Oracle® NoSQL Database
Developers Guide

Release 24.3
F57948-13
September 2024

ORACLE"

Oracle NoSQL Database Developers Guide, Release 24.3
F57948-13
Copyright © 2022, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1 Get Started

Getting started with Oracle NoSQL Database 11
Sample use-cases used in the examples 1-2
Starting the SQL shell 1-2
Tables used in the examples 1-4
Describe tables 1-5
Sample data to run queries 1-7
Table Hierarchies 1-13
About Oracle NoSQL Database SDK drivers 1-14
Obtaining a NoSQL Handle 1-17

2 Create

Creating a namespace 2-1

Creating a region 2-3

Creating a table 2-8
Using SQL commands 2-9
Using TableRequest API 2-10

Create and View Indexes 2-16
Classification of Indexes 2-17
Creating Indexes 2-18

Using SQL commands 2-19
Using TableRequest API 2-25
View Index 2-27
3 Manage

Namespace Management 3-1
Namespace Resolution 3-1
Manage Namespaces 3-1
Namespace scoped privileges 3-4
Granting Authorization Access to Namespaces 3-4

Managing Tables, Indexes & Regions 3-7
Alter Table 3-7

ORACLE" il

Using SQL command to alter table 3-8

Using TableRequest API to alter table 3-9

Drop Table 3-12
Using SQL command to drop table 3-12

Using TableRequest API to drop table 3-12

Drop Index 3-14
Using SQL command to drop index 3-14

Using TableRequest API to drop index 3-14
Manage regions 3-16

4 Develop

Inserting, Modifying, and Deleting Data 4-1
Insert data 4-1
Using SQL command to insert data 4-1

Using Put API to insert data 4-7

Using MultiWrite API to insert data 4-11

Upsert Data 4-15
Using SQL command to upsert data 4-15

Using API to upsert data 4-23

Update Data 4-35
Using SQL command to update data 4-36

Using API to update data 4-38

Modify JSON data 4-41
Using SQL command 4-41

Using API 4-42

Delete Data 4-47
Using SQL command to delete data 4-47

Using API to delete a single row 4-48

Using API to delete multiple rows 4-51

Using Query API to delete data 4-54

Simple SELECT queries 4-58
Using SQL commands to fetch data 4-58
Substituting column names in a query 4-65
Using Get API to fetch data 4-67
Using Query API to fetch data 4-71
SELECT queries on JSON collection tables 4-78
Using Path expressions 4-79
Using Internal variables and aliases 4-79
Working with Arrays 4-81
Working with nested data type 4-82
Finding the size of a complex data type 4-83

ORACLE

Using Left Outer joins with parent-child tables 4-85

Overview of Left Outer Joins 4-85
Examples using Left Outer Joins 4-86
SQL Examples 4-86

Query API examples 4-94

Using NESTED TABLES to join parent-child tables 4-97
Overview of NESTED TABLES 4-97
Examples using NESTED TABLES 4-98
SQL Examples 4-99

Query AP| examples 4-106

Tuning and Optimizing SQL queries 4-110
Using Indexes for query optimization 4-110
Examples of queries using index 4-111
Managing GeoJSON data 4-117
geo_inside 4-118
geo_intersect 4-120
geo_distance 4-121
geo_within_distance 4-122
geo_near 4-124
geo_is_geometry 4-125

5 Reference

Operators in SQL 5-1
Sequence Comparison Operators 5-1
Logical operators 5-3
NULL operators 5-5
Value Comparison Operators 5-6
BETWEEN Operator 5-9

IN Operator 5-10
Regular Expression Conditions 5-11
EXISTS Operator 5-12
Is-Of-Type Operator 5-13
SQL Operators examples using QueryRequest API 5-14
Sorting, Grouping & Limiting results 5-20
Ordering results 5-20
Limit and offset results 5-21
Grouping results 5-23
Aggregating results 5-24
Examples using QueryRequest API 5-25
Primary Expressions in SQL 5-31
Parenthesized Expressions 5-31

ORACLE

Case Expressions 5-31

Cast Expression 5-33
Sequence Transform Expressions 5-35
Extract Expressions 5-36
SQL Expression examples using QueryRequest API 5-38
Timestamp Functions 5-45
Timestamp Arithmetic Functions 5-46
Timestamp Round Functions 5-51
Timestamp Format Functions 5-53
Timestamp Extract Functions 5-54
Current Time Functions 5-56
Examples using QueryRequest API 5-57
Functions on Strings 5-62
substring function 5-62
concat function 5-63
upper and lower functions 5-63
trim function 5-64
length function 5-65
contains function 5-65
starts_with and ends_with functions 5-66
index_of function 5-67
replace function 5-68
reverse function 5-68
Examples using QueryRequest API 5-69
Query execution plan 5-73
Overview of query plan 5-74
Query 1: Using primary key index with an index range scan 5-76
Query 2: Using primary key index with an index predicate 5-79
Query 3: Using a secondary index with an index range scan 5-82
Query 4: Using the primary index 5-85
Query 5: Sort the data using a Covering index 5-87
Query 6: Using a secondary index with an index predicate 5-89
Query 7: Group data with fields as part of the index 5-91
Query 8: Using the secondary index with multiple index scans 5-94
Query 9: A SINGLE PARTITION query using a primary index 5-96
Query 10: Group data with fields not part of any index 5-99
Table Modelling and Design 5-103
Schema Flexibility in Oracle NoSQL Database 5-103
Choice of Keys in NoSQL Database 5-105
Using Indexes in NoSQL Database 5-108
Transactions in NoSQL database 5-110
Handling Errors 5-112
ORACLE

Vi

Handling Driver Errors 5-112

Index

ORACLE" vii

List of Tables

3-1
4-1
5-1
5-2

Namespace Privileges and Permissions 3-4
Nested Tables Vs LOJ 4-98
Timestamp functions 5-45
Comparison between Identity Column and UUID column 5-108

ORACLE viii

Get Started

The articles in this section focus on providing the quickest path to use Oracle NoSQL
Database. It contains the details to connect to the database, details of the schemas used in the
examples, and sample data to run queries.

Getting started with Oracle NoSQL Database

ORACLE

Oracle NoSQL Database is a distributed, shared-nothing, non-relational database that provides
large-scale storage and access to key/value, JSON, and tabular data. It can deliver
predictable, low latencies to simple queries at any scale and is designed from the ground up
for high availability.

Oracle NoSQL Database offers highly flexible deployment and various methods to access the
data store from your application. For applications that require an embedded, ultra-low latency,
zero administration database, it can be directly embedded into a Java application. In this
deployment scenario, applications can start and stop the database using APIs. When using the
Java Direct Driver , applications can read and write data to the database. In most scenarios,
Oracle NoSQL is deployed on a cluster of commodity computers connected by a high-speed
network. In this deployment scenario, applications must choose a programming language SDK
to communicate with the Oracle NoSQL Database cluster. Oracle NoSQL Database offers two
types of language SDKS:

1. Direct driver: This type of SDK will connect directly to every Oracle NoSQL node in the
cluster using TPC/IP. Hence, care must be taken to ensure a network route between the
application and every Oracle NoSQL node in the database cluster. Currently, the only
supported programming language for direct drivers is Java .

2. Standard: This type of SDK will connect to the database using the HTTP protocol via the
Oracle NoSQL HTTP proxy. Since standard SDKs use HTTP, you need only ensure a
network route between your application code and the load balancer if using one, or
between the application and the HTTP proxy if not using a load balancer.

Welcome to SQL for Oracle NoSQL Database. This language provides a SQL-like interface to
Oracle NoSQL Database. The SQL for Oracle NoSQL Database data model supports flat
relational data, hierarchical typed (schema-full) data, and schema-less JSON data. You have
the flexibility to create tables with a well-defined schema for applications that require fixed data
or a combination of fixed data and schema-less JSON. For pure document-oriented
applications, you can use JSON collection tables that do not have any schema definition other
than the primary key fields. The SQL for Oracle NoSQL Database is designed to handle all
such data seamlessly without any impedance mismatch among the different sub-models.
Impedance mismatch is a problem that occurs due to differences between the database model
and the programming language model.

Oracle NoSQL Database supports many of the most popular programming languages and
frameworks with idiomatic language APIls and data structures, giving your application language
native access to data stored in NoSQL Database. It currently supports the following
programming languages and frameworks: Javascript (Node.js), Python, Java, Golang,
C#/.NET, and Spring Data. You can also navigate the database as you develop your code with
plugins for one of the following supported integrated development environments: Visual Studio
Code, IntelliJ , or Eclipse .

1-1

Chapter 1
Getting started with Oracle NoSQL Database

Pre-requisites: You already have an installation of the Oracle NoSQL Database. You could
also use KVLite which is a simplified version of the Oracle NoSQL Database.

e Sample use-cases used in the examples

e Starting the SQL shell

e Tables used in the examples

* Describe tables

e Sample data to run queries

* Table Hierarchies

e About Oracle NoSQL Database SDK drivers
e Obtaining a NoSQL Handle

Sample use-cases used in the examples

You have two different schemas (with real-time scenarios) for learning various SQL concepts.
These two schemas will include various data types that can be used in the Oracle NoSQL
database.

Schema 1: Baggagelnfo schema

Using this schema you can handle a use case wherein passengers traveling on a flight can
track the progress of their checked-in bags or luggage along the route to the final destination.
This functionality can be made available as part of the airline's mobile application. Once the
passenger logs into the mobile application, the ticket number or reservation code of the current
flight is displayed on the screen. Passengers can use this information to search for their
baggage information. The mobile application is using NoSQL Database to store all the data
related to the baggage. In the backend, the mobile application logic performs SQL queries to
retrieve the required data.

Schema 2: Streaming Media Service - Persistent User Profile Store

Consider a TV streaming application. It streams various shows that are watched by customers
across the globe. Every show has a number of seasons and every season has multiple
episodes. You need a persistent meta-data store that keeps track of the current activity of the
customers using the TV streaming application. Using this schema you can provide useful
information to the customer such as episodes they watched, the watch time per episode, the
total number of seasons of the show they watched, etc. The data is stored in the NoSQL
Database and the application performs SQL queries to retrieve the required data and make it
available to the user.

Starting the SQL shell

You can run SQL queries and DDL statements directly from the SQL shell. Here is the general
usage to start the shell:

java -jar KVHOME/lib/sql.jar

-helper-hosts <host:port[,host:port]*>

-store <storeName>

[-username <user>]

[-security <security-file-path>]

[-timeout <timeout ms>]

[-consistency <NONE REQUIRED (default) | ABSOLUTE |
NONE_REQUIRED NO MASTER>]

ORACLE 1o

ORACLE

Chapter 1
Getting started with Oracle NoSQL Database

[-durability <COMMIT SYNC(default) | COMMIT NO SYNC |
COMMIT WRITE NO SYNC>]
[single command and arguments]

The following are the mandatory parameters:

-helper-hosts: Specifies a comma-separated list of hosts and ports.

-store: Specifies the name of the store.

-security: Specifies the path to the security file in a secure deployment of the store.
For example: $KVROOT/security/user.security

The store supports the following optional parameters:

-consistency: Configures the read consistency used for this session. The read operations are
serviced either on a master or a replica node depending on the configured value. For more
details on consistency, see Consistency Guarantees. The following policies are supported.
They are defined in the Consistency class of Java APIs.

If you do not specify this value, the default value ABSOLUTE is applied for this session.

* ABSOLUTE - The read operation is serviced on a master node. With ABSOLUTE
consistency, you are guaranteed to obtain the latest updated data.

« NONE-REQUIRED - The read operation can be serviced on a replica node. This implies,
that if the data is read from the replica node, it may not match what is on the master.
However, eventually, it will be consistent with the master.

For more details on the policies, see Consistency in the Java Direct Driver APl Reference
Guide.

-durability: Configures the write durability setting used in this session. This value defines the
durability policies to be applied for achieving master commit synchronization, that is, the
actions performed by the master node to return with a normal status from the write operations.
For more details on durability, see Durability Guarantees.

If you do not specify this value, the default value COMMIT_SYNC is applied for this session.

e COMMIT_NO_SYNC - The data is written to the host's in-memory cache, but the master
node does not wait for the data to be written to the file system's data buffers or subsequent
physical storage.

e COMMIT_SYNC - The data is written to the in-memory cache, transferred to the file
system's data buffers, and then synchronized to a stable storage before the write operation
completes normally.

e COMMIT_WRITE_NO_SYNC - The data is written to the in-memory cache, and
transferred to the file system's data buffers, but not necessarily into physical storage.

For more details on the policies, see Durability in the Java Direct Driver APl Reference Guide.
-timeout: Configures the request timeout used for this session. The default value is 5000ms.
-username: Specifies the username to log in as.

For example, you can start the shell like this:

java -jar KVHOME/lib/sql.jar -helper-hosts node01:5000 -store kvstore
sql->

1-3

Chapter 1
Getting started with Oracle NoSQL Database

This command assumes that a store kvstore is running at port 5000. After the SQL starts
successfully, you run queries.

sgl-> command [arguments]

-single command and arguments: Specifies the utility commands that can be accessed from
the SQL shell. You can use them with the syntax shown above.

For details on supported shell utility commands, see Shell Utility Commands in the SQL
Beginner's Guide.

Tables used in the examples

ORACLE

The table is the basic structure to hold user data.

Table 1: Airline baggage tracking application

The table used in this schema is BaggageInfo. This schema has a combination of fixed data
types like LONG, STRING. It also has a schema-less JSON (bagInfo) as one of its columns.
The schema-less JSON does not have a fixed data type. The bag information of the
passengers is a schema-less JSON. In contrast, the passenger's information like ticket
number, full name, gender, contact details is all part of a fixed schema. You can add any
number of fields to this non-fixed schemaless JSON field. .

The following code creates the table.

CREATE TABLE BaggageInfo (
ticketNo LONG,

fullName STRING,

gender STRING,
contactPhone STRING,
confNo STRING,

bagInfo JSON,

PRIMARY KEY (ticketNo)

)

Table 2: Streaming Media Service - Persistent user profile store

The table used in this schema is stream acct. The primary key in this schema is acct _id. The
schema also includes a JSON column (acct_data), which is schema-less. The schema-less
JSON does not have a fixed data type. You can add any number of fields to this non-fixed
schema-less JSON field.

The following code creates the table.

CREATE TABLE stream acct(
acct_id INTEGER,

profile name STRING,

account expiry TIMESTAMP (9),
acct data JSON,

PRIMARY KEY(acct_id)

)

1-4

Chapter 1
Getting started with Oracle NoSQL Database

Table 3: JSON collection table - Shopping application

JSON collection tables are useful for applications that store and retrieve data purely as
documents. JSON collection tables are schema-less tables, which provide the flexibility to
create tables with primary key field declaration. You must supply the value of primary key fields
along with the other fields in the document during the insertion of data into the table.

The table used in shopping application is storeAcct. This table is a collection of documents
with the shopper's contactPhone as the primary key. The rows represent individual shopper's
records. The individual rows need not include the same fields in the document. The shopper's
preferences such as name, address, email, notify, and so forth are stored as top-level fields in
the document. The documents can include any number of JSON fields such as wishlist,
cart, and orders that contain shopping-related information.

The JSON array wishlist contains the items wishlisted by the shoppers. Each element of this
array includes nested JSON fields such as the item and priceperunit to store the product
name and price details of the wishlisted item.

The JSON array cart contains the products that the shopper intends to purchase. Each
element of this array includes nested JSON fields such as item, quantity, and priceperunit
to store the product name, number of units, and price of each unit.

The JSON array orders contains the products that the shopper has purchased. Each element
of this array includes nested JSON fields such as the orderID,

item, priceperunit, EstDelivery, and status to store the order number, product name, price
of each unit, estimated date of delivery for the product, and status of the order.

The following code creates the table:

CREATE TABLE IF NOT EXISTS storeAcct (
contactPhone STRING,

PRIMARY KEY (SHARD (contactPhone))

) AS JSON COLLECTION

Describe tables

ORACLE

You use DESCRIBE or DESC command to view the description of a table.

(DESCRIBE | DESC) [AS JSON] TABLE table name [" (" field name")"]

AS JSON can be specified if you want the output to be in JSON format. You could get
information about a specific field in any table by providing the field name.

Example 1: Describe a table

DESCRIBE TABLE stream acct

Output:

=== Information ===

fomm R N o fomm fom— fomm—————
fomm fomm fomm +

| name | ttl | owner | jsonCollection | sysTable | parent | children

| regions | indexes | description |

1-5

ORACLE

Fom - dom—— Fom fom - - Fom -
e o Fomm - +

| stream acct | | | N | N | |

| | !

Fom - dom—— Fom fom - - Fom -
e o Fomm - +

=== Fields ===

e R e L Lt Fomm fom - o Fomm -
Fomm - fom - +

| id | name | type | nullable | default | shardKey |
primaryKey | identity |

e R e L Lt Fomm fom - o Fomm -
Fomm - fom - +

| 1 | acct_id | Integer | N | NULL | Y
Y |

e R e L Lt Fomm fom - o Fomm -
Fomm - fom - +

| 2 | profile name | String | Y | NULL

| \ |

e R e L Lt Fomm fom - o Fomm -
Fomm - fom - +

| 3 | account expiry | Timestamp(9) | Y | NULL

| \ |

e R e L Lt Fomm fom - o Fomm -
Fomm - fom - +

| 4 | acct data | Json | Y | NULL

| \ |

e R e L Lt Fomm fom - o Fomm -
Fomm - fom - +
e +

Example 2: Describe a table and display the output as JSON

DESC AS JSON TABLE BaggageInfo

Output:
{
"json _version" : 1,
"type" "table",
"name" "BaggageInfo",
"fields" [{
"name" "ticketNo",
"type" : "LONG",
"nullable" false
oo A
"name" "fullName",
"type" : "STRING",
"nullable" true
oo A
"name" "gender",
"type" "STRING",

Chapter 1
Getting started with Oracle NoSQL Database

1-6

Chapter 1
Getting started with Oracle NoSQL Database

"nullable" : true

e A
"name" : "contactPhone",
"type" : "STRING",
"nullable" : true

e A
"name" : "confNo",
"type" : "STRING",
"nullable" : true

e A
"name" : "bagInfo",
"type" : "JSON",
"nullable" : true

o

"primaryKey" ["ticketNo"],

"shardKey" ["ticketNo"]

Example 3: Describe one particular field of a table

DESCRIBE TABLE BaggageInfo (ticketNo)
Output:

e i e fo—— - fomm o fomm - Fomm -
fomm +

| id | name | type | nullable | default | shardKey | primaryKey |
identity |

e i e fo—— - fomm o fomm - Fomm -
fomm +

| 1 | ticketNo | Long | N | NULL Y | Y

| |

e i e fo—— - fomm o fomm - Fomm -
fomm +

Sample data to run queries

ORACLE

Table 1: Airline baggage tracking application

If you want to follow along with the examples, download the script
baggageschema_loaddata.sql and run it as shown below. This script creates the table used in
the example and loads data into the table. One sample row is shown below.

The passenger's ticket number, ticketNo is the primary key of the table. The fullName,
gender, contactPhone, and confNo (reservation humber) fields store the passenger's
information, which is part of a fixed schema. The bagInfo column is a schema-less JSON
array, which represents the tracking information of a passenger's checked-in baggage.

Each element of the bagInfo array corresponds to a single checked-in bag. The size of the
bagInfo array gives the total bags checked-in by a passenger. Each bag has an id and a
tagnun field. The routing field includes the routing information from the passenger's travel
itinerary. The lastActionCode and lastActionDesc fields hold the latest action taken on the
bag and its action code at the current destination. The lastSeenStation field includes the
airport code of the bag's current destination. The lastSeenTimeGnt field includes the latest

1-7

ORACLE

Chapter 1
Getting started with Oracle NoSQL Database

action time. The bagArrivalDate field holds the expected arrival date at the destination airport.
The bagInfo array further includes a nested flightLegs array with fields to track the source
and transit details.

Each element of the f1ightLegs array corresponds to a travel leg. The fields £1ightNo holds
the flight number, f1ightDate holds the departure date, f1tRouteSrc holds the originating
airport code, and f1tRouteDest field hold the destination airport code for each travel leg. The
flightLegs array further includes a nested actions array with fields to track the activities
performed on the checked bag at each travel leg.

Each element of the actions array includes the fields actionAt, actionCode, and actionTime to
track the tasks at source and destination airports in each travel leg.

"ticketNo" : 1762344493810,

"fullName" : "Adam Phillips",
"gender" : "M",
"contactPhone" : "893-324-1064",
"confNo" : "LE6J4Z",
[{
"id" : "79039899165297",
"tagNum" : "17657806255240",
"routing" : "MIA/LAX/MEL",
"lastActionCode" : "OFFLOAD",
"lastActionDesc" : "OFFLOAD",
"lastSeenStation" : "MEL",
"flightLegs" : [{
"flightNo" : "BM604",
"flightDate" : "2019-02-01T01:00:00",
"fltRouteSrc" : "MIA",
"fltRouteDest" : "LAX",
"estimatedArrival™ : "2019-02-01T03:00:00",
"actions" : [{
"actionAt" : "MIA",
"actionCode" : "ONLOAD to LAX",
"actionTime" : "2019-02-01T01:13:00"
oo Ao
"actionAt" : "MIA",
"actionCode" : "BagTag Scan at MIA",
"actionTime" : "2019-02-01T00:47:00"
oo Ao
"actionAt" : "MIA",
"actionCode" : "Checkin at MIA",
"actionTime" : "2019-02-01T23:38:00"
bl
oo Ao
"flightNo" : "BM667",
"flightDate" : "2019-01-31T22:13:00",
"fltRouteSrc" : "LAX",
"fltRouteDest" : "MEL",
"estimatedArrival™ : "2019-02-02T03:15:00",
"actions" : [{
"actionAt" : "MEL",
"actionCode" : "Offload to Carousel at MEL",
"actionTime" : "2019-02-02T03:15:00"
oo Ao
"actionAt" : "LAX",

1-8

ORACLE

Chapter 1
Getting started with Oracle NoSQL Database

"actionCode" : "ONLOAD to MEL",
"actionTime" : "2019-02-01T07:35:00"
b Ao
"actionAt" : "LAX",
"actionCode" : "OFFLOAD from LAX",
"actionTime" : "2019-02-01T07:18:00"
bl
Pl
"lastSeenTimeGmt" : "2019-02-02T03:13:00",
"bagArrivalDate" : "2019.02.02T03:13:00"

b

Start your KVSTORE or KVLite and open the SQL shell.

java -jar lib/kvstore.jar kvlite -secure-config disable
java -jar lib/sgl.jar -helper-hosts localhost:5000 -store kvstore

The baggageschema loaddata.sql contains the following:

Begin Script###

load -file baggageInfo.ddl

import -table baggageInfo -file baggageData.json
End Script

Using the 1oad command, run the script.

load -file baggageschema loaddata.sql

Table 2: Streaming Media Service - Persistent user profile store

Download the script acctstream_loaddata.sgl and run it as shown below. This script creates the
table used in the example and loads data into the table. One sample row is shown below.

The subscriber's account ID, acct _id is the primary key of the table. The fields profile name
and account expiry contain the subscriber’s details. The acct data column is a schema-less
JSON field, which keeps track of the subscriber's current activity.

Each element of the acct _data JSON represents a user with the given subscriber’s profile
name. User data contains the fields firstName, lastName, and country to hold user
information. The acct _data JSON field further includes a nested contentStreamed JSON array
to track the shows watched by the user.

Each element of the contentStreamed array contains the showName field to store the name of
the show. The showId field includes the identifier of the show. The showtype field indicates the
type such as tvseries, sitcom, and so forth. The genres array lists the show’s categorization.
The numSeasons field contains the total number of seasons streamed for the show. The
contentStreamed JSON array also includes a nested seriesInfo JSON array to track the
watched episodes.

Each element of the seriesInfo array contains a seasonNunm field to identify the season. The
numEpisodes field indicates the total number of episodes streamed in the given season. The
seriesInfo array further includes an episodes array to track the details of each watched
episode.

1-9

ORACLE

Chapter 1
Getting started with Oracle NoSQL Database

Each element of the episodes array contains the episodeID field to identify the episode. The
episodeName field includes the episode's name. The lengthMin field includes the show’s
telecast duration in minutes. The minWatched field includes the duration for which a user has
watched the episode. The date field includes the date on which the user watched the given

episode.
1 ’
123456789,
"AP",
"2023-10-18",
{
"firstName": "Adam",
"lastName": "Phillips",
"country" : "Germany",
"contentStreamed": [
{
"showName" : "At the Ranch",
"showId" : 26,
"showtype" : "tvseries",
"genres" : ["action", "crime", "spanish"],
"numSeasons" : 4,

"seriesInfo": [
{
"seasonNum" : 1,
"numEpisodes" : 2,
"episodes": |
{
"episodeID": 20,
"episodeName" : "Season 1 episode 1",
"lengthMin": 85,
"minWatched": 85,
"date" : "2022-04-18"

"episodeID": 30,
"lengthMin": 60,

"episodeName" : "Season 1 episode 2",
"minWatched": 60,
"date" : "2022-04-18"

"seasonNum": 2,
"numEpisodes" : 2,
"episodes": |
{
"episodeID": 40,
"episodeName" : "Season 2 episode 1",
"lengthMin": 50,
"minWatched": 50,
"date" : "2022-04-25"
}I
{
"episodeID": 50,
"episodeName" : "Season 2 episode 2",

1-10

"lengthMin": 45,

"minWatched": 30,
"date" "2022-04-27"
}
]
}
]
}I
{
"seasonNum": 3,
"numEpisodes" : 2,
"episodes": [

{

"episodeID": 60,
"episodeName" "Season 3 episode 1",

"lengthMin": 50,
"minWatched": 50,
"date" "2022-04-25"

}I

{

"episodeID": 70,

"episodeName" "Season 3 episode 2",
"lengthMin": 45,
"minWatched": 30,
"date" "2022-04-27"

}
]
}
]
}I
{
"showName": "Bienvenu",
"showId": 15,
"showtype": "tvseries",
"genres" ["comedy", "french"],
"numSeasons" : 2,
"seriesInfo": [

{

"seasonNum" 1,
"numEpisodes" : 2,
"episodes": |

{

"episodeID": 20,
"episodeName" "Bonjour",
"lengthMin": 45,

"minWatched": 45,
"date" "2022-03-07"
}I
{
"episodeID": 30,
"episodeName" "Merci",
"lengthMin": 42,
"minWatched": 42,
"date" "2022-03-08"

ORACLE

Chapter 1
Getting started with Oracle NoSQL Database

1-11

ORACLE

Chapter 1
Getting started with Oracle NoSQL Database

Start your KVSTORE or KVLite and open the SQL shell.

java -jar lib/kvstore.jar kvlite -secure-config disable
java -jar lib/sgl.jar -helper-hosts localhost:5000 -store kvstore

The acctstream loaddata.sql contains the following:

Begin Script###

load -file acctstream.ddl

import -table stream acct -file acctstreamData.json
End Script

Using the 1oad command, run the script.

load -file acctstream loaddata.sql

Table 3: JISON collection table - Shopping application
The following code inserts data into the shopping application table.

The table used in shopping application is storeAcct. This table is a collection of documents
with the shopper's contactPhone as the primary key. The rows represent individual shopper's
records. The individual rows need not include the same fields in the document. The shopper's
preferences such as name, address, email, notify, and so forth are stored as top-level fields in
the document. The documents can include any number of JSON fields such as wishlist,
cart, and orders that contain shopping-related information.

The JSON array wishlist contains the items wishlisted by the shoppers. Each element of this
array includes nested JSON fields such as the item and priceperunit to store the product
name and price details of the wishlisted item.

The JSON array cart contains the products that the shopper intends to purchase. Each
element of this array includes nested JSON fields such as item, quantity, and priceperunit
to store the product name, number of units, and price of each unit.

The JSON array orders contains the products that the shopper has purchased. Each element
of this array includes nested JSON fields such as the orderID,

item, priceperunit, EstDelivery, and status to store the order number, product name, price
of each unit, estimated date of delivery for the product, and status of the order.

You can use this data to follow along with the examples explained in the topics.

insert into storeAcct (contactPhone, firstName, lastName, address, cart)

values ("1817113382", "Adam", "Smith", {"street" : "Tex Ave", "number" : 401,
"city" : "Houston", "state" : "TX", "zip" : 95085}, [{"item" : "handbag",
"quantity" : 1, "priceperunit" : 350}, {"item" : "Lego", "quantity" : 1,

"priceperunit" : 5500}]) RETURNING *;

insert into storeAcct(contactPhone, firstName, lastName, gender, address,

1-12

Chapter 1
Getting started with Oracle NoSQL Database

notify, cart, wishlist) values("1917113999", "Sharon", "Willard", "F",

{"street" : "Maine", "number" : 501, "city" : "San Jose", "state" : "San
Francisco", "zip" : 95095},"yes", [{"item" : "wallet", "quantity" : 2,
"priceperunit" : 950}, {"item" : "wall art", "quantity" : 1, "priceperunit"
9500}], [{"item" : "Tshirt", "priceperunit" : 500}, {"item" : "Jenga",

"priceperunit" : 850}]) RETURNING *;

insert into storeAcct(contactPhone, firstName, lastName, address, notify,
cart, orders) values("1617114988", "Lorenzo", "Phil", {"Dropbox"

"Presidency College", "city" : "Kansas City", "state" : "Alabama", "zip"
95065}, "yes", [{"item" : "A4 sheets", "quantity" : 2, "priceperunit" : 500},
{"item" : "Mobile Holder", "quantity" : 1, "priceperunit" : 700}],
[{"orderID" : "101200", "item" : "AG Novels 1", "EstDelivery" : "2023-11-15",
"priceperunit" : 950, "status" : "Preparing to dispatch"}, {"orderID"
"101200", "item" : "Wallpaper", "EstDelivery" : "2023-11-01",

"priceperunit" : 950, "status" : "Transit"}]) RETURNING *;

insert into storeAcct(contactPhone, firstName, lastName, address, cart,

orders) values("1517113582", "Dierdre", "Amador", {"street" : "Tex Ave",
"number" : 651, "city" : "Houston", "state" : "TX", "zip" : 95085}, NULL,
[{"orderID" : "201200", "item" : "handbag", "EstDelivery" : "2023-11-01",
"priceperunit" : 350}, {"orderID" : "201201", "item" : "Lego", "EstDelivery"

"2023-11-01", "priceperunit" : 5500}]) RETURNING *;

insert into storeAcct(contactPhone, firstName, lastName, address, notify,
cart, orders) values("1417114488", "Doris", "Martin", {"Dropbox"

"Presidency College", "city" : "Kansas City", "state" : "Alabama", "zip"
95065}, "yes", [{"item" : "Notebooks", "quantity" : 2, "priceperunit" : 50},
{"item" : "Pens", "quantity" : 2, "priceperunit" : 50}], [{"orderID"
"301200", "item" : "Laptop Bag", "EstDelivery" : "2023-11-15",
"priceperunit" : 1950, "status" : "Preparing to dispatch"}, {"orderID"
"301200", "item" : "Mouse", "EstDelivery" : "2023-11-02", "priceperunit"
950, "status"™ : "Transit"}]) RETURNING *;

Table Hierarchies

ORACLE

The Oracle NoSQL Database enables tables to exist in a parent-child relationship. This is
known as table hierarchies.

The create table statement allows for a table to be created as a child of another table, which
then becomes the parent of the new table. This is done by using a composite name
(name_path) for the child table. A composite name consists of a number N (N > 1) of identifiers
separated by dots. The last identifier is the local name of the child table and the first N-1
identifiers point to the name of the parent.

Characteristics of parent-child tables:
* A child table inherits the primary key columns of its parent table.

« Alltables in the hierarchy have the same shard key columns, which are specified in the
create table statement of the root table.

e A parent table cannot be dropped before its children are dropped.

* Areferential integrity constraint is not enforced in a parent-child table.

1-13

Chapter 1
Getting started with Oracle NoSQL Database

You should consider using child tables when some form of data normalization is required. Child
tables can also be a good choice when modeling 1 to N relationships and also provide ACID
transaction semantics when writing multiple records in a parent-child hierarchy.

About Oracle NoSQL Database SDK drivers

Learn about Oracle NoSQL Database SDK drivers.

Oracle NoSQL Database supports many of the most popular programming languages and
frameworks with idiomatic language APls and data structures, giving your application language
native access to data stored in NoSQL Database. It currently supports the following
programming languages and frameworks: Java, Python, Node.js(JavaScript/TypeScript),
Golang and C#/.NET.

e Java

e Python
« Go

* Node.js
.« C#
Java

Make sure that a recent version of the java jdk is installed locally on your computer.

Make sure you have maven installed. See Installing Maven for details. The Oracle NoSQL
Database SDK for Java is available in Maven Central repository, details available here. The
main location of the project is in GitHub.

You can get all the required files for running the SDK with the following POM file dependencies.

Note:

Please replace the placeholder for the version of the Oracle NoSQL Java SDK in the
pom. xml file with the exact SDK version number.

<dependency>
<groupId>com.oracle.nosqgl.sdk</groupId>
<artifactId>nosgldriver</artifactId>
<version><NOSQL JAVASDK VERSION>< /version>
</dependency>

The Oracle NoSQL Database SDK for Java provides you with all the Java classes, methods,
interfaces and examples. Documentation is available as javadoc in GitHub or from Java API
Reference Guide.

ORACLE 114

https://maven.apache.org/install.html

ORACLE

Chapter 1
Getting started with Oracle NoSQL Database

Python

Make sure that python is installed in your system. You can install the Python SDK through the
Python Package Index with the command given below.

pip3 install borneo

If you are using the Oracle NoSQL Database Cloud Service you will also need to install the oci
package:

pip3 install oci

The main location of the project is in GitHub.The Oracle NoSQL SDK for Python provides you
with all the Python classes, methods, interfaces and examples. Documentation is available in
Python APl Reference Guide.

Go

Make sure you have Go installed in your computer.

The Go SDK for Oracle NoSQL Database is published as a Go module. It is recommended to
use the Go modules to manage dependencies for your application. Using Go modules, you
don't need to download the Go SDK explicitly. Add import statements for the SDK packages to
your application code as needed. For example:

import "github.com/oracle/nosql-go-sdk/nosqgldb"

When you build or test your application, the build commands will automatically add new
dependencies as needed to satisfy imports, updating go.mod and downloading the new
dependencies.

The main location of the project is in GitHub. Access the online godoc for information on using
the SDK and to reference Go driver packages, types, and methods.

Node.js

Download and install Node.js from Node.js Downloads. Ensure that Node Package Manager
(npm) is installed along with Node.js. Install the node SDK for Oracle NoSQL Database using
one of the commands shown below.

To install as a dependency of your project:

npm install oracle-nosgldb

The npm will create a node _modules directory in the current directory and install it there.

To install globally:

npm install -g oracle-nosqgldb

The main location of the project is in GitHub. Access the Node.js API Reference Guide to
reference Node.js classes, events, and global objects.

1-15

Chapter 1
Getting started with Oracle NoSQL Database

If you are using TypeScript, use npm to install a supported version. Use the following command
to install a specific version of the Typescript.

npm install typescript

For additional information on TypeScript, see TypeScript Modules.
About the code samples:
You can use the given code samples in TypeScript or JavaScript if using the ES6 modules.

With Oracle NoSQL Database, use JavaScript with either CommonJS or ES6 modules. In each
module, how you import the NoSQLClient class and other classes/types from the Node SDK
varies.

e If you want to use JavaScript with CommonJS modules, import the classes/types using the
‘require' syntax. For more information, see Node.js CommonJS Modules. For example:

const NoSQLClient = require('oracle-nosgldb').NoSQLClient;

* If you want to use JavaScript with ES6 modules, import the classes/types using the 'import’
syntax. For more information, see Node.js ECMAScript Modules. For example:

import { NoSQLClient } from 'oracle-nosqgldb';

C#

Make sure you have .NETinstalled in your system.

You can install the SDK from NuGet Package Manager either by adding it as a reference to
your project or independently.

e Add the SDK as a Project Reference: Run the following command to create your project
directory.

dotnet newconsole -o HelloWorld

You may add the SDK NuGet Package as a reference to your project by using .Net CLI.

cd <your-project-directory>
dotnet add package Oracle.NoSQL.SDK

Alternatively, you may perform the same using NuGet Package Manager in Visual Studio.
e Independent Install: You may install the SDK independently into a directory of your choice
by using nuget.exe CLI.

nuget.exe install Oracle.NoSQL.SDK -OutputDirectory
<your-packages-directory>

The main location of the project is in GitHub. See Oracle NoSQL Dotnet SDK API Reference
for more details of all classes and methods.

ORACLE 116

Chapter 1
Getting started with Oracle NoSQL Database

Obtaining a NoSQL Handle

ORACLE

Learn how to access tables using Oracle NoSQL Database Drivers. Start developing your
application by creating a NoSQL Handle. Use the NoSQLHandle to access the tables and
execute all operations.

Non-secure data store

In your application, create a NoSQLHandle which will be your connection to the Oracle NoSQL
Database Proxy. Using this NoSQLHandle you could access the Oracle NoSQL Database
tables and execute Oracle NoSQL Database operations.

e Java

e Python
« Go

* Node.js
e C#
Java

The NoSQLHandleConfig class allows an application to specify the security configuration
information which is to be used by the handle. For non-secure access, create an instance of
the StoreAccessTokenProvider class with the no-argument constructor. Provide the reference
of StoreAccessTokenProvider class to the NosQLHandleConfig class to establish the
appropriate connection.

The following is an example of creating NoSQLHandle that connects to a hon-secure proxy.

// Service URL of the proxy
String endpoint = "http://<proxy host>:<proxy http port>";

// Create a default StoreAccessTokenProvider for accessing the proxy
StoreAccessTokenProvider provider = new StoreAccessTokenProvider();

// Create a NoSQLHandleConfig
NoSQLHandleConfig config = new NoSQLHandleConfig(endpoint);

// Setup authorization provider using StoreAccessTokenProvider
config.setAuthorizationProvider (provider) ;

// Create NoSQLHandle using the information provided in the config
NoSQLHandle handle = NoSQLHandleFactory.createNoSQLHandle (config);

where,

* proxy host is the hostname of the machine running the proxy service. This should match
the host you configured earlier.

e proxy http port is the port on which the proxy is listening for requests. This should match
the http port you configured earlier.

1-17

ORACLE

Chapter 1
Getting started with Oracle NoSQL Database

Python

A handle is created by first creating a borneo.NoSQLHandleConfig instance to configure the
communication endpoint, authorization information, as well as default values for handle
configuration.

An example of acquiring a NoSQLHandle for a non-secure Oracle NoSQL Database:

from borneo import NoSQLHandle, NoSQLHandleConfig

from borneo.kv import StoreAccessTokenProvider

endpoint = 'http://<proxy host>:<proxy http port>'

Create the AuthorizationProvider for a not secure store:

ap = StoreAccessTokenProvider ()

create a configuration object

config = NoSQLHandleConfig(endpoint).set authorization provider (ap)
create a handle from the configuration object

handle = NoSQLHandle (config)

where,

* proxy host is the hostname of the machine running the proxy service. This should match
the host you configured earlier.

* proxy http port is the port on which the proxy is listening for requests. This should match
the http port you configured earlier.

Go

The first step in connecting a go application to the data store is to create a nosqldb.Client
handle used to send requests to the service. In this case, the Endpoint config parameter
should point to the NoSQL proxy host and port location.

cfg:= nosqgldb.Config{

Mode: "onprem",

Endpoint: "http://<proxy host>:<proxy http port>",
}
client, err:=nosqldb.NewClient (cfqg)

where,

* proxy host is the hostname of the machine running the proxy service. This should match
the host you configured earlier.

* proxy http port is the port on which the proxy is listening for requests. This should match
the http port you configured earlier.

Node.js

The NoSQLClient class represents the main access point to the service. To create instance of
NoSQLClient you need to provide appropriate configuration information.

To connect to the proxy in hon-secure mode, you need to specify communication endpoint.

Use the following code to connect to the proxy.

import { NoSQLClient, ServiceType } from 'oracle-nosqldb';
const client = new NoSQLClient ({

1-18

ORACLE

Chapter 1
Getting started with Oracle NoSQL Database

serviceType: ServiceType.KVSTORE,
endpoint: '<proxy host>:<proxy http port>'
b i

where,

* proxy host is the hostname of the machine running the proxy service. This should match
the host you configured earlier.

* proxy http port is the port on which the proxy is listening for requests. This should match
the http port you configured earlier.

You may also choose to store the same configuration in a file. Create file config.json with
following contents:

"serviceType": "KVSTORE",
"endpoint": "<proxy host>:<proxy http port>",

Then you can use this sample file to create a NoSQLClient instance:

import { NoSQLClient } from 'oracle-nosqgldb';
const client = new NoSQLClient ('</path/to/config.json>");

Note:

If a file path is supplied, the path can be absolute or relative to the current working
directory of the application.

C#

Class NoSQLClient represents the main access point to the service. To create instance of
NoSQLClient you need to provide appropriate configuration information.

In non-secure mode, the driver communicates with the proxy via the HTTP protocol. The only
information required is the communication endpoint. For on-premise NoSQL Database, the
endpoint specifies the url of the proxy, in the form http://proxy_host:proxy_http_port.

You can provide an instance of NoSQLConfig either directly or in a JSON configuration file.

var client = new NoSQLClient (
new NoSQLConfig
{

ServiceType = ServiceType.KVStore,
Endpoint = "<proxy host>:<proxy http port>"
}) i

where,

* proxy host is the hostname of the machine running the proxy service. This should match
the host you configured earlier.

* proxy http port is the port on which the proxy is listening for requests. This should match
the http port you configured earlier.

1-19

Chapter 1
Getting started with Oracle NoSQL Database

You may also choose to provide the same configuration in JSON configuration file. Create file
config.json with following contents:

"ServiceType": "KVStore",
"Endpoint": "<proxy host>:<proxy http port>"
Then you may use this file to create NoSQLClient instance:

varclient = new NoSQLClient ("</path/to/config.json>");

Note:

If a file path is supplied, the path can be absolute or relative to the current working
directory of the application.

Secure data store

In your application, create a NosQLHandle to connect to the secure data store through the
proxy. Using theNoSQLHandle you could access the Oracle NoSQL Database tables and
execute Oracle NoSQL Database operations. Before you start up the proxy, you need to create
a bootstrap user (proxy user) in the secure data store for the proxy to bootstrap its security
connection. See Create a user and start proxy for a secure data store for more details.

You also need to create an application user for your application to access the secure data
store. The application user will connect to the data store and perform various database
operations.

sgql-> CREATE USER <appln user> IDENTIFIED BY "<applnuser password>"

Your application user should be given a role based on the least privilege access, carefully
balancing the needs of the application with security concerns. See Configuring privileges and
roles for more details.

* Java

e Python
« Go

* Node.js
o C#

ORACLE 190

ORACLE

Chapter 1
Getting started with Oracle NoSQL Database

Java

The first step for a Java application is to create a NoSQLHandle which will be used to send
requests to the secure data store. The handle is configured using your credentials and other
authentication information.

You can connect to a secure data store using the following steps.

1.

Create an application user (appln_user) to access the data store through the secure proxy
as discussed above.

Install the Oracle NoSQL Database Java Driver in the application's classpath.

For secure access, create an instance of the StoreAccessTokenProvider class with the
parameterized constructor, and configure the NoSQL handle to use it. Use the following
code to connect to the proxy.

String endpoint = "https://<proxy host>:<proxy https port>";
StoreAccessTokenProvider atProvider =

new
StoreAccessTokenProvider ("<appln user>","<applnuser password>".toCharArray (
))
NoSQLHandleConfig config = new NoSQLHandleConfig(endpoint);
config.setAuthorizationProvider (atProvider);
NoSQLHandle handle = NoSQLHandleFactory.createNoSQLHandle (config);

where,

* proxy host is the hostname of the machine running the proxy service. This should
match the proxy host you configured earlier.

* proxy https port is the port on which the proxy is listening for requests. This should
match the proxy https port configured earlier.

* appln user is the user created to connect to the secure store. This should match the
user created in the above section.

* applnuser password is the password of the appln user.

You can specify the details of the trust store containing the SSL certificate for the proxy in
one of the following two ways.
You can set it as part of your Java code as shown below:

/* the trust store containing SSL cert for the proxy */
System.setProperty("javax.net.ssl.trustStore", trustStore);
if (trustStorePassword != null) ({

System.setProperty("javax.net.ssl.trustStorePassword",trustStorePassword) ;

}

Alternatively, you can start-up the application program and set the driver.trust file's path
to the Java trust store by using the following command. This is required as the proxy is
already set up using the certificate.pem and key-pkcs8.pen files.

java -Djavax.net.ssl.trustStore=<fullpath driver.trust> \
-Djavax.net.ssl.trustStorePassword=<password of driver.trust> \
-cp .:lib/nosqgldriver.jar application program

1-21

ORACLE

Chapter 1
Getting started with Oracle NoSQL Database

The driver.trust contains the certificate.pem Or rootCA.crt certificate. If the
certificate certificate.pem is in a chain signed by a trusted CA that is listed in

JAVA HOME/jre/lib/security/cacerts, then you don't need to append Java environment
parameter -Djavax.net.ssl.trustStore in the Java command.

Python

A handle is created by first creating a borneo.NoSQLHandleConfig instance to configure the
communication endpoint, authorization information, as well as default values for handle
configuration.

You can connect to a secure data store using the following steps.

1. Create an application user (appln user) to access the data store through the secure proxy
as discussed above.

2. If running a secure store, a certificate path should be specified through the
REQUESTS CA BUNDLE environment variable:

$ export REQUESTS CA BUNDLE=
<full-qualified-path-to-certificate/certificate.pem:SREQUESTS CA BUNDLE

or borneo.NoSQLHandleConfig.set ssl ca certs().

3. Use the following code to connect to the proxy.

from borneo import NoSQLHandle, NoSQLHandleConfig

from borneo.kv import StoreAccessTokenProvider

endpoint = 'https://<proxy host>:<proxy https port>'

Create the AuthorizationProvider for a secure store:

ap = StoreAccessTokenProvider (<appln user>, <applnuser password>)
create a configuration object

config = NoSQLHandleConfig(endpoint).set authorization provider (ap)
set the certificate path if running a secure store
config.set ssl ca certs(<ca certs>)

create a handle from the configuration object

handle = NoSQLHandle (config)

where,

* proxy host is the hostname of the machine running the proxy service. This should
match the proxy host you configured earlier.

* proxy https port is the port on which the proxy is listening for requests. This should
match the proxy https port configured earlier.

* appln user is the user created to connect to the secure store. This should match the
user created in the above section.

* applnuser password is the password of the appln user.

Go

The first step in Oracle NoSQL Database go application is to create a nosqldb.Client handle
used to send requests to the service. The handle is configured using your credentials and
other authentication information:

You can connect to a secure data store using the following steps.

1-22

ORACLE

Chapter 1
Getting started with Oracle NoSQL Database

1. Create an application user (appln_user) to access the data store through the secure proxy
as discussed above.
2. Use the following code to connect to the proxy.
import (
"fmt"
"github.com/oracle/nosgl-go-sdk/nosqgldb"
"github.com/oracle/nosgl-go-sdk/nosqgldb/httputil"
)
...cfg:= nosqgldb.Config{
Endpoint: "https://<proxy host>:<proxy https port>",
Mode: "onprem",
Username: "<appln user>",
Password: "<applnuser password>",
b
// Specify the CertPath and ServerName
// ServerName is used to verify the hostname for self-signed
certificates.
// This field is set to the "CN" subject value from the certificate
specified by CertPath.
HTTPConfig: httputil.HTTPConfig{
CertPath: "<fully qualified path to cert>",
ServerName: "<server name>",
b
}
client, err:=nosqgldb.NewClient (cfqg)
iferr!=nil {
fmt.Printf("failed to create a NoSQL client: %v\n", err)
return
}
deferclient.Close ()
// Perform database operations using client APIs.
//
where,
* proxy host is the hostname of the machine running the proxy service. This should
match the proxy host you configured earlier.
* proxy https port is the port on which the proxy is listening for requests. This should
match the proxy https port configured earlier.
* appln user is the user created to connect to the secure store. This should match the
user created in the above section.
* applnuser password is the password of the appln user.
Node.js

To create instance of NoSQLClient you need to provide appropriate configuration information.
You can connect to a secure data store using the following steps.

1.

Create an application user (appln user) to access the data store through the secure proxy
as discussed above.

In secure mode the proxy requires the SSL Certificate and Private key If the root certificate
authority (CA) for your proxy certificate is not one of the trusted root CAs , the driver needs
the certificate chain file (e.g. certificates.pem) or a root CA certificate file (e.g. rootCA.crt)

1-23

ORACLE

Chapter 1
Getting started with Oracle NoSQL Database

in order to connect to the proxy. If you are using self-signed certificate instead, the driver
will need the certificate file (e.g. certificate.pem) for the self-signed certificate in order to
connect.

To provide the certificate or certificate chain to the driver, you have two options , either
specifying in the code or setting as environment variables.

You can specify the certificates through httpOpt property while creating the NoSQL
handle. Inside httpOpt you can use ca property to specify the CA as shown below.

const client = new NoSQLClient ({ ,
httpOpt: {
ca: fs.readFileSync (<caCertFile>)

Note:

If a file path is supplied, the path can be absolute or relative to the current
working directory of the application.

Alternatively, before running your application, set the environment variable
NODE_EXTRA CA CERTS as shown below.

export NODE EXTRA CA CERTS="<fully qualified path to driver.trust>"

where driver.trust is either a certificate chain file (certificates.pem) for your CA, your root
CA's certificate (rootCA.crt) or a self-signed certificate (certificate.pem).

To connect to the proxy in secure mode, in addition to communication endpoint, you need
to specify user name and password of the driver user. This information is passed in
Config#auth object under kvstore property and can be specified in one of 3 ways as
described below.

You may choose to specify user name and password directly:

const NoSQLClient = require('oracle-nosgldb') .NoSQLClient;
const client = new NoSQLClient ({
endpoint: 'https://<proxy host>:<proxy https port>',
auth: {
kvstore: {
user: '<appln user>',
password: '<applnuser password>'

1)

where,

* proxy host is the hostname of the machine running the proxy service. This should
match the proxy host you configured earlier.

* proxy https port is the port on which the proxy is listening for requests. This should
match the proxy https port configured earlier.

1-24

Chapter 1
Getting started with Oracle NoSQL Database

* appln user is the user created to connect to the secure store. This should match the
user created in the above section.

* applnuser password is the password of the appln user.
This option is less secure because the password is stored in plain text in memory.

You may choose to store credentials in a separate file which is protected by file system
permissions, thus making it more secure than previous option, because the credentials will
not be stored in memory, but will be accessed from this file only when login is needed.
Credentials file should have the following format:

"user": "<appln user>",
"password": "<applnuser password>"

Then you may reference this credentials file as following:

const NoSQLClient = require('oracle-nosgldb') .NoSQLClient;
const client = new NoSQLClient ({
endpoint: 'https://<proxy host>:<proxy https port>',
auth: {
kvstore: {
credentials: '<path/to/credentials.json>'

Note:

If a file path is supplied, the path can be absolute or relative to the current
working directory of the application.

You may also reference credentials.json in the configuration file used to create
NoSQLClient instance.

"endpoint": "https://<proxy host>:<proxy https port>",
"auth": |
"kvstore": {
"credentials": "<path/to/credentials.json>"

const NoSQLClient = require('oracle-nosqgldb') .NoSQLClient;
const client = new NoSQLClient ('</path/to/config.json>");

ORACLE Loe

ORACLE

Chapter 1
Getting started with Oracle NoSQL Database

Note:

If a file path is supplied, the path can be absolute or relative to the current
working directory of the application.

C#

To create instance of NoSQLClient you need to provide appropriate configuration information.
You can connect to a secure data store using the following steps.

1.

Create an application user (appln user) to access the data store through the secure proxy
as discussed above.

To connect to the proxy in secure mode, in addition to communication endpoint, you need
to specify user name and password of the driver user. This information is passed in the
instance of KVStoreAuthorizationProvider and can be specified in any of the ways as
described below.

You may choose to specify user name and password directly:

var client = new NoSQLClient (
new NoSQLConfig
{
Endpoint = "https://<proxy host>:<proxy https port>",
AuthorizationProvider = new KVStoreAuthorizationProvider (
<appln user>, // user name as string
<applnuser password>) // password as char[]

P

where,

* proxy host is the hostname of the machine running the proxy service. This should
match the proxy host you configured earlier.

* proxy https port is the port on which the proxy is listening for requests. This should
match the proxy https port configured earlier.

* appln user is the user created to connect to the secure store. This should match the
user created in the above section.

* applnuser password is the password of the appln user.

This option is less secure because the password is stored in plain text in memory for the
lifetime of NosQLClient instance. Note that the password is specified as char[] which
allows you to erase it after you are finished using NoSQLClient.

You may choose to store credentials in a separate file which is protected by file system
permissions, thus making it more secure than the previous option, because the credentials
will not be stored in memory, but will be accessed from this file only when the login to the
store is required. Credentials file should have the following format:

"UserName": "<appln user>",
"Password": "<applnuser password>"

1-26

Chapter 1
Getting started with Oracle NoSQL Database

Then you may use this credentials file as following:

var client = new NoSQLClient (
new NoSQLConfig
{
Endpoint: 'https://<proxy host>:<proxy https port>',
AuthorizationProvider = new KVStoreAuthorizationProvider (
"<path/to/credentials.json>")

Note:

If a file path is supplied, the path can be absolute or relative to the current
working directory of the application.

You may also reference credentials.json in the JSON configuration file used to create
NoSQLClient instance:

"Endpoint": "https://<proxy host>:<proxy https port>",
"AuthorizationProvider": {

"AuthorizationType": "KVStore",

"CredentialsFile": "<path/to/credentials.json>"

var client = new NoSQLClient ("</path/to/config.json>");

Note that in config.json the authorization provider is represented as a JSON object with
the properties for KvStoreAuthorizationProvider and an additional AuthorizationType
property indicating the type of the authorization provider, which is KVStore for the secure
on-premises store.

You need to provide trusted root certificate to the driver if the certificate chain for your proxy
certificate is not rooted in one of the well known CAs. The provided certificate may be either
your custom CA or self-signed proxy certificate. It must be specified using
TrustedRootCertificateFile property, which sets a file path (absolute or relative) to a PEM file
containing one or more trusted root certificates (multiple roots are allowed in this file). This
property is specified as part of ConnectionOptions in NoSQLConfig.

var client = new NoSQLClient (
new NoSQLConfig {
Endpoint: 'https://<proxy host>:<proxy https port>',
AuthorizationProvider = new KVStoreAuthorizationProvider ("<path/to/
credentials.json>"),
ConnectionOptions: { "TrustedRootCertificateFile": "<path/to/
certificates.pem>" }

});

ORACLE 1-27

https://oracle.github.io/nosql-dotnet-sdk/api/Oracle.NoSQL.SDK.ConnectionOptions.TrustedRootCertificateFile.html#Oracle_NoSQL_SDK_ConnectionOptions_TrustedRootCertificateFile
https://oracle.github.io/nosql-dotnet-sdk/api/Oracle.NoSQL.SDK.NoSQLConfig.ConnectionOptions.html#Oracle_NoSQL_SDK_NoSQLConfig_ConnectionOptions
https://oracle.github.io/nosql-dotnet-sdk/api/Oracle.NoSQL.SDK.NoSQLConfig.html

Chapter 1
Getting started with Oracle NoSQL Database

Note:

If a file path is supplied, the path can be absolute or relative to the current working
directory of the application.

ORACLE 1-28

Create

The articles in this section include examples to create various database objects.

Creating a namespace

ORACLE

A namespace defines a group of tables, within which all of the table names must be uniquely
identified. Namespaces permit you to do table privilege management as a group operation.
You can grant authorization permissions to a namespace to determine who can access both
the namespace and the tables within it. Namespaces permit tables with the same name to
exist in your database store. To access such tables, you can use a fully qualified table name. A
fully qualified table name is a table name preceded by its namespaces, followed with a colon
(:), such as nsl:tablel.

All tables are part of some namespace. There is a default Oracle NoSQL Database
namespace, called sysdefault. All tables are assigned to the default sysdefault namespace,
until or unless you create other namespaces, and create new tables within them. You can't
change an existing table's namespace. Tables in sysdefault namespace do not require a fully
qualified name and can work with just the table name.

You can add a new namespace by using the CREATE NAMESPACE Statement.

CREATE NAMESPACE [IF NOT EXISTS] namespace name

Note:

Namespace names starting with sys are reserved. You cannot use the prefix sys for
any namespaces.

The following statement defines a namespace named ns1.

CREATE NAMESPACE IF NOT EXISTS nsl

Using APIs to create namespaces:

* Java

e Python
« Go

* Node.js
o C#

2-1

Chapter 2
Creating a namespace

Java

You can create a hamespace using SystemRequest class. The SystemRequest class is used to
perform any table-independent administrative operation. These operations are asynchronous
and completion needs to be checked.

Download the full code Namespaces.java from the examples here.

private static void createNS(NoSQLHandle handle) throws Exception {
String createNSDDL = "CREATE NAMESPACE IF NOT EXISTS nsl";
SystemRequest sysreq = new SystemRequest();
sysreq.setStatement (createNSDDL. toCharArray());
SystemResult sysres = handle.systemRequest (sysreq);
sysres.waitForCompletion (handle, 60000,1000);
System.out.println ("Namespace " + nsName + " is created");

Python

You can create a namespace using SystemRequest class. The SystemRequest class is used to
perform any table-independent administrative operation.

Download the full code Namespaces.py from the examples here.

def create ns(handle):
statement = '''CREATE NAMESPACE IF NOT EXISTS nsl'''
sysreq = SystemRequest ().set statement (statement)
sys_result = handle.system request (sysreq)
sys_result.wait for completion(handle, 40000, 3000)
print ('Created namespace: nsl')

Go

You can create a namespace using SystemRequest class. The SystemRequest class is used to
perform any table-independent administrative operations. These are potentially long-running
operations and completion of the operation needs to be checked.

Download the full code Namespaces.go from the examples here.

func createNS(client *nosqgldb.Client, err error) () {
stmt := fmt.Sprintf ("CREATE NAMESPACE IF NOT EXISTS nsl")
sysReq := &nosqgldb.SystemRequest {
Statement: stmt,

}

sysRes, err := client.DoSystemRequest (sysReq)
_, err = sysRes.WaitForCompletion(client, 60*time.Second, time.Second)
if err != nil {
fmt.Printf ("Error finishing CREATE NAMESPACE request: %v\n", err)
return

}
fmt.Println("Created Namespace nsl ")
return

ORACLE "0

Chapter 2
Creating a region

Node.js

You can create namespace using adminDDL method. The adminDDL method is used to perform
any table-independent administrative operation.

Download the full JavaScript code Namespaces.js from here and the full TypeScript code
Namespaces.ts from here.

async function createNS (handle) ({
const createNS = 'CREATE NAMESPACE IF NOT EXISTS nsl;
let res = await handle.adminDDL (createNS);
console.log('Namespace created: nsl');

C#

The ExecuteAdminSync method is used to perform any table-independent administrative
operations.

Download the full code Namespaces.cs from the examples here.

private static async Task createNS (NoSQLClient client) {
var sql =
S@"CREATE NAMESPACE IF NOT EXISTS nsl";
var adminResult = await client.ExecuteAdminAsync(sql);
// Wait for the operation completion
await adminResult.WaitForCompletionAsync();
Console.WriteLine (" Created namespace nsl");

Creating a region

ORACLE

Oracle NoSQL Database supports Multi-Region architecture in which you can create tables in
multiple KVStores and Oracle NoSQL Database will automatically replicate inserts, updates,
and deletes in a multi-directional fashion across all regions for which the table spans. Each
KVStore cluster in a Multi-Region NoSQL Database setup is called a Region.

Example 1: The following CREATE REGION statement creates a remote region named

my regionl.

CREATE REGION my regionl

In a Multi-Region Oracle NoSQL Database setup, you must define all the remote regions for
each local region. For example, if there are three regions in a Multi-Region setup, you must
define the other two regions from each participating region. You use the CREATE REGION
statement to define remote regions in the Multi-Region Oracle NoSQL Database.

Example 2: Create a table in a region.

CREATE TABLE stream acct region(acct id INTEGER,
acct data JSON,
PRIMARY KEY (acct _id)) IN REGIONS my regionl

2-3

ORACLE

Chapter 2
Creating a region

Note:

The region my regionl should be set as the local region before creating the table.

Using APIs to create regions:

e Java

e Python
« Go

* Node.js
o C#
Java

You can create a region using SystemRequest class. The SystemRequest class is used to
perform any table-independent administrative operation. Once the region is created, a table
can be created and added to the region using the TableRequest class.

Download the full code Regions.java from the examples here.

/* Create a remote region and a local region*/

private static void crtRegion (NoSQLHandle handle) throws Exception {
// Create a remote region
String createRemRegDDL = "CREATE REGION "+ remRegName;
SystemRequest sysreql = new SystemRequest();
sysreqgl.setStatement (createRemRegDDL. toCharArray());
SystemResult sysresl = handle.systemRequest (sysreql);
sysresl.waitForCompletion (handle, 60000,1000);
System.out.println (" Remote Region " + remRegName + " is created");
// Create a local region
String createLocRegDDL = "SET LOCAL REGION "+ localRegName;
SystemRequest sysreq2 = new SystemRequest();
sysreqg2.setStatement (createLocRegDDL. toCharArray());
SystemResult sysres2 = handle.systemRequest (sysreqg?);
sysres2.waitForCompletion (handle, 60000,1000);
System.out.println(" Local Region " + localRegName + " is created");

/**
* Create a table and add the table in a region
*/
private static void crtTabInRegion (NoSQLHandle handle) throws Exception {
String createTableDDL = "CREATE TABLE IF NOT EXISTS " + tableName +
"(acct_Id
INTEGER, " +
"profile name
STRING," +
"account expiry
TIMESTAMP (1) ," +

2-4

ORACLE

Chapter 2
Creating a region

"acct data
JSON, " +

"PRIMARY
KEY(acct_Id)) IN REGIONS FRA";

TableRequest treq = new TableRequest().setStatement (createTableDDL);
TableResult tres = handle.tableRequest (treq);

/* The request is async,

* so wait for the table to become active.

*/

System.out.println("Table " + tableName + " is active");

Python

You can create a region using SystemRequest class. The SystemRequest class is used to
perform any table-independent administrative operation. After a region is created, a table can
be created and added to the region using the borneo.TableRequest class.

Download the full code Regions.py from the examples here.

create a remote and local region

def create region(handle):
#Create a remote region
statement = '''CREATE REGION LON'''
sysreq = SystemRequest ().set statement (statement)
sys_result = handle.system request (sysreq)
sys_result.wait for completion(handle, 40000, 3000)
print ('Remote region LON is created')
#Create a local region
statementl = '''SET LOCAL REGION FRA'''
sysreql = SystemRequest () .set statement (statementl)
sys_resultl = handle.system request (sysreql)
sys_resultl.wait for completion(handle, 40000, 3000)
print ('Local region FRA is created')

#Create a table in the local region
def create tab region(handle):
statement = '''create table if not exists stream acct (acct Id INTEGER,
profile name
STRING,
account _expiry
TIMESTAMP (1),
acct data JSON,
primary
key(acct Id)) IN REGIONS FRA'''
request = TableRequest ().set statement (statement)
Ask the cloud service to create the table, waiting for a total of 40000
milliseconds
and polling the service every 3000 milliseconds to see if the table is
active
table result = handle.do table request (request, 40000, 3000)
table result.wait for completion(handle, 40000, 3000)
if (table result.get state() == State.ACTIVE):
print ('Created table: stream acct')
else:

2-5

ORACLE

Chapter 2
Creating a region

raise NameError('Table stream acct is in an unexpected state ' +
str(table result.get state()))

Go

You can create a region using SystemRequest class. The SystemRequest class is used to
perform any table-independent administrative operations. After a region is created, a table can
be created and added to the region using the TableRequest class.

Download the full code Regions.go from the examples here.

//Creates a remote and a local region
func crtRegion(client *nosqgldb.Client, err error) () {
// Create a remote region
stmt := fmt.Sprintf ("CREATE REGION LON")
sysReq := &nosqgldb.SystemRequest {
Statement: stmt,

}

sysRes, err := client.DoSystemRequest (sysReq)
_, err = sysRes.WaitForCompletion(client, 60*time.Second, time.Second)
if err != nil {
fmt.Printf ("Error finishing CREATE REGION request: %v\n", err)
return

}
fmt.Println("Created REGION LON ")
// Create a local region
stmtl := fmt.Sprintf ("SET LOCAL REGION FRA")
sysReql := &nosqgldb.SystemRequest{
Statement: stmtl,
}
sysResl, errl := client.DoSystemRequest (sysReql)

_, errl = sysResl.WaitForCompletion(client, 60*time.Second, time.Second)
if errl !'= nil {

fmt.Printf ("Error finishing CREATE REGION request: %v\n", err)

return

}
fmt.Println("Created REGION FRA ")
return

//creates a table in a specific region
func crtTabInRegion(client *nosqgldb.Client, err error, tableName string) () {
stmt := fmt.Sprintf ("CREATE TABLE IF NOT EXISTS %s ("+
"acct Id INTEGER," +
"profile name STRING," +
"account expiry TIMESTAMP (1) ," +
"acct data JSON, " +
"PRIMARY KEY (acct Id)) IN REGIONS FRA",tableName)
tableReqg := &nosqgldb.TableRequest{
Statement: stmt
}
tableRes, err := client.DoTableRequest (tableReq)
if err != nil {
fmt.Printf ("cannot initiate CREATE TABLE request: %v\n", err)
return

2-6

ORACLE

Chapter 2
Creating a region

// The create table request is asynchronous, wait for table creation to

complete.
_, err = tableRes.WaitForCompletion(client, 60*time.Second, time.Second)
if err != nil {
fmt.Printf ("Error finishing CREATE TABLE request: %v\n", err)
return

}
fmt.Println("Created table ", tableName)

return

Node.js

You can create a region using adminDDL method. The adminDDL method is used to perform any
table-independent administrative operation. After a region is created, a table can be created
and added to the region using the tableDDL method.

Download the full JavaScript code Regions.js from the examples here and the full TypeScript
code Regions.ts from the examples here.

//creates a remote and a local region

async function createRegion (handle) {
// Create a remote region
const crtRemReg = "CREATE REGION LON';
let res = await handle.adminDDL (crtRemReq) ;
console.log('Remote region created: LON');
// Create a local region
const crtLocalReg = "SET LOCAL REGION FRA";
let resl = await handle.adminDDL (crtLocalReq) ;
console.log('Local region created: FRA');

//creates a table in a given region
async function crtTabInRegion (handle) {
const createDDL = ‘CREATE TABLE IF NOT EXISTS ${TABLE_NAME} (acct_Id
INTEGER,
profile name
STRING,

account expiry TIMESTAMP (1),
acct data
JSON,
primary
key(acct Id)) IN REGIONS FRA";
let res = await handle.tableDDL(createDDL, {
complete: true
b
console.log('Table created: ' + TABLE NAME);

C#

You can create a region using ExecuteAdminSync module. The ExecuteAdminSync method is
used to perform any table-independent administrative operations. After a region is created, a

2-7

Chapter 2
Creating a table

table can be created and added to the region using either ExecuteTableDDLAsync Of
ExecuteTableDDLWithCompletionAsync methods.

Download the full code Regions.cs from the examples here.

private static async Task createRegion (NoSQLClient client) {
// Create a remote region
var sql = $Q@"CREATE REGION LON";
var adminResult = await client.ExecuteAdminAsync(sql);
// Wait for the operation completion
await adminResult.WaitForCompletionAsync();
Console.WriteLine (" Created remote REGION LON");
// Create a local region
var sqll = $@"SET LOCAL REGION FRA";
var adminResultl = await client.ExecuteAdminAsync(sqll);
// Wait for the operation completion
await adminResultl.WaitForCompletionAsync();
Console.WriteLine (" Created local REGION FRA");

private static async Task createTabInRegion (NoSQLClient client) {
// Create a table
var sql =
S@"CREATE TABLE IF NOT EXISTS {TableName} (acct Id INTEGER,
profile name STRING,
account expiry TIMESTAMP (1),
acct data JSON,
primary key(acct Id)) IN
REGIONS FRA";
Console.WriteLine ("\nCreate table {0}", TableName);
var tableResult = await client.ExecuteTableDDLAsync(sql);
// Wait for the operation completion
await tableResult.WaitForCompletionAsync();
Console.WriteLine (" Table {0} is created",tableResult.TableName);
Console.WriteLine (" Table state: {0}", tableResult.TableState);

Creating a table

ORACLE

The table is the basic structure to hold user data. You use a SQL command (CREATE TABLE
statement) or TableRequest APl commands to create a new table.

Guidelines for creating a table:

« The table definition must include at least one field definition and exactly one primary key
definition. For more information on primary key definition, see Create Table.

* The field definition specifies the name of the column, its data type, whether the column is
nullable or not, an optional default value, whether or not the column is an IDENTITY
column and an optional comment. All fields (other than the PRIMARY KEY) are nullable by
default.

e The syntax for the primary key specification (key_definition) specifies the primary key
columns of the table as an ordered list of field names.

2-8

Chapter 2
Creating a table

e The Time-To-Live (TTL) value is used in computing the expiration time of a row. Expired
rows are not included in query results and are eventually removed from the table
automatically by the Oracle NoSQL Database. If you specify a TTL value while creating the
table, it applies as the default TTL for every row inserted into this table.

* You specify the REGIONS clause if the table being created is a Multi-Region table. The
REGIONS clause lists all the regions that the table should span.

Note:

The JSON collection tables have exactly one primary key definition.

Create a table :
e Using SQL commands

e Using TableRequest API

Using SQL commands

ORACLE

You can use CREATE TABLE command in SQL to create NoSQL tables.

Example 1: The following CREATE TABLE statement defines a BaggageInfo table that holds
baggage information of passengers in an airline system.

CREATE TABLE BaggageInfo (
ticketNo LONG,

fullName STRING,

gender STRING,
contactPhone STRING,
confNo STRING,

bagInfo JSON,

PRIMARY KEY (ticketNo)

)

Example 2: The following CREATE TABLE statement defines a stream_acct table that holds
data from a TV streaming application.

CREATE TABLE stream acct(
acct_id INTEGER,

profile name STRING,

account expiry TIMESTAMP (1),
acct data JSON,

PRIMARY KEY(aCCt_id)

)

Example 3: The following CREATE TABLE statement defines a stream acct new table that
holds data from a TV streaming application. The rows of the table expire in 2 days.

CREATE TABLE stream acct new(
acct id INTEGER,

profile name STRING,

account expiry TIMESTAMP (1),

2-9

Chapter 2
Creating a table

acct data JSON,
PRIMARY KEY(acct_id)) USING TTL 2 days

Example 4: The following CREATE TABLE statement defines a storeAcct table, which is a
JSON collection table created for a shopping application. This table includes the contactPhone
as the primary key field of the type string.

CREATE TABLE storeAcct (

contactPhone string,
primary key(contactPhone)) AS json collection

To insert data into the tables, see Inserting, Modifying, and Deleting Data.

Using TableRequest API

ORACLE

You can use TableRequest API to create NoSQL tables.

e Java

* Python
« Go

* Node.js
« C#
Java

The TableRequest class is used to create tables. Execution of operations specified by this
request is asynchronous. These are potentially long-running operations. TableResult is
returned from TableRequest operations and it encapsulates the state of the table. See Oracle
NoSQL Java SDK API Reference for more details on the TableRequest class and its methods.

Download the full code CreateTable.java from the examples here.

private static void createTab (NoSQLHandle handle) throws Exception {
String createTableDDL =
"CREATE TABLE IF NOT EXISTS " + tableName +
"(acct_Id INTEGER," +
"profile name STRING," +
"account expiry TIMESTAMP (1) ," +
"acct data JSON, " +
"PRIMARY KEY (acct Id))";

TableLimits limits = new TableLimits (20, 20, 1);
TableRequest treq = new TableRequest()
.setStatement (createTableDDL)
.setTablelLimits(limits);
TableResult tres = handle.tableRequest (treq);
/* The request is async,
* so wait for the table to become active.

*/

2-10

ORACLE

Chapter 2
Creating a table

tres.waitForCompletion (handle, 60000,1000);
System.out.println("Created Table: " + tableName);

Note:

Table limits are applicable for Oracle NoSQL Database Cloud Service only. If limits
are set for an on-premises NoSQL Database they are silently ignored.

Creating a child table: You use the same TableRequest class and methods to execute DDL
statement to create a child table.

While creating a child table :
* You need to specify the full name of the table (hame_parent_table.name_child_table)
e Table limits need not be explicitly set as a child table inherits the limits of a parent table.

Download the full code TableJoins.java from the examples to understand how to create a
parent-child table here.

Creating a JSON collection table: The JSON collection table includes documents with one or
more primary key fields and JSON fields. Create a JSON collection table as follows:
/* Create a JSON collection table with an integer primary key*/

private static void createTable (NoSQLHandle handle) throws Exception {

String createTableDDL = "CREATE TABLE IF NOT EXISTS " + usersJSON + " (id
INTEGER," + "PRIMARY KEY(id)) AS JSON COLLECTION";

TableRequest treq = new TableRequest () .setStatement (createTableDDL) ;

System.out.println("Creating table");
TableResult tres = handle.tableRequest (treq);

/* The table request is asynchronous, so wait for the table to become
active.*/

TableResult.waitForState (handle, tres.getTableName(),
TableResult.State.ACTIVE, 60000, 1000);

}

Python

The borneo.TableRequest class is used to create a table. All calls to
borneo.NoSQLHandle.table request () are asynchronous so it is necessary to check the
result and call borneo.TableResult.wait for completion() to wait for the operation to
complete. See Oracle NoSQL Python SDK API Reference for more details on table request
and its methods.

Download the full code CreateTable.py from the examples here.

def create table(handle):
statement = '''create table if not exists

2-11

ORACLE

Chapter 2
Creating a table

stream acct (acct Id INTEGER,
profile name STRING,
account expiry TIMESTAMP (1),
acct data JSON,
primary key(acct Id))"'"'

request = TableRequest().set statement (statement)
.set table limits(TableLimits (20, 10, 1))

table result = handle.do table request (request, 40000, 3000)
table result.wait for completion(handle, 40000, 3000)

if (table result.get state() == State.ACTIVE):
print ('Created table: stream acct')
else:
raise NameError ('Table stream acct is in an unexpected state ' +
str(table result.get state()))

Note:

Table limits are applicable for Oracle NoSQL Database Cloud Service only. If limits
are set for an on-premises NoSQL Database they are silently ignored.

Creating a child table: You use the same TableRequest class and methods to execute DDL
statement to create a child table.

While creating a child table :
* You need to specify the full name of the table (hame_parent_table.name_child_table).

e Table limits need not be explicitly set as a child table inherits the limits of a parent table.
Download the full code TableJoins.py from the examples here.

Creating a JSON collection table: The JSON collection table includes documents with one or
more primary key fields and JSON fields. Create a JSON collection table as follows:

/* Create a JSON collection table with an integer primary key */
statement = 'create table if not exists usersJSON(id integer,' + 'primary
key(id)) AS JSON COLLECTION'

print ('Creating table: ' +

statement)

request = TableRequest().set statement (statement)

/* assume that a handle has been created, as the handle, make the request */
/* wait for 60 seconds, polling every 1 seconds */

result = handle.do_table request(request, 60000, 1000)
result.wait for completion(handle, 60000, 1000)

Go

The TableRequest class is used to create a table. Execution of operations specified by
TableRequest is asynchronous. These are potentially long-running operations. This request is

2-12

ORACLE

Chapter 2
Creating a table

used as the input of a Client.DoTableRequest () operation, which returns a TableResult that
can be used to poll until the table reaches the desired state. See Oracle NoSQL Go SDK API
Reference for more details on the various methods of the TableRequest class.

Download the full code CreateTable.go from the examples here.

func createTable(client *nosgldb.Client, err error, tableName string) () {
// Creates a table
stmt := fmt.Sprintf ("CREATE TABLE IF NOT EXISTS %s ("+

"acctiId INTEGER, " +

"profile name STRING," +

"account expiry TIMESTAMP (1) ," +

"acct data JSON, " +

"PRIMARY KEY (acct Id))",tableName)

tableReq := &nosqldb.TableRequest{
Statement: stmt,
Tablelimits: &nosgldb.TableLimits{
ReadUnits: 20,
WriteUnits: 20,
StorageGB: 1,
}I

tableRes, err := client.DoTableRequest (tableReq)

if err != nil {
fmt.Printf ("cannot initiate CREATE TABLE request: %v\n", err)
return

// The create table request is asynchronous,
// wait for table creation to complete.
, err = tableRes.WaitForCompletion(client, 60*time.Second, time.Second)

if err != nil {
fmt.Printf ("Error finishing CREATE TABLE request: $v\n", err)
return

}
fmt.Println("Created table: ", tableName)
return

}

Note:

Table limits are applicable for Oracle NoSQL Database Cloud Service only. If limits
are set for an on-premises NoSQL Database they are silently ignored.

Creating a child table: You use the same TableRequest class and methods to execute DDL
statement to create a child table.

While creating a child table :
* You need to specify the full name of the table (hame_parent_table.name_child_table).

« Table limits need not be explicitly set as a child table inherits the limits of a parent table.

2-13

ORACLE

Chapter 2
Creating a table

Download the full code TableJoins.go from the examples here.

Creating a JSON collection table: The JSON collection table includes documents with one or
more primary key fields and JSON fields. Create a JSON collection table as follows:

/* Create a JSON collection table with an integer primary key with a TTL of 3
days*/
tableName := "usersJSON"
stmt := fmt.Sprintf ("CREATE TABLE IF NOT EXISTS %s "+
"(id integer, PRIMARY KEY (id)) "+
"AS JSON COLLECTION USING TTL 3 DAYS", tableName)

tableReq := &nosqldb.TableRequest{
Statement: stmt, }

tableRes, err := client.DoTableRequest (tableReq)

if err != nil {
fmt.Printf ("cannot initiate CREATE TABLE request: %v\n", err)
return

}

_, err = tableRes.WaitForCompletion(client, 60*time.Second, time.Second)
| =

if err nil {
fmt.Printf ("Error finishing CREATE TABLE request: %v\n", err)
return

}

fmt.Println("Created table ", tableName)

Node.js

You can create a table using the tableDDL method. This method is asynchronous and it returns
a Promise of TableResult. The TableResult is a plain JavaScript object that contains the
status of the DDL operation such as its TableState, name, schema, and its TableLimits. For
method details, see NoSQLClient class.

Download the full JavaScript code CreateTable.js from the examples here and the full
TypeScript code CreateTable.ts from the examples here.

import { NoSQLClient, ServiceType } from 'oracle-nosqgldb';
const client = new NoSQLClient ('config.json');
const TABLE NAME = 'stream acct;
async function createTable (handle) {
const createDDL = ‘CREATE TABLE IF NOT EXISTS
${TABLE_NAME} (acct Id INTEGER,
profile name STRING,
account expiry TIMESTAMP (1),
acct data JSON,
primary key(acct Id)) ;
let res = await handle.tableDDL (createDDL, {
complete: true }
)i
console.log('Created table: ' + TABLE NAME);

2-14

ORACLE

Chapter 2
Creating a table

After the above call returns, the result will reflect the final state of the operation. Alternatively, to
use the complete option, substitute the code in the try-catch block above with the following
code sample.

const createDDL = ‘CREATE TABLE IF NOT EXISTS
${TABLE_NAME} (acct_Id INTEGER,

profile name STRING,

account expiry TIMESTAMP (1),

acct data JSON,

primary key(acct Id)) ;
let res = await client.tableDDL (createDDL, {complete: true,});
console.log('Created table: ' + TABLE NAME);

Creating a child table: You use the same TableRequest class and methods to execute DDL
statement to create a child table.

While creating a child table :
* You need to specify the full name of the table (hame_parent_table.name_child_table)

* Table limits need not be explicitly set as a child table inherits the limits of a parent table.

Download the full JavaScript code TableJoins.js from the examples here and the full
TypeScript code TableJoins.ts from the examples here.

Creating a JSON collection table: The JSON collection table includes documents with one or
more primary key fields and JSON fields. Create a JSON collection table as follows:

import { NoSQLClient, ServiceType } from 'oracle-nosgldb';
const client = new NoSQLClient ('config.json');

/* Create a JSON collection table with an integer primary key */
const TABLE NAME = 'usersJSON';
async function createTable() {

const createDDL = "CREATE TABLE IF NOT EXISTS ${TABLE_NAME} (id INTEGER,
PRIMARY KEY(id)) AS JSON COLLECTION';
console.log('Create table: ' + createDDL);

let res = await client.tableDDL(createDDL, ({
complete: true,

1)

C#

To create a table use either of the methods ExecuteTableDDLAsync Of
ExecuteTableDDLWithCompletionAsync. Both these methods return Task<TableResult>
TableResult instance contains status of DDL operation such as TableState and table schema.
See Oracle NoSQL Dotnet SDK API Reference for more details on these methods.

Download the full code CreateTable.cs from the examples here.

private static async Task createTable (NoSQLClient client) {
// Create a table
var sql =
SQ@"CREATE TABLE IF NOT EXISTS

2-15

Chapter 2
Create and View Indexes

{TableName} (acct Id INTEGER,
profile name STRING,
account expiry TIMESTAMP (1),
acct data JSON,
primary key(acct Id))";
var tableResult = await client.ExecuteTableDDLAsync (sql,
new TableDDLOptions{TableLimits = new TableLimits (20, 20, 1)});

// Wait for the operation completion
await tableResult.WaitForCompletionAsync();
Console.WriteLine (" Created table: ",tableResult.TableName);

Note:

Table limits are applicable for Oracle NoSQL Database Cloud Service only. If limits
are set for an on-premises NoSQL Database they are silently ignored.

Creating a child table: You use the same TableRequest class and methods to execute DDL
statement to create a child table.

While creating a child table :
* You need to specify the full name of the table (hame_parent_table.name_child_table)

e Table limits need not be explicitly set as a child table inherits the limits of a parent table.
Download the full code TableJoins.cs from the examples here.

Creating a JSON collection table: The JSON collection table includes documents with one or
more primary key fields and JSON fields. Create a JSON collection table as follows:

/* Create a JSON collection table with an integer primary key */

var client = new NoSQLClient ("config.json");
try {
var statement = "CREATE TABLE IF NOT EXISTS usersJSON(id INTEGER,"
+ "PRIMARY KEY (id)) AS JSON COLLECTION";

var result = await client.ExecuteTableDDLAsync (statement);
await result.WaitForCompletionAsync();
Console.WriteLine ("Table users created.");
} catch(Exception ex) {
// handle exceptions

Create and View Indexes

An index is a database structure that enables you to retrieve data from database tables
efficiently. Indexes provide fast access to the rows of a table when the key(s) you are
searching for is contained in the index.

ORACLE 516

Chapter 2
Create and View Indexes

An index is an ordered map in which each row of the data is called an entry. An index can be
created on atomic data types, arrays, maps, JSON, and GeoJSON data.. An index can store
the following special values:

* NULL
« EMPTY

e json null (It is applicable only for JISON indexes)

If you want to follow along with the examples, see Sample data to run queries to view a sample
data and use the scripts to load sample data for testing. The scripts create the tables used in
the examples and load data into the tables.

¢ Classification of Indexes
e Creating Indexes

¢ View Index

Classification of Indexes

ORACLE

Indexes can be classified based on fields, schema, entries, or a combination of them.

Index
based on based on based on
Fields Schema Entries
SF'{; (lje Composite SCF}'..X:H% JSON Simple Multikey

Single Field Index: An index is called a single field index if it is created on only one field of a
table.

Composite Index: An index is called a composite index if it is created on more than one field
of a table

Fixed Schema Index: An index is called a fixed schema index if all the fields that are indexed
are strongly typed data.

Note:

A data type is called precise if it is not one of the wild card types. Items that have
precise types are said to be strongly typed.

Schema-less Index (JSON Index): An index is called a JSON index if at least one of the fields
is JSON data or fields inside JSON data.

2-17

Chapter 2
Create and View Indexes

Simple Index: An index is called a simple index if for each row of data in the table, there is
one entry created in the index.

Multikey Index: An index is called a multikey index if for each row of data in the table, there
are multiple entries created in the index.

You can create indexes on the values of one or more SQL built-in functions.
List of functions that can be indexed:
The following subset of the Built-in functions can be indexed.

Functions on Timestamps:

e year
¢ month
e day

* hour

° minute
e second

* millisecond
* microsecond
* nanosecond

« week

Functions on Strings:

e length
* replace
* reverse

e substring

e trim

e ltrim

e rtrim

* lower
e upper

Functions on Rows:

* modification_time

e expiration_time

e expiration_time_millis
° row_storage_size

See Built-in functions for more details on what a built-in function is and how to use these
functions.

Creating Indexes

ORACLE

You can create an index for a NoSQL table using SQL commands or using TableRequest API.

2-18

Chapter 2
Create and View Indexes

e Using SQL commands

e Using TableRequest API

Using SQL commands

ORACLE

An index can be created using the CREATE INDEX command.

Create a single field index:

Example: Create an index on passengers reservation code.

CREATE INDEX fixedschema conf ON baggageInfo (confNo)

The above is an example of a single-column fixed schema index. The index is created on the
confNo field having string data type in the baggageInfo table.

Create a composite index:

Example : Create an index on the full name and phone number of passengers.

CREATE INDEX compindex namephone ON baggageInfo (fullName,contactPhone)

The above is an example of a composite index. The index is created on two fields in the
baggagelnfo schema, on full name and the contact phone number.

Note:

You can have one or more fields of this index as fixed schema columns.

Create a JSON index:

An index is called a JSON index if at least one of the fields is inside JSON data. As JSON is
schema-less, the data type of an indexed JSON field may be different across rows. When
creating an index on JSON fields, if you are unsure what data type to expect for the JSON
field, you may use the anyAtomic data type. Alternatively, you can specify one of the Oracle
NoSQL Database atomic data types. You do that by declaring a data type using the AS
keyword next to every index path into the JSON field.

Example 1: Create an index on the tag number of passengers bags.

CREATE INDEX jsonindex tagnum ON baggageInfo(bagInfo[].tagnum as INTEGER)

The above is an example of a JSON index. The index is created on the tagnum field present in
the baginfo JSON field in the baggageInfo table. Notice that you provide a data type for the
tagnun field while creating the index.

The creation of a JSON index will fail if the associated table contains any rows with data that
violate the declared data type. Similarly, after creating a JSON index, an insert/update
operation will fail if the new row does not conform to the declared data type in the JSON index.

2-19

Chapter 2
Create and View Indexes

Example 2: Create an index on the route of passengers.

CREATE INDEX jsonindex routing ON baggageInfo (bagInfo[].routing as ANYATOMIC)

Declaring a JSON index path as anyAtomic has the advantage of allowing the indexed JSON
field to have values of various data types. The index entries are sorted in ascending order.
When these values are stored in the index, they are sorted as follows:

« Numbers
e String
e boolean

However, this advantage is offset by space and CPU costs. It is because numeric values of any
kind in the indexed field will be cast to Number before being stored in the index. This cast
takes CPU time, and the resulting storage for the number will be larger than the original
storage for the number.

Create an Index on JSON Collection Table

Indexing the fields in the JSON collection table is similar to creating JSON indexes. You must
specify the name (along with the path expression) and ANYATOMIC for the type definition, or,
for strongly typed indexes, you can specify the JSON type of the fields being indexed.

If you are indexing a top-level JSON field in the document, the field name is the path
expression. If the element is deeply nested in a JSON object, you specify the complete path
name. In either case, the data type for every index must be specified. It is recommended to
use ANYATOMIC in the JSON collection tables for more flexibility.

Example : Create a composite index on the JSON collection table created for a shopping
application.

CREATE INDEX idx ntfy cty on storeAcct (address.city as ANYATOMIC, notify as
ANYATOMIC)

In the composite index above, the notify field is a top-level field of the storeAcct table, which
can be indexed by specifying the field name as the path. The city field is nested in the
address field and must be indexed using the path expression.

Note:

If you are creating an index on a nested JSON field, the field must be present in all
the rows of the table. Otherwise, an error is displayed.

Create a simple index:

An index is called a simple index if, for each row of data in the table, there is one entry created
in the index. The index will return a single value that is of atomic data type or any special value
(SQL NULL, JSON NULL, EMPTY). Essentially, the index paths of a simple index must not
return an array or map or a nested data type.

ORACLE 590

ORACLE

Chapter 2
Create and View Indexes

Example: Create an index on three fields, when the bag was last seen, the last seen station
and the arrival date and time.

CREATE INDEX simpleindex arrival ON baggageInfo (bagInfo[].lastSeenTimeGmt as
ANYATOMIC,

bagInfo[].bagArrivalDate as ANYATOMIC, bagInfo[].lastSeenTimeStation as
ANYATOMIC)

The above is an example of a simple index created on a JSON document in a JSON field. The
index is created on the lastSeenTimeGmt and bagArrivalDate and lastSeenTimeStation, all
from the bagInfo JSON document in the info JSON field in the baggageInfo table. If the
evaluation of a simple index path returns an empty result, the special value EMPTY is used as
an index entry. In the above example, If there is N0 lastSeenTimeGmt Of bagArrivalDate Of
lastSeenTimeStation entry in the bagInfo JSON document, or if there is no bagInfo JSON
array, then the special value EMPTY is indexed.

Create a multikey index:

An index is called a multikey index if, for each row of data in the table, there are multiple
entries created in the index. In a multikey index, there is at least one index path that uses an
array or a nested data type. In a multikey index, for each table row, index entries are created
on all the elements in arrays that are being indexed.

Example 1: Multikey index: Create an index on the series info array of the streaming account
application.

CREATE INDEX multikeyindexl ON stream acct
(acct _data.contentStreamed[].seriesInfo[] AS ANYATOMIC)

The index is created on the seriesInfo[] array in the stream_acct table. Here, all the
elements in the seriesInfo[] array in each row of the stream acct table will be indexed.

Example 2: Nested multikey index: Create an index on the episode details array of the
streaming account application.

An index is a nested multikey index if it is created on a field that is present inside an array
which in turn is present inside another array.

CREATE INDEX multikeyindex2 ON stream acct (
acct data.contentStreamed[].seriesInfo[].episodes[] AS ANYATOMIC)

The above is an example of a nested multikey index where the field is present in an array that
is present inside another array. The index is created on the episodes|[] array in the
seriesInfo[] array in the acct data JSON of the stream acct table.

Example 3: Composite multikey index:

An index is called a composite multikey index if it is created on more than one field, and at
least one of those fields is multikey. A composite multikey index may have a combination of
multikey index paths and simple index paths.

CREATE INDEX multikeyindex3 ON stream acct (acct data.country AS ANYATOMIC,
acct data.contentStreamed[].seriesInfo[].episodes[] AS ANYATOMIC)

2-21

ORACLE

Chapter 2
Create and View Indexes

The above is an example of a composite multikey index having one multikey index path and
one simple index path. The index is created on the country field and episodes|[]array in the
acct_data JSON column of the stream acct table.

See Specifications & Restrictions on Multikey index to learn about restrictions on multikey
index.

Create an index with NO NULLS clause

You can create an index with the optional WITH NO NULLS clause. In that case, the rows with
NULL and/or EMPTY values on the indexed fields will not be indexed.

CREATE INDEX nonull phone ON baggageInfo (contactPhone) WITH NO NULLS

e The above query creates an index on the phone number of the passengers. If some
passengers do not have a phone number then those fields will not be part of the index.

e The indexes that are created with the WITH NO NULLS clause may be useful when the
data contain a lot of NULL and/or EMPTY values on the indexed fields. It will reduce the
time and space overhead during indexing.

* However, the use of such indexes by queries is restricted. If an index is created with the
WITH NO NULLS clause, IS NULL, and NOT EXISTS predicates cannot be used as index
predicates for that index.

* Infact, such an index can be used by a query only if the query has an index predicate for
each of the indexed fields.

Create an index with unique keys per row

You can create an index with unique keys per row property.

CREATE INDEX idX_Showid ON
stream acct(acct data.contentStreamed[].showId AS INTEGER)
WITH UNIQUE KEYS PER ROW

In the above query, an index is created on showId and there cannot be duplicate showId for a
single contentStreamed array. This informs the query processor that for any streaming user,
the contentStreamed array cannot contain two or more shows with the same show id. The
restriction is necessary because if duplicate show ids existed, they wouldn’t be included in the
index. If you insert a row with the same showId two or more items in a single contentStreamed
array, an error is thrown and the insert operation is not successful.

Optimization in the query run time :

When you create an index with unique keys per row, the index would contain fewer entries
than the number of elements in the contentStreamed array. You could write an efficient query
to use this index. The use of such an index by the query would yield fewer results from the
FROM clause than if the index was not used.

Examples of creating indexes on functions:

Example 1: Create an index which indexes the rows of the BaggageInfo table by their latest
modification time:

CREATE INDEX idx modtime ON Baggagelnfo (modification time())

2-22

Chapter 2
Create and View Indexes

This index will be used in a query which has modification time as the filter condition.

SELECT * FROM BaggageInfo $u WHERE
modification time($u) > "2019-08-01T10:45:00"

This query returns all the rows whose most recent modification time is after
2019-08-01T10:45:00. It uses the 1dx modtime index defined above. You can verify this by
viewing the query plan using the show query command.

Example 2: Create an index which indexes the rows of the BaggageInfo table on the length of
the routing field.

CREATE INDEX idx routlen ON BaggagelInfo (length(bagInfo[].routing as string))

This index will be used in a query which has length as the filter condition.

SELECT * from BaggageInfo $bag where length ($bag.bagInfo[].routing) > 10

This query returns all the rows whose length of the routing field is greater than 10. It uses the
idx routlen index defined above. You can verify this by viewing the query plan using the show
query command.

Example 3: Using a multi-key index path

In the following example, you index the users in the stream acct table by the id of the shows
they watch and the year and month of the dates when the show was watched.

CREATE INDEX idx showid year month ON
stream acct (acct data.contentStreamed[].showId AS INTEGER,
substring(acct data.contentStreamed[].seriesInfo[].episodes[].date AS

STRING,0, 4),
substring(acct data.contentStreamed[].seriesInfo[].episodes[].date AS
STRING, 5, 2))

An example of a query using this index is shown below. The query counts the number of users
who watched any episode of show 16 in the year 2022.

SELECT count (*) FROM stream acct sl WHERE EXISTS
sl.acct data.contentStreamed[$element.showId = 16].seriesInfo.
episodes|[substring($element.date, 0, 4) = "2022"]

This query will use the index idx showid year month. You can verify this by viewing the query
plan using the show query command.

show query SELECT count (*) FROM stream acct sl WHERE EXISTS
> sl.acct_data.contentStreamed[$element.showId =

16] .seriesInfo.episodes|[substring($Selement.date, 0, 4) = "2022"]
{
"iterator kind" : "GROUP",

"input variable" : "$gb-1",
"input iterator" :

{

ORACLE 503

"iterator kind" : "RECEIVE",
"distribution kind" : "ALL SHARDS",
"distinct by fields at positions" : [1],

"input iterator"

{

"iterator kind" : "SELECT",
"FROM"
{
"iterator kind" : "TABLE",
"target table" : "stream acct",
"row variable" : "Ssl",
"index used" : "idx showid year month",
"covering index" : true,
"index row variable" : "$Ssl idx",
"index scans" : [

{

"equality conditions"

Chapter 2
Create and View Indexes

{"acct data.contentStreamed[].showId":16,"substring#acct data.contentStreamed|

].seriesInfo[].episodes[].date@,0,4":"2022"},
"range conditions" : {}

]

b
"FROM variable" : "$$sl idx",

"SELECT expressions" : [
{
"field name" : "Column 1",
"field expression"

{

"iterator kind" : "CONST",
"value" : 1
}
}I
{
"field name" : "acct id gen",

"field expression"
{
"iterator kind" : "FIELD STEP",
"field name" : "#acct id",
"input iterator"
{
"iterator kind" : "VAR REF",
"variable" : "$$sl idx"

b

"grouping expressions" : [

1,

"aggregate functions" : [

{
"iterator kind" : "FUNC COUNT STAR"

ORACLE

2-24

Chapter 2
Create and View Indexes

Using TableRequest API

ORACLE

You can use TableRequest API to create an index on a NoSQL table.

 Java

e Python
« Go

* Node.js
. C#
Java

The TableRequest class is used to create an index on a table. Execution of operations
specified by this request is asynchronous. These are potentially long-running operations.
TableResult is returned from TableRequest operations and it encapsulates the state of the
table. See Oracle NoSQL Java SDK API Reference for more details on the TableRequest class
and its methods.

Download the full code Indexes.java from the examples here.

/**

* Create an index acct episodes in the stream acct table

*/

private static void crtIndex (NoSQLHandle handle) throws Exception ({
String createIndexDDL = "CREATE INDEX acct episodes ON " + tableName +

"(acct _data.contentStreamed[].seriesInfo[].episodes[] AS ANYATOMIC)";
TableRequest treq = new TableRequest () .setStatement (createIndexDDL) ;
TableResult tres = handle.tableRequest (treq);
tres.waitForCompletion (handle, 60000, /* wait 60 sec */

1000); /* delay ms for poll */
System.out.println("Index acct episodes on " + tableName + " is created");

Python

The borneo.TableRequest class is used to create an index on a table. All calls to
borneo.NoSQLHandle.table request () are asynchronous so it is necessary to check the
result and call borneo.TableResult.wait for completion() to wait for the operation to
complete. See Oracle NoSQL Python SDK API Reference for more details on table request
and its methods.

Download the full code Indexes.py from the examples here.

#create an index

2-25

ORACLE

Chapter 2
Create and View Indexes

def create index(handle):
statement = '''CREATE INDEX acct episodes ON stream acct
(acct data.contentStreamed[].seriesInfo[].episodes[] AS ANYATOMIC)'"'
request = TableRequest().set statement (statement)
table result = handle.do table request (request, 40000, 3000)
table result.wait for completion(handle, 40000, 3000)
print ('Index acct episodes on the table stream acct is created')

Go

The TableRequest class is used to create an index on a table. Execution of operations
specified by TableRequest is asynchronous. These are potentially long-running operations.
This request is used as the input of a Client.DoTableRequest () operation, which returns a
TableResult that can be used to poll until the table reaches the desired state. See Oracle
NoSQL Go SDK API Reference for more details on the various methods of the TableRequest
class.

Download the full code Indexes.go from the examples here.

//create an index on a table
func createlIndex(client *nosqgldb.Client, err error, tableName string) () {
stmt := fmt.Sprintf ("CREATE INDEX acct episodes ON %s "+
"(acct data.contentStreamed[].seriesInfo[].episodes[] AS
ANYATOMIC) ", tableName)
tableReq := &nosqgldb.TableRequest(
Statement: stmt,
}
tableRes, err := client.DoTableRequest (tableReq)
if err != nil {
fmt.Printf ("cannot initiate CREATE INDEX request: %v\n", err)
return
}
// The create index request is asynchronous, wait for index creation to
complete.
_, err = tableRes.WaitForCompletion(client, 60*time.Second, time.Second)
if err != nil {
fmt.Printf ("Error finishing CREATE INDEX request: %v\n", err)
return
}
fmt.Println("Created Index acct episodes on table ", tableName)
return

Node.js

You can create an index on a table using the tableDDL method. This method is asynchronous
and it returns a Promise of TableResult. The TableResult is a plain JavaScript object that
encapsulates the state of the table. For method details, see NoSQLClient class.

Download the full JavaScript code Indexes.js from the examples here and the full TypeScript
code Indexes.ts from the examples here.

//creates an index

2-26

View Index

ORACLE

Chapter 2
Create and View Indexes

async function createIndex(handle) {
const crtindDDL = 'CREATE INDEX acct episodes ON ${TABLE_NZ—\ME}

(acct _data.contentStreamed[].seriesInfo[].episodes[] AS ANYATOMIC) *;
let res = await handle.tableDDL (crtindDDL) ;
console.log('Index acct episodes is created on table:' + TABLE NAME);

C#

To create an index on a table use either of the methods ExecuteTableDDLAsync Of
ExecuteTableDDLWithCompletionAsync. Both these methods return Task<TableResult>
TableResult instance contains status of DDL operation such as TableState and table schema.
See Oracle NoSQL Dotnet SDK API Reference for more details on these methods.

Download the full code Indexes.cs from the examples here.

// Creates an index on a table
private static async Task createlndex (NoSQLClient client) {
var sql =
SQ@"CREATE INDEX acct _episodes ON {TableName}
(acct data.contentStreamed[].seriesInfo[].episodes[] AS ANYATOMIC)";
var tableResult = await client.ExecuteTableDDLAsync(sql);
// Wait for the operation completion
await tableResult.WaitForCompletionAsync();
Console.WriteLine (" Index acct episodes is created on table Table {0}",
tableResult.TableName) ;

You can view the indexes in your database.

SHOW INDEXES

The SHOW INDEXES statement provides the list of indexes present in the specified table. If
you want the output to be in JSON format, you can specify the optional AS JSON.

Example 1: List indexes on the BaggageInfo table.

SHOW INDEXES ON baggageInfo

indexes
jsonindex routing
jsonindex tagnum
simpleindex arrival
nonull phone

Example 2: List indexes on the BaggageInfo table in JSON format.
SHOW AS JSON INDEXES ON baggageInfo

{"indexes"
["Jsonindex routing","jsonindex tagnum","simpleindex arrival"]}

2-27

Chapter 2
Create and View Indexes

DESCRIBE INDEX

The DESCRIBE INDEX statement defines the specified index on a table. If you want the output
to be in JSON format, you can specify the optional AS JSON.

The description for the index contains the following information:

* Name of the table on which the index is defined.

* Name of the index.

e Type of index. Whether the index is primary index or secondary index.

e Whether the index is multikey? If the index is multikey then 'Y" is displayed. Otherwise, 'N'
is displayed.

« List of fields on which the index is defined.
e The declared type of the index.

e Description of the index.

Example 1: Describe the index multikeyindex3.

DESCRIBE INDEX multikeyindex3 ON stream acct

table | name | type | multiKey |
fields | declaredType |

stream acct | multikeyindex3 | SECONDARY | Y
acct data.country | ANY ATOMIC
| [\

\ \ | \
acct data.contentStreamed[].seriesInfo[].episodes[]| ANY ATOMIC

Example 2: Describe the index idx_showid year month in JSON format.

DESCRIBE AS JSON INDEX idx showid year month ON stream acct
{

"name" : "idx showid year month",
"type" : "secondary",
"fields" : ["acct data.contentStreamed[].showId",

"substring#acct data.contentStreamed[].seriesInfo[].episodes[].date@,0,4",
"substring#acct data.contentStreamed[].seriesInfo[].episodes[].date@,5,2"],

"types" : ["INTEGER", "STRING", "STRING"],
"withNoNulls" : false,
"withUniqueKeysPerRow" : false

}

ORACLE 508

Manage

The articles in this section provide steps on how to manage various database objects.

Namespace Management

A namespace defines a group of tables, within which all of the table names must be uniquely
identified. Namespaces permit you to do table privilege management as a group operation.

* Namespace Resolution
« Manage Namespaces
e Namespace scoped privileges

e Granting Authorization Access to Namespaces

Namespace Resolution

You can grant authorization permissions to a namespace to determine who can access both
the namespace and the tables within it.

To resolve a table from a table name that appears in an SQL statement, the following rules

apply:

* — Ifthe table name contains a namespace name, no resolution is needed, because a
qualified table name uniquely identifies a table.

— If you don't specify a namespace name explicitly, the namespace used is the one
contained in the ExecuteOptions instance that is given as input to the executeSync (),
execute (), Of prepare () methods of TableAPI.

— If ExecuteOptions doesn't specify a namespace, the default sysdefault namespace is
used.

Using different namespaces in ExecuteOptions allows executing the same queries on separate
but similar tables.

Manage Namespaces

SHOW NAMESPACES

The SHOW NAMESPACES statement provides the list of namespaces in the system. You can
specify AS JSON if you want the output to be in JSON format.

Example 1: The following statement lists the namespaces present in the system.

SHOW NAMESPACES

ORACLE -

ORACLE

Chapter 3
Namespace Management

Output:

namespaces
sysdefault

Example 2: The following statement lists the namespaces present in the system in JSON
format.

SHOW AS JSON NAMESPACES

Output:

{"namespaces" : ["sysdefault"]}

DROP NAMESPACE
You can remove a hamespace by using the DROP NAMESPACE statement.

IF EXISTS is an optional clause. If you specify this clause, and if a namespace with the same
name does not exist, no error is generated. If you don't specify this clause, and if a namespace
with the same name does not exist, an error is generated indicating that the namespace does
not exist.

CASCADE is an optional clause that enables you to specify whether to drop the tables and
their indexes in this namespace. If you specify this clause, and if the namespace contains any
tables, then the namespace together with all the tables in this namespace will be deleted. If
you don't specify this clause, and if the namespace contains any tables, then an error is
generated indicating that the namespace is not empty.

The following statement removes the namespace named ns1.

DROP NAMESPACE IF EXISTS nsl CASCADE

Using APIs to drop hamespaces:

e Java

* Python
+ Go

* Node.js
.« C#
Java

You can drop a hamespace using SystemRequest class. The SystemRequest class is used to
perform any table-independent administrative operation. These operations are asynchronous
and completion needs to be checked.

3-2

ORACLE

Chapter 3
Namespace Management

Download the full code Namespaces.java from the examples here.

private static void dropNS (NoSQLHandle handle) throws Exception {
String dropNSDDL = "DROP NAMESPACE " + nsName;
SystemRequest sysreq = new SystemRequest();
sysreq.setStatement (dropNSDDL. toCharArray());
SystemResult sysres = handle.systemRequest (sysreq);
sysres.waitForCompletion (handle, 60000,1000);
System.out.println("Namespace " + nsName + " is dropped");

Python

You can drop a hamespace using SystemRequest class. The SystemRequest class is used to
perform any table-independent administrative operation.

Download the full code Namespaces.py from the examples here.

def drop ns(handle):
statement = '''DROP NAMESPACE nsl'''
sysreq = SystemRequest () .set statement (statement)
sys_result = handle.system request (sysreq)
sys_result.wait for completion(handle, 40000, 3000)
print ('Namespace: nsl is dropped')

Go

You can drop a hamespace using SystemRequest class. The SystemRequest class is used to
perform any table-independent administrative operations. These are potentially long-running
operations and completion of the operation needs to be checked.

Download the full code Namespaces.go from the examples here.

func dropNS(client *nosgldb.Client, err error) () {
stmt := fmt.Sprintf ("DROP NAMESPACE nsl")
sysReq := &nosgldb.SystemRequest {
Statement: stmt,

}

sysRes, err := client.DoSystemRequest (sysReq)
_, err = sysRes.WaitForCompletion(client, 60*time.Second, time.Second)
if err != nil {
fmt.Printf ("Error finishing CREATE NAMESPACE request: %v\n", err)
return

}
fmt.Println("Dropped Namespace nsl ")
return

Node.js

You can create namespace using adminDDL method. The adminDDL method is used to perform
any table-independent administrative operation.

3-3

Chapter 3
Namespace Management

Download the full JavaScript code Namespaces.js from here and the full TypeScript code
Namespaces.ts from here.

async function dropNS (handle) {
const dropNS = ‘DROP NAMESPACE nsl';
let res = await handle.adminDDL (dropNS) ;
console.log('Namespace dropped: nsl');

C#

The ExecuteAdminSync method is used to perform any table-independent administrative
operations.

Download the full code Namespaces.cs from the examples here.

private static async Task dropNS (NoSQLClient client) {
var sql = $Q@"DROP NAMESPACE nsl";
var adminResult = await client.ExecuteAdminAsync(sql);
// Wait for the operation completion
await adminResult.WaitForCompletionAsync () ;
Console.WritelLine ("Dropped namespace nsl");

Namespace scoped privileges

You can add one or more namespaces to your store, create tables within them, and grant
permission for users to access namespaces and tables. For general information on managing
Roles and Users, see Grant Roles or Privileges in the Security Guide.

For information on implication relationship among Oracle NoSQL Database privileges, see
Privilege Hierarchy in the Security Guide.

Granting Authorization Access to Namespaces

You can manage permission for users or roles to access namespaces and tables. These are
the applicable permissions given to the developers and other users:

Table 3-1 Namespace Privileges and Permissions

Privilege

Description

CREATE ANY NAMESPACE Grant permission to a user or to a role to create or drop any hamespace.

DROP_ANY NAMESPACE

GRANT CREATE ANY NAMESPACE TO <User|Role>;
GRANT DROP ANY NAMESPACE TO <User|Role>;

ORACLE

3-4

Chapter 3
Namespace Management

Table 3-1 (Cont.) Namespace Privileges and Permissions

Privilege

Description

CREATE TABLE IN NAMESPACE
DROP_TABLE IN NAMESPACE
EVOLVE TABLE IN NAMESPACE

Grant permission to a user or to a role to create, drop or evolve tables in a
specific namespace. You can evolve tables to update table definitions, add
or remove fields, or change field properties, such as a default value. You
may even add a particular kind of column, like an IDENTITY column, to
increment some value automatically. Only tables that already exist in the
store are candidates for table evolution. For more details, see Alter Table.

GRANT CREATE TABLE IN NAMESPACE ON NAMESPACE
namespace name TO <User|Role>;

GRANT DROP TABLE IN NAMESPACE ON NAMESPACE
namespace name TO <User|Role>;

GRANT EVOLVE TABLE IN NAMESPACE ON NAMESPACE
namespace name TO <User|Role>user role;

CREATE_INDEX IN NAMESPACE
DROP_INDEX IN NAMESPACE

Grant permission to a user or to a role to create or drop an index in a
specific namespace.

GRANT CREATE INDEX IN NAMESPACE ON NAMESPACE
namespace name TO <User|Role>;

GRANT DROP_INDEX IN NAMESPACE ON NAMESPACE
namespace name TO <User|Role>;

READ IN NAMESPACE
INSERT IN NAMESPACE
DELETE IN NAMESPACE

Grant permission to a role to read, insert, or delete items in a specific
namespace.

GRANT READ IN NAMESPACE ON NAMESPACE namespace name TO
<User|Role>;

GRANT INSERT IN NAMESPACE ON NAMESPACE namespace name
TO <User|Role>;

GRANT DELETE IN NAMESPACE ON NAMESPACE namespace name
TO <User|Role>;

MODIFY IN NAMESPACE

Helper label for granting or revoking permissions to all DDL privileges for a
specific namespace to a user or role.

GRANT MODIFY IN NAMESPACE ON NAMESPACE namespace name
TO <User|Role>;

REVOKE MODIFY IN NAMESPACE ON NAMESPACE namespace name
TO <User|Role>;

Grant privileges on a namespace

You can grant permissions to a role or a user on a namespace. Following is the syntax for
granting permissions on a hamespace:

GRANT {Namespace-scoped privileges} ON NAMESPACE namespace name TO <User|Role>
Namespace-scoped privileges ::= namespace privilege [, namespace privilege]

ORACLE

3-5

ORACLE

Chapter 3
Namespace Management

where,
e namespace_privilege

The namespace privilege that can be granted to a user or a role. For more information on
the applicable privileges, see the Privilege column in the Namespace Privileges and
Permissions table.

° namespace_name
The namespace that the user wishes to access.
e <User|Role>

The name of the KVStore user or the role of a user.

For example, you can grant read access to a user for all the tables in the namespace.
Example:

GRANT READ IN NAMESPACE ON NAMESPACE nsl TO Kate;

Here, nsl is the namespace and Kate is the user.

Note:

The label MODIFY_IN_NAMESPACE can be used as a helper for granting or
revoking permissions to all DDL privileges for a specific namespace to a user or role.

Revoke privileges on a namespace

You can revoke the permissions from a role or a user on a namespace. Following is the syntax
for revoking the permissions on a hamespace.

REVOKE {Namespace-scoped privileges} ON NAMESPACE namespace name FROM <User|
Role>
Namespace-scoped privileges ::= namespace privilege [, namespace privilege]

where,
* namespace_privilege

The namespace privilege that can be revoked from a user or a role. For more information
on the applicable privileges, see the Privilege column in the Namespace Privileges and
Permissions table.

* namespace_name
The namespace that the user wishes to access.
e <User|Role>

The name of the KVStore user or the role of a user.

For example, you can revoke the read access from a user for all the tables in the namespace.

Example:

3-6

Chapter 3
Managing Tables, Indexes & Regions

REVOKE READ IN NAMESPACE ON NAMESPACE nsl FROM Kate;

Here, nsl is the namespace and Kate is the user.

Note:

The label MODIFY_IN_NAMESPACE can be used as a helper for granting or
revoking permissions to all DDL privileges for a specific namespace to a user or role.

The following example shows:
1. Creation of a namespace and a table.

2. Revocation of the privilege to create any other new tables in the namespace, but allow the
table to be dropped.

Example: Namespace Scoped Privileges

CREATE NAMESPACE IF NOT EXISTS nsl;

GRANT MODIFY IN NAMESPACE ON NAMESPACE nsl TO usersRole;

CREATE TABLE nsl:t (id INTEGER, name STRING, primary key (id));
INSERT INTO nsl:t VALUES (1, 'Smith');

SELECT * FROM nsl:t;

REVOKE CREATE TABLE IN NAMESPACE ON NAMESPACE nsl FROM usersRole;
DROP NAMESPACE nsl CASCADE;

Note:

You can save all of the above commands as a sql script and execute it in a single
command. If you want to execute any of the above commands outside of a SQL
prompt, remove the semi colon at the end.

Managing Tables, Indexes & Regions

Alter Table

ORACLE

You will learn different ways to alter an existing table. You will also learn how to manage
indexes and regions.

e Alter Table
e Drop Table
e Drop Index

e Manage regions

You can use the alter table command to perform the following operations.
e Add schema fields to the table schema

« Remove schema fields from the table schema

3-7

Chapter 3
Managing Tables, Indexes & Regions

Modify the Time-To-Live value of the table

e Add aregion

 Remove a region

Note:

You can specify only one type of operation in a single command. For example, you
cannot remove a schema field and set the TTL value together.

e Using SQL command to alter table

» Using TableRequest API to alter table

Using SQL command to alter table

ORACLE

You can use ALTER TABLE command to change the definition of the table.

Create a sample table :
CREATE TABLE demo_acct (
acct_id INTEGER,

acct data JSON,

PRIMARY KEY (acct id)
)

Example : Add schema field to the table schema.

ALTER TABLE demo_acct (ADD acct balance INTEGER)

Explanation: Adding a field does not affect the existing rows in the table. If a field is added, its
default value or NULL will be used as the value of this field in existing rows that do not contain
it. The field to add maybe a top-level field (i.e. A table column) or it may be deeply nested
inside a hierarchical table schema. As a result, the field is specified via a path.

Example : Remove schema fields in the table schema.

ALTER TABLE demo_acct (DROP acct balance)

Explanation: You can drop any field in the schema other than the primary key. If you try
removing the primary key field, you get an error as shown below.

ALTER TABLE demo_acct (DROP acct id)

Output(showing error):

Error handling command ALTER TABLE demo_acct (DROP acct id):
Error: at (1, 27) Cannot remove a primary key field: acct id

Example : Modify the Time-To-Live value of the table

3-8

Chapter 3
Managing Tables, Indexes & Regions

Time-to-Live (TTL) is a mechanism that allows you to set a time frame on table rows, after
which the rows expire automatically, and are no longer available. By default, every table that
you create has a TTL value of zero, indicating that it has no expiration time.

You can use ALTER TABLE command to change this value for any table. You can specify the
TTL with a number, followed by either HOURS or DAYS.

ALTER TABLE demo_acct USING TTL 5 days

< Note:

Altering the TTL value for a table does not change the TTL value for existing rows in
the table. Rather, it will only change the default TTL value placed in rows created
subsequent to the alter table. To modify the TTL of every record in a table, you must
iterate through each record of the table and update its TTL value.

Example : Add a region

The add regions clause lets you link an existing Multi-Region Table (MR Table) with new
regions in a multi-region Oracle NoSQL Database environment. You use this clause to expand
MR Tables to new regions.

Associate a new region with an existing MR Table using the DDL command shown below.

ALTER TABLE <table name> ADD REGIONS <region name>

Explanation: Here, table_name is an MR table and region_name is an existing region.
Example : Remove a region

The drop regions clause lets you disconnect an existing MR Table from a participating region in
a multi-region Oracle NoSQL Database environment. You use this clause to contract MR
Tables to fewer regions.

To remove an MR Table from a specific region in a Multi-Region NoSQL Database setup, you
must run the following steps from all the other participating regions.

ALTER TABLE <table name> DROP REGIONS <comma separated list of regions>

Here, table_name is a MR Table and comma_separated_list_of regions is a list of regions to
be dropped.

Using TableRequest API to alter table

You can use TableRequest API to change the definition of a NoSQL table.

e Java
* Python
« Go

ORACLE 29

ORACLE

Chapter 3
Managing Tables, Indexes & Regions

* Node.js
e C#
Java

The TableRequest class is used to modify tables. Execution of operations specified by this
request is asynchronous. These are potentially long-running operations. TableResult is
returned from TableRequest operations and it encapsulates the state of the table. See Oracle
NoSQL Java SDK API Reference for more details on the TableRequest class and its methods.

Download the full code AlterTable.java from the examples here.

/**

* Alter the table stream acct and add a column

*/

private static void alterTab (NoSQLHandle handle) throws Exception {
String alterTableDDL = "ALTER TABLE " + tableName +" (ADD acctname STRING)";
TableRequest treq = new TableRequest ().setStatement (alterTableDDL) ;
System.out.println("Altering table " + tableName);
TableResult tres = handle.tableRequest (treq);
tres.waitForCompletion (handle, 60000, /* wait 60 sec */
1000); /* delay ms for poll */
System.out.println("Table " + tableName + " is altered");

Python

The borneo.TableRequest class is used to modify tables. All calls to
borneo.NoSQLHandle.table request () are asynchronous so it is necessary to check the
result and call borneo.TableResult.wait for completion() to wait for the operation to
complete. See Oracle NoSQL Python SDK API Reference for more details on table request
and its methods.

Download the full code AlterTable.py from the examples here.

def alter table(handle):
statement = '''ALTER TABLE stream acct (ADD acctname STRING)'''
request = TableRequest () .set statement (statement)
table result = handle.do table request (request, 40000, 3000)
table result.wait for completion(handle, 40000, 3000)
print ('Table stream acct is altered')

Go

The TableRequest class is used to modify tables. Execution of operations specified by
TableRequest is asynchronous. These are potentially long-running operations. This request is
used as the input of a Client.DoTableRequest () operation, which returns a TableResult that
can be used to poll until the table reaches the desired state. See Oracle NoSQL Go SDK API
Reference for more details on the various methods of the TableRequest class.

Download the full code AlterTable.go from the examples here.

//alter an existing table and add a column
func alterTable(client *nosqgldb.Client, err error, tableName string) () {
stmt := fmt.Sprintf ("ALTER TABLE %s (ADD acctName STRING)", tableName)

3-10

Chapter 3
Managing Tables, Indexes & Regions

tableReq := &nosqgldb.TableRequest(
Statement: stmt,
}
tableRes, err := client.DoTableRequest (tableReq)
if err != nil {
fmt.Printf ("cannot initiate ALTER TABLE request: %v\n", err)
return
}

// The alter table request is asynchronous, wait for table alteration to

complete.
_, err = tableRes.WaitForCompletion(client, 60*time.Second, time.Second)
if err != nil {
fmt.Printf ("Error finishing ALTER TABLE request: %v\n", err)
return

}
fmt.Println ("Altered table ", tableName)
return

Node.js

You can use execute the tableDDL method to modify a table. This method is asynchronous and
it returns a Promise of TableResult. The TableResult is a plain JavaScript object that
encapsulates the state of the table after the DDL operation. For method details, see
NoSQLClient class.

Download the full JavaScript code AlterTable.js from the examples here and the full
TypeScript code AlterTable.ts from the examples here.

//alter a table and add a column

async function alterTable (handle) {
const alterDDL = "ALTER TABLE ${TABLE_NAME} (ADD acctname STRING) °;
let res = await handle.tableDDL (alterDDL) ;
console.log('Table altered: ' + TABLE NAME);

C#

You can use either of the two methods ExecuteTableDDLAsync and
ExecuteTableDDLWithCompletionAsync to modify a table. Both the methods return
Task<TableResult>. TableResult instance encapsulates the state of the table after the DDL
operation. See Oracle NoSQL Dotnet SDK API Reference for more details on these methods.

Download the full code AlterTable.cs from the examples here.

private static async Task alterTable (NoSQLClient client) {
var sql = $S@"ALTER TABLE {TableName} (ADD acctname STRING)";
var tableResult = await client.ExecuteTableDDLAsync (sql);
// Wait for the operation completion
await tableResult.WaitForCompletionAsync();
Console.WriteLine (" Table {0} is altered", tableResult.TableName);

ORACLE 211

Chapter 3
Managing Tables, Indexes & Regions

Drop Table

e Using SQL command to drop table
» Using TableRequest API to drop table

Using SQL command to drop table

The drop table statement removes the specified table and all its associated indexes from the
database.

By default, if the named table does not exist then this statement fails. You don't get an error if
the optional IF EXISTS clause is specified and the table does not exist.

DROP TABLE demo_acct

Note:

To drop a MR Table, first drop all of its child tables. Otherwise, the DROP statement
results in an error.

Using TableRequest API to drop table

You can use TableRequest API to drop a NoSQL table.

e Java

* Python
« Go

* Node.js
o C#
Java

Execution of operations specified byTableRequest is asynchronous. These are potentially long-
running operations. TableResult is returned from TableRequest operations and it
encapsulates the state of the table. See Oracle NoSQL Java SDK API Reference for more
details on the TableRequest class and its methods.

Download the full code AlterTable.java from the examples here.

/*Drop the table*/
private static void dropTab (NoSQLHandle handle) throws Exception ({
String dropTableDDL = "DROP TABLE " + tableName;
TableRequest treq = new TableRequest () .setStatement (dropTableDDL) ;
TableResult tres = handle.tableRequest (treq);
tres.waitForCompletion (handle, 60000, /* wait 60 sec */
1000); /* delay ms for poll */

ORACLE 310

ORACLE

Chapter 3
Managing Tables, Indexes & Regions

System.out.println("Table " + tableName + " is dropped");

Python

You can use the borneo.TableRequest class to drop a table. All calls to
borneo.NoSQLHandle.table request () are asynchronous so it is necessary to check the
result and call borneo.TableResult.wait for completion() to wait for the operation to
complete. See Oracle NoSQL Python SDK API Reference for more details on table request
and its methods.

Download the full code AlterTable.py from the examples here.

def drop table (handle):
statement = '''DROP TABLE stream acct'''
request = TableRequest ().set statement (statement)
table result = handle.do table request (request, 40000, 3000)
table result.wait for completion(handle, 40000, 3000)
print ('Dropped table: stream acct')

Go

You can use the TableRequest class to drop a table. Execution of operations specified by
TableRequest iS asynchronous. These are potentially long-running operations. This request is
used as the input of a Client.DoTableRequest () operation, which returns a TableResult that
can be used to poll until the table reaches the desired state. See Oracle NoSQL Go SDK API
Reference for more details on the various methods of the TableRequest class.

Download the full code AlterTable.go from the examples here.

//drop an existing table
func dropTable(client *nosgldb.Client, err error, tableName string) () {
stmt := fmt.Sprintf ("DROP TABLE %s",tableName)
tableReqg := &nosqldb.TableRequest{
Statement: stmt,

}
tableRes, err := client.DoTableRequest (tableReq)
return

Node.js

You can use the tableDDL method to drop a table. This method is asynchronous and it returns
a Promise of TableResult. The TableResult is a plain JavaScript object that encapsulates the
state of the table after the DDL operation. For method details, see NoSQLClient class.

Download the full JavaScript code AlterTable.js from the examples here and the full
TypeScript code AlterTable.ts from the examples here.

//drop a table

async function dropTable (handle) {
const dropDDL = "DROP TABLE ${TABLE_NAME}‘;
let res = await handle.tableDDL (dropDDL) ;
console.log('Table dropped: ' + TABLE NAME);

3-13

Drop Index

Chapter 3
Managing Tables, Indexes & Regions

C#

You can use either of the methods ExecuteTableDDLAsync Of
ExecuteTableDDLWithCompletionAsync to drop a table. Both the methods return
Task<TableResult>. TableResult instance encapsulates the state of the table after the DDL
operation. See Oracle NoSQL Dotnet SDK API Reference for more details on these methods.

Download the full code AlterTable.cs from the examples here.

private static async Task dropTable (NoSQLClient client) {
var sql = $S@"DROP TABLE {TableName}";
var tableResult = await client.ExecuteTableDDLAsync(sql);
// Wait for the operation completion
await tableResult.WaitForCompletionAsync();
Console.WriteLine (" Table {0} is dropped", tableResult.TableName);

You can drop an index from your database when you no longer need it.

e Using SQL command to drop index

e Using TableRequest API to drop index

Using SQL command to drop index

The DROP INDEX removes the specified index from the database.

If an index with the given name does not exist, then the statement fails, and an error is
reported. If the optional IF EXISTS clause is used in the DROP INDEX statement, and if an
index with the same name does not exist, then the statement will not execute, and no error is
reported.

Example: Drop the index multikeyindexl.

DROP INDEX multikeyindexl ON stream acct

Using TableRequest API to drop index

ORACLE

You can use TableRequest API to drop an index of a NoSQL table.

* Java

* Python
« Go

* Node.js
o C#

3-14

ORACLE

Chapter 3
Managing Tables, Indexes & Regions

Java

Execution of operations specified by TableRequest class is asynchronous. These are
potentially long-running operations. TableResult is returned from TableRequest operations
and it encapsulates the state of the table. See Oracle NoSQL Java SDK API Reference for
more details on the TableRequest class and its methods.

Download the full code Indexes.java from the examples here.

/* Drop the index acct episodes*/

private static void dropIndex (NoSQLHandle handle) throws Exception {
String dropIndexDDL = "DROP INDEX acct episodes ON " + tableName;
TableRequest treq = new TableRequest().setStatement (dropIndexDDL) ;
TableResult tres = handle.tableRequest (treq);
tres.waitForCompletion (handle, 60000, /* wait 60 sec */

1000); /* delay ms for poll */

System.out.println("Index acct episodes on " + tableName + " is dropped");

Python

You can use the borneo.TableRequest class to drop a table index. All calls to
borneo.NoSQLHandle.table request () are asynchronous so it is necessary to check the
result and call borneo.TableResult.wait for completion() to wait for the operation to
complete. See Oracle NoSQL Python SDK API Reference for more details on table request
and its methods.

Download the full code Indexes.py from the examples here.

#drop the index

def drop_index (handle) :
statement = '''DROP INDEX acct episodes ON stream acct'''
request = TableRequest ().set statement (statement)
table result = handle.do table request (request, 40000, 3000)
table result.wait for completion(handle, 40000, 3000)
print ('Index acct episodes on the table stream acct is dropped')

Go

You can use the TableRequest class to drop a table index. Execution of operations specified
by TableRequest is asynchronous. These are potentially long-running operations. This request
is used as the input of a Client.DoTableRequest () operation, which returns a TableResult
that can be used to poll until the table reaches the desired state. See Oracle NoSQL Go SDK
API Reference for more details on the various methods of the TableRequest class.

Download the full code Indexes.go from the examples here.

//drops an index from a table
func dropIndex(client *nosgldb.Client, err error, tableName string) () {
stmt := fmt.Sprintf ("DROP INDEX acct episodes ON %s",tableName)
tableReqg := &nosqgldb.TableRequest{
Statement: stmt,
}
tableRes, err := client.DoTableRequest (tableReq)
if err != nil {
fmt.Printf ("cannot initiate DROP INDEX request: %v\n", err)

3-15

Chapter 3
Managing Tables, Indexes & Regions

return

// The drop index request is asynchronous, wait for drop index to complete.
, err = tableRes.WaitForCompletion(client, 60*time.Second, time.Second)
if err !'= nil {
fmt.Printf ("Error finishing DROP INDEX request: %v\n", err)
return

fmt.Println("Dropped index acct episodes on table ", tableName)
return

Node.js

You can use the tableDDL method to drop a table index. This method is asynchronous and it
returns a Promise of TableResult. The TableResult is a plain JavaScript object that contains
the status of the DDL operation such as its TableState, name, schema, and its TableLimits. For
method details, see NoSQLClient class.

Download the full JavaScript code Indexes.js from the examples here and the full TypeScript
code Indexes.ts from the examples here.

//drops an index
async function dropIndex (handle) {
const dropindDDL = 'DROP INDEX acct episodes ON ${TABLE NAME};
let res = await handle.tableDDL (dropindDDL) ;
console.log('Index acct episodes is dropped from table: ' + TABLE NAME);

C#

You can use one of the methods ExecuteTableDDLAsync Of
ExecuteTableDDLWithCompletionAsync to drop a table index. Both the methods return
Task<TableResult>. TableResult instance contains status of DDL operation such as
TableState and table schema. See Oracle NoSQL Dotnet SDK API Reference for more details
on these methods.

Download the full code Indexes.cs from the examples here.

private static async Task dropIndex (NoSQLClient client) {
var sql = $SE"DROP INDEX acct episodes on {TableName}";
var tableResult = await client.ExecuteTableDDLAsync (sql);
// Wait for the operation completion
await tableResult.WaitForCompletionAsync();
Console.WriteLine (" Index acct episodes is dropped from table Table {0}",
tableResult.TableName) ;

Manage regions

The show regions statement provides the list of regions present in the Multi-Region Oracle
NoSQL Database. You need to specify "AS JSON" if you want the output to be in JSON format.

ORACLE 316

ORACLE

Chapter 3
Managing Tables, Indexes & Regions

Example 1: The following statement lists all the existing regions.

SHOW REGIONS

The following statement lists all the existing regions in JSON format.

SHOW AS JSON REGIONS

In a Multi-Region Oracle NoSQL Database environment, the drop region statement removes
the specified remote region from the local region. See Set up Multi-Region Environment for
more details on the local regions and remote regions in a Multi-Region setup.

Note:
This region must be different from the local region where the command is executed.

The following drop region statement removes a remote region named my_regionl.

DROP REGION my regionl

Using APIs to drop regions:

* Java

* Python
« Go

* Node.js
o C#
Java

You can drop a region using SystemRequest class. The SystemRequest class is used to
perform any table-independent administrative operation. You can use the TableRequest class
to drop tables.

Download the full code Regions.java from the examples here.

/* Drop a table from a region*/

private static void dropTabInRegion (NoSQLHandle handle) throws Exception {
String dropTableDDL = "DROP TABLE " + tableName;
TableRequest treq = new TableRequest () .setStatement (dropTableDDL) ;
TableResult tres = handle.tableRequest (treq);
tres.waitForCompletion (handle, 60000, /* wait 60 sec */
1000); /* delay ms for poll */
System.out.println("Table " + tableName + " is dropped");

/* Drop a region*/
private static void dropRegion (NoSQLHandle handle, String regName) throws

3-17

ORACLE

Chapter 3
Managing Tables, Indexes & Regions

Exception {
String dropNSDDL = "DROP REGION " + regName;
SystemRequest sysreq = new SystemRequest();
sysreq.setStatement (dropNSDDL. toCharArray());
SystemResult sysres = handle.systemRequest (sysreq);
sysres.waitForCompletion (handle, 60000,1000);
System.out.println("Region " + regName + " is dropped");

Python

You can drop a region using SystemRequest class. The SystemRequest class is used to
perform any table-independent administrative operations. You can drop a table using the
borneo.TableRequest class

Download the full code Regions.py from the examples here.

#Drop the table from a region
def drop tab region(handle):
statement = '''DROP TABLE stream acct'''
request = TableRequest ().set statement (statement)
table result = handle.do table request (request, 40000, 3000)
table result.wait for completion(handle, 40000, 3000)
print ('Dropped table: stream acct')

#Drop the region

def drop region(handle):
statement = '''DROP REGION LON'''
sysreq = SystemRequest ().set statement (statement)
sys_result = handle.system request (sysreq)
sys_result.wait for completion(handle, 40000, 3000)
print ('Region LON is dropped')

Go

You can drop a region using SystemRequest class. The SystemRequest class is used to
perform any table-independent administrative operations. You can drop a table using
TableRequest class.

Download the full code Regions.go from the examples here.

//drops a table from a region
func drpTabInRegion(client *nosgldb.Client, err error, tableName string) () {
stmt := fmt.Sprintf ("DROP TABLE %s",tableName)
tableReq := &nosqgldb.TableRequest(
Statement: stmt,
}
tableRes, err := client.DoTableRequest (tableReq)
if err != nil {
fmt.Printf ("cannot initiate DROP TABLE request: %v\n", err)
return
}
_, err = tableRes.WaitForCompletion(client, 60*time.Second, time.Second)
if err != nil {
fmt.Printf ("Error finishing DROP TABLE request: %$v\n", err)
return

3-18

ORACLE

Chapter 3
Managing Tables, Indexes & Regions

}
fmt.Println("Dropped table ", tableName)

return

//drop a region
func dropRegion(client *nosgldb.Client, err error) () {
stmt := fmt.Sprintf ("DROP REGION LON")
sysReq := &nosgldb.SystemRequest {
Statement: stmt,

}

sysRes, err := client.DoSystemRequest (sysReq)
_, err = sysRes.WaltForCompletion(client, 60*time.Second, time.Second)
if err != nil {

fmt.Printf ("Error finishing DROP REGION request: %v\n", err)

return

}
fmt.Println("Dropped REGION LON ")

return

Node.js

You can drop a region using adminDDL method. The adminDDL module is used to perform an
administrative operation on the system. You can drop a table using the tableDDL method.

Download the full JavaScript code Regions.js from the examples here and the full TypeScript
code Regions.ts from the examples here.

//drop a table from a region

async function dropTabInRegion (handle) {
const dropDDL = "DROP TABLE ${TABLE NAME}';
let res = await handle.tableDDL (dropDDL) ;
console.log('Table dropped: ' + TABLE NAME);

//drop a region

async function dropRegion (handle) {
const dropReg = 'DROP REGION LON';
let res = await handle.adminDDL (dropRegq) ;
console.log('Region dropped: LON');

C#

You can use ExecuteAdminSync method to drop a region. The ExecuteAdminSync method is
used to perform an administrative operation on the system. You can drop a table using either
ExecuteTableDDLAsync Or ExecuteTableDDLWithCompletionAsync.

Download the full code Regions.cs from the examples here.

private static async Task dropTabInRegion (NoSQLClient client) {
var sql = $S@"DROP TABLE {TableName}";
var tableResult = await client.ExecuteTableDDLAsync (sql);
// Wait for the operation completion
await tableResult.WaitForCompletionAsync();

3-19

Chapter 3
Managing Tables, Indexes & Regions

Console.WriteLine (" Table {0} is dropped", tableResult.TableName);

private static async Task dropRegion (NoSQLClient client) {
var sql = $Q@"DROP REGION LON";
var adminResult = await client.ExecuteAdminAsync(sql);
// Wait for the operation completion
await adminResult.WaitForCompletionAsync();
Console.WriteLine (" Dropped region LON");

ORACLE 3-20

Develop

Inserting,

Insert data

The articles in this section provide steps on how to use SQL and write queries. It covers
information about different complex data types. It also covers how to use indexes for query
optimization.

Modifying, and Deleting Data

You can perform various data manipulation operations in your table. You can add data, modify
an existing data and remove data.

If you want to follow along with the examples, see Sample data to run queries to view a sample
data and use the scripts to load sample data for testing. The scripts create the tables used in
the examples and load data into the tables.

* Insert data

e Upsert Data

* Update Data

* Modify JSON data

* Delete Data

e Using SQL command to insert data
e Using Put API to insert data
* Using MultiWrite API to insert data

Using SQL command to insert data

ORACLE

The INSERT statement is used to construct a new row and add it to a specified table.

Optional column(s) may be specified after the table name. This list contains the column names
for a subset of the table’s columns. The subset must include all the primary key columns. If ho
columns list is present, the default columns list is the one containing all the columns of the
table, in the order, they are specified in the CREATE TABLE statement.

The columns in the columns list correspond one-to-one to the expressions (or DEFAULT
keywords) listed after the VALUES clause (an error is raised if the number of expressions/
DEFAULTs is not the same as the number of columns). These expressions/DEFAULTs
compute the value for their associated column in the new row. An error is raised if an
expression returns more than one item. If an expression returns no result, NULL is used as the
result of that expression. If instead of an expression, the DEFAULT keyword appears in the
VALUES list, the default value of the associated column is used as the value of that column in
the new row. The default value is also used for any missing columns when the number of
columns in the columns list is less than the total number of columns in the table.

4-1

ORACLE

Chapter 4
Inserting, Modifying, and Deleting Data

Example 1: Inserting a row into BaggageInfo table providing all column values:

INSERT INTO BaggageInfo VALUES (

1762392196147,
"Birgit Naquin",
anv’
"165-742-5715",
"Qp1LoT",
[{
"id" : "7903989918469",
"tagNum" : "17657806240229",
"routing" : "JFK/MAD",
"lastActionCode" : "OFFLOAD",
"lastActionDesc" : "OFFLOAD",
"lastSeenStation" : "MAD",
"flightLegs" : [{
"flightNo" : "BM495",
"flightDate" : "2019-03-07T07:00:002",
"fltRouteSrc" : "JFK",
"fltRouteDest" : "MAD",
"estimatedArrival™ : "2019-03-07T14:00:002",
"actions" : [{
"actionAt" : "MAD",
"actionCode" : "Offload to Carousel at MAD",
"actionTime" : "2019-03-07T13:54:002"
b A
"actionAt" : "JFK",
"actionCode" : "ONLOAD to MAD",
"actionTime" : "2019-03-07T07:00:002"
b A
"actionAt" : "JFK",
"actionCode" : "BagTag Scan at JFK",
"actionTime" : "2019-03-07T06:53:002"
b A
"actionAt" : "JFK",
"actionCode" : "Checkin at JFK",
"actionTime" : "2019-03-07T05:03:002"
bl
P
"lastSeenTimeGmt" : "2019-03-07T13:51:00z",
"bagArrivalDate" : "2019-03-07T13:51:00Z"

b

Example 2: Skipping some data while doing an INSERT statement by specifying the DEFAULT
clause.

You can skip the data of some columns by specifying "DEFAULT".

INSERT INTO BaggageInfo VALUES (
1762397286805,

"Bonnie Williams",

DEFAULT,

DEFAULT,

"CZ1051",

4-2

ORACLE

"id" "79039899129693",
"tagNum" "17657806216554",
"routing" "SFO/ORD/FRA",
"lastActionCode" "OFFLOAD",
"lastActionDesc" "OFFLOAD",
"lastSeenStation" "FRA",
"flightLegs" : [{
"flightNo" "BM572",
"flightDate" "2019-03-02T05:00:00z2",
"fltRouteSrc" "SFO",
"fltRouteDest" "ORD",
"estimatedArrival" "2019-03-02T09:00:002",
"actions" : |
"actionAt" "SFO",
"actionCode" "ONLOAD to ORD",
"actionTime" "2019-03-02T05:24:002"
b Ao
"actionAt" "SFO",
"actionCode" "BagTag Scan at SFO",
"actionTime" "2019-03-02T04:52:00z2"
b Ao
"actionAt" "SFO",
"actionCode" "Checkin at SFO",
"actionTime" "2019-03-02T03:28:00z2"
bl
oo A
"flightNo" "BM582",
"flightDate" "2019-03-02T05:24:00z2",
"fltRouteSrc" "ORD",
"fltRouteDest" "FRA",
"estimatedArrival" "2019-03-02T13:24:00z2",
"actions" : |
"actionAt" "FRA",
"actionCode" "Offload to Carousel at FRA",
"actionTime" "2019-03-02T13:20:00z2"
b Ao
"actionAt" "ORD",
"actionCode" "ONLOAD to FRA",
"actionTime" "2019-03-02T12:54:002"
b Ao
"actionAt" "ORD",
"actionCode" "OFFLOAD from ORD",
"actionTime" "2019-03-02T12:30:002"
bl
Pl
"lastSeenTimeGmt" "2019-03-02T13:18:002",
"bagArrivalDate" "2019-03-02T13:18:00z2"

b

Chapter 4
Inserting, Modifying, and Deleting Data

Example 3: Specifying column names and skipping columns in the insert statement.

4-3

Chapter 4
Inserting, Modifying, and Deleting Data

If you have data only for some columns of a table, you can specify the name of the columns in
the INSERT clause and then specify the corresponding values in the "VALUES" clause.

INSERT INTO BaggageInfo (ticketNo, fullName,confNo,bagInfo) VALUES (

1762355349471,
"Bryant Weber",
"LI7NIW",
[{
"id"™ : "79039899149056",
"tagNum" : "17657806234185",
"routing" : "MEL/LAX/MIA",
"lastActionCode" "OFFLOAD",
"lastActionDesc" "OFFLOAD",
"lastSeenStation" "MIA",
"flightLegs" : [{
"flightNo" : "BM114",
"flightDate" "2019-03-01T12:00:002",
"fltRouteSrc" "MEL",
"fltRouteDest" "LAX",
"estimatedArrival" : "2019-03-02T02:00:00Z2",
"actions" : [{
"actionAt" "MEL",
"actionCode" "ONLOAD to LAX",
"actionTime" "2019-03-01T12:20:002"
b A
"actionAt" "MEL",
"actionCode" "BagTag Scan at MEL",
"actionTime" "2019-03-01T11:52:002"
b A
"actionAt" "MEL",
"actionCode" "Checkin at MEL",
"actionTime" "2019-03-01T11:43:002"
bl
b A
"flightNo" : "BM866",
"flightDate" "2019-03-01T12:20:00z2",
"fltRouteSrc" "LAX",
"fl1tRouteDest" "MIA",
"estimatedArrival" : "2019-03-02T16:21:00Z",
"actions" : [{
"actionAt" "MIA",
"actionCode" "Offload to Carousel at MIA",
"actionTime" "2019-03-02T16:18:002"
b A
"actionAt" "LAX",
"actionCode" "ONLOAD to MIA",
"actionTime" "2019-03-02T16:12:002"
b A
"actionAt" "LAX",
"actionCode" "OFFLOAD from LAX",
"actionTime" "2019-03-02T16:02:002"
bl
Pl
"lastSeenTimeGmt" "2019-03-02T16:09:002",
"bagArrivalDate" "2019-03-02T16:09:002"

ORACLE

4-4

ORACLE

Chapter 4

Inserting, Modifying, and Deleting Data

Example 4: Inserting a row into stream acct table providing all column values:

INSERT INTO stream acct VALUES (
1,
"AP",
"2023-10-18",
{
"firstName": "Adam",
"lastName": "Phillips",
"country": "Germany",
"contentStreamed": [{
"showName": "At the Ranch",
"showId": 26,
"showtype": "tvseries",
"genres": ["action", "crime", "spanish"],
"numSeasons": 4,
"seriesInfo": [{
"seasonNum": 1,
"numEpisodes": 2,
"episodes": [{
"episodeID": 20,
"episodeName": "Season 1 episode 1",
"lengthMin": 85,
"minWatched": 85,
"date": "2022-04-18"

"episodeID": 30,

"lengthMin": 60,

"episodeName": "Season 1 episode 2",
"minWatched": 60,

"date": "2022 - 04 - 18 "

"seasonNum": 2,
"numEpisodes": 2,
"episodes": [{
"episodeID": 40,
"episodeName": "Season 2 episode 1",
"lengthMin": 50,
"minWatched": 50,
"date": "2022-04-25"

"episodeID": 50,

"episodeName": "Season 2 episode 2",
"lengthMin": 45,

"minWatched": 30,

"date": "2022-04-27"

4-5

Chapter 4
Inserting, Modifying, and Deleting Data

"seasonNum": 3,
"numEpisodes": 2,
"episodes": [{
"episodeID": 60,
"episodeName": "Season 3 episode 1",
"lengthMin": 50,
"minWatched": 50,
"date": "2022-04-25"

"episodeID": 70,

"episodeName": "Season 3 episode 2",
"lengthMin": 45,

"minWatched": 30,

"date": "2022 - 04 - 27 "

"showName": "Bienvenu",
"showId": 15,
"showtype": "tvseries",

"genres": ["comedy", "french"],
"numSeasons": 2,
"seriesInfo": [{
"seasonNum": 1,
"numEpisodes": 2,
"episodes": [{
"episodeID": 20,
"episodeName": "Bonjour",
"lengthMin": 45,
"minWatched": 45,
"date": "2022-03-07"

"episodeID": 30,
"episodeName": "Merci",
"lengthMin": 42,
"minWatched": 42,
"date": "2022-03-08"

Example 5: Insert data into the JSON collection table created for a shopping application.

INSERT into storeAcct (contactPhone, firstName, lastName, address, cart)

values("1817113382", "Adam", "Smith", {"street" : "Tex Ave", "number" : 401,
"city" : "Houston", "state" : "TX", "zip" : 95085}, [{"item" : "handbag",
"quantity" : 1, "priceperunit" : 350}, {"item" : "Lego", "quantity" : 1,

"priceperunit" : 5500}1])

ORACLE 46

Chapter 4
Inserting, Modifying, and Deleting Data

In the above example, you insert the shopper's data by supplying the contactPhone as the
primary key followed by other details of the shoppers. The shopper's details are stored as a
single document. Notice that in JSON collection tables, you do not supply a column name for
the document itself and you only provide the JSON fields in the document.

You can add another row to the same table with additional fields.

INSERT into storeAcct (contactPhone, firstName, lastName, gender, address,
notify, cart, wishlist) values("1917113999", "Sharon", "Willard", "F",

{"street" : "Maine", "number" : 501, "city" : "San Jose", "state" : "San
Francisco", "zip" : 95095}, "yes", [{"item" : "wallet", "quantity" : 2,
"priceperunit" : 950}, {"item" : "wall art", "quantity" : 1, "priceperunit"
9500}], [{"item" : "Tshirt", "priceperunit" : 500}, {"item" : "Jenga",
"priceperunit" : 850}])

In the above statement, you insert the shopper data with additional fields such as gender,
notify, and wishlist as compared with the first inserted row. The wishlist field is a JSON
array that includes the details of the items wishlisted by the shopper.

Using Put API to insert data

ORACLE

Add rows to your table. When you store data in table rows, your application can easily retrieve,
add to, or delete information from a table.

You can use the PutRequest class / put method to perform unconditional and conditional puts
to:

* Overwrite any existing row. Overwrite is the default functionality.
* Succeed only if the row does not exist. Use the IfAbsent method in this case.
* Succeed only if the row exists. Use the IfPresent method in this case.

* Succeed only if the row exists and the version matches a specific version. Use IfVersion
method for this case and the setMatchversion method to specify the version to match.

« Java

e Python
+ Go

* Node.js
e C#
Java

The PutRequest class provides the setValueFromJson method which takes a JSON string and
uses that to populate a row to insert into the table. The JSON string should specify field names
that correspond to the table field names.

Download the full code AddData.java from the examples here.

private static void writeRows (NoSQLHandle handle, MapValue value)
throws Exception {

4-7

ORACLE

Chapter 4
Inserting, Modifying, and Deleting Data

PutRequest putRequest =
new PutRequest () .setValue(value).setTableName (tableName) ;
PutResult putResult = handle.put (putRequest);

if (putResult.getVersion() != null) {
System.out.println("Added a row to the stream acct table");
} else {

System.out.println("Put failed");

Inserting data into a JSON collection table: You can insert the top-level fields of the
document in the JSON collection table using a sequence of PutRequest operations. For
nested-level JSON fields, you can supply the JSON string in the putFromJson operation. You
can also use the createFromJson method which takes the fields as a JSON string and uses
that to populate a row in the table.

/*

* Construct a row for JSON collection table with the following data:
* |

* "id": 1,

* "name": "John Doe",

* "age": 25,

* "college" : {"name" : "Presidency", "branch" : "Biotechnology"}
* }

*)

*/

String tableName = "usersJSON";
MapValue value = new MapValue().put("id", 1)
.put ("name", "John Doe")

.put ("age", 25)
.putFromJson("college",

"{\"name\" : \"Presidency\"," +
"\"branch\" : \"Biotechnology\"" +
" }", null);

PutRequest putRequest = new PutRequest ()
.setValue (value)
.setTableName (tableName) ;

PutResult putRes = handle.put (putRequest);
System.out.println("Put row: " + value + " result=" + putRes);

Python

The borneo.PutRequest class represents input to the borneo.NoSQLHandle.put () method
which is used to insert single rows.

You can also add JSON data to your table. In the case of a fixed-schema table the JSON is
converted to the target schema. JSON data can be directly inserted into a column of type
JSON. The use of the JSON data type allows you to create table data without a fixed schema,
allowing more flexible use of the data.

4-8

ORACLE

Chapter 4
Inserting, Modifying, and Deleting Data

Download the full code AddData.py from the examples here.
def insert record(handle,table name,acct data):
request = PutRequest().set table name(table name)

.set _value from json(acct data)

handle.put (request)
print ('Added a row to the stream acct table')

Inserting data into a JSON collection table: You can add a row directly into the JSON
collection table as a JSON string.

from borneo import PutRequest

request =

PutRequest () .set table name ('usersJSON').request.set value from json('{"id":
1, "name": "John Doe", "age": 25, "college" : {"name" : "Presidency",
"branch" : "Biotechnology"}}"')

handle.put (request)

Go

The nosqldb.PutRequest represents an input to the nosqldb.Put () function and is used to
insert single rows.

The data value provided for a row (in PutRequest) is a *types.MapValue. The key portion of
each entry in the Mapvalue must match the column name of target table, and the value portion
must be a valid value for the column. JSON data can also be directly inserted into a column of
type JSON. The use of the JSON data type allows you to create table data without a fixed
schema, allowing more flexible use of the data.

Download the full code AddData.go from the examples here.

func insertData(client *nosqgldb.Client, err error,
tableName string,valuel *types.MapValue) () {
putReq := &nosqldb.PutRequest{
TableName: tableName,
Value: valuel,
}
putRes, err := client.Put (putReq)
if err !'= nil {
fmt.Printf("failed to put single row: %v\n", err)
return
}
fmt.Printf ("Added a row to the stream acct table\n")

Inserting data into a JSON collection table: You can create a map value from JSON data
and add the row to the JSON collection table.

value, err:=types.NewMapValueFromJSON({"id": 1, "name": "John Doe", "age":
25, "college" : {"name" : "Presidency", "branch" : "Biotechnology"}}")
iferr!=nil {

return

}
req:=&nosqgldb.PutRequest {

4-9

ORACLE

Chapter 4
Inserting, Modifying, and Deleting Data

TableName: "usersJSON",
Value: value,
}

res, err:=client.Put(req)

Node.js

You use the put method to insert a single row into the table. For method details, see
NoSQLClient class.

JavasScript: Download the full code AddData.js from the examples here.

/* Adding 3 records in acct stream table */

let putResult = await handle.put (TABLE NAME, JSON.parse(acctl));
let putResultl = await handle.put (TABLE NAME, JSON.parse(acct2));
let putResult2 = await handle.put (TABLE NAME, JSON.parse (acct3))

’

console.log("Added rows to the stream acct table");

TypeScript: Download the full code AddData.ts from the examples here.

interface StreamInt {

acct Id: Integer;

profile name: String;

account expiry: TIMESTAMP;

acct data: JSON;
}
/* Adding 3 records in acct stream table */
let putResult = await handle.put<StreamInt>(TABLE NAME, JSON.parse (acctl));
let putResultl = await handle.put<StreamInt>(TABLE NAME, JSON.parse(acct2));
let putResult2 = await handle.put<StreamInt>(TABLE NAME, JSON.parse(acct3))

’

console.log("Added rows to the stream acct table");

Inserting data into a JSON collection table: You can add a row into the JSON collection
table by supplying a plain JavaScript object with supported JSON types.

import { NoSQLClient, ServiceType } from 'oracle-nosqldb';
const client = new NoSQLClient ('config.json');

const TABLE NAME = 'usersJSON';

const record = {id : 1,

name : 'John Doe',
age : 25,
college : {
name : 'Presidency',

branch : 'Biotechnology'
}

async function writeARecord(client, record) {
await client.put (TABLE NAME, record);

4-10

Chapter 4
Inserting, Modifying, and Deleting Data

C#

The method PutAsync and related methods PutIfAbsentAsync , PutIfPresentAsync and
PutIfVersionAsync are used to insert a single row into the table or update a single row.

Each of the Put methods above returns Task<PutResult<RecordValue>>. PutResult instance
contains info about a completed Put operation, such as success status (conditional put
operations may fail if the corresponding condition was not met) and the resulting RowVersion.
Note that Success property of the result only indicates successful completion as related to
conditional Put operations and is always true for unconditional Puts. If the Put operation fails
for any other reason, an exception will be thrown. Using fields of data type JSON allows more
flexibility in the use of data as the data in JSON field does not have a predefined schema. To
put value into a JSON field, supply a Mapvalue instance as its field value as part of the row
value. You may also create its value from a JSON string via FieldValue.FromJsonString.

Download the full code AddData.cs from the examples here.

private static async Task insertData (NoSQLClient client, String acctdet) {
var putResult = await client.PutAsync (TableName,
FieldValue.FromJsonString (acctdet) .AsMapValue);
if (putResult.ConsumedCapacity != null)
{

Console.WriteLine (" Added a row to the stream acct table");

Inserting data into a JSON collection table: You add a row in the JSON collection table by
putting its value from a JSON string created through FromJsonString method.

var tableName = "usersJSON";

private const string data= @"{

"id": 1,

"name": "John Doe",

"age": 25,

"college" : {"name" : "Presidency", "branch" : "Biotechnology"}

}

var result = await client.PutAsync (tableName,
FieldValue.FromJsonString(data) .AsMapValue) ;

Using MultiWrite API to insert data

You can add more than a row of data in a single database operation using MultiWrite API.

e Java
e Python
« Go

ORACLE 411

ORACLE

Chapter 4
Inserting, Modifying, and Deleting Data

* Node.js
e C#
Java

You can perform a sequence of PutRequest operations associated with a table that share the
same shard key portion of their primary keys as a single atomic write operation using the
WriteMultipleRequest class. You can also simultaneously add data to a parent and child table
using the WriteMultipleRequest class. This is an efficient way to atomically modify multiple
related rows. If the operation is successful, the WriteMultipleResult.getSuccess () method
returns true.

See Oracle NoSQL Java SDK API Reference for more details on the various classes and
methods.

Download the full code MultiWrite.java from the examples here.

private static void writeMul (NoSQLHandle handle,String parent tblname,
String parent data, String child tblname, String child data) {
WriteMultipleRequest umRequest = new WriteMultipleRequest();
PutRequest putRequest =
new
PutRequest () .setValueFromJson (parent data,null).setTableName (parent tblname);
umRequest.add (putRequest, false);
putRequest =
new
PutRequest () .setValueFromJson (child data,null).setTableName (child tblname);
umRequest.add (putRequest, false);
WriteMultipleResult umResult = handle.writeMultiple (umRequest) ;

Python

You can perform a sequence of PutRequest operations associated with a table that share the
same shard key portion of their primary keys as a single atomic write operation using the
borneo.WriteMultipleRequest class. You can also simultaneously add data to a parent and
child table using the borneo.WriteMultipleRequest class. This is an efficient way to atomically
modify multiple related rows.

See Oracle NoSQL Python SDK API Reference for more details on the various classes and
methods.

Download the full code MultiWrite.py from the examples here.

def mul write(handle,parent tblname,parent data,
child tblname, child data):
request = PutRequest ()
request.set value from json(parent data)
request.set table name ('ticket')
wm_req.add (request, True)
requestl = PutRequest()
requestl.set table name(child tblname)
requestl.set value from json(child data)
wm_req.add (requestl, True)
result = handle.write multiple(wm req)

4-12

Chapter 4
Inserting, Modifying, and Deleting Data

Go

You can perform a sequence of PutRequest operations associated with a table that share the
same shard key portion of their primary keys as a single atomic write operation using the
WriteMultipleRequest class. You can also simultaneously add data to a parent and child table
using the WriteMultipleRequest class. This is an efficient way to atomically modify multiple
related rows.

See Oracle NoSQL Go SDK API Reference for more details on the various classes and
methods.

Download the full code MultiWrite.go from the examples here.

//multiple write from the table
func mul write(client *nosqgldb.Client, err error, parenttbl name string,
parent data string, childtbl name string, child data string) () {
value, err := types.NewMapValueFromJSON (parent data)
putReq := &nosqgldb.PutRequest{
TableName: parenttbl name,
Value: value,
}
wmReq := &nosqgldb.WriteMultipleRequest {
TableName: "",
Timeout: 10 * time.Second,
}
wmReq.AddPutRequest (putReq, true)

valuel, err := types.NewMapValueFromJSON(child data)
putReqgl := &nosgldb.PutRequest(

TableName: childtbl name,

Value: valuel,

}
wmReq.AddPutRequest (putReql, true)

wmRes, err := client.WriteMultiple (wmReq)

if err != nil {
fmt.Printf ("WriteMultiple() failed: %v\n", err)
return

}
if wmRes.IsSuccess () {

fmt.Printf ("WriteMultiple () succeeded\n")
} else {

fmt.Printf ("WriteMultiple () failed\n")

Node.js

You can perform a sequence of put operations associated with a table that share the same
shard key portion of their primary keys as a single atomic write operation using the writeMany
method. You can also simultaneously add data to a parent and child table using the writeMany
method. This is an efficient way to atomically modify multiple related rows.

For method details, see NoSQLClient class.

ORACLE 413

Chapter 4
Inserting, Modifying, and Deleting Data

JavasScript: Download the full code MultiWrite.js from the examples here.
const ops = [

tableName: 'ticket',

put: {
"ticketNo": "1762344493810",
"confNo" : "LE6J4ZzZ"

b

abortOnFail: true

tableName: 'ticket.bagInfo',

put: {
"ticketNo":"1762344493810",
"id":"79039899165297",
"tagNum":"17657806255240",
"routing":"MIA/LAX/MEL",
"lastActionCode":"OFFLOAD",
"lastActionDesc":"OFFLOAD",
"lastSeenStation":"MEL",
"lastSeenTimeGmt":"2019-02-01T16:13:002",
"bagArrivalDate":"2019-02-01T16:13:00Z"

}I

abortOnFail: true
1
const res = await handle.writeMany(ops, null);
TypeScript: Download the full code MultiWrite.ts from the examples here.

const ops = [

tableName: 'ticket',

put: {
"ticketNo": "1762344493810",
"confNo" : "LE6J4Z"

b

abortOnFail: true

tableName: 'ticket.bagInfo',

put: {
"ticketNo":"1762344493810",
"id":"79039899165297",
"tagNum":"17657806255240",
"routing":"MIA/LAX/MEL",
"lastActionCode" :"OFFLOAD",
"lastActionDesc":"OFFLOAD",
"lastSeenStation":"MEL",
"lastSeenTimeGmt":"2019-02-01T16:13:00Z",
"bagArrivalDate":"2019-02-01T16:13:002"

}I

abortOnFail: true

ORACLE 41

Chapter 4
Inserting, Modifying, and Deleting Data

1;

const res = await handle.writeMany (ops, null);

C#

You can perform a sequence of put operations associated with a table that share the same
shard key portion of their primary keys as a single atomic write operation using the
PutManyAsync method. You can also simultaneously add data to a parent and child table using
the PutManyAsync method. This is an efficient way to atomically modify multiple related rows.

See Oracle NoSQL Dotnet SDK API Reference for more details of all classes and methods.

Download the full code MultiWrite.cs from the examples here.

private static async Task mul write(NoSQLClient client,string parentbl name,
string datal, string childtbl name, string data2) {
var result = await client.WriteManyAsync (
new WriteOperationCollection ()
.AddPut (parentbl name, FieldValue.FromJsonString(datal) .AsMapValue)
.AddPut (childtbl name, FieldValue.FromJsonString(dataZ2).AsMapValue)
)

Upsert Data

The word UPSERT combines UPDATE and INSERT, describing the statement's function.

e Using SQL command to upsert data

e Using API to upsert data

Using SQL command to upsert data

ORACLE

Use an UPSERT statement to insert a row where it does not exist, or to update the row with
new values when it does.

Example : Updating data in the BaggageInfo table using UPSERT command.

The existing details for the customer with full name Adam Phillips is shown below.
SELECT * FROM BaggageInfo WHERE fullname="Adam Phillips"

{
"ticketNo" : 1762344493810,
"fullName" : "Adam Phillips",
"gender" : "M",
"contactPhone" : "893-324-1064",
"confNo" : "LE6J4Z",
"bagInfo" : [{
"bagArrivalDate" : "2019-02-01T16:13:002",
"flightLegs" : [{
"actions" : [{

4-15

ORACLE

1 row returned

Chapter 4

Inserting, Modifying, and Deleting Data

"actionAt" "MIA",
"actionCode" "ONLOAD to LAX",
"actionTime" "2019-02-01T06:13:002"
b Ao
"actionAt" "MIA",
"actionCode" "BagTag Scan at MIA",
"actionTime" "2019-02-01T05:47:002"
b Ao
"actionAt" "MIA",
"actionCode" "Checkin at MIA",
"actionTime" "2019-02-01T04:38:00z2"
H
"estimatedArrival" "2019-02-01T11:00:002",
"flightDate" "2019-02-01T06:00:002",
"flightNo" "BM604",
"fltRouteDest" "LAX",
"fltRouteSrc" "MIA"
oo A
"actions" : [{
"actionAt" "MEL",
"actionCode" "Offload to Carousel at MEL",
"actionTime" "2019-02-01T16:15:00Z"
b Ao
"actionAt" "LAX",
"actionCode" "ONLOAD to MEL",
"actionTime" "2019-02-01T15:35:002"
b Ao
"actionAt" "LAX",
"actionCode" "OFFLOAD from LAX",
"actionTime" "2019-02-01T15:18:00z2"
H
"estimatedArrival" "2019-02-01T16:15:00z2",
"flightDate" "2019-02-01T06:13:00z2",
"flightNo" "BM667",
"fltRouteDest" "MEL",
"fltRouteSrc" "LAX"
o
"id" "79039899165297",
"lastActionCode" "OFFLOAD",
"lastActionDesc" "OFFLOAD",
"lastSeenStation" "MEL",
"lastSeenTimeGmt" "2019-02-01T16:13:00z2",
"routing" "MIA/LAX/MEL",
"tagNum" "17657806255240"

UPSERT INTO BaggageInfo VALUES (
1762344493810,
"Adam Phillips",

You modify the existing row using the UPSERT command. You can use an optional RETURNING
clause to fetch the values after UPSERT is performed. The updated value for the customer
with full name Adam Phillips is fetched as shown below.

4-16

ORACLE

"y
"893-324-1864",
"LE6JAY",
[
"id" "79039899165297",
"tagNum" "17657806255240",
"routing" : "MIA/LAX/MEL",
"lastActionCode" "OFFLOAD",
"lastActionDesc" "OFFLOAD",
"lastSeenStation" "MEL",
"flightLegs" : [{
"flightNo" "BM604",
"flightDate" "2019-02-01T06:00:002",
"fltRouteSrc" : "MIA",
"fltRouteDest" "LAX",
"estimatedArrival" "2019-02-01T11:00:002",
"actions" : |
"actionAt" "MIA",
"actionCode" "ONLOAD to LAX",
"actionTime" "2019-02-01T06:13:002"
b Ao
"actionAt" "MIA",
"actionCode" "BagTag Scan at MIA",
"actionTime" "2019-02-01T05:47:002"
b Ao
"actionAt" "MIA",
"actionCode" "Checkin at MIA",
"actionTime" "2019-02-01T04:38:00z2"
bl
oo A
"flightNo" "BM667",
"flightDate" "2019-02-01T06:13:002",
"fltRouteSrc" "LAX",
"fltRouteDest" "MEL",
"estimatedArrival" "2019-02-01T16:15:00z2",
"actions" : |
"actionAt" "MEL",
"actionCode" "Offload to Carousel at MEL",
"actionTime" "2019-02-01T16:15:00Z"
b Ao
"actionAt" : "LAX",
"actionCode" "ONLOAD to MEL",
"actionTime" "2019-02-01T15:35:002"
b Ao
"actionAt" "LAX",
"actionCode" : "OFFLOAD from LAX",
"actionTime" "2019-02-01T15:18:002"
bl
Pl
"lastSeenTimeGmt" "2019-02-01T16:18:00z2",
"bagArrivalDate" "2019-02-01T16:18:002"

bl
) RETURNING *

Chapter 4
Inserting, Modifying, and Deleting Data

4-17

ORACLE

Chapter 4

Inserting, Modifying, and Deleting Data

"ticketNo" : 1762344493810,

"fullName" : "Adam Phillips",
"gender" : "M",
"contactPhone" : "893-324-1864",
"confNo" : "LE6J4Y",
"bagInfo" : [{
"bagArrivalDate" "2019-02-01T16:18:00z2",
"flightLegs" : [{
"actions" : [{
"actionAt" "MIA",
"actionCode" "ONLOAD to LAX",
"actionTime" "2019-02-01T06:13:002"
b Ao
"actionAt" "MIA",
"actionCode" "BagTag Scan at MIA",
"actionTime" "2019-02-01T05:47:00z2"
b Ao
"actionAt" "MIA",
"actionCode" "Checkin at MIA",
"actionTime" "2019-02-01T04:38:00z2"
H
"estimatedArrival™ : "2019-02-01T11:00:002",
"flightDate" "2019-02-01T06:00:002",
"flightNo" : "BM604",
"fltRouteDest" "LAX",
"fltRouteSrc" "MIA"
oo A
"actions" : [{
"actionAt" "MEL",
"actionCode" "Offload to Carousel at MEL",
"actionTime" "2019-02-01T16:15:00Z"
b Ao
"actionAt" "LAX",
"actionCode" "ONLOAD to MEL",
"actionTime" "2019-02-01T15:35:002"
b Ao
"actionAt" "LAX",
"actionCode" "OFFLOAD from LAX",
"actionTime" "2019-02-01T15:18:00z2"
H
"estimatedArrival"™ : "2019-02-01T16:15:002",
"flightDate" "2019-02-01T06:13:002",
"flightNo" : "BM667",
"fltRouteDest" "MEL",
"fltRouteSrc" "LAX"
o
"id" : "79039899165297",
"lastActionCode" "OFFLOAD",
"lastActionDesc" "OFFLOAD",
"lastSeenStation" "MEL",
"lastSeenTimeGmt" "2019-02-01T16:18:00z2",
"routing" : "MIA/LAX/MEL",
"tagNum" : "17657806255240"

4-18

Chapter 4
Inserting, Modifying, and Deleting Data

Note:

If you do not supply values for all the columns in a UPSERT statement, then those
columns get a DEFAULT value if such an option is specified in the corresponding
CREATE TABLE statement or those columns are assigned NULL values.

Example : Inserting data in the BaggageInfo table using UPSERT command.

A new entry value for a customer with full name Birgit Naquin is added using the UPSERT
command.

SELECT * FROM BaggageInfo WHERE fullname="Birgit Naquin";

ORACLE

0 row returned

UPSERT INTO BaggageInfo VALUES (

1762392196147,
"Birgit Naquin",
HM"’
"165-742-5715",
"QD1LOT",
[{
"id" : "7903989918469",
"tagNum" : "17657806240229",
"routing" : "JFK/MAD",
"lastActionCode" "OFFLOAD",
"lastActionDesc" "OFFLOAD",
"lastSeenStation" "MAD",
"flightLegs" : [{
"flightNo" : "BM495",
"flightDate" "2019-03-07T07:00:002",
"fltRouteSrc" "JFK",
"fltRouteDest" "MAD",
"estimatedArrival" "2019-03-07T14:00:002",
"actions" : [{
"actionAt" "MAD",
"actionCode" "Offload to Carousel at MAD",
"actionTime" "2019-03-07T13:54:002"
b A
"actionAt" "JFK",
"actionCode" "ONLOAD to MAD",
"actionTime" "2019-03-07T07:00:002"
b A
"actionAt" "JFK",
"actionCode" "BagTag Scan at JFK",
"actionTime" "2019-03-07T06:53:002"
b A
"actionAt" "JFK",
"actionCode" "Checkin at JFK",
"actionTime" "2019-03-07T05:03:002"
bl
Pl
"lastSeenTimeGmt" "2019-03-07T13:51:002",

4-19

"bagArrivalDate"

b

{"NumRowsInserted":1}

1 row returned

"2019-03-07T13:51:00Z"

Chapter 4
Inserting, Modifying, and Deleting Data

The result shows {"NumRowsInserted":1} which implies a new row has been inserted. The
value inserted using the UPSERT command can be viewed as shown below:

SELECT * FROM BaggageInfo where fullname="Birgit Naquin"

{

"ticketNo" 1762392196147,
"fullName" "Birgit Naquin",
"gender" "M",
"contactPhone" "165-742-5715",
"confNo" "QD1LOT",
"bagInfo" : [{
"bagArrivalDate" "2019-03-07T13:51:00z",
"flightLegs" : [{
"actions" : [{
"actionAt" "MAD",
"actionCode" "Offload to Carousel at MAD",
"actionTime" "2019-03-07T13:54:00z2"
b A
"actionAt" "JFK",
"actionCode" "ONLOAD to MAD",
"actionTime" "2019-03-07T07:00:002"
b A
"actionAt" "JFK",
"actionCode" "BagTag Scan at JFK",
"actionTime" "2019-03-07T06:53:002"
b A
"actionAt" "JFK",
"actionCode" "Checkin at JFK",
"actionTime" "2019-03-07T05:03:00z2"
I
"estimatedArrival" "2019-03-07T14:00:00z2",
"flightDate" "2019-03-07T07:00:00z",
"flightNo" "BM495",
"fltRouteDest" "MAD",
"fltRouteSrc" "JFK"
1
"id" "7903989918469",
"lastActionCode" "OFFLOAD",
"lastActionDesc" "OFFLOAD",
"lastSeenStation" "MAD",
"lastSeenTimeGmt" "2019-03-07T13:51:002",
"routing" "JFK/MAD",
"tagNum" "17657806240229"

}]
}

1 row returned

ORACLE

4-20

ORACLE

Chapter 4
Inserting, Modifying, and Deleting Data

Note:

If you do not supply values for all the columns in a UPSERT statement, then those
columns get a DEFAULT value if such an option is specified in the corresponding
CREATE TABLE statement or those columns are assigned NULL values. You can
also use an optional RETURNING clause as part of the UPSERT command.

Example : Use UPSERT statement to add/modify data in the stream acct table.

UPSERT INTO stream acct VALUES

(

1,

"AP",

{

"2023-10-18",
"firstName": "Adam",
"lastName": "Phillips",
"country": "Germany",
"contentStreamed": [{
"showName": "At the Ranch",
"showId": 26,
"showtype": "tvseries",
"genres": ["action", "crime", "spanish"],

"numSeasons": 4,
"seriesInfo": [{
"seasonNum": 1,
"numEpisodes": 2,
"episodes": [{
"episodeID": 20,
"episodeName": "Season 1 episode 1",
"lengthMin": 75,
"minWatched": 75,
"date": "2022-04-18"

"episodeID": 30,

"lengthMin": 60,

"episodeName": "Season 1 episode 2",
"minWatched": 40,

"date": "2022 - 04 - 18 "

"seasonNum": 2,
"numEpisodes": 2,
"episodes": [{
"episodeID": 40,
"episodeName": "Season 2 episode 1",
"lengthMin": 40,
"minWatched": 30,
"date": "2022-04-25"

"episodeID": 50,

4-21

ORACLE

)

}

}

"episodeName": "Season 2 episode 2",
"lengthMin": 45,

"minWatched": 30,

"date": "2022-04-27"

"seasonNum": 3,
"numEpisodes": 2,
"episodes": [{
"episodeID": 60,
"episodeName": "Season 3 episode 1",
"lengthMin": 20,
"minWatched": 20,
"date": "2022-04-25"

"episodeID": 70,
"episodeName": "Season 3 episode 2",
"lengthMin": 45,
"minWatched": 30,

"date": "2022 - 04 - 27 "
}]
H
"showName": "Bienvenu",
"showId": 15,
"showtype": "tvseries",
"genres": ["comedy", "french"],

"numSeasons": 2,
"seriesInfo": [{
"seasonNum": 1,
"numEpisodes": 2,
"episodes": [{
"episodeID": 20,
"episodeName": "Bonjour",
"lengthMin": 45,
"minWatched": 45,
"date": "2022-03-07"

"episodeID": 30,
"episodeName": "Merci",
"lengthMin": 42,
"minWatched": 42,
"date": "2022-03-08"

}

RETURNING *

Chapter 4
Inserting, Modifying, and Deleting Data

In the above example, a new row is inserted if the stream acct table does not have a row
corresponding to acct_id =1. Else the existing row with the value of acct id =1 is updated.

4-22

Chapter 4
Inserting, Modifying, and Deleting Data

Example : Add a new shopper's record to the storeAcct table.

You can use the UPSERT statement to add a new document or update fields in an existing
document in the JSON collection tables. Consider the JSON collection table created for a
shopping application table.

UPSERT into storeAcct values ("1417114588", {"firstName" : "Dori",
"lastName" : "Martin", "email" : "dormartin@usmail.com", "address"
{"Dropbox" : "Presidency College"}}) RETURNING *;

In the above example, you use the UPSERT statement to add a new row to the storeAcct
table.

You can use the UPSERT statement to update a shopper's information. Only the fields
supplied in the UPSERT statement are updated in the document. The omitted fields are
removed from the document.

Output:

{"contactPhone":"1417114588", "address": {"Dropbox":"Presidency
College"},"email":"lorphil@usmail.com","firstName":"Dori","lastName":"Martin"}

Using API to upsert data

You can use the UPSERT SQL command in the Query request to update or insert data.

* Java

e Python
« Go

* Node.js
. C#
Java

To execute your query, you use the NoSQLHandle.query () API.

Download the full code ModifyData.java from the examples here.

/*Upsert data*/
private static void upsertRows (NoSQLHandle handle, String sqglstmt) throws
Exception {
try (
QueryRequest queryRequest = new QueryRequest () .setStatement (sgqlstmt);
QueryIterableResult results = handle.querylterable (queryRequest)) {
for (MapValue res : results) {
System.out.println("\t" + res);

ORACLE 493

ORACLE

Chapter 4

Inserting, Modifying, and Deleting Data

String upsert row = "UPSERT INTO stream acct VALUES ("+

"1, -

"\"AP\", "+

"\"2023-10-18\", "+

"{\"firstName\": \"Adam\","+

"\"lastName\": \"Phillips\","+

"\"country\": \"Germany\","+

"\"contentStreamed\": [{"+
"\"showName\" : \"At the Ranch\","+
"\"showId\" : 26,"+
"\"showtype\" : \"tvseries\","+
"\"genres\" : [\"action\", \"crime\", \"spanish\"],"+

"\"numSeasons\" : 4,"+
"\"seriesInfo\": [{"+
"\"seasonNum\" : 1,"+

"\"numEpisodes\" : 2,"+
"\"episodes\": [{"+
"\"episodeID\": 20, "+
"\"episodeName\" : \"Season 1 episode I\","+
"\"lengthMin\": 70, "+
"\"minWatched\": 70, "+
"\"date\" : \"2022-04-18\""+
ll},ll_l_
iy
"\"episodeID\": 30, "+
"\"lengthMin\": 60,"+
"\"episodeName\" : \"Season 1 episode 2\","+
"\"minWatched\": 60,"+
"\"date\" : \"2022-04-18\""+
"}
"},"+

"\"seasonNum\": 2,"+

"\"numEpisodes\" : 2,"+

"\"episodes\": [{"+
"\"episodeID\": 40, "+

"\"episodeName\" : \"Season 2 episode I1\","+

"\"lengthMin\": 40,"+
"\"minWatched\": 40,"+
"\"date\" : \"2022-04-25\""+

"},"+
iy
"\"episodeID\": 50, "+
"\"episodeName\" : \"Season 2 episode 2\","+

"\"lengthMin\": 45,"+
"\"minWatched\": 30,"+
"\"date\" : \"2022-04-27\""+

"}"+

"]"+
"},ll_l_
"{"+

"\"seasonNum\": 3,"+

4-24

ORACLE

Chapter 4

Inserting, Modifying, and Deleting Data

"\"numEpisodes\" : 2,"+
"\"episodes\": [{"+
"\"episodeID\": 60, "+

"\"episodeName\" : \"Season 3 episode I1\","+

"\"lengthMin\": 50,"+
"\"minWatched\": 50, "+
"\"date\" : \"2022-04-25\""+

"},"+
iy
"\"episodeID\": 70, "+
"\"episodeName\" : \"Season 3 episode 2\","+

"\"lengthMin\": 45,"+
"\"minWatched\": 30,"+
"\"date\" : \"2022-04-27\""+

"}"‘I‘
ll]"_l_
"}"+
"J"+
"} LS
14
H{ll+

"\"showName\": \"Bienvenu\", "+
"\"showId\": 15,"+

"\"showtype\": \"tvseries\","+
"\"genres\" : [\"comedy\", \"french\"],"+

"\"numSeasons\" : 2,"+
"\"seriesInfo\": ["+
mn { "+

"\"seasonNum\" : 1,"+

"\"numEpisodes\" : 2,"+

"\"episodes\": ["+

iy
"\"episodeID\": 20, "+

"\"episodeName\" : \"Bonjour\","+

"\"lengthMin\": 45,"+
"\"minWatched\": 45,"+
"\"date\" : \"2022-03-07\""+

"},"_I_
ning
"\"episodeID\": 30, "+
"\"episodeName\" : \"Merci\","+

"\"lengthMin\": 42,"+
"\"minWatched\": 42,"+
"\"date\" : \"2022-03-08\""+
"}"+
"]"+
"}"+
"}"+
"}ll+
"]1}) RETURNING *";
System.out.println ("Upsert data ");
upsertRows (handle,upsert row);

Python

To execute your query use the borneo.NoSQLHandle.query () method.

4-25

Chapter 4
Inserting, Modifying, and Deleting Data

Download the full code ModifyData.py from the examples here.

#upsert data
def upsert data(handle,sqglstmt):
request = QueryRequest ().set statement (sqlstmt)
result = handle.query(request)
print ('Upsert data')
for r in result.get results():
print ("\t' + str(r))

upsert row = '''

UPSERT INTO stream acct VALUES
(

1[
"AP",
"2023-10-18",
{
"firstName": "Adam",
"lastName": "Phillips",
"country": "Germany",
"contentStreamed": [{
"showName": "At the Ranch",
"showId": 26,
"showtype": "tvseries",
"genres": ["action", "crime", "spanish"],

"numSeasons": 4,
"seriesInfo": [{
"seasonNum": 1,
"numEpisodes": 2,
"episodes": [{
"episodeID": 20,
"episodeName": "Season 1 episode 1",
"lengthMin": 75,
"minWatched": 75,
"date": "2022-04-18"

"episodeID": 30,

"lengthMin": 60,

"episodeName": "Season 1 episode 2",
"minWatched": 40,

"date": "2022 - 04 - 18 "

"seasonNum": 2,
"numEpisodes": 2,
"episodes": [{
"episodeID": 40,
"episodeName": "Season 2 episode 1",
"lengthMin": 40,
"minWatched": 30,
"date": "2022-04-25"
}I
{

ORACLE 406

ORACLE

Chapter 4
Inserting, Modifying, and Deleting Data

"episodeID": 50,

"episodeName": "Season 2 episode 2",
"lengthMin": 45,

"minWatched": 30,

"date": "2022-04-27"

"seasonNum": 3,
"numEpisodes": 2,
"episodes": [{

"episodeID": 60,

"episodeName": "Season 3 episode 1",
"lengthMin": 20,

"minWatched": 20,

"date": "2022-04-25"

"episodeID": 70,

"episodeName": "Season 3 episode 2",
"lengthMin": 45,

"minWatched": 30,

"date": "2022 - 04 - 27 "

"showName": "Bienvenu",
"showId": 15,

"showtype": "tvseries",
"genres": ["comedy", "french"],

"numSeasons": 2,

"seriesInfo": [{
"seasonNum": 1,
"numEpisodes": 2,
"episodes": [{

1
}H
}
) RETURNING *

T

"episodeID": 20,
"episodeName": "Bonjour",
"lengthMin": 45,
"minWatched": 45,

"date": "2022-03-07"

"episodeID": 30,
"episodeName": "Merci",
"lengthMin": 42,
"minWatched": 42,
"date": "2022-03-08"

upsert data(handle,upsert row)

4-27

ORACLE

Go

Chapter 4
Inserting, Modifying, and Deleting Data

To execute a query use the Client.Query function.

Download the full code ModifyData.go from the examples here.

//upsert data in the table
func upsertRows (client *nosqldb.Client, err error,

}

prepRes, err :=
if err != nil {
(

}

tableName string, querystmt string) () {

prepReq := &nosqgldb.PrepareRequest{

Statement: querystmt,
client.Prepare (prepReq)

fmt.Printf ("Prepare failed: %v\n", err)
return

queryReq := &nosqgldb.QueryRequest({

var
for

for

PreparedStatement: &prepRes.PreparedStatement, }
results []*types.MapValue
{
queryRes, err := client.Query(queryReq)
if err !'= nil {
fmt.Printf ("Upsert failed: %$v\n", err)
return
}
res, err := queryRes.GetResults()
if err !'= nil {
fmt.Printf ("GetResults () failed: %v\n", err)
return
}
results = append(results, res...)
if queryReq.IsDone() {
break

i, r := range results {
fmt.Printf ("\t%d: %s\n", i+l, jsonutil.AsJSON(r.Map()))

upsert data := "UPSERT INTO stream acct VALUES (

1,

"AP",
"2023-10-18",

{

"firstName": "Adam",
"lastName": "Phillips",
"country": "Germany",
"contentStreamed": [

{
"showName": "At the Ranch",
"showId": 26,
"showtype": "tvseries",
"genres": [
"action",

4-28

ORACLE

Chapter 4

Inserting, Modifying, and Deleting Data

"crime",
"spanish"

I

"numSeasons": 4,
"seriesInfo": [

{

"seasonNum": 1,
"numEpisodes": 2,
"episodes": [
{
"episodeID": 20,
"episodeName": "Season 1 episode 1",
"lengthMin": 75,
"minWatched": 75,
"date": "2022-04-18"

"episodeID": 30,

"lengthMin": 60,

"episodeName": "Season 1 episode 2",
"minWatched": 40,

"date": "2022 - 04 - 18 "

"seasonNum": 2,
"numEpisodes": 2,
"episodes": [
{
"episodeID": 40,
"episodeName": "Season 2 episode 1",
"lengthMin": 40,
"minWatched": 30,
"date": "2022-04-25"

"episodeID": 50,

"episodeName": "Season 2 episode 2",
"lengthMin": 45,

"minWatched": 30,

"date": "2022-04-27"

"seasonNum": 3,
"numEpisodes": 2,
"episodes": [
{
"episodeID": 60,
"episodeName": "Season 3 episode 1",
"lengthMin": 20,
"minWatched": 20,
"date": "2022-04-25"
}I

4-29

Chapter 4
Inserting, Modifying, and Deleting Data

"episodeID": 70,

"episodeName": "Season 3 episode 2",
"lengthMin": 45,

"minWatched": 30,

"date": "2022 - 04 - 27 "

"showName": "Bienvenu",
"showId": 15,
"showtype": "tvseries",
"genres": [
"comedy",
"french"
]I
"numSeasons": 2,
"seriesInfo": [
{
"seasonNum": 1,
"numEpisodes": 2,
"episodes": [
{
"episodeID": 20,
"episodeName": "Bonjour",
"lengthMin": 45,
"minWatched": 45,
"date": "2022-03-07"

"episodeID": 30,
"episodeName": "Merci",
"lengthMin": 42,
"minWatched": 42,
"date": "2022-03-08"

]
}) RETURNING *°

upsertRows (client, err,tableName,upsert data)

Node.js

You can use the UPSERT SQL command in the Query request to update or insert data. To
execute a query use query method.

ORACLE 430

Chapter 4
Inserting, Modifying, and Deleting Data

JavaScript: Download the full code ModifyData.js from the examples here.

/*upserts data in the table*/
async function upsertData (handle, querystmt) {
const opt = {};
try {
do {
const result = await handle.query(querystmt, opt);

for(let row of result.rows) {
console.log ("' %0', row);
}
opt.continuationKey = result.continuationKey;
} while (opt.continuationKey) ;
} catch(error) {
console.error (' Error: ' + error.message);

TypeScript: Download the full code ModifyData.ts from the examples here.

interface StreamInt {
acct Id: Integer;
profile name: String;
account expiry: TIMESTAMP;
acct data: JSON;

async function upsertData (handle: NoSQLClient,querystmt: string) {
const opt = {};
try {

do {
const result = await handle.query<StreamInt>(querystmt, opt);

for(let row of result.rows) {
console.log ("' %0', row);

}

opt.continuationKey = result.continuationKey;
} while (opt.continuationKey) ;

} catch(error) {
console.error (' Error: ' + error.message);

const upsert row = ‘UPSERT INTO stream acct VALUES
(

1!

"AP",

"2023-10-18",

{
"firstName": "Adam",
"lastName": "Phillips",
"country": "Germany",
"contentStreamed": [{

"showName": "At the Ranch",

ORACLE 451

ORACLE

Chapter 4
Inserting, Modifying, and Deleting Data

"showId": 26,
"showtype": "tvseries",
"genres": ["action", "crime", "spanish"],

"numSeasons": 4,
"seriesInfo": [{
"seasonNum": 1,
"numEpisodes": 2,
"episodes": [{
"episodeID": 20,
"episodeName": "Season 1 episode 1",
"lengthMin": 75,
"minWatched": 75,
"date": "2022-04-18"

"episodeID": 30,

"lengthMin": 60,

"episodeName": "Season 1 episode 2",
"minWatched": 40,

"date": "2022 - 04 - 18 "

"seasonNum": 2,
"numEpisodes": 2,
"episodes": [{
"episodeID": 40,
"episodeName": "Season 2 episode 1",
"lengthMin": 40,
"minWatched": 30,
"date": "2022-04-25"

"episodeID": 50,

"episodeName": "Season 2 episode 2",
"lengthMin": 45,

"minWatched": 30,

"date": "2022-04-27"

"seasonNum": 3,
"numEpisodes": 2,
"episodes": [{
"episodeID": 60,
"episodeName": "Season 3 episode 1",
"lengthMin": 20,
"minWatched": 20,
"date": "2022-04-25"

"episodeID": 70,

"episodeName": "Season 3 episode 2",
"lengthMin": 45,

"minWatched": 30,

"date": "2022 - 04 - 27 "

4-32

ORACLE

Chapter 4
Inserting, Modifying, and Deleting Data

"showName": "Bienvenu",
"showId": 15,

"showtype": "tvseries",
"genres": ["comedy", "french"],

"numSeasons": 2,
"seriesInfo": [{
"seasonNum": 1,
"numEpisodes": 2,
"episodes": [{
"episodeID": 20,
"episodeName": "Bonjour",
"lengthMin": 45,
"minWatched": 45,
"date": "2022-03-07"

"episodeID": 30,
"episodeName": "Merci",
"lengthMin": 42,
"minWatched": 42,
"date": "2022-03-08"

1
}H
}) RETURNING *°

await upsertData (handle,upsert row);
console.log ("Upsert data into table");

C#

You can use the UPSERT SQL command in the Query request to update or insert data. To
execute a query, you can use QueryAsync method or GetQueryAsyncEnumerable method and
iterate over the resulting async enumerable.

Download the full code ModifyData.cs from the examples here.

private static async Task upsertData (NoSQLClient client,String querystmt) {
var queryEnumerable = client.GetQueryAsyncEnumerable (querystmt) ;
await DoQuery (queryEnumerable);

private static async Task DoQuery (IAsyncEnumerable<QueryResult<RecordValue>>
queryEnumerable) {
Console.WriteLine (" Query results:");
await foreach (var result in queryEnumerable) {
foreach (var row in result.Rows)
{
Console.WriteLine();
Console.WriteLine (row.ToJdsonString());

4-33

ORACLE

private const string upsert row = @"UPSERT INTO stream acct

(

1,

" "AP" n ,
""2023-10-18"",

{

""firstName"":
""lastName"":
n llcountry" n :

" "Adam" n ,

" "Germany" " ,

""contentStreamed"": [{

""showName"":
""showId"":
""showtype"":
""genres"":

26,

""numSeasons"": 4,
""seriesInfo"": [{

""seasonNum"": 1,

""numEpisodes"": 2,

""episodes"": [{
""episodeID"":
""episodeName"":

Chapter 4
Inserting, Modifying, and Deleting Data

VALUES

n "Phillips" " ,

""At the Ranch"",

""tvseries"",
[l”laction"",

llllcrimenll’ ""Spanish""],

20,

""Season 1 episode 1"",

""lengthMin"": 75,
""minWatched"": 75,
""date"": ""2022-04-18""
}I
{
""episodeID"": 30,
""lengthMin"": 60,

""episodeName"":
""minWatched"":
n "date" n :

""seasonNum"": 2,

""numEpisodes"": 2,

""episodes"": [{
""episodeID"":
""episodeName"":
""lengthMin"":
""minWatched"":
""date"":

""episodeID"":
""episodeName"":
""lengthMin"":

""minWatched"":
""date"":

""Season 1 episode 2"",
40,

""2022 - 04 - 18""

40,

""Season 2 episode 1"",

40,

30,

""2022-04-25""

50,

""Season 2 episode 2"",

45,

30,

""2022-04-27""

4-34

Chapter 4
Inserting, Modifying, and Deleting Data

""seasonNum"": 3,
""numEpisodes"": 2,
""episodes"": [{
""episodeID"": 60,
""episodeName"": ""Season 3 episode 1"",
""lengthMin"": 20,
""minWatched"": 20,
""date"": ""2022-04-25""

""episodeID"": 70,

""episodeName"": ""Season 3 episode 2"",
""lengthMin"": 45,

""minWatched"": 30,

""date"": ""2022 - 04 - 27""

""showName"": ""Bienvenu"",
""showId"": 15,
n llshowtype"" : n "tvseriesﬂ ll,

""genres"": [""comedy"", ""french""],
""numSeasons"": 2,
""seriesInfo"": [{
""seasonNum"": 1,
""numEpisodes"": 2,
""episodes"": [{
""episodeID"": 20,
""episodeName"": ""Bonjour"",
""lengthMin"": 45,
""minWatched"": 45,
""date"": ""2022-03-07""

""episodeID"": 30,
""episodeName"": ""Merci"",
""lengthMin"": 42,
""minWatched"": 42,
""date"": ""2022-03-08""

1
}H
}
) RETURNING *";

awalt upsertData(client,upsert row);
Console.Writeline ("Upsert data in table");

Update Data

* Using SQL command to update data

ORACLE 4-35

Chapter 4
Inserting, Modifying, and Deleting Data

e Using API to update data

Using SQL command to update data

ORACLE

An update statement can be used to update a row in a table.

e The SET clause consists of two expressions: the target expression and the new-value
expression. The target expression returns the items to be updated. The new-value
expression may return zero or more items. If it returns an empty result, the SET is a no-op.
If it returns more than one item, the items are enclosed inside a newly constructed array
(this is the same as the way the SELECT clause treats multi-valued expressions in the
select list)) So, effectively, the result of the new-value expression contains at most one
item.

e The WHERE clause specifies what row to update. In the current implementation, only single-
row updates are allowed, so the WHERE clause must specify a complete primary key.

* There is an optional RETURNING clause which acts the same way as the SELECT clause: it
can be a "*", in which case, the full updated row will be returned, or it can have a list of
expressions specifying what needs to be returned.

e Furthermore, if no row satisfies the WHERE conditions, the update statement returns an
empty result.

Example : Simple example to change the column values.

You are updating some column values for a given ticket number.

UPDATE Baggagelnfo

SET contactPhone = "823-384-1964",
confNo = "LE6J4Y"

WHERE ticketNo = 1762344493810

Example: Update row data and fetch the values with a RETURNING clause.

You could use the RETURNING clause to fetch back the data after the UPDATE clause is
executed.

UPDATE BaggageInfo

SET contactPhone = "823-384-1964",

confNo = "LE6J4Y"

WHERE ticketNo = 1762344493810 RETURNING *

Output:

{"ticketNo":1762344493810,"fullName":"Adam

Phillips", "gender":"M", "contactPhone":"823-384-1964",

"confNo":"LE6J4Y",

"bagInfo":{"bagInfo":[{"bagArrivalDate":"2019.02.02 at 03:13:00
AEDT","flightLegs":

[{"actions":[{"actionAt":"MIA", "actionCode":"ONLOAD to
LAX","actionTime":"2019.02.01 at 01:13:00 EST"},
{"actionAt":"MIA","actionCode":"BagTag Scan at MIA","actionTime":"2019.02.01
at 00:47:00 EST"},

{"actionAt":"MIA","actionCode":"Checkin at MIA","actionTime":"2019.01.31 at
23:38:00 EST"}],

"estimatedArrival":"2019.02.01 at 03:00:00 PST","flightDate":"2019.02.01 at

4-36

ORACLE

Chapter 4
Inserting, Modifying, and Deleting Data

01:00:00 EST",

"flightNo":"BM604", "f1tRouteDest":"LAX","f1tRouteSrc":"MIA"}, {"actions":
[{"actionAt":"MEL", "actionCode":"0Offload to Carousel at

MEL", "actionTime":"2019.02.02 at 03:15:00 AEDT"},
{"actionAt":"LAX","actionCode" :"ONLOAD to MEL","actionTime":"2019.02.01 at
07:35:00 PST"},

{"actionAt":"LAX","actionCode" :"OFFLOAD from LAX","actionTime":"2019.02.01 at
07:18:00 PST"}],

"estimatedArrival":"2019.02.02 at 03:15:00 AEDT","flightDate":"2019.01.31 at
22:13:00 PST",

"flightNo":"BM667","f1tRouteDest":"MEL", "f1tRouteSrc":"LAX"}],"1d":"7903989916
5297",

"lastActionCode":"OFFLOAD", "lastActionDesc":"OFFLOAD", "lastSeenStation":"MEL",
"lastSeenTimeGmt":"2019.02.02 at 03:13:00 AEDT","routing":"MIA/LAX/

MEL", "tagNum":"17657806255240"}]}}

Example: Update account expiry date for a customer in the stream acct table.

UPDATE stream acct SET account expiry="2023-12-28T00:00:00.0z2" WHERE acct Id=3
1 row updated

Example: Modify the erroneous shopper data record in the storeAcct table.

You can use the UPDATE statement to update fields in an existing document in the JSON
collection tables. The UPDATE operation works in the same way as fixed schema tables.
Consider a row from the JSON collection table created for a shopping application.

{"contactPhone":"1617114988", "address": {"Dropbox":"Presidency
College","city":"Kansas City","state":"Alabama","zip":95065},"cart":
[{"item":"A4 sheets","priceperunit":500,"quantity":2},{"item":"Mobile

Holder", "priceperunit":700, "quantity":1}],"email":"lorphil@usmail.com","firstN
ame":"Lorenzo","lastName":"Phil", "notify":"yes", "orders":
[{"EstDelivery":"2023-11-15","item":"AG Novels

1", "orderID":"101200, "priceperunit":950,"status":"Preparing to dispatch"},
{"EstDelivery":"2023-11-01","item":"Wall

paper","orderID":"101200, "priceperunit":950,"status":"Transit"}]}

Use the update clauses to correct a shopper's data as follows:

UPDATE storeAcct s

SET s.notify = "no",

REMOVE s.cart [$element.item = "A4 sheets"],

PUT s.address {"Block" : "C"},

SET s.orders[0].EstDelivery = "2023-11-17",

ADD s.cart 1 {"item":"A3 sheets", "priceperunit":600, "quantity":2}
WHERE s.contactPhone = "1617114988"

In the above example, you update the shopper's record in the storeAcct table to correct a few
inadvertent errors. This correction requires updates to various fields of the storeAcct table.
The SET clause deactivates the notification setting in the shopper's data record. The REMOVE
clause checks if any itemn field in the cart matches 24 sheets and deletes the corresponding
element from the orders array. The PUT clause adds a new JSON field to indicate the
landmark for delivery. The second SET clause accesses the deeply nested EstDelivery field

4-37

Chapter 4
Inserting, Modifying, and Deleting Data

and updates the estimated delivery date for the first item in the orders array. The ADD clause
inserts a new element into the cart field to shortlist an additional item.

When you fetch the updated shopper's data, you get the following output:

{"contactPhone":"1617114988", "address": {"Block":"C", "Dropbox":"Presidency
College","city":"Kansas City","state":"Alabama","zip":95065},"cart":
[{"item":"Mobile Holder","priceperunit":700,"quantity":1},{"item":"A3

sheets", "priceperunit":600, "quantity":2}],"email":"lorphil@usmail.com","firstN
ame":"Lorenzo","lastName":"Phil", "notify":"no", "orders":
[{"EstDelivery":"2023-11-17","item":"AG Novels

1", "orderID":"101200, "priceperunit":950,"status":"Preparing to dispatch"},
{"EstDelivery":"2023-11-01","item":"Wall

paper","orderID":"101200, "priceperunit":950,"status":"Transit"}]}

Using API to update data

ORACLE

You can use the UPDATE SQL command in the Query request to update data.

* Java

e Python
« Go

* Node.js
. C#
Java

To execute your query, you use the NoSQLHandle.query () API.

Download the full code ModifyData.java from the examples here.

//Update data
private static void updateRows (NoSQLHandle handle, String sqglstmt) throws
Exception {
QueryRequest queryRequest = new QueryRequest () .setStatement (sglstmt);
handle.query(queryRequest) ;
System.out.println("Updated table " + tableName);

/* update non-JSON data*/

String upd stmt ="UPDATE stream acct SET

account expiry=\"2023-12-28T00:00:00.0Z\" WHERE acct Id=3";
updateRows (handle,upd stmt);

Python

To execute your query use the borneo.NoSQLHandle.query () method.

4-38

Chapter 4
Inserting, Modifying, and Deleting Data

Download the full code ModifyData.py from the examples here.

#update data

def update data(handle,sqglstmt):
request = QueryRequest ().set statement (sqlstmt)
result = handle.query(request)
print ('Data Updated in table: stream acct')

update non-JSON data

upd stmt ='''UPDATE stream acct SET account expiry="2023-12-28T00:00:00.02"
WHERE acct Id=3'"'

update data(handle,upd stmt)

Go

To execute a query use the Client.Query function.

Download the full code ModifyData.go from the examples here.

//update data in the table
func updateRows (client *nosgldb.Client, err error, tableName string,
querystmt string) () {
prepReq := &nosqgldb.PrepareRequest
Statement: querystmt,

}

prepRes, err := client.Prepare (prepReq)

if err != nil {
fmt.Printf ("Prepare failed: %v\n", err)
return

}

queryReq := &nosqgldb.QueryRequest{
PreparedStatement: &prepRes.PreparedStatement, }
var results []*types.MapValue

for {
queryRes, err := client.Query(queryReq)

if err != nil {
fmt.Printf ("Upsert failed: %v\n", err)
return

}

res, err := queryRes.GetResults()

if err != nil {
fmt.Printf ("GetResults() failed: %v\n", err)
return

}
results = append(results, res...)
if queryReq.IsDone() {
break
}
}

for i, r := range results {
fmt.Printf ("\t%d: %s\n", i+l, jsonutil.AsJSON(r.Map()))

ORACLE 439

Chapter 4
Inserting, Modifying, and Deleting Data

fmt.Printf ("Updated data in the table: \n")

updt stmt := "UPDATE stream acct SET account expiry='2023-12-28T00:00:00.02"'
WHERE acct Id=3"
updateRows (client, err,tableName,updt stmt)

Node.js

To execute a query use query method.

JavaScript: Download the full code ModifyData.js from the examples here.

/*updates data in the table*/
async function updateData (handle, querystmt) ({
const opt = {};
try {
do {
const result = await handle.query(querystmt, opt);
opt.continuationKey = result.continuationKey;
} while (opt.continuationKey) ;
} catch(error) {
console.error (' Error: ' + error.message);

TypeScript: Download the full code ModifyData.ts from the examples here.

interface StreamInt {
acct Id: Integer;
profile name: String;
account expiry: TIMESTAMP;
acct data: JSON;

async function updateData (handle: NoSQLClient,querystmt: string) {
const opt = {};
try {
do {
const result = await handle.query<StreamInt>(querystmt, opt);
for(let row of result.rows) {
console.log ("' %0', row);
}
opt.continuationKey = result.continuationKey;
} while (opt.continuationKey) ;
} catch(error) {
console.error (' Error: ' + error.message);

const updt stmt = 'UPDATE stream acct SET
account expiry="2023-12-28T700:00:00.0Z" WHERE acct Id=3'

ORACLE 440

Chapter 4
Inserting, Modifying, and Deleting Data

await updateData (handle,updt stmt);
console.log("Data updated in the table");

C#

You can use the UPDATE SQL command in the Query request to update data. To execute a
query, you may call QueryAsync method or call GetQueryAsyncEnumerable method and iterate
over the resulting async enumerable.

Download the full code ModifyData.cs from the examples here.

private static async Task updateData (NoSQLClient client,String querystmt) {
var queryEnumerable = client.GetQueryAsyncEnumerable (querystmt) ;

}

private const string updt stmt =
@"UPDATE stream acct SET account expiry =""2023-12-28T00:00:00.0Z"" WHERE
acct _Id=3";

await updateData(client,updt stmt);
Console.WritelLine ("Data updated in the table");

Modify JSON data

e Using SQL command
e Using API

Using SQL command

ORACLE

While updating JSON data, in addition to WHERE, SET and RETURNING clause, the following
clauses can be used..

e The ADD clause is used to add new elements into one or more arrays. It consists of a target
expression, which should normally return one or more array items, an optional position
expression, which specifies the position within each array where the new elements should
be placed, and a new-elements expression that returns the new elements to insert.

* The PUT clause is used primarily to add new fields to a JSON document. It consists of a
target expression, which should normally return one or more fields to be inserted into the
target JSON document.

* The REMOVE clause consists of a single target expression, which computes the items to be
removed.

Example 1: Update table and add data in a JSON object

Add elements to the action array (at a given array element) for a particular flight Leg of a
passenger. By default, the element is added at the end. If a number is specified, it is inserted in
that position. In the example below, you want the new element to be added in the 2nd position.

UPDATE BaggageInfo bag
ADD bag.bagInfo[0].flightLegs[0].actions 2 {"actionAt" : "LAX",

4-41

Using API

ORACLE

Chapter 4
Inserting, Modifying, and Deleting Data

"actionCode" : "WAITING at LAX",
"actionTime" : "2019-02-01T06:13:002"}
WHERE ticketNo=1762344493810
RETURNING *

Example 2: Update table and update data from a JSON object.

You could update the data from a JSON object using the SET clause. Here the second element
of the actions array is updated with new values for a given ticket number.

UPDATE BaggageInfo bag
SET bag.bagInfo[0].flightLegs[0].actions[2]=

{"actionAt" : "LAX",
"actionCode" : "STILL WAITING at LAX",
"actionTime" : "2019-02-01T06:15:00z"}

WHERE ticketNo=1762344493810 RETURNING *

Example 3: Update table and remove data in a JSON object.

You can use the REMOVE clause to remove a given element from an array. You need to specify
which element of the array needs to be removed using the index of the array.

UPDATE BaggageInfo bag

REMOVE bag.bagInfo[0].flightLegs[0].actions[1]
WHERE ticketNo=1762344493810

RETURNING *

Example 4: Update stream_acct table and add and remove data in a JSON object.

In the stream acct table, for a customer you can add the details of a particular series episode
of a show using the ADD clause in the UPDATE statement.

UPDATE stream acct acctl ADD
acctl.acct data.contentStreamed.seriesInfo[l].episodes {

"date" : "2022-04-26",
"episodeID" : 43,
"episodeName" : "Season 2 episode 2",

"lengthMin" : 45,
"minWatched" : 45} WHERE acct Id=2 RETURNING *

Similarly , you can remove the details of a particular series episode of a show using the
REMOVE clause in the UPDATE statement.

UPDATE stream acct acctl
REMOVE acctl.acct data.contentStreamed.seriesInfo[l].episodes[1]
WHERE acct_Id=2 RETURNING *

You can use the UPDATE SQL command to add and remove data in a JSON object in your
table.

4-42

ORACLE

Chapter 4
Inserting, Modifying, and Deleting Data

* Java

e Python
« Go

* Node.js
. C#
Java

To execute your query, you use the NoSQLHandle.query () API.

Download the full code ModifyData.java from the examples here.

//Update data
private static void updateRows (NoSQLHandle handle, String sqglstmt) throws
Exception {
QueryRequest queryRequest = new QueryRequest () .setStatement (sglstmt);
handle.query (queryRequest) ;
System.out.println("Updated table " + tableName);

/* update JSON data and add a node*/
String upd json_addnode="UPDATE stream acct acctl ADD
acctl.acct data.contentStreamed.seriesInfo[l].episodes
{\"date\" : \"2022-04-26\","+
"\"episodeID\" : 43,"+
"\"episodeName\" : \"Season 2 episode 2\","+
"\"lengthMin\" : 45,"+
"\"minWatched\" : 45} WHERE acct Id=2 RETURNING *";
updateRows (handle,upd json_addnode) ;

/* update JSON data and remove a node*/

String upd json delnode="UPDATE stream acct acctl REMOVE

acctl.acct data.contentStreamed.seriesInfo[l].episodes[1l] WHERE acct Id=2
RETURNING *";

updateRows (handle,upd json delnode);

Python

To execute your query use the borneo.NoSQLHandle.query () method.

Download the full code ModifyData.py from the examples here.

#update data

def update data(handle,sqglstmt) :
request = QueryRequest ().set statement (sqglstmt)
result = handle.query(request)
print ('Data Updated in table: stream acct')

update JSON data and add a node
upd json_addnode = '''UPDATE stream acct acctl ADD
acctl.acct data.contentStreamed.seriesInfo[l].episodes {

4-43

Chapter 4
Inserting, Modifying, and Deleting Data

"date" : "2022-04-26",
"episodeID" : 43,
"episodeName" : "Season 2 episode 2",

"lengthMin" : 45,
"minWatched" : 45} WHERE acct Id=2 RETURNING *'''
update data (handle,upd json addnode)

update JSON data and delete a node

upd json _delnode = '''UPDATE stream acct acctl REMOVE

acctl.acct data.contentStreamed.seriesInfo[l].episodes[1l] WHERE acct Id=2
RETURNING *'''

update data (handle,upd json delnode)

Go

To execute a query use the Client.Query function.

Download the full code ModifyData.go from the examples here.

//update data in the table
func updateRows (client *nosqgldb.Client, err error, tableName string,
querystmt string) () {
prepReqg := &nosqgldb.PrepareRequest{
Statement: querystmt,

}

prepRes, err := client.Prepare (prepReq)

if err != nil {
fmt.Printf ("Prepare failed: %v\n", err)
return

}

queryReq := &nosqgldb.QueryRequest{
PreparedStatement: &prepRes.PreparedStatement, }
var results []*types.MapValue

for {
queryRes, err := client.Query(queryReq)

if err != nil {
fmt.Printf ("Upsert failed: %v\n", err)
return

}

res, err := queryRes.GetResults()

if err != nil {
fmt.Printf ("GetResults() failed: %v\n", err)
return

}
results = append(results, res...)
if queryReq.IsDone() {
break
}
}
for i, r := range results {
fmt.Printf ("\t%d: %s\n", i+l, jsonutil.AsJSON(r.Map()))

ORACLE vy

Chapter 4
Inserting, Modifying, and Deleting Data

fmt.Printf ("Updated data in the table: \n")

upd json addnode := 'UPDATE stream acct acctl ADD
acctl.acct data.contentStreamed.seriesInfo[l].episodes {

"date" : "2022-04-26",

"episodeID" : 43,

"episodeName" : "Season 2 episode 2",

"lengthMin" : 45,

"minWatched" : 45} WHERE acct Id=2 RETURNING *°
updateRows (client, err,tableName,upd json addnode)

upd json delnode := "UPDATE stream acct acctl REMOVE
acctl.acct data.contentStreamed.seriesInfo[l].episodes[1]
WHERE acct Id=2 RETURNING *°

updateRows (client, err,tableName,upd json delnode)

Node.js

To execute a query use query method.

JavaScript: Download the full code ModifyData.js from the examples here.

/*updates data in the table*/
async function updateData (handle, querystmt) ({
const opt = {};
try {
do {
const result = await handle.query(querystmt, opt);
opt.continuationKey = result.continuationKey;
} while (opt.continuationKey) ;
} catch(error) {
console.error (' Error: ' + error.message);

TypeScript: Download the full code ModifyData.ts from the examples here.

interface StreamInt {
acct Id: Integer;
profile name: String;
account expiry: TIMESTAMP;
acct data: JSON;

async function updateData (handle: NoSQLClient,querystmt: string) {
const opt = {};
try {
do {
const result = await handle.query<StreamInt>(querystmt, opt);
for(let row of result.rows) {
console.log ("' %0', row);

ORACLE e

ORACLE

Chapter 4
Inserting, Modifying, and Deleting Data

opt.continuationKey = result.continuationKey;
} while (opt.continuationKey);
} catch(error) {
console.error (' Error: ' + error.message);

const upd json_addnode =
"UPDATE stream acct acctl ADD
acctl.acct data.contentStreamed.seriesInfo[l].episodes {

"date" : "2022-04-26",
"episodeID" : 43,
"episodeName" : "Season 2 episode 2",

"lengthMin" : 45,

"minWatched" : 45} WHERE acct Id=2 RETURNING *°
await updateData (handle,upd json addnode);
console.log("New data node added in the table");

const upd json delnode =

'"UPDATE stream acct acctl REMOVE

acctl.acct data.contentStreamed.seriesInfo[l].episodes[1]
WHERE acct Id=2 RETURNING *'

await updateData (handle,upd json delnode);
console.log("New Data node removed from the table");

C#

You can use the UPDATE SQL command to add and remove data in a JSON object in your
table. To execute a query, you may call QueryAsync method or call GetQueryAsyncEnumerable
method and iterate over the resulting async enumerable.

Download the full code ModifyData.cs from the examples here.

private static async Task updateData (NoSQLClient client,String querystmt) {
var queryEnumerable = client.GetQueryAsyncEnumerable (querystmt) ;

private const string upd json addnode =
@"UPDATE stream acct acctl ADD
acctl.acct data.contentStreamed.seriesInfo[l].episodes {

""date"" : ""2022-04-26"",

""episodeID"" : 43,

""episodeName"" : ""Season 2 episode 2"",
""lengthMin"" : 45,

""minWatched"" : 45} WHERE acct Id=2 RETURNING *";

await updateData(client,upd json_addnode);
Console.WriteLine ("New data node added in the table");

private const string upd json delnode =

"UPDATE stream acct acctl REMOVE

acctl.acct data.contentStreamed.seriesInfo[l].episodes[1]
WHERE acct_Id:2 RETURNING *";

4-46

Chapter 4
Inserting, Modifying, and Deleting Data

await updateData(client,upd json delnode);
Console.WriteLine ("New Data node removed from the table");

Delete Data

e Using SQL command to delete data
e Using API to delete a single row
e Using API to delete multiple rows

e Using Query API to delete data

Using SQL command to delete data

ORACLE

The DELETE statement is used to remove from a table a set of rows satisfying a condition.

The condition is specified in a WHERE clause that behaves the same way as in the SELECT
expression. The result of the DELETE statement depends on whether a RETURNING clause is
present or not. Without a RETURNING clause the DELETE returns the number of rows
deleted. Otherwise, for each deleted row the expressions following the RETURNING clause
are computed the same way as in the SELECT clause and the result is returned to the
application.

Example 1: Delete data from a table with a simple WHERE clause.

You delete the data corresponding to a user with a given fullname.

DELETE FROM BaggagelInfo
WHERE fullName = "Bonnie Williams"

Example 2: Delete data from a table with a RETURNING clause.

The RETURNING clause fetches the details of the row to be deleted. In the example below,
you are fetching the full name and conf number corresponding to a ticket number which will be
deleted.

DELETE FROM BaggageInfo
WHERE ticketNo = 1762392196147
RETURNING fullName, confNo

Output:

{"fullName":"Birgit Naquin","confNo":"QDI1LOT"}

4-47

Chapter 4
Inserting, Modifying, and Deleting Data

Note:

If any error occurs during the execution of a DELETE statement, there is a possibility
that some rows will be deleted and some not. The system does not keep track of
what rows got deleted and what rows are not yet deleted. This is because Oracle
NoSQL Database focuses on low latency operations. Long-running operations across
shards are not coordinated using a two-phase commit and lock mechanism. In such
cases, it is recommended that the application re-run the DELETE statement.

Example 3: Delete data from stream acct table based on the last name.

DELETE FROM stream acct acctl
WHERE acctl.acct data.firstName="Adelaide"
AND acctl.acct data.lastName="Willard"

Using API to delete a single row

ORACLE

You can use the DeleteRequest API and delete a single row using a primary key.
The DeleteRequest API can be used to perform unconditional and conditional deletes.

* Delete any existing row. This is the default.

e Succeed only if the row exists and its version matches a specific version. Use
setMatchvVersion for this case.

* Java

* Python
« Go

* Node.js
e C#
Java

Download the full code ModifyData.java from the examples here.

//delete row based on primary KEY
private static void delRow (NoSQLHandle handle, MapValue ml) throws Exception {
DeleteRequest delRequest = new
DeleteRequest () .setKey (ml) .setTableName (tableName) ;
DeleteResult del = handle.delete(delRequest);
if (del.getSuccess()) {
System.out.println("Delete succeed");
}
else {
System.out.println("Delete failed");

4-48

Chapter 4
Inserting, Modifying, and Deleting Data

/*delete a single row*/
MapValue ml= new MapValue();
ml.put ("acct Id",1);

delRow (handle,ml) ;

Python

Single rows are deleted using borneo.DeleteRequest using a primary key value.

Download the full code ModifyData.py from the examples here.

#del row with a primary KEY
def del row(handle,table name):

request = DeleteRequest().set key({'acct Id':
1}) .set_table name(table name)

result = handle.delete(request)

print ('Deleted data from table: stream acct')

delete row based on primary key
del row(handle, 'stream acct')

Go

The DeleteRequest is used to delete a row from a table. The row is identified using a primary
key specified in DeleteRequest.Key.

Download the full code ModifyData.go from the examples here.

//delete with primary key
func delRow(client *nosqgldb.Client, err error, tableName string) () {
key := &types.MapValue{}
key.Put ("acct _1d",1)
delReq := &nosgldb.DeleteRequest{
TableName: tableName,
Key: key,
}
delRes, err := client.Delete (delReq)

if err != nil {
fmt.Printf ("failed to delete a row: %v", err)
return

}
if delRes.Success {
fmt.Println ("Delete succeeded")

}

delRow (client, err,tableName)

ORACLE 449

Chapter 4
Inserting, Modifying, and Deleting Data

Node.js
Use the delete method to delete a row from a table. For method details, see NoSQLClient
class.

You must pass the table name and primary key of the row. In addition, you can make the delete
operation conditional by specifying a RowVersion of the row that was previously returned by get

or put methods.

JavaScript: Download the full code ModifyData.js from the examples here.

/*delete row based on primary key*/
async function delRow (handle) {
try {
/* Unconditional delete, should succeed.*/
var result = await handle.delete(TABLE NAME, { acct Id: 1 });
/* Expected output: delete succeeded*/

console.log('delete ' + result.success ? 'succeeded' : 'failed');
} catch(error) {
console.error (' Error: ' + error.message);

await delRow (handle);
console.log("Row deleted based on primary key");

TypeScript: Download the full code ModifyData.ts from the examples here.

interface StreamInt {
acct Id: Integer;
profile name: String;
account expiry: TIMESTAMP;
acct data: JSON;

/*delete row based on primary key*/
async function delRow(handle: NoSQLClient) ({
try {
/* Unconditional delete, should succeed.*/
var result = await handle.delete<StreamInt>(TABLE NAME, { acct Id: 1 });
/* Expected output: delete succeeded*/

console.log('delete ' + result.success ? 'succeeded' : 'failed');
} catch(error) {
console.error (' Error: ' + error.message);

awailt delRow (handle);
console.log ("Row deleted based on primary key");

ORACLE 450

Chapter 4
Inserting, Modifying, and Deleting Data

C#

To delete a row, use DeleteAsync method. Pass to it the table name and primary key of the
row to delete. This method takes the primary key as MapValue. The field names should be the
same as the table primary key column names.

DeleteAsync and DeleteIfVersionAsync methods return Task<DeleteResult<RecordValue>>
DeleteResult instance contains success status of the Delete operation. Delete operation may

fail if the row with given primary key does not exist or this is a conditional Delete and provided
row version did not match the existing row version.

Download the full code ModifyData.cs from the examples here.

private static async Task delRow (NoSQLClient client) {

var primaryKey = new MapValue

{

["acct Id"] =1

i

// Unconditional delete, should succeed.

var deleteResult = await client.DeleteAsync(TableName, primaryKey);

// Expected output: Delete succeeded.

Console.WriteLine ("Delete {0}.",deleteResult.Success ? "succeeded"
"failed");
}

awailt delRow(client);
Console.WriteLine ("Row deleted based on primary key");

Using API to delete multiple rows

You can use the MultiDeleteRequest APl and delete more than one row from a NoSQL table.

You can use MultiDeleteRequest to delete multiple rows from a table in an atomic operation.
The key used may be partial but must contain all of the fields that are in the shard key. A range
may be specified to delete a range of keys. As this operation can exceed the maximum amount
of data that can be modified in a single operation, a continuation key can be used to continue
the operation.

* Java

* Python
« Go

* Node.js
e C#

ORACLE 41

ORACLE

Chapter 4
Inserting, Modifying, and Deleting Data

Java

If a table's primary key is <YYYYMM, timestamp> and the its shard key is the YYYYMM, then
all records that hit in the same month would be in same shard. It is possible to delete a range
of timestamp values for a specific month using MultiDeleteRequest class.

See Oracle NoSQL Java SDK API Reference for more details on the various classes and
methods.

Download the full code MultiDataOps.java from the examples here.

//Delete multiple rows from the table
private static void delMulRows (NoSQLHandle handle,int pinval) throws
Exception {
MapValue key = new MapValue() .put ("pin", 1234567);
MultiDeleteRequest multiDelRequest = new MultiDeleteRequest ()
.setKey (key)
.setTableName (tableName) ;

MultiDeleteResult mRes = handle.multiDelete (multiDelRequest);
System.out.println("MultiDelete result = " + mRes);

/*delete multiple rows using shard key*/
delMulRows (handle, 1234567);

Python

You can use borneo.MultiDeleteRequest class to perform multiple deletes in a single atomic
operation.

See Oracle NoSQL Python SDK API Reference for more details on the various classes and
methods.

Download the full code MultiDataOps.py from the examples here.

#delete multiple rows
def multirow delete(handle,table name,pinval):

request = MultiDeleteRequest().set table name(table name).set key({'pin':
pinval})

result = handle.multi delete(request)

)

/*delete multiple rows using shard key*/
multirow delete (handle, 'examplesAddress',1234567)

Go

You can use MultiDelete method to delete multiple rows from a table in a single atomic
operation.

See Oracle NoSQL Go SDK API Reference for more details on the various classes and
methods.

4-52

Chapter 4
Inserting, Modifying, and Deleting Data

Download the full code MultiDataOps.go from the examples here.

//delete multiple rows
func delMulRows (client *nosgldb.Client, err error, tableName string,pinval
int) O {
shardKey := &types.MapValue{}
shardKey.Put ("pin", pinval)
multiDelReq := &nosqldb.MultiDeleteRequest
TableName: tableName,

Key: shardKey,
}
multiDelRes, err := client.MultiDelete (multiDelReq)
if err != nil {
fmt.Printf ("failed to delete multiple rows: %v", err)
return

}
fmt.Printf ("MultiDelete result=%v\n", multiDelRes)

/*delete multiple rows using shard key*/
delMulRows (client, err,tableName,1234567)

Node.js

You can delete multiple rows having the same shard key in a single atomic operation using the
deleteRange method.

JavaScript: Download the full code MultiDataOps.js from the examples here.

//deletes multiple rows
async function mulRowDel (handle,pinval) {
try {
/* Unconditional delete, should succeed.*/
var result = await handle.deleteRange (TABLE NAME, { pin: pinval });
/* Expected output: delete succeeded*/

console.log('delete ' + result.success ? 'succeeded' : 'failed');
} catch(error) {
console.error (' Error: ' + error.message);

/*delete multiple rows using shard key*/
await mulRowDel (handle, 1234567);

TypeScript: Download the full code MultiDataOps.ts from the examples here.

interface StreamInt {
acct Id: Integer;
profile name: String;
account expiry: TIMESTAMP;

ORACLE 453

Chapter 4
Inserting, Modifying, and Deleting Data

acct data: JSON;

//deletes multiple rows
async function mulRowDel (handle: NoSQLClient,pinVal: Integer) {
try {
/* Unconditional delete, should succeed.*/
var result = await handle.deleteRange<StreamInt>(TABLE NAME, { pin:
pinval });
/* Expected output: delete succeeded*/

console.log('delete ' + result.success ? 'succeeded' : 'failed');
} catch(error) {
console.error (' Error: ' + error.message);

/*delete multiple rows using shard key*/
await mulRowDel (handle, 1234567);

C#

You can delete multiple rows having the same shard key in a single atomic operation using
DeleteRangeAsync method.

Download the full code MultiDataOps.cs from the examples here.

//delete multiple rows
private static async Task mulDelRows (NoSQLClient client,int pinval) {
var parKey = new MapValue {["pin"] = pinval};
var options = new DeleteRangeOptions();
do
{
var result = await client.DeleteRangeAsync (TableName,parKey,options);
Console.WritelLine ($"Deleted {result.DeletedCount} row(s)");
options.ContinuationKey = result.ContinuationKey;
} while (options.ContinuationKey != null);

/*delete multiple rows using shard key*/
await mulDelRows (client,1234567);

Using Query API to delete data

ORACLE

You can use the QueryRequest API and delete one or more rows from a NoSQL table that
satisfy a filter condition.

e Java

4-54

ORACLE

Chapter 4
Inserting, Modifying, and Deleting Data

* Python
« Go

* Node.js
e C#
Java

You can use the DELETE SQL command in the Query request to delete data. To execute your
query, you use the NoSQLHandle.query () API.

Download the full code ModifyData.java from the examples here.

//delete rows based on a filter condition
private static void deleteRows (NoSQLHandle handle, String sqglstmt) throws
Exception {
QueryRequest queryRequest = new QueryRequest().setStatement (sgqlstmt);
handle.query (queryRequest) ;
System.out.println("Deleted row(s) from table " + tableName);

String del stmt ="DELETE FROM stream acct acctl WHERE
acctl.acct data.firstName=\"Adelaide\" AND

acctl.acct data.lastName=\"Willard\"";

/*delete rows based on a filter condition*/
deleteRows (handle,del stmt);

Python

You can use the DELETE SQL command in the Query request to delete data. To execute your
query use the borneo.NoSQLHandle.query () method.

Download the full code ModifyData.py from the examples here.

#del row(s) with a filter condition

def delete rows (handle,sqglstmt) :
request = QueryRequest ().set statement (sqlstmt)
result = handle.query(request)
print ('Deleted data from table: stream acct')

delete data based on a filter condition

del stmt ='''DELETE FROM stream acct acctl WHERE

acctl.acct data.firstName="Adelaide" AND acctl.acct data.lastName="Willard"'''
delete rows(handle,del stmt)

Go

You can use the DELETE SQL command in the Query request to delete data. To execute a
query use the Client.Query function.

4-55

ORACLE

Chapter 4
Inserting, Modifying, and Deleting Data

Download the full code ModifyData.go from the examples here.

//delete rows based on a filter condition
func deleteRows(client *nosqgldb.Client, err error, tableName string,
querystmt string) () {
prepReq := &nosgldb.PrepareRequest{
Statement: querystmt,

}

prepRes, err := client.Prepare (prepReq)

if err != nil {
fmt.Printf ("Prepare failed: %v\n", err)
return

}

queryReq := &nosqgldb.QueryRequest{
PreparedStatement: &prepRes.PreparedStatement, }

var results []*types.MapValue

for {
queryRes, err := client.Query(queryReq)
if err !'= nil {
fmt.Printf ("Upsert failed: %v\n", err)
return
}
res, err := queryRes.GetResults()
if err != nil {
fmt.Printf ("GetResults() failed: %v\n", err)
return

}
results = append(results, res...)
if queryReq.IsDone() {

break

}
for i, r := range results {
fmt.Printf ("\t%d: %s\n", i+1, jsonutil.AsJSON(r.Map()))
}
fmt.Printf ("Deleted data from the table: %v\n",tableName)

delete stmt := 'DELETE FROM stream acct acctl WHERE
acctl.acct data.firstName="Adelaide" AND acctl.acct data.lastName="Willard""
deleteRows (client, err,tableName,delete stmt)

Node.js

You can use the DELETE SQL command in the Query request to delete data. To execute a
query use query method.

JavaScript: Download the full code ModifyData.js from the examples here.

/*deletes data based on a filter conditioin */
async function deleteRows (handle,querystmt) {
const opt = {};
try {
do {

4-56

Chapter 4
Inserting, Modifying, and Deleting Data

const result = await handle.query(querystmt, opt);
opt.continuationKey = result.continuationKey;
} while (opt.continuationKey);
} catch(error) {
console.error (' Error: ' + error.message);

await deleteRows (handle,del stmt);
console.log ("Rows deleted");

TypeScript: Download the full code ModifyData.ts from the examples here.

async function deleteRows (handle: NoSQLClient,querystmt: string) {
const opt = {};
try {

do {
const result = await handle.query<StreamInt> (querystmt, opt);

for(let row of result.rows) {
console.log ("' %0', row);

}

opt.continuationKey = result.continuationKey;
} while (opt.continuationKey);
} catch(error) {
console.error (' Error: ' + error.message);

await deleteRows (handle,del stmt);
console.log ("Rows deleted");

C#

You can use the DELETE SQL command in the Query request to delete data. To execute a
query, you may call QueryAsync method or call GetQueryAsyncEnumerable method and iterate

over the resulting async enumerable.

Download the full code ModifyData.cs from the examples here.

private static async Task deleteRows (NoSQLClient client,String querystmt) {
var queryEnumerable = client.GetQueryAsyncEnumerable (querystmt) ;

await deleteRows(client,del stmt);
Console.WriteLine ("Rows removed from the table");

ORACLE 4-57

Chapter 4
Simple SELECT queries

Simple SELECT queries

If you want to follow along with the examples, see Sample data to run queries to view a sample
data and use the scripts to load sample data for testing. The scripts create the tables used in
the examples and load data into the tables.

e Using Get API to fetch data
e Substituting column names in a query

e Using Query API to fetch data

Using SQL commands to fetch data

ORACLE

You can use SQL SELECT statement to fetch data from your NoSQL table.

Fetching all rows from a table

You can choose columns from a table. To do so, list the names of the desired table columns
after SELECT in the statement. You give the name of the table after the FROM clause. To
retrieve data from a child table, use dot notation, such as parent.child. To choose all table
columns, use the asterisk (*) wildcard character. The SELECT statement can also contain
computational expressions based on the values of existing columns.

Example 1: Choose all data from the table BaggageInfo.

SELECT * FROM BaggageInfo

Explanation: The BaggageInfo schema has some fixed static fields and a JSON column. The
static fields are ticket number, full name, gender, contact phone, and confirmation number. The
bag information is stored as JSON and is populated with an array of documents.

Output (displaying only a row of the result for brevity):

{"ticketNo":1762330498104,"fullName":"Michelle
Payne", "gender":"F", "contactPhone":"575-781-6240", "confNo":"RL3J4Q",
"bagInfo": [{
"bagArrivalDate":"2019-02-02T23:59:00z2",
"flightLegs": [
{"actions": [
{"actionAt":"SFO", "actionCode" :"ONLOAD to
IST","actionTime":"2019-02-02T12:10:002"},
{"actionAt":"SFO","actionCode":"BagTag Scan at
SFO","actionTime":"2019-02-02T11:47:00Z"},
{"actionAt":"SFO","actionCode":"Checkin at
SFO","actionTime":"2019-02-02T10:01:002"}],
"estimatedArrival”:"2019-02-03T01:00:002",
"flightDate":"2019-02-02T12:00:00Z",
"flightNo":"BM318",
"fltRouteDest":"IST",
"fl1tRouteSrc":"SFO"},
{"actions": [
{"actionAt":"IST","actionCode":"ONLOAD to
ATH","actionTime":"2019-02-03T13:06:002"},
{"actionAt":"IST","actionCode":"BagTag Scan at

4-58

ORACLE

Chapter 4
Simple SELECT queries

IST","actionTime":"2019-02-03T12:48:002"},

{"actionAt":"IST","actionCode" :"OFFLOAD from

IST","actionTime":"2019-02-03T13:00:002"}],

"estimatedArrival”:"2019-02-03T12:12:002",
"flightDate":"2019-02-02T13:10:00Z",
"flightNo":"BM696",

"fltRouteDest":"ATH",
"fltRouteSrc":"IST"},

{"actions": [

{"actionAt":"JTR","actionCode":"0Offload to Carousel at

JTR", "actionTime":"2019-02-03T00:06:002"},

{"actionAt":"ATH", "actionCode" :"ONLOAD to

JTR", "actionTime":"2019-02-03T00:13:002"},

{"actionAt":"ATH", "actionCode" :"OFFLOAD from

ATH","actionTime":"2019-02-03T00:10:00Z2"}],

"j_d" : "

"estimatedArrival”:"2019-02-03T00:12:002",
"flightDate":"2019-2-2T12:10:002",
"flightNo":"BM665",

"fltRouteDest":"JTR",
"fltRouteSrc":"ATH"}],

79039899186259",

"lastActionCode":"OFFLOAD",
"lastActionDesc":"OFFLOAD",
"lastSeenStation":"JTR",
"lastSeenTimeGmt":"2019-02-02T23:59:00Z",
"routing":"SFO/IST/ATH/JTR",
"tagNum":"17657806247861"}

1}

Example 2: To choose specific column(s) from the table BaggageInfo, include the column
names as a comma-separated list in the SELECT statement.

SELECT fullName,

Explanation
and gender.

Output:

"fullName":
"fullName":
"fullName":
"fullName":
"fullName":
"fullName":
"fullName":

"fullName"

"fullName":
"fullName":
"fullName":
"fullName":
"fullName":
"fullName":
"fullName":

{
{
{
{
{
{
{
{
{"fullName":
{
{
{
{
{
{
{

contactPhone, gender FROM BaggageInfo

: You want to display the values of three static fields - full name, phone number,

"Lucinda Beckman","contactPhone":"364-610-4444","gender":"M"}
"Adelaide Willard","contactPhone":"421-272-8082","gender":"M"}
"Raymond Griffin","contactPhone":"567-710-9972","gender":"F"}
"Elane Lemons","contactPhone":"600-918-8404","gender":"F"}
"Zina Christenson","contactPhone":"987-210-3029", "gender":"M"}
"Zulema Martindale","contactPhone":"666-302-0028","gender":"F"}
"Dierdre Amador","contactPhone":"165-742-5715","gender":"M"}
:"Henry Jenkins","contactPhone":"960-428-3843", "gender":"F"}
"Rosalia Triplett","contactPhone":"368-769-5636","gender":"F"}
"Lorenzo Phil","contactPhone":"364-610-4444","gender":"M"}
"Gerard Greene","contactPhone":"395-837-3772","gender":"M"}
"Adam Phillips","contactPhone":"893-324-1064", "gender":"M"}
"Doris Martin","contactPhone":"289-564-3497","gender":"F"}
"Joanne Diaz","contactPhone":"334-679-5105", "gender":"F"}
"Omar Harvey","contactPhone":"978-191-8550","gender":"F"}
"Fallon Clements","contactPhone":"849-731-1334","gender":"M"}

4-59

ORACLE

"fullName":
:"Teena Colley","contactPhone":"539-097-5220", "gender":"M"}

"fullName"

"fullName":
"fullName":

{
{
{"fullName":
{
{

Chapter 4
Simple SELECT queries

"Lisbeth Wampler", "contactPhone":"796-709-9501", "gender":"M"}

"Michelle Payne","contactPhone":"575-781-6240", "gender":"F"}
"Mary Watson","contactPhone":"131-183-0560","gender":"F"}
"Kendal Biddle","contactPhone":"619-956-8760", "gender":"F"}

Example 3: Choose all data from the table stream acct.

SELECT * FROM stream acct

Explanation: The stream acct schema has some fixed static fields and a JSON column.

Output (displaying only a row of the result for brevity):

{"acct_id":1,"profile name":"AP","account expiry":"2023-10-18T00:00:00.0z2",

"acct data":

[{

{

"showName": "At the Ranch",

"showId": 26,
"showtype": "tvseries",
"genres": ["action", "crime", "spanish"],

"numSeasons": 4,
"seriesInfo": [{
"seasonNum": 1,
"numEpisodes": 2,
"episodes": [{
"episodeID": 20,
"episodeName": "Season 1 episode 1",
"lengthMin": 85,
"minWatched": 85,
"date": "2022-04-18"

"episodeID": 30,

"lengthMin": 60,

"episodeName": "Season 1 episode 2",
"minWatched": 60,

"date": "2022 - 04 - 18 "

"seasonNum": 2,
"numEpisodes": 2,
"episodes": [{
"episodeID": 40,
"episodeName": "Season 2 episode 1",
"lengthMin": 50,
"minWatched": 50,
"date": "2022-04-25"

"episodeID": 50,
"episodeName": "Season 2 episode 2",
"lengthMin": 45,

4-60

Chapter 4
Simple SELECT queries

"minWatched": 30,
"date": "2022-04-27"
}H
}I
{
"seasonNum": 3,
"numEpisodes": 2,
"episodes": [{
"episodeID": 60,
"episodeName": "Season 3 episode 1",
"lengthMin": 50,
"minWatched": 50,
"date": "2022-04-25"

"episodeID": 70,

"episodeName": "Season 3 episode 2",
"lengthMin": 45,

"minWatched": 30,

"date": "2022 - 04 - 27 "

"showName": "Bienvenu",
"showId": 15,

"showtype": "tvseries",
"genres": ["comedy", "french"],
"numSeasons": 2,

"seriesInfo": [{

"seasonNum": 1,
"numEpisodes": 2,
"episodes": [{
"episodeID": 20,
"episodeName": "Bonjour",
"lengthMin": 45,
"minWatched": 45,
"date": "2022-03-07"

"episodeID": 30,
"episodeName": "Merci",
"lengthMin": 42,
"minWatched": 42,
"date": "2022-03-08"

111}

Filter data from a table

You can filter query results by specifying a filter condition in the WHERE clause. Typically, a
filter condition consists of one or more comparison expressions connected through logical
operators AND or OR. The following comparison operators are also supported: =, =, >, >=, <,
and <=.

ORACLE 46l

Chapter 4
Simple SELECT queries

Example 1: Find the tag number of a passenger's baggage along with the passenger's full
name for a given reservation number FH7G1W.

SELECT bag.fullName, bag.bagInfo[].tagNum FROM BaggageInfo bag
WHERE bag.confNo="FH7GIW"

Explanation: You fetch the tag number corresponding to a given reservation number.

Output:

{"fullName":"Rosalia Triplett","tagNum":"17657806215913"}

ORACLE 6o

ORACLE

Note:

For better understanding, the row of data with all the static fields and the baginfo

JSON is shown below.

"ticketNo" : 1762344493810,

"fullName" : "Adam Phillips",
"gender" : "M",
"contactPhone" : "893-324-1064",
"confNo" : "LE6J4Z",
[{
"id" : "79039899165297",
"tagNum" : "17657806255240",
"routing" : "MIA/LAX/MEL",
"lastActionCode" "OFFLOAD",
"lastActionDesc" "OFFLOAD",
"lastSeenStation" "MEL",
"flightLegs" : [{
"flightNo" : "BM604",
"flightDate" "2019-02-01T01:00:00",
"fltRouteSrc" "MIA",
"fltRouteDest" "LAX",
"estimatedArrival”™ : "2019-02-01T03:00:00",
"actions" : [{
"actionAt" "MIA",
"actionCode" "ONLOAD to LAX",
"actionTime" "2019-02-01T01:13:00"
b A
"actionAt" "MIA",
"actionCode" "BagTag Scan at MIA",
"actionTime" "2019-02-01T00:47:00"
b A
"actionAt" "MIA",
"actionCode" "Checkin at MIA",
"actionTime" "2019-02-01T23:38:00"
bl
oo A
"flightNo" : "BM667",
"flightDate" "2019-01-31T22:13:00",
"f1tRouteSrc" "LAX",
"f1tRouteDest" "MEL",
"estimatedArrival”™ : "2019-02-02T03:15:00",
"actions" : [{
"actionAt" "MEL",
"actionCode" "Offload to Carousel at MEL",
"actionTime" "2019-02-02T03:15:00"
b A
"actionAt" "LAX",
"actionCode" "ONLOAD to MEL",
"actionTime" "2019-02-01T07:35:00"
b A
"actionAt" "LAX",
"actionCode" "OFFLOAD from LAX",
"actionTime" "2019-02-01T07:18:00"

b

Chapter 4

Simple SELECT queries

4-63

ORACLE

Chapter 4
Simple SELECT queries

ol

"lastSeenTimeGmt" : "2019-02-02T03:13:00",

"bagArrivalDate" : "2019.02.02T03:13:00"
bl

Example 2: Where was the baggage with a given reservation number FH7G1W last seen?
Also, fetch the tag number of the baggage.

SELECT bag.fullName, bag.bagInfo[].tagNum,bag.bagInfo[].lastSeenStation
FROM BaggageInfo bag WHERE bag.confNo="FH7G1W"

Explanation: The bagInfo is JSON and is populated with an array of documents. The full
name and the last seen station can be fetched for a particular reservation number.

Output:

{"fullName":"Rosalia Triplett","tagNum":"17657806215913",
"lastSeenStation":"VIE"}

Example 3: Select details of the bags(tag and last seen time) for a passenger with ticket
number 1762340579411.

SELECT bag.ticketNo, bag.fullName,
bag.bagInfo[].tagNum,bag.bagInfo[].lastSeenStation
FROM BaggageInfo bag where bag.ticketNo=1762320369957

Explanation: The bagInfo is JSON and is populated with an array of documents. The full
name, tag number, and last seen station can be fetched for a particular ticket number.

Output:

{"fullName":"Lorenzo Phil","tagNum":["17657806240001","17657806340001"],
"lastSeenStation": ["JTR","JTR"]}

Example 4: Fetch the last name, account expiry date and the shows watched by the user with
acct id 1.

SELECT account expiry, acct.acct data.lastName,
acct.acct data.contentStreamed[].showName FROM stream acct acct WHERE
acct _id=l1

Explanation: The acct data is JSON and is populated with an array of documents. The last
name, account expiry date and show names are fetched for a particular account id.

Output:

{"account expiry":"2023-10-18T00:00:00.02","lastName":"Phillips", "showName":
["At the Ranch","Bienvenu"]}

4-64

Substituting column names in a query

ORACLE

Chapter 4
Simple SELECT queries

You can use a different name for a column during a SELECT statement. Substituting a name in
a query does not change the column name, but uses the substitute in the data returned.

Example: The following query returns the phone number as CONTACTAT in the result.

SELECT contactPhone AS CONTACTAT FROM BaggageInfo

Explanation: Here you want to fetch the contact phone of the passengers and display it as

CONTACTAT.
Output:

{"CONTACTAT":
{"CONTACTAT":
{"CONTACTAT":
{"CONTACTAT":
{"CONTACTAT":
{"CONTACTAT":
{"CONTACTAT":
{"CONTACTAT":
{"CONTACTAT":
{"CONTACTAT":
{"CONTACTAT":
{"CONTACTAT":
{"CONTACTAT":
{"CONTACTAT":
{"CONTACTAT":
{"CONTACTAT":
{"CONTACTAT":
{"CONTACTAT":
{"CONTACTAT":
{"CONTACTAT":
{"CONTACTAT":

"960-428-3843"}
"368-769-5636"}
"364-610-4444"}
"395-837-3772"}
"893-324-1064"}
"289-564-3497"}
"334-679-5105"}
"978-191-8550"}
"849-731-1334"}
"796-709-9501"}
"539-097-5220"}
"575-781-6240"}
"131-183-0560"}
"619-956-8760"}
"364-610-4444"}
"421-272-8082"}
"567-710-9972"}
"600-918-8404"}
"987-210-3029"}
"666-302-0028"}
"165-742-5715"}

You can combine columns using the concatenation operator "||" as shown below.

Example: For all customers, fetch the last place where the bag was seen and the time when it
was seen.

Approach 1: Use the concatenation operator and fetch column names and static text as
output of the SELECT command.

SELECT "The bag was last seen at " ||
bag.bagInfo[].lastSeenStation || " on " ||
bag.bagInfol].bagArrivalDate AS Bag Details FROM Baggagelnfo bag

Output:

{"Bag_Details":"The bag was last seen at BZN on 2019-03-15T10:13:00Z"}
{"Bag_Details":"The bag was last seen at MEL on 2019-02-04T10:08:00Z"}
{"Bag_Details":"The bag was last seen at MEL on 2019-02-25T20:15:002"}
{"Bag_Details":"The bag was last seen at MAD on 2019-03-07T13:51:00Z"}

4-65

Chapter 4
Simple SELECT queries

{"Bag Details":"The bag was last seen at FRA on 2019-03-02T13:18:002"}
{"Bag Details":"The bag was last seen at VIE on 2019-02-12T07:04:002"}
{"Bag_Details":"The bag was last seen at JTRJTR on
2019-03-12T15:05:0022019-03-12T16:25:002"}

{"Bag Details":"The bag was last seen at JTR on 2019-03-07T16:01:00Z"}
{"Bag Details":"The bag was last seen at MEL on 2019-02-01T16:13:00Z"}
{"Bag Details":"The bag was last seen at MXP on 2019-03-22T10:17:00Z"}
{"Bag Details":"The bag was last seen at MEL on 2019-02-16T16:13:002"}
{"Bag Details":"The bag was last seen at MIA on 2019-03-02T16:09:002"}
{"Bag Details":"The bag was last seen at BZN on 2019-02-21T14:08:00Z"}
{"Bag Details":"The bag was last seen at SGN on 2019-02-10T10:01:002Z"}
{"Bag Details":"The bag was last seen at JTR on 2019-02-02T23:59:002"}
{"Bag Details":"The bag was last seen at BLR on 2019-03-14T06:22:002"}
{"Bag Details":"The bag was last seen at VIE on 2019-03-05T12:00:002Z"}
{"Bag Details":"The bag was last seen at JTR on 2019-03-12T15:05:002"}
{"Bag Details":"The bag was last seen at SEA on 2019-02-15T21:21:00Z"}
{"Bag Details":"The bag was last seen at HKG on 2019-02-03T08:09:00Z"}
{"Bag Details":"The bag was last seen at HKG on 2019-02-13T11:15:00Z"}

The result is cluttered if there is more than one bag per customer/reservation number as
shown above.

Approach 2: You can overcome this issue by printing as the value of elements of the bagInfo
array as shown below.

SELECT "The bag was last seen at " || [bag.bagInfo[].lastSeenStation] || " on

n ||
[bag.bagInfo[].bagArrivalDate] AS Bag Details FROM BaggageInfo bag

Note:

Column names and static text can also be concatenated using the "||" operator.

Explanation: You are concatenating a part of the document in the bagInfo JSON with various
static text and displaying it as elements of an array.

Output:

{"Bag Details":"The bag was last seen at [\"MIA\"] on
[\"2019-03-02T16:09:00Z\"]1"}
{"Bag Details":"The bag was last seen at [\"BZN\"] on
[\"2019-02-21T14:08:00Z\"1"}
{"Bag Details":"The bag was last seen at [\"SGN\"] on
[\"2019-02-10T10:01:00Z\"]1"}
{"Bag Details":"The bag was last seen at [\"HKG\"] on
[\"2019-02-13T11:15:00Z\"1"}
{"Bag Details":"The bag was last seen at [\"JTR\"] on
[\"2019-02-02T23:59:00Z\"]1"}
{"Bag Details":"The bag was last seen at [\"BLR\"] on
[\"2019-03-14T06:22:00Z\"]1"}
{"Bag Details":"The bag was last seen at [\"VIE\"] on
[\"2019-03-05T12:00:00Z\"]1"}
{"Bag Details":"The bag was last seen at [\"JTR\"] on

ORACLE 466

Using Get API to fetch data

Use the GetRequest API to fetch a single row of data using the primary key.

ORACLE

\"2019-03-12T15:05
"Bag Details":"The

\"2019-02-15T21:21:

"Bag Details":"The
\"2019-02-03T08:09
"Bag Details":"The

\"2019-03-15T10:13:

"Bag Details":"The

"Bag Details":"The

\"2019-02-25T20:15:

"Bag Details":"The

\"2019-03-07T13:51:

"Bag Details":"The

\"2019-03-02T13:18:

"Bag Details":"The

\"2019-02-12T07:04:

{"Bag_Details":"The

[\"2019-03-12T15:05:

[
{
[
{
[
{
[
{
[\"2019-02-04T10:08:
{
[
{
[
{
[
{
[

:00Z\"]"}

bag was last
00Z\"]"}

bag was last
:00Z\"]"}

bag was last
00Z\"]"}

bag was last
00Z\"]"}

bag was last
00Z\"]"}

bag was last
00Z\"]"}

bag was last
00Z\"]"}

bag was last
00Z\"]"}

bag was last
00z\",

\"2019-03-12T16:25:00Z\"]"}

{"Bag Details":"The

\"2019-03-07T16:01:

"Bag Details":"The

\"2019-02-01T16:13:

\"2019-03-22T10:17:

(
{
(
{"Bag Details":"The
(
{"Bag Details":"The
(

\"2019-02-16T16:13:

bag was last

00Z\"]"}
bag was last
00Z\"]"}
bag was last
00Z\"]"}
bag was last
00Z\"]"}

seen

seen

seen

seen

seen

seen

seen

seen

seen

seen

seen

seen

seen

at

at

at

at

at

at

at

at

at

at

at

at

at

[\IISEA\H]

[\IIHKG\H]

[\IIBZN\H]

[\IIMEL\H]

[\IIMEL\H]

[\IIMAD\H]

[\IIFRA\H]

[\"VIE\"]

[\"JTR\",\"JTR\"] on

[\IIJTR\H]

[\IIMEL\H]

[\"MXP\"]

[\IIMEL\H]

on

on

on

on

on

on

on

on

on

Chapter 4
Simple SELECT queries

By default, all read operations are eventually consistent. This type of read is less costly than
those using absolute consistency. You can change the default Consistency for a NoSQLHandle

instance by using the setConsistency () method in the Consistency class.

* Java

e Python
« Go

* Node.js
e C#
Java

The GetRequest class provides a simple and powerful way to read data, while queries can be
used for more complex read requests. To read data from a table, specify the target table and
target key using the GetRequest class and use NoSQLHandle.get () to execute your request.
The result of the operation is available in GetResult. You can change the default Consistency
for a NoSQLHandle instance by using the

4-67

Chapter 4
Simple SELECT queries

NoSQLHandleConfig.setConsistency (oracle.nosql.driver.Consistency) and
GetRequest.setConsistency () methods

Download the full code QueryData.java from the examples here.

//Fetch single row using get API
private static void getRow (NoSQLHandle handle, String colName,int Id) throws
Exception {

MapValue key = new MapValue () .put (colName, Id);

GetRequest getRequest = new GetRequest () .setKey (key)

.setTableName (tableName) ;
GetResult getRes = handle.get (getRequest);
/* on success, GetResult.getValue() returns a non-null value */

if (getRes.getValue() !'= null) {
System.out.println("\t" +getRes.getValue().toString());
} else {

System.out.println("Get Failed");

Note:

To fetch data from a child table, specify the full name of the table
(parent_tablename.child_tablename) in the setTableName method. Download the full
code TableJoins.java from the examples to understand how to fetch data from a
parent-child table here.

Python

Use the GetRequest API to fetch a single row of data using the primary key. You can read
single rows using the borneo.NoSQLHandle.get () method. This method allows you to retrieve
a record based on its primary key value. The borneo.GetRequest class is used for simple get
operations. It contains the primary key value for the target row and returns an instance of
borneo.GetResult. You can change the default Consistency for a borneo.NoSQLHandle using
borneo.NoSQLHandleConfig.set consistency () before creating the handle. It can be
changed for a single request using borneo.GetRequest.set consistency().

Download the full code QueryData.py from the examples here.

Fetch single row using get API
def getRow (handle,colName, Id):
request = GetRequest().set table name('stream acct')
request.set key({colName: Id})
print ('Query results: ')
result = handle.get (request)
print ('Query results are' + str(result.get value()))

ORACLE 468

Chapter 4
Simple SELECT queries

Note:

To fetch data from a child table, specify the full name of the table
(parent_tablename.child_tablename) in the set table name method. Download the
full code TableJoins.py from the examples to understand how to fetch data from a
parent-child table here.

Go

Use the GetRequest API to fetch a single row of data using the primary key. You can read
single rows using the Client.Get function. This function allows you to retrieve a record based
on its primary key value. The nosgldb.GetRequest is used for simple get operations. It
contains the primary key value for the target row and returns an instance of
nosgldb.GetResult. If the get operation succeeds, a non-nil GetResult.Version is returned.
You can change the default Consistency for a nosqldb.RequestConfig using
RequestConfig.Consistency before creating the client. It can be changed for a single request
using GetRequest.Consistency field.

Download the full code QueryData.go from the examples here.

//fetch data from the table
func getRow(client *nosqgldb.Client, err error, tableName string, colName
string, Id int) (){
key:=&types.MapValue{}
key.Put (colName, Id)
req:=&nosqgldb.GetRequest {
TableName: tableName,
Key: key,
}
res, err:=client.Get (req)
if err != nil {
fmt.Printf ("GetResults () failed: %v\n", err)
return
}
if res.RowExists () {
fmt.Printf ("Got row: %v\n", res.ValueAsJSON())
} else {
fmt.Printf ("The row does not exist.\n")

< Note:

To fetch data from a child table, specify the full name of the table
(parent_tablename.child_tablename) in the TableName parameter. Download the full
code TableJoins.go from the examples to understand how to fetch data from a
parent-child table here.

ORACLE 469

Chapter 4
Simple SELECT queries

Node.js

Use the get API to fetch a single row of data using the primary key. You can read a single row
using the get method. This method allows you to retrieve a record based on its primary key
value. For method details, see NoSQLClient class.

Set the consistency of the read operation using Consistency enumeration. You can set the
default Consistency for read operations in the initial configuration that is used to create a
NoSQLClient instance using the consistency property. You can also change it for a single read
operation by setting the consistency property in the GetOpt argument of the get method.

JavaScript: Download the full code QueryData.js from the examples here.

//fetches single row with get API
async function getRow(handle,idVal) {
try {
const result = await handle.get (TABLE NAME, {acct Id: idval });
console.log('Got row: %0', result.row);
} catch(error) {
console.error (' Error: ' + error.message);

TypeScript: You can also supply an optional type parameter for a row to get and other data-
related methods. The type parameter allows the TypeScript compiler to provide type hints for
the returned GetResult method, as well as type-check the passed key. While type checking,
the compiler inspects if the primary key field is a part of the table schema and if the type of the
primary key field is one of the allowed types, that is either string, numeric, date or boolean.
Download the full code QueryData.ts from the examples here.

interface StreamInt {
acct Id: Integer;
profile name: String;
account expiry: TIMESTAMP;
acct data: JSON;

/*fetches single row with get API*/
async function getRow(handle: NoSQLClient,idVal: Integer) {
try {
const result = await handle.get<StreamInt>(TABLE NAME, {acct Id:
idval });
console.log('Got row: %0', result.row);
} catch(error) {
console.error (' Error: ' + error.message);

ORACLE 470

Chapter 4
Simple SELECT queries

Note:

To fetch data from a child table, specify the full name of the table
(parent_tablename.child_tablename) in the TABLE NAME parameter. Download the full
JavaScript code TableJoins.js here and the full TypeScript code TableJoins.ts here
to understand how to fetch data from a parent-child table.

C#

Use the GET API to fetch a single row of data using the primary key. You can read a single row
using the GetAsync method. This method allows you to retrieve a row based on its primary key
value. The field names should be the same as the table primary key column names. You may
also pass options as GetOptions.

You can set consistency of a read operation using Consistency enumeration. The default
consistency for read operations may be set as Consistency property of NoSQLConfig. You may
also change the consistency for a single Get operation by using Consistency property of
GetOptions. GetAsync method returns Task<GetResult<RecordValue>>. GetResult instance
contains the returned Row, the row Version and other information. If the row with the provided
primary key does not exist in the table, the values of both Row and Version properties will be
null.

Download the full code QueryData.cs from the examples here.

private static async Task getRow (NoSQLClient client,String colName, int Id){
var result = await client.GetAsync (TableName,
new MapValue
{
[colName] =Id
P
if (result.Row != null) {
Console.WriteLine ("Got row: {0}\n", result.Row.ToJsonString());
}
else {
Console.WriteLine ("Row with primaryKey {0} doesn't exist",colName);

}

< Note:

To fetch data from a child table, specify the full name of the table
(parent_tablename.child_tablename) in the TableName parameter. Download the full
code TableJoins.cs from the examples to understand how to fetch data from a
parent-child table here.

Using Query API to fetch data

You can use the QueryRequest to construct queries to filter data from your NoSQL table.

ORACLE 41

Chapter 4
Simple SELECT queries

e Java

* Python
« Go

* Node.js
o C#
Java

To execute your query, you use the NoSQLHandle.query () API. See Oracle NoSQL Java SDK
API Reference for more details on the various classes and methods.

There are two ways to get the results of a query: using an iterator or loop through partial
results.

e Iterator: Use NoSQLHandle.queryIterable (QueryRequest) to get an iterable that contains
all the results.

e Partial Results: To compute and retrieve the full result set of a query, the same
QueryRequest instance will, in general, have to be executed multiple times (via
NoSQLHandle.query (oracle.nosql.driver.ops.QueryRequest). Each execution returns a
QueryRequest, which contains a subset of the result set.

String sglstmt allrows="SELECT * FROM stream acct";
private static void fetchRows (NoSQLHandle handle,String sglstmt)
throws Exception {
try (
QueryRequest queryRequest =
new QueryRequest () .setStatement (sgqlstmt allrows);

QueryIterableResult results =
handle.querylterable (queryRequest)) {

for (MapValue res : results) {
System.out.println("\t" + res);

You can also apply filter conditions using the WHERE clause in the query.

String sglstmt allrows=

"SELECT account expiry, acct.acct data.lastName,
acct.acct data.contentStreamed[].showName

FROM stream acct acct WHERE acct id=1";

Download the full code QueryData.java from the examples here.

ORACLE 4-72

Chapter 4
Simple SELECT queries

Note:

To fetch data from a child table, specify the full name of the table
(parent_tablename.child_tablename) in the sql statement. Download the full code
TableJoins.java from the examples to understand how to fetch data from a parent-
child table here.

Python

To execute a query use the borneo.NoSQLHandle.query () method.

There are two ways to get the results of a query: using an iterator or loop through partial
results.

* Use borneo.NoSQLHandle.query iterable () to get an iterable that contains all the results
of a query.

e You can loop through partial results by using the borneo.NoSQLHandle.query () method.
For example, to execute a SELECT query to read data from your table, a
borneo.QueryResult contains a list of results. And if the borneo.QueryRequest.is done ()
returns False, there may be more results, so queries should generally be run in a loop. It is
possible for single request to return no results but the query still not done, indicating that
the query loop should continue.

sglstmt = 'SELECT * FROM stream acct'

def fetch data(handle,sglstmt):
request = QueryRequest ().set statement (sqlstmt)
print ('Query results for: ' + sqglstmt)

result = handle.query(request)
for r in result.get results():
print ("\t' + str(r))

You can also apply filter conditions using the WHERE clause in the query.

sqlstmt = 'SELECT account expiry, acct.acct data.lastName,
acct.acct data.contentStreamed[].showName
FROM stream acct acct WHERE acct id=1'

Download the full code QueryData.py from the examples here.

Note:

To fetch data from a child table, specify the full name of the table
(parent_tablename.child_tablename) in the sqgl statement. Download the full code
TableJoins.py from the examples to understand how to fetch data from a parent-
child table here.

Go

To execute a query use the Client.Query function. When execute on the cloud service, the
amount of data read by a single query request is limited by a system default and can be further

ORACLE 473

ORACLE

Chapter 4
Simple SELECT queries

limited using QueryRequest.MaxReadKB. This limits the amount of data read and not the amount
of data returned, which means that a query can return zero results but still have more data to
read. For this reason queries should always operate in a loop, acquiring more results, until
QueryRequest.IsDone () returns true, indicating that the query is done.

querystmt := "select * FROM stream acct"

func fetchData(client *nosgldb.Client, err error,
tableName string, querystmt string) () {
prepReq := &nosqgldb.PrepareRequest{ Statement: querystmt, }

prepRes, err := client.Prepare (prepReq)

if err != nil {
fmt.Printf ("Prepare failed: %v\n", err)
return

queryReq := &nosqgldb.QueryRequest{
PreparedStatement: &prepRes.PreparedStatement, }
var results []*types.MapValue

for {
queryRes, err := client.Query(queryReq)
if err != nil {
fmt.Printf ("Query failed: %v\n", err)
return
}
res, err := queryRes.GetResults()
if err != nil {
fmt.Printf ("GetResults () failed: %$v\n", err)
return

}

results = append(results, res...)
if queryReq.IsDone() {
break

}

for i, r := range results {
fmt.Printf ("\t%d: %s\n", i+1,
jsonutil.AsJSON (r.Map()))

You can also apply filter conditions using the WHERE clause in the query.

querystmt := "SELECT account expiry, acct.acct data.lastName,
acct.acct data.contentStreamed[].showName
FROM stream acct acct where acct id=1"

Download the full code QueryData.go from the examples here.

4-74

Chapter 4
Simple SELECT queries

Note:

To fetch data from a child table, specify the full name of the table
(parent_tablename.child_tablename) in the sql statement. Download the full code
TableJoins.go from the examples to understand how to fetch data from a parent-
child table here.

Node.js

You can query data from the NoSQL tables using one of these methods. For method details,
see NoSQLClient class.

1. Use the query method to execute a query. This method returns a Promise of
QueryResult,which is a plain JavaScript object containing an array of resulting rows as
well as a continuation key. You can use the query method in two ways:

* You can call the query method only once for queries that access at most one row.
These queries can only include select statements based on the primary key (the where
clause must specify equality based on the complete primary key). In all other cases,
you can use either query in a loop or queryIterable method.

e You can call the query method in a loop to retrieve multiple rows. As the amount of
data returned by a query is limited by the system default and can be further limited by
setting the maxReadKB property in the Queryopt argument of the queryone invocation of
the query method can't return all the available results. To address this issue, run the
query in a loop until the continuationKey in QueryResult becomes null/undefined.

2. lterate over the query results using the queryIterable method. This method returns an
iterable object that you can iterate over with a for-await-of loop. You need not manage the
continuation in this method.

Note:

With the queryIterablemethod, you can also use the QueryOpt argument with
properties other than continuationKey.

JavaScript: Download the full code QueryData.js from the examples here.
const querystmt = 'SELECT * FROM stream acct';

async function fetchData (handle,querystmt) {
const opt = {};

try {
do {
const result = await handle.query(querystmt, opt);
for(let row of result.rows) {
console.log ("' %0', row);

}

opt.continuationKey = result.continuationKey;
} while(opt.continuationKey) ;
} catch(error) {
console.error (' Error: ' + error.message);

ORACLE 475

Chapter 4
Simple SELECT queries

You can also apply filter conditions using the WHERE clause in the query.

const querystmt =

'SELECT account expiry, acct.acct data.lastName,
acct.acct data.contentStreamed[].showName

FROM stream acct acct WHERE acct id=1';

TypeScript:You can use the same methods described in JavaScript above for TypeScript. You
can also supply an optional query result schema as the type parameter to the query method to
provide type hints for the rows returned in the QueryResult. This need not be the same as
table row schema (unless using SELECT * query) as the query can include projections, name
aliases, aggregate values, and so forth. Download the full code QueryData.ts from the
examples here.

interface StreamInt {
acct Id: Integer;
profile name: String;
account expiry: TIMESTAMP;
acct data: JSON;

/* fetches data from the table */
async function fetchData(handle: NoSQLClient,querystmt: string) {
const opt = {};
try {
do {
const result = await handle.query<StreamInt>(querystmt, opt);
for(let row of result.rows) ({
console.log ("' %0', row);
}
opt.continuationKey = result.continuationKey;
} while(opt.continuationKey);
} catch(error) {
console.error (' Error: ' + error.message);

You can also apply filter conditions using the WHERE clause in the query.

const querystmt =

'SELECT account expiry, acct.acct data.lastName,
acct.acct data.contentStreamed[].showName

FROM stream acct acct WHERE acct id=1';

ORACLE 476

ORACLE

Chapter 4
Simple SELECT queries

Note:

To fetch data from a child table, specify the full name of the table
(parent_tablename.child_tablename) in the sql statement. Download the full
JavaScript code TableJoins.js here and the full TypeScript code TableJoins.ts here
to understand how to fetch data from a parent-child table.

C#

To execute a query, you may call Queryasync method or call GetQueryAsyncEnumerable
method and iterate over the resulting async enumerable. You may pass options to each of
these methods as QueryOptions. QueryAsync method return
Task<QueryResult<RecordValue>>. QueryResult contains query results as a list of
RecordValue instances, as well as other information. When your query specifies a complete
primary key, it is sufficient to call QueryAsync once. The amount of data returned by the query
is limited by the system. It could also be further limited by setting MaxReadkB property of
QueryOptions. This means that one invocation of QueryAsync may not return all available
results. This situation is dealt with by using continuation key. Non-null continuation key in
QueryResult means that more query results may be available. This means that queries should
run in a loop, looping until the continuation key becomes null. See Oracle NoSQL Dotnet SDK
API Reference for more details of all classes and methods.

private const string querystmt ="SELECT * FROM stream acct";

private static async Task fetchData (NoSQLClient client,String querystmt) {
var queryEnumerable = client.GetQueryAsyncEnumerable (querystmt) ;
await DoQuery (queryEnumerable);

}

//function to display result

private static async Task
DoQuery (IAsyncEnumerable<QueryResult<RecordValue>> queryEnumerable) {
Console.WriteLine (" Query results:");

await foreach (var result in queryEnumerable) {
foreach (var row in result.Rows)

{
Console.WriteLine();
Console.WritelLine (row.ToJdsonString());

You can also apply filter conditions using the WHERE clause in the query.

private const string querystmt =

"SELECT account expiry, acct.acct data.lastName,
acct.acct data.contentStreamed[].showName

FROM stream acct acct WHERE acct id=1";

Download the full code QueryData.cs from the examples here.

4-77

Chapter 4
SELECT queries on JSON collection tables

Note:

To fetch data from a child table, specify the full name of the table
(parent_tablename.child_tablename) in the sql statement. Download the full code
TableJoins.cs from the examples to understand how to fetch data from a parent-
child table here.

SELECT queries on JSON collection tables

ORACLE

You can use the SQL expressions to query data from the JSON collection tables. The SQL
gueries work similarly on tables based on a fixed schema.

You can access the document name/value pairs in a JSON collection table by specifying JSON
path expressions. A top-level attribute in the document can be accessed using its field name
as the path expression, while a nested attribute must be accessed using a path to the attribute.

To follow along with the examples, create a JSON collection table for a shopping application
and insert the sample data records as described in the Sample data to run queries section. A
few sample rows from the table are as follows:

{"contactPhone":"1517113582", "address":
{"city":"Houston", "number":651, "state":"TX", "street":"Tex

Ave","zip":95085}, "cart":null, "firstName":"Dierdre", "lastName" :"Amador", "order
s":[{"EstDelivery":"2023-11-01","item" :"handbag", "orderID":"201200",
"priceperunit":350},
{"EstDelivery":"2023-11-01","item":"Lego", "orderID":"201201", "priceperunit":55
00}1}

{"contactPhone":"1917113999", "address": {"city":"San

Jose", "number":501, "state":"San
Francisco","street":"Maine","zip":95095}, "cart":

[{"item":"wallet", "priceperunit":950, "quantity":2}, {"item":"wall
art","priceperunit":9500, "quantity":1}],"firstName":"Sharon", "gender":"F", "las
tName":"Willard", "notify":"yes","wishlist":

[{"item":"Tshirt", "priceperunit":500}, {"item":"Jenga", "priceperunit":850}]}

Example 1: Fetch the details from shoppers who have purchased a handbag and the
stipulated delivery is after October 31st, 2023.

SELECT contactPhone, firstName

FROM storeAcct s

WHERE s.orders[].item =any "handbag" AND s.orders[].EstDelivery>=any
"2023-10-31"

Explanation: To fetch the details from shoppers who have purchased a handbag that is
expected to be delivered after October 31st, you compare the item and EstDelivery fields
with the required values using the sequence comparison operator any. You use the logical
operator AND to fetch the rows that match both conditions.

Here, you can compare the EstDelivery without casting into a timestamp data type as itis a
string-formatted date in ISO-8601 format and the natural sorting order of strings applies.

4-78

Chapter 4
Using Path expressions

Output:

{
"contactPhone" : "1517113582",
"firstName" : "Dierdre"

Example 2: Display promotional messages to shoppers from San Jose who have wallet or
handbag items in their carts.

SELECT concat ("Hi ",s.firstName) AS Message,
CASE
WHEN s.cart.item =any "wallet"
THEN "The prices on Wallets have dropped"
WHEN s.cart.item =any "handbag"
THEN "The prices on handbags have dropped"
ELSE "Exciting offers on wallets and handbags"
END AS Offer
FROM storeAcct s

WHERE s.address.city =any "San Jose";

Explanation: You can use CASE statement to display a promotional message to the shoppers
regarding the reduction in the prices if the shoppers have the items wallet or handbag in their
cart. As the offers are only for shoppers from San Jose, you specify the city in the WHERE
clause.

Output:

{"Message":"Hi Sharon","Offer":"The prices on Wallets have
dropped"}

Using Path expressions

Path expressions are used to navigate inside hierarchically structured data. Oracle NoSQL
Database supports different complex data types like arrays and records. You will learn how to
work with different complex data types using path expressions.

If you want to follow along with the examples, see Sample data to run queries to view a sample
data and use the scripts to load sample data for testing. The scripts create the tables used in
the examples and load data into the tables.

e Using Internal variables and aliases
e Working with Arrays
e Working with nested data type

e Finding the size of a complex data type

Using Internal variables and aliases

Oracle NoSQL Database allows implicit declaration of internal variables. Internal variables are
bound to their values during the execution of the expressions that declare them.

ORACLE 4-79

ORACLE

Chapter 4
Using Path expressions

The table name in a query may be followed by a table alias. Table aliases are essentially
variables ranging over the rows of the specified table. If no alias is specified, one is created
internally, using the name of the table as it is spelled in the query.

Example 1: Find the ticket number and passenger details for a given reservation code:

SELECT bagDet.ticketNo, bagDet.fullName, bagDet.contactPhone FROM BaggageInfo
bagDet
WHERE confNo="QB100J"

Explanation: In this query, you fetch the values of static fields like fullname, ticket number, and
contact phone for a particular reservation code. You use a table alias for the BaggageInfo
table.

Output:

{"ticketNo":1762390789239,"fullName":"Zina
Christenson", "contactPhone":"987-210-3029"}

If the table alias starts with a dollar sign ($), then it actually serves as a variable declaration for
a variable whose name is the alias. This variable is bound to the context row.

Example 2: Fetch the full name and tag number for all customer baggage shipped after 2019.

SELECT fullName, bag.ticketNo FROM BaggageInfo bag WHERE
exists bag.bagInfo[$element.bagArrivalDate >="2019-01-01T00:00:00"]

Explanation: The bag arrival date value for every bag should be greater than the year 2019.
Here the "$element" is bound to the context row (every baggage of the customer). The
EXISTS operator checks whether the sequence returned by its input expression is empty or
not. The sequence returned by the comparison operator ">=" is non-empty for all bags which
arrived after 2019.

Output:

{"fullName":"Lucinda Beckman","ticketNo":1762320569757}
{"fullName":"Adelaide Willard","ticketNo":1762392135540}
{"fullName":"Raymond Griffin","ticketNo":1762399766476}
{"fullName":"Elane Lemons","ticketNo":1762324912391}
{"fullName":"Zina Christenson","ticketNo":1762390789239}
{"fullName":"Zulema Martindale","ticketNo":1762340579411}
{"fullName":"Dierdre Amador","ticketNo":1762376407826}
{"fullName":"Henry Jenkins","ticketNo":176234463813}
{"fullName":"Rosalia Triplett","ticketNo":1762311547917}
{"fullName":"Lorenzo Phil","ticketNo":1762320369957}
{"fullName":"Gerard Greene","ticketNo":1762341772625}
{"fullName":"Adam Phillips","ticketNo":1762344493810}
{"fullName":"Doris Martin","ticketNo":1762355527825}
{"fullName":"Joanne Diaz","ticketNo":1762383911861}
{"fullName":"Omar Harvey","ticketNo":1762348904343}
{"fullName":"Fallon Clements","ticketNo":1762350390409}
{"fullName":"Lisbeth Wampler", "ticketNo":1762355854464}
{"fullName":"Teena Colley","ticketNo":1762357254392}
{"fullName":"Michelle Payne","ticketNo":1762330498104}

4-80

Chapter 4
Using Path expressions

{"fullName":"Mary Watson","ticketNo":1762340683564}
{"fullName":"Kendal Biddle", "ticketNo":1762377974281}

Working with Arrays

ORACLE

An array is an ordered collection of zero or more items. The items of an array are called
elements. Arrays cannot contain any NULL values.

The BaggageInfo schema has many arrays. A simple array from the schema is the actions
array in every flightLeg. You can use path expressions to navigate a simple array or a nested
array.

"actions" : [{

"actionAt" "syp",

"actionCode" "ONLOAD to SIN",

"actionTime" "2019.02.28 at 22:09:00 AEDT"
oo A

"actionAt" "syp",

"actionCode" "BagTag Scan at SYD",
"actionTime" "2019.02.28 at 21:51:00 AEDT"
oo A

"actionAt" "syp",

"actionCode" "Checkin at SYD",
"actionTime" "2019.02.28 at 20:06:00 AEDT"

b

Example 1: Fetch the details of the first leg of every bag (including all the actions taken at the
leg) for the passenger with ticket number 1762357254392.

SELECT bagDet.fullName, bagDet.bagInfo[].flightLegs[0]
AS Details FROM BaggageInfo bagDet WHERE ticketNo=1762357254392

In the above query, f1ightLegs iS an array. The slice step [0] is applied to the f1ightLegs
array. Since array elements start with 0, this gives you the first record in the array. You get the
first leg information of every bag for each passenger. You apply an additional filter with the
ticketNo and so only one passenger information is fetched.

Output:

{"fullName":"Teena Colley",

"Details":[[

{"actionAt":"MSQ", "actionCode":"ONLOAD to
FRA","actionTime":"2019-02-13T07:17:002"},
{"actionAt":"MSQ","actionCode":"BagTag Scan at
MSQ","actionTime":"2019-02-13T06:52:002"},

{"actionAt":"MSQ", "actionCode":"Checkin at

MSQ", "actionTime":"2019-02-13T06:11:002"}],
"2019-02-13T709:00:002","2019-02-13T07:00:002", "BM365", "FRA", "MSQ"] }

4-81

Chapter 4
Using Path expressions

Note:

You can also use a slice step to select all array elements whose positions are within
a range: [low: high], where low and high are expressions to specify the range
boundaries. You can omit low and high expressions if you do not require a low or
high boundary.

Example: Fetch the details of all the legs (including all the actions taken at all the legs) for the
passenger with ticket number 1762357254392.

You'll be using the slice step to fetch the first 3 records of the £1ightLegs array.

SELECT bagDet.fullName, bagDet.bagInfo[].flightLegs[0:2] AS Details
FROM BaggageInfo bagDet WHERE ticketNo=1762357254392

Output:

{"fullName":"Teena Colley",
"Details": [
[
{"actionAt":"MSQ", "actionCode":"ONLOAD to
FRA", "actionTime":"2019-02-13T07:17:002"},
{"actionAt":"MSQ","actionCode":"BagTag Scan at
MSQ", "actionTime":"2019-02-13T06:52:002"},
{"actionAt":"MSQ","actionCode":"Checkin at
MSQ", "actionTime":"2019-02-13T06:11:002"}
1,
"2019-02-13T709:00:002","2019-02-13T07:00:002", "BM365", "FRA", "MSQ",
[
{"actionAt":"HKG","actionCode":"0Offload to Carousel at
HKG", "actionTime":"2019-02-13T11:15:00Z"},
{"actionAt":"FRA", "actionCode":"ONLOAD to
HKG", "actionTime":"2019-02-13T10:39:00z2"},
{"actionAt":"FRA", "actionCode":"OFFLOAD from
FRA", "actionTime":"2019-02-13T10:37:002"}
1,
"2019-02-13T11:18:002","2019-02-13T07:17:002", "BM313", "HKG", "FRA"
1}

Working with nested data type

ORACLE

Oracle NoSQL database supports nested data type. That means you can have one data type
inside another data type. For example, records inside an array, an array inside an array, and so
on. The sample Baggageinfo schema uses nested data type of an array of arrays.

Example 1: Fetch the various actions taken on the first leg for the passenger with the ticket
number 1762330498104.

SELECT bagDet.fullName, bagDet.bagInfo[].flightLegs[0].values().values() AS
Action
FROM BaggageInfo bagDet WHERE ticketNo=1762330498104

4-82

Chapter 4
Using Path expressions

Explanation: In the above query, flightLegs is a nested data type. This in turn has an
actions array, which is an array of records. The above query is executed in two steps.

1. S$bag.bagInfol].flightLegs[0].values() gives all the entries in the first record of
theflightLegs array. This includes an actions array. You can iterate this (using
values ()) to get all the records of the actions array as shown below.

2. Sbag.bagInfo[].flightLegs[0].values().values() gives all the records of the actions
array.

Output:

{"fullName":"Michelle Payne",

"Action": ["SFO","ONLOAD to IST","2019-02-02T12:10:00Z","SFO",
"BagTag Scan at SFO","2019-02-02T11:47:00z","SFO",

"Checkin at SFO","2019-02-02T10:01:00z"]1}

Example 2: Display details of the last transit action update done on the first leg for the
passenger with the ticket number 1762340683564.

SELECT bagDet.fullName, (bagDet.bagInfo[].flightLegs[0].values())
[2] .actionCode
AS lastTransit Update FROM Baggagelnfo bagDet WHERE ticketNo=1762340683564

Explanation: The above query is processed using the following steps:

1. S$bagDet.bagInfo[].flightLegs[0].values() gives all the entries in the first record of the
flightLegs array.

2. baglInfo[].flightLegs[0].values()) [2] points to the third (which is the last) record of
the actions array inside the first element of the f1ightLegs array.

3. There are multiple records in the actions array. bagInfo[].flightLegs[0].values())
[2].actionCode fetches the value corresponding to the actionCode element.

Output:

{"fullName":"Mary Watson","lastTransit Update":"Checkin at YYZ"}

Note:

In a later section you will learn to write the same query in a generic way without
hardcoding the array index by using the size function. See Finding the size of a
complex data type.

Finding the size of a complex data type

The size function can be used to return the size (number of fields/entries) of a complex data
type.

ORACLE 493

Chapter 4
Using Path expressions

Example 1: Find out how many flight legs/hops are there for a passenger with ticket number
1762320569757.

SELECT bagDet.fullName, size(bagDet.bagInfo.flightLegs) as Noof Legs
FROM BaggageInfo bagDet WHERE ticketNo=1762320569757

Explanation: In the above query, you get the size of the f1ightLegs array using the size
function.

Output:

{"fullName":"Lucinda Beckman", "Noof Legs":3}

Example 2: Find the number of action entries (for the bags) in the first leg for the passenger
with ticket number 1762357254392.

SELECT bagDet.fullName, size(bagDet.bagInfo[].flightLegs[0].actions) AS
FirstLeg NoofActions
FROM BaggageInfo bagDet WHERE ticketNo=1762357254392

Output:

{"fullName":"Teena Colley","FirstLeg NoofActions":3}

Example 3: Display details of the last transit action update done on the first leg for the
passenger with the ticket number 1762340683564.

SELECT bagDet.fullName,

(bagDet.bagInfo[].flightLegs[0].values())

[size (bagDet.bagInfo.flightLegs[0].actions)-1].actionCode

AS lastTransit Update FROM BaggageInfo bagDet WHERE ticketNo=1762340683564

Output:

{"fullName":"Mary Watson","lastTransit Update":"Checkin at YYZ"}

Explanation:

The above query is processed using the following steps:

e 1. SbagDet.bagInfo[].flightLegs[0].values () gives all the entries in the first record of
the flightLegs array.

2. size(bagDet.bagInfo.flightLegs[0].actions)gives the size of the actions array in
the first leg.

3. There are multiple records in the actions array. You can use the result of the size
function to get the last record in the action array and the corresponding actionCode
can be fetched. You subtract the size by 1 as the index of an array starts with 0.

ORACLE Y

Chapter 4
Using Left Outer joins with parent-child tables

Note:

The same query has been written in the topic Working with nested data type by hard
coding the index of the actions array. Using the size function, you have rewritten the
same query in a generic way without hard coding the index.

Using Left Outer joins with parent-child tables

A JOIN is used to combine rows from two or more tables, based on a related column between
them. In a hierarchical table, the child table inherits the primary key columns of its parent table.
This is done implicitly, without including the parent columns in the CREATE TABLE statement of
the child. All tables in the hierarchy have the same shard key columns.

A Left Outer Join (LOJ) is one of the join operations that allows you to specify a join clause.

e Overview of Left Outer Joins

* Examples using Left Outer Joins

Overview of Left Outer Joins

ORACLE

A Left Outer Join (LOJ) is one of the join operations that allows you to specify a join clause. It
preserves the unmatched rows from the first (left) table, joining them with a NULL row in the
second (right) table. This means all left rows that do not have a matching row in the right table
will appear in the result, paired with a NULL value in place of a right row.

In an LOJ, the order of fields in the result-set is always in top-down order. That means the
order of output in the result set is always from the ancestor table first and then the descendant
table. This is true irrespective of the order of the joins.

Characteristics of LEFT OUTER JOIN:
e Queries multiple tables in the same hierarchy
e ltis an ANSI-SQL Standard

e |t does not support sibling table joins

If you want to follow along with the examples, download the script parentchildtbls_loaddata.sql
and run it as shown below. This script creates the table used in the example and loads data
into the table.

Start your KVSTORE or KVLite and open the SQL.shell.

java -jar lib/kvstore.jar kvlite -secure-config disable
java -jar lib/sgl.jar -helper-hosts localhost:5000 -store kvstore

The parentchildtbls loaddata.sql contains the following:

Begin Script

load -file parentchild.ddl

import -table ticket -file ticket.json

import -table ticket.bagInfo -file bagInfo.Jjson

import -table ticket.passengerInfo -file passengerInfo.json
import -table ticket.bagInfo.flightlLegs -file flightLegs.json
End Script

4-85

Chapter 4
Using Left Outer joins with parent-child tables

Using the 1oad command, run the script.

load -file parentchildtbls loaddata.sql

Examples using Left Outer Joins

Various tables used in the examples :

o ticket

ticketNo LONG
confNo STRING
PRIMARY KEY (ticketNo)

* ticket.bagInfo

id LONG

tagNum LONG

routing STRING
lastActionCode STRING
lastActionDesc STRING
lastSeenStation STRING,
lastSeenTimeGmt TIMESTAMP (4)
bagArrivalDate TIMESTAMP (4)
PRIMARY KEY (id)

* ticket.bagInfo.flightLegs

flightNo STRING

flightDate TIMESTAMP (4)
fltRouteSrc STRING
fltRouteDest STRING
estimatedArrival TIMESTAMP (4),
actions JSON

PRIMARY KEY (flightNo)

* ticket.passengerInfo

contactPhone STRING
fullName STRING

gender STRING

PRIMARY KEY (contactPhone)

* SQL Examples

* Query API examples
SQL Examples
Example 1: Fetch the details of all passengers who have been issued a ticket.

SELECT fullname, contactPhone,gender
FROM ticket a

ORACLE 496

ORACLE

Chapter 4
Using Left Outer joins with parent-child tables

LEFT OUTER JOIN ticket.passengerInfo b
ON a.ticketNo=b.ticketNo

Explanation: This is an example of a join where the target table ticket is joined with its child
table passengerInfo.

Output:

{"fullname":"Elane Lemons","contactPhone":"600-918-8404","gender":"F"}
{"fullname":"Adelaide Willard","contactPhone":"421-272-8082","gender":"M"}
{"fullname":"Dierdre Amador","contactPhone":"165-742-5715","gender":"M"}
{"fullname":"Doris Martin","contactPhone":"289-564-3497","gender":"F"}
{"fullname":"Adam Phillips","contactPhone":"893-324-1064", "gender":"M"}

Example 1a: Fetch the details of the passenger with ticket number 1762324912391 .

SELECT fullname, contactPhone, gender
FROM ticket a

LEFT OUTER JOIN ticket.passengerInfo b
ON a.ticketNo=b.ticketNo

WHERE a.ticketNo=1762324912391

Explanation: This is an example of a join where the target table ticket is joined with its child
table passengerInfo and a filter is applied to restrict the result. In this example, the result set is
limited by applying a filter condition to the result of the join. You are limiting the result to a
particular ticket number.

Output:

{"fullname":"Elane Lemons","contactPhone":"600-918-8404", "gender":"F"}

Example 2: Fetch all the bag details for all passengers who have been issued a ticket.

SELECT * FROM ticket a
LEFT OUTER JOIN ticket.bagInfo b
ON a.ticketNo=b.ticketNo

Explanation: This is an example of a join where the target tableticket is joined with its child
table bagInfo.

Output:

{"a":{"ticketNo":1762344493810,"confNo":"LE6J4zZ"},

"b":

{"ticketNo":1762344493810,"1d":79039899165297, "tagNum":17657806255240, "routing
":"MIA/LAX/MEL",

"lastActionCode":"OFFLOAD", "lastActionDesc":"OFFLOAD", "lastSeenStation":"MEL",
"lastSeenTimeGmt":"2019-02-01T16:13:00.00002", "bagArrivalDate":"2019-02-01T16:
13:00.0000Z"}}

{"a":{"ticketNo":1762324912391, "confNo":"LNOC8R"},

"b" .
{"ticketNo":1762324912391,"1d":79039899168383,"tagNum":1765780623244, "routing"

4-87

Chapter 4
Using Left Outer joins with parent-child tables

:"MXP/CDG/SLC/BZN",

"lastActionCode":"OFFLOAD", "lastActionDesc":"OFFLOAD", "lastSeenStation":"BZN",
"lastSeenTimeGmt":"2019-03-15T10:13:00.00002", "bagArrivalDate":"2019-03-15T10:
13:00.0000Z"}}

{"a":{"ticketNo":1762392135540, "confNo":"DN3I4Q"},

"b":

{"ticketNo":1762392135540,"1d":79039899156435, "tagNum":17657806224224, "routing
":"GRU/ORD/SEA",

"lastActionCode":"OFFLOAD", "lastActionDesc":"OFFLOAD", "lastSeenStation":"SEA",
"lastSeenTimeGmt":"2019-02-15T21:21:00.0000Z", "bagArrivalDate":"2019-02-15T21:
21:00.00002"}}

{"a":{"ticketNo":1762376407826,"confNo":"ZG8Z5N"},

"b":

{"ticketNo":1762376407826,"1d":7903989918469, "tagNum":17657806240229, "routing"
:"JFK/MAD",

"lastActionCode":"OFFLOAD", "lastActionDesc":"OFFLOAD", "lastSeenStation":"MAD",
"lastSeenTimeGmt":"2019-03-07T13:51:00.00002", "bagArrivalDate":"2019-03-07T13:
51:00.0000Z"}}

{"a":{"ticketNo":1762355527825, "confNo":"HJ4J4P"},

"b":

{"ticketNo":1762355527825,"1d":79039899197492, "tagNum":17657806232501, "routing
":"BZN/SEA/CDG/MXP",

"lastActionCode":"OFFLOAD", "lastActionDesc":"OFFLOAD", "lastSeenStation":"MXP",
"lastSeenTimeGmt":"2019-03-22T10:17:00.0000Z", "bagArrivalDate":"2019-03-22T10:
17:00.0000Z"}}

Example 2a: Fetch all the bag details for a particular ticket number.

SELECT * FROM ticket a

LEFT OUTER JOIN ticket.bagInfo b
ON a.ticketNo=b.ticketNo

WHERE a.ticketNo=1762324912391

This is an example of a join where the target table ticket is joined with its child table bagInfo
and a filter is applied to restrict the result. In this example, the result set is limited by applying a
filter condition to the result of the join. You are limiting the result to a particular ticket number.

Output:

{"a":{"ticketNo":1762324912391,"confNo":"LNOC8R"},

"b":
{"ticketNo":1762324912391,"1id":79039899168383,"tagNum":1765780623244, "routing"
:"MXP/CDG/SLC/BZN",

"lastActionCode":"OFFLOAD", "lastActionDesc":"OFFLOAD", "lastSeenStation":"BZN",
"lastSeenTimeGmt":"2019-03-15T10:13:00.00002", "bagArrivalDate":"2019-03-15T10:
13:00.0000Z"}}

ORACLE 488

ORACLE

Chapter 4
Using Left Outer joins with parent-child tables

Note:

If you move the non-join predicate restriction to the ON clause, the result set includes
all the rows that meet the ON clause condition. Rows from the right outer table that
do not meet the ON condition are populated with NULL values as shown below.

SELECT * FROM ticket a

LEFT OUTER JOIN ticket.bagInfo b
ON a.ticketNo=b.ticketNo AND
a.ticketNo=1762324912391

Output:

"a":{"ticketNo":1762355527825, "confNo":"HJ4J4P"}, "b" :null}
"a":{"ticketNo":1762344493810, "confNo":"LE6J4Z"},"b" :null}
"a":{"ticketNo":1762324912391, "confNo":"LNOC8R"}, "b":
"ticketNo":1762324912391,"1d":79039899168383,"tagNum":1765780623244, "routing"
:"MXP/CDG/SLC/BZN",

"lastActionCode":"OFFLOAD", "lastActionDesc":"OFFLOAD", "lastSeenStation":"BzZN",

{
{
{
{

"lastSeenTimeGmt":"2019-03-15T10:13:00.00002", "bagArrivalDate":"2019-03-15T10:
13:00.0000Z"}}

{"a":{"ticketNo":1762392135540,"confNo":"DN3I14Q"},"b":null}
{"a":{"ticketNo":1762376407826,"confNo":"ZG8Z5N"},"b" :null}

Example 3: Fetch all flight legs details for all passengers.

SELECT *FROM ticket a
LEFT OUTER JOIN ticket.bagInfo.flightLegs b
ON a.ticketNo=b.ticketNo;

Explanation: This is an example of a join where the target table ticket is joined with its
descendant ticketInfo. A descendant table can be any level hierarchically below a table (For
example fightLegs is the child of bagInfo which is the child of ticket, so fightLegs is a
descendant of ticket).

Output:

{"a":{"ticketNo":1762344493810,"confNo":"LE6J4zZ"},

"b":
{"ticketNo":1762344493810,"1d":79039899165297,"f1ightNo":"BM604","flightDate":
"2019-02-01T06:00:00.00002Z",

"fltRouteSrc":"MIA", "fltRouteDest":"LAX", "estimatedArrival":"2019-02-01T11:00:
00.0000z",

"actions":[{"actionAt":"MIA", "actionCode":"ONLOAD to
LAX","actionTime":"2019-02-01T06:13:00Z"},
{"actionAt":"MIA","actionCode":"BagTag Scan at
MIA","actionTime":"2019-02-01T05:47:00z"},

{"actionAt":"MIA", "actionCode":"Checkin at
MIA","actionTime":"2019-02-01T04:38:00z2"}1}}

4-89

ORACLE

Chapter 4
Using Left Outer joins with parent-child tables

{"a":{"ticketNo":1762344493810,"confNo":"LE6J4Z"},

"b":
{"ticketNo":1762344493810,"1id":79039899165297,"f1ightNo":"BM667","flightDate":
"2019-02-01T06:13:00.0000Z",

"fltRouteSrc":"LAX","fltRouteDest":"MEL", "estimatedArrival”:"2019-02-01T16:15:
00.0000z",

"actions": [{"actionAt":"MEL","actionCode":"Offload to Carousel at

MEL", "actionTime":"2019-02-01T16:15:002"},
{"actionAt":"LAX","actionCode":"ONLOAD to

MEL", "actionTime":"2019-02-01T15:35:002"},
{"actionAt":"LAX","actionCode" :"OFFLOAD from
LAX","actionTime":"2019-02-01T15:18:002"}]}}

{"a":{"ticketNo":1762324912391, "confNo":"LNOC8R"},

"b":
{"ticketNo":1762324912391,"id":79039899168383,"f1lightNo":"BM170","flightDate":
"2019-03-15T08:13:00.00002Z",

"fltRouteSrc":"SLC","fltRouteDest":"BZN", "estimatedArrival”:"2019-03-15T10:14:
00.0000z",

"actions": [{"actionAt":"BZN","actionCode":"Offload to Carousel at

BZN", "actionTime":"2019-03-15T10:13:002"},
{"actionAt":"SLC","actionCode":"ONLOAD to

BZN", "actionTime":"2019-03-15T10:06:00Z2"},
{"actionAt":"SLC","actionCode" :"OFFLOAD from
SLC","actionTime":"2019-03-15T09:59:002"}]}}

{"a":{"ticketNo":1762324912391, "confNo":"LNOC8R"},

"b":
{"ticketNo":1762324912391,"id":79039899168383,"f1lightNo":"BM490","flightDate":
"2019-03-15T08:13:00.00002Z",

"fltRouteSrc":"CDG","fltRouteDest":"SLC", "estimatedArrival”:"2019-03-15T10:14:
00.0000z",

"actions": [{"actionAt":"CDG","actionCode" :"ONLOAD to
SLC","actionTime":"2019-03-15T09:42:002"},

{"actionAt":"CDG", "actionCode":"BagTag Scan at

CDG", "actionTime":"2019-03-15T09:17:002"},
{"actionAt":"CDG","actionCode" :"OFFLOAD from

CDG", "actionTime":"2019-03-15T09:19:00Z"}]11}}

{"a":{"ticketNo":1762324912391, "confNo":"LNOC8R"},

"b":
{"ticketNo":1762324912391,"id":79039899168383,"f1lightNo":"BM9I36","flightDate":
"2019-03-15T08:00:00.0000Z",

"fltRouteSrc":"MXP","fltRouteDest":"CDG", "estimatedArrival™:"2019-03-15T09:00:
00.0000z",

"actions": [{"actionAt":"MXP","actionCode":"ONLOAD to

CDG", "actionTime":"2019-03-15T08:13:002"},

{"actionAt":"MXP", "actionCode":"BagTag Scan at
MXP","actionTime":"2019-03-15T07:48:002"},

{"actionAt":"MXP", "actionCode":"Checkin at

MXP", "actionTime":"2019-03-15T07:38:002"}]1}}

{"a": {"ticketNo":1762392135540, "confNo": "DN3I4Q"},
"bll :

{"ticketNo":1762392135540, "1d":79039899156435, "£1ightNo": "BM79", "f1lightDate": "
2019-02-15T01:00:00.00002",

4-90

ORACLE

Chapter 4
Using Left Outer joins with parent-child tables

"fltRouteSrc":"GRU", "fltRouteDest":"ORD", "estimatedArrival”:"2019-02-15T11:00:
00.0000z",

"actions": [{"actionAt":"GRU","actionCode":"ONLOAD to

ORD", "actionTime":"2019-02-15T01:21:00Z2"},

{"actionAt":"GRU", "actionCode":"BagTag Scan at

GRU", "actionTime":"2019-02-15T00:55:002"},

{"actionAt":"GRU", "actionCode":"Checkin at

GRU", "actionTime":"2019-02-14T23:49:00Z"}]1}}

{"a":{"ticketNo":1762392135540, "confNo":"DN3I14Q"}

,"b":
{"ticketNo":1762392135540,"1id":79039899156435,"f1ightNo":"BM9I07","flightDate":
"2019-02-15T01:21:00.00002Z",

"fltRouteSrc":"ORD","fltRouteDest":"SEA", "estimatedArrival”:"2019-02-15T21:22:
00.0000z",

"actions": [{"actionAt":"SEA","actionCode":"Offload to Carousel at
SEA","actionTime":"2019-02-15T21:16:002"},
{"actionAt":"ORD","actionCode":"ONLOAD to
SEA","actionTime":"2019-02-15T20:52:00Z"},
{"actionAt":"ORD","actionCode" :"OFFLOAD from

ORD", "actionTime":"2019-02-15T20:44:00Z"}]1}}

{"a":{"ticketNo":1762376407826,"confNo":"ZG8Z5N"},

"b":
{"ticketNo":1762376407826,"1d":7903989918469,"f1lightNo":"BM495","flightDate":"
2019-03-07T07:00:00.0000z2",

"fltRouteSrc":"JFK", "fltRouteDest":"MAD", "estimatedArrival”:"2019-03-07T14:00:
00.0000z",

"actions": [{"actionAt":"MAD","actionCode":"Offload to Carousel at

MAD", "actionTime":"2019-03-07T13:54:002"},
{"actionAt":"JFK","actionCode":"ONLOAD to

MAD", "actionTime":"2019-03-07T07:00:00zZ"},

{"actionAt":"JFK", "actionCode":"BagTag Scan at

JFK", "actionTime":"2019-03-07T06:53:002"},

{"actionAt":"JFK", "actionCode":"Checkin at
JFK","actionTime":"2019-03-07T05:03:00Z"}]}}

{"a":{"ticketNo":1762355527825, "confNo":"HJ4J4P"},

"b":
{"ticketNo":1762355527825,"1d":79039899197492,"f1ightNo":"BM386","flightDate":
"2019-03-22T07:23:00.00002Z",

"fltRouteSrc":"CDG", "fltRouteDest":"MXP", "estimatedArrival”:"2019-03-22T10:24:
00.0000z",

"actions": [{"actionAt":"MXP","actionCode":"0Offload to Carousel at
MXP","actionTime":"2019-03-22T10:15:002"},
{"actionAt":"CDG","actionCode":"ONLOAD to
MXP","actionTime":"2019-03-22T10:09:002"},
{"actionAt":"CDG","actionCode" :"OFFLOAD from

CDG", "actionTime":"2019-03-22T10:01:00Z"}11}}

{"a":{"ticketNo":1762355527825, "confNo":"HJ4J4P"},

"bll :
{"ticketNo":1762355527825,"1d":79039899197492,"f1ightNo":"BM578","flightDate":
"2019-03-22T07:23:00.0000z",

"fltRouteSrc":"SEA","fltRouteDest":"CDG", "estimatedArrival”:"2019-03-21T23:24:
00.0000z",

4-91

ORACLE

Chapter 4
Using Left Outer joins with parent-child tables

"actions": [{"actionAt":"SEA","actionCode":"ONLOAD to
CDG", "actionTime":"2019-03-22T11:26:002"},
{"actionAt":"SEA","actionCode":"BagTag Scan at
SEA","actionTime":"2019-03-22T10:57:00Z"},
{"actionAt":"SEA","actionCode" :"OFFLOAD from
SEA","actionTime":"2019-03-22T11:07:002"}]}}

{"a":{"ticketNo":1762355527825, "confNo":"HJ4J4P"},

"b":
{"ticketNo":1762355527825,"1d":79039899197492,"f1ightNo":"BM704","flightDate":
"2019-03-22T07:00:00.0000Z",

"fltRouteSrc":"BZN","fltRouteDest":"SEA", "estimatedArrival”:"2019-03-22T09:00:
00.0000z",

"actions": [{"actionAt":"BZN","actionCode":"ONLOAD to
SEA","actionTime":"2019-03-22T07:23:00Z"},

{"actionAt":"BZN", "actionCode":"BagTag Scan at

BZN", "actionTime":"2019-03-22T06:58:00z2"},

{"actionAt":"BZN", "actionCode":"Checkin at

BZN", "actionTime":"2019-03-22T05:20:00Z"}]1}}

Example 3a: Fetch all the flight leg details for a particular ticket number.

SELECT * FROM ticket a

LEFT OUTER JOIN ticket.bagInfo.flightLegs b
ON a.ticketNo=b.ticketNo

WHERE a.ticketNo=1762344493810

This is an example of a join where the target table ticket is joined with its descendant
bagInfo and a filter is applied to restrict the result. In this example, the result set is limited by
applying a filter condition to the result of the join. You are limiting the result to a particular ticket
number.

The result has two rows, implying there are two flight legs for this ticket number.

Output:

"a":{"ticketNo":1762344493810,"confNo":"LE6J4Z"},
"b":{"ticketNo":1762344493810,"1d":79039899165297,"flightNo":"BM604",
"flightDate":"2019-02-01T06:00:00.0000Z", "f1tRouteSrc":"MIA","f1tRouteDest":"L
AxX",

"estimatedArrival”:"2019-02-01T11:00:00.0000z",
"actions":[{"actionAt":"MIA", "actionCode":"ONLOAD to
LAX","actionTime":"2019-02-01T06:13:002"},
{"actionAt":"MIA","actionCode":"BagTag Scan at
MIA","actionTime":"2019-02-01T05:47:00z"},

{"actionAt":"MIA", "actionCode":"Checkin at
MIA","actionTime":"2019-02-01T04:38:002"}1}}

{"a":{"ticketNo":1762344493810,"confNo":"LE6J4zZ"},
"b":{"ticketNo":1762344493810,"1d":79039899165297,"flightNo":"BM667",
"flightDate":"2019-02-01T06:13:00.00002", "f1tRouteSrc":"LAX", "f1tRouteDest":"M
EL",

"estimatedArrival”:"2019-02-01T16:15:00.00002",
"actions":[{"actionAt":"MEL","actionCode":"0Offload to Carousel at

MEL", "actionTime":"2019-02-01T16:15:00z2"},

4-92

ORACLE

Chapter 4
Using Left Outer joins with parent-child tables

{"actionAt":"LAX","actionCode":"ONLOAD to
MEL","actionTime":"2019-02-01T15:35:002"},
{"actionAt":"LAX","actionCode" :"OFFLOAD from
LAX","actionTime":"2019-02-01T15:18:002"}]}}

Example 4: Fetch the bag id and number of hops for all bags of all passengers.

SELECT b.id,count (*) AS NUMBER HOPS
FROM ticket a LEFT OUTER JOIN ticket.bagInfo.flightLegs b
ON a.ticketNo=b.ticketNo GROUP BY b.id

Explanation: You group the data based on the bag id (using GROUP BY) and get the count of
flight legs (using count()) for every bag.

Output:

{"1d":79039899168383, "NUMBER_HOPS": 3}
{"1d":79039899156435, "NUMBER_HOPS":2}
{"1d":7903989918469, "NUMBER _HOPS":1}
{"1d":79039899165297, "NUMBER_HOPS":2}
{"1d":79039899197492, "NUMBER_HOPS": 3}

Example 4a: Find the number of hops for all the bags of a given passenger.

SELECT b.id,count (*) AS NUMBER HOPS

FROM ticket a LEFT OUTER JOIN ticket.bagInfo.flightLegs b
ON a.ticketNo=b.ticketNo

WHERE a.ticketNo=1762355527825 GROUP BY b.id

Explanation: You group the data based on the bag id (using GROUP BY) and get the count of
flight legs (Using count())for every bag. Additionally, you filter the results for a particular ticket
number.

Output:

{"1d":79039899197492, "NUMBER HOPS":3}

Example 5: Fetch bag id and routing details of all bags that arrived after 2019.

SELECT b.id, routing

FROM ticket a LEFT OUTER JOIN ticket.bagInfo b
ON a.ticketNo=b.ticketNo

WHERE CAST (b.bagArrivalDate AS Timestamp (0))
>= CAST ("2019-01-01T00:00:00"™ AS Timestamp (0))

Explanation: This is an example of a join where the target tableticket is joined with its child
table bagInfo. The filter condition is applied on the bagArrivalDate. The CAST function is used
to convert the string into Timestamp and then the values are compared.

Output:

{"id":79039899197492,"routing":"BZN/SEA/CDG/MXP"}
{"id":79039899165297, "routing":"MIA/LAX/MEL" }

4-93

Chapter 4
Using Left Outer joins with parent-child tables

{"1d":79039899168383, "routing":"MXP/CDG/SLC/BZN"}
{"1d":79039899156435, "routing":"GRU/ORD/SEA"}
{"1d":7903989918469, "routing":"JFK/MAD" }

Query APl examples

* Java

* Python
« Go

* Node.js
e C#
Java

To execute your query, you use the NoSQLHandle.query () AP

Download the full code TableJoins.java from the examples here.

/* fetch rows based on joins*/
private static void fetchRows (NoSQLHandle handle,String sql stmt) throws
Exception {
try (
QueryRequest queryRequest = new QueryRequest ().setStatement (sql stmt);
QueryIterableResult results = handle.querylterable (queryRequest)) {
System.out.println("Query results:");
for (MapValue res : results) ({
System.out.println("\t" + res);
}

/* fetching rows using left outer joins*/

String sgql stmt loj ="SELECT * FROM ticket a LEFT OUTER JOIN
ticket.bagInfo.flightlLegs b ON a.ticketNo=b.ticketNo";
System.out.println("Fetching data using Left outer joins:");
fetchRows (handle, sql stmt loj);

Python

To execute your query use the borneo.NoSQLHandle.query () method.

Download the full code TableJoins.py from the examples here.

Fetch data from the table based on joins
def fetch data(handle,sglstmt):
request = QueryRequest ().set statement (sqlstmt)
print ('Query results for: ' + sglstmt)
result = handle.query(request)
for r in result.get results():
print ("\t' + str(r))

ORACLE Y

ORACLE

Chapter 4
Using Left Outer joins with parent-child tables

sql stmt loj='SELECT * FROM ticket a LEFT OUTER JOIN
ticket.bagInfo.flightlegs b ON a.ticketNo=b.ticketNo'
print ('Fetching data using Left Outer Joins ')

fetch data(handle,sql stmt loj)

Go

To execute a query use the Client.Query function.

Download the full code TableJoins.go from the examples here.

func fetchData (client *nosgldb.Client, err error,
tableName string, querystmt string) () {
prepReq := &nosqgldb.PrepareRequest{ Statement: querystmt,}

prepRes, err := client.Prepare (prepReq)

if err != nil {
fmt.Printf ("Prepare failed: %v\n", err)
return

queryReq := &nosqgldb.QueryRequest{
PreparedStatement: &prepRes.PreparedStatement, }
var results []*types.MapValue

for {
queryRes, err := client.Query(queryReq)
if err != nil {
fmt.Printf ("Query failed: %v\n", err)
return
}
res, err := queryRes.GetResults()
if err != nil {
fmt.Printf ("GetResults() failed: %v\n", err)
return

}

results = append(results, res...)
if queryReq.IsDone() {
break

}

for i, r := range results {
fmt.Printf ("\t%d: %s\n", i+1,
jsonutil.AsJSON (r.Map()))

querystmt loj:= "SELECT * FROM ticket a LEFT OUTER JOIN
ticket.bagInfo.flightlLegs b ON a.ticketNo=b.ticketNo"
fmt.Println ("Fetching data using Left Outer Joins")
fetchData (client, err,querystmt loj)

4-95

Chapter 4
Using Left Outer joins with parent-child tables

Node.js

To execute a query use query method.

JavaScript: Download the full code TableJoins.js from the examples here.

//fetches data from the table
async function fetchData (handle,querystmt) {
const opt = {};
try {
do {
const result = await handle.query(querystmt, opt);
for(let row of result.rows) ({
console.log ("' %0', row);

}

opt.continuationKey = result.continuationKey;
} while(opt.continuationKey);

} catch(error) {
console.error (' Error: ' + error.message);

const stmt loj = 'SELECT * FROM ticket a LEFT OUTER JOIN
ticket.bagInfo.flightLegs b ON a.ticketNo=b.ticketNo';
console.log("Fetching data using Left Outer Joins");
await fetchData (handle,stmt loj);

TypeScript: Download the full code TableJoins.ts from the examples here.

interface StreamInt {
acct Id: Integer;
profile name: String;
account expiry: TIMESTAMP;
acct data: JSON;

/* fetches data from the table */
async function fetchData (handle: NoSQLClient,querystmt: string) {
const opt = {};
try {
do {
const result = await handle.query<StreamInt> (querystmt, opt);

for(let row of result.rows) {
console.log ("' %0', row);

}

opt.continuationKey = result.continuationKey;
} while(opt.continuationKey);

} catch(error) {
console.error (' Error: ' + error.message);

const stmt loj = 'SELECT * FROM ticket a LEFT OUTER JOIN
ticket.bagInfo.flightlLegs b ON a.ticketNo=b.ticketNo';

ORACLE 496

Chapter 4
Using NESTED TABLES to join parent-child tables

console.log("Fetching data using Left Outer Joins");
await fetchData(handle,stmt loj);

C#

To execute a query, you may call QueryAsync method or call GetQueryAsyncEnumerable
method and iterate over the resulting async enumerable.

Download the full code TableJoins.cs from the examples here.

private static async Task fetchData (NoSQLClient client,String querystmt) {
var queryEnumerable = client.GetQueryAsyncEnumerable (querystmt) ;
await DoQuery (queryEnumerable);

}

private static async Task DoQuery (IAsyncEnumerable<QueryResult<RecordValue>>
queryEnumerable) {
Console.WriteLine (" Query results:");
await foreach (var result in queryEnumerable) {
foreach (var row in result.Row
{
Console.WriteLine();
Console.WriteLine (row.ToJdsonString());

}

private const string stmt loj ="SELECT * FROM ticket a LEFT OUTER JOIN
ticket.bagInfo.flightlLegs b ON a.ticketNo=b.ticketNo";
Console.WritelLine ("Fetching data using Left Outer Joins: ");

await fetchData(client,stmt loj);

Using NESTED TABLES to join parent-child tables

A JOIN is used to combine rows from two or more tables, based on a related column between
them. In a hierarchical table, the child table inherits the primary key columns of its parent table.
This is done implicitly, without including the parent columns in the CREATE TABLE statement of
the child. All tables in the hierarchy have the same shard key columns.

You can use NESTED TABLES clause to join tables in Oracle NoSQL Database.

e Overview of NESTED TABLES
* Examples using NESTED TABLES

Overview of NESTED TABLES

ORACLE

The NESTED TABLES clause specifies the participating tables and separates them into 3
groups. First, the target table from where the data is fetched is specified. Then the
ANCESTORS clause, if present, specifies the number of tables that must be ancestors of the
target table in the table hierarchy. Finally, the DESCENDANTS clause, if present, specifies the
number of tables that must be descendants of the target table in the table hierarchy.

4-97

Chapter 4
Using NESTED TABLES to join parent-child tables

Note:

Semantically, a NESTED TABLES clause is equivalent to a number of left-outer-join
operations "centered" around the target table.

Characteristics of NESTED tables:
e Queries multiple tables in the same hierarchy
e Itis not an ANSI-SQL Standard

e It supports sibling tables join

Table 4-1 Nested Tables Vs LOJ
]

Nested Tables LOJ

Queries multiple tables in the same hierarchy Queries multiple tables in the same hierarchy
Not an ANSI-SQL Standard ANSI-SQL Standard

Supports sibling tables join Does not support sibling table joins

If you want to follow along with the examples, download the script parentchildtbls_loaddata.sql
and run it as shown below. This script creates the table used in the example and loads data
into the table.

Start your KVSTORE or KVLite and open the SQL.shell.

java -jar lib/kvstore.jar kvlite -secure-config disable
java -jar lib/sgl.jar -helper-hosts localhost:5000 -store kvstore

The parentchildtbls loaddata.sqgl contains the following:

##4# Begin Script ###

load -file parentchild.ddl

import -table ticket -file ticket.json

import -table ticket.bagInfo -file bagInfo.json

import -table ticket.passengerInfo -file passengerInfo.json
import -table ticket.bagInfo.flightLegs -file flightLegs.json
##4 End Script ###

Using the 1oad command, run the script.

load -file parentchildtbls loaddata.sql

Examples using NESTED TABLES

ORACLE

Various tables used in the examples :

o ticket

ticketNo LONG
confNo STRING
PRIMARY KEY (ticketNo)

4-98

SQL Examples

ticket.bagInfo

id LONG

tagNum LONG

routing STRING
lastActionCode STRING
lastActionDesc STRING
lastSeenStation STRING,
lastSeenTimeGmt TIMESTAMP (4)
bagArrivalDate TIMESTAMP (4)
PRIMARY KEY (id)

ticket.bagInfo.flightLegs

flightNo STRING

flightDate TIMESTAMP (4)
fltRouteSrc STRING
fltRouteDest STRING
estimatedArrival TIMESTAMP (4),
actions JSON

PRIMARY KEY (flightNo)

ticket.passengerInfo

contactPhone STRING
fullName STRING

gender STRING

PRIMARY KEY (contactPhone)

SQL Examples
Query API examples

Chapter 4
Using NESTED TABLES to join parent-child tables

Example 1: Fetch the details of all passengers who have been issued a ticket.

SELECT fullname, contactPhone, gender

FROM NESTED TABLES
(ticket a descendants(ticket.passengerInfo b))

Explanation: This is an example of a join where the target table ticket is joined with its child
table passengerInfo.

Output:

{"fullname":
{"fullname":
{"fullname":
{"fullname":
{"fullname":

ORACLE

"Elane Lemons","contactPhone":"600-918-8404","gender":"F"}
"Adelaide Willard","contactPhone":"421-272-8082","gender":"M"}
"Dierdre Amador","contactPhone":"165-742-5715","gender":"M"}
"Doris Martin","contactPhone":"289-564-3497","gender":"F"}
"Adam Phillips","contactPhone":"893-324-1064", "gender":"M"}

4-99

ORACLE

Chapter 4
Using NESTED TABLES to join parent-child tables

Example 1a: Fetch the details of the passenger with ticket number 1762324912391 .

SELECT fullname, contactPhone, gender

FROM NESTED TABLES

(ticket a descendants(ticket.passengerInfo b))
WHERE a.ticketNo=1762324912391

Explanation: This is an example of a join where the target tableticket is joined with its child
table passengerInfo. Additionally, you can limit the result set by applying a filter condition to
the result of the join. You are limiting the result to a particular ticket number.

Output:

{"fullname":"Elane Lemons","contactPhone":"600-918-8404", "gender":"F"}

Example 2: Fetch all the bag details for all passengers who have been issued a ticket.

SELECT * FROM NESTED TABLES
(ticket a descendants(ticket.bagInfo b))

Explanation: This is an example of a join where the target table ticket is joined with its child
table bagInfo.

Output:

{"a":{"ticketNo":1762344493810,"confNo":"LE6J4zZ"},

"b":

{"ticketNo":1762344493810,"1d":79039899165297, "tagNum":17657806255240, "routing
":"MIA/LAX/MEL",

"lastActionCode":"OFFLOAD", "lastActionDesc":"OFFLOAD", "lastSeenStation":"MEL",
"lastSeenTimeGmt":"2019-02-01T16:13:00.00002", "bagArrivalDate":"2019-02-01T16:
13:00.0000Z"}}

{"a":{"ticketNo":1762324912391, "confNo":"LNOC8R"},

"b":
{"ticketNo":1762324912391,"1d":79039899168383,"tagNum":1765780623244, "routing"
:"MXP/CDG/SLC/BZN",

"lastActionCode":"OFFLOAD", "lastActionDesc":"OFFLOAD", "lastSeenStation":"BZN",
"lastSeenTimeGmt":"2019-03-15T10:13:00.00002", "bagArrivalDate":"2019-03-15T10:
13:00.0000Z"}}

{"a":{"ticketNo":1762392135540, "confNo":"DN3I4Q"},

"b":
{"ticketNo":1762392135540,"1d":79039899156435,"tagNum":17657806224224, "routing
":"GRU/ORD/SEA",

"lastActionCode":"OFFLOAD", "lastActionDesc":"OFFLOAD", "lastSeenStation":"SEA",
"lastSeenTimeGmt":"2019-02-15T21:21:00.00002", "bagArrivalDate":"2019-02-15T21:
21:00.0000z"}}

{"a":{"ticketNo":1762376407826,"confNo":"ZG8Z5N"},

"bH:
{"ticketNo":1762376407826,"1d":7903989918469,"tagNum":17657806240229, "routing"
:"JFK/MAD",

"lastActionCode":"OFFLOAD", "lastActionDesc":"OFFLOAD", "lastSeenStation":"MAD",

4-100

ORACLE

Chapter 4
Using NESTED TABLES to join parent-child tables

"lastSeenTimeGmt":"2019-03-07T13:51:00.00002", "bagArrivalDate":"2019-03-07T13:
51:00.0000z"}}

{"a":{"ticketNo":1762355527825, "confNo":"HJ4J4P"},

"b":

{"ticketNo":1762355527825,"1d":79039899197492, "tagNum":17657806232501, "routing
":"BZN/SEA/CDG/MXP",

"lastActionCode":"OFFLOAD", "lastActionDesc":"OFFLOAD", "lastSeenStation":"MXP",
"lastSeenTimeGmt":"2019-03-22T10:17:00.0000Z", "bagArrivalDate":"2019-03-22T10:
17:00.0000Z"}}

Example 2a: Fetch all the bag details for a particular ticket number.

SELECT * FROM
NESTED TABLES (ticket a descendants(ticket.bagInfo b))
WHERE a.ticketNo=1762324912391

Explanation: This is an example of a join where the target tableticket is joined with its child
table bagInfo. Additionally, you can limit the result set by applying a filter condition to the result
of the join. You are limiting the result to a particular ticket number.

Output:

{"a":{"ticketNo":1762324912391,"confNo":"LNOC8R"},

"b":

{"ticketNo":1762324912391,"id":79039899168383, "tagNum":1765780623244, "routing"
:"MXP/CDG/SLC/BZN",

"lastActionCode":"OFFLOAD", "lastActionDesc":"OFFLOAD", "lastSeenStation":"BZN",
"lastSeenTimeGmt":"2019-03-15T10:13:00.00002", "bagArrivalDate":"2019-03-15T10:
13:00.0000Z"}}

Note:

If you move the non-join predicate restriction to the ON clause, the result set includes
all the rows that meet the ON clause condition. Rows from the right outer table that
do not meet the ON condition are populated with NULL values as shown below.

SELECT * FROM

NESTED TABLES (ticket a descendants(ticket.bagInfo b
ON a.ticketNo=b.ticketNo

AND a.ticketNo=1762324912391))

Output:

nan

{"a":{"ticketNo":1762355527825, "confNo":"HJ4J4P"}, "b":null}
{"a":{"ticketNo":1762344493810,"confNo":"LE6J4Z"}, "b":null}
{"a":{"ticketNo":1762324912391, "confNo":"LNOC8R"}, "b":
{"ticketNo":1762324912391,"1d":79039899168383,"tagNum":1765780623244, "routing"
:"MXP/CDG/SLC/BZN",

"lastActionCode":"OFFLOAD", "lastActionDesc":"OFFLOAD", "lastSeenStation":"BZN",

n

4-101

ORACLE

Chapter 4
Using NESTED TABLES to join parent-child tables

"lastSeenTimeGmt":"2019-03-15T10:13:00.00002", "bagArrivalDate":"2019-03-15T10:
13:00.0000Z"}}

{"a":{"ticketNo":1762392135540,"confNo":"DN3I14Q"},"b":null}
{"a":{"ticketNo":1762376407826,"confNo":"ZG8Z5N"},"b" :null}

Example 3: Fetch all flight leg details for all passengers.

SELECT * FROM
NESTED TABLES (ticket a descendants(ticket.bagInfo.flightLegs b))

Explanation: This is an example of a join where the target table ticket is joined with its
descendant bagInfo. A descendant table can be any level hierarchically below a table (For
example fightLegs is the child of bagInfo which is the child of ticket, so fl1ightlegs is a
descendant of ticket). All the rows from the ticket table will be fetched. If any row from the
ticket table does not have a matching row in the f1ightLegs table, then NULL values will be
displayed for those rows of the f1ightLegs table.

Output:

{"a":{"ticketNo":1762344493810,"confNo":"LE6J4Z"},

"b":
{"ticketNo":1762344493810,"1id":79039899165297,"f1ightNo":"BM604","flightDate":
"2019-02-01T06:00:00.00002Z",

"fltRouteSrc":"MIA","fltRouteDest":"LAX", "estimatedArrival”:"2019-02-01T11:00:
00.0000z",

"actions": [{"actionAt":"MIA","actionCode":"ONLOAD to
LAX","actionTime":"2019-02-01T06:13:002"},
{"actionAt":"MIA","actionCode":"BagTag Scan at
MIA","actionTime":"2019-02-01T05:47:002"},

{"actionAt":"MIA", "actionCode":"Checkin at
MIA","actionTime":"2019-02-01T04:38:002"}]1}}

{"a":{"ticketNo":1762344493810,"confNo":"LE6J4Z"},

"b":
{"ticketNo":1762344493810,"1id":79039899165297,"f1ightNo":"BM667","flightDate":
"2019-02-01T06:13:00.00002Z",

"fltRouteSrc":"LAX","fltRouteDest":"MEL", "estimatedArrival™:"2019-02-01T16:15:
00.0000z",

"actions": [{"actionAt":"MEL","actionCode":"Offload to Carousel at
MEL","actionTime":"2019-02-01T16:15:00Z2"},
{"actionAt":"LAX","actionCode":"ONLOAD to

MEL", "actionTime":"2019-02-01T15:35:002"},
{"actionAt":"LAX","actionCode" :"OFFLOAD from
LAX","actionTime":"2019-02-01T15:18:002"}]}}

{"a":{"ticketNo":1762324912391, "confNo":"LNOC8R"},

"b":
{"ticketNo":1762324912391,"id":79039899168383,"f1ightNo":"BM170","flightDate":
"2019-03-15T08:13:00.00002Z",

"fltRouteSrc":"SLC","fltRouteDest":"BZN", "estimatedArrival™:"2019-03-15T10:14:
00.0000z",

"actions": [{"actionAt":"BZN","actionCode":"Offload to Carousel at

BZN", "actionTime":"2019-03-15T10:13:00Z2"},
{"actionAt":"SLC","actionCode" :"ONLOAD to

BZN", "actionTime":"2019-03-15T10:06:00Z2"},

4-102

ORACLE

Chapter 4
Using NESTED TABLES to join parent-child tables

{"actionAt":"SLC","actionCode" :"OFFLOAD from
SLC","actionTime":"2019-03-15T09:59:002"}]1}}

{"a":{"ticketNo":1762324912391, "confNo":"LNOC8R"},

"b":
{"ticketNo":1762324912391,"id":79039899168383,"f1lightNo":"BM490","flightDate":
"2019-03-15T08:13:00.0000Z",

"fltRouteSrc":"CDG","fltRouteDest":"SLC", "estimatedArrival”:"2019-03-15T10:14:
00.0000z",

"actions": [{"actionAt":"CDG","actionCode" :"ONLOAD to
SLC","actionTime":"2019-03-15T09:42:002"},
{"actionAt":"CDG","actionCode":"BagTag Scan at

CDG", "actionTime":"2019-03-15T09:17:002"},
{"actionAt":"CDG","actionCode" :"OFFLOAD from

CDG", "actionTime":"2019-03-15T09:19:00Z"}]11}}

{"a":{"ticketNo":1762324912391, "confNo":"LNOC8R"},

"b":
{"ticketNo":1762324912391,"id":79039899168383,"f1lightNo":"BM9I36","flightDate":
"2019-03-15T08:00:00.00002Z",

"fltRouteSrc":"MXP","fltRouteDest":"CDG", "estimatedArrival”:"2019-03-15T09:00:
00.0000z",

"actions": [{"actionAt":"MXP","actionCode" :"ONLOAD to

CDG", "actionTime":"2019-03-15T08:13:002"},

{"actionAt":"MXP", "actionCode":"BagTag Scan at
MXP","actionTime":"2019-03-15T07:48:002"},

{"actionAt":"MXP", "actionCode":"Checkin at

MXP", "actionTime":"2019-03-15T07:38:002"}]1}}

{"a":{"ticketNo":1762392135540, "confNo":"DN3I4Q"},

"b":
{"ticketNo":1762392135540,"1id":79039899156435,"f1ightNo":"BM79","flightDate":"
2019-02-15T01:00:00.0000z2",

"fltRouteSrc":"GRU", "fltRouteDest":"ORD", "estimatedArrival”:"2019-02-15T11:00:
00.0000z",

"actions": [{"actionAt":"GRU", "actionCode":"ONLOAD to

ORD", "actionTime":"2019-02-15T01:21:002"},

{"actionAt":"GRU", "actionCode":"BagTag Scan at

GRU", "actionTime":"2019-02-15T00:55:002"},

{"actionAt":"GRU", "actionCode":"Checkin at

GRU", "actionTime":"2019-02-14T23:49:00Z"}]11}}

{"a":{"ticketNo":1762392135540, "confNo":"DN3I14Q"}

,"b":
{"ticketNo":1762392135540,"1id":79039899156435,"f1ightNo":"BM9I07","flightDate":
"2019-02-15T01:21:00.00002Z",

"fltRouteSrc":"ORD", "fltRouteDest":"SEA", "estimatedArrival”:"2019-02-15T21:22:
00.0000z",

"actions": [{"actionAt":"SEA","actionCode":"0Offload to Carousel at

SEA", "actionTime":"2019-02-15T21:16:002"},
{"actionAt":"ORD","actionCode":"ONLOAD to

SEA", "actionTime":"2019-02-15T20:52:00Z"},
{"actionAt":"ORD","actionCode":"OFFLOAD from

ORD", "actionTime":"2019-02-15T20:44:00Z"}]1}}

{"a":{"ticketNo":1762376407826,"confNo":"ZG8Z5N"},

4-103

Chapter 4
Using NESTED TABLES to join parent-child tables

"b":
{"ticketNo":1762376407826,"1d":7903989918469,"f1lightNo":"BM495","flightDate":"
2019-03-07T07:00:00.0000z2",

"fltRouteSrc":"JFK", "fltRouteDest":"MAD", "estimatedArrival”:"2019-03-07T14:00:
00.0000z",

"actions": [{"actionAt":"MAD","actionCode":"Offload to Carousel at

MAD", "actionTime":"2019-03-07T13:54:00z2"},
{"actionAt":"JFK","actionCode":"ONLOAD to

MAD", "actionTime":"2019-03-07T07:00:00zZ"},

{"actionAt":"JFK", "actionCode":"BagTag Scan at
JFK","actionTime":"2019-03-07T06:53:002"},

{"actionAt":"JFK", "actionCode":"Checkin at
JFK","actionTime":"2019-03-07T05:03:00Z"}]}}

{"a":{"ticketNo":1762355527825, "confNo":"HJ4J4P"},

"b":
{"ticketNo":1762355527825,"1d":79039899197492,"f1ightNo":"BM386","flightDate":
"2019-03-22T07:23:00.0000Z",

"fltRouteSrc":"CDG", "fltRouteDest":"MXP", "estimatedArrival”:"2019-03-22T10:24:
00.0000z",

"actions": [{"actionAt":"MXP","actionCode":"Offload to Carousel at
MXP","actionTime":"2019-03-22T710:15:002"},
{"actionAt":"CDG","actionCode" :"ONLOAD to
MXP","actionTime":"2019-03-22T10:09:00Z2"},
{"actionAt":"CDG","actionCode" :"OFFLOAD from

CDG", "actionTime":"2019-03-22T10:01:00Z"}]11}}

{"a":{"ticketNo":1762355527825, "confNo":"HJ4J4P"},

"b":
{"ticketNo":1762355527825,"1d":79039899197492,"f1ightNo":"BM578","flightDate":
"2019-03-22T07:23:00.0000Z",

"fltRouteSrc":"SEA","fltRouteDest":"CDG", "estimatedArrival”:"2019-03-21T23:24:
00.0000z",

"actions": [{"actionAt":"SEA","actionCode":"ONLOAD to

CDG", "actionTime":"2019-03-22T11:26:002"},
{"actionAt":"SEA","actionCode":"BagTag Scan at
SEA","actionTime":"2019-03-22T10:57:00Z"},
{"actionAt":"SEA","actionCode" :"OFFLOAD from
SEA","actionTime":"2019-03-22T11:07:00Z2"}]}}

{"a":{"ticketNo":1762355527825, "confNo":"HJ4J4P"},

"b":
{"ticketNo":1762355527825,"1d":79039899197492,"f1ightNo":"BM704","flightDate":
"2019-03-22T07:00:00.00002Z",

"fltRouteSrc":"BZN", "fltRouteDest":"SEA", "estimatedArrival”:"2019-03-22T09:00:
00.0000z",

"actions": [{"actionAt":"BZN","actionCode":"ONLOAD to
SEA","actionTime":"2019-03-22T07:23:00Z"},
{"actionAt":"BZN","actionCode":"BagTag Scan at

BZN", "actionTime":"2019-03-22T06:58:00z2"},

{"actionAt":"BZN", "actionCode":"Checkin at

BZN", "actionTime":"2019-03-22T05:20:00Z"}]1}}

ORACLE 4104

ORACLE

Chapter 4
Using NESTED TABLES to join parent-child tables

Example 3a: Fetch all the flight leg details for a particular ticket number.

SELECT * FROM
NESTED TABLES (ticket.bagInfo.flightLegs b ancestors(ticket a))
WHERE a.ticketNo=1762344493810

Explanation: This is an example of a join where the target tableticket is joined with its
descendant bagInfo. Additionally, you can limit the result set by applying a filter condition to
the result of the join. You are limiting the result to a particular ticket number.

The result has two rows, implying there are two flight legs for this ticket number.

Output:

"a":{"ticketNo":1762344493810,"confNo":"LE6J4Z"},
"b":{"ticketNo":1762344493810,"1d":79039899165297,"flightNo":"BM604",
"flightDate":"2019-02-01T06:00:00.0000Z", "f1tRouteSrc":"MIA","f1tRouteDest":"L
AxX",

"estimatedArrival":"2019-02-01T11:00:00.0000z",
"actions":[{"actionAt":"MIA", "actionCode":"ONLOAD to
LAX","actionTime":"2019-02-01T06:13:002"},
{"actionAt":"MIA","actionCode":"BagTag Scan at
MIA","actionTime":"2019-02-01T05:47:00z"},

{"actionAt":"MIA", "actionCode":"Checkin at
MIA","actionTime":"2019-02-01T04:38:002"}1}}

{"a":{"ticketNo":1762344493810,"confNo":"LE6J4zZ"},
"b":{"ticketNo":1762344493810,"1d":79039899165297,"flightNo":"BM667",
"flightDate":"2019-02-01T06:13:00.00002", "f1tRouteSrc":"LAX", "f1tRouteDest":"M
EL",

"estimatedArrival”:"2019-02-01T16:15:00.00002",
"actions":[{"actionAt":"MEL","actionCode":"0ffload to Carousel at
MEL", "actionTime":"2019-02-01T16:15:00z2"},

{"actionAt":"LAX", "actionCode":"ONLOAD to

MEL", "actionTime":"2019-02-01T15:35:00z2"},

{"actionAt":"LAX", "actionCode":"OFFLOAD from
LAX","actionTime":"2019-02-01T15:18:00Z"}1}}

Example 4: Fetch the bag id and number of hops for all bags of all passengers.

SELECT b.id,count (*) AS NUMBER HOPS
FROM NESTED TABLES (ticket a descendants(ticket.bagInfo.flightLegs b))
GROUP BY b.id

Explanation: You group the data based on the bag id (using GROUP BY) and get the count of
flight legs (using count()) for every bag.

Output:

{"1d":79039899168383, "NUMBER_HOPS":3}
{"1d":79039899156435, "NUMBER _HOPS":2}
{"1d":7903989918469, "NUMBER HOPS":1}
{"1d":79039899165297, "NUMBER_HOPS":2}
{"1d":79039899197492, "NUMBER_HOPS":3}

4-105

Chapter 4
Using NESTED TABLES to join parent-child tables

Example 4a: Find the number of hops for all bags of a particular passenger.

SELECT b.id,count (*) AS NUMBER HOPS FROM

NESTED TABLES (ticket a descendants(ticket.bagInfo.flightLegs b))
WHERE a.ticketNo=1762355527825

GROUP BY b.id

Explanation: You group the data based on the bag id (using GROUP BY) and get the count of
flight legs (Using count()) for every bag. Additionally, you filter the results for a particular ticket
number.

Output:

{"1d":79039899197492, "NUMBER_HOPS": 3}

Example 5: Fetch bag id and routing details of all bags that arrived after 2019.

SELECT b.id, routing FROM

NESTED TABLES (ticket a descendants(ticket.bagInfo b))
WHERE CAST (b.bagArrivalDate AS Timestamp (0))>=

CAST ("2019-01-01T00:00:00" AS Timestamp(0))

Explanation: This is an example of a join where the target tableticket is joined with its child
table bagInfo. The filter condition is applied on the bagArrivalDate. The CAST function is used
to convert the string into Timestamp and then the values are compared.

Output:

{"id":79039899197492, "routing":"BZN/SEA/CDG/MXP" }
{"id":79039899165297, "routing": "MIA/LAX/MEL" }
"1d":79039899168383, "routing":"MXP/CDG/SLC/BZN"}
{"id":79039899156435, "routing": "GRU/ORD/SEA" }
"1d":7903989918469, "routing":"JFK/MAD" }

Query APl examples

ORACLE

 Java

e Python
+ Go

* Node.js
e C#
Java

To execute your query, you use the NoSQLHandle.query () API.

4-106

ORACLE

Chapter 4
Using NESTED TABLES to join parent-child tables

Download the full code TableJoins.java from the examples here.

/* fetch rows based on joins*/
private static void fetchRows (NoSQLHandle handle,String sql stmt) throws
Exception {
try (
QueryRequest queryRequest = new QueryRequest () .setStatement (sql stmt);
QueryIterableResult results = handle.querylterable (queryRequest)) {
System.out.println("Query results:");
for (MapValue res : results) {
System.out.println("\t" + res);

System.out.println ("Fetching data using NESTED TABLES:");
String sgl stmt nt ="SELECT * FROM NESTED TABLES (ticket a
descendants (ticket.bagInfo.flightLegs b))";

/* fetching rows using nested tables*/
fetchRows (handle, sql_stmt nt);

Python

To execute your query use the borneo.NoSQLHandle.query () method.

Download the full code TableJoins.py from the examples here.

Fetch data from the table based on joins
def fetch data(handle,sglstmt):
request = QueryRequest ().set statement (sglstmt)
print ('Query results for: ' + sglstmt)
result = handle.query(request)
for r in result.get results():
print ("\t' + str(r))

sql stmt nt="'SELECT * FROM NESTED TABLES (ticket a
descendants (ticket.bagInfo.flightLegs b))

print ('Fetching data using NESTED TABLES ')

fetch data(handle,sgl stmt nt)

Go

To execute a query use the Client.Query function.

Download the full code TableJoins.go from the examples here.

func fetchData(client *nosgldb.Client, err error,
tableName string, querystmt string) () {
prepReq := &nosqgldb.PrepareRequest{ Statement: querystmt, }

prepRes, err := client.Prepare (prepReq)

if err != nil {
fmt.Printf ("Prepare failed: %v\n", err)
return

4-107

ORACLE

Chapter 4
Using NESTED TABLES to join parent-child tables

queryReq := &nosqgldb.QueryRequest{
PreparedStatement: &prepRes.PreparedStatement, }
var results []*types.MapValue

for {
queryRes, err := client.Query(queryReq)
if err != nil {
fmt.Printf ("Query failed: %v\n", err)
return
}
res, err := queryRes.GetResults()
if err != nil {
fmt.Printf ("GetResults () failed: %v\n", err)
return

}

results = append(results, res...)
if queryReq.IsDone() {
break

}
for i, r := range results {
fmt.Printf ("\t%d: %s\n", i+1,
jsonutil.AsJSON (r.Map()))

querystmt nt:= "SELECT * FROM NESTED TABLES (ticket a
descendants (ticket.bagInfo.flightLegs b)"

fmt.Println ("Fetching data using NESTED TABLES")
fetchData (client, err,querystmt nt)

Node.js

To execute a query use query method.

JavaScript: Download the full code TableJoins.js from the examples here.

//fetches data from the table
async function fetchData (handle,querystmt) {
const opt = {};
try {
do {
const result = await handle.query(querystmt, opt);
for(let row of result.rows) {
console.log ("' %0', row);
}
opt.continuationKey = result.continuationKey;
} while (opt.continuationKey);
} catch(error) {
console.error (' Error: ' + error.message);

4-108

Chapter 4
Using NESTED TABLES to join parent-child tables

const stmt nt = 'SELECT * FROM NESTED TABLES (ticket a
descendants (ticket.bagInfo.flightLegs b)) "';
console.log("Fetching data using NESTED TABLES");
await fetchbData (handle,stmt nt);

TypeScript: Download the full code TableJoins.ts from the examples here.

interface StreamInt {
acct Id: Integer;
profile name: String;
account expiry: TIMESTAMP;
acct data: JSON;

/* fetches data from the table */
async function fetchData (handle: NoSQLClient,querystmt: string) {
const opt = {};
try {
do {
const result = await handle.query<StreamInt> (querystmt, opt);
for(let row of result.rows) {
console.log ("' %0', row);
}
opt.continuationKey = result.continuationKey;
} while (opt.continuationKey);
} catch(error) {
console.error (' Error: ' + error.message);

const stmt nt = 'SELECT * FROM NESTED TABLES (ticket a
descendants (ticket.bagInfo.flightLegs b)) "';
console.log("Fetching data using NESTED TABLES");
await fetchbData (handle,stmt nt);

C#

To execute a query, you may call QueryaAsync method or call GetQueryAsyncEnumerable
method and iterate over the resulting async enumerable.

Download the full code TableJoins.cs from the examples here.

private static async Task fetchData (NoSQLClient client,String querystmt) {
var queryEnumerable = client.GetQueryAsyncEnumerable (querystmt) ;
await DoQuery (queryEnumerable);

private static async Task DoQuery(IAsyncEnumerable<QueryResult<RecordvValue>>
queryEnumerable) {
Console.WriteLine (" Query results:");
await foreach (var result in queryEnumerable) {
foreach (var row in result.Row

{

Console.WriteLine();

ORACLE 4100

Chapter 4
Tuning and Optimizing SQL queries

Console.WritelLine (row.ToJdsonString());

}

private const string stmt nt ="SELECT * FROM NESTED TABLES (ticket a
descendants (ticket.bagInfo.flightLegs b))";

Console.Writeline ("Fetching data using NESTED TABLES: ");

await fetchbData(client,stmt nt);

Tuning and Optimizing SQL queries

Query optimization is the overall process of choosing the most efficient means of executing a
SQL statement.

You optimize a SQL query to get accurate and fast database results.
« Using Indexes for query optimization

e Examples of queries using index

Using Indexes for query optimization

ORACLE

Indexing is a way to optimize the performance of a database by minimizing the number of disk
accesses required when a query is processed.

In Oracle NoSQL Database, the query processor can identify which of the available indexes
are beneficial for a query and rewrite the query to make use of such an index. "Using" an index
means scanning a contiguous subrange of its entries, potentially applying further filtering
conditions on the entries within this subrange, and using the primary keys stored in the
surviving index entries to extract and return the associated table rows. The subrange of the
index entries to scan is determined by the conditions appearing in the WHERE clause, some of
which may be converted to search conditions for the index. Given that only a (hopefully small)
subset of the index entries will satisfy the search conditions, the query can be evaluated
without accessing each individual table row, thus saving a potentially large number of disk
accesses.

Notice that in Oracle NoSQL Database, a primary-key index is always created by default. This
index maps the primary key columns of a table to the physical location of the table rows.
Furthermore, if no other index is available, the primary index will be used. In other words, there
is no pure "table scan" mechanism; a table scan is equivalent to a scan via the primary-key
index. When it comes to indexes and queries, the query processor must answer two questions:

1. Is an index applicable to a query? That is, will accessing the table via this index be more
efficient than doing a full table scan (via the primary index).

2. Among the applicable indexes, which index or combination of indexes is the best to use?
There are no statistics on the number and distribution of values in a table column. As a result,
the query processor has to rely on some simple heuristics in choosing among the applicable

indexes. In addition, SQL for Oracle NoSQL Database allows for the inclusion of index hints in
the queries. You can use index hints to force the use of a particular index in queries.

4-110

Chapter 4
Tuning and Optimizing SQL queries

Examples of queries using index

ORACLE

You can write simple queries to understand how an index is used.

Query 1:

Fetch the bag details of passengers for ticket numbers satisfying 2 range of values.

SELECT fullname, ticketNo,bag.bagInfo[].tagNum,
bag.bagInfo[].routing

FROM BaggageInfo bag WHERE 1762340000000 < ticketNo
AND ticketNo < 1762352000000

In the above example, the query contains 2 index predicates. The primary key index is used as
ticketNo is the primary key here. For the primary key index, 1762340000000 < ticketNo is a
start predicate and ticketNo < 1762352000000 is a stop predicate.

A portion of the query plan is shown below. You can see the primary index being used.

"iterator kind" : "TABLE",
"target table" : "BaggageInfo",
"row variable" : "$Sbag",
"index used" : "primary index",
"covering index" : false,

"index scans"

[

"equality conditions" : {},

"range conditions" : { "ticketNo" : { "start value" : 1762340000000,
"start inclusive" : false,
"end value" : 1762352000000,
"end inclusive" : false } }

For more information on how a query is executed, see Query execution plan.

Query 2:

Fetch the bag details of passengers for ticket numbers satisfying one of the two ranges of
values.

SELECT fullname, ticketNo,bag.bagInfo[].tagNum,
bag.bagInfo[].routing

FROM BaggageInfo bag

WHERE ticketNo > 1762340000000 OR

ticketNo < 1762352000000

In the above example, the query contains 1 index predicate, which is the whole WHERE
expression. The primary key index is used as ticketNo is the primary key here. The predicate
is a filtering predicate.

4-111

ORACLE

Chapter 4
Tuning and Optimizing SQL queries

A portion of the query plan is shown below. You can see the primary index and the index

filtering predicates being used.

"iterator kind" : "TABLE",
"target table" : "BaggageInfo",
"row variable" : "$Sbag",
"index used" : "primary index",
"covering index" : false,

"index scans"

[

"equality conditions" : {},
"range conditions" : {}
}
1,
"index filtering predicate"
{
"iterator kind" : "OR",
"input iterators"

[

"iterator kind" : "GREATER THAN",

"left operand"
{

b
"right operand"

"iterator kind" : "LESS THAN",

"left operand"
{

b

"right operand"

For more information on how a query is executed, see Query execution plan.

Query 3:

Fetch the bag details for a particular reservation code.

SELECT fullName,bag.ticketNo, bag.confNo,
bag.bagInfo[].tagNum,bag.bagInfo[].routing
FROM BaggageInfo bag WHERE bag.confNo="FH7G1W"

4-112

ORACLE

Chapter 4
Tuning and Optimizing SQL queries

In the above example, two indexes are applicable compindex tckNoconfNo and
fixedschema conf .

A portion of the query plan is shown below. The fixedschema conf is used as that is a single
index on ticketNo. Anindex scan is performed with the equality condition.

"iterator kind" : "TABLE",

"target table" : "BaggageInfo",
"row variable" : "$Sbag",

"index used" : "fixedschema conf",
"covering index" : false,

"index scans"

[

"equality conditions" : {"confNo":"FH7G1W"},
"range conditions" : {}

For more information on how a query is executed, see Query execution plan.

Query 4:

Fetch the name and routing details of all male passengers.

SELECT fullname,bag.bagInfo[].routing FROM BaggageInfo bag
WHERE gender!="F"

In the above example, there is no index predicate, because no index has information about
gender.

A portion of the query plan is shown below. As there are no available indexes to be used, only
the primary key index is used.

"iterator kind" : "TABLE",
"target table" : "BaggageInfo",
"row variable" : "$Sbag",
"index used" : "primary index",
"covering index" : false,

"index scans"

[

"equality conditions" : {},
"range conditions" : {}

For more information on how a query is executed, see Query execution plan.

Query 5:

Fetch the name and phone number for all passengers.

SELECT bag.contactPhone, bag.fullName FROM BaggageInfo bag
ORDER BY bag.fullName

4-113

Chapter 4
Tuning and Optimizing SQL queries

In the above example, only the index compindex namephone is applicable. The sort (for the
order by clause) will be index-based because the order-by expression matches the 1st field of
the index used by the query. In this case, the full name and contact phone information needed
in the SELECT clause is available in the index. As a result, the whole query can be answered
from the index only, with no access to the table. So the index compindex namephone is a
covering index in this example. The query processor will apply this optimization.

A portion of the query plan is shown below. You can see the index compindex namephone is
used and it is a covering index.

"iterator kind" : "TABLE",

"target table" : "BaggageInfo",

"row variable" : "$Sbag",

"index used" : "compindex namephone",
"covering index" : true,

"index row variable" : "Sbag idx",

"index scans"

[

"equality conditions" : {},
"range conditions" : {}

For more information on how a query is executed, see Query execution plan.

Query 6:

Fetch the name, ticket number, and arrival date of passengers whose arrival date is greater
than a given value.

SELECT fullName, bag.ticketNo, bag.bagInfo[].bagArrivalDate
FROM BaggageInfo bag WHERE EXISTS
bag.bagInfo[$element.bagArrivalDate >="2019-01-01T00:00:00"]

In the above example, the EXISTS condition is actually converted to a filtering predicate. There
is one filtering predicate which is the whole WHERE expression.

A portion of the query plan is shown below. The index simpleindex arrival is used in this

example.

"iterator kind" : "TABLE",

"target table" : "BaggageInfo",

"row variable" : "$Sbag",

"index used" : "simpleindex arrival",
"covering index" : false,

"index row variable" : "$$bag idx",

"index scans"

[

"equality conditions" : {},
"range conditions" : {}
}
]I

"index filtering predicate"

ORACLE 4114

ORACLE

Chapter 4
Tuning and Optimizing SQL queries

"iterator kind" : "GREATER OR EQUAL",
"left operand"
{

b
"right operand"

For more information on how a query is executed, see Query execution plan.

Query 7:

Fetch the reservation code and count of bags for all passengers.

SELECT bag.confNo, count(bag.bagInfo) AS TOTAL BAGS
FROM BaggageInfo bag GROUP BY bag.confNo

In the above example, two indexes fixedschema conf and compindex tckNoconfNo are
applicable.

A portion of the query plan is shown below. The index fixedschema conf is used as that is a
single index with only one column confNo. For this query, the group-by is index-based. As you
need the entire baginfo details to determine the number of bags using the aggregate count
function, the index here is not covering.

"iterator kind" : "TABLE",

"target table" : "BaggageInfo",
"row variable" : "$Sbag",

"index used" : "fixedschema conf",
"covering index" : false,

"index scans"

[

"equality conditions" : {},
"range conditions" : {}

For more information on how a query is executed, see Query execution plan.

Query 8:

Fetch the full name and tag number of passengers who are in the given list of names.

SELECT bagdet.fullName, bagdet.bagInfo[].tagNum
FROM BaggageInfo bagdet

WHERE bagdet.fullName IN

("Lucinda Beckman", "Adam Phillips",

"Zina Christenson","Fallon Clements")

4-115

ORACLE

Chapter 4
Tuning and Optimizing SQL queries
In the above example, only the index compindex namephone is applicable.

A portion of the query plan is shown below. The index compindex namephone is used. An index
scan is performed on compindex namephone evaluating four equality predicates.

"iterator kind" : "TABLE",

"target table" : "BaggageInfo",

"row variable" : "$Sbagdet",

"index used" : "compindex namephone",
"covering index" : false,

"index scans"

[

"equality conditions"™ : {"fullName":"Lucinda Beckman"},
"range conditions" : {}

}I

{
"equality conditions” : {"fullName":"Adam Phillips"},
"range conditions" : {}

}I

{
"equality conditions™ : {"fullName":"Zina Christenson"},
"range conditions" : {}

}I

{
"equality conditions" : {"fullName":"Fallon Clements"},
"range conditions" : {}

For more information on how a query is executed, see Query execution plan.

Query 9:

Select the ticket details(ticket number, reservation code, tag number, and routing) for a
passenger with a specific ticket number and reservation code.

SELECT fullName,bag.ticketNo, bag.confNo,
bag.bagInfo[].tagNum,bag.bagIinfo[].routing
FROM BaggageInfo bag WHERE
bag.ticketNo=1762311547917

AND bag.confNo="FH7G1W"

In the above example, though the index compindex tckNoconfNo is available, only the primary
index (for ticketNo) gets used. An index scan is performed on the primary index and the
WHERE expression is evaluated.

A portion of the query plan is shown below.

"iterator kind" : "TABLE",
"target table" : "BaggageInfo",
"row variable" : "$Sbag",
"index used" : "primary index",
"covering index" : false,

"index scans"

4-116

Chapter 4
Managing GeoJSON data

"equality conditions" : {"ticketNo":1762311547917},
"range conditions" : {}

}

For more information on how a query is executed, see Query execution plan.

Query 10:

Fetch the source of passenger bags and the count of bags for all passengers and group the
data by the source.

SELECT $flt src as SOURCE, count(*) as COUNT
FROM BaggageInfo $bag,
$bag.bagInfo.flightLegs[0].fltRouteSrc $flt src
GROUP BY S$flt_src

In the above example, there is no index on the f1tRouteSrc field. So the grouping is done in a
generic way. An internal variable is created that iterates over the records produced by the
SELECT statement.

A portion of the query plan is shown below. The primary index is being used.

"iterator kind" : "TABLE",
"target table" : "Baggagelnfo",
"row variable" : "Sbag",

"index used" : "primary index",
"covering index" : false,

"index scans"

[

"equality conditions" : {},
"range conditions" : {}

}

For more information on how a query is executed, see Query execution plan.

Managing GeoJSON data

ORACLE

The GeoJson specification defines the structure and content of json objects that are supposed
to represent geographical shapes on earth (called geometries).

According to the GeoJson specification, for a JSON object to be a geometry object it must
have two fields called type and coordinates, where the value of the type field specifies the
kind of geometry and the value of coordinates must be an array whose elements define the
geometrical shape. See About GeoJSON Data for more details on the various types of
geometry objects. All kinds of geometries are specified in terms of a set of positions. However,
for line strings and polygons, the actual geometrical shape is formed by the lines connecting
their positions. The GeoJson specification defines a line between two points as the straight line
that connects the points in the (flat) cartesian coordinate system whose horizontal and vertical

4-117

geo_inside

ORACLE

Chapter 4
Managing GeoJSON data

axes are the longitude and latitude, respectively. See Lines and Coordinate System for more
details.

If you want to follow along with the examples, download the script
geojsonschema_loaddata.sql and run it as shown below. This script creates the table used in
the example and loads data into the table.

Start your KVSTORE or KVLite and open the SQL.shell.

java -jar lib/kvstore.jar kvlite -secure-config disable
java -jar lib/sql.jar -helper-hosts localhost:5000 -store kvstore

The geojsonschema loaddata.sgl contains the following:

Begin Script

load -file geoschema.ddl

import -table PointsOfInterest -file geoschema.json
End Script

Using the 1oad command, run the script.

load -file geojsonschema loaddata.sql

Oracle NoSQL Database implements a number of functions that interpret JSON objects as
geometries and allow for the search for rows containing geometries that satisfy certain
conditions.

* geo_inside

* geo_intersect

e geo_distance

e geo_within_distance
* geo_near

° (geo_is_geometry

Determines geometries within a bounding GeoJSON geometry.

boolean geo inside (any*, any*)

e The first parameter any* can be any geometric object.

e The second parameter any* needs to be a polygon.

The function determines if the geometry pointed by the first parameter is completely contained
inside the polygon pointed by the second parameter.

If any of the two parameters does not return a single valid geometry object, and if it can be
detected at compile time then the function raises an error.

The runtime behavior is as follows:

e Returns false if any parameter returns 0 or more than 1 item.

4-118

Chapter 4
Managing GeoJSON data

e Returns NULL if any parameter returns NULL.

* Returns false if any parameter (at runtime) returns an item that is not a valid geometry
object.

* Returns false if the second parameter returns a geometry object that is not a polygon.

< If both parameters return a single geometry object each and the second geometry is a
polygon.

— It returns true if the first geometry is completely contained inside the second polygon,
i.e., all its points belong to the interior of the polygon.

— Else it returns false.

Note:

The interior of a polygon is all the points in the polygon area except the points on the
linear ring that define the polygon’s boundary.

Example: Look for nature parks in Northern California.

SELECT t.poi.name AS park name,

t.poi.address.street AS park location

FROM PointsOfInterest t

WHERE t.poi.kind = "nature park"

AND geo_inside(t.poi.location,

{ "type" : "polygon",
"coordinates": [[

[-120.1135253906249, 36.99816565700228],
[-119.0972900390625, 37.391981943533544],
[-119.2840576171875, 37.97451499202459],
[-120.2069091796874, 38.035112420612975],
[-122.3822021484375, 37.74031329210266],
[-122.2283935546875, 37.151560502236651],
[-121.5362548828124, 36.85325222344018],
[-120.1135253906249, 36.99816565700228]

Explanation:
* You query the PointsOfInterest table to filter the rows for nature park.
* You specify a polygon as the second parameter to the geo_inside function.

e The coordinates of the polygon you specify correspond to the coordinates of the northern
portion of the state of California in the U.S.

* The geo_inside function only returns rows when the location of the nature park is
completely contained inside the location points specified.

Result:

{"park name":"portola redwoods state park",
"park location":"15000 Skyline Blvd"}

ORACLE 4110

Chapter 4
Managing GeoJSON data

geo_intersect

Determines geometries that intersect with a GeoJSON geometry.

boolean geo_intersect (any*, any*)

The first and the second parameters any* can be any geometric object.

The function determines if two geometries that are specified as parameters have any points in
common. If any of the two parameters does not return a single valid geometry object, and if it
can be detected at compile time then the function raises an error.

The runtime behavior is as follows:
e Returns false if any parameter returns O or more than 1 item.
* Returns NULL if any parameter returns NULL.

* Returns false if any parameter (at runtime) returns an item that is not a valid geometry
object.

If both parameters return a single geometry object each, the function returns true if the 2
geometries have any points in common; otherwise false.

Example: Texas is considering regulating access to the underground water supply. An aquifer
is an underground layer of water-bearing permeable rock, rock fractures, or unconsolidated
materials. The government wants to impose new regulations for locations that are very close to
an aquifer.

The coordinates of the aquifer have already been mapped. You want to know all counties in the
Texas state that intersect with that aquifer so that you can notify the county government for
each affected county to participate in talks for the new regulations.

SELECT t.poi.county AS County needs regulation,
t.poi.contact AS Contact phone
FROM PointsOfInterest t WHERE
geo_intersect (
t.poi.location,

{

"type" : "polygon",
"coordinates": [
[

[-97.668457031249, 29.34387539941801]

[-95.207519531258, 29.19053283229458]

[-92.900390625653, 30.37287518811801],
[-94.636230468752, 32.21280106801518],
[]
[]
[]

r

r

-97.778320312522, 32.45415593941475
-99.799804687541, 31.18460913574325
-97.668457031249, 29.34387539941801

r

r

)i

Explanation:

ORACLE 4120

Chapter 4
Managing GeoJSON data

* The above query fetches the locations which intersect with the location of the aquifer. That
is if the location coordinates have any points in common with the location of the aquifer.

* Youuse geo intersect to see if the coordinates of the location have any points common
with the coordinates of the aquifer that are specified.

Result:

{"County needs regulation":"Tarrant","Contact phone":"469 745 5687"}
{"County needs regulation":"Kinga","Contact phone":"469 384 7612"}

geo_distance

ORACLE

Determines distance between two geospatial objects.

double geo distance (any*, any*)

The first and the second parameters any* can be any geometric object.

The function returns the geodetic distance between the two input geometries. The returned
distance is the minimum among the distances of any pair of points where the first point belongs
to the first geometry and the second point to the second geometry. Between two such points,
their distance is the length of the geodetic line that connects the points.

Overview of Geodetic Line

A geodetic line between 2 points is the shortest line that can be drawn between the 2 points on
the ellipsoidal surface of the earth. For a simplified, but more illustrative definition, assume for
a moment that the earth's surface is a sphere. Then, the geodetic line between two points on
the earth is the minor arc between the two points on the great circle corresponding to the
points, i.e., the circle that is formed by the intersection of the sphere and the plane defined by
the center of the earth and the two points.

The following figure shows the difference between the geodetic and straight lines between Los
Angeles and London.

——
et N\

N (If-:}(

.‘L}!?[I A

If any of the two parameters does not return a single valid geometry object, and if it can be
detected at compile time then the function raises an error.

The runtime behavior is as follows:
e Returns -1 if any parameter returns zero or more than 1 item.
e Returns NULL if any parameter returns NULL.

e Returns -1 if any of the parameters is not a geometry object.

4-121

Chapter 4
Managing GeoJSON data

Otherwise, the function returns the geodetic distance in meters between the 2 input
geometries.

Note:

The results are sorted ascending by distance(displaying the shortest distance first).

Example: How far is the nearest restaurant from the given location?

SELECT
t.poi.name AS restaurant name,
t.poi.address.street AS street name,
geo_distance (
t.poi.location,
{
"type" : "point",
"coordinates": [-121.94034576416016,37.2812239247177]
}
) AS distance in meters
FROM PointsOfInterest t
WHERE t.poi.kind = "restaurant" ;

Explanation:
* You query the PointsOfInterest table to filter the rows for restaurant.

* You provide the correct location point and determine the distance using the geo distance
function.

Result:

{"restaurant name":"Coach Sports Bar & Grill","street name":"80 Edward
St","distance in meters":799.2645323337218}

{"restaurant name":"Ricos Taco","street name":"80 East Boulevard
St","distance in meters":976.5361117138553}

{"restaurant name":"Effie's Restaurant and Bar","street name":"80 Woodeard
St","distance in meters":2891.0508307646282}

The distance between the current location and the nearest restaurant is 799 meters.

geo_within_distance

ORACLE

Determines geospatial objects in proximity to a point.

boolean geo within distance(any*, any*,double)

The first and the second parameters any* can be any geometric object.

The function determines if the first geometry is within a distance of N meters from the second
geometry.

If any of the two parameters does not return a single valid geometry object, and if it can be
detected at compile time then the function raises an error.

4-122

Chapter 4
Managing GeoJSON data

The runtime behavior is as follows:
* Returns false if any parameter returns O or more than 1 item.
* Returns NULL if any of the first two parameters returns NULL.

* Returns false if any of the first two parameters returns an item that is not a valid geometry
object.

Finally, if both the parameters return a single geometry object each, it returns true if the first
geometry is within a distance of N meters from the second geometry, where N is the number
returned by the third parameter; otherwise false. The distance between 2 geometries is defined
as the minimum among the distances of any pair of points where the first point belongs to the
first geometry and the second point to the second geometry. If N is a negative number, it is set
to 0.

Example: Is a city hall there in the next 5 km? How far is it?

SELECT t.poi.address.street AS city hall address,
geo_distance (
t.poi.location,

{
"type" : "point",
"coordinates" : [-120.653828125,38.85682013474361]

) AS distance in meters
FROM PointsOfInterest t
WHERE t.poi.kind = "city hall" AND
geo_within distance(
t.poi.location,
{
"type" : "point",
"coordinates" : [-120.653828125,38.85682013474361]

b
5000

);

Explanation:
* You query the PointsOfInterest table to filter the rows for city hall.

* Youuse the geo within distance function to filter city hall within 5 km (5000m) of the
given location.

* You also fetch the actual distance between your location and the city hall using the
geo_distance function.

Result:

{"city hall address":"70 North Ist
street","distance in meters":1736.0144040331768}

The city hall is 1736 m(1.73 km) from the current location.

ORACLE 4193

geo_near

ORACLE

Chapter 4
Managing GeoJSON data

Determines geospatial objects in proximity to a point.

boolean geo near (any*, any*, double)

The first and the second parameters any* can be any geometric object.

The function determines if the first geometry is within a distance of N meters from the second
geometry.

If any of the two parameters does not return a single valid geometry object, and if it can be
detected at compile time then the function raises an error.

The runtime behavior is as follows:
e Returns false if any parameter returns 0 or more than 1 item.
e Returns NULL if any of the first two parameters returns NULL.

e Returns false if any of the first two parameters returns an item that is not a valid geometry
object.

Finally, if both of the first two parameters return a single geometry object each, it returns true if
the first geometry is within a distance of N meters from the second geometry, where N is the
number returned by the third parameter; otherwise false.

Note:

geo_near is converted internally to geo_within_distance plus an (implicit) order by the
distance between the two geometries. However, if the query has an (explicit) order-by
already, no ordering by distance is performed. The geo_near function can appear in
the WHERE clause only, where it must be a top-level predicate, i.e, not nested under
an OR or NOT operator.

Example 1: Is there a hospital within 3km of the given location?

SELECT
t.poi.name AS hospital name,
t.poi.address.street AS hospital address
FROM PointsOfInterest t
WHERE t.poi.kind = "hospital"
AND
geo_near (
t.poi.location,
{"type" : "point",
"coordinates" : [-122.03493933105469,37.32949164059004]
}I
3000
)

Explanation:

* You query the PointsOfInterest table to filter the rows for hospital.

4-124

Chapter 4
Managing GeoJSON data

* You use the geo_near function to filter hospitals within 3000m of the given location.

Result:

{"hospital name":"St. Marthas hospital","hospital address":"18000 West Blvd"}
{"hospital name":"Memorial hospital","hospital address":"10500 South St"}

Example 2: How far is a gas station within the next one mile from the given location?

SELECT
t.poi.address.street AS gas station address,
geo_distance (
t.poi.location,
{
"type" : "point",
"coordinates" : [-121.90768646240233,37.292081740702365]
}

) AS distance in meters
FROM PointsOfInterest t
WHERE t.poi.kind = "gas station" AND
geo_near (
t.poi.location,
{
"type" : "point",
"coordinates" : [-121.90768646240233,37.292081740702365]

b
1600

);

Explanation:
* You query the PointsOfInterest table to filter the rows for gas station.

* You use the geo_near function to filter gas stations within one mile(1600m) of the given
location.

* You also fetch the actual distance between your location and the gas station using the
geo_distance function.

Result:

{"gas_station address":"33 North
Avenue","distance in meters":886.7004173859665}

The actual distance to the nearest gas station within the next mile is 886m.

geo_is_geometry
Validates a geospatial object.

boolean geo is geometry(any*)

The parameter any* can be any geometric object.

The function determines if the given input is a valid geometry object.

ORACLE 4105

ORACLE

Chapter 4
Managing GeoJSON data

* Returns false if the parameter returns zero or more than 1 item.
e Returns NULL if the parameter returns NULL.

e Returns true if the input is a single valid geometry object. Otherwise, false.

Example: Determine if the location pointing to the city hall is a valid geometric object.

SELECT geo_is geometry(t.poi.location) AS city hall
FROM PointsOfInterest t
WHERE t.poi.kind = "city hall"

Explanation: You use the function geo_is_geometry to determine if a given location is a valid
geometric object or not.

Result:

{ "city hall" : true}

4-126

Reference

The articles in this section contain reference information related to various operators,
constructs and expressions used in SQL.

Operators in SQL

If you want to follow along with the examples, see Sample data to run queries to view a sample
data and use the scripts to load sample data for testing. The scripts create the tables used in
the examples and load data into the tables.

e Sequence Comparison Operators

e Logical operators

e NULL operators

e Value Comparison Operators

¢ IN Operator

e Regular Expression Conditions

e EXISTS Operator

e 1s-Of-Type Operator

e SQL Operators examples using QueryRequest API
e BETWEEN Operator

Sequence Comparison Operators

ORACLE

Comparisons between two sequences are done via a set of operators: =any, !=any, >any,
>=any, <any, <=any. The result of any operator on two input sequences S1 and S2 is true if
and only if there is a pair of items i1 and i2, where il belongs to S1, i2 belongs to S2, and il
and i2 compare true via the corresponding value comparison operator. Otherwise, if any of the
input sequences contains NULL, the result is NULL. Otherwise, the result is false.

Example 1: Find passenger name and tag number for all bags where the estimated arrival
time is greater than 2019-03-01T13:00:00Z.

SELECT fullname, bag.bagInfo[].tagNum,
bag.bagInfo[].flightLegs[].estimatedArrival

FROM BaggageInfo bag

WHERE bag.bagInfo[].flightLegs[].estimatedArrival >any "2019-03-01T13:00:002"

Explanation: You fetch the full name, and tag number of all passenger bags whose estimated
arrival time is greater than the given value. Here the operand on the left hand of the ">"
operator (bag.bagInfo[].flightLegs[].estimatedArrival) is a sequence of values. If you try

5-1

ORACLE

Chapter 5
Operators in SQL

using the regular comparison operator instead of the sequence operator, you get an error as
shown below. That is the reason you need a sequence operator here.

SELECT fullname, bag.bagInfol].tagNum,
bag.bagInfo[].flightLegs[].estimatedArrival

FROM BaggageInfo bag

WHERE bag.bagInfo[].flightLegs|[].estimatedArrival > "2019-03-01T13:00:002"

Output showing error:

Error handling command SELECT fullname,
bag.bagInfo[].tagNum,bag.bagInfo[].flightLegs[].estimatedArrival

FROM BaggageInfo bag WHERE bag.bagInfo[].flightLegs[].estimatedArrival >
"2019-03-01T13:00:002":

Error: at (1, 107) The left operand of comparison operator > is a sequence
with more than one items.

Comparison operators cannot operate on sequences of more than one items.

Output (after using sequence operator):

{"fullname":"Lucinda Beckman","tagNum":"17657806240001","estimatedArrival":
["2019-03-12T16:00:002","2019-03-13T03:14:00Z","2019-03-12T15:12:00Z"]}
{"fullname":"Elane Lemons","tagNum":"1765780623244","estimatedArrival":
["2019-03-15T09:00:002","2019-03-15T10:14:00Z","2019-03-15T10:14:002"]}
{"fullname":"Dierdre

Amador", "tagNum":"17657806240229", "estimatedArrival":"2019-03-07T14:00:00Z2"}
"fullname":"Henry Jenkins","tagNum":"17657806216554","estimatedArrival":
"2019-03-02T09:00:002","2019-03-02T13:24:00Z"]}

"fullname":"Lorenzo Phil", "tagNum":

"17657806240001","17657806340001"], "estimatedArrival":
["2019-03-12T16:00:002","2019-03-13T03:14:00z2",
"2019-03-12T15:12:002","2019-03-12T16:40:002Z","2019-03-13T703:18:002","2019-03~-
12715:12:00Z"]}

{"fullname":"Gerard Greene","tagNum":"1765780626568","estimatedArrival":
["2019-03-07T17:00:002","2019-03-08T04:10:00Z","2019-03-07T16:10:002"]}
{"fullname":"Doris Martin","tagNum":"17657806232501","estimatedArrival":
["2019-03-22T09:00:002","2019-03-21T23:24:00Z","2019-03-22T710:24:002"]}
{"fullname":"Omar Harvey","tagNum":"17657806234185","estimatedArrival":
["2019-03-02T02:00:002","2019-03-02T16:21:00Z"]}
{
[
{
[

"fullname":"Mary Watson","tagNum":"17657806299833", "estimatedArrival":
"2019-03-13T15:00:002","2019-03-14T06:22:00Z"]}

"fullname":"Kendal Biddle","tagNum":"17657806296887","estimatedArrival":
"2019-03-04T22:00:002","2019-03-05T12:02:00Z"]}

Example 2: Find the tag number of passengers who fly from JFK/through JFK to any other
location.

SELECT bag.bagInfo[].tagNum,bag.baginfo[].flightLegs[].fltRouteSrc
FROM BaggageInfo bag
WHERE bag.bagInfo[].flightLegs[].fltRouteSrc=any "JFK"

Explanation: You fetch the tag number of passengers whose flight source is JFK or the
passengers who travel through JFK. The destination can be anything.

5-2

Chapter 5
Operators in SQL

Output:

{"tagNum":"17657806240229", "f1tRouteSrc":"JFK"}
{"tagNum":"17657806215913", "f1tRouteSrc": ["JFK", "IST"]}
{"tagNum":"17657806296887", "f1tRouteSrc": ["JFK","IST"]}

Logical operators

ORACLE

The operators AND and OR are binary and the NOT operator is unary. The operands of the
logical operators are conditional expressions, which must have a type BOOLEAN. An empty
result from an operand is treated as a false value. If an operand returns NULL(either SQL
NULL or JISON NULL), then:

* The AND operator returns false if the other operand returns false; otherwise, it returns
NULL.

* The OR operator returns true if the other operand returns true; otherwise, it returns NULL.

e The NOT operator returns NULL.

Example 1: Select the details of the passenger and their bags for a trip with ticket number
1762311547917 or confirmation number KN4D1L.

SELECT fullName,bag.ticketNo, bag.confNo,
bag.bagInfo[].tagNum, bag.bagInfo[].routing

FROM BaggageInfo bag

WHERE bag.ticketNo=1762311547917 OR bag.confNo="KN4D1L"

Explanation: You fetch the details of passengers satisfying one of the two filter criteria. You do
this with the OR clause. You fetch the full name, tag number, ticket number, reservation code,
and routing details of passengers satisfying a particular ticket number or a particular
reservation code (confNo).

Output:

{"fullName":"Rosalia
Triplett","ticketNo":1762311547917,"confNo" :"FH7GIW", "tagNum":"17657806215913"
,"routing":"JFK/IST/VIE"}

{"fullName":"Mary
Watson","ticketNo":1762340683564, "confNo":"KN4D1L", "tagNum":"17657806299833","
routing":"YYZ/HKG/BLR"}

Example 2: Select baggage details of passengers traveling between MIA and MEL.

SELECT fullName, bag.bagInfo[].tagNum, bag.bagInfo[].routing
FROM BaggageInfo bag

WHERE bag.bagInfo[].flightLegs[].fltRouteSrc =any "MIA" AND
bag.bagInfo[].flightLegs[].fltRouteDest=any "MEL"

Explanation: You fetch the details of the passengers traveling between MIA and MEL. Since
you need to match 2 conditions here, the flight source and the flight destination, you are using
an AND operator. Here the flight source could be the starting point of the flight or any transit
airport. Similarly, the flight destination could be a transit airport or a final destination.

5-3

ORACLE

Chapter 5
Operators in SQL

Output:

{"fullName":"Zulema Martindale","tagNum":"17657806288937", "routing":"MIA/LAX/
MEL"}

{"fullName":"Adam Phillips","tagNum":"17657806255240","routing":"MIA/LAX/MEL"}
{"fullName":"Joanne Diaz","tagNum":"17657806292518","routing":"MIA/LAX/MEL"}
{"fullName":"Zina Christenson","tagNum":"17657806228676","routing":"MIA/LAX/
MEL"}

Example 3: Select details of those bags which does not originate from MIA/pass through MIA.

SELECT fullName, bag.bagInfo[].tagNum, bag.bagInfol].routing,
bag.bagInfo[].flightLegs[].fltRouteSrc

FROM BaggageInfo bag

WHERE NOT bag.bagInfo[].flightLegs[].fltRouteSrc=any "MIA"

Explanation: You fetch the details of passengers not originating from a particular source. To
fetch these details, you are using the NOT operator here. You want to fetch details of bags
which did not start/go through MIA.

Output:

{"fullName":"Kendal Biddle","tagNum":"17657806296887", "routing":"JFK/IST/
VIE","fltRouteSrc":"JFK"}

{"fullName":"Lucinda

Beckman", "tagNum":"17657806240001", "routing":"SFO/IST/ATH/
JTR","fltRouteSrc":"SFO"}

{"fullName":"Adelaide Willard","tagNum":"17657806224224","routing":"GRU/ORD/
SEA","fltRouteSrc":"GRU"}

{"fullName":"Raymond Griffin","tagNum":"17657806243578", "routing":"MSQ/FRA/
HKG", "fltRouteSrc":"MSQ"}

{"fullName":"Elane Lemons","tagNum":"1765780623244","routing":"MXP/CDG/SLC/
BZN","fl1tRouteSrc":"MXP"}

{"fullName":"Dierdre Amador","tagNum":"17657806240229", "routing":"JFK/

MAD", "fltRouteSrc":"JFK"}

{"fullName":"Henry Jenkins","tagNum":"17657806216554", "routing":"SFO/ORD/
FRA","fltRouteSrc":"SFO"}

{"fullName":"Rosalia Triplett","tagNum":"17657806215913", "routing":"JFK/IST/
VIE","fltRouteSrc":"JFK"}

{"fullName":"Lorenzo Phil", "tagNum":
["17657806240001","17657806340001"], "routing": ["SFO/IST/ATH/JTR", "SFO/IST/ATH/
JTR"], "fltRouteSrc": ["SFO","SFO"]}

{"fullName":"Gerard Greene","tagNum":"1765780626568", "routing":"SFO/IST/ATH/
JTR","fltRouteSrc":"SFO"}

{"fullName":"Doris Martin","tagNum":"17657806232501", "routing":"BZN/SEA/CDG/
MXP","fltRouteSrc":"BzN"}

{"fullName":"Omar Harvey","tagNum":"17657806234185","routing":"MEL/LAX/
MIA"™,"fltRouteSrc":"MEL"}

{"fullName":"Fallon

Clements", "tagNum":"17657806255507", "routing": "MXP/CDG/SLC/
BZN","fl1tRouteSrc":"MXP"}

{"fullName":"Lisbeth Wampler","tagNum":"17657806292229","routing":"LAX/TPE/
SGN","fltRouteSrc":"LAX"}

{"fullName":"Teena Colley","tagNum":"17657806255823", "routing":"MSQ/FRA/
HKG", "fltRouteSrc":"MSQ"}

5-4

Chapter 5
Operators in SQL

{"fullName":"Michelle Payne","tagNum":"17657806247861","routing":"SFO/IST/ATH/
JTR","fltRouteSrc":"SFO"}

{"fullName":"Mary Watson","tagNum":"17657806299833", "routing":"YYZ/HKG/

BLR", "fltRouteSrc":"YYZ"}

NULL operators

ORACLE

The IS NULL operator tests whether the result of its input expression(either SQL expression or
JSON object) is NULL. If the input expression returns more than one item, an error is raised. If
the result of the input expression is empty, IS NULL returns false. Otherwise, IS NULL returns
true if and only if the single item computed by the input expression is NULL. The IS NOT NULL
operator is equivalent to NOT (IS NULL cond_expr).

Example 1: Fetch ticket number of passengers whose baggage details are available and is

NOT NULL.

SELECT ticketNo, fullname FROM BaggageInfo bagdet
WHERE bagdet.bagInfo is NOT NULL

Explanation: You fetch the details of passengers who have baggage, which means bagInfo
JSON is not null.

Output:

{"ticketNo":1762357254392,"fullname":"Teena Colley"}
{"ticketNo":1762330498104,"fullname":"Michelle Payne"}
{"ticketNo":1762340683564,"fullname":"Mary Watson"}
{"ticketNo":1762377974281,"fullname":"Kendal Biddle"}
{"ticketNo":1762320569757,"fullname":"Lucinda Beckman"}
{"ticketNo":1762392135540,"fullname":"Adelaide Willard"}
{"ticketNo":1762399766476,"fullname":"Raymond Griffin"}
{"ticketNo":1762324912391,"fullname":"Elane Lemons"}
{"ticketNo":1762390789239,"fullname":"Zina Christenson"}
{"ticketNo":1762340579411,"fullname":"Zulema Martindale"}
{"ticketNo":1762376407826,"fullname":"Dierdre Amador"}
{"ticketNo":176234463813,"fullname":"Henry Jenkins"}
{"ticketNo":1762311547917,"fullname":"Rosalia Triplett"}
{"ticketNo":1762320369957,"fullname":"Lorenzo Phil"}
{"ticketNo":1762341772625,"fullname":"Gerard Greene"}
{"ticketNo":1762344493810,"fullname":"Adam Phillips"}
{"ticketNo":1762355527825,"fullname" :"Doris Martin"}
{"ticketNo":1762383911861,"fullname":"Joanne Diaz"}
{"ticketNo":1762348904343,"fullname":"Omar Harvey"}
{"ticketNo":1762350390409,"fullname":"Fallon Clements"}
{"ticketNo":1762355854464,"fullname":"Lisbeth Wampler"}

Example 2: Fetch ticket number of passengers whose baggage details are not available or IS

NULL

SELECT ticketNo,

WHERE bagdet.bagInfo is NULL
0 row returned

fullname FROM BaggageInfo bagdet

5-5

Chapter 5
Operators in SQL

Value Comparison Operators

Value comparison operators are primarily used to compare 2 values, one produced by the left
operand and another from the right operand. If any operand returns more than one item, an
error is raised. If both operands return the empty sequence, the operands are considered
equal (true will be returned if the operator is =, <=, or >=). If only one of the operands returns
empty, the result of the comparison is false unless the operator is !=. If an operand returns
NULL, the result of the comparison expression is also NULL. Otherwise, the result is a boolean

ORACLE

value.

Example 1: Select the full name and routing of all male passengers.

SELECT fullname, bag.bagInfo[].routing
FROM BaggageInfo bag
WHERE gender="M"

Explanation: Here the data is filtered based on gender. The value comparison operator "=" is
used to filter the data.

Output:

{"fullname":
{"fullname":
{"fullname":
{"fullname":
{"fullname":
{"fullname":
{"fullname":
{"fullname":
{"fullname":
{"fullname":
{"fullname":
{"fullname":

"Lucinda Beckman","routing":"SFO/IST/ATH/JTR"}
"Adelaide Willard","routing":"GRU/ORD/SEA"}
"Raymond Griffin","routing":"MSQ/FRA/HKG"}
"Zina Christenson","routing":"MIA/LAX/MEL"}
"Dierdre Amador","routing":"JFK/MAD"}

"Birgit Naquin","routing":"JFK/MAD"}

"Lorenzo Phil","routing":["SFO/IST/ATH/JTR","SFO/IST/ATH/JTR"]}
"Gerard Greene","routing":"SFO/IST/ATH/JTR"}
"Adam Phillips","routing":"MIA/LAX/MEL"}
"Fallon Clements","routing":"MXP/CDG/SLC/BZN"}
"Lisbeth Wampler","routing":"LAX/TPE/SGN"}
"Teena Colley","routing":"MSQ/FRA/HKG"}

You can rewrite this query with a "!1=" comparison operator. To get the details of all male
passengers, your query can filter data where gender is not "F". This is valid only with the
assumption that there can only be two values in the column gender which is "F" and "M".

SELECT fullname,bag.bagInfo[].routing
FROM BaggageInfo bag
WHERE gender!="F";

Example 2: Fetch the passenger name and routing details of passengers with ticket numbers
greater than 1762360000000.

SELECT fullname,

ticketNo,

bag.bagInfo[].tagNum,bag.bagInfo[].routing
FROM BaggageInfo bag
WHERE ticketNo > 1762360000000

Explanation: You need the details of passengers whose ticket number is greater than the
given value. You use the ">" operator to filter the data.

5-6

ORACLE

Chapter 5
Operators in SQL

Output:

{"fullname":"Adelaide
Willard","ticketNo":1762392135540,"tagNum":"17657806224224", "routing" :"GRU/ORD
/SEA"}

{"fullname":"Raymond
Griffin","ticketNo":1762399766476,"tagNum":17657806243578, "routing":"MSQ/FRA/
HKG"}

{"fullname":"Zina

Christenson","ticketNo":1762390789239, "tagNum":"17657806228676", "routing":"MIA
/LAX/MEL"}

{"fullname":"Bonnie
Williams","ticketNo":1762397286805,"tagNum":"17657806216554", "routing":"SFO/OR
D/FRA"}

{"fullname":"Joanne
Diaz","ticketNo":1762383911861,"tagNum":"17657806292518", "routing":"MIA/LAX/
MEL"}

{"fullname":"Kendal
Biddle","ticketNo":1762377974281,"tagNum":"17657806296887", "routing" :"JFK/IST/
VIE")

{"fullname":"Dierdre

Amador", "ticketNo":1762376407826,"tagNum":"17657806240229", "routing":"JFK/
MAD"}

{"fullname":"Birgit
Naquin","ticketNo":1762392196147,"tagNum":"17657806240229", "routing":"JFK/
MAD"}

Example 3: Select all bag tag numbers originating from SFO/transit through SFO.

SELECT bag.bagInfo[].tagNum,
bag.bagInfo[].flightLegs[].fltRouteSrc

FROM BaggageInfo bag

WHERE bag.bagInfo[].flightLegs[].fltRouteSrc=any "SFO"

Explanation: You fetch the tag number of bags that either originate from SFO or pass through
SFO. Though you are using the value comparison operator =, since the f1ightLegs is an
array, the left operand of comparison operator = is a sequence with more than one item. That
is the reason to use the sequence operator any in addition to the value comparison operator =
Else you get the following error.

Error handling command SELECT
bag.bagInfo[].tagNum,bag.bagInfo[].flightLegs[].fltRouteSrc

FROM BaggageInfo bag WHERE bag.bagInfo[].flightLegs[].fltRouteSrc= "SFO":
Error: at (3, 6) The left operand of comparison operator = is a sequence with
more than one items.

Comparison operators cannot operate on sequences of more than one items.

Output:
{"tagNum":"17657806240001", "f1tRouteSrc":"SFO"}

{"tagNum":"17657806216554", "f1tRouteSrc":"SFO"}
{"tagNum":["17657806240001","17657806340001"],"f1tRouteSrc": ["SFO","SFO"]}

5-7

Chapter 5
Operators in SQL

{"tagNum":"1765780626568", "f1tRouteSrc":"SFO"}
{"tagNum":"17657806247861","f1tRouteSrc":"SFO"}

Example 4: Select all bag tag numbers which did not originate from JFK.

SELECT bag.bagInfo[].tagNum,
bag.bagInfo[].flightLegs[0].fltRouteSrc

FROM BaggageInfo bag

WHERE bag.bagInfo.flightLegs[0].fltRouteSrc!=ANY "JFK"

Explanation: The assumption here is that the first record of the f1ightLegs array has the
details of the source location. You fetch the tag number of bags that did not originate from JFK
and so using a != operator here. Though you are using the value comparison operator !=,
since the flightLegs is an array, the left operand of the comparison operator != is a sequence
with more than one item. That is the reason to use the sequence operator any in addition to
the value comparison operator !=. Else you get the following error.

Error handling command SELECT
bag.bagInfo[].tagNum,bag.bagInfo[].flightLegs[0].fltRouteSrc

FROM BaggageInfo bag WHERE bag.bagInfo.flightLegs[0].fltRouteSrc!="JFK":
Failed to display result set: Error: at (2, 0) The left operand of comparison
operator != is a sequence with

more than one items. Comparison operators cannot operate on sequences of more
than one items.

Output:

{"tagNum":"17657806240001", "f1tRouteSrc": ["SFO","IST", "ATH"]}
{"tagNum":"17657806224224", "f1tRouteSrc": ["GRU", "ORD"] }
{"tagNum":"17657806243578", "f1tRouteSrc": ["MSQ", "FRA"] }
{"tagNum":"1765780623244", "f1tRouteSrc": ["MXP","CDG", "SLC"] }
{"tagNum":"17657806228676","f1tRouteSrc": ["MIA", "LAX"]}
{"tagNum":"17657806234185", "f1tRouteSrc": ["MEL", "LAX"] }
{"tagNum":"17657806255507", "f1tRouteSrc": ["MXP", "CDG", "SLC"] }
{"tagNum":"17657806292229","f1tRouteSrc": ["LAX", "TPE"]}
{"tagNum":"17657806255823", "f1tRouteSrc": ["MSQ", "FRA"] }
{"tagNum":"17657806247861", "f1tRouteSrc": ["SFO","IST", "ATH"]}
{"tagNum":"17657806299833","f1tRouteSrc": ["YYZ", "HKG"]}
{"tagNum":"17657806288937","f1tRouteSrc": ["MIA", "LAX"]}
{"tagNum":"17657806216554", "f1tRouteSrc": ["SFO", "ORD"] }
{"tagNum": ["17657806240001","17657806340001"], "f1tRouteSrc":
["SFO","IST","ATH","SFO","IST","ATH"]}
{"tagNum":"1765780626568", "f1tRouteSrc": ["SFO","IST", "ATH"] }
{"tagNum":"17657806255240", "f1tRouteSrc": ["MIA", "LAX"]}
{"tagNum":"17657806232501", "f1tRouteSrc": ["BZN", "SEA", "CDG"] }
{"tagNum":"17657806292518", "f1tRouteSrc": ["MIA", "LAX"]}

[
[
[
[
[
[
[
[

ORACLE -

Chapter 5
Operators in SQL

BETWEEN Operator

ORACLE

The BETWEEN operator is used to check if the input expression value is in between the lower
and the higher expressions (including the boundary values). This is equivalent to:

low _bound expression <= input expression AND input expression <=
high bound expression

The operation returns a TRUE value if both the expressions return TRUE. If either of the
expressions is NULL or leads to a NULL value, the result of the operation is also NULL. The
operation returns a FALSE value if any one of the expressions returns FALSE. If any
expression returns more than one item, an error is raised as the comparison operators do not
operate on sequences of more than one item.

Example 1: Fetch the passenger details and routing information of the baggage that falls
within a range of reservation codes.

SELECT fullname AS FULLNAME,

confNo AS RESERVATION,

s.bagInfo.routing AS ROUTINGINFO

FROM BaggageInfo s

WHERE confNo BETWEEN 'LE6J4Z' and 'ZG8ZOLON'
ORDER BY confNo

Explanation: Every passenger has a reservation code (confNo). In this query, you fetch the
passenger details, reservation code, and routing details for the baggage whose reservation
codes are within the range of LE6J47 and zZG8Zz5N. You use the BETWEEN operator in the
WHERE clause to perform a string comparison of the confNo value with the lower and the
upper boundary values in the input strings. Only the rows that are within the range are selected
and displayed in the output.

Output:

{"FULLNAME":"Adam Phillips","RESERVATION":"LE6J4Z", "ROUTINGINFO":"MIA/LAX/
MEL"}

{"FULLNAME":"Elane Lemons","RESERVATION":"LNOC8R","ROUTINGINFQO":"MXP/CDG/SLC/
BZN"}

{"FULLNAME":"Gerard Greene","RESERVATION":"MCOE7R","ROUTINGINFO":"SFO/IST/ATH/
JTR"}

{"FULLNAME": "Henry Jenkins","RESERVATION":"MZ2S5R", "ROUTINGINFO":"SFO/ORD/
FRA"}

{"FULLNAME":"Omar Harvey","RESERVATION":"OH2F8U","ROUTINGINFO":"MEL/LAX/MIA"}
{"FULLNAME":"Kendal Biddle","RESERVATION":"PQIM8N", "ROUTINGINFO":"JFK/IST/
VIE"}

{"FULLNAME":"Zina Christenson","RESERVATION":"QB100J", "ROUTINGINFO":"MIA/LAX/
MEL"}

{"FULLNAME":"Lorenzo Phil", "RESERVATION":"QI3V6Q","ROUTINGINFO": ["SFO/IST/ATH/
JTR","SFO/IST/ATH/JIR"]}

{"FULLNAME":"Lucinda

Beckman", "RESERVATION":"QI3V6Q", "ROUTINGINFO":"SFO/IST/ATH/JTR"}
{"FULLNAME":"Michelle

Payne", "RESERVATION":"RL3J4Q", "ROUTINGINFO":"SFO/IST/ATH/JTR"}
{"FULLNAME":"Teena Colley","RESERVATION":"TX1P7E","ROUTINGINFO":"MSQ/FRA/HKG"}
{"FULLNAME" :"Fallon

5-9

Chapter 5
Operators in SQL

Clements", "RESERVATION":"XT107T", "ROUTINGINFO": "MXP/CDG/SLC/BZN"}
{"FULLNAME": "Raymond Griffin","RESERVATION":"XT6K7M", "ROUTINGINFO":"MSQ/FRA/
HKG"}

{"FULLNAME":"Dierdre Amador","RESERVATION":"ZG8Z5N", "ROUTINGINFO":"JFK/MAD"}

Example 2: Find the passengers who traveled from MIA within a fortnight from 15th Feb 2019.

SELECT fullname,

FROM BaggageInfo bag

WHERE exists bag.bagInfo.flightLegs[Selement.fltRouteSrc = "MIA"
AND

Selement.flightDate BETWEEN "2019-02-15T00:00:00Z" and "2019-03-02T00:00:00Z"]

Explanation: In this query, you fetch the details of the passengers who traveled from M12
between the 15th of Feb 2019 and the 2nd of March 2019. The flightDate field within the
bagInfo JSON field contains the travel dates to the destination points. You use the BETWEEN
operator to compare the flightDate in the passenger data with the upper and the lower range
of the specified dates. The flightDate is a string and is directly compared with the supplied
dates, which are also string values. You narrow down the passenger records listed within this
range further to include only MIA as the source station using the AND operator. Here the flight
source could be the starting point of the flight or any transit airport.

Output:

{"fullname":"Zulema Martindale"}
{"fullname":"Joanne Diaz"}

IN Operator

The IN operator is essentially a compact alternative to a number of OR-ed equality conditions.
This operator allows you to specify multiple values in a WHERE clause.

Example: Fetch tag number for the customers "Lucinda Beckman", "Adam Phillips","Zina
Christenson","Fallon Clements".

SELECT bagdet.fullName, bagdet.bagInfo[].tagNum

FROM BaggagelInfo bagdet

WHERE bagdet.fullName IN

("Lucinda Beckman", "Adam Phillips","Zina Christenson","Fallon Clements")

Explanation: You fetch the tag numbers of a list of passengers. The list of passengers to be
fetched can be given inside an IN clause.

Output:

{"fullName":"Lucinda Beckman","tagNum":"17657806240001"}
{"fullName":"Zina Christenson","tagNum":"17657806228676"}
{"fullName":"Adam Phillips","tagNum":"17657806255240"}

{"fullName":"Fallon Clements","tagNum":"17657806255507"}

ORACLE =10

Chapter 5
Operators in SQL

Regular Expression Conditions

ORACLE

A regular expression is a pattern that the regular expression engine attempts to match with an
input string. The regex like function performs regular expression matching. The regex like
function provides functionality similar to the LIKE operator in standard SQL, that is, it can be
used to check if an input string matches a given pattern. The input string and the pattern are
computed by the first and second arguments, respectively. A third, optional, argument specifies
a set of flags that affect how the matching is done.

The pattern string is the regular expression against which the input text is matched. The period
(.) is a meta-character that matches every character except a new line. The greedy quantifier
(*) is a meta-character that indicates zero or more occurrences of the preceding element. For
example, the regex "D.*" matches any string that starts with the character 'D' and is followed by
zero or more characters.

Example 1: Fetch baggage information of passengers whose names start with 'Z'.

SELECT bag.fullname,bag.bagInfo[].tagNum
FROM BaggageInfo bag
WHERE regex like(fullName, "Z.*")

Explanation: You fetch the full name and tag numbers of passengers whose full name starts
with Z. You use a regular expression and specify that the first character in the full name should
be "Z" and the rest can be anything else.

Output:

{"fullname":"Zina Christenson","tagNum":"17657806228676"}
{"fullname":"Zulema Martindale","tagNum":"17657806288937"}

Example 2: Fetch baggage information of passengers whose flight source location has an "M"
in it.

Option 1:

SELECT bag.fullname,bag.bagInfo[].tagNum,
bag.bagInfo[].flightLegs[0].fltRouteSrc

FROM BaggageInfo bag

WHERE regex like(bag.bagInfo.flightLegs[0].fltRouteSrc, ".*M.*")

Explanation: The assumption here is that the first record of the f1ightLegs array has the
details of the source location. You fetch the full name and tag numbers of passengers whose
flight source has an "M" in it. You use a regular expression and specify that one of the
characters in the source field should be "M" and the rest can be anything else.

You can also use different approaches to write queries to solve the above problem.

Option 2: Instead of hard coding the index of the f1ightLegs array, you use the regex like
function to determine the correct index.

SELECT bag.fullname,bag.bagInfo[].tagNum,
bag.bagInfo[].flightLegs[].fltRouteSrc
FROM BaggageInfo bag

5-11

Chapter 5
Operators in SQL

WHERE EXISTS (bag.bagInfo.flightLegs[regex like($element.fltRouteSrc,
"‘*M.*")])

Option 3: You use the substring of the "routing” field to extract the source and then use
regex like function to search the letter M in the source.

SELECT bag.fullname,bag.bagInfo[].tagNum,

substring (bag.baginfo[].routing, 0, 3)

FROM BaggageInfo bag WHERE

regex like (substring(bag.bagInfo[].routing,0,3), ".*M.*")

Output:

{"fullname":"Raymond Griffin", "tagNum":"17657806243578","f1tRouteSrc":"MSQ"}
{"fullname":"Elane Lemons","tagNum":"1765780623244","f1tRouteSrc":"MXP"}
{"fullname":"Zina Christenson","tagNum":"17657806228676","f1tRouteSrc":"MIA"}
{"fullname":"Zulema Martindale","tagNum":"17657806288937","fl1tRouteSrc":"MIA"}
{"fullname":"Adam Phillips","tagNum":"17657806255240","f1tRouteSrc":"MIA"}
{"fullname":"Joanne Diaz","tagNum":"17657806292518","f1tRouteSrc":"MIA"}
{"fullname":"Teena Colley","tagNum":"17657806255823","f1tRouteSrc":"MSQ"}
{"fullname":"Omar Harvey","tagNum":"17657806234185","f1tRouteSrc":"MEL"}
{"fullname":"Fallon Clements","tagNum":"17657806255507","f1tRouteSrc":"MXP"}

EXISTS Operator

ORACLE

The EXISTS operator checks whether the sequence returned by its input expression is empty or
not, and returns false or true, respectively. A special case is when the input expression returns
NULL. In this case, EXISTS will also return NULL.

Example 1: Select passenger details and baggage information for those passengers who have
three flight segments.

SELECT fullName, bag.bagInfol].tagNum,
bag.bagInfo[].routing

FROM BaggageInfo bag

WHERE EXISTS bag.bagInfo[].flightLegs[2]

Explanation: You fetch the details of the passengers who have three flight segments. You
determine this by evaluating if the third element of the flight legs array is present using the
EXISTS operator.

Output:

{"fullName":"Lorenzo Phil","tagNum":
["17657806240001","17657806340001"], "routing": ["SFO/IST/ATH/JTR", "SFO/IST/ATH/
JTR"]}

{"fullName":"Gerard Greene","tagNum":"1765780626568","routing":"SFO/IST/ATH/
JTR"}

{"fullName":"Doris Martin","tagNum":"17657806232501", "routing":"BZN/SEA/CDG/
MXP"}

{"fullName":"Fallon

Clements", "tagNum":"17657806255507", "routing": "MXP/CDG/SLC/BZN" }
{"fullName":"Michelle Payne","tagNum":"17657806247861", "routing":"SFO/IST/ATH/

5-12

JTR"}

Chapter 5
Operators in SQL

{"fullName":"Lucinda
Beckman", "tagNum":"17657806240001", "routing":"SFO/IST/ATH/JTR" }
{"fullName":"Elane Lemons","tagNum":"1765780623244","routing":"MXP/CDG/SLC/

BZN"}

Example 2: Fetch the full name and tag number for all customer baggage shipped after 2019.

SELECT fullName, bag.ticketNo
FROM BaggageInfo bag WHERE
EXISTS bag.bagInfo[$element.bagArrivalDate >="2019-01-01T00:00:00"]

Explanation: The bag arrival date value for every bag should be greater than the year 2019.
Here the "$element” is bound to the context row (every bag of the customer). The EXISTS
operator checks whether the sequence returned by its input expression is empty or not. The
sequence returned by the comparison operator ">=" is non-empty for all bags which arrived

after 2019.

Output:

{"fullName":"Lucinda Beckman","ticketNo":1762320569757}
{"fullName":"Adelaide Willard","ticketNo":1762392135540}
{"fullName":"Raymond Griffin","ticketNo":1762399766476}
{"fullName":"Elane Lemons","ticketNo":1762324912391}
{"fullName":"Zina Christenson","ticketNo":1762390789239}
{"fullName":"Zulema Martindale","ticketNo":1762340579411}
{"fullName":"Dierdre Amador","ticketNo":1762376407826}
{"fullName":"Henry Jenkins","ticketNo":176234463813}
{"fullName":"Rosalia Triplett","ticketNo":1762311547917}
{"fullName":"Lorenzo Phil","ticketNo":1762320369957}
{"fullName":"Gerard Greene","ticketNo":1762341772625}
{"fullName":"Adam Phillips","ticketNo":1762344493810}
{"fullName":"Doris Martin","ticketNo":1762355527825}
{"fullName":"Joanne Diaz","ticketNo":1762383911861}
{"fullName":"Omar Harvey","ticketNo":1762348904343}
{"fullName":"Fallon Clements","ticketNo":1762350390409}
{"fullName":"Lisbeth Wampler","ticketNo":1762355854464}
{"fullName":"Teena Colley","ticketNo":1762357254392}
{"fullName":"Michelle Payne","ticketNo":1762330498104}
{"fullName":"Mary Watson","ticketNo":1762340683564}
{"fullName":"Kendal Biddle","ticketNo":1762377974281}

Is-Of-Type Operator

The is-of-type operator checks the sequence type of its input sequence against one or more

ORACLE

target sequence types. If the number N of the target types is greater than one, the expression
is equivalent to OR-ing N is-of-type expressions, each having one target type.

Example: Fetch the names of the passengers whose baggage tags contain only numbers and
not a STRING.

SELECT fullname,bag.bagInfo.tagNum
FROM BaggageInfo bag

WHERE bag.bagInfo.tagNum is of type (NUMBER)

5-13

Chapter 5
Operators in SQL

Explanation: The tagNum in the bagInfo schema is a STRING data type. But the application
could take in a NUMBER value as tagNum by mistake. The query captures the passengers for
whom the tagNum column has only numbers.

Output:

{"fullname":"Raymond Griffin","tagNum":17657806243578}

If you query the bagInfo schema for the above tagNum as STRING, no rows are displayed.

SELECT * FROM BaggageInfo bag WHERE tagnum = "17657806232501"
0 row returned

You can also fetch the names of the passengers whose baggage tags contain only STRING.
SELECT fullname,bag.bagInfo.tagNum

FROM BaggageInfo bag
WHERE bag.bagInfo.tagNum is of type (STRING)

SQL Operators examples using QueryRequest AP

You can use QueryRequest API and filter data from a NoSQL table using SQL operators.

e Java

e Python
« Go

* Node.js
e C#
Java

To execute your query, you use the NoSQLHandle.query () APL.

Download the full code SQLOperators.java from the examples here.

//Fetch rows from the table
private static void fetchRows (NoSQLHandle handle,String sqglstmt) throws
Exception {
try (
QueryRequest queryRequest = new QueryRequest ().setStatement (sgqlstmt);
QueryIterableResult results = handle.querylterable (queryRequest)) {
for (MapValue res : results) {
System.out.println("\t" + res);

ORACLE _—

ORACLE

Chapter 5
Operators in SQL

String seq comp ope="SELECT
bag.bagInfo[].tagNum,bag.bagInfo[].flightLegs[].fltRouteSrc FROM BaggageInfo
bag WHERE bag.bagInfo[].flightLegs[].fltRouteSrc=any \"SFO\"";
System.out.println("Using Sequence Comparison operator ");
fetchRows (handle, seq comp ope);

String logical ope="SELECT fullName, bag.bagInfo[].tagNum,
bag.bagInfo[].routing,bag.baginfo[].flightlLegs[].fltRouteSrc FROM BaggageInfo
bag WHERE NOT bag.bagInfo[].flightLegs[].fltRouteSrc=any \"SFO\"";
System.out.println("Using Logical operator ");
fetchRows (handle, logical ope);

String value comp ope="SELECT fullname, bag.bagInfo[].routing FROM
BaggageInfo bag WHERE gender=\"M\"";

System.out.println("Using Value Comparison operator ");
fetchRows (handle, value comp ope);

String in ope="SELECT bagdet.fullName, bagdet.bagInfo[].tagNum FROM
BaggageInfo bagdet WHERE bagdet.fullName IN (\"Lucinda Beckman\", \"Adam
Phillips\",\"Dierdre Amador\",\"Fallon Clements\")";System.out.println("Using
IN operator ");fetchRows (handle,in ope);

String exists ope="SELECT fullName, bag.ticketNo FROM BaggageInfo bag WHERE
EXISTS bag.bagInfo[$element.bagArrivalDate >=\"2019-03-01T00:00:00\"]";
System.out.println ("Using EXISTS operator ");

fetchRows (handle, exists ope);

Python

To execute your query use the borneo.NoSQLHandle.query () method.

Download the full code SQLOperators.py from the examples here.

Fetch data from the table
def fetch data(handle,sglstmt):
request = QueryRequest ().set statement (sqlstmt)
print ('Query results for: ' + sglstmt)
result = handle.query(request)
for r in result.get results():
print ("\t' + str(r))

seqcomp_stmt = '''SELECT
bag.bagInfo[].tagNum,bag.bagInfo[].flightLegs[].fltRouteSrc
FROM BaggageInfo bag WHERE

bag.bagInfo[].flightLegs[].fltRouteSrc=any "SFO"'"'
print ('Using Sequence Comparison operator:')
fetch data(handle, seqcomp stmt)
logope stmt = '''SELECT fullName, bag.bagInfo[].tagNum, bag.bagInfo[].routing,

bag.bagInfo[].flightLegs[].fltRouteSrc

FROM BaggageInfo bag

WHERE NOT bag.bagInfo[].flightLegs[].fltRouteSrc=any "SFO"'''
print ('Using Logical operator:')
fetch data(handle, logope stmt)
valcomp stmt = '''SELECT fullname, bag.bagInfo[].routing

5-15

Chapter 5
Operators in SQL

FROM BaggageInfo bag WHERE gender="M"'""

print ('Using Value Comparison operator:')
fetch data(handle,valcomp stmt)
inope stmt = '''SELECT bagdet.fullName, bagdet.bagInfo[].tagNum

FROM BaggageInfo bagdet WHERE bagdet.fullName IN

("Lucinda Beckman", "Adam Phillips","Dierdre Amador","Fallon
Clements")'"'
print ('Using IN operator:')
fetch data(handle,inope stmt)
existsope stmt = '''SELECT fullName, bag.ticketNo FROM BaggageInfo bag WHERE

EXISTS bag.bagInfo[$element.bagArrivalDate

>="2019-03-01T00:00:00"] """
print ('Using EXISTS operator:')
fetch data(handle,existsope stmt)

Go

To execute a query use the Client.Query function.

Download the full code SQLOperators.go from the examples here.

//fetch data from the table
func fetchData(client *nosqgldb.Client, err error, tableName string, querystmt
string) () {
prepReq := &nosgldb.PrepareRequest{
Statement: querystmt,

}

prepRes, err := client.Prepare (prepReq)

if err != nil {
fmt.Printf ("Prepare failed: %v\n", err)
return

}
queryReq := &nosqgldb.QueryRequest{

PreparedStatement: &prepRes.PreparedStatement, }
var results []*types.MapValue

for {
queryRes, err := client.Query(queryReq)
if err != nil {
fmt.Printf ("Query failed: %v\n", err)
return
}
res, err := queryRes.GetResults()
if err != nil {
fmt.Printf ("GetResults() failed: %v\n", err)
return

}
results = append(results, res...)
if queryReq.IsDone() {

break

}
for i, r := range results {
fmt.Printf ("\t%d: %s\n", i+l, jsonutil.AsJSON(r.Map()))

ORACLE - 16

Chapter 5
Operators in SQL

seqcomp_stmt := "SELECT
bag.bagInfo[].tagNum,bag.bagInfo[].flightLegs[].fltRouteSrc

FROM BaggageInfo bag WHERE
bag.bagInfo[].flightLegs[].fltRouteSrc=any "SFO"'
fmt.Printf ("Using Sequence Comparison operator:\n"
fetchData (client, err,tableName,segcomp stmt)

logope stmt := "SELECT fullName, bag.bagInfol[].tagNum, bag.bagInfo[].routing,
bag.bagInfo[].flightLegs[].fltRouteSrc
FROM BaggageInfo bag
WHERE NOT bag.bagInfo[].flightLegs[].fltRouteSrc=any "SFO"®
fmt.Printf ("Using Logical operator:\n")
fetchData (client, err,tableName,logope stmt)

valcomp stmt := "SELECT fullname, bag.bagInfo[].routing FROM BaggageInfo bag
WHERE gender="M""

fmt.Printf ("Using Value Comparison operator:\n")

fetchData (client, err,tableName,valcomp stmt)

inope stmt := "SELECT bagdet.fullName, bagdet.bagInfo[].tagNum FROM
BaggageInfo bagdet

WHERE bagdet.fullName IN ("Lucinda Beckman", "Adam
Phillips", "Dierdre Amador","Fallon Clements")"
fmt.Printf ("Using IN operator:\n")
fetchData (client, err,tableName,inope stmt)

existsope stmt := 'SELECT fullName, bag.ticketNo FROM BaggageInfo bag WHERE
EXISTS bag.bagInfo[S$element.bagArrivalDate

>="2019-03-01T00:00:00"]"

fmt.Printf ("Using EXISTS operator:\n")

fetchData (client, err,tableName,existsope stmt)

Node.js

To execute a query use query method.

JavaScript: Download the full code SQLOperators.js from the examples here.

//fetches data from the table
async function fetchData (handle,querystmt) {
const opt = {};
try {
do {
const result = await handle.query(querystmt, opt);
for(let row of result.rows) {
console.log ("' %0', row);
}
opt.continuationKey = result.continuationKey;
} while (opt.continuationKey);
} catch(error) {
console.error (' Error: ' + error.message);

ORACLE 5-17

ORACLE

Chapter 5
Operators in SQL

TypeScript: Download the full code SQLOperators.ts from the examples here.

interface StreamInt {
acct Id: Integer;
profile name: String;
account expiry: TIMESTAMP;
acct data: JSON;

/* fetches data from the table */
async function fetchData (handle: NoSQLClient,querystmt: string) {
const opt = {};
try {
do {
const result = await handle.query<StreamInt> (querystmt, opt);
for(let row of result.rows) {
console.log ("' %0', row);
}
opt.continuationKey = result.continuationKey;
} while (opt.continuationKey);
} catch(error) {
console.error (' Error: ' + error.message);

const seqcomp stmt = "SELECT

bag.bagInfo[].tagNum,bag.bagInfo[].flightLegs[].fltRouteSrc
FROM BaggageInfo bag WHERE

bag.bagInfo[].flightLegs[].fltRouteSrc=any "SFO"'

console.log ("Using Sequence Comparison operator");

await fetchData (handle,seqcomp stmt);

const logope stmt = 'SELECT fullName, bag.bagInfo[].tagNum,
bag.bagInfo[].routing,

bag.bagInfo[].flightLegs[].fltRouteSrc

FROM BaggageInfo bag

WHERE NOT bag.bagInfo[].flightLegs[].fltRouteSrc=any
"SFO"®
console.log("Using Logical operator");
await fetchData (handle,logope stmt);

const valcomp stmt = "SELECT fullname, bag.bagInfo[].routing FROM BaggageInfo
bag WHERE gender="M""

console.log ("Using Value Comparison operator");

await fetchData(handle,valcomp stmt);

const inope stmt = 'SELECT bagdet.fullName, bagdet.bagInfo[].tagNum
FROM BaggageInfo bagdet WHERE bagdet.fullName IN
("Lucinda Beckman", "Adam Phillips","Dierdre
Amador","Fallon Clements")

5-18

ORACLE

Chapter 5
Operators in SQL

console.log("Using IN operator");
await fetchData(handle,inope stmt);

const existsope stmt = "SELECT fullName, bag.ticketNo FROM BaggageInfo bag
WHERE

EXISTS bag.bagInfo[$element.bagArrivalDate
>="2019-03-01T00:00:00"]"
console.log ("Using EXISTS operator");
await fetchData(handle,existsope stmt);

C#

To execute a query, you may call QueryAsync method or call GetQueryAsyncEnumerable
method and iterate over the resulting async enumerable.

Download the full code SQLOperators.cs from the examples here.

private static async Task fetchData (NoSQLClient client,String querystmt) {
var queryEnumerable = client.GetQueryAsyncEnumerable (querystmt) ;
await DoQuery (queryEnumerable);

private static async Task DoQuery (IAsyncEnumerable<QueryResult<RecordValue>>
queryEnumerable) {
Console.WriteLine (" Query results:");
await foreach (var result in queryEnumerable) {
foreach (var row in result.Rows)
{
Console.WriteLine();
Console.WriteLine (row.ToJdsonString());

private const string seqcomp stmt =@"SELECT
bag.bagInfo[].tagNum,bag.bagInfo[].flightLegs[].fltRouteSrc

FROM BaggageInfo bag WHERE
bag.bagInfo[].flightLegs[].fltRouteSrc=any ""SFO""";
Console.WriteLine ("\nUsing Sequence Comparison operator!");
await fetchData(client,seqcomp stmt);

private const string logope stmt =Q@"SELECT fullName, bag.bagInfo[].tagNum,
bag.bagInfo[].routing,

bag.bagInfo[].flightLegs[].fltRouteSrc
FROM BaggageInfo bag
WHERE NOT
bag.bagInfo[].flightLegs[].fltRouteSrc=any ""SFO""";
Console.WriteLine ("\nUsing Logical operator!");
await fetchbData(client,logope stmt);

private const string valcomp stmt =@"SELECT fullname, bag.bagInfo[].routing
FROM BaggageInfo bag WHERE gender=""M"""

Console.WriteLine ("\nUsing Value Comparison operator!");

await fetchData(client,valcomp stmt);

5-19

Chapter 5
Sorting, Grouping & Limiting results

private const string inope stmt =@"SELECT bagdet.fullName,
bagdet.bagInfol[].tagNum

FROM BaggageInfo bagdet WHERE
bagdet.fullName IN

(""Lucinda Beckman"", ""Adam
Phillips"",""Dierdre Amador"",""Fallon Clements"")";
Console.WriteLine ("\nUsing IN operator!™);
await fetchData(client,inope stmt);

private const string existsope stmt =Q"SELECT fullName, bag.ticketNo FROM
BaggageInfo bag WHERE

EXISTS
bag.bagInfo[$element.bagArrivalDate >=""2019-03-01T00:00:00""]";
Console.WriteLine ("\nUsing EXISTS operator!");
await fetchData(client,existsope stmt);

Sorting, Grouping & Limiting results

If you want to follow along with the examples, see Sample data to run queries to view a sample
data and use the scripts to load sample data for testing. The scripts create the tables used in
the examples and load data into the tables.

e Ordering results

* Limit and offset results
e Grouping results

e Aggregating results

e Examples using QueryRequest API

Ordering results

ORACLE

Use the ORDER BY clause to order the results by any column, primary key or non-primary key.

Example 1: Sort the ticket number of all passengers by their full name.

SELECT bag.ticketNo, bag.fullName
FROM BaggageInfo bag
ORDER BY bag.fullName

Explanation: You are sorting the ticket number of passengers in the BaggageInfo schema
based on the full name of the passengers in ascending order.

Output:

{"ticketNo":1762344493810,"fullName":"Adam Phillips"}
{"ticketNo":1762392135540,"fullName":"Adelaide Willard"}
{"ticketNo":1762376407826,"fullName":"Dierdre Amador"}
{"ticketNo":1762355527825,"fullName" :"Doris Martin"}
{"ticketNo":1762324912391,"fullName":"Elane Lemons"}
{"ticketNo":1762350390409,"fullName":"Fallon Clements"}

5-20

"ticketNo":
"ticketNo":
"ticketNo":
"ticketNo":
"ticketNo":
"ticketNo":
"ticketNo":

"ticketNo":

"ticketNo"

"ticketNo":
"ticketNo":
"ticketNo":
"ticketNo":

1762341772625, "fullName"
176234463813, "fullName":

1762383911861, "fullName":
1762377974281, "fullName":
1762355854464, "fullName":
1762320369957, "fullName":
1762320569757, "fullName":
1762340683564, "fullName":
1762330498104, "fullName":
:1762348904343, "fullName":
1762399766476, "fullName":

1762311547917, "fullName"

1762357254392, "fullName":
1762390789239, "fullName":

Chapter 5
Sorting, Grouping & Limiting results

:"Gerard Greene"}
"Henry Jenkins"}
"Joanne Diaz"}
"Kendal Biddle"}
"Lisbeth Wampler"}
"Lorenzo Phil"}
"Lucinda Beckman"}
"Mary Watson"}
"Michelle Payne"}
"Omar Harvey"}
"Raymond Griffin"}
:"Rosalia Triplett"}
"Teena Colley"}
"Zina Christenson"}

{
{
{
{
{
{
{
{"ticketNo":
{
{
{
{
{
{
{

"ticketNo":1762340579411,"fullName":"Zulema Martindale"}

Example 2: Fetch the passenger details(full name, tag number) by the last seen time (latest
first) for passengers (sorted by their name) whose last seen station is MEL.

SELECT bag.fullName, bag.bagInfo[].tagNum,
bag.bagInfo[].lastSeenTimeGmt

FROM BaggageInfo bag

WHERE bag.bagInfo[].lastSeenStation=any "MEL"
ORDER BY bag.bagInfo[].lastSeenTimeGmt DESC

Explanation: You first filter the data in the BaggageInfo table based on the last seen station
and you sort the filtered results based on the last seen time and the full name of the
passengers in descending order. You do this using the ORDER BY clause.

Note:

You can use more than one column to sort the output of the query.

Output:

{"fullName":"Adam

Phillips", "tagNum":"17657806255240", "lastSeenTimeGmt":"2019-02-01T16:13:00Z"}
{"fullName":"Zina
Christenson","tagNum":"17657806228676","lastSeenTimeGmt":"2019-02-04T10:08:00Z2
"}

{"fullName":"Joanne
Diaz","tagNum":"17657806292518","lastSeenTimeGmt":"2019-02-16T716:13:002"}
{"fullName":"Zulema
Martindale","tagNum":"17657806288937","lastSeenTimeGmt":"2019-02-25T20:15:002"

}

Limit and offset results

ORACLE

Use the LIMIT clause to limit the number of results returned from a SELECT statement. For
example, if there are 1000 rows in a table, limit the number of rows to return by specifying a
LIMIT value. It is recommended to use LIMIT and OFFSET with an ORDER BY clause.
Otherwise, the results are returned in a random order, producing unpredictable results.

5-21

Chapter 5
Sorting, Grouping & Limiting results

A good use-case/example of using LIMIT and OFFSET is the application paging of results. Say
for example your application wants to show 4 results per page. You can use limit and offset to
implement stateless paging in the application. If you are showing n (say 4) results per page,
then the results for page m (say 2) are being displayed, then offset would be (n*m-1) which is 4
in this example and the limit would be n(which is 4 here).

Example 1: Your application can show 4 results on a page. Fetch the details fetched by your
application in the first page for passengers whose last seen station is JTR.

SELECT $bag.fullName, $bag.bagInfo.tagNum, $flt time
FROM BaggageInfo S$bag,
$bag.bagInfo[].lastSeenTimeGmt $flt time

WHERE Sbag.bagInfo[].lastSeenStation=any "JTR"

ORDER BY $flt time LIMIT 4

Explanation: You filter the data in the BaggageInfo table based on the last seen station and
you sort the result based on the last seen time. You use an unnest array to flatten your data.
That is the bagInfo array is flattened and the last seen time is fetched. You need to just display
the first 4 rows from the result set.

Output:

{"fullName":"Michelle

Payne", "tagNum":"17657806247861","flt time":"2019-02-02T23:59:002"}
{"fullName":"Gerard

Greene","tagNum":"1765780626568","f1t time":"2019-03-07T16:01:002"}
{"fullName":"Lorenzo Phil","tagNum":
["17657806240001","17657806340001"],"f1t time":"2019-03-12T15:05:002"}
{"fullName":"Lucinda

Beckman", "tagNum":"17657806240001","f1t time":"2019-03-12T15:05:002"}

Example 2: Your application can show 4 results on a page. Fetch the details fetched by your
application in the second page for passengers whose last seen station is JTR.

SELECT $bag.fullName, $bag.bagInfo.tagNum, $flt time
FROM BaggageInfo S$bag,
$bag.bagInfo[].lastSeenTimeGmt $flt time

WHERE Sbag.bagInfo[].lastSeenStation=any "JTR"

ORDER BY $flt7time LIMIT 4 OFFSET 4

Explanation: You filter the data in the BaggageInfo table based on the last seen station and
you sort the result based on the last seen time. You use an unnest array to flatten your data.
You need to display the contents of the second page, so you set an OFFSET 4. Though you
LIMIT to 4 rows, only one row is displayed as the total result set is only 5. The first few are
skipped and the fifth one is displayed.

Output:

{"fullName":"Lorenzo Phil","tagNum":["17657806240001","17657806340001"],
"flt time":"2019-03-12T16:05:002"}

ORACLE = oo

Chapter 5
Sorting, Grouping & Limiting results

Grouping results

ORACLE

Use the GROUP BY clause to group the results by one or more table columns. Typically, a
GROUP BY clause is used in conjunction with an aggregate expression such as COUNT,
SUM, and AVG.

Example 1: Display the number of bags for each reservation made.

SELECT bag.confNo,

count (bag.bagInfo) AS TOTAL BAGS
FROM BaggageInfo bag

GROUP BY bag.confNo

Explanation: Every passenger has one reservation code (confNo). A passenger can have
more than one baggage. Here you group the data based on the reservation code and you get
the count of the bagInfo array which gives the number of bags per reservation.

Output:

{"confNo":"FH7GIW", "TOTAL BAGS":1}
{"confNo":"PQIM8N", "TOTAL BAGS":1}
{"confNo":"XT6K7M", "TOTAL BAGS":1}
{"confNo":"DN3I4Q", "TOTAL BAGS":1}
{"confNo":"QB100J", "TOTAL BAGS":1}
{"confNo":"TX1P7E", "TOTAL BAGS":1}
{"confNo":"CG60OIM", "TOTAL BAGS":1}
{"confNo":"OH2F8U", "TOTAL BAGS":1}
{"confNo":"BOSG3H", "TOTAL BAGS":1}
{"confNo":"ZG8Z5N", "TOTAL BAGS":1}
{"confNo":"LE6J4Z", "TOTAL BAGS":1}
{"confNo":"XT107T", "TOTAL BAGS":1}
{"confNo":"QI3V6Q", "TOTAL BAGS":2}
{"confNo":"RL3J4Q", "TOTAL BAGS":1}
{"confNo":"HJ4J4P", "TOTAL BAGS":1}
{"confNo":"CR2C8MY", "TOTAL BAGS":1}
{"confNo":"LNOC8R", "TOTAL BAGS":1}
{"confNo":"MzZ2S5R", "TOTAL BAGS":1}
{"confNo":"KN4DIL", "TOTAL BAGS":1}
{"confNo":"MCOE7R", "TOTAL BAGS":1}

Example 2: Select the total baggage originating from each airport (excluding the transit
baggage).

SELECT $flt src as SOURCE,

count (*) as COUNT

FROM BaggageInfo S$bag,
$bag.bagInfo.flightLegs[0].fltRouteSrc $flt src
GROUP BY $flt_src

Explanation: You want to get the total count of baggage originating from each airport.
However, you don't want to consider the airports that are part of the transit. So you group the
data with the flight source values of the first record of the f1ightLegs array(as the first record
is the source). You then determine the count of baggage.

5-23

Chapter 5
Sorting, Grouping & Limiting results

Output:

{"SOURCE":"SFO", "COUNT":6}
{"SOURCE" :"BZN", "COUNT":1}
{"SOURCE" :"GRU", "COUNT" :1}
{"SOURCE" : "LAX", "COUNT":1}
{"SOURCE" :"YYZ","COUNT":1}
{"SOURCE":"MEL", "COUNT" :1}
{"SOURCE": "MIA","COUNT":4}
{"SOURCE":"MSQ", "COUNT":2}
{"SOURCE" : "MXP", "COUNT" :2}
{"SOURCE":"JFK", "COUNT" : 3}

Aggregating results

Use the built in aggregate and sequence aggregate functions to find information such as a
count, a sum, an average, a minimum, or a maximum.

Example 1: Find the total number of checked bags that are estimated to arrive at the LAX
airport at a particular time.

SELECT S$estdate as ARRIVALDATE,

count ($flight) AS COUNT

FROM BaggageInfo S$bag,

S$bag.bagInfo.flightLegs.estimatedArrival S$Sestdate,
Sbag.bagInfo.flightLegs.flightNo $flight,
$bag.bagInfo.flightLegs.fltRouteDest $flt dest

WHERE Sestdate =any "2019-02-01T11:00:00z" AND $flt_dest =any "LAX"
GROUP BY S$estdate

Explanation: In an airline baggage tracking application, you can get the total count of checked
bags that are estimated to arrive at a particular airport and time. For each flight leg, the
estimatedArrival field in the f1ightLegs array of the BaggageInfo table contains the arrival
time of the checked bags and the f1tRouteDest field contains the destination airport code. In
the above query, to determine the total number of checked bags arriving at the LAX airport at a
given time, you first group the data with the estimated arrival time value using the GROUP BY
clause. From the group, you select only the rows that have the destination airport as LAX. You
then determine the bag count for the resultant rows using the count function.

Here, you can compare the string-formatted dates in ISO-8601 format due to the natural
sorting order of strings without having to cast them into timestamp data types.

The $bag.bagInfo.flightLegs.estimatedArrival

and S$bag.bagInfo.flightLegs.fltRouteDest are sequences. Since the comparison
expression '=' cannot operate on sequences of more than one item, the sequence comparison
operator '=any' is used instead to compare the estimatedArrival and fltRouteDest fields.

Output:

{"ARRIVALDATE":"2019-02-01T11:00:002","COUNT":2}

ORACLE - ou

Chapter 5
Sorting, Grouping & Limiting results

Example 2: Display an automated message regarding the number of checked bags, travel
route, and flight count to a passenger in the airline baggage tracking application.

SELECT fullName,
b.baginfo[0].routing,
size (baginfo) AS BAGS,
CASE
WHEN seq count (b.bagInfo[0].flightLegs.flightNo) =1
THEN "You have one flight to catch"
WHEN seq count (b.bagInfo[0].flightLegs.flightNo)
THEN "You have two flights to catch"
WHEN seq count (b.bagInfo[0].flightLegs.flightNo) = 3
THEN "You have three flights to catch"
ELSE "You do not have any travel listed today"
END AS FlightInfo
FROM BaggageInfo b
WHERE ticketNo = 1762320369957

I
N

Explanation: In the airline baggage tracking application, it is helpful to display a quick look-up
message regarding the flight count, number of checked bags, and routing details of an
upcoming travel for a passenger. The bagInfo array holds the checked bag details of the
passenger. The size of the bagInfo array determines the number of checked bags per
passenger. The flightLegs array in the bagInfo includes the flight details corresponding to
each travel leg. The routing field includes the airport codes of all the travel fragments. You can
determine the number of flights by counting the f1ightNo fields in the f1ightLegs array. If a
passenger has more than one checked bag, there will be more than one element in the
bagInfo array, one for each bag. In such cases, the flightLegs array in all the elements of the
bagInfo field of a passenger data will contain the same values. This is because the destination
of all the checked bags for a passenger will be the same. While counting the f1ightNo fields,
you must consider only one element of the bagInfo array to avoid duplication of results. In this
query, you consider only the first element, that is, bagInfo[0]. As the f1ightLegs array has a
flightNo field for each travel fragment, it is a sequence and you determine the count of the
flightNo fields per passenger using the seq_count function.

You use the CASE statement to introduce different messages based on the flight count. For
ease of use, only three transits are considered in the query.

Output:

{"fullName":"Lorenzo Phil","routing":"SFO/IST/ATH/
JTR","BAGS":2,"FlightInfo":"You have three flights to catch"}

Examples using QueryRequest API

ORACLE

You can use QueryRequest API to group and order data and also fetch it from a NoSQL table.

e Java

e Python
« Go

* Node.js

5-25

Chapter 5
Sorting, Grouping & Limiting results

« C#

Java
To execute your query, you use the NoSQLHandle.query () API.

Download the full code GroupSortData.java from the examples here.

//Fetch rows from the table
private static void fetchRows (NoSQLHandle handle,String sqglstmt) throws
Exception {
try (
QueryRequest queryRequest = new QueryRequest ().setStatement (sgqlstmt);
QueryIterableResult results = handle.querylterable (queryRequest)) {
for (MapValue res : results) {
System.out.println("\t" + res);

String orderby stmt="SELECT bag.fullName,
bag.bagInfo[].tagNum,bag.bagInfo[].lastSeenTimeGmt FROM BaggageInfo bag "+
"WHERE bag.bagInfo[].lastSeenStation=any \"MEL\"
ORDER BY bag.bagInfo[].lastSeenTimeGmt DESC";
System.out.println("Using ORDER BY to sort data ");
fetchRows (handle, orderby stmt);
String sortlimit stmt="SELECT S$bag.fullName, Sbag.bagInfo.tagNum, $flt time
FROM BaggageInfo S$Sbag, "+
"Sbag.bagInfo[].lastSeenTimeGmt S$flt time
WHERE Sbag.bagInfo[].lastSeenStation=any \"JTR\""+
"ORDER BY $flt_time LIMIT 4";

System.out.println ("Using ORDER BY and LIMIT to sort and limit data ");
fetchRows (handle, sortlimit stmt);
String groupsortlimit stmt="SELECT $flt src as SOURCE, count(*) as COUNT FROM
BaggageInfo S$bag, "+

"Sbag.bagInfo.flightLegs[0].fltRouteSrc $flt src
GROUP BY S$flt src";
System.out.println("Using GROUP BY, ORDER BY and LIMIT to group, sort and
limit data ");
fetchRows (handle, groupsortlimit stmt);

Python

To execute your query use the borneo.NoSQLHandle.query () method.

Download the full code GroupSortData.py from the examples here.

Fetch data from the table

def fetch data(handle,sglstmt):
request = QueryRequest ().set statement (sglstmt)
print ('Query results for: ' + sglstmt)
result = handle.query(request)

ORACLE -

ORACLE

Chapter 5
Sorting, Grouping & Limiting results

for r in result.get results():
print ("\t' + str(r))

orderby stmt = '''SELECT bag.fullName,
bag.bagInfo[].tagNum,bag.bagInfo[].lastSeenTimeGmt FROM BaggageInfo bag

WHERE bag.bagInfo[].lastSeenStation=any \"MEL\" ORDER BY
bag.bagInfo[].lastSeenTimeGmt DESC'''
print ('Using ORDER BY to sort data:')
fetch data(handle,orderby stmt)

sortlimit stmt = '''SELECT Sbag.fullName, S$bag.bagInfo.tagNum, $flt time FROM
BaggageInfo $bhag,
$bag.bagInfo[].lastSeenTimeGmt $flt time
WHERE S$bag.bagInfo[].lastSeenStation=any "JTR"
ORDER BY $flt_time LIMIT 4''"'
print ('Using ORDER BY and LIMIT to sort and limit data:')
fetch data(handle,sortlimit stmt)

groupsortlimit stmt = '''SELECT $flt src as SOURCE, count(*) as COUNT FROM
BaggageInfo $hag,

$bag.bagInfo.flightLegs[0].fltRouteSrc $flt src
GROUP BY $flt_src"'
print ('Using GROUP BY, ORDER BY and LIMIT to group, sort and limit data:')
fetch data(handle,groupsortlimit stmt)

Go

To execute a query use the Client.Query function.

Download the full code GroupSortData.go from the examples here.

//fetch data from the table
func fetchData(client *nosqgldb.Client, err error, tableName string, querystmt
string) () {
prepReq := &nosqgldb.PrepareRequest{
Statement: querystmt,

}

prepRes, err := client.Prepare (prepReq)

if err != nil {
fmt.Printf ("Prepare failed: %v\n", err)
return

}
queryReq := &nosqgldb.QueryRequest{

PreparedStatement: &prepRes.PreparedStatement, }
var results []*types.MapValue

for {
queryRes, err := client.Query(queryReq)
if err !'= nil {
fmt.Printf ("Query failed: %v\n", err)
return
}
res, err := queryRes.GetResults()
if err !'= nil {
fmt.Printf ("GetResults() failed: %v\n", err)
return

5-27

ORACLE

Chapter 5
Sorting, Grouping & Limiting results

}
results = append(results, res...)
if queryReq.IsDone() {

break

}
for i, r := range results {
fmt.Printf ("\t%d: %$s\n", i+1, jsonutil.AsJSON(r.Map()))

orderby stmt := "SELECT bag.fullName,

bag.bagInfo[].tagNum,bag.bagInfo[].lastSeenTimeGmt FROM BaggageInfo bag
WHERE bag.bagInfo[].lastSeenStation=any "MEL" ORDER BY

bag.bagInfo[].lastSeenTimeGmt DESC"

fmt.Printf ("Using ORDER BY to sort data::\n")

fetchData (client, err,tableName,orderby stmt)

sortlimit stmt "SELECT Sbag.fullName, S$bag.bagInfo.tagNum, $flt time FROM
BaggageInfo $hag,

Sbag.bagInfo[].lastSeenTimeGmt $flt time

WHERE S$bag.bagInfo[].lastSeenStation=any "JTR"

ORDER BY $flt_time LIMIT 4°
fmt.Printf ("Using ORDER BY and LIMIT to sort and limit data::\n")

fetchData (client, err,tableName,sortlimit stmt)

groupsortlimit stmt := 'SELECT $flt src as SOURCE, count(*) as COUNT FROM
BaggageInfo $hag,

$bag.bagInfo.flightLegs[0].fltRouteSrc $flt src GROUP
BY $flt src®
fmt.Printf ("Using GROUP BY, ORDER BY and LIMIT to group, sort and limit
data::\n")
fetchData (client, err,tableName,groupsortlimit stmt)

Node.js

To execute a query use query method.

JavaScript: Download the full code GroupSortData.js from the examples here.

//fetches data from the table
async function fetchData (handle,querystmt) {
const opt = {};
try {
do {
const result = await handle.query(querystmt, opt);
for(let row of result.rows) {
console.log ("' %0', row);
}
opt.continuationKey = result.continuationKey;
} while (opt.continuationKey);
} catch(error) {
console.error (' Error: ' + error.message);

5-28

Chapter 5
Sorting, Grouping & Limiting results

TypeScript: Download the full code GroupSortData.ts from the examples here.

interface StreamInt {
acct Id: Integer;
profile name: String;
account expiry: TIMESTAMP;
acct data: JSON;

/* fetches data from the table */
async function fetchData (handle: NoSQLClient,querystmt: string) {
const opt = {};
try {
do {
const result = await handle.query<StreamInt> (querystmt, opt);
for(let row of result.rows) {
console.log ("' %0', row);
}
opt.continuationKey = result.continuationKey;
} while (opt.continuationKey);
} catch(error) {
console.error (' Error: ' + error.message);

const orderby stmt = “SELECT bag.fullName,

bag.bagInfo[].tagNum,bag.bagInfo[].lastSeenTimeGmt FROM BaggageInfo bag
WHERE bag.bagInfo[].lastSeenStation=any \"MEL\" ORDER

BY bag.bagInfo[].lastSeenTimeGmt DESC®

console.log ("Using ORDER BY to sort data");

await fetchData(handle,orderby stmt);

const sortlimit stmt = "SELECT $bag.fullName, $bag.bagInfo.tagNum, $flt time
FROM BaggageInfo S$bag,
$bag.bagInfo[].lastSeenTimeGmt $flt time
WHERE Sbag.bagInfo[].lastSeenStation=any "JTR"
ORDER BY $flt_time LIMIT 4°
console.log("Using ORDER BY and LIMIT to sort and limit data");
await fetchData(handle,sortlimit stmt);

const groupsortlimit stmt = "SELECT $flt src as SOURCE, count(*) as COUNT
FROM BaggageInfo S$bag,

$bag.bagInfo.flightLegs[0].fltRouteSrc $flt src
GROUP BY S$flt src’
console.log ("Using GROUP BY, ORDER BY and LIMIT to group, sort and limit
data");
await fetchData(handle,groupsortlimit stmt);

ORACLE .

Chapter 5
Sorting, Grouping & Limiting results

C#

To execute a query, you may call QueryAsync method or call GetQueryAsyncEnumerable
method and iterate over the resulting async enumerable.

Download the full code GroupSortData.cs from the examples here.

private static async Task fetchData (NoSQLClient client,String querystmt) {
var queryEnumerable = client.GetQueryAsyncEnumerable (querystmt);
await DoQuery (queryEnumerable);

private static async Task DoQuery (IAsyncEnumerable<QueryResult<RecordValue>>
queryEnumerable) {
Console.WriteLine (" Query results:");
await foreach (var result in queryEnumerable) {
foreach (var row in result.Rows)
{
Console.WritelLine();
Console.WriteLine (row.ToJsonString());

private const string orderby stmt =@"SELECT bag.fullName,
bag.bagInfo[].tagNum,bag.bagInfo[].lastSeenTimeGmt

FROM BaggageInfo bag WHERE
bag.bagInfo[].lastSeenStation=any ""MEL""

ORDER BY
bag.bagInfo[].lastSeenTimeGmt DESC";
Console.WriteLine ("\nUsing ORDER BY to sort data!");
await fetchData(client,orderby stmt);

private const string sortlimit stmt

=@"SELECT $bag.fullName, $bag.bagInfo.tagNum, $flt time FROM BaggageInfo S$bag,
S$bag.bagInfo[].lastSeenTimeGmt $f

1t time

WHERE Sbag.bagInfo[].lastSeenStation=any ""JTR""

ORDER BY $flt_time LIMIT 4";
Console.WriteLine ("\nUsing ORDER BY and LIMIT to sort and limit data!");
await fetchData(client,sortlimit stmt);

private const string groupsortlimit stmt =@"SELECT $flt src as SOURCE,
count (*) as COUNT FROM BaggageInfo $bag,

Sbag.bagInfo.flightLegs[0].f
ltRouteSrc $flt src GROUP BY $flt src" ;
Console.WriteLine ("\nUsing GROUP BY, ORDER BY and LIMIT to group, sort and
limit data:");
await fetchData(client,groupsortlimit stmt);

ORACLE = 30

Chapter 5
Primary Expressions in SQL

Primary Expressions in SQL

If you want to follow along with the examples, see Sample data to run queries to view a sample
data and use the scripts to load sample data for testing. The scripts create the tables used in
the examples and load data into the tables.

e Parenthesized Expressions

e Case Expressions

e Cast Expression

e Sequence Transform Expressions
e Extract Expressions

e SQL Expression examples using QueryRequest API

Parenthesized Expressions

Parenthesized expressions are used primarily to alter the default precedence among
operators. They are also used as a syntactic aid to mix expressions in ways that would
otherwise cause syntactic ambiguities.

Example: Fetch the full name, tag number, and routing details of passengers either boarding
at JFK /traversing through JFK and their destination is either MAD or VIE.

SELECT fullName, bag.bagInfo.tagNum,
bag.bagInfo.routing,
bag.bagInfo[].flightLegs[].fltRouteDest

FROM BaggageInfo bag

WHERE bag.bagInfo.flightLegs[].fltRouteSrc=any "JFK" AND
(bag.bagInfo[].flightLegs[].fltRouteDest=any "MAD" OR
bag.bagInfo[].flightLegs[].fltRouteDest=any "VIE")

Explanation: You want to fetch the full name, tag number, and routing details of passengers.
The first filter condition is that the boarding point/transit is JFK. Once this is satisfied the
second filter condition is that destination is either MAD or VIE. You use an OR condition to filter
the destination value.

Output:

{"fullName":"Dierdre Amador","tagNum":"17657806240229", "routing":"JFK/

MAD", "fltRouteDest":"MAD"}

{"fullName":"Rosalia Triplett","tagNum":"17657806215913", "routing":"JFK/IST/
VIE","fltRouteDest": ["IST","VIE"]}

{"fullName":"Kendal Biddle","tagNum":"17657806296887","routing":"JFK/IST/
VIE","fltRouteDest": ["IST","VIE"]}

Case Expressions

ORACLE

The searched CASE expression is similar to the if-then-else statements of traditional
programming languages. It consists of a number of WHEN-THEN pairs, followed by an
optional ELSE clause at the end. Each WHEN expression is a condition, i.e., it must return
BOOLEAN. The THEN expressions as well as the ELSE expression may return any sequence
of items. The CASE expression is evaluated by first evaluating the WHEN expressions from

5-31

ORACLE

Chapter 5
Primary Expressions in SQL

top to bottom until the first one that returns true. If it is the i-th WHEN expression that returns
true, then the i-th THEN expression is evaluated and its result is the result of the whole CASE
expression. If no WHEN expression returns true, then if there is an ELSE, its expression is
evaluated and its result is the result of the whole CASE expression; Otherwise, the result of the
CASE expression is the empty sequence.

Example:

SELECT
fullName,
CASE
WHEN NOT exists bag.bagInfo.flightLegs[0]
THEN "you have no bag info"
WHEN NOT exists bag.bagInfo.flightLegs[1]
THEN "you have one hop"
WHEN NOT exists bag.bagInfo.flightLegs[2]
THEN "you have two hops."
ELSE "you have three hops."
END AS NUMBER HOPS
FROM BaggageInfo bag WHERE ticketNo=1762340683564

Explanation: You want to determine how many transits are there for the passenger bagInfo
using a CASE statement. If the f1ightLegs array has no elements, then the passenger has no
bag data. When the flightLegs array has only one element, then there is only one transit
point. Similarly, if the f1ightLegs array has two elements, then there is two hops. Else there is
three transit points. Here you assume that a bag can have at the most three transit points/
hops.

Output:

{"fullName":"Mary Watson","NUMBER HOPS":"you have two hops."}

Example 2: Write a query to alert the system to update the tagNum of passengers if the
existing value is not a string.

SELECT bag.bagInfo[].tagNum,

CASE
WHEN bag.bagInfo[0].tagNum is of type (NUMBER)
THEN "Tagnumber is not a STRING. Update the data"
ELSE "Tagnumber has correct datatype"
END AS tag NUM TYPE

FROM BaggageInfo bag

Explanation: The tagNum of passengers in the bagInfo schema is a STRING data type. But
the application could take in a NUMBER value as the value of tagNum by mistake. The query
uses "is of type" operator to capture this and prompts the system to update the tagNum if the
existing value is not a string.

Output (only few rows are shown for brevity).

{"tagNum":"17657806240001", "tag NUM TYPE":"Tagnumber has correct datatype"}
{"tagNum":"17657806224224","tag NUM TYPE":"Tagnumber has correct datatype"}
{"tagNum":17657806243578, "tag NUM TYPE":"Tagnumber is not a STRING. Update

5-32

Chapter 5
Primary Expressions in SQL

the data"}
{"tagNum":"1765780623244","tag NUM TYPE":"Tagnumber has correct datatype"}

Cast Expression

The cast expression creates, if possible, new items of a given target type from the items of its
input sequence. For example, a STRING can be converted to TIMESTAMP(0) using CAST
expression.

ORACLE

Rules followed in a CAST expression:

If the type of the input item is equal to the target item type, the cast is a no-op: the input
item itself is returned.

If the target type is a wildcard type other than JSON and the type of the input item is a
subtype of the wild card type, the cast is a no-op.

If the target type is JSON, then an error is raised if the input item is a non-json atomic type.
If the target type is an array type, an error is raised if the input item is not an array.

If the target type is string, the input item may be of any type. That means every item can be
cast to a string. For timestamps, their string value is in UTC and has the format uuuu-MM-

dd['T'HH:mm:ss].
If the target type is an atomic type other than string, the input item must also be atomic.

— * Integers and longs can be cast to timestamps. The input value is interpreted as the
number of milliseconds since January 1, 1970, 00:00:00 GMT.

* String items may be castable to all other atomic types. Whether the cast succeeds
or not depends on whether the actual string value can be parsed into a value that
belongs to the domain of the target type.

* Timestamp items are castable to all the timestamp types. If the target type has a
smaller precision that the input item, the resulting timestamp is the one closest to
the input timestamp in the target precision.

To cast a STRING to TIMESTAMP, if the input has STRING values in 1ISO-8601 format,
then it will be automatically converted by the SQL runtime into TIMESTAMP data type.

5-33

ORACLE

Chapter 5
Primary Expressions in SQL

Note:

ISO8601 describes an internationally accepted way to represent dates, times,
and durations.
Syntax: Date with time: YYYY-MM-DDThh:mm:ss[.s[s[s[s[s[s]]]]I[Z|(+]-)hh:mm]

where

— YYYY specifies the year, as four decimal digits

— MM specifies the month, as two decimal digits, 00 to 12
— DD specifies the day, as two decimal digits, 00 to 31

— hh specifies the hour, as two decimal digits, 00 to 23

— mm specifies the minutes, as two decimal digits, 00 to 59

— ss[.s[s[s[s[s]]]]] specifies the seconds, as two decimal digits, 00 to 59,
optionally followed by a decimal point and 1 to 6 decimal digits (representing
the fractional part of a second).

— Z specifies UTC time (time zone 0). (It can also be specified by +00:00, but
not by —00:00.)

— (*+|]-)hh:mm specifies the time-zone as difference from UTC. (One of + or — is
required.)

Example 1: Fetch the bag arrival date for the passenger with a reservation code DN314Q in
TIMESTAMP(3) format.

SELECT CAST (bag.bagInfo.bagArrivalDate AS Timestamp (3))
AS BAG _ARRIVING DATE
FROM BaggageInfo bag WHERE bag.confNo=DN3I4Q

Explanation: The bagArrivalDate is @ STRING. Using CAST you are converting this field into
a TIMESTAMP format.

Output:

{"BAG_ARRIVING DATE":"2019-02-15T21:21:00.0002"}

Example 2: Fetch the full name and tag number for all customer baggage shipped after 2019.

SELECT fullName, bag.ticketNo,

bag.bagInfo[].bagArrivalDate

FROM BaggageInfo bag WHERE

exists bag.bagInfo[$element.bagArrivalDate >="2019-01-01T00:00:00"]

Explanation: You want to filter and display details of the baggage that are shipped after 2019.
The bag arrival date for every element in the f1ightLegs array is compared with the given
timestamp (2019-01-01T00:00:00). Here the casting is implicit as bagArrivalDate is a
STRING and is directly compared with a static Timestamp value. An explicit CAST function is
not needed when an implicit casting can be done. However, your data should be in the format
YYYY-MM-DDTHH:MI:SS . You then use the EXISTS condition to check if the baglnfo is present
for this timestamp condition.

5-34

Chapter 5
Primary Expressions in SQL

Output:

{"fullName":"Kendal

Biddle", "ticketNo":1762377974281,"bagArrivalDate":"2019-03-05T12:00:00z2"}
{"fullName":"Lucinda

Beckman", "ticketNo":1762320569757, "bagArrivalDate":"2019-03-12T15:05:00Z"}
{"fullName":"Adelaide

Willard","ticketNo":1762392135540, "bagArrivalDate":"2019-02-15T21:21:002"}
{"fullName":"Raymond
Griffin","ticketNo":1762399766476,"bagArrivalDate":"2019-02-03T08:09:00Z"}
{"fullName":"Elane

Lemons", "ticketNo":1762324912391, "bagArrivalDate":"2019-03-15T10:13:002"}
{"fullName":"Zina

Christenson","ticketNo":1762390789239, "bagArrivalDate":"2019-02-04T10:08:002"}
{"fullName":"Zulema

Martindale","ticketNo":1762340579411, "bagArrivalDate":"2019-02-25T20:15:002"}
{"fullName":"Dierdre

Amador","ticketNo":1762376407826, "bagArrivalDate":"2019-03-07T13:51:002"}
{"fullName":"Henry

Jenkins","ticketNo":176234463813, "bagArrivalDate":"2019-03-02T13:18:002"}
{"fullName":"Rosalia

Triplett","ticketNo":1762311547917, "bagArrivalDate":"2019-02-12T07:04:00Z2"}
{"fullName":"Lorenzo Phil","ticketNo":1762320369957,"bagArrivalDate":
["2019-03-12T15:05:002","2019-03-12T16:25:00Z"]}

{"fullName":"Gerard
Greene","ticketNo":1762341772625,"bagArrivalDate":"2019-03-07T16:01:00z2"}
{"fullName":"Adam

Phillips", "ticketNo":1762344493810, "bagArrivalDate":"2019-02-01T16:13:00Z2"}
{"fullName":"Doris

Martin","ticketNo":1762355527825, "bagArrivalDate":"2019-03-22T10:17:002"}
{"fullName":"Joanne
Diaz","ticketNo":1762383911861,"bagArrivalDate":"2019-02-16T16:13:002"}
{"fullName":"Teena

Colley","ticketNo":1762357254392, "bagArrivalDate":"2019-02-13T11:15:002"}
{"fullName":"Michelle

Payne","ticketNo":1762330498104, "bagArrivalDate":"2019-02-02T23:59:002"}
{"fullName":"Mary

Watson","ticketNo":1762340683564, "bagArrivalDate":"2019-03-14T06:22:002"}
{"fullName":"Omar

Harvey","ticketNo":1762348904343, "bagArrivalDate":"2019-03-02T16:09:00Z2"}
{"fullName":"Fallon

Clements", "ticketNo":1762350390409, "bagArrivalDate":"2019-02-21T14:08:002"}
{"fullName":"Lisbeth

Wampler", "ticketNo":1762355854464, "bagArrivalDate":"2019-02-10T10:01:002"}

Sequence Transform Expressions

ORACLE

A sequence transform expression transforms a sequence into another sequence. Syntactically
it looks like a function whose name is seq_transform. The first argument is an expression that
generates the sequence to be transformed (the input sequence) and the second argument is a
"mapper" expression that is computed for each item of the input sequence. The result of the
seq_transform expression is the concatenation of sequences produced by each evaluation of
the mapper expression. The mapper expression can access the current input item via the $
variable.

5-35

Chapter 5
Primary Expressions in SQL

Example: For each ticketNo, fetch a flat array containing all the actions performed on the
luggage of that ticketNo.

SELECT seq_transform(l.bagInfo[],
seq_transform(
$sql.flightLegs(],
seq transform(
$sg2.actions|[],
{
"at" : $sqg3.actionAt,
"action" : $sg3.actionCode,
"flightNo" : $sqg2.flightNo,
"tagNum" : $sqgl.tagNum
}

)
) AS actions
FROM baggageInfo 1 WHERE ticketNo=1762340683564

Explanation: You can use the sequence transform expression for transforming JSON
documents stored in table rows. In such cases, you often use multiple sequence transform
expressions nested inside each other. Here the mapper expression of an inner sequence
transform may need to access the current item of an outer sequence transform. To allow this,
each sequence transform expression 'S’ declares a variable with name $sqN, where N is the
level of nesting of the expression s within the outer sequence transform expressions. $sql is
basically a synonym for $, that is, it is bound to the items returned by the input expression s.
However, $sgN can be accessed by other sequence transform expressions that may be nested
inside the expression s.

Output:

{
"actions": [
{"action":"ONLOAD to
HKG", "at":"YYZ","flightNo":"BM267", "tagNum":"17657806299833"},
{"action":"BagTag Scan at
YYZ", "at":"YYz","flightNo":"BM267", "tagNum":"17657806299833"},
{"action":"Checkin at
YYZ", "at":"YYz","flightNo":"BM267", "tagNum":"17657806299833"},
{"action":"0ffload to Carousel at
BLR", "at":"BLR","flightNo":"BM115", "tagNum":"17657806299833"},
{"action":"ONLOAD to
BLR","at":"HKG", "flightNo":"BM115", "tagNum":"17657806299833"},
{"action":"OFFLOAD from
HKG", "at":"HKG","flightNo":"BM115", "tagNum":"17657806299833"}
]
}

Extract Expressions

ORACLE

The EXTRACT expression extracts a component from a timestamp.

5-36

ORACLE

Chapter 5
Primary Expressions in SQL

You can specify one of the following keywords to extract the corresponding date part from the
timestamp: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, MILLISECOND,
MICROSECOND, NANOSECOND, WEEK, ISOWEEK.

Example 1: What is the full name and baggage arrival year for the customer with ticket
number 1762383911861.

SELECT fullName,

EXTRACT (YEAR FROM CAST (bag.bagInfo.bagArrivalDate AS Timestamp (0)))
AS YEAR FROM BaggageInfo bag

WHERE ticketNo=1762383911861

Explanation: You first use CAST to convert the bagArrivalDate to a TIMESTAMP and then
fetch the YEAR component from the timestamp.

Output:

{"fullName":"Joanne Diaz","YEAR":2019}

Example 2: Retrieve all bags that traveled through MIA between 10:00 am and 10:00 pm in
February 2019.

SELECT bag.bagInfo[].tagNum,bag.bagInfo[].flightLegs[].fltRouteSrc,
$tl AS HOUR FROM BaggagelInfo bag,

EXTRACT (HOUR FROM CAST (bag.bagInfo[0].bagArrivalDate AS Timestamp(0))) S$t1,
EXTRACT (YEAR FROM CAST (bag.bagInfo[0].bagArrivalDate AS Timestamp(0))) $t2,
EXTRACT (MONTH FROM CAST (bag.bagInfo[0].bagArrivalDate AS Timestamp (0))) $t3

WHERE bag.bagInfo[].flightLegs[].fltRouteSrc=any "MIA" AND
$t2=2019 AND $t3=02 AND ($t1>10 AND $t1<20)

Explanation: You want to know the details of flights that traveled through MIA between 10:00
am and 10:00 pm in February 2019. You use a number of filter conditions here. First, the flight
should have originated or traversed through MIA. The year of arrival should be 2019 and the
month of arrival should be 2 (February). Then you filter if the hour of arrival is between 10:00
am and 10:00 pm (20 hours).

Output:

{"tagNum":"17657806255240", "f1tRouteSrc": ["MIA", "LAX"], "HOUR":16}
{"tagNum":"17657806292518", "f1tRouteSrc": ["MIA", "LAX"], "HOUR":16}

Example 3: Which year and month did the passenger with the reservation code PQ1M8N
receive the baggage?

SELECT fullName,

EXTRACT (YEAR FROM CAST (bag.bagInfo.bagArrivalDate AS Timestamp(0))) AS YEAR,
EXTRACT (MONTH FROM CAST (bag.bagInfo.bagArrivalDate AS Timestamp (0))) AS
MONTH

FROM BaggageInfo bag WHERE bag.confNo="PQIM8N"

Explanation: You first use CAST to convert the bagArrivalDate to a TIMESTAMP and then
fetch the YEAR component and MONTH component from the Timestamp.

5-37

Chapter 5
Primary Expressions in SQL

Output:

{"fullName":"Kendal Biddle","YEAR":2019, "MONTH":3}

Example 4: Group the baggage data based on the month of arrival and display the month and
the number of baggage that arrived that month.

SELECT EXTRACT (MONTH FROM CAST ($bag_arr_date AS Timestamp (0))) AS MONTH,
count (EXTRACT (MONTH FROM CAST ($bag_arr_date AS Timestamp (0)))) AS COUNT
FROM BaggageInfo bag, Sbag.bagInfo[].bagArrivalDate $bag arr date

GROUP BY EXTRACT (MONTH FROM CAST ($bag_arr_date AS Timestamp (0)))

Explanation: You want to group the data based on the month of the arrival of baggage. You
use an unnest array to flatten the data. The bagInfo array is flattened and the value of bag
arrival date is fetched from the array. You then use CAST to convert the bagArrivalDate to a
TIMESTAMP and then fetch the YEAR component and MONTH component from the
Timestamp. You then use the count function to get the total baggage corresponding to every
month.

Note:

One assumption in the data is that all the baggage has arrived in the same year. So
you group the data only based on the month.

Output:

{"MONTH":2, "COUNT":11}
{"MONTH":3, "COUNT":10}

SQL Expression examples using QueryRequest API

You can use QueryRequest API and filter data from a NoSQL table using SQL Expressions.

e Java

* Python
« Go

* Node.js
e C#
Java

To execute your query, you use the NoSQLHandle.query () API.

ORACLE - 38

Chapter 5
Primary Expressions in SQL

Download the full code SQLExpressions.java from the examples here.

//Fetch rows from the table
private static void fetchRows (NoSQLHandle handle,String sqglstmt) throws
Exception {
try (
QueryRequest queryRequest = new QueryRequest () .setStatement (sgqlstmt);
QueryIterableResult results = handle.querylterable (queryRequest)) {
for (MapValue res : results) {
System.out.println("\t" + res);

String paran expr="SELECT fullName, bag.bagInfo.tagNum, bag.bagInfo.routing,
"t

"bag.bagInfo[].flightLegs[].fltRouteDest FROM BaggageInfo bag WHERE "+
"bag.bagInfo.flightLegs[].fltRouteSrc=any \"SFO\" AND "+

" (bag.bagInfo[].flightLegs[].fltRouteDest=any \"ATH\" OR "+
"bag.bagInfo[].flightLegs[].fltRouteDest=any \"JTR\")";
System.out.println("Using Paranthesized expression ");

fetchRows (handle, paran expr);

String case_expr="SELECT fullName, "+
"CASE WHEN NOT exists bag.bagInfo.flightLegs[0] "+
"THEN \"you have no bag info\" "+
"WHEN NOT exists bag.bagInfo.flightLegs[1l] "+
"THEN \"you have one hop\" "+
"WHEN NOT exists bag.bagInfo.flightLegs[2] "+
"THEN \"you have two hops.\" "+
"ELSE \"you have three hops.\" "+
"END AS NUMBER_HOPS "+
"FROM BaggageInfo bag WHERE ticketNo=1762341772625";
System.out.println("Using Case Expression ");
fetchRows (handle, case expr);

String seq trn expr="SELECT seq transform(l.bagInfo[],"+
"seq transform("+
"S$sqgl.flightLegs[],"+
"seq transform("+
"$sqg2.actions[],"+
o
"\"at\" : $sqg3.actionAt,"+
"\"action\" : $sg3.actionCode, "+
"\"flightNo\" : $sqg2.flightNo, "+
"\"tagNum\" : $sqgl.tagNum"+
My
ll)"+
")"+
") AS actions FROM baggageInfo 1 WHERE
ticketNo=1762376407826";
System.out.println("Using Sequence Transform Expressions ");
fetchRows (handle, seq_trn expr);

ORACLE = 39

Chapter 5
Primary Expressions in SQL

Python

To execute your query use the borneo.NoSQLHandle.query () method.

Download the full code SQLExpressions.py from the examples here.

Fetch data from the table
def fetch data(handle,sglstmt):
request = QueryRequest () .set statement (sglstmt)
print ('Query results for: ' + sqglstmt)
result = handle.query(request)
for r in result.get results():
print ("\t' + str(r))

paran expr = '''SELECT fullName, bag.bagInfo.tagNum, bag.bagInfo.routing,
bag.bagInfo[].flightLegs[].fltRouteDest FROM BaggageInfo
bag
WHERE bag.bagInfo.flightLegs[].fltRouteSrc=any "SFO" AND
(bag.bagInfo[].flightLegs[].fltRouteDest=any "ATH" OR
bag.bagInfo[].flightLegs[].fltRouteDest=any "JTR")'"'
print ('Using Paranthesized expression:')
fetch data(handle,paran expr)

case _expr = '''SELECT fullName,
CASE
WHEN NOT exists bag.bagInfo.flightLegs[0]
THEN "you have no bag info"
WHEN NOT exists bag.bagInfo.flightLegs[1]
THEN "you have one hop"
WHEN NOT exists bag.bagInfo.flightLegs[2]
THEN "you have two hops."
ELSE "you have three hops."
END AS NUMBER HOPS
FROM BaggageInfo bag WHERE ticketNo=1762341772625"""'
print ('Using Case Expression:')
fetch data(handle, case expr)

seq trn expr = '''SELECT seq transform(l.bagInfol[],
seq_transform(
$sqgl.flightLegs|],
seq transform(
$sqg2.actions|],
{
"at" : $sqg3.actionAt,
"action" : $sqg3.actionCode,
"flightNo" : $sq2.flightNo,
"tagNum" : $sql.tagNum

)
) AS actions FROM baggageInfo 1 WHERE

ticketNo=1762376407826"""
print ('Using Sequence Transform Expressions:')
fetch data(handle,seq trn expr)

ORACLE =40

ORACLE

Chapter 5
Primary Expressions in SQL

Go

To execute a query use the Client.Query function.

Download the full code SQLExpressions.go from the examples here.

//fetch data from the table
func fetchData(client *nosgldb.Client, err error, tableName string, querystmt
string) () {
prepReq := &nosqgldb.PrepareRequest{
Statement: querystmt,

}

prepRes, err := client.Prepare (prepReq)

if err != nil {
fmt.Printf ("Prepare failed: %v\n", err)
return

}
queryReq := &nosgldb.QueryRequest{

PreparedStatement: &prepRes.PreparedStatement, }
var results []*types.MapValue

for {
queryRes, err := client.Query(queryReq)
if err !'= nil {
fmt.Printf ("Query failed: %v\n", err)
return
}
res, err := queryRes.GetResults()
if err !'= nil {
fmt.Printf ("GetResults() failed: %$v\n", err)
return

}
results = append(results, res...)
if queryReq.IsDone() {

break

}
for i, r := range results {
fmt.Printf ("\t%d: %$s\n", i+l, jsonutil.AsJSON(r.Map()))

paran expr := "“SELECT fullName, bag.bagInfo.tagNum, bag.bagInfo.routing,
bag.bagInfo[].flightLegs[].fltRouteDest FROM BaggageInfo
bag
WHERE bag.bagInfo.flightlLegs[].fltRouteSrc=any "SFO" AND
(bag.bagInfo[].flightLegs[].fltRouteDest=any "ATH" OR
bag.bagInfo[].flightLegs[].fltRouteDest=any "JTR")°
fmt.Printf ("Using Paranthesized expression:\n")
fetchData(client, err,tableName,paran expr)

case_expr := "SELECT fullName,
CASE
WHEN NOT exists bag.bagInfo.flightLegs[0]
THEN "you have no bag info"
WHEN NOT exists bag.bagInfo.flightLegs[1]
THEN "you have one hop"

5-41

Chapter 5
Primary Expressions in SQL

WHEN NOT exists bag.bagInfo.flightLegs[2]

THEN "you have two hops."

ELSE "you have three hops."

END AS NUMBER HOPS

FROM BaggageInfo bag WHERE ticketNo=1762341772625"
fmt.Printf ("Using Case Expression:\n")
fetchData (client, err,tableName,case expr)

seq_trn expr := 'SELECT seq_transform(l.bagInfo[],
seq transform(
$sqgl.flightLegs|],
seq_transform(
$sqg2.actions|],
{

"at" : $sqg3.actionAt,
"action" : $sg3.actionCode,
"flightNo" : $sqg2.flightNo,
"tagNum" : $sqgl.tagNum

)
) AS actions FROM baggageInfo 1 WHERE ticketNo=1762376407826"

fmt.Printf ("Using Sequence Transform Expressions:\n")
fetchData (client, err,tableName,seq trn expr)

Node.js

To execute a query use query method.

JavaScript: Download the full code SQLExpressions.js from the examples here.

//fetches data from the table
async function fetchData (handle,querystmt) {
const opt = {};
try {

do {
const result = await handle.query(querystmt, opt);
for(let row of result.rows) ({

console.log ("' %0', row);

}
opt.continuationKey = result.continuationKey;

} while (opt.continuationKey) ;

} catch(error) {
console.error (' Error: ' + error.message);

TypeScript: Download the full code SQLExpressions.ts from the examples here.

interface StreamInt {
acct Id: Integer;
profile name: String;
account expiry: TIMESTAMP;

ORACLE =40

Chapter 5
Primary Expressions in SQL

acct data: JSON;

/* fetches data from the table */
async function fetchData (handle: NoSQLClient,querystmt: any) {
const opt = {};
try {
do {
const result = await handle.query<StreamInt> (querystmt, opt);
for(let row of result.rows) ({
console.log ("' %0', row);
}
opt.continuationKey = result.continuationKey;
} while (opt.continuationKey);
} catch(error) {
console.error (' Error: ' + error.message);

const paran expr = 'SELECT fullName, bag.bagInfo.tagNum, bag.bagInfo.routing,
bag.bagInfo[].flightLegs[].fltRouteDest FROM BaggageInfo
bag
WHERE bag.bagInfo.flightLegs[].fltRouteSrc=any "SFO" AND
(bag.bagInfo[].flightLegs[].fltRouteDest=any "ATH" OR
bag.bagInfo[].flightLegs[].fltRouteDest=any "JTR")"
console.log ("Using Paranthesized expression");
await fetchData(handle,paran expr);

const case expr = “SELECT fullName,
CASE
WHEN NOT exists bag.bagInfo.flightLegs[0]
THEN "you have no bag info"
WHEN NOT exists bag.bagInfo.flightLegs[1]
THEN "you have one hop"
WHEN NOT exists bag.bagInfo.flightLegs[2]
THEN "you have two hops."
ELSE "you have three hops."
END AS NUMBER HOPS
FROM BaggageInfo bag WHERE ticketNo=1762341772625"
console.log ("Using Case Expression");
await fetchData(handle,case expr);

const seq_trn expr = "SELECT seq transform(l.bagInfol],
seq transform(
$sqgl.flightLegs|],
seq transform(
$sqg2.actions[],
{
"at" : $sqg3.actionAt,
"action" : $sqg3.actionCode,
"flightNo" : $sqg2.flightNo,
"tagNum" : $sql.tagNum

ORACLE - 43

ORACLE

Chapter 5
Primary Expressions in SQL

)
) AS actions FROM baggageInfo 1 WHERE ticketNo=1762376407826"
console.log ("Using Sequence Transform Expressions");
await fetchData(handle,seq trn expr);

C#

To execute a query, you may call QueryAsync method or call GetQueryAsyncEnumerable
method and iterate over the resulting async enumerable.

Download the full code SQLExpressions.cs from the examples here.

private static async Task fetchData (NoSQLClient client,String querystmt) {
var queryEnumerable = client.GetQueryAsyncEnumerable (querystmt) ;
await DoQuery (queryEnumerable);

private static async Task DoQuery (IAsyncEnumerable<QueryResult<RecordValue>>
queryEnumerable) {
Console.WriteLine (" Query results:");
await foreach (var result in queryEnumerable) {
foreach (var row in result.Rows)
{
Console.WritelLine();
Console.WriteLine (row.ToJdsonString());

private const string paran expr =@"SELECT fullName, bag.bagInfo.tagNum,
bag.bagInfo.routing,

bag.bagInfo[].flightLegs[].fltRouteDest FROM BaggageInfo bag
WHERE
bag.bagInfo.flightLegs[].fltRouteSrc=any ""SFO"" AND

(bag.bagInfo[].flightLegs[].fltRouteDest=any ""ATH"" OR

bag.bagInfo[].flightLegs[].fltRouteDest=any ""JTR"")";
Console.WriteLine ("\nUsing Paranthesized expression:!");
await fetchData(client,paran_expr);

private const string case expr =@"SELECT fullName,
CASE
WHEN NOT exists
bag.bagInfo.flightLegs[0]
THEN ""you have no bag info""
WHEN NOT exists
bag.bagInfo.flightLegs[1]
THEN ""you have one hop""
WHEN NOT exists
bag.bagInfo.flightLegs[2]
THEN ""you have two hops.™""
ELSE ""you have three hops.""
END AS NUMBER HOPS

5-44

Chapter 5
Timestamp Functions

FROM BaggageInfo bag WHERE
ticketNo=1762341772625";
Console.WriteLine ("\nUsing Case Expression!");
await fetchData(client,case expr);

private const string seq trn expr =@"SELECT seq transform(l.bagInfol[],
seq transform(
$sqgl.flightLegs|[],
seq transform(
$sq2.actions|],
{
""at"" : S$sqg3.actionAt,

""action"" : $sg3.actionCode,

""flightNo"" : $sg2.flightNo,
""tagNum"" : $sqgl.tagNum

)
) AS actions FROM baggageInfo 1
WHERE ticketNo=1762376407826" ;
Console.WriteLine ("\nUsing Sequence Transform Expressions!");
await fetchData(client,seq trn expr);

Timestamp Functions

ORACLE

You can perform various operations on the timestamp and duration values.

You can add a duration to a timestamp, find the difference between two timestamps, and round
timestamp to a specified unit. You can cast a timestamp to/from string with customized
patterns. Some of the functions support the extraction of the date part of a timestamp. You can
also use these functions to display the current time.

The following timestamp functions are supported:

Table 5-1 Timestamp functions
|

Function Description

timestamp_add Adds a duration to a timestamp value.

timestamp_diff Returns the number of milliseconds between two timestamp
values.

get_duration Converts the given number of milliseconds to a duration
string.

timestamp_ceil Rounds-up the timestamp value to the specified unit.

timestamp_floor/timestamp_trunc Rounds-down the timestamp value to the specified unit.

timestamp_round Rounds the timestamp value to the specified unit.

timestamp_bucket Rounds the timestamp value to the beginning of the specified

interval, starting from a specified origin value.

format_timestamp Converts a timestamp into a string according to the specified
pattern and the timezone.

5-45

Chapter 5
Timestamp Functions

Table 5-1 (Cont.) Timestamp functions

Function

Description

parse_to_timestamp

Converts a string in the specified pattern into a timestamp
value.

to_last_day_of month

Returns the last day of the month from a given timestamp.

Timestamp extract functions

Extracts the corresponding date part of a given timestamp.

The following functions are supported:

e year

¢ month
e« day

e hour

* minute
e second

e millisecond

e microsecond

¢ nanosecond

Returns the week number within the year. The following
functions are supported:

e week

e isoweek

Returns the corresponding index from a given timestamp. The
following functions are supported:

e quarter

e day_of week

e day_of_month

e day_of year

current_time_millis Returns the current time as the number of milliseconds.

current_time Returns the current time as a timestamp value.

If you want to follow along with the examples, see Sample data to run queries to view a sample
data and use the scripts to load sample data for testing. The scripts create the tables used in
the examples and load data into the tables.

e Timestamp Arithmetic Functions
e Timestamp Round Functions

e Timestamp Format Functions

e Timestamp Extract Functions

e Current Time Functions

* Examples using QueryRequest API

Timestamp Arithmetic Functions

You can use timestamp add, timestamp diff, Oor get duration functions to perform arithmetic
operations on the timestamp and duration values.

ORACLE c a6

ORACLE

Chapter 5
Timestamp Functions

Example 1: In the airline application, a buffer of five minutes delay is considered "on time".
Print the estimated arrival time on the first leg with a buffer of five minutes for the passenger
with ticket number 1762399766476.

SELECT timestamp add(bag.bagInfo.flightLegs[0].estimatedArrival, "5 minutes")
AS ARRIVAL TIME FROM BaggageInfo bag
WHERE ticketNo=1762399766476

Explanation : In the airline application, a customer can have any number of flight legs
depending on the source and destination. In the query above, you are fetching the estimated
arrival in the "first leg" of the travel. So the first record of the f1ightsLeg array is fetched and
the estimatedArrival time is fetched from the array and a buffer of "5 minutes" is added to
that and displayed.

Output:

{"ARRIVAL TIME":"2019-02-03T06:05:00.0000000002"}

Note:

The column estimatedArrival is a STRING. If the column has STRING values in
1ISO-8601 format, then it will be automatically converted by the SQL runtime into
TIMESTAMP data type.

1ISO8601 describes an internationally accepted way to represent dates, times, and
durations.

Syntax: Date with time: YYYY-MM-DDThh:mm:ss][.s[s[s[s[s[s]]]]I[Z|(+]-)hh:mm]
where

* YYYY specifies the year, as four decimal digits

* MM specifies the month, as two decimal digits, 00 to 12

» DD specifies the day, as two decimal digits, 00 to 31

» hh specifies the hour, as two decimal digits, 00 to 23

* mm specifies the minutes, as two decimal digits, 00 to 59

» ss[.s[s[s[s[s]]]]] specifies the seconds, as two decimal digits, 00 to 59, optionally
followed by a decimal point and 1 to 6 decimal digits (representing the fractional
part of a second).

e Z specifies UTC time (time zone 0). (It can also be specified by +00:00, but not
by —00:00.)

* (+]-)hh:mm specifies the time-zone as difference from UTC. (One of + or —is
required.)

Example l1a: Print the estimated arrival time in every leg with a buffer of five minutes for the
passenger with ticket number 1762399766476.

SELECT $s.ticketno, S$value as estimate,
timestamp add($value, '5 minute') AS addSmin
FROM baggageinfo $s,

5-47

Chapter 5
Timestamp Functions

$s.bagInfo.flightLegs.estimatedArrival as S$value
WHERE ticketNo=1762399766476

Explanation: You want to display the estimatedArrival time on every leg. The number of
legs can be different for every customer. So variable reference is used in the query above and
the baggageInfo array and the f1ightLegs array are unnested to execute the query.

Output:

{"ticketno":1762399766476,"estimate":"2019-02-03T06:00:002",
"add5min":"2019-02-03T06:05:00.000000000Z"}
{"ticketno":1762399766476,"estimate":"2019-02-03T08:22:002",
"add5min":"2019-02-03T08:27:00.000000000Z"}

Example 2 : How many bags arrived in the last week?

SELECT count (*) AS COUNT LASTWEEK FROM baggageInfo bag
WHERE EXISTS bag.bagInfo[S$element.bagArrivalDate < current time()
AND Selement.bagArrivalDate > timestamp add(current time(), "-7 days")]

Explanation: You get a count of the number of bags processed by the airline application in the
last week. A customer can have more than one bag(that is bagInfo array can have more than
one record). ThebagArrivalDate should have a value between today and the last 7 days. For
every record in the bagInfo array, you determine if the bag arrival time is between the time
now and one week ago. The function current time gives you the time now. An EXISTS
condition is used as a filter for determining if the bag has an arrival date in the last week. The
count function determines the total number of bags in this time period.

Output:

{"COUNT LASTWEEK":0}

Example 3: Find the number of bags arriving in the next 6 hours.

SELECT count (*) AS COUNT NEXT6HOURS FROM baggagelInfo bag
WHERE EXISTS bag.bagInfo[S$element.bagArrivalDate > current time()
AND Selement.bagArrivalDate < timestamp add(current time(), "6 hours")]

Explanation: You get a count of the number of bags that will be processed by the airline
application in the next 6 hours. A customer can have more than one bag(that isbagInfo array
can have more than one record). The bagArrivalDate should be between the time now and
the next 6 hours. For every record in the bagInfo array, you determine if the bag arrival time is
between the time now and six hours later. The function current time gives you the time now.
An EXISTS condition is used as a filter for determining if the bag has an arrival date in the next
six hours. The count function determines the total number of bags in this time period.

Output:

{"COUNT NEXT6HOURS":0}

ORACLE 548

ORACLE

Chapter 5
Timestamp Functions

Example 4: What is the duration between the time the baggage was boarded at one leg and
reached the next leg for the passenger with ticket number 17623555278257

SELECT $s.ticketno, SbagInfo.bagArrivalDate, $flightLeg.flightDate,

get duration(timestamp diff ($bagInfo.bagArrivalDate, SflightLeg.flightDate))
AS diff

FROM baggageinfo $s,

$s.bagInfo[] AS SbagInfo, SbagInfo.flightLegs[] AS $flightLeg

WHERE ticketNo=1762355527825

Explanation: In an airline application every customer can have a different number of hops/legs
between their source and destination. In this query, you determine the time taken between
every flight leg. This is determined by the difference between bagArrivalDate and flightDate
for every flight leg. To determine the duration in days or hours or minutes, pass the result of the
timestamp diff function to the get duration function.

Output:

{"bagArrivalDate":"2019-03-22T10:17:002","flightDate":"2019-03-22T07:00:002",
"diff":"3 hours 17 minutes"}
{"bagArrivalDate":"2019-03-22T10:17:002","flightDate":"2019-03-22T07:23:002",
"diff":"2 hours 54 minutes"}
{"bagArrivalDate":"2019-03-22T10:17:002","flightDate":"2019-03-22T08:23:002",
"diff":"1 hour 54 minutes"}

To determine the duration in milliseconds, use the timestamp diff function.

SELECT $s.ticketno, S$SbagInfo.bagArrivalDate, $flightlLeg.flightDate,
timestamp diff ($bagInfo.bagArrivalDate, $flightLeg.flightDate) AS diff
FROM baggageinfo $s,

$s.bagInfo[] AS $baglnfo,

S$bagInfo.flightLegs[] AS $flightleg

WHERE ticketNo=1762355527825

Output:

{"bagArrivalDate":"2019-03-22T10:17:002","flightDate":"2019-03-22T07:00:002","
diff":11820000}
{"bagArrivalDate":"2019-03-22T10:17:002","flightDate":"2019-03-22T07:23:002","
diff":10440000}
{"bagArrivalDate":"2019-03-22T10:17:002","flightDate":"2019-03-22T08:23:002","
diff":6840000}

Example 5: How long does it take from the time of check-in to the time the bag is scanned at
the point of boarding for the passenger with ticket number 1762344638137

SELECT $flightLeg.flightNo,
$flightLeg.actions[contains (Selement.actionCode, "Checkin")].actionTime AS
checkinTime,
$flightLeg.actions[contains (Selement.actionCode, "BagTag Scan")].actionTime
AS bagScanTime,
get duration(timestamp diff(

$flightLeg.actions[contains ($element.actionCode, "Checkin")].actionTime,

5-49

ORACLE

Chapter 5
Timestamp Functions

$flightLeg.actions[contains ($element.actionCode, "BagTag
Scan")].actionTime
)) AS diff
FROM baggageinfo S$s,
$s.bagInfo[].flightLegs[] AS $flightLeg
WHERE ticketNo=176234463813 AND
starts _with(Ss.bagInfo[].routing, $flightLeg.fltRouteSrc)

Explanation: In the baggage data, every f1ightLeg has an actions array. There are three
different actions in the action array. The action code for the first element in the array is
Checkin/Offload. For the first leg, the action code is Checkin and for the other legs, the action
code is Offload at the hop. The action code for the second element of the array is BagTag
Scan. In the query above, you determine the difference in action time between the bag tag
scan and check-in time. You use the contains function to filter the action time only if the action
code is Checkin or BagScan. Since only the first flight leg has details of check-in and bag scan,
you additionally filter the data using starts with function to fetch only the source code
fltRouteSrc. To determine the duration in days or hours or minutes, pass the result of the
timestamp diff function to the get duration function.

To determine the duration in milliseconds, use the timestamp diff function.

SELECT $flightLeg.flightNo,

$flightLeg.actions[contains ($Selement.actionCode, "Checkin")].actionTime AS
checkinTime,
$flightLeg.actions[contains ($Selement.actionCode, "BagTag Scan")].actionTime

AS bagScanTime,
timestamp diff (

$flightLeg.actions[contains ($element.actionCode, "Checkin")].actionTime,
$flightLeg.actions[contains ($Selement.actionCode, "BagTag Scan")].actionTime
) AS diff

FROM baggageinfo $s,

$s.bagInfo[].flightLegs[] AS $flightleg

WHERE ticketNo=176234463813 AND
starts_with($s.bagInfo[].routing, $flightLeg.fltRouteSrc)

Output:

{"flightNo":"BM572", "checkinTime":"2019-03-02T03:28:00Z",
"bagScanTime":"2019-03-02T04:52:002","diff":"- 1 hour 24 minutes"}

Example 6: How long does it take for the bags of a customer with ticket no 1762320369957 to
reach the first transit point?

SELECT S$bagInfo.flightLegs[1l].actions[2].actionTime,

$bagInfo.flightLegs[0].actions[0].actionTime,

get duration(timestamp diff ($bagInfo.flightLegs[l].actions[2].actionTime,
S$bagInfo.flightLegs[0].actions[0].actionTime)) AS

diff

FROM baggageinfo $s, $s.bagInfo[] AS S$bagInfo

WHERE ticketNo=1762320369957

Explanation: In an airline application every customer can have a different number of hops/legs
between their source and destination. In the example above, you determine the time taken for

5-50

Timestamp

ORACLE

Chapter 5
Timestamp Functions

the bag to reach the first transit point. In the baggage data, the f1ightLeg is an array. The first
record in the array refers to the first transit point details. The f1ightDate in the first record is
the time when the bag leaves the source and the estimatedarrival in the first flight leg record
indicates the time it reaches the first transit point. The difference between the two gives the
time taken for the bag to reach the first transit point. To determine the duration in days or hours
or minutes, pass the result of the timestamp diff function to the get duration function.

To determine the duration in milliseconds, use the timestamp diff function.

SELECT S$bagInfo.flightLegs[0].flightDate,
$bagInfo.flightLegs[0].estimatedArrival,

timestamp diff ($bagInfo.flightLegs[0].estimatedArrival,
S$bagInfo.flightLegs[0].flightDate) AS diff

FROM baggageinfo s, Ss.bagInfo[] AS $bagInfo

WHERE ticketNo=1762320369957

Output:

{"flightDate":"2019-03-12T03:00:002", "estimatedArrival":"2019-03-12T16:00:002"
,"diff":"13 hours"}

{"flightDate":"2019-03-12T03:00:002", "estimatedArrival":"2019-03-12T16:40:002"
,"diff":"13 hours 40 minutes"}

Round Functions

You can use timestamp_ceil,timestamp_floor,timestamp_trunc,timestamp_round,and
timestamp bucket functions to round the timestamp values.

For timestamp ceil, timestamp floor, timestamp trunc, and timestamp round functions,
you must supply a unit as the second argument. The unit specifies the precision to be
considered while rounding the input timestamp.

The following units are supported in either singular or plural format: YEAR, IYEAR, QUARTER,
MONTH, WEEK, IWEEK, DAY, HOUR, MINUTE, SECOND.

You can use the timestamp bucket function to round the given timestamp value to the
beginning of the specified interval (bucket). The interval starts at a specified origin on the
timeline.

The timestamp bucket supports the following intervals in either singular or plural format: WEEK,
DAY, HOUR, MINUTE, SECOND.

Example 1: From airline baggage tracking data, print the bag arrival date and the bag auction
date for a passenger with ticket number 1762344493810, considering 90 days as the luggage
retention period.

SELECT $b.bagArrivalDate AS BagArrival,

timestamp ceil (timestamp add($b.bagArrivalDate, "90 Days"), 'day') AS
BagCollection

FROM BaggageInfo bag, bag.bagInfo AS S$b

WHERE ticketNo=1762344493810

Explanation: This query shows how to nest the timestamp functions. To determine the date an
unclaimed bag is retained, add 90 days to the bagArrivalDate using the timestamp add
function. The timestamp ceil function rounds up the value to the beginning of the next day.

5-51

ORACLE

Chapter 5
Timestamp Functions

Output:

{"BagArrival":"2019-02-01T16:13:002", "BagCollection":"2019-05-03T00:00:002"}

Example 2: Print the name, flight number, and travel date for all the passengers who boarded
at originating airport JFK in the month of March 2019.

SELECT bag.fullName, $f.flightNo, $f.flightDate

FROM BaggageInfo bag, bag.bagInfo[0].flightLegs[0] AS S$f

WHERE $f.fltRouteSrc = "JFK" AND timestamp floor ($f.flightDate, 'MONTH') =
'2019-03-01"

Explanation: You use the timestamp floor function with the unit value as MONTH to round
down the travel dates to the beginning of the month. You then compare the resulting timestamp
value with the string "2019-03-01" to select the desired passengers. This query does not
consider the passengers in transit.

This example supplies the date in an 1ISO-8601 formatted string, which gets implicitly CAST
into a TIMESTAMP value.

To avoid the duplication of results due to multiple checked bags by a passenger, you consider
only the first element of the bagInfo array in this query.

Output:

{"fullName":"Kendal
Biddle","flightNo":"BM127","flightDate":"2019-03-04T06:00:002"}
{"fullName":"Dierdre
Amador","flightNo":"BM495","flightDate":"2019-03-07T07:00:002"}

Example 3: From the airline baggage tracking data, print all the activities performed on the
checked bags in the originating station MEL. Align the actions to one minute interval.

SELECT $b.actionAt,

$b.actionCode,

timestamp round(Sb.actionTime, 'MINUTE') as actionTime
FROM baggageInfo bag, bag.bagInfo[0].flightLegs[0].actions[] AS $b
WHERE bag.bagInfo[0].flightLegs[0].fltRouteSrc = "MEL"

Explanation: In this query, you use the timestamp round function with unit as MINUTE to
round the actionTime to the nearest minute.

To avoid the duplication of results due to multiple checked baggage by a passenger, you
consider only the first element of the bagInfo array in this query.

Output:

{"actionAt":"MEL","actionCode":"ONLOAD to
LAX","actionTime":"2019-03-01T12:20:002"}
{"actionAt":"MEL", "actionCode":"BagTag Scan at
MEL", "actionTime":"2019-03-01T11:52:002"}
{"actionAt":"MEL", "actionCode":"Checkin at
MEL", "actionTime":"2019-03-01T11:43:002"}

5-52

Timestamp

ORACLE

Chapter 5
Timestamp Functions

Example 4: Fetch the statistics of the number of passengers departing from the IST airport
every 12 hrs with buckets starting from January 1st, 2019. Consider data only for the month of
February 2019.

SELECT $t AS DATE,

count ($t) AS FLIGHTCOUNT

FROM BaggageInfo bag, bag.bagInfo[0].flightLegs[] S$f,
timestamp bucket ($f.flightDate, '12 HOURS', '2019-01-01T00') $t

WHERE $f.fltRouteSrc =any "IST" AND timestamp floor ($f.flightDate, 'MONTH') =
'2019-02-01T00:00:002"

GROUP BY St

ORDER BY $t

Explanation: To consider passengers traveling in February 2019, use the timestamp floor
function and round down the flightDate to the beginning of the month. Compare the result
with the string "2019-02-01T00:00:00Z". This example supplies the date in an 1ISO-8601
formatted string, which gets implicitly CAST into a TIMESTAMP value.

To include the transit flights from the IST airport, use the array constructor [] to indicate that
the flightLegs is an array and consider each f1tRouteSrc array element in the search.

Use the timsestamp bucket function on the flightDate fields with interval as 12 hours and
origin as 1st of January 2019.

Output:

{"DATE":"2019-02-02T12:00:00.0000000002", "FLIGHTCOUNT":1}
{"DATE":"2019-02-04T00:00:00.0000000002", "FLIGHTCOUNT":1}
{"DATE":"2019-02-04T12:00:00.0000000002", "FLIGHTCOUNT":2}
{"DATE":"2019-02-07T712:00:00.0000000002", "FLIGHTCOUNT":1}
{"DATE":"2019-02-11T12:00:00.0000000002", "FLIGHTCOUNT":1}
{"DATE":"2019-02-12T00:00:00.0000000002", "FLIGHTCOUNT": 2}
{"DATE":"2019-02-12T12:00:00.0000000002", "FLIGHTCOUNT":1}

Format Functions

You can use format timestamp and parse to timestamp functions to format timestamp
values. Also, you can use the to_last day of month function to fetch the last day of the
month from a given timestamp.

Example 1: For a passenger with a specific ticket number, print the estimated arrival time on
the first leg according to the pattern and the timezone entered.

SELECT $info.estimatedArrival,

format timestamp ($info.estimatedArrival, "MMM dd, yyyy HH:mm:ss O", "America/
Vancouver") AS FormattedTimestamp

FROM BaggageInfo bag, bag.bagInfo.flightLegs[0] AS S$info

WHERE ticketNo= 1762399766476

Explanation: In this query, you specify the estimatedArrival field, pattern, and full name of
the timezone as arguments to the format timestamp function to convert the timestamp string
to the specified "MMM dd, yyyy HH:mm:ss" pattern.

5-53

Chapter 5
Timestamp Functions

Note:

The letter 'O' in the pattern argument represents the ZoneOffset, which prints the
amount of time that differs from Greenwich/UTC in the resulting string.

Output:

{"estimatedArrival™:"2019-02-03T06:00:00Z", "FormattedTimestamp":"Feb 02, 2019
22:00:00 GMT-8"}

Example 2: Parse the given string with the specified pattern, which includes a zone offset,
into a timestamp.

SELECT format timestamp (parse to timestamp('2024/02/12 18:30:54 GMT+02:00',
"yyyy/dd/MM HH:mm:ss 0000"),"yyyy-MM-dd HH:mm:ss 0000","GMT+02:00")AS
TIMESTAMP

FROM BaggageInfo

WHERE ticketNo=1762390789239

Explanation: In this query, the string argument has a TimeZonelD, GMT+02:00, so the
pattern argument must include a zone symbol or a ZoneOffset. When wrapped in the
format timestamp function, the output timestamp will display in the GMT+02:00 timezone.

Output:

{"TIMESTAMP":"2024-12-02 18:30:54 GMT+02:00"}

Example 3: For a subscriber, print the last day of the month in which the account subscription
expires.

SELECT sa.acct id, to last day of month(sa.account expiry) AS lastday FROM
stream acct sa WHERE profile name="DM"

Output:

{"acct_id":4,"lastday":"2024-03-31T00:00:002"}

Timestamp Extract Functions

Timestamp extract functions fetch the corresponding date, week, or the index value from a
given timestamp.

Date extract functions return the corresponding year/month/day/hour/minute/second/
millisecond/microsecond/nanosecond from a timestamp.

Example: Get consolidated travel details of the passengers from airline baggage tracking data.

ORACLE -

ORACLE

Chapter 5
Timestamp Functions

In an airline application, it is beneficial to the passengers to have a quick summary of their
upcoming travel details. You can use miscellaneous time functions to get consolidated travel
details of the passengers from the BaggageInfo table.

SELECT DISTINCT

$s.fullName,

$s.bagInfo[].flightLegs[].flightNo AS flightnumbers,
$s.bagInfo[].flightLegs[].fltRouteSrc AS From,

concat ($tl,":", S$t2,":", S$t3) AS Traveldate

FROM baggageinfo s, Ss.bagInfo[].flightLegs[].flightDate AS S$bagInfo,

day (CAST (S$bagInfo AS Timestamp(0))) $ti1,
month (CAST (SbagInfo AS Timestamp(0))) $t2,
year (CAST ($bagInfo AS Timestamp(0))) $t3

Explanation:

You can use the time functions to retrieve the travel date, month, and year. The concat string
function is used to concatenate the retrieved travel records to display them in the desired
format on the application. You first use the CAST expression to convert the f1ightDates to a
TIMESTAMP and then fetch the date, month, and year details from the timestamp.

Output:

{"fullName":"Adam Phillips","flightnumbers":["BM604","BM667"],"From":
["MIA","LAX"],"Traveldate":"1:2:2019"}

{"fullName":"Adelaide Willard","flightnumbers":["BM79","BM907"],"From":
["GRU","ORD"],"Traveldate":"15:2:2019"}

The query returns the flight details which can serve as a quick look-up for the passengers.
Week extract functions return the corresponding week/isoweek from a timestamp.

Example: Determine the week and ISO week number from a passenger's travel date.

SELECT

$s.fullName,

$s.contactPhone,

week (CAST (SbagInfo.flightLegs[1l].flightDate AS Timestamp(0))) AS TravelWeek,
isoweek (CAST (SbagInfo.flightLegs[1l].flightDate AS Timestamp(0))) AS

ISO TravelWeek

FROM baggageinfo s, Ss.bagInfo[] AS $baglnfo

Explanation: You first use the CAST expression to convert the f1ightDate to a TIMESTAMP
and then fetch the week and isoweek from the timestamp.

Output:

{"fullName":"Adelaide
Willard", "contactPhone":"421-272-8082", "TravelWeek":7,"ISO TravelWeek":7}

{"fullName":"Adam
Phillips", "contactPhone":"893-324-1064", "TravelWeek":5,"ISO TravelWeek":5}

5-55

Chapter 5
Timestamp Functions

Timestamp index extract functions return the corresponding quarter/week/month/year index
from a timestamp.

Example: Find the day of the week for given timestamps.

SELECT day of week("2024-06-19") AS DAYVALI,

day of week(parse to timestamp('06/19/24', 'MM/dd/yy')) AS DAYVAL2
FROM BaggageInfo

WHERE ticketNo=1762344493810

Explanation: The second timestamp in the query is in an unsupported format '06/19/24' by
itself, so wrap it in the parse_to timestamp function to make it valid.

Output:

"DAYVAL1" : 3,
"DAYVAL2" : 3

Current Time Functions

ORACLE

You can use current _time millis and current time functions to fetch the current time. The
current time millis function returns the time as the number of milliseconds. The
current_time function returns the time as a timestamp value.

Example: Determine the time lapse between the last travel date of a passenger and the
current date.

In an airline application, a few customers travel very frequently and are entitled to frequent flier
miles rewards. You can determine the time lapse between the last travel date of a passenger
and the current date to assess if they can be considered for such a reward program.

SELECT

$s.fullName,

$s.contactPhone,

get duration(timestamp diff (current time(),

CAST (SbagInfo.flightLegs[1].flightDate AS Timestamp(0)))) AS LastTravel
FROM baggageinfo $s, $s.bagInfo[] AS S$bagInfo

Explanation:

You can use the current time function to get the current time. To determine the timespan
between the last travel date and the current date, you can supply the current time to the
get duration/timestamp diff function along with the last travel time. For more details on
timestamp diff and get duration functions.

Output:
{"fullName":"Adelaide

Willard","contactPhone":"421-272-8082","LastTravel":"1453 days 6 hours 20
minutes 56 seconds 601 milliseconds"}

5-56

Chapter 5
Timestamp Functions

{"fullName":"Adam Phillips","contactPhone":"893-324-1064","LastTravel":"1451
days 23 hours 19 minutes 39 seconds 543 milliseconds"}

You use the current time function to calculate the current time. Use the timestamp diff
function to calculate the time difference between the current time and the last flight date. You
first use the CAST expression to convert the flightDates to a TIMESTAMP and then fetch the
day, month, and year details from the timestamp. Since the timestamp diff function returns
the number of milliseconds between two timestamp values, you then use the get duration
function to convert the milliseconds to a duration string.

The get_duration function converts the milliseconds to days, hours, minutes, seconds, and
milliseconds based on the return value. The following conversions are considered for
calculation purposes:

1000 milliseconds = 1 second
60 seconds = 1 minute

60 minutes = 1 hour

24 hours = 1 day

For example: If the timestamp diff function returns the value 129084684821 milliseconds, the
get duration function converts it correspondingly to 1494 days 52 minutes 4 seconds 687
milliseconds.

Examples using QueryRequest API

You can use QueryRequest APl and apply SQL functions to fetch data from a NoSQL table.

* Java

e Python
« Go

* Node.js
o C#
Java

To execute your query, you use the NoSQLHandle.query () APL.

Download the full code SQLFunctions.java from the examples here.

//Fetch rows from the table
private static void fetchRows (NoSQLHandle handle,String sqglstmt) throws
Exception {
try (
QueryRequest queryRequest = new QueryRequest().setStatement (sqglstmt);
QueryIterableResult results = handle.querylterable (queryRequest)) {
for (MapValue res : results) {
System.out.println("\t" + res);

ORACLE 5-57

ORACLE

Chapter 5
Timestamp Functions

String ts_ funcl="SELECT
timestamp add(bag.bagInfo.flightLegs[0].estimatedArrival, \"5 minutes\")"+
" AS ARRIVAL TIME FROM BaggageInfo bag WHERE
ticketNo=1762341772625";
System.out.println("Using timestamp add function ");
fetchRows (handle, ts funcl);
String
ts_func2="SELECT $s.ticketno, $bagInfo.bagArrivalDate, $flightLeg.flightDate,
"4

"get duration(timestamp diff ($bagInfo.bagArrivalDate, $flightLeg.flightDate))
AS diff "+

"FROM baggageinfo $s, $s.bagInfol]
AS SbagInfo, S$bagInfo.flightLegs[] AS $flightLeg "+

"WHERE ticketNo=1762344493810";
System.out.println("Using get duration and timestamp diff function ");
fetchRows (handle, ts func2);

Python

To execute your query use the borneo.NoSQLHandle.query () method.

Download the full code SQLFunctions.py from the examples here.

Fetch data from the table
def fetch data(handle,sglstmt):
request = QueryRequest ().set statement (sqlstmt)
print ('Query results for: ' + sglstmt)
result = handle.query(request)
for r in result.get results():
print ("\t' + str(r))

ts_funcl = '''SELECT
timestamp add(bag.bagInfo.flightLegs[0].estimatedArrival, "5 minutes")
AS ARRIVAL TIME FROM BaggagelInfo bag WHERE
ticketNo=1762341772625"""
print ('Using timestamp add function:')
fetch data(handle, ts funcl)

ts func2 =
"' 'SELECT $s.ticketno, $bagInfo.bagArrivalDate, $flightLeg.flightDate,

get duration(timestamp diff ($bagInfo.bagArrivalDate, S$flightLeg.flightDate))
AS diff
FROM baggageinfo S$s,
$s.bagInfo[] AS $bagInfo, $bagInfo.flightLegs[] AS $flightLeg
WHERE ticketNo=1762344493810'""
print ('Using get duration and timestamp diff function:')
fetch data(handle,ts func2)

5-58

ORACLE

Chapter 5
Timestamp Functions

Go

To execute a query use the Client.Query function.

Download the full code SQLFunctions.go from the examples here.

//fetch data from the table
func fetchData(client *nosgldb.Client, err error, tableName string, querystmt
string) () {
prepReq := &nosqgldb.PrepareRequest{
Statement: querystmt,

}

prepRes, err := client.Prepare (prepReq)

if err != nil {
fmt.Printf ("Prepare failed: %v\n", err)
return

}
queryReq := &nosgldb.QueryRequest{

PreparedStatement: &prepRes.PreparedStatement, }
var results []*types.MapValue

for {
queryRes, err := client.Query(queryReq)
if err !'= nil {
fmt.Printf ("Query failed: %v\n", err)
return
}
res, err := queryRes.GetResults()
if err !'= nil {
fmt.Printf ("GetResults() failed: %$v\n", err)
return

}
results = append(results, res...)
if queryReq.IsDone() {
break
}
}
for i, r := range results {
fmt.Printf ("\t%d: %$s\n", i+l, jsonutil.AsJSON(r.Map()))

ts_funcl := "SELECT timestamp add(bag.bagInfo.flightLegs[0].estimatedArrival,
"5 minutes")

AS ARRIVAL TIME FROM BaggageInfo bag WHERE
ticketNo=1762341772625"
fmt.Printf ("Using timestamp add function::\n")
fetchData (client, err,tableName,ts funcl)

ts func2 :=
"SELECT S$s.ticketno, $bagInfo.bagArrivalDate, $flightLeg.flightDate,

get duration(timestamp diff ($bagInfo.bagArrivalDate, S$flightLeg.flightDate))
AS diff
FROM baggageinfo $s,
$s.bagInfo[] AS $bagInfo, SbagInfo.flightLegs[] AS S$flightLeg
WHERE ticketNo=1762344493810"

5-59

Chapter 5
Timestamp Functions

fmt.Printf ("Using get duration and timestamp diff function:\n")
fetchData (client, err,tableName,ts func2)

Node.js

To execute a query use query method.

JavaScript: Download the full code SQLFunctions.js from the examples here.

//fetches data from the table
async function fetchData (handle,querystmt) {
const opt = {};
try {

do {
const result = await handle.query(querystmt, opt);

for(let row of result.rows) {
console.log ("' %0', row);

}

opt.continuationKey = result.continuationKey;
} while (opt.continuationKey) ;

} catch(error) {
console.error (' Error: ' + error.message);

TypeScript: Download the full code SQLFunctions.ts from the examples here.

interface StreamInt {
acct Id: Integer;
profile name: String;
account expiry: TIMESTAMP;
acct data: JSON;

/* fetches data from the table */

async function fetchData (handle: NoSQLClient,querystmt: string) {
const opt = {};
try {

do {
const result = await handle.query<StreamInt>(querystmt, opt);

for(let row of result.rows) {
console.log ("' %0', row);

}

opt.continuationKey = result.continuationKey;
} while (opt.continuationKey);

} catch(error) {
console.error (' Error: ' + error.message);

const ts funcl = 'SELECT
timestamp add(bag.bagInfo.flightLegs[0].estimatedArrival, "5 minutes")
AS ARRIVAL TIME FROM BaggagelInfo bag WHERE

ORACLE = 60

ORACLE

Chapter 5
Timestamp Functions

ticketNo=1762341772625"
console.log("Using timestamp add function:");
await fetchData(handle,ts funcl);

const ts func2 =
"SELECT $s.ticketno, $bagInfo.bagArrivalDate, $flightLeg.flightDate,

get duration(timestamp diff (SbagInfo.bagArrivalDate, $flightLeg.flightDate))
AS diff
FROM baggageinfo $s,
$s.bagInfo[] AS S$bagInfo, S$bagInfo.flightLegs]]
AS $flightLeg
WHERE ticketNo=1762344493810"
console.log("Using get duration and timestamp diff function:");
await fetchData(handle,ts func2);

C#

To execute a query, you may call QueryAsync method or call GetQueryAsyncEnumerable
method and iterate over the resulting async enumerable.

Download the full code SQLFunctions.cs from the examples here.

private static async Task fetchData (NoSQLClient client,String querystmt) {
var queryEnumerable = client.GetQueryAsyncEnumerable (querystmt) ;
await DoQuery (queryEnumerable);

private static async Task DoQuery (IAsyncEnumerable<QueryResult<RecordValue>>
queryEnumerable) {
Console.WriteLine (" Query results:");
await foreach (var result in queryEnumerable) {
foreach (var row in result.Rows)
{
Console.WritelLine();
Console.WriteLine (row.ToJdsonString());

private const string ts_funcl =Q@"SELECT
timestamp add(bag.bagInfo.flightLegs[0].estimatedArrival, ""5 minutes"")
AS ARRIVAL TIME FROM BaggageInfo bag
WHERE ticketNo=1762341772625";
Console.WriteLine ("\nUsing timestamp add function!");
await fetchData(client,ts funcl);

private const string ts func2
=Q"SELECT S$s.ticketno, $bagInfo.bagArrivalDate, $flightLeg.flightDate,

get duration(timestamp diff ($bagInfo.bagArrivalDate, SflightLeg.flightDate))
AS diff

FROM baggageinfo $s,

$s.bagInfol]
AS S$bagInfo, SbagInfo.flightLegs[] AS $flightleg

5-61

Chapter 5
Functions on Strings

WHERE ticketNo=1762344493810";
Console.lWriteLine ("\nUsing get duration and timestamp diff function!");
await fetchData(client,ts func2);

Functions on Strings

There are various built-in functions on strings. In any string, position starts at 0 and ends at
length - 1.

If you want to follow along with the examples, see Sample data to run queries to view a sample
data and use the scripts to load sample data for testing. The scripts create the tables used in
the examples and load data into the tables.

e substring function

e concat function

e upper and lower functions

e trim function

¢ length function

e contains function

e starts_with and ends_with functions
e index_of function

* replace function

* reverse function

e Examples using QueryRequest API

substring function

The substring function extracts a string from a given string according to a given numeric
starting position and a given numeric substring length.

returnvalue substring (source, position [, substring length])

source ::= any*

position ::= integer*
substring length ::= integer*
returnvalue ::= string

Example: Fetch the first three characters from the routing details of a passenger with ticket
number 1762376407826.

SELECT substring(bag.baginfo.routing,0,3) AS Source
FROM baggageInfo bag
WHERE ticketNo=1762376407826

ORACLE - 60

Chapter 5
Functions on Strings

Output:

{"Source":"JFK"}

concat function

The concat function concatenates all its arguments and displays the concatenated string as
output.

returnvalue concat (source, [source*])
source ::= any*
returnvalue ::= string

Example: Display the routing of a customer with a particular ticket number as "The route for
passenger_name is ...".

SELECT concat ("The route for passenger ",fullName , " is ",
bag.baginfo[0].routing)

FROM baggageInfo bag
WHERE ticketNo=1762376407826

Output:

{"Column 1":"The route for passenger Dierdre Amador is JFK/MAD"}

upper and lower functions

ORACLE

The upper and lower are simple functions to convert to fully upper case or lower case
respectively. The upper function converts all the characters in a string to uppercase. Thelower
function converts all the characters in a string to lowercase.

returnvalue upper (source)
returnvalue lower (source)

source ::= any*
returnvalue ::= string

Example 1: Fetch the full name of the passenger in uppercase whose ticket number is
1762376407826.

SELECT upper (fullname) AS FULLNAME CAPITALS
FROM BaggageInfo
WHERE ticketNo=1762376407826

Output:

{"FULLNAME CAPITALS":"DIERDRE AMADOR"}

5-63

Chapter 5
Functions on Strings

Example 2: Fetch the full name of the passenger in lowercase whose ticket number is
1762376407826.

SELECT lower (fullname) AS fullname lowercase
FROM BaggageInfo WHERE ticketNo=1762376407826

Output:

{"fullname lowercase":"dierdre amador"}

trim function

ORACLE

The trim function enables you to trim leading or trailing characters (or both) from a string. The
ltrim function enables you to trim leading characters from a string. The rtrim function
enables you to trim trailing characters from a string.

returnvalue trim(source [, position [, trim character]])

source ::= any*

position ::= "leading"|"trailing"|"both"
trim character ::= string*

returnvalue ::= string

returnvalue ltrim(source)
returnvalue rtrim(source)

source ::= any*
returnvalue ::= string

Example: Remove leading and trailing blank spaces from the route details of the passenger
whose ticket number is 1762350390409.

SELECT trim(bag.baginfo[0].routing,"trailing"," ")
FROM BaggageInfo bag
WHERE ticketNo=1762376407826

Output:

{"Column_1":"JFK/MAD"}

Using 1trim function to remove leading spaces:

SELECT ltrim(bag.baginfo[0].routing)
FROM BaggageInfo bag
WHERE ticketNo=1762376407826

Output:

{"Column 1":"JFK/MAD"}

5-64

Chapter 5
Functions on Strings

Using rtrim function to remove trailing spaces:

SELECT rtrim(bag.baginfo[0].routing)
FROM BaggageInfo bag
WHERE ticketNo=1762376407826

Output:

{"Column 1":"JFK/MAD"}

length function

The length function returns the length of a character string. The length function calculates the
length using the UTF character set.

returnvalue length (source)

source ::= any*
returnvalue ::= integer

Example: Find the length of the full name of the passenger whose ticket number is
1762350390409.

SELECT fullname, length(fullname) AS fullname length
FROM BaggageInfo
WHERE ticketNo=1762350390409

Output:

{"fullname":"Fallon Clements","fullname length":15}

contains function

The contains function indicates whether or not a search string is present inside the source
string.

returnvalue contains(source, search string)

source ::= any*
search string ::= any*
returnvalue ::= boolean

Example: Fetch the full names of passengers who have "SFO" in their route.

SELECT fullname FROM baggageInfo bag
WHERE EXISTS bag.bagInfolcontains (Selement.routing, "SFO")]

ORACLE - 65

Chapter 5
Functions on Strings

Output:

{"fullname":"Michelle Payne"}
{"fullname":"Lucinda Beckman"}
{"fullname":"Henry Jenkins"}
{"fullname":"Lorenzo Phil"}
{"fullname":"Gerard Greene"}

starts_with and ends_with functions

ORACLE

The starts_with function indicates whether or not the source string begins with the search
string.

returnvalue starts with(source, search string)

source ::= any*
search string ::= any*
returnvalue ::= boolean

The ends_withfunction indicates whether or not the source string ends with the search string.

returnvalue ends with(source, search string)

source ::= any*
search string ::= any*
returnvalue ::= boolean

Example: How long does it take from the time of check-in to the time the bag is scanned at the
point of boarding for the passenger with ticket number 1762344638137

SELECT $flightLeg.flightNo,

$flightLeg.actions[contains ($element.actionCode, "Checkin")].actionTime AS
checkinTime,
$flightLleg.actions[contains ($element.actionCode, "BagTag Scan")].actionTime

AS bagScanTime,
timestamp diff (

$flightLleg.actions[contains ($element.actionCode, "Checkin")].actionTime,
$flightLeg.actions[contains ($element.actionCode, "BagTag Scan")].actionTime
) AS diff

FROM baggageinfo s, Ss.bagInfo[].flightLegs[] AS $flightLeg
WHERE ticketNo=176234463813
AND starts with($s.bagInfo[].routing, $flightLeg.fltRouteSrc)

Explanation: In the baggage data, every f1ightLeg has an actions array. There are three
different actions in the actions array. The action code for the first element in the array is
Checkin/Offload. For the first leg, the action code is Checkin and for the other legs, the action
code is Offload at the hop. The action code for the second element of the array is BagTag
Scan. In the query above, you determine the difference in action time between the bag tag
scan and check-in time. You use the contains function to filter the action time only if the action
code is Checkin or BagScan. Since only the first flight leg has details of check-in and bag scan,
you additionally filter the data using starts_with function to fetch only the source code
fltRouteSrc.

5-66

Chapter 5
Functions on Strings

Output:

{"flightNo":"BM572", "checkinTime":"2019-03-02T03:28:002",
"bagScanTime":"2019-03-02T04:52:00Z","diff":-5040000}

Example 2 : Find list of passengers whose destination is JTR.

SELECT fullname FROM baggagelInfo $bagInfo
WHERE ends with($bagInfo.bagInfo[].routing, "JTR")

Output:

{"fullname":"Lucinda Beckman"}
{"fullname":"Gerard Greene"}
{"fullname":"Michelle Payne"}

index_of function

ORACLE

The index of function determines the position of the first character of the search string at its
first occurrence if any.

returnvalue index of (source, search string [, start position])

source ::= any*

search string ::= any*
start position ::= integer*
returnvalue ::= integer

Various return values:

* Returns the position of the first character of the search string at its first occurrence. The
position is relative to the start position of the string (which is zero).

* Returns -1 if search_string is not present in the source.
* Returns 0 for any value of source if the search_string is of length 0.
e Returns NULL if any argument is NULL.

« Returns NULL if any argument is an empty sequence or a sequence with more than one
item.

* Returns error if start_position argument is not an integer.

Example 1: Determine at which position "-" is found in the estimated arrival time of the first leg
for the passenger with ticket number 1762320569757.

SELECT index of (bag.baginfo.flightLegs[0].estimatedArrival,"-")
FROM BaggageInfo bag
WHERE ticketNo=1762320569757

Output:

{"Column 1":4}

5-67

Chapter 5
Functions on Strings

Example 2: Determine at which position "/" is found in the routing of the first leg for passenger
with ticket number 1762320569757. This will help you determine how many characters are
there for the source point for the passenger with ticket number 1762320569757

SELECT index of (bag.baginfo.routing,"/")

FROM BaggageInfo bag
WHERE ticketNo=1762320569757

Output:

"Column 1":3}

replace function

The replace function returns the source with every occurrence of the search string replaced
with the replacement string.

returnvalue replace (source, search string [, replacement string])
source ::= any*
search string ::= any*

replacement string ::= any*
returnvalue ::= string

Example: Replace the source location of the passenger with ticket number 1762320569757
from SFO to SOF.

SELECT replace(bag.bagInfo[0].routing, "SFO","SOF")

FROM baggageInfo bag
WHERE ticketNo=1762320569757

Output:
{"Column 1":"SOF/IST/ATH/JTR"}

Example 2: Replace the double quote in the passenger name with a single quote.

If your data might contain a double quote in the passenger's name, you can use replace
function to change the double quote to a single quote.

SELECT fullname,

replace (fullname, "\"", "'") as new fullname
FROM BaggageInfo bag

reverse function

The reverse function returns the characters of the source string in reverse order, where the
string is written beginning with the last character first.

returnvalue reverse (source)

ORACLE - 68

Chapter 5
Functions on Strings

source ::= any*
returnvalue ::= string

Example: Display the full name and reverse the full name of the passenger with ticket number
1762330498104.

SELECT fullname, reverse(fullname)
FROM baggageInfo
WHERE ticketNo=1762330498104

Output:

{"fullname":"Michelle Payne","Column 2":"enyaP ellehciM"}

Examples using QueryRequest API

ORACLE

You can use QueryRequest APl and apply SQL functions to fetch data from a NoSQL table.

e Java

e Python
« Go

* Node.js
e C#
Java

To execute your query, you use the NoSQLHandle.query () API.

Download the full code SQLFunctions.java from the examples here.

//Fetch rows from the table
private static void fetchRows (NoSQLHandle handle,String sqglstmt) throws
Exception {
try (
QueryRequest queryRequest = new QueryRequest () .setStatement (sgqlstmt);
QueryIterableResult results = handle.querylterable (queryRequest)) {
for (MapValue res : results) {
System.out.println("\t" + res);

String string funcl="SELECT substring(bag.baginfo.routing,0,3) AS Source FROM
baggageInfo bag WHERE ticketNo=1762376407826";

System.out.println ("Using substring function ");
fetchRows (handle, string funcl);

String string func2="SELECT fullname, length(fullname) AS fullname length
FROM BaggageInfo WHERE ticketNo=1762320369957";

5-69

ORACLE

Chapter 5
Functions on Strings

System.out.println ("Using length function ");
fetchRows (handle, string func2);

String string func3="SELECT fullname FROM baggageInfo bag WHERE EXISTS
bag.bagInfo[contains ($element.routing, \"SFO\")]";
System.out.println("Using contains function ");
fetchRows (handle, string func3);

Python

To execute your query use the borneo.NoSQLHandle.query () method.

Download the full code SQLFunctions.py from the examples here.

Fetch data from the table
def fetch data(handle,sglstmt):
request = QueryRequest ().set statement (sqlstmt)
print ('Query results for: ' + sglstmt)
result = handle.query(request)
for r in result.get results():
print ("\t' + str(r))

string funcl = '''SELECT substring(bag.baginfo.routing,0,3) AS Source FROM
baggageInfo bag
WHERE ticketNo=1762376407826"'""
print ('Using substring function:')
fetch data(handle,string funcl)

string func2 = '''SELECT fullname, length(fullname) AS fullname length FROM
BaggageInfo
WHERE ticketNo=1762320369957'""
print ('Using length function:')
fetch data(handle,string func2)

string func3 = '''SELECT fullname FROM baggageInfo bag WHERE

EXISTS bag.bagInfo[contains($element.routing,"SFO")]'"'
print ('Using contains function:')
fetch data(handle,string func3)

Go

To execute a query use the Client.Query function.

Download the full code SQLFunctions.go from the examples here.

//fetch data from the table
func fetchData(client *nosgldb.Client, err error, tableName string, querystmt
string) () {
prepReq := &nosgldb.PrepareRequest
Statement: querystmt,

}

prepRes, err := client.Prepare (prepReq)

if err != nil {
fmt.Printf ("Prepare failed: %v\n", err)
return

5-70

Chapter 5
Functions on Strings

}
queryReq := &nosqgldb.QueryRequest{

PreparedStatement: &prepRes.PreparedStatement, }
var results []*types.MapValue

for {
queryRes, err := client.Query(queryReq)
if err != nil {
fmt.Printf ("Query failed: %v\n", err)
return
}
res, err := queryRes.GetResults()
if err != nil {
fmt.Printf ("GetResults () failed: %v\n", err)
return

}
results = append(results, res...)
if queryReq.IsDone() {

break

}
for i, r := range results {
fmt.Printf ("\t%d: %s\n", i+1, jsonutil.AsJSON(r.Map()))

string funcl := 'SELECT substring(bag.baginfo.routing,0,3) AS Source FROM
baggageInfo bag
WHERE ticketNo=1762376407826"
fmt.Printf ("Using substring function:\n")
fetchData (client, err,tableName,string funcl)

string func2 := 'SELECT fullname, length(fullname) AS fullname length FROM
BaggageInfo
WHERE ticketNo=1762320369957"
fmt.Printf ("Using length function:\n")
fetchData (client, err,tableName,string func2)

string func3 := SELECT fullname FROM baggageInfo bag WHERE

EXISTS bag.bagInfo[contains (Selement.routing, "SFO")]"
fmt.Printf ("Using contains function:\n")
fetchData (client, err,tableName,string func3)

Node.js

To execute a query use query method.

JavaScript: Download the full code SQLFunctions.js from the examples here.

//fetches data from the table
async function fetchData (handle,querystmt) {
const opt = {};
try {
do {
const result = await handle.query(querystmt, opt);
for(let row of result.rows) {

ORACLE 5-71

Chapter 5
Functions on Strings

o)

console.log ("' %0', row);
}
opt.continuationKey = result.continuationKey;
} while (opt.continuationKey);
} catch(error) {
console.error (' Error: ' + error.message);

TypeScript: Download the full code SQLFunctions.ts from the examples here.

interface StreamInt {
acct Id: Integer;
profile name: String;
account expiry: TIMESTAMP;
acct data: JSON;

/* fetches data from the table */
async function fetchData (handle: NoSQLClient,querystmt: any) {
const opt = {};
try {
do {
const result = await handle.query<StreamInt> (querystmt, opt);
for(let row of result.rows) {
console.log ("' %0', row);
}
opt.continuationKey = result.continuationKey;
} while (opt.continuationKey);
} catch(error) {
console.error (' Error: ' + error.message);

const string funcl = "SELECT substring(bag.baginfo.routing,0,3) AS Source
FROM baggageInfo bag
WHERE ticketNo=1762376407826"
console.log ("Using substring function:");
await fetchData(handle,string funcl);

const string func2 = "SELECT fullname, length(fullname) AS fullname length
FROM BaggageInfo
WHERE ticketNo=1762320369957"
console.log ("Using length function");
await fetchData(handle,string func2);

const string func3 = "SELECT fullname FROM baggageInfo bag WHERE

EXISTS bag.bagInfo[contains (Selement.routing, "SFO")]"
console.log("Using contains function");
await fetchData(handle,string func3);

ORACLE 5-72

Chapter 5
Query execution plan

C#

To execute a query, you may call QueryAsync method or call GetQueryAsyncEnumerable
method and iterate over the resulting async enumerable.

Download the full code SQLFunctions.cs from the examples here.

private static async Task fetchData (NoSQLClient client,String querystmt) {
var queryEnumerable = client.GetQueryAsyncEnumerable (querystmt);
await DoQuery (queryEnumerable);

private static async Task DoQuery (IAsyncEnumerable<QueryResult<RecordValue>>
queryEnumerable) {
Console.WriteLine (" Query results:");
await foreach (var result in queryEnumerable) {
foreach (var row in result.Rows)
{
Console.WritelLine();
Console.WriteLine (row.ToJsonString());

private const string string funcl =Q"SELECT
substring(bag.baginfo.routing,0,3) AS Source FROM baggageInfo bag

WHERE ticketNo=1762376407826"
Console.WriteLine ("\nUsing substring function!");
await fetchData(client,string funcl);

private const string string func2 =@"SELECT fullname, length(fullname) AS
fullname length FROM BaggageInfo

WHERE ticketNo=1762320369957";
Console.WriteLine ("\nUsing length function!");
await fetchData(client,string func2);

private const string string func3 =@"SELECT fullname FROM baggageInfo bag
WHERE
EXISTS
bag.bagInfo[contains ($element.routing, ""SFO"")]1";
Console.WriteLine ("\nUsing contains function!");
await fetchData(client,string func3);

Query execution plan

A query execution plan is the sequence of operations Oracle NoSQL Database performs to run
a query.

e Overview of query plan

* Query 1: Using primary key index with an index range scan

ORACLE 5-73

Chapter 5
Query execution plan

e Query 2: Using primary key index with an index predicate

* Query 3: Using a secondary index with an index range scan

* Query 4: Using the primary index

* Query 5: Sort the data using a Covering index

* Query 6: Using a secondary index with an index predicate

* Query 7: Group data with fields as part of the index

* Query 8: Using the secondary index with multiple index scans
* Query 9: A SINGLE PARTITION query using a primary index
* Query 10: Group data with fields not part of any index

Overview of query plan

ORACLE

A guery execution plan is internally structured as a tree of plan iterators.

Each kind of iterator evaluates a different kind of expression that may appear in a query. In
general, the choice of index and the kind of associated index predicates can have a drastic
effect on query performance. As a result, you as a developer often want to see what index is
used by a query and what predicates have been pushed down to it. Based on this information,
you may want to force the use of a different index via index hints. This information is contained
in the query execution plan. All Oracle NoSQL drivers provide APIs to display the execution
plan of a query. All Oracle NoSQL graphical Uls including the IntelliJ, VSCode, and Eclipse
plugins along with the Oracle Cloud Infrastructure Console include controls for displaying the
guery execution plan.

Some of the most common and important iterators used in queries are :
TABLE iterator

A table iterator is responsible for
e Scanning the index used by the query (which may be the primary index).
e Applying any filtering predicates pushed to the index

« Retrieve the rows pointed to by the qualifying index entries if necessary. If the index is
covering, the result set of the TABLE iterator is a set of index entries, otherwise, it is a set
of table rows.

Note:

An index is called a covering index with respect to a query if the query can be
evaluated using only the entries of that index, that is, without the need to retrieve the
associated rows.

A TABLE iterator will always have the following properties:
o target table: The name of the target table in the query.

* index used: The name of the index used by the query. If the primary index were used,
“primary index” would appear as the value of this property.

* covering index: Whether the index is covering or not.

5-74

Chapter 5
Query execution plan

* row variable: The name of a variable ranging over the table rows produced by the TABLE
iterator. If the index is covering, no table rows are produced and this variable is not used.

* index scans: Contains the start and stop conditions that define the index scans to be
performed.

A TABLE iterator has 2 more optional properties:

* index row variable: The name of a variable ranging over the index entries produced by
the TABLE iterator. Every time a new index entry is produced by the index scan, the index
variable will be bound to that entry.

< index filtering predicate: A predicate evaluated on every index entry produced by the
index scan. If the result of this evaluation is true, the index variable is bound to this entry
and the entry or its associated table row is returned as the result of the next() call on the
TABLE iterator. Otherwise, the entry is skipped, the next entry from the index scan is
produced, the predicate is evaluated again on this entry and it continues until a qualifying
entry is found.

SELECT iterator
It is responsible for executing the SELECT expression.
RECEIVE iterator

It is a special internal iterator that separates the query plan into 2 parts:

1. The RECEIVE iterator itself and all iterators that are above it in the iterator tree are
executed at the driver.

2. All iterators below the RECEIVE iterator are executed at the replication nodes (RNs); these
iterators form a subtree rooted at the unique child of the RECEIVE iterator.

In general, the RECEIVE iterator acts as a query coordinator. It sends its subplan to
appropriate RNs for execution and collects the results. It may perform additional operations
such as sorting and duplicate elimination and propagates the results to its ancestor iterators (if
any) for further processing.

Distribution kinds

A distribution kind specifies how the query will be distributed for execution across the RNs
participating in an Oracle NoSQL database (a store). The distribution kind is a property of the
RECEIVE iterator.

Different choices of Distribution kinds are:

* SINGLE_PARTITION: A SINGLE_PARTITION query specifies a complete shard key in its
WHERE clause. As a result, its full result set is contained in a single partition, and the
RECEIVE iterator will send its subplan to a single RN that stores that partition. A
SINGLE_PARTITION query may use either the primary-key index or a secondary index.

 ALL_PARTITIONS: Queries use the primary-key index here and they don't specify a
complete shard key. As a result, if the store has M partitions, the RECEIVE iterator will
send M copies of its subplan to be executed over one of the M partitions each.

« ALL_SHARDS: Queries use a secondary index here and they don'’t specify a complete
shard key. As a result, if the store has N shards, the RECEIVE iterator will send N copies
of its subplan to be executed over one of the N shards each.

ORACLE -

Chapter 5
Query execution plan

Populating the tables to view the query execution plan :

If you want to follow along with the examples, download the script
baggageschema_loaddata.sql and run it as shown below. This script creates the table used in
the example and loads data into the table.

Start your KVSTORE or KVLite and open the SQL.shell.

java -jar lib/kvstore.jar kvlite -secure-config disable
java -jar lib/sqgl.jar -helper-hosts localhost:5000 -store kvstore

Using the 1oad command, run the script.
load -file baggageschema loaddata.sql
Creating indexes:

Create the following indexes in the baggageInfo table as shown below.

1. Create an index on passengers reservation code.
CREATE INDEX fixedschema conf ON baggageInfo confNo)
2. Create an index on the full name and phone number of passengers
CREATE INDEX compindex namephone ON baggageInfo (fullName,contactPhone)

3. Create an index on three fields, when the bag was last seen, the last seen station, and the
arrival date and time.

CREATE INDEX simpleindex arrival ON

baggageInfo (bagInfo[].lastSeenTimeGmt as ANYATOMIC,
bagInfo[].bagArrivalDate as ANYATOMIC,
bagInfo[].lastSeenTimeStation as ANYATOMIC)

Query 1. Using primary key index with an index range scan

ORACLE

Fetch the bag details of passengers for ticket numbers in a range.

SELECT fullname, ticketNo,
bag.bagInfo[].tagNum,bag.bagInfo[].routing

FROM BaggageInfo bag WHERE

1762340000000 < ticketNo AND ticketNo < 1762352000000

Plan:

{
"iterator kind" : "RECEIVE",
"distribution kind" : "ALL_PARTITIONS",

"input iterator"

{
"iterator kind" : "SELECT",
"FROM"

5-76

"iterator kind" : "TABLE",
"target table" : "BaggageInfo",
"row variable" : "Sbag",
"index used" : "primary index",
"covering index" : false,

"index scans" : [

{

"equality conditions" : {},

"range conditions" : { "ticketNo" : { "start value"
1762340000000, "start inclusive" : false, "end value" : 1762352000000,
inclusive" : false } }

}
]
}I
"FROM variable" : "Sbag",

"SELECT expressions" : [
{

"field name" : "fullname",

"field expression"

{
"iterator kind" : "FIELD STEP",
"field name" : "fullname",
"input iterator"

{

"iterator kind" : "VAR REF",
"variable" : "S$Sbag"
}
}
}I
{
"field name" : "ticketNo",

"field expression"

{
"iterator kind" : "FIELD STEP",
"field name" : "ticketNo",
"input iterator"

{

"iterator kind" : "VAR REF",
"variable" : "S$Sbag"
}
}
}I
{
"field name" : "tagNum",

"field expression"
{
"iterator kind" : "ARRAY CONSTRUCTOR",
"conditional" : true,
"input iterators" : [
{
"iterator kind" : "FIELD STEP",
"field name" : "tagNum",
"input iterator”
{
"iterator kind" : "ARRAY FILTER",

ORACLE

Chapter 5
Query execution plan

"end

5-77

Chapter 5
Query execution plan

"input iterator"
{
"iterator kind" : "FIELD STEP",
"field name" : "bagInfo",
"input iterator"
{
"iterator kind" : "VAR REF",
"variable" : "$Sbag"

"field name" : "routing",
"field expression"
{
"iterator kind" : "ARRAY CONSTRUCTOR",
"conditional" : true,
"input iterators" : [
{
"iterator kind" : "FIELD STEP",
"field name" : "routing",
"input iterator”
{
"iterator kind" : "ARRAY FILTER",
"input iterator"
{
"iterator kind" : "FIELD STEP",
"field name" : "bagInfo",
"input iterator"
{
"iterator kind" : "VAR REF",
"variable" : "S$Sbag"

Explanation:

e The root iterator of this query plan is a RECEIVE iterator with a single child (input iterator)
that is a SELECT iterator.

* The value of the FROM field is an iterator; in this case, it is a TABLE iterator.

e The primary key index is used and the index is not covering (as you need to scan the
table to fetch columns other than the index entries).

ORACLE 5-78

Chapter 5
Query execution plan

e The index scan property contains the start and stop conditions that define the index scans
to be performed.

 The FROM variable is the name of a variable ranging over the records produced by the
FROM iterator. Here the FROM iterator is a TABLE iterator, and the FROM variable
($Sbag)is the same as the row variable of the TABLE iterator, as the index used is not
covering.

e Inthe SELECT expression four fields
(fullname, ticketNo,bag.bagInfo[].tagNum,bag.bagInfo[].routing) are fetched. These
correspond to four field names and field expressions in the SELECT expression clause.
For the first two fields, the field expression is computed using FIELD_STEP iterator. For the
last 2 fields, an ARRAY CONSTRUCTOR iterator is used which iterates over the corresponding
arrays to fetch the field value.

Query 2: Using primary key index with an index predicate

Fetch the bag details of passengers for ticket numbers satisfying one of the two ranges of
values.

SELECT fullname, ticketNo, bag.bagInfo[].tagNum,bag.bagInfo[].routing
FROM BaggageInfo bag WHERE ticketNo > 1762340000000 OR ticketNo <

1762352000000;

Plan:

{
"iterator kind" : "RECEIVE",
"distribution kind" : "ALL_PARTITIONS",

"input iterator"

{

"iterator kind" : "SELECT",

"FROM"

{
"iterator kind" : "TABLE",
"target table" : "BaggageInfo",
"row variable" : "Sbag",
"index used" : "primary index",
"covering index" : false,

"index scans" : [
{
"equality conditions" : {},
"range conditions" : {}
}
1y
"index filtering predicate"
{
"iterator kind" : "OR",
"input iterators" : [
{
"iterator kind" : "GREATER THAN",
"left operand"
{
"iterator kind" : "FIELD STEP",
"field name" : "ticketNo",
"input iterator"

ORACLE =79

"iterator kind" : "VAR REF",
"variable" : "$Sbag"
}
}I
"right operand"
{
"iterator kind" : "CONST",
"value" : 1762340000000
}
}I
{
"iterator kind" : "LESS THAN",
"left operand"
{
"iterator kind" : "FIELD STEP",
"field name" : "ticketNo",
"input iterator”
{
"iterator kind" : "VAR REF",
"variable" : "Sbag"
}
}I
"right operand"
{
"iterator kind" : "CONST",
"value" : 1762352000000

}I
"FROM variable" : "Sbag",
"SELECT expressions" : [
{
"field name" : "fullname",
"field expression"
{
"iterator kind" : "FIELD STEP",
"field name" : "fullname",
"input iterator"

{

"iterator kind" : "VAR REF",
"variable" : "S$Sbag"
}
}
}I
{
"field name" : "ticketNo",

"field expression"
{
"iterator kind" : "FIELD STEP",
"field name" : "ticketNo",
"input iterator"
{
"iterator kind" : "VAR REF",

ORACLE

Chapter 5
Query execution plan

5-80

Chapter 5
Query execution plan

"variable" : "S$Sbag"

}
}I
{
"field name" : "tagNum",
"field expression"
{
"iterator kind" : "ARRAY CONSTRUCTOR",
"conditional" : true,
"input iterators" : [
{
"iterator kind" : "FIELD STEP",
"field name" : "tagNum",
"input iterator”
{
"iterator kind" : "ARRAY FILTER",
"input iterator"
{
"iterator kind" : "FIELD STEP",
"field name" : "bagInfo",
"input iterator"
{
"iterator kind" : "VAR REF",
"variable" : "$Sbag"

"field name" : "routing",
"field expression"
{
"iterator kind" : "ARRAY CONSTRUCTOR",
"conditional" : true,
"input iterators" : [
{
"iterator kind" : "FIELD STEP",
"field name" : "routing",
"input iterator”
{
"iterator kind" : "ARRAY FILTER",
"input iterator"
{
"iterator kind" : "FIELD STEP",
"field name" : "bagInfo",
"input iterator"
{
"iterator kind" : "VAR REF",
"variable" : "S$Sbag"

ORACLE - ar

Chapter 5
Query execution plan

Explanation:

The root iterator of this query plan is a RECEIVE iterator with a single child (input iterator)
that is a SELECT iterator.

The value of the FROM field is an iterator; in this case, it is a TABLE iterator.

The primary key index is used and the index is not covering (as you need to scan the
table to fetch columns other than the index entries).

The index filtering predicate evaluates the filter criteria on the ticketNo field. Using
the greater than and less than operators the filter condition is evaluated.

The FROM variable is the name of a variable ranging over the records produced by the
FROM iterator. Here the FROM iterator is a TABLE iterator, and the FROM variable ($$bag)
is the same as the row variable of the TABLE iterator, as the index used is not covering.

In the SELECT expression four fields (fullname, ticketNo,bag.bagInfo[].tagNum,
bag.bagInfo[] .routing) are fetched. These correspond to four field names and field
expressions in the SELECT expression clause. For the first two fields, the field expression
is computed using FIELD_STEP iterator. For the last 2 fields, an ARRAY CONSTRUCTOR iterator
is used which iterates over the corresponding arrays to fetch the field value.

Query 3: Using a secondary index with an index range scan

Fetch the bag details for a particular reservation code.

ORACLE

SELECT fullName,bag.ticketNo, bag.confNo, bag.bagInfo[].tagNum,

bag.bagInfo[].routing FROM BaggageInfo bag WHERE bag.confNo="FH7GlW"

Plan:

{
"iterator kind" : "RECEIVE",
"distribution kind" : "ALL SHARDS",

"input iterator" :

"iterator kind" : "SELECT",

"FROM" :

{
"iterator kind" : "TABLE",
"target table" : "BaggageInfo",
"row variable" : "Sbag",
"index used" : "fixedschema conf",
"covering index" : false,

"index scans" : [

{
"equality conditions" : {"confNo":"FH7GI1W"},
"range conditions" : {}

5-82

]
}I
"FROM variable" : "Sbag",
"SELECT expressions" : [
{
"field name" : "fullName",
"field expression"
{
"iterator kind" : "FIELD STEP",
"field name" : "fullName",
"input iterator"

{

"iterator kind" : "VAR REF",
"variable" : "S$Sbag"
}
}
}I
{
"field name" : "ticketNo",

"field expression"

{
"iterator kind" : "FIELD STEP",
"field name" : "ticketNo",
"input iterator"

{

"iterator kind" : "VAR REF",
"variable" : "S$Sbag"
}
}
}I
{
"field name" : "confNo",

"field expression"

{
"iterator kind" : "FIELD STEP",
"field name" : "confNo",
"input iterator"

{

"iterator kind" : "VAR REF",
"variable" : "S$Sbag"
}
}
}I
{
"field name" : "tagNum",

"field expression"
{
"iterator kind" : "ARRAY CONSTRUCTOR",
"conditional" : true,
"input iterators" : [
{
"iterator kind" : "FIELD STEP",
"field name" : "tagNum",
"input iterator”

{

ORACLE

Chapter 5
Query execution plan

5-83

Chapter 5
Query execution plan

"iterator kind" : "ARRAY FILTER",
"input iterator"
{
"iterator kind" : "FIELD STEP",
"field name" : "bagInfo",
"input iterator"
{
"iterator kind" : "VAR REF",
"variable" : "$Sbag"

"field name" : "routing",
"field expression"
{
"iterator kind" : "ARRAY CONSTRUCTOR",
"conditional" : true,
"input iterators" : [
{
"iterator kind" : "FIELD STEP",
"field name" : "routing",
"input iterator”
{
"iterator kind" : "ARRAY FILTER",
"input iterator"
{
"iterator kind" : "FIELD STEP",
"field name" : "bagInfo",
"input iterator"
{
"iterator kind" : "VAR REF",
"variable" : "S$Sbag"

Explanation:

e The root iterator of this query plan is a RECEIVE iterator with a single child (input iterator)
that is a SELECT iterator.

* The value of the FROM field is an iterator; in this case, it is a TABLE iterator.

» The index fixedschema conf is used and the index is not covering (as you need to scan
the table to fetch columns other than the index entries).

ORACLE -~

Chapter 5
Query execution plan

The index scan property contains the start and stop conditions that define the index scans
to be performed.

The FROM variable is the name of a variable ranging over the records produced by the
FROM iterator. Here the FROM iterator is a TABLE iterator, and the FROM variable ($$bag)
is the same as the row variable of the TABLE iterator, as the index used is not covering.

In the SELECT expression four fields

(fullname, ticketNo, confNo,bag.bagInfo[].tagNum,bag.bagInfo[].routing) are
fetched. These correspond to five field names and field expressions in the SELECT
expression clause. For the first three fields, the field expression is computed using
FIELD_STEP iterator. For the last two fields, an ARRAY CONSTRUCTOR iterator is used which
iterates over the corresponding arrays to fetch the field value.

Query 4: Using the primary index

Fetch the name and routing details of all male passengers.

SELECT fullname,bag.bagInfo[].routing FROM BaggageInfo bag
WHERE gender!="F"

Plan:

{
"iterator kind" : "RECEIVE",
"distribution kind" : "ALL_PARTITIONS",

"input iterator"

{

ORACLE

"iterator kind" : "SELECT",

"FROM"

{
"iterator kind" : "TABLE",
"target table" : "Baggagelnfo",
"row variable" : "$Sbag",
"index used" : "primary index",
"covering index" : false,

"index scans" : [

{

"equality conditions" : {},
"range conditions" : {}
}
]
}I
"FROM variable" : "$Sbag",
"WHERE"
{
"iterator kind" : "NOT EQUAL",

"left operand"
{
"iterator kind" : "FIELD STEP",
"field name" : "gender",
"input iterator"
{
"iterator kind" : "VAR REF",
"variable" : "$Sbag"

5-85

}I
"right operand"
{
"iterator kind" : "CONST",
"value" : "EF"
}
}I
"SELECT expressions" : [
{
"field name" : "fullname",
"field expression"
{
"iterator kind" : "FIELD STEP",
"field name" : "fullname",
"input iterator"

{

"iterator kind" : "VAR REF",
"variable" : "S$Sbag"
}
}
}I
{
"field name" : "routing",

"field expression"
{
"iterator kind" : "ARRAY CONSTRUCTOR",
"conditional" : true,
"input iterators" : [
{
"iterator kind" : "FIELD STEP",
"field name" : "routing",
"input iterator”

{

"iterator kind" : "ARRAY FILTER",

"input iterator"

{

"iterator kind" : "FIELD STEP",

"field name" : "bagInfo",
"input iterator"

{
"iterator kind" : "VAR REF",
"variable" : "$Sbag"

Explanation:

ORACLE

Chapter 5
Query execution plan

5-86

Chapter 5
Query execution plan

e The root iterator of this query plan is a RECEIVE iterator with a single child (input iterator)
that is a SELECT iterator.

* The value of the FROM field is an iterator; in this case, it is a TABLE iterator.

e The primary key index is used and the index is not covering (as you need to scan the
table to fetch columns other than the index entries).

 The FROM variable is the name of a variable ranging over the records produced by the
FROM iterator. Here the FROM iterator is a TABLE iterator, and the FROM variable ($$bag)
is the same as the row variable of the TABLE iterator, as the index used is not covering.

e Inthe SELECT expression two fields (fullname,bag.bagInfo[].routing) are fetched.
These correspond to two field names and field expressions in the SELECT expression
clause. For the first field, the field expression is computed using FIELD_STEP iterator. For
the second field, an ARRAY CONSTRUCTOR iterator is used which iterates over the
corresponding array to fetch the field value.

Query 5: Sort the data using a Covering index

Fetch the name and phone number of all passengers.

SELECT bag.contactPhone, bag.fullName FROM BaggageInfo bag
ORDER BY bag.fullName

Plan:

"iterator kind" : "RECEIVE",
"distribution kind" : "ALL SHARDS",
"order by fields at positions" : [1],
"input iterator"

{

"iterator kind" : "SELECT",
"FROM"
{
"iterator kind" : "TABLE",
"target table" : "BaggageInfo",
"row variable" : "Sbag",
"index used" : "compindex namephone",
"covering index" : true,
"index row variable" : "Sbag idx",

"index scans" : [
{
"equality conditions" : {},
"range conditions" : {}
}
]
b
"FROM variable" : "Sbag idx",
"SELECT expressions" : [
{
"field name" : "contactPhone",
"field expression"
{
"iterator kind" : "FIELD STEP",

ORACLE 5-87

ORACLE

Chapter 5
Query execution plan

"field name" : "contactPhone",
"input iterator" :

{

"iterator kind" : "VAR REF",
"variable" : "$Sbag idx"
}
}
}I
{
"field name" : "fullName",

"field expression"” :
{
"iterator kind" : "FIELD STEP",
"field name" : "fullName",
"input iterator" :
{
"iterator kind" : "VAR REF",
"variable" : "$Sbag idx"

Explanation:

The root iterator of this query plan is a RECEIVE iterator with a single child (input iterator)
that is a SELECT iterator. The only property of the RECEIVE iterator in this example is the
distribution kind whose value is ALL_SHARDS.

The results need to be sorted by fullName. The fullName is part of the
compindex_namephone index. So in this example, you don't need a separate SORT
operator. The sorting is done by the RECEIVE operator using its property order by

fields at positions, which is an array. The value of this array depends on the position of
the field which is sorted in the SELECT expression.

"order by fields at positions" : [1]

In this example, the order by is done using the fullName which is the second field in the
SELECT expression. That is why you see 1 in the order by fields at position property
of the iterator.

The index compindex_namephone is used here and in this example, it is a covering index as
the query can be evaluated using only the entries of the index.

The index row variable is $$bag_idx which is the name of a variable ranging over the index
entries produced by the TABLE iterator. Every time a new index entry is produced by the
index scan, the $$bag idx variable will be bound to that entry.

When the FROM iterator is a TABLE iterator, the FROM variable is the same as either the
index row variable or the row variable of the TABLE iterator, depending on whether the
used index is covering or not. In this example, the FROM variable is the same as the index
row variable ($$bag_idx) as the index is covering.

This index row variable ($$bag_1idx) will be referenced by iterators implementing the other
clauses of the SELECT expression.

5-88

Chapter 5
Query execution plan

* Inthe SELECT expression two fields (contactPhone, fullName) are fetched. These
correspond to two field names and field expressions in the SELECT expression clause. For
both fields, the field expression is computed using FIELD_ STEP iterator.

Query 6: Using a secondary index with an index predicate

Fetch the name, ticket number, and arrival date of passengers whose arrival date is greater
than a given value.

SELECT fullName, bag.ticketNo, bag.bagInfo[].bagArrivalDate
FROM BaggageInfo bag WHERE EXISTS
bag.bagInfo[Selement.bagArrivalDate >="2019-01-01T00:00:00"]

Plan:

"iterator kind" : "RECEIVE",

"distribution kind" : "ALL SHARDS",
"distinct by fields at positions" : [1],
"input iterator"

{

"iterator kind" : "SELECT",
"FROM"
{
"iterator kind" : "TABLE",
"target table" : "BaggageInfo",
"row variable" : "$Sbag",
"index used" : "simpleindex arrival",
"covering index" : false,
"index row variable" : "$Sbag idx",

"index scans" : [
{
"equality conditions" : {},
"range conditions" : {}
}
} 4
"index filtering predicate"
{
"iterator kind" : "GREATER OR_EQUAL",
"left operand"
{
"iterator kind" : "FIELD STEP",
"field name" : "bagInfo[].bagArrivalDate",
"input iterator"
{
"iterator kind" : "VAR REF",
"variable" : "$Sbag idx"
}
}I
"right operand"
{
"iterator kind" : "CONST",
"value" : "2019-01-01T00:00:00"

ORACLE = 89

Chapter 5
Query execution plan

}I
"FROM variable" : "Sbag",
"SELECT expressions" : [
{
"field name" : "fullName",
"field expression"
{
"iterator kind" : "FIELD STEP",
"field name" : "fullName",
"input iterator"

{

"iterator kind" : "VAR REF",
"variable" : "S$Sbag"
}
}
}I
{
"field name" : "ticketNo",

"field expression"

{
"iterator kind" : "FIELD STEP",
"field name" : "ticketNo",
"input iterator"

{

"iterator kind" : "VAR REF",
"variable" : "S$Sbag"
}
}
}I
{
"field name" : "bagArrivalDate",

"field expression"
{
"iterator kind" : "ARRAY CONSTRUCTOR",
"conditional" : true,
"input iterators" : [
{
"iterator kind" : "FIELD STEP",
"field name" : "bagArrivalDate",
"input iterator”
{
"iterator kind" : "ARRAY FILTER",
"input iterator"
{
"iterator kind" : "FIELD STEP",
"field name" : "bagInfo",
"input iterator"
{
"iterator kind" : "VAR REF",
"variable" : "$Sbag"

ORACLE - 00

Chapter 5
Query execution plan

Explanation:

e The root iterator of this query plan is a RECEIVE iterator with a single child (input iterator)
that is a SELECT iterator.

* The value of the FROM field is an iterator; in this case, it is a TABLE iterator.

e The EXISTS condition is actually converted to a filtering predicate. There is one filtering
predicate which is the whole WHERE expression. The index simpleindex_arrival is the
only one applicable here and is used.

e The index filtering predicate evaluates the filter criteria on the bagArrivalDate field.
Using the greater than and less than operators the filter condition is evaluated.

e The FROM variable is the name of a variable ranging over the records produced by the
FROM iterator. Here the FROM iterator is a TABLE iterator, and the FROM variable
($$bag)is the same as the row variable of the TABLE iterator, as the index used is not
covering.

* Inthe SELECT expression three fields (fullname,
ticketNo,bag.bagInfo[].bagArrivalDat) are fetched. These correspond to three field
names and field expressions in the SELECT expression clause. For the first two fields, the
field expression is computed using FIELD STEP iterator. For the last field, an
ARRAY CONSTRUCTOR iterator is used which iterates over the corresponding arrays to fetch
the field value.

Query 7: Group data with fields as part of the index

ORACLE

Fetch the reservation code and count of bags for all passengers.

SELECT bag.confNo, count (bag.bagInfo) AS TOTAL BAGS
FROM BaggageInfo bag GROUP BY bag.confNo;

Plan:

"iterator kind" : "SELECT",

"FROM"

{
"iterator kind" : "RECEIVE",
"distribution kind" : "ALL SHARDS",
"order by fields at positions" : [0],
"input iterator" :

{

"iterator kind" : "SELECT",

"FROM" :

{
"iterator kind" : "TABLE",
"target table" : "BaggageInfo",
"row variable" : "S$Sbag",
"index used" : "fixedschema conf",
"covering index" : false,

5-91

Chapter 5

Query execution plan

"index scans" : [
{
"equality conditions" : {},
"range conditions" : {}
}
]
}I
"FROM variable" : "$Sbag",
"GROUP BY" : "Grouping by the first expression in the SELECT list",

"SELECT expressions" : [
{

"field name" : "confNo",

"field expression"

{
"iterator kind" : "FIELD STEP",
"field name" : "confNo",
"input iterator"

{

"iterator kind" : "VAR REF",
"variable" : "S$Sbag"
}
}
}I
{
"field name" : "TOTAL BAGS",

"field expression"
{
"iterator kind" : "FN_COUNT",
"input iterator"
{
"iterator kind" : "FIELD STEP",
"field name" : "bagInfo",
"input iterator”

{

"iterator kind" : "VAR REF",
"variable" : "Sbag"
}
}
}
}
]
}
}I
"FROM variable" : "Sfrom-1",
"GROUP BY" : "Grouping by the first expression in the SELECT

"SELECT expressions"”" : [
{
"field name" : "confNo",
"field expression”
{
"iterator kind" : "FIELD STEP",
"field name" : "confNo",
"input iterator"
{
"iterator kind" : "VAR REF",
"variable" : "S$from-1"

ORACLE

list",

5-92

ORACLE

Chapter 5
Query execution plan

}
}I
{
"field name" : "TOTAL BAGS",
"field expression" :
{
"iterator kind" : "FUNC SUM",
"input iterator" :
{
"iterator kind" : "FIELD STEP",
"field name" : "TOTAL BAGS",
"input iterator" :
{
"iterator kind" : "VAR REF",
"variable" : "S$from-1"

Explanation:

In this query, you group all bags based on the confNo of the users and determine the total
count of bags belonging to each confNo.

The group-by is index-based, that is the group-by field (confNo) is also part of the index
used. This is indicated by the lack of any GROUP iterators. Instead, the grouping is done
by the SELECT iterators.

There are two SELECT iterators, the inner one has a GROUP BY property that specifies
which of the SELECT-clause expressions are also grouping expressions. Here the group
by fields is the first expression in the SELECT list (bag.con£fNo).

"GROUP BY" : "Grouping by the first expression in the SELECT list"

The index fixedschema_conf is used here and in this example, it is a non-covering index
as the query also needs to fetch count (bag.bagInfo)which is outside of the entries of the
index.

When the FROM iterator is a TABLE iterator, the FROM variable is the same as either the
index row variable or the row variable of the TABLE iterator, depending on whether the
used index is covering or not. In this example, the inner FROM variable is the same as the
row variable ($$bag) as the index is not covering.

In the SELECT expression two fields are fetched: bag.confNo, count (bag.bagInfo).
These correspond to two field names and field expressions in the SELECT expression
clause.

The results returned by the inner SELECT iterators from the various RNs are patrtial
groups, because rows with the same bag.confNo may exist at multiple RNs. So,
regrouping and re-aggregation have to be performed by the driver. This is done by the
outer SELECT iterator (above the RECEIVE iterator).

The result is also sorted by confNo. The order by fields at positions property
specifies the field used for sorting. The value of this array depends on the position of the

5-93

Chapter 5
Query execution plan

field which is sorted in the SELECT expression. In this example bag. confNo is the first field
in the SELECT expression. So order by fields at positions takes an array index of 0.

"order by fields at positions" : [0]

In the outer SELECT expression, two fields are fetched: bag.confNo, count (bag.bagInfo).
The $from-1 FROM variable will be referenced by iterators implementing the other clauses
of the outer SELECT expression. These correspond to two field names and field
expressions in the outer SELECT expression clause. For the first field, the field expression
uses FIELD_STEP iterator. The second field is the aggregate function count. The iterator
FUNC_SUMis used to iterate the result produced by its parent iterator and determine the total
number of bags.

Query 8: Using the secondary index with multiple index scans

Fetch the full name and tag number of passengers who are in the given list of names.

SELECT bagdet.fullName, bagdet.bagInfo[].tagNum
FROM BaggageInfo bagdet WHERE bagdet.fullName IN
("Lucinda Beckman", "Adam Phillips",

"Zina Christenson","Fallon Clements");

ORACLE

Plan:

"iterator kind" : "SELECT",
"FROM"

{

"iterator kind" : "RECEIVE",
"distribution kind" : "ALL SHARDS",
"order by fields at positions" : [0],
"input iterator"

{

"iterator kind" : "SELECT",

"FROM"

{
"iterator kind" : "TABLE",
"target table" : "BaggageInfo",
"row variable" : "$Sbag",
"index used" : "fixedschema conf",
"covering index" : false,

"index scans" : [

{

"equality conditions" : {},
"range conditions" : {}
}
]
}I
"FROM variable" : "S$Sbag",
"GROUP BY" : "Grouping by the first expression in the SELECT list",

"SELECT expressions" : [

{
"field name" : "confNo",
"field expression"

5-94

"iterator kind" : "FIELD STEP",
"field name" : "confNo",
"input iterator”

{

"iterator kind" : "VAR REF",
"variable" : "S$Sbag"
}
}
}I
{
"field name" : "TOTAL BAGS",

"field expression"
{
"iterator kind" : "FN COUNT",
"input iterator”
{
"iterator kind" : "FIELD STEP",
"field name" : "bagInfo",
"input iterator”

{

"iterator kind" : "VAR REF",
"variable" : "Sbag"
1
}
}
}
]
}
}I
"FROM variable" : "$Sfrom-1",
"GROUP BY" : "Grouping by the first expression in the SELECT

"SELECT expressions"” : [
{

"field name" : "confNo",

"field expression"

{
"iterator kind" : "FIELD STEP",
"field name" : "confNo",
"input iterator"

{

"iterator kind" : "VAR REF",
"variable" : "S$from-1"
}
1
}I
{
"field name" : "TOTAL BAGS",

"field expression"
{
"iterator kind" : "FUNC SUM",
"input iterator"
{
"iterator kind" : "FIELD STEP",
"field name" : "TOTAL BAGS",
"input iterator"

ORACLE

Chapter 5

Query execution plan

list",

5-95

Chapter 5
Query execution plan

"iterator kind" : "VAR REF",
"variable" : "S$from-1"

Explanation:

e The root iterator of this query plan is a RECEIVE iterator with a single child (input iterator)
that is a SELECT iterator.

* The value of the FROM field is an iterator; in this case, it is a TABLE iterator.

* The index compindex namephone is used and the index is not covering (as you need to
scan the table to fetch columns other than the index entries).

e Every value in the IN clause is evaluated using an index scan with an equality condition.
There are four index scans that are performed each evaluating one equality condition.

e The FROM variable is the name of a variable ranging over the records produced by the
FROM iterator. Here the FROM iterator is a TABLE iterator, and the FROM variable
($$bagdet) is the same as the row variable of the TABLE iterator, as the index used is not
covering.

e Inthe SELECT expression two fields (fullname, bag.bagInfo[].tagNum) are fetched.
These correspond to two field names and field expressions in the SELECT expression
clause. For the first field, the field expression is computed using FIELD STEP iterator. For
the second field, an ARRAY CONSTRUCTOR iterator is used which iterates over the
corresponding arrays to fetch the field value.

Query 9: A SINGLE PARTITION query using a primary index

ORACLE

Select the ticket details (ticket number, reservation code, tag number, and routing) for a
passenger with a specific ticket number and reservation code.

SELECT fullName,bag.ticketNo, bag.confNo, bag.bagInfo[].tagNum,
bag.bagInfo[].routing FROM BaggageInfo bag WHERE
bag.ticketNo=1762311547917 AND bag.confNo="FH7G1W"

Plan:

{
"iterator kind" : "RECEIVE",
"distribution kind" : "SINGLE PARTITION",

"input iterator"

{

"iterator kind" : "SELECT",

"FROM"

{
"iterator kind" : "TABLE",
"target table" : "BaggageInfo",
"row variable" : "Sbag",
"index used" : "primary index",

5-96

Chapter 5
Query execution plan

"covering index" : false,
"index scans" : [
{
"equality conditions" : {"ticketNo":1762311547917},

"range conditions" : {}
}

]
} ’
"FROM variable" : "Sbag",
"WHERE"
{

"iterator kind" : "EQUAL",

"left operand"
{
"iterator kind" : "FIELD STEP",
"field name" : "confNo",
"input iterator"
{
"iterator kind" : "VAR REF",
"variable" : "Sbag"
}
}I
"right operand"
{
"iterator kind" : "CONST",
"value" : "FHTGIW"
}
}I
"SELECT expressions" : [
{
"field name" : "fullName",
"field expression"
{
"iterator kind" : "FIELD STEP",
"field name" : "fullName",
"input iterator"

{

"iterator kind" : "VAR REF",
"variable" : "S$Sbag"
}
}
}I
{
"field name" : "ticketNo",

"field expression"
{
"iterator kind" : "FIELD STEP",
"field name" : "ticketNo",
"input iterator"
{
"iterator kind" : "VAR REF",
"variable" : "S$Sbag"

ORACLE 5-97

Chapter 5
Query execution plan

"field name" : "confNo",

"field expression"

{
"iterator kind" : "FIELD STEP",
"field name" : "confNo",
"input iterator"

{

"iterator kind" : "VAR REF",
"variable" : "S$Sbag"
}
}
}I
{
"field name" : "tagNum",

"field expression"
{
"iterator kind" : "ARRAY CONSTRUCTOR",
"conditional" : true,
"input iterators" : [
{
"iterator kind" : "FIELD STEP",
"field name" : "tagNum",
"input iterator”
{
"iterator kind" : "ARRAY FILTER",
"input iterator"
{
"iterator kind" : "FIELD STEP",
"field name" : "bagInfo",
"input iterator"
{
"iterator kind" : "VAR REF",
"variable" : "$Sbag"

"field name" : "routing",
"field expression"
{
"iterator kind" : "ARRAY CONSTRUCTOR",
"conditional" : true,
"input iterators" : [
{
"iterator kind" : "FIELD STEP",
"field name" : "routing",
"input iterator”
{
"iterator kind" : "ARRAY FILTER",
"input iterator"
{
"iterator kind" : "FIELD STEP",

ORACLE - o

Chapter 5
Query execution plan

"field name" : "bagInfo",
"input iterator" :
{
"iterator kind" : "VAR REF",
"variable" : "$Sbag"

Explanation:

The root iterator of this query plan is a RECEIVE iterator with a single child (input iterator)
that is a SELECT iterator.

This query specifies a complete shard key in its WHERE clause. As a result, its full result
set is contained in a single partition, and the RECEIVE iterator will send its subplan to a
single RN that stores that partition.

The value of the FROM field is an iterator; in this case, it is a TABLE iterator.

A SINGLE_PARTITION query can reference a primary index or a secondary index. The
primary key index is used in this example. The index is not covering (as you need to
scan the table to fetch columns other than the index entries).

The index scan property contains the start and stop conditions that define the index scans
to be performed.

The FROM variable is the name of a variable ranging over the records produced by the
FROM iterator. Here the FROM iterator is a TABLE iterator, and the FROM variable ($$bag)
is the same as the row variable of the TABLE iterator, as the index used is not covering.

In the SELECT expression five fields (fullname, ticketNo,confNo,
bag.bagInfo[].tagNum,bag.bagInfo[].routing) are fetched. These correspond to five
field names and field expressions in the SELECT expression clause. For the first three
fields, the field expression is computed using FIELD_STEP iterator. For the last 2 fields, an
ARRAY CONSTRUCTOR iterator is used which iterates over the corresponding arrays to fetch
the field value.

Query 10: Group data with fields not part of any index

Fetch the source of passenger bags and the count of bags for all passengers and group the
data by the source.

ORACLE

SELECT $flt src as SOURCE, count(*) as COUNT FROM BaggageInfo Sbag,
$bag.bagInfo.flightLegs[0].fltRouteSrc $flt src GROUP BY $flt src

Plan:

{
"iterator kind" : "GROUP",

5-99

"input variable" : "S$gb-2",
"input iterator"
{
"iterator kind" : "RECEIVE",
"distribution kind" : "ALL PARTITIONS",
"input iterator"
{
"iterator kind" : "GROUP",
"input variable" : "$gb-1",
"input iterator" :

{

"iterator kind" : "SELECT",
"FROM"
{
"iterator kind" : "TABLE",
"target table" : "BaggageInfo",
"row variable" : "S$bag",
"index used" : "primary index",
"covering index" : false,

"index scans" : [
{
"equality conditions" : {},
"range conditions" : {}

]
}I
"FROM variable" : "$bag",
"FROM"
{
"iterator kind" : "FIELD STEP",
"field name" : "fltRouteSrc",
"input iterator"
{
"iterator kind" : "ARRAY SLICE",
"low bound" : 0,
"high bound" : 0,
"input iterator"
{
"iterator kind" : "FIELD STEP",
"field name" : "flightLegs",
"input iterator”
{
"iterator kind" : "FIELD STEP",
"field name" : "bagInfo",
"input iterator"
{
"iterator kind" : "VAR REF",
"variable" : "S$bag"

}
}I
"FROM variable" : "S$flt src",
"SELECT expressions" : [

{

ORACLE

Chapter 5
Query execution plan

5-100

Chapter 5
Query execution plan

"field name" : "SOURCE",
"field expression”

{

"iterator kind" : "VAR REF",
"variable" : "S$flt src"
}
}I
{
"field name" : "COUNT",

"field expression”

{

"iterator kind" : "CONST",
"value" : 1
}
}
]
}I
"grouping expressions" : [
{
"iterator kind" : "FIELD STEP",
"field name" : "SOURCE",
"input iterator"
{
"iterator kind" : "VAR REF",
"variable" : "S$gb-1"

}
1,
"aggregate functions" : [
{
"iterator kind" : "FUNC COUNT STAR"

}
}I
"grouping expressions" : |
{
"iterator kind" : "FIELD STEP",
"field name" : "SOURCE",
"input iterator”
{
"iterator kind" : "VAR REF",
"variable" : "S$gb-2"

}
]I
"aggregate functions" : [
{
"iterator kind" : "FUNC SUM",
"input iterator”
{
"iterator kind" : "FIELD STEP",
"field name" : "COUNT",
"input iterator"
{
"iterator kind" : "VAR REF",

ORACLE 101

ORACLE

Chapter 5
Query execution plan

"variable" : "S$gb-2"

Explanation:

In this query, you group passenger bags based on the flight source and determine the total
number of bags belonging to one flight source.

As the GROUP BY field (bagInfo.flightLegs[0].£f1tRouteSrc in this example) is not part
of any index, you need a separate GROUP operator to do the grouping. This is indicated
by the existence of the GROUP iterators in the execution plan. There are two GROUP
iterators: one that operates at the driver (above the RECEIVE iterator) and another that
operates at the RNs (below the RECEIVE iterator).

The lower GROUP iterator has a SELECT iterator as input. The SELECT returns the
fltRouteSrc and count of bags. The GROUP iterator will operate until the batch limit is
reached. If the batch limit is defined as the max number N of results produced, the GROUP
iterator will stop when up to N flight source groups have been created. If the batch limit is
defined as the max number of bytes read, it will stop when this max is reached. The
GROUP operator has an input variable. For the inner GROUP operator, the input variable
is $gb-1 and for the outer GROUP operator it is $gb-2.

"iterator kind" : "GROUP","input variable" : "$gb-1",

The primary key index is used here and in this example, it is not a covering index as the
query has fields that are not part of the entries of the primary index.

When the FROM iterator is a TABLE iterator, the FROM variable is the same as either the
index row variable or the row variable of the TABLE iterator, depending on whether the
used index is covering or not. Every time a next() call on the FROM iterator returns true,
the variable will be bound to the result produced by that iterator. In this example, the
FROM variable is the row variable as the index is not covering.

This row variable ($bag) will be referenced by iterators implementing the other clauses of
the inner SELECT expression.

The GROUP iterator creates an internal variable ($gb-1) that iterates over the records
produced by the SELECT expression.

The result set produced by the lower GROUP iterator is partial: it may not contain all the
fltRouteSrc groups and for the f1tRouteSrc groups that it does contain, the count may be
a partial sum (because all rows for a given f1tRouteSrc may not have been retrieved
when query execution stops). The upper GROUP iterator receives the partial results from
each RN and performs the final grouping and aggregation. It operates the same way as the
lower GROUP iterators and will keep operating until the are no more partial results from
the RNs. At that point, the full and final result set is cached at the upper GROUP iterator
and is returned to the application.

The upper GROUP iterator creates an internal variable ($gb-2) that iterates over the
records produced by the outer SELECT. The $gb-2 variable has the f1tRouteSrc and
count of all bags grouped by f1tRouteSrc.

In the SELECT expression, two fields are fetched: f1tRouteSrc, count (*). These
correspond to two field names and field expressions in the SELECT expression clause. For
the first field, the field expression uses FIELD_STEP iterator. The second field is the

5-102

Chapter 5
Table Modelling and Design

aggregate function count. The iterator FUNC_SUM is used to iterate the result produced by
its parent iterator and determine the total number of bags.

Table Modelling and Design

A critical part of the application development process is the task of modeling your data.

Proper modeling of your data is crucial to application performance, extensibility, application
correctness, and finally, the ability for your application to support rich user experiences. In this
article, you will learn some crucial aspects of data modeling and understand guidelines on how
to model your persistent data for an Oracle NoSQL Database application.

The Oracle NoSQL Database gives the data modeler a large range of flexibility with respect to
modeling application data. Understanding the tradeoffs associated with each level of flexibility
is extremely useful in making wise data modeling decisions.

e Schema Flexibility in Oracle NoSQL Database
e Choice of Keys in NoSQL Database
e Using Indexes in NoSQL Database

e Transactions in NoSQL database

Schema Flexibility in Oracle NoSQL Database

ORACLE

Unlike the relational database world with purely fixed schemas, NoSQL Database is largely
about schema flexibility — that is the ability to easily change how data is organized and stored.

Schema flexibility in Oracle NoSQL Database mostly takes the form of non-scalar data types.
These non-scalar data types can be used to embed flexible structures inside your tables.

Non-scalar data types:

Oracle NoSQL database supports the following non-scalar data types:

e« JSON - JSON is a map of key/value pairs that can be used as a datatype of a column in
the Oracle NoSQL Database. The JSON datatype gives you the ability to dynamically read
and write attributes having no prior knowledge of what is and what is not stored in the
JSON document. You can introspect into the document by reading from Oracle NoSQL
Database as a JSON string, or you can specify path expressions as deep as you like into a
hierarchy of JSON. As an example, you can create a JSON document that represents the
variable terms and conditions of a contract. The document attribute names (or keys) can
represent the tag or name of the contractual term or condition and the value of the attribute
can represent the text of that term. Using a JSON brings you ultimate flexibility in your data
model.

« Records — Records containing scalar or non-scalar values can be used as a datatype for a
column in an Oracle NoSQL Database table. You can think of a record as a document with
a fixed set of attributes, however noting that one or more attributes of the record can be a
non-fixed array or JSON document, giving you the flexibility to extend a fixed document
without modifying the schema. Records present an interesting intermediate step between
the benefits of the fixed schema world (single copy of a schema) and the ultimate flexibility
of the JSON world.

e Arrays — Arrays of scalar or non-scalar values can be used as a datatype for a column in
an Oracle NoSQL Database table. Arrays can be convenient for storing a collection of
event values. For example, you may wish to collect a list of behavioral segments for users
as they browse web pages.

5-103

ORACLE

Chapter 5
Table Modelling and Design

Trade-offs while using Flexible Schema:
Some guidelines that you can follow while considering flexible schema are listed below.
The Flexibility/Cost of scale Tradeoff :

When thinking about how flexible you want your schema to be, it's important to understand that
the more flexible you make your schema, the bigger the challenge is for scaling your solution.
For example, let’'s say that you are storing information on user behavior. And you want to store
this information as the users access your website. You can implement one of the two options
here. You can choose to model the solution using fixed columns for the required user attributes
that you will need to track. Alternatively, you can choose to model this using a JSON
document, giving you the flexibility to add and remove attributes for users without having to
evolve your schema.

The second option may work quite well for small numbers of users; however, if you will need to
scale this solution to large numbers of users, then you need extra storage. You also need
additional compute overhead for processing the key/value pairs (attribute names and their
values) in the JSON document. This could make the cost of scaling your solution prohibitive.
Extra storage is needed to store the metadata along with the data (e.g. the attribute names)
and extra compute is needed to serialize and de-serialize these documents. If you are using a
replication factor of more than one, then that adds additional overhead for each tracked user. If
a large scale is a major requirement for you then you’ll most likely want to trade off flexibility for
storage efficiency and consider using a more fixed schema.

The Flexibility/Latency Tradeoff :

In many NoSQL applications, low latency data access is a key requirement. In these situations,
it's important to understand the potential tradeoff with respect to the 1/O latency of using one
data modeling method over another. In this respect, using a non-scalar data type such as a
record, array, or JSON document will entail a read followed by an update.

For example, when you add a new value to an array your application must read the record
from NoSQL Database first, add the value to the array, and then write it back to NoSQL
Database. Even if performing this operation using the SQL UPDATE operator of Oracle NoSQL
Database (which executes in the replication node), the record must still be read from persistent
storage, de-serialized, modified, serialized, and written back. On a system with a spinning disk,
this could cost anywhere from fifteen to thirty milliseconds (or more). For certain applications
like online advertising, this may be beyond the latency SLA that can be tolerated. If you are
faced with similar stringent latency SLAs then you should consider favoring a child table
approach which eliminates the read and will allow you to simply perform a write of the new
value. Of course, the tradeoff here is one of flexibility for low latency.

For more information on when to use parent-child tables, see Using Parent-Child tables in
Oracle NoSQL Database.

Updates to Non-Scalars versus Inserts :

The Oracle NoSQL Database storage engine is based on an append-only architecture, also
known as log-structured storage. Log structured storage systems perform extremely well for
insert operations where the new records to be inserted are simply appended to the end of the
log. Update operations involve appending the updated record to the log and then marking the
old record for deletion. Records marked for deletion are regularly cleaned from NoSQL
Database’s logs to free up disk space by a background process called the cleaner. Although
the cleaner is highly optimized, it will add some CPU and I/O overhead to the replication node.
The more updates performed by your application, the more log cleaning activity there will be.

As a guideline, if you have extreme performance goals for your application (or for a specific
table), you should strongly consider trying to craft your data model by using parent/child tables

5-104

Chapter 5
Table Modelling and Design

versus non-scalar columns, giving you the potential for replacing updates with inserts. For
more information on when to use parent-child tables, see Using Parent-Child tables in Oracle
NoSQL Database.

Static Vs Dynamic Data :

In many applications, it's possible to identify portions of the data that are somewhat static and
change relatively slowly, and other portions of the data which are highly dynamic and change
frequently, even at millisecond granularity. For example, in online advertising, campaigns are a
relatively slow-moving piece of data while the budget spent (impressions or clicks delivered)
can change every few milliseconds as millions of users load web pages that have ads
associated with the campaign. The data pertaining to budgets is a case of highly dynamic data.
This is an example of a scenario that has a high velocity of write operations. Oracle NoSQL
database is a log-structured, append-only storage architecture, where inserts are more optimal
than an update operation.

For the more static portions of your data, the flexibility of the non-scalar datatypes may be an
attractive option for your application. Using a JSON document could provide an extensible way
for your application to interact with this data without undue sacrifice to performance. On the flip
side, for data that is changing rapidly or being inserted rapidly, you'll want to consider trading
off flexibility for this data and use a parent table with a fixed schema and a child table with a
fixed schema. Whether or not you choose to model the rapidly changing data as a parent or
child table will depend largely on how you wish to access it. For more information on when to
use parent-child tables, see Using Parent-Child tables in Oracle NoSQL Database.

JSON Collection Tables:

Oracle NoSQL Database supports JSON Collection tables. This is particularly useful for
applications that store and retrieve their data purely as documents. Such tables contain
primary key fields and a document. The schema of the JSON Collection table can't be altered
to add typed fields. JSON Collection tables are created to simplify the management and
manipulation of documents. The JSON collection table eliminates the need to declare fields as
type JSON during table creation. When you insert data into the table, each row is inserted as a
single document containing any number of JSON fields. You can add JSON fields through
INSERT or UPSERT operations.

Choice of Keys in NoSQL Database

ORACLE

Primary keys and shard keys are important elements in your schema and help you access and
distribute data efficiently.

Primary keys and shard keys are indispensable for data distribution and easy accessibility. You
specify primary keys and shard keys only when you create a table. They remain in place for
the life of the table, and cannot be changed or dropped.

Using Primary Keys and Shard Keys in Oracle NoSQL tables
Primary Keys

You must designate one or more primary key columns when you create your table. The primary
key cannot be changed and exists for the life of the table. A primary key uniquely identifies
every row in the table. For simple CRUD operations, Oracle NoSQL Database uses the
primary key to retrieve a specific row to read or modify. Since the underlying storage in NoSQL
Database is based on a key/value model, the choice of the primary key can greatly enhance
the performance of certain lookup operations.

Shard Keys

5-105

ORACLE

Chapter 5
Table Modelling and Design

The main purpose of shard keys is to distribute data across the Oracle NoSQL Database
cluster for scalability and to co-locate the records that share the same shard key on the same
physical node for easy reference. These records can be accessed atomically and efficiently.

Impact of keys while developing an application:

In an Oracle NoSQL Database, replication nodes are grouped together to form the shards of
the NoSQL Database cluster. When an application asks to retrieve the record for a given key,
the NoSQL Database driver will hash a portion of the key (denoted as the shard key) to
identify the shard that houses the data. Once the shard is identified, the NoSQL Database
driver can choose to read the data from the most optimal replica in the shard, depending on
the requested consistency level. With respect to the write operations, the NoSQL Database
driver will always route the write requests to the dynamically elected leader node of the shard.
Hence, from the perspective of workload scaling, you can generally think of this architecture as
being scaled by adding shards. Oracle NoSQL Database supports the online elastic expansion
of the cluster by adding shards, however, without the proper selection of a shard key,
expanding the cluster will be useless in scaling your solution.

How you design primary keys and shard keys has huge implications on scaling and realizing
the system throughput. For instance, when records share shard keys, you can delete multiple
table rows in an atomic operation, or retrieve a subset of rows in your table in a single atomic
operation. In addition to enabling scalability, well-designed shard keys can improve
performance by requiring fewer cycles to put data on, or get data from, a single shard. Shard
keys designate storage on the same shard to facilitate efficient queries for key values.
However, because you want your data to be distributed across the shards for best performance
and scalability, you will want to avoid shard keys that have a small number of unique values.

Important factors to consider when choosing a shard key:

e Cardinality: Low cardinality field groups are stored together on a small number of shards.
In turn, those shards require frequent data rebalancing, increasing the likelihood of hot
shard issues. Instead, each shard key should have high cardinality, where it can express
several million values. For best performance and value, choose fields with high
cardinalities, such as identity numbers, where millions of records are possible.

« Atomicity:Only objects that share the same shard key can participate in a transaction. If
you have a requirement for ACID transactions that span multiple records, choose only a
shard key that lets you meet that requirement.

Best practices to follow:

< Uniform distribution of shard keys:Operations may be limited by the capacity of a single
shard. When shard keys are uniformly distributed, no single shard limits the capacity of the
system. Choosing one or more columns whose values are known to be uniformly
distributed is ideal.

* Query Isolation: Queries should be targeted to a specific shard to maximize scalability. If
queries are not isolated to a single shard, the query will be applied to all shards. This is
less efficient and increases query latency. Make sure your queries fetch data stored in a
single shard. Well-designed shard keys can improve performance by getting data from a
single shard. Shard keys designate storage on the same shard to facilitate efficient queries
for key values. Specify the fields (which are frequently used in your application queries) as
shard keys.

Key Sizes and Key Only Modeling Methods

Oracle NoSQL Database caches the keys for each table. So the key size is a critical
component to the effective use of memory and ultimately may be a determining factor in the
ability of Oracle NoSQL Database to service your performance SLAs. Hence, it is important for
you to create primary keys that are as efficient as possible with respect to size. For workloads

5-106

ORACLE

Chapter 5
Table Modelling and Design

that require very low latencies for the read and writes (single to low double-digit milliseconds)
across millions of operations per second, exploiting cached keys in NoSQL's B-trees can be
the make or break of building an application capable of achieving these stringent requirements.
Furthermore, if you can encode what would otherwise be non-key values as part of the primary
key and also size your keys and the NoSQL Database cluster carefully, then you can realize
the enormous benefits of memory cached B-tree access methods that are maintained with
ACID semantics. For highly optimal, ultra-low latency applications, Oracle NoSQL provides
key-only accessors for those workloads that can model everything as key-only data. Oracle
NoSQL Database offers convenient key-only access APIs such as multiKetGeys and
tableKeysIterator for doing key-only scans.

When considering whether or not key-only modeling of your data is right for your application,
you should consider the following:

« Latency and throughput SLAs — Do you have very stringent latency and throughput
SLAs that would require a key-only model? Can you afford to perform an 1/O when
retrieving a value, noting that for spinning disks, the average latency of retrieving your
value could be anywhere from fifteen to thirty milliseconds and for Single Shared Disk
(SSD) this could be anywhere from one to 5 milliseconds.

e Spinning disk versus SSDs — If you are considering using SSDs and your latency SLAs
are for reads that can comfortably fit within the 5-millisecond range then it's probably not
worth the effort to try and craft a key-only model for your application.

* Code maintainability and extensibility — Key-only modeling brings large performance
benefits to your application at the potential cost of code maintainability and extensibility.
You may find that encoding your value into the key can ultimately be a complex and
esoteric strategy. Ultimately, you will have to make a judgment call on whether or not the
code you develop and maintain is too complex and esoteric to be worth the benefit of the
key-only solution.

* Accurate sizing data — Is it possible for you to derive a somewhat accurate sizing of your
keys such that you can adequately size the Oracle NoSQL Database cluster? Sizing the
cluster and the cache of each replication node will be crucial to exploiting the benefits of a
key-only data model.

Key Column Ordering and Query-ability

In Oracle NoSQL Database, the order of declaration for key columns is crucial to satisfying
partial key lookup queries. This is because of the way that the storage engine manages the
underlying B-trees. You can think of composite keys as an ordered concatenation of the
columns specified in the DDL for the key declaration (primary key or index key). You should
think of the order from the most significant column to the least significant column based on the
appearance of the columns in the DDL for the key. If your table has a composite primary key
(‘a primary key with more than one column), then the primary key becomes a concatenation of
the string representation of each column. Here for better performance of queries, it is important
to specify the most commonly used query column as the most significant column in the primary
key.

As you start to think about how you will size your cluster and your Oracle NoSQL Database
caches, a critical consideration is to get an estimate of your key sizes. Sizing your caches so
that Oracle NoSQL can keep most or all of the index nodes in memory can help your
application realize enormous performance benefits. Understanding how keys are serialized
and stored persistently can help you in getting a more accurate sizing estimate. In Oracle
NoSQL Database, numeric keys are stored as compressed String values but must remain
sortable when in string format. This means that a numeric key must be a fixed size when
represented as a key string. See Initial Capacity Planning for more details on shard capacity,
shard storage, and throughput capacities and how to estimate total shards and machines.

Choice of using Identity column Vs UUID

5-107

Chapter 5
Table Modelling and Design

Declare a column as IDENTITY to have Oracle NoSQL Database automatically assign values
to it, where the values are generated from an associated sequence generator. The sequence
generator is the table’s manager for tracking the IDENTITY column’s current, next, and total
number of values. You create an IDENTITY column as part of a CREATE TABLE hame DDL
statement, or add an IDENTITY column to an existing table with an ALTER TABLE name DDL
statement.

A universally unique identifier (UUID) is a 128-bit number used to identify information in
computer systems. You can create a UUID and use it to uniquely identify something. In Oracle
NoSQL, UUID values are represented by the UUID data type. The UUID data type is
considered a subtype of the STRING data type, because UUID values are displayed in their
canonical textual format and, in general, behave the same as string values in the various SQL
operators and expressions. A table column can be declared as having UUID type in a CREATE
TABLE statement. The UUID data type is best-suited in situations where you need a globally
unigue identifier for the records in a table that span multiple regions since identity columns are
only guaranteed to be unique within a NoSQL cluster in a region.

Table 5-2 Comparison between Identity Column and UUID column
]

Identity Column UUID column
Declare a column as Identity to have Oracle Declare a column as UUID if you need unique
NoSQL Cluster automatically assign values to it values to be assigned to a NoSQL Cluster column

in a multi-region system

An INTEGER, LONG, or NUMBER column in a A UUID is a subtype of the STRING data type
table can be defined as an Identity column

An Identity column can be defined either as A UUID column can be defined as GENERATED
GENERATED ALWAYS or GENERATED BY BY DEFAULT or you can supply the value of the
DEFAULT string while inserting or updating data

Costs less storage space than a corresponding Costs more storage space than a corresponding
UUID column. Identity column.

If LONG is the primary key, it costs a maximum of If the UUID value is the primary key, it costs 19-
10 bytes. If LONG is a non-primary key, it costs a bytes. If the UUID value is a non-primary key;, it
maximum of 8 bytes. costs 16-bytes.

Identity columns allow Oracle NoSQL to UUID columns allow Oracle NoSQL to
automatically assign values within a single region. automatically assign global values across regions.
An error is thrown if an Identity column is used in a This is useful in multi-region deployments. A UUID
multi-region deployment. column is larger than an Identity column.

Using Indexes in NoSQL Database

ORACLE

In Oracle NoSQL Database, the query processor can identify which of the available indexes
are beneficial for a query and rewrite the query to make use of such an index.

Using an index means scanning a contiguous subrange of its entries, potentially applying
further filtering conditions on the entries within this subrange, and using the primary keys
stored in the index entries to extract and return the associated table rows. The subrange of the
index entries to scan is determined by the conditions appearing in the WHERE clause, some of
which may be converted to search conditions for the index. Given that only a (hopefully small)
subset of the index entries will satisfy the search conditions, the query can be evaluated
without accessing each individual table row, thus saving a potentially large number of disk
accesses.

In an Oracle NoSQL Database, a primary-key index is always created by default. This index
maps the primary key columns of a table to the physical location of the table rows.
Furthermore, if no other index is available, the primary index will be used. In other words, there

5-108

ORACLE

Chapter 5
Table Modelling and Design

is no pure table scan mechanism; a table scan is equivalent to a scan via the primary-key
index. When it comes to indexes and queries, the query processor must answer two questions:

1. Is an index applicable to a query? That is, will accessing the table via this index be more
efficient than doing a full table scan (via the primary index)?

2. Among the applicable indexes, which index or combination of indexes is the best to use?

There are no statistics on the number and distribution of values in a table column. As a result,
the query processor has to rely on some simple heuristics in choosing among the applicable
indexes. In addition, SQL for Oracle NoSQL Database allows for the inclusion of index hints in
the queries. You can use index hints to force the use of a particular index in queries. You can
use a query execution plan to understand what indexes are being used in the query. For more
information on how a query is executed, see Query execution plan.

Secondary Index

There will be cases where you will want to use a secondary index to support some of your read
requirements. Each secondary index that you add to a table will incur some overhead for writes
as each index will need to be maintained. The good news with Oracle NoSQL is that
secondary index partitions live on the same shard as the primary data, so the updates to the
secondary index are limited on a per-shard basis. Index updates in Oracle NoSQL are also
atomic, so your application can be guaranteed that updates to records in the shard are
consistent with updates to the secondary index and these structures will never be out of sync.
Another factor for consideration is that Oracle NoSQL Database nodes will keep the non-leaf
index nodes in the cache, and will never cache the leaf portion (i.e. the data record). This gives
the indexed scan an enormous performance benefit (for systems using spinning disk) over the
non-indexed scan.

There are several things that you should think about when deciding on using a secondary
index in Oracle NoSQL Database:

» Filtering data close to the source — In Oracle NoSQL Database, secondary indexes are the
primary mechanism for you to utilize when your query needs a filter and that filter needs to
be executed as close as possible to the data. To fully understand why you may need a
secondary index to filter your data for querying, let's consider your options for scanning the
data in a table:

— Unordered parallel table scan with no full shard key — The shard key is a table column
or multiple columns used to control how the rows of that table are distributed. The
main purpose of shard keys is to distribute data across the Oracle NoSQL Database
Cloud cluster for scalability, and to position records that share the same shard key
locally for easy reference and access. When you write a query using filters as columns
that are part of the shard key but also include other columns, then you end up doing a
parallel table scan. Each shard is scanned in parallel and the data is returned to your
application. This will return every record in the table across all shards in the NoSQL
Database.

— Ordered or unordered parallel index scan — The B-tree index at each shard is scanned
in parallel. If an ordered scan is requested, the results are merged and presented.

* Each option for scanning a table has its own costs and benefits and you should carefully
weigh these tradeoffs and use what you know about the application requirements and
expected workload to help guide your modeling decision.

— Efficient range scans — Will it be common for your queries to restrict the value ranges?
For example, if your application needs to answer queries like “find all records between
a range of dates” then using secondary indexes in Oracle NoSQL Database will be the
easiest and most efficient way for your application to answer these types of queries.

5-109

Chapter 5
Table Modelling and Design

— Workload and index maintenance update — Is it acceptable for writes to incur some
extra overhead for index maintenance? Does your workload exhibit heavy read activity
where latency for reads is more important than incurring extra write overhead?

See Tuning and Optimizing SQL queries for more guidelines on using indexes in queries.

Transactions in NoSQL database

ORACLE

In Oracle NoSQL Database, a transaction is treated as a logical, atomic unit of work that
entails a single database operation.

Every data modification in the database takes place in a single transaction, managed by the
system. Database developers do not have the ability to group multiple operations into a single
transaction because there isn't the notion of begin/end transactions. In a database,
transactional semantics are often described in terms of ACID properties.

ACID properties

In Oracle NoSQL Database, transactions maintain all the following properties and developers
can control some of them.

e Atomicity: Transaction either completes or fails in its entirety. There is no in-between state
or no partial transactions.

* Consistency: Transaction leaves the database in a valid state.

* Isolation: No two transactions mingle or interfere with each other. Developers get the
same result when the two transactions are executed in sequence or executed in parallel.

« Durability: Changes in a transaction are saved and the changes survive any type of failure
(network, disk, CPU, or a power failure).

Developers can define a wide range of consistency levels depending on the application's
needs with the Oracle NoSQL Database Direct Driver. In addition, the Oracle NoSQL Database
Drivers (commonly called the SDKs) support eventual and absolute consistency.

Developers can also configure durability such that updated rows in the database survive any
failure with the Oracle NoSQL Database Direct Driver. Durability is not configurable in the
SDKs.

Atomicity and Isolation are not configurable but Oracle NoSQL Database allows you to control
consistency and durability policies in order to trade-off the performance for application needs.
Some NoSQL databases only support eventual consistency but have no mechanism for
absolute consistency.

Shard keys play an important role in achieving the ACID properties in the Oracle NoSQL
database. For instance, when records share shard keys, you can delete multiple table rows in
an atomic operation, or retrieve a subset of rows in your table in a single atomic operation. In
addition to enabling scalability, well-designed shard keys can improve performance by
requiring fewer cycles to put data on, or get data from, a single shard.

The NoSQL table hierarchy is an ideal data model for applications that need some data
normalization, but also require predictable, low latency at scale. The hierarchy links different
tables to enable left outer joins, combining rows from two or more tables based on related
columns between them. Such joins execute efficiently since rows from the parent-child tables
are co-located in the same shards. Also, writes to multiple tables in a table hierarchy obey
transactional ACID properties since the records residing in each table of the hierarchy share
the same shard key. All write operations perform as a single atomic unit. So all of the write
operations will execute successfully, or none of them will.

5-110

ORACLE

Chapter 5
Table Modelling and Design

Using Parent-Child tables in the Oracle NoSQL database

The Oracle NoSQL Database enables tables to exist in a parent-child relationship. This is
known as table hierarchies.

Many NoSQL databases support data types like arrays and maps. When modeling a data
relationship, application developers may find it easier to have each parent row store its child
rows inside an array or a map in a nested structure. By doing so, not only is the data
relationship denormalized but it has the potential for creating large parent rows, especially
when the hierarchy is heavily nested, resulting in inefficient storage and poor performance.
Oracle NoSQL Database’s table hierarchy is the ideal data model to avoid issues associated
with arrays and maps. One of the biggest benefits of using child tables over embedded arrays
is for those workloads that have a high velocity of write operations. When using embedded
arrays, the write operations become updates, but when they are modeled as child tables, those
operations become inserts. Inserts in a log-structured, append-only storage architecture are
much more optimal than updates. Utilizing a table hierarchy should be considered when
building data relationships in Oracle NoSQL Database.

The NoSQL table hierarchy is an ideal data model for applications that need some data
normalization, but also require predictable, low latency at scale. The hierarchy links different
tables to enable left outer joins, combining rows from two or more tables based on related
columns between them. Such joins execute efficiently since rows from the parent-child tables
are co-located in the same shards. Also, writes to multiple tables in a table hierarchy obey
transactional ACID properties since the records residing in each table of the hierarchy share
the same shard key. All write operations perform as a single atomic unit. So all of the write
operations will execute successfully, or none of them will.

The Benefits of a Table Hierarchy

Oracle NoSQL Database table hierarchy comes with the following benefits:

< Highly efficient for storing data in a parent-child hierarchy - Parent and child rows are
stored in separate NoSQL tables, reducing the size of parent rows compared with the
single parent with child rows in nested arrays or maps. Write operations on parent or child
tables create new versions of smaller rows and store these changes efficiently, given the
append-only architecture of Oracle NoSQL Database.

« Highly performant for read and write workloads - Parent and child rows reside in the
same local shard, enabling write and read operations to achieve high performance since all
records in the hierarchy can be read or written in a single network call.

< Highly flexible for fine-grained authorization - Access rights to a parent or child table
can be configured individually based on conditions at run-time, offering granular and
flexible authorization.

e Scalable ACID transactions - Uniquely balance the goals of scalability, low latency, and
ACID by co-locating parent and child data on the same shard.

e Table joins - Data can be queried using the nested table clause or left outer joins.

Characteristics of parent-child tables:
e A child table inherits the primary key columns of its parent table.

< All tables in the hierarchy have the same shard key columns, which are specified in the
create table statement of the root table.

« A parent table cannot be dropped before its children are dropped.

« Areferential integrity constraint is not enforced in a parent-child table.

5-111

Chapter 5
Handling Errors

A NoSQL table hierarchy not only captures the relationship between data entities but also
takes advantage of the co-location of the parent-child rows to offer highly performant retrievals
and superior scalability. The table hierarchy enables applications to implement ACID
transactions. All data in the same parent-child rows are stored in the same shard and can be
committed as a single database operation to ensure atomicity, consistency, isolation, durability.

Handling Errors

Learn how to handle errors and exceptions.

e Handling Driver Errors

Handling Driver Errors

ORACLE

Learn how to handle driver-related errors and exceptions reported during building or running
the application.

e Java

e Python
« Go

* Node.js
e C#
Java

Java errors are thrown as exceptions when you build or run your application. The
NoSQLException class is the base for most exceptions thrown by the driver. However, the driver
throws exceptions directly for some classes, such as I1legalArgumentException and
NullPointerException.

In general, NoSQL exception instances are split into two broad categories:

* Exceptions that may be retried with the expectation that they may succeed on retry.

These exceptions are instances of the RetryableException class. These exceptions
usually indicate resource consumption violations.

* Exceptions that will fail even after retry.

Examples of exceptions that should not be retried are T11egalArgumentException,
TableNotFoundException, and any other exception indicating a syntactic or semantic error.

Python

Python errors are raised as exceptions defined as part of the API. They are all instances of
Python’s RuntimeError. Most exceptions are instances of borneo.NoSQLException which is a
base class for exceptions raised by the Python driver.

Exceptions are split into 2 broad categories: Exceptions that may be retried with the
expectation that they may succeed on retry. These are all instances of
borneo.RetryableException. Examples of these are the instances of
borneo.ThrottlingException which is raised when resource consumption limits are

5-112

ORACLE

Chapter 5
Handling Errors

exceeded. Exceptions that should not be retried, as they will fail again. Examples of these
include borneo.IllegalArgumentException , borneo.TableNotFoundException, etc.

borneo.ThrottlingException instances will never be thrown in an on-premise configuration
as there are no relevant limits.

Go

Go SDK errors are reported as nosqglerr.Error values defined as part of the API. Errors are
split into 2 broad categories:

e Errors that may be retried with the expectation that they may succeed on retry. These are
retryable errors on which the Error.Retryable () method call returns true. Examples of
these include nosglerr.OperationLimitExceeded, nosglerr.ReadLimitExceeded,
nosqglerr.WriteLimitExceeded, which are raised when resource consumption limits are
exceeded.

« Errors that should not be retried, as they will fail again. Examples of these include
nosqglerr.IllegalArgumentError, nosqlerr.TableNotFoundError, etc.

Node.js

Asynchronous methods of NoSQLClient return Promise as a result and if an error occurs it
results in the Promise rejection with that error. For synchronous methods such as NoSQLClient
constructor errors are thrown as exceptions. All errors used by the SDK are instances of
NoSQLError or one of its subclasses. In addition to the error message, each error has
errorCode property set to one of standard error codes defined by the ErrorCode enumeration.
errorCode may be useful to execute conditional logic depending on the nature of the error.

For some error codes, specific subclasses of NoSQLError are defined, such as
NoSQLArgumentError, NoSQLProtocolError, NoSQLTimeoutError, etc.
NoSQLAuthorizationError may have one of several error codes depending on the cause of
authorization failure. In addition, errors may have cause property set to the underlying error
that caused the current error. Note that the cause is optional and may be an instance of an
error that is not part of the SDK.

In addition, error codes are split into 2 broad categories:

e Errors that may be retried with the expectation that the operation may succeed on retry.
Examples of these are ErrorCode.READ LIMIT EXCEEDED and
ErrorCode.WRITE LIMIT EXCEEDED which are throttling errors (relevant for the Cloud
environment), and also ErrorCode .NETWORK_ERROR since most network conditions are
temporary.

« Errors that should not be retried, as the operation will most likely fail again. Examples of
these include ErrorCode . ILLEGAL ARGUMENT (represented by NoSQLArgumentError),
ErrorCode. TABLE NOT_FOUND, etc.

You can determine if the NoSQLError is retryable by checking retryable property. Its value is
set to true for retryable errors and is false or undefined for non-retryable errors.

Retry Handler

The driver will automatically retry operations on a retryable error. Retry handler determines:
e Whether and how many times the operation will be retried.

* How long to wait before each retry.

RetryHandler is an interface with with 2 properties:

5-113

ORACLE

Chapter 5
Handling Errors

* RetryHandler#doRetry that determines whether the operation should be retried based on
the operation, number of retries happened so far and the error occurred. This property is
usually a function, but may be also be set to boolean false to disable automatic retries.

e RetryHandler#delay that determines how long to wait before each successive retry based
on the same information as provided to RetryHandler#doRetry. This property is usually a
function, but may also be set to number of milliseconds for constant delay.

C#

NoSQLException serves as a base class for many exceptions thrown by the driver. However,
in certain cases the driver uses standard exception types such as:

e ArgumentException and its subclasses such as ArgumentNullException. They are thrown
when an invalid argument is passed to a method or when an invalid configuration (in code
or in JSON) is passed to create NoSQLClient instance.

° TimeoutException is thrown when an operation issued by NoSQLClient has timed out. If
you are getting many timeout exceptions, you may try to increase the timeout values in
NoSQLConfig or in options argument passed to the NosQLClient method.

e InvalidOperationException is thrown when the service is an invalid state to perform an
operation. It may also be thrown if the query has failed be cause its processing exceeded
the memory limit specifed in QueryOptions.MaxMemoryMB Of NoSQLConfig.MaxMemoryMB. In
this case, you may increase the corresponding memory limit. Otherwise, you may retry the
operation.

* InvalidCastException and OverflowException may occur when working with sublcasses
of FieldValue and trying to cast a value to a type it doesn't support or cast a numeric value
to a smaller type causing arithmetic overflow.

* OperationCanceledException and TaskCanceledException if you issued a cancellation of
the operation started by a method of NosQLClient using the provided CancellationToken.

In addition, exceptions may be split into two broad categories:

* Exceptions that may be retried with the expectation that the operation may succeed on
retry. In general these are subclasses of RetryableException. These include throttling
exceptions as well as other exceptions where a resource is temporarily unavailable. Some
other subclasses of NoSQLException may also be retryable depending on the conditions
under which the exception occurred. In addition, network-related errors are retryable
because most network conditions are temporary.

» Exceptions that should not be retried because they will still fail after retry. They include
exceptions such as TableNotFoundException, TableExistsException and others as well
as standard exceptions such as ArgumentException.

You can determine if a given instance of NoSQLException is retryable by checking its
IsRetryable property.

Retry Handler

By default, the driver will automatically retry operations that threw a retryable exception (see
above). The driver uses retry handler to control operation retries. The retry handler determines:

* Whether and how many times the operation will be retried.
* How long to wait before each retry.

All retry handlers implement IRetryHandler interface. This interface provides two methods,
one to determine if the operation in its current state should be retried and another to determine
a retry delay before the next retry. You have a choice to use default retry handler or set your

5-114

ORACLE

Chapter 5
Handling Errors

own retry handler as RetryHandler property of NoSQLConfig when creating NoSQLClient
instance.

Note:

Retries are only performed within the timeout period alloted to the operation and
configured as one of timeout properties in NoSQLConfig or in options passed to the
NoSQLClient method. If the operation or its retries have not succeded before the
timeout is reached, TimeoutException is thrown.

By default, the driver uses NoSQLRetryHandler class which controls retires based on operation
type, exception type and whether the number of retries performed has reached a preconfigured
maximum. It also uses exponential backoff delay to wait between retries starting with a pre
configured base delay. You may customize the properties such as maximum number of retries,
base delay and others by creating your own instance of NoSQLRetryHandler and setting it as a
RetryHandler property in NoSQLConfig. For example:

var client = new NoSQLClient (
new NoSQLConfig

RetryHandler = new NoSQLRetryHandler

{
MaxRetryAttempts = 20,
BaseDelay = TimeSpan.FromSeconds (2)

b7

If you don't specify the retry handler, the driver will use an instance of NoSQLRetryHandler with
default values for all parameters. Alternatively, you may choose to create your own retry
handler class by implementing IRetryHandler interface. The last option is to disable retries all
together. You may do this if you plan to retry the operations within your application instead. To
disable retries, set RetryHandler property of NoSQLConfig to NoRetries:

var client = new NoSQLClient (
new NoSQLConfig

RetryHandler = NoSQLConfig.NoRetries
b

Handle Resource Limits: Programming in a resource-limited environment can be challenging.
Tables have user-specified throughput limits and if an application exceeds those limits it may
be throttled, which means an operation may fail with one of the throttling exceptions such as
ReadThrottlingException Of WriteThrottlingException. This is most common when using
queries, which can read a lot of data, using up capacity very quickly. It can also happen for get
and put operations that run in a tight loop.

Even though throttling errors will be retried and using custom RetryHandler may allow more
direct control over retries, an application should not rely on retries to handle throttling as this

5-115

Chapter 5
Handling Errors

will result in poor performance and inability to use all of the throughput available for the table.
The better approach would be to avoid throttling entirely by rate-limiting your application. In this
context rate-limiting means keeping operation rates under the limits for the table.

ORACLE .

Glossary

ORACLE Glossary-1

Index

ORACLE" Index-1

	Contents
	List of Tables
	1 Get Started
	Getting started with Oracle NoSQL Database
	Sample use-cases used in the examples
	Starting the SQL shell
	Tables used in the examples
	Describe tables
	Sample data to run queries
	Table Hierarchies
	About Oracle NoSQL Database SDK drivers
	Obtaining a NoSQL Handle

	2 Create
	Creating a namespace
	Creating a region
	Creating a table
	Using SQL commands
	Using TableRequest API

	Create and View Indexes
	Classification of Indexes
	Creating Indexes
	Using SQL commands
	Using TableRequest API

	View Index

	3 Manage
	Namespace Management
	Namespace Resolution
	Manage Namespaces
	Namespace scoped privileges
	Granting Authorization Access to Namespaces

	Managing Tables, Indexes & Regions
	Alter Table
	Using SQL command to alter table
	Using TableRequest API to alter table

	Drop Table
	Using SQL command to drop table
	Using TableRequest API to drop table

	Drop Index
	Using SQL command to drop index
	Using TableRequest API to drop index

	Manage regions

	4 Develop
	Inserting, Modifying, and Deleting Data
	Insert data
	Using SQL command to insert data
	Using Put API to insert data
	Using MultiWrite API to insert data

	Upsert Data
	Using SQL command to upsert data
	Using API to upsert data

	Update Data
	Using SQL command to update data
	Using API to update data

	Modify JSON data
	Using SQL command
	Using API

	Delete Data
	Using SQL command to delete data
	Using API to delete a single row
	Using API to delete multiple rows
	Using Query API to delete data

	Simple SELECT queries
	Using SQL commands to fetch data
	Substituting column names in a query
	Using Get API to fetch data
	Using Query API to fetch data

	SELECT queries on JSON collection tables
	Using Path expressions
	Using Internal variables and aliases
	Working with Arrays
	Working with nested data type
	Finding the size of a complex data type

	Using Left Outer joins with parent-child tables
	Overview of Left Outer Joins
	Examples using Left Outer Joins
	SQL Examples
	Query API examples

	Using NESTED TABLES to join parent-child tables
	Overview of NESTED TABLES
	Examples using NESTED TABLES
	SQL Examples
	Query API examples

	Tuning and Optimizing SQL queries
	Using Indexes for query optimization
	Examples of queries using index

	Managing GeoJSON data
	geo_inside
	geo_intersect
	geo_distance
	geo_within_distance
	geo_near
	geo_is_geometry

	5 Reference
	Operators in SQL
	Sequence Comparison Operators
	Logical operators
	NULL operators
	Value Comparison Operators
	BETWEEN Operator
	IN Operator
	Regular Expression Conditions
	EXISTS Operator
	Is-Of-Type Operator
	SQL Operators examples using QueryRequest API

	Sorting, Grouping & Limiting results
	Ordering results
	Limit and offset results
	Grouping results
	Aggregating results
	Examples using QueryRequest API

	Primary Expressions in SQL
	Parenthesized Expressions
	Case Expressions
	Cast Expression
	Sequence Transform Expressions
	Extract Expressions
	SQL Expression examples using QueryRequest API

	Timestamp Functions
	Timestamp Arithmetic Functions
	Timestamp Round Functions
	Timestamp Format Functions
	Timestamp Extract Functions
	Current Time Functions
	Examples using QueryRequest API

	Functions on Strings
	substring function
	concat function
	upper and lower functions
	trim function
	length function
	contains function
	starts_with and ends_with functions
	index_of function
	replace function
	reverse function
	Examples using QueryRequest API

	Query execution plan
	Overview of query plan
	Query 1: Using primary key index with an index range scan
	Query 2: Using primary key index with an index predicate
	Query 3: Using a secondary index with an index range scan
	Query 4: Using the primary index
	Query 5: Sort the data using a Covering index
	Query 6: Using a secondary index with an index predicate
	Query 7: Group data with fields as part of the index
	Query 8: Using the secondary index with multiple index scans
	Query 9: A SINGLE PARTITION query using a primary index
	Query 10: Group data with fields not part of any index

	Table Modelling and Design
	Schema Flexibility in Oracle NoSQL Database
	Choice of Keys in NoSQL Database
	Using Indexes in NoSQL Database
	Transactions in NoSQL database

	Handling Errors
	Handling Driver Errors

	Glossary
	Index

