this pane, you can also instantiate a specific version of the chaincode
version. If the chaincode was instantiated on a channel, then you can view its
endorsement policy.

Note that you can instantiate different versions of a chaincode on different
channels.

6. (New in v19.1.3) Click the Private Data Collections pane to view the private data
collections that were added when the chaincode was instantiated.

Upgrade a Chaincode
If a developer modifies a chaincode’s source, then you’ll need to deploy it to a new
version of the chaincode. If needed, you can revert back to an older version of a
chaincode.

You can instantiate different versions of the same chaincode on different channels.

You must be an administrator to perform this task.

1. Go to the console and select the Chaincodes tab.

The Chaincodes tab is displayed and the table lists all of the chaincodes installed
on the network.

2. Locate the chaincode that you want to upgrade, click More Actions, and select
Upgrade. The More Actions button only displays for chaincodes that have been
instantiated.

Chapter 7
Manage Chaincode Versions

7-9

The Upgrade Chaincode Step 1 of 2: Select a version page is displayed.

3. Select a version source. Note the following information:

• Click Select from existing versions if you want to upgrade to a version that
is already on the network. You might choose this option because the most
current chaincode version contains errors and you need to temporarily use an
older version until the chaincode can be fixed. Because the older version is on
your system, the chaincode is already installed on the peers.

• Choose Install a new version to upload the chaincode file. In the Version
field enter a version number and in the Target Peers field, select the peers
to install the chaincode on. In the Chaincode Source field, click Upload
Chaincode File and browse for the chaincode ZIP file to upload.

4. Click Next.

The Upgrade Chaincode Step 2 of 2: Upgrade page is displayed.

5. Decide if you want to instantiate the chaincode version now or later.

• Click Close to close the wizard and upgrade later.

• To upgrade now, select the channel to upgrade the chaincode on and the
peers to instantiate the chaincode to. If required, enter initialize parameters, an
endorsement policy, and transient map. See Specify an Endorsement Policy.
Click Next.

The chaincode is upgraded.

What Are Private Data Collections?
(19.1.3 and later versions only) Private data collections specify subsets of
organizations that endorse, commit, or query private data on the channel.

Use private data collections in cases where you want a group of organizations on the
channel to share data and to prevent the other organizations on the channel from
seeing the data. Private data is distributed peer to peer and not by blocks, so the
transaction data is kept confidential from the ordering service. Collections help you
reduce the number of channels and their required maintenance on your network.

The primary components in a private data collection are:

• The private data that you specify in your private data collection definition. Private
data is sent with the gossip protocol from peer to peer within the organizations that
you specify in your policy. Private data is stored in a private database on the peer.
The ordering service isn't used and can't see the private data.

• A hash of the data, which is endorsed, ordered, and written to each peer on
the channel. This hash is evidence of the transaction and can be used for audit
purposes.

When you instantiate a chaincode, you can associate it with one or more private data
collections. Also when you instantiate a chaincode, you should specify a transient map
to pass the private data from the client to the peers for endorsement. The collection
definition specifies who can persist data, how many peers the data is distributed to,
how many peers are required to disseminate the private data, and how long the private
data is persisted in the private database.

Chapter 7
What Are Private Data Collections?

7-10

Add Private Data Collections
(19.1.3 and later versions only) You can add private data collections to channels.
Private data collections specify subsets of organizations that endorse, commit, or
query private data on the channel.

Use private data collections in cases where you want a group of organizations on the
channel to share data within a transaction and to prevent the other organizations on
the channel from seeing the data.

If you're going to use private data collections across the organizations in your network,
then you need to configure anchor peers. Anchor peers facilitate private data gossip
among the organizations. See Add an Anchor Peer.

You specify the private data collections when you instantiate the chaincode.

1. Go to the console and select the Chaincodes tab.

2. Locate the chaincode that you want to instantiate and begin the instantiation
process.

3. Expand the Private Data Collections section and add the collection definition as
needed.

Field Description

Collection Name Enter the collection's name. You'll reference
this name in the chaincode.

Policy Create the policy to specify which
organizations are included in the collection
and which peers can store the private data.

Each member listed in the policy must be
included in an OR signature policy list.

To support read/write transactions, the
private data distribution policy must
contain more organizations than the
chaincode endorsement policy because
peers must have the private data to endorse
transactions. For example, in a channel with
ten organizations, five of the organizations
are included in a private data collection
policy, but the endorsement policy requires
three organizations to endorse a transaction.

Chapter 7
Add Private Data Collections

7-11

Field Description

Peers Required Enter the number of peers that each
endorsing peer must distribute private data
to before the peer signs the endorsement
and returns the proposal response.

Oracle recommends that you set this value
to 1 or more peers to:
• Ensure redundancy of the private data

on multiple peers in the network.
• Ensure that private data is available

if the endorsing peers become
unavailable.

Note that setting this value to 0 means that
distribution isn't required. However, if the
Max Peer Count field is set to greater than
0, then private data distribution might still
occur.

Max Peer Count Enter the maximum number of peers that
the current endorsing peer attempts to
distribute the data to. This is to ensure
redundancy so that peers are available
between endorsement time and commit time
to pull the private data if an endorsing peer
isn't available.

If you set this value to 0, then the
private data isn't distributes at the time
of endorsement. This causes private data
pulls against the endorsing peers on all
authorized peers at commit time.

Block to Live Enter the length in number of blocks that you
want data to reside on the private database.
The data is purged when the number of
blocks is reached.

Set this value to 0 if you never want to purge
the data.

Note that a peer can fail to pull
private data from another peer if
a private data collection's blocktolive
value is less than 10, and its
requiredPeerCount and maxPeerCount are
less than the total number of peers
in the channel. This is a known
Hyperledger Fabric issue. See https://
jira.hyperledger.org/browse/FAB-11889.

4. Click Add New Collection and your collection's information is displayed in the
private data collection table.

5. If needed, specify other collections.

6. Complete the other fields on the Instantiate Chaincode page as needed.

7. Click Instantiate.

Chapter 7
Add Private Data Collections

7-12

https://jira.hyperledger.org/browse/FAB-11889
https://jira.hyperledger.org/browse/FAB-11889

View Private Data Collections
(19.1.3 and later versions only) You can view information about a chaincode's private
data collections.

After you instantiate a chaincode, you might need to view its private data collections to
see how they were defined.

You can’t modify the private data collections for an instantiated chaincode. If you need
to change the private data collections, then you need to upgrade the chaincode and
specify new private data collections.

1. Go to the console and select the Chaincodes tab.

The Chaincodes tab is displayed and the table lists the chaincodes installed on the
network.

2. Locate the chaincode that you want to view private data collections for and expand
it in the table.

3. Click the chaincode version that you want.

The Chaincode Version Information page is displayed.

4. In the Private Data Collections tab, locate the collection that you want to view.

Chapter 7
View Private Data Collections

7-13

8
Develop Blockchain Applications

Blockchains require smart contracts (chaincode) to update the ledger. In addition, you
will also require a client application that utilizes either the Oracle Blockchain Platform
REST API or native Hyperledger Fabric SDK to interact with the blockchain directly.
There are other operational and administrative tasks to consider, namely the creation
of peers and channels and installation of chaincode.

Topics

• Before You Develop an Application

• Use the Hyperledger Fabric SDKs to Develop Applications

• Use the REST APIs to Develop Applications

Before You Develop an Application
Before you write an application, download and use the sample applications, and
ensure that you've the correct certificates and privileges to run an application.

Oracle Blockchain Platform provides downloadable samples that help you understand
how to write chaincodes and applications. See:

• What Are Chaincode Samples?

• Explore Oracle Blockchain Platform Using Samples

Oracle Blockchain Platform uses Hyperledger Fabric as its foundation. Use the
Hyperledger Fabric documentation to help you write applications. The Key Concepts
and Tutorials sections should be read before you write you own application: Welcome
to Hyperledger Fabric.

Prerequisites for Application Development

A user ID and password for the application user must exist in your IDCS server.
Depending on the functions in the application, this user must have the following:

• To install and instantiate chaincode:

– You must have administrative access in order to install or deploy chaincode.

– You must export the admincerts, cacerts, and tlscacerts certificates as
described in Export Certificates so that they can be placed in your application
in the peer and orderer nodes crypto folders.

– You must export the admin credentials similarly to how you exported the
certificates (from the action menu, select Export Admin Credential). This will
download a ZIP file containing the signed certificate and keystore files that
need to be placed in your application in the peer and orderer nodes crypto
folders.

• To run operations against an installed and instantiated chaincode:

8-1

https://hyperledger-fabric.readthedocs.io/en/latest/
https://hyperledger-fabric.readthedocs.io/en/latest/

– You must export the admincerts, cacerts, and tlscacerts certificates as
described in Export Certificates so that they can be placed in your application
in the peer node crypto folders.

– You must export the tlscacerts certificate for the orderer node as described in
Join the Participant or Scaled-Out OSNs to the Founder's Ordering Service so
that it can be placed in your application.

– The chaincode you’re invoking must be installed and deployed to a channel
and node that your user ID has access to.

– A REST proxy node must be configured and the chaincode enabled for REST
proxy access. The user ID and password for the node must be provided.

• To run functions against a REST API endpoint:

– The chaincode you’re invoking must be installed and deployed to a channel
and node that your user ID has access to.

– A REST proxy node must be configured and the chaincode enabled for REST
proxy access. The user ID and password for the node must be provided.

Use the Hyperledger Fabric SDKs to Develop Applications
Applications use a software development kit (SDK) to access the APIs that permit
queries and updates to the ledger. You can install and use the Hyperledger Fabric
SDKs to develop applications for Oracle Blockchain Platform.

The REST APIs provided by Oracle Blockchain Platform have been created with
maximum flexibility in mind; you can invoke a transaction, invoke a query, or view the
status of a transaction. See REST API for Oracle Blockchain Platform.

However this means that you'll likely want to wrap the existing API endpoints in an
application to provide object-level control. Applications can contain much more fine-
grained operations.

SDK Versions

• If your Oracle Blockchain Platform founder instances were created using 19.2.3 or
later, they support V1.4 of the Hyperledger Fabric SDKs.

Installing the Hyperledger Fabric SDK for Node.js

Information about how to use the Fabric SDK for Node.js can be found here:
Hyperledger Fabric SDK for Node.js documentation

On the Developer Tools tab, open the Application Development pane.

• You can install the Hyperledger Fabric Node.js SDK from this tab.

• If you've previously installed it you must modify it to work with Oracle Blockchain
Platform following the instructions in Update the Hyperledger Fabric SDKs to Work
with Oracle Blockchain Platform.

Installing the Hyperledger Fabric SDK for Java

Information about how to use the Fabric SDK for Java can be found here: Hyperledger
Fabric SDK for Java documentation

On the Developer Tools tab, open the Application Development pane.

• You can install the Hyperledger Fabric Java SDK from this tab.

Chapter 8
Use the Hyperledger Fabric SDKs to Develop Applications

8-2

https://hyperledger.github.io/fabric-sdk-node/
https://github.com/hyperledger/fabric-sdk-java
https://github.com/hyperledger/fabric-sdk-java

• If you've previously installed it you must modify it to work with Oracle Blockchain
Platform following the instructions in Update the Hyperledger Fabric SDKs to Work
with Oracle Blockchain Platform.

Install a build tool such as Apache Maven.

Structuring your Application

Your Java application should be structured similar to the following:

/Application
 /artifacts
 /cypto
 /orderer
 Contains the certificates required for the application to act
on the orderer node
 In participant instances only contains TLS certificates
 /peer
 Contains the certificates required for the application to act
on the peer node
 /src
 chaincode.go if installing and deploying chaincode to the
blockchain
 /java
 pom.xml or other build configuration files
 /resources
 Any resources used by the Java code, including artifacts such as
the endorsement policy yaml file and blockchain configuration properties
 /src
 Java source files

Your Node.js application should be structured similar to the following:

/Application
 /artifacts
 /cypto
 /orderer
 Contains the certificates required for the application to act
on the orderer node
 In participant instances only contains TLS certificates
 /peer
 Contains the certificates required for the application to act
on the peer node
 /src
 chaincode.go if installing and deploying chaincode to the
blockchain
 /node
 package.json file
 application.js
 /app
 Any javascript files called by the application
 /tools

Running the application

Chapter 8
Use the Hyperledger Fabric SDKs to Develop Applications

8-3

You’re now ready to run and test the application. In addition to any status messages
returned by your application, you can check the ledger in the Oracle Blockchain
Platform console to see your changes:

1. Go to the Channels tab in the console and locate and click the name of the
channel running the blockchain.

2. In the channel’s Ledger pane, view the chaincode’s ledger summary.

Update the Hyperledger Fabric SDKs to Work with Oracle Blockchain
Platform

There's an incompatibility between an OCI infrastructure component and the Node.js
and Java SDKs provided with Fabric. Follow the steps in this topic to correct this
problem.

Methods of updating the Fabric SDKs

There are two ways of updating the SDK:

• Using Oracle scripts to download and install the Node.js SDK or Java SDK which
will patch the code as it installs.

• Manually as described in this topic.

To use the scripts, on the console’s Developer Tools tab, select the Application
Development pane. The links to download both the Node.js SDK and Java SDK have
updates built in which will patch the code as it installs.

• Fabric Java SDK: We’ve created an updated grpc-netty-1.23.0.jar file, which is
the module referenced by the Java SDK which requires modifications.

• Fabric Node.js SDK: We have created the npm_bcs_client.sh script to replace the
standard Fabric npm install operations that users would perform to download
and install the Node.js Fabric client package. The script runs the same npm
command, but it also patched the needed component and rebuilds it.

Manually updating the Fabric Node.js SDK

Do the following to rebuild the grpc-node module to connect the peers and orderers
with grpcs client (via TLS).

1. Install fabric-client without executing the grpc module's build script:

npm install --ignore-scripts fabric-client

2. On Windows, you need to disable ALPN explicitly

• Update node_modules/grpc/binding.gyp by changing:

'_WIN32_WINNT=0x0600'

to

'_WIN32_WINNT=0x0600','TSI_OPENSSL_ALPN_SUPPORT=0'

• Due to the issue outlined in https://github.com/nodejs/node/issues/
4932, to build grpc-node on Windows, you must first remove

Chapter 8
Use the Hyperledger Fabric SDKs to Develop Applications

8-4

https://github.com/nodejs/node/issues/4932
https://github.com/nodejs/node/issues/4932

<node_root_dir>/include/node/openssl/. Run the following to find
your <node_root_dir>:

node-gyp configure

3. Rebuild grpc

npm rebuild --unsafe-perm --build-from-source

You can now install any other modules you need and run the project.

Manually updating the Fabric Java SDK

For fabric-sdk-java, do the following steps to rebuild the grpc-netty package to
connect the peers and orderers with grpcs client (via tls). grpc-netty is a sub-project
of grpc-java.

1. Install project dependencies:

mvn install

2. Download grpc-java source code:

git clone https://github.com/grpc/grpc-java.git

3. Find the grpc version that your fabric-sdk-java uses, and checkout the code.
Different versions of fabric-sdk-java may use different version of grpc. Check
pom.xml to find out what grpc version your fabric-sdk-java uses. For example,
fabric-sdk-java 1.4.11 uses grpc-java 1.23.0 as found in its pom.xml:
https://github.com/hyperledger/fabric-sdk-java/blob/v1.4.11/pom.xml.

In the grpc-java directory, checkout the version of grpc that fabric-sdk-java
uses:

git checkout -b v1.23.0

4. Change the code to avoid an alpn error from the server side.

• Change the target code of grpc-java_root/netty/src/main/java/io/grpc/
netty/ProtocolNegotiators.java

• In the function userEventTriggered0 change:

if
(NEXT_PROTOCOL_VERSIONS.contains(handler.applicationProtocol()))
{

to

if (handler.applicationProtocol() == null ||
NEXT_PROTOCOL_VERSIONS.contains(handler.applicationProtocol())) {

Chapter 8
Use the Hyperledger Fabric SDKs to Develop Applications

8-5

https://github.com/hyperledger/fabric-sdk-java/blob/v1.4.11/pom.xml#L31

The code will look similar to:

 @Override
 protected void userEventTriggered0(ChannelHandlerContext
ctx, Object evt) throws Exception {
 ...
 if (handler.applicationProtocol() == null ||
NEXT_PROTOCOL_VERSIONS.contains(handler.applicationProtocol())) {
 // Successfully negotiated the protocol.
 logSslEngineDetails(Level.FINER, ctx, "TLS
negotiation succeeded.", null);
 ...
 }

5. Build the project to generate the target patched package. Use gradle to build the
grpc-java project. Or you can just rebuild the grpc-netty sub-project in the grpc
netty directory gradle build.

After the build is done, you can get the target patched jar package in the directory
grpc-java\netty\build\libs\grpc-netty-1.23.0.jar.

6. Add the patched package into your Maven local repository.

Replace official grpc-netty jar package with the patched package in either of the
following two ways:

• Use Maven to install the package by local file:

mvn install:install-
file -Dfile=local_patched_grpc_netty_package_root/grpc-
netty-1.23.0.jar -DgroupId=io.grpc -DartifactId=grpc-netty -
Dversion=1.23.0 -Dpackaging=jar

You must keep the target groupid, artifactid, and version the same as the
package you want to replace.

• Manually replace your package. Go to the local Maven repository, find the
directory where the target package is located, and replace the package with
patched package.

7. Run the project.

Use the REST APIs to Develop Applications
The REST APIs provided by Oracle Blockchain Platform have been created with
maximum flexibility in mind; you can invoke a transaction, invoke a query, or view the
status of a transaction. However this means that you'll likely want to wrap the existing
API endpoints in an application to provide object-level control. Applications can contain
much more fine-grained operations.

Any application using the REST APIs requires the following:

• The chaincode name and version.

• The REST server URL and port, and the user ID and password for the REST
node.

• Functions to invoke transactions against or query the ledger.

Chapter 8
Use the REST APIs to Develop Applications

8-6

See REST API for Oracle Blockchain Platform for information on the existing
operations, including examples and usage syntax.

Structuring your Application

Your REST API application should be structured similar to the following:

/Application
 /artifacts
 /crypto
 /orderer
 Contains the certificates required for the application to act
on the orderer node
 In participant instances only contains TLS certificates
 /peer
 Contains the certificates required for the application to act
on the peer node
 /src
 /REST
 Application script containing REST API calls

Chapter 8
Use the REST APIs to Develop Applications

8-7

9
Work With Databases

This topic contains information to help you understand how to query the state
database and how to create and configure a rich history database.

Topics:

• Query the State Database

• Create the Rich History Database

Query the State Database
This topic contains information to help you understand how to query the state
database.

Topics:

• What's the State Database?

• Supported Rich Query Syntax

• State Database Indexes

• Differences in the Validation of Rich Queries

What's the State Database?
The blockchain ledger’s current state data is stored in the state database.

When you develop Oracle Blockchain Platform chaincodes, you can extract data from
the state database by executing rich queries. Oracle Blockchain Platform supports rich
queries by using the SQL rich query syntax and the CouchDB find expressions. See
SQL Rich Query Syntax and CouchDB Rich Query Syntax.

Hyperledger Fabric doesn’t support SQL rich queries. If your Oracle Blockchain
Platform network contains Hyperledger Fabric participants, then you need to make
sure to do the following:

• If your chaincodes contain SQL rich query syntax, then those chaincodes are
installed only on member peers using Oracle Blockchain Platform.

• If a chaincode needs to be installed on Oracle Blockchain Platform and
Hyperledger Fabric peers, then use CouchDB syntax in the chaincodes and
confirm that the Hyperledger Fabric peers are set up to use CouchDB as their
state database repository. Oracle Blockchain Platform can process CouchDB.

How Does Oracle Blockchain Platform Work with Berkeley DB?

Oracle Blockchain Platform uses Oracle Berkeley DB as the state database. Oracle
Blockchain Platform creates relational tables in Berkeley DB based on the SQLite
extension. This architecture provides a robust and performant way to validate SQL rich
queries.

9-1

For each channel chaincode, Oracle Blockchain Platform creates a Berkeley DB table.
This table stores state information data, and contains at least a key column named
key, and a value column named value or valueJson, depending on whether you’re
using JSON format data.

Column Name Type Description

key TEXT Key column of the state table.

value TEXT Value column of the state table.

valueJson TEXT JSON format value column of the
state table.

Note that the valueJson and value columns are mutually-exclusive. So, if the
chaincode assigns a JSON value to a key, then the valueJson column will hold that
value, and the value column will be set to null. If the chaincode assigns a non-JSON
value to a key, then the valueJson column will be set to null, and the value column will
hold the value.

Example of a State Database

These are examples of keys and their values from the Car Dealer sample’s state
database:

key value valueJson

abg1234 null {"docType": "vehiclePart", "serialNumber":
"abg1234", "assembler": "panama-parts",
"assemblyDate": 1502688979, "name": "airbag
2020", "owner": "Detroit Auto", "recall": false,
"recallDate": 1502688979}

abg1235 null {"docType": "vehiclePart", "serialNumber":
"abg1235", "assembler": "panama-parts",
"assemblyDate": 1502688979, "name": "airbag
4050", "owner": "Detroit Auto", "recall": false,
"recallDate": 1502688979}

ser1236 null {"docType": "vehiclePart", "serialNumber":
"ser1236", "assembler": "panama-parts",
"assemblyDate": 1502688979, "name":
"seatbelt 10020", "owner": "Detroit Auto",
"recall": false, "recallDate": 1502688979}

bra1238 null {"docType": "vehiclePart", "serialNumber":
"bra1238", "assembler": "bobs-bits",
"assemblyDate": 1502688979, "name":
"brakepad 4200", "owner": "Detroit Auto",
"recall": false, "recallDate": 1502688979}

dtrt10001 null {"docType": "vehicle", "chassisNumber":
"dtrt10001", "manufacturer": "Detroit Auto",
"model": "a coupe", "assemblyDate":
1502688979, "airbagSerialNumber":
"abg1235", "owner": "Sam Dealer", "recall":
false, "recallDate": 1502688979

State Database Indexes
The state database can contain a large amount of data. In such cases Oracle
Blockchain Platform uses indexes to improve data access.

Chapter 9
Query the State Database

9-2

Default Indexes

When a chaincode is deployed, Oracle Blockchain Platform creates two indexes.

• Key index — Created on the key column.

• Value index — Created on the value column.

Custom Indexes

In some cases, you might need to create custom indexes. You define these indexes
using any expression that can be resolved in the context of the state table. Custom
indexes created against Berkeley DB rely on the SQLite syntax, but they otherwise
follow the same CouchDB implementation provided by Hyperledger Fabric.

Note that you can use custom indexes to dramatically improve the performance of
WHERE and ORDER BY statements on large data sets. Because using custom
indexes slows down data insertions, you should use them judiciously.

Each custom index is defined as an array of expressions, which support compound
indexes, expressed as a JSON document inside one file (note that there's one index
per file). You must package this file with the chaincode in a folder named “indexes”
in the following directory structure: statedb/relationaldb/indexes. See How to
add CouchDB indexes during chaincode installation.

Example Custom Indexes

The custom index examples in this section use the Car Dealer sample.

Example 1 —This example indexes the use of the json_extract expression in the
context of WHERE and ORDER BY expressions.

{"indexExpressions": ["json_extract(valueJson, '$.owner')"]}

For example:

SELECT … FROM … ORDER BY json_extract(valueJson, '$.owner')

Example 2 — This example indexes the compound use of the two json_extract
expressions in the context of WHERE and ORDER BY expressions.

{"indexExpressions": ["json_extract(valueJson, '$.docType')",
"json_extract(valueJson, '$.owner')"]}

For example:

SELECT … FROM … WHERE json_extract(valueJson, '$.docType') = 'vehiclePart'
AND json_extract(valueJson, '$.owner') = 'Detroit Auto'

Example 3 — This example creates two indexes: the index described in Example
1 and the index described in Example 2. Note that each JSON structure needs to
be included in a separate file. Each file describes a single index: a simple index like
Example 1, or a compound index like Example 2.

Index 1: {"indexExpressions": ["json_extract(valueJson, '$.owner')"]}

Index 2: {"indexExpressions": ["json_extract(valueJson, '$owner')",
"json_extract(valueJson, '$.docType')"]}

In the following example, Index 2 is applied to the AND expression in the WHERE portion
of the query, while Index 1 is applied to the ORDER BY expression:

Chapter 9
Query the State Database

9-3

https://hyperledger.github.io/fabric-sdk-node/release-1.4/tutorial-metadata-chaincode.html
https://hyperledger.github.io/fabric-sdk-node/release-1.4/tutorial-metadata-chaincode.html

SELECT … FROM … WHERE json_extract(valueJson, '$.docType') = 'vehiclePart'
AND json_extract(valueJson, '$.owner') = 'Detroit Auto' ORDER BY
json_extract(valueJson, '$.owner')

JSON Document Format

The JSON document must be in the following format:

{"indexExpressions": [expr1, ..., exprN]}

For example:

{"indexExpressions": ["json_extract(valueJson, '$.owner')"]}

Differences in the Validation of Rich Queries
In some cases, the standard Hyperledger Fabric with CouchDB rich query and the
Oracle Berkeley DB rich query behave differently.

In standard Hyperledger Fabric with CouchDB, each key and value pair returned by
the query is added to the transaction's read-set and is validated at validation time
and without re-executing the query. In Berkeley DB, the returned key and value pair
isn’t added to the read-set, but the rich query's result is hashed in a Merkle tree and
validated against the re-execution of the query at validation time.

Native Hyperledger Fabric doesn’t provide data protection for rich query. However,
Berkeley DB contains functionality that protects and validates the rich query by adding
the Merkle tree hash value into the read-set, re-executing the rich query, and at the
validation stage re-calculating the Merkle tree value. Note that because validation is
more accurate in Oracle Blockchain Platform with Berkeley DB, chaincode invocations
are sometimes flagged for more frequent phantom reads.

Supported Rich Query Syntax
Oracle Blockchain Platform supports two types of rich query syntax that you can use to
query the state database: SQL rich query and CouchDB rich query.

Topics:

• SQL Rich Query Syntax

• CouchDB Rich Query Syntax

SQL Rich Query Syntax
The Berkeley DB JSON extensions are in the form of SQL functions.

Before You Begin

Note the following information:

• You can only access the channel chaincode (<STATE>) that you’re executing your
query from.

• Only the SELECT statement is supported.

• You can’t modify the state database table.

• A rich query expression can have only one SELECT statement.

Chapter 9
Query the State Database

9-4

• The examples in this topic are just a few ways that you can write your rich query.
You've access to the usual full SQL syntax to query a SQL database.

• You've access to the JSON1 Extension (SQLite extension). See JSON1 Extension
and SQL As Understood by SQLite.

If you need more information about writing and testing chaincodes, see Develop
Chaincodes.

How to Refer to the State Database in Queries

The state database table name is internally managed by Oracle Blockchain Platform,
so you don't need to know the state database’s physical name when you write a
chaincode.

Instead, you must use the <STATE> alias to refer to the table name. For example:
select key, value from <STATE>.

Note that the <STATE> alias is not case-sensitive, so you can use either <state>,
<STATE>, or something like <StAtE>.

Retrieve All Keys

Use this syntax:

SELECT key FROM <STATE>

For example, if you use this syntax to query the Car Dealer sample, then you’ll get the
following list of keys:

key

abg1234

abg1235

ser1236

bra1238

dtrt10001

Retrieve All Keys and Values Ordered Alphabetically by Key

Use this syntax:

SELECT key AS serialNumber, valueJson AS details FROM <state> ORDER BY
key

For example, if you use this syntax to query the Car Dealer sample, then you’ll get the
following results:

serialNu
mber

details

abg1234 {"docType": "vehiclePart", "serialNumber": "abg1234", "assembler": "panama-
parts", "assemblyDate": 1502688979, "name": "airbag 2020", "owner": "Detroit
Auto", "recall": false, "recallDate": 1502688979}

Chapter 9
Query the State Database

9-5

https://www.sqlite.org/json1.html
https://www.sqlite.org/lang_select.html

serialNu
mber

details

abg1235 {"docType": "vehiclePart", "serialNumber": "abg1235", "assembler": "panama-
parts", "assemblyDate": 1502688979, "name": "airbag 4050", "owner": "Detroit
Auto", "recall": false, "recallDate": 1502688979}

bra1238 {"docType": "vehiclePart", "serialNumber": "bra1238", "assembler": "bobs-bits",
"assemblyDate": 1502688979, "name": "brakepad 4200", "owner": "Detroit Auto",
"recall": false, "recallDate": 1502688979}

dtrt10001 {"docType": "vehicle", "chassisNumber": "dtrt10001", "manufacturer": "Detroit
Auto", "model": "a coupe", "assemblyDate": 1502688979, "airbagSerialNumber":
"abg1235", "owner": "Sam Dealer", "recall": false, "recallDate": 1502688979

ser1236 {"docType": "vehiclePart", "serialNumber": "ser1236", "assembler": "panama-parts",
"assemblyDate": 1502688979, "name": "seatbelt 10020", "owner": "Detroit Auto",
"recall": false, "recallDate": 1502688979}

Retrieve All Keys and Values Starting with “abg”

Use this syntax:

SELECT key AS serialNumber, valueJson AS details FROM <state> WHERE key
LIKE 'abg%'SELECT key, value FROM <STATE>

For example, if you use this syntax to query the Car Dealer sample, then you’ll get the
following results:

serialNu
mber

details

abg1234 {"docType": "vehiclePart", "serialNumber": "abg1234", "assembler": "panama-
parts", "assemblyDate": "1502688979", "name": "airbag 2020", "owner": "Detroit
Auto", "recall": "false", "recallDate": "1502688979"}

abg1235 {"docType": "vehiclePart", "serialNumber": "abg1235", "assembler": "panama-
parts", "assemblyDate": "1502688979", "name": "airbag 4050", "owner": "Detroit
Auto", "recall": "false", "recallDate": "1502688979"}

Retrieve All Keys with Values Containing a Vehicle Part Owned by "Detroit Auto"

Use this syntax:

SELECT key FROM <state> WHERE json_extract(valueJson, '$.docType') =
'vehiclePart' AND json_extract(valueJson, '$.owner') = 'Detroit Auto'

For example, if you use this syntax to query the Car Dealer sample, then you’ll get the
following list of keys:

key

abg1234

abg1235

ser1236

bra1238

Retrieve Model and Manufacturer for all Cars Owned by "Sam Dealer"

Chapter 9
Query the State Database

9-6

Use this syntax:

SELECT json_extract(valueJson, '$.model') AS model,
json_extract(valueJson, '$.manufacturer') AS manufacturer FROM
<state> WHERE json_extract(valueJson, '$.docType') = 'vehicle' AND
json_extract(valueJson, '$.owner') = 'Sam Dealer'

For example, if you use this syntax to query the Car Dealer sample, then you’ll get the
following results:

model manufacturer

a coupe Detroit Auto

If the state value is JSON array, you may use this syntax to retrieve model and
manufacturer for all cars owned by "Sam Dealer":

SELECT json_extract(j.value, '$.model') AS model, json_extract(j.value,
'$.manufacturer') AS manufacturer FROM <state> s,
json_each(json_extract(s.valueJson,'$')) j WHERE json_valid(j.value) AND
json_extract(j.value, '$.owner') = 'Sam Dealer'

CouchDB Rich Query Syntax
Use the information in this topic if you’re migrating your chaincodes containing
CouchDB syntax to Oracle Blockchain Platform, or if you need to write chaincodes
to install on Hyperledger Fabric peers participating in an Oracle Blockchain Platform
network.

If you’re writing a new chaincode, then Oracle recommends that you use SQL rich
queries to take advantage of the performance benefits that Oracle Blockchain Platform
with Berkeley DB provides.

If you need more information about writing and testing chaincodes, see Develop
Chaincodes.

Unsupported Query Parameters and Selector Syntax

Oracle Blockchain Platform doesn’t support the use_index parameter. If used, Oracle
Blockchain Platform ignores this parameter, and it will automatically pick the indexes
defined on the StateDB in question.

Parameter Type Description

use_index json Instructs a query to use a specific
index.

Retrieve All Models, Manufacturers, and Owners of Cars, and Order Them by
Owner

Use this expression:

{
 "fields": ["model", "manufacturer", "owner"],
 "sort": [
 "owner"

Chapter 9
Query the State Database

9-7

]
}

Retrieve Model and Manufacturer for All Cars Owned by “Sam Dealer”

Use this expression:

{
 "fields": ["model", "manufacturer"],
 "selector": {
 "docType" : "vehicle",
 "owner" : "Sam Dealer"
 }
}

Create the Rich History Database
This topic contains information to help you specify an Oracle database connection and
choose channels to create the rich history database. You’ll use this database to make
analytics reports and visualizations of your ledger’s activities.

Topics:

• What's the Rich History Database?

• Create the Oracle Database Classic Cloud Service Connection String

• Enable and Configure the Rich History Database

• Modify the Connection to the Rich History Database

• Configure the Channels that Write Data to the Rich History Database

• Monitor the Rich History Status

• Limit Access to Rich History

• Rich History Database Tables and Columns

What's the Rich History Database?
The rich history database is external to Oracle Blockchain Platform and contains data
about the blockchain ledger’s transactions on the channels you select. You use this
database to create analytics reports and visualization about your ledger’s activities.

For example, using the rich history database, you could create analytics to learn the
average balance of all of the customers in your bank over some time interval, or how
long it took to ship merchandise from a wholesaler to a retailer.

Internally, Oracle Blockchain Platform uses the Hyperledger Fabric history database to
manage the ledger and present ledger transaction information to you in the console.
Only the chaincodes can access this history database, and you can’t expose the
Hyperledger Fabric history database as a data source for analytical queries. The rich
history database uses an external Oracle database and contains many details about
every transaction committed on a channel. This level of data collection makes the
rich history database an excellent data source for analytics. For information about the

Chapter 9
Create the Rich History Database

9-8

data that the rich history database collects, see Rich History Database Tables and
Columns.

You can only use an Oracle database such as Oracle Autonomous Data Warehouse
or Oracle Database Classic Cloud Service with Oracle Cloud Infrastructure to create
your rich history database. You use the Oracle Blockchain Platform console to provide
the connection string and credentials to access and write to the Oracle database. Note
that the credentials you provide are the database’s credentials and Oracle Blockchain
Platform doesn’t manage them. After you create the connection, you’ll select the
channels that contain the ledger data that you want to include in the rich history
database. See Enable and Configure the Rich History Database.

You can use standard tables or blockchain tables to store the rich history database.
Blockchain tables are tamperproof append-only tables, which can be used as a secure
ledger while also being available for transactions and queries with other tables. For
more information, see Oracle Blockchain Table.

You can use any analytics tool, such as Oracle Analytics Cloud or Oracle Data
Visualization Cloud Service, to access the rich history database and create analytics
reports or data visualizations.

Create the Oracle Database Classic Cloud Service Connection String
You must collect information from the Oracle Database Classic Cloud Service
deployed on Oracle Cloud Infrastructure to build the connection string required by
the rich history database. You must also enable access to the database through port
1521.

Find and Record Oracle Database Classic Cloud Service Information

The information you need to create a connection to the Oracle Database Classic
Cloud Service is available in the Oracle Cloud Infrastructure Console.

1. From the Infrastructure Console, click the navigation menu in the top left corner,
and then click Database.

2. Locate the database that you want to connect to and record the Public IP
address.

3. Click the name of the database that you want to connect to and record the values
in these fields:

• Database Unique Name

• Host Domain Name

• Port

4. Find a username and password of a database user with permissions to read from
this database, and make a note of these. For example, the user SYSTEM.

Enable Database Access Through Port 1521

Add an ingress rule that enables the rich history database to access the database
through port 1521.

1. In the Oracle Cloud Infrastructure home page, click the navigation icon and then
under Databases click DB Systems.

2. Click the database that you want to connect to.

3. Click the Virtual Cloud Network link.

Chapter 9
Create the Rich History Database

9-9

4. Navigate to the appropriate subnet, and under Security Lists, click Default
Security List For <Target Database>.

The Security List page is displayed.

5. Click Edit All Rules.

6. Add an ingress rule to allow any incoming traffic from the public internet to reach
port 1521 on this database node, with the following settings:

• SOURCE CIDR: 0.0.0.0/0

• IP PROTOCOL: TCP

• SOURCE PORT RANGE: All

• DESTINATION PORT RANGE: 1521

• Allows: TCP traffic for ports: 1521

Build the Connection String

After enabling access to the Oracle database, use the information you collected to
build the connection string in the Configure Rich History dialog.

Construct the connection string like this: <publicIP>:<portNumber>/<database unique
name>.<host domain name>

For example, 123.213.85.123:1521/
CustDB_iad1vm.sub05031027070.customervcnwith.oraclevcn.com

Ensure the Database User has Correct Privileges

In order for the rich history functionality to be able to manage its database sessions
and to recover from temporary database or network downtime, ensure the database
user registered with Oracle Blockchain Platform has the following two privileges:

grant select on v_$session to <user>;
grant alter system to <user>;

If the database user doesn't have those already, they will need to be granted by the
system database administrator.

Without these privileges Oracle Blockchain Platform will be able to replicate to the
database but it won't be able to recover from situations leading to a damaged
database session, preventing the rich history from catching up with recent transactions
for an extended period.

Enable and Configure the Rich History Database
Use the console to provide database connection information and select the channels
with the chaincode ledger data that you want to write to the rich history database. By
default channels aren’t enabled to write data to the rich history database.

Note the following information:

• Each blockchain network member configures its own rich history database.

• You must use an Oracle database. No other database types are supported.

• Each channel that writes to the rich history database must contain at least one
peer node.

Chapter 9
Create the Rich History Database

9-10

1. Enter connection and credential information for the Oracle database that you want
to use to store rich history information.

a. Go to the console and click the Options button and click Configure Rich
History. This button is located above the bar that contains the tabs that you
use to navigate to nodes, channels, and chaincodes.

The Configure Rich History dialog box is displayed.

b. Enter the user name and password required to access the Oracle database.

c. In the Connection String field, enter the connection string for the database
that you’ll use to store rich history data. What you enter here depends on the
Oracle database you’re using.

• If you’re using Oracle Autonomous Data Warehouse, then you’ll enter
something similar to <username>adw_high. To find Oracle Autonomous
Data Warehouse’s connection information, go to its credential wallet ZIP
file and open its TNS file.

• If you’re using Oracle Database Classic Cloud Service with Oracle Cloud
Infrastructure, see Create the Oracle Database Classic Cloud Service
Connection String.

• If you're using a non-autonomous Oracle database (a database that
doesn't use a credential wallet) and want to use the sys user to
connect to the database, then you must append ?as=sys[dba|asm|
oper] to the connection string. For example, 123.123.123.123:1521/
example.oraclevcn.com?as=sysdba

d. If you’re using an Oracle Cloud autonomous database instance (for example,
Oracle Autonomous Data Warehouse or Oracle Autonomous Transaction
Processing), then use the Wallet Package File field to upload the required
credential wallet ZIP file. This file contains client credentials and is generated
from the Oracle autonomous database.

Note:

When you open the Configure Rich History dialog box again after
you configure rich history, the wallet file name is not displayed. If
you update other settings, you must upload the wallet ZIP file again
before clicking Save. If you click Save while no wallet file name is
displayed, the configuration is updated not to use a wallet file.

e. To use blockchain tables to store the rich history database, select Use
Database Blockchain Table.

The underlying database must support blockchain tables. For more
information, see Oracle Blockchain Table.

• To specify the number of days to retain tables and rows, select Basic
Configuration, and then enter the number of days to retain tables and
rows. Enter 0 to retain tables or rows permanently. To prevent further
changes to the retention values, select Locked.

• To specify table and row retention by using a data definition language
(DDL) statement, select Advanced Configuration Query and then enter
the DDL statement.

f. Click Save.

Chapter 9
Create the Rich History Database

9-11

2. Enable rich history on the channels that contain the chaincode data that you want
to write to the rich history database.

a. Go to the console and select the Channels tab.

b. Locate the channel that contains the chaincode data that you want to write to
the rich history database. Click its More Options button and select Configure
Rich History.

The Configure Rich History dialog is displayed.

c. Click the Enable Rich History checkbox. To add transaction details to the rich
history database, select the details that you want added. Click Save.

The rich history database is configured, but tables are not created in the database
immediately. When the next relevant transaction or ledger change happens, the tables
are created in the rich history database.

Modify the Connection to the Rich History Database
You can change the rich history database’s connection information.

After tables are created in the database for a channel, modifying the rich history
configuration for the channel has no effect, even after you click Save, unless you
change the user name and password or the connection string. If you change the user
name and password, tables are created in the same database. If you change the
connection string and credentials, a different database is configured, and tables are
created after the next relevant transaction or ledger change. You cannot change a rich
history database from standard tables to blockchain tables, and you cannot change
retention times, unless you also change the credentials or connection string.

1. Go to the console and click the Options button and click Configure Rich History.
This button is located above the bar that contains the tabs that you use to navigate
to nodes, channels, and chaincodes.

2. If needed, update the user name and password required to access the Oracle
database.

3. If needed, in the Connection String field, modify the connection string for the
database that you’ll use to store rich history data. What you enter here depends on
the Oracle database you’re using.

• If you’re using Oracle Autonomous Data Warehouse, then you’ll enter
something similar to <username>adw_high. To find Oracle Autonomous Data
Warehouse’s connection information, go to its credential wallet ZIP file and
open its TNS file.

• If you’re using Oracle Database Classic Cloud Service with Oracle Cloud
Infrastructure, see Create the Oracle Database Classic Cloud Service
Connection String.

• If you're using a non-autonomous Oracle database (a database that
doesn't use a credential wallet) and want to use the sys user to
connect to the database, then you must append ?as=sys[dba|asm|
oper] to the connection string. For example, 123.123.123.123:1521/
example.oraclevcn.com?as=sysdba

4. If you’re using an Oracle Cloud autonomous database instance (for example,
Oracle Autonomous Data Warehouse or Oracle Autonomous Transaction
Processing), then use the Wallet Package File field to upload or re-upload the

Chapter 9
Create the Rich History Database

9-12

required credential wallet file. This file contains client credentials and is generated
from the Oracle autonomous database.

Note:

When you open the Configure Rich History dialog box again after you
configure rich history, the wallet file name is not displayed. If you update
other settings, you must upload the wallet ZIP file again before clicking
Save. If you click Save while no wallet file name is displayed, the
configuration is updated not to use a wallet file.

5. To use blockchain tables to store the rich history database, select Use Database
Blockchain Table.

The underlying database must support blockchain tables.

• To specify the number of days to retain tables and rows, select Basic
Configuration, and then enter the number of days to retain tables and rows.
Enter 0 to retain tables or rows permanently. To prevent further changes to the
retention values, select Locked.

• To specify table and row retention by using a data definition language (DDL)
statement, select Advanced Configuration Query and then enter the DDL
statement.

6. Click Save.

Configure the Channels that Write Data to the Rich History Database
You can enable channels to write chaincode ledger data to the rich history database,
and you can stop channels from writing data to the rich history database. You can also
configure an individual channel to use a different rich history database configuration
than the global setting.

You must specify the global information to connect to the rich history database before
you can select channels that write to the rich history database. See Enable and
Configure the Rich History Database.
After tables are created in the database for a channel, modifying the rich history
configuration for the channel has no effect, even after you click Save, unless you
change the user name and password or the connection string. If you change the user
name and password, tables are created in the same database. If you change the
connection string and credentials, a different database is configured, and tables are
created after the next relevant transaction or ledger change. You cannot change a rich
history database from standard tables to blockchain tables, and you cannot change
retention times, unless you also change the credentials or connection string.

1. Go to the console and select the Channels tab.

2. Locate the channel that you want to modify access for. Click its More Options
button and select Configure Rich History.

The Configure Rich History dialog is displayed.

3. To enable collection of rich history data for the channel, select the Enable Rich
History check box. To disable collection of rich history data for the channel, clear
the Enable Rich History check box.

Chapter 9
Create the Rich History Database

9-13

4. To configure the channel to collect rich history data using a different database or
different settings, select Use channel level configuration, and then specify the
settings to use.

For more information about the rich history settings, see Enable and Configure the
Rich History Database.

5. Click Save.

Monitor the Rich History Status
After configuring the rich history database, you can use the console to monitor the rich
history replication status.

1. Go to the console and select the Channels tab.

2. In the channels table, click the More Actions button for the channel that you want
to monitor, and then click Rich History Status.

The Rich History Status dialog box is displayed, which includes details about
replication and configuration status.

3. Click Refresh to display the latest status.

Limit Access to Rich History
You can use channel policies and access control lists (ACLs) to limit the organizations
that can configure the rich history database and retrieve rich history status or
configuration information.

By default, all organizations that have administrative access to a channel can
configure rich history collection and can retrieve rich history status and configuration
details. To limit this access to, for example, the founder organization, you create a
channel policy and apply the policy to the resources that control access.

1. Go to the console and select the Channels tab.

The Channels tab is displayed. The channel table contains a list of all of the
channels on your network.

2. In the channel table, click the name of the channel where you want to limit access.

3. Click Channel Policies, and then create a signature policy that includes the
organization members that will access the rich history functions.

For more information about channel policies, see What Are Channel Policies?.

For example, create a policy that includes only the identity of the founder
organization, not the identity of any participant organizations.

4. Click ACLs.

5. In the Resources table, locate the resource that you want to update to use the new
policy. Click Expand for the resource and then select the policy to assign to the
resource

The following table shows the resources that control access to rich history.

Resource Access control

obpadmin/
ConfigureRichHistoryChannel

Controls configuring, enabling, and disabling
rich history for a channel.

Chapter 9
Create the Rich History Database

9-14

Resource Access control

obpadmin/
GetRichHistoryChannelStatus

Controls retrieving rich history replication
status for a channel.

obpadmin/
GetRichHistoryChannelConfig

Controls retrieving the current rich history
configuration for a channel.

6. Click Update ACLs.

The rich history access is now controlled by the new policy. Organization members
that are not included in the new policy will receive an error message when they
attempt to access a resource that is controlled by the policy.

Rich History Database Tables and Columns
The rich history database contains three tables for each channel: history, state, and
latest height. You’ll query the history and state tables when you create analytics about
your chaincodes’ ledger transactions. If you've chosen to select any of the transaction
details when enabling the rich history, an additional table will be created with the
transaction details.

History Table

The <instanceName><channelName>_hist table contains ledger history. The data in
this table tells you the chaincode ID, key used, if the transaction was valid, the value
assigned to the key, and so on.

Note that the value and valueJson columns are used in a mutually exclusive way.
That is when a key value is valid json, then the value is set into the valueJson
column. Otherwise the value is set in the value column. The valueJson column is set
up as a json column in the database, which means users can query that column using
the usual Oracle JSON specific extensions.

Column Datatype

chaincodeId VARCHAR2 (256)

key VARCHAR2 (1024)

txnIsValid NUMBER (1)

value VARCHAR2 (4000)

valueJson CLOB

blockNo NUMBER NOT NULL

txnNo NUMBER NOT NULL

txnId VARCHAR2 (128)

txnTimestamp TIMESTAMP

txnIsDelete NUMBER (1)

State Table

The <instanceName><channelName>_state table contains data values replicated from
the state database. You’ll query the state table when you create analytics about the
state of the ledger.

Note that the value and valueJson columns are used in a mutually exclusive way.
That is when a key value is valid json, then the value is set into the valueJson
column. Otherwise the value is set in the value column. The valueJson column is set

Chapter 9
Create the Rich History Database

9-15

up as a json column in the database, which means users can query that column using
the usual Oracle JSON specific extensions.

Column Datatype

chaincodeId VARCHAR2 (256)

key VARCHAR2 (1024)

value VARCHAR2 (4000)

valueJson CLOB

blockNo NUMBER

txnNo NUMBER

Latest Height Table

The <instanceName><channelName>_last table is used internally by Oracle
Blockchain Platform to track the block height recorded in the rich history database.
It determines how current the rich history database is and if all of the chaincode
transactions were recorded in the rich history database. You can’t query this database
for analytics.

Transaction Details Table

The <instanceName><channelName>_more table contains attributes related to
committed transactions. When enabling the rich history database, you can select
which of these attributes you want to record in this table. The transaction details table
only captures information about endorser transactions - not configuration transactions
or any other kind of Hyperledger Fabric transactions.

Column Datatype

CHAINCODEID VARCHAR2 (256)

BLOCKNO NUMBER

TXNNO NUMBER

TXNID VARCHAR2(128)

TXNTIMESTAMP TIMESTAMP

SUBMITTERCN VARCHAR2(512)

SUBMITTERORG VARCHAR2(512)

SUBMITTEROU VARCHAR2(512)

CHAINCODETYPE VARCHAR2(32)

VALIDATIONCODENAME VARCHAR2(32)

ENDORSEMENTS CLOB

INPUTS CLOB

EVENTS CLOB

RESPONSESTATUS NUMBER(0)

RESPONSEPAYLOAD VARCHAR2(1024)

RWSET CLOB

BLOCKCREATORCN VARCHAR2(512)

BLOCKCREATORORG VARCHAR2(512)

BLOCKCREATOROU VARCHAR2(512)

CONFIGBLOCKNUMBER NUMBER(0)

CONFIGBLOCKCREATORCN VARCHAR2(512)

Chapter 9
Create the Rich History Database

9-16

Column Datatype

CONFIGBLOCKCREATORORG VARCHAR2(512)

CONFIGBLOCKCREATOROU VARCHAR2(512)

Note:

• Organization (ORG) and organization unit (OU) are driven by identity
certificates, which implies that they may be assigned to multiple values.
They are captured as a comma separated list in the table's values.

• For identities, the table includes information only about the "Subject"
portion of the certificates, not the "Issuer" one.

• The RWSET column contains operations on all chaincodes (in the same
ledger) performed during endorsement. As such, you will typically
see both lscc read operations and the actual chaincode namespace
operations.

Chapter 9
Create the Rich History Database

9-17

A
Node Configuration

This topic contains information to help you understand and configure your nodes. Each
node type has different configuration options.

Topics:

• CA Node Attributes

• Console Node Attributes

• Orderer Node Attributes

• Peer Node Attributes

• REST Proxy Node Attributes

CA Node Attributes
A certificate authority (CA) node keeps track of identities and certificates on the
blockchain network.

Only Administrators can change a node’s attributes. If you've got User privileges, then
you can view a node’s attributes.

Table A-1 CA Node Attributes

Attribute Description Default Value

Fabric CA ID This is the identifier or
name that Oracle Blockchain
Platform assigned the node
when it created it. You can’t
modify this ID.

ca

Listen Port This is the listening port that
Oracle Blockchain Platform
assigned to the node. You
can’t change the port number.

Specific to your organization.

Max Enrollments Use this field to determine
how many times the CA server
allows a password to be used
for enrollment on the network.
Consider the following options:
• -1 — The server allows a

password to be used an
unlimited number of times
for enrollment.

-1

Log Level Specify the log level that
you want to use for the
node. Oracle suggests that
for development or testing,
you use DEBUG. And that for
production, you use INFO.

INFO

A-1

Console Node Attributes
The console node manages the performance of the console.

Only Administrators can change a node’s attributes. If you've got User privileges, then
you can view a node’s attributes.

Table A-2 Console Node Attributes

Attribute Description Default Value

Console ID This is the identifier or
name that Oracle Blockchain
Platform assigned the node
when it created it.

console

Local MSP ID This is the assigned MSP ID
for your organization. You can’t
modify this ID.

NA

Listen Port This is the listening port that
Oracle Blockchain Platform
assigned to the node. You
can’t change the port number.

Specific to your organization.

Log Level Specify the log level that
you want to use for the
node. Oracle suggests that
for development or testing,
you use DEBUG. And that for
production, you use ERROR.

INFO

Request Timeout (s) Specify the maximum amount
of time in seconds that you
want the console to attempt
to contact the nodes before
timing out.

600

Orderer Node Attributes
An orderer node collects transactions from peer nodes, bundles them, and submits
them to the blockchain ledger. The node’s attributes determine how the node performs
and behaves on the network.

Only Administrators can change a node’s attributes. If you've got User privileges, then
you can view a node’s attributes.

Table A-3 Orderer Node — General Attributes

Attribute Description Default Value

Orderer ID This is the identifier or
name that Oracle Blockchain
Platform assigned the node
when it created it.

orderer<number-partition>

Local MSP ID This is the assigned MSP ID
for your organization. You can’t
modify this ID.

NA

Appendix A
Console Node Attributes

A-2

Table A-3 (Cont.) Orderer Node — General Attributes

Attribute Description Default Value

Listen Port This is the listening port that
Oracle Blockchain Platform
assigned to the node. You
can’t change the port number.

Specific to your organization.

Log Level Specify the log level that
you want to use for the
node. Oracle suggests that
for development or testing,
you use DEBUG. And that for
production, you use ERROR.

INFO

Table A-4 Orderer Node — Advanced Attributes — Raft/Cluster tab

Attribute Description Default Value

SendBufferSize The maximum number of
messages in the egress buffer.
Consensus messages are
dropped if the buffer is full,
and the transaction messages
are waiting for space to be
freed.

10

DialTimeout in seconds The maximum duration of
time after which connection
attempts are considered as
failed.

5

RPCTimeout in seconds The maximum duration of time
after which RPC attempts are
considered as failed.

7

Replication/BufferSize in bytes The maximum number of
bytes that can be allocated for
each in-memory buffer used
for block replication from other
cluster nodes.

20971520

Replication/
BackgroundRefreshInterval
in minutes

The time between two
consecutive attempts to
replicate existing channels that
this node was added to, or
channels that this node failed
to replicate in the past.

5

Replication/RetryTimeout in
seconds

The maximum duration the
ordering node will wait
between two consecutive
attempts.

5

Replication/PullTimeout in
seconds

The maximum duration the
ordering node will wait for a
block to be received before it
aborts.

5

Appendix A
Orderer Node Attributes

A-3

Table A-4 (Cont.) Orderer Node — Advanced Attributes — Raft/Cluster tab

Attribute Description Default Value

Consensus/EvictionSuspicion
in minutes

The threshold that a node
will start suspecting its own
eviction if it has been
leaderless for this period of
time.

10

Peer Node Attributes
A peer node reads, endorses, and writes transactions to the blockchain ledger. The
node’s attributes determine how the node performs and behaves on the network.

Only Administrators can change a node’s attributes. If you've got User privileges, then
you can view a node’s attributes.

Table A-5 Peer Node — General Attributes

Attribute Description Default Value

Peer ID This is the identifier or
name that Oracle Blockchain
Platform assigned the node
when it created it.

peer0

Local MSP ID This is the assigned MSP ID
for your organization. You can’t
modify this ID.

Specific to your organization.

Role Specifies if the peer’s role
is Member or Admin. In
most cases this field displays
Member.
This role is used by
the chaincode’s endorsement
policy. The endorsement
policy specifies the MSP that
must validate the identity of
the signer peer and the signer
peer’s role. The Admin role is
normally assigned in situations
where you want to further
protect sensitive operations
and make sure that those
operations are endorsed by
specific peers.

The peers created with your
instance were assigned the
Member role.

Member

Listen Port This is the listening port that
Oracle Blockchain Platform
assigned to the node. You
can’t change the port number.

Specific to your organization.

Appendix A
Peer Node Attributes

A-4

Table A-5 (Cont.) Peer Node — General Attributes

Attribute Description Default Value

Log Level Specify the log level that
you want to use for the
node. Oracle suggests that
for development or testing,
you use DEBUG. And that for
production, you use ERROR.

INFO

Table A-6 Peer Node — Advanced Attributes — Gossip tab

Attribute Description Default Value

Bootstrap Peers Provide the service name
address and port that the peer
uses to contact other peers
during startup. This endpoint
must match the endpoints
of the peers in the same
organization.

NA

Max Block Count to Store Enter the maximum number of
blocks to store in memory.

3

Max Propagation Burst
Latency in milliseconds

Enter how many milliseconds
between message pushes.

2

Max propagation burst size Enter the number of messages
to be stored until a push
remote peer is triggered.

4

Propagate Iterations Enter the number of times
a message is pushed to the
peers.

7

Propagate Peer Number Enter how many peers to send
messages to.

8

Pull Interval in seconds Enter how many seconds
between pull phases.

10

Pull Peer Number Enter the number of peers to
pull from.

9

Request State Info Interval in
seconds

Enter how often to pull state
information messages from
the peers.

20

Publish state Info Interval in
seconds

Enter how often to send state
information messages to the
peers.

21

Publish Cert Period in seconds Enter how many seconds from
startup that certificates are
included in alive messages.

40

Dial Timeout in seconds Enter how many seconds
before dial times out.

10

Connect Timeout in seconds Enter how many seconds until
the connection times out.

20

Receive Buffer Size Enter the size of the buffer for
received messages.

20

Appendix A
Peer Node Attributes

A-5

Table A-6 (Cont.) Peer Node — Advanced Attributes — Gossip tab

Attribute Description Default Value

Send Buffer Size Enter the size of the buffer for
sending messages.

40

Digest Wait Time in seconds Enter how many seconds to
wait before the pull engine
processes incoming digests.

15

Request Wait Time in seconds Enter how many seconds to
wait before the pull engine
removes incoming nonce.

10

Response Wait Time in
seconds

Enter how many seconds that
the pull engine waits before it
terminates the pull.

20

Alive Time Interval in seconds Enter how often to check alive
time.

15

Alive Expiration Timeout in
seconds

Enter how many seconds to
wait before the alive expiration
times out.

12

Reconnect Interval in seconds Enter how many seconds to
wait before reconnecting.

9

Skip Block Verification Click to skip block verification. Selected

Table A-7 Peer Node — Advanced Attributes — Gossip/Election tab

Attribute Description Default Value

Membership Sample Interval
in seconds

How often in seconds the
peer checks its stability on the
network.

3

Leader Alive Threshold in
seconds

The number of seconds
to elapse before the last
declaration message is
sent and before the peer
determines leader election.

2

Leader Election Duration in
seconds

The number of seconds to
elapse after the peer sends
the propose message and
declares itself leader.

5

Appendix A
Peer Node Attributes

A-6

Table A-7 (Cont.) Peer Node — Advanced Attributes — Gossip/Election tab

Attribute Description Default Value

Leader A channel’s leader peer
receives blocks and distributes
them to the other peers within
the cluster. Specify the mode
that you want the peer to use
to determine a leader.
• OrgLeader — Select this

option to use static leader
mode and make the peer
the organization leader.
If you select this option
and then add more peers
to the channel, then you
must set all peers to
OrgLeader.

• UseLeaderElection —
Select this option to use
dynamic leader election
on the channel. Before an
active leader is selected
for the organization, the
system must run the
configuration transaction
to add the organization
to the channel, and
then the system updates
the new peers with the
configuration transaction.

UseLeaderElection

Table A-8 Peer Node — Advanced Attributes — Event Service tab

Attribute Description Default Value

Buffer Size Enter the maximum number
of events that the buffer can
contain. The system won’t
send the events that exceed
this number.

100

Timeout in milliseconds Enter in milliseconds the
maximum time allowed for the
business network to send an
event.

1000

Table A-9 Peer Node — Advanced Attributes — Chaincode tab

Attribute Description Default Value

Startup timeout in seconds Enter in seconds the
maximum time to wait
between when the container
starts and the registry
responds.

300

Appendix A
Peer Node Attributes

A-7

Table A-9 (Cont.) Peer Node — Advanced Attributes — Chaincode tab

Attribute Description Default Value

Execute timeout in seconds Enter in seconds the
maximum time that a
chaincode attempts to execute
before timing out.

30

Mode Displays how the system runs
the chaincode. This value is
always net.

net

Keepalive in seconds If you're using a proxy for
communication, then enter in
seconds the maximum amount
of time to keep the connection
between a peer and the
chaincode alive.

0

Log Level Specify the log level that you
want to use for all loggers
in the chaincode container.
Oracle suggests that for
development or testing, you
use DEBUG. And that for
production, you use ERROR.

INFO

Shim Level Specify the log level that you
want to use for the shim
logger.

WARNING

REST Proxy Node Attributes
A REST proxy node allows you to query or invoke a chaincode through the RESTful
protocol. The node’s attributes determine how the node performs on the network and
which channel, chaincode, and peers are used in the transactions performed by the
node.

Only Administrators can change a node’s attributes. If you've got User privileges, then
you can view a node’s attributes.

Table A-10 REST Proxy Node Attributes

Attribute Description Default Value

REST Proxy Name This is the identifier or
name that Oracle Blockchain
Platform assigned the node
when it created it. You can’t
modify this ID.

restproxy

Proposal Wait Time (ms) Enter the number of
milliseconds that the node
waits for completion of the
proposal process. If this
number is exceeded, then the
transaction times out.

60,000

Appendix A
REST Proxy Node Attributes

A-8

Table A-10 (Cont.) REST Proxy Node Attributes

Attribute Description Default Value

Transaction Wait Time (ms) Enter the number of
milliseconds that the node
waits for execution after the
transaction is submitted. If this
number is exceeded, then the
transaction times out.

300,000

Log Level Specify the log level that
you want to use for the
node. Oracle suggests that
for development or testing,
you use DEBUG. And that
for production, you use
WARNING or ERROR.

INFO

Appendix A
REST Proxy Node Attributes

A-9

B
Using the Fine-Grained Access Control
Library Included in the Marbles Sample

Starting in v1.2, Hyperledger Fabric provided fine-grained access control to many
of the management functions. Oracle Blockchain Platform now provides a updated
version of the mables sample package on the Developer Tools tab of the console,
implementing a library of functions that chaincode developers can use to create
access control lists for chaincode functions. It currently only supports the Go language.

Topics

• Background

• Fine-Grained Access Control Library Functions

• Example Walkthough Using the Fine-Grained Access Control Library

• Fine-Grained Access Control Marbles Sample

Background

The goal of this sample access control library is to provide the following:

• Provides a mechanism to allow you to control which users can access particular
chaincode functions.

• The list of users and their entitlements should be dynamic and shared across
chaincodes.

• Provides access control checks so that a chaincode can check the access control
list easily.

• At chaincode deployment time, allows you to populate the list of resources and
access control lists with your initial members.

• An access control list must be provided to authorize users to perform access
control list operations.

Download the Sample

On the Developer Tools tab, open the Samples pane. Click the download link under
Marbles with Fine-Grained ACLs. This package contains three sub-packages:

• Fine-GrainedAccessControlLibrary.zip:
The fine-grained access control library. It contains functions in Go which can
be used by chaincode developers to create access control lists for chaincode
functions.

• fgACL_MarbleSampleCC.zip:
The marbles sample with access control lists implemented. It includes a variety
of functions to let you examine how to work with fine-grained access control lists,
groups and resources to restrict functions to certain users/identities.

• fgACL-NodeJSCode.zip:

B-1

Node.js scripts which use the Node.js SDK to run the sample.
registerEnrollUser.js can be used to register new users with the
Blockchain Platform. invokeQueryCC.js can be used to run transactions
against a Blockchain Platform instance.

Terminology and Acronyms

Term Description

Identity An X509 certificate representing the identity
of either the caller or the specific identity the
chaincode wants to check.

Identity Pattern A pattern that matches one or more identities.
The following patterns are suggested:

• X.509 Subject Common Name – CN
• X.509 Subject Organizational Unit – OU
• X.509 Subject Organization – O
• Group as defined in this library – GRP
• Attribute – ATTR
The format for a pattern is essentially just
a string with a prefix. For example, to
define a pattern that matches any identity in
organization "example.com", the pattern would
be "%O%example.com".

Resource The name of anything the chaincode wants
to control access to. To this library it is just
a named arbitrary string contained in a flat
namespace. The semantics of the name are
completely up to the chaincode.

Group A group of identity patterns.

ACL Access Control List: a named entity that
has a list of identity patterns, a list of
types of access such as "READ", "CREATE",
"INVOKE", "FORWARD", or anything the
chaincode wants to use. This library will use
access types of CREATE, READ, UPDATE,
and DELETE (standard CRUD operations) to
maintain its information. Other than those four
as they relate to the items in this library, they
are just strings with no implied semantics. An
application may decide to use accesses of "A",
"B", and "CUSTOM".

Appendix B

B-2

Fine-Grained Access Control Library Functions
The library package provides the following functions for Resources, Groups and ACLs
as well as global functions.

Global Functions

Function Description

Initialization(identity *x509.Certificate, stub
shim.ChaincodeStubInterface) (error) (error)

When the chaincode is instantiated, the
Initialization function is called. That function
will initialize the world state with some built
in access control lists. These built in lists are
used to bootstrap the environment. So there
needs to be access control on who can create
resources, groups, and ACLs. If the identify is
nil, then use the caller's identify.

After the bootstrap is done, the following
entities are created:

• A resource named ".Resources".
A corresponding ACL named
".Resources.ACL" will be created with a
single identity pattern in it of the form
"%CN%bob.smith@oracle.com", using the
actual common name, and the access
will be CREATE, READ, UPDATE, and
DELETE access.

• A group named ".Groups". A
corresponding ACL named ".Groups.ACL"
will be created with a single
identity pattern in it of the form
"%CN%bob.smith@oracle.com", using the
actual common name, and the access
will be CREATE, READ, UPDATE, and
DELETE access.

• An ACL named ".ACLs". A corresponding
ACL control list named ".ACLs.ACL"
will be created with a single
identity pattern in it of the form
"%CN%bob.smith@oracle.com", using the
actual common name, and the access
will be CREATE, READ, UPDATE, and
DELETE access.

NewGroupManager(identity *x509.Certificate,
stub shim.ChaincodeStubInterface)
(*GroupManager, error)

Get the group manager that's used for all
group related operations.

Identity: the default identity for related
operation. If it's nil, then use caller's identity.

NewACLManager(identity *x509.Certificate,
stub shim.ChaincodeStubInterface)
(*ACLManager, error)

Get the ACL manager that's used for all ACL
related operations.

Identity: the default identity for related
operation. If it's nil, then use caller's identity.

NewResourceManager(identity
*x509.Certificate, stub
shim.ChaincodeStubInterface)
(*ResourceManager, error)

Get the resource manager that's used for all
resource related operations.

Identity: the default identity for related
operation. If it's nil, then use caller's identity.

Appendix B
Fine-Grained Access Control Library Functions

B-3

Access Control List (ACL) Functions

Definition of ACL structure:

type ACL struct {
 Name string
 Description string
 Accesses []string // CREATE, READ, UPDATE, and DELETE, or whatever
the end-user defined
 Patterns []string // identities
 Allowed bool // true means allows access.
 BindACLs []string // The list of ACL , control who can call the APIs
of this struct
}

• Accesses: The Accesses string is a list of comma-separated arbitrary access
names and completely up to the application except for four: CREATE, READ,
UPDATE, and DELETE. These access values are used in maintaining the fine
grained access control. Applications can use their own access strings such as
"register", "invoke", or "query", or even such things as access to field names
such as "owner", "quantity", and so on.

• Allowed: Allowed determines whether identities that match a pattern are allowed
access (true) or prohibited access (false). You could have an access control list
that indicates Bob has access to "CREATE", and another one that indicates group
Oracle (of which Bob is a member) is prohibited from "CREATE". Whether Bob has
access or not depends upon the order of the access control lists associated with
the entity in question.

• BindACLs: The BindACLs parameter will form the initial access control list.

ACL functions:

Function Description

Create(acl ACL, identity *x509.Certificate)
(error)

Creates a new ACL. Duplicate named ACL are
not allowed.

To create a new ACL, the identity needs
to have CREATE access to the bootstrap
resource named ".ACLs". If identity is nil, the
default identity specified in newACLManager()
is used.

Get(aclName string, identity *x509.Certificate)
(ACL, error)

Get a named ACL.

The identity must have READ access to the
named ACL. If identity is nil, the default identity
specified in newACLManager() is used.

Delete(aclName string, identity
*x509.Certificate) (error)

Delete a specified ACL.

The identity must have DELETE access to the
named ACL. If identity is nil, the default identity
specified in newACLManager() is used.

Appendix B
Fine-Grained Access Control Library Functions

B-4

Function Description

Update(acl ACL, identity *x509.Certificate)
(error)

Update an ACL.

The identity must have UPDATE access to
the named resource, and the named ACL
must exist. If identity is nil, the default identity
specified in NewACLManager() is used.

AddPattern(aclName string, pattern string,
identity *x509.Certificate) (error)

Adds a new identity pattern to the named ACL.
The identity must have UPDATE access to the
named ACL.

If identity is nil, the default identity specified in
newACLManager() is used.

RemovePattern(aclName string, pattern string,
identity *X509Certificate) (error)

Removes the identity pattern from the ACL.
The identity must have UPDATE access to the
named ACL.

If identity is nil, the default identity specified in
newACLManager() is used.

AddAccess(aclname string, access string,
identity *X509Certificate) (error)

Adds a new access to the named ACL. The
identity must have UPDATE access to the
named ACL.

If identity is nil, the default identity specified in
newACLManager() is used.

RemoveAccess(aclName string, access string,
identity *X509Certificate) (error)

Removes the access from the ACL. The
identity must have UPDATE access to the
named ACL.

If identity is nil, the default identity specified in
newACLManager() is used.

UpdateDescription(aclName string,
newDescription string, identity
*X509Certificate) (error)

Update the description.

The identity must have UPDATE access to the
named ACL. If identity is nil, the default identity
specified in newACLManager() is used.

AddBeforeACL(aclName string, beforeName
string, newBindACL string, identity
*X509Certificate) (error)

Adds a bind ACL before the existing named
ACL. If the named ACL is empty or not found,
the ACL is added to the beginning of the bind
ACL list.

The identity must have UPDATE access to
the named ACL. If the identity is nil, the
default identity specified in newACLManager()
is used.

AddAfterACL(aclName string, afterName
string, newBindACL string, identity
*X509Certificate) (error)

Adds a bind ACL after the existing named
ACL. If the named ACL is empty or not found,
the ACL is added to the end of the bind ACL
list.

The identity must have UPDATE access to
the named ACL. If the identity is nil, the
default identity specified in newACLManager()
is used.

RemoveBindACL(aclName string,
removeName string, identity *X509Certificate)
(error)

Removes the removeName ACL from the bind
ACL list.

The identity must have UPDATE access to
the named ACL. If the identity is nil, the
default identity specified in newACLManager()
is used.

Appendix B
Fine-Grained Access Control Library Functions

B-5

Function Description

GetAll(identity *x509.Certificate) ([]ACL, error) Get all the ACLs.

The identity must have READ access to
the named ACL. If the identity is nil, the
default identity specified in newACLManager()
is used.

Group Functions

Definition of Group structure:

type Group struct {
 Name string
 Description string
 Members []string // identity patterns, except GRP.
 BindACLs []string // The list of ACLs, controls who can access
this group.
}

Definition of GroupManager functions:

Function Description

Create(group Group, identity *x509.Certificate)
(error)

Create a new group.

The identity must have CREATE access
to bootstrap group ".Group". If identity
is nil, the default identity specified in
NewGroupManager() is used.

Get(groupName string, identity
*x509.Certificate) (Group, error)

Get a specified group.

The identity must have READ access to this
group. If identity is nil, the default identity
specified in NewGroupManager() is used.

Delete(groupName string, identity
*x509.Certificate) (error)

Delete a specified group.

The identity must have DELETE access to
this group. If identity is nil, the default identity
specified in NewGroupManager () is used.

AddMembers(groupName string, member
[]string, identity *x509.Certificate) (error)

Add one or more members into the group.

The identity must have UPDATE access to
this group. If identity is nil, the default identity
specified in NewGroupManager () is used.

RemoveMembers(groupName string, member
[]string, identity *x509.Certificate) (error)

Remove one or more member from a group.

The identity must have UPDATE access to
this group. If identity is nil, the default identity
specified in NewGroupManager () is used.

UpdateDescription(groupName string, newDes
string, identity *x509.Certificate) (error)

Update the description.

The identity must have UPDATE access to
this group. If identity is nil, the default identity
specified in NewGroupManager () is used.

Appendix B
Fine-Grained Access Control Library Functions

B-6

Function Description

AddBeforeACL(groupName string,
beforeName string, aclName string, identity
*x509.Certificate) (error)

Adds an bind ACL to the group before the
existing named ACL. If the named ACL is
empty or not found, the ACL is added to
the beginning of the list of bind ACL for the
resource.

The identity must have UPDATE access to
the named group. If identity is nil, the default
identity specified in NewGroupManager () is
used.

AddAfterACL(groupName string, afterName
string, aclName string, identity
*x509.Certificate) (error)

Adds a bind ACL to the group after the existing
named ACL. If the named ACL is empty or not
found, the ACL is added to the end of the list
of bind ACL for the group.

The identity must have UPDATE access to the
named group. If the identity is nil, the default
identity specified in NewGroupManager () is
used.

RemoveBindACL(groupName string, aclName
string, identity *x509.Certificate) (error)

Removes the named ACL from the bind ACL
list of the named group.

The identity must have UPDATE access to the
named group. If the identity is nil, the default
identity specified in NewGroupManager () is
used.

GetAll(identity *x509.Certificate) ([]Group,
error)

Get all groups.

The identity must have READ access to these
groups. If identity is nil, the default identity
specified in NewGroupManager () is used.

Resource Functions

Definition of Resource structure:

type Resource struct {
 Name string
 Description string
 BindACLs []string // The name list of ACL, controls who can
access this resource
}

Resource Functions:

Fuction Description

Create(resource Resource, identity
*x509.Certificate) (error)

Create a new resource. Duplicate named
resources are not allowed.

The identity needs to have CREATE access to
the bootstrap resource named ".Resources" If
identity is null, the default identity specified in
NewResourceManager() is used.

Appendix B
Fine-Grained Access Control Library Functions

B-7

Fuction Description

Get(resName string, identity *x509.Certificate)
(Resource, error)

Get a specified resource.

The identity must have READ access to the
resource. If identity is null, the default identity
specified in NewResourceManager() is used.

Delete(resName string, identity
*x509.Certificate) (error)

Delete a named resource.

The identity must have DELETE access to the
named resource. If identity is null, the default
identity specified in NewResourceManager() is
used.

UpdateDescription(resourceName string,
newDes string, identity *x509.Certificate)
(error)

Update the description.

The identity must have UPDATE access to this
resource. If identity is nil, the default identity
specified in NewResourceManager() is used.

AddBeforeACL(resourceName string,
beforeName string, aclName string, identity
*x509.Certificate) (error)

Adds a bind ACL to the resource before the
existing named ACL. If the named ACL is
empty or not found, the ACL is added to
the beginning of the list of bind ACL for the
resource.

The identity must have UPDATE access to the
named resource. If identity is nil, the default
identity specified in NewResourceManager() is
used.

AddAfterACL(resourceName string, afterName
string, aclName string, identity
*x509.Certificate) (error)

Adds a bind ACL to the resource after the
existing named ACL. If the named ACL is
empty or not found, the ACL is added to the
end of the list of bind ACL for the resource.

The identity must have UPDATE access
to the named resource. If the identity
is nil, the default identity specified in
NewResourceManager() is used.

RemoveBindACL(resourceName string,
aclName string, identity *x509.Certificate)
(error)

Removes the named ACL from the bind ACL
list of the named resource.

The identity must have UPDATE access
to the named resource. If the identity
is nil, the default identity specified in
NewResourceManager() is used.

CheckAccess(resName string, access string,
identity *x509.Certificate) (bool, error)

Check whether the current user has the
specified access to the named resource.

If the identity is nil, the default identity
specified in NewResourceManager() is used.

GetAll(identity *x509.Certificate) ([]Resource,
error)

Get all resources.

The identity must have READ access to these
resources. If identity is nil, the default identity
specified in NewResourceManager() is used.

Appendix B
Fine-Grained Access Control Library Functions

B-8

Example Walkthough Using the Fine-Grained Access
Control Library

This topic provides some examples of how this library and chaincode can be used.
These all assuming Init() has been called to create the bootstrap entities and the
caller of Init() and invoke() is "%CN%frank.thomas@example.com". The normal flow
in an application will be to create some initial access control lists that will be used to
grant or deny access to the other entities.

Initialization

Call Initialization() to create bootstrap entities when instantiating chaincode. For
example:

import "chaincodeACL"
func (t *SimpleChaincode) Init(nil, stub shim.ChaincodeStubInterface)
pb.Response
{
 err := chaincodeACL.Initialization(stub)
}

Create a new ACL

import "chaincodeACL"
...
{

ACLMgr := chaincodeACL.NewACLManager(nil, stub) // Not specify
identity, use caller's identity as default.

// Define a new ACL
newACL := chaincodeACL.ACL{

 "AllowAdmins", // ACL name
 "Allow admins full access", // Description
 []string{"CREATE","READ","UPDATE","DELETE"}, // Accesses allowed
or not
 true, // Allowed

[]string{"%CN%bob.dole@example.com","%OU%example.com,"%GRP%admins"}, //
Initial identity patterns
 ".ACLs.acl", // Start with bootstrap ACL

}

// Add this ACL with default identity (caller's identify here)
err := **ACLMgr**.Create(**newACL** , nil)

}

Appendix B
Example Walkthough Using the Fine-Grained Access Control Library

B-9

Now that we have a new ACL, we can use that to modify who can perform certain
operations. So we’ll first add this new ACL to the bootstrap group .Groups to allow any
admin to create a group.

Add an ACL to a group

import "chaincodeACL"
…
{

 groupMgr := chaincodeACL.NewGroupManager(nil, stub) // Not
specify identity, use caller's identity as default.
 err := **groupMgr**.AddAfterACL(

 ".Groups", // Bootstrap group name
 ".Groups.ACL", // Which ACL to add after
 "AllowAdmins", // The new ACL to add
 nil // with default identity that's frank.thomas

)

}

This adds the AllowAdmins ACL to the bootstrap group .Groups after the initial
bootstrap ACL. Thus this ensures that Frank Thomas can still perform operations
on .Groups as the ACL granting him permission is first in the list. But now anyone that
matches the AllowAdmins ACL can perform CREATE, READ, UPDATE, or DELETE
operations (they can now create new groups).

Create a new group

Admins can now create a new group:

import "chaincodeACL"
...
{

...
 // Define a new group.
 newGroup := chaincodeACL.Group{

 "AdminGrp", // Name of the group
 "Administrators of the app", // Description of the group

{"%CN%jill.muller@example.com","%CN%ivan.novak@example.com","%ATTR%role=
admin"},
 []string{"AllowAdmins"}, // The ACL for the group

 }

 groupMgr := chaincodeACL.NewGroupManager(nil, stub) // Not
specify identity, use caller's identity as default.
 err := **groupMgr**.Create(**newGroup** ,
bob_garcia_certificate) // Using a specific certificate

Appendix B
Example Walkthough Using the Fine-Grained Access Control Library

B-10

...
}

This call is using an explicit identity - that of Bob Garcia (using his certificate) - to
try and create a new group. Since Bob Garcia matches a pattern in the AllowAdmins
ACL and members of that ACL can perform CREATE operations on the bootstrap
group .Groups, this call will succeed. Had Jim Silva - who was not in organization unit
example.com nor in the group AdminGrp (which still doesn’t exist) - had his certificate
passed as the last argument, the call would fail as he doesn’t have the appropriate
permissions. This call will create a new group called "AdminGrp" with initial members
of the group being jill.muller@example.com and ivan.novak@example.com or anyone
with the attribute (ABAC) role=admin.

Create a new resource

import "chaincodeACL"
...
{

 ...
 newResource := **chaincodeACL**.Resource{

 "transferMarble", // Name of resource to create

 "The transferMarble chaincode function", // Description of the
resource

 []string{"AllowAdmins"}, // Single ACL for now allowing admins

 }

 resourceMgr := **chaincodeACL**.NewResourceManager(nil,
stub) // Not specify identity, use caller's identity as default.
 err := **resourceMgr**.Create(resourceMgr, nil) // Using caller's
certificate

 ...
}

This would create a new resource named transferMarble that the application might
use to control access to the transferMarble chaincode function. The access is
currently limited by the AllowAdmins access control list.

Check access for a resource

We can use this new resource in our chaincode to only allow admins to transfer a
marble by modifying the invoke() method of the Marbles chaincode as follows:

import "chaincodeACL"
…
func (t *SimpleChaincode) Invoke(stub shim.ChaincodeStubInterface)
pb.Response {

Appendix B
Example Walkthough Using the Fine-Grained Access Control Library

B-11

 resourceMgr := **chaincodeACL**.NewResourceManager(nil,
stub) // Not specify identity, use caller's identity as default.

 function, args := stub.GetFunctionAndParameters()

 fmt.Println("invoke is running " + function) // Handle
different functions

 if function == "initMarble" { //create a new marble

 return t.initMarble(stub, args)}

 else if function == " **transferMarble**" { //change owner of a
specific marble

 allowed , err : = **resourceMgr**. **CheckAccess**
("transferMarble", "UPDATE", nil)
 if **allowed** == true {

 return t.transferMarble(stub, args)

 else {

 return NOACCESS

 }

 } else if function == "transferMarblesBasedOnColor" { //transfer
all marbles of a certain color
 …

 }

}

Fine-Grained Access Control Marbles Sample
The marbles chaincode application lets you create assets (marbles) with unique
attributes (name, size, color and owner) and trade these assets with fellow participants
in a blockchain network.

This sample application includes a variety of functions to let you examine how to work
with access control lists and groups to restrict functions to certain users.

• Overview of the Sample

• Pre-requisites and Setup

• Implement the Fine-Grained Access Control Marble Sample

• Testing the Access Control

• Sample Files Reference

Appendix B
Fine-Grained Access Control Marbles Sample

B-12

Overview of the Sample

The test scenario included in the sample contains the following restrictions in order to
manage assets:

• Bulk transfer of red marbles is only allowed by identities having the
"redMarblesTransferPermission" Fabric attribute.

• Bulk transfer of blue marbles is only allowed by identities having the
"blueMarblesTransferPermission" Fabric attribute.

• Deletion of marbles is only allowed to identities with "deleteMarblePermission"
Fabric attribute.

These restrictions are enforced by implementing the following library methods in the
fgMarbles_chaincode.go chaincode:

• Create a fine-grained ACL group named bulkMarblesTransferGroup. This group
will define all the identities which can transfer marbles based on color (bulk
transfers):

createGroup(stub, []string{" bulkMarblesTransferGroup",
"List of Identities allowed to Transfer Marbles in Bulk",
"%ATTR%redMarblesTransferPermission=true,
%ATTR%blueMarblesTransferPermission=true", ".ACLs"})

• Create a fine-grained ACL named redMarblesAcl which provides bulk transfer of
red marbles access to bulkMarblesTransferGroup:

createACL(stub, []string{"redMarblesAcl",
"ACL to control who can transfer red marbles in bulk",
"redMarblesTransferPermission", "%GRP%bulkMarblesTransferGroup",
"true", ".ACLs"})

• Create a fine-grained ACL named blueMarblesAcl which provides bulk transfer of
blue marbles access to bulkMarblesTransferGroup:

createACL(stub, []string{"blueMarblesAcl",
"ACL to control who can transfer blue marbles in bulk",
"blueMarblesTransferPermission", "%GRP%bulkMarblesTransferGroup",
"true", ".ACLs"})

• Create a fine-grained ACL named deleteMarbleAcl to restrict marble deletion
based on "canDeleteMarble=true" Fabric attribute:

createACL(stub, []string{"deleteMarbleAcl",
"ACL to control who can Delete a Marble",
"deleteMarblePermission", "%ATTR%deleteMarblePermission=true",
"true", ".ACLs"})

Appendix B
Fine-Grained Access Control Marbles Sample

B-13

• Create a fine-grained ACL resource named marble, operations on which are
controlled using the various ACLs we created:

createResource(stub, []string{"marble",
"System marble resource",
"deleteMarbleAcl,blueMarblesAcl,redMarblesAcl,.ACLs"})

Pre-requisites and Setup

In order to run the fine-grained access control version of the marbles sample,
complete these steps:

1. Download the fine-grained access control version of the marbles sample. On the
Developer Tools tab, open the Samples pane, and then click the download link
under Marbles with Fine-Grained ACLs. Unzip this package - it contains zips
of the marbles sample (fgACL_MarbleSampleCC.zip), Node.js files to run the
sample (fgACL-NodeJSCode.zip), and the fine-grained access control library
(Fine-GrainedAccessControlLibrary.zip).

2. Generate the chaincode package that will be deployed to Blockchain Platform:

• Install govendor:

go get -u github.com/kardianos/govendor

• Unzip the contents of fgACL_MarbleSampleCC.zip
to the fgACL_MarbleSampleCC directory. The
contents of the fgACL_MarbleSampleCC directory
would be: fgACL_Operations.go, fgGroups_Operations.go,
fgMarbles_chaincode.go, fgResource_Operations.go and the
vendor directory.

• From a command line, go to the fgACL_MarbleSampleCC directory,
and run govendor sync. This will download the required dependency
(github.com/op/go-logging) and add it to the vendor directory.

• Zip all the contents (the four Go files and the vendor directory) of the
fgACL_MarbleSampleCC directory. Your chaincode is ready to be deployed
to Blockchain Platform.

3. Install and instantiate the updated sample chaincode package
(fgACL_MarbleSampleCC.zip) as described in Use Quick Deployment.

4. On the Developer Tools tab, open the Application Development pane, and then
follow the instructions to download the Node.js SDK.

5. On the Developer Tools tab, open the Application Development pane, and then
click Download the development package.

a. Unzip the development package into the same folder with the Node.js files
downloaded with the sample.

b. In the network.yaml file, look for the certificateAuthorities entry and
its registrar entry. The administrator's password is masked (converted to
***) in the network.yaml when downloaded. It should be replaced with the
administrator's clear text password when running this sample.

6. Register a new identity with your Blockchain Platform instance:

Appendix B
Fine-Grained Access Control Marbles Sample

B-14

a. Create a new user in IDCS (referred to as <NewIdentity> in the following
steps) in the IDCS mapped to your tenancy.

b. Give this user the CA_User application role for your instance.

Implement the Fine-Grained Access Control Marble Sample

The following steps will enroll your new user and implement the ACL restrictions using
the provided Node.js scripts.

1. Enroll the new user:

node registerEnrollUser.js <NewIdentity> <Password>

2. Initialization: Initialize the access control lists.

node invokeQueryCC.js <NewIdentity> <Password> <ChannelName>
<ChaincodeName> ACLInitialization

3. Create the access control lists, groups, and resources: This creates the ACL
resources described in the overview.

node invokeQueryCC.js <NewIdentity> <Password> <ChannelName>
<ChaincodeName> createFineGrainedAclSampleResources

4. Create your test marble resources: This creates several test marble assets -
blue1 and blue2 owned by tom, red1 and red2 owned by jerry, and green1 and
green2 owned by spike.

node invokeQueryCC.js <NewIdentity> <Password> <ChannelName>
<ChaincodeName> createTestMarbles

Testing the Access Control

In order to test that our access control lists are only allowing the correct users to
perform each function, we'll run through some sample scenarios.

1. Transfer a marble: We're transferring marble blue1 from tom to jerry. Since there
are no restrictions on who can transfer a single marble, this should complete
successfully.

node invokeQueryCC.js <NewIdentity> <Password> <ChannelName>
<ChaincodeName> transferMarble blue1 jerry

2. Transfer a marble as the administrative user: We're transferring marble blue1
from jerry to spike. Since there are no restrictions on who can transfer a single
marble, this should also complete successfully.

node invokeQueryCC.js <AdminIdentity> <Password> <ChannelName>
<ChaincodeName> transferMarble blue1 spike

Appendix B
Fine-Grained Access Control Marbles Sample

B-15

3. Get history: Now we'll query the history of the marble named blue1. It should
return that it was transferred first to jerry then to spike.

node invokeQueryCC.js <AdminIdentity> <Password> <ChannelName>
<ChaincodeName> getHistoryForMarble blue1

4. Transfer all red marbles: The redMarblesAcl ACL should allow
this transfer because the newly registered identity has the required
"redMarblesTransferPermission=true" Fabric attribute, so the two red marbles
should be transferred to tom.

node invokeQueryCC.js <NewIdentity> <Password> <ChannelName>
<ChaincodeName> transferMarblesBasedOnColor red tom

5. Transfer all red marbles as the administrative user: The administrative identity
doesn't have the "redMarblesTransferPermission=true" Fabric attribute, so the
redMarblesAcl ACL should block this transfer.

node invokeQueryCC.js <AdminIdentity> <Password> <ChannelName>
<ChaincodeName> transferMarblesBasedOnColor red jerry

6. Transfer all green marbles: By default, only explicitly defined access is allowed.
Because there isn't an ACL which allows for bulk transfer of green marbles, this
should fail.

node invokeQueryCC.js <NewIdentity> <Password> <ChannelName>
<ChaincodeName> transferMarblesBasedOnColor green tom

7. Delete a marble: The deleteMarbleAcl ACL allows this deletion because the
newly registered identity has the required "deleteMarblePermission=true" Fabric
attribute.

node invokeQueryCC.js <NewIdentity> <Password> <ChannelName>
<ChaincodeName> delete green1

8. Delete a marble as the administrative user: The deleteMarbleAcl ACL should
prevent this deletion because the administrative identity doesn't have the required
"deleteMarblePermission=true" Fabric attribute.

node invokeQueryCC.js < AdminIdentity > <Password> <ChannelName>
<ChaincodeName> delete green2

Sample Files Reference

These tables list the methods available in the chaincode and application files included
with the sample.

fgMarbles_chaincode.go

Function Description

initMarble Create a new marble

transferMarble Transfer a marble from one owner to another
based on name

Appendix B
Fine-Grained Access Control Marbles Sample

B-16

Function Description

createTestMarbles Calls initMarble to create new sample
marbles for testing purposes

createFineGrainedAclSampleResources Creates the fine-grained access control list
(ACL), groups, and resources required by our
test scenario

transferMarblesBasedOnColor Transfers multiple marbles of a certain color to
another owner

delete Delete a marble

readMarble Returns all attributes of a marble based on
name

getHistoryForMarble Returns a history of values for a marble

fgACL_Operations.go

Methods Parameters Description

getACL • name Get a named ACL or read
all ACLs. The user invoking
the method must have READ
access to the named ACL.

createACL • name
• description
• accesses
• patterns
• allowed
• BindACLs
• Identity_Certificate

To create a new ACL, the user
invoking the method needs to
have CREATE access to the
bootstrap resource named ".
ACLs". Duplicate named ACLs
are not allowed

deleteACL • name The user invoking the method
must have DELETE access to
the named ACL.

updateACL • name
• description
• accesses
• patterns
• allowed
• BindACLs

The user invoking the method
must have UPDATE access to
the named resource, and the
named ACL must exist.

addAfterACL • aclName
• existingBindAclName
• newBindAclName

The user invoking the method
must have UPDATE access to
the named resource, and the
named ACL must exist.

addBeforeACL • aclName
• existingBindAclName
• newBindAclName

The user invoking the method
must have UPDATE access to
the named resource, and the
named ACL must exist.

addPatternToACL • aclName
• BindPattern

The user invoking the method
must have UPDATE access to
the named resource, and the
named ACL must exist.

Appendix B
Fine-Grained Access Control Marbles Sample

B-17

Methods Parameters Description

removePatternFromACL • aclName
• BindPattern

The user invoking the method
must have UPDATE access to
the named resource, and the
named ACL must exist.

updateDescription • aclName
• newDesc

The user invoking the method
must have UPDATE access to
the named resource, and the
named ACL must exist.

removeBindACL • aclName
• bindAclNameToRemove

The user invoking the method
must have UPDATE access to
the named resource, and the
named ACL must exist.

addAccess • aclName
• accessName

The user invoking the method
must have UPDATE access to
the named resource, and the
named ACL must exist.

removeAccess • aclName
• accessName

The user invoking the method
must have UPDATE access to
the named resource, and the
named ACL must exist.

ACLInitialization • none This function is used to
initialize the fine-grained ACL
support.

fgGroups_Operations.go

Methods Parameters Description

getGroup • name If name="GetAll", it returns
all the groups the identity
has access to. Otherwise, it
returns the individual group
details (if accessible) based on
name.

The user invoking the method
must have READ access to
this group.

createGroup • name
• description
• patterns
• bindACLs

Returns success or error.

The user invoking the method
must have CREATE access to
bootstrap group ". Group"

deleteGroup • name The user invoking the method
must have DELETE access to
this group.

addAfterGroup • groupName
• existingBindAclName
• newBindAclName

The user invoking the method
must have UPDATE access to
this group.

addBeforeGroup • groupName
• existingBindAclName
• newBindAclName

The user invoking the method
must have UPDATE access to
this group.

Appendix B
Fine-Grained Access Control Marbles Sample

B-18

Methods Parameters Description

updateDescriptionForGro
up

• groupName
• newDesc

The user invoking the method
must have UPDATE access to
this group.

removeBindAclFromGroup • groupName
• bindAclNameToRemove

The user invoking the method
must have UPDATE access to
this group.

addMembersToGroup • groupName
• pattern

The user invoking the method
must have UPDATE access to
this group.

removeMembersFromGroup • groupName
• pattern

The user invoking the method
must have UPDATE access to
this group.

fgResource_Operations.go

Methods Parameters Description

createResource • name
• description
• bindACLs

The user invoking the
method needs to have
CREATE access to the
bootstrap resource named
". Resources". Duplicate
named resources are not
allowed.

getResource • name The user invoking the method
must have READ access to
the resource

deleteResource • name The user invoking the method
must have DELETE access to
the named resource

addAfterACLInResource • ResourceName
• existingBindAclName
• newBindAclName

The user invoking the method
must have UPDATE access to
this resource

addBeforeACLInResource • ResourceName
• existingBindAclName
• newBindAclName

The user invoking the method
must have UPDATE access to
this resource

updateDescriptionInReso
urce

• ResourceName
• newDesc

The user invoking the method
must have UPDATE access to
this resource

removeBindACLInResource • ResourceName
• bindAclNameToRemove

The user invoking the method
must have UPDATE access to
this resource

checkResourceAccess • ResourceName
• access

Checks whether the current
user invoking the method has
the specified access to the
named resource.

Appendix B
Fine-Grained Access Control Marbles Sample

B-19

C
Using Blockchain App Builder for Oracle
Blockchain Platform

Blockchain App Builder for Oracle Blockchain Platform is a tool set that assists
with rapid development, testing, debugging, and deployment of chaincode on Oracle
Blockchain Platform networks, comprising cloud BaaS nodes on Oracle Cloud
Infrastructure and/or on-premises nodes using Enterprise Edition.

A smart contract (also known as a chaincode) defines the different states of a business
object between two or more parties and business logic that validates and implements
changes as the object moves between these different states. At the heart of every
blockchain application is one or more chaincodes. So a chaincode should be bug-free
and tested before it is deployed and instantiated.

You can use Blockchain App Builder to generate complex chaincodes from a simple
configuration file and assets specification in TypeScript (for node.js chaincode) and
Go (for golang chaincode) from a simple specification file. With the specification file
you can specify multiple asset definitions and behaviors. You can then generate and
test your chaincodes either on your local machine by using a preconfigured instance
of Hyperledger Fabric inside Blockchain App Builder, or by connecting to your Oracle
Blockchain Platform network.

Note:

Although JavaScript isn't supported by Blockchain App Builder, because the
TypeScript projects are compiled to JavaScript, you can add basic JavaScript
to a TypeScript project if needed.

The Blockchain App Builder supports the full development lifecycle either using a
command line interface or as an extension for Visual Studio Code.

To get the Blockchain App Builder tools and samples, in the console open the
Developer Tools tab and select the Blockchain App Builder pane. From here you
can download the command line interface tools or the Visual Studio Code extension.
Additionally, there are two samples - Fabcar and Marbles - which can be used to see
how the tools work or as a template for your own chaincode projects.

Topics:

• Using the Blockchain App Builder Command Line Interface

• Using the Blockchain App Builder Extension for Visual Studio Code

Using the Blockchain App Builder Command Line Interface
The Blockchain App Builder command line interface helps you build and scaffold a
fully-functional chaincode project from a specification file. Once the project is built,
you can run and test it on a local Hyperledger Fabric network, or your provisioned

C-1

Oracle Blockchain Platform network. You can then run SQL rich queries, debug the
chaincode, or write and run unit tests using the generated code.

Table C-1 Workflow When Using the CLI

Task Description Related Topics

Install and configure Download the Blockchain App
Builder CLI from your Oracle
Blockchain Platform console and
install it and any prerequisite
software.

• Install and Configure Blockchain
App Builder CLI

Create the chaincode project Create a specification file, and then
run the CLI initialization process to
generate your chaincode project from
that file.

• Create a Chaincode Project with
the Blockchain App Builder CLI

Detailed reference information about
the structure and contents of the
specification file and the generated
chaincode project:
• Input Specification File
• Scaffolded TypeScript

Chaincode Project
• Scaffolded Go Chaincode

Project

Deploy the chaincode After your chaincode project is
created, you can deploy it locally
to the included pre-configured
Hyperledger Fabric network, or
remotely to your Oracle Blockchain
Platform Cloud or Enterprise Edition.

You can also package the chaincode
project for manual deployment to
Oracle Blockchain Platform.

• Deploy Your Chaincode to
a Local Hyperledger Fabric
Network

• Deploy Your Chaincode to
a Remote Oracle Blockchain
Platform Network

• Package Your Chaincode
Project for Manual Deployment
to Oracle Blockchain Platform

Test the chaincode Once your chaincode is running on
a network, you can test any of the
generated methods.

Additionally, If you chose to create
the executeQuery method during
your chaincode development, you
can run SQL rich queries if your
chaincode is deployed to an Oracle
Blockchain Platform network.

• Test Your Chaincode on a Local
Hyperledger Fabric Network

• Test Your Chaincode on a
Remote Oracle Blockchain
Platform Network

• Execute Berkeley DB SQL Rich
Queries

Debug the chaincode The Blockchain App Builder
extension for Visual Studio Code
includes line-by-line debugging of
your chaincode.

• Debugging from Visual Studio
Code

Synchronize your updates When you update your specification
file, you can synchronize the
changes with the generated
chaincode files.

• Synchronize Specification File
Changes With Generated
Source Code

Running unit tests A basic unit test case setup is
included in the project. Additional
tests can be added and run.

• Writing Unit Test Cases and
Coverage Reports for the
Chaincode Project

Install and Configure Blockchain App Builder CLI

Appendix C
Using the Blockchain App Builder Command Line Interface

C-2

The following platforms are supported:

• Mac OSX

• Oracle Linux 7.7 or 7.8

• Windows 10

Once you've completed the install:

• Verify your installation.

• If you're using Go chaincode projects, complete the additional configuration steps.

Prerequisites for Mac OSX and Linux

Before you install Blockchain App Builder CLI on your local system, you must install
the prerequisites.

• Docker v18.09.0 or later

• Docker Compose v1.23.0 or later

• Node v10.18.1 or later (tested with 10.22.1)

• npm v6.x (tested with 6.13.4)

• If you are developing Go chaincodes, you need to install Go v1.14

• If you want to use the Synchronization feature of App Builder, Git should be
installed and your username and email should be configured as follows.

> git config --global user.name "<your_name>"
> git config --global user.email "<email>"

You also need to download the Blockchain App Builder CLI package (oracle-
ochain-cli-1.0.0.tgz) from your Oracle Blockchain Platform console. It can be
found on the Developer Tools tab on the Blockchain App Builder pane.

Install Node and npm using nvm

We suggest using nvm to install Node and npm because it will give you the ability to
run more commands without sudo.

1. Install nvm:

curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.35.3/
install.sh | bash

2. Add the below code snippet to ~/.bash_profile, ~/.profile, ~/.bashrc or
~/.zshrc.

export NVM_DIR="$([-z "${XDG_CONFIG_HOME-}"] && printf %s "$
{HOME}/.nvm" || printf
%s "${XDG_CONFIG_HOME}/nvm")"
[-s "$NVM_DIR/nvm.sh"] && \. "$NVM_DIR/nvm.sh"

3. Log out and log back in to your operating system.

Appendix C
Using the Blockchain App Builder Command Line Interface

C-3

4. Verify the nvm installation:

nvm version

5. Install Node and npm:

nvm install 10.18.1

6. Set Node 10.18.1 as the default in nvm:

nvm alias default 10.18.1

Install Blockchain App Builder on Mac OSX or Linux

Mac OSX

1. Install Xcode or the XCode command line tools (xcode-select).

sudo xcode-select –install

2. Install Blockchain App Builder:

npm install -g oracle-ochain-cli-1.4.0.tgz

Note that Mac OS Catalina can have issues with xcode-select. If this happens, reset
and restart:

xcode-select –-reset

Oracle Enterprise Linux

1. Ensure that yum is updated and pointing to the current repository based on your
kernel. See the following two articles for information on how to do this:

• https://blogs.oracle.com/virtualization/install-docker-on-oracle-linux-7-v2

• https://oracle-base.com/articles/linux/download-the-latest-oracle-linux-repo-
file#oracle-linux-7-updated

2. Install the required libraries:

sudo yum install gcc gcc-c++ docker-engine -y

3. Ensure the current user has access to Docker:

sudo groupadd docker
sudo usermod -aG docker $USER

4. Enable the Docker service:

sudo systemctl enable docker
sudo systemctl start docker

Appendix C
Using the Blockchain App Builder Command Line Interface

C-4

https://blogs.oracle.com/virtualization/install-docker-on-oracle-linux-7-v2
https://oracle-base.com/articles/linux/download-the-latest-oracle-linux-repo-file#oracle-linux-7-updated
https://oracle-base.com/articles/linux/download-the-latest-oracle-linux-repo-file#oracle-linux-7-updated

5. Install Blockchain App Builder:

npm install -g oracle-ochain-cli-1.4.0.tgz

6. Log out the current user and log in again for group membership to take effect.

Prerequisites for Windows

Before you install Blockchain App Builder CLI on your local system, you must install
the prerequisites.

• Docker Desktop for Windows v2.x (tested with 2.5.0.1). When prompted by
Docker, provide the Filesharing permissions (required for App Builder).

• Node v10.18.1 or later (tested with 10.22.1)

• npm v6.x (tested with 6.13.4)

• Perl v5.x (tested with ActiveState Perl 5.28)

• Install Windows Build Tools in a powershell with administrative access. npm
install --global windows-build-tools

• If you are developing Go smart contracts, install Go v1.14

• If you want to use the Synchronization feature of App Builder, Git should be
installed and your username and email should be configured as follows.

> git config --global user.name "<your_name>"
> git config --global user.email "<email>"

• Download and build OpenSSL

Download and Build OpenSSL

1. Download OpenSSL from: https://www.openssl.org/source/old/1.0.2/
openssl-1.0.2u.tar.gz

2. Unzip the tarball.

3. Open the Visual C++ 2017/2019 Native Tools command prompt. In the Windows
search bar, search for x64 Native Tools Command Prompt for VS.

4. Navigate to the extracted OpenSSL folder. Run the following commands as an
administrator:

> perl Configure VC-WIN64A –prefix=C:\OpenSSL-Win64
> ms\do_win64a
> nmake -f ms\ntdll.mak This can take up to 15 minutes to
complete.
> cd out32dll
> ..\ms\test
> cd ..
> md C:\OpenSSL-Win64
> md C:\OpenSSL-Win64\bin
> md C:\OpenSSL-Win64\lib
> md C:\OpenSSL-Win64\include
> md C:\OpenSSL-Win64\include\openssl
> copy /b inc32\openssl* C:\OpenSSL-Win64\include\openssl
> copy /b out32dll\ssleay32.lib C:\OpenSSL-Win64\lib

Appendix C
Using the Blockchain App Builder Command Line Interface

C-5

https://www.openssl.org/source/old/1.0.2/openssl-1.0.2u.tar.gz
https://www.openssl.org/source/old/1.0.2/openssl-1.0.2u.tar.gz

> copy /b out32dll\libeay32.lib C:\OpenSSL-Win64\lib
> copy /b out32dll\ssleay32.dll C:\OpenSSL-Win64\bin
> copy /b out32dll\libeay32.dll C:\OpenSSL-Win64\bin
> copy /b out32dll\openssl.exe C:\OpenSSL-Win64\bin
> copy /b C:\OpenSSL-Win64\bin\libeay32.dll
C:\Windows\System32\libeay32.dll
> copy /b C:\OpenSSL-Win64\bin\ssleay32.dll
C:\Windows\System32\ssleay32.dll

Install Blockchain App Builder on Windows

When you've installed all the prerequisite software, install Blockchain App Builder:

> npm install -g oracle-ochain-cli-1.x.x.tgz

Verify the Install

In your terminal, type ochain -v. The output should list the Blockchain App Builder CLI
usage, options, and commands.

Additional Setup for Go Chaincode Projects

In order to develop a Go project, you will need to setup the GOPATH environment
variable. This will allow Go to properly locate your workspace in order to run your
code.

Linux and Mac

Before setting your GOPATH, make sure you have a go/ folder in your $HOME. If not,
create go/ in your home directory:

mkdir $HOME/go

Set your GOPATH by adding this variables in your ~/.bash_profile, ~/.profile,
~/.bashrc or ~/.zshrc file.

export PATH=$PATH:/usr/local/go/bin
export GOPATH=$HOME/go
export PATH=$PATH:$GOPATH/bin

After editing, run the following to make your changes take effect immediately:

source ~/.bash_profile

Alternatively, you can apply this change system wide by adding the above variables in
the /etc/bashrc file.

Windows

Create go/ in your home directory: C:\Users\<username>\go

Appendix C
Using the Blockchain App Builder Command Line Interface

C-6

Create a Chaincode Project with the Blockchain App Builder CLI
To create a Chaincode Project when using the Blockchain App Builder CLI, you need
to scaffold a chaincode project from a detailed specification file. This generates a
project with all the files you need.

Background

Blockchain App Builder's init command initializes and scaffolds a chaincode project
right out of the box for you. Based on simple input, the init command can generate
complex chaincode projects with features such as:

• Multiple assets (models) and their behaviors (controllers)

• Auto-generate CRUD (Create/Read/Update/Delete) and non-CRUD methods

• Automatic validation of arguments

• Marshalling/unmarshalling of arguments

• Transparent persistence capability (ORM)

• Calling rich queries

The generated project follows model/controller and decorator pattern, which allows
an asset's properties maintained on the ledger to be specified as typed fields and
extended with specific behaviors and validation rules. This reduces the number of lines
of code which helps in readability and scalability.

Prerequisites

Before you begin, you need to create an input specification file. The detailed
specifications for this file are described here: Input Specification File.

Scaffolding the Chaincode Project with the init Command

Typing ochain init -h will list the command usage with all its options. The init
command has four options:

• --cc/-c:
The name of the chaincode project. The default value is MyChaincode.

• --lang/-l
The language of the scaffolded chaincode. Currently Blockchain App Builder
supports Typescript (ts) and Go (go). If no option is given it is defaulted to ts.

• --conf/-f or -spec
The path to an input specification file. Blockchain App Builder reads the input
specification file and generates the scaffolded project with many helper tools which
helps in reducing the overall development effort. Taking full advantage of the input
specification file can significantly reduce the development time.

The specification file could be in yaml or json format. If the path is not specified,
it defaults to the current directory. See Input Specification File.

• --out/-o
The output directory of the scaffolded chaincode project. If not specified, the
scaffolded project is generated in the current directory.

The output is a fully contained, light-weight and scalable Typescript or Go
chaincode project.

Appendix C
Using the Blockchain App Builder Command Line Interface

C-7

Example

my-mac:~ name$ ochain init --cc MyNewTsProject --lang ts --conf spec.yml

Defaults

If no options were specified in the ochain init command, the name of the scaffolded
project is MyChaincode and the language is TypeScript.

The MyChaincode.model.ts contains only one asset called MyAsset with one
property named value. MyChaincode.controller.ts contains one controller with the
corresponding CRUD methods for the MyAsset model.

Output

When the process is complete, you'll have a fully-functional chaincode project that you
can deploy either locally or to a remote Oracle Blockchain Platform. For a detailed
overview of the files created, see:

• Scaffolded TypeScript Chaincode Project

• Scaffolded Go Chaincode Project

Input Specification File
The Blockchain App Builder initialization command reads the input specification file
and generates the scaffolded project with several tools to assist in the chaincode
development process.

With the specification file you can specify multiple asset definitions and behavior,
CRUD and non-CRUD method declaration, custom methods, validation of arguments,
auto marshalling/unmarshalling, transparent persistence capability, and invoking rich
data queries using SQL SELECTs or CouchDB Query Language. These features will
be generated for you.

The specification file can be written in either yaml or json. You can see sample
specification files in both formats in the Blockchain App Builder package download:

• fabcar.yml

• marbles.yml

Note:

As per Go conventions, exported names begin with a capital letter. Therefore
all the asset properties and methods must have names starting with capital
letters in the specification file.

Structure of the Specification File

The specification file should be structured in the following way:

assets:
 name:
 properties:
 name:

Appendix C
Using the Blockchain App Builder Command Line Interface

C-8

 type:
 id:
 derived:
 strategy:
 algorithm:
 format:
 mandatory:
 default:
 validate:
 methods:
 crud:
 others:
 type:
customMethods:

Table C-2 Specification File Parameter Descriptions and Examples

Entry Description Examples

assets: This property takes
the definition and
behavior of the asset.
You can give multiple
asset definitions here.

name: The name of the
asset. name: owner # Information about the owner

properties: Describe all the
properties of an
asset.

name: The name of the
property. name: ownerId # Unique ID for each owner

type: Basic types are
supported:
• number
• string
• boolean
• date
• array
• embedded

For Go chaincodes,
number is mapped
to init. Other types
such as
• float
• complex
• unsigned/

signed int
• 8/16/32/64

bits
are not supported at
this time.

name: year # Model year
type: number
mandatory: true
validate: min(1910),max(2020)
name: color # Color - no validation as
color names are innumerable
type: string
mandatory: true

Appendix C
Using the Blockchain App Builder Command Line Interface

C-9

Table C-2 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

id: • true
This specifies the
identifier of this asset.
This property is
mandatory.

name: owner # Informmation about the
owner
properties:
 name: ownerId # Unique ID for each owner
 type: string
 mandatory: true
 id: true
 name: name # Name of the owner
 type: string
 mandatory: true

Appendix C
Using the Blockchain App Builder Command Line Interface

C-10

Table C-2 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

derived: This property
specifies that the id
property is derived
from other keys.
Dependent properties
should be string
datatype and not an
embedded asset.

This property has
two mandatory
parameters:
• strategy: takes

values of concat
or hash.

• format: takes
an array of
specification
strings and
values to be
used by the
strategy.

Example 1:
• The property

employeeID is
dependent on
the firstName
and lastName
properties.

• This property is a
concatenation of
the values listed
in the format
array.

• IND%1#%2%tIND
is the 0th index
in the array and
describes the
final format.

• %n is a position
specifier that
takes its values
from the other
indexes in the
array.

• %t indicates the
value should be
stub.timestam
p from the
channel header.

• If you need to
use the
character % in
the format

Example 1

name: employee
 properties:
 name: employeeId
 type: string
 mandatory: true
 id: true
 derived:
 strategy: concat
 format:
["IND%1#%2%tIND","firstName","lastName"]

 name: firstName
 type: string
 validate: max(30)
 mandatory: true

 name: lastName
 type: string
 validate: max(30)
 mandatory: true

 name: age
 type: number
 validate: positive(),min(18)

Example 2

name: account
 properties:
 name: accountId
 type: string
 mandatory: true
 id: true
 derived:
 strategy: hash
 algorithm: 'sha256'
 format:
["IND%1#%2%t","bankName","ifsccode"]

 name: bankName
 type: string
 validate: max(30)
 mandatory: true

 name: ifsccode

Appendix C
Using the Blockchain App Builder Command Line Interface

C-11

Table C-2 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

string, it should
be escaped with
another %.

• The final format
in this example
would be:
INDfirstName#
lastName16068
85454916IND

Example 2:
• When using

hash, you must
also use the
algorithm
parameter. The
default is
sha256; md5 is
also supported.

• IND%1#%2%t is
the 0th index in
the array and
describes the
final format.

• %n is a position
specifier that
takes its values
from the other
indexes in the
array.

• %t indicates the
value should be
stub.timestam
p from the
channel header.

• If you need to
use the
character % in
the format
string, it should
be escaped with
another %.

 type: string
 mandatory: true

Appendix C
Using the Blockchain App Builder Command Line Interface

C-12

Table C-2 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

mandatory: • true
• false
The corresponding
property is
mandatory and
cannot be skipped
while creating an
asset.

name: phone # Phone number - validate as
(ddd)-ddd-dddd where dashes could also be periods
or spaces
type: string
mandatory: true
validate: /^\(?([0-9]{3})\)?[-.]?([0-9]{3})[-.]?
([0-9]{4})$/
name: cars # The list of car VINs owned by
this owner
type: string[]
mandatory: false

default: This gives you the
default value of this
property.

validate: The given property
is validated against
some of the out-
of-box validations
provided by
Blockchain App
Builder. You can
chain validations if
you ensure that the
chain is valid.

If the validate
property is not
provided, then the
validation is done
against only the
property type.

validate:
type: number

• positive()
• negative()
• min()
• max()
These validations
can be chained
together separated by
commas.

name: offerApplied
type: number
validate: negative(),min(-4)

name: year # Model year
type: number
mandatory: true
validate: min(1910),max(2020)

Appendix C
Using the Blockchain App Builder Command Line Interface

C-13

Table C-2 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

validate:
type: string

• min()
• max()
• email()
• url()
• /regex/ -

supports PHP
regex

For Go chaincodes,
regular expressions
which contain certain
reserved characters
or whitespace
characters should be
properly escaped.

name: website
type: string
mandatory: false
validate: url()

name: phone # Phone number - validate as (ddd)-
ddd-dddd where dashes could also be periods or
spaces
type: string
mandatory: true
validate: /^\(?([0-9]{3})\)?[-.]?([0-9]{3})[-.]?
([0-9]{4})$/

name: Color #Color can be red, blue, or green
type: string
mandatory: true
validate: /^\\s*(red|blue|green)\\s*$/

validate:
type: boolean

• true
• false
In the example, the
validation of property
active is by the type
itself (boolean)

name: active
type: boolean

validate:
type: array

By type itself,
in the form of
type: number[],
this conveys that
the array is of type
number.

You can enter
limits to the array
in the format
number[1:5] which
means minimum
length is 1, maximum
is 5. If either
one is avoided,
only min/max is
considered.

name: items
type: number[:5]

Appendix C
Using the Blockchain App Builder Command Line Interface

C-14

Table C-2 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

validate:
type: date

• min()
• max()
Date should be one
of these formats:
• YYYY-MM-DD
• YYYY-MM-

DDTHH:MM:SSZ,
where T
separates the
date from the
time, and the Z
indicates UTC.
Timezone offsets
can replace the Z
as in -05:00 for
Central Daylight
Savings Time.

name: expiryDate
type: date
validate: max('2020-06-26')

name: completionDate
type: date
validate: min('2020-06-26T02:30:55Z')

methods: Use this to state
which of the
CRUD (Create/Read/
Update/Delete) or
additional methods
are to be generated.

By default, if nothing
is entered, all CRUD
and other methods
are generated.

methods:
 crud: [create, getById, update, delete]
 others: [getHistoryById, getByRange]

crud: • create
• getByID (read)
• update
• delete
If this array is left
empty, no CRUD
methods will be
created.

If the crud parameter
is not used at all, all
four methods will be
created by default.

methods:
 crud: [create, getById, delete]
 others: [] # no other methods will be created

Appendix C
Using the Blockchain App Builder Command Line Interface

C-15

Table C-2 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

others: • getHistoryByI
d

• getByRange
getHistoryById
returns the history of
the asset in a list.

getByRange returns
all the assets in a
given range.

If this array is
left empty, no other
methods will be
created.

If the others
parameter is not used
at all, both methods
will be created by
default.

methods:
 crud: [create, delete]
 others: [] # no other methods will be created

 methods:
 crud: [create, getById, update, delete]
 others: [getHistoryById, getByRange]

Appendix C
Using the Blockchain App Builder Command Line Interface

C-16

Table C-2 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

type: This attribute if set
to embedded defines
the asset as an
embedded asset.
Embedded assets
do not have CRUD
methods and have to
be part of another
asset to store in the
ledger.

In the example, the
property address is
embedded, and is
defined in another
asset.

Asset: employee

name: employee
 properties:
 name: employeeId
 type: string
 mandatory: true
 id: true

 name: firstName
 type: string
 validate: max(30)
 mandatory: true

 name: lastName
 type: string
 validate: max(30)
 mandatory: true

 name: age
 type: number
 validate: positive(),min(18)

 name: address
 type: address

Asset: address

name: address

type: embedded

properties:
 name: street
 type: string

 name: city
 type: string

 name: state
 type: string

 name: country
 type: string

Appendix C
Using the Blockchain App Builder Command Line Interface

C-17

Table C-2 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

customMethods: This property creates
invokable custom
method templates in
the main controller
file. It takes the
method signature and
creates the function
declaration in the
controller file.

You can provide
language specific
function declarations
here.

We provide a custom
method named
executeQuery. If
it's added to
the specification
file, it details
how Berkeley DB
SQL and CouchDB
rich queries can
be executed. This
method can be
invoked only when
you are connected
to Oracle Blockchain
Platform Cloud or
Enterprise Edition.

TypeScript

customMethods:
 - executeQuery
 - "buyCar(vin: string, buyerId: string,
sellerId: string, price: number, date: Date)"
 - "addCar(vin: string, dealerId: string,
price: number, date: Date)"

Go

customMethods:
 - executeQuery
 - "BuyCar(vin string, buyerId string,
sellerId string, price int)"
 - "AddCar(vin string, dealerId string, price
int)"

Scaffolded TypeScript Chaincode Project
Blockchain App Builder takes the input from your specification file and generates a
fully-functional scaffolded chaincode project.

If the chaincode project uses the TypeScript language, the scaffolded project contains
three main files:

• main.ts

• <chaincodeName>.model.ts

• <chaincodeName>.controller.ts

All the necessary libraries are installed and packaged. The tsconfig.json file
contains the necessary configuration to compile and build the TypeScript project.

The <chaincodeName>.model.ts contains multiple asset definitions and
<chaincodeName>.controller.ts contains the assets behavior and CRUD
methods.

The various decorators in model.ts and controller.ts provide support
for features like automatic validation of arguments, marshalling/unmarshalling of
arguments, transparent persistence capability (ORM) and calling rich queries.

Appendix C
Using the Blockchain App Builder Command Line Interface

C-18

Reference:

• Asset

• Decorators

• Models

• Controller

• CRUD Methods

• Model Methods

• Controller Method Details

• Custom Methods

• Init Method

Asset

By default every class which extends OchainModel will have an additional read-only
property called assetType. This property can be used to fetch only assets of this type.
Any changes to this property are ignored during the creation and updating of the asset.
The property value by default is <chaincodeName>.<assetName>.

@Id('supplierId')
export class Supplier extends OchainModel<Supplier> {
 public readonly assetType = 'tsdeml36.supplier';
 @Mandatory()
 @Validate(yup.string())
 public supplierId: string;

Decorators

Class decorators
@Id(identifier)

This decorator identifies the property which uniquely defines the underlying asset.
This property is used as a key of the record, which represents this asset in the
chaincode's state. This decorator is automatically applied when a new TypeScript
project is scaffolded. The 'identifier' argument of the decorator takes the value from
specification file.

@Id('supplierId')
export class Supplier extends OchainModel{
...
}

Property decorators
Multiple property decorators can be used. The decorators are resolved in top to
bottom order.

@Mandatory()

Appendix C
Using the Blockchain App Builder Command Line Interface

C-19

This marks the following property as mandatory so it cannot be skipped while saving
to the ledger. If skipped it throws an error.

@Mandatory()
public supplierID: string;

@Default(param)

This property can have a default value. The default value in the argument (param) is
used when the property is skipped while saving to the ledger.

@Default('open for business')
@Validate(yup.string())
public remarks: string;

@Validate(param)

The following property is validated against the schema presented in the parameter.
The argument param takes a yup schema and many schema methods can be chained
together. Many complex validations can be added. Refer to https://www.npmjs.com/
package/yup for more details.

@Validate(yup.number().min(3))
public productsShipped: number;

@Embedded(PropertyClass)

This property decorator marks the underlying property as an embeddable asset.
It takes the embeddable class as a parameter. This class should extend the
EmbeddedModel class. This is validated by the decorator.

In this example, Employee has a property called address of type Address, which is to
be embedded with the Employee asset. This is denoted by the @Embedded() decorator.

export class Employee extends OchainModel<Employee> {

 public readonly assetType = 'TsSample.employee';

 @Mandatory()
 @Validate(yup.string())
 public emplyeeID: string;

 @Mandatory()
 @Validate(yup.string().max(30))
 public firstName: string;

 @Mandatory()
 @Validate(yup.string().max(30))
 public lastName: string;

 @Validate(yup.number().positive().min(18))

Appendix C
Using the Blockchain App Builder Command Line Interface

C-20

https://www.npmjs.com/package/yup
https://www.npmjs.com/package/yup

 public age: number;

 @Embedded(Address)
 public address: Address;
}

export class Address extends EmbeddedModel<Address> {

 @Validate(yup.string())
 public street: string;

 @Validate(yup.string())
 public city: string;

 @Validate(yup.string())
 public state: string;

 @Validate(yup.string())
 public country: string;
}

When a new instance of the Address class is created, all the properties of the Address
class are automatically validated by the @Validate() decorator. Note that the Address
class does not have the assetType property or @Id() class decorator. This asset
and its properties are not saved in the ledger separately but are saved along with
the Employee asset. Embedded assets are user defined classes that function as
value types. The instance of this class can only be stored in the ledger as a part
of the containing object (OchainModel assets). All the above decorators are applied
automatically based on the input file while scaffolding the project.

@Derived(STRATEGY, ALGORITHM, FORMAT)

This decorator is used for defining the attribute derived from other properties. This
decorator has two mandatory parameters:

• STRATEGY: takes values of CONCAT or HASH. Requires an additional parameter
ALGORITHM if HASH is selected. The default algorithm is sha256; md5 is also
supported.

• FORMAT: takes an array of specification strings and values to be used by the
strategy.

@Id('supplierID')
export class Supplier extends OchainModel<Supplier> {

 public readonly assetType = 'chaincodeTS.supplier';

 @Mandatory()
 @Derived(STRATEGY.HASH.'sha256',['IND%1IND%2','license','name'])
 @Validate(yup.string())
 public supplierID: string;

Appendix C
Using the Blockchain App Builder Command Line Interface

C-21

 @Validate(yup.string().min(2).max(4))
 public license: string;

 @Validate(yup.string().min(2).max(4))
 public name: string;

Method decorators
@Validator(…params)

This decorator is applied on methods of the main controller class. This decorator is
important for parsing the arguments, validating against all the property decorators and
returning a model/type object. It takes multiple user created models or yup schemas
as parameter.

Note the order of the parameters should be exactly the same as the order of the
arguments in the method.

In this example, the Supplier model reference is passed in parameters which
corresponds to the asset type in the method argument. The decorator in run-time
would parse and convert the method argument to JSON object, validate against
the Supplier validators, and upon successful validation convert the JSON object to
Supplier object and assign it to the asset variable. On completion the underlying
method is then finally called.

@Validator(Supplier)
public async createSupplier(asset: Supplier) {
 return await asset.save();
}

In this example, multiple asset references are passed; they corresponds to the object
types of the method arguments. Notice the order in the parameters.

@Validator(Supplier, Manufacturer)
public async createProducts(supplier: Supplier, manufacturer:
Manufacturer) {
}

Apart from asset reference, yup schema objects could also be passed if the
arguments are of basic-types. In this example, supplierId and rawMaterialSupply
are of type string and number respectively, so the yup schema of similar type and
correct order is passed to the decorator. Notice the chaining of yup schema methods.

@Validator(yup.string(), yup.number().positive())
public async fetchRawMaterial(supplierID:string, rawMaterialSupply:
number) {
 const supplier = await Supplier.get(supplierID);
 supplier.rawMaterialAvailable = supplier.rawMaterialAvailable +
rawMaterialSupply;
 return await supplier.update();
}

Appendix C
Using the Blockchain App Builder Command Line Interface

C-22

Models

Every model class extends OchainModel. Transparent Persistence Capability or
simplified ORM is captured in the OchainModel class. If your model needs to need
call any of the below ORM methods, you should extend the OchainModel class.

ORM methods which are exposed via OchainModel:

• save – this calls the Hyperledger Fabric putState method

• get – this calls the Hyperledger Fabric getState method

• update – this calls the Hyperledger Fabric putState method

• delete – this calls the Hyperledger Fabric deleteState method

• history – this calls the Hyperledger Fabric getHistoryForKey method

• getByRange – this calls the Hyperledger Fabric getStateByRange method

See: Model Methods.

Controller

Main controller class extends OchainController. There is only one main controller.

export class TSProjectController extends OchainController{

You can create any number of classes, functions, or files, but only those methods that
are defined within the main controller class are invokable from outside, the rest of
them are hidden.

CRUD Methods

As described in Input Specification File, you can specify which CRUD methods you
want generated in the specification file. For example, if you selected to generate all
methods, the result would be similar to:

@Validator(Supplier)
public asynch createSupplier(asset: Supplier){
 return await asset.save();
}
public asynch getSupplierById(id: string){
 const asset = await Supplier.get(id);
 return asset;
}
@Validator(Supplier)
public asynch updateSupplier(asset: Supplier){
 return await asset.update();
}
public asynch deleteSupplier(id: string){
 const result = await Supplier.delete(id);
 return result;
}
public asynch getSupplierHistoryById(id: string){
 const result = await Supplier.history(id);
 return result;
}

Appendix C
Using the Blockchain App Builder Command Line Interface

C-23

@Validator(yup.string(), yup.string())
public asynch getSupplierByRange(startId: string, endId: string){
 const result = await Supplier.getByRange(startId, endId);
 return result;
}

Model Methods

save
The save method adds the caller asset details to the ledger.

This method calls the Hyperledger Fabric putState internally. All marshalling/
unmarshalling is handled internally.

<Asset>.save(extraMetadata?: any): Promise<any>

Parameters:

• extraMetadata : any (optional) – To save metadata apart from the asset into the
ledger.

Returns:

• Promise<any> - Returns a promise on completion

Example:

@Validator(Supplier)
public async createSupplier(asset: Supplier) {
 return await asset.save();
}

get
The get method is a static method of OchainModel class which is inherited by the
concrete model classes of {chaincodeName}.model.ts.

This returns an asset of <Asset> if id is found in the ledger and has the same type as
<Asset>. This method calls the Hyperledger Fabric getState method internally. Even
though any asset with givenid is returned from the ledger, our method will take care
of casting into the caller Model type.

If you would like to return any asset by the given id, use the generic controller method
getAssetById.

<Asset>.get(id: string): Promise<asset>

Parameters:

• id : string – Key used to save data into the ledger.

Returns:

Appendix C
Using the Blockchain App Builder Command Line Interface

C-24

• Promise: <Asset> - Returns object of type <Asset>. Even though any asset with
given id is returned from the ledger, this method will take care of casting into the
caller Asset type. If the asset returned from the ledger is not of the Asset type,
then it throws an error. This check is done by the read-only assetType property in
the Model class.

Example:

public async getSupplierById: string) {
 const asset = await Supplier.get(id);
 return asset;
}

In the example, asset is of the type Supplier.

update
The update method updates the caller asset details in the ledger. This method returns
a promise.

This method calls the Hyperledger Fabric putState internally. All the marshalling/
unmarshalling is handled internally.

<Asset>.update(extraMetadata?: any): Promise<any>

Parameters:

• extraMetadata : any (optional) – To save metadata apart from the asset into the
ledger.

Returns:

• Promise<any> - Returns a promise on completion

Example:

@Validator(Supplier)
public async updateSupplier(asset: Supplier) {
 return await asset.update();
}

delete
This deletes the asset from the ledger given by id if it exists. This method calls the
Hyperledger Fabric deleteState method internally.

The delete method is a static method of OchainModel class which is inherited by the
concrete Model classes of {chaincodeName}.model.ts.

<Asset>. delete(id: string): Promise<any>

Parameters:

• id : string – Key used to save data into the ledger.

Appendix C
Using the Blockchain App Builder Command Line Interface

C-25

Returns:

• Promise <any> - Returns a promise on completion.

Example:

public async deleteSupplier(id: string) {
 const result = await Supplier.delete(id);
 return result;
}

history
The history method is a static method of OchainModel class which is inherited by
the concrete Model classes of {chaincodeName}.model.ts. This returns the asset
history given by id from the ledger, if it exists.

This method calls the Hyperledger Fabric getHistoryForKey method internally.

<Asset>.history(id: string): Promise<any[]>

Parameters:

• id : string – Key used to save data into the ledger.

Returns:

• Promise <any[]> - Returns any [] on completion.

Example

public async getSupplierHistoryById(id: string) {
 const result = await Supplier.history(id);
 return result;
}

Example of the returned asset history for getSupplierHistoryById:

[
 {
 "trxId":
"8ef4eae6389e9d592a475c47d7d9fe6253618ca3ae0bcf77b5de57be6d6c3829",
 "timeStamp": 1602568005,
 "isDelete": false,
 "value": {
 "assetType": "supp.supplier",
 "supplierId": "s01",
 "rawMaterialAvailable": 10,
 "license": "abcdabcdabcd",
 "expiryDate": "2020-05-28T18:30:00.000Z",
 "active": true
 }
 },

Appendix C
Using the Blockchain App Builder Command Line Interface

C-26

 {
 "trxId":
"92c772ce41ab75aec2c05d17d7ca9238ce85c33795308296eabfd41ad34e1499",
 "timeStamp": 1602568147,
 "isDelete": false,
 "value": {
 "assetType": "supp.supplier",
 "supplierId": "s01",
 "rawMaterialAvailable": 15,
 "license": "valid license",
 "expiryDate": "2020-05-28T18:30:00.000Z",
 "active": true
 }
 }
]

getByRange
The getByRange method is a static method of OchainModel class which is inherited by
the concrete Model classes of {chaincodeName}.model.ts.

This returns a list of asset between the range startId and endId. This method calls
the Hyperledger Fabric getStateByRange method internally.

Even though any asset with given id is returned from the ledger, our method will take
care of casting into the caller Model type. In above example, result array is of the
type Supplier. If the asset returned from ledger is not of the Model type, then it will
not be included in the list. This check is done by the read-only assetType property in
the Model class.

If you would like to return all the assets between the range startId and endId, use
the generic controller method getAssetsByRange.

<Asset>.getByRange(startId: string, endId: string): Promise<Asset[]>

Parameters:

• startId : string – Starting key of the range. Included in the range.

• endId : string – Ending key of the range. Excluded of the range.

Returns:

• Promise< Asset[] > - Returns array of <Asset> on completion.

Example:

@Validator(yup.string(), yup.string())
public async getSupplierByRange(startId: string, endId: string){
 const result = await Supplier.getByRange(startId, endId);
 return result;
}

Appendix C
Using the Blockchain App Builder Command Line Interface

C-27

getId
When the asset has a derived key as Id, you can use this method to get a derived ID.
This method will return an error if the derived key contains %t (timestamp).

Parameters:

• object – Object should contain all the properties on which the derived key is
dependent.

Returns:

• Returns the derived key as a string.

Example:

@Validator(yup.string(), yup.string())
public async customGetterForSupplier(license: string, name: string){
 let object = {
 license : license,
 name: name
 }
 const id = await Supplier.getID(object);
 return Supplier.get(id);
}

Controller Method Details

Apart from the above model CRUD and non-CRUD methods, Blockchain App Builder
provides out-of-the box support for other Hyperledger Fabric methods from our
controller. These methods are:

• getAssetById

• getAssetsByRange

• getAssetHistoryById

• query

• generateCompositeKey

• getByCompositeKey

• getTransactionId

• getTransactionTimestamp

• getTransactionInvoker

• getChannelID

• getCreator

• getSignedProposal

• getArgs

• getStringArgs

• getMspID

• getNetworkStub

Appendix C
Using the Blockchain App Builder Command Line Interface

C-28

These methods are available with this context itself in the Controller class. For
example:

public async getModelById(id: string) {
 const asset = await this.getAssetById(id);
 return asset;
}
@Validator(yup.string(), yup.string())
public async getModelsByRange(startId: string, endId: string) {
 const asset = await this.getAssetsByRange(startId, endId);
 return asset;
}
public async getModelHistoryById(id: string) {
 const result = await this.getAssetHistoryById(id);
 return result;
}

getAssetById
The getAssetById method returns asset based on id provided. This is a generic
method and be used to get asset of any type.

this< OchainController>.getAssetById(id: string): Promise<byte[]>

Parameters:

• id : string – Key used to save data into the ledger.

Returns:

• Promise <byte []> - Returns promise on completion. You have to convert
byte[] into an object.

getAssetsByRange
The getAssetsByRange method returns all assets present from startId (inclusive) to
endId (exclusive) irrespective of asset types. This is a generic method and can be
used to get assets of any type.

this<OchainController>.getAssetsByRange(startId: string, endId:
string):
Promise<shim.Iterators.StateQueryIterator>

Parameters:

• startId : string – Starting key of the range. Included in the range.

• endId : string – Ending key of the range. Excluded of the range.

Returns:

• Promise< shim.Iterators.StateQueryIterator> - Returns an iterator on
completion. You have to iterate over it.

Appendix C
Using the Blockchain App Builder Command Line Interface

C-29

getAssetHistoryById
The getAssetHistoryById method returns history iterator of an asset for id provided.

this<OchainController>.getAssetHistoryById(id: string):
Promise<shim.Iterators.HistoryQueryIterator>

Parameters:

• id : string – Key used to save data into the ledger.

Returns:

• Promise<shim.Iterators.HistoryQueryIterator> - Returns a history query
iterator. You have to iterate over it.

query
The query method will run a Rich SQL/Couch DB query over the ledger. This method
is only supported for remote deployment on Oracle Blockchain Platform. This is a
generic method for executing SQL queries on the ledger.

this<OchainController>.query(queryStr: string):
Promise<shim.Iterators.StateQueryIterator>

Parameters:

• queryStr : string - Rich SQL/Couch DB query.

Returns:

• Promise<shim.Iterators.StateQueryIterator> - Returns a state query iterator.
You have to iterate over it.

generateCompositeKey
This method generates and returns the composite key based on the indexName and
the attributes given in the arguments.

this<OchainController>.generateCompositeKey(indexName: string,
attributes:
string[]): string

Parameters:

• indexName : string - Object Type of the key used to save data into the ledger.

• attributes: string[] - Attributes based on which composite key will be
formed.

Returns:

• string - Returns a composite key.

getByCompositeKey
This method returns the asset that matches the key and the column given in the
attribute parameter while creating composite key. indexOfId parameter indicates
the index of the key returned in the array of stub method SplitCompositeKey.

Appendix C
Using the Blockchain App Builder Command Line Interface

C-30

Internally this method calls Hyperledger Fabric’s getStateByPartialCompositeKey,
splitCompositeKey and getState.

this<OchainController>.getByCompositeKey(key: string, columns:
string[],
indexOfId: number): Promise<any []>

Parameters:

• key: string – Key used to save data into ledger.

• columns: string[] - Attributes based on key is generated.

• indexOfId: number - Index of attribute to be retrieved from Key.

Returns:

• Promise< any [] - Returns any [] on completion.

getTransactionId
Returns the transaction ID for the current chaincode invocation request. The
transaction ID uniquely identifies the transaction within the scope of the channel.

this<OchainController>.getTransactionId(): string

Parameters:

• none

Returns:

• string - Returns the transaction ID for the current chaincode invocation request.

getTransactionTimestamp
Returns the timestamp when the transaction was created. This is taken from the
transaction ChannelHeader, therefore it will indicate the client's timestamp, and will
have the same value across all endorsers.

this<OchainController>.getTransactionTimestamp(): Timestamp

Parameters:

• id : string – Key used to save data into the ledger.

Returns:

• Timestamp - Returns the timestamp when the transaction was created.

getTransactionInvoker
Returns the caller of the transaction from the Transient map property
bcsRestClientId.

this<OchainController>.getTransactionInvoker(): string

Parameters:

Appendix C
Using the Blockchain App Builder Command Line Interface

C-31

• none

Returns:

• string - Returns the caller of the transaction.

getChannelID
Returns the channel ID for the proposal for chaincode to process.

this<OchainController>.getChannelID(): string

Parameters:

• none

Returns:

• string - Returns the channel ID.

getCreator
Returns the identity object of the chaincode invocation's submitter.

this<OchainController>.getCreator(): shim.SerializedIdentity

Parameters:

• none

Returns:

• shim.SerializedIdentity - Returns identity object.

getSignedProposal
Returns a fully decoded object of the signed transaction proposal.

this<OchainController>.getSignedProposal():
shim.ChaincodeProposal.SignedProposal

Parameters:

• none

Returns:

• shim.ChaincodeProposal.SignedProposal - Returns decoded object of the
signed transaction proposal.

getArgs
Returns the arguments as array of strings from the chaincode invocation request.

this<OchainController>.getArgs(): string[]

Parameters:

Appendix C
Using the Blockchain App Builder Command Line Interface

C-32

• none

Returns:

• string [] - Returns arguments as array of strings from the chaincode
invocation.

getStringArgs
Returns the arguments as array of strings from the chaincode invocation request.

this<OchainController>.getStringArgs(): string[]

Parameters:

• none

Returns:

• string [] - Returns arguments as array of strings from the chaincode
invocation.

getMspID
Returns the MSP ID of the invoking identity.

this<OchainController>.getMspID(): string

Parameters:

• none

Returns:

• string - Returns the MSP ID of the invoking identity.

getNetworkStub
The user can get access to the shim stub by calling getNetworkStub method. This will
help user to write its own implementation of working directly with the assets.

this<OchainController>.getNetworkStub(): shim.ChaincodeStub

Parameters:

• none

Returns:

• shim.ChaincodeStub - Returns chaincode network stub.

Custom Methods

The following custom methods were generated from our example specification file.

Appendix C
Using the Blockchain App Builder Command Line Interface

C-33

The executeQuery shows how SQL rich queries can be called. The validators against
the arguments are added automatically by Blockchain App Builder based on the type
of the argument specified in the specification file.

/**
*
* BDB sql rich queries can be executed in OBP CS/EE.
* This method can be invoked only when connected to remote OBP CS/EE
network.
*
*/
@Validator(yup.string()}
public async executeQuery(query: string) {
 const result = await OchainController.query(query);
 return result;
}
@Validator(yup.string(), yup.number()}
public async fetchRawMaterial(supplierId: string, rawMaterialSupply:
number) {
}
@Validator(yup.string(), yup.string(), yup.number())
public async getRawMaterialFromSupplier(manufacturerId: string,
supplierId: string, rawMaterialSupply: number) {
}
@Validator(yup.string(), yup.number(), yup.number())
public async createProducts(manufacturerId: string,
rawMaterialConsumed: number, productsCreated: number) {
}
public async sendProductsToDistribution() {
}

Init Method

We have provided one init method in the controller with an empty definition. This
method will be called by the Hyperledger Fabric Init method during first time
instantiating or upgrading the chaincode.

export class TestTsProjectController extends OchainController {
 public async init(params: any) {
 return;
}

If you would like to initialize any application state at this point, you can use this method
to do that.

Scaffolded Go Chaincode Project
Blockchain App Builder takes the input from your specification file and generates a
fully-functional scaffolded chaincode project.

If the chaincode project is in the Go language, the scaffolded project contains three
main files:

Appendix C
Using the Blockchain App Builder Command Line Interface

C-34

• main.go

• <chaincodeName>.model.go

• <chaincodeName>.controller.go

All the necessary libraries are installed and packaged.

The <chaincodeName>.model.go contains multiple asset definitions and
<chaincodeName>.controller.go contains the asset's behavior and CRUD
methods. The various Go struct tags and packages in model.go and
controller.go provide support for features like automatic validation of arguments,
marshalling/unmarshalling of arguments, transparent persistence capability (ORM)
and calling rich queries.

The scaffolded project can be found in $GOPATH/src/example.com/
<chaincodeName>

Reference:

• Validators

• Model

• Composite Key Methods

• Stub Method

• Other Methods

• Utility Package

• Controller

• CRUD Methods

• Custom Methods

• Init Method

Validators

Id
id:"true"

This validator identifies the property which uniquely defines the underlying model. The
asset is saved by the value in this key. This validator automatically applies when a
new Go project is scaffolded.

In the below screenshot "SupplierId" is the key for the supplier asset and has a tag
property id:"true" for the SupplierId property.

type Supplier struct {
 Supplierld string 'json:"Supplierld"
validate:"string,mandatory" id:"true"'
 RawMaterialAvailable int 'json:"RawMaterialAvailable"
validate:"int,min=0"'
 License string 'json:"License"
validate:"string,min=10"'
 ExpiryDate date.Date 'json:"ExpiryDate"

Appendix C
Using the Blockchain App Builder Command Line Interface

C-35

validate:"date,before=2020-06-26"'
 Active bool 'json:"Active"
validate:"bool" default :"true"'
 Metadata interface{}
'json:"Metadata,omitempty"'
}

Derived
derived:"strategy,algorithm,format"

This decorator is used for defining the attribute derived from other properties. This
decorator has two mandatory parameters:

• strategy: takes values of concat or hash. Requires an additional parameter
algorithm if hash is selected. The default algorithm is sha256; md5 is also
supported.

• format: takes an array of specification strings and values to be used by the
strategy.

type Supplier struct{
 AssetType string 'json:"AssetType" final:"chaincode1.Supplier"'
 SupplierId string 'json:"SupplierId"
validate:"string" id:"true" mandatory:"true"
derived:"strategy=hash,algorith=sha256,format=IND%1%2,License,Name"'
 Name string 'json:"Name" validate:"string,min=2,max=4"'
 License string 'json:"License" validate:"string,min=2,max=4"'
}

Mandatory
validate:"mandatory"

This marks the following property as mandatory and cannot be skipped while saving
to the ledger. If skipped it throws an error. In the below example, "SupplierId" has a
validate:"mandatory" tag.

Type Supplier struct {
 Supplierld string 'json:"Supplierld"
validate:"string,mandatory" id:"true"'
 RawMaterialAvailable int 'json:"RawMaterialAvailable"
validate:"int,min=0"'
 License string 'json:"License"
validate:"string,min=10"'
 ExpiryDate date.Date 'json:"ExpiryDate"
validate:"date,before=2020-06-26"'
 Active bool 'json:"Active" validate:"bool"
default :"true"'
 Metadata interface{} 'json:"Metadata,omitempty"'
}

Default
default:"<param>"

Appendix C
Using the Blockchain App Builder Command Line Interface

C-36

This states that the following property can have a default value. The default value
in the default tag is used when the property is skipped while saving to the ledger.
In the below example property, Active has a default value of true, provided as tag
default:"true"

Type Supplier struct {
 Supplierld string 'json:"Supplierld"
validate:"string,mandatory" id:"true"'
 RawMaterialAvailable int 'json:"RawMaterialAvailable"
validate:"int,min=0"'
 License string 'json:"License"
validate:"string,min=10"'
 ExpiryDate date.Date 'json:"ExpiryDate"
validate:"date,before=2020-06-26"'
 Active bool 'json:"Active" validate:"bool"
default :"true"'
 Metadata interface{} 'json:"Metadata,omitempty"'
}

Validate types
Basic Go types are validated for a property by defining a validate tag. These are the
validate tags based on types:

• string: validate: "string"

• date: validate: "date"

• number: validate: "int"

• boolean: validate: "bool"

Min validator
validate:"min=<param>"

Using the min validator, minimum value can be set for a property of type number and
string.

For type int: In the example, RawMaterialAvailable property has a minimum value
of 0 and if a value less than 0 is applied to RawMaterialAvailable an error will be
returned.

For type string: For the string type minimum validator will check the length of the
string with the provided value. Therefore, in the below example the License property
has to be minimum 10 characters long.

Example:

Type Supplier struct {
 Supplierld string 'json:"Supplierld"
validate:"string,mandatory" id:"true"'
 RawMaterialAvailable int 'json:"RawMaterialAvailable"
validate:"int,min=0"'
 License string 'json:"License"
validate:"string,min=10"'
 ExpiryDate date.Date 'json:"ExpiryDate"

Appendix C
Using the Blockchain App Builder Command Line Interface

C-37

validate:"date,before=2020-06-26"'
 Active bool 'json:"Active" validate:"bool"
default :"true"'
 Metadata interface{} 'json:"Metadata,omitempty"'
}

Max validator
validate:"max=<param>"

Using the max validator, the maximum value can be set for a property of type number
and string.

For type int: Like the min validator, for type int, if a value provided for the structfield
is greater than the value provided in the validator then an error will be returned.

For type string: Like the min validator, max validator will also check the length of the
string with given value. In the example, the Domian property has a maximum value
of 50, so if the Domain property has a string length more than 50 characters, then an
error message will be returned.

type Retailer struct {
 Retailerld string 'json:"Retailerld"
validate:"string,mandatory" id:"true"'
 ProductsOrdered int 'json:"ProductsOrdered"
validate:"int,mandatory"'
 ProductsAvailable int 'json:"ProductsAvailable"
validate:"int" default:"1"'
 ProductsSold int 'json:"ProductsSold"
validate:"int"'
 Remarks string 'json:"Remarks" validate:"string"
default :"open for business"'
 Items []int 'json:"Items"
validate:"array=int,range=l-5"'
 Domain string 'json:"Domain"
validate:"url,min=30,max=50"'
 Metadata interface{} 'json:"Metadata,omitempty"'
}

Date validators
Before validator:

validate:"before=<param>"

The before validator validates a property of type date to have a value less than the
specified in parameter.

In this example, the ExpiryDate property should be before "2020-06-26" and if not it
will return an error.

Type Supplier struct {
 Supplierld string 'json:"Supplierld"
validate:"string,mandatory" id:"true"'

Appendix C
Using the Blockchain App Builder Command Line Interface

C-38

 RawMaterialAvailable int 'json:"RawMaterialAvailable"
validate:"int,min=0"'
 License string 'json:"License"
validate:"string,min=10"'
 ExpiryDate date.Date 'json:"ExpiryDate"
validate:"date,before=2020-06-26"'
 Active bool 'json:"Active" validate:"bool"
default :"true"'
 Metadata interface{} 'json:"Metadata,omitempty"'
}

After validator:

validate:"after=<param>"

The before validator validates a property of type date to have a value greater than the
specified in parameter.

In this example, the CompletionDate property should be after "2020-06-26" and if not
it will return an error.

Type Supplier struct {
 Manufacturerld string 'json:"Manufacturerld"
validate:"string,mandatory" id:"true"'
 RawMaterialAvailable int 'json:"RawMaterialAvailable"
validate:"int,max=8"'
 ProductsAvailable int 'json:"ProductsAvailable"
validate:"int"'
 CompletionDate date.Date 'json:"CompletionDate"
validate:"date,after=2020-06-26"'
 Metadata interface{} 'json:"Metadata,omitempty"'
}

URL validator
validate:"url"

The URL validator will validate a property for URL strings.

In this example, the Domain property has to be a valid URL.

type Retailer struct {
 Retailerld string 'json:"Retailerld"
validate:"string,mandatory" id:"true"'
 ProductsOrdered int 'json:"ProductsOrdered"
validate:"int,mandatory"'
 ProductsAvailable int 'json:"ProductsAvailable"
validate:"int" default:"1"'
 ProductsSold int 'json:"ProductsSold"
validate:"int"'
 Remarks string 'json:"Remarks" validate:"string"
default :"open for business"'
 Items []int 'json:"Items"

Appendix C
Using the Blockchain App Builder Command Line Interface

C-39

validate:"array=int,range=l-5"'
 Domain string 'json:"Domain"
validate:"string,url,min=30,max=50"'
 Metadata interface{} 'json:"Metadata,omitempty"'
}

Regexp validator
validate:"regexp=<param>"

Regexp validator will validate property for the input regular expression.

In this example, the PhoneNumber property will validate for a mobile number as per the
regular expression.

type Customer struct {
Customerld string 'json:"Customerld"
validate:"string,mandatory" id:"true"'
Name string 'json:"Name" validate:"string,mandatory"'
ProductsBought int 'json:"ProductsBought" validate:"int"'
OfferApplied int 'json:"OfferApplied"
validate :"int,nax=0"'
PhoneNumber string
'json:"PhoneNumber" validate:"string,regexp=A\(?([0-9]{3})\)?[-.]?
([0-9]{3})[-.]?([0-9]{4})$"'
Received bool 'json:"Received" validate:"bool“'
Metadata interface{} 'json:"Metadata,omitempty"'
}

Multiple validators
Multiple validators can be applied a property.

In this example, the Domain property has validation for a string, URL, and min and
max string length.

type Retailer struct {
 Retailerld string 'json:"Retailerld"
validate:"string,mandatory" id:"true"'
 ProductsOrdered int 'json:"ProductsOrdered"
validate:"int,mandatory"'
 ProductsAvailable int 'json:"ProductsAvailable"
validate:"int" default:"1"'
 ProductsSold int 'json:"ProductsSold"
validate:"int"'
 Remarks string 'json:"Remarks" validate:"string"
default :"open for business"'
 Items []int 'json:"Items"
validate:"array=int,range=l-5"'
 Domain string 'json:"Domain"
validate:"string,url,min=30,max=50"'
 Metadata interface{} 'json:"Metadata,omitempty"'
}

Appendix C
Using the Blockchain App Builder Command Line Interface

C-40

Model

Asset Type Property

By default every struct will have an additional property called AssetType. This property
can be useful in fetching only assets of this type. Any changes to this property
is ignored during create and update of asset. The property value by default is
<chaincodeName>.<modelName>.

type Supplier struct {
AssetType string 'json:"AssetType" default:"TestGoProject.Supplier"'

SupplierId string 'json:"SupplierId"
validate:"string,mandatory" id:"true'
RawMaterialAvailable int 'json:"RawMaterialAvailable"
validate:"int,min=0"'
License string 'json:"License"
validate:"string,min=10"'
ExpiryDate date.Date 'json:"ExpiryDate"
validate:"date,before=2020-06-26"'
Active bool 'json:"Active" validate:"bool"
default:"true"'
Metadata interface{} 'json:"Metadata,omitempty"'
}

ORM

Go chaincodes implement Transparent Persistence Capability (ORM) with the model
package.

The following ORM methods are exposed via the model package:

model.Get
Queries the ledger for the stored asset based on the given ID.

func Get(Id string, result ...interface{}) (interface{}, error)

Parameters:

• Id - The ID of the asset which is required from the ledger.

• result (interface{}) - This is an empty asset object of a particular type, which
is passed by reference. This object will contain the result from this method. To be
used only if type-specific result is required.

• asset (interface) - Empty asset object, which is passed by reference. This
object will contain the result from this method. To be used only if type-specific
result is required.

Returns:

• interface {} - Interface contains the asset in the form of
map[string]interface{}. Before operating on this map, it is required to assert

Appendix C
Using the Blockchain App Builder Command Line Interface

C-41

the obtained interface with type map[string]interface{}. To convert this map
into an asset object, you can use the utility API util.ConvertMaptoStruct (see:
Utility Package).

• error - Contains an error if returned, or is nil.

model.Update
Updates the provided asset in the ledger with the new values.

func Update(args ...interface{}) (interface{}, error)

Parameters:

• obj (interface) - The object that is required to be updated in the ledger
is passed by reference into this API with the new values. The input asset
is validated and verified according to the struct tags mentioned in the model
specification and then stored into the ledger.

Returns:

• interface{} - The saved asset is returned as an interface.

• error - Contains an error if returned, or is nil.

model.Save
Saves the asset to the ledger after validating on all the struct tags.

func Save(args ...interface{}) (interface{}, error)

Parameters:

• obj/args[0] (interface{}) - The object that needs to be stored in the ledger is
passed by reference in this utility method.

• metadata/args[1] (interface{}) - This parameter is optional. It has been given
in order to facilitate you if you're required to store any metadata into the ledger
along with the asset at the runtime. This parameter can be skipped if no such
requirement exists.

Returns:

• interface {} - The asset is returned as an interface.

• error - Contains an error if returned, or is nil.

model.Delete
Deletes the asset from the ledger.

func Delete(Id string) (interface{}, error)

Parameters:

• id (string) - The ID of the asset which is required to be deleted from the ledger.

Returns:

Appendix C
Using the Blockchain App Builder Command Line Interface

C-42

• interface {} - Contains the asset being deleted in the form of
map[string]interface{}.

model.GetByRange
Returns the list of assets by range of IDs.

func GetByRange(startKey string, endKey string, asset ...interface{})
([]map[string]interface{}, error)

Parameters:

• startkey (string) - Starting ID for the range of objects which are required.

• endkey (string) - End of the range of objects which are required.

• asset interface - (optional) Empty array of assets, which is passed by
reference. This array will contain the result from this method. To be used if type-
specific result is required.

Returns:

• []map[string]interface{} - This array contains the list of assets obtained from
the ledger. You can access the objects iterating over this array and asserting the
objects as map[string]interface{} and using utility to convert to asset object.

• error - Contains an error if returned, or is nil.

model.GetHistoryById
Returns the history of the asset with the given ID.

func GetHistoryByID(Id string) ([]interface{}, error)

Parameters:

• Id (string) - ID of the asset for which the history is needed.

Returns:

• []interface{} - This slice contains the history of the asset obtained from
the ledger in form of slice of map[string]interface{}. You can access each
history element by iterating over this slice and asserting the objects as
map[string]interface{} and using utility to convert to asset object.

• error - Contains the error if observed.

model.Query
The query method will run a SQL/Couch DB query over the ledger. This method
is only supported for remote deployment on Oracle Blockchain Platform. This is a
generic method for executing SQL queries on the ledger.

func Query(queryString string) ([]interface{}, error)

Parameters:

• queryString (string) - Input the query string.

Appendix C
Using the Blockchain App Builder Command Line Interface

C-43

Returns:

• []interface{} - This will contain the output of the query. The result is in form
of slice of interfaces. You need to iterate over the slice and use the elements by
converting them to proper types.

• error - Contains the error if observed.

Composite Key Methods

model.GenerateCompositeKey
This method generates and returns the composite key based on the indexName and
the attributes given in the arguments.

func GenerateCompositeKey(indexName string, attributes []string)
(string, error)

Parameters:

• indexName (string) - Object type of the composite key.

• attrbutes ([]string) - Attributes of the asset based on which the composite
key has to be formed.

Returns:

• string - This contains the composite key result.

• error - Contains the error if observed.

model.GetByCompositeKey
This method returns the asset that matches the key and the column given in the
parameters. The index parameter indicates the index of the key returned in the array
of stub method SplitCompositeKey.

Internally this method calls Hyperledger Fabric's getStateByPartialCompositeKey,
splitCompositeKey and getState.

func GetByCompositeKey(key string, columns []string, index int)
(interface{}, error)

Parameters:

• key (string) - Object type provided while creating composite key.

• column ([]string) - This is the slice of attributes on which the ledger has to be
queried using the composite key.

• index(int) - Index of the attribute.

Returns:

• Interface{} - Contains the list of assets which are result of this method.

• error - Contains any errors if present.

Appendix C
Using the Blockchain App Builder Command Line Interface

C-44

Stub Method

model.GetNetworkStub
This method will return the Hyperledger Fabric chaincodeStub.

You can get access to the shim stub by calling the GetNetworkStub method. This will
help you write your own implementation working directly with the assets.

func GetNetworkStub() shim.ChaincodeStubInterface

Parameters:

• none

Returns:

• shim.ChaincodeStubInterface - This is the Hyperledger Fabric chaincode stub.

Other Methods

• model.GetTransactionId()

• model.GetTransactionTimestamp()

• model.GetChannelID()

• model.GetCreator()

• model.GetSignedProposal()

• model.GetArgs()

• model.GetStringArgs()

• model.getId

model.GetTransactionId
Returns the transaction ID for the current chaincode invocation request. The
transaction ID uniquely identifies the transaction within the scope of the channel.

func GetTransactionId() string

Parameters:

• none

Returns:

• string - This contains the required transaction ID.

model.GetTransactionTimestamp
Returns the timestamp when the transaction was created. This is taken from the
transaction ChannelHeader, therefore it will indicate the client's timestamp, and will
have the same value across all endorsers.

func GetTransactionTimestamp() (*timestamp.Timestamp, error)

Appendix C
Using the Blockchain App Builder Command Line Interface

C-45

Parameters:

• none

Returns:

• timestamp.Timestamp - Contains the timestamp required.

• error - Contains any errors if present.

model.GetChannelID
Returns the channel ID for the proposal for the chaincode to process.

func GetChannelID() string

Parameters:

• none

Returns:

• string - Contains the required channel ID as a string.

model.GetCreator
Returns the identity object of the chaincode invocation's submitter

func GetCreator() ([]byte, error)

Parameters:

• none

Returns:

• []byte - Contains the required identity object serialized.

• error - Contains any errors if present.

model.GetSignedProposal
Returns a fully decoded object of the signed transaction proposal.

func GetSignedProposal() (*peer.SignedProposal, error)

Parameters:

• none

Returns:

• *peer.SignedProposal - Contains the required signed proposal object.

• error - Contains any errors if present.

Appendix C
Using the Blockchain App Builder Command Line Interface

C-46

model.GetArgs
Returns the arguments as array of strings from the chaincode invocation request.

func GetArgs() [][]byte

Parameters:

• none

Returns:

• [][]byte - Contains the arguments passed.

model.GetStringArgs
Returns the arguments intended for the chaincode Init and Invoke as a string array.

func GetStringArgs() []string

Parameters:

• none

Returns:

• []string - Contains the required arguments as a string array.

model.getId
When the asset has a derived key as Id, you can use this method to get a derived ID.
This method will return an error if the derived key contains %t (timestamp).

Parameters:

• object - Object should contain all the properties on which the derived key is
dependent.

Returns:

• Returns the derived key as a string.

Example:

func (t *Controller) CustomGetterForSupplier(License string, Name
string)(interface{}, error){
 var asset Supplier
 asset.License = License
 asset.Name = Name
 id,err := model.GetId(&asset)
 if err !=nil {
 return nil, fmt.Errorf("error in getting ID %s", err.Error())
 }
 return t.GetSupplierById(id)
}

Utility Package

The following methods in the utility package may be useful:

Appendix C
Using the Blockchain App Builder Command Line Interface

C-47

Util.CreateModel
Parses the provided JSON string and creates an asset object of the provided type.

func CreateModel(obj interface{}, inputString string) error

Parameters:

• inputString (string) - The input JSON string from which the object is to be
created.

• obj (interface{}) - The reference of the object that is to be created from the
JSON string. This object will store the created model which is also validated as
per validator tags.

Returns:

• error - Contains any errors found while creating or validating the asset.

util.ConvertMapToStruct
Convert the provided map into object of provided type.

func ConvertMapToStruct(inputMap map[string](interface{}), resultStruct
interface{}) error

Parameters:

• inputMap (map[string](interface{})) - Map which needs to be converted into
the asset object.

• resultStruct (interface{}) - The reference of the required asset object which
needs to be generated from the map. Contains the result asset object required.

Returns:

• error - Contains any errors found while creating or validating the asset.

Controller

The Controller.go file implements the CRUD and custom methods for the assets.

You can create any number of classes, functions, or files, but only those methods
that are defined on chaincode struct are invokable from outside, the rest of them are
hidden.

CRUD Methods

As described in Input Specification File, you can specify which CRUD methods you
want generated in the specification file. For example, if you selected to generate all
methods, the result would be similar to:

//
//Supplier
//
func (t *ChainCode) CreateSupplier(inputString string) (interface{},
error) {
 var obj Supplier
 err := util.CreateModel(&obj, inputString)

Appendix C
Using the Blockchain App Builder Command Line Interface

C-48

 if err != nil {
 return nil, err
 }
 return model.Save(&obj)
}

func (t *ChainCode) GetSupplierById(id string) (interface{}, error) {
 asset, err := model.Get(id)
 return asset, err
}

func (t *ChainCode) UpdateSupplier(inputString string) (interface{},
error) {
 var obj Supplier
 err := util.CreateModel(&obj, inputstring)
 if err != nil {
 return nil, err
 }
return model.Update(&obj)
}

func (t *ChainCode) DeleteSupplier(id string) (interface{}, error) {
 return model.Delete(id)
}

func (t *ChainCode) GetSupplierHistoryById(id string) (interface{},
error) {
 historyArray, err := model.GetHistoryByld(id)
 return historyArray, err
}

func (t *ChainCode) GetSupplierByRange(startkey string, endKey string)
(interface{}, error) {
 assetArray, err := model.GetByRange(startkey, endKey)
 return assetArray, err
}

Custom Methods

The following custom methods were generated from our example specification file.

The executeQuery shows how SQL rich queries can be called. The validators against
the arguments are added automatically by Blockchain App Builder based on the type
of the argument specified in the specification file.

You can implement the functionality as per the business logic.

//
//Custom Methods
//
/*
* BDB sql rich queries can be executed in OBP CS/EE.
* This method can be invoked only when connected to remote OBP CS/EE
network.
*/

Appendix C
Using the Blockchain App Builder Command Line Interface

C-49

func (t *ChainCode) ExecuteQuery(inputQuery string) (interface{},
error) {
 resultArray, err := model.Query(inputQuery)
 return resultArray, err
}

func (t *ChainCode) FetchRawMaterial(supplierId string,
rawMaterialSupply int) (interface{}, error) {
 return nil, nil
}

func (t *ChainCode) GetRawMaterialFromSupplier(manufacturerId string,
supplierId string, rawMaterialSupply int) (interface{} error) {
 return nil, nil
}

Func (t *ChainCode) CreateProducts(manufacturerId string,
rawMaterialConsumed int, productsCreated int) (interface{}, error) {
 return nil, nil
}

func (t *ChainCode) SendProductsToDistribution() (interface{}, error) {
 return nil, nil
}

For Go chaincodes, every custom method should return two values: empty interface,
error. For example:

func (t *Controller) FetchRawMaterial(supplierId string,
rawMaterialSupply int) (interface{}, error) {
 return nil, nil
}

Init Method

We have provided one init method in the controller with an empty definition. This
method will be called by the Hyperledger Fabric Init method during first time
instantiation or upgrade of a chaincode.

type Controller struct {
}
func (t *Controller) Init(args string) (interface{}, error)
 { return nil, nil
}

If you would like to initialize any application state at this point, you can use this method
to do that.

Deploy Your Chaincode Using the CLI
Once your chaincode project is created, you can deploy it locally to the automatically
generated Hyperledger Fabric network, or remotely to your Oracle Blockchain Platform

Appendix C
Using the Blockchain App Builder Command Line Interface

C-50

Cloud or Enterprise Edition. You can also package the chaincode project for manual
deployment to Oracle Blockchain Platform.

• Deploy Your Chaincode to a Local Hyperledger Fabric Network

• Deploy Your Chaincode to a Remote Oracle Blockchain Platform Network

• Package Your Chaincode Project for Manual Deployment to Oracle Blockchain
Platform

Deploy Your Chaincode to a Local Hyperledger Fabric Network
Once you have created your chaincode project, you can deploy it to a local
Hyperledger Fabric network. This basic single-channel network is created for you
when you install Blockchain App Builder.

The Blockchain App Builder ochain run command starts the Hyperledger Fabric
network, other services, and installs and instantiates the chaincode for you.

my-mac:GOProject myname$ ochain run -h
Usage: run [options] [...args]
Run chaincode project locally in debug mode.

Arguments :
[...args] (optional) Chaincode instantiate arguments. Arguments should
be space separated.

Options:
-h, --help output command usage information
-D, --debug enable debug logging
-P, --debug-port (optional) specify debug process port
-b, --build (optional) rebuild runtime if already exists
-p, --project (optional) Path to Chaincode project to run. If not
specified, it defaults to current directory.

Examples :
$> ochain run

If you would like to see the debug logs, you can pass the --debug option to the
command. You can run the basic network and deploy the chaincode on a different port
from the default by passing the --port option to the command.

Verifying

The following logs show that the chaincode has been installed and instantiated
successfully.

my-mac:TSProject myname$ ochain run
Recreating orderer.example.com ... done
Recreating ca.example.com ... done
Recreating peer0.org1.example.com ... done
[2020-09-23T18: 04:09.132] [INFO] default -
============ Started Install Chaincode ============
[2020-09-23T18:04:09.193] [INFO] default Chaincode TSProject:l not
installed.
[2020-09-23T18:04:09.317] [INFO] default - Successfully sent install

Appendix C
Using the Blockchain App Builder Command Line Interface

C-51

Proposal and received ProposalResponse
[2020-09-23T18:04:09.317] [INFO] default - Successfully installed
chaincode TSProject
[2020-09-23T18:04:09.317] [INFO] default -
============ Finished Install Chaincode ============
[2020-09-23T18:04:09.317] [INFO] default - Successfully installed
chaincode TSProject
[2020-09-23T18:04:09.318] [INFO] default -
============ started instantiate Chaincode ============
[2020-09-23T18:04:09.366] [INFO] default - Successfully sent Proposal
and received ProposalResponse
[2020-09-23T18:04:11.434] [INFO] default - The chaincode instantiate
transaction has been committed on peer localhost:7051
[2020-09-23T18:04:11.434] [INFO] default - The chaincode instantiate
transaction was valid.
[2020-09-23T18:04:11.435] [INFO] default - Successfully sent
transaction to the orderer.
[2020-09-23T18:04:11.435] [INFO] default - Successfully instantiated
chaincode TSProject on channel mychannel
[2020-09-23T18:04:11.435] [INFO] default -
============ Finished instantiate Chaincode ============
[2020-09-23T18:04:11.4351 INFO] default - Successfully instantiated
chaincode TSProject on channel mychannel
INFO (Runtime): Chaincode TSProject installed and ready:
INFO (RunCommand): Chaincode TSProject deployed

Troubleshooting

You may encounter the following issues when running your chaincode project on a
local network.

Missing Go permissions
While installing Go chaincode project in local network, you might see an error similar
to the following:

My-Mac:GoProj myname$ ochain run
Starting ca.example.com ... done
Starting orderer.example.com ... done
Starting peer0.orgl.example.com ... done
INFO (Runtime): 2020/06/22 22:57:09 build started

INFO (Runtime): Building

INFO (Runtime): go build runtime/cgo: copying /Users/myname/
Library/Caches/go-build/f8/.….….d: open /usr/local/go/pkg/darwin_amd64/
runtine/
cgo.a: permission denied

ERROR (Runtime): go build runtine/cgo: copying /Users/myname/Library/
Caches/go-build/f8/.….….d: open /usr/local/go/pkg/darwin_amd64/runtime/
cgo.a: permission denied

Appendix C
Using the Blockchain App Builder Command Line Interface

C-52

INFO (Runtime): An error occurred while building: exit status 1

Stopping peer0.orgl.exmple.com ... done
Stopping ca.example.com ... done
Stopping orderer.example.con ... done

This is due to missing permissions for Go. This error has been seen only in Mac OS.
This is a known issue:

• https://github.com/golang/go/issues/37962

• https://github.com/golang/go/issues/24674

• https://github.com/udhos/update-golang/issues/15

Solution: change the permissions of your $GOROOT and try ochain run again:

sudo chmod -R 777 /usr/local/go

Instantiation failure
Due to instantiation failure, corrupt instantiation, Docker peer container full, or Docker
peer was killed in local network, you may see an error similar to:

============ Started instantiate Chaincode ============
[2028-19-01T19:25:lO.372] [ERROR] default - Error instantiating
Chaincode GollGl on channel mychannel, detailed
error: Error: error starting container: error starting container:
Failed to generate platform-specific docker
build: Failed to pull hyperledger/fabric-ccenv:latest : API error
(404): manifest for hyperledger/
fabric-ccenv:latest not found: manifest unknown: manifest unknown
[2020-19-01T19:25:10.372] (INFO) default -
============ Finished instantiate Chaincode ============
[2020-19-01119:25:10.372] [ERROR] default - Error: Error instantiating
Chaincode Goll01 on channel mychannel,
detailed error: Error: error starting container: error starting
container: Failed to generate platfom-specific
docker build: Failed to pull hyperledger/fabric-ccenv: latest : API
error (404): manifest for hyperledger/
fabric-ccenv:lalest not found: manifest unknown: manifest unknown
exited: signal: terminated
INFO: exited: signal: terminated

ERROR: Error in Chaincode deployment

This is due to a peer container not able to start up properly again.

Solution: try the ochain run command again, but with the -b option. This option
rebuilds the runtime for you.

ochain run -b

Appendix C
Using the Blockchain App Builder Command Line Interface

C-53

https://github.com/golang/go/issues/37962
https://github.com/golang/go/issues/24674
https://github.com/udhos/update-golang/issues/15

Environment Rebuild Required
You may see an error similar to:

Starting ca.example.com ...
Starting orderer.example.com ...
Starting orderer.example.com ... error
ERROR: for orderer.example.com
Cannot start service orderer.example.com:
error while creating mount source
path '/host_mnt/c/Users/opc/.vscode/extensions/oracle.oracle-
blockchain-1.4.0/node_modules/@oracle/ochain-cli/runtime/network/basic-
network/config': mkdir /host_mnt/c/Users/opc/.vscode/extensions/
oracle.oracle-blockchain-1.4.0: operation not permitted
Starting ca.example.com... error
ERROR: for ca.example.com
Cannot start service ca.example.com: error while
creating mount source path '/host_mnt/c/Users/opc/.vscode/extensions/
oracle.oracle-blockchain-1.4.0/node_modules/@oracle/ochain-cli/runtime/
network/basic-network/crypto-config/peerOrganizations/org1.example.com/
ca': mkdir /host_mnt/c/Users/opc/.vscode/extensions/oracle.oracle-
blockchain-1.4.0: operation not permitted
ERROR: for orderer.example.com
Cannot start service orderer.example.com: error while
creating mount source path '/host_mnt/c/Users/opc/.vscode/extensions/
oracle.oracle-blockchain-1.4.0/node_modules/@oracle/ochain-cli/runtime/
network/basic-network/config': mkdir /host_mnt/c/Users/opc/.vscode/
extensions/oracle.oracle-blockchain-1.4.0: operation not permitted
ERROR: for ca.example.com
Cannot start service ca.example.com: error while
creating mount source path '/host_mnt/c/Users/opc/.vscode/extensions/
oracle.oracle-blockchain-1.4.0/node_modules/@oracle/ochain-cli/runtime/
network/basic-network/crypto-config/peerOrganizations/org1.example.com/
ca': mkdir /host_mnt/c/Users/opc/.vscode/extensions/oracle.oracle-
blockchain-1.4.0: operation not permitted
Encountered errors while bringing up the project.
ERROR: Starting ca.example.com ...
Starting orderer.example.com ...
Starting orderer.example.com ... error
ERROR: for orderer.example.com
Cannot start service orderer.example.com: error while
creating mount source path '/host_mnt/c/Users/opc/.vscode/extensions/
oracle.oracle-blockchain-1.4.0/node_modules/@oracle/ochain-cli/runtime/
network/basic-network/config': mkdir /host_mnt/c/Users/opc/.vscode/
extensions/oracle.oracle-blockchain-1.4.0: operation not permitted
Starting ca.example.com ... error
ERROR: for ca.example.com
Cannot start service ca.example.com: error while
creating mount source path '/host_mnt/c/Users/opc/.vscode/extensions/
oracle.oracle-blockchain-1.4.0/node_modules/@oracle/ochain-cli/runtime/
network/basic-network/crypto-config/peerOrganizations/org1.example.com/
ca': mkdir /host_mnt/c/Users/opc/.vscode/extensions/oracle.oracle-
blockchain-1.4.0: operation not permitted
ERROR: for orderer.example.com

Appendix C
Using the Blockchain App Builder Command Line Interface

C-54

Cannot start service orderer.example.com: error while
creating mount source path '/host_mnt/c/Users/opc/.vscode/extensions/
oracle.oracle-blockchain-1.4.0/node_modules/@oracle/ochain-cli/runtime/
network/basic-network/config': mkdir /host_mnt/c/Users/opc/.vscode/
extensions/oracle.oracle-blockchain-1.4.0: operation not permitted
ERROR: for ca.example.com
Cannot start service ca.example.com: error while
creating mount source path '/host_mnt/c/Users/opc/.vscode/extensions/
oracle.oracle-blockchain-1.4.0/node_modules/@oracle/ochain-cli/runtime/
network/basic-network/crypto-config/peerOrganizations/org1.example.com/
ca': mkdir /host_mnt/c/Users/opc/.vscode/extensions/oracle.oracle-
blockchain-1.4.0: operation not permitted
Encountered errors while bringing up the project.
ERROR: Error in Chaincode deployment

You need to rebuild your local environment:

ochain run -b

Deploy Your Chaincode to a Remote Oracle Blockchain Platform Network
Once you've instantiated and tested your chaincode project on a local network to
ensure it's working as designed, you can deploy it to Oracle Blockchain Platform.

Creating Your Connection Profile

You can download your connection profile from the Oracle Blockchain Platform
Cloud or Enterprise instance by navigating to the following location in your
instance's console: on the Developer Tools tab, Application Development, and then
Download the development package. Unzip the downloaded package. The contents
should look similar to:

artifacts
 crypto
 ordererOrganizations
 peerOrganizations
network.yaml

Retrieve your admin credentials from your instance's console: on the Network tab, find
your organization in the list. Click the More Actions icon for your organization, then
select Export Admin Credential from your organization.

1. Copy the admin certificate from the
admin credentials to artifacts/crypto/ordererOrganizations/
<instance-name>/signcert/<instance-name>-signcert.pem
and artifacts/crypto/peerOrganizations/<instance-name>/
signcert/<instance-name>-signcert.pem.

2. Copy the admin key from the admin
credentials to artifacts/crypto/ordererOrganizations/
<instance-name>/keystore/<instance-name>-key.pem
and artifacts/crypto/peerOrganizations/<instance-name>/
keystore/<instance-name>-key.pem.

Appendix C
Using the Blockchain App Builder Command Line Interface

C-55

Note:

Keep in mind that if you're placing your connection profile in your project
folder, if you're synching this with a content repository such as Github you
might accidentally share your private keys. Ensure that everything private is
added to your .gitignore file.

Log In Using the ochain login Command

You need to log in to the Oracle Blockchain Platform instance before deploying. The
ochain login command will help you to authenticate and log in. It will prompt you
asking for your username and password. The username and password are the same
as the blockchain instance details.

Note:

The ochain login must be run before deploying the chaincode to a remote
Oracle Blockchain Platform Cloud instance.

Usage: ochain login [options]

The following arguments can be used with this command:

my-mac:TSProject myname$ ochain login -h
Usage: login [options]
Login to Oracle Blockchain Cloud Service instance

Options :
 -h, --help output command usage information
 -0, --debug enable debug logging
 -P, --project (optional) Path to Chaincode project to
deploy. If not specified, it defaults to current directory.
 -d, --obp-dev-package (optional) Path to the downloaded and
unzipped Oracle Blockchain Development Package. If not specified, it
defaults to CURRENT_DIRECTORY/obp
 -u, --username (optional) A user name that has install
chaincode privileges. Contact your administrator for more details.
 -p, --password (optional) user password.

Examples:
$> ochain login
$> ochain login -u john.doe
S> ochain login -u john.doe -p MyPassword!

The login command uses the path to your downloaded Oracle Blockchain
Development connection profile in the -d option. If not specified, it defaults to
<current_project_directory>/obp

If your login is successful, a message will be returned stating "Login Successful".

Appendix C
Using the Blockchain App Builder Command Line Interface

C-56

Deploy

Usage: ochain deploy [options] [...args]

Following are the arguments and options taken by the ochain deploy command:

my-mac:TSProject myname$ ochain deploy -h
Usage: deploy [options] [...args]
Deploy chaincode project to Oracle Blockchain Cloud Service

Arguments:
 [...args] (optional) Chaincode instantiate arguments. Arguments
should be comma separated.

Options :
 -h, --help output command usage information
 -0, --debug enable debug logging
 -P, --project (optional) Path to Chaincode project to
deploy. If not specified, it defaults to current directory.
 -d, --obp-dev-package (optional) Path to the downloaded and
unzipped Oracle Blockchain Development Package. If not specified, it
defaults to CURRENT_DIRECTORY/obp
 -c, --channel (optional) Blockchain Platform channel
to deploy chaincode to. If not specified, defaults to the 'default'
channel.
 -u, --wait (optional) GRPC wait for ready timeout in
milliseconds.
 -p, --username (optional) A user name that has install
chaincode privileges. Contact your administrator for more details.
 -v, --userversion (optional) A user-specified chaincode
version.
 If a version isn't specified, for a new
chaincode it will start at v1 and then increment to v2, v3, and so on.
 For an existing chaincode, v1.a will
increment to v1.a1, v1 will increment to v2, and v1.0 will increment
to v1.1.

Examples:
$> ochain deploy -u john.doe -d <path to connection profile> -c
channelname

Once the chaincode has successfully deployed to the remote Oracle Blockchain
Platform, the log will show that:

• It has successfully installed the chaincode project.

• It has successfully instantiated the chaincode on each peer and the channel.

Updating the Chaincode Project

The upgrade of the chaincode is handled automatically by Blockchain App Builder.
After you have made changes to your chaincode, just call the ochain deploy
command again - this will automatically perform the update for you.

If your update is successful, the log will show

Appendix C
Using the Blockchain App Builder Command Line Interface

C-57

• It has successfully upgraded the chaincode version (for example from version 1.0
to 2.0).

• It has successfully installed the chaincode project.

• It has successfully instantiated the chaincode on each peer and the channel.

Troubleshoot the Deployment

You may encounter the following issues when deploying your chaincode project on
Oracle Blockchain Platform:

GRPC timeout error
While deploying to remote Oracle Blockchain Platform network, you may get the
following GRPC timeout error:

[2020-09-23T18:40:17.923] [ERROR] default - Error Invoking chaincode
"TSProject:" Failed to connect
before the deadline

This could be a network issue or GRPC wait timeout expired.

Deploy the chaincode again with -w <timeout> option. By default the timeout is set to
10000 ms.

> ochain deploy -u idcqa -d /Blockchain/DevTools/bp1/oraclebp1-
instance-info -w 30000

Package Your Chaincode Project for Manual Deployment to Oracle Blockchain
Platform

You can package your chaincode projects for manual deployment to Oracle Blockchain
Platform Cloud or Enterprise Edition.

Usage: ochain package

The Package function creates a zip file containing only the build and distribution files
- the binary, libs, node_modules, and test folders from your chaincode project
are not included. This zip can be manually uploaded to Oracle Blockchain Platform for
deployment.

my-mac:~ myname$ ochain package -h
Usage: package [options]
Package and archive an Ochain chaincode project
Options :
 -h, --help output command usage information
 -D, --debug enable debug logging
 -p, --project <path> Path to the Ochain chaincode project to be
packaged. If not specified, it defaults to current directory.
 -o, --out <path> Path to the generated chaincode archive
file. If not specified, it defaults to current directory.
About:
This CLI command packages and archives an existing chaincode project
Examples:

Appendix C
Using the Blockchain App Builder Command Line Interface

C-58

$> ochain package --project <Path to the Ochain chaicode project> —out
<Path to the generated chaincode archive file>

When the command completes successfully, the location of the package will be
returned.

This command takes two optional arguments:

• --project
This option defines the location of the Blockchain App Builder chaincode project to
be packaged. If not specified, it defaults to the current directory.

• --out
This option can be used to give the output path of the generated archive file. If not
specified, it defaults to the current directory.

Example:

> ochain package -p /Blockchain/DevTools/bp1/CC -o /Blockchain/
DevTools/bp1/output

"Your chaincode project has been packaged at /Blockchain/DevTools/bp1/
output/CC.zip"

Test Your Chaincode Using the CLI
If your chaincode is running on a network, you can test any of the generated methods.
Additionally, If you chose to create the executeQuery method during your chaincode
development, you can run SQL rich queries if your chaincode is deployed to an Oracle
Blockchain Platform network.

• Test Your Chaincode on a Local Hyperledger Fabric Network

• Test Your Chaincode on a Remote Oracle Blockchain Platform Network

• Execute Berkeley DB SQL Rich Queries

Test Your Chaincode on a Local Hyperledger Fabric Network
Once your chaincode project is running on a local network, you can test it.

Open a new shell and navigate to the project directory to interact with your
chaincodes. After a chaincode is installed and instantiated, you can submit
transactions to the functions inside your chaincode by using the ochain invoke and
ochain query commands.

ochain invoke

Usage: ochain invoke <methodName> <methodArguments>

The following are arguments and options taken by the ochain invoke command:

my-mac:TSProject myname$ ochain invoke -h
Usage: invoke [options] <methodName> [...args]
Invoke a Chaincode transaction.

Arguments :

Appendix C
Using the Blockchain App Builder Command Line Interface

C-59

 <methodName> (required) Name of chaincode method to invoke.
 [...args] (optional) Chaincode method input parameters if any.
Parameters should be array of JSON strings or a string for single
parameter.

Options:
 -h, --help output command usage information
 -D, --debug enable debug logging
 -P, --project (optional) Path to Chaincode project to
deploy. If not specified, it defaults to current directory.
 -d, --obp-dev-package (optional) Path to the downloaded and
unzipped Oracle Blockchain Development Package. If not specified, it
defaults to 'CURRENT_DIRECTORY/obp'.
 -c, --channel (optional) Blockchain Channel to deploy
chaincode too. If not specified, it defaults to the 'default' channel.
 -u, --username (optional, if -d option is applied) A user
name that has install chaincode privileges. Contact your administrator
for more details.

Examples:
$> ochain invoke <method>
without chaincode initial arguments
$> ochain invoke <method>
{"manufacturerld":"m01","rawMaterialAvailable":9,"productsAvailable":4,"
completionDate":-05-26-2020"}'
for a single parameter
$> ochain invoke <method> ['s01','sl0']
for multiple parameters

Mac OSX and Linux

If the method takes one argument, enter it as a string. For example:

> ochain invoke createSupplier
'{"supplierId":"s01","rawMaterialAvailable":5,"license":"valid
supplier","expiryDate":"2020-05-30","active":true}'

Another example:

> ochain invoke getSupplierDetails 's01'
'{"supplierId":"s01","rawMaterialAvailable":5,"license":"valid
supplier","expiryDate":"2020-05-30","active":true}'

If the method takes more than one argument, they should be separated by a space.
For example:

> ochain invoke getSupplierByRange 's01' 's03'

If you have embedded assets in your chaincode such as an employee asset which
uses an embedded address asset:

name: employee
 properties:

Appendix C
Using the Blockchain App Builder Command Line Interface

C-60

 name: employeeId
 type: string
 mandatory: true
 id: true

 name: firstName
 type: string
 validate: max(30)
 mandatory: true

 name: lastName
 type: string
 validate: max(30)
 mandatory: true

 name: age
 type: number
 validate: positive(),min(18)

 name: address
 type: address

name: address

type: embedded

properties:
 name: street
 type: string

 name: city
 type: string

 name: state
 type: string

 name: country
 type: string

You would use something similar to the following to invoke the chaincode:

> ochain invoke createEmployee '{"employeeID":"e01",
"firstName":"John", "lastName":"Doe",
"age":35, "address":{"street":"Elm Ave", "city":"LA",
"state":"California", "country":"US"}}'

Windows

Windows command prompt doesn't accept single quotes ('), so all arguments have
to be kept in double quotes ("). Any argument that contains a double quote must be
escaped.

Appendix C
Using the Blockchain App Builder Command Line Interface

C-61

For example:

> ochain invoke createSupplier
"{\"supplierId\":\"s01\",\"rawMaterialAvailable\":5,\"license\":\"valid
supplier\",\"expiryDate\":\"2020-05-30\",\"active\":true}"

If the method takes more than one argument, they should be separated by a space.
For example:

> ochain invoke getSupplierByRange "s01" "s03"

If you have embedded assets in your chaincode such as an employee asset which
uses an embedded address asset as shown above, you can use something similar to
the following to invoke the chaincode:

> ochain invoke createEmployee "{\"employeeID\":\"e01\",
\"firstName\":\"John\",
\"lastName\":\"Doe\", \"age\":35, \"address\":{\"street\":\"Elm Ave\",
\"city\":\"LA\",
\"state\":\"California\", \"country\":\"US\"}}"

Validations

The method arguments are validated against the validations specified in the
specification file. If any validation fails, errors will be listed in the output.

When it invokes successfully it should display a log similar to:

========== Started Invoke Chaincode ==========
[2020-06-23T18:37:54.563] [INFO] default - Successfully sent Proposal
and received ProposalResponse
[2020-06-23T18:37:56.619] [INFO default - The chaincode invoke
transaction has been committed on peer localhost:7051
[2020-06-23T18:37:56.619] [INFO] default - The chaincode invoke
transaction was valid.
[2020-06-23T18:37:56.620] [INFO default - Successfully sent transaction
to the orderer.
[2020-06-23T18:37:56.620] [INFO] default - Successfully invoked method
"createSupplier" on chaincode "TSProject" on channel "mychannel"
[2020-06-23T18:37:56.620] [INFO] default -
========== Finished Invoke Chaincode ==========

ochain query

Usage: ochain query <methodName> <methodArguments>

Following are the arguments and options taken by the ochain query command:

my-mac:TSProject myname$ ochain query -h
Usage: query [options] <methodName> [...args]
Invoke a Chaincode Query.

Arguments :

Appendix C
Using the Blockchain App Builder Command Line Interface

C-62

 <methodName> (required) Name of chaincode method to invoke.
 [...args] (optional) Chaincode method input parameters if
any. Parameters should be array of JSON strings or a string for single
parameter.

Options:
 -h, --help output command usage information
 -D, --debug enable debug logging
 -P, --project (optional) Path to Chaincode project to
deploy. If not specified, it defaults to current directory.
 -d, --obp-dev-package (optional) Path to the downloaded and
unzipped Oracle Blockchain Development Package. If not specified, it
defaults to 'CURRENT_DIRECTORY/obp'.
 -c, --channel (optional) Blockchain Channel to deploy
chaincode too. If not specified, it defaults to the 'default' channel.
 -u, --username (optional, if -d option is applied) A user
name that has install chaincode privileges. Contact your administrator
for more details.

Examples:
$> ochain query <method>
without chaincode initial arguments
$> ochain query <method> s01
for a single parameter
$> ochain query <method> 's01','{"manufacturerId":"m01"}'
for multiple parameters

The ochain query command follows the same rules of passing <methodName> and
<methodArguments> as ochain invoke.

• On Mac OSX and Linux, single quotes can be used and there's no need to escape
quotes within arguments.

• On Windows, all arguments must surrounded by double quotes and any quote
within an argument must be escaped.

Automatic Install and Instantiate After Update

Whenever you update your chaincode, the changes will be compiled, installed and
instantiated automatically when it's deployed to a local network. There is no need
to strip down or bring up the local network again. All projects will be automatically
compiled and deployed on every change.

Test Your Chaincode on a Remote Oracle Blockchain Platform Network

Once your chaincode project has successfully deployed to your remote Oracle
Blockchain Platform network, you can test it as described in Test Your Chaincode
on a Local Hyperledger Fabric Network.

You can use the same ochain invoke and ochain query commands to perform all
method transactions on a remote Oracle Blockchain Platform Cloud or Enterprise
Edition network; everything supported on the local network is also supported on the
remote network. Simply pass the Oracle Blockchain Platform connection profile as an
option (-d) to the commands.

Appendix C
Using the Blockchain App Builder Command Line Interface

C-63

Example

> ochain invoke createSupplier
'{"supplierId":"s01","rawMaterialAvailable":5,"license":"valid
supplier","expiryDate":"2020-05-30","active":true}' -d
/Blockchain/DevTools/bp1/oraclebp1-instance-info

Execute Berkeley DB SQL Rich Queries
If you chose to create the executeQuery method during your chaincode development,
you can run SQL rich queries if your chaincode is deployed to an Oracle Blockchain
Platform network.

If you have used executeQuery in the customMethods section of the specification file, a
corresponding executeQuery method will be created in the controller.

Specification file:

customMethods:
 - executeQuery
 - "fetchRawMaterial(supplierid: string, rawMaterialSupply: number)"
 - "getRawMaterialFromSupplier(manufacturerId: string, supplierld:
string, rawMaterialSupply: number)"
 - "createProducts(manufacturerId: string, rawMaterialConsumed:
number, productsCreated: number)"
 - "sendProductsToDistribution()"

Controller file:

**
*
* BDB sql rich queries can be executed in OBP CS/EE.
* This method can be invoked only when connected to remote OBP CS/EE
network.
*
*/
@Validator(yup.string())
public async executeQuery(query: string) {
 const result = await OchainController.query(query);
 return result;
}

You can invoke this method to execute Berkeley DB SQL rich queries on Oracle
Blockchain Platform network, ensuring that you use the -d option to specify the
location of your downloaded connection profile.

Example:

> ochain query executeQuery "SELECT key, valueJson FROM <STATE> WHERE
json_extract(valueJson, '$.rawMaterialAvailable') = 4" -d
/Blockchain/DevTools/bp1/oraclebp1-instance-info

Appendix C
Using the Blockchain App Builder Command Line Interface

C-64

The entire SQL query is taken in the argument, so you can make changes to your
query on the fly.

Synchronize Specification File Changes With Generated Source Code
You can use this command to bring new changes from the specification file to the
current source files (model and controller). This command works with both TypeScript
and Go projects.

Note:

• Code sync is unidirectional - you can bring changes from your specification file
into your chaincode project, but not the other way around. Changes made in your
chaincode project remain as-is after the synching process.

• This command only works if the chaincode project has been scaffolded using a
specification file. Ensure you do not delete, rename or move the specification file
if you plan to sync any changes from the specification file to the source code in
future.

• If you have used a single specification file to generate more than one chaincode
project, you can only synchronize one project at a time using this command.

Usage:

sync [options] [...args]

my-mac:TsProject myname@ ochain sync -h
Usage: sync [options] [...args]
Synchronize Changes from spec file to the required chaincode.
Arguments:
 [...args] (optional) Sync Arguments.
Options :
 -h, --help output command usage information
 -D, --debug enable debug logging
 -p, --project <path> (optional) Path to Chaincode project to
sync. If not specified, it defaults to current directory
 -c, --confirm <bool> (optional) Parameter to ensure if you have
resolved all the conflicts, and commit changes
Examples :
$> ochain sync
without chaincode initial arguments

This command has two optional arguments:

• -p / --project
This option takes the chaincode project directory where the sync needs to be
performed. If not specified, it defaults to the current directory.

• -c / --confirm
This option takes boolean (true/false) values. If there are any conflicts during the
merging process, you must resolve those conflicts manually and set this option to
true in the next sync cycle. Don't use this option if you're not sure that the conflicts
have been merged.

Appendix C
Using the Blockchain App Builder Command Line Interface

C-65

Writing Unit Test Cases and Coverage Reports for the Chaincode
Project

Blockchain App Builder includes support for writing unit test cases and coverage
reports for the generated chaincode projects.

Note:

If you're running your unit tests in VS Code, it can be done in the Terminal
window.

TypeScript

To write unit test cases for a TypeScript chaincode, refer to the file
<chaincodeName>.spec.ts in the tests folder inside the generated chaincode
project. This file provides the complete unit testing setup for TypeScript chaincodes,
and also an example unit test case in the comments section for reference. Following
the example, you will be able write unit test cases for your chaincode methods.

This example uses ChaincodeMockStub by @theledger/fabric-mock-stub for mocking
the shim stub. With this mockStub, you can call mockInit, mockInvoke or direct
chaincode methods. Refer to https://github.com/wearetheledger/fabric-mock-stub for
more details.

The unit test cases can be run by executing the command npm run test from the
chaincode project folder. This will also give you the coverage reports.

Go

To write unit test cases for a Go chaincode, refer to the file src/src_test.go inside
the generated chaincode project. This file provides the complete unit testing setup
for Go chaincodes, and also an example unit test case in the comments section
for reference. Following the example, you will be able write unit test cases for your
chaincode methods.

The unit test cases can be run by executing the command go test from the chaincode
project folder. For coverage, add the flag --cover.

Example: go test --cover.

Appendix C
Using the Blockchain App Builder Command Line Interface

C-66

https://github.com/wearetheledger/fabric-mock-stub

Using the Blockchain App Builder Extension for Visual
Studio Code

The Blockchain App Builder extension for Visual Studio Code helps you build and
scaffold a fully-functional chaincode project from a specification file. Once the project
is built, you can run and test it on a local Hyperledger Fabric network, or your
provisioned Oracle Blockchain Platform network. You can then run SQL rich queries,
debug the chaincode, or write and run unit tests using the generated tools.

Table C-3 Workflow When Using the VS Code Extension

Task Description More Information

Install and configure Download the Blockchain App
Builder VS Code extension from your
Oracle Blockchain Platform console
and install it and any prerequisite
software.

• Install and Configure the
Blockchain App Builder
Extension for Visual Studio
Code

Create the chaincode project Create a specification file, and then
generate your chaincode project.

• Create a Chaincode Project with
the Blockchain App Builder VS
Code Extension

Detailed reference information about
the structure and contents of the
specification file and the generated
chaincode project:
• Input Specification File
• Scaffolded TypeScript

Chaincode Project
• Scaffolded Go Chaincode

Project

Deploy the chaincode After your chaincode project is
created, you can deploy it locally
to the included pre-configured
Hyperledger Fabric network, or
remotely to your Oracle Blockchain
Platform Cloud or Enterprise Edition.

You can also package the chaincode
project for manual deployment to
Oracle Blockchain Platform.

• Deploy the Chaincode to a Local
Hyperledger Fabric Network

• Deploy Your Chaincode to
a Remote Oracle Blockchain
Platform Network

• Package Your Chaincode
Project for Manual Deployment
to Oracle Blockchain Platform

Test the chaincode Once your chaincode is running on
a network, you can test any of the
generated methods.

Additionally, If you chose to create
the executeQuery method during
your chaincode development, you
can run SQL rich queries if your
chaincode is deployed to an Oracle
Blockchain Platform network.

• Test Your Chaincode on a Local
Hyperledger Fabric Network

• Testing Lifecycle Operations on
a Remote Oracle Blockchain
Platform Network

• Execute Berkeley DB SQL Rich
Queries

Debug the chaincode You can do line-by-line debugging in
Visual Studio Code.

• Debugging from Visual Studio
Code

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-67

Table C-3 (Cont.) Workflow When Using the VS Code Extension

Task Description More Information

Synchronize your updates When you update your specification
file, you can synchronize the
changes with the generated
chaincode files.

• Synchronize Specification File
Changes With Generated
Source Code

Running unit tests A basic unit test case setup is
included in the project. Additional
tests can be added and run.

• Writing Unit Test Cases and
Coverage Reports for the
Chaincode Project

Install and Configure the Blockchain App Builder Extension for Visual
Studio Code

The Blockchain App Builder extension for Visual Studio Code can be downloaded
through the Oracle Blockchain Platform console.

The following platforms are supported:

• Mac OSX

• Oracle Enterprise Linux 7.7 or 7.8

• Windows 10

Prerequisites for OSX and Linux

Before you install Blockchain App Builder CLI on your local system, you must install
the prerequisites.

• VS Code version 1.48.0 or later
The VS Code version can be found by running: code --version

• Node v10.18.1 or later, and npm v6.x or later
The Node version can be found by running: node --version

The npm version can be found by running: npm --version

If installing Node and npm using a manager such as 'nvm' or 'nodenv', you will
need to set the default/global version and restart VS Code for the version to be
detected by the Prerequisites page.

• Docker version v18.09.0 or greater
Docker version can be found by running: docker --version

• Docker Compose v1.23.0 or greater
Docker Compose version can be found by running: docker-compose --version

The following dependencies are optional:

• Go version v1.14 or later for developing Go chaincodes.
The Go version can be found by running: go version

Install Node and npm using nvm

We suggest using nvm to install Node and npm because it will give you the ability to
run more commands without sudo.

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-68

1. Install nvm:

curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.35.3/
install.sh | bash

2. Add the below code snippet to ~/.bash_profile, ~/.profile, ~/.bashrc or
~/.zshrc.

export NVM_DIR="$([-z "${XDG_CONFIG_HOME-}"] && printf %s "$
{HOME}/.nvm" || printf
%s "${XDG_CONFIG_HOME}/nvm")"
[-s "$NVM_DIR/nvm.sh"] && \. "$NVM_DIR/nvm.sh"

3. Log out and log back in to your operating system.

4. Verify the nvm installation:

nvm version

5. Install Node and npm:

nvm install 10.18.1

6. Set Node 10.18.1 as the default in nvm:

> nvm alias default 10.18.1
default -> 10.18.1 (-> v10.18.1)

Prerequisites for Windows

Before you install Blockchain App Builder CLI on your local system, you must install
the prerequisites.

• Docker Desktop for Windows v2.x (tested with 2.5.0.1). When prompted by
Docker, provide the Filesharing permissions (required for App Builder).

• Node v10.18.1 or later (tested with 10.22.1)

• npm v6.x (tested with 6.13.4)

• Perl v5.x (tested with ActiveState Perl 5.28)

• Install Windows Build Tools in a powershell with administrative access. npm
install --global windows-build-tools

• If you are developing Go smart contracts, install Go v1.14

• If you want to use the Synchronization feature of App Builder, Git should be
installed and your username and email should be configured as follows.

> git config --global user.name "<your_name>"
> git config --global user.email "<email>"

• Download and build OpenSSL

Download and Build OpenSSL

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-69

1. Download OpenSSL from: https://www.openssl.org/source/old/1.0.2/
openssl-1.0.2u.tar.gz

2. Unzip the tarball.

3. Open the Visual C++ 2017/2019 Native Tools command prompt. In the Windows
search bar, search for x64 Native Tools Command Prompt for VS.

4. Navigate to the extracted OpenSSL folder. Run the following commands as an
administrator:

> perl Configure VC-WIN64A –prefix=C:\OpenSSL-Win64
> ms\do_win64a
> nmake -f ms\ntdll.mak This can take up to 15 minutes to
complete.
> cd out32dll
> ..\ms\test
> cd ..
> md C:\OpenSSL-Win64
> md C:\OpenSSL-Win64\bin
> md C:\OpenSSL-Win64\lib
> md C:\OpenSSL-Win64\include
> md C:\OpenSSL-Win64\include\openssl
> copy /b inc32\openssl* C:\OpenSSL-Win64\include\openssl
> copy /b out32dll\ssleay32.lib C:\OpenSSL-Win64\lib
> copy /b out32dll\libeay32.lib C:\OpenSSL-Win64\lib
> copy /b out32dll\ssleay32.dll C:\OpenSSL-Win64\bin
> copy /b out32dll\libeay32.dll C:\OpenSSL-Win64\bin
> copy /b out32dll\openssl.exe C:\OpenSSL-Win64\bin
> copy /b C:\OpenSSL-Win64\bin\libeay32.dll
C:\Windows\System32\libeay32.dll
> copy /b C:\OpenSSL-Win64\bin\ssleay32.dll
C:\Windows\System32\ssleay32.dll

Install the Blockchain App Builder Extension

1. Download the extension from your Blockchain Platform console on the Developer
Tools tab. On the Blockchain App Builder pane, under Download, select Visual
Studio Code Extension.

2. In Visual Studio Code, open the Extensions panel and from the More Actions
menu, select Install from VSIX.

3. Locate the downloaded oracle-ochain-extension-1.4.0.vsix file and
click Install.

4. Restart Visual Studio Code to complete installation of the extension.

After the installation, you can use the Oracle Blockchain App Builder icon on the left
side of VS Code to open the Blockchain App Builder panel.

Additionally, the Blockchain App Builder command line interface is automatically
installed as part of the extension for VS Code if you haven't already installed it
separately. Any CLI commands can be run in the VS Code console window.

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-70

https://www.openssl.org/source/old/1.0.2/openssl-1.0.2u.tar.gz
https://www.openssl.org/source/old/1.0.2/openssl-1.0.2u.tar.gz

Create a Chaincode Project with the Blockchain App Builder VS Code
Extension

To create a Chaincode Project when using the Blockchain App Builder, you need to
scaffold a chaincode project from a detailed specification file. This generates a project
with all the files you need.

Background

Blockchain App Builder initializes and scaffolds a chaincode project right out of the
box for you. Based on simple input, Create New Chaincode can generate complex
chaincode projects with features such as:

• Multiple assets (models) and their behaviors (controllers)

• Auto-generate CRUD (Create/Read/Update/Delete) and non-CRUD methods

• Automatic validation of arguments

• Marshalling/unmarshalling of arguments

• Transparent persistence capability (ORM)

• Calling rich queries

• Transient and private data support

• Identity management

The generated project follows model/controller and decorator pattern, which allows
an asset's properties maintained on the ledger to be specified as typed fields and
extended with specific behaviors and validation rules. This reduces the number of lines
of code which helps in readability and scalability.

Create a Specification File

Before you begin, you need to create an input specification file. Note that you cannot
alter the sample specification files that were installed as part of Blockchain App
Builder, but you can duplicate them or use them as a reference file for your own
specification files.

1. In the Specifications pane, select Create New Spec File.

2. The Specifications Details pane opens:

• Enter the name for the specification file.

• Select the file type - YAML and JSON are supported.

• Optionally enter a description for the file.

• The Reference File drop-down allows you to generate your specification file
from a pre-existing file in your workspace if you have a file you'd like to use as
a template. If nothing is selected, the created file will be empty and you can
enter your specification from scratch.

• Enter the location where you want the specification file to be stored on your
system.

Click Save.

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-71

The new specification file is created and appears in the Specifications pane. Click on
it to open it in the editor.

Import a Specification File

If you have a pre-existing specification file, you can import it:

1. In the Specifications pane, click More Actions and select Import Specification.

2. Browse to your file and click Import Specification.

The specification file is imported and appears in the Specifications pane. Click on it to
open it in the editor.

Duplicate a Specification File

You can also duplicate a specification file that's already in your Specifications pane
by right-clicking it and selecting Duplicate. Right-click the file and select Rename to
update the name.

The details about the contents of specifications files are described here: Input
Specification File. Use this information and the sample specification templates to
create your specification content.

Scaffolding the Chaincode Project

Once you have a specification file that meets your needs, generate your chaincode
project.

1. In the Chaincodes pane, select Create New Chaincode.

2. The Chaincode Details pane opens:

• Enter the name of your chaincode project

• Select the language: TypeScript or Go

• Select the specification file you're using to create the chaincode.

• Enter the location or Go domain where you want the project to be created
within your local development environment.

Click Create.

When your project is created, it will be shown in the Chaincodes pane. All the files
required by the chaincode will be in the project. For a detailed overview of the files
created, see:

• Scaffolded TypeScript Chaincode Project

• Scaffolded Go Chaincode Project

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-72

Note:

• The Chaincodes pane allows you open and work with content within
the chaincode project, but won't let you add, delete, or rename files
within the project. To do that, right-click your project and select Open in
Explorer. This opens the project in the VS Code Explorer view.

• Deleting or renaming files in the chaincode project can potentially break
the link between the project files and the specification file used to create
it. If you plan to synchronize your code between the two, don't change
the file names.

Import an Existing Chaincode Project

If you've created a chaincode project through the CLI or you've cleaned your VS Code
blockchain content and want to import a locally saved project, in the Chaincodes pane
click the More Actions... icon and select Import Chaincode. Browse to the project
and click Import Chaincode.

Input Specification File
The Blockchain App Builder initialization command reads the input specification file
and generates the scaffolded project with several tools to assist in the chaincode
development process.

With the specification file you can specify multiple asset definitions and behavior,
CRUD and non-CRUD method declaration, custom methods, validation of arguments,
auto marshalling/unmarshalling, transparent persistence capability, and invoking rich
data queries using SQL SELECTs or CouchDB Query Language. These features will
be generated for you.

The specification file can be written in either yaml or json. You can see sample
specification files in both formats in the Blockchain App Builder package download:

• fabcar.yml

• marbles.yml

Note:

As per Go conventions, exported names begin with a capital letter. Therefore
all the asset properties and methods must have names starting with capital
letters in the specification file.

Structure of the Specification File

The specification file should be structured in the following way:

assets:
 name:
 properties:
 name:
 type:

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-73

 id:
 derived:
 strategy:
 algorithm:
 format:
 mandatory:
 default:
 validate:
 methods:
 crud:
 others:
 type:
customMethods:

Table C-4 Specification File Parameter Descriptions and Examples

Entry Description Examples

assets: This property takes
the definition and
behavior of the asset.
You can give multiple
asset definitions here.

name: The name of the
asset. name: owner # Information about the owner

properties: Describe all the
properties of an
asset.

name: The name of the
property. name: ownerId # Unique ID for each owner

type: Basic types are
supported:
• number
• string
• boolean
• date
• array
• embedded

For Go chaincodes,
number is mapped
to init. Other types
such as
• float
• complex
• unsigned/

signed int
• 8/16/32/64

bits
are not supported at
this time.

name: year # Model year
type: number
mandatory: true
validate: min(1910),max(2020)
name: color # Color - no validation as
color names are innumerable
type: string
mandatory: true

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-74

Table C-4 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

id: • true
This specifies the
identifier of this asset.
This property is
mandatory.

name: owner # Informmation about the
owner
properties:
 name: ownerId # Unique ID for each owner
 type: string
 mandatory: true
 id: true
 name: name # Name of the owner
 type: string
 mandatory: true

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-75

Table C-4 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

derived: This property
specifies that the id
property is derived
from other keys.
Dependent properties
should be string
datatype and not an
embedded asset.

This property has
two mandatory
parameters:
• strategy: takes

values of concat
or hash.

• format: takes
an array of
specification
strings and
values to be
used by the
strategy.

Example 1:
• The property

employeeID is
dependent on
the firstName
and lastName
properties.

• This property is a
concatenation of
the values listed
in the format
array.

• IND%1#%2%tIND
is the 0th index
in the array and
describes the
final format.

• %n is a position
specifier that
takes its values
from the other
indexes in the
array.

• %t indicates the
value should be
stub.timestam
p from the
channel header.

• If you need to
use the
character % in
the format

Example 1

name: employee
 properties:
 name: employeeId
 type: string
 mandatory: true
 id: true
 derived:
 strategy: concat
 format:
["IND%1#%2%tIND","firstName","lastName"]

 name: firstName
 type: string
 validate: max(30)
 mandatory: true

 name: lastName
 type: string
 validate: max(30)
 mandatory: true

 name: age
 type: number
 validate: positive(),min(18)

Example 2

name: account
 properties:
 name: accountId
 type: string
 mandatory: true
 id: true
 derived:
 strategy: hash
 algorithm: 'sha256'
 format:
["IND%1#%2%t","bankName","ifsccode"]

 name: bankName
 type: string
 validate: max(30)
 mandatory: true

 name: ifsccode

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-76

Table C-4 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

string, it should
be escaped with
another %.

• The final format
in this example
would be:
INDfirstName#
lastName16068
85454916IND

Example 2:
• When using

hash, you must
also use the
algorithm
parameter. The
default is
sha256; md5 is
also supported.

• IND%1#%2%t is
the 0th index in
the array and
describes the
final format.

• %n is a position
specifier that
takes its values
from the other
indexes in the
array.

• %t indicates the
value should be
stub.timestam
p from the
channel header.

• If you need to
use the
character % in
the format
string, it should
be escaped with
another %.

 type: string
 mandatory: true

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-77

Table C-4 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

mandatory: • true
• false
The corresponding
property is
mandatory and
cannot be skipped
while creating an
asset.

name: phone # Phone number - validate as
(ddd)-ddd-dddd where dashes could also be periods
or spaces
type: string
mandatory: true
validate: /^\(?([0-9]{3})\)?[-.]?([0-9]{3})[-.]?
([0-9]{4})$/
name: cars # The list of car VINs owned by
this owner
type: string[]
mandatory: false

default: This gives you the
default value of this
property.

validate: The given property
is validated against
some of the out-
of-box validations
provided by
Blockchain App
Builder. You can
chain validations if
you ensure that the
chain is valid.

If the validate
property is not
provided, then the
validation is done
against only the
property type.

validate:
type: number

• positive()
• negative()
• min()
• max()
These validations
can be chained
together separated by
commas.

name: offerApplied
type: number
validate: negative(),min(-4)

name: year # Model year
type: number
mandatory: true
validate: min(1910),max(2020)

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-78

Table C-4 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

validate:
type: string

• min()
• max()
• email()
• url()
• /regex/ -

supports PHP
regex

For Go chaincodes,
regular expressions
which contain certain
reserved characters
or whitespace
characters should be
properly escaped.

name: website
type: string
mandatory: false
validate: url()

name: phone # Phone number - validate as (ddd)-
ddd-dddd where dashes could also be periods or
spaces
type: string
mandatory: true
validate: /^\(?([0-9]{3})\)?[-.]?([0-9]{3})[-.]?
([0-9]{4})$/

name: Color #Color can be red, blue, or green
type: string
mandatory: true
validate: /^\\s*(red|blue|green)\\s*$/

validate:
type: boolean

• true
• false
In the example, the
validation of property
active is by the type
itself (boolean)

name: active
type: boolean

validate:
type: array

By type itself,
in the form of
type: number[],
this conveys that
the array is of type
number.

You can enter
limits to the array
in the format
number[1:5] which
means minimum
length is 1, maximum
is 5. If either
one is avoided,
only min/max is
considered.

name: items
type: number[:5]

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-79

Table C-4 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

validate:
type: date

• min()
• max()
Date should be one
of these formats:
• YYYY-MM-DD
• YYYY-MM-

DDTHH:MM:SSZ,
where T
separates the
date from the
time, and the Z
indicates UTC.
Timezone offsets
can replace the Z
as in -05:00 for
Central Daylight
Savings Time.

name: expiryDate
type: date
validate: max('2020-06-26')

name: completionDate
type: date
validate: min('2020-06-26T02:30:55Z')

methods: Use this to state
which of the
CRUD (Create/Read/
Update/Delete) or
additional methods
are to be generated.

By default, if nothing
is entered, all CRUD
and other methods
are generated.

methods:
 crud: [create, getById, update, delete]
 others: [getHistoryById, getByRange]

crud: • create
• getByID (read)
• update
• delete
If this array is left
empty, no CRUD
methods will be
created.

If the crud parameter
is not used at all, all
four methods will be
created by default.

methods:
 crud: [create, getById, delete]
 others: [] # no other methods will be created

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-80

Table C-4 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

others: • getHistoryByI
d

• getByRange
getHistoryById
returns the history of
the asset in a list.

getByRange returns
all the assets in a
given range.

If this array is
left empty, no other
methods will be
created.

If the others
parameter is not used
at all, both methods
will be created by
default.

methods:
 crud: [create, delete]
 others: [] # no other methods will be created

 methods:
 crud: [create, getById, update, delete]
 others: [getHistoryById, getByRange]

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-81

Table C-4 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

type: This attribute if set
to embedded defines
the asset as an
embedded asset.
Embedded assets
do not have CRUD
methods and have to
be part of another
asset to store in the
ledger.

In the example, the
property address is
embedded, and is
defined in another
asset.

Asset: employee

name: employee
 properties:
 name: employeeId
 type: string
 mandatory: true
 id: true

 name: firstName
 type: string
 validate: max(30)
 mandatory: true

 name: lastName
 type: string
 validate: max(30)
 mandatory: true

 name: age
 type: number
 validate: positive(),min(18)

 name: address
 type: address

Asset: address

name: address

type: embedded

properties:
 name: street
 type: string

 name: city
 type: string

 name: state
 type: string

 name: country
 type: string

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-82

Table C-4 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

customMethods: This property creates
invokable custom
method templates in
the main controller
file. It takes the
method signature and
creates the function
declaration in the
controller file.

You can provide
language specific
function declarations
here.

We provide a custom
method named
executeQuery. If
it's added to
the specification
file, it details
how Berkeley DB
SQL and CouchDB
rich queries can
be executed. This
method can be
invoked only when
you are connected
to Oracle Blockchain
Platform Cloud or
Enterprise Edition.

TypeScript

customMethods:
 - executeQuery
 - "buyCar(vin: string, buyerId: string,
sellerId: string, price: number, date: Date)"
 - "addCar(vin: string, dealerId: string,
price: number, date: Date)"

Go

customMethods:
 - executeQuery
 - "BuyCar(vin string, buyerId string,
sellerId string, price int)"
 - "AddCar(vin string, dealerId string, price
int)"

Scaffolded TypeScript Chaincode Project
Blockchain App Builder takes the input from your specification file and generates a
fully-functional scaffolded chaincode project.

If the chaincode project uses the TypeScript language, the scaffolded project contains
three main files:

• main.ts

• <chaincodeName>.model.ts

• <chaincodeName>.controller.ts

All the necessary libraries are installed and packaged. The tsconfig.json file
contains the necessary configuration to compile and build the TypeScript project.

The <chaincodeName>.model.ts contains multiple asset definitions and
<chaincodeName>.controller.ts contains the assets behavior and CRUD
methods.

The various decorators in model.ts and controller.ts provide support
for features like automatic validation of arguments, marshalling/unmarshalling of
arguments, transparent persistence capability (ORM) and calling rich queries.

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-83

Reference:

• Asset

• Decorators

• Models

• Controller

• CRUD Methods

• Model Methods

• Controller Method Details

• Custom Methods

• Init Method

Asset

By default every class which extends OchainModel will have an additional read-only
property called assetType. This property can be used to fetch only assets of this type.
Any changes to this property are ignored during the creation and updating of the asset.
The property value by default is <chaincodeName>.<assetName>.

@Id('supplierId')
export class Supplier extends OchainModel<Supplier> {
 public readonly assetType = 'tsdeml36.supplier';
 @Mandatory()
 @Validate(yup.string())
 public supplierId: string;

Decorators

Class decorators
@Id(identifier)

This decorator identifies the property which uniquely defines the underlying asset.
This property is used as a key of the record, which represents this asset in the
chaincode's state. This decorator is automatically applied when a new TypeScript
project is scaffolded. The 'identifier' argument of the decorator takes the value from
specification file.

@Id('supplierId')
export class Supplier extends OchainModel{
...
}

Property decorators
Multiple property decorators can be used. The decorators are resolved in top to
bottom order.

@Mandatory()

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-84

This marks the following property as mandatory so it cannot be skipped while saving
to the ledger. If skipped it throws an error.

@Mandatory()
public supplierID: string;

@Default(param)

This property can have a default value. The default value in the argument (param) is
used when the property is skipped while saving to the ledger.

@Default('open for business')
@Validate(yup.string())
public remarks: string;

@Validate(param)

The following property is validated against the schema presented in the parameter.
The argument param takes a yup schema and many schema methods can be chained
together. Many complex validations can be added. Refer to https://www.npmjs.com/
package/yup for more details.

@Validate(yup.number().min(3))
public productsShipped: number;

@Embedded(PropertyClass)

This property decorator marks the underlying property as an embeddable asset.
It takes the embeddable class as a parameter. This class should extend the
EmbeddedModel class. This is validated by the decorator.

In this example, Employee has a property called address of type Address, which is to
be embedded with the Employee asset. This is denoted by the @Embedded() decorator.

export class Employee extends OchainModel<Employee> {

 public readonly assetType = 'TsSample.employee';

 @Mandatory()
 @Validate(yup.string())
 public emplyeeID: string;

 @Mandatory()
 @Validate(yup.string().max(30))
 public firstName: string;

 @Mandatory()
 @Validate(yup.string().max(30))
 public lastName: string;

 @Validate(yup.number().positive().min(18))

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-85

https://www.npmjs.com/package/yup
https://www.npmjs.com/package/yup

 public age: number;

 @Embedded(Address)
 public address: Address;
}

export class Address extends EmbeddedModel<Address> {

 @Validate(yup.string())
 public street: string;

 @Validate(yup.string())
 public city: string;

 @Validate(yup.string())
 public state: string;

 @Validate(yup.string())
 public country: string;
}

When a new instance of the Address class is created, all the properties of the Address
class are automatically validated by the @Validate() decorator. Note that the Address
class does not have the assetType property or @Id() class decorator. This asset
and its properties are not saved in the ledger separately but are saved along with
the Employee asset. Embedded assets are user defined classes that function as
value types. The instance of this class can only be stored in the ledger as a part
of the containing object (OchainModel assets). All the above decorators are applied
automatically based on the input file while scaffolding the project.

@Derived(STRATEGY, ALGORITHM, FORMAT)

This decorator is used for defining the attribute derived from other properties. This
decorator has two mandatory parameters:

• STRATEGY: takes values of CONCAT or HASH. Requires an additional parameter
ALGORITHM if HASH is selected. The default algorithm is sha256; md5 is also
supported.

• FORMAT: takes an array of specification strings and values to be used by the
strategy.

@Id('supplierID')
export class Supplier extends OchainModel<Supplier> {

 public readonly assetType = 'chaincodeTS.supplier';

 @Mandatory()
 @Derived(STRATEGY.HASH.'sha256',['IND%1IND%2','license','name'])
 @Validate(yup.string())
 public supplierID: string;

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-86

 @Validate(yup.string().min(2).max(4))
 public license: string;

 @Validate(yup.string().min(2).max(4))
 public name: string;

Method decorators
@Validator(…params)

This decorator is applied on methods of the main controller class. This decorator is
important for parsing the arguments, validating against all the property decorators and
returning a model/type object. It takes multiple user created models or yup schemas
as parameter.

Note the order of the parameters should be exactly the same as the order of the
arguments in the method.

In this example, the Supplier model reference is passed in parameters which
corresponds to the asset type in the method argument. The decorator in run-time
would parse and convert the method argument to JSON object, validate against
the Supplier validators, and upon successful validation convert the JSON object to
Supplier object and assign it to the asset variable. On completion the underlying
method is then finally called.

@Validator(Supplier)
public async createSupplier(asset: Supplier) {
 return await asset.save();
}

In this example, multiple asset references are passed; they corresponds to the object
types of the method arguments. Notice the order in the parameters.

@Validator(Supplier, Manufacturer)
public async createProducts(supplier: Supplier, manufacturer:
Manufacturer) {
}

Apart from asset reference, yup schema objects could also be passed if the
arguments are of basic-types. In this example, supplierId and rawMaterialSupply
are of type string and number respectively, so the yup schema of similar type and
correct order is passed to the decorator. Notice the chaining of yup schema methods.

@Validator(yup.string(), yup.number().positive())
public async fetchRawMaterial(supplierID:string, rawMaterialSupply:
number) {
 const supplier = await Supplier.get(supplierID);
 supplier.rawMaterialAvailable = supplier.rawMaterialAvailable +
rawMaterialSupply;
 return await supplier.update();
}

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-87

Models

Every model class extends OchainModel. Transparent Persistence Capability or
simplified ORM is captured in the OchainModel class. If your model needs to need
call any of the below ORM methods, you should extend the OchainModel class.

ORM methods which are exposed via OchainModel:

• save – this calls the Hyperledger Fabric putState method

• get – this calls the Hyperledger Fabric getState method

• update – this calls the Hyperledger Fabric putState method

• delete – this calls the Hyperledger Fabric deleteState method

• history – this calls the Hyperledger Fabric getHistoryForKey method

• getByRange – this calls the Hyperledger Fabric getStateByRange method

See: Model Methods.

Controller

Main controller class extends OchainController. There is only one main controller.

export class TSProjectController extends OchainController{

You can create any number of classes, functions, or files, but only those methods that
are defined within the main controller class are invokable from outside, the rest of
them are hidden.

CRUD Methods

As described in Input Specification File, you can specify which CRUD methods you
want generated in the specification file. For example, if you selected to generate all
methods, the result would be similar to:

@Validator(Supplier)
public asynch createSupplier(asset: Supplier){
 return await asset.save();
}
public asynch getSupplierById(id: string){
 const asset = await Supplier.get(id);
 return asset;
}
@Validator(Supplier)
public asynch updateSupplier(asset: Supplier){
 return await asset.update();
}
public asynch deleteSupplier(id: string){
 const result = await Supplier.delete(id);
 return result;
}
public asynch getSupplierHistoryById(id: string){
 const result = await Supplier.history(id);
 return result;
}

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-88

@Validator(yup.string(), yup.string())
public asynch getSupplierByRange(startId: string, endId: string){
 const result = await Supplier.getByRange(startId, endId);
 return result;
}

Model Methods

save
The save method adds the caller asset details to the ledger.

This method calls the Hyperledger Fabric putState internally. All marshalling/
unmarshalling is handled internally.

<Asset>.save(extraMetadata?: any): Promise<any>

Parameters:

• extraMetadata : any (optional) – To save metadata apart from the asset into the
ledger.

Returns:

• Promise<any> - Returns a promise on completion

Example:

@Validator(Supplier)
public async createSupplier(asset: Supplier) {
 return await asset.save();
}

get
The get method is a static method of OchainModel class which is inherited by the
concrete model classes of {chaincodeName}.model.ts.

This returns an asset of <Asset> if id is found in the ledger and has the same type as
<Asset>. This method calls the Hyperledger Fabric getState method internally. Even
though any asset with givenid is returned from the ledger, our method will take care
of casting into the caller Model type.

If you would like to return any asset by the given id, use the generic controller method
getAssetById.

<Asset>.get(id: string): Promise<asset>

Parameters:

• id : string – Key used to save data into the ledger.

Returns:

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-89

• Promise: <Asset> - Returns object of type <Asset>. Even though any asset with
given id is returned from the ledger, this method will take care of casting into the
caller Asset type. If the asset returned from the ledger is not of the Asset type,
then it throws an error. This check is done by the read-only assetType property in
the Model class.

Example:

public async getSupplierById: string) {
 const asset = await Supplier.get(id);
 return asset;
}

In the example, asset is of the type Supplier.

update
The update method updates the caller asset details in the ledger. This method returns
a promise.

This method calls the Hyperledger Fabric putState internally. All the marshalling/
unmarshalling is handled internally.

<Asset>.update(extraMetadata?: any): Promise<any>

Parameters:

• extraMetadata : any (optional) – To save metadata apart from the asset into the
ledger.

Returns:

• Promise<any> - Returns a promise on completion

Example:

@Validator(Supplier)
public async updateSupplier(asset: Supplier) {
 return await asset.update();
}

delete
This deletes the asset from the ledger given by id if it exists. This method calls the
Hyperledger Fabric deleteState method internally.

The delete method is a static method of OchainModel class which is inherited by the
concrete Model classes of {chaincodeName}.model.ts.

<Asset>. delete(id: string): Promise<any>

Parameters:

• id : string – Key used to save data into the ledger.

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-90

Returns:

• Promise <any> - Returns a promise on completion.

Example:

public async deleteSupplier(id: string) {
 const result = await Supplier.delete(id);
 return result;
}

history
The history method is a static method of OchainModel class which is inherited by
the concrete Model classes of {chaincodeName}.model.ts. This returns the asset
history given by id from the ledger, if it exists.

This method calls the Hyperledger Fabric getHistoryForKey method internally.

<Asset>.history(id: string): Promise<any[]>

Parameters:

• id : string – Key used to save data into the ledger.

Returns:

• Promise <any[]> - Returns any [] on completion.

Example

public async getSupplierHistoryById(id: string) {
 const result = await Supplier.history(id);
 return result;
}

Example of the returned asset history for getSupplierHistoryById:

[
 {
 "trxId":
"8ef4eae6389e9d592a475c47d7d9fe6253618ca3ae0bcf77b5de57be6d6c3829",
 "timeStamp": 1602568005,
 "isDelete": false,
 "value": {
 "assetType": "supp.supplier",
 "supplierId": "s01",
 "rawMaterialAvailable": 10,
 "license": "abcdabcdabcd",
 "expiryDate": "2020-05-28T18:30:00.000Z",
 "active": true
 }
 },

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-91

 {
 "trxId":
"92c772ce41ab75aec2c05d17d7ca9238ce85c33795308296eabfd41ad34e1499",
 "timeStamp": 1602568147,
 "isDelete": false,
 "value": {
 "assetType": "supp.supplier",
 "supplierId": "s01",
 "rawMaterialAvailable": 15,
 "license": "valid license",
 "expiryDate": "2020-05-28T18:30:00.000Z",
 "active": true
 }
 }
]

getByRange
The getByRange method is a static method of OchainModel class which is inherited by
the concrete Model classes of {chaincodeName}.model.ts.

This returns a list of asset between the range startId and endId. This method calls
the Hyperledger Fabric getStateByRange method internally.

Even though any asset with given id is returned from the ledger, our method will take
care of casting into the caller Model type. In above example, result array is of the
type Supplier. If the asset returned from ledger is not of the Model type, then it will
not be included in the list. This check is done by the read-only assetType property in
the Model class.

If you would like to return all the assets between the range startId and endId, use
the generic controller method getAssetsByRange.

<Asset>.getByRange(startId: string, endId: string): Promise<Asset[]>

Parameters:

• startId : string – Starting key of the range. Included in the range.

• endId : string – Ending key of the range. Excluded of the range.

Returns:

• Promise< Asset[] > - Returns array of <Asset> on completion.

Example:

@Validator(yup.string(), yup.string())
public async getSupplierByRange(startId: string, endId: string){
 const result = await Supplier.getByRange(startId, endId);
 return result;
}

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-92

getId
When the asset has a derived key as Id, you can use this method to get a derived ID.
This method will return an error if the derived key contains %t (timestamp).

Parameters:

• object – Object should contain all the properties on which the derived key is
dependent.

Returns:

• Returns the derived key as a string.

Example:

@Validator(yup.string(), yup.string())
public async customGetterForSupplier(license: string, name: string){
 let object = {
 license : license,
 name: name
 }
 const id = await Supplier.getID(object);
 return Supplier.get(id);
}

Controller Method Details

Apart from the above model CRUD and non-CRUD methods, Blockchain App Builder
provides out-of-the box support for other Hyperledger Fabric methods from our
controller. These methods are:

• getAssetById

• getAssetsByRange

• getAssetHistoryById

• query

• generateCompositeKey

• getByCompositeKey

• getTransactionId

• getTransactionTimestamp

• getTransactionInvoker

• getChannelID

• getCreator

• getSignedProposal

• getArgs

• getStringArgs

• getMspID

• getNetworkStub

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-93

These methods are available with this context itself in the Controller class. For
example:

public async getModelById(id: string) {
 const asset = await this.getAssetById(id);
 return asset;
}
@Validator(yup.string(), yup.string())
public async getModelsByRange(startId: string, endId: string) {
 const asset = await this.getAssetsByRange(startId, endId);
 return asset;
}
public async getModelHistoryById(id: string) {
 const result = await this.getAssetHistoryById(id);
 return result;
}

getAssetById
The getAssetById method returns asset based on id provided. This is a generic
method and be used to get asset of any type.

this< OchainController>.getAssetById(id: string): Promise<byte[]>

Parameters:

• id : string – Key used to save data into the ledger.

Returns:

• Promise <byte []> - Returns promise on completion. You have to convert
byte[] into an object.

getAssetsByRange
The getAssetsByRange method returns all assets present from startId (inclusive) to
endId (exclusive) irrespective of asset types. This is a generic method and can be
used to get assets of any type.

this<OchainController>.getAssetsByRange(startId: string, endId:
string):
Promise<shim.Iterators.StateQueryIterator>

Parameters:

• startId : string – Starting key of the range. Included in the range.

• endId : string – Ending key of the range. Excluded of the range.

Returns:

• Promise< shim.Iterators.StateQueryIterator> - Returns an iterator on
completion. You have to iterate over it.

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-94

getAssetHistoryById
The getAssetHistoryById method returns history iterator of an asset for id provided.

this<OchainController>.getAssetHistoryById(id: string):
Promise<shim.Iterators.HistoryQueryIterator>

Parameters:

• id : string – Key used to save data into the ledger.

Returns:

• Promise<shim.Iterators.HistoryQueryIterator> - Returns a history query
iterator. You have to iterate over it.

query
The query method will run a Rich SQL/Couch DB query over the ledger. This method
is only supported for remote deployment on Oracle Blockchain Platform. This is a
generic method for executing SQL queries on the ledger.

this<OchainController>.query(queryStr: string):
Promise<shim.Iterators.StateQueryIterator>

Parameters:

• queryStr : string - Rich SQL/Couch DB query.

Returns:

• Promise<shim.Iterators.StateQueryIterator> - Returns a state query iterator.
You have to iterate over it.

generateCompositeKey
This method generates and returns the composite key based on the indexName and
the attributes given in the arguments.

this<OchainController>.generateCompositeKey(indexName: string,
attributes:
string[]): string

Parameters:

• indexName : string - Object Type of the key used to save data into the ledger.

• attributes: string[] - Attributes based on which composite key will be
formed.

Returns:

• string - Returns a composite key.

getByCompositeKey
This method returns the asset that matches the key and the column given in the
attribute parameter while creating composite key. indexOfId parameter indicates
the index of the key returned in the array of stub method SplitCompositeKey.

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-95

Internally this method calls Hyperledger Fabric’s getStateByPartialCompositeKey,
splitCompositeKey and getState.

this<OchainController>.getByCompositeKey(key: string, columns:
string[],
indexOfId: number): Promise<any []>

Parameters:

• key: string – Key used to save data into ledger.

• columns: string[] - Attributes based on key is generated.

• indexOfId: number - Index of attribute to be retrieved from Key.

Returns:

• Promise< any [] - Returns any [] on completion.

getTransactionId
Returns the transaction ID for the current chaincode invocation request. The
transaction ID uniquely identifies the transaction within the scope of the channel.

this<OchainController>.getTransactionId(): string

Parameters:

• none

Returns:

• string - Returns the transaction ID for the current chaincode invocation request.

getTransactionTimestamp
Returns the timestamp when the transaction was created. This is taken from the
transaction ChannelHeader, therefore it will indicate the client's timestamp, and will
have the same value across all endorsers.

this<OchainController>.getTransactionTimestamp(): Timestamp

Parameters:

• id : string – Key used to save data into the ledger.

Returns:

• Timestamp - Returns the timestamp when the transaction was created.

getTransactionInvoker
Returns the caller of the transaction from the Transient map property
bcsRestClientId.

this<OchainController>.getTransactionInvoker(): string

Parameters:

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-96

• none

Returns:

• string - Returns the caller of the transaction.

getChannelID
Returns the channel ID for the proposal for chaincode to process.

this<OchainController>.getChannelID(): string

Parameters:

• none

Returns:

• string - Returns the channel ID.

getCreator
Returns the identity object of the chaincode invocation's submitter.

this<OchainController>.getCreator(): shim.SerializedIdentity

Parameters:

• none

Returns:

• shim.SerializedIdentity - Returns identity object.

getSignedProposal
Returns a fully decoded object of the signed transaction proposal.

this<OchainController>.getSignedProposal():
shim.ChaincodeProposal.SignedProposal

Parameters:

• none

Returns:

• shim.ChaincodeProposal.SignedProposal - Returns decoded object of the
signed transaction proposal.

getArgs
Returns the arguments as array of strings from the chaincode invocation request.

this<OchainController>.getArgs(): string[]

Parameters:

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-97

• none

Returns:

• string [] - Returns arguments as array of strings from the chaincode
invocation.

getStringArgs
Returns the arguments as array of strings from the chaincode invocation request.

this<OchainController>.getStringArgs(): string[]

Parameters:

• none

Returns:

• string [] - Returns arguments as array of strings from the chaincode
invocation.

getMspID
Returns the MSP ID of the invoking identity.

this<OchainController>.getMspID(): string

Parameters:

• none

Returns:

• string - Returns the MSP ID of the invoking identity.

getNetworkStub
The user can get access to the shim stub by calling getNetworkStub method. This will
help user to write its own implementation of working directly with the assets.

this<OchainController>.getNetworkStub(): shim.ChaincodeStub

Parameters:

• none

Returns:

• shim.ChaincodeStub - Returns chaincode network stub.

Custom Methods

The following custom methods were generated from our example specification file.

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-98

The executeQuery shows how SQL rich queries can be called. The validators against
the arguments are added automatically by Blockchain App Builder based on the type
of the argument specified in the specification file.

/**
*
* BDB sql rich queries can be executed in OBP CS/EE.
* This method can be invoked only when connected to remote OBP CS/EE
network.
*
*/
@Validator(yup.string()}
public async executeQuery(query: string) {
 const result = await OchainController.query(query);
 return result;
}
@Validator(yup.string(), yup.number()}
public async fetchRawMaterial(supplierId: string, rawMaterialSupply:
number) {
}
@Validator(yup.string(), yup.string(), yup.number())
public async getRawMaterialFromSupplier(manufacturerId: string,
supplierId: string, rawMaterialSupply: number) {
}
@Validator(yup.string(), yup.number(), yup.number())
public async createProducts(manufacturerId: string,
rawMaterialConsumed: number, productsCreated: number) {
}
public async sendProductsToDistribution() {
}

Init Method

We have provided one init method in the controller with an empty definition. This
method will be called by the Hyperledger Fabric Init method during first time
instantiating or upgrading the chaincode.

export class TestTsProjectController extends OchainController {
 public async init(params: any) {
 return;
}

If you would like to initialize any application state at this point, you can use this method
to do that.

Scaffolded Go Chaincode Project
Blockchain App Builder takes the input from your specification file and generates a
fully-functional scaffolded chaincode project.

If the chaincode project is in the Go language, the scaffolded project contains three
main files:

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-99

• main.go

• <chaincodeName>.model.go

• <chaincodeName>.controller.go

All the necessary libraries are installed and packaged.

The <chaincodeName>.model.go contains multiple asset definitions and
<chaincodeName>.controller.go contains the asset's behavior and CRUD
methods. The various Go struct tags and packages in model.go and
controller.go provide support for features like automatic validation of arguments,
marshalling/unmarshalling of arguments, transparent persistence capability (ORM)
and calling rich queries.

The scaffolded project can be found in $GOPATH/src/example.com/
<chaincodeName>

Reference:

• Validators

• Model

• Composite Key Methods

• Stub Method

• Other Methods

• Utility Package

• Controller

• CRUD Methods

• Custom Methods

• Init Method

Validators

Id
id:"true"

This validator identifies the property which uniquely defines the underlying model. The
asset is saved by the value in this key. This validator automatically applies when a
new Go project is scaffolded.

In the below screenshot "SupplierId" is the key for the supplier asset and has a tag
property id:"true" for the SupplierId property.

type Supplier struct {
 Supplierld string 'json:"Supplierld"
validate:"string,mandatory" id:"true"'
 RawMaterialAvailable int 'json:"RawMaterialAvailable"
validate:"int,min=0"'
 License string 'json:"License"
validate:"string,min=10"'
 ExpiryDate date.Date 'json:"ExpiryDate"

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-100

validate:"date,before=2020-06-26"'
 Active bool 'json:"Active"
validate:"bool" default :"true"'
 Metadata interface{}
'json:"Metadata,omitempty"'
}

Derived
derived:"strategy,algorithm,format"

This decorator is used for defining the attribute derived from other properties. This
decorator has two mandatory parameters:

• strategy: takes values of concat or hash. Requires an additional parameter
algorithm if hash is selected. The default algorithm is sha256; md5 is also
supported.

• format: takes an array of specification strings and values to be used by the
strategy.

type Supplier struct{
 AssetType string 'json:"AssetType" final:"chaincode1.Supplier"'
 SupplierId string 'json:"SupplierId"
validate:"string" id:"true" mandatory:"true"
derived:"strategy=hash,algorith=sha256,format=IND%1%2,License,Name"'
 Name string 'json:"Name" validate:"string,min=2,max=4"'
 License string 'json:"License" validate:"string,min=2,max=4"'
}

Mandatory
validate:"mandatory"

This marks the following property as mandatory and cannot be skipped while saving
to the ledger. If skipped it throws an error. In the below example, "SupplierId" has a
validate:"mandatory" tag.

Type Supplier struct {
 Supplierld string 'json:"Supplierld"
validate:"string,mandatory" id:"true"'
 RawMaterialAvailable int 'json:"RawMaterialAvailable"
validate:"int,min=0"'
 License string 'json:"License"
validate:"string,min=10"'
 ExpiryDate date.Date 'json:"ExpiryDate"
validate:"date,before=2020-06-26"'
 Active bool 'json:"Active" validate:"bool"
default :"true"'
 Metadata interface{} 'json:"Metadata,omitempty"'
}

Default
default:"<param>"

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-101

This states that the following property can have a default value. The default value
in the default tag is used when the property is skipped while saving to the ledger.
In the below example property, Active has a default value of true, provided as tag
default:"true"

Type Supplier struct {
 Supplierld string 'json:"Supplierld"
validate:"string,mandatory" id:"true"'
 RawMaterialAvailable int 'json:"RawMaterialAvailable"
validate:"int,min=0"'
 License string 'json:"License"
validate:"string,min=10"'
 ExpiryDate date.Date 'json:"ExpiryDate"
validate:"date,before=2020-06-26"'
 Active bool 'json:"Active" validate:"bool"
default :"true"'
 Metadata interface{} 'json:"Metadata,omitempty"'
}

Validate types
Basic Go types are validated for a property by defining a validate tag. These are the
validate tags based on types:

• string: validate: "string"

• date: validate: "date"

• number: validate: "int"

• boolean: validate: "bool"

Min validator
validate:"min=<param>"

Using the min validator, minimum value can be set for a property of type number and
string.

For type int: In the example, RawMaterialAvailable property has a minimum value
of 0 and if a value less than 0 is applied to RawMaterialAvailable an error will be
returned.

For type string: For the string type minimum validator will check the length of the
string with the provided value. Therefore, in the below example the License property
has to be minimum 10 characters long.

Example:

Type Supplier struct {
 Supplierld string 'json:"Supplierld"
validate:"string,mandatory" id:"true"'
 RawMaterialAvailable int 'json:"RawMaterialAvailable"
validate:"int,min=0"'
 License string 'json:"License"
validate:"string,min=10"'
 ExpiryDate date.Date 'json:"ExpiryDate"

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-102

validate:"date,before=2020-06-26"'
 Active bool 'json:"Active" validate:"bool"
default :"true"'
 Metadata interface{} 'json:"Metadata,omitempty"'
}

Max validator
validate:"max=<param>"

Using the max validator, the maximum value can be set for a property of type number
and string.

For type int: Like the min validator, for type int, if a value provided for the structfield
is greater than the value provided in the validator then an error will be returned.

For type string: Like the min validator, max validator will also check the length of the
string with given value. In the example, the Domian property has a maximum value
of 50, so if the Domain property has a string length more than 50 characters, then an
error message will be returned.

type Retailer struct {
 Retailerld string 'json:"Retailerld"
validate:"string,mandatory" id:"true"'
 ProductsOrdered int 'json:"ProductsOrdered"
validate:"int,mandatory"'
 ProductsAvailable int 'json:"ProductsAvailable"
validate:"int" default:"1"'
 ProductsSold int 'json:"ProductsSold"
validate:"int"'
 Remarks string 'json:"Remarks" validate:"string"
default :"open for business"'
 Items []int 'json:"Items"
validate:"array=int,range=l-5"'
 Domain string 'json:"Domain"
validate:"url,min=30,max=50"'
 Metadata interface{} 'json:"Metadata,omitempty"'
}

Date validators
Before validator:

validate:"before=<param>"

The before validator validates a property of type date to have a value less than the
specified in parameter.

In this example, the ExpiryDate property should be before "2020-06-26" and if not it
will return an error.

Type Supplier struct {
 Supplierld string 'json:"Supplierld"
validate:"string,mandatory" id:"true"'

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-103

 RawMaterialAvailable int 'json:"RawMaterialAvailable"
validate:"int,min=0"'
 License string 'json:"License"
validate:"string,min=10"'
 ExpiryDate date.Date 'json:"ExpiryDate"
validate:"date,before=2020-06-26"'
 Active bool 'json:"Active" validate:"bool"
default :"true"'
 Metadata interface{} 'json:"Metadata,omitempty"'
}

After validator:

validate:"after=<param>"

The before validator validates a property of type date to have a value greater than the
specified in parameter.

In this example, the CompletionDate property should be after "2020-06-26" and if not
it will return an error.

Type Supplier struct {
 Manufacturerld string 'json:"Manufacturerld"
validate:"string,mandatory" id:"true"'
 RawMaterialAvailable int 'json:"RawMaterialAvailable"
validate:"int,max=8"'
 ProductsAvailable int 'json:"ProductsAvailable"
validate:"int"'
 CompletionDate date.Date 'json:"CompletionDate"
validate:"date,after=2020-06-26"'
 Metadata interface{} 'json:"Metadata,omitempty"'
}

URL validator
validate:"url"

The URL validator will validate a property for URL strings.

In this example, the Domain property has to be a valid URL.

type Retailer struct {
 Retailerld string 'json:"Retailerld"
validate:"string,mandatory" id:"true"'
 ProductsOrdered int 'json:"ProductsOrdered"
validate:"int,mandatory"'
 ProductsAvailable int 'json:"ProductsAvailable"
validate:"int" default:"1"'
 ProductsSold int 'json:"ProductsSold"
validate:"int"'
 Remarks string 'json:"Remarks" validate:"string"
default :"open for business"'
 Items []int 'json:"Items"

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-104

validate:"array=int,range=l-5"'
 Domain string 'json:"Domain"
validate:"string,url,min=30,max=50"'
 Metadata interface{} 'json:"Metadata,omitempty"'
}

Regexp validator
validate:"regexp=<param>"

Regexp validator will validate property for the input regular expression.

In this example, the PhoneNumber property will validate for a mobile number as per the
regular expression.

type Customer struct {
Customerld string 'json:"Customerld"
validate:"string,mandatory" id:"true"'
Name string 'json:"Name" validate:"string,mandatory"'
ProductsBought int 'json:"ProductsBought" validate:"int"'
OfferApplied int 'json:"OfferApplied"
validate :"int,nax=0"'
PhoneNumber string
'json:"PhoneNumber" validate:"string,regexp=A\(?([0-9]{3})\)?[-.]?
([0-9]{3})[-.]?([0-9]{4})$"'
Received bool 'json:"Received" validate:"bool“'
Metadata interface{} 'json:"Metadata,omitempty"'
}

Multiple validators
Multiple validators can be applied a property.

In this example, the Domain property has validation for a string, URL, and min and
max string length.

type Retailer struct {
 Retailerld string 'json:"Retailerld"
validate:"string,mandatory" id:"true"'
 ProductsOrdered int 'json:"ProductsOrdered"
validate:"int,mandatory"'
 ProductsAvailable int 'json:"ProductsAvailable"
validate:"int" default:"1"'
 ProductsSold int 'json:"ProductsSold"
validate:"int"'
 Remarks string 'json:"Remarks" validate:"string"
default :"open for business"'
 Items []int 'json:"Items"
validate:"array=int,range=l-5"'
 Domain string 'json:"Domain"
validate:"string,url,min=30,max=50"'
 Metadata interface{} 'json:"Metadata,omitempty"'
}

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-105

Model

Asset Type Property

By default every struct will have an additional property called AssetType. This property
can be useful in fetching only assets of this type. Any changes to this property
is ignored during create and update of asset. The property value by default is
<chaincodeName>.<modelName>.

type Supplier struct {
AssetType string 'json:"AssetType" default:"TestGoProject.Supplier"'

SupplierId string 'json:"SupplierId"
validate:"string,mandatory" id:"true'
RawMaterialAvailable int 'json:"RawMaterialAvailable"
validate:"int,min=0"'
License string 'json:"License"
validate:"string,min=10"'
ExpiryDate date.Date 'json:"ExpiryDate"
validate:"date,before=2020-06-26"'
Active bool 'json:"Active" validate:"bool"
default:"true"'
Metadata interface{} 'json:"Metadata,omitempty"'
}

ORM

Go chaincodes implement Transparent Persistence Capability (ORM) with the model
package.

The following ORM methods are exposed via the model package:

model.Get
Queries the ledger for the stored asset based on the given ID.

func Get(Id string, result ...interface{}) (interface{}, error)

Parameters:

• Id - The ID of the asset which is required from the ledger.

• result (interface{}) - This is an empty asset object of a particular type, which
is passed by reference. This object will contain the result from this method. To be
used only if type-specific result is required.

• asset (interface) - Empty asset object, which is passed by reference. This
object will contain the result from this method. To be used only if type-specific
result is required.

Returns:

• interface {} - Interface contains the asset in the form of
map[string]interface{}. Before operating on this map, it is required to assert

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-106

the obtained interface with type map[string]interface{}. To convert this map
into an asset object, you can use the utility API util.ConvertMaptoStruct (see:
Utility Package).

• error - Contains an error if returned, or is nil.

model.Update
Updates the provided asset in the ledger with the new values.

func Update(args ...interface{}) (interface{}, error)

Parameters:

• obj (interface) - The object that is required to be updated in the ledger
is passed by reference into this API with the new values. The input asset
is validated and verified according to the struct tags mentioned in the model
specification and then stored into the ledger.

Returns:

• interface{} - The saved asset is returned as an interface.

• error - Contains an error if returned, or is nil.

model.Save
Saves the asset to the ledger after validating on all the struct tags.

func Save(args ...interface{}) (interface{}, error)

Parameters:

• obj/args[0] (interface{}) - The object that needs to be stored in the ledger is
passed by reference in this utility method.

• metadata/args[1] (interface{}) - This parameter is optional. It has been given
in order to facilitate you if you're required to store any metadata into the ledger
along with the asset at the runtime. This parameter can be skipped if no such
requirement exists.

Returns:

• interface {} - The asset is returned as an interface.

• error - Contains an error if returned, or is nil.

model.Delete
Deletes the asset from the ledger.

func Delete(Id string) (interface{}, error)

Parameters:

• id (string) - The ID of the asset which is required to be deleted from the ledger.

Returns:

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-107

• interface {} - Contains the asset being deleted in the form of
map[string]interface{}.

model.GetByRange
Returns the list of assets by range of IDs.

func GetByRange(startKey string, endKey string, asset ...interface{})
([]map[string]interface{}, error)

Parameters:

• startkey (string) - Starting ID for the range of objects which are required.

• endkey (string) - End of the range of objects which are required.

• asset interface - (optional) Empty array of assets, which is passed by
reference. This array will contain the result from this method. To be used if type-
specific result is required.

Returns:

• []map[string]interface{} - This array contains the list of assets obtained from
the ledger. You can access the objects iterating over this array and asserting the
objects as map[string]interface{} and using utility to convert to asset object.

• error - Contains an error if returned, or is nil.

model.GetHistoryById
Returns the history of the asset with the given ID.

func GetHistoryByID(Id string) ([]interface{}, error)

Parameters:

• Id (string) - ID of the asset for which the history is needed.

Returns:

• []interface{} - This slice contains the history of the asset obtained from
the ledger in form of slice of map[string]interface{}. You can access each
history element by iterating over this slice and asserting the objects as
map[string]interface{} and using utility to convert to asset object.

• error - Contains the error if observed.

model.Query
The query method will run a SQL/Couch DB query over the ledger. This method
is only supported for remote deployment on Oracle Blockchain Platform. This is a
generic method for executing SQL queries on the ledger.

func Query(queryString string) ([]interface{}, error)

Parameters:

• queryString (string) - Input the query string.

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-108

Returns:

• []interface{} - This will contain the output of the query. The result is in form
of slice of interfaces. You need to iterate over the slice and use the elements by
converting them to proper types.

• error - Contains the error if observed.

Composite Key Methods

model.GenerateCompositeKey
This method generates and returns the composite key based on the indexName and
the attributes given in the arguments.

func GenerateCompositeKey(indexName string, attributes []string)
(string, error)

Parameters:

• indexName (string) - Object type of the composite key.

• attrbutes ([]string) - Attributes of the asset based on which the composite
key has to be formed.

Returns:

• string - This contains the composite key result.

• error - Contains the error if observed.

model.GetByCompositeKey
This method returns the asset that matches the key and the column given in the
parameters. The index parameter indicates the index of the key returned in the array
of stub method SplitCompositeKey.

Internally this method calls Hyperledger Fabric's getStateByPartialCompositeKey,
splitCompositeKey and getState.

func GetByCompositeKey(key string, columns []string, index int)
(interface{}, error)

Parameters:

• key (string) - Object type provided while creating composite key.

• column ([]string) - This is the slice of attributes on which the ledger has to be
queried using the composite key.

• index(int) - Index of the attribute.

Returns:

• Interface{} - Contains the list of assets which are result of this method.

• error - Contains any errors if present.

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-109

Stub Method

model.GetNetworkStub
This method will return the Hyperledger Fabric chaincodeStub.

You can get access to the shim stub by calling the GetNetworkStub method. This will
help you write your own implementation working directly with the assets.

func GetNetworkStub() shim.ChaincodeStubInterface

Parameters:

• none

Returns:

• shim.ChaincodeStubInterface - This is the Hyperledger Fabric chaincode stub.

Other Methods

• model.GetTransactionId()

• model.GetTransactionTimestamp()

• model.GetChannelID()

• model.GetCreator()

• model.GetSignedProposal()

• model.GetArgs()

• model.GetStringArgs()

• model.getId

model.GetTransactionId
Returns the transaction ID for the current chaincode invocation request. The
transaction ID uniquely identifies the transaction within the scope of the channel.

func GetTransactionId() string

Parameters:

• none

Returns:

• string - This contains the required transaction ID.

model.GetTransactionTimestamp
Returns the timestamp when the transaction was created. This is taken from the
transaction ChannelHeader, therefore it will indicate the client's timestamp, and will
have the same value across all endorsers.

func GetTransactionTimestamp() (*timestamp.Timestamp, error)

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-110

Parameters:

• none

Returns:

• timestamp.Timestamp - Contains the timestamp required.

• error - Contains any errors if present.

model.GetChannelID
Returns the channel ID for the proposal for the chaincode to process.

func GetChannelID() string

Parameters:

• none

Returns:

• string - Contains the required channel ID as a string.

model.GetCreator
Returns the identity object of the chaincode invocation's submitter

func GetCreator() ([]byte, error)

Parameters:

• none

Returns:

• []byte - Contains the required identity object serialized.

• error - Contains any errors if present.

model.GetSignedProposal
Returns a fully decoded object of the signed transaction proposal.

func GetSignedProposal() (*peer.SignedProposal, error)

Parameters:

• none

Returns:

• *peer.SignedProposal - Contains the required signed proposal object.

• error - Contains any errors if present.

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-111

model.GetArgs
Returns the arguments as array of strings from the chaincode invocation request.

func GetArgs() [][]byte

Parameters:

• none

Returns:

• [][]byte - Contains the arguments passed.

model.GetStringArgs
Returns the arguments intended for the chaincode Init and Invoke as a string array.

func GetStringArgs() []string

Parameters:

• none

Returns:

• []string - Contains the required arguments as a string array.

model.getId
When the asset has a derived key as Id, you can use this method to get a derived ID.
This method will return an error if the derived key contains %t (timestamp).

Parameters:

• object - Object should contain all the properties on which the derived key is
dependent.

Returns:

• Returns the derived key as a string.

Example:

func (t *Controller) CustomGetterForSupplier(License string, Name
string)(interface{}, error){
 var asset Supplier
 asset.License = License
 asset.Name = Name
 id,err := model.GetId(&asset)
 if err !=nil {
 return nil, fmt.Errorf("error in getting ID %s", err.Error())
 }
 return t.GetSupplierById(id)
}

Utility Package

The following methods in the utility package may be useful:

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-112

Util.CreateModel
Parses the provided JSON string and creates an asset object of the provided type.

func CreateModel(obj interface{}, inputString string) error

Parameters:

• inputString (string) - The input JSON string from which the object is to be
created.

• obj (interface{}) - The reference of the object that is to be created from the
JSON string. This object will store the created model which is also validated as
per validator tags.

Returns:

• error - Contains any errors found while creating or validating the asset.

util.ConvertMapToStruct
Convert the provided map into object of provided type.

func ConvertMapToStruct(inputMap map[string](interface{}), resultStruct
interface{}) error

Parameters:

• inputMap (map[string](interface{})) - Map which needs to be converted into
the asset object.

• resultStruct (interface{}) - The reference of the required asset object which
needs to be generated from the map. Contains the result asset object required.

Returns:

• error - Contains any errors found while creating or validating the asset.

Controller

The Controller.go file implements the CRUD and custom methods for the assets.

You can create any number of classes, functions, or files, but only those methods
that are defined on chaincode struct are invokable from outside, the rest of them are
hidden.

CRUD Methods

As described in Input Specification File, you can specify which CRUD methods you
want generated in the specification file. For example, if you selected to generate all
methods, the result would be similar to:

//
//Supplier
//
func (t *ChainCode) CreateSupplier(inputString string) (interface{},
error) {
 var obj Supplier
 err := util.CreateModel(&obj, inputString)

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-113

 if err != nil {
 return nil, err
 }
 return model.Save(&obj)
}

func (t *ChainCode) GetSupplierById(id string) (interface{}, error) {
 asset, err := model.Get(id)
 return asset, err
}

func (t *ChainCode) UpdateSupplier(inputString string) (interface{},
error) {
 var obj Supplier
 err := util.CreateModel(&obj, inputstring)
 if err != nil {
 return nil, err
 }
return model.Update(&obj)
}

func (t *ChainCode) DeleteSupplier(id string) (interface{}, error) {
 return model.Delete(id)
}

func (t *ChainCode) GetSupplierHistoryById(id string) (interface{},
error) {
 historyArray, err := model.GetHistoryByld(id)
 return historyArray, err
}

func (t *ChainCode) GetSupplierByRange(startkey string, endKey string)
(interface{}, error) {
 assetArray, err := model.GetByRange(startkey, endKey)
 return assetArray, err
}

Custom Methods

The following custom methods were generated from our example specification file.

The executeQuery shows how SQL rich queries can be called. The validators against
the arguments are added automatically by Blockchain App Builder based on the type
of the argument specified in the specification file.

You can implement the functionality as per the business logic.

//
//Custom Methods
//
/*
* BDB sql rich queries can be executed in OBP CS/EE.
* This method can be invoked only when connected to remote OBP CS/EE
network.
*/

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-114

func (t *ChainCode) ExecuteQuery(inputQuery string) (interface{},
error) {
 resultArray, err := model.Query(inputQuery)
 return resultArray, err
}

func (t *ChainCode) FetchRawMaterial(supplierId string,
rawMaterialSupply int) (interface{}, error) {
 return nil, nil
}

func (t *ChainCode) GetRawMaterialFromSupplier(manufacturerId string,
supplierId string, rawMaterialSupply int) (interface{} error) {
 return nil, nil
}

Func (t *ChainCode) CreateProducts(manufacturerId string,
rawMaterialConsumed int, productsCreated int) (interface{}, error) {
 return nil, nil
}

func (t *ChainCode) SendProductsToDistribution() (interface{}, error) {
 return nil, nil
}

For Go chaincodes, every custom method should return two values: empty interface,
error. For example:

func (t *Controller) FetchRawMaterial(supplierId string,
rawMaterialSupply int) (interface{}, error) {
 return nil, nil
}

Init Method

We have provided one init method in the controller with an empty definition. This
method will be called by the Hyperledger Fabric Init method during first time
instantiation or upgrade of a chaincode.

type Controller struct {
}
func (t *Controller) Init(args string) (interface{}, error)
 { return nil, nil
}

If you would like to initialize any application state at this point, you can use this method
to do that.

Deploy Your Chaincode Using Visual Studio Code
Once your chaincode project is created, you can deploy it locally to the automatically
generated Hyperledger Fabric network, or remotely to your Oracle Blockchain Platform

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-115

Cloud or Enterprise Edition. You can also package the chaincode project for manual
deployment to Oracle Blockchain Platform.

• Deploy the Chaincode to a Local Hyperledger Fabric Network

• Deploy Your Chaincode to a Remote Oracle Blockchain Platform Network

• Package Your Chaincode Project for Manual Deployment to Oracle Blockchain
Platform

Deploy the Chaincode to a Local Hyperledger Fabric Network
Once you have created your chaincode project, you can test it in a local Hyperledger
Fabric basic network.

When you install the Blockchain App Builder extension for VS Code, it automatically
creates a Hyperledger Fabric network with a single channel. This will be listed as
Local Environment in the Environments pane. You can't delete or modify this
environment; you can just deploy chaincodes to it and rebuild it if it stops working
correctly.

Blockchain App Builder chaincode deployment starts the Hyperledger Fabric basic
network, other services, and installs and instantiates the chaincode for you.

1. In the Chaincode Details pane, select Deploy.

2. In the deployment wizard:

• Ensure the correct chaincode name is selected.

• Select your target environment - for local deployment choose Local
Environment.

• Select the channel you want to deploy to. A channel named "mychannel"
is created by default with the extension's installation, and can be used for
testing.

• Optionally enter any initial parameters that may be required.

3. Click Deploy.

When the chaincode has finished instantiating, the Output console will state that
it has successfully instantiated it on the given channel, installed, and deployed the
chaincode.

Troubleshooting

You may encounter the following issues when running your chaincode project on a
local network.

Missing Go permissions
While installing Go chaincode project in local network, you might see an error similar
to the following in the Output console:

INFO (Runtime): 2020/06/22 22:57:09 build started

INFO (Runtime): Building

INFO (Runtime): go build runtime/cgo: copying /Users/myname/

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-116

Library/Caches/go-build/f8/.….….d: open /usr/local/go/pkg/darwin_amd64/
runtine/
cgo.a: permission denied

ERROR (Runtime): go build runtine/cgo: copying /Users/myname/Library/
Caches/go-build/f8/.….….d: open /usr/local/go/pkg/darwin_amd64/runtime/
cgo.a: permission denied

INFO (Runtime): An error occurred while building: exit status 1

This is due to missing permissions for Go. This error has been seen only in Mac OS.
This is a known issue:

• https://github.com/golang/go/issues/37962

• https://github.com/golang/go/issues/24674

• https://github.com/udhos/update-golang/issues/15

Solution: change the permissions of your $GOROOT and try deploying again:

sudo chmod -R 777 /usr/local/go

Instantiation failure
Due to instantiation failure, corrupt instantiation, a Docker peer container being full, or
a Docker peer being killed in the local network, you may see an error similar to:

============ Started instantiate Chaincode ============
[2028-19-01T19:25:lO.372] [ERROR] default - Error instantiating
Chaincode GollGl on channel mychannel, detailed
error: Error: error starting container: error starting container:
Failed to generate platform-specific docker
build: Failed to pull hyperledger/fabric-ccenv:latest : API error
(404): manifest for hyperledger/
fabric-ccenv:latest not found: manifest unknown: manifest unknown
[2020-19-01T19:25:10.372] (INFO) default -
============ Finished instantiate Chaincode ============
[2020-19-01119:25:10.372] [ERROR] default - Error: Error instantiating
Chaincode Goll01 on channel mychannel,
detailed error: Error: error starting container: error starting
container: Failed to generate platfom-specific
docker build: Failed to pull hyperledger/fabric-ccenv: latest : API
error (404): manifest for hyperledger/
fabric-ccenv:lalest not found: manifest unknown: manifest unknown
exited: signal: terminated
INFO: exited: signal: terminated

ERROR: Error in Chaincode deployment

This is due to a peer container not able to start up properly again.

Solution: Rebuild your runtime by selecting your local environment in the
Environments pane, right-clicking and selecting Rebuild Local Environment.
Attempt to deploy again.

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-117

https://github.com/golang/go/issues/37962
https://github.com/golang/go/issues/24674
https://github.com/udhos/update-golang/issues/15

Environment Rebuild Required
You may see an error similar to:

Starting ca.example.com ...
Starting orderer.example.com ...
Starting orderer.example.com ... error
ERROR: for orderer.example.com
Cannot start service orderer.example.com:
error while creating mount source
path '/host_mnt/c/Users/opc/.vscode/extensions/oracle.oracle-
blockchain-1.4.0/node_modules/@oracle/ochain-cli/runtime/network/basic-
network/config': mkdir /host_mnt/c/Users/opc/.vscode/extensions/
oracle.oracle-blockchain-1.4.0: operation not permitted
Starting ca.example.com... error
ERROR: for ca.example.com
Cannot start service ca.example.com: error while
creating mount source path '/host_mnt/c/Users/opc/.vscode/extensions/
oracle.oracle-blockchain-1.4.0/node_modules/@oracle/ochain-cli/runtime/
network/basic-network/crypto-config/peerOrganizations/org1.example.com/
ca': mkdir /host_mnt/c/Users/opc/.vscode/extensions/oracle.oracle-
blockchain-1.4.0: operation not permitted
ERROR: for orderer.example.com
Cannot start service orderer.example.com: error while
creating mount source path '/host_mnt/c/Users/opc/.vscode/extensions/
oracle.oracle-blockchain-1.4.0/node_modules/@oracle/ochain-cli/runtime/
network/basic-network/config': mkdir /host_mnt/c/Users/opc/.vscode/
extensions/oracle.oracle-blockchain-1.4.0: operation not permitted
ERROR: for ca.example.com
Cannot start service ca.example.com: error while
creating mount source path '/host_mnt/c/Users/opc/.vscode/extensions/
oracle.oracle-blockchain-1.4.0/node_modules/@oracle/ochain-cli/runtime/
network/basic-network/crypto-config/peerOrganizations/org1.example.com/
ca': mkdir /host_mnt/c/Users/opc/.vscode/extensions/oracle.oracle-
blockchain-1.4.0: operation not permitted
Encountered errors while bringing up the project.
ERROR: Starting ca.example.com ...
Starting orderer.example.com ...
Starting orderer.example.com ... error
ERROR: for orderer.example.com
Cannot start service orderer.example.com: error while
creating mount source path '/host_mnt/c/Users/opc/.vscode/extensions/
oracle.oracle-blockchain-1.4.0/node_modules/@oracle/ochain-cli/runtime/
network/basic-network/config': mkdir /host_mnt/c/Users/opc/.vscode/
extensions/oracle.oracle-blockchain-1.4.0: operation not permitted
Starting ca.example.com ... error
ERROR: for ca.example.com
Cannot start service ca.example.com: error while
creating mount source path '/host_mnt/c/Users/opc/.vscode/extensions/
oracle.oracle-blockchain-1.4.0/node_modules/@oracle/ochain-cli/runtime/
network/basic-network/crypto-config/peerOrganizations/org1.example.com/
ca': mkdir /host_mnt/c/Users/opc/.vscode/extensions/oracle.oracle-
blockchain-1.4.0: operation not permitted
ERROR: for orderer.example.com

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-118

Cannot start service orderer.example.com: error while
creating mount source path '/host_mnt/c/Users/opc/.vscode/extensions/
oracle.oracle-blockchain-1.4.0/node_modules/@oracle/ochain-cli/runtime/
network/basic-network/config': mkdir /host_mnt/c/Users/opc/.vscode/
extensions/oracle.oracle-blockchain-1.4.0: operation not permitted
ERROR: for ca.example.com
Cannot start service ca.example.com: error while
creating mount source path '/host_mnt/c/Users/opc/.vscode/extensions/
oracle.oracle-blockchain-1.4.0/node_modules/@oracle/ochain-cli/runtime/
network/basic-network/crypto-config/peerOrganizations/org1.example.com/
ca': mkdir /host_mnt/c/Users/opc/.vscode/extensions/oracle.oracle-
blockchain-1.4.0: operation not permitted
Encountered errors while bringing up the project.
ERROR: Error in Chaincode deployment

You need to rebuild your local environment. In the App Builder Environments pane,
right-click your local environment and select Rebuild Local Environment.

Deploy Your Chaincode to a Remote Oracle Blockchain Platform Network
Once you've instantiated and tested your chaincode project on a local network to
ensure it's working as designed, you can deploy it to Oracle Blockchain Platform.

Download Files Needed for Your Connection Profile

You can download your connection profile from the Oracle Blockchain Platform Cloud
or Enterprise Edition instance:

1. Create a folder in your local storage to put the connection profile, and admin keys
and certificates.

2. Download your connection profile. In your Oracle Blockchain Platform instance's
console, on the Developer Tools tab, Application Development, and then
Download the development package.

3. Retrieve your admin credentials from your instance's console. Click Network then
Export Admin Credential from your organization.

• Copy the admin certificate from the admin
credentials to artifacts/crypto/ordererOrganizations/
<instance-name>/signcert/<instance-name>-signcert.pem
and artifacts/crypto/peerOrganizations/<instance-name>/
signcert/<instance-name>-signcert.pem.

• Copy the admin key from the admin
credentials to artifacts/crypto/ordererOrganizations/
<instance-name>/keystore/<instance-name>-key.pem
and artifacts/crypto/peerOrganizations/<instance-name>/
keystore/<instance-name>-key.pem.

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-119

Note:

Keep in mind that if you're placing your connection profile in your project
folder, if you're synching this with a content repository such as Github you
might accidentally share your private keys. Ensure that everything private is
added to your .gitignore file.

Create a Connection to an Oracle Blockchain Platform Instance

You must have a Blockchain Platform instance up and running to perform this step.

1. In the VS Code Environments pane, click the Create Environment icon.

2. On the Environments Details wizard:

• Enter the name for your remote environment.

• Enter a description.

• Browse to the directory where you've stored your connection profile from
Oracle Blockchain Platform.

• Enter a user name and password with permissions to install, instantiate, and
invoke chaincode.

3. Click Test Login. This logs your profile into the remote network so that you can
deploy to it.

4. If you logged in successfully, click Create to save the profile.

Deploy Your Chaincode

1. Select the chaincode project you want to deploy in the Chaincodes pane.

2. In the Chaincode Details pane, select Deploy.

3. In the deployment wizard, the name of the chaincode project should be pre-filled.

• Select your target environment - for remote deployment choose the Oracle
Blockchain Platform environment you set up previously.

• Enter the name of the channel you want to deploy to.

• Optionally set any required initial parameters.

4. Click Deploy.

Once the chaincode has successfully deployed to the remote Oracle Blockchain
Platform, theconsole log will show that:

• It has successfully installed the chaincode project.

• It has successfully instantiated the chaincode on each peer and the channel.

Updating the Chaincode Project

The upgrade of the chaincode is handled automatically by Blockchain App Builder.
After you have made changes to your chaincode, just Deploy again - this will
automatically perform the update for you.

If your update is successful, the log will show

• It has successfully upgraded the chaincode version.

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-120

• It has successfully installed the chaincode project.

• It has successfully instantiated the chaincode on each peer and the channel.

Package Your Chaincode Project for Manual Deployment to Oracle Blockchain
Platform

You can package your chaincode projects for manual deployment to Oracle Blockchain
Platform Cloud or Enterprise Edition.

The Package function creates a zip file containing only the build and distribution files
- the binary, libs, node_modules, and test folders from your chaincode project
are not included. This zip can be manually uploaded to Oracle Blockchain Platform for
deployment.

1. Select your chaincode project in the Chaincodes pane.

2. Right-click and select Package.

3. Select a location to save the package, and click Select Output Folder.

When the command completes successfully, the location of the package will be
returned in the output.

Test Your Chaincode Using Visual Studio Code
If your chaincode is running on a network, you can test any of the generated methods.
Additionally, If you chose to create the executeQuery method during your chaincode
development, you can run SQL rich queries if your chaincode is deployed to an Oracle
Blockchain Platform network.

• Test Your Chaincode on a Local Hyperledger Fabric Network

• Testing Lifecycle Operations on a Remote Oracle Blockchain Platform Network

• Execute Berkeley DB SQL Rich Queries

Test Your Chaincode on a Local Hyperledger Fabric Network
Once your chaincode project is running on a local network, you can test it.

Blockchain App Builder contains a built-in wizard to assist you with invoking or
querying your chaincode.

1. Select your chaincode project in the Chaincodes pane. In the Chaincode Details
pane, select Execute. The chaincode name should already be selected. Ensure
the target environment is set to Local Environment and the channel will default to
the only channel available.

2. In the Function field, select your method from the drop-down list. Every method
available in the chaincode is listed.

3. In the Function Param field, select the More Actions (…) button. This will launch
a window with available properties for your selected method. Enter the properties,
click Omit for any non-mandatory property you don't want submitted when you
invoke your method, and click Save.

4. Click Invoke.

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-121

The Output console window will show that the function has been invoked.
Alternatively, in the Chaincode Actions pane, the Function Output window displays
the output. Click the More Actions (…) button to see this output formatted.

If you want to save the method and parameters you just ran, you can click Save and
enter a name and description for it. It will be saved in your chaincode project in the
Queries folder. To use it again, right-click it and select Open.

If you make any changes to the controller file that would alter the methods, select the
Reload icon at the top of the Chaincode Execute pane. The change should now be
reflected in the Function drop-down list.

Note:

If you don't want to use the wizard for testing, you can also run the
Blockchain App Builder command line tools in the Visual Studio Code
Terminal window. Follow the instructions provided here to test with the
command line: Test Your Chaincode on a Local Hyperledger Fabric Network.

Automatic Install and Instantiate After Update

Whenever you update and save your chaincode, the changes will be compiled,
installed and instantiated automatically. There is no need to strip down or bring up
the local network again. All projects will be automatically compiled and deployed on
every change.

Testing Lifecycle Operations on a Remote Oracle Blockchain Platform Network

Once your chaincode project has successfully deployed to your remote Oracle
Blockchain Platform network, you can test it as described in Test Your Chaincode
on a Local Hyperledger Fabric Network.

You can use the same invoke and query commands to perform all method transactions
on a remote Oracle Blockchain Platform Cloud or Enterprise Edition network;
everything supported on the local network is also supported on the remote network.
Simply select the Oracle Blockchain Platform instance as your target environment
when executing your tests.

Execute Berkeley DB SQL Rich Queries
If you chose to create the executeQuery method during your chaincode development,
you can run SQL rich queries if your chaincode is deployed to an Oracle Blockchain
Platform network.

If you have used executeQuery in the customMethods section of the specification file, a
corresponding executeQuery method will be created in the controller.

Specification file:

customMethods:
 - executeQuery
 - "fetchRawMaterial(supplierid: string, rawMaterialSupply: number)"
 - "getRawMaterialFromSupplier(manufacturerId: string, supplierld:
string, rawMaterialSupply: number)"

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-122

 - "createProducts(manufacturerId: string, rawMaterialConsumed:
number, productsCreated: number)"
 - "sendProductsToDistribution()"

Controller file:

**
*
* BDB sql rich queries can be executed in OBP CS/EE.
* This method can be invoked only when connected to remote OBP CS/EE
network.
*
*/
@Validator(yup.string())
public async executeQuery(query: string) {
 const result = await OchainController.query(query);
 return result;
}

You can invoke this method to execute Berkeley DB SQL rich queries on Oracle
Blockchain Platform network, ensuring that you select the Oracle Blockchain Platform
environment that you created as your target environment when running the queries.

Example:

1. In the Chaincode Details pane, select Execute. The chaincode name, target
environment, and channel should already be pre-filled from the deployment step.

2. In the Function Name field, select executeQuery from the drop-down list.

3. In the Function Param field, select the More Actions (…) button. This will launch
a window where you can enter the query string. Enter the arguments for your
query, and click Save.

4. Click Query.

The Output window and the will show the query being executed and the result.

> ochain query executeQuery "SELECT key, valueJson FROM <STATE> WHERE
json_extract(valueJson, '$.rawMaterialAvailable') = 4"

The entire SQL query is taken in the argument, so you can make changes to your
query on the fly.

Synchronize Specification File Changes With Generated Source Code
You can use this function to bring new changes from the specification file to the
chaincode source files (model and controller). This function works with both TypeScript
and Go projects.

Note:

• Code sync is unidirectional - you can bring changes from your specification file
into your chaincode project, but not the other way around. Changes made in your
chaincode project remain as-is after the synching process.

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-123

• This command only works if the chaincode project has been scaffolded using a
specification file. Ensure you do not delete, rename or move the specification file
if you plan to sync any changes from the specification file to the source code in
future.

To synchronize your specification and chaincode files:

1. In the Specifications pane, select the specification file that you've updated to
open its Specification Details pane. At the top of the pane, click Chaincodes
to open the pane showing which chaincodes this specification has been used to
generate.

2. Select the Sync checkbox beside each chaincode you want to update with
these changes. You can synchronize more than one chaincode generated from
a specification file at a time. Click Synchronize.

The chaincode projects should now contain update files.

Resolving Conflicts

Since you can edit both the synchronization files and chaincode files, it's possible to
end up with conflicts where the updated specification file would overwrite a change
you've made to the chaincode file. In these cases, when you attempt to synchronize
an error displays stating there's a conflict. You can use the Conflicts pane to resolve
these.

1. On the Conflicts pane, click the name of the chaincode file where the conflicts
exist. The file will open in an editor with the conflicts highlighted.

In the example shown, Marble124 is in the specification file, and Marble123 is in
the chaincode model file.

2. Above the conflict are your list of options. Click Accept Current Change to
override the specification file and use what is currently in the chaincode file. Click
Accept Incoming Change to override the chaincode file and use what is currently
in the specification file.

3. Return to the Conflicts pane. Select the Sync checkbox next to the conflict name,
and click Confirm Changes. If you have multiple conflicts, resolve all of them
before before clicking Confirm Changes.

Debugging from Visual Studio Code
Blockchain App Builder includes line-by-line debug support from Visual Studio Code
for both TypeScript and Go projects.

To run line-by-line debugging:

1. Open your chaincode project in VS Code Explorer. In the Chaincodes pane,
right-click your chaincode and select Open in Explorer.

2. Attach breakpoints to your code wherever necessary.

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-124

3. Go to the Run menu and click Start Debugging. This attaches the debugger. It
may take several seconds for the debugger to attach to the chaincode.

4. Call any command from the Terminal which would execute your code.
If you've been using the VS Code interface to test your chaincode so far, you
can follow the invocation syntax outlined in Test Your Chaincode on a Local
Hyperledger Fabric Network.

The debugger will stop at your breakpoints. You can then start the debugging.

5. Restart debugging to reflect new changes.

Since the chaincode is running in debug mode, the hot deployment of new changes
does not happen automatically. You must manually restart the debugging process,
using the debug controls in VS Code, in order to make the latest changes take effect.

Troubleshoot Blockchain App Builder VS Code Extension
The following can be used to troubleshoot system problems with Blockchain App
Builder VS Code extension.

Repatching
By default, when you install the extension all the patches are installed for you.
Patching is done so that VS Code can connect to Oracle Blockchain Platform.
However you may encounter network or other problems that prevent the patching
process from completing successfully. In these cases, you can manually force the
Blockchain App Builder to repatch itself.

1. Open the Command Palette from the View menu.

2. In the Command Palette, type Enable Repatching.

3. Select Oracle Blockchain Platform Enable Repatching. VS Code will clear the
existing patching data and force a repatch.

Resetting Extension Data
It is possible for your Blockchain App Builder user data to get corrupted. This option
clears your data from Blockchain App Builder without impacting anything stored
locally.

1. Open the Command Palette from the View menu.

2. In the Command Palette, type Reset Extension.

Appendix C
Using the Blockchain App Builder Extension for Visual Studio Code

C-125

3. Select Oracle Blockchain Platform Reset Extension Data. VS Code will clear
the existing blockchain data and reload the default installation data. This will not
affect the files stored locally in your system, but you will have to import them back
into VS Code and reconfigure any environments you had previously set up.

Migrating Chaincode Between Blockchain App Builder
Versions

If you have existing chaincode projects created with earlier versions of Blockchain App
Builder, you can migrate them to use the new features of the updated Blockchain App
Builder. If you don't need to use any of the updated Blockchain App Builder features,
you don't need to migrate your chaincode projects.

To migrate your chaincode project:

1. Create a backup of your existing chaincode project folder. For example, if your
chaincode project was in TestCC, copy the contents to TestCC_bak.

2. Install the updated Blockchain App Builder.

3. Create a new chaincode project with the same name as your existing chaincode
project (TestCC). If using Go, ensure you're using the same root folder.

4. Copy the src folder from the TestCC_bak backup, and use it to replace the src
folder in the newly created project.

Appendix C
Migrating Chaincode Between Blockchain App Builder Versions

C-126

D
Run Solidity Smart Contracts with EVM on
Oracle Blockchain Platform

This topic provides a walkthrough showing how you can run Solidity smart contracts
with EVM (Ethereum Virtual Machine) deployed as a chaincode on Oracle Blockchain
Platform.

The Ethereum Virtual Machine runs smart contracts in the Ethereum networks.
It was created through the Hyperledger Burrow project and has been integrated
into Hyperledger Fabric. This project enables you to use a Hyperledger Fabric
permissioned blockchain platform to interact with Ethereum smart contracts written
in an EVM-compatible language such as Solidity. See: Hyperledger Fabric EVM
chaincode.

A basic overview of the process of running a Solidity smart contract on a provisioned
Oracle Blockchain Platform:

1. Upload the EVM chaincode zip into Oracle Blockchain Platform.

2. Deploy it using the bytecode generated by the Remix IDE.

3. Get the smart contract address in response to the deployment, and use that
address to send transactions.

Steps in this topic have been tested with fabric-chaincode-evm:release-0.4 and
may not work with other releases.

Set Up the EVM Chaincode Zip File

Before deploying the smart contract, the EVM chaincode zip needs to be prepared. To
create the chaincode zip folder:

1. Download the EVM chaincode zip from Hyperledger Fabric EVM chaincode.

2. Unzip the downloaded fabric-chaincode-evm-release-0.4.zip.

3. In the extracted files, go to fabric-chaincode-evm-release-0.4/evmcc/
vendor/github.com/hyperledger.

4. Create the directory fabric-chaincode-evm/evmcc in the /hyperledger
directory.

5. Copy the following folders from fabric-chaincode-evm-
release-0.4/evmcc to fabric-chaincode-evm-release-0.4/evmcc/
vendor/github.com/hyperledger/fabric-chaincode-evm/evmcc:

• /address

• /event

• /eventmanager

• /mocks

• /statemanager

D-1

https://github.com/hyperledger/fabric-chaincode-evm/tree/release-0.4
https://github.com/hyperledger/fabric-chaincode-evm/tree/release-0.4
https://github.com/hyperledger/fabric-chaincode-evm/tree/release-0.4

6. Zip the top-level fabric-chaincode-evm-release-0.4/evmcc folder and
rename it. The following steps use evmcc.zip as the example name.

Deploy EVM Chaincode on Oracle Blockchain Platform

After you have created the EVM chaincode zip, you need to deploy it on Oracle
Blockchain Platform.

1. Log into the Oracle Blockchain Platform console.

2. On the Chaincodes tab, click Deploy a New Chaincode.

3. Select Quick Deployment, and entire the following information:

• Chaincode Name: enter any name of your choice. This example uses
soliditycc.

• Version: v0

• Initial Parameters for Chaincode Instantiation: leave this field empty

• Channel: select the channels on which you want to install and instantiate the
chaincode

• Chaincode source: upload the evmcc.zip package you created in the
previous steps.

After you submit your information, the EVM chaincode will be visible in the
Chaincodes tab.

Create and Compile Your Solidity Smart Contract

1. Open the browser-based Remix IDE: https://remix.ethereum.org/.

2. If you already have a Solidity smart contract written, import it into Remix.

3. If you don't have a Solidity smart contract written, create a Solidity file (.sol) in
Remix and do one of the following:

• If you're familiar with Solidity you can create your own smart contract file.

• You can use the Simple Storage sample code provided in the Solidity
documentation: Solidity: Introduction to Smart Contracts

• You can use the sample code being used for this example which takes string
name as an input and prints the same as output string using set(name) and
get():

pragma solidity ^0.4.0;
contract Myname {
 string public yourName;

 function set(string name) public {
 yourName = name;
 }
 function get() public view returns (string) {
 return yourName;
 }
}

Note that you may see an error message about the default compiler version not
matching the version you've specified in your smart contract.

Appendix D

D-2

https://remix.ethereum.org/
https://docs.soliditylang.org/en/v0.4.24/introduction-to-smart-contracts.html

4. Compile your smart contract. Open the Solidity Compiler panel in Remix, ensure
that your smart contract tab is open to select it as the file being compiled, set the
compiler version to the most recent 4.X version, and click Compile.

5. Once the file has compiled, click the Bytecode icon - this copies the bytecode as
a JSON document to your clipboard.

6. Paste the copied bytecode into a text editor and save it.

Deploy the Smart Contract

In the copied bytecode, the section you need is the "object" field. This is the EVM
bytecode of a sample smart contract.

"object":
"608060405234801561001057600080fd5b50610410806100206000396000f30060
8060405260043610610057576000357c0100000000000000000000000000000000000000
000000000000000000900463
ffffffff1680634ed3885e1461005c5780636d4ce63c146100c5578063d97d6630146101
55575b600080fd5b34801561
006857600080fd5b506100c3600480360381019080803590602001908201803590602001
908080601f01602080910402
602001604051908101604052809392919081815260200183838082843782019150505050
505091929192905050506101
e5565b005b3480156100d157600080fd5b506100da6101ff565b60405180806020018281
038252838181518152602001
91508051906020019080838360005b8381101561011a5780820151818401526020810190
506100ff565b505050509050
90810190601f1680156101475780820380516001836020036101000a0319168152602001
91505b509250505060405180
910390f35b34801561016157600080fd5b5061016a6102a1565b60405180806020018281
038252838181518152602001
91508051906020019080838360005b838110156101aa5780820151818401526020810190
5061018f565b505050509050
90810190601f1680156101d75780820380516001836020036101000a0319168152602001
91505b509250505060405180
910390f35b80600090805190602001906101fb92919061033f565b5050565b6060600080
546001816001161561010002
03166002900480601f016020809104026020016040519081016040528092919081815260
200182805460018160011615
6101000203166002900480156102975780601f1061026c57610100808354040283529160
200191610297565b82019190
6000526020600020905b81548152906001019060200180831161027a57829003601f1682
01915b505050505090509056

Appendix D

D-3

5b60008054600181600116156101000203166002900480601f0160208091040260200160
405190810160405280929190
818152602001828054600181600116156101000203166002900480156103375780601f10
61030c576101008083540402
83529160200191610337565b820191906000526020600020905b81548152906001019060
200180831161031a57829003
601f168201915b505050505081565b828054600181600116156101000203166002900490
600052602060002090601f01
6020900481019282601f1061038057805160ff19168380011785556103ae565b82800160
0101855582156103ae579182
015b828111156103ad578251825591602001919060010190610392565b5b5090506103bb
91906103bf565b5090565b61
03e191905b808211156103dd5760008160009055506001016103c5565b5090565b905600
a165627a7a72305820a990d4
0b57c66329a32a18e847b3c18d6c911487ffadfed2098e71e8cafa0c980029",

In general, the EVM expects two arguments:

• The to address.

• The input that's necessary in Ethereum transactions.

To deploy smart contracts, the to field is the zero address, and the input is the
compiled EVM bytecode of the contract. Thus, there are two arguments provided to
the invoke. The first one, which was traditionally supposed to be a function name
inside the chaincode, is now 00, and the
second argument is the Solidity smart contract bytecode.

1. To deploy the Solidity smart contract on Oracle Blockchain Platform, you need to
invoke the deployed EVM chaincode with these two arguments using REST proxy
endpoints.

--data-raw '{"chaincode":"<chaincodename>","args":
["<zeroaddress>","<EVMbytecode>"]}'

For example, using cURL to deploy the Solidity smart contract to Oracle
Blockchain Platform with the name soliditycc:

curl -L -X POST 'https://<hostname>:7443/restproxy/api/v2/channels/
<channelname>/transactions' \
-H 'Authorization: Basic dXNlcm5hbWU6cGFzc3dvcmQ=' \
-H 'Content-Type: application/json' \
--data-raw '{"chaincode":"soliditycc","args":
["00","608060405234801561....1
52d2820d3b5d784b3711119691d0029"],"timeout":0,"sync":true}'

2. The response payload of the transaction is the contract address for your deployed
contract. Copy this address and save it - it's used when you execute smart
contract functions.

Appendix D

D-4

In this example, the smart contract address is
66b92979bb66d645371b3247177e4b2513cb9834.

Interacting With the Smart Contract

To interact with the deployed smart contract, you need the contract address returned
as the payload while deploying the contract in the previous section.

To execute functions, you will use invoke and query transactions but with different
parameters. The sample contract contains two functions: get and set.

In these transactions, the to field is the contract address and the input field is the
function execution hash concatenated with any of the required arguments.

You need to acquire the hash of the function execution to run a transaction. A simple
way to do this is to execute the functions in the Remix IDE and to then copy the hash
from the transaction logs:

1. In the Remix IDE, open the Deploy and Run Transactions panel. Ensure that
your contract is selected in the Contract field, and click Deploy.

Once the deployment completes, the contract should be listed in the Deployed
Contracts list.

2. Expand the contract in the Deployed Contracts list. The smart contract functions
are listed.

3. Run a transaction. For the provided example, enter oracle and click set.

4. The Terminal window shows the transaction logs. If the transaction logs are
minimized, expand them by clicking the log. Copy the value of the input field
(which is the function execution hash) by clicking the icon next to it. Save this
value to the same location as your contract address, removing the leading 0x.

Appendix D

D-5

5. Once you have the function execution hash and the contract address, you can
run the set transaction on Oracle Blockchain Platform using them as the raw data
arguments.

--data-raw '{"chaincode":"<chaincodename>","args":
["<contractaddress>","<setfunctionexecutionhash>"]}'

For example using cURL:

curl -L -X POST 'https://<hostname>:7443/restproxy/api/v2/channels/
<channelname>/transactions' \
-H 'Authorization: Basic dXNlcm5hbWU6cGFzc3dvcmQ=' \
-H 'Content-Type: application/json' \
--data-raw '{"chaincode":"soliditycc","args":
["66b92979bb66d645371b3247177e4b2513cb9834","4ed3885e000000000000000
000200000000000000000000
0066f7261636c6500000000000
000"]}'

6. Open the Oracle Blockchain Platform console; the transaction should be listed in
the ledger.

To run another transaction such as a query using the smart contract's get function, you
can generate the function execution hash in Remix and combine it with the contract
address:

1. In Remix on the Deploy and Run Transactions panel, ensure that your contract
is still listed under Deployed Contracts. If not, redeploy it.

2. Click get. Retrieve and save the input from the transaction as you did with the set
transaction, removing the leading 0x.

Appendix D

D-6

3. You can use this transaction hash and the contract address to run a query
transaction against the chaincode deployed on Oracle Blockchain Platform.

--data-raw '{"chaincode":"<chaincodename>","args":
["<contractaddress>","<getfunctionexecutionhash>"]}'

For example in cURL:

curl -L -X POST 'https://<hostname>:7443/restproxy/api/v2/channels/
<channelname>/chaincode-queries' \
-H 'Authorization: Basic dXNlcm5hbWU6cGFzc3dvcmQ=' \
-H 'Content-Type: application/json' \
--data-raw '{"chaincode":"soliditycc","args":
["66b92979bb66d645371b3247177e4b2513cb9834","6d4ce63c"]}'

The returned payload will contain the asset being queried - in the example case
the string oracle.

Appendix D

D-7

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 What's Oracle Blockchain Platform?
	What's a Blockchain?
	Why Should I Use Blockchain?
	What Are the Advantages of Oracle Blockchain Platform?
	What Do I Get with Oracle Blockchain Platform?

	2 Get Started Using Samples
	What Are Chaincode Samples?
	Explore Oracle Blockchain Platform Using Samples

	3 Manage the Organization and Network
	What's the Console?
	Modify the Console Timeout Setting
	Find and Understand Your Oracle Blockchain Platform Version Number
	Monitor the Network
	How Can I Monitor the Blockchain Network?
	What Type of Information Is on the Dashboard?
	View Network Activity

	Manage Nodes
	What Types of Nodes Are in a Network?
	Find Information About Nodes
	View General Information About Nodes
	Access Information About a Specific Node
	View a Diagram of the Peers and Channels in the Network
	Find Node Configuration Settings

	Start and Stop Nodes
	Restart a Node
	Set the Log Level for a Node

	Manage Channels
	What Are Channels?
	View Channels
	Create a Channel
	View a Channel’s Ledger Activity
	View or Update a Channel’s Organizations List
	Join a Peer to a Channel
	Add an Anchor Peer
	Change or Remove an Anchor Peer
	View Information About Instantiated Chaincodes
	Work With Channel Policies and ACLs
	What Are Channel Policies?
	Add or Modify a Channel's Policies
	Delete a Channel's Policies
	What Are Channel ACLs?
	Update Channel ACLs

	Add or Remove Orderers To or From a Channel
	Set the Orderer Administrator Organization
	Edit Ordering Service Settings for a Channel

	Manage Certificates
	Typical Workflows to Manage Certificates
	Export Certificates
	Import Certificates to Add Organizations to the Network
	What's a Certificate Revocation List?
	View and Manage Certificates
	Revoke Certificates
	Apply the CRL

	Manage Ordering Service
	What is the Ordering Service?
	Join the Participant or Scaled-Out OSNs to the Founder's Ordering Service
	Edit Ordering Service Settings for the Network
	View Ordering Service Settings

	4 Understand and Manage Nodes by Type
	Manage CA Nodes
	View and Edit the CA Node Configuration
	View Health Information for a CA Node

	Manage the Console Node
	View and Edit the Console Node Configuration
	View Health Information for the Console Node

	Manage Orderer Nodes
	View and Edit the Orderer Node Configuration
	View Health Information for an Orderer Node
	Add an Orderer Node

	Manage Peer Nodes
	View and Edit the Peer Node Configuration
	List Chaincodes Installed on a Peer Node
	View Health Information for a Peer Node
	Export and Import Peer Nodes

	Manage REST Proxy Nodes
	How's the REST Proxy Used?
	Add Enrollments to the REST Proxy
	View and Edit the REST Proxy Node Configuration
	View Health Information for a REST Proxy Node

	5 Extend the Network
	Add Oracle Blockchain Platform Participant Organizations to the Network
	Typical Workflow to Join a Participant Organization to an Oracle Blockchain Platform Network
	Join a Network

	Add Fabric Organizations to the Network
	Typical Workflow to Join a Fabric Organization to an Oracle Blockchain Platform Network
	Create a Fabric Organization's Certificates File
	Prepare the Fabric Environment to Use the Oracle Blockchain Platform Network

	Add Organizations with Third-Party Certificates to the Network
	Typical Workflow to Join an Organization with Third-Party Certificates to an Oracle Blockchain Platform Network
	Third-Party Certificate Requirements
	Create an Organization's Third-Party Certificates File
	Prepare the Third-Party Environment to Use the Oracle Blockchain Platform Network

	6 Develop Chaincodes
	Write a Chaincode
	Use a Mock Shim to Test a Chaincode
	Deploy a Chaincode on a Peer to Test the Chaincode

	7 Deploy and Manage Chaincodes
	Typical Workflow to Deploy Chaincodes
	Use Quick Deployment
	Use Advanced Deployment
	Update REST Proxy Settings for Running Chaincodes
	Instantiate a Chaincode
	Specify an Endorsement Policy
	View an Endorsement Policy
	Find Information About Chaincodes
	Manage Chaincode Versions
	Upgrade a Chaincode
	What Are Private Data Collections?
	Add Private Data Collections
	View Private Data Collections

	8 Develop Blockchain Applications
	Before You Develop an Application
	Use the Hyperledger Fabric SDKs to Develop Applications
	Update the Hyperledger Fabric SDKs to Work with Oracle Blockchain Platform

	Use the REST APIs to Develop Applications

	9 Work With Databases
	Query the State Database
	What's the State Database?
	State Database Indexes
	Differences in the Validation of Rich Queries
	Supported Rich Query Syntax
	SQL Rich Query Syntax
	CouchDB Rich Query Syntax

	Create the Rich History Database
	What's the Rich History Database?
	Create the Oracle Database Classic Cloud Service Connection String
	Enable and Configure the Rich History Database
	Modify the Connection to the Rich History Database
	Configure the Channels that Write Data to the Rich History Database
	Monitor the Rich History Status
	Limit Access to Rich History
	Rich History Database Tables and Columns

	A Node Configuration
	CA Node Attributes
	Console Node Attributes
	Orderer Node Attributes
	Peer Node Attributes
	REST Proxy Node Attributes

	B Using the Fine-Grained Access Control Library Included in the Marbles Sample
	Fine-Grained Access Control Library Functions
	Example Walkthough Using the Fine-Grained Access Control Library
	Fine-Grained Access Control Marbles Sample

	C Using Blockchain App Builder for Oracle Blockchain Platform
	Using the Blockchain App Builder Command Line Interface
	Install and Configure Blockchain App Builder CLI
	Create a Chaincode Project with the Blockchain App Builder CLI
	Input Specification File
	Scaffolded TypeScript Chaincode Project
	Scaffolded Go Chaincode Project

	Deploy Your Chaincode Using the CLI
	Deploy Your Chaincode to a Local Hyperledger Fabric Network
	Deploy Your Chaincode to a Remote Oracle Blockchain Platform Network
	Package Your Chaincode Project for Manual Deployment to Oracle Blockchain Platform

	Test Your Chaincode Using the CLI
	Test Your Chaincode on a Local Hyperledger Fabric Network
	Test Your Chaincode on a Remote Oracle Blockchain Platform Network
	Execute Berkeley DB SQL Rich Queries

	Synchronize Specification File Changes With Generated Source Code
	Writing Unit Test Cases and Coverage Reports for the Chaincode Project

	Using the Blockchain App Builder Extension for Visual Studio Code
	Install and Configure the Blockchain App Builder Extension for Visual Studio Code
	Create a Chaincode Project with the Blockchain App Builder VS Code Extension
	Input Specification File
	Scaffolded TypeScript Chaincode Project
	Scaffolded Go Chaincode Project

	Deploy Your Chaincode Using Visual Studio Code
	Deploy the Chaincode to a Local Hyperledger Fabric Network
	Deploy Your Chaincode to a Remote Oracle Blockchain Platform Network
	Package Your Chaincode Project for Manual Deployment to Oracle Blockchain Platform

	Test Your Chaincode Using Visual Studio Code
	Test Your Chaincode on a Local Hyperledger Fabric Network
	Testing Lifecycle Operations on a Remote Oracle Blockchain Platform Network
	Execute Berkeley DB SQL Rich Queries

	Synchronize Specification File Changes With Generated Source Code
	Debugging from Visual Studio Code
	Troubleshoot Blockchain App Builder VS Code Extension

	Migrating Chaincode Between Blockchain App Builder Versions

	D Run Solidity Smart Contracts with EVM on Oracle Blockchain Platform

