Oracle® NoSQL Database
SQL Reference Guide

Release 24.3
F14605-26
September 2024

ORACLE"

Oracle NoSQL Database SQL Reference Guide, Release 24.3
F14605-26
Copyright © 2011, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Introduction to SQL for Oracle NoSQL Database

SQL Program 11
EBNF Syntax 1-2
Comments 1-3
Identifiers 1-3
Literals 1-4
Operator Precedence 1-5
Reserved Words 1-5
Case Sensitivity 1-5
Constraints 1-5
Oracle NoSQL Database Data Model

Atomic Data Types 2-1
Complex Data Types 2-3
JSON Data Type 2-5
Wildcard Data Types 2-6
Data Type Hierarchy 2-7
Data Type Definitions 2-9
Namespace Management

CREATE NAMESPACE Statement 3-1
SHOW NAMESPACES Statement 3-2
DROP NAMESPACE Statement 3-3
Namespace Resolution 3-4
Namespace Scoped Privileges 3-4
Granting Authorization Access to Namespaces 3-4
Region Management

CREATE REGION Statement 4-1
SHOW REGIONS Statement 4-1

ORACLE"

DROP REGION Statement 4-2

5 Table Management

CREATE TABLE Statement 5-1
SHOW TABLES Statement 5-12
DESCRIBE TABLE Statement 5-13
Table Hierarchies 5-17
Using JSON Collection Tables 5-20
Using the IDENTITY Column 5-23

Creating Tables With an IDENTITY Column 5-26
Using the UUID data type 5-29
Using the MR_COUNTER datatype 5-31

Using CRDT datatype in a multi-region table 5-31

Create table using MR_COUNTER datatype 5-33
Sequence Generator 5-35
DROP TABLE Statement 5-41
ALTER TABLE Statement 5-42
Altering an IDENTITY Column 5-46
Add or Remove a UUID column 5-47
Add or Remove an IDENTITY column 5-48
Add or Remove an MR_COUNTER column 5-50

6 SQL Query Management

Expressions 6-1
Sequences 6-3
Sequence Types 6-5
Variable Declaration 6-7
SELECT Expression 6-8
FROM Clause 6-8
WHERE Clause 6-12
GROUP BY Clause 6-14
Using Aggregate Functions 6-17
Sequence Aggregate Functions 6-27
ORDER BY Clause 6-31
SELECT Clause 6-36
LIMIT Clause 6-39
OFFSET Clause 6-39
Path Expressions 6-40
Field Step Expressions 6-40
Map-Filter Step Expressions 6-43
ORACLE

Array-Filter Step Expressions 6-44
Array-Slice Step Expressions 6-46
Comparison Expressions 6-47
Logical Operators: AND, OR, and NOT 6-47
IS NULL and IS NOT NULL Operators 6-49
Value Comparison Operators 6-50
Sequence Comparison Operators 6-53
BETWEEN Operator 6-56
IN Operator 6-59
Regular Expression Conditions 6-60
Exists Operator 6-71
Is-Of-Type Operator 6-72
Concatenation Operator 6-72
Arithmetic Expressions 6-73
Primary Expressions 6-75
Parenthesized Expressions 6-76
Constant Expressions 6-76
Column References 6-77
Variable References 6-78
Array and Map Constructors 6-79
Case Expressions 6-80
Cast Expression 6-82
Extract Expressions 6-83
Function Calls 6-85
Sequence Transform Expressions 6-86
Unnest Arrays & Maps 6-90
Example: Using unnesting with a GROUP BY clause 6-98
Joins 6-100
Using NESTED TABLES clause to query multiple tables in the same hierarchy 6-101
Example: Using NESTED TABLES clause to query multiple tables in the same hierarchy 6-104
Left Outer Join (LOJ) 6-106
Different scenarios of using an LOJ 6-106
Limitations of LOJ 6-110
Nested tables Vs LOJ 6-112
Example: Using Left Outer Joins 6-112
V4 Data Row Management
INSERT Statement 7-1
Inserting Rows into JSON Collection Tables 7-5
Inserting Rows with an IDENTITY Column 7-8
Inserting rows into a table with a UUID column 7-10

ORACLE

Inserting rows with an MR_COUNTER column 7-12
Upsert statement 7-14
Updating rows of a table with a UUID column 7-19
DELETE Statement 7-19
UPDATE Statement 7-20
Update Clauses 7-21
SET Clause 7-22

ADD Clause 7-23

PUT Clause 7-23
REMOVE Clause 7-24

SET TTL Clause 7-24
Updating rows with an IDENTITY Column 7-24
Updating rows with an MR_COUNTER column 7-25
Example: Updating Rows 7-28
Example: Updating JSON Data 7-30
Example: Updating JSON collection tables 7-35
Example: Updating TTL 7-36
Example: Updating IDENTITY defined as GENERATED ALWAYS 7-36
Example: Updating IDENTITY defined as GENERATED BY DEFAULT 7-37
JSON Collection Table Example 7-38

8 Indexes

About Indexes 8-1
CREATE INDEX Statement 8-1
Classification of Indexes 8-3
Single Field Index 8-4
Composite Index 8-4
Fixed Schema Index 8-5
JSON Index 8-5
Simple Index 8-6
Multikey Index 8-7
Nested Multikey Index 8-7
Composite Multikey Index 8-7
Specifications & Restrictions on Multikey Indexes 8-9

Index on JSON Collection Tables 8-10
Indexes on Functions 8-11
Examples of creating indexes on functions 8-12

SHOW INDEXES Statement 8-15
DESCRIBE INDEX Statement 8-16
DROP INDEX Statement 8-18

ORACLE

Vi

Appendix 8-18
o Query Optimization
Using Indexes for Query Optimization 9-1
Finding Applicable Indexes 9-2
Examples: Using Indexes for Query Optimization 9-3
Optimizing unnesting queries with the UNNEST clause 9-8
Choosing the Best Applicable Index 9-11
Appendix 9-12
10 Query Plan
Overview of a query plan 10-1
Examples of query execution plan 10-3
Example 1 : Using a covering index in a query plan with only index scans 10-4
Example 2 : Using a covering index in a query plan with index scans and index
predicates 10-6
Example 3: Using a non-covering index in a query plan with index scans 10-9
Example 4: Sort the data using a Covering index 10-12
Example 5: Sort the data using a field not part of the index 10-15
Example 6: Group the data using a Covering index 10-18
Example 7: Group data with fields not part of the index 10-22
11 GeoJdson Data Management
About GeoJson Data 11-1
Lines and Coordinate System 11-4
Restrictions on GeoJson Data 11-6
Searching for GeoJson Data 11-6
Indexing GeoJson Data 11-12
12 Built-in Functions
Functions on Complex Values 12-2
Functions on Sequences 12-3
Functions on Timestamps 12-6
timestamp_add function 12-7
timestamp_diff function 12-9
get_duration function 12-11
timestamp__ceil function 12-13
timestamp_floor or timestamp_trunc function 12-14
timestamp_round function 12-16

ORACLE"

Vii

timestamp_bucket function
format_timestamp function
parse_to_timestamp function
to_last_day_of month function
Timestamp extract functions
Date extract functions
week/isoweek functions

Timestamp index extract functions

current_time_millis function
current_time function
Supported units

Function to generate a UUID string
Functions on Rows

Functions on GeoJson Data
Functions on Strings

substring Function
concat Function
upper Function
lower Function

trim Function

[trim Function

rtrim Function
length Function
contains Function
starts_with Function
ends_with Function
index_of Function
replace Function
reverse Function

Function to Convert String to JSON
Functions of Mathematical Operations

abs function

arc cosine function
arc sine function
arc tan function
arc tan2 function
ceil function
cosine function
cotangent function
degrees function
Euler function

exp function

ORACLE

12-17
12-19
12-21
12-23
12-24
12-24
12-26
12-27
12-29
12-30
12-31
12-39
12-41
12-49
12-51
12-51
12-54
12-55
12-56
12-57
12-59
12-60
12-60
12-61
12-62
12-63
12-64
12-65
12-67
12-68
12-71
12-72
12-73
12-74
12-75
12-75
12-76
12-76
12-77
12-78
12-78
12-79

viii

floor function 12-80

In function 12-80
log function 12-81
log10 function 12-81
pi function 12-82
power function 12-83
radians function 12-83
random function 12-84
round function 12-85
sign function 12-86
sine function 12-86
square root function 12-87
tangent function 12-88
truncate function 12-88
Additional Examples 12-89

A Introduction to the SQL for Oracle NoSQL Database Shell

Running the SQL Shell A-1
Configuring the shell A-2
Shell Utility Commands A-3
connect A-4
consistency A-4
describe A-4
durability A-6
exit A-6
help A-6
history A-6
import A-6
load A-7
mode A-8
output A-11
page A-11
show faults A-12
show ddl A-12
show indexes A-12
show namespaces A-13
show query A-13
show regions A-14
show roles A-14
show tables A-14
show users A-16
ORACLE

timeout A-16

timer A-17

verbose A-17

version A-17
ORACLE

Introduction to SQL for Oracle NoSQL
Database

Structured Query Language (SQL) is the set of statements with which all programs and users
access data in the Oracle NoSQL Database. This book provides information on SQL as used
by Oracle NoSQL Database. Application programs and Oracle tools often allow users access
to the Oracle NoSQL Database without using SQL directly.

This chapter contains the following topics:
SQL Program

EBNF Syntax

« Comments

e Identifiers

e Literals

e Operator Precedence

* Reserved Words

* Case Sensitivity

e Constraints

< Note:

No prior knowledge of SQL is required for reading this document.

SQL Program

ORACLE

The data model of Oracle NoSQL Database supports (a) flat relational data, (b) hierarchical
typed (schema-full) data, and (c) schema-less JSON data. SQL for Oracle NoSQL Database is
designed to handle all such data in a seamless fashion, without any impedance mismatch
among the different sub models.

In the current version, an SQL program consists of a single statement, which can be a non-
updating query (read-only DML statement), an updating query (updating DML statement), a
data definition command (DDL statement), a user management and security statement, or an
informational statement. This is illustrated in the following syntax, which lists all the statements
supported by the current SQL version.

program: :=

(
query |
insert_statement |
Upsert statement |
delete_statement |

1-1

ORACLE

)

Chapter 1
EBNF Syntax

update_statement |
create_namespace_statement |
show_namespaces_statement |
drop_namespace_statement |
create_region_statement |
show_regions_statement |
drop_region_statement |
create_table_statement |
show_tables_statement |
describe_table_statement |
alter_table_statement |
drop_table_statement |
create_index_statement |
show_indexes_statement |
describe_index_statement |
drop_index_statement |
create text index statement |
create user statement |
create role statement |
drop role statement |
drop user statement |
alter user statement |
grant statement |

revoke statement |

EOF

This document is concerned with the first 19 statements in the above list, that is, with read-only
queries, insert/delete/update statements, namespace statements, and DDL statements,
excluding text indexes. The document describes the syntax and semantics for each statement,
and supplies examples. The programmatic APIs available to compile and execute SQL
statements and process their results are described in the Java Direct Driver Developer's
Guide.

EBNF Syntax

This specification uses EBNF meta-syntax to specify the grammar of SQL for Oracle NoSQL
Database. The following EBNF notations apply:

Upper-case words are used to represent keywords, punctuation characters, operator
symbols, and other syntactical entities that are recognized by EBNF as terminals (aka
tokens) in the query text. For example, SELECT stands for the "select" keyword in the query
text. Notice that keywords are case-insensitive; "select" and "sELEct" are both the same
keyword, represented by the SELECT terminal.

Lower-case words are used for non-terminals. For example, array step : [expression]
means that array_step is an expression enclosed in square brackets.

" " Anything enclosed in quotes is also considered a terminal. For example, the following
production rule defines the value-comparison operators as one of the =, >= symbols: For
example, val comp : "=" | ">=",

* means 0 or more of whatever precedes it. For example, field name* means 0 or more
field names.

+ means 1 or more of whatever precedes it. For example, field name+ means 1 or more
field names.

1-2

Chapter 1
Comments

* [l means optional, i.e., zero or 1 of whatever contained in it. For example, [field name]
means zero or one field names.

* | means this or that. For example, INT | STRING means an integer, or a string.

e () Parentheses are used to group EBNF sub-expressions together. For example, (INT |
STRING) [comment] means an integer, or a string, followed by a comment, or just an
integer, or a string, followed by nothing.

Comments

|dentifiers

ORACLE

The language supports comments in both DML and DDL statements. Such comments have the
same semantics as comments in a regular programming language, that is, they are not stored
anywhere, and have no effect to the execution of the statements. The following comment
constructs are recognized:

I* comment */
Potentially multi line comment.

Note:

However, if a '+' character appears immediately after the opening "/*", and the
comment is next to a SELECT keyword, the comment is actually not a comment but
a hint for the query processor. See Choosing the Best Applicable Index.

Il comment
Single line comment.

comment
Single line comment.

As we will see, DDL statements may also contain comment clauses, which are stored
persistently as properties of the created data entities. Comment clauses start with the
COMMENT keyword, followed by a string literal, which is the content of the comment.

Syntax

comment ::= COMMENT string

An identifier is a sequence of characters conforming to the following rules:
e It starts with a latin alphabet character (characters 'a' to 'z' and 'A' to 'Z').

e The characters after the first one may be any combination of latin alphabet characters,
decimal digits ('0' to '9"), or the underscore character ('_").

e Itis not one of the reserved words. The only reserved words are the literals TRUE, FALSE,
and NULL.

1D is the terminal that represents the identifiers. However, in the grammar rules presented in
this document we will use the non-terminal symbol id to denote identifiers.

1-3

Literals

ORACLE

Chapter 1
Literals

Syntax

ID ::= ALPHABET (ALPHABET | DIGIT | '_')*
ALPHABET ::= 'a'..'z'"|'A'..'Z'
DIGIT ::= '0'..'9"'

id ::=

ID |

ADD | ALTER | ANCESTORS | AND |

ANY | ANYATOMIC | ANYJSONATOMIC | ANYRECORD |

ARRAY | AS | ASC |

BINARY | BOOLEAN | BY |

CASCADE | CASE | CAST | COMMENT | COUNT | CREATE |

DAYS | DECLARE | DEFAULT | DESC | DESCENDANTS | DISTINCT | DOUBLE | DROP |
ELSE | END | ENUM | EXISTS | EXTRACT | FIRST | FLOAT | FROM |
GEOMETRY | GROUP | HOURS | IF | IN | INDEX | INTEGER | IS |
JSON | KEY | KEYS |

LAST | LIMIT | LONG | MAP |

NAMESPACE | NESTED | NO | NOT | NULLS |

OF | OFFSET | ON | OR | ORDER |

POINT | PRIMARY | RECORD |

SELECT | SHARD | STRING |

TABLE | TABLES | THEN | TTL | TYPE |

USING | VALUES |

WHEN | WHERE | WITH

A literal (a.k.a constant value) is a fixed value appearing in the query text. There are four kinds
of literals: numbers, strings, boolean values, and the JISON NULL value. The following
production rules are used to recognize literals in the query text. The Constant Expressions
section describes how the tokens listed below are translated into instances of the data model.

Syntax
INT CONSTANT ::= DIGIT+
FLOAT CONSTANT ::=
(DIGIT* '.' DIGIT+ [(E|e) [+|-] DIGIT+]) |
(DIGIT+ (Ele) [+|-] DIGIT+)
NUMBER CONSTANT ::= (FLOAT CONSTANT | INT CONSTANT) (N|n)
STRING CONSTANT ::= '\'' [(ESC|.)*] "\''
DSTRING _CONSTANT ::= '"' [(ESC|.)*] """
ESC ::= "\\"' ([\"\\/bfnrt] |UNICODE)
DSTR_ESC ::= "\\' ([\"\\/bfnrt]|UNICODE)
UNICODE ::= 'u'HEX HEX HEX HEX
TRUE ::= (T|t) (R|x) (Ulu) (Ele)
FALSE ::= (F|f) (Ala) (LI1) (SIs) (Ele)
NULL ::= (N|n) (Ulu) (L|1) (L|1)

1-4

Chapter 1
Operator Precedence

Note:

The literals TRUE, FALSE, and NULL are reserved words.

Operator Precedence

Reserved

The relative precedence among the various operators and expressions in SQL for Oracle
NoSQL Database is defined implicitly by the order in which the grammar rules for these
operators and expressions are listed in the grammar specification. Specifically, the earlier a
grammar rule appears, the lower its precedence. For example, consider the following 3 rules
that define the syntax for the OR, AND, and NOT operators. Because or_expr appears before
and_expr and not expr, OR has lower precedence than AND and NOT. And AND has lower
precedence than NOT, because and_expr appears before not_expr. As a result, an expression
likea=10and notb >5o0rc<20and c > 1is equivalent to (a =10 and (not b > 5)) or (c < 20
and c > 1). See Logical Operators: AND, OR, and NOT for more details.

or expression ::= and expression | (or expression OR and expression)
and expression ::= not expression | (and expression AND not expression)
not expression ::= [NOT] is null expression

Words

Reserved words are words that look like identifiers, but cannot be used as identifiers (i.e., in
places where identifiers are expected). SQL for Oracle NoSQL Database has a short list of

reserved words. Currently, this list consists of the following (case-insensitive) words: TRUE,
FALSE, and NULL.

Case Sensitivity

In Oracle NoSQL Database, the following fields are not case-sensitive while using in SQL
commands.

e table name

e namespace name

e field name

e secondary-index name
e text-index name

* region-name

Constraints

ORACLE

There is a limitation on the length of the name of the table or index that you want to create.

1-5

Chapter 1
Constraints

Table 1-1 Constraints on the length and content

. ___|
Description Constraints on the length Constraints on the content

table name 256 Must contain only alphanumeric
characters or "_" and must start
with an alphabetic character

namespace name 128 Must contain only alphanumeric
characters or "_" and must start
with an alphabetic character

field name 64 No constraints

secondary-index name 64 Must contain only alphanumeric
characters or "_" and must start
with an alphabetic character

text-index name 64 Must contain only alphanumeric
characters or "_" and must start
with an alphabetic character

region-name 128 Must contain only alphanumeric
characters or " _" and must start
with an alphabetic character

ORACLE 6

Oracle NoSQL Database Data Model

In Oracle NoSQL Database, data is modeled as typed items. A typed item (or simply item) is
a pair consisting of a data type and a value. A type is a set of possible values that may be
stored in a database field (e.g. a table column) or be returned by some computation (e.qg.
during the evaluation of a query). In any item, the item value must be an instance of the item
type. The values in this set are called the instances of the type. An item is said to be an
instance of a type T if its value is an instance of T.

The Oracle NoSQL Database data model consists of various data types that allow for the
storage and manipulation of hierarchical data. The Oracle NoSQL Database data types can be
broadly classified into atomic types, complex types, JSON types, and wildcard types.
Instances of atomic data types are single, indivisible units of data. Instances of complex data
types contain multiple items and provide access to their nested items. JSON types contain the
JSON objects in the name/value format. Wildcard types are similar to abstract supertypes in
object-oriented programming languages. They combine instances of other data types and they
are used to support data that do not have a fixed structure. This chapter describes each of
these data types in detail.

< Note:

Data types describe the kind of data that can be stored in an Oracle NoSQL
Database, as well as the kind of data generated during the evaluation of a query.

This chapter contains the following topics:

e Atomic Data Types

e Complex Data Types
¢ JSON Data Type

e Wildcard Data Types
e Data Type Hierarchy
e Data Type Definitions

Atomic Data Types

ORACLE

An instance of an atomic data type is a single, indivisible unit of data. The following table lists
the atomic types currently available. For each type, a description of its instances is given.

Table 2-1 Atomic Data Types

Data Type Description Example

INTEGER An integer between -2°31 to 2"31-1. 2147483647

LONG An integer between -2763 to 2°63-1. 9223372036854775807
FLOAT A single precision IEEE 754 floating point number. 100.12345

2-1

ORACLE

Chapter 2
Atomic Data Types

Table 2-1 (Cont.) Atomic Data Types
]

Data Type Description Example

DOUBLE A double precision IEEE 754 floating point number. 100.12345678901234

NUMBER An arbitrary-precision signed decimal number 100.123456789

(equivalent to the Java BigDecimal type).

STRING A sequence of zero or more unicode characters. "Oracle"

BOOLEAN Has only two possible values. TRUE and FALSE. TRUE

BINARY An uninterpreted sequence of zero or more bytes. Type: BINARY
Type Instance: "0x34
OxF5"

FIXED BINARY (S)

ENUM (T1, T2, ..., Tn)

TIMESTAMP (P)

An uninterpreted sequence of S bytes. Type: BINARY(3)

Type Instance: "0x34
O0xF5 OxAB"

Type: ENUM(Chennai,
Bangalore, Boston)
Type Instance: Boston

One of the symbolic tokens (T1, T2, ..., Tn)
explicitly listed in the ENUM type. The order in
which the tokens are listed is important. For
example, ENUM(a, b) and ENUM(b, a) are two
distinct types.

A value representing a point in time as a date (year, Type: timestamp(3)
month, day), time (hour, minute, second), and Type Instance :
number of fractions of a second. '2020-01-20T12:15:054'

The scale at which fractional seconds are counted
is called precision P of a timestamp. The minimum
precision is 0 and maximum is 9. For example, a
precision of 0 means that no fractional seconds are
stored, 3 means that the timestamp stores
milliseconds, and 9 means a precision of
nanoseconds.

There is no timezone information stored in
timestamp; they are all assumed to be in the UTC
timezone.

In addition to the kind of atomic values described above, the Oracle NoSQL Database data
model includes the following 2 atomic values:

Table 2-2 Atomic Values
]

Data Type Description
JSON NULL This is considered to be an instance of the JSON data type. For more
information about JSON, see Wildcard Data Types.
SQL NULL This is a special value that is used to indicate the fact that a value is unknown
or inapplicable. NULL is assumed to be an instance of every data type.
Note:

Although an instance of a humeric type may be semantically equivalent to an
instance of another numeric type, the 2 instances are distinct. For example, there is a
single number 3 in the universe, but there are 5 different instances of 3 in the data
model, one for each of the numeric types.

2-2

Complex Data Types

Chapter 2
Complex Data Types

An instance of a complex data type contains multiple values and provides access to its nested
values. Currently, Oracle NoSQL Database supports the following kinds of complex values:

Table 2-3 Complex Data Types

Data Type Description Example
ARRAY (T) In general, an array is an ordered collection of zero Type: ARRAY
or more items. The items of an array are called (INTEGER)
elements. Arrays cannot contain any NULL values. Type Instance:
An instance of ARRAY (T) is an array whose [600004,560076,01803]

elements are all instances of type T. T is called
element type of the array.

MAP (T) In general, a map is an unordered collection of zero
or more key-item pairs, where all keys are strings.
The keys in a map must be unique. The key-item
pairs are called fields. The keys are called fields
names, and the associated items are called field
values. Maps cannot contain any NULL field value.
An instance of MAP (T) is a map whose field
values are all instance of type T. T is called the
value type of the map.

Type: MAP(INTEGER)

Type Instance:
{"Chennai":600004,
"Bangalore":560076,
"Boston":01803 }

RECORD (k1 T1 n1, k2 Ingeneral, a record is an ordered collection of one

T2n2, ,kn Tn nn) or more key-item pairs, where all keys are strings.
The keys in a record must be unique. The key-item
pairs are called fields. The keys are called fields
names, and the associated items are called field
values. Records may contain NULL as field value.
An instance of RECORD (k1 T1 nl, k2 T2 n2,
..., kn Tn nn) is a record of exactly n fields, where
for each field i (a) the field name is ki, (b) the field
value is an instance of type Ti, and (c) the field
conforms to the nullability property ni, which
specifies whether the field value may be NULL or
not.

Contrary to maps and arrays, it is not possible to
add or remove fields from a record. This is because
the number of fields and their field names are part
of the record type definition associated with a
record value.

Type: RECORD(country
STRING, zipcode
INTEGER, state
STRING, street
STRING)

Type Instance:
{"country":"US",
"zipcode":600004,
"state":"Arizona",
"street":"4th Block" }

Example 2-1 Complex Data Type

The following examples illustrate the difference between the way data get stored in various

complex data types.

ORACLE

2-3

ORACLE

Chapter 2
Complex Data Types

To store the zip codes of multiple cities when the number of zip codes is not known in advance,
you can use arrays.

Declaration:
ARRAY (INTEGER)

Example:
[600004,560076,01803]

To store the names of multiple cities along with their zip codes and the number of zip codes are
not known, you can use maps.

Declaration:
MAP (INTEGER)

Example:

{

"Chennai":600004,
"Bangalore":560076,
"Boston":01803

}

Records are used for an ordered collection. If you want to store a zip code as part of a bigger
data set, you can use records. In this example, only a zip code is stored in a record.

Declaration:
RECORD (zipcode INTEGER)

Example:

{
"zipcode":600004
}

You can combine multiple complex data types so that more complex data can be stored. For
the same zipcode data, the following example combines two complex data types and stores
the information.

Declaration:
ARRAY (RECORD (area STRING, zipcode INTEGER))

Example:

[
{"area":"Chennai", "zipcode":600004},
{"area":"Bangalore","zipcode":560076},
{"area":"Boston","zipcode":01803}

2-4

Chapter 2
JSON Data Type

Example 2-2 Complex Data Type

This example illustrate the differences in the way a map and a record should be declared for
storing complex data.

Let us consider the following data.

{

"name":"oracle",

"city":"Redwood City",

"zipcode":94065,

"offices":["Chennai", "Bangalore", "Boston"]

}

For the above data, you declare a map and a record as shown below.

Record

(

name STRING,

city STRING,

zipcode INTEGER,
offices Array (STRING)
)

Map (ANY)

JSON Data Type

ORACLE

JSON is a lightweight text-based open standard designed for human-readable data
interchange. It is easy to read and write, and language independent. A JSON text is data
represented in name/value format. A valid JSON text contains an object surrounded by curly
brackets and includes a comma-separated list of name/value pairs. Each name is followed by
a "'(colon) character. JSON data is written to JSON data columns by providing a JSON object.

Table 2-4 JSON Data Type

Data Type Description Examples

JSON The JSON type represents all {"city" : "Santa Cruz", "zip" :
valid JSON values (numbers, 95008, "phones" : [{ "area" : 408,
strings, array(JSON), "number" : 4538955, "kind" :
map(JSON), and JSON null). "work" }, { "area" : 831, "number" :
Specifically, an instance of JSON 7533341, "kind" : "home" }]}
can be "Santa Cruz"
1. aninstance of 95008

ANYJSONATOMIC, true

2. oran array whose elements [12, "foo", { "city":"Santa Cruz"},
are all instances of JSON, [2, 3]]

3. or a map whose field values
are all instances of JSON.

To load JSON data into a table, Oracle NoSQL Database offers programmatic APIs to ingest
JSON text. The supported NoSQL SDKs handle this differently. Oracle NoSQL Database will

2-5

Chapter 2
Wildcard Data Types

parse the input JSON text internally and map its constituent pieces to the types described as
follows:

* Numbers are converted to integer, long, or double items, depending on the actual value of
the number (float items are not used for JSON).

e Strings in the input text are mapped to string items.
* Boolean values are mapped to boolean items.

e The null values are mapped to JSON nulls depending on the way the input is supplied. For
example, If you supply input text as "myvalue" : null, this is mapped as a JSON null.
Whereas, supplying "myvalue" : "null" sets the string value to the text "null".

e When an array is encountered in the input text, an array item is created whose type is
Array(JSON). This is done unconditionally, no matter what the actual contents of the array
might be.

When a JSON object is encountered in the input text, a map item is created whose type is
Map(JSON), unconditionally.

In general, the result of this parsing is a tree of maps, arrays, and atomic values. For persistent
storage, the tree is serialized into a binary format.

Note:

There is no JSON equivalent to the TIMESTAMP data type, so if input text contains a
string in the TIMESTAMP format, it is stored as a string item in the JSON column.

JSON data is schema-less, in the sense that a field of type JSON can have very different kinds
of values in different table rows. For example, if info is a top-level table column of type JSON,
in one row the value of info may be an integer, in another row an array containing a mix of
doubles and strings, and in a third row a map containing a mix of other maps, arrays, and
atomic values. Furthermore, the data stored in a JSON column or field can be updated in any
way that still produces a valid JSON instance. As a result, each JSON tree (either in main
memory or as a serialized byte array on disk) is self-describing about its contents.

Wildcard Data Types

ORACLE

The Oracle NoSQL Database data model includes the following wildcard data types:

2-6

Chapter 2
Data Type Hierarchy

Table 2-5 Wildcard Data Types

Data Type Description Examples
ANY Any instance of any NoSQL type is an instance of { "city" : "Santa Cruz",
the ANY type as well. "zip" : 95008, "phones" :
[{"area": 408,
"number" : 4538955,
"kind" : "work" },

{"area" : 831, "number" :
7533341, "kind" :
"home" }1}

"Santa Cruz"

95008

TRUE

'0x34 OxF5'
'2020-01-20T12:15:054"
[12, "foo", { "city":"Santa
Cruz'}, [2, 3]]

ANYATOMIC Any instance of any other atomic type is an "Santa Cruz"
instance of the ANYATOMIC type as well. The json gg5gog
null value is also an instance of ANYATOMIC.

TRUE
'0x34 OxF5'
'2020-01-20T12:15:054"'
ANYJSONATOMIC Any instance of a numeric type, the string type, and "Santa Cruz"
the boolean type is an instance of the 95008
ANYJSONATOMIC type as well. The json null value ¢
is also an instance of ANYJSONATOMIC. rue
JSON See the Description column in the Table 2-4. See the Examples
column in the Table 2-4.
ANYRECORD Any instance of any other RECORD type is an { "city" : "Santa Cruz",
instance of the ANYRECORD type as well. "zip" : 95008 }

A data type is called precise if it is not one of the wildcard types and, in the case of complex
types, all of its constituent types are also precise. Items that have precise types are said to be
strongly typed.

Wildcard types are abstract, which means that no item can have a wildcard type as its type.
However, items may have an imprecise type. For example, an item may have MAP(JSON) as
its type, indicating that its value is a map that can store field values of different types, as long
as all of these values belong to the JSON type. In fact, MAP(JSON) is the type that represents
all JISON objects (JSON documents), and ARRAY(JSON) is the type that represents all JISON
arrays.

Data Type Hierarchy

ORACLE

The Oracle NoSQL Database data model also defines a subtype-supertype relationship
among the types presented above. The relationship can be expressed as an is_subtype(T, S)
function that returns true if type T is a subtype of type S and false otherwise. is_subtype(T, S)
returns true in the following cases:

 Tand S are the same type. So, every type is a subtype of itself. We say that a type T is a
proper subtype of another type S if T is a subtype of S and T is not equal to S.

2-7

ORACLE

Chapter 2
Data Type Hierarchy

S is the ANY type. So, every type is a subtype of ANY.
S is the ANYATOMIC type and T is an atomic type.

S is ANYJSONATOMIC and T is one of the numeric types or the STRING type, or the
BOOLEAN type.

S is NUMBER and T is one of the other numeric types.

S is LONG and T is INTEGER.

S is DOUBLE and T is FLOAT.

SIS STRING and T is UUID.

S is TIMESTAMP(p2), T is TIMESTAMP(p1) and p1 <= p2.
S is BINARY and T is FIXED_BINARY.

Sis ARRAY(T2), T is ARRAY(T1) and T1 is a subtype of T2.
Sis MAP(T2), T is MAP(T1) and T1 is a subtype of T2.

S and T are both record types and (a) both types contain the same field names and in the
same order, (b) for each field, its type in T is a subtype of its type in S, and (c) if the field is
nullable in T, it is also nullable in S.

S is JSON and T is (a) an array whose element type is a subtype of JSON, or (b) a map
whose value type is a subtype of JSON, or (c) ANYJSONATOMIC or any of its subtypes.

Note:

The is_subtype relationship is transitive, that is, if type A is a subtype of type B and B
is a subtype of C, then A is a subtype of C.

The is_subtype relationship is important because the usual subtype-substitution rule is
supported by SQL for Oracle NoSQL Database: if an operation expects input items of type T
then it can also operate on items of type S, where S is a subtype of T. However, there are two
exceptions to this rule:

1.

DOUBLE and FLOAT are subtypes of NUMBER. However, DOUBLE and FLOAT include
three special values in their domain:

a. NaN (not a number)
b. Positive infinity
c. Negative infinity

These three values are not in the domain of NUMBER. You can provide DOUBLE/FLOAT
types to NUMBER type as long as these are not one of the three special values; otherwise,
an error will be raised.

Items whose type is a proper subtype of ARRAY (JSON) or MAP (JSON) cannot be used
as:

a. RECORD/MAP field values if the field type is JSON, ARRAY (JSON) or MAP (JSON)
b. Elements of ARRAY whose element type is JSON, ARRAY (JSON) or MAP (JSON)
This is in order to disallow strongly typed data to be inserted into JSON data.

For example, consider a JSON document M, i.e., a MAP value whose associated type is a
MAP (JSON). M may contain an ARRAY value A that contains only INTEGERs. However,
the type associated with A cannot be ARRAY (INTEGER), it must be ARRAY (JSON). If A

2-8

Chapter 2
Data Type Definitions

had type ARRAY (INTEGER), the user would not be able to add any non-INTEGER values
to A, i.e., the user would not be able to update the JISON document in a way that would still
keep it a JSON document.

Figure 2-1 SQL Type Hierarchy

ANY

f ! I [f

ANY_ATOMIC JSON ANY_RECORD

) T

ALL RECORD :
types |
JSONarrays: | | JSON maps: | Non-JSON | Non-JSON |
ARRAY (T) | MAP(T) | maps | arrays |
WhereTisa |+ WhereTisa | MAP (T) I ARRAY (T) 1
subtypeof | | subtypeof ! WhereTisa | WhereTisnota !
JSON | JSON || subtypeof | subtype of |
< ANY_JSON_ATOMIC | | JSON | JSON |

[[S |

LONG <— INTEGER <=— MR_COUNTER
*_ -

— NUMBER

S DOUBLE =— FLOAT

— STRING —=— uuID

— BOOLEAN

e ———— e

e ———— e e

e ———— e

Data Type Definitions

The Oracle NoSQL Database data model types inside SQL statements are referred to using
type_definition syntax. This syntax is used both in data definition language (DDL) statements
and data manipulation language (DML) statements.

Syntax

type definition ::=
INTEGER |
LONG |
FLOAT |
DOUBLE |
NUMBER |

ORACLE 9

Chapter 2
Data Type Definitions

STRING |

BOOLEAN |

ANY |

JSON |

ANYRECORD |
ANYATOMIC |
ANYJSONATOMIC |
array definition |
map definition |
binary definition |
timestamp definition |
enum definition |
record definition

array definition ::= ARRAY " (" type definition ")"
map definition ::= MAP " (" type definition ")"
binary definition ::= BINARY ["(" INT CONSTANT ")"]
timestamp definition ::= TIMESTAMP [" (" INT CONSTANT ")"]
enum definition ::= ENUM " (" id list ")"
id list ::= id ["," id]
record definition ::= RECORD " (" field definition ("," field definition)* ™)"
field definition ::= id type definition [default definition] [comment]
default definition ::=
(default value [NOT NULL]) | (NOT NULL default value)
default value ::= DEFAULT (number | string | TRUE | FALSE | id)
Semantics

type_definition

When the type_def grammar rule is used in any DDL statement, the only wildcard type that is
allowed is the JSON type. So, for example, it is possible to create a table with a column whose
type is JSON, but not a column whose type is ANY.

timestamp_definition

The precision is optional while specifying a TIMESTAMP type. If omitted, the default precision
is 9 (nanoseconds). This implies that the type TIMESTAMP (with no precision specified) is a
supertype of all other TIMESTAMP types (with a specified precision). However, in the context
of a CREATE TABLE statement, a precision must be explicitly specified. This restriction is to
prevent users from inadvertently creating TIMESTAMP values with precision 9 (which takes
more space) when in reality they don't need that high precision.

record_definition

Field default values and descriptions do not affect the value of a RECORD type, i.e., two
RECORD types created according to the above syntax and differing only in their default
values and/or field descriptions have the same value (they are essentially the same type).

field_definition

The field_definition rule defines a field of a RECORD type. It specifies the field name, its type,
and optionally, a default value and a comment. The comment, if present, is stored persistently
as the field's description.

ORACLE 10

ORACLE

Chapter 2
Data Type Definitions

default_definition

By default, all RECORD fields are nullable. The default_definition rule can be used to declare
a field not-nullable or to specify a default value for the field. When a record is created, if no
value is assigned to a field, the default value is assigned by Oracle NoSQL Database, if a
default value has been declared for that field. If not, the field must be nullable, in which case
the null value is assigned. Currently, default values are supported only for numeric types,
STRING, BOOLEAN, and ENUM.

2-11

Namespace Management

A namespace defines a group of tables, within which all of the table names must be uniquely
identified. This chapter describes namespaces and how to create and manage the
namespaces in Oracle NoSQL Database.

Namespaces permit you to do table privilege management as a group operation. You can grant
authorization permissions to a namespace to determine who can access both the namespace
and the tables within it.

Namespaces permit tables with the same name to exist in your database store. To access
such tables, you can use a fully qualified table name. A fully qualified table name is a table
name preceded by its namespaces, followed with a colon (:), such as nsl:tablel.

All tables are part of some namespace. There is a default Oracle NoSQL Database
namespace, called sysdefault. All tables are assigned to the default sysdefault namespace,
until or unless you create other namespaces, and create new tables within them. You cannot
change an existing table's namespace. Tables in sysdefault namespace do not require a fully
qualified name and can work with just the table name. For example, to access a table in
sysdefault namespace, you can just specify tablel instead of sysdefault:tablel.

< Note:

In a store that was created new or was upgraded from a version prior to 18.3, all the
tables will be part of sysdefault namespace.

This chapter contains the following topics:

e CREATE NAMESPACE Statement
» SHOW NAMESPACES Statement
» DROP NAMESPACE Statement

* Namespace Resolution

* Namespace Scoped Privileges

e Granting Authorization Access to Namespaces

CREATE NAMESPACE Statement

ORACLE

You can add a new namespace by using the CREATE NAMESPACE statement.
Syntax

create namespace statement ::=
CREATE NAMESPACE [IF NOT EXISTS] namespace name

namespace name ::= name_path

3-1

Chapter 3
SHOW NAMESPACES Statement

name path ::= field name ("." field name)*
field name ::= id | DSTRING
Semantics

IF NOT EXISTS: This is an optional clause. If you specify this clause, and if a namespace with
the same name exists, then this is a noop and no error is generated. If you don't specify this
clause, and if a namespace with the same name exists, an error is generated indicating that
the namespace already exists.

< Note:

Namespace names starting with sys are reserved. You cannot use the prefix sys for
any namespaces.

Example 3-1 Create Namespace Statement

The following statement defines a namespace named ns1.

CREATE NAMESPACE IF NOT EXISTS nsl
Create Table in the namespace nsl as follows:
CREATE TABLE nsl:t (id INTEGER, name STRING, primary key (id))

INSERT INTO nsl:t VALUES (1, 'Smith')

SELECT * FROM nsl:t

Output:

{"id":1, "name":"Smith"}

SHOW NAMESPACES Statement

ORACLE

Syntax

show namespaces statement ::= SHOW [AS JSON] NAMESPACES

Semantics
The show namespaces statement provides the list of namespaces in the system.

AS JSON can be specified if you want the output to be in JSON format.

3-2

Chapter 3
DROP NAMESPACE Statement

Example 3-2 Show Namespaces

The following statement lists the namespaces present in the system.

SHOW NAMESPACES

Output:

namespaces
nsl
sysdefault

Example 3-3 Show Namespaces

The following statement lists the namespaces present in the system in JSON format.

SHOW AS JSON NAMESPACES

Output:

{"namespaces" : ["nsl","sysdefault"]}

DROP NAMESPACE Statement

ORACLE

You can remove a hamespace by using the DROP NAMESPACE statement.
Syntax

drop namespace statement ::=
DROP NAMESPACE [IF EXISTS] namespace_name [CASCADE]

Semantics

IF EXISTS: This is an optional clause. If you specify this clause, and if a namespace with the
same name does not exist, no error is generated. If you don't specify this clause, and if a
namespace with the same name does not exist, an error is generated indicating that the
namespace does not exist.

CASCADE: This is an optional clause that enables you to specify whether to drop the tables
and their indexes in this namespace. If you specify this clause, and if the namespace contains
any tables, then the namespace together with all the tables in this namespace will be deleted.
If you don't specify this clause, and if the namespace contains any tables, then an error is
generated indicating that the namespace is not empty.

Note:

You cannot drop the default namespace, sysdefault.

3-3

Chapter 3
Namespace Resolution

Example 3-4 Drop Namespace Statement

The following statement removes the namespace named ns1.

DROP NAMESPACE IF EXISTS nsl CASCADE

Namespace Resolution

To resolve a table from a table_name that appears in an SQL statement, the following rules
apply:

< if the table_name contains a namespace name, no resolution is needed, because a
qualified table name uniquely identifies a table.

< if you don't specify a namespace name explicitly, the namespace used is the one
contained in the ExecuteOptions instance that is given as input to the executeSync(),
execute(), or prepare() methods of TableAPI. See Java Direct Driver Developer's Guide.

e if ExecuteOptions doesn't specify a namespace, the default sysdefault namespace is used.

Using different namespaces in ExecuteOptions allows executing the same queries on separate
but similar tables.

Namespace Scoped Privileges

You can add one or more namespaces to your store, create tables within them, and grant
permission for users to access hamespaces and tables. For general information on managing
Roles and Users, see Grant Roles or Privileges in the Security Guide.

For information on implication relationship among Oracle NoSQL Database privileges, see
Privilege Hierarchy in the Security Guide.

Granting Authorization Access to Namespaces

You can manage permission for users or roles to access namespaces and tables. These are
the applicable permissions given to the developers and other users:

Table 3-1 Namespace Privileges and Permissions

Privilege Description

CREATE ANY NAMESPACE Grant permission to a user or to a role to create or drop any namespace.

DROP_ANY NAMESPACE
GRANT CREATE ANY NAMESPACE TO <User|Role>;

GRANT DROP ANY NAMESPACE TO <User|Role>;

ORACLE 3

Chapter 3
Granting Authorization Access to Namespaces

Table 3-1 (Cont.) Namespace Privileges and Permissions
|

Privilege Description

CREATE TABLE IN NAMESPACE Grant permission to a user or to a role to create, drop or evolve tables in a

DROP TARLE IN NAMESPACE specific namespace. You can evolve tables to update table definitions, add
- - - or remove fields, or change field properties, such as a default value. You

EVOLVE_TABLE_IN_ NAMESPACE may even add a particular kind of column, like an IDENTITY column, to

increment some value automatically. Only tables that already exist in the
store are candidates for table evolution. For more details, see Alter Table.

GRANT CREATE TABLE IN NAMESPACE ON NAMESPACE
namespace name TO <User|Role>;

GRANT DROP TABLE IN NAMESPACE ON NAMESPACE
namespace name TO <User|Role>;

GRANT EVOLVE TABLE IN NAMESPACE ON NAMESPACE
namespace name TO <User|Role>user role;

CREATE INDEX IN NAMESPACE Grant permission to a user or to a role to create or drop an index in a
DROP INDEX IN NAMESPACE specific namespace.

GRANT CREATE INDEX IN NAMESPACE ON NAMESPACE
namespace name TO <User|Role>;

GRANT DROP_INDEX IN NAMESPACE ON NAMESPACE
namespace name TO <User|Role>;

READ IN NAMESPACE Grant permission to a role to read, insert, or delete items in a specific
INSERT IN NAMESPACE namespace.

DELETE IN NAMESPACE
- - GRANT READ IN NAMESPACE ON NAMESPACE namespace name TO

<User|Role>;

GRANT INSERT IN NAMESPACE ON NAMESPACE namespace name
TO <User|Role>;

GRANT DELETE IN NAMESPACE ON NAMESPACE namespace name
TO <User|Role>;

MODIFY IN NAMESPACE Helper label for granting or revoking permissions to all DDL privileges for a
specific namespace to a user or role.

GRANT MODIFY IN NAMESPACE ON NAMESPACE namespace name
TO <User|Role>;

REVOKE MODIFY IN NAMESPACE ON NAMESPACE namespace name
TO <User|Role>;

Grant privileges on a namespace

You can grant permissions to a role or a user on a namespace. Following is the syntax for
granting permissions on a hamespace:

GRANT {Namespace-scoped privileges} ON NAMESPACE namespace name TO <User|Role>
Namespace-scoped privileges ::= namespace privilege [, namespace privilege]

ORACLE -

ORACLE

Chapter 3
Granting Authorization Access to Namespaces

where,
e namespace_privilege

The namespace privilege that can be granted to a user or a role. For more information on
the applicable privileges, see the Privilege column in the Namespace Privileges and
Permissions table.

° namespace_name
The namespace that the user wishes to access.
e <User|Role>

The name of the KVStore user or the role of a user.

For example, you can grant read access to a user for all the tables in the namespace.

GRANT READ IN NAMESPACE ON NAMESPACE nsl TO Kate

Here, nsl is the namespace and Kate is the user.

Note:

The label MODIFY_IN_NAMESPACE can be used as a helper for granting or
revoking permissions to all DDL privileges for a specific namespace to a user or role.

Revoke privileges on a namespace

You can revoke the permissions from a role or a user on a namespace. Following is the syntax
for revoking the permissions on a namespace.

REVOKE {Namespace-scoped privileges} ON NAMESPACE namespace name FROM <User|
Role>
Namespace-scoped privileges ::= namespace privilege [, namespace privilege]

where,
* namespace_privilege

The namespace privilege that can be revoked from a user or a role. For more information
on the applicable privileges, see the Privilege column in the Namespace Privileges and
Permissions table.

* namespace_name
The namespace that the user wishes to access.
e <User|Role>

The name of the KVStore user or the role of a user.

For example, you can revoke the read access from a user for all the tables in the namespace.

REVOKE READ IN NAMESPACE ON NAMESPACE nsl FROM Kate

Here, nsl is the namespace and Kate is the user.

3-6

ORACLE

Chapter 3
Granting Authorization Access to Namespaces

Note:

The label MODIFY_IN_NAMESPACE can be used as a helper for granting or
revoking permissions to all DDL privileges for a specific namespace to a user or role.

The following example shows:
1. Creation of a namespace and a table.

2. Revocation of the privilege to create any other new tables in the namespace, but allow the
table to be dropped.

Example: Namespace Scoped Privileges

CREATE NAMESPACE IF NOT EXISTS nsl

GRANT MODIFY IN NAMESPACE ON NAMESPACE nsl TO usersRole

CREATE TABLE nsl:t (id INTEGER, name STRING, primary key (id))
INSERT INTO nsl:t VALUES (1, 'Smith')

SELECT * FROM nsl:t

REVOKE CREATE TABLE IN NAMESPACE ON NAMESPACE nsl FROM usersRole

DROP NAMESPACE nsl CASCADE

Note:

You can save all of the above commands as a sql script and execute it in a single
command. If you want to execute any of the above commands outside of a SQL
prompt, remove the semi colon at the end.

3-7

Region Management

Oracle NoSQL Database supports Multi-Region Architecture in which you can create tables in
multiple KVStores, and still maintain consistent data across these clusters. Each KVStore
cluster in a Multi-Region NoSQL Database setup is called a Region.This chapter describes
creating and managing regions in Oracle NoSQL Database.

This chapter contains the following topics:
e CREATE REGION Statement

e SHOW REGIONS Statement

e DROP REGION Statement

CREATE REGION Statement

In a Multi-Region Oracle NoSQL Database setup, you must define all the remote regions for
each local region. For example, if there are three regions in a Multi-Region setup, you must
define the other two regions from each participating region. You use the create region
statement to define remote regions in the Multi-Region Oracle NoSQL Database.

Syntax

create region statement ::= CREATE REGION region name
region name ::= id | DSTRING

Semantics

region_name
The name of the region that is different from the local region where the command is executed.

Example 4-1 Create Region

The following create region statement creates a remote region named my_region1.

CREATE REGION my regionl

SHOW REGIONS Statement

ORACLE

Syntax
show regions_statement ::= SHOW [AS JSON] REGIONS
Semantics

The show regions statement provides the list of regions present in the Multi-Region Oracle
NoSQL Database.

4-1

Chapter 4
DROP REGION Statement

AS JSON can be specified if you want the output to be in JSON format.
Example 4-2 Show Regions

The following statement lists all the existing regions.

SHOW REGIONS

Output:
regions

my regionl (remote, active)
my region2 (remote, active)

Example 4-3 Show Regions

The following statement lists all the existing regions in JISON format.

SHOW AS JSON REGIONS

Output:

{"regions" : [
{"name" : "my regionl", "type" : "remote", "state" : "active"},
{"name" : "my region2", "type" : "remote", "state" : "active"}

1}

DROP REGION Statement

In a Multi-Region Oracle NoSQL Database environment, the drop region statement removes
the specified remote region from the local region.

Syntax

drop region statement :: DROP REGION region_name

Semantics

region_name

The name of the region that you want to drop. This region must be different from the local
region where the command is executed.

Example 4-4 Drop Region

The following drop region statement removes a remote region named my_regionl1.

DROP REGION my regionl

ORACLE 4o

Table Management

In Oracle NoSQL Database, data is stored and organized in tables. This chapter describes
tables and creating and managing tables in Oracle NoSQL Database.

A table is an unordered collection of record items, all of which have the same record type. We
call this record type the table schema. The table schema is defined by the CREATE TABLE
statement. The records of a table are called rows and the record fields are called columns.
Therefore, an Oracle NoSQL Database table is a generalization of the (normalized) relational
tables found in more traditional RDBMSs.

Although table rows are records, records are not rows. This is because, rows have some
additional properties that are not part of the table schema (i.e., they are not stored as top-level
columns or nested fields). To extract the values of such properties, the functions listed in the
Functions on Rows section must be used.

This chapter contains the following topics:
 CREATE TABLE Statement

« SHOW TABLES Statement

* DESCRIBE TABLE Statement

e Table Hierarchies

e Using the IDENTITY Column

e Sequence Generator

* DROP TABLE Statement

* ALTER TABLE Statement

e Altering an IDENTITY Column

CREATE TABLE Statement

ORACLE

The table is the basic structure to hold user data. You use the create table statement to create
a new table in the Oracle NoSQL Database.

Syntax

create table statement ::=
CREATE TABLE [IF NOT EXISTS] table name [cOomment]

"(" table definition ")" [ttl definition] [Jjson collection definition]
table name ::= [namespace_name ":"] name path
name path ::= field name ("." field name)*
field name ::= id | DSTRING

table definition ::=

(column definition | key definition)

("," (column definition | key definition))*
column definition ::=

5-1

ORACLE

Chapter 5
CREATE TABLE Statement

id type_definition
[default_definition | identity_definition |
uuid_definition | mr counter definition]
[comment]
key definition ::=
PRIMARY KEY

"(" [shard key definition [","]] [id list with size] ")"
[ttl definition]
id list with size ::= id with size ("," id with size)*
id with size ::= id [storage size]
storage size ::= "(" INT CONSTANT ")"
shard key definition ::= SHARD " (" id list with size ")"
ttl definition ::= USING TTL INT CONSTANT (HOURS | DAYS)
region definition ::= IN REGIONS region-name-1,region-name-2 [,...]
json collection definition ::= AS JSON COLLECTION
Semantics
table_name

The table name is specified as an optional namespace_name and a local_name. The local
name is a name_path because, in the case of child tables, it will consist of a list of dot-
separated ids. Child tables are described in the Table Hierarchies section. A table_name that
includes a namespace_name is called a qualified table name. When an SQL statement (DDL
or DML) references a table by its local name only, the local name is resolved internally to a
qualified name with a specific namespace name. See the Namespace Management chapter.

IF NOT EXISTS

This is an optional clause. If this clause is specified and if a table with the same qualified
name exists (or is being created) and if that existing table has the same structure as in the
statement, no error is generated. In all other cases and if a table with the same qualified name
exists, the create table statement generates an error indicating that the table exists.

ttl_definition

The Time-To-Live (TTL) value is used in computing the expiration time of a row. Expired rows
are not included in query results and are eventually removed from the table automatically by
Oracle NoSQL Database. If you specify a TTL value while creating the table, it applies as the
default TTL for every row inserted into this table. However, you can override the table level
TTL by specifying a TTL value via the table insertion API.

The expiration time of a row is computed by adding the TTL value to the current timestamp. To
be more specific, for a TTL value of N hours/days, the expiration time is the current time (in
UTC) plus N hours/days, rounded up to the next full hour/day. For example, if the current
timestamp is 2020-06-23T10:01:36.096 and the TTL is 4 days, the expiration time will be
2020-06-28T00:00:00.000. You can use zero as a special value to indicate that a rows should
never expire. If the CREATE TABLE statement has no TTL specification, the default table TTL
is zero.

In case of MR Tables with TTL value defined, the rows replicated to other regions carry the
expiration time when the row was written. This can be either the default table level TTL value
or a row level override that is set by your application. Therefore, this row will expire in all the
regions at the same time, irrespective of when they were replicated. However, if a row is
updated in one of the regions and it expires in the local region even before it is replicated to
one of the remote region(s), then this row will expire as soon as it is replicated and committed
in that remote region.

5-2

ORACLE

Chapter 5
CREATE TABLE Statement

json_collection_definition

The json collection definition declares the table as a collection of documents. A JSON
collection table is a convenient way to store, update, and query your documents. A JSON
collection table must include a primary key while creating the table. You can create a JSON
collection table with MR_COUNTERS if the table is intended to be a multi-region table. For
more details on JSON collection table, see Using JSON Collection Tables.

region_definition

This is an optional clause. In case, the table being created is an MR Table, this parameter lists
all the regions that the table should span. You must mention at least one remote region in this
clause to create the table as an MR Table. For information on MR Tables, see Life Cycle of
MR Tables.

Note:

Specifying this clause while creating a child table of a MR Table will result in an
error.

table_definition

The table_definition part of the statement must include at least one field definition, and exactly
one primary key definition (Although the syntax allows for multiple key_definitions, the query
processor enforces the one key_definition rule. The syntax is this way to allow for the key
definition to appear anywhere among the field definitions).

column_definition

The syntax for a column definition is similar to the field_definition grammar rule that defines
the fields of a record type. See Data Type Definitions section. It specifies the name of the
column, its data type, whether the column is nullable or not, an optional default value or
whether the column is an IDENTITY column or not, and an optional comment. As mentioned
in Table Management section, tables are containers of records, and the table_definitions acts
as an implicit definition of a record type (the table schema), whose fields are defined by the
listed column_definitions. However, when the type_definition grammar rule is used in any DDL
statement, the only wildcard type that is allowed is the JSON type. So, for example, it is
possible to create a table with a column whose type is JSON, but not a column whose type is
ANY.

identity_definition
The identity definition specifies the name of the identity column. There can only be one
identity column per table. See Using the IDENTITY Column section.

uuid_definition
The uuid_definition declares the type of a column to be the UUID type. See Using the UUID
data type section.

mr_counter_definition

The mr_counter_definition parameter declares the type of a column to be the MR_COUNTER
datatype. This data type can be used only in a multi-region table. See Using CRDT datatype in
a multi-region table.

key_definition

The syntax for the primary key specification (key_definition) specifies the primary key columns
of the table as an ordered list of field names. The column names must be among the ones
appearing in the field_definitions, and their associated type must be one of the following: a

5-3

ORACLE

Chapter 5
CREATE TABLE Statement

numeric type, string, enum, or timestamp. The usual definition of a primary key applies: two
rows of the same table cannot have the same values on all of their primary key columns.

shard_key_definition

A key_definition specifies the table’s shard key columns as well, as the first N primary-key
columns, where 0 < N <= M and M is the number of primary-key columns. Specification of a
shard key is optional. By default, for a root table (a table without a parent) the shard key is the
whole primary key. Semantically, the shard key is used to distribute table rows across the
multiple servers and processes that comprise an Oracle NoSQL Database store. Briefly, two
rows having the same shard key, i.e., the same values on their shardkey columns, will always
be located in the same server and managed by the same process. Further details about the
distribution of data in Oracle NoSQL Database can be found in the Primary and Shard Key
Design section.

storage_size

An additional property of INTEGER-typed primary-key fields is their storage size. This is
specified as an integer number between 1 and 5 (the syntax allows any integer, but the query
processor enforces the restriction). The storage size specifies the maximum number of bytes
that may be used to store in serialized form a value of the associated primary key column. If a
value cannot be serialized into the specified number of bytes (or less), an error will be thrown.
An internal encoding is used to store INTEGER (and LONG) primary-key values, so that such
values are sortable as strings (this is because primary key values are always stored as keys of
the "primary" Btree index). The following table shows the range of positive values that can be
stored for each byte-size (the ranges are the same for negative values). Users can save
storage space by specifying a storage size less than 5, if they know that the key values will be
less or equal to the upper bound of the range associated with the chosen storage size.

comment
Comments are included at table-level and they become part of the table's metadata as
uninterpreted text. Comments are displayed in the output of the describe statement.

Tables used in the examples
This section shows how to create table from the SQL shell for a few sample applications.

Start your KVSTORE or KVLite and open the SQL shell.

java -jar lib/kvstore.jar kvlite -secure-config disable
java -jar lib/sqgl.jar -helper-hosts localhost:5000 -store kvstore

See Running the SQL Shell for the general usage and command options.
Example 5-1 User data application table

The following create table statement defines a users table that holds information about the
users:

CREATE TABLE users(id INTEGER,
firstName STRING,
lastName STRING,
otherNames ARRAY (RECORD (first STRING, last STRING)),
age INTEGER,
income INTEGER,
address JSON,
connections ARRAY (INTEGER),
hobbies ARRAY (STRING),
PRIMARY KEY (id))

5-4

ORACLE

Chapter 5
CREATE TABLE Statement

The rows of the users table defined above represent information about users. For each such
user, the otherNames field is an array of records, where each record in the array includes the
first and last name fields. The connections field is an array of integers containing the ids of
other users that this user is connected with. You can assume that the ids in the array are
sorted by some measure of the strength of the connection. The hobbies field is an array of
string containing the user's interests in various activities. The address column is a schema-less
JSON field.

For example, a typical value for the address field can include the following attributes:

"street" : "Pacific Ave",

"number" : 101,

"city" "Santa Cruz",

"state" "CA",

"zip" 95008,

"phones" : [
{ "area" : 408, "number" : 4538955, "kind" "work" 1},
{ "area" : 831, "number" : 7533341, "kind" "home" }

You can add any number of attributes to the JSON field. The JSON field does not have a fixed
data type.

Some addresses may have additional fields, or missing fields, or fields spelled differently. The
phones field may not be an array of JSON objects but a single such object. The whole address
may be just one string, number, or INULL.

For more details on the supported data types, see Oracle NoSQL Database Data Model.
Example 5-2 Airline baggage tracking application

The following CREATE TABLE statement defines a BaggageInfo table that holds the checked
baggage information of passengers in an airline system:

CREATE TABLE BaggageInfo
fullName STRING,

gender STRING,
contactPhone STRING,
confNo STRING,

bagInfo JSON,

PRIMARY KEY (ticketNo)
JUSING TTL 5 DAYS

(ticketNo LONG,

You can use the baggage tracking schema in an airline's mobile application. The passengers
traveling on a flight can track where their checked-in bags or luggage are, along the route to
the destination. The mobile application uses the Oracle NoSQL Database to store all the data
related to the baggage. In the backend, the mobile application logic uses SQL queries to
retrieve the required data.

This baggage tracking schema creates a BaggageInfo table with columns that include atomic
data types and JSON data type to hold passenger information. The BaggageInfo table has the
passenger's ticket number as the primary key column. The fullName, gender, contactPhone,
and confNo (reservation number) fields store the passenger's information, which is part of a
fixed schema. This table also includes a bagInfo column as a schema-less JSON array, which

5-5

ORACLE

Chapter 5
CREATE TABLE Statement

represents the tracking information of a passenger's checked-in baggage. In contrast to the
fixed schema fields, you can add any number of attributes to this schema-less JSON field.

See Example 5-5 for a sample row from the BaggageInfo table.

You can create the table by specifying a TTL value, after which the rows expire automatically
and are not available anymore. The TTL value is followed by either HOURS or DAYS. In this
schema, the rows of the table expire after 5 days. You can check the hours remaining until a
row expires using the remaining days Built-in Functions.

Specifying the TTL value while creating a table is optional. If you don’t provide a TTL value, the
rows of a table will have an infinite expiration time.

Example 5-3 Streaming media service

The following CREATE TABLE statement defines a stream acct table that creates a TV
streaming application:

CREATE TABLE stream acct(
acct_id INTEGER,
profile id INTEGER,
profile name STRING,

acct data JSON,

PRIMARY KEY (acct id)

)

The Streaming Media Service application streams various shows across the globe. Every show
has several seasons, and every season has multiple episodes. You need a persistent
metadata store that keeps track of the current activity of the subscriber using the TV streaming
application.

You can use the TV streaming application to provide useful information to the subscriber such
as episodes they watched, watch time per episode, total number of seasons of the show they
watched, and so forth. The mobile application uses the Oracle NoSQL Database to store the
data and performs SQL queries to retrieve the required data and offer it to the user.

The Streaming Media Service schema creates a stream acct table with columns that include
atomic data types and JSON data type to hold subscriber details.

The stream acct table has the subscriber's account ID as the primary key column. The other
fixed schema fields profile name and account expiry contain the subscriber’s details. The
stream acct table includes an acct_data column as a schema-less JSON field to keep track
of the subscriber's current activity. In contrast to the fixed schema fields, you can add any
number of attributes to this schema-less JSON field.

See Example 5-6 for a sample row from the stream acct table.

Load data to the tables

You can load data into the tables using INSERT statement from the SQL shell directly by
supplying the statement in the SQL prompt or by using scripts.

Example 5-4 Insert the data into the User data application (users table)

The following example shows how to insert the data into the User data - users table using the
INSERT statement directly in the SQL prompt:

INSERT INTO users VALUES (

5-6

Chapter 5

CREATE TABLE Statement

10,

"John",

"Smith",

[{"first" "Johny", "last" "Good"}, {"first" "Johny2", "last"
"Brave"}, {"first" "Johny3", "last" "Kind"}, {"first" : "Johny4", "last"
"Humble"}],

22,

45000,

{

"street" "Pacific Ave",

"number" 101,

"city" "Santa Cruz",

"state" "CA",

"zip" 95008,

"phones" [
{ "area" : 408, "number" : 4538955, "kind" "work" 1},
{ "area" 831, "number" : 7533341, "kind" "home" 1},
{ "area" 831, "number" : 7533382, "kind" "mobile" }

]

} 14

[30, 55, 43 1,

["Reading", "Soccer", "Hiking", "Gardening"]

)
INSERT INTO users VALUES (

20,

"Jane",

"Smith",

[{"first" "Jane", "last" "Charming"} 1],

22,

55000,

{

"street" "Atlantic Ave",

"number" : 201,

"city" "San Jose",

"state" "CA",

"zip" 95005,

"phones" [
{ "area" 608, "number" 6538955, "kind" "work" 1},
{ "area" 931, "number" 9533341, "kind" "home" 1},
{ "area" 931, "number" 9533382, "kind" "mobile" }

]

} 14

[40, 75, 63 1,

["Knitting", "Hiking", "Baking", "BingeWatching"]

)
INSERT INTO users VALUES (

30,

"Adam",

"Smith",

[{"first" "Adam", "last" "BeGood"}

45,

75000,

ORACLE

5-7

ORACLE

Chapter 5

CREATE TABLE Statement
{

"street" : "Indian Ave",

"number" : 301,

"city" : "Houston",

"state" : "TX",

"zip" : 95075,

"phones" : [
{ "area" : 618, "number" : 6618955, "kind" : "work" },
{ "area" : 951, "number" : 9613341, "kind" : "home" },
{ "area" : 981, "number" : 9613382, "kind" : "mobile" }

by
[60, 45, 73],
["Soccer", "Riding", "PianoForte", "RockClimbing", "Sketching"]

INSERT INTO users VALUES (

40,
"Joanna",
"Smith",
[{"first" : "Joanna", "last" : "Smart"}],
NULL,
75000,
{
"street" : "Tex Ave",
"number" : 401,
"city" : "Houston",
"state" : "TX",
"zip" : 95085,
"phones" : [
{ "area" : NULL, "number" : 1618955, "kind" : "work" },
{ "area" : 451, "number" : 4613341, "kind" : "home" },
{ "area" : 481, "number" : 4613382, "kind" : "mobile" }

by
[70, 30, 40],
["Soccer", "Riding", "PianoForte", "RockClimbing", "Sketching"]

Example 5-5 Import data into airline baggage tracking application (BaggageInfo) table

The following example shows how to create sample table for the airline baggage tracking
applicationand import data using script from the SQL prompt:

Download the script baggageschema_loaddata.sql.

Using the 1oad command, run the required script.

load -file baggageschema loaddata.sql

This creates the BaggageInfo table used in the examples and loads data into the table.

One sample row from the airline baggage tracking application - BaggageInfo table is shown
below.

5-8

ORACLE

Chapter 5
CREATE TABLE Statement

The passenger's ticket number, ticketNo is the primary key of the table. The fullName,
gender, contactPhone, and confNo (reservation humber) fields store the passenger's
information, which is part of a fixed schema. The bagInfo column is a schema-less JSON
array, which represents the tracking information of a passenger's checked-in baggage.

Each element of the bagInfo array corresponds to a single checked-in bag. The size of the
bagInfo array gives the total bags checked-in by a passenger. Each bag has an id and a
tagnun field. The routing field includes the routing information from the passenger's travel
itinerary. The lastActionCode and lastActionDesc fields hold the latest action taken on the
bag and its action code at the current destination. The lastSeenStation field includes the
airport code of the bag's current destination. The lastSeenTimeGnt field includes the latest
action time. The bagArrivalDate field holds the expected arrival date at the destination airport.
The bagInfo array further includes a nested flightLegs array with fields to track the source
and transit details.

Each element of the f1ightLegs array corresponds to a travel leg. The fields f1ightNo holds
the flight number, f1ightDate holds the departure date, f1tRouteSrc holds the originating
airport code, and f1tRouteDest field hold the destination airport code for each travel leg. The
flightLegs array further includes a nested actions array with fields to track the activities
performed on the checked bag at each travel leg.

Each element of the actions array includes the fields actionAt, actionCode, and actionTime to
track the tasks at source and destination airports in each travel leg.

"ticketNo" : 1762344493810,

"fullName" : "Adam Phillips",

"gender" : "M",

"contactPhone" : "893-324-1064",

"confNo" : "LE6J4zZ",

[{
"id" : "79039899165297",
"tagNum" : "17657806255240",
"routing" : "MIA/LAX/MEL",
"lastActionCode" : "OFFLOAD",
"lastActionDesc" : "OFFLOAD",
"lastSeenStation" : "MEL",
"flightLegs" : [{
"flightNo" : "BM604",

"flightDate"

"fltRouteSrc" : "MIA",
"fltRouteDest" "LAX",
"estimatedArrival" "2019-02-01T03:00:00",
"actions" : |

"actionAt" "MIA",

"actionCode" "ONLOAD to LAX",

"actionTime" "2019-02-01T01:13:00"
oo A

"actionAt" "MIA",

"actionCode" "BagTag Scan at MIA",

"actionTime" "2019-02-01T00:47:00"
oo A

"actionAt" "MIA",

"actionCode" "Checkin at MIA",

"actionTime" "2019-02-01T23:38:00"

"2019-02-01T01:00:00",

5-9

ORACLE

Chapter 5

CREATE TABLE Statement
"flightNo" : "BM667",
"flightDate" : "2019-01-31T22:13:00",
"fltRouteSrc" : "LAX",
"fltRouteDest" : "MEL",
"estimatedArrival™ : "2019-02-02T03:15:00",
"actions" : [{
"actionAt" : "MEL",
"actionCode" : "Offload to Carousel at MEL",
"actionTime" : "2019-02-02T03:15:00"
b Ao
"actionAt" : "LAX",
"actionCode" : "ONLOAD to MEL",
"actionTime" : "2019-02-01T07:35:00"
b Ao
"actionAt" : "LAX",
"actionCode" : "OFFLOAD from LAX",
"actionTime" : "2019-02-01T07:18:00"
bl
Pl
"lastSeenTimeGmt" : "2019-02-02T03:13:00",
"bagArrivalDate" : "2019.02.02T03:13:00"

b

Example 5-6 Import data into TV streaming application (stream_acct) table

The following example shows how to create sample table for TV streaming application, and
import data using script from the SQL prompt:

Download the script acctstream_loaddata.sq|l.

Using the 1oad command, run the required script.

load -file acctstream loaddata.sql

This creates the stream acct table used in the examples and loads data into the table.
One sample row from the Streaming Media Service - stream acct table is shown below.

The subscriber's account ID, acct _id is the primary key of the table. The fields profile name
and account_expiry contain the subscriber’s details. The acct_data column is a schema-less
JSON field, which keeps track of the subscriber's current activity.

Each element of the acct data JSON represents a user with the given subscriber’s profile
name. User data contains the fields firstName, lastName, and country to hold user
information. The acct data JSON field further includes a nested contentStreamed JSON array
to track the shows watched by the user.

Each element of the contentStreamed array contains the showName field to store the name of
the show. The showId field includes the identifier of the show. The showtype field indicates the
type such as tvseries, sitcom, and so forth. The genres array lists the show’s categorization.
The nunSeasons field contains the total number of seasons streamed for the show. The
contentStreamed JSON array also includes a nested seriesInfo JSON array to track the
watched episodes.

Each element of the seriesInfo array contains a seasonNun field to identify the season. The
numEpisodes field indicates the total number of episodes streamed in the given season. The

5-10

ORACLE

Chapter 5
CREATE TABLE Statement

seriesInfo array further includes an episodes array to track the details of each watched
episode.

Each element of the episodes array contains the episodelD field to identify the episode. The
episodeNane field includes the episode’s name. The lengthMin field includes the show’s
telecast duration in minutes. The minWatched field includes the duration for which a user has
watched the episode. The date field includes the date on which the user watched the given
episode.

"acct_id" : 1,
"profile id" : 101,
"profile name" : "Adams",
[{
"firstName" : "Adam",
"lastName" : "Phillips",
"country" : "USA",
"contentStreamed": [
{
"showName" : "At the Ranch",
"showId" : 26,
"showtype" : "tvseries",
"genres" : ["action", "crime", "spanish"],
"numSeasons" : 4,
"seriesInfo": [
{
"seasonNum" : 1,
"numEpisodes" : 2,
"episodes": [
{
"episodeID": 20,
"lengthMin": 85,
"minWatched": 85,
"date" : "2022-04-18"

"episodeID": 30,
"lengthMin": 60,
"minWatched": 60,
"date" : "2022-04-18"

]
b
{
"seasonNum": 2,
"numEpisodes" : 4,
"episodes": [
{
"episodeID": 40,
"lengthMin": 50,
"minWatched": 50,
"date" : "2022-04-25"

"episodeID": 50,
"lengthMin": 45,
"minWatched": 30,

5-11

Chapter 5
SHOW TABLES Statement

"date" : "2022-04-27"

"showName": "Bienvenu",
"showId": 15,
"showtype": "tvseries",
"genres" : ["comedy", "french"],
"numSeasons" : 2,
"seriesInfo": [
{
"seasonNum" : 1,
"numEpisodes" : 2,
"episodes": [
{
"episodeID": 20,
"lengthMin": 45,
"minWatched": 45,
"date" : "2022-03-07"

"episodeID": 30,
"lengthMin": 42,
"minWatched": 42,
"date" : "2022-03-08"

SHOW TABLES Statement

Syntax

show tables statement ::=
SHOW [AS JSON] (TABLES | TABLE table name)

Semantics

The show tables statement provides the list of tables present in the system. If you want to
know the details of a specific table, then you can use show table statement. If the named table
does not exist then this statement fails.

Example 5-7 Show Tables

The following statement lists all the tables in the system.

SHOW TABLES

ORACLE - 10

Chapter 5
DESCRIBE TABLE Statement

Output:

tables
SYS$IndexStatsLease
SYSSPartitionStatsLease
SYS$SSGAttributesTable
SYS$SStreamRequest
SYS$SStreamResponse
SYSSTableStatsIndex
SYSSTableStatsPartition
Users?2
users

Example 5-8 Show Tables

The following statement lists all the tables in the system in JSON format.

SHOW AS JSON TABLES

Output:

{"tables" : [
"SYS$IndexStatsLease",
"SYS$PartitionStatsLease",
"SYS$SGAttributesTable",
"SYS$StreamRequest”,
"SYS$StreamResponse”,
"SYSS$TableStatsIndex",
"SYS$TableStatsPartition",
"Users2",

"users"

1}

Example 5-9 Show Tables

The following statement lists a specific table in the system.

SHOW TABLE users

Output:

tableHierarchy
users

DESCRIBE TABLE Statement

Syntax
describe table statement ::=

(DESCRIBE | DESC) [AS JSON] TABLE table_name
["(" field name ["," field name] ")"]

ORACLE - 13

ORACLE

Chapter 5
DESCRIBE TABLE Statement

Semantics
The description for tables contains the following information:

* Name of the table.

* Time-To-Live value of the table.

* Owner of the table.

e Whether the table is a system table.
* Name of parent tables.

* Name of children tables.

e List of indexes present on the table.
e Desciption of the table.

The description for fields contains the following information:

e Id of the field.
* Name of the field.
« Datatype of fields, for example, INTEGER, STRING, Map(INTEGER), etc.

* Whether the field is nullable. If the field is nullable then "Y' is displayed, otherwise 'N' is
displayed.

e Default value of the field.

* Whether the field is a shard key. If the field is a shard key then "Y' is displayed, otherwise
'N' is displayed.

* Whether the field is a primary key. If the field is a primary key then 'Y" is displayed,
otherwise 'N' is displayed.

* Whether the field is an identity field. If the field is an identity field then 'Y" is displayed,
otherwise 'N' is displayed.

AS JSON can be specified if you want the output to be in JSON format.
Example 5-10 Describe Table
AS JSON can be specified if you want the output to be in JSON format.

DESCRIBE TABLE users

Output:
=== Information ===

e it - fo—— - Fomm tomm - e e R
fommm o +

| name | ttl | owner | sysTable | r2compat | parent | children | indexes |
description |

e it - fo—— - Fomm tomm - e e R
fommm o +

| users | | | N | N \ \

| \

e it - fo—— - Fomm tomm - e e R
fommm o +

5-14

Chapter 5
DESCRIBE TABLE Statement

=== Fields ===

oo o tmmm - Fommm - e
oo mm o fommmmm +

| id | name | type | nullable | default | shardKey |
primaryKey | identity |

oo o tmmm - Fommm - e
oo mm o fommmmm +

[1] id | Integer | N | NullValue | Y
Y |

oo o tmmm - Fommm - e
oo mm o fommmmm +

| 2 | firstName | String Y | NullValue |

| \ |

oo o tmmm - Fommm - e
oo mm o fommmmm +

| 3 | lastName | String | Y | Nullvalue |

| \ |

oo o tmmm - Fommm - e
oo mm o fommmmm +

| 4 | otherNames | Array(Y | NullValue |

| \ |

| | | RECORD (| \ |

| \ |
| \ | first : String, | \

| | | last : String | |

e o Fom - domm - Fom -
Fomm - fom - +

| 5 | age | Integer | Y | Nullvalue |

| \ |

ot o Fom - e it o
Fomm - fom - +

| 6 | income | Integer | Y | Nullvalue |

| \ |

ot o Fom - e it o
Fomm - fom - +

| 7 | address | Json | Y | Nullvalue |

| \ |

ot o Fom - e it o
Fomm - fom - +

| 8 | connections | Array(Integer) | Y | NullValue |

| \ |

ot o Fom - e it o
Fomm - fom - +

| 9 | expenses | Map (Integer) Y | Nullvalue |

| \ |

ot o Fom - e it o
Fomm - fom - +

ORACLE .

Chapter 5
DESCRIBE TABLE Statement

Example 5-11 Describe Table

The following statement provides information about the users table and its fields in JSON
format.

DESC AS JSON TABLE users

Output:
{
"json version" : 1,
"type" : "table",
"name" : "users",
"shardKey" : ["id"],
"primaryKey" : ["id"],
"fields" : [{
"name" : "id",
"type" : "INTEGER",

"nullable" : false,
"default" : null
oo A

"name" : "firstName",
"type" : "STRING",
"nullable" : true,

"default" : null
oo A

"name" : "lastName",
"type" : "STRING",
"nullable" : true,

"default" : null
oo A
"name" : "otherNames",
"type" : "ARRAY",
"collection" : {
"name" : "RECORD gen",
"type" : "RECORD",
"fields" : [{
"name" : "first",
"type" : "STRING",
"nullable" : true,
"default" : null
b Ao

"name" : "last",
"type" : "STRING",
"nullable" : true,

"default" : null
bl
}I
"nullable" : true,
"default" : null
oo A

"name" : "age",
"type" : "INTEGER",
"nullable" : true,

"default" : null
oo A

ORACLE 16

"name" : "income",
"type" : "INTEGER",
"nullable" : true,

"default" : null
oo A

"name" : "address",
"type" : "JSONII,
"nullable" : true,

"default" : null
oo A

"name" : "connections",

"type n : "ARRAY " ,
"collection" : {

"type" : "INTEGER"

by
"nullable" : true,
"default" : null

b Ao

"name" : "expenses",

mn type n : "MAP n ,
"collection" : {

"type" : "INTEGER"

by

"nullable" : true,

"default" : null
bl

Example 5-12 Describe Table

DESCRIBE TABLE users (income)

Chapter 5
Table Hierarchies

The following statement provides information about a specific field in the users table.

shardKey | primaryKey |

Output

ot e Fom - Fommm - o Fom
Fom - +

| id | name | type | nullable | default

identity |

ot e Fom - Fommm - o Fom
Fom - +

| 1 | income | Integer | Y | NullValue

| |

ot e Fom - Fommm - o Fom

Table Hierarchies

The Oracle NoSQL Database enables tables to exist in a parent-child relationship. This is

ORACLE

known as table hierarchies.

The create table statement allows for a table to be created as a child of another table, which
then becomes the parent of the new table. This is done by using a composite name (a

5-17

Chapter 5
Table Hierarchies

name_path) for the child table. A composite name consists of a number N (N > 1) of identifiers
separated by dots. The last identifier is the local name of the child table and the first N-1
identifiers are the name of the parent.

Semantics

The semantic implications of a parent-child relationship are the following:

* A child table inherits the primary key columns of its parent table. This is done implicitly,
without including the parent columns in the create table statement of the child. For
example, in the following Example 5-13 example, table A.B has an extra column, called
ida, and its primary key columns are ida and idb. Similarly, table A.B.C has 2 extra
columns, ida and idb, and its primary key columns are ida, idb, and idc. The inherited
columns are placed first in the schema of a child table.

< Alltables in the hierarchy have the same shard key columns, which are specified in the
create table statement of the root table. So, in our example, the common shard key is
column ida. Trying to include a shard key clause in the create table statement of a non-root
table will raise an error.

e A parent table cannot be dropped before its children are dropped.

* When two rows RC and RP from a child table C and its parent table P, respectively, have
the same values on their common primary key columns, we say that RP and RC match, or
that RP contains RC. In this case, RP and RC will also be co-located physically, because
they have the same shard key. Given that a child table always has more primary key
columns than its parent, a parent row may contain multiple child rows, but a child row will
match with at most one parent row.

Note:

Oracle NoSQL Database does not require that all the rows in a child table have a
matching row in the parent table. In other words, a referential integrity constraint is
not enforced.

Given that the Oracle NoSQL Database model includes arrays and maps, one may wonder
why are child tables needed? After all, for each parent row, its matching child rows could be
stored in the parent row itself inside an array or map. However, doing so could lead to very
large parent rows, resulting in bad performance. This is especially true given the append-only
architecture of the Oracle NoSQL Database store, which implies that a new version of the
whole row is created every time the row is updated. So, child tables should be considered
when each parent row contains a lot of child rows and/or the child rows are large. If, in
addition, the child rows are not accessed very often or if they are updated very frequently,
using child tables becomes even more appealing.

ORACLE -

ORACLE

Chapter 5
Table Hierarchies

Example 5-13 Table Hierarchy

The following statements create a table hierarchy, that is a tree of tables connected by parent-
child relationships. A is the root table, A.B and A.G are children of A, and A.B.C is a child of
A.B (and a grandchild of A).

CREATE TABLE A (ida INTEGER, al STRING, a2 INTEGER, PRIMARY KEY (ida))

CREATE TABLE A.B (idb INTEGER, bl STRING, a2 STRING, PRIMARY KEY (idb))

CREATE TABLE A.B.C (idc INTEGER, bl STRING, c2 STRING, PRIMARY KEY (idc))

CREATE TABLE A.G (idg INTEGER, gl STRING, g2 DOUBLE, PRIMARY KEY (idg))

Table Hierarchy in a Multi-Region table:

You can create child tables in an existing Multi-Region architecture. For example, create the
table users in two regions, FRA and LON.

CREATE TABLE users (
id INTEGER,
name STRING,
team STRING,
PRIMARY KEY (id))
IN REGIONS FRA,LON

Under the users table, you can create a child table using this statement.

CREATE TABLE users.userdet (
pan INTEGER,
address STRING,
email STRING,
PRIMARY KEY (pan))

Specifying the REGIONS clause while creating a Multi-Region child table will result in an error
as illustrated below.

REATE TABLE users.userinfo (pan INTEGER, address STRING, email STRING,
PRIMARY KEY (pan) IN REGIONS FRA, LON)

Output:

Error handling command CREATE TABLE users.userinfo (

pan INTEGER,

address STRING,

email STRING,

PRIMARY KEY (pan) IN REGIONS FRA,LON): Error: at (5, 24) missing ')' at
"IN', at line 5:24

rule stack: [parse, statement, create table statement]

5-19

Chapter 5
Using JSON Collection Tables

You can view the description of the Multi-Region child table as shown below. Note that the child
table automatically inherits the primary key columns of its parent table.

desc as json table users.userdet

"json _version" : 1,
"type" : "table",
"name" : "userdet",
"parent" : "users",
"regions" : {
"2" : "FRA",
"1" : "LON"
}I
"fields" : [{
"name" : "id",
"type" : "INTEGER",

"nullable" : false
b A

"name" : "pan",

"type" : "INTEGER",

"nullable" : false

bro Ao

"name" : "address",
"type" : "STRING",
"nullable" : true
e A
"name" : "email",
"type" : "STRING",
"nullable" : true
o
"prlmaryKey" : [Hid", llpan"} ,
"shardKey" : ["id"]

Using JSON Collection Tables

ORACLE

A JSON collection table facilitates the creation of a schema-less table. You can define the
primary key fields using several NoSQL data types (See Creating JSON collection table). You
can add data into the table using an INSERT or UPSERT statement. Each row is a single
document, which can contain any number of JSON fields.

You can create the JSON collection tables with optional TTL values or add the TTL values later
by modifying the table. No other alteration is allowed on JSON collection tables.

Significance of JSON Collection Tables

JSON collection tables are useful for applications that store and retrieve data purely as
documents. It is a convenient development paradigm for those applications where using a fixed
schema is not optimal. Tables with a fixed schema require the specification of column names
during creation and DML operations. The addition or removal of fields from fixed schema
tables requires schema evolution, which is a costly operation.

As the JSON collection tables are schema-less, you do not have to modify the schema to add
or remove documents from the table. The rows in the JSON collection tables can differ from

5-20

ORACLE

Chapter 5
Using JSON Collection Tables

one another in terms of the number of JSON fields that can be stored without predeclaring the
JSON column names.

Creating JSON collection table
You can use the following syntax to create the JSON collection table.

Syntax

json collection definition ::= AS JSON COLLECTION

Semantics

You create a JSON collection table with one or more primary key fields. When you insert data
into the table, a single document is created without an explicit declaration of a column of type
JSON. The document can contain any number of JSON fields. The JSON fields must be valid
JSON data types. Using non-JSON data types while inserting data will cause an exception.
The primary key fields can include IDENTITY columns and UUIDs. The JSON collection tables
can't be changed into fixed-schema tables.

You can create a JSON collection table with MR_COUNTERS if the table is intended to be a
multi-region table. The MR_COUNTERS must be declared at the time of table creation and
must be only top-level fields in the document. You can't include MR_COUNTERS elsewhere in
the document.

You can supply an optional TTL value during the table creation. You can use the ALTER
TABLE statement to only modify the TTL values.

The JSON collection tables support the following data types for the primary key fields:

Table 5-1 Data types for primary key fields in JSON collection tables
]

Field type Supported data type
Primary key fields * integer

* long

» double

o float

* number

e string

The following examples demonstrate the creation of JSON collection tables. For inserting data
into the tables, see Inserting Rows into JSON Collection Tables.

JSON collection table for a sample application

Example 5-14 Create a JSON collection table for a shopping application

CREATE TABLE storeAcct (contactPhone string, primary key(contactPhone)) AS
JSON COLLECTION

Explanation: In the above DDL statement, you create a JSON collection table for a shopping
application. This table includes the contactPhone as the primary key field. There is no need to
supply any other field except the primary key field in the DDL command.

When you insert data into the table, the JSON collection table automatically considers the
inserted fields other than the primary key fields to be JSON fields.

5-21

ORACLE

Chapter 5
Using JSON Collection Tables

JSON collection table with more than one primary key fields

Example 5-15 Create a JSON collection table with an IDENTITY column as one of the
primary key fields and a TTL value of 90 days

CREATE TABLE storeAcctComposite (contactPhone string, id integer generated by
default as

identity, primary key(contactPhone, id)) AS JSON COLLECTION USING TTL
90 DAYS

Explanation: The table includes two primary key fields, one of them is a contactPhone field
and the other is id, which is declared as an IDENTITY column to autogenerate the order IDs.
In this example, you create the table with a TTL value of 90 days. In the JSON collection DDL,
you supply the USING TTL clause followed by the number of hours/days to create with TTL.

JSON collection table with MR_COUNTERS

Example 5-16 Create a JSON collection table for a shopping application with
MR_COUNTERS in two regions

CREATE TABLE storeAcctMR (contactPhone string, primary key(contactPhone),
mycounter as integer mr counter) in regions FRA, LON AS JSON COLLECTION

Explanation: In the above DDL statement, you create a JSON collection table with an
MR_COUNTER data type in two regions FRA and LON. To create regions, see CREATE
REGION Statement.

You must define a table column as an MR_COUNTER along with its subtype during the table
creation. When you insert data into this table, excluding primary key fields and
MR_COUNTERS, all other supplied fields are implicitly added as JSON fields.

5-22

Note:

Chapter 5
Using the IDENTITY Column

e Declaring MR_COUNTERS in nested JSON fields in the document is not
supported and will return an error if tried. The MR_COUNTERS must be top-level

fields in the document.

Example 1: MR_COUNTER as a top-level field in the document after inserting
data into the storeAcctMR table above.

"contactPhone" : "1817113382",
"address" : {
"city" : "Houston",
"number" : 401,
"state" : "TX",
"street" : "Tex Ave",
"zip" : 95085
b
"firstName" : "Adam",
"lastName" : "Smith",
"mycounter" : 0

Example 2: In this example, you are trying to declare an MR_COUNTER
(counter) in the address field of the document, which is not supported and
returns the following error:

create table storeAcctMR (contactPhone string, primary

key (contactPhone), mycounter as integer mr counter,
address.counter as integer mr counter) in regions FRA, LON as json
collection

Error handling command create table storeAcctMR (contactPhone
string, primary key(contactPhone), mycounter as integer

mr counter, address.counter as integer mr counter) in regions FRA,
LON as json collection: Error: Error found when creating the
table: MR Counter in JSON Collection may contain only alphanumeric
values plus the character " ": address.counter

Ensure that all the regions mentioned in the create table statement are
predefined. Declaring regions that are not available during the table creation will
result in an error.

schema evolution is not supported.

Using the IDENTITY Column

e Adding or removing the MR_COUNTERS from the JSON collection table through

Declare a column as IDENTITY to have Oracle NoSQL Database automatically assign values
to it, where the values are generated from an associated sequence generator. The SG is the
table’s manager for tracking the IDENTITY column’s current, next, and total number of values.

ORACLE

5-23

ORACLE

Chapter 5
Using the IDENTITY Column

You create an IDENTITY column as part of a CREATE TABLE name DDL statement, or add an
IDENTITY column to an existing table with an ALTER TABLE name DDL statement.

Syntax

identity definition ::=
GENERATED (ALWAYS | (BY DEFAULT [ON NULL])) AS IDENTITY
[" (" sequence_generator_attributes+ ") "]

Semantics

An INTEGER, LONG, or NUMBER column in a table can be defined as an identity column. The
system can automatically generate values for the identity column using a sequence generator.
See Sequence Generator section. A value for an identity column is generated during an
INSERT, UPSERT, or UPDATE statement.

An identity column can be defined either as GENERATED ALWAYS or GENERATED BY
DEFAULT.

GENERATED ALWAYS
The system always generates a value for the identity column. An exception is raised if the
user supplies a value for the identity column.

GENERATED BY DEFAULT

The system generates a value for the identity column only if the user does not supply a value
for it. If ON NULL is specified for GENERATED BY DEFAULT, the system will generate a value
when the user supplies a NULL value or the value evaluates to a NULL.

Sequence Generator Attributes

An SG has several attributes that define its behavior, such as the starting value for its
IDENTITY column, or the number of values stored in cache. You can optionally define some
SG attributes when you create an IDENTITY column, or use all default values. For more
information about the Sequence Generator attributes, see Sequence Generator.

< Note:

Using an IDENTITY column in any table does not force uniqueness. If your
application requires unique values for every row of an IDENTITY column, you must
create the column as GENERATED ALWAYS AS IDENTITY, and never permit any
use of the CYCLE SG attribute.

Identity Column Characteristics

e There can be only one IDENTITY column per table.
e The IDENTITY column of a table can be part of the primary key or the shard key.

* You can add, remove, or change rows of an IDENTITY column, though certain limitations
exist on such updates, depending on how you create the IDENTITY column, and whether it
is a Primary Key.

e Secondary indexes can be created on an identity column.

* Dropping a table that was created with an IDENTITY column also removes the Sequence
Generator.

5-24

ORACLE

Chapter 5
Using the IDENTITY Column

* The set of values that may be assigned to an IDENTITY column is defined by its data type
and the attributes of the sequence generator attached to it. The values are always integer
numbers. Both negative and positive INTEGER are possible. If you want only positive
values, then set the START WITH attribute to 1 and specify a positive INCREMENT BY
attribute. When you specify CYCLE, numbers will be regenerated from the MINVALUE. In
this case, if you want positive values you must also set MINVALUE to be a positive
number.

* The system generates unique values for an IDENTITY column that is defined as
GENERATED ALWAYS and has the sequence generator attribute NO CYCLE set.
Otherwise, duplicate identity values can occur in the following scenarios:

— The identity column is defined as GENERATED BY DEFAULT and the user supplies a
value during an insert or update statement that already exists in the table for the
IDENTITY column.

— The CYCLE option is set for an IDENTITY column that is defined as GENERATED BY
DEFAULT or GENERATED ALWAYS and the sequence generator reaches the end of
the cycle and then recycles through the sequence generator to generate values that
were generated in the previous cycle.

— Ifthe IDENTITY column properties are altered using the alter table statement so that
during an insert or update operation the user can supply a value that already exists.

< If more than one client accesses a table with an IDENTITY column defined for unique
values this way, each client is assigned contiguous value sets to its SG cache. These sets
do not overlap with other client sets. For example, Clientl is assigned values 0001 - 1000,
while Client2 has 1001 - 2000, and so on. Thus, as each client adds rows to the table, the
IDENTITY values can run as 0001, 1001, 0002, 1002, 1003, and so on, as both clients use
their own cache when adding rows. The IDENTITY column values are guaranteed to be
unigue, but not necessarily contiguous, because each client has its own set of cache
values, and adds rows at different speeds and times.

e Sequence generator attributes can be altered using the alter table statement.

« Users require table privileges to create tables with an IDENTITY column. For a description
of user privileges, see KVStore Required Privileges in the Security Guide.

e Holes in the sequence can occur when:

— The application caches identity values and shuts down or crashes before using all of
the cached values for inserting rows.

— Identity values are assigned during a transaction that is rolled back.

e Creating MR tables with an IDENTITY column is not supported and the system returns an
error message. For more information on MR table creation, see Create MR Tables.

e For example on inserting rows with an identity column see, Inserting Rows with an
IDENTITY Column section.

Example 5-17 Identity Column using GENERATED ALWAYS

CREATE TABLE T1 (
id INTEGER GENERATED ALWAYS AS IDENTITY
(START WITH 2 INCREMENT BY 2 MAXVALUE 200 NO CYCLE),
name STRING,
PRIMARY KEY (id)

In the above example, the INTEGER column id is defined as a GENERATED ALWAYS AS
IDENTITY column and is the primary key for table T. The system will start to generate values 2

5-25

https://docs.oracle.com/pls/topic/lookup?ctx=en/database/other-databases/nosql-database/21.1/java-driver-table&id=NSSEC-GUID-9406CF62-35A2-4FC8-AAD9-087150699B69

Chapter 5
Using the IDENTITY Column

through 200 incrementing by 2. So values for the id column will be 2,4,6,8,...200. Since the NO
CYCLE option is defined, the system will raise an exception after the number 200 is generated
saying it has reached the end of the sequence generator.

Example 5-18 Identity Column using GENERATED BY DEFAULT

CREATE TABLE T2 (
id LONG GENERATED BY DEFAULT AS IDENTITY
(START WITH 1 INCREMENT BY 1 CYCLE CACHE 200),
account id INTEGER,
name STRING,
PRIMARY KEY (account id)

In the above example, the creation of a table with an identity column on id column is shown.
The id column is of type LONG, is defined as GENERATED BY DEFAULT, and it is not a
primary key column. This example also demonstrates how to specify a CYCLE and CACHE
sequence generator attributes. The system will only generate a value during INSERT/
UPSERT/UPDATE if the user did not supply a value. It starts off generating values 1, 2, 3,... up
to the maximum value of the LONG datatype, and once it exhausts all the sequence generator
values, it will cycle through and re-start from the MINVALUE value of the sequence generator,
which in this case, is the minimum value of the LONG datatype. The CACHE value of 200
means that every time a client uses up the values in the cache and asks for the next value, the
system will give it 200 values to fill up the cache. In this example, the system will give values 1
through 200 when a client asks for a value for the first time. Another client operating on the
same table may get values 201-300, so on and so forth.

Creating Tables With an IDENTITY Column

ORACLE

You can create an IDENTITY column when you create a table, or change an existing table to
add an IDENTITY column using ALTER TABLE...ADD. In either case, choose one of the
IDENTITY statements described below. This section describes creating a table with an
IDENTITY column.

Here is the formal syntax for creating a table with an IDENTITY column:

GENERATED (ALWAYS | (BY DEFAULT [ON NULL])) AS IDENTITY
[sequence options,...]

The optional sequence options refer to all of the Sequence Generator attributes you can
supply.

IDENTITY Column Statement Description

GENERATED ALWAYS AS IDENTITY The sequence generator always supplies an
IDENTITY value. You cannot specify a value for the
column.

GENERATED BY DEFAULT AS IDENTITY The sequence generator supplies an IDENTITY
value any time you do not supply a column value.

GENERATED BY DEFAULT ON NULL AS The sequence generator supplies the next

IDENTITY IDENTITY value if you specify a NULL columnn
value.

5-26

Chapter 5
Using the IDENTITY Column

To create a table with a column GENERATED ALWAYS AS IDENTITY from the SQL CLI:

CREATE TABLE IF NOT EXISTS tnamel (

idvalue INTEGER GENERATED ALWAYS AS IDENTITY,
acctNumber INTEGER,

name STRING,

PRIMARY KEY (acctNumber))

Output:

Statement completed successfully

For this table, tnamel, each time you add a row to the table, the Sequence Generator (SG)
updates the idvalue from its cache. You cannot specify a value for idvalue. If you do not
specify any sequence generator attributes, the SG uses its default values.

To create a table with a column GENERATED BY DEFAULT ON NULL AS IDENTITY:

CREATE TABLE IF NOT EXISTS tname2 (

idvalue INTEGER GENERATED BY DEFAULT ON NULL AS IDENTITY,
acctNumber INTEGER,

name STRING,

PRIMARY KEY (acctNumber))

Output:

Statement completed successfully

For this table, tname2, each time you add a row, the SG inserts the next available value from its
cache if no value is supplied for the idvalue column, the supplied value for the idvalue
column is NULL.

To create a table with a column GENERATED BY DEFAULT AS IDENTITY:

CREATE TABLE IF NOT EXISTS tname3 (

idvalue INTEGER GENERATED BY DEFAULT AS IDENTITY,
acctNumber INTEGER,

name STRING,

PRIMARY KEY (acctNumber))

Output:

Statement completed successfully

For this table, tname3, each time you add a row, the SG inserts the next available value from its
cache if no value is supplied for the idvalue column.

To create a new table, sg_atts, with several SG attributes:

CREATE Table sg_atts (

id INTEGER GENERATED ALWAYS AS IDENTITY
(START WITH 2

INCREMENT BY 2

ORACLE 5-27

ORACLE

Chapter 5
Using the IDENTITY Column

MAXVALUE 200

NO CYCLE),

name STRING,
PRIMARY KEY (id))

Output:

Statement completed successfully

The table sg_atts specifies that the integer IDENTITY field (id) is generated always.

SG Attribute Description

start with 2 Start the sequence value at 2.

increment by 2 Increment the sequence value by 2 for each row.

maxvalue 200 Specifies the maximum IDENTITY value. What you specify overrides the

default value maxvalue, which is the upper bound of the IDENTITY
datatype in use. Once the IDENTITY column reaches this value, 200,
the SG will not generate any more IDENTITY values. The maximum
value has been reached and the no cycle attribute is in use.

no cycle Do not restart from 2 or with any value at all, once the column reaches
the maxvalue.

To create another table, sg_some atts, with some SG attributes:

CREATE Table sg some atts (

id LONG GENERATED BY DEFAULT AS IDENTITY
(START WITH 1

INCREMENT BY 1

CYCLE

CACHE 200),

account id INTEGER,

name STRING,

PRIMARY KEY (account id))

For the sg_some atts table, specify an id column GENERATED BY DEFAULT AS IDENTITY, but
which is not the primary key.

SG Attribute or Other Detail | Description

CYCLE Specifying CYCLE indicates that the SG should supply IDENTITY
values up to either the MAXVALUE attribute you specify, or the default
MAXVALUE. When the IDENTITY reaches the MAXVALUE value, the SG
restarts the values over, beginning with MINVALUE, if it is specified, or
with the default MINVALUE for the data type. CYCLE is orthogonal to the
CACHE attribute, which indicates only how many values to store in local
cache for swift access. You can set CACHE value to closely reflect the
maximum value of the datatype, but we do not recommend this, due to
the client cache size.

CACHE 200 The number of values that each client stores in its cache for fast
retrieval. When the IDENTITY reaches the last number in the cache, the
SG gets another set of values from the server automatically.

START WITH 1 The SG generates values 1, 2, 3 and so on, until it reaches the
maximum value for a LONG data type.

5-28

Using the

ORACLE

Chapter 5
Using the UUID data type

SG Attribute or Other Detail | Description

INCREMENT BY 1 The SG increments each new IDENTITY value for every new row.

For a full list of all sequence generator attributes, see Sequence Generator.

UUID data type

Overview of the UUID data type

A universally unique identifier (UUID) is a 128-bit number used to identify information in
computer systems. You can create a UUID and use it to uniquely identify something. In its
canonical textual representation, the 16 octets of a UUID are represented as 32 hexadecimal
(base-16) digits, displayed in five groups separated by hyphens, in the form 8-4-4-4-12 for a
total of 36 characters (32 hexadecimal characters and 4 hyphens). For example, a81bc81b-
dead-4e5d-abff-90865d1lel3bl.

In Oracle NoSQL, UUID values are represented by the UUID data type. The UUID data type is
considered a subtype of the STRING data type, because UUID values are displayed in their
canonical textual format and, in general, behave the same as string values in the various SQL
operators and expressions. However, in order to save disk space, the UUID value is saved in a
compact format on disk. If the UUID value is the primary key, the canonical 36-byte string is
converted to a 19-byte string, then is saved on disk. If the UUID value is a non-primary key, the
canonical 36-byte string is converted to a 16-byte array, then is saved on disk.

A table column can be declared as having UUID type in a CREATE TABLE statement. The
UUID data type is best-suited in situations where you need a globally unique identifier for the
records in a table that span multiple regions since identity columns are only guaranteed to be
unique within a NoSQL cluster in a region.

Using the UUID data type:

Declare a column with UUID data type. UUID is a subtype of the STRING data type. This UUID
column can be defined as GENERATED BY DEFAULT. The system then automatically
generates a value for the UUID column if you do not supply a value for it.

Syntax:

uuid definition := AS UUID [GENERATED BY DEFAULT]

Semantics

Declares the type of a column to be the UUID type. If the GENERATED BY DEFAULT
keywords are used, the system generates a value for the UUID column automatically, if the
user does not supply one.

UUID Column Characteristics :

e One table can have multiple columns defined as "STRING AS UUID". However, one table
can have only one column defined as "STRING AS UUID GENERATED BY DEFAULT".

e Since the Identity column is also generated by the system, the Identity column and the
UUID GENERATED BY DEFAULT columns are mutually exclusive. That means only one
IDENTITY column or one "UUID GENERATED BY DEFAULT" can exist per table.

* You create a UUID column as part of a CREATE TABLE DDL statement or add a UUID
column to an existing table with an ALTER TABLE DDL statement.

5-29

ORACLE

Chapter 5
Using the UUID data type

* You can also index UUID columns via secondary indexes.
Example 1: UUID Column without GENERATED BY DEFAULT

CREATE TABLE myTable (id STRING AS UUID,name STRING, PRIMARY KEY (id))

Output:

Statement completed successfully

In the above example, the id column has no "GENERATED BY DEFAULT" defined, therefore,
whenever you insert a new row, you need to explicitly specify a value for the id column.

INSERT INTO myTable values("a8lbc8lb-dead-4e5d-abff-90865d1lel3bl", "testl")

Output:

Statement completed successfully

Input format: The input string must conform to the format specified by RFC 4122. An
lllegalArgumentException is thrown if the input string does not conform to the string
representation as described at Class UUID.

Output format: The output is a UUID canonical format. This is 32 hexadecimal(base-16)
digits, displayed in five groups separated by hyphens, in the form 8-4-4-4-12 for a total of 36
characters (32 hexadecimal characters and 4 hyphens).

The value for a UUID column can also be generated using the random uuid function, which
returns a randomly generated UUID, as a string of 36 characters. See Function to generate a
UUID string.

Example 2: UUID Column using GENERATED BY DEFAULT

CREATE TABLE myTable (id STRING AS UUID GENERATED BY DEFAULT, name STRING,
PRIMARY KEY (id))

Output:

Statement completed successfully

In the above example, the id column has "GENERATED BY DEFAULT" defined, therefore,
whenever you insert a new row without specifying the value for the id column, Oracle NoSQL
Database automatically generates a value for it.

INSERT INTO myTable VALUES (default,"testl")

Output:

Statement completed successfully

5-30

Chapter 5
Using the MR_COUNTER datatype

Table 5-2 Comparison between Identity Column and UUID column

Identity Column UUID column
Declare a column as Identity to have Oracle Declare a column as UUID if you need unique
NoSQL Cluster automatically assign values to it values to be assigned to a NoSQL Cluster column

in a multi-region system

An INTEGER, LONG, or NUMBER column in a A UUID is a subtype of the STRING data type
table can be defined as an Identity column

An Identity column can be defined either as A UUID column can be defined as GENERATED
GENERATED ALWAYS or GENERATED BY BY DEFAULT or you can supply the value of the
DEFAULT string while inserting or updating data

Ideal in a single cluster architecture The UUID data type is best suited In situations

where you need a globally unique identifier for the
records in a table that span multiple regions since
identity columns are only guaranteed to be unique
within a NoSQL cluster in a region.

Costs less storage space than a corresponding Costs more storage space than a corresponding
UUID column. Identity column.

If LONG is the primary key, it costs a maximum of If the UUID value is the primary key, it costs 19-
10 bytes. If LONG is a non-primary key, it costs a bytes. If the UUID value is a non-primary key, it
maximum of 8 bytes. costs 16-bytes.

Using the MR_COUNTER datatype

e Using CRDT datatype in a multi-region table
e Create table using MR_COUNTER datatype

Using CRDT datatype in a multi-region table

ORACLE

Overview of the MR_COUNTER data type

MR_Counter data type is a counter CRDT. CRDT stands for Conflict-free Replicated Data
Type. In a multi-region setup of an Oracle NoSQL Database, a CRDT is a data type that can
be replicated across servers where regions can be updated independently and it converges on
a correct common state. Changes in the regions are concurrent and not synchronized with one
another. In short, CRDTs provide a way for concurrent modifications to be merged across
regions without user intervention. Oracle NoSQL Database currently supports the counter
CRDT which is called MR_Counter. The MR_COUNTER datatype is a subtype of the
INTEGER or LONG or NUMBER data type. You can also use the MR_COUNTER data type in
a schema-less JSON field, which means one or more fields in a JSON document can be of
MR_COUNTER data type.

Why do you need MR_Counter in a multi-region table?

In a multi-region database configuration, copies of the same data need to be stored in multiple
regions. This configuration needs to deal with the fact that the data may be concurrently
modified in different regions.

Take an example of a multi-region table in three different regions (where data is stored in three
different Oracle NoSQL Database stores). Concurrent updates of the same data in multiple
regions, without coordination between the machines hosting the regions, can result in
inconsistencies between the regions, which in the general case may not be resolvable.
Restoring consistency and data integrity when there are conflicts between updates may require
some or all of the updates to be entirely or partially dropped. For example, in the current

5-31

ORACLE

Chapter 5
Using the MR_COUNTER datatype

configuration of a multi-region table in the Oracle NoSQL Database, if the same column (a
counter) of a multi-region table is updated across two regions at the same time with different
values, a conflict arises.

Currently, the conflict resolution is that the latest write overwrites the value across regions. For
example, Region 1 updates columnl with a value R1, and region2 updates columnl with a
value R2, and if the region2 update happens after regionl, the value of the column (counter) in
both the regions becomes R2. This is not what is actually desired. Rather every region should
update the column (a counter) at their end and also the system internally needs to determine
the sum of the column across regions.

One way to handle this conflict is making serializable/linearizable transactions (one transaction
is completed and changes are synchronized in all regions and only then the next transaction
happens). A significant problem of having serializable transactions is performance. This is
where MR_COUNTER datatype comes in handy. With MR_COUNTER datatype, we don't
need serializable transactions and the conflict resolution is taken care of. That is,
MR_COUNTER datatype ensures that though data modifications can happen simultaneously
on different regions, the data can always be merged into a consistent state. This merge is
performed automatically by MR_COUNTER datatype, without requiring any special conflict
resolution code or user intervention.

Use-case for MR_COUNTER datatype

Consider a Telecom provider providing different services and packages to its customers. One
such service is a "Family Plan" option where a customer and their family share the Data Usage
plan. The customer is allocated a free data usage limit for a month which your the customer's
entire family collectively uses. When the total usage of customer's family reaches 90 percent of
the data limit, the telecom provider sends the customer an alert. Say there are four members in
customer's family plan who are spread across different physical regions. The customer needs
to get an alert from the telecom provider once the total consumption of their family reaches 90
percent of the free usage. The data is replicated in different regions to cater to latency,
throughput, and better performance. That means there are four regions and each has a kvstore
containing the details of the customer's data usage. The usage of their family members needs
to be updated in different regions and at any point in time, the total usage should be monitored
and an alert should be sent if the data usage reaches the limit.

An MR_COUNTER data type is ideal in such a situation to do conflict-free tracking of the data
usage across different regions. In the above example, an increment counter in every data
region's data store will track the data usage in that region. The consolidated data usage for all
regions can be determined by the system at any point without any user intervention. That is the
total data usage at any point in time can be easily determined by the system using an
MR_COUNTER datatype.

Types of MR_COUNTER Datatype

Currently, Oracle NoSQL Database supports only one type of MR_COUNTER data type. which
is Positive-Negative (PN) counter.

Positive-Negative (PN) Counter

A PN counter can be incremented or decremented. Therefore, these can serve as a general-
purpose counter. For example, you can use these counters to count the number of users active
on a social media website at any point. When the users go offline you need to decrement the
counter.

To create a multi-region table with an MR_COUNTER column, See Create multi-region table
with an MR_COUNTER column section in the Administrator's Guide.

A MR_COUNTER (JSON and a non-JSON) can only be defined when the field in a schema is
defined. You can do this in the following places:

5-32

Chapter 5
Using the MR_COUNTER datatype

* During schema definition in table creation.

* During schema definition when adding a field to the schema.

Create table using MR_COUNTER datatype

ORACLE

You can declare a table column of MR_Counter data type in a CREATE TABLE statement. You
can do this only in a multi-region table.

Declare a column with MR_COUNTER data type. MR_COUNTER is a subtype of the
INTEGER or LONG or NUMBER data type. You can also declare a field in a JSON column as
MR_COUNTER data type.

Syntax:

mr counter defintion := AS MR COUNTER

Semantics:
Declares the type of a column to be the MR_COUNTER type.
MR_COUNTER column Characteristics:

* MR_COUNTER data type can be used for a multi-region table only. It cannot be used in
regular tables.

* One table can have multiple columns defined as "MR_COUNTER".

* You create an MR_COUNTER column as part of a CREATE TABLE DDL statement or add
an MR_COUNTER column to an existing table with an ALTER TABLE DDL statement.

* You can define any field in a JSON column as an MR_COUNTER.
e The default value of an MR_COUNTER data type is always 0.
* MR_COUNTER cannot be the element of an ARRAY.

Note:

MR_COUNTER cannot be a primary key or be part of a secondary index.

Example using MR_COUNTER data type - Create a PN counter data type in a multi-
region table

CREATE Table myTable(name STRING,
count INTEGER AS MR COUNTER,
PRIMARY KEY (name)) IN REGIONS DEN, LON

In the above example, you create a PN counter data type in two regions DEN and LON.

While inserting data into the table, the system inserts the default value of 0 in the following two
cases.

e If you specify the "DEFAULT" keyword in the INSERT clause:
INSERT INTO myTable VALUES ("Bob", DEFAULT);

e If you skip the column in the INSERT clause:
INSERT INTO myTable (name) VALUES ("Bob");

5-33

ORACLE

Chapter 5
Using the MR_COUNTER datatype

Note:

For MR COUNTER, the count contributed by a single region cannot overflow but the
MR COUNTER value, which is the sum of counts for all regions can overflow.

For example, the above table myTable has an integer MR _COUNTER and there are two
regions DEN and LON. The region DEN cannot increment the count by a total value
greater than INTEGER.MAX. This is also applicable for the region LON.

However, if the region DEN increments the count by INTEGER.MAX and the region
LON increments it by 2, the value of count becomes (INTEGER.MAX.+2) which has
overflowed, but this is allowed.

Example: Create a multi-region table and declare fields in a JSON column as
MR_COUNTER data type

CREATE TABLE demoJSONMR (name STRING,
jsonWithCounter JSON(counter as INTEGER MR COUNTER,
person.count as LONG MR COUNTER),
PRIMARY KEY (name)) IN REGIONS FRA,LON

In the statement above, you create a multi-region table with a STRING column and a
column(JSON documents). You are identifying two of the fields in the JSON document as
MR_COUNTER data type. The first field is counter, which is an INTEGER MR_COUNTER
data type. The second field is count within an embedded JSON document (person). The count
field is of LONG MR_COUNTER data type.

Note:

There is no limit on the number of MR_COUNTER data types created inside a JSON
document.

Example: Insert data into multi-region table with a JSON MR_COUNTER

When inserting a row into the multi-region table with a JSON MR_COUNTER, you must supply
a value 0 to the MR_COUNTER.

5-34

Chapter 5
Sequence Generator

Note:

e The system initially assigns a value of 0 to all MR_COUNTER data types even if
you explicitly supply a non-zero value. This also holds good when you try to
provide a value that is not an INTEGER or LONG or NUMBER.

¢ You can't supply the keyword DEFAULT while inserting a JSON MR_COUNTER.

e The system will return an error if you try to insert data into an MR table without
supplying a value to the declared JSON MR_COUNTER field or using the
keyword DEFAULT.

INSERT INTO demoJSONMR VALUES ("Anna",
{

"id" 1,
"counter" : O,
"person" : {
"age" : 10,
"count" : 0,
"number" : 100

SELECT * FROM demoJSONMR

Output:

{"name":"Anna",
"jsonWithCounter":{"id" : 1,"counter":0,
"person": {"age":10,"count":0, "number":100}

}

Sequence Generator

ORACLE

The sequence generator is a service that generates a sequence of integer numbers. Every
IDENTITY column you add to a table requires its own Sequence Generator (SG). The SG is
responsible for several tasks, including obtaining and supplying values to the IDENTITY
column as necessary.

Each IDENTITY column requires an associated, dedicated Sequence Generator (SG). When
you add an IDENTITY column, the system creates an SG that's runs on the client with the
application. Information about all attributes for every SG is added to a system table,
SYS$SGAttributesTable. You can see the contents of this system table using a simple query
such as this:

SELECT * FROM SYS$SGAttributesTable

For other commands:

5-35

ORACLE

Chapter 5
Sequence Generator

Differences in Commands

Description

SHOW TABLES

Returns a list of tables

DESCRIBE TABLE namel

Shows the schema of table namel

SELECT * FROM table name

Shows the data rows of table_name

Syntax

sequence generator attributes ::=
(START WITH signed int) |
(INCREMENT BY signed int) |
(MAXVALUE signed int) | (NO MAXVALUE) |
(MINVALUE signed int) | (NO MINVALUE) |
(CACHE INT) | (NO CACHE) |
CYCLE | (NO CYCLE)

Semantics

Oracle NoSQL Database only supports sequence generators that are attached to identity
columns. See Using the IDENTITY Column.The numbers in the generated sequence depend
on the attributes of the sequence generator attributes.

Following are the SG attributes that you can optionally specify when you create an IDENTITY
column, or change later using the ALTER TABLE statement.

Attribute Type

Description

START WITH Integer

The first value in the sequence.
Zero (0) is permitted as a Start
With value.

Default value: 1

INCREMENT BY Integer

The next value in the sequence is
generated by adding
INCREMENT BY value to the
current value of the sequence.
The increment value can be a
positive number or a negative
number. Zero (0) is not permitted
as an Increment By value.
Specifying a negative number for
Increment By decrements
value from the current value of
the sequence.

Default value: 1

MINVALUE Integer

The lower bound of the
IDENTITY values that the SG
supplies. You can either specify
MINVALUE or NO MINVALUE, but
not both.

Default value: -2"31, which is the
minimum value of the INTEGER
datatype.

5-36

ORACLE

Chapter 5
Sequence Generator

Attribute

Type

Description

NO MINVALUE

Integer

Specifies that there is no lower
bound of the IDENTITY values
that the SG supplies. SG uses
the minimum value of the
INTEGER datatype, which is
-2"31, as the lower bound of the
IDENTITY values. You can either
specify MINVALUE or NO
MINVALUE, but not both.

MAXVALUE

Integer

The upper bound of the
IDENTITY values that the SG
supplies. You can either specify
MAXVALUE or NO MAXVALUE, but
not both.

Default value: 2”31-1, which is
the maximum value of the
INTEGER datatype.

NO MAXVALUE

Integer

Specifies that there is no upper
bound of the IDENTITY values
that the SG supplies. SG uses
the maximum value of the
INTEGER data type, which is
2731-1, as the upper bound of the
IDENTITY values. You can either
specify MAXVALUE or NO
MAXVALUE, but not both.

5-37

Chapter 5
Sequence Generator

Attribute Type Description

CACHE Integer The value of this attribute
specifies the count of sequence
numbers that will be generated
every time a request is made to
the sequence generator. These
requests originate at the Oracle
NoSQL Database clients and are
serviced by the sequence
generator, which "lives" at the
server. Specifically, the numbers
generated in each request are
sent back to the client and are
cached there. Whenever a client
needs to assign a value to an
IDENTITY column, the next
sequence number from the cache
is consumed. When cache
empties, a request for another
batch of CACHE sequence
numbers is sent to the sequence
generator.

If more than one client accesses
a table with an IDENTITY column
defined for unigue values this
way, each client is assigned
contiguous value sets to its SG
cache. These sets do not overlap
with other client sets. For
example, Clientl is assigned
values 0001 - 1000, while
Client2 has 1001 - 2000, and
so on. Thus, as each client adds
rows to the table, the IDENTITY
values can run as 0001, 1001,
0002, 1002, 1003, and so on, as
both clients use their own cache
when adding rows. The
IDENTITY column values are
guaranteed to be unique, but not
necessarily contiguous, because
each client has its own set of
cache values, and adds rows at
different speeds and times.

You can either specify CACHE or
NO CACHE, but not both.

Default value: 1000

NO CACHE Integer Specifies that local cache is not
being used by the SG. You can
either specify CACHE or NO
CACHE, but not both.

ORACLE - 38

ORACLE

Chapter 5
Sequence Generator

Attribute

Type

Description

CYCLE or NO CYCLE

Boolean

Determines whether or not SG
continues to generate values after
reaching either the maximum or
minimum value for the datatype of
the IDENTITY column. After an
ascending sequence reaches its
maximum value, it generates its
minimum value. After a
descending sequence reaches its
minimum, it generates its
maximum value.

If you specify CYCLE attribute,the
SG uses the total number of
values that can be generated for
an IDENTITY column of a specific
datatype (INTEGER, LONG, or
NUMBER), unless you specify
MAXVALUE to set a different
limit. Once the sequence
generator reaches the end of the
cycle and then recycles through
the sequence generator to
generate values that were
generated in the previous cycle.

If you specify NO CYCLE attribute,
Oracle NoSQL Database
guarantees that each IDENTITY
column value is unique, but not
necessarily sequential. For
example, if you set MaxValue as
10000, and multiple clients add
rows to the table, each client is
assigned a certain amount of
values to use.

Default Value: NO CYCLE

\J

¢ No

»

te:

you
spe
cify
the
CYC
LE
attri
bute
,all
of
the
exis
ting
valu
es

5-39

Chapter 5
Sequence Generator

Attribute Type Description

for
the
IDE
NTI
TY
colu
mn
are
use

agai

pote
ntial
ly
over
writi
ng
curr
ent
valu
es
plac
Cre
atin
ga
colu
mn
as
GE
NE
RAT
ED
AL
WA
YS
AS
IDE
NTI
TY,
and
usin

the
SG
NO
CYC
LE
attri
bute
is
the
ON
LY

ORACLE" 5.40

Chapter 5
DROP TABLE Statement

Attribute Type Description

way
to

mai
ntai

uniq
ue
IDE
NTI
TY
colu
mn
valu
es.

Following are internal SG attributes. You cannot specify any of these when you create or add
an IDENTITY column. Each is derived from how you create the IDENTITY field. For example,
one internal attribute is SGName, which is the column name you give the IDENTITY field.

Attribute Type Description

SGType String [INTERNAL | EXTERNAL]. The
IDENTITY column you create, or
add to a table with a DDL
statement. The default is

INTERNAL.

SGName String Name of the IDENTITY field you
create and with which the SG is
associated.

Datatype String Sequence Generator datatype

that you specified as part of the
CREATE TABLE statement for the
IDENTITY column. Each
IDENTITY column can be any
numeric type: INTEGER, LONG,
or NUMBER.

SGAttrVersion Long This is an internal attribute that
you cannot set. It is here for
future usage.

DROP TABLE Statement

The drop table statement removes the specified table and all its associated indexes from the
database.

Syntax

drop table statement ::= DROP TABLE [IF EXISTS] name path

ORACLE a1

Chapter 5
ALTER TABLE Statement

Semantics

IF EXISTS
By default, if the named table does not exist then this statement fails. If the optional IF EXISTS
is specified and the table does not exist then no error is reported.

IDENTITY
When a table with an identity column is dropped, the associated sequence generator is also
removed.

Example 5-19 Drop Table

CREATE TABLE DROPTEST (id INTEGER, name STRING, PRIMARY KEY (id))

DROP TABLE DROPTEST

You cannot drop a parent table if there are child tables to it. To drop a parent table, first drop all
of its child tables. Otherwise, the DROP statement results in an error as shown below.

drop table users

Output:

Error handling command drop table users: Error: User error in query:
DROP TABLE failed for table users:
Cannot remove table users, it is still referenced by child table

ALTER TABLE Statement

ORACLE

The behavior of NoSQL Database, when a schema evolves using ALTER TABLE statement, is
designed primarily for large data sets (tens to hundreds of billions of records). Simply put, big
data is larger and more complex data sets, especially from new data sources. These data sets
are so voluminous that traditional data processing software can't manage them. But these
massive volumes of data are used to address business problems you wouldn’'t have been able
to tackle before. Therefore, when you modify the table schema with ALTER TABLE statement,
NoSQL Database does not modify every record in the table and re-write them back to disk.
Instead, it uses the notion of a default value, and that value gets inserted when a reader reads
data that was written with a previous version of the schema.

However, in the case of identity columns, there is no way to generate a value other than by
writing a record, hence when a user alters a table and adds an identity column, any reads of
that column for records that were written prior to the later table yields a null value for the
identity column.

You can use the alter table command to perform the following operations.
* Add schema fields to the table schema

* Remove schema fields from the table schema

* Modify schema fields in the table schema

* Add region

* Remove region

5-42

ORACLE

Chapter 5
ALTER TABLE Statement

* Modify identity definition
* Remove identity

* Modify the Time-To-Live value of the table

You can specify only one type of operation in a single command. For example, you cannot
remove a schema field and set the TTL value together.

Note:

In JSON collection tables, you can use the ALTER TABLE statement to only modify
the default TTL values of a table. Any other schema alteration is not supported and
an error message is returned.

Syntax

alter table statement ::=
ALTER TABLE name path (alter field statements | ttl definition)

alter field statements ::=
"(" alter field statement ("," alter field statement)* ")"

alter field statement ::=
add field statement | drop field statement | modify field statement |
alter regions statement

add field statement ::=
ADD schema path type_definition
[default_definition | identity_definition | uuid_definition | mr counter definition]
[comment]

drop field statement ::= DROP schema path
modify field statement ::=

(MODIFY schema path identity definition) |
(DROP IDENTITY)

alter regions statement ::= add regions statement | drop regions statement
add regions statement ::= ADD REGIONS region names
drop regions statement ::= DROP REGIONS region names
region names ::= region_name ["," region name]*
schema path ::= init schema path step ("." schema path step)*
init schema path step ::=id ("[" "]")*
schema path step ::= id ("[" "]")* | VALUES "(" ")"
Semantics

modify_field_statement
You can use the MODIFY keyword to modify only an identity column.

5-43

ORACLE

Chapter 5
ALTER TABLE Statement

add_field_statement

Adding a field does not affect the existing rows in the table. If a field is added, its default value
or NULL will be used as the value of this field in existing rows that do not contain it. The field
to add may be a top-level field (i.e. A table column) or it may be deeply nested inside a
hierarchical table schema. As a result, the field is specified via a path. The path syntax is a
subset of the one used in queries and is described in the Path Expressions section.

Note:

The mr_counter_definition parameter declares the type of a column to be the
MR_COUNTER datatype. This data type can be used only in a multi-region table.

drop_field_statement

Dropping a field does not affect the existing rows in the table. If a field is dropped, it will
become invisible inside existing rows that do contain the field. The field to drop may be a top-
level field (i.e. A table column) or it may be deeply nested inside a hierarchical table schema.
As a result, the field is specified via a path. The path syntax is a subset of the one used in
gueries and is described in the Path Expressions section.

add_regions_statement

The add regions clause lets you link an existing MR Table with new regions in a multi-region
Oracle NoSQL Database environment. This clause is used in expanding MR Tables to new
regions. See Use Case 2: Expand a Multi-Region Table in the Administrator's Guide.

Note:

This clause will not work with MR child tables. Instead, alter the parent table to add a
new region. This will automatically add the region to all the child tables in the
hierarchy.

drop_regions_statement

The drop regions clause lets you disconnect an existing MR Table from a participating region
in a multi-region Oracle NoSQL Database environment. This clause is used in contracting MR
Tables to fewer regions. See Use Case 3: Contract a Multi-Region Table Administrator's
Guide.

If you want to follow along with the examples, create tables and insert the data as described in
Tables used in the Examples.

Example 5-20 Add a field to the table schema

ALTER TABLE stream acct (ADD acct balance INTEGER DEFAULT 0)

Explanation: In this example, you add a new field acct balance with a default value of 0 to
the TV streaming application. The new field is added to rows when the rows are retrieved at
any time from the table. The on-disk format is updated to include the new field when a row is
written back to the table. If you supply a default value in the ALTER TABLE statement, the
value is populated into the new field as rows are retrieved, or when rows are written and your
application has not supplied a value for the new field. If a default value is not supplied, a NULL
value is populated instead. The field can be added as a top-level field (a table column) or it
may be deeply nested inside a hierarchical record, in which case the field is specified through
a path.

5-44

ORACLE

Chapter 5
ALTER TABLE Statement

Example 5-21 Add a middle name to the otherNames field in the users table.

ALTER TABLE users (ADD otherNames[].middle STRING)

Explanation: The otherNames field is an array of records, where each record in the array
includes the first and last name fields. In this example, you use the ALTER statement to add
the middle name field to the record that is nested within the otherNames array. You are adding
the middle name field to a fixed schema record data type that exists within an array. Hence,
you must specify the path to the field in the ALTER TABLE statement.

Example 5-22 Remove schema fields in the table schema

ALTER TABLE stream acct (DROP acct balance)

Explanation: In this example, you delete the acct balance field from the TV streaming
application schema. You can drop any field in the schema other than the primary key.

If you try removing the primary key field, you get an error as shown below.

ALTER TABLE stream acct (DROP acct id)

Output (showing error):

Error handling command ALTER TABLE stream acct(DROP acct id): Error: at (1,
27) Cannot remove a primary key field: acct id

Example 5-23 Add a region

The add regions clause lets you link an existing Multi-Region Table (MR Table) with new
regions in a multi-region Oracle NoSQL Database environment. You use this clause to expand
MR Tables to new regions. For more information on creating new regions, see Create Remote
Regions.

Associate a new region with an existing MR Table using the DDL command shown below.

ALTER TABLE <table name> ADD REGIONS <region name>

Explanation: Here, table name is an MR table and region name is an existing region. For
more information, see CREATE REGION Statement.

Example 5-24 Remove a region

The drop regions clause lets you disconnect an existing MR Table from a participating region in
a multi-region Oracle NoSQL Database environment. You use this clause to contract MR
Tables to fewer regions.

To remove an MR Table from a specific region in a multi-region Oracle NoSQL Database
setup, you must run the following steps from all the other participating regions.

ALTER TABLE <table name> DROP REGIONS <comma separated list of regions>

Explanation: Here, table name is an MR Table and comma_separated list of regions isthe
list of regions to be dropped.

5-45

Chapter 5
Altering an IDENTITY Column

Example 5-25 Modify the Time-To-Live value of the table

Time-to-Live (TTL) is a mechanism that allows you to set a time frame on table rows, after
which the rows expire automatically and are not available anymore. By default, every table that
you create has a TTL value of zero, indicating that it has no expiration time.

You can use ALTER TABLE statement to change the TTL value for any table. You can specify
the TTL with a number, followed by either HOURS or DAYS.

ALTER TABLE stream acct USING TTL 15 DAYS

Explanation: In the above statement, you add an expiry of 15 days to the new rows that get
added to the TV streaming application table.

Note:

Altering the TTL value for a table does not change the TTL value for existing rows in
the table. Rather, it will only change the default TTL value of the rows created after
altering the table. To modify the TTL of every record in a table, you must iterate
through each record of the table and update its TTL value.

Altering an IDENTITY Column

ORACLE

Use the ALTER TABLE...MODIFY clause to change one or more attributes of a table's IDENTITY
column and its Sequence Generator (SG) options.

Note:

The MODIFY clause in an ALTER TABLE... statement is supported only on IDENTITY
columns.

There are two ways to alter an IDENTITY column:

e The property of the IDENTITY column can be altered. Additionally, the sequence generator
attributes associated with an IDENTITY column can be altered. The sequence generator is
modified immediately with the new attributes, however, a client will see the effects of the
new attributes on the sequence numbers generated on subsequent requests by the client
to the sequence generator, which will happen when the cache is used up or the attributes
stored at the client time out.

Note:

Each client has a time-based cache to store the sequence generator attributes.
The client connects to the server to refresh this cache after it expires. The default
timeout is 5 mins and it can be changed by setting sgAttrsCacheTimeout in
KVStoreConfig.

e The IDENTITY property of an existing IDENTITY column can be dropped. The sequence
generator attached to that IDENTITY column is also removed. The system will no longer
generate a value for that column.

5-46

Chapter 5
Add or Remove a UUID column

The Following example shows how to alter the property of the identity column id from
GENERATED ALWAYS to GENERATED BY DEFAULT and altering sequence generator
attributes START WITH, INCREMENT BY, MAXVALUE and CACHE.

Example 5-26 To Alter the Property and Sequence Generator Attributes of an IDENTITY
Column

CREATE Table Test alter (
id INTEGER GENERATED ALWAYS AS IDENTITY
(START WITH 1

INCREMENT BY 2

MAXVALUE 100

CACHE 10

CYCLE),

name STRING, PRIMARY KEY (id)

ALTER TABLE Test alter (MODIFY id GENERATED BY DEFAULT AS IDENTITY
(START WITH 1000

INCREMENT BY 3

MAXVALUE 5000

CACHE 1

CYCLE)

)

Example 5-27 To Drop the IDENTITY Property of an Existing IDENTITY column

CREATE Table Test alter (

id INTEGER GENERATED ALWAYS AS IDENTITY (
START WITH 1

INCREMENT BY 2

MAXVALUE 100

CACHE 10

CYCLE),

name STRING,

PRIMARY KEY (id))

ALTER TABLE Test alter (MODIFY id DROP IDENTITY)

Add or Remove a UUID column

ORACLE

An existing table can be altered and a new UUID column can be added. The existing records in
the table will have a NULL value for the newly added UUID column. An existing UUID column
can also be removed from a table.

Adding a UUID Column to an Existing Table
Use ALTER TABLE to add a UUID column to an existing table.

Create a table test_alter without a UUID column.

CREATE TABLE test alter(id INTEGER,
name STRING, PRIMARY KEY (id))

5-47

Chapter 5
Add or Remove an IDENTITY column

Output:

Statement completed successfully

Use ALTER TABLE to add a UUID column to test _alter. You can specify the default clause,
GENERATED BY DEFAULT.

ALTER TABLE test alter
(ADD new id STRING AS UUID GENERATED BY DEFAULT)

Output:
Statement completed successfully
Dropping a UUID Column

To remove a UUID column from a table, use ALTER TABLE with a DROP id clause.

< Note:

You cannot drop a UUID column if it is the primary key, or if it participates in an index.

CREATE Table Test alter (name STRING ,
id STRING AS UUID GENERATED BY DEFAULT,
PRIMARY KEY (name))

Output:
Statement completed successfully
ALTER TABLE Test alter (DROP id)

Output:

Statement completed successfully

Add or Remove an IDENTITY column

ORACLE

An existing table can be altered and an IDENTITY column can be added. An existing
IDENTITY column can also be removed from a table.

Adding an IDENTITY Column to an Existing Table
Use ALTER TABLE to add an IDENTITY column to an existing table.

Create a table, test_alter, without an IDENTITY column:

CREATE Table test alter
(id INTEGER,

5-48

ORACLE

Chapter 5
Add or Remove an IDENTITY column

name STRING,
PRIMARY KEY (id))

Output:

Statement completed successfully

Use ALTER TABLE to add an IDENTITY column to test_alter. Also specify several Sequence
Generator (SG) attributes for the associated new id IDENTITY column, but do not use the
IDENTITY column as a PRIMARY KEY:

ALTER Table Test alter
(ADD new_id INTEGER GENERATED ALWAYS AS IDENTITY
(START WITH 1
INCREMENT BY 2
MAXVALUE 100
CACHE 10
CYCLE))

Output:

Statement completed successfully

Note:

To add an IDENTITY column to a table, the table must be at a top level. You cannot
add an IDENTITY column as the column of a deeply embedded structured datatype.
Adding a column does not affect the existing rows in the table, which get populated

with the new column’s default value (or NULL).

Dropping an IDENTITY Column

To remove the IDENTITY column, so no such field remains, use ALTER TABLE with a DROP id
clause:

CREATE Table Test alter (

id INTEGER GENERATED ALWAYS AS IDENTITY (
START WITH 1

INCREMENT BY 2

MAXVALUE 100

CACHE 10

CYCLE),

name STRING,

PRIMARY KEY (name))

ALTER TABLE Test alter (DROP id)

5-49

Chapter 5
Add or Remove an MR_COUNTER column

Add or Remove an MR_COUNTER column

ORACLE

You can alter an existing multi-region table to add an MR_COUNTER column. The existing
records in the table will have a value of zero for the newly added MR_COUNTER column. You
can also remove an existing MR_COUNTER column from a multi-region table.

Adding an MR_COUNTER column to an existing multi-region table
Use ALTER TABLE to add an MR_COUNTER column to an existing multi-region table.

Create a multi-region table myTable without an MR_COUNTER column.

CREATE TABLE myTable (id INTEGER,
name STRING,
team STRING,
PRIMARY KEY (id)) IN REGIONS DEN, LON

Use ALTER TABLE to add an MR_COUNTER column to the table myTable. This is a PN
counter.

ALTER TABLE myTable (ADD count INTEGER AS MR COUNTER) ;

You can use ALTER TABLE to add a JSON MR_COUNTER field to a multi-region table.

ALTER TABLE demoJSONMR ADD (secondJSON
JSON (new_counter AS NUMBER MR COUNTER))

Dropping an MR_COUNTER Column

To remove an MR_COUNTER column from a multi-region table, use ALTER TABLE with a
DROP id clause.

CREATE Table myTable(name STRING,
count INTEGER AS MR COUNTER,
PRIMARY KEY (name)) IN REGIONS DEN, LON

ALTER TABLE myTable (DROP count)

You can also drop a JSON column containing MR_COUNTERS from a table using ALTER
TABLE syntax.

ALTER TABLE demoJSONMR (DROP secondJSON)

5-50

SQL Query Management

You can use a query to retrieve data from one or more tables. A query is a statement that
consists of zero or more variable declarations followed by single SELECT expression. The
result of a query is always a sequence of records having the same record type.

Note:

Subqueries are not supported in Oracle NoSQL Database.

Syntax

query ::= [variable_declaration] select expression

Variable declarations and expressions will be defined later in this chapter. Before doing so, a
few general concepts and related terminology must be established first.

Expressions

ORACLE

An expression represents a set of operations to be performed in order to produce a result.
The various kinds of expressions supported by Oracle NoSQL Database are described later in
this chapter.

Expressions are built by combining other expressions and sub-expressions through operators,
function calls, or other grammatical constructs. The simplest kind of expressions are constants
and references to variables or identifiers.

If you want to follow along with the examples, create the airline application table and insert
data as described in Tables used in the Examples.

Example 6-1 Retrieve the full name, ticket number, and bag tag number for all
customer baggage shipped after the 1st of Jan 2019 in an airline application

SELECT fullName,

ticketNo,

bag.bagInfo.tagNum

FROM BaggageInfo bag

WHERE EXISTS bag.bagInfo[$element.bagArrivalDate >="2019-01-01T00:00:00"]

Explanation: This query demonstrates the usage of several expressions. In the BaggageInfo
table, you store the baggage arrival date for every passenger in the bagArrivalDate field of
the bagInfo array. Since the bagInfo is a JSON field, the bagArrivalDate attribute contains
the date in 1ISO-8601 format as a string value. You use the SELECT, FROM, and WHERE
clauses of the SELECT Expression to choose columns from the table.

To fetch the list of the customer baggage that was shipped after a specified date, you use the
value comparison operator ">=" to check if the bagArrivalDate for each bag is greater than or

6-1

ORACLE

Chapter 6
Expressions

equal to the given date, that is, the 1st of Jan 2019. Here, the input date is also a string in
ISO-8601 format. Using string-formatted dates in 1ISO-8601 format works with logical
comparison operators due to the natural sort order of strings. The chronological ordering of
dates happens to follow the natural sort order of strings, so in this specific case, you get the
desired behavior. For more complex date operations such as date arithmetic, you must cast
the 1ISO-8601 date string into a Timestamp data type. For more information on using the CAST
operator, see Cast Expression.

The EXISTS operator, which is a comparison expression returns either a true or false value
based on the result of the value comparison operation. In the above query, if the bag arrival
date is greater than or equal to the given date, the EXISTS operator returns a true value and
the corresponding row is fetched. Else, the row is filtered out.

In this example, the bag is a table alias for the BaggageInfo table. The $element is an
implicitly-declared variable and is bound to the context row (every baggage of the customer).
The variable references are a part of primary expressions.

Output:

{"fullName":"Fallon

Clements", "ticketNo":1762350390409, "tagNum":"17657806255507"}
{"fullName":"Lucinda

Beckman", "ticketNo":1762320569757, "tagNum":"17657806240001"}
{"fullName":"Elane Lemons","ticketNo":1762324912391,"tagNum":"1765780623244"}
{"fullName":"Gerard Greene","ticketNo":1762341772625,"tagNum":"1765780626568"}
{"fullName":"Kendal

Biddle", "ticketNo":1762377974281,"tagNum":"17657806296887"}
{"fullName":"Zulema
Martindale","ticketNo":1762340579411,"tagNum":"17657806288937"}
{"fullName":"Mary Watson","ticketNo":1762340683564,"tagNum":"17657806299833"}
{"fullName":"Teena Colley","ticketNo":1762357254392,"tagNum":"17657806255823"}
{"fullName":"Lorenzo Phil","ticketNo":1762320369957,"tagNum":
["17657806240001","17657806340001"]}

{"fullName":"Adam
Phillips","ticketNo":1762344493810,"tagNum":"17657806255240"}
{"fullName":"Adelaide

Willard","ticketNo":1762392135540, "tagNum":"17657806224224"}
{"fullName":"Rosalia
Triplett","ticketNo":1762311547917,"tagNum":"17657806215913"}
{"fullName":"Michelle

Payne","ticketNo":1762330498104, "tagNum":"17657806247861"}

{"fullName":"Zina
Christenson","ticketNo":1762390789239,"tagNum":"17657806228676"}
{"fullName":"Raymond
Griffin","ticketNo":1762399766476,"tagNum":"17657806243578"}
{"fullName":"Henry Jenkins","ticketNo":176234463813,"tagNum":"17657806216554"}
{"fullName":"Lisbeth
Wampler","ticketNo":1762355854464,"tagNum":"17657806292229"}
{"fullName":"Dierdre
Amador","ticketNo":1762376407826,"tagNum":"17657806240229"}
{"fullName":"Joanne Diaz","ticketNo":1762383911861,"tagNum":"17657806292518"}
{"fullName":"Omar Harvey","ticketNo":1762348904343,"tagNum":"17657806234185"}
{"fullName":"Doris Martin","ticketNo":1762355527825,"tagNum":"17657806232501"}

JSON collection tables:

6-2

Chapter 6
Sequences

You can use SQL expressions to query data from JSON collection tables. The queries work in
the same way as fixed schema tables. You can access the document name/value pairs in a
JSON collection table by specifying JSON path expressions. A top-level attribute in the
document can be accessed using its field name as the path expression, while a nested
attribute must be accessed using a path expression to the attribute. A few examples are added
in the following sections to demonstrate the queries in JSON collection tables.

To follow along with the examples, create a JSON collection table for the shopping application
and insert the sample data records as described in the JSON Collection Table Example
section.

Sequences

A sequence is a set of zero or more items. All expressions operate on zero or more input
sequences and produce an output sequence as their result.

A sequence is just a collection set of zero or more items (including NULLS). A sequence is not
an item itself (so no nested sequences) nor is it a container: there is neither a persistent data
structure nor a java class at the public API level (or internally) that represents a sequence.
Expressions usually operate on sequences by iterating over their items.

Note:

An array is not a sequence of items. Instead, it is a single item, albeit one that
contains other items in it. So, arrays are containers of items.

Although, in general, Oracle NoSQL Database expressions work on sequences and produce
sequences, many of them place restrictions on the cardinality of the sequences they accept
and/or produce. For example, several expressions are scalar: they require that their input
sequence(s) contain no more than one item and they never produce a sequence of more than
one item. Notice that a single item is considered equivalent to a sequence containing only that
single item.

Boxing and Unboxing Sequence

A sequence produced by an expression E can be converted to an array by wrapping E with an
array constructor : [E]. See Array and Map Constructors section. This is called boxing the
sequence. Conversely, there are expressions that unbox an array: they select all or a subset
of the items contained in the array and return these items as a sequence. There is no implicit
unboxing of arrays; an expression must always be applied to do the unboxing. In most cases,
sequence boxing must also be done explicitly, that is, the query writer must use an array
constructor. There are, however, a couple of cases where boxing is done implicitly, that is, an
expression (which is not an array constructor) will convert an input sequence to an array.

ORACLE 6.3

ORACLE

Chapter 6
Sequences

Note:

In standard SQL the term "expression” means "scalar expression", i.e., an expression
that returns exactly one (atomic) item. The only operations that can produce more
than one items (or zero items) are query blocks (either as top-level queries or
subqueries) and the set operators like union, intersection, etc (in these cases, the
items are tuples). In Oracle NoSQL Database too, most expressions are scalar. Like
the query blocks of standard SQL, the select-form-where expression of Oracle
NoSQL Database returns a sequence of items. However, to navigate and extract
information from complex, hierarchical data, Oracle NoSQL Database includes path
expressions as well. See Path Expressions section. Path expressions are the other
main source of multi-item sequences in Oracle NoSQL Database. However, if path
expressions are viewed as subqueries, the Oracle NoSQL Database model is not
that different from standard SQL.

If you want to follow along with the examples, create the airline application table and insert
data as described in Tables used in the Examples.

Example 6-2 Fetch the passenger name and tag nhumber for all bags whose bag arrival
date is greater than 2019-03-01T13:00:00Z

SELECT fullname,

bag.bagInfo[].tagNum

FROM BaggageInfo bag

WHERE bag.bagInfo[].bagArrivalDate >any "2019-03-01T13:00:00zZ"

Explanation: In an airline application, each piece of baggage that is checked in by the
passenger is associated with a unique tag number. In the BaggageInfo table, the tag numbers
are stored in the tagnum field of the bagInfo array. If the passenger has more than one piece of
luggage, the baginfo array has more than one element, and each baggage has a unique tag
number.

In this query, you fetch the full name and tag numbers of all such luggage whose bag arrival
date is greater than the specified value. The bagArrivalDate field is a string that holds the
arrival date for each baggage in ISO-8601 format. You compare the bag arrival date of each
baggage with the input date value, which is also a string in the ISO-8601 format. For
passengers with additional luggage, all the associated tag numbers are listed. You use the
SELECT, FROM, and WHERE clauses of the select expression to choose columns from a
table.

Here, the bag is a table alias for the BaggageInfo table and can be used anywhere in the
SELECT statement. The bag.bagInfo[].bagArrivalDate is a sequence of more than one
item. An error is returned if you use comparison operators to compare a sequence with more
than one item. Hence, you use the sequence comparison operator >any to compare the
sequence with the required arrival date. For more details on sequence comparison, see
Sequence Comparison Operators. In this example, you can compare the string-formatted
dates in ISO-8601 format due to the natural sorting order of strings without having to cast into
Timestamp data types.

Output:

{"fullname":"Elane Lemons","tagNum":"1765780623244"}
{"fullname":"Omar Harvey","tagNum":"17657806234185"}
{"fullname":"Henry Jenkins","tagNum":"17657806216554"}

6-4

Chapter 6
Sequence Types

{"fullname":"Kendal Biddle","tagNum":"17657806296887"}

{"fullname":"Mary Watson","tagNum":"17657806299833"}

{"fullname":"Gerard Greene","tagNum":"1765780626568"}
{"fullname":"Dierdre Amador","tagNum":"17657806240229"}
{"fullname":"Lorenzo Phil","tagNum":["17657806240001","17657806340001"]}
{"fullname":"Lucinda Beckman","tagNum":"17657806240001"}
{"fullname":"Doris Martin","tagNum":"17657806232501"}

Sequence Types

ORACLE

A sequence type specifies the type of items that may appear in a sequence, as well as an
indication of the cardinality of the sequence.

Syntax

sequence type ::= type_definition [quantifier]
quantifier = "X" | "4Moovon

Semantics

quantifier

The quantifier is one of the following:

e *indicates a sequence of zero or more items.
e +indicates a sequence of one or more items.
e ?indicates a sequence of zero or one items.

e The absence of a quantifier indicates a sequence of exactly one item.

subtype relationship

A subtype relationship exists among sequence types as well. It is defined as follows:
e The empty sequence is a subtype of all sequence types whose quantifier is * or ?

e A sequence type SUB is a subtype of another sequence type SUP (supertype) if SUB's
item type is a subtype of SUP's item type, and SUB's quantifier is a subquantifier of SUP's
guantifier, where the subquantifier relationship is defined by the following matrix.

The following matrix illustrates the subquantifier relationship between the quantifiers. The
column heading indicate the supertype(SUP) of the quantifier. The row heading indicate the
subtype (SUB) of the quantifier.

Sup Q1| Sub Q2 one ? + *
one true false false false
? true true false false
+ true false true false
* true true true true

For example, as per the above table, ? is a superquantifier of one and ?, but is not a
superquantifier of + and *. Similarly, * is a superquantifier of all other quantifiers.

6-5

Chapter 6
Sequence Types

Note:

In the following sections, when we say that an expression must have (sequence) type
T, what we mean is that when the expression is evaluated, the result sequence must
have type T or any subtype of T. Similarly, the usual subtype-substitution rules apply
to input sequences: if an expression expects as input a sequence of type T, any
subtype of T may actually be used as input.

If you want to follow along with the examples, create the airline application table and insert
data as described in Tables used in the Examples.

Example 6-3 Fetch the details of passengers who fly from SFO/through SFO to any
other location in an airline application

SELECT bag.fullname,

bag.bagInfol].tagNum,
bag.bagInfo[].flightLegs[].fltRouteSrc

FROM BaggageInfo bag

WHERE bag.bagInfo[].flightLegs[].fltRouteSrc=any "SFO"

Explanation: In an airline application, you can get the details of all the passengers who have
traveled from a specific station. The f1ightLegs array in the bagInfo field contains the source
and destination stations for each travel leg. The bagInfo.flightLegs[].fltRouteSrcisa
string sequence that holds the source stations from where the passengers board the flight.

In this query, you compare the source stations with the input string, SFO, to fetch the list of
passengers traveling from the SFO station. Since the comparison operators cannot operate on
sequences of more than one item, you use the sequence comparison operator =any to
compare the bagInfo.flightLegs[].fltRouteSrc sequence with the required station. For
more details on sequence comparison, see Sequence Comparison Operators.

Here, the source station can either be the flights originating from SFO, or transiting through
SFO station to any other destination. The bag is a table alias for the Baggageinfo table and
essentially functions as a variable. The variables are bound to the context row as a whole and
can be referenced inside the hierarchically structured data.

Output:

{"fullname":"Henry Jenkins","tagNum":"17657806216554","f1tRouteSrc":
["SFO","ORD"]}

{"fullname":"Michelle Payne","tagNum":"17657806247861","f1tRouteSrc":
["SFO","IST","ATH"])

{"fullname":"Gerard Greene","tagNum":"1765780626568","f1tRouteSrc":
["SFO","IST","ATH"])

{"fullname":"Lorenzo Phil", "tagNum":
["17657806240001","17657806340001"],"f1tRouteSrc":
["SFO","IST","ATH", "SFO", "IST", "ATH"])

{"fullname":"Lucinda Beckman","tagNum":"17657806240001","f1tRouteSrc":
["SFO","IST","ATH"])

ORACLE 66

Chapter 6
Variable Declaration

Variable Declaration

ORACLE

Syntax
variable declaration ::= DECLARE (variable name type_definition ";")+
variable name ::= "$" id

External Variables

A query may start with a variable declaration section. The variables declared here are called
external variables. The value of an external variable is global and constant. The values of
external variables are not known in advance when the query is formulated or compiled.
Instead, the external variables must be bound to their actual values before the query is
executed. This is done via programmatic APIs. See Java Direct Driver Developer's Guide.

The type of the item bound to an external variable must be equal to or a subtype of the
variable's declared type. The use of external variables allows the same query to be compiled
once and then executed multiple times, with different values for the external variables each
time. All the external variables that appear in a query must be declared in the declaration
section. This is because knowing the type of each external variable in advance is important for
query optimization.

< Note:

External variables play the role of the global constant variables found in traditional
programming languages (e.g. final static variables in java, or const static variables in
c++).

Internal Variables

Oracle NoSQL Database allows implicit declaration of internal variables as well. Internal
variables are bound to their values during the execution of the expressions that declare them.

Variables (internal and external) can be referenced in other expressions by their name. In fact,
variable references themselves are expressions, and together with literals, are the starting
building blocks for forming more complex expressions.

Scope

Each variable is visible (i.e., can be referenced) within a scope. The query as a whole defines
the global scope, and external variables exist within this global scope. Certain expressions
create sub-scopes. As a result, scopes may be nested. A variable declared in an inner scope
hides another variable with the same name that is declared in an outer scope. Otherwise,
within any given scope, all variable names must be unique.

Note:

The names of variables are case-sensitive.

6-7

Chapter 6
SELECT Expression

Note:

The following variable names cannot be used as names for external
variables: $key, $value, $element, and $pos.

Example 6-4 Variable Declaration

The following query selects the first and last names of all users whose age is greater than the
value assigned to the $age variable when the query is actually executed.

DECLARE $age INTEGER

SELECT firstName, lastName
FROM Users
WHERE age > S$Sage

SELECT Expression

You can query data from the tables using the SELECT expression. Multiple clauses can be
used with the SELECT expression. The clauses that can be used in the SELECT expression
are given in the syntax below.

Syntax

select expression ::=
SELECT Clause
from_clause
[where_clause]
[groupby_clause]
[orderby_clause]
[limit_clause]
[offset_clause]

Semantics
The SELECT clause and the FROM clause are mandatory.

The processing of the query starts with the FROM clause, followed by the WHERE clause (if
any), followed by the GROUP BY clause (if any), followed by the ORDER BY clause (if any),
followed by the SELECT clause and finishing with the OFFSET and LIMIT clauses (if any).
Each clause produces a set of records, which is processed by the next clause. Each clause is
described in the following sections.

If you want to follow along with the examples, create tables and insert data as described in
Tables used in the Examples.

FROM Clause

The FROM clause is used to retrieve rows from the referenced table(s).

ORACLE 68

ORACLE

Chapter 6
SELECT Expression

Syntax

from clause ::= FROM (single from table | nested_tables | left_outer_join_tables |
unnest_syntax)

single from table ::= aliased table name

aliased table name ::=
(table name | SYSTEM TABLE NAME) [[AS] table alias]

table alias ::= [$] id

Semantics

As shown in the syntax, the FROM clause can either reference a single table, or include a
nested table clause or a left outer join clause. It can also include an unnest syntax. For nested
tables, see the Using NESTED TABLES clause to query multiple tables in the same hierarchy
section. To learn more about left outer joins, see Left Outer Join (LOJ).

unnest_syntax

You can use unnest_syntax to unnest one or more arrays or maps, that is to convert the
arrays or maps into a set of rows. To understand how unnest_syntax is used in queries, see
Unnest Arrays & Maps.

single_from_table

In a simple FROM clause, the table is specified by its name, which may be a composite (dot-
separated) name in the case of child tables. The result of the simple FROM clause is a
sequence containing the rows of the referenced table.

aliased_table_name

The table name may be followed by a table alias. Table aliases are essentially variables
ranging over the rows of the specified table. If no alias is specified, one is created internally,
using the name of the table as it is spelled in the query, but with dot chars replaced with *_"in
the case of child tables. See Table Hierarchies.

< Note:

Table aliases are case-sensitive, like variable names.

The other clauses of the SELECT expression operate on the rows produced by the FROM
clause, processing one row at a time. The row currently being processed is called the context
row. The columns of the context row can be referenced in expressions either directly by their
names or by the table alias followed by a dot char and the column name. See the Column
References section. If the table alias starts with a dollar sign ($), then it actually serves as a
variable declaration for a variable whose name is the alias. This variable is bound to the
context row as a whole and can be referenced within sub expressions of the SELECT
expression. For example, it can be passed as an argument to the expiration_time function to
get the expiration time of the context row. See the expiration_time function function. In other
words, a table alias like $foo is an expression by itself, whereas foo is not. Notice that if this
variable has the same name as an external variable, it hides the external variable. This is
because the FROM clause creates a nested scope, which exists for the rest of the SELECT
expression.

6-9

Chapter 6
SELECT Expression

Example 6-5 Select all information for all the passenger records in the airline
application

SELECT * FROM BaggageInfo

Explanation: In the above query, you use the FROM clause to retrieve all the passenger data
from the BaggageInfo table.

Output: One sample row:

ORACLE

"ticketNo" : 1762344493810,

"fullName" : "Adam Phillips",
"gender" : "M",
"contactPhone" : "893-324-1064",
"confNo" : "LE6J4Z",
[{
"id" : "79039899165297",
"tagNum" : "17657806255240",
"routing" : "MIA/LAX/MEL",
"lastActionCode" "OFFLOAD",
"lastActionDesc" "OFFLOAD",
"lastSeenStation" "MEL",
"flightLegs" : [{
"flightNo" : "BM604",
"flightDate" "2019-02-01T01:00:00",
"fltRouteSrc" : "MIA",
"fltRouteDest" "LAX",
"estimatedArrival™ : "2019-02-01T03:00:00",
"actions" : [
"actionAt" "MIA",
"actionCode" "ONLOAD to LAX",
"actionTime" "2019-02-01T01:13:00"
oo A
"actionAt" "MIA",
"actionCode" "BagTag Scan at MIA",
"actionTime" "2019-02-01T00:47:00"
oo A
"actionAt" "MIA",
"actionCode" "Checkin at MIA",
"actionTime" "2019-02-01T23:38:00"
bl
oo Ao
"flightNo" : "BM667",
"flightDate" "2019-01-31T22:13:00",
"fltRouteSrc" "LAX",
"fltRouteDest" "MEL",
"estimatedArrival™ : "2019-02-02T03:15:00",
"actions" : [
"actionAt" "MEL",
"actionCode" "Offload to Carousel at MEL",
"actionTime" "2019-02-02T03:15:00"
oo A
"actionAt" "LAX",
"actionCode" "ONLOAD to MEL",
"actionTime" "2019-02-01T07:35:00"

6-10

ORACLE

Chapter 6
SELECT Expression

bro o

"actionAt" "LAX",
"actionCode" "OFFLOAD from LAX",
"actionTime" "2019-02-01T07:18:00"
bl
Pl
"lastSeenTimeGmt" "2019-02-02T03:13:00",
"bagArrivalDate" "2019.02.02T03:13:00"

b

Example 6-6 Fetch the initial boarding station for all passengers from the airline
application

SELECT DISTINCT

$bag.fullname,

Sbag.contactPhone,

$flt src as SOURCE

FROM BaggageInfo S$bag,
$bag.bagInfo.flightLegs[0].fltRouteSrc $flt src
ORDER BY S$bag.fullName

Explanation: The f1tRouteSrc field in the bagInfo array of the BaggageInfo table includes the
details of the source stations from where the passenger boards the flight. The first element in
the flightLegs array holds the details of the initial travel leg.

In this query, you retrieve the first element from the £1ightLegs array, that

is, Sbag.bagInfo[].flightLegs[0].fltRouteSrc values to fetch the details of the initial
stations. Notice that $bag is the alias for the BaggageInfo table and $f1t src is the alias
for Sbag.bagInfo.flightLegs[0].fltRouteSrc field. You can alias the field names in the
FROM clause and use them for the rest of the SELECT expression.

You use the ORDER BY clause to reorder the sequence of rows in the ascending order of
passenger names.

Note:

In this query, you get as many entries as the total number of bags. If a passenger
travels with two bags, the output displays two entries. To avoid this, you can use the
DISTINCT keyword in the SELECT statement. The query then returns only one copy
of each set of duplicate rows selected.

Output:

{"fullname":"Adam Phillips","contactPhone":"893-324-1064", "SOURCE":"MIA"}
{"fullname":"Adelaide Willard", "contactPhone":"421-272-8082", "SOURCE":"GRU"}
{"fullname":"Dierdre Amador","contactPhone":"165-742-5715","SOURCE" :"JFK"}
{"fullname":"Doris Martin", "contactPhone":"289-564-3497","SOURCE":"BZN"}
{"fullname":"Elane Lemons","contactPhone":"600-918-8404", "SOURCE":"MXP"}
{"fullname":"Fallon Clements", "contactPhone":"849-731-1334","SOURCE":"MXP"}
{"fullname":"Gerard Greene","contactPhone":"395-837-3772","SOURCE":"SFO"}
{"fullname":"Henry Jenkins","contactPhone":"960-428-3843", "SOURCE":"SFO"}
{"fullname":"Joanne Diaz","contactPhone":"334-679-5105","SOURCE" :"MIA"}
{"fullname":"Kendal Biddle", "contactPhone":"619-956-8760", "SOURCE" :"JFK"}

6-11

"fullname"

"fullname"

"fullname"

"fullname":
"fullname":
"fullname":
"fullname":

WHERE Clause

Chapter 6
SELECT Expression

:"Lisbeth Wampler","contactPhone":"796-709-9501", "SOURCE":"LAX"}
"fullname":
"fullname":

"Lorenzo Phil","contactPhone":"364-610-4444","SOURCE":"SFO"}
"Lucinda Beckman","contactPhone":"364-610-4444","SOURCE" :"SFO"}

{
{
{
{ :"Mary Watson","contactPhone":"131-183-0560","SOURCE":"YYZ"}
{"fullname":
{"fullname":
{
{
{
{
{

"Michelle Payne", "contactPhone":"575-781-6240", "SOURCE" :"SFO"}
"Omar Harvey","contactPhone":"978-191-8550", "SOURCE" :"MEL"}

:"Raymond Griffin","contactPhone":"567-710-9972","SOURCE":"MSQ"}

"Rosalia Triplett","contactPhone":"368-769-5636","SOURCE":"JFK"}
"Teena Colley","contactPhone":"539-097-5220", "SOURCE":"MSQ"}

"Zina Christenson", "contactPhone":"987-210-3029", "SOURCE" :"MIA"}
"Zulema Martindale","contactPhone":"666-302-0028", "SOURCE":"MIA"}

The WHERE clause filters the rows coming from the FROM clause, returning the rows
satisfying a given condition.

Syntax

where clause

Semantics

::= WHERE expression

For each context row, the expression in the WHERE clause is evaluated. The result of this
expression must have type BOOLEAN ?. If the result is false, or empty, or NULL, the row is
skipped; otherwise the row is passed on to the next clause.

Example 6-7 Fetch the list of Female passengers from the airline application

SELECT
fullname,
ticketNo

FROM Baggageinfo
WHERE gender="F"

Explanation: In the above query, you list the name and ticket details of the female passengers
from the Baggageinfo table. The WHERE clause filters the rows based on the gender field of
each record. You fetch all the records that hold the entry 'F' in the gender field.

ORACLE

Output:

{"fullname":
{"fullname":
:"Michelle Payne","ticketNo":1762330498104}
{"fullname":
{"fullname":
:"Zulema Martindale","ticketNo":1762340579411}
{"fullname":
{"fullname":
{"fullname":

{"fullname"

{"fullname"

"Adelaide Willard","ticketNo":1762392135540}
"Elane Lemons","ticketNo":1762324912391}

"Doris Martin","ticketNo":1762355527825}
"Rosalia Triplett","ticketNo":1762311547917}

"Joanne Diaz","ticketNo":1762383911861}

"Kendal Biddle","ticketNo":1762377974281}
"Mary Watson","ticketNo":1762340683564}

6-12

ORACLE

Chapter 6
SELECT Expression

Example 6-8 Fetch the list of passengers from the airline application whose
destination station is MEL

SELECT

fullname,

ticketNo,

s.bagInfo.routing[] AS ROUTING

FROM Baggageinfo s

WHERE regex like(s.bagInfo.routing[], ".*/MEL")

Explanation: In an airline application, you can fetch the list of passengers bound toward
specific destination stations. The routing field in the bagInfo array holds the routing details of
the passengers in the Baggageinfo table. The routing information is stored in the format
Source/Transit/Destination airport codes.

In this query, you fetch the details of the passengers whose destination station is MEL. You use
the regex like function to achieve a pattern match to the destination airport code, MEL. Since
you are only looking for a specific destination station, use the combination of the period (.)
metacharacter and greedy quantifier (*) to allow zero or more occurrences of any source and
transit airport code. For more details on the regex like function, see Regular Expression
Conditions.

Output:

{"fullname":"Zulema Martindale","ticketNo":1762340579411,"ROUTING":"MIA/LAX/
MEL"}

{"fullname":"Adam Phillips","ticketNo":1762344493810, "ROUTING":"MIA/LAX/MEL"}
{"fullname":"Zina Christenson","ticketNo":1762390789239, "ROUTING":"MIA/LAX/
MEL"}

{"fullname":"Joanne Diaz","ticketNo":1762383911861, "ROUTING":"MIA/LAX/MEL"}

Example 6-9 Fetch the list of passengers carrying more than one piece of luggage in
the airline application

SELECT

fullname,

ticketNo

FROM Baggageinfo s

WHERE EXISTS s.baginfol[l]

Explanation: In this query, you list the name and ticket details of the passengers traveling with
more than one piece of luggage. The bagInfo array holds the information on all the luggage
owned by a passenger. If a passenger owns more than one piece of luggage, there will be
more than one element in the bagInfo array. You use the EXISTS operator in the WHERE
clause to determine whether or not a second element exists in the baginfo array.

Output:

{"fullname":"Lorenzo Phil","ticketNo":1762320369957}

Alternatively, you can use the size () built-in function to determine the size of the baginfo
array, which is the number of bags owned by a passenger. You then use the value comparison

6-13

Chapter 6
SELECT Expression

operator ">' to check if the return value exceeds 1. You will get the same output as above. For
more details on the size () function, see Functions on Complex Values.

SELECT

fullname,

ticketNo

FROM Baggageinfo s

WHERE size(s.baginfo) > 1

GROUP BY Clause

ORACLE

The GROUP BY clause is used in a SELECT statement to collect data across multiple rows
and group the result by one or more columns or expressions. The GROUP BY clause is often
used with aggregate functions. Oracle NoSQL Database applies the aggregate functions to
each group of rows and returns a single row for each group.

Syntax

groupby clause ::= GROUP BY expression ("," expression)*

Semantics

Each (grouping) expression must return at most one atomic value. If a grouping expression
returns an empty result on an input row, that row is skipped. Equality among grouping values is
defined according to the semantics of the "=" operator, with the exception that two NULL
values are considered equal. See Value Comparison Operators section. Then, for each group,
a single record is constructed and returned by the GROUP BY clause. If the clause has N
grouping expressions, the first N fields of the returned record store the values of the grouping
expressions. The remaining M fields (M >= 0) store the result of zero or more aggregate
functions. In general, aggregate functions iterate over the rows of a group, evaluate an
expression for each such row, and aggregate the returned values into a single value per group.
Oracle NoSQL Database supports many aggregate functions as described in the Using
Aggregate Functions section.

Syntactically, aggregate functions are not actually listed in the GROUP BY clause, but appear
in the SELECT clause instead. In fact, aggregate functions can appear only in the SELECT or
ORDER BY clauses, and they cannot be nested. Semantically, however, every aggregate
function that appears in the SELECT or ORDER BY list is actually evaluated by the GROUP
BY clause. If the SELECT clause contains any aggregate functions, but the SELECT
expression does not contain a GROUP BY clause, the whole set of rows produced by the
FROM or the WHERE clauses is considered as one group and the aggregate functions are
evaluated over this single group.

The implementation of the GROUP BY clause may be index-based or generic. Index-based
grouping is possible only if an index exists that sorts the rows by the values of the grouping
expressions. More precisely, let e1, e2, ..., eN where ei is the ith expression (i is a number in
the range 1,2,3, ...N) be the grouping expressions as they appear in the GROUP BY clause
(from left to right). Then, for index-based grouping, there must exist an index (which may be
the primary-key index or one of the existing secondary indexes) such that for each jin 1,2,...,N,
ei matches the definition of the j-th index field. If such an index does not exist or is not selected
by the query optimizer, the GROUP BY will be generic. A generic GROUP BY uses a hash
table to find rows belonging to the same group and stores all groups before returning any
results to the application. The hash table is stored in the client driver memory (local hash
tables, of limited size, may be used at the servers as well). As a result, a generic GROUP BY
may consume a large amount of driver memory. In contrast, index-based grouping exploits the

6-14

ORACLE

Chapter 6
SELECT Expression

row sorting provided by the index to avoid the materialization and caching of any intermediate
results. It is therefore recommended to create appropriate indexes for use in GROUP BY
gueries. See Using Indexes for Query Optimization. Finally, notice that when you use index-
based grouping, the results of a grouping SELECT expression are ordered by the grouping
expressions.

Example 6-10 Group by age in the application that maintains the user data

SELECT

age,

count (*) AS count,
avg (income) AS income
FROM users

GROUP BY age

Explanation: In this query, you group users by their age using the GROUP BY clause. For
each group, the query returns the associated age and the average income of the users in the
group. You use the aggregate functions count to count the users in each age group and avg to
calculate the average income.

Output:

{"age":null,"count":1,"income":75000.0}
{"age":22,"count":2,"income":50000.0}
{"age":45,"count":1,"income":75000.0}

Example 6-11 Display the number of bags for each passenger in the airline application

SELECT

bag.confNo,

count (bag.bagInfo.id) AS TOTAL BAGS
FROM Baggageinfo bag

GROUP BY bag.confNo

In this query, you group the data based on the confNo using the GROUP BY clause. To fetch
the number of bags per passenger, you get the count of the bagInfo.id field associated with
each confNo using the count aggregate function.

Output:

{"confNo":"FH7GIW", "TOTAL BAGS":1}
{"confNo":"PQIM8N", "TOTAL BAGS":1}
{"confNo":"XT6K7M", "TOTAL BAGS":1}
{"confNo":"DN3I4Q","TOTAL BAGS":1}
{"confNo":"QB100J", "TOTAL BAGS":1}
{"confNo":"TX1P7E", "TOTAL BAGS":1}
{"confNo":"CG60OIM", "TOTAL BAGS":1}
{"confNo":"OH2F8U", "TOTAL BAGS":1}
{"confNo":"BOSG3H", "TOTAL BAGS":1}
{"confNo":"ZG8Z5N", "TOTAL BAGS":1}
{"confNo":"LE6J4Z", "TOTAL BAGS":1}
{"confNo":"XT107T", "TOTAL BAGS":1}
{"confNo":"QI3V6Q", "TOTAL BAGS":2}
{"confNo":"RL3J4Q", "TOTAL BAGS":1}
{"confNo":"HJ4J4P", "TOTAL BAGS":1}

6-15

ORACLE

Chapter 6
SELECT Expression

{"CoanO":"CRZCSMY","TOTAL_BAGS":I}
{"coanO":"LNOCSR","TOTAL_BAGS":I}
{"confNo":"MZ2S5R", "TOTAL BAGS":1}
{"confNo":"KN4DIL", "TOTAL BAGS":1}
{"confNo":"MCOE7R", "TOTAL BAGS":1}

Example 6-12 Select the total baggage originating from each airport (excluding the
transit baggage) in the airline application

SELECT $flt src as SOURCE,

count (*) as COUNT

FROM BaggageInfo S$bag,
$bag.bagInfo.flightLegs[0].fltRouteSrc $flt src
GROUP BY $flt src

Explanation: The f1tRouteSrc field in the f1ightLegs array of the BaggageInfo table includes
the details of the originating station in a passenger record.

In the above query, you get the total count of baggage originating from each airport. However,
you don't want to consider the airports that are part of the transit. You group the data with the
flight source values of the first element of the f1ightLegs array (as the first element is the
source station). You then determine the count of baggage using the count function.

Output:

{"SOURCE":"SFO", "COUNT":6}
{"SOURCE":"BZN", "COUNT":1}
{"SOURCE" :"GRU", "COUNT" :1}
{"SOURCE" : "LAX", "COUNT":1}
{"SOURCE" :"YYZ","COUNT":1}
{"SOURCE" :"MEL", "COUNT" :1}
{"SOURCE": "MIA","COUNT":4}
{"SOURCE":"MSQ", "COUNT":2}
{"SOURCE" : "MXP", "COUNT" :2}
{"SOURCE":"JFK", "COUNT" : 3}

JSON collection table:

The following example applies the GROUP BY expression on a JSON collection table.
Consider a sample row from the JSON collection table created for a shopping application:

{"contactPhone":"1617114988", "address": {"Dropbox":"Presidency
College","city":"Kansas City","state":"Alabama","zip":95065},"cart":
[{"item":"A4 sheets","priceperunit":500,"quantity":2},{"item":"Mobile

Holder", "priceperunit":700, "quantity":1}],"firstName":"Lorenzo", "lastName":"Ph
il", "notify":"yes", "orders": [{"EstDelivery":"2023-11-15","item" :"AG Novels

1", "orderID":"101200", "priceperunit":950, "status":"Preparing to dispatch"},
{"EstDelivery":"2023-11-01","item":"Wallpaper", "orderID":"101200", "priceperuni
t":950,"status":"Transit"}]}

6-16

Chapter 6
SELECT Expression

Example 6-13 Fetch the statistics of the humber of orders serviced per state from the
storeAcct table.

SELECT s.address.state, count(s.orders[]) AS TOTAL ORDERS
FROM storeAcct s

WHERE size(s.orders) >= 1

GROUP BY s.address.state

Explanation: In the storeAcct table, the shopper's address is stored in the address field and
the purchased items are stored in the orders array. To fetch the number of order requests per
state, you group the shopper's data by state field using the GROUP BY expression. Count the
orders that have values in them by selecting only the orders that have one or more items in the
orders array.

Note:

To aggregate the elements of an array, you must use the array constructor [] to
indicate that the orders field is an array.

Output:

"state" : "Alabama",
"TOTAL_ORDERS" !

"state" : "TX",
"TOTAL_ORDERS" 2

Using Aggregate Functions

ORACLE

You can use built in aggregate functions to find information such as a count, a sum, an
average, a minimum, or a maximum.

The following functions are called SQL aggregate functions, because their semantics are
similar to those in standard SQL: they work in conjunction with grouping and they aggregate
values across the rows of a group. The aggregate functions can be used only in the SELECT
or ORDER BY clauses, and they cannot be nested.

If you want to follow along with the examples, create tables and insert the data as described in
the Tables used in the Examples topic.

The following aggregate functions are supported:
* long count(*)

* long count(any*)

* number sum(any*)

* number avg(any*)

e any_atomic min(any*)

e any_atomic max(any*)

6-17

ORACLE

Chapter 6
SELECT Expression

* ARRAY(any) array_collect(DISTINCT any*)
* ARRAY(any) array_collect(any*)
* long count(DISTINCT any*)

Note:

All SQL aggregate function names are case sensitive.

count(*) function
The count star function returns the number of rows in a group.

Syntax:

long count (*)

Semantics:
The count star function calculates the number of records fetched by the query.

return type: long

Example 6-14 Find the total number of passengers who have contact details in their
records

SELECT count (*) AS COUNT PASSENGER
FROM BaggageInfo bag
WHERE length(contactPhone) > 0

Explanation: In an airline baggage tracking application, you can calculate the total count of
passengers who have furnished their contact details. The contactPhone field in the
BaggageInfo table includes the contact details of the passengers. You use the count star
function to find the number of passenger records with the contactPhone entry. There is a
possibility that the contact details include NULL values and empty strings. You can use the
length function in the WHERE clause to exclude such rows from being counted. If a
contactPhone has an empty or a NULL value, the length function returns a NULL value. You
apply a value comparison to select only the rows that yield a value greater than 0, and then
determine the total count of the resultant rows using the count star function.

Output:

{"COUNT_ PASSENGER":21}

Example 6-15 Find the number of checked bags that arrived on the 1st of Feb 2019

SELECT count (*) AS COUNT BAGS
FROM BaggageInfo bag,

EXTRACT (DAY FROM CAST (bag.bagInfo[0].bagArrivalDate AS Timestamp(0))) S$tI1,
EXTRACT (MONTH FROM CAST (bag.bagInfo[0].bagArrivalDate AS Timestamp (0))) $t2,
EXTRACT (YEAR FROM CAST (bag.bagInfo[0].bagArrivalDate AS Timestamp (0))) $t3

WHERE $t3=2019 AND $t2=02 AND $tl1=01

6-18

ORACLE

Chapter 6
SELECT Expression

Explanation: In the airline baggage tracking application, you can get the total count of
checked bags on a particular date. The bagArrivalDate field in the BaggageInfo table contains
the arrival date of the passenger's checked bags. In the above query, you count the number of
rows that have the bagArrivalDate as 1st of Feb 2019 to fetch the number of checked bags
on the given date. You use several filter conditions here to extract only the date part of the
timestamp. You first use the CAST operator to convert the bagArrivalDate to a timestamp and
then extract the date, month, and year details from the timestamp using the EXTRACT
expression. You use the value comparison to determine if the day, month, and year correspond
to the required date value, that is, 01,02, and 2019 respectively. You then use the logical
operator AND to select only the rows that match all three conditions and count the resultant
rows using the count function.

Output:

{"COUNT BAGS":1}

count function

The count function computes its input expression on each row in a group and counts all the
non-NULL values returned by these evaluations of the input expression.

Syntax:

long count (any*)

Semantics:
any: The count function accepts any parameter type as the input argument.

return type: long

The count star function can be used when you want to count the rows of a resultant query. It
does not accept any other input argument. Whereas, the count function can be used when you
want to enumerate the outcome of an input expression.

Example 6-16 Find the total number of checked bags that are estimated to arrive at the
LAX airport at a particular time

SELECT S$estdate as ARRIVALDATE,

count ($flight) AS COUNT

FROM BaggageInfo S$bag,

S$bag.bagInfo.flightLegs.estimatedArrival Sestdate,
S$bag.bagInfo.flightLegs.flightNo $flight,
$bag.bagInfo.flightLegs.fltRouteDest $flt dest

WHERE Sestdate =any "2019-02-01T11:00:00z" AND $flt dest =any "LAX"
GROUP BY Sestdate

Explanation: In an airline baggage tracking application, you can get the total count of checked
bags that are estimated to arrive at a particular airport and time. For each flight leg, the
estimatedArrival field in the fl1ightLegs array of the BaggageInfo table contains the arrival
time of the checked bags and the f1tRouteDest field contains the destination airport code. In
the above query, to determine the total number of checked bags arriving at the LAX airport at a
given time, you first group the data with the estimated arrival time value using the GROUP BY
clause. From the group, you select only the rows that have the destination airport as LAX. You
then determine the bag count for the resultant rows using the count function.

6-19

ORACLE

Chapter 6
SELECT Expression

Here, you can compare the string-formatted dates in ISO-8601 format due to the natural
sorting order of strings without having to cast them into timestamp data types.

The $bag.bagInfo.flightLegs.estimatedArrival

and S$bag.bagInfo.flightLegs.fltRouteDest are sequences. Since the comparison operator
'=' cannot operate on sequences of more than one item, the sequence comparison operator
'zany' is used instead to compare the estimatedArrival and f1tRouteDest fields.

Output:

{"ARRIVALDATE":"2019-02-01T11:00:00Z","COUNT":2}

Example 6-17 Find the humber of watchers for a particular show in a TV streaming
application

SELECT count ($Sa.contentStreamed[S$element.showName = "Bienvenu"]) AS WATCHERS
FROM stream acct s, Ss.acct data $Sa

Explanation: In a TV streaming application, the list of shows watched by a subscriber is stored
in the contentStreamed array. Each element of the array corresponds to a single show. The
showName field includes the name of each show. To fetch the number of watchers for a
particular show, you use the array-filter step expression in the count function. You check
whether or not the showName field matches the given show (in this example, Bienvenu) for each
subscriber and count the total number of such subscribers using the count function.

Output:

{"WATCHERS":4}

sum function

The sum function computes its input expression on each row in a group and sums up all the
numeric values returned by these evaluations of the input expression. In fixed schema, the
sum function returns an error if you try to sum any non-numeric field. In schema-less JSON,
the sum function skips any non-numeric value. If all the values of the input expression are non-
numeric, a NULL value is returned. The resulting value of the sum function has type long,
double, or number, depending on the type of the input items:

e Ifthere is at least one input item of type number, the result will be a number.

e Ifthere is at least one item of type double or float, the result will be double, else the result
will be of type long.

e If the input items are a mix of long, doubles, and numbers, the result will be of type double.

e If numeric values are not returned by the sum function’s input, the result is NULL.

Syntax:

long sum(any¥*)

Semantics:
any: The sum function accepts any parameter type as the input argument.

return type: long

6-20

ORACLE

Chapter 6
SELECT Expression

Example 6-18 Find the total screen time spent on a show by a subscriber in the TV
streaming application

SELECT sum(Scontent.seriesInfol[].episodes[].minWatched) AS MINSWATCHED
FROM stream acct s, Ss.acct data.contentStreamed[] Scontent
WHERE acct_id = 1 AND Scontent.showName = "At the Ranch"

Explanation: In the TV streaming application, you can calculate the total screen time spent on
a show by each subscriber. Each subscriber is associated with a unique account ID, stored in
the acct_id field of the stream acct table. The information of the shows is stored in the
contentStreamed array. The showName field holds the name of the show and the minWatched
field stores the time lapsed for each episode in each season of the show. In this query, you use
the sum function to add the values of the minWatched fields of all the episodes in all the
seasons to calculate the total screen time for the subscriber with account ID 1 and show
named At the Ranch.

Output:

{"MINSWATCHED" :225}

avg function

The avg (average) function computes its input expression on each row in a group and sums up
as well as counts all the numeric values returned by these evaluations of the input expression.
Any non-numeric values are skipped. An error message is returned if the input expression
does not return any numeric values. The resulting value is the division of the sum by the count.
This value has type double, or number, depending on the type of the input items.

« Ifthere is at least one input item of type number, the result will be a number, else the result
will be double.

* If numeric values are not returned by avg function's input, the result is NULL.

Syntax:

number avg(any*)

Semantics:
any: The avg function accepts any parameter type as the input argument.

return type: number

Example 6-19 Find the average screen time spent on a show by a subscriber

SELECT avg ($content.seriesInfo[].episodes[].minWatched) AS AVERAGETIME
FROM stream acct s, Ss.acct data.contentStreamed[] Scontent
WHERE acct id = 1 AND Scontent.showName = "At the Ranch"

Explanation: In the TV streaming application, you can calculate the average screen time
spent on a show by each subscriber. Each subscriber is associated with a unique account ID,
stored in the acct_id field of the stream acct table. The information of the shows is stored in
the contentStreamed array. The showName field holds the name of the series and the
minWatched field stores the time lapsed for each episode in each season of the show. In this
query, you use the avg function on the minWatched field to calculate the average screen time
spent on the show named At the Ranch by a subscriber with account id 1. The avg function

6-21

ORACLE

Chapter 6
SELECT Expression

first calculates the total screen time by adding the values in the minWatched fields for the given
show. It then divides the sum by the number of minWatched fields to calculate the average
value.

Output:

{"AVERAGETIME":56.25}

min function

The min function returns the minimum value among all the values returned by the evaluations
of the input expression on each row in a group. The input expression is evaluated as follows:

1. An error is displayed if it can be determined during the compile time that the values
returned by the input expression belong to a type for which an order comparison is not
defined (for example, RECORD, MAP, BINARY, or FIXED_BINARY). Otherwise, the min
value for each group is initialized to NULL.

2. Let M be the current minimum value and N be the next input value. The M and N are
compared using Value Comparison Operators. If M is NULL, M is set to N. Else, if N is less
than M, that means N can be the minimum value and hence M is set to N, and N is set to
the next input value. This is continued until all the values in the input expression are
compared and a minimum value is ascertained. When the values are not comparable, the
following order is used:

numeric values < timestamps < strings and enums < booleans

3. If Nis arecord, map, array, binary, or fixed binary value, NULL, or JSON null, it is skipped
and the next input value is considered.

Syntax:

any atomic min(any*)
Semantics:
any: The min function accepts any parameter type as the input argument.

return type: atomic data type

max function

The max function returns the maximum value in all the sequences returned by the evaluations
of the input expression on each row in a group. The specific rules are the same as for the max
function, except that the current max value M will be replaced by the next input value N if N is
not skipped and is greater than M.

Syntax:

any atomic max(any*)

Semantics:
any: The max function accepts any parameter type as the input argument.

return type: atomic data type

6-22

ORACLE

Chapter 6
SELECT Expression

Example 6-20 For a given show, find the minimum and maximum screen time

SELECT min (Scontent.seriesInfo[].episodes[].lengthMin) AS MINTIME
max (Scontent.seriesInfo[].episodes[].lengthMin) AS MAXTIME

FROM stream acct s, Ss.acct data.contentStreamed[] Scontent
WHERE S$content.showName = "At the Ranch"

Explanation: In the TV streaming application, you can find the minimum and maximum
duration of a show. The lengthMin field in the stream acct table stores the length of each
episode for a show. In this query, you use:

e The min function on the lengthMin field to fetch the duration of the episode from the show
At the Ranch that has the least screen time.

e The max function on the lengthMin field to fetch the duration of the episode from the show
At the Ranch that has the most screen time.

Output:

{"MINTIME":45, "MAXTIME":85}

Example 6-21 Aggregate Function - Fetch the age and average income of users from
the User data table

CREATE INDEX idx1l ON users (age)

SELECT

age, count(*) AS count, avg(income) AS income
FROM users

GROUP BY age

Explanation: Consider an application that maintains the user data. See User data application
table in the Tables used in the Examples section. The users table includes multiple records of
users with the same age group. You use the aggregate functions to retrieve the count of such
subscribers and their average income. The above query groups users by their age, and for
each age, returns the number of users with the same age group and their average income.

Output:

{"age":22,"count":2,"income":50000.0}
{"age":45,"count":1,"income":75000.0}
array_collect(DISTINCT any*) function

The array collect (DISTINCT any*) function computes the input expression on each row of a
group and collects all the resulting distinct non NULL values into an array.

Syntax:

ARRAY (any) array collect (DISTINCT any*)

Semantics:
The array collect function computes the input expression on each row of a group. The input
expression may be any kind of expression, except a SELECT expression. It collects all the

6-23

Chapter 6
SELECT Expression

resulting distinct values (except NULL values) into an array. The function returns the
constructed array.

Note:

DISTINCT causes values to be compared for equality using the semantics of the
value comparison operator, with the following exceptions: strings are comparable
with strings only (not enums and timestamps), enums are comparable with enums
only (not strings), and timestamps are comparable with timestamps only (not strings).

Example 6-22 In the TV streaming application, return the set of distinct show ids (as
an array) that have been viewed in every country.

SELECT acct.acct data.country,
array collect(distinct acct.acct data.contentStreamed.showId) AS shows
FROM stream acct acct group by acct.acct data.country

Explanation: The TV streaming application streams various shows that are watched by
customers across the globe. Here you want a list of distinct show ids for every country. You
group the data based on the country and list the show ids for every country as an array. You
eliminate duplicate show ids with the distinct operator.

Output:

{"country":"USA", "shows":[16,15]}
{"country":"France", "shows":[15]}
{"country":"Germany", "shows":[26,15]}

Example 6-23 In the TV streaming application, return the set of distinct genres (as an
array) that have been viewed by customers in every country.

SELECT acct.acct data.country,
array collect(distinct acct.acct data.contentStreamed.genres[]) AS genres
FROM stream acct acct group by acct.acct data.country

Explanation: The TV streaming application streams various shows that are watched by
customers across the globe. Here you want a list of distinct genres of shows watched by
customers in every country. You group the data based on the country and for each country, you
fetch the genres of all shows into a single array using

acct.acct data.contentStreamed.genres[].You eliminate duplicate genres with the distinct
operator.

ORACLE 6ou

ORACLE

Chapter 6
SELECT Expression

Note:

In the above query, you use acct.acct data.contentStreamed.genres[] as you
want the details of all the genres to be fetched in a single array. If you omit [] in
acct.acct data.contentStreamed.genres, details of the genres will be fetched as
independent arrays for each row and distinct will be applied only on independent
arrays and not in the entire set as shown below.

SELECT acct.acct data.country,

array collect(distinct acct.acct data.contentStreamed.genres) AS
genres

FROM stream acct acct group by acct.acct data.country

Output:
{"country":"USA", "genres": [["comedy", "drama", "danish"],
["comedy","french"]]}

{"country":"France","genres": [["comedy","french"]]}
{"country":"Germany", "genres": [["action", "crime", "spanish"],
[

"comedy", "french"]]}

In the above example, you can see that the data is grouped based on the country
and for each country, the genres watched by customers are fetched as a row-level
array. For example, for the country USA, you see 2 arrays of genres. The DISTINCT
is applied at the array level. Only if the arrays are identical, then DISTINCT fetches
only one array. Else all the arrays are fetched back as shown in the result above.

Output:

{"country":"USA", "genres": ["drama", "danish", "comedy", "french"]}
{"country":"France", "genres": ["comedy", "french"]}
{"country":"Germany", "genres": ["spanish", "comedy", "action", "crime", "french"]}

array_collect(any*) function

The array collect (any*) function computes the input expression on each row of a group and
collects all the resulting non NULL values into an array.

Syntax:

ARRAY (any) array collect (any¥*)

Semantics:

The array collect function computes the input expression on each row of a group. The input

expression may be any kind of expression, except a SELECT expression. The function collects
all the resulting values (except NULL values) into an array and returns the populated array. The
array collect function permits duplicate values to be inserted into the array.

6-25

ORACLE

Chapter 6
SELECT Expression

Example 6-24 In the TV streaming application, return the first name and last name of
customers (as an array) in USA and Germany.

SELECT acct.acct data.country,

array collect (

{"firstName":acct.acct data.firstName,
"lastName":acct.acct data.lastName}) as user info
FROM stream acct acct WHERE

acct.acct data.country IN ('USA','Germany')

group by acct.acct data.country

Explanation: The TV streaming application streams various shows that are watched by
customers across the globe. Here you want to fetch the user information (first name and last
name) of customers in USA and Germany. You group the data based on the country and filter
the data only for two countries USA and Germany. For each of these two countries , you fetch
the first name and last name of all the customers and populate that in a single array.

Output:

{"country":"USA", "user info":[{"firstName":"John","lastName":"Lewis"}]}
{"country":"Germany", "user info":[{"firstName":"Angela","lastName":"Mercel"}]}

long count(DISTINCT any*) function

The count function computes the input expression on each row of a group and counts all the
distinct non-NULL values returned by the input expression.

Syntax:

long count (DISTINCT any*)

Semantics:

The count function computes the input expression on each row of a group. The input
expression may be any kind of expression other than a subquery. The function counts all the
distinct non-NULL values returned by the input expression. The return type for the count
function is long.

Note:

DISTINCT causes values to be compared for equality using the semantics of the
value comparison operator with the following exceptions: strings are comparable with
strings only (not enums and timestamps), enums are comparable with enums only
(not strings), and timestamps are comparable with timestamps only (not strings).

Example 6-25 In the TV streaming application, return the count of distinct show ids for
every genre viewed by customers.

SELECT $genre, count(distinct S$content.showId) AS show count
FROM stream acct acct, acct.acct data.contentStreamed[] as Scontent,
Scontent.genres[] as $genre, Scontent.showId as $showid group by S$genre

6-26

Chapter 6
SELECT Expression

Explanation: The TV streaming application streams various shows that are watched by
customers across the globe. Here you want a count of distinct shows in every genre viewed by
customers. The details of content streamed is fetched into a single array using

acct.acct data.contentStreamed[]. You group the data based on the genres and for every
genre , you fetch the list of showid as an array. You eliminate duplicate show ids with the
distinct operator. Then the count of distinct show ids for every genre is returned.

Note:

In the above query, if you omit [] in acct.acct data.contentStreamed, details of the
content streamed will be fetched as independent arrays for each row and
count(distinct)will be applied only on independent arrays and not in the entire set.

Output:

{"genres":"crime", "show count":1}

{"genres":"action", "show count":1}
{"genres":"comedy", "show count":2}
{"genres":"spanish", "show count":1}
{"genres":"french", "show count":1}
{"genres":"drama", "show count":1}

{"genres":"danish", "show count":1}

Sequence Aggregate Functions

ORACLE

Sequence aggregate functions simply aggregate the items in their input sequence, using the
same rules as their corresponding SQL aggregate function.

For example, seq_sum () will skip any non-numeric items in the input sequence and it will
determine the actual type of the return value (long, double, or number) the same way as the
SQL sum(). The only exception is seq_count (), which contrary to the SQL count (), will return
NULL if any of its input items is NULL. Furthermore, there are no restrictions on where
sequence aggregate functions can appear (for example, they can be used in the WHERE
and/or the SELECT clause).

Note:

Note: An array is a sequence of one item. To aggregate the elements of an array, you
must unbox the array using [].

The following sequence aggregate functions are supported.
* long seq_count(any*)

* number seq_sum(any*)

* number seq_avg(any?*)

e any_atomic seq_min(any*)

e any_atomic seq_max(any*)

6-27

ORACLE

Chapter 6
SELECT Expression

Note:

All sequence aggregate function names are case sensitive.

seq_count function

Returns the number of items in the input sequence. The evaluation of the input expression is
similar to the count function.

Syntax:

long seq_count (any*)
Semantics:
any: The seq_count function accepts any parameter type as the input argument.

return type: long

seq_sum function

Returns the sum of the numeric items in the input sequence. The evaluation of the input
expression is similar to the sum function.

Syntax:

number seq_sum(any*)
Semantics:
any: The seq_sum function accepts any parameter type as the input argument.

return type: number

seq_avg function

Returns the average of the numeric items in the input sequence. The evaluation of the input
expression is similar to the avg function.

Syntax:

number seq_avg(any¥)

Semantics:
any: The seq_avg function accepts any parameter type as the input argument.

return type: number

seq_min function

Returns the minimum of the items in the input sequence. The evaluation of the input
expression is similar to the min function.

Syntax:

any atomic seq min(any*)

6-28

ORACLE

Chapter 6
SELECT Expression

Semantics:
any: The seq_min function accepts any parameter type as the input argument.

return type: atomic data type

seq_max function

Returns the maximum of the items in the input sequence. The evaluation of the input
expression is similar to the max function.

Syntax:

any atomic seq max(any*)

Semantics:
any: The seq_max function accepts any parameter type as the input argument.

return type: atomic data type

Example 6-26 Display an automated message regarding the number of checked bags,
travel route, and flight count to a passenger in the airline baggage tracking application

SELECT fullName,
b.baginfo[0].routing,
size (baginfo) AS BAGS,
CASE
WHEN seq count (b.bagInfo[0].flightLegs.flightNo) =1
THEN "You have one flight to catch"
WHEN seq count (b.bagInfo[0].flightLegs.flightNo) = 2
THEN "You have two flights to catch"
WHEN seq count (b.bagInfo[0].flightLegs.flightNo)
THEN "You have three flights to catch”
ELSE "You do not have any travel listed today"
END AS FlightInfo
FROM BaggageInfo b
WHERE ticketNo = 1762320369957

I
w

Explanation: In the airline baggage tracking application, it is helpful to display a quick look-up
message regarding the flight count, number of checked bags, and routing details of an
upcoming travel for a passenger. The bagInfo array holds the checked bag details of the
passenger. The size of the bagInfo array determines the number of checked bags per
passenger. The flightLegs array in the bagInfo includes the flight details corresponding to
each travel leg. The routing field includes the airport codes of all the travel fragments. You can
determine the number of flights by counting the £f1ightNo fields in the f1ightLegs array. If a
passenger has more than one checked bag, there will be more than one element in the
bagInfo array, one for each bag. In such cases, the f1ightLegs array in all the elements of the
bagInfo field of a passenger data will contain the same values. This is because the destination
of all the checked bags for a passenger will be the same. While counting the f1ightNo fields,
you must consider only one element of the bagInfo array to avoid duplication of results. In this
query, you consider only the first element, that is, bagInfo[0]. As the flightLegs array has a
flightNo field for each travel fragment, it is a sequence and you determine the count of the
flightNo fields per passenger using the seq_count function.

You use the CASE statement to introduce different messages based on the flight count. For
ease of use, only three transits are considered in the query.

6-29

ORACLE

Chapter 6
SELECT Expression

Output:

{"fullName":"Lorenzo Phil","routing":"SFO/IST/ATH/
JTR","BAGS":2,"FlightInfo":"You have three flights to catch"}

Example 6-27 Retrieve the step tracker details for a user from the User data
application

Consider the users table with an additional field stepCount to track the steps covered by each
user over a duration. The table schema is as follows:

CREATE TABLE users (id INTEGER,
firstName STRING,
lastName STRING,
otherNames ARRAY (RECORD (first STRING, last STRING)),
age INTEGER,
income INTEGER,
address JSON,
connections ARRAY (INTEGER),
stepCount ARRAY (LONG),
PRIMARY KEY (id))

Insert the following sample data:

INSERT INTO users VALUES (

10,

"John",

"Smith",

[{"first" : "Johny", "last" : "Good"}, {"first" : "Johny2", "last"
"Brave"}, {"first" : "Johny3", "last" : "Kind"},{"first" : "Johny4", "last"
"Humble"} 1,

22,

45000,

{

"street" : "Pacific Ave",

"number" : 101,

"city" : "Santa Cruz",

"state" : "CA",

"zip" : 95008,

"phones" : [
{ "area" : 408, "number" : 4538955, "kind" : "work" },
{ "area" : 831, "number" : 7533341, "kind" : "home" },
{ "area" : 831, "number" : 7533382, "kind" : "mobile" }

b
[30, 55, 43],
[2000, 1500, 2700, 3000, 1000, 4000, 6000]

6-30

Chapter 6
SELECT Expression

Based on the aggregation of this data for a given duration, a user can chart out a fitness
regime.

SELECT id,

firstName,

seq_count (u.stepCount[]) AS DAYS,
seq_sum(u.stepCount[]) AS TOTAL STEPS,
seq_avg(u.stepCount[]) AS AVERAGE STEPS,
seq min(u.stepCount[]) AS LOWEST,

seq max(u.stepCount[]) AS HIGHEST

FROM users u

WHERE 1d=10

)
)
)
)

Explanation: The stepCount field in the users table is an array of type long. Each element in
the array represents the number of steps covered by a user per day. You can use the
sequence aggregate functions to fetch the details of total steps, average steps, lowest, and
highest counts of steps covered by the user over a period.

Output:

{"id":10, "firstName":"John", "DAYS":7, "TOTAL STEPS":20200, "AVERAGE STEPS":2885.
714285714286, "LOWEST":1000, "HIGHEST":6000}

ORDER BY Clause

ORACLE

The ORDER BY clause reorders the sequence of rows it receives as input. The relative order
between any two input rows is determined by evaluating, for each row, the expressions listed in
the ORDER BY clause and comparing the resulting values, taking into account the sort_spec
associated with each ORDER BY expression.

Syntax

orderby clause ::= ORDER BY
expression sort spec
("," expression sort spec)*

sort spec ::= [ASC|DESC] [NULLS (FIRST|LAST)]

Semantics

Each ordering expression must return at most one atomic value. If an ordering expression
returns an empty sequence, the special value EMPTY is used as the returned value. If the
SELECT expression includes GROUP BY as well, then the expressions in the ORDER BY
must be the grouping expressions (in the GROUP BY clause, if any), or aggregate functions, or
expressions that are built on top of grouping expression and/or aggregate functions.

sort_spec : A sort_spec specifies the "direction” of the sort (ascending or descending) and
how to compare the special values NULL, JNULL, and EMPTY with the non-special values.

e If NULLS LAST is specified, the special values will appear after all the non-special values.

e If NULLS FIRST is specified, the special values will appear before all the non-special
values.

The relative ordering among the 3 special values themselves is fixed:

6-31

Chapter 6
SELECT Expression

« if the direction is ASC, the ordering is EMPTY < JNULL < NULL;

e otherwise the ordering is reversed.

Notice that in the grammar, sort_specs are optional.

* If no sort_spec is given, the default is ASC order and NULLS LAST.

e If only the sort order is specified, then NULLS LAST is used if the order is ASC, otherwise
NULLS FIRST.

e If the sort order is not specified, ASC is used.

Taking into account the above rules, the relative order between any two input rows is
determined as follows. Let N be the number of order-by expressions and let Vi1, Vi2, ... VIN be
the atomic values (including EMPTY) returned by evaluating these expressions, from left to
right, on a row Ri. Two rows Ri, Rj are considered equal if Vik is equal to Vjk for each k in 1, 2,
..., N. In this context, NULLs are considered to be equal only to themselves. Otherwise, Ri is
considered less than Rj if there is a pair Vim, Vjm such that:

e mis 1, orVikis equal to Vjk foreach kin 1, 2, ..., (m-1), and
e Vimis not equal to Vjm, and
« the m-th sort_spec specifies ascending order and Vim is less than Vjm, or

« the m-th sort_spec specifies descending order and Vim is greater than Vjm

In the above rules, comparison of any two values Vik and Vjk, when neither of them is special
and they are comparable to each other, is done according to the rules of the value-comparison
operators defined in the Value Comparison Operators section.

If Vik and Vjk do not have comparable types (which, for example, - can arise when sorting by
json fields), the following rule applies:

e If the direction is ASC, the ordering is numeric items < timestamps < strings and enums <
booleans.

* Otherwise the ordering is reversed.

As with grouping, sorting can be index-based or generic. Index-based sorting is possible only if
there is an index that sorts the rows in the desired order. More precisely, let e1, e2, ..., eN by
the ORDER BY expressions as they appear in the ORDER BY clause (from left to right). Then,
there must exist an index (which may be the primary-key index or one of the existing
secondary indexes) such that for each i in 1,2,...,N, ei matches the definition of the i-th index
field. Furthermore, all the sort_specs must specify the same ordering direction and for each
sort_spec, the desired ordering with respect to the special values must match the way these
values are sorted by the index. In the current implementation, the special values are always
sorted last in an index. So, if the sort order is ASC, all sort_specs must specify NULL LAST,
and if the sort order is DESC, all sort_specs must specify NULLS FIRST.

Note:

If no appropriate index exists or is not selected by the query optimizer, the sorting will
be generic. This implies that all query results must be fetched into the driver memory
and cached there before they can be sorted. So, as with grouping, generic sorting
can consume a lot of driver memory, and is therefore best avoided.

For both generic ORDER BY and GROUP BY, applications can programmatically specify how
much memory such operations are allowed to consume at the client driver. We have specific
methods for this functionality in each of the available language drivers as given below.

ORACLE 630

ORACLE

Chapter 6
SELECT Expression

Table 6-1 APIS for Memory Consumption

Langua Get maximum memory consumption Set maximum memory consumption

ge

Driver

Java getMaxMemoryConsumption() setMaxMemoryConsumption(long v)

Python get_max_memory_consumption() set_max_memory_consumption
(memory_consumption)

Node.js maxMemoryMB maxMemoryMB

Go GetMaxMemoryConsumption() MaxMemoryConsumption

Example 6-28 ORDER BY Clause

This example selects the id and the last name for users whose age is greater than 30,
returning the results sorted by id.

SELECT id, lastName
FROM users

WHERE age > 30
ORDER BY id

Example 6-29 ORDER BY Clause

This example selects the id and the last name for users whose age is greater than 30,
returning the results sorted by age. An index-based sorting is performed If there exists a
secondary index on the age column.

SELECT id, lastName
FROM users

WHERE age > 30
ORDER BY age

Example 6-30 ORDER BY Clause

The following example returns all the rows sorted by the first name.

SELECT id, firstName, lastName
FROM users
ORDER BY firstName

Output

Fomm - Fomm +
| id | firstName | lastName |
e T e +
| 10 | John | Smith \
| 20 | Mary | Ann |
| 30 | Peter | Paul |
e T e +

3 rows returned

6-33

Chapter 6
SELECT Expression

Example 6-31 ORDER BY Clause

The following example returns the firstName, lastName and income sorted by the income from
highest to lowest.

SELECT firstName, lastName, income
from users
ORDER BY income DESC

Output

Fomm - Fomm - fomm +
| firstName | lastName | income |
fomm - R fom— - +
Mary	Ann	90000
Peter	Paul	53000
John	Smith	45000
fomm - R fom— - +

3 rows returned

Example 6-32 ORDER BY Clause

The following example groups the data by age and returns the number of users having that
age and their average income ordered by their average income.

SELECT
age, count(*), avg(income)
FROM users

GROUP BY age
ORDER BY avg(income)

Output

tmmm— it tommm +
| age | Column 2 | Column 3 |
tm—m— it o +
I 22 | 1| 45000.0 |
|25 | 1| 53000.0 |
| 43 | 1| 90000.0 |
tm—m— it o +

3 rows returned

Example 6-33 ORDER BY Clause

In the following example, Query 1 returns the state and income sorted by income. However, if
we want to group Query 1 by state, then we can use the GROUP BY clause. However, when a
SELECT expression includes grouping, expressions in the SELECT and ORDER BY clauses
must reference grouping expressions, aggregate functions or external variable only. So, to get
the desired result, we need to rewrite Query 1 as given in Query 2.

Query 1:

SELECT
u.address.state, u.income

ORACLE 634

Chapter 6
SELECT Expression

FROM users u
ORDER BY u.income

Output

R it fommm - +
| state | income |
Fomm e fomm +
| NV | 45000 |
Fomm e fomm +
| CA | 53000 |
Fomm e fomm +
| CA [90000 |
Fomm e fomm +

3 rows returned

Query 2:

SELECT
u.address.state, max(u.income)
FROM users u
GROUP BY u.address.state
ORDER BY max (u.income)

Output

fommmm o e ittt +
| state | Column 2 |
Fom R J—
| NV | 45000 |
Fom fmmm +
| CA | 90000 |
Fom fmmm +

2 rows returned

Example 6-34 ORDER BY Clause

In the following example, the Query 1 returns the income and state of all the rows in the users
table. The Query 2 gets the average income for each state.

Query 1:

SELECT
u.address.state, u.income
FROM users u

Output

fomm e fomm - +
| state | income |
Fom e fomm +
| CA | 53000 |
Fom e fomm +

ORACLE .

Chapter 6
SELECT Expression

3 rows returned

Query 2:

SELECT
u.address.state, avg(u.income)
FROM users u
GROUP BY u.address.state
ORDER BY avg(u.income)

Output

fomm - fomm +
| state | Column 2 |
Fomm - fo—m ——
| NV | 45000.0 |
Fomm - fomm +
| CA | 71500.0 |
Fomm - fomm +

2 rows returned

SELECT Clause

The SELECT clause transforms each input row to a new record that will appear in the query
result. The SELECT clause comes in two forms: "select star" form and "projection” form.

select star form
In select star form the SELECT clause contains a single star symbol (*). In this the SELECT
clause is a no-op; it simply returns its input sequence of rows.

projection form

In the projection form the SELECT clause contains a list of expressions, where each
expression is optionally associated with a name. In this the listed expressions and their
associated names are refered as field expressions and field names respectively.

Syntax
select clause ::= SELECT [DISTINCT] select list
select list ::= [hints]

(STAR | (expression AS id ("," expression AS id)*))
Semantics

In projection form, the SELECT clause creates a new record for each input row. In this the
record constructed by the SELECT clause has one field for each field expression and the fields
are arranged in the same order as the field expressions. For each field, its value is the value
computed by the corresponding field expression and its name is the name specified by the AS
keyword, or if no field name is provided explicitly (via the AS keyword), one is generated
internally during query compilation. To create valid records, the field names must be unique.

ORACLE 636

ORACLE

Chapter 6
SELECT Expression

Furthermore, each field value must be exactly one item. To achieve this, the following two
implicit conversions are employed:

1. If the result of a field expression is empty, NULL is used as the value of the corresponding
field in the created record.

2. If the compiler determines that a field expression may return more than one item, it wraps
the field expression with a conditional array constructor. See the Array and Map
Constructors section. During runtime, an array will be constructed only if the field
expression does actually return more than one item; if so, the returned items will be
inserted into the constructed array, which will then be used as the value of the
corresponding field in the created record.

The above semantics imply that all records generated by a SELECT clause have the same
number of fields and the same field names. As a result, a record type can be created during
compilation time that includes all the records in the result set of a query. This record type is the
type associated with each created record, and is available programmatically to the application.

The SELECT clause can contain an optional DISTINCT keyword. If the SELECT clause
contains the DISTINCT keyword, then the database will return only one copy of each set of
duplicate rows selected. Duplicate rows are those with matching values in the SELECT list.
The query uses the combination of values in all specified columns in the SELECT list to
evaluate the uniqueness. See the Example 6-40 example. Equality between values is checked
using the semantics of the "=" operator. See the Value Comparison Operators section.

If the SELECT expression is a grouping one, then the expressions in the SELECT list must be
the grouping expressions (in the GROUP BY clause, if any), or aggregate functions, or
expressions that are built on top of grouping expression and/or aggregate functions.

Note:

The SELECT clause may also contain one or more hints, that help the query
processor choose an index to use for the query. See the Choosing the Best
Applicable Index section.

Example 6-35 SELECT Clause

SELECT * FROM users

Example 6-36 SELECT Clause

Select the id and the last name for users whose age is greater than 30. We show 4 different
ways of writing this query, illustrating the different ways that the top-level columns of a table
may be accessed.

SELECT id, lastName FROM users WHERE age > 30

SELECT users.id, lastName FROM users WHERE users.age > 30

SELECT $u.id, lastName FROM users $u WHERE Su.age > 30

SELECT u.id, lastName FROM users u WHERE users.age > 30

6-37

ORACLE

Chapter 6
SELECT Expression

Example 6-37 SELECT Clause

Select the id and the last name for users whose age is greater than 30, returning the results
sorted by id. Sorting is possible in this case because id is the primary key of the users table.

SELECT id, lastName FROM users WHERE age > 30 ORDER BY id
Example 6-38 SELECT Clause
Select the list of distinct age of the users.

SELECT DISTINCT age FROM users

Output

{"age":25}
{"age":43}
{"age":22}

Example 6-39 SELECT Clause

Select the list of othernames of the users. Notice that the output of the SELECT command is
compared and any duplicates are removed from the final output.

SELECT otherNames FROM Users

Output

{"otherNames":null}
{"otherNames":null}
{"otherNames": [{"first":"Johny","last":"BeGood"}]}

SELECT DISTINCT otherNames FROM Users

Output

{"otherNames":null}
{"otherNames": [{"first":"Johny", "last":"BeGood"}]}

Example 6-40 SELECT Clause

Select the list of firstname and othernames of the users. Notice that the query uses the
combination of values in all specified columns in the SELECT list to evaluate the uniqueness.

SELECT firstName, otherNames FROM Users

6-38

Chapter 6
SELECT Expression

Output

{"firstName":"Peter", "otherNames":null}
{"firstName":"Mary", "otherNames":null}
{"firstName":"John", "otherNames": [{"first":"Johny","last":"BeGood"}]}

SELECT DISTINCT firstName, otherNames FROM Users

Output

{"firstName":"Peter", "otherNames":null}
{"firstName":"Mary", "otherNames":null}
{"firstName":"John", "otherNames": [{"first":"Johny", "last":"BeGood"}]}

LIMIT Clause

The LIMIT clause is used to specify the maximum number M of results to return to the
application. M is computed by an expression that may be a single integer literal, or a single
external variable, or any expression which is built from literals and external variables and
returns a single non-negative integer.

Syntax

limit clause ::= LIMIT add_expression

Semantics

Although it's possible to use limit without an order-by clause, it does not make much sense to
do so. This is because without an order-by, results are returned in a random order, so the
subset of results returned will be different each time the query is run.

Example 6-41 LIMIT Clause
SELECT * FROM users
WHERE age > 30

ORDER BY age
LIMIT 5

OFFSET Clause

The OFFSET clause is used to specify a number N of initial query results that should be
skipped (not returned to the application). N is computed by an expression that may be a single
integer literal, or a single external variable, or any expression which is built from literals and
external variables and returns a single non-negative integer.

Syntax

offset clause ::= OFFSET add_expression

ORACLE 639

Chapter 6
Path Expressions

Semantics

Although it's possible to use offset without an order-by clause, it does not make much sense to
do so. This is because without an order-by, results are returned in a random order, so the
subset of results skipped will be different each time the query is run.

Example 6-42 OFFSET Clause

SELECT * FROM users
WHERE age > 30
ORDER BY age

OFFSET 10

Path Expressions

Syntax

path expression ::= primary_expression (map step | array step)*
map _step ::= "." (map_filter_step | map_field_step)

array step ::= array_filter_step | array_slice_step

Semantics

Path expressions are used to navigate inside hierarchically structured data. As shown in the
syntax, a path expression has an input expression (which is one of the primary expressions
described in the Primary Expressions section, followed by one or more steps. The input
expression may return any sequence of items. Each step is actually an expression by itself; It
takes as input a sequence of items and produces zero or more items, which serve as the input
to the next step, if any. Each step creates a nested scope, which covers just the step itself.

All steps iterate over their input sequence, producing zero or more items for each input item. If
the input sequence is empty, the result of the step is also empty. Otherwise, the overall result
of the step is the concatenation of the results produced for each input item. The input item that
a step is currently operating on is called the context item, and it is available within the step
expression via an implicitly-declared variable, whose name is a single dollar sign ($). This
context-item variable exists in the scope created by the step expression.

There are several kinds of steps. For all of them, if the context item is NULL, it is just added
into the output sequence with no further processing. Otherwise, the following subsections
describe the operation performed by each kind of step on each non-NULL context item.

Field Step Expressions

Syntax

map field step ::=
id | string | variable_reference |
parenthesized expression | function_call

ORACLE 620

ORACLE

Chapter 6
Path Expressions

Semantics

The main use of a field step is to select the value of a field from a record or map. The field to
select is specified by its field name, which is either given explicitly as an identifier, or is
computed by a name expression. The name expression, must have type STRING?.

A field step processes each context item as follows:
e If the context item is an atomic item, it is skipped (the result is empty).

e The name expression is computed. The name expression may reference the context item
via the $ variable. If the name expression returns the empty sequence or NULL, the
context item is skipped. Otherwise, let K be the result of of the name expression (if an
identifier is used instead of a name expression, K is the string with the same characters as
the identifier).

< If the context item is a record, then if that record contains a field whose name is equal to K,
the value of that field is returned, otherwise, an error is raised.

< If the context item is a map, then if that map contains a field whose name is equal to K, the
value of that field is returned, otherwise, an empty result is returned.

e If the content item is an array, the field step is applied recursively to each element of the
array (with the context item being set to the current array element).

Example 6-43 Field Step Expression

Select the id and the city of all users.

SELECT id, u.address.city
FROM users u

Notice that if the input to a path expressions is a table column, a table alias must be used
together with the column name. Otherwise, as explained in the Variable References section, an
expression like address.city would be interpreted as a reference to the city column of a table
called address, which is of course not correct.

Recall that address is a column of type JSON. For most (if not all) users, its value will be a json
document, i.e.. a map containing other json values. If it is a document and it has a field called
city, its value will be returned. For address documents with no city field, the path expression
u.address.city returns the empty sequence, which gets converted to NULL by the SELECT
clause. The same is true for addresses that are atomic values (e.g. flat strings). Finally, a user
may have many addresses stored as an array in the address column. For such a user, all of
his/her cities will be returned inside an array.

The record items constructed and returned by the above query will all have type RECORD(id
INTEGER, city JSON). The city field of this record type has type JSON, because the address
column has type JSON and as a result, any nested field in an address can have any valid
JSON value. However, each actual record value in the result will have a city field whose field
value has a more specific type (most likely STRING).

Note:

The query processor could be constructing on-the-fly a precise RECORD type for
each individual record constructed by the query, but it does not do so for performance
reasons. Instead it constructs a common type for all returned record items.

6-41

ORACLE

Chapter 6
Path Expressions
Example 6-44 Field Step Expression

Select the id and amount spent on books for all users who live in California.

SELECT id, u.expenses.books
FROM users u
WHERE u.address.state = "CA"

In this case, "expenses" is a "typed" map: all of its values have INTEGER as their type. As a
result, the record items constructed and returned by the above query will all have type
RECORD(id INTEGER, books INTEGER).

Example 6-45 Field Step Expression

For each user, select their id and a field from his/her address. The field to select is specified via
an external variable.

DECLARE $fieldName STRING

SELECT u.id, u.address.$fieldName
FROM users u

Example 6-46 Field Step Expression

For each user select all their last names. In this query the otherName column is an array, and
the .last step is applied to each element of the array.

SELECT lastName, u.otherNames.last
FROM users u

Example 6-47 Field Step Expression

For each user select their id and all of their phone numbers (without the area code). This query
will work as expected independently of whether phones is an array of phone objects or a single
such phone object. However, if phones is, for example, a single integer or a json object without
a number field, the path expression will return the empty sequence, which will be converted to
NULL by the SELECT clause.

SELECT id, u.address.phones.number
FROM users u

Example 6-48 Field Step Expression

For each state, find how much people in that state spent on books.

SELECT u.address.state, sum(u.expenses.books)
FROM users u
GROUP BY u.address.state

For the above query to work, an index must exist whose first field is u.address.state.

6-42

Chapter 6
Path Expressions

Map-Filter Step Expressions

ORACLE

Syntax

map filter step ::= (KEYS | VALUES) " (" [expression] ") "

Semantics

Like field steps, map-filter steps are meant to be used primarily with records and maps. Map-
filter steps select either the field names (keys) or the field values of the map/record fields that
satisfy a given condition (specified as a predicate expression inside parentheses). If the
predicate expression is missing, it is assumed to be the constant true (in which case all the
field names or all of the field values will be returned).

A map filter step processes each context item as follows:
* If the context item is an atomic item, it is skipped (the result is empty).

* If the context item is a record or map, the step iterates over its fields. For each field, the
predicate expression is computed. In addition to the context-item variable ($), the predicate
expression may reference the following two implicitly-declared variables: $key is bound to
the name of the context field, i.e., the current field in $, and $value is bound to the value of
the context field. The predicate expression must be BOOLEAN?. A NULL or an empty
result from the predicate expression is treated as a false value. If the predicate result is
true, the context field is selected and either its name or its value is returned; otherwise the
context field is skipped.

e If the context item is an array, the map-filter step is applied recursively to each element of
the array (with the context item being set to the current array element).

Example 6-49 Map-Filter Step Expressions

For each user select their id and the expense categories in which the user spent more
than $1000.

SELECT id, u.expenses.keys(Svalue > 1000)
FROM users u

Example 6-50 Map-Filter Step Expressions

For each user select their id and the expense categories in which they spent more than they
spent on clothes. In this query, the context-item variable ($) appearing in the filter step
expression [$value > $.clothes] refers to the context item of that filter step, i.e., to an expenses
map as a whole.

SELECT id, u.expenses.keys($value > $.clothes)
FROM users u

Example 6-51 Map-Filter Step Expressions

For each user select their id, the sum of their expenses in all categories except housing, and
the maximum of these expenses.

SELECT id,
seq_sum(u.expenses.values($key != housing)) AS sum,

6-43

Chapter 6
Path Expressions

seq_max (u.expenses.values ($key != housing)) AS max
FROM users u

Example 6-52 Map-Filter Step Expressions
Notice that field steps are actually a special case of map-filter steps. For example the query

SELECT id, u.address.city
FROM users u

is equivalent to

SELECT id, u.address.values(Skey = "city")
FROM users u

However, the field step version is the preferred one, for performance reasons.

Array-Filter Step Expressions

ORACLE

Syntax

array filter step ::= "[" [expression] "]"

Semantics

An array filter is similar to a map filter, but it is meant to be used primarily for arrays. An array
filter step selects elements of arrays by computing a predicate expression for each element
and selecting or rejecting the element depending on the predicate result. The result of the filter
step is a sequence containing all selected items. If the predicate expression is missing, it is
assumed to be the constant true (in which case all the array elements will be returned).

An array filter step processes each context item as follows:

e If the context item is not an array, an array is created and the context item is added to that
array. Then the array filter is applied to this single-item array as described below.

e If the context item is an array, the step iterates over the array elements and computes the
predicate expression on each element. In addition to the context-item variable ($), the
predicate expression may reference the following two implicitly-declared
variables: $element is bound to the context element, i.e., the current element in $,
and $pos is bound to the position of the context element within the array (positions are
counted starting with 0). The predicate expression must return a boolean item, or a
numeric item, or the empty sequence, or NULL. A NULL or an empty result from the
predicate expression is treated as a false value. If the predicate result is true/false, the
context element is selected/skipped, respectively. If the predicate result is a number P, the
context element is selected only if the condition $pos = P is true. Notice that this implies
that if P is negative or greater or equal to the array size, the context element is skipped.

Example 6-53 Array-Filter Step Expression

For each user, select their last name and his/her phone numbers with area code 650.

SELECT lastName,
[u.address.phones[Selement.area = 650].number]

6-44

Chapter 6
Path Expressions

AS phoneNumbers
FROM users u

Notice the the path expression in the select clause is enclosed in square brackets, which is the
syntax used for arrayconstructor expressions as described in the Array and Map Constructors
section. The use of the explicit array constructor guarantees that the records in the result set
will always have an array as their second field. Otherwise, the result records would contain an
array for users with more than one phones, but a single integer for users with just one phone.
Notice also that for users with just one phone, the phones field in address may not be an array
(containing a single phone object), but just a single phone object. If such a single phone object
has area code 650, its number will be selected, as expected.

Example 6-54 Array-Filter Step Expression

For each user, select their last name and phone numbers having the same area code as the
first phone number of that user.

SELECT lastName,
[u.address.phones[Selement.area = $[0].area].number]
FROM users u

Example 6-55 Array-Filter Step Expression

Among the 10 strongest connections of each user, select the ones with id > 100. (Recall that
the connections array is assumed to be sorted by the strength of the connections, with the
stronger connections appearing first).

SELECT [connections[$Selement > 100 AND $pos < 10]]
AS interestingConnections
FROM users

Example 6-56 Array-Filter Step Expression

Count the total number of phones numbers with areacode 650.

SELECT count (u.address.phones[Selement.area = 650])
FROM users u

Example 6-57 Array-Filter Step Expression

To count the total number of people with at least one phone in the 650 areacode, a case
expression (see Case Expressions) and the exists operator (see Exists Operator) must be
used.

SELECT count (CASE

WHEN EXISTS u.address.phones[$element.area = 650] THEN 1
ELSE 0

END)

FROM users u

ORACLE 6a5

Chapter 6
Path Expressions

Array-Slice Step Expressions

ORACLE

Syntax

array slice step ::= "[" [expression] ":" [expression] "]"

Semantics

Array slice steps are meant to be used primarily with arrays. In general, an array slice step
selects elements of arrays based only on the element positions. The elements to select are the
ones whose positions are within a range between a "low" position and a "high" position. The
low and high positions are computed by two boundary expressions: a "low" expression for the
low position and a "high" expression for the high position. Each boundary expression must
return at most one item of type LONG or INTEGER, or NULL. The low and/or the high
expression may be missing. The context-item variable ($) is available during the computation
of the boundary expressions.

An array filter step processes each context item as follows:

« If the context item is not an array, an array is created and the context item is added to that
array. Then the array filter is applied to this single-item array as described below.

* If the context item is an array, the boundary expressions are computed, if present. If any
boundary expression returns NULL or an empty result, the context item is skipped.
Otherwise, let L and H be the values returned by the low and high expressions,
respectively. If the low expression is absent, L is set to 0. If the high expression is absent,
H is set to the size of the array - 1. If Lis <0, Lis setto O. If H > array_size - 1, H is set to
array_size - 1. After L and H are computed, the step selects all the elements between
positions L and H (L and H included). If L > H no elements are selected.

Notice that based on the above rules, slice steps are actually a special case of filter steps. For
example, a slice step with both boundary expressions present, is equivalent to <input
expr>[<low expr> <= $pos and $pos <= <high expr>]. Slice steps are provided for convenience
(and better performance).

Example 6-58 Array-Slice Step Expression

Select the strongest connection of the user with id 10.

SELECT connections[0] AS strongestConnection
FROM users
WHERE id = 10

Example 6-59 Array-Slice Step Expression

For user 10, select his/her 5 strongest connections (i.e. the first 5 ids in the "connections”
array).

SELECT [connections[0:4]] AS strongConnections
FROM users
WHERE id = 10

Notice that the slice expression will return at most 5 ids; if user 10 has fewer that 5
connections, all of his/her connections will be returned.

6-46

Chapter 6
Comparison Expressions
Example 6-60 Array-Slice Step Expression

For user 10, select his/her 5 weakest connections (i.e. the last 5 ids in the "connections" array).
SELECT [connections[size($) - 5 :]] AS weakConnections

FROM users
WHERE id = 10

In this example, size() is a function that returns the size of a given array, and $ is the context
array, i.e., the array from which the 5 weakest connections are to be selected.

Comparison Expressions

This section describes various comparison expressions in Oracle NoSQL Database.

If you want to follow along with the examples, create the tables as described in the Tables used
in the Examples section.

Logical Operators: AND, OR, and NOT

ORACLE

Syntax

expression ::= or expression

or expression ::= and expression | (or expression OR and expression)
and expression ::= not expression | (and expression AND not expression)
not expression ::= [NOT] is_null_expression

Semantics

The binary AND and OR operators and the unary NOT operator have the usual semantics.
Their operands are conditional expressions, which must have type BOOLEAN. An empty result
from an operand is treated as the false value. If an operand returns NULL, then:

e The AND operator returns false if the other operand returns false; otherwise, it returns
NULL.

e The OR operator returns true if the other operand returns true; otherwise it returns NULL.
e The NOT operator returns NULL.

Example 6-61 Fetch the id, first name, last nhame, and age for users who are not in the
age group of 20 to 40 or whose income is greater than 90K

SELECT id, firstName, lastName FROM users WHERE NOT age BETWEEN 20 AND 40 OR
income > 90000

Consider an application that maintains the user data. The age field holds the age of the user
and the income field includes the income of the user. In the above query, you use a
combination of operators to get the list of users who are not in the age group of 20 to 40 years
or have an income greater than 90K. A BETWEEN operator verifies if the input expression is
within the range of the boundary values. Since you want users who are either less than 20
years or more than 40 years of age, use the BETWEEN operator on the age field with the

6-47

Chapter 6
Comparison Expressions

logical operator NOT to fetch the users outside the given range. To fetch the list of users with
income greater than 90K, use the value comparison operator '>' to compare the income field of
the users. You use the OR operator to fetch the list of users who satisfy either of the
conditions.

Output:

{"id":30, "firstName":"Adam", "lastName":"Smith", "age":45}

Example 6-62 Fetch the list of male passengers from the airline baggage tracking
application who are bound toward FRA station and carrying only one checked bag

SELECT

fullname,

s.bagInfo[].flightLegs[].fltRouteDest,

ticketNo

FROM BaggageInfo s

WHERE gender = 'M'

AND s.bagInfo[].flightLegs[].fltRouteDest=any "FRA"
AND (size(s.bagInfo) = 1)

In the airline baggage tracking application, you can fetch the details of the male passengers
who are bound toward a specific destination. The f1tRouteDest field in the BaggageInfo table
includes the destination airport code for each travel leg. The f1tRouteDest field can hold the
final station or a transit station. To retrieve a list of male passengers who are bound towards
FRA and carrying only one checked bag, you perform value comparison operations and use
the AND operator to narrow down the results to successfully match all the criteria. You fetch
the list of all the male passengers by comparing the gender field. You retrieve the list of
passengers bound towards the FRA station by performing a string comparison operation on
the f1tRouteDest field with the given airport code 'FRA'. You compare the size of the bagInfo
array to select the passengers having only one checked bag. You use the AND operator to
fetch the list of passengers that satisfy all the conditions mentioned above.

Here, the s.bagInfo.fltRouteDest iS a sequence. The value comparison operators cannot
operate on sequences of more than one item. A sequence comparison operator any is used in
addition to the value comparison operator '=' to compare the f1tRouteDest fields.

Note:

If there is more than one logical operator in the query, ensure the proper usage of
parenthesis. The parenthesis is assessed first in the order of evaluation.

Output:

{"fullname":"Henry Jenkins","fltRouteDest":
["ORD","FRA"],"ticketNo":176234463813}
{"fullname":"Raymond Griffin","fltRouteDest":
["FRA", "HKG"], "ticketNo":1762399766476}

ORACLE 648

Chapter 6
Comparison Expressions

IS NULL and IS NOT NULL Operators

ORACLE

Syntax
is null expression ::= condition expression [IS [NOT] NULL]

condition expression ::=
comparison_expression | exists_expression
| is_of type expression | in_expression

Semantics

The IS NULL operator tests whether the result of its input expression is NULL. If the input
expression returns more than one item, an error is raised. If the result of the input expression is
empty, IS NULL returns false. Otherwise, IS NULL returns true if and only if the single item
computed by the input expression is NULL. The IS NOT NULL operator is equivalent to NOT
(IS NULL cond_expr). NULL is explained in Table 2-2.

Example 6-63 Select the id, first name, and last name of all users who do not have a
known income

Consider an application that maintains the user data. See users table in the Tables used in the
Examples topic.

SELECT id, firstName, lastName FROM users u
WHERE u.income IS NULL

Explanation: Assuming that a NULL value is populated in the user table if a user does not
have any known income, in the above query, you fetch the details of users whose income field
has a NULL value.

Output:

{"id":40,"firstName":"Joanna", "lastName":"Smith"}

Example 6-64 Fetch the ticket number, the full name of passengers from the airline
baggage tracking application whose checked bag has a tag associated with it

Consider the airline baggage tracking application. See BaggageInfo table in the Tables used in
the Examples topic.

SELECT ticketNo, fullname
FROM BaggageInfo bag
WHERE EXISTS bag.bagInfo.tagNum [Selement IS NOT NULL]

Explanation: In the airline baggage tracking application, there is a unique tag number
associated with every checked bag carried by the passenger. In this query, you fetch the
details of passengers who have a tag number, which means the tagNum field in the bagInfo
table is not null. You use the EXISTS operator to verify whether or not the taghum field includes
a NULL value.

6-49

Output:

{"ticketNo":
{"ticketNo":
{"ticketNo":
{"ticketNo":
{"ticketNo":
{"ticketNo":
{"ticketNo":
{"ticketNo":
{"ticketNo":
{"ticketNo":
{"ticketNo":
{"ticketNo":
{"ticketNo":
{"ticketNo":
{"ticketNo":
{"ticketNo":
{"ticketNo":
{"ticketNo":
{"ticketNo":
{"ticketNo":
{"ticketNo":

1762330498104, "fullname":
1762340683564, "fullname":
1762377974281, "fullname":
1762320569757, "fullname":
1762392135540, "fullname":
1762399766476, "fullname":
1762324912391, "fullname":
1762390789239, "fullname":
1762340579411, "fullname":
1762376407826, "fullname":

176234463813, "fullname":

1762311547917, "fullname":
1762320369957, "fullname":
1762341772625, "fullname":
1762344493810, "fullname":
1762355527825, "fullname":
1762383911861, "fullname":
1762348904343, "fullname":
1762350390409, "fullname":
1762355854464, "fullname":
1762357254392, "fullname":

21 rows returned

Value Comparison Operators

ORACLE

Syntax

comparison expression ::=

Chapter 6
Comparison Expressions

"Michelle Payne"}
"Mary Watson"}
"Kendal Biddle"}
"Lucinda Beckman"}
"Adelaide Willard"}
"Raymond Griffin"}
"Elane Lemons"}
"Zina Christenson"}
"Zulema Martindale"}
"Dierdre Amador"}
"Henry Jenkins"}
"Rosalia Triplett"}
"Lorenzo Phil"}
"Gerard Greene"}
"Adam Phillips"}
"Doris Martin"}
"Joanne Diaz"}
"Omar Harvey"}
"Fallon Clements"}
"Lisbeth Wampler"}
"Teena Colley"}

concatenate_expression

[(value comparison operator | any_comparison_operator) add expression]

value comparison operator ::

Semantics

— n_n |

np_n ‘

nsn ‘ ns=n | P | ng=m

Value comparison operators are primarily used to compare 2 values, one produced by the left
operand and another from the right operand (this is in contrast to the sequence comparisons,
defined in the following section which compare two sequences of values). If any operand
returns more than one item, an error is raised. If both operands return the empty sequence, the
operands are considered equal (so true will be returned if the operator is =, <=, or >=). If only
one of the operands returns empty, the result of the comparison is false unless the operator is !

For the remainder of this section, we assume that each operand returns exactly one item. If an
operand returns NULL, the result of the comparison expression is also NULL. Otherwise, the
result is a boolean value that is computed as follows.

Among atomic items, if the types of the items are not comparable, false is returned. The
following rules defined what atomic types are comparable and how the comparison is done in

each case.

* A numeric item is comparable with any other numeric item. If an integer or long value is
compared to a float or double value, the integer/long will first be cast to float/double. If one

6-50

ORACLE

Chapter 6
Comparison Expressions

of the operands is a number value, the other operand will first be cast to number (if not a
number already).

« Astring item is comparable to another string item (using the java String.compareTo()
method). A string item is also comparable to an enum item. In this case, before the
comparison, the string is cast to an enum item in the type of the other enum item. Such a
cast is possible only if the enum type contains a token whose string value is equal to the
source string. If the cast is successful, the two enum items are then compared as
explained below; otherwise, the two items are incomparable and false is returned.

* Two enum items are comparable only if they belong to the same type. If so, the
comparison is done on the ordinal numbers of the two enums (not their string values). As
mentioned above, an enum item is also comparable to a string item, by casting the string
to an enum item.

e Binary and fixed binary items are comparable with each other for equality only. The 2
values are equal if their byte sequences have the same length and are equal byte-per-
byte.

* A boolean item is comparable with another boolean item, using the java
Boolean.compareTo() method.

* Atimestamp item is comparable to another timestamp item, even if their precisions are
different.

e JNULL (json null) is comparable with JINULL. If the comparison operator is =, INULL is
also comparable with every other kind of item, and the result of such a comparison is
always true, except when the other item is also JINULL.

The semantics of comparisons among complex items are defined in a recursive fashion.
Specifically:

e Arecord is comparable with another record for equality only and only if they contain
comparable values. More specifically, to be equal, the 2 records must have equal sizes
(number of fields) and for each field in the first record, there must exist a field in the other
record such that the two fields are at the same position within their containing records,
have equal field names, and equal values.

A map is comparable with another map for equality only and only if they contain
comparable values. Remember that json documents are modelled as maps, so 2 json
documents can be compared for equality. More specifically, to be equal, the 2 maps must
have equal sizes (number of fields) and for each field in the first map, there must exist a
field in the other map such that the two fields have equal names and equal values.

e An array is comparable to another array if the elements of the 2 arrays are comparable
pair-wise. Comparison between 2 arrays is done lexicographically, that is, the arrays are
compared like strings, with the array elements playing the role of the "characters" to
compare.

As with atomic items, if two complex items are not comparable according to the above rules,
false is returned. Furthermore, comparisons between atomic and complex items return false
always.

The reason for returning false for incomparable items, instead of raising an error, is to handle
truly schemaless applications, where different table rows may contain very different data or
differently shaped data. As a result, even the writer of the query may not know what kind of
items an operand may return and an operand may indeed return different kinds of items from
different rows. Nevertheless, when the query writer compares "something" with, say, an
integer, they expect that the "something” will be an integer and they would like to see results
from the table rows that fulfill that expectation, instead of the whole query being rejected
because some rows do not fulfill the expectation.

6-51

ORACLE

Chapter 6
Comparison Expressions

Example 6-65 Fetch the passenger details from the airline baggage tracking
application who have more than two transits and did not board from the SFO station

SELECT

fullname,

s.bagInfo.routing

FROM BaggageInfo s

WHERE (size(s.bagInfo[0].flightLegs) >= 3)

AND s.bagInfo[0].flightLegs[0].fltRouteSrc !=any "SFO"

Explanation: In the airline baggage tracking application, you can fetch the list of passengers
who have more than two transits in their journey. The bagInfo array in the BaggageInfo table
contains the information on the checked bags for passengers. The flightLegs array in the
bagInfo JSON includes the source and transit details with each record corresponding to a
travel leg. The first record of the f1ightLegs array, thatis, f1ightLegs[0] has the details of the
source location. In the above query, you fetch the details of the passengers who have more
than two transits, which means there must be at least three records in the f1ightLegs array
including the source location. You compare the size of the f1ightLegs array using the '>='
operator. You also want to filter out the passengers who did not originate from SFO airport, so
you use a != operator here. It is possible that the passengers have more than one checked
bags, in which case there will be more than one element in the bagInfo array. You must
consider only the first element of the bagInfo array, that is, bagInfo[0] during value
comparison to avoid duplication of results.

Since the flightLegs is an array, the left operand of the comparison operator != is a sequence
with more than one item. Hence, use the sequence comparison operator any in addition to the
value comparison operator.

Output:

{"fullname":"Fallon Clements","routing":"MXP/CDG/SLC/BZN"}
{"fullname":"Elane Lemons","routing":"MXP/CDG/SLC/BZN"}
{"fullname":"Doris Martin","routing":"BZN/SEA/CDG/MXP"}

JSON collection table:

The following example applies a value comparison operator on a JSON collection table.
Consider a sample row from the JSON collection table created for a shopping application:

{"contactPhone":"1917113999", "address": {"city":"San

Jose", "number":501, "state":"San
Francisco","street":"Maine","zip":95095}, "cart":
[{"item":"wallet","priceperunit":950, "quantity":2}, {"item":"wall
art","priceperunit":9500, "quantity":1}],"firstName":"Sharon", "gender":"F", "las
tName":"Willard", "notify":"yes", "wishlist":

[{"item":"Tshirt", "priceperunit":500}, {"item":"Jenga", "priceperunit":850}]}

Example 6-66 Fetch from the storeAcct table the details of shoppers who have
wishlisted the item Jenga.

SELECT contactPhone, firstName
FROM storeAcct s
WHERE EXISTS s.wishlist[S$element.item ="Jenga"]

6-52

Chapter 6
Comparison Expressions

Explanation: In the storeAcct table, the items wishlisted by the shoppers are stored in the
JSON array wishlist. To fetch the details of the shoppers with Jenga as a wishlisted item, you
verify whether or not an item by the specified name exists in the wishlist field. Use the
operator '=' to match the item.

Output:

{
"contactPhone" : "1917113999",
"firstName" : "Sharon"

Sequence Comparison Operators

ORACLE

Syntax
any comparison operator ::= "=any" | "l!=any" | ">any" | ">=any" | "<any"
n <=any"

Semantics

Comparisons between two sequences is done via another set of operators: =any, !=any, >any,
>=any, <any, <=any. These any operators have existential semantics: the result of an any
operator on two input sequences S1 and S2 is true if and only if there is a pair of items i1 and
i2, where i1 belongs to S1, i2 belongs to S2, and i1 and i2 compare true via the corresponding
value comparison operator. Otherwise, if any of the input sequences contains NULL, the result
is NULL. Otherwise, the result is false.

Example 6-67 Fetch from the airline baggage tracking data, the passenger name where
the flight time is greater than 2019-02-01T16:00:00Z

SELECT fullname, $flights.flightDate
FROM BaggageInfo bag, bag.bagInfo[0].flightLegs AS $flights
WHERE $flights.flightDate >any "2019-02-01T16:00:00Z"

Explanation: You fetch the full name and the flight dates of all passengers whose departure
time is greater than the given value. Here the operand on the left hand of the ">" operator, that
is, bag.bagInfo[0].flightLegs.flightDate iS a sequence of values. If you try using the
regular comparison operator instead of the sequence operator, you get an error as shown
below:

Error handling command SELECT fullname, $flights.flightDate

FROM BaggageInfo bag, bag.bagInfo[0].flightLegs AS $flights

WHERE $flights.flightDate > "2019-02-01T16:00:00Z": Error: at (3, 6) The left
operand of comparison operator > is a sequence with more than one items.
Comparison operators cannot operate on sequences of more than one items.

Instead, you must use a sequence operator any along with the value comparison operator ">"
here.

You use only the first element of the bagInfo JSON array to avoid duplication of results for
passengers carrying more than one bag. The departure time for the transit flights is also
included in the output. Here, you can compare the string-formatted dates in ISO-8601 format

6-53

ORACLE

Chapter 6
Comparison Expressions

due to the natural sorting order of strings without having to cast them into timestamp data
types.

Output:

{"fullname":"Michelle Payne","flightDate":
["2019-02-02T712:00:002","2019-02-02T13:10:00Z","2019-02-02T12:10:00Z"]}
{"fullname":"Zulema Martindale","flightDate":
["2019-02-25T710:00:002","2019-02-25T10:23:00Z"1}

{"fullname":"Zina Christenson","flightDate":
["2019-02-04T00:00:002","2019-02-04T00:12:00Z"1}

{"fullname":"Elane Lemons","flightDate":
["2019-03-15T08:00:002","2019-03-15T08:13:00Z","2019-03-15T08:13:00Z"]}
{"fullname":"Omar Harvey","flightDate":
["2019-03-01T712:00:002","2019-03-01T12:20:00Z"1}

{"fullname":"Henry Jenkins","flightDate":
["2019-03-02T05:00:002","2019-03-02T05:24:00Z"]}

{"fullname":"Rosalia Triplett","flightDate":
["2019-02-11T701:00:002","2019-02-11T02:12:00Z"]}

{"fullname":"Kendal Biddle","flightDate":
["2019-03-04T06:00:002","2019-03-04T07:02:00Z"1}

{"fullname":"Mary Watson","flightDate":
["2019-03-13T00:00:002","2019-03-13T00:21:00Z"1}

{"fullname":"Gerard Greene","flightDate":
["2019-03-07T04:00:002","2019-03-07T05:08:00Z","2019-03-07T04:08:00Z"]}
{"fullname":"Joanne Diaz","flightDate":
["2019-02-16T06:00:002","2019-02-16T06:24:00Z"]}

{"fullname":"Adelaide Willard","flightDate":
["2019-02-15T01:00:002","2019-02-15T01:21:00Z"]}

{"fullname":"Fallon Clements","flightDate":
["2019-02-21T712:00:002","2019-02-21T12:19:00Z","2019-02-21T12:19:00Z"]}
{"fullname":"Teena Colley","flightDate":
["2019-02-13T07:00:002","2019-02-13T07:17:00Z"1}

{"fullname":"Lorenzo Phil","flightDate":
["2019-03-12T03:00:002","2019-03-12T10:11:00Z","2019-03-12T14:11:00Z"]}
{"fullname":"Lucinda Beckman","flightDate":
["2019-03-12T03:00:002","2019-03-12T04:11:00Z","2019-03-12T03:11:00Z"]}
{"fullname":"Doris Martin","flightDate":
["2019-03-22T07:00:002","2019-03-22T07:23:00Z","2019-03-22T07:23:00Z"]}
{"fullname":"Raymond Griffin","flightDate":
["2019-02-03T04:00:002","2019-02-03T04:21:00Z"]1}

{"fullname":"Lisbeth Wampler","flightDate":
["2019-02-09T06:00:002","2019-02-09T20:01:00Z"]}

{"fullname":"Dierdre Amador","flightDate":"2019-03-07T07:00:002"}

Example 6-68 Select the id, lastName and address for users who are connected with
the user with id 3.

SELECT id, lastName, address FROM users
WHERE connections[] =any 3

Notice the use of [] after connections: it is an array filter step (see Array-Filter Step
Expressions), which returns all the elements of the connections array as a sequence (it is
unnesting the array).

6-54

Chapter 6
Comparison Expressions

Example 6-69 Select the id and lastName for users who are connected with any users
having id greater than 100

SELECT id, lastName FROM users
WHERE connections[] >any 100

Example 6-70 Select the id of each user who is connected with a user having id
greater than 10 and is also connected with a user having id less than 100

SELECT id FROM users u
WHERE 10 <any u.connections[]
AND u.connections[] <any 100

Notice that the above query is not the same as the query: select the id of each user who is
connected with a user having an id in the range between 10 and 100. In the first query, you are
looking for some connection with id greater than 10 and another connection (which may or may
not be the same as the 1st one) with id less than 100. In the second query you are looking for
some connection whose id is between 10 and 100. To make the difference clear, consider a
Users table with only 2 users (say with ids 200 and 500) having the following connections
arrays respectively: [1, 3, 110, 120] and [1, 50, 130]. Both of these arrays satisfy the
predicates in the first query, and as a result, both users will be selected. On the other hand, the
second query will not select user 200, because the array [1, 3, 110, 120] does not contain any
element in the range 10 to 100.

The second query can be written by a combination of an EXISTS operator and an array
filtering step:

SELECT id FROM users u
WHERE EXISTS u.connections
[10 < Selement AND S$Selement < 100]

and the first query, with the 2 <any operators, is equivalent to the following one:

SELECT id FROM users u
WHERE EXISTS u.connections[1l0 < Selement]
AND EXISTS u.connections[Selement < 100]

Example 6-71 Select the first and last name of all users who have a phone number
with area code 650

Notice that although we could have used [] after phones in this query, it is not necessary to do
S0, because the phones array (if it is indeed an array) is unnested implicitly by the .area step
that follows.

SELECT firstName, lastName FROM users u
WHERE u.address.phones.area =any 650

JSON collection table:

ORACLE e

Chapter 6
Comparison Expressions

The following example applies the sequence comparison operator on a JSON collection table.
Consider a sample row from the JSON collection table created for a shopping application:

{"contactPhone":"1517113582", "address":
{"city":"Houston", "number":651, "state":"TX", "street":"Tex

Ave","zip":95085}, "cart":null, "firstName":"Dierdre", "lastName" :"Amador", "order
s":
[{"EstDelivery":"2023-11-01", "item": "handbag", "orderID":"201200", "priceperunit
":350},
{"EstDelivery":"2023-11-01","item":"Lego", "orderID":"201201", "priceperunit":55
00}7}

Example 6-72 Fetch the details from shoppers who have purchased a handbag and the
stipulated delivery is after October 31st, 2023

SELECT contactPhone, firstName

FROM storeAcct s

WHERE s.orders[].item =any "handbag" AND s.orders[].EstDelivery>=any
"2023-10-31"

Explanation: To fetch the details from shoppers who have purchased a handbag that is
expected to be delivered after October 31st, you compare the item and EstDelivery fields
with the required values using the sequence comparison operator any. You use the AND
operator to fetch the rows that match both conditions.

Here, you can compare the EstDelivery without casting into a timestamp data type as itis a
string-formatted date in ISO-8601 format and the natural sorting order of strings applies.

Output:

{
"contactPhone" : "1517113582",
"firstName" : "Dierdre"

BETWEEN Operator

ORACLE

Syntax

between expression ::= input expression BETWEEN low bound expression AND
high bound expression

input expression := concatenate_expression

low bound expression := concatenate_expression

high bound expression := concatenate_expression

Semantics

The BETWEEN operator checks if the input expression value is in between the lower and the
higher expressions (including the boundary values). This is equivalent to:

low bound expression <= input expression AND input expression <=
high bound expression

6-56

ORACLE

Chapter 6
Comparison Expressions

The BETWEEN operator internally performs the following:

1. Two value comparison operations: It checks the following conditions,
a. If the low bound expression is <= the input expression.
b. If the input expression is <= the high bound expression.

2. Logical operation - the logical operator AND is applied to the results.

This essentially verifies if the input expression is within the range of the boundary values. The
operation returns a TRUE value if both the expressions return TRUE. The operation returns a
FALSE value if any one of the expressions returns FALSE. If either of the expressions is NULL
or leads to a NULL value, the result of the operation is also NULL. If any expression returns
more than one item, an error is raised as the comparison operators do not operate on
sequences of more than one item. For more details on the value comparison operators and
logical operators, see Comparison Expressions.

See the semantics in the Value Comparison Operators topic to understand the comparison of
the input expressions for different data types.

Example 6-73 Fetch the passenger details whose ticket numbers are in a certain
range.

SELECT

fullname,

ticketNo

FROM baggageinfo s

WHERE ticketNo BETWEEN 1762300000000 and 1762350000000

Explanation: In this query, you fetch the details of passengers whose ticket numbers are
between 1762300000000 and 1762350000000 from the baggageInfo table. You use the
BETWEEN operator in the WHERE clause to select and display the rows that fall within the
required range.

Output:

{"fullname":"Lorenzo Phil","ticketNo":1762320369957}
{"fullname":"Elane Lemons","ticketNo":1762324912391}
{"fullname":"Michelle Payne","ticketNo":1762330498104}
{"fullname":"Lucinda Beckman","ticketNo":1762320569757}
{"fullname":"Rosalia Triplett","ticketNo":1762311547917}
{"fullname":"Zulema Martindale","ticketNo":1762340579411}
{"fullname":"Omar Harvey","ticketNo":1762348904343}
{"fullname":"Adam Phillips","ticketNo":1762344493810}
{"fullname":"Mary Watson","ticketNo":1762340683564}
{"fullname":"Gerard Greene","ticketNo":1762341772625}
Example 6-74 Fetch the passenger details and routing information of the baggage that
falls within a range of reservation codes.

SELECT fullname AS FULLNAME,

confNo AS RESERVATION,

s.bagInfo.routing AS ROUTINGINFO

FROM BaggageInfo s

WHERE confNo BETWEEN 'LE6J4Z' and 'ZG8Z5N'
ORDER BY confNo

6-57

ORACLE

Chapter 6
Comparison Expressions

Explanation: Every passenger has a reservation code (confNo). In this query, you fetch the
passenger details, reservation code, and routing details for the baggage whose reservation
codes are within the range of LE6J4z and zG8Zz5N. You use the BETWEEN operator in the
WHERE clause to perform a string comparison of the confNo value with the lower and the
upper boundary values in the input strings. Only the rows that are within the range are selected
and displayed in the output.

Output:

{"FULLNAME":"Adam Phillips", "RESERVATION":"LE6J4Z", "ROUTINGINFO":"MIA/LAX/
MEL"}

{"FULLNAME":"Elane Lemons","RESERVATION":"LNOC8R","ROUTINGINFQ":"MXP/CDG/SLC/
BZN"}

{"FULLNAME":"Gerard Greene","RESERVATION":"MCOE7R","ROUTINGINFO":"SFO/IST/ATH/
JTR"}

{"FULLNAME": "Henry Jenkins","RESERVATION":"MZ2S5R", "ROUTINGINFO":"SFO/ORD/
FRA"}

{"FULLNAME" :"Omar Harvey","RESERVATION":"OH2F8U","ROUTINGINFO":"MEL/LAX/MIA"}
{"FULLNAME":"Kendal Biddle","RESERVATION":"PQIM8N", "ROUTINGINFO":"JFK/IST/
VIE"}

{"FULLNAME":"Zina Christenson","RESERVATION":"QB100J", "ROUTINGINFO":"MIA/LAX/
MEL"}

{"FULLNAME":"Lorenzo Phil","RESERVATION":"QI3V6Q","ROUTINGINFO": ["SFO/IST/ATH/
JTR","SFO/IST/ATH/JIR"]}

{"FULLNAME":"Lucinda

Beckman", "RESERVATION":"QI3V6Q", "ROUTINGINFO":"SFO/IST/ATH/JTR"}
{"FULLNAME":"Michelle

Payne", "RESERVATION":"RL3J4Q", "ROUTINGINFO":"SFO/IST/ATH/JTR"}
{"FULLNAME":"Teena Colley","RESERVATION":"TX1P7E","ROUTINGINFO":"MSQ/FRA/HKG"}
{"FULLNAME" :"Fallon

Clements", "RESERVATION":"XT107T", "ROUTINGINFO": "MXP/CDG/SLC/BZN"}

{"FULLNAME": "Raymond Griffin","RESERVATION":"XT6K7M", "ROUTINGINFO":"MSQ/FRA/
HKG"}

{"FULLNAME":"Dierdre Amador","RESERVATION":"ZG8Z5N", "ROUTINGINFO":"JFK/MAD"}

Example 6-75 Find the passengers who traveled from MIA within a fortnight from 15th
Feb 2019.

SELECT fullname,

FROM BaggageInfo bag

WHERE exists bag.bagInfo.flightLegs[Selement.fltRouteSrc = "MIA"

AND

Selement.flightDate BETWEEN "2019-02-15T00:00:00z" and "2019-03-02T00:00:002"]

Explanation: In this query, you fetch the details of the passengers who traveled from MIA
between the 15th of Feb 2019 and the 2nd of March 2019. The flightDate field within the
bagInfo JSON field contains the travel dates to the destination points. You use the BETWEEN
operator to compare the flightDate in the passenger data with the upper and the lower range
of the specified dates. The flightDate is a string and is directly compared with the supplied
dates, which are also string values. You narrow down the passenger records listed within this
range further to include only MIA as the source station using the AND operator. Here the flight
source could be the starting point of the flight or any transit airport.

6-58

IN Operator

ORACLE

Chapter 6
Comparison Expressions

Output:

{"fullname":"Zulema Martindale"}
{"fullname":"Joanne Diaz"}

Syntax

in expression ::= inl expression | in2 expression |
in3 expression | in4 expression

inl expression ::= " (" concatenate_expression
("," concatenate expression)* ")"
IN " (" expression ("," expression)* ")"
in2 expression ::= concatenate expression
IN " (" expression ("," expression)* ")"
in3 expression ::= concatenate expression IN path_expression
in4 expression ::= "(" concatenate expression
("," concatenate expression)* ")" IN path expression

Semantics

The IN operator is essentially a compact alternative to a number of OR-ed equality conditions.
For example, the query

SELECT * FROM users WHERE age IN (22, 25, 43)

is equivalent to

SELECT * FROM users WHERE age = 22 OR age = 25 OR age = 43

and the query,

SELECT * FROM users
WHERE (firstName, lastName) IN
((llJohnll, "Smith") , ("Peter", "Paul") , ("Mary", llAnnll))

is equivalent to

SELECT * FROM users
WHERE (firstName = "John" AND lastName = "Smith") OR
(firstName = "Peter" AND lastName = "Paul") OR
(firstName = "Mary" AND lastName = "Ann")

As shown in the grammar, there are 4 syntactic variants of the IN operator. The inl_expression
and in2_expression follow the standard SQL syntax. The in2_expression one is actually a
special case of the in1_expression, for the case when there is only one expression in the left-
hand-side of the operator. For the in1_expression, if K is the number of expressions in the left-
hand-side, then each expression list in the right-hand-side must consist of K expressions. If N

6-59

Chapter 6
Comparison Expressions

is the number of expression lists in the right-hand-side, then the whole IN condition is
equivalent to:

(exprl exprll and expr2 exprl2 and exprK exprlK) or
(exprl = expr2l and expr2 = expr22 and exprK = expr2K) or
.... Or

(exprl = exprNl and expr?2

exprN2 and exprK exprNK)

However, in addition to being more compact, queries using IN operators will be executed more
efficiently if appropriate indexes exist. For example, if table users has an index on columns
age, firstName and lastName, then both of the above IN queries will use that index to find the
qualifying rows, whereas the equivalent OR queries will be executed via full table scans. See
also examples in Finding Applicable Indexes.

The in3_expression and in4_expression variants allow a relative large number of search keys
to be provided via a single bind variable. For example, if the $keys variable in bound to the
array ["John", "Smith", "Peter", "Paul", "Mary", "Ann"], then the following query is equivalent to
the second IN query above.

DECLARE S$keys ARRAY (json);
SELECT * FROM users
WHERE (firstName, lastName) IN Skeys[]

In general, with the in3_expression and in4_expression variants, the expression in the right-
hand-side is evaluated first. If the number M of items in the resulting sequence is less than the
number K of expressions in the left-hand-side, the result of the IN operator is false. If M is not a
multiple of K, the last (M mod K) items in the sequence are discarded and M is set to the
number of remaining items. Then, the IN expression is equivalent to:

(exprl = k1l and expr2 = k2 and exprK = kK) or
(exprl = kK+1 and expr2 = kK+2 and exprK = k2*K) or
.... Or

(exprl = kM-K and expr2 = kM-K+1 and exprK = kM)

However, an additional type-checking restriction applies in this case: in each of the above
equality conditions, the type of the right-hand-side item must be a subtype of the left-hand-side
type.

Regular Expression Conditions

ORACLE

The regex like function performs regular expression matching. A regular expression is a
pattern that the regular expression engine attempts to match with an input string. The syntax
for invoking the regex like function in a query is the same as all other functions, described in
the Function Calls section. The regex 1like function has two signatures with two and three
parameters, respectively.

Syntax
boolean regex like(any*, string)

boolean regex like(any*, string, string)

6-60

ORACLE

Chapter 6
Comparison Expressions

Semantics

The regex like function provides functionality similar to the LIKE operator in standard SQL,
that is, it can be used to check if an input string matches a given pattern. The input string and
the pattern are computed by the first and second arguments, respectively. A third, optional,
argument specifies a set of flags that affect how the matching is done.

Normally, the regex 1ike function expects each of its arguments to return a single string. If
that is not the case, it behaves as follows:

e If it can be detected at compile time that the first argument will never return a string, it
raises a compile-time error. Otherwise, it returns false if the first argument returns nothing,
more than one item, or a single item that is neither a string nor NULL.

e ltraises an error if the pattern or flags do not return a single string or NULL.
e ltreturns NULL if any of the arguments returns a single NULL.

Otherwise, the regex_like function behaves as follows:

« Raises an error if the pattern string is not valid or its length is greater than 512 characters.
« Returns false if the pattern does not match the input string.
e Returns true if the pattern matches the input string.

The pattern string is the regular expression against which the input text is matched. The syntax
of the pattern string is a subset of the one supported by the Java Pattern class. Specifically,
each character in a regular expression is either a literal character that matches itself (for
example, the pattern string x matches the character 'x'), or a meta character, that specifies a
construct having a special meaning. Only the following metacharacters are supported:

e Period (.)
You use period metacharacter to match every character except a new line

e Greedy quantifier (*)
You use the greedy quantifier (*) to indicate zero or more occurrences of the preceding
element.

For example, the character D with a combination of period (.) and (*) "D. *", matches any
string that starts with the character 'D' and is followed by zero or more characters.

e Quotation constructs (\, \Q, \E)
You use the backslash '\' character as a quotation construct with other metacharacters to
instruct the regular expression engine to interpret the following metacharacter as a literal
character.

For example, you use the "*' pattern to match the literal asterisk *' character and not
interpret it as the greedy quantifier (*).

You use \Q' and "\E' quotation constructs in the query to match the exact string pattern that
starts after the "\Q' character and ends at the \E' character.

For example, you use "\Q**Houston**\\E" to match any string that has a value
"**Houston**",

Note:

In the SQL shell or other equivalent tools,you must use a double backslash \\' in
place of a single backslash '\' quotation construct.

6-61

Escape sequences
You use the escape sequences to match certain predefined characters. The following
escape sequences are supported:

Chapter 6
Comparison Expressions

The flags string contains one or more characters, where each character is a flag specifying
some particular behavior. The full list of acceptable characters and their semantics is listed in
the following table:

Table 6-2 Escape sequences

Character

Description

\x{h...h}

\xhh
\uhhhh

\t
\r
\n
\f
\e

\cx

\a
\\

\Onn
\On
\Omnn

Matches the character with hexadecimal value 0xh...h
(Character.MIN_CODE_POINT <= 0xh...h <= Character MAX_CODE_POINT)

Matches the character with hexadecimal value Oxhh
Matches the Unicode character specified by the hexadecimal number Oxhhhh.
Example: 'uO00A' matches the newline character

Matches the tab character ("\u0009'")

Matches the carriage-return character (\u000D")
Matches the newline (line feed) character (\UOOOQA")
Matches the form-feed character (\u000C")

Matches the escape character (\uO01B')

Matches the control character corresponding to x
Matches the alert (bell) character (\u0007")

Matches the backslash ‘\' character (\u005C")

Matches the character with octal value Onn(0 <= n<=7)
Matches the character with octal value On (0 <=n <=7)
Matches the character with octal value Omnn(0 <= m<= 3, 0 <= n<=7)

The flag contains one or more characters, where each character flag specifies some particular
behavior. The full list of flag characters and their semantics are listed in the following table:

Table 6-3 Predefined Quoted Characters
]

Flag

Full Name

Description

g

UNIX_LINES

Enables Unix lines mode.

The new line character (\n') is the only line termination method
recognized in this mode.

CASE_INSENSITIVE Enables case-insensitive matching.

By default, CASE_INSENSITIVE matching assumes that only
characters in the US-ASCII character set are being matched. You
can enable Unicode-aware CASE_INSENSITIVE by specifying the
UNICODE_CASE flag in conjunction with this flag.

Specifying this flag may impose a slight performance penalty.

X

COMMENTS

Permits white space and comments in pattern.

In this mode, white space is ignored, and embedded comments
starting with # are ignored until the end of a line.

ORACLE

6-62

Chapter 6
Comparison Expressions

Table 6-3 (Cont.) Predefined Quoted Characters
]

Flag

Full Name

Description

LITERAL

When LITERAL is specified then the input string that specifies the
pattern is treated as a sequence of literal characters. There is no
special meaning for Metacharacters or escape sequences. The
flags CASE_INSENSITIVE and UNICODE_CASE retain their
impact on matching when used in conjunction with this flag. The
other flags become superfluous.

DOTALL

Enables DOTALL mode. In DOTALL mode, the expression dot (.)
matches any character, including a line terminator. However, by
default, the expression dot (.) does not match line terminators.

UNICODE_CASE

When you enable the CASE_INSENSITIVE flag, by default, it
matches using only the characters in the US-ASCII character set.
When you specify UNICODE_CASE then it performs
CASE_INSENSITIVE matching using the Unicode standard.

Specifying this flag may impose a performance penalty.

CANON_EQ

When this flag is specified then two characters will be considered
to match if, and only if, their full canonical decompositions match.
When you specify this flag, the expression "a\u030A", for example,
will match the string "\UOOES5. By default, matching does not take
canonical equivalence into account.

Specifying this flag may impose a performance penalty.

g

UNICODE_CHARACTE
R_CLASS

Enables the Unicode version of Predefined character classes and
POSIX character classes. When you specify this flag, then the (US-
ASCII only) Predefined character classes and POSIX character
classes are in conformance with Unicode Technical Standards. See
http://unicode.org/reports/tr18/#Compatibility_Properties.

The flag implies UNICODE_CASE; it enables Unicode-aware case
folding.Specifying this flag may impose a performance penalty.

Note:

The regex like function will not be used for index scan optimization.

If you want to follow along with the examples, create and load data into user data application
table illustrated in this section and airline baggage tracking application table illustrated in the
Tables used in the Examples topic.

Note:

Run the queries provided in the below examples from the SQL shell. Make sure that
you use a double backslash '\\' in place of a single backslash '\' for quotation
constructs as shown in the queries.

Example 6-76 Fetch from the user data application table the list of users whose last
name starts with 'S’

SELECT id, firstName, lastName FROM users WHERE regex like(lastName, "S.*")

ORACLE

6-63

http://unicode.org/reports/tr18/#Compatibility_Properties

ORACLE

Chapter 6
Comparison Expressions

Explanation: In the above query, you use the regex like function to match the lastName field
beginning with an 'S' character. You create a pattern with the first character as 'S' followed by
the period metacharacter (.) and the greedy quantifier (*) to match zero or more occurrences
of any other character.

Output:

{"id":10, "firstName":"John", "lastName":"Smith"}
{"id":20,"firstName":"Jane", "lastName":"Smith"}
{"id":30, "firstName":"Adam", "lastName":"Smith"}
{"id":40,"firstName":"Joanna", "lastName":"Smith"

}

Example 6-77 Fetch from the user data application table the list of users whose last
name has at least one 'w' or '"W'

SELECT id, lastName FROM users WHERE regex like (lastname,".*w.*","i")

Explanation: In the above query, use the regex like function with the required pattern and
the 'i' flag to enable matching that is not case-sensitive.

Output:

{"id":60,"lastName":"Law"}
{"id":50, "lastName":"Winslet"}

Example 6-78 Validate the format of an e-mail address in the user data application
table

SELECT id, firstName, lastName, email FROM users WHERE
regex like(email,".*@.*\\..*")

Explanation: In the above query, you fetch the list of users with a valid email format. In the
user data application table, the email field contains the e-mail address of the user. Assuming

the email field has an '@' character and ends with a '.string' pattern such as '.com’, ".us', ".in’,
and so forth, you can validate the e-mail address using the regex like function as follows:

* Use the '@' character preceded and followed by a combination of period metacharacter (.)
and the greedy quantifier (*). This combination creates a pattern to match zero or more
occurrences of other characters before and after the '@' character in the email field.

* To achieve a domain name pattern such as '.com’, you use the quotation construct
backslash '\' character to match the period as a literal '.' character and not a period (.)
metacharacter. Further, use the combination of period metacharacter (.) and the greedy
quantifier (*) to allow any domain name.

Note:

This example only validates the e-mail address format by checking the pattern
availability of '@"' and '.' characters in the specified order. It does not assure the
validity of the e-mail address itself. All the rows that include the mentioned character
pattern are fetched.

6-64

ORACLE

Chapter 6
Comparison Expressions

Output:

{"id":50, "firstName":"Aubrey", "lastName":"Winslet", "email" :"reachaubrey@somema
il.co.us"}
{"id":60,"firstName":"Jimmy", "lastName":"Law", "email":"reachjimlaw@gotmail.co.
us"}
{"id":20,"firstName":"Jane", "lastName":"Smith", "email":"jane.smith201@reachmai
l.com"}

{"id":10, "firstName":"John", "lastName":"Smith", "email":"john.smith@reachmail.c
om"}

Example 6-79 Fetch from the user data application table the list of users with a five-
star rating for community service

SELECT id, firstName, lastName FROM users WHERE
regex like (communityService, "\\Q*****\\E")

Explanation: In the above query, you fetch the list of users actively involved in community
service. Assuming each user is rated for their involvement in community service with a certain
"*' rating, you retrieve the list of users from the user data application table who have five stars,
that is, "****" in the communityService field. You use the regex like function with the
quotation constructs \Q' and '\E' to match the pattern of five asterisk *' characters. In this
query, the asterisk (*) character is used as a literal *' character and not as a greedy quantifier

).

Note:

If you create the pattern without quotation constructs, an error is generated indicating
that the specified pattern for the regex_like function is invalid.

Output:

{"id":20,"firstName":"Jane", "lastName":"Smith"}

Example 6-80 Fetch from the user data application table the list of users whose street
attribute of the address field has a suspected data entry error due to the presence of a
tab character

SELECT id, firstName, users.address.street FROM users WHERE
regex like (users.address.street, LN AN AL

Explanation: You can use the regex like function to identify the rows that include escape
sequences. For a detailed list of supported predefined characters, see Table 6-2. In this query,
you fetch the list of users from the user data application table whose street attribute of the
address field erroneously includes a tab character. You use the regex like function with the
following pattern:

* Use escape sequence '\t' to identify the tab character.

* Use the combination of period metacharacter (.) and the greedy quantifier (*) before and
after the escape sequence to allow zero or more occurrences of any other character in the
street attribute.

6-65

ORACLE

Chapter 6
Comparison Expressions

Output:

"id":70,"firstName":"Dierdre", "street":"Maine\t (Suburb) "}

Alternatively, you can match the escape sequences using the corresponding Unicode
hexadecimal character as shown in the query below. The Unicode value 0x0009 corresponds
to a horizontal tab or a tab character. You get the same output as above.

SELECT id, firstName, users.address.street FROM users WHERE
regex like (users.address.street,
"o*¥\u0009.*")

Note:

Oracle NoSQL Database supports insertion of control characters (ASCII code 0~31)
and characters with ASCII code > 128 using their Unicode hexadecimal values in the
SQL shell or equivalent tools.

For example, you can insert the Escape (ESC) character using its Unicode
hexadecimal value 0x001B as given in the user data application table (see the state
field in the row with id = 70).

If you want to fetch the corresponding row, match the pattern through regular
expression using \e' as provided in the query below:

SELECT id, firstName, users.address[].state FROM users WHERE
EXISTS (users.address[regex like(Selement.state, ".*\\e")])

Explanation: In this query, you check whether or not the state attribute of the
address field includes a string that ends with an escape character. You use the
quotation construct '\' to match the escape character preceded by the combination of
period metacharacter (.) and greedy quantifier (*) to allow zero or more occurrences
of other characters before the escape character.

Output:

{"id":70,"firstName":"Dierdre", "state":"TX\u001B"}

Example 6-81 Find all the bags that traveled through ORD airport as an intermediate
hop between the source of a trip and the final destination

SELECT

ticketNo AS TICKETNUM,

fullName AS NAME,

BaggageInfo.bagInfo.routing[] AS ROUTING

FROM BaggageInfo WHERE regex like (BaggageInfo.bagInfo.routing[],".*/ORD/.*")

Explanation: In an airline baggage tracking application, you can fetch the list of passengers
who had to transit at certain airports. For each passenger, the routing field in the BaggageInfo

6-66

ORACLE

Chapter 6
Comparison Expressions

table contains the airport codes in the format source/transit/destination. In this query, you
use the regex like function to match the airport code of the transit airport as follows:

« Use the combination of the period (.) metacharacter and greedy quantifier (*) to allow any
source airport code characters.

e Include the airport code of the transit airport ORD between the two forward slash /'
characters.

« Use the combination of the period (.) metacharacter and greedy quantifier (*) to allow any
destination airport code characters.

Output:

{"TICKETNUM":176234463813, "NAME" : "Henry Jenkins","ROUTING":"SFO/ORD/FRA"}
{"TICKETNUM":1762392135540, "NAME" : "Adelaide Willard", "ROUTING":"GRU/ORD/SEA"}

Example 6-82 Find all the passengers with area code 364 in their contact phone.

SELECT ticketNo, contactPhone, fullName FROM BaggageInfo WHERE
regex like (contactPhone,"364-.*")

Explanation: In an airline baggage tracking application, you can fetch the list of passengers
having the same area code in their contact phones. The contactPhone field contains the US-
based contact number in a three-digit area code followed by a seven-digit local number format.
Assuming the contact phone pattern in the contactPhone field is XXX-YYY-ZZZZ where X, Y,
and Z are digits between 0-9, you use the regex like function as follows:

* Use the area code 364 followed by a hyphen '-' character.

* Use the combination of the period (.) metacharacter and greedy quantifier (*) to allow the
pattern matching of any three-digit number followed by a hyphen '-' character and a four-
digit number.

Output:

{"ticketNo":1762320369957, "contactPhone":"364-610-4444","fullName":"Lorenzo
Phil"}

{"ticketNo":1762320569757, "contactPhone":"364-610-4455","fullName":"Lucinda
Beckman"}

User data application table

The following code creates the user data application table - users table.

CREATE TABLE users (id INTEGER,
firstName STRING,
lastName STRING,
otherNames ARRAY (RECORD (first STRING, last STRING)),
age INTEGER,
income INTEGER,
address JSON,
connections ARRAY (INTEGER),
email STRING,
communityService STRING,
PRIMARY KEY (id))

6-67

Chapter 6
Comparison Expressions

The following code populates users tables with sample rows.

INSERT INTO users VALUES

10,

"John",

"Smith",

[{"first" "Johny", "last" "Good"}, {"first" "Johny2",
"Brave"}, {"first" "Johny3", "last" "Kind"}, {"first" "Johny4",
"Humble"} 1,

22,

45000,

{

"street" "Pacific Ave",

"number" : 101,

"city" "Santa Cruz",

"state" : "CA",

"zip" : 95008,

"phones" : [
{ "area" : 408, "number" 4538955, "kind" "work" 1},
{ "area" : 831, "number" 7533341, "kind" "home" 1},
{ "area" : 831, "number" 7533382, "kind" "mobile" }

]

b

[30, 55, 43 1],

"john.smith@reachmail.com",

MhkkkxN
)

INSERT INTO users VALUES (

20,

"Jane",

"Smith",

[{"first" "Jane", "last" "BeGood"} 1,

22,

55000,

{

"street" "Atlantic Ave",

"number" : 201,

"city" "San Jose",

"state" : "CA",

"zip" : 95005,

"phones" : [
{ "area" : 608, "number" 6538955, "kind" "work" 1},
{ "area" : 931, "number" 9533341, "kind" "home" 1},
{ "area" : 931, "number" 9533382, "kind" "mobile" }

b
[40, 75, 63 1,

(

"jane.smith201l@reachmail.com",

MhkxxxxN

INSERT INTO users VALUES

ORACLE

(

6-68

ORACLE

30,
"Adam",
"Smith",
[{"first" "Adam", "last"
45,
75000,
{
"street" "Indian Ave",
"number" 301,
"city" "Houston",
"state" "TX",
"zip" 95075,
"phones" [
{ "area" 618, "number"
{ "area" 951, "number"
{ "area" 981, "number"

}

[60, 45, 73 1,
"adam.smith20lreachmail.com",

MWk % %10

INSERT INTO users VALUES

(

40,
"Joanna",
"Smith",
[{"first" "Joanna", "last"
NULL,
75000,
{
"street" "Tex Ave",
"number" 401,
"city" "Houston",
"state" "TX",
"zip" 95085,
"phones" [
{ "area" : NULL, "number"
{ "area" : 451, "number"
{ "area" : 481, "number"
]
}I
[70, 30, 40 1,
NULL,
Wx kM
INSERT INTO users VALUES (
50,
"Aubrey",
"Winslet",
[{"first" "Aubrey", "last"
NULL,
15000,

"BeGood"} 1,
6618955, "kind"
9613341, "kind"
9613382, "kind"

"Smart"} 1,
1618955, "kind"
: 4613341, "kind"
: 4613382, "kind"
"Regal"}] ,

Chapter 6

Comparison Expressions

"work" 1},
"home" 1},
"mobile" }
"work" 1},
"home" 1},
"mobile" }

6-69

ORACLE

"street" "Tex Ave",

"number" :501,

"city" "Houston",

"state" "TX",

"zip" 95085,

"phones" [
{ "area" : 723, "number"
{ "area" : 751, "number"
{ "area" : 781, "number"

}

[50, 20, 40],
"reachaubrey@somemail.co.us",

Wk %k %1

60,
"Jimmy",
"Law",
[{"first" "Jimmy", "last" : "Smart"}
NULL,
25000,
{
"street" "Maine",
"number" :501,
"city" "San Jose",
"state" "TX",
"zip" 95085,
"phones" [
{ "area" : 223, "number"
{ "area" : 251, "number"
{ "area" : 281, "number"

}

INSERT INTO users VALUES (

[50, 20, 40],
"reachjimlaw@gotmail.co.us",

MWk kW

70,
"Dierdre",
"Amador",
[{"first"
NULL,
25000,
{
"street"
"number"
"city"
"state"
"Zip"

INSERT INTO users VALUES (

"Dierdre", "last"

"Maine\t (Suburb)",
:701,

"San Jose",

"TX\u001B",

95085,

Chapter 6
Comparison Expressions

"mobile" }

"mobile" }

6-70

Chapter 6
Comparison Expressions

"phones" : [
{ "area" : 223, "number" : 6718955, "kind" : "work" },
{ "area" : 251, "number" : 6213341, "kind" : "home" },
{ "area" : 281, "number" : 6213382, "kind" : "mobile" }

by
[10, 60, 40],
NULL,

MWk kW

Exists Operator
Syntax

exists expression ::= EXISTS concatenate_expression

Semantics

The exists operator checks whether the sequence returned by its input expression is empty or
not, and returns false or true, respectively. A special case is when the input expression returns
NULL. In this case, EXISTS will also return NULL, unless it is known that the input expression
will always return at least one item, in which case EXISTS returns true.

Example 6-83 Exists Operator

Find all the users who do not have a zip code in their addresses.

SELECT id FROM users u
WHERE NOT EXISTS u.address.zip

Notice that the above query does not select users whose zip code has the json null value. The
following query includes those users as well.

SELECT id FROM users u
WHERE NOT EXISTS u.address.zip OR u.address.zip = null

What if the Users table contains a row R whose address column is NULL? In general, SQL for
Oracle NoSQL Database interprets NULL as an unknown value, rather than an absent value.
So, in row R, the address is unknown, and as a result, we don't know what its zip code is or if it
even has a zip code. In this case, the expression u.address.zip will return NULL on R and
exists u.address.zip will also return NULL, which implies that row R will not be selected by the
above queries. On the other hand, row R will be selected by the following query. In this case,
we know that every row does have an address, even though the address may be unknown
(i.e., NULL) in some rows. So, even though the expression u.address returns NULL, exists
u.address return true.

SELECT id FROM users u
WHERE EXISTS u.address

ORACLE 671

Chapter 6
Concatenation Operator

Is-Of-Type Operator

Syntax

is of type expression ::=
add_expression IS [NOT] OF [TYPE]
"(" [ONLY] sequence_type ([ONLY] sequence type)* ")"

Semantics

The is-of-type operator checks the sequence type of its input sequence against one or more
target sequence types. If the number N of the target types is greater than one, the expression
is equivalent to OR-ing N is-of-type expressions, each having one target type. So, for the
remainder of this section, we will assume that only one target type is specified.

The is-type-of operator will return true if both of the following conditions are true:
1. the cardinality of the input sequence matches the quantifier of the target type. Specifically,
a. if the quantifier is * the sequence may have any number of items,
b. if the quantifier is + the input sequence must have at least one item,
c. if the quantifier is ? The input sequence must have at most one item, and
d. if there is no quantifier, the input sequence must have exactly one item.

2. all the items in the input sequence are instances of the target item-type (type_def), i.e. the
type of each input item must be a subtype of the target item-type. For the purposes of this
check, a NULL is not considered to be an instance of any type.

If condition (1) is satisfied and the input sequence contains a NULL, the result of the is-type-of
operator will be NULL. In all other cases, the result is false.

Example 6-84 Is-Of-Type Operator

Find all the users whose address information has been stored as a single, flat string.

SELECT id
FROM users u
WHERE u.address IS OF TYPE (STRING)

Concatenation Operator

ORACLE

Syntax
concatenation operator ::= "[["
concatenate expression ::= add_expression ("||" add expression)*

Semantics

The concatenation operator returns the character string made by joining the operands in the
given order. The operands can be of any* type. For more details, see the concat Function
section.

6-72

Chapter 6
Arithmetic Expressions

Note:

According to the operator precedence, the || operator is immediately after +, - (as
binary operators).

Example 6-85 Concatenation Operator

This example joins id, firsthame, and lastname into a single string and provides the output.
Notice that id, which is an integer type, also gets concatenated with the string values.

SELECT id || firstname || lastname AS name FROM users

| 10JohnSmith |
| 30PeterPaul |
| 20MaryAnn |

Arithmetic Expressions

ORACLE

Syntax

add_expression ::= multiply expression (("+"|"-") multiply expression)*
multiply expression ::= unary expression (("*"|"/"|"div") unary expression)*
unary expression ::= path_expression | (("+"|"-") unary expression)

Semantics

Oracle NoSQL Database supports the following arithmetic operations: +, -, *, / and div. Each
operand to these operators must produce at most one numeric item. If any operand returns the
empty sequence or NULL, the result of the arithmetic operation is also empty or NULL,
respectively. Otherwise, the operator returns a single numeric item, which is computed as
follows:

e If any operand returns a Number item, the item returned by the other operand is cast to a
Number value (if not a Number already) and the result is a Number item that is computed
using java's arithmetic on BigDecimal, otherwise,

* If any operand returns a double item, the item returned by the other operand is cast to a
double value (if not a double already) and the result is a double item that is computed
using java's arithmetic on doubles, otherwise,

* If any operand returns a float item, the item returned by the other operand is cast to a float
value If not a float already) and the result is a float item that is computed using java's
arithmetic on floats, otherwise,

6-73

ORACLE

Chapter 6
Arithmetic Expressions

« Except for the div operator, if any operand returns a long item, the item returned by the
other operand is cast to a long value (if not a long already) and the result is a long item that
is computed using java's arithmetic on longs.

» Except for the div operator, if all operands return integer items, the result is an integer item
that is computed using java's arithmetic on ints.

* The div operator performs floating-point division, even if both its operands are longs and/or
integers. In this case, div returns a double.

Oracle NoSQL Database supports the unary + and — operators as well. The unary + is a no-op,
and the unary — changes the sign of its numeric argument.

To follow along with the examples, create the user data and airline baggage tracking
application table, and insert the data as described in the Tables Used in the Examples section.

Example 6-86 Arithmetic Expression

For each user show their id and the difference between their actual income and an income that
is computed as a base income plus an age-proportional amount.

DECLARE

S$baseIncome INTEGER;

SageMultiplier DOUBLE;

SELECT id,

income - (SbaseIncome + age * SageMultiplier) AS adjustment
FROM Users

Example 6-87 Fetch the name, number of transits, and calculate the transit time for the
passenger with ticket number 1762320369957 from the airline baggage tracking
application data

SELECT bag.fullname AS NAME, S$t-1 AS HOPS,
CASE
WHEN $t-1 = 2
THEN
get duration(timestamp diff ($bagInfo.flightLegs[2].flightDate, $bagInfo.flight
Legs[l].estimatedArrival) +
timestamp diff ($bagInfo.flightLegs[1l].flightDate, S$bagInfo.flightLegs[0].estim
atedArrival))
WHEN $t-1 =1
THEN
get duration(timestamp diff ($bagInfo.flightLegs[1l].flightDate, $bagInfo.flight
Legs[0] .estimatedArrival))
ELSE "Direct flight"
END AS TRANSITHRS
FROM BaggageInfo bag, bag.bagInfo[0] AS $bagInfo,
size ($bagInfo.flightLegs) $t
WHERE bag.ticketNo = 1762320369957

Explanation: In the BaggageInfo table, the JSON field bagInfo stores the checked baggage
tracking information for each passenger. Passengers can have multiple transits in their air
travel. The flightLegs array contains the information on each airport in the passenger's travel
itinerary. In each element of the f1ightLegs array, the flightDate field holds the scheduled
departure time from the source airport and the estimatedArrival field holds the estimated
arrival time at the destination airport. You use the size function to calculate the size of the
flightLegs array, which is the number of travel legs in the passenger's air travel. However,

6-74

Chapter 6
Primary Expressions

this count includes even the last airport, which is the destination and not the transit airport. To
calculate the number of transit airports (hops) per passenger, you use the arithmetic operator
'-' to subtract the last airport from the count. Notice that you can assign the size calculation to
an internal variable $t1 to facilitate the usage throughout the query. For more details on
variables, see Variable Declaration.

To calculate the time spent by a passenger in each transit, you find the duration between the
flightDate of the next immediate destination airport and the estimatedArrival of the current
airport. You use the timestamp_diff function to calculate the time difference. Repeat this for all
the transits until the f1ightDate field belongs to the final destination airport. Use the arithmetic
operator '+' to add the individual transit times to arrive at the total transit time. Use the
get_duration function to convert the result from milliseconds to a duration string. Since the
number of hops is not fixed for all the passengers, you use the CASE expression with a
condition each for the number of hops. Depending on the number of hops for a given
passenger, the corresponding condition applies, and the total transit time is calculated and
displayed in the result. Here, only two hops are considered for ease of calculation.

The passengers may have more than one checked bag, in which case there will be more than
one element in the bagInfo array. You must consider only the first element of the bagInfo
array, that is, bagInfo[0] during calculation to avoid duplication of results.

Output:

{"NAME" :"Lorenzo Phil","TRANSITHRS":"6 hours 8 minutes"}

Primary Expressions

ORACLE

Syntax

primary expression ::=
parenthesized expression |
constant_expression |
column_reference |
variable_reference |
array_constructor |
map_constructor |
case_expression |
cast_expression |
extract_expression |
function_call |
count_star |
transform_expression

The following subsections describe each of the primary expressions listed in the above
grammar rule, except from count_star, which is the count(*) aggregate function defined in the
Using Aggregate Functions section.

To follow along with the examples, create tables and insert the data as described in the Tables
Used in the Examples section.

6-75

Chapter 6
Primary Expressions

Parenthesized Expressions
Syntax

parenthesized expression ::= " (" expression ")"

Semantics

Parenthesized expressions are used primarily to alter the default precedence among
operators. They are also used as a syntactic aid to mix expressions in ways that would
otherwise cause syntactic ambiguities. An example of the later usage is in the definition of the
field_step parse rule in the Field Step Expressions section.

Example 6-88 Parenthesized Expression

Select the id and the last name for users whose age is less or equal to 30 and either their age
is greater than 20 or their income is greater than 100K.

SELECT id, lastName

FROM users
WHERE (income > 100000 OR 20 < age) AND age <= 30

Constant Expressions

Syntax

constant expression ::= number | string | TRUE | FALSE | NULL
number ::= [MINUS] (FLOAT_CONSTANT \ INT_CONSTANT | NUMBER_CONSTANT)
string ::= STRING_CONSTANT \ DSTRING_CONSTANT

Semantics

The syntax for INT_CONSTANT, FLOAT_CONSTANT, NUMBER_CONSTANT,
STRING_CONSTANT, and DSTRING_CONSTANT was given in the Identifiers section.

In the current version, a query can contain the following constants (a.k.a. literals):

String

String literals are sequences of unicode characters enclosed in double or single quotes. String
literals are translated into String items. Notice that any escape sequences appearing in a
string literal will be converted to their corresponding character inside the corresponding String
item.

Integer

Integer literals are sequences of one or more digits. Integer literals are translated into Integer
items, if their value fits in 4 bytes, into Long items, if they fit in 8 bytes, otherwise to Number
items.

Floating point
Floating point literals represent real numbers using decimal notation and/or exponent.
Floating-point literals are translated into Double items, if possible, otherwise to Number items.

ORACLE 676

Chapter 6
Primary Expressions

Number
Number literals are integer or floating-point literals followed by the 'n' or 'N' character. Number
literals are always translated into Number items.

TRUE | FALSE
The TRUE and FALSE literals are translated to the boolean true and false items, respectively.

NULL
The NULL literal is translated to the json null item.

Example 6-89 From the airline baggage tracking application data, fetch the list of
passengers whose bags were delivered to JTR airport

SELECT fullname, bag.bagInfo.id, bag.bagInfo.tagNum
FROM BaggageInfo bag
WHERE bag.bagInfo.lastSeenStation =any "JTR"

Explanation: In the BaggageInfo table, the lastSeenStation field contains information on the
current location of the passenger's checked luggage. In this query, you fetch the ID and tag
numbers of bags that were delivered to the JTR airport. You use the string literal "JTR" as a
constant expression in the WHERE clause. Here, the bagInfo is an array and
bag.bagInfo.lastSeenStation is a sequence. You want to retrieve any element in the
sequence whose lastSeeStation was JTR. As the Value Comparison Operators cannot
operate on sequences of more than one item, you use the sequence comparison operator any
in addition to the value comparison operator '=' to compare the lastSeeStation fields.

If a passenger carries more than one bag, the ID and tag numbers of both bags are listed in
the result.

Output:

{"fullname":"Gerard Greene","1id":"79039899152842","tagNum":"1765780626568"}
{"fullname":"Michelle Payne","1d":"79039899186259","tagNum":"17657806247861"}
{"fullname":"Lorenzo Phil","id":["79039899187755","79039899197755"], "tagNum":
["17657806240001","17657806340001"]}

{"fullname":"Lucinda Beckman","id":"79039899187755", "tagNum":"17657806240001"}

Column References

ORACLE

Syntax

column reference ::=id ["." id]

Semantics

A column-reference expression returns the item stored in the specified column within the
context row (the row that an SELECT expression is currently working on). Syntactically, a
column-reference expression consists of one identifier, or 2 identifiers separated by a dot. If
there are 2 ids, the first is considered to be a table alias and the second the name of a column
in that table. We call this form a qualified column name. A single id is resolved to the name of a
column in some of the tables referenced inside the FROM clause. However, in this case there
must not be more than one tables that participate in the query and have a column with this
name. We call this form an unqualified column name.

6-77

Chapter 6
Primary Expressions

Example 6-90 Fetch the bag arrival date for a passenger from the airline baggage
tracking application data

SELECT fullname, bag.bagInfo[0].bagArrivalDate
FROM BaggageInfo bag
WHERE ticketNo=1762392135540

Explanation: In the BaggageInfo table, the bagArrivalDate field contains the date on which
the checked baggage is delivered to the destination airport. To fetch the bag arrival date, you
use a qualified column name in your query, that is, bag.bagInfo[0] .bagArrivalDate. For
more details, see Variable Declaration.

Here, the first reference bag is a table alias to the BaggageInfo table. The second reference
bagInfo[0] is to the first element of the bagInfo JSON array column. The third reference is to
the actual field bagArrivalDate that is nested inside the bagInfo JSON column.

You use only the first element of the bagInfo JSON array to avoid duplication of results for
passengers carrying more than one bag.

Output:

{"fullname":"Adelaide
Willard", "bagArrivalDate":"2019-02-15T21:21:002"}

Variable References

ORACLE

Syntax

variable reference ::= "$" [id]

Semantics

A variable-reference expression returns the item that the specified variable is currently bound
to. Syntactically, a variable-reference expression is just the name of the variable.

Oracle NoSQL Database allows the declaration of both external and internal variables. For
more details on declaring the variables and their scope, see Variable Declaration.

The table aliases are essentially internal variables ranging over the rows of the specified table.
The other clauses of the SELECT expression operate on the rows produced by the FROM
clause, processing one row at a time. The row currently being processed is called the context
row. The columns of the context row can be referenced in expressions either directly by their
names or by the table alias followed by a dot character and the column name. If the table alias
starts with a dollar sign ($), then it serves as an internal variable declaration for a variable
whose name is the alias. This internal variable is bound to the context row as a whole and can
be referenced within sub-expressions of the SELECT expression. It can also be passed as an
argument to a function to fetch the result for the context row.

Example 6-91 Fetch the duration between the baggage boarding and baggage
collection from the destination airport for a passenger from the airline baggage tracking
application data

SELECT $flightLeg.flightDate AS BAGGAGE CHECK, S$bagInfo.bagArrivalDate AS

BAGGAGE COLLECT,
$t1 AS BAGGAGE DURATION

6-78

Chapter 6
Primary Expressions

FROM BaggagelInfo bag, bag.bagInfo[0] AS S$bagInfo, $bagInfo.flightLegs[0]

AS $flightLeg,

get duration(timestamp diff (SbagInfo.bagArrivalDate, $flightLeg.flightDate)) $
tl

WHERE ticketNo=1762320369957

Explanation: In this example, you use table alias and internal variables. You can determine
the duration between the checked time and the baggage collection time at the destination
airport by calculating the time difference between bagArrivalDate and flightDate[0] for each
passenger. You use the timestamp diff function to find the time difference and the
get_duration function to convert the result from milliseconds to a duration string. For more
details, see timestamp_diff and get_duration functions.

The table name BaggageInfo in the query is followed by a table alias bag. You use the
variables $bagInfo and $flightLeg to reference the columns in the context row (the row that is
currently being processed). Notice that bagInfo is a column of type array in the BaggageInfo
table, whereas $bagInfo is an internal variable used to hold the first element of the bagInfo
array for the context row. $t1 is an internal variable whose value is assigned when the query is
executed.

Note:

Here, the timestamp diff function automatically casts the bagArrivalDate and
flightDate from String to a timestamp data type during the query run time.

Output:

{"BAGGAGE CHECK":"2019-03-12T03:00:00Z", "BAGGAGE COLLECT":"2019-03-12T15:05:00
Z", "BAGGAGE DURATION":"12
hours 5 minutes"}

Array and Map Constructors

ORACLE

Syntax

array constructor ::=
" exmesﬁon ("," expression)* "]"

map constructor ::=

("{" expression ":" expression
("," expression ":" expression)* "}") |
(“{“ H}H)

Semantics

An array constructor constructs a new array out of the items returned by the expressions inside
the square brackets. These expressions are computed left to right, and the produced items are
appended to the array. Any NULLs produced by the input expressions are skipped (arrays
cannot contain NULLS).

Similarly, a map constructor constructs a new map out of the items returned by the expressions
inside the curly brackets. These expressions come in pairs: each pair computes one field. The

6-79

Chapter 6
Primary Expressions

first expression in a pair must return at most one string, which serves as the field's name and
the second returns the associated field value. If a value expression returns more than one
items, an array is implicitly constructed to store the items, and that array becomes the field
value. If either a field name or a field value expression returns the empty sequence, no field is
constructed. If the computed name or value for a field is NULL the field is skipped (maps
cannot contain NULLS).

The type of the constructed arrays or maps is determined during query compilation, based on
the types of the input expressions and the usage of the constructor expression. Specifically, if a
constructed array or map may be inserted in another constructed array or map and this
"parent" array/map has type ARRAY(JSON) or MAP(JSON), then the "child" array/map will
also have type ARRAY(JSON) or MAP(JSON). This is to enforce the restriction that "typed"
data are not allowed inside JSON data (see Data Type Hierarchy).

Example 6-92 Array and Map Constructor

For each user create a map with 3 fields recording the user's last name, their phone
information, and the expense categories in which more than $5000 was spent.

SELECT
{
"last name" : u.lastName,
"phones" : u.address.phones,
"high expenses" : [u.expenses.keys($value > 5000)]
}
FROM users u

Notice that the use of an explicit array for the "high_expenses" field guarantees that the field
will exist in all the constructed maps, even if the path inside the array constructor returns
empty. Notice also that although it is known at compile time that all elements of the constructed
arrays will be strings, the arrays are constructed with type ARRAY(JSON) (instead of
ARRAY(STRING)), because they are inserted into a JSON map.

Case Expressions

ORACLE

Syntax

case expression ::= CASE
WHEN expression THEN expression
(WHEN expression THEN expression)*
[ELSE expression]
END

Semantics

The searched CASE expression is similar to the if-then-else statements of traditional
programming languages. It consists of a number of WHEN-THEN pairs, followed by an
optional ELSE clause at the end. Each WHEN expression is a condition, i.e., it must return
BOOLEAN?. The THEN expressions as well as the ELSE expression may return any
sequence of items. The CASE expression is evaluated by first evaluating the WHEN
expressions from top to bottom until the first one that returns true. If it is the i-th WHEN
expression that returns true, then the i-th THEN expression is evaluated and its result is the
result of the whole CASE expression. If no WHEN expression returns true, then if there is an
ELSE, its expression is evaluated and its result is the result of the whole CASE expression;
Otherwise, the result of the CASE expression is the empty sequence.

6-80

ORACLE

Chapter 6
Primary Expressions

Example 6-93 For each user create a map with 3 fields recording the user's last name,
their phone information, and the expense categories in which more than $5000 was
spent

SELECT
{
"last name" : u.lastName,
"phones" : CASE
WHEN exists u.address.phones
THEN u.address.phones
ELSE "Phone info absent or not at the expected place"
END,
"high expenses" : [u.expenses.keys($value > 5000)]
}

FROM users u

The query is very similar to the one from array and map constructor. The only difference is in
the use of a case expression to compute the value of the phones field. This guarantees that the
phones field will always be present, even if the path expression u.address.phones return
empty or NULL. Notice that wrapping the path expression with an explicit array constructor (as
we did for the high_expenses field) would not be a good solution here, because in most cases
u.address.phones will return an array, and we don't want to have construct an extra array
containing just another array.

JSON collection table:

The following example applies CASE expression on a JSON collection table. Consider a
sample row from the JSON collection table created for a shopping application:

{"contactPhone":"1917113999", "address": {"city":"San

Jose", "number":501, "state":"San
Francisco","street":"Maine","zip":95095},"cart":

[{"item":"wallet", "priceperunit”:950, "quantity":2}, {"item":"wall
art","priceperunit":9500, "quantity":1}],"firstName":"Sharon", "gender":"F","las
tName":"Willard", "notify":"yes","wishlist":

[{"item":"Tshirt", "priceperunit":500}, {"item":"Jenga", "priceperunit":850}]}

Example 6-94 Display promotional messages to shoppers from San Jose who have
wallet or handbag items in their carts

SELECT concat ("Hi ",s.firstName) AS Message,
CASE
WHEN s.cart.item =any "wallet"
THEN "The prices on Wallets have dropped"
WHEN s.cart.item =any "handbag"
THEN "The prices on handbags have dropped"
ELSE "Exciting offers on wallets and handbags"
END AS Offer
FROM storeAcct s

WHERE s.address.city =any "San Jose"

Explanation: You can use CASE statement to display a promotional message to the shoppers
regarding the reduction in the prices if the shoppers have the items wallet or handbag in their

6-81

Chapter 6
Primary Expressions

cart. As the offers are only for shoppers from San Jose, you specify the city in the WHERE
clause.

Output:

{"Message":"Hi Sharon","Offer":"The prices on Wallets have
dropped"}

Cast Expression
Syntax

cast_expression ::= CAST " (" expression AS sequence_type ")"

Semantics

The cast expression creates, if possible, new items of a given target type from the items of its
input sequence. Specifically, a cast expression is evaluated as follows:

A cardinality check is performed first:

1. if the quantifier of the target type is * the sequence may have any number of items,
2. if the quantifier is + the input sequence must have at least one item,

3. if the quantifier is ? the input sequence must have at most one item, and

4. if there is no quantifier, the input sequence must have exactly one item.

If the cardinality of the input sequence does not match the quantifier of the target type, an error
is raised. Then, each input item is cast to the target item type according to the following
(recursive) rules.

« If the type of the input item is equal to the target item type, the cast is a no-op: the input
item itself is returned.

e If the target type is a wildcard type other than JSON and the type of the input item is a
subtype of the wildcard type, the cast is a no-op; Otherwise an error is raised.

« If the target type is JSON, then (a) an error is raised if the input item is has a non-json
atomic type, else (b) if the input item has a type that is a json atomic type or
ARRAY(JSON) or MAP(JSON), the cast is a no-op , else (c) if the input item is a non-json
array, a new array of type ARRAY(JSON) is constructed, each element of the input array is
cast to JSON, and the resulting item is appended into the new json array, else (d) if the
input item is a non-json map, a new map of type MAP(JSON) is constructed, each field
value of the input map is cast to JSON, and resulting item together with the associated
field name are inserted into the new json map, else (e) if the input item is a record, it is cast
to a map of type MAP(JSON) as described below.

* If the target type is an array type, an error is raised if the input item is not an array.
Otherwise, a new array is created, whose type is the target type, each element in the input
array is cast to the element type of the target array, and the resulting item is appended into
the new array.

« If the target type is a map type, an error is raised if the input item is not a map or a record.
Otherwise, a new map is created, whose type is the target type, each field value in the
input map/record is cast to the value type of the target map, and the resulting field value
together with the associated field name are inserted to the new map.

ORACLE 680

Chapter 6
Primary Expressions

« If the target type is a record type, an error is raised if the input item is not a record or a
map. Otherwise, a new record is created, whose type is the target type. If the input item is
a record, its type must have the same fields and in the same order as the target type. In
this case, each field value in the input record is cast to the value type of the corresponding
field in the target type and the resulting field value together with the associated field name
are added to the new record. If the input item is a map, then for each map field, if the field
name exists in the target type, the associated field value is cast to the value type of the
corresponding field in the target type and the resulting field value together with the
associated field name are added to the new record. Any fields in the new record whose
names do not appear in the input map have their associated field values set to their default
values.

« If the target type is string, the input item may be of any type. In other words, every item can
be cast to a string. For complex items their “string value” is a json-text representation of
their value. For timestamps, their string value is in UTC and has the format "YYYY-MM-
dd['T'HH:mm:ss]". For binary items, their string value is a base64 encoding of their bytes.

« |If the target type is an atomic type other than string, the input item must also be atomic.
Among atomic items and types the following casts are allowed:

— Every numeric item can be cast to every other numeric type. The cast is done as in
Java.

— Integers and longs can be cast to timestamps. The input value is interpreted as the
number of milliseconds since January 1, 1970, 00:00:00 GMT.

— String items may be castable to all other atomic types. Whether the cast succeeds or
not depends on whether the actual string value can be parsed into a value that
belongs to the domain of the target type.

— Timestamp items are castable to all the timestamp types. If the target type has a
smaller precision that the input item, the resulting timestamp is the one closest to the
input timestamp in the target precision. For example, consider the following 2
timestamps with precision 3: 2016-11-01T10:00:00.236 and 2016-11-01T10:00:00.267.
The result of casting these timestamps to precision 1 is: 2016-11-01T10:00:00.2 and
2016-11-01T10:00:00.3, respectively. If the target type has a larger precision that the
input item, additional zeros are appended to the resulting timestamp value.

Example 6-95 Cast Expression

Select the last name of users who moved to their current address in 2015 or later.

SELECT u.lastName FROM Users u

WHERE

CAST (u.address.startDate AS Timestamp(0)) >=
CAST ("2015-01-01T00:00:00" AS Timestamp(0))

Since there is no literal for Timestamp values, to create such a value a string has to cast to a
Timestamp type.

Extract Expressions

Syntax

extract expression ::= EXTRACT " (" id FROM expression ")"

ORACLE 693

ORACLE

Chapter 6
Primary Expressions

Semantics

The extract expression extract a component from a timestamp. Specifically, the expression
after the FROM keyword must return at most one timestamp or NULL. If the result of this
expression is NULL or empty, the results of EXTRACT is also NULL or empty, respectively.
Otherwise, the component specified by the id is returned. This id must be one of the following
keywords:

YEAR
Returns the year for the timestamp, in the range -6383 ~ 9999.

MONTH
Returns the month for the timestamp, in the range 1 ~ 12.

DAY
Returns the day of month for the timestamp, in the range 1 ~ 31.

HOUR
Returns the hour of day for the timestamp, in the range 0 ~ 23.

MINUTE
Returns the minute for the timestamp, in the range 0 ~ 59.

SECOND
Returns the second for the timestamp, in the range 0 ~ 59.

MILLISECOND
Returns the fractional second in millisecond for the timestamp, in the range 0 ~ 999.

MICROSECOND
Returns the fractional second in microsecond for the timestamp, in the range 0 ~ 999999.

NANOSECOND
Returns the fractional second in nanosecond for the timestamp, in the range 0 ~ 999999999.

WEEK
Returns the week number within the year where a week starts on Sunday and the first week
has a minimum of 1 day in this year, in the range 1 ~ 54.

ISOWEEK
Returns the week number within the year based on 1S0-8601, where a week starts on Monday
and the first week has a minimum of 4 days in this year, in range 0 ~ 53.

There are specific built-in functions to extract each of the above components from a time
stamp. For example, EXTRACT(YEAR from expr) is equivalent to year(expr). These and other
built-in functions are described in Built-in Functions.

Example 6-96 Create a message that displays the bag arrival date, time, and
destination airport details for a passenger from the airline baggage tracking application
data

SELECT concat ("Hi ",bag.fullname,", Please collect your bags from
",$station," airport on ",$t2,"/", $t3,"/", S$tl1," at ",S$t4,":",S$t5," Hrs") AS
MESSAGE

FROM BaggageInfo bag, bag.bagInfo[0].bagArrivalDate AS S$bagDate,
bag.bagInfo[0].lastSeenStation AS $station,

EXTRACT (YEAR from (CAST($bagDate AS Timestamp(0)))) $tl,

6-84

Chapter 6
Primary Expressions

EXTRACT (MONTH from (CAST ($bagDate AS Timestamp(0)))) $t2,
EXTRACT (DAY from (CAST(SbagDate AS Timestamp(0)))) S$t3,
EXTRACT (HOUR from (CAST (SbagDate AS Timestamp(0)))) $t4,
EXTRACT (MINUTE from (CAST(SbagDate AS Timestamp(0)))) S$t5

WHERE ticketNo = 1762344493810

Explanation: The bagArrivalDate field in the BaggageInfo table stores the date on which the
checked bags are scheduled to arrive at the destination airport. You can use the EXTRACT
expression to extract the date (day, month, and year) and time (hour and minutes) from the
bagArrivalDate field for the specified passenger. The date is stored as a string in the JSON
data in the bagInfo field. You first use the CAST expression to convert the bagArrivalDate to
a timestamp and then extract the date, month, year, and so forth from the timestamp.

To display as a message, you use the concat function.

Output:

{"MESSAGE":"Hi Adam Phillips, Please collect your bags from MEL airport on
2/1/2019 at
16:13 Hrs"}

Function Calls

ORACLE

Syntax

function call ::=id " (" [expression ("," expression)*] ")"

Semantics

Function-call expressions are used to invoke functions, which in the current version can be
built-in (system) functions only. Syntactically, a function call starts with an id which identifies the
function to call by name, followed by a parenthesized list of zero or more argument
expressions separated by a comma.

Each function has a signature, which specifies the sequence type of its result and a sequence
type for each of its parameters. Evaluation of a function-call expression starts with the
evaluation of each of its arguments. The result of each argument expression must be a
subtype of the corresponding parameter type, or otherwise, it must be promotable to the
parameter type. In the latter case, the argument value will actually be cast to the expected
type. Finally, after type checking and any necessary promotions are done, the function's
implementation is invoked with the possibly promoted argument values.

The following type promotions are currently supported:
* INTEGER is promotable to FLOAT or DOUBLE.
* LONG is promotable to FLOAT or DOUBLE.

e STRING is promotable to ENUM, but the cast will succeed only if the ENUM type contains
a token whose string value is the same as the input string.

See the Built-in Functions topic for the list of the supported functions in Oracle NoSQL
Database.

6-85

Chapter 6
Primary Expressions

Example 6-97 Fetch the full names of passengers who have the airport code MEL in
their route from the airline baggage tracking application data

SELECT fullname
FROM baggageInfo bag
WHERE EXISTS bag.bagInfol[contains(Selement.routing, "MEL")]

Explanation: In the BaggageInfo table, the routing field contains the codes of the airports
through which the checked bag transits before reaching the destination airport. In the query
above, you use a function call to the contains function. The contains function is one of the built-
in functions, which indicates whether or not a search string is present inside the source string.
The square brackets in the query iterates over the elements of the bagInfo array. During the
iteration, the $element variable is bound to the current array element, that is, routing. Each
iteration computes the expression inside the contains function on the array element. If the
expression includes the string "MEL", it returns true and the element is included in the result,
otherwise it is skipped. As a result, only the rows that include the MEL airport code in their
routing field are displayed in the output.

Output:

{"fullname":"Zulema Martindale"}
{"fullname":"Adam Phillips"}
{"fullname":"Joanne Diaz"}
{"fullname":"Omar Harvey"}
{"fullname":"Zina Christenson"}

Sequence Transform Expressions

ORACLE

Syntax

transform expression ::= SEQ TRANSFORM " (" expression "," expression ")"

Semantics

A sequence transform expression transforms a sequence to another sequence. Syntactically it
looks like a function whose name is seq_transform. The first argument is an expression that
generates the sequence to be transformed (the input sequence) and the second argument is a
"mapper" expression that is computed for each item of the input sequence. The result of the
seq_transform expression is the concatenation of sequences produced by each evaluation of
the mapper expression. The mapper expression can access the current input item via the $
variable.

Example 6-98 Sequence Transform Expression

As an example, assume a "sales" table with the following data.

CREATE TABLE sales (

id INTEGER,

sale RECORD (
acctno INTEGER,
year INTEGER,
month INTEGER,
day INTEGER,
state STRING,

6-86

Chapter 6
Primary Expressions

city STRING,

storeid INTEGER,

prodcat STRING,

items ARRAY (

RECORD (

prod STRING,
gty INTEGER,
price INTEGER

)y
PRIMARY KEY (id)

INSERT INTO sales VALUES (
ll
{
"acctno" : 349,
"year" : 2000,
"month" : 10,
"day" : 23,
"state" : "CA",
"city" : "San Jose",
"storeid" : 76,
"prodcat" : "vegies",
"items" :[
{ "prod" : "tomatoes", "qgty" : 3, "price" : 1
{ "prod" : "carrots", "qty" : 1, "price"
{ "prod" : "pepers", "qgty" : 1, "price" : 1

Assume there is the following index on sales:

CREATE INDEX idvl ON sales (
sale.acctno, sale.year, sale.prodcat)

Then we can write the following query, which returns the total sales per account number and
year:

SELECT t.sale.acctno,

t.sale.year,

sum(seq transform(t.sale.items[], $.price * $.qty)) AS sales
FROM sales t

GROUP BY t.sale.acctno, t.sale.year

Using sequence transform expression for JSON documents :

You can use the sequence transform expression for transforming JSON documents stored in
table rows. In such cases you often use multiple sequence transform expressions nested
inside each other. Here the mapper expression of an inner sequence transform may need to
access the current item of an outer sequence transform. To allow this, each sequence

ORACLE 6-87

Chapter 6
Primary Expressions

transform expression 's' declares a variable with name $sgN, where N is the level of nesting of
the expression 's' within the outer sequence transform expressions. $sqN is basically a
synonym for $, that is, it is bound to the items returned by the input expression 's'.

However, $sgN can be accessed by other sequence transform expressions that may be nested
inside the expression 's". Let’s illustrate with an example.

The baggageInfo table stores information about handling the luggage of passengers in an
airline.

CREATE TABLE baggageInfo (
ticketNo string,
passengerName string,
bagInfo json,
primary key(ticketNo)

)

A sample row for this table is shown below.

"ticketNo" : "1762352483606",
"passengerName" : "Willie Hernandez",
"bagInfo" : [
{
"tagNum" : "17657806243915",
"routing" : "SFO/AMS/HER",
"lastActionCode" : "offload",
"lastSeenStation" : "HER",
"lastSeenTimeGmt" : "2019-03-13T15:19:00",
"flightLegs" : [
{
"flightNo" : "BM604",
"flightDate" : "2019-03-12T20:00:00",
"fltRouteSrc" : "SFO",
"fltRouteDest" : "AMS",
"estimatedArrival" : "2019-03-13T08:00:00",
"actions" : [
{ “at”:”SF0”, "action":"TagScan", "time":"2019-03-12T18:14:00" },
{ “at”:”SF0”, "action":"onload", "time":"2019-03-12T19:20:00" 1},
{ “at”:"AMS", “action”:"offload", "time":"2019-03-13T08:30:00" }

"flightNo" : "BM667",

"flightDate" : "2019-03-13T11:14:00",
"fltRouteSrc" : "AMS",

"fltRouteDest" : "HER",

"estimatedArrival" : "2019-03-13T15:00:00",
"actions" : [

{ “at”:”AMS”, "action":"TagScan", "time":"2019-03-13T10:45:00" },
{ “at”:”AMS”, "action":"onload", "time":"2019-03-13T10:50:00" 1},
{ “at”:”HER”, "action":"offload", "time":"2019-03-13T15:19:00" }

ORACLE 688

ORACLE

Chapter 6
Primary Expressions

"2019-03-13T08:35:00",

"tagNum" "17657806244523",
"routing" "SFO/AMS/HER",
"lastActionCode" "offload",
"lastSeenStation" "AMS",
"lastSeenTimeGmt"
"flightLegs" : [
{

"flightNo" "BM604",

"flightDate"

"fl1tRouteSrc" "SFO",

"fltRouteDest" "AMS",

"estimatedArrival"

"actions" : [

{ \\atII://SFolI,
{ \\atII://SFolI,
{ \\atII://AMS/I,

"action":"TagScan",
"action":"onload",
"action":"offload",

"2019-03-12T720:00:00",

"2019-03-13T08:00:00",

"time":"2019-03-12T18:14:00" },
"time":"2019-03-12T19:22:00" },
"time":"2019-03-13T08:32:00" '}

Query: For each ticketNo, fetch a flat array containing all the actions performed on the
luggage of that ticketNo. That means fetch the “at” and “action” fields of each action. Also
display the f1ightNo and the tagNum with each action. The result of the query is the following:

“actions” : [
{“at”:"”SF0”,
“tagNum”:17657806243915},
{“at”:"”SF0”,
“tagNum”:17657806243915},
{“at”:”AMS"”,
“tagNum”:17657806243915},
{“at”:”AMS"”,
“tagNum”:17657806243915},
{“at”:”AMS"”,
“tagNum”:17657806243915},
{“at”:”HER"”,
“tagNum”:17657806243915},
{“at”:"”SF0”,
“tagNum”:17657806244523},
{“at”:"”SF0”,
“tagNum”:17657806244523},
{“at”:”AMS"”,
“tagNum”:17657806244523},
]
}

“action”:

“action”:

“action”:

“action”:

“action”:

“action”:

“action”:

“action”:

“action”:

"TagScan”,
"onload”,
"offload”,
"TagScan”,
"onload”,
"offload”,
"TagScan”,
"onload”,

"offload”,

“f1ightNo”:”BM604",

“f1ightNo”:”BM604",
“f1ightNo”:”BM604",
“flightNo”:”BM667",
“flightNo”:”BM667",
“flightNo”:”BM667",
“f1ightNo”:”BM604",
“f1ightNo”:”BM604",

“f1ightNo”:”BM604",

You could use sequence transform expression to get the above output.

SELECT
seq_transform(

6-89

1l.bagInfol],
seq transform(
$sql.flightlegs(],
seq_transform(
$sg2.actions[],
{
"at" : $sg3.at,

“action” : $sqg3.action,
"flightNo" : $sqg2.flightNo,
"tagNum" : $sql.tagNum

)
)
) AS actions
FROM baggageInfo 1

Unnest Arrays & Maps

ORACLE

Use unnest_syntax to flatten rows that include arrays or maps.

Syntax of unnest

Chapter 6
Unnest Arrays & Maps

Syntactically, unnesting is specified as a list of expressions (with associated variables) in the
FROM clause of a SELECT statement. Some or all of these expressions may be enclosed in

an UNNEST clause.

unnest expression::=expression AS VARNAME
unnest clause ::= UNNEST((unnest expression)*)
(unnest expression | unnest clause)*

unnest syntax ::

Semantics

The FROM clause of a SELECT statement may contain a list of expressions (with associated
variables). Normally, you will use expressions that unnest arrays or maps and the FROM
clause will create a new set of rows out of the values of the unnested arrays/maps. Some or all
of these expressions may be enclosed in an UNNEST clause. Semantically, the unnest
operator is a no-op, that is, whether an UNNEST clause is used or not does not change the
result of the FROM clause, that is unnest(expr) is the same as expr. The purpose of the
UNNEST clause is to act as an optimization hint. Specifically, when there is an index on the
arrays/maps that are being unnested, the index may be used by the query only if the query
uses the UNNEST clause. Furthermore, to help the query processor in using such an index,
the UNNEST clause places some restrictions on the expressions that can appear inside it.

You normally use unnesting when you want to group by a field that is inside an array/map.
However the two examples below illustrate the semantics of unnesting expressions. So no

GROUP BY clause is used in the queries below.

Using a single unnest expression in the FROM clause (to unnest a single map):

Create a table with two columns , one of data type INTEGER, which is the primary key column

and second of JSON data type.

6-90

ORACLE

Chapter 6
Unnest Arrays & Maps

Note:

The JSON column used in the example is a map.

create table sample unnest (samp id INTEGER, samp data JSON, PRIMARY
KEY (samp_1id))

INSERT INTO sample unnest VALUES (I,
{ "episodeID" : 20, "lengthMin" : 40, "minWatched" : 40 })

INSERT INTO sample unnest VALUES (2,
{ "episodeID" : 25, "lengthMin" : 20, "minWatched" : 18 })

select * from sample unnest
$sl,unnest ($sl.samp data.values() as $s2) where $sl.samp_ id=1

The above FROM clause references the table sample unnest by the variable $s1 and the
values of the map samp data by the variable $s2 . Conceptually, the result of the FROM clause
is a table temp_tbl with two columns. Column 1 stores all rows of table sample unnest and
Column 2 stores all values of the elements of the samp data map.

Table 6-4 Records in the temp_tbl table
]

$s1 $s2
"samp id":1,"samp data": 20
{"episodeID":20,"lengthMin":40, "minWatc
hed":40}

"samp id":1,"samp data": 40
{"episodeID":20,"lengthMin":40, "minWatc
hed":40}

"samp_id":1,"samp data": 40
{"episodeID":20,"lengthMin":40, "minWatc
hed":40}

"samp_id":2,"samp data": 25
{"episodeID":25,"lengthMin":20, "minWatc
hed":18}

"samp 1id":2,"samp data": 20
{"episodeID":25,"lengthMin":20, "minWatc
hed":18}

"samp id":2,"samp data": 18
{"episodeID":25,"lengthMin":20, "minWatc
hed":18}

To see how the rest of the query is executed, take every row from the above table and apply
the WHERE condition. For those rows where the condition evaluates to TRUE
($s1.samp_id=1), the corresponding row is included in the query result. The condition
evaluates to TRUE for the first three rows and to FALSE for the last three rows.

6-91

ORACLE

Chapter 6
Unnest Arrays & Maps

Table 6-5 Query output

$s1 $s2
{"samp_id":1, "samp data": 20
{"episodeID":20,"lengthMin":40, "minWatc
hed":40}}

{"samp_id":1, "samp data": 40
{"episodeID":20,"lengthMin":40, "minWatc
hed":40}}

{"samp_id":1, "samp data": 40
{"episodeID":20,"lengthMin":40, "minWatc
hed":40}}

Using two unnest expressions in the FROM clause (to unnest an array and the maps
nested under the array)

You can use more than one path expression in an UNNEST clause. Let "M" be the number of
from-expressions, then the result table of the FROM clause is computed in M steps, each
producing an intermediate table.

Note:

The JSON column used in the example is a array of maps.

create table sample unnest (
samp_id INTEGER, samp data JSON, PRIMARY KEY (samp_ id))

INSERT INTO sample unnest VALUES (I,
{
"episodes": [
{
"episodeID" : 10,
"lengthMin" : 40,
"minWatched" : 25
b
{
"episodeID" : 20,
"lengthMin" : 35,
"minWatched" : 30

INSERT INTO sample unnest VALUES (2,
{

"episodes": [

6-92

Chapter 6
Unnest Arrays & Maps

"episodeID" : 30,
"lengthMin" : 40,
"minWatched" : 25
}I
{
"episodeID" : 40,
"lengthMin" : 35,
"minWatched" : 30

INSERT INTO sample unnest VALUES (3,
{
"episodes": [
{
"episodeID" : 10,
"lengthMin" : 40,
"minWatched" : 25

"episodeID" : 20,
"lengthMin" : 35,
"minWatched" : 30

Query using two path expressions in the UNNEST clause:

SELECT n.samp id as customer,

$epi.episodelD, Sepi.minWatched AS length, $epiVal AS episode details
FROM sample unnest n,

unnest (n.samp_data.episodes([] AS $epi, Sepi.values() AS $epiVval)

Step 1 : Records in the first table temp tbl1 which is the result of first two expressions in the
FROM clause (sample unnest n, unnest(n.samp data.episodes[] AS S$epi)

Table 6-6 Records in temp_tbil

n Sepi

"s1l":{"samp id":1,"samp data": {"episodeID":10,"lengthMin":40, "minWatc
{"episodes": hed":25},

[{"episodeID":10, "lengthMin":40, "minWat

ched":25},

{"episodeID":20,"lengthMin":35, "minWatc

hed":30}]}

ORACLE 602

Chapter 6
Unnest Arrays & Maps

Table 6-6 (Cont.) Records in temp_tbl1

n $Sepi

"sl":{"samp id":1,"samp data": {"episodeID":20, "lengthMin":35, "minWatc
{"episodes": hed":30}
[{"episodeID":10,"lengthMin":40, "minWat

ched":25},

{"episodeID":20,"lengthMin":35, "minWatc

hed":30}]}

"sl":{"samp id":2,"samp data": {"episodeID":30, "lengthMin":40, "minWatc
{"episodes": hed":25},
[{"episodeID":30,"lengthMin":40, "minWat

ched":25},

{"episodeID":40,"lengthMin":35, "minWatc

hed":30}]}

"sl":{"samp id":2,"samp data": {"episodeID":40, "lengthMin":35, "minWatc
{"episodes": hed":30}

[{"episodeID":30, "lengthMin":40, "minWat

ched":25},

{"episodeID":40,"lengthMin":35, "minWatc

hed":30}]}

"s1":{"samp id":3,"samp data": {"episodeID":10, "lengthMin":40, "minWatc
{"episodes": hed":25},

[{"episodeID":10, "lengthMin":40, "minWat

ched":25},

{"episodeID":20,"lengthMin":35, "minWatc

hed":30}]}

"sl":{"samp id":3,"samp data": {"episodeID":20, "lengthMin":35, "minWatc
{"episodes": hed":30}

[{"episodeID":10, "lengthMin":40, "minWat

ched":25},

{"episodeID":20,"lengthMin":35, "minWatc

hed":30}]}

Step 2 : Records in the second table temp_tbl2 - result of the full FROM clause (Above table
joined with the result of the second path expression in the UNNEST clause
(Sepi.values()as S$SepiVal)

Table 6-7 Records in temp_tbl2

]
n $epi $epival

{"s1l": {"episodeID":10,"lengthMin 10
{"samp id":1,"samp data": ":40,"minWatched":25},
{"episodes":

[{"episodeID":10, "lengthMi

n":40, "minWatched":25},

{"episodeID":20, "lengthMin

":35, "minWatched":30}]}

ORACLE 604

ORACLE

Table 6-7 (Cont.) Records in temp_tbl2
]

Chapter 6
Unnest Arrays & Maps

n $Sepi $epival
{"sl": {"episodeID":10,"lengthMin 40
{"samp_id":1,"samp data": ":40,"minWatched":25}
{"episodes":

[{"episodeID":10, "lengthMi
n":40, "minWatched":25},

{"episodeID":20,"lengthMin

":35, "minWatched":30}]}

{"s1l": {"episodeID":10,"lengthMin 25
{"samp id":1,"samp data": ":40,"minWatched":25}
{"episodes":

[{"episodeID":10, "lengthMi
n":40, "minWatched":25},

{"episodeID":20, "lengthMin

":35, "minWatched":30}]}

{"sl": {"episodeID":20,"lengthMin 20
{"samp_id":1,"samp data": ":35,"minWatched":30}
{"episodes":

[{"episodeID":10,"lengthMi
n":40, "minWatched":25},

{"episodeID":20,"lengthMin

":35, "minWatched":30}]}}

{"sl": {"episodeID":20,"lengthMin 35
{"samp_id":1,"samp data": ":35,"minWatched":30}
{"episodes":

[{"episodeID":10, "lengthMi
n":40, "minWatched":25},

{"episodeID":20, "lengthMin

":35,"minWatched":30}1}}

{"sl": {"episodeID":20,"lengthMin 30
{"samp_id":1,"samp data": ":35,"minWatched":30}
{"episodes":

[{"episodeID":10,"lengthMi
n":40, "minWatched":25},

{"episodeID":20,"lengthMin

":35, "minWatched":30}]}}

{"s1": {"episodeID":30,"lengthMin 30
{"samp_id":2,"samp data": ":40,"minWatched":25}
{"episodes":

[{"episodeID":30,"lengthMi
n":40, "minWatched":25},

{"episodeID":40, "lengthMin

":35, "minWatched":30}]1}}

"s1": {"episodeID":30,"lengthMin 40

{
{"samp_id":2,"samp data":
{"episodes":
[{"episodeID":30, "lengthMi
n":40, "minWatched":25},
{"episodeID":40,"lengthMin
":35, "minWatched":30}]}}

":40, "minWatched":25}

6-95

ORACLE

Table 6-7 (Cont.) Records in temp_tbl2
]

Chapter 6
Unnest Arrays & Maps

n $Sepi $epival
{"s1": {"episodeID":30,"lengthMin 25
{"samp_id":2,"samp data": ":40,"minWatched":25}
{"episodes":

[{"episodeID":30, "lengthMi
n":40, "minWatched":25},

{"episodeID":40,"lengthMin

":35, "minWatched":30}]}}

{"s1l": {"episodeID":40, "lengthMin 40
{"samp id":2,"samp data": ":35,"minWatched":30}
{"episodes":

[{"episodeID":30,"lengthMi
n":40, "minWatched":25},

{"episodeID":40, "lengthMin

":35,"minWatched":30}]}}

{"sl": {"episodeID":40,"lengthMin 35
{"samp_id":2,"samp data": ":35,"minWatched":30}
{"episodes":

[{"episodeID":30,"lengthMi
n":40, "minWatched":25},

{"episodeID":40,"lengthMin

":35, "minWatched":30}]}}

{"sl": {"episodeID":40,"lengthMin 30
{"samp_ id":2,"samp data": ":35,"minWatched":30}
{"episodes":

[{"episodeID":30,"lengthMi
n":40, "minWatched":25},

{"episodeID":40, "lengthMin

":35,"minWatched":30}1}}

{"sl": {"episodeID":10,"lengthMin 10
{"samp_id":3,"samp data": ":40,"minWatched":25}
{"episodes":

[{"episodeID":10,"lengthMi
n":40, "minWatched":25},

{"episodeID":20,"lengthMin

":35, "minWatched":30}]}

{"s1": {"episodeID":10,"lengthMin 40
{"samp_id":3,"samp data": ":40,"minWatched":25}
{"episodes":

[{"episodeID":10,"lengthMi
n":40, "minWatched":25},

{"episodeID":20, "lengthMin

":35, "minWatched":30}]}

"s1": {"episodeID":10,"lengthMin 25

{
{"samp_id":3,"samp_ data":
{"episodes":
[{"episodeID":10, "lengthMi
n":40, "minWatched":25},
{"episodeID":20,"lengthMin
":35, "minWatched":30}]}

":40, "minWatched":25}

6-96

Chapter 6
Unnest Arrays & Maps

Table 6-7 (Cont.) Records in temp_tbl2

]
n $Sepi $epival

{"sl": {"episodeID":20,"lengthMin 20
{"samp_id":3,"samp data": ":35,"minWatched":30}
{"episodes":

[{"episodeID":10, "lengthMi

n":40, "minWatched":25},

{"episodeID":20,"lengthMin

":35, "minWatched":30}]}

{"sl": {"episodeID":20,"lengthMin 35
{"samp id":3,"samp data": ":35,"minWatched":30}
{"episodes":

[{"episodeID":10, "lengthMi

n

{

":40, "minWatched":25},

"episodeID":20,"lengthMin

":35, "minWatched":30}]}

{"sl": {"episodeID":20,"lengthMin 30
{"samp_id":3,"samp data": ":35,"minWatched":30}
{"episodes":

[{"episodeID":10,"lengthMi

n

{

":40, "minWatched":25},
"episodeID":20,"lengthMin
":35, "minWatched":30}]}

Step 3 : There is no filter in the query and the fields in the SELECT clause are fetched. The
final result of the query is :

Table 6-8 Query result
]

customer episode_id length episode_details
2 30 25 30
2 30 25 40
2 30 25 25
2 40 30 40
2 40 30 35
2 40 30 30
1 10 25 10
1 10 25 40
1 10 25 25
1 20 30 20
1 20 30 35
1 20 30 30
3 10 25 10
3 10 25 40
3 10 25 25
3 20 30 20
3 20 30 35
3 20 30 30

ORACLE 6-97

Chapter 6
Unnest Arrays & Maps

Limitation for expression usage in the UNNEST clause

There are some restrictions on the expressions used in the UNNEST clause.
« All expressions used in the UNNEST clause must be path expressions.
* No predicates are allowed in any array-filter or map-filter steps within the path expressions.

e The expression must start with a variable. If the expression is a first expression in a list of
expressions , then it should be a table alias associated with the target table.

* When you unnest nested arrays, each path expression unnests one level deeper, and it
operates on the values produced by the previous level of unnesting. These values are
represented by the variable associated with the previous path expression. So the starting
variable of each expression must be the variable associated with the previous expression.
This is not applicable if this is a first expression in a list of expressions in the UNNEST
clause.

e The expression must finish with a [] or .values() step.

e The variables defined inside the UNNEST clause cannot be referenced in the rest of the
FROM clause. They can be referenced within the UNNEST clause and outside the FROM
clause.

For more details on path expression and to understand how these expressions are evaluated
for an array or a map, see Path Expressions.

Example: Using unnesting with a GROUP BY clause

ORACLE

Consider a TV streaming application. It streams various shows that are watched by customers
across the globe. Every show has number of seasons and every season has multiple
episodes. You need a persistent meta-data store which keeps track of the current activity of the
customers using the TV streaming application. A customer is interested to know about the
episodes they watched, the watch time per episode, the total number of seasons of the show
they watched etc. The customer also wants the streaming application to start streaming from
where they left off watching. The streaming application needs reports on which show is most
popular among customers, how many minutes a show is being watched etc. These reports can
be generated using UNNEST clause in queries.

Create table and Load data for the TV streaming application

Download the script acctstream_loaddata.sql and run it as shown below. This script creates the
table used in the example and loads data into the table.

Start your KVSTORE or KVLite and open the SQL.shell.

java -jar lib/kvstore.jar kvlite -secure-config disable
java -jar lib/sql.jar -helper-hosts localhost:5000 -store kvstore

Using the 1oad command, run the script.

load -file acctstream loaddata.sql

Example 1: Fetch the different shows watched by people in the US alone and the
number of people watching them

SELECT $show.showId, count(*) as cnt FROM stream acct $s,
unnest ($s.acct_data.contentStreamed[] as $show)

6-98

ORACLE

Chapter 6
Unnest Arrays & Maps

WHERE S$s.acct data.country = "USA" GROUP BY $show.showId
ORDER BY count (*) DESC

Output:

{"showId":15,"cnt":2}
{"showId":16,"cnt":2}

Example 2: For every show aired by the application, fetch the total watch time by all
users:

SELECT $show.showId, sum($show.seriesInfo.episodes.minWatched) AS total time
FROM stream acct $s, unnest($s.acct data.contentStreamed[] AS S$show)
GROUP BY $show.showId ORDER BY sum($show.seriesInfo.episodes.minWatched)

Output:

{"showId":26,"total time":225}
{"showId":16,"total time":440}
{"showId":15,"total time":642}

Note:

The unnest operator (that is the keyword unnest) can be omitted as it is a no-op
operator. The use of the UNNEST clause is recommended when there is an index on
the array(s) or map(s) that are being unnested. See Examples: Using Indexes for
Query Optimization for more information.

The below query without the UNNEST clause is equivalent to the above query (with the
UNNEST clause) and gives the same result.

SELECT $show.showId, sum($show.seriesInfo.episodes.minWatched) AS total time
FROM stream acct s, Ss.acct data.contentStreamed[] AS Sshow
GROUP BY S$show.showId ORDER BY sum($show.seriesInfo.episodes.minWatched)

Output:

{"showId":26,"total time":225}
{"showId":16,"total time":440}
{"showId":15,"total time":642}

Example 3: Fetch the total watch time of users per show and season

SELECT $show.showId, S$seriesInfo.seasonNum,
sum ($seriesInfo.episodes.minWatched) AS length
FROM stream acct n,

unnest (n.acct _data.contentStreamed[] AS $show,
$show.seriesInfo[] as $seriesInfo)

GROUP BY $show.showId, $seriesInfo.seasonNum
ORDER BY sum($seriesInfo.episodes.minWatched)

6-99

Joins

ORACLE

Chapter 6
Joins

Output:

{"showId":26,"seasonNum":2,"length":80}

{"showId":26,"seasonNum":1,"length":145}
{"showId":16,"seasonNum":2,"length":190}
{"showId":16,"seasonNum":1,"length":250}
{"showId":15,"seasonNum":2,"length":295}
{"showId":15,"seasonNum":1,"length":347}

Example 4: Using unnest with a non-path expression

This is an example where the unnesting expression is not a path expression, and as a result,
the UNNEST clause cannot be used. For example, a user may have multiple phone numbers
in the same area code. To determine the number of users having phone numbers in different
area codes, a particular user should be counted only once (even if the user has more than one
phone number with the same area code). The below query returns, for each area code, the
number of users having phone numbers in that area code. The query uses the seq distinct ()
function, which eliminates duplicate values.

SELECT S$area, count(*) AS cnt
FROM Users u, seq distinct (u.address.phones.area) AS Sarea
GROUP BY Sarea

Output:

{"area":408,"cnt":1}
{"area":831,"cnt":1}

To know more about seq disctinct function, see Functions on Sequences.

Oracle NoSQL Database does not currently support the general join operators found in more
traditional relational database systems. However, it does support a special kind of join among
tables that belong to the same table hierarchy. These joins can be executed efficiently,
because only co-located rows may match with each other. As a result, transferring very large
amounts of data among servers is avoided.

A JOIN clause is used to combine rows from two or more tables, based on a related column
between them. Joins are predominantly used in an Oracle NoSQL Database when a user is
trying to extract data from tables that have a hierarchical relationship between them.

Why do you need hierarchical tables in anOracle NoSQL Database?

As the Oracle NoSQL Database supports datatypes like an array, maps, etc, you may think
that for each parent row, its matching child rows could be stored in the parent row itself inside
an array or a map. However, doing so could lead to very large parent rows, resulting in bad
performance. This is especially true given the append-only architecture of the Oracle NoSQL
Database store, which implies that a new version of the whole row is created every time the
row is updated. So, child tables should be considered when each parent row contains a lot of
child rows and/or the child rows are large. If, in addition, the child rows are not accessed very
often or if they are updated very frequently, using child tables becomes even more appealing.

Hierarchical tables in an Oracle NoSQL Database are :

6-100

Chapter 6
Joins

* Very efficient for write-heavy workloads.

* More flexible for fine-grained authorization. Authorization is permission given to a user to
access a resource. In a fine-grained authorization, the access rights given to a user for a
resource may vary by conditions at run-time. In a hierarchical setup, access rights given to
the parent table might be different from the access rights given to the child table, and so it
is more flexible.

How do hierarchical tables work in an Oracle NoSQL Database?

The KVStore's replication nodes are organized into shards. A single shard contains multiple
replication nodes and a master node. A shard key is created to distribute data across the
Oracle NoSQL Database cluster for scalability. Records with the same shard key are co-
located for easy reference and access. In a hierarchical table, the child table inherits the
primary key columns of its parent table. This is done implicitly, without including the parent
columns in the CREATE TABLE statement of the child. All tables in the hierarchy have the same
shard key columns.

Joining tables in an Oracle NoSQL Database

There are two ways by which you can join tables in the same hierarchy in an Oracle NoSQL
Database.

e NESTED TABLES clause
e LEFT OUTER JOIN

Using NESTED TABLES clause to query multiple tables in the same

hierarchy

ORACLE

To query multiple tables in the same hierarchy, the NESTED TABLES clause must be used
inside the FROM clause.

Syntax

nested tables ::=

NESTED TABLES " (" single from table

[ANCESTORS " (" ancestor tables ")"]

[DESCENDANTS " (" descendant tables ")"]
H) n -
ancestor tables ::= nested from table ("," nested from table)*
descendant tables ::= nested from table ("," nested from table)*

nested from table ::= aliased_table_name [ON or_expression]

The NESTED TABLES clause specifies the participating tables and separates them in 3
groups. First the target table is specified. Then the ANCESTORS clause, if present, specifies a
number of tables that must be ancestors of the target table in the table hierarchy. Finally, the
DESCENDANTS clause, if present, specifies a number of tables that must be descendants of
the target table in the table hierarchy. For each table an alias may be specified (and if not, one
is created internally as described in the CREATE TABLE Statement section). The aliases must
be unique.

Semantically, a NESTED TABLES clause is equivalent to a number of left-outer-join operations
"centered" around the target table. The left-outer-join is an operation defined by standard SQL

6-101

ORACLE

Chapter 6
Joins

and supported by all major RDBMSs. For those not familiar with it already, we give a brief
description in the last section of this chapter.

Our implementation of left outer join diverges slightly from the standard definition. The
difference is in the "shape" of the results. Specifically, the result of a NESTED TABLES clause
is a set of records, all having the same type, where (a) the number of fields is equal to the
number of participating tables, (b) each field corresponds to one of the tables and stores either
a row from that table or NULL, (c) the name of each field is the alias used by the associated
table, and (d) the fields are ordered in the order that the participating tables would be
encountered in a depth-first traversal of the table hierarchy.

So, in a NESTED TABLES result the columns of each table are grouped inside a subrecord. In
contrast, the standard left-outer-join produces a “flat" result, where each result is a record/tuple
whose number of fields is the sum of all the columns in the participating tables.

The mapping of a NESTED TABLES to a number of left-outer-joins is best explained with a few
examples. For brevity, we will use the keyword LOJ in place of LEFT OUTER JOIN. Let's start
with the following create table statements:

create table A (ida integer, al string, primary key(ida))

create table A.B (idb integer, bl string, primary key(idb))

create table A.B.C (idc integer, cl integer, primary key(idc))

create table A.B.C.D (idd integer, dl double, primary key(idd))

create table A.B.E (ide integer, el integer, primary key(ide))

create table A.G (idg integer, gl string, primary key(idg))

create table A.G.J (idj integer, Jjl integer, primary key(idj))

create table A.G.H (idh integer, hl integer, primary key(idh))

create table A.G.J.K (idk integer, kl integer, primary key(idk))

The above statements create the following table hierarchy:

The NESTED TABLES clause specifies the join tree as a "projection” of the table hierarchy that
includes the tables in the NESTED TABLES. For example, the join tree for NESTED
TABLES(A.B) ancestors(A) descendants (A.B.C.D, A.B.E) is shown below. The arrows indicate
the direction of the LOJs (from the left table to the right table).

Now, let’s look at the following NESTED TABLES cases and their equivalent LOJ operations

1. NESTED TABLES (A.B.C c ancestors(A a, A.B b))

6-102

ORACLE

Chapter 6
Joins

is equivalent to

A.B.C ¢ LOJ A a ON c.ida = a.ida LOJ A.B b ON c.ida = b.ida AND
c.idb = b.idb

We can see that the join predicates are implicit in the NESTED TABLES clause, and they
are always on the primary key columns of the participating tables.

Because for each A.B.C row there is at most one matching A and A.B row, the number of
records in the result is the same as the number of A.B.C rows. This is always true when
the NESTED TABLES clause includes ancestors only. In this case, the effect of the
operation is to decorate the target table rows with the columns from the matching ancestor
rows (if any), without eliminating or adding any other rows.

NESTED TABLES (A a descendants(A.B b, A.B.C c))

is equivalent to

A a LOJ A.B b ON a.ida = b.ida
LOJ A.B.C ¢ ON b.ida = c.ida AND b.idb = c.idb

Another way to explain the semantics of the DESCENDANTS clause is to use the contains
relationship defined in Table Hierarchies section, but restricted to the descendant tables in
the join tree only. Let R be a target table row, and S(R) be the set containing all the
descendant rows that are reachable from R via the contains relationship (i.e., S(R) is the
transitive closure of contains applied on R). If S(R) is empty, a single record is returned for
R, that contains R and a NULL value for each of the descendant tables in the join tree.
Otherwise, let B(R) be the boundary subset of S(R), i.e., all rows in S(R) that do not have
any descendant rows in the join tree. Then, a result is generated for each row in B(R) as
follows: Let RR be a row in B(R) and T be its containing table. The result associated with
RR is a record containing all the rows in the path from R to RR and a NULL value for every
table that is not in the path from the target table to T.

NESTED TABLES (A a descendants(A.B b, A.G g))

is equivalent to

A a LOJ
(A.B b UNION A.G q)
ON (a.ida = b.ida or b.ida IS NULL) and (a.ida = g.ida or g.ida IS NULL)

As in case 2, target table A is joined with 2 descendant tables. However, because the
descendant tables come from 2 different branches of the join tree, we have to use a
UNION operation in the SQL expression above. This UNION unions both the rows and the
columns of tables A.B and A.G. So, if table A.B has N rows with n columns each and table
A.G has M rows with m columns, the result of the UNION has N + M rows, with n + m
columns each. The first N rows contain the rows of A.B with NULL values for the m
columns, and the following M rows contain the rows of A.G with NULL values for the n
columns. When matching A rows with the UNION rows, we distinguish whether a UNION
row comes from table A.B or A.g by checking whether g.ida is NULL or b.ida is NULL,
respectively.

Notice that the contains-base definition given in case 2 applies here as well.

6-103

Chapter 6
Joins

NESTED TABLES (A a descendants(A.B b, A.B.C ¢, A.B.E e, A.G.J.K k))

is equivalent to

A a LOJ

(

A.B b LOJ

(A.B.C c UNION A.B.E e)

ON (b.ida = c.ida and b.idb = c.idb or c.ida IS NULL) and
(b.ida = e.ida and b.idb = e.idb or e.ida IS NULL)

UNION

A.G.J.K k

)
ON (a.ida = b.ida or b.ida IS NULL) and (a.ida = k.ida or k.ida IS NULL)

This example is just a more complex version of case 3.

NESTED TABLES (A.B b ancestors(A a ON a.al = “abc”)
descendants (A.B.C ¢ ON c.cl > 10,

A.B.C.D d,

A.B.E e))

is equivalent to

(A.B b LOJ A a ON b.ida = a.ida and a.al = “abc”) LOJ

(

A.B.C ¢ LOJ A.B.C.D

ON c.ida = d.ida and c.idb = d.idb and c.idc = d.idc
UNION

E

)

ON (b.ida = c.ida and b.idb = c.idb or c.ida IS NULL) and
(b.ida = e.ida and b.idb = e.idb or e.ida IS NULL)

This is an example that just puts everything together. It contains both ANCESTOR and
DESCENDANT clauses, as well as ON predicates. The mapping from NESTED TABLES
to LOJs uses the same patterns as in the previous cases. The ON predicates are just and-
ed with the join predicates. In most cases, the ON predicates inside a NESTED TABLES
will be local predicates on the right table of an LOJ, but more generally, they can also
reference any columns from any table that is an ancestor of the table the ON appears next
to.

Example: Using NESTED TABLES clause to query multiple tables in the
same hierarchy

ORACLE

Let’s consider an application that tracks a population of users and the emails sent or received
by these users. Given that SQL for Oracle NoSQL Database does not currently support
general purpose joins, the emails are stored in a table that is created as a child of users, so
that queries can be written that combine information from both tables using the NESTED
TABLES clause. The create table statements for the two tables are shown below. Notice that it

6-104

Chapter 6
Joins

is possible for the application to receive emails that are not associated with any user in the
users table; such emails will be assigned a uid value that does not exist in the users table.

CREATE TABLE users (
uid INTEGER,

name string,

email address string,
salary INTEGER,
address json,

PRIMARY KEY (uid))

CREATE TABLE users.emails(

eid INTEGER,

sender address string, // sender email address
receiver address string, // receiver email address
time timestamp(3),

size INTEGER,

content string,

PRIMARY KEY (eid))

Here are two queries that can be written over the users and emails tables.
Example 6-99 Joining Tables

Count the number of emails sent in 2017 by all users whose salary is greater than 200K

SELECT count (eid)

FROM NESTED TABLES (

users

descendants (users.emails ON email address = sender address and
year (time) = 2017)

)

WHERE salary > 200

In the above query, we are using count(eid) rather than count(*) because there may exist users
with no emails or no sent emails. For such a user, the FROM clause will return a record where
the eid field will be NULL, and count(eid) will not count such a record.

Example 6-100 Joining Tables

For each email whose size is greater than 100KB and was sent by a user in the the users
table, return the name and address of that user.

SELECT name, address
FROM NESTED TABLES (users.emails ancestors (users))
WHERE size > 100 AND sender address = email address

In the above query will return duplicate results for any user who has sent more than one "large"
email. Currently, SQL for Oracle NoSQL Database does not support SELECT DINSTINCT, so
the duplicate elimination has to be performed by the application.

ORACLE 6105

Chapter 6
Joins

Left Outer Join (LOJ)

A Left Outer Join (LOJ) is one of the join operations that allows you to specify a join clause. It
preserves the unmatched rows from the first (left) table, joining them with a NULL row in the
second (right) table. This means all left rows that do not have a matching row in the right table
will appear in the result, paired with a NULL value in place of a right row.

Syntax of LOJ

loj from clause ::= FROM (aliased_table_name | left_outer_join_tables

left outer join table ::= LEFT OUTER JOIN single from table ON expression
left outer join tables ::= single from table left outer join table

(left outer join table)*

Semantics

The FROM clause specifies the participating tables and separates them into two groups. First,
the target table (the table which is on the left side of the LEFT OUTER JOIN clause) is
specified. Then a LEFT OUTER JOIN clause can be specified. The table to the left of the LEFT
OUTER JOIN keywords is called the left table, and the one to the right of LEFT OUTER JOIN
is the right table. The name of any participating table in the join may be followed by a table
alias. A table alias is a temporary name given to a table. Aliases are often used to make
column names more readable. If no alias is specified, one is created internally, using the name
of the table as it is spelled in the query, but with the dot(".") character replaced with '_" in the
case of child tables. A join predicate specifies the columns on which records from two or more
tables are joined. The expression after the ON clause lists all the join predicates between the
two tables. The left outer join tables clause specifies that the result of one LOJ can be
the target table for another LOJ.

Like other kinds of joins, the LOJ creates a result set containing pairs of matching rows from
the left and right tables. However, an LOJ will also preserve all rows of the left table, that is, a
left row that does not have a matching row will appear in the result, paired with a NULL value
in place of a right row.

Result set ordering in an LOJ:

In an LOJ, the order of fields in the result-set is always in top-down order. That means the
order of output in the result set is always from the ancestor table first and then the descendant
table. This is true irrespective of the order of the joins.

Different scenarios of using an LOJ

ORACLE

To understand different scenarios of using an LOJ, let us create a few hierarchical tables and
populate them with some data.

CREATE TABLE IF NOT EXISTS A (
ida INTEGER,
al string,
PRIMARY KEY (ida))

CREATE TABLE IF NOT EXISTS A.B (
idb INTEGER,

6-106

ORACLE

bl string,
PRIMARY KEY (idb))

CREATE TABLE IF NOT EXISTS A.B.C (
idc INTEGER,
cl string,
PRIMARY KEY (idc))

CREATE TABLE IF NOT EXISTS A.G (
idg INTEGER,
gl string,
PRIMARY KEY (idg))

INSERT INTO A VALUES (1, 'al')

INSERT INTO A VALUES (2, 'az2')

INSERT INTO A VALUES (3, 'a3')

INSERT INTO A.B VALUES(1, 1, 'bl')

INSERT INTO A.B VALUES(2, 2, 'b2')

INSERT INTO A.B.C VALUES(1l, 1, 1, 'cl')

INSERT INTO A.B.C VALUES(2, 2, 1, 'c2')

INSERT INTO A.B.C VALUES(3, 3, 1, 'c3")

INSERT INTO A.G VALUES(1, 1, 'gl')

INSERT INTO A.G VALUES(2, 2, 'g2')

Join with Descendants

Chapter 6
Joins

You can join a target table with its descendant. All rows of the target table(left table) will be
returned and for those rows where there is no match in the descendant's table(right table),

NULL values are populated as shown in the examples below.

Example 1: A target table A is joined with its child table A.B

SELECT * FROM A a LEFT OUTER JOIN A.B b
ON a.ida = b.ida ORDER BY a.ida

6-107

ORACLE

Chapter 6
Joins

Output:

{"a":{"ida":l/"al":"al"},"b":{"ida":l/"idb":l/"bl":"bl"}}
{"a":{"ida":2/ "alﬂ:"a2"},"b":{"ida":2/ "idb":2/ "bl":"bZ"}}
{"a":{"ida":j/ "al ":"a3"},"b":null}

Example 2: A target table A is joined with its descendant A.B.C

SELECT * FROM A a LEFT OUTER JOIN A.B.C c
ON a.ida = c.ida ORDER BY a.ida

Output:

{”a":{"idaﬂ:l/"al ”:Y'al "},”C":{"idaﬂ:l/"idbﬂ:l/"idcﬂ:llﬂcl ”.'"Cl "}}
{”a”:{”ida”:Z, "al ”:"a2"},”C”:{”ida”:Z, "idb":Z, "idcﬂ:llﬂcl ”.'”CZ”}}
{”a":{"idaYI:3, "al ”:”aE”},”C":{"ida":3/ "id H:3/ "idcﬂ:llﬂcl ”:”CE”}}

Join with Ancestors

You can join a target table with its ancestor. All rows of the target table(left table) will be
returned and for those rows where there is no match in the ancestor table(right table), NULL
values are populated as shown in the examples below.

Example 1: A target table A.B is joined with its parent table A

SELECT * FROM A.B b LEFT OUTER JOIN A a
ON a.ida = b.ida ORDER BY a.ida

Output:

{"a":{"ida":l/"al ":"al"},"b":{"ida":l/"idb":l/"bl ":"bl"}}
{"a":{"ida":2/ "al ":"a2"},"b":{"ida":2/ "idb":2/ "bl ":"b2"}}

Example 2: A target table A.B.C is joined with its ancestor A.B

SELECT * FROM A.B.C ¢ LEFT OUTER JOIN A.B b
ON c.ida = b.ida and c.idb = b.idb

Output:

{"b":null,"c":{"ida":3,"idb":3,"idc":1,"c1": "c3"}}
{”b”:{”ida”:Z, "id YI:2/ "bl ".'"b2"},"C".‘{"ida".’Z, "id YI:2/ "idcﬂ‘.l/"cl ”:Y'c2"}}
{”b":{"idaﬂ:l/"idb":l/"bl ”:"bl "},”c":{'YidaYl:l/IYidel:l/"idcﬂ‘.l/"cl ”.'"Cl "}}

Multiple LOJs in one SELECT statement

A target table(A) can be joined to its child(A.B) and the result of the join can be joined to the
descendant (A.B.C)of the target table. If the right table is a descendant table, the ON
expression should contain join predicates on all the primary key columns of the left table using
an "AND" clause. In the example given below, the left table has two primary key columns (ida
and idb). An AND clause is used with these two join predicates (b.ida = c.ida AND b.idb =
c.idb).

6-108

ORACLE

Chapter 6
Joins

Example 1: Multiple LOJs of the parent table with its descendants

SELECT * FROM A a LEFT OUTER JOIN A.B b ON a.ida = b.ida
LEFT OUTER JOIN A.B.C ¢ ON b.ida = c.ida AND b.idb = c.idb ORDER BY a.ida

Output:

{"a":{"ida":1,"al":"al"},"b": {"ida":1,"idb":1,"b1": "b1"},"C":
{"ida":1,"idb":1,"idc":1,"c1":"c1"}}
{"a":{"ida":2,"al":"a2"},"b": {"ida":2,"idb":2, "b1": "b2"},"C":
{"ida":2,"idb":2,"idc":1,"c1": "c2"}}
{"a":{"ida":3,"al":"a3"},"b":null, "c":null}

Example 2: Multiple LOJs of the parent table with its ancestors

SELECT * FROM A.B.C ¢ LEFT OUTER JOIN A a ON c.ida = a.ida
LEFT OUTER JOIN A.B b ON c.ida = b.ida AND c.idb = b.idb ORDER BY c.ida, c.idb

Output:

{"a":{"ida":1,"al":"al"},"b": {"ida":1,"idb":1,"b1": "b1"},"c":
{"ida":1,"idb":1,"idc":1,"c1":"c1"}]

{"a":{"ida":2,"al":"a2"},"b": {"ida":2,"idb":2,"b1": "b2"}, "C":
{"ida":2,"idb":2,"idc":1,"c1": "c2"}]
{"a":{"ida":3,"al":"a3"},"b":null,"c": {"ida":3,"idb":3,"idc":1,"c1": "c3"}}

Join with an ancestor and a descendant

You can also join a target table to an ancestor and a descendant. First, join the target table to
its ancestor and then join the result of this query with the descendant of the target table. Any
number of such joins is possible in a single SQL statement. In all the joins, all rows of the left
table will be returned and for those rows where there is no match in the right table, NULL
values are populated. If the right table is a descendant table, the ON expression should contain
join predicates on all the primary key columns of the left table using an "AND" clause.

Example: A target table A.B is joined with its ancestor A, the result of which is joined
with its descendant A.B.C

SELECT * FROM A.B b LEFT OUTER JOIN A a ON b.ida = a.ida AND a.al = "abc"
LEFT OUTER JOIN A.B.C c ON b.ida = c.ida AND b.idb = c.idb

Output:

{"a":null,"p":{"ida":1,"idb":1,"b1":"b1"},"C":
{"ida":1,"idb":1,"idc":1,"c1":"c1"}}
{"a":null,"p":{"ida":2,"idb":2,"b1": "b2"},"C":
{"ida":2,"idb":2,"idc":1,"c1": "c2"}}

Non-join predicate restrictions in an LOJ

An LOJ can additionally have non-join predicates (that is the columns that are not part of the
join) as a restriction to filter data. The result set of an LOJ depends on whether you place the
non-join predicate restriction in the ON clause or in the WHERE clause. The non-join predicate

6-109

Chapter 6
Joins

in an ON clause is just applied to the join operation, whereas the non-join predicate in the
WHERE clause will apply to the entire results-set.
Example: Non-join predicate in the WHERE clause

If a non-join predicate is placed in the WHERE clause, the restriction is applied to the result of
the outer join. That is, it removes all the rows for which the WHERE condition is not TRUE. In
the example below, you get only one row that matches the WHERE condition as the result set.

SELECT * FROM A a LEFT OUTER JOIN A.B b ON a.ida = b.ida
WHERE b.ida > 1 ORDER BY a.ida

Output:

{"a ": {"ida ":2/ "al ": "a2"}, "b": {"ida ":2/ "idb":2/ "bl ": "b2"}}

Example: Non-join predicate in the ON clause

If you move the non-join predicate restriction to the ON clause, the result set includes all the
rows that meet the ON clause condition. Rows from the right outer table that do not meet the
ON condition are populated with NULL values as shown below.

SELECT * FROM A a LEFT OUTER JOIN A.B b ON a.ida = b.ida
AND b.ida > 1 ORDER BY a.ida

Output:

{"a":{"ida":l/"al":"al"},"b":null}
{"a":{"ida":2/ "al":"a2"},"b":{"ida":2/ "idb":2/ "bl":"b2"}}
{"a":{"ida":j/ "al ":"aBI'},"b":null}

Limitations of LOJ
There are some limitations while using an LOJ in an Oracle NoSQL Database.
Joins with Siblings
LOJs in an Oracle NoSQL Database cannot be applied to siblings. LOJ can be used in tables

that only have a direct hierarchical relationship. When you try to join siblings, you get an error
as shown below.

SELECT * FROM A.B b LEFT OUTER JOIN A.G g ON b.ida=g.ida

Output:

Error handling command select * from A.B b LEFT OUTER JOIN A.G g on
b.ida=g.ida:

Error: at (1, 40) Table A.G is neither ancestor nor descendant of the target
table A.B

ORACLE 6110

ORACLE

Chapter 6
Joins

Order of tables in an LOJ

While using multiple joins in a single statement, the tables in an LOJ must appear in top-down
order after the target table. A child table cannot be to the left of its parent in a multiple join
operation.

Example: Multiple LOJ of the parent table with its ancestors in the wrong order

In the example below, an error is thrown as the parent table A cannot be at the right of its
descendant A.B.

SELECT * FROM A.B.C c¢ LEFT OUTER JOIN A.B b ON c.ida = b.ida and c.idb =
b.idb
LEFT OUTER JOIN A a on c.ida = a.ida

Output:

Error handling command SELECT * FROM A.B.C ¢ LEFT OUTER JOIN A.B b ON c.ida =
b.ida

and c.idb = b.idb LEFT OUTER JOIN A a ON c.ida = a.ida:

Error: at (3, 22) Table A is not descendant of table A.B.

Tables in left-outer-joins must appear in top-down order after the target
table

Join predicates

In an LOJ, the ON expression of the right table should contain all the required join predicates
that link the parent and child tables. Missing any join predicate results in an exception.

Example 1: If the right table is an ancestor of the target table, the ON expression should
contain join-predicates on all the primary key columns of the right table.

In the example below, one of the join predicates on the primary key column "idb" of the right
table is missing which throws an error.

SELECT * FROM A.B.C c LEFT OUTER JOIN A a ON c.ida = a.ida
LEFT OUTER JOIN A.B b ON c.ida = b.ida

Output:

Error handling command SELECT * FROM A.B.C ¢ LEFT OUTER JOIN A a ON c.ida =
a.ida

LEFT OUTER JOIN A.B b ON c.ida = b.ida:

Error: A join predicate is missing from ON clause of table A.B : c.idb = b.idb

Example 2: If the right table is a descendant of the target table, the ON expression
should contain join-predicates on all the primary key columns of the left table.

In the example below, one of the join predicates on the primary key column "idb" of the left
table is missing which throws an error.

SELECT * FROM A.B b LEFT OUTER JOIN A.B.C c ON b.ida = c.ida

6-111

Chapter 6
Joins

Output:

Error handling command SELECT * FROM A.B b LEFT OUTER JOIN A.B.C c ON b.ida =
c.ida:

Error: A join predicate is missing from ON clause of table A.B.C : b.idb =
c.idb

Nested tables Vs LOJ

To query multiple tables in the same hierarchy, you can also use the NESTED TABLES clause.
To get more details about Nested tables and using it to join a parent table with its child table,
see Using NESTED TABLES clause to query multiple tables in the same hierarchy

Table 6-9 Nested Tables Vs LOJ
]

Nested Tables LOJ

Queries multiple tables in the same hierarchy Queries multiple tables in the same hierarchy
Not an ANSI-SQL Standard ANSI-SQL Standard

Supports sibling tables join Does not support sibling table joins

Example: Using Left Outer Joins

ORACLE

Let us take an example of an online shopping portal that uses the Oracle NoSQL Database.
This application has millions of customers who do online shopping and add things they want to
buy in a shopping cart. Finally, the order is processed and billed. The shopping pattern of
customers can be analyzed using this application.

Here there are three tables in a parent-child relationship. The customerprofile table with all
the personal information of customers is the top-level table. Shoppingcart which lists the items
picked by the customer, their quantity, and the individual price of each item is the descendant
table of customerprofile . Order which has the total order quantity and the total order value. is
the descendant table of shoppingcart.

Let us create these tables and populate some data into them.

CREATE TABLE customerprofile (
customer id INTEGER,
customer name STRING,
customer address STRING,
customer phone INTEGER,
PRIMARY KEY (customer id))

CREATE TABLE customerprofile.shoppingcart (
cart id STRING,
product name STRING,
product quantity INTEGER,
product price INTEGER,
PRIMARY KEY (cart id))

CREATE TABLE customerprofile.shoppingcart.order (
order id INTEGER,
order quantity INTEGER,

6-112

ORACLE

order total INTEGER,
PRIMARY KEY(order_id))

INSERT
INSERT
INSERT
INSERT
INSERT

INTO
INTO
INTO
INTO
INTO

customerprofile
customerprofile
customerprofile
customerprofile
customerprofile

INSERT
INSERT
INSERT
INSERT
INSERT

INTO
INTO
INTO
INTO
INTO

INSERT
INSERT
INSERT
INSERT

INTO
INTO
INTO
INTO

Examples using LOJ

customerprofile.
customerprofile.
customerprofile.
customerprofile.
customerprofile.

customerprofile.
customerprofile.
customerprofile.
customerprofile.

VALUES
VALUES
VALUES
VALUES
VALUES

shoppingcart
shoppingcart
shoppingcart
shoppingcart
shoppingcart

shoppingcart.
shoppingcart.
shoppingcart.
shoppingcart.

(
(
(
(
(

1,"Aana","Blr",111111111)
2,"Bobby", "Chn",22222222)
3,"Celin", "Del",33333333)
4,"Diana","Blr",44444444)

5,"Elizabeth", "Mum", 55555555)

VALUES
VALUES

VALUES
VALUES

VALUES
VALUES
VALUES
VALUES

1,'cl',
1,'c2',
2,'c3"',
3,'cd',

order
order
order
order

(
(
(
(

Use case 1: Fetch all customer details and their order history

SELECT * FROM customerprofile a LEFT OUTER JOIN

customerprofile.shoppingcart.order c

ON a.customer id = c.customer id ORDER BY a.customer id

Output:

{"a":

(1,'cl',"Shampoo",2,300)
(1,'c2',"Soap",3,80)
VALUES (2, 'c3', "Milk",5,100)
(3,'cd',"Chips",2,50)
(4,'ch5',"Bread", 1,40)

100,2,600
101,3,240
102,5,500

)
)
)
103,2,100)

Chapter 6
Joins

{"customer id":1,"customer name":"Aana","customer address":"Blr","customer pho

ne":111111111},"c":

{"customer id":1,"cart id":"cl","order 1d":100,"order quantity":2,"order total

":600}}
{"a":

{"customer id":1,"customer name":"Aana","customer address":"Blr","customer pho

ne":111111111},"c":

{"customer id":1,"cart id":"c2","order 1d":101,"order quantity":3,"order total

":240}}
{nan:

{"customer id":2,"customer name":"Bobby","customer address":"Chn","customer ph

one':22222222},"c":

{"customer id":2,"cart id":"c3","order 1d":102,"order quantity":5,"order total

":500}}
{"a":

{"customer id":3,"customer name":"Celin","customer address":"Del","customer ph

one":33333333},"c":

{"customer id":3,"cart id":"c4","order 1d":103,"order quantity":2,"order total

":100}}
{"a":

{"customer id":4,"customer name":"Diana","customer address":"Blr","customer ph

6-113

Chapter 6
Joins

one'":44444444},"c":null}

{"a":

{"customer id":5,"customer name":"Elizabeth","customer address":"Mum","custome
r phone":55555555},"c":null}

Use case 2: Fetch all customers who have shopped for at least 3 pieces of the same item

SELECT * FROM customerprofile a LEFT OUTER JOIN customerprofile.shoppingcart b
ON a.customer id = b.customer id WHERE product quantity >2

Output:

{"a":

{"customer id":1,"customer name":"Aana","customer address":"Blr","customer pho
ne":111111111},"b":

{"customer id":1,"cart id":"c2","product name":"Soap","product quantity":3,"pr
oduct price":80}}

{"a":

{"customer id":2,"customer name":"Bobby","customer address":"Chn","customer ph
one":22222222},"b":

{"customer id":2,"cart id":"c3","product name":"Milk","product quantity":5,"pr
oduct price":100}}

Use case 3: Fetch the details of only those customers who have at least shopped for a value of
500

SELECT * FROM customerprofile a LEFT OUTER JOIN
customerprofile.shoppingcart.order b
ON a.customer id = b.customer id WHERE order total >=500

Output:

{na ".

{"customer id":1,"customer name":"Aana","customer address":"Blr","customer pho
ne":111111111},

"b":

{"customer id":1,"cart id":"cl","order 1d":100,"order quantity":2,"order total
":600}}

{na ".

{"customer id":2,"customer name":"Bobby","customer address":"Chn","customer ph
one":22222222},

"b":

{"customer id":2,"cart id":"c3","order 1d":102,"order quantity":5,"order total
":500}}

ORACLE 6114

Data Row Management

ORACLE

This chapter describes data rows and inserting and managing data rows in Oracle NoSQL

Database.

This chapter contains the following topics:

INSERT Statement

Inserting Rows into JSON Collection Tables

Inserting Rows with an IDENTITY Column

Inserting rows into a table with a UUID column

Inserting rows with an MR_COUNTER column

Upsert statement

Updating rows of a table with a UUID column
DELETE Statement
UPDATE Statement

— Update Clauses

*

*

*

*

*

SET Clause
ADD Clause
PUT Clause
REMOVE Clause
SET TTL Clause

— Updating rows with an IDENTITY Column
— Updating rows with an MR_COUNTER column

— Example: Updating Rows

— Example: Updating JSON Data

— Example: Updating JSON collection tables

— Example: Updating TTL

— Example: Updating IDENTITY defined as GENERATED ALWAYS

— Example: Updating IDENTITY defined as GENERATED BY DEFAULT
JSON Collection Table Example

INSERT Statement

The INSERT statement is used to construct a new row and add it in a specified table.

7-1

ORACLE

Chapter 7
INSERT Statement

Syntax

insert statement ::=
[variable_declaration]
INSERT INTO table_name
[[AS] table_alias]
("("id (", id)* ")"]
VALUES " (" insert clause ("," insert clause)* ")"
[SET TTL ttl_clause]
[returning clause]

insert clause ::= DEFAULT | expression
returning clause ::= RETURNING select_list
Semantics

The row will be inserted only if it does not exist already.

Insert statements may start with declarations of external variables that are used in the rest of
the statement. See Variable Declaration. However, contrary to queries, external variables can
be used in inserts without being declared. This is because inserts do not query any data, and
as result, knowing the type of external variables in advance is not important as there isn’'t any
query optimization to be done.

Optional column(s) may be specified after the table name. This list contains the column names
for a subset of the table’s columns. The subset must include all the primary key columns. If no
columns list is present, the default columns list is the one containing all the columns of the
table, in the order they are specified in the CREATE TABLE Statement section.

The columns in the columns list correspond one-to-one to the expressions (or DEFAULT
keywords) listed after the VALUES clause (an error is raised if the number of expressions/
DEFAULTs is not the same as the number of columns). These expressions/DEFAULTs
compute the value for their associated column in the new row. Specifically, each expression is
evaluated and its returned value is cast to the type of its associated column. The cast behaves
like the cast expression as described in the Cast Expression section. An error is raised if an
expression returns more than one item. If an expression returns no result, NULL is used as the
result of that expression. If instead of an expression, the DEFAULT keyword appears in the
VALUES list, the default value of the associated column is used as the value of that column in
the new row. The default value is also used for any missing columns, when the number of
columns in the columns list is less than the total number of columns in the table.

The expressions in the VALUES list may reference external variables, which unlike query
statements, do not need to be declared in a declarations section.

Following the VALUES list a SET TTL clause may be used to set the expiration time of the new
row. As described in the CREATE TABLE Statement section, every row has an expiration time,
which may be infinite, and which is computed in terms of a Time-To-Live (TTL) value that is
specified as a number of days or hours. Specifically, for a TTL value of N hours/days, where N
is greater than zero, the expiration time is computed as the current time (in UTC) plus N hours/
days, rounded up to the next full hour/day. For example, if the current time is
2017-06-01T10:05:30.0 and N is 3 hours, the expiration time will be 2017-06-01T14:00:00.0. If
N is 0, the expiration time is infinite.

As shown in the syntax, the SET TTL clause comes in two flavors. When the USING TABLE
DEFAULT syntax is used, the TTL value is set to the table default TTL that was specified in the

7-2

ORACLE

Chapter 7
INSERT Statement

CREATE TABLE statement. Otherwise, the SET TTL contains an expression, which computes
a new TTL value. If the result of this expression is empty, the default TTL of the table is used.
Otherwise, the expression must return a single numeric item, which is cast to an integer N. If N
is negative, it is set to 0. To the right of the TTL expression, the keyword HOURS or DAYS
must be used to specify whether N is a number of hours or days, respectively.

If the insert statement contains a SET TTL clause, an expiration time is computed as described
above and applied to the row being inserted. If no SET TTL clause is used, the default table
TTL is used to compute the expiration time of the inserted row. In case of MR Tables, when this
row is replicated to other regions, its expiration time is also replicated as an absolute
timestamp value. Therefore, the replicated rows will expire along with the original row,
irrespective of when they were replicated. If the same row is inserted with a TTL value in
multiple regions, then the TTL value will be set in all regions to the value held in the row with
the greatest write timestamp.

The last part of the insert statement is the RETURNING clause. If not present, the result of the
update statement is a record with a single field whose name is "NumRowslInserted" and whose
value is the number of rows inserted: 0 if the row existed already, or 1 otherwise. Otherwise, if
there is a RETURNING clause, it acts the same way as the SELECT clause: it can be a "™*", in
which case, a full row will be returned, or it can have a list of expressions specifying what
needs to be returned. In the case of an INSERT where no insertion is actually done (because
the row exists already), the RETURNING clause acts on the existing row. Otherwise, the
RETURNING clause acts on the new row.

Example 1: Using DEFAULT values while inserting data

The following statement inserts a row to the users table from CREATE TABLE Statement.
Notice that the value for the expenses column will be set to NULL, because the DEFAULT
clause is used for that column.

INSERT INTO users VALUES (

10,

"John",

"Smith",

[{"first" : "Johny", "last" : "BeGood"}],

22,

45000,

{ "street" : "Main", "number" : 10, "city" : "Reno", "state" : "NV"},
[30, 55, 43 71,

DEFAULT

Example 2: Using a RETURNING clause in an INSERT statement.

A RETURNING clause acts the same way as the SELECT clause. A "*", in the example below
returns the full row that got inserted.

INSERT INTO users VALUES (
20,
"Mary",
"Ann",
null,
43,
90000,
{ "street" :
null,

"Main", "number" : 89, "city" : "San Jose", "state" : "CA"},

7-3

ORACLE

Chapter 7

INSERT Statement
DEFAULT
) RETURNING *
Output:
{"id":20,"firstName":"Mary", "lastName":"Ann", "otherNames":null,
"age":43,"income":90000, "address": {"city":"San Jose", "number":89,
"state":"CA","street":"Main"}, "connections":null, "expenses":null}
Example 3: Set a TTL for a row while inserting a row
In the example below, the expiration of the row that is inserted is set to 2 days.
INSERT INTO users VALUES (
30,
"Peter",
"Paul" ,
null,
25,
53000,
{ "street" "Main", "number" : 3, "city" "Fresno", "state" "CA"},
null,
DEFAULT

) SET TTL 2 days

Output:

{"NumRowsInserted":1}

Insert data into a child table:

A child table inherits the primary key columns of its parent table. This is done implicitly, without
including the parent columns in the CREATE TABLE statement of the child. So the child table
has additional columns pertaining to the primary key of the parent table. While inserting data
into a child table, the value for the primary key of the parent table should also be inserted.

Example: The description of the child table userdet is shown below.

desc as Jjson table users.userdet

"json _version" : 1,
"type" "table",
"name" "userdet",
"parent" "users",
"regions" : {
"2" . "FRA",
"1" . "LON"
b
"fields" : [{
"name" "id",
"type" "INTEGER",
"nullable" false

7-4

Chapter 7
Inserting Rows into JSON Collection Tables

oo A
"name n : "pan" ,
"type" : "INTEGER",
"nullable" : false

b Ao

"name" : "address",
"type" : "STRING",
"nullable" : true

oo A
"name" : "email",
"type" : "STRING",
"nullable" : true

o

"primaryKey" : ["id", "pan"],

"shardKey" : ["id"]

Here "id" is the primary key of the parent table. While inserting data, provide the value for the
"id" column. Else an error is thrown.

insert into users.userdet values(1l,100,"bangalore","testlone.com")

Output:

{"NumRowsInserted":1}

When you retrieve the data from the child table, the primary key of the parent table is also
retrieved.

SELECT * FROM users.userdet

Output:

{"id":1,"pan":100, "address":"bangalore", "email":"testlone.com"}

Inserting Rows into JSON Collection Tables

JSON collection tables provide the flexibility to declare primary key fields during the table
creation. The value of primary key fields along with the other fields in the document must be
supplied during the insertion of data.

When you insert data, each row is inserted as a single document containing any number of
JSON fields. To insert data, you must either supply the values for the fields inside a JSON
object ({}) or state them explicitly.

Use one of the following methods to insert the data into a JSON collection table:

* Using explicitly declared field names: You must explicitly supply the primary key field
followed by the top-level JSON field names in the INSERT statement. You include the
corresponding values using the values clause. The first value must be the value
associated with the primary key field. This must be followed by the values associated with
the corresponding field names supplied for the JSON document.

ORACLE .

ORACLE

Chapter 7
Inserting Rows into JSON Collection Tables

Example 7-1 Insert data into the JSON collection table created for a shopping
application through explicit declaration of field names

INSERT into storeAcct (contactPhone, firstName, lastName, address, cart)

values ("1817113382", "Adam", "Smith", {"street" : "Tex Ave", "number" : 401,
"city" : "Houston", "state" : "TX", "zip" : 95085}, [{"item" : "handbag",
"quantity" : 1, "priceperunit" : 350}, {"item" : "Lego", "quantity" : 1,

"priceperunit" : 5500}7)

Explanation: In the above example, you insert the shopper's data into the shopping
application table by supplying the contactPhone as the primary key followed by other details of
the shopper as JSON fields. The shopper's details are stored internally as JSON data. Notice
that in JSON collection tables, you do not supply a column name for the document itself, only
provide the JSON fields in the document.

You can add another row to the same table with additional fields.

INSERT into storeAcct(contactPhone, firstName, lastName, gender, address,
notify, cart, wishlist) values("1917113999", "Sharon", "Willard", "F",

{"street" : "Maine", "number" : 501, "city" : "San Jose", "state" : "San
Francisco", "zip" : 95095},"yes", [{"item" : "wallet", "quantity" : 2,
"priceperunit" : 950}, {"item" : "wall art", "quantity" : 1, "priceperunit"
9500}], [{"item" : "Tshirt", "priceperunit" : 500}, {"item" : "Jenga",

"priceperunit" : 850}])

In the above statement, you insert the shopper's data with additional fields such as gender,
notify, and wishlist as compared with the first inserted row. The wishlist field is a JSON
array that includes the details of items wishlisted by the shopper.

* Using positional values: You must supply the primary key field values followed by
document fields as name/value pairs encapsulated in a single JSON object. The fields in
the document must adhere to JSON data type format. Any non-conformance will lead to
exceptions and display error messages.

Example 7-2 Insert data into the JSON collection table created for a shopping
application by supplying positional values

INSERT into storeAcct values("1817113382", {"firstName" : "Adam",
"lastName" : "Smith", "address" : {"street" : "Tex Ave", "number" : 401,
"city" : "Houston", "state" : "TX", "zip" : 95085}, "cart" : [{"item"
"handbag", "quantity" : 1, "priceperunit" : 350}, {"item" : "Lego",

"quantity" : 1, "priceperunit" : 5500}]})

Explanation: In this insert statement, you insert the same data from example 1 above using
the positional value of the elements. You use the values clause followed by the value for the
primary key field and then a JSON object {} containing the rest of the name/value pairs for the
document.

Additional examples:

Example 7-3 Insert data into the JSON collection table for a shopping application with
an MR_COUNTER

INSERT into storeAcctMR(contactPhone, firstName, lastName, address, cart,
mycounter) values("1817113382", "Adam", "Smith", {"street" : "Tex Ave",
"number" : 401, "city" : "Houston", "state" : "TX", "zip" : 95085},

7-6

ORACLE

Chapter 7
Inserting Rows into JSON Collection Tables

[{"item" : "handbag", "quantity" : 1, "priceperunit" : 350}, {"item" : "Lego",
"quantity" : 1, "priceperunit" : 5500}], 0)

Explanation: While inserting data into the JSON collection table with an MR_COUNTER, you
must supply a value of 0 for the MR_COUNTER.

Note:

e If you supply a non-zero value, the system will ignore the supplied value and
insert the value O.

e You can't supply the keyword DEFAULT in the INSERT clause for
MR_COUNTER value.

e The system returns an error if the MR_COUNTER value is skipped or DEFAULT
is supplied in the INSERT statement. For more details, see Inserting rows into a
JSON column having MR_COUNTER data type.

SELECT contactPhone, firstName, mycounter FROM storeAcctMR where contactPhone
= "1817113382"

Output:

{
"contactPhone" : "1817113382",
"firstName" : "Adam",
"mycounter" : 0

}

Example 7-4 Insert shopper's data with more than one primary key field in the JISON
collection table

INSERT into storeAcctComposite (contactPhone, firstName, lastName, address,
orders) values("1417114488", "Doris", "Martin", {"Dropbox" : "Presidency
College", "city" : "Kansas City", "state" : "Alabama", "zip" : 95065})
RETURNING *

Explanation: The storeAcctComposite table includes two primary key fields, the
contactPhone field and the id field. For table creation, see JSON collection composite keys.
As the order IDs for the purchased items are autogenerated in the shopping application, the id
field is declared as an IDENTITY column while creating the table. While inserting data, you
must supply the contactPhone primary key value along with document fields. If you do not
supply the id field value, the system autogenerates the IDENTITY field value. For more details
on the IDENTITY column, see Inserting Rows with an IDENTITY Column.

Output:

"contactPhone" : "1417114488",
"id" 1,
"address" : {

7-7

Chapter 7
Inserting Rows with an IDENTITY Column

"Dropbox" : "Presidency College",
"city" : "Kansas City",
"state" : "Alabama",
"zip" : 95065
}I
"firstName" : "Doris",
"lastName" : "Martin"

Using APIs to Insert Data into JSON Collection Tables

You can create a JSON collection table and insert data into it using supported language drivers
(SDKs). You can define the primary key fields using an allowed subset of NoSQL data types.
For more information, see Supported data type.

The language SDKs handle the creation of JSON collection tables or the insertion of data in
the same way as fixed schema tables. For examples on the creation of JSON collection tables
using APIs and inserting data into the tables, see Using APIs to create tables in Creating a
table section of the Developer's Guide.

Inserting Rows with an IDENTITY Column

The system generates an IDENTITY column value when the keyword DEFAULT is used as the
insert_clause for the IDENTITY column. Here are a few examples that show INSERT
statements for both flavors of the IDENTITY column — GENERATED BY DEFAULT and
GENERATED ALWAYS.

How you create an IDENTITY field affects what happens when you INSERT values. You
cannot change the IDENTITY value of a column that is a primary key.

Example 7-5 Create a table with an IDENTITY field as GENERATED ALWAYS Where the
IDENTITY field is not a primary key

CREATE Table Test SGSqlInsert2(

id INTEGER,

name STRING,

deptId INTEGER GENERATED ALWAYS AS IDENTITY (CACHE 1),
PRIMARY KEY (id))

INSERT INTO Test SGSqlInsert2 VALUES (148, 'sally', DEFAULT)
INSERT INTO Test SGSqlInsert2 VALUES (250, 'joe', DEFAULT)
INSERT INTO Test SGSqlInsert2 VALUES (346, 'dave', DEFAULT)

The above INSERT statement will insert the following rows. The system generates values 1, 2,
and 3 for IDENTITY column deptid.

148, 'sally', 1

250, 'joe', 2
346, 'dave', 3

ORACLE .

ORACLE

Chapter 7
Inserting Rows with an IDENTITY Column

To get the value of the generated dept1d for future reference in one statement, use the
returning deptId clause as follows:

INSERT INTO Test SGSgllInsert2 VALUES (600,
6
INSERT INTO Test SGSgllInsert2 VALUES (700,
7

'jabba', DEFAULT) returning deptId

'bubba', DEFAULT) returning deptId

Using the following INSERT statement causes an exception since the user supplied a value of
200 for an IDENTITY GENERATED ALWAYS column. You cannot specify any value for any
IDENTITY field you define as GENERATED BY DEFAULT AS IDENTITY.

INSERT INTO Test SGSglInsert2 VALUES (1, 'joe', 200)

Output:

Error handling command INSERT INTO Test SGSqllInsert2 VALUES (1,
Error: at

'Jjoe', 200):
(1, 48) Generated always identity column must use DEFAULT construct.

Example 7-6 Create a table with a DeptID integer field, GENERATED BY DEFAULT AS
IDENTITY, and make it the primary and shard key

CREATE TABLE Test SGSqlInsert Default (
ID INTEGER,
NAME STRING,
DeptID INTEGER GENERATED BY DEFAULT AS IDENTITY (
START WITH 1
INCREMENT BY 1
MAXVALUE 100),

PRIMARY KEY (SHARD (DeptID), ID))

The following statements show how to insert values into table Test SGSqlInsert Default. In
this case, since the column ID is not an IDENTITY, you can assign integer values to the field:

INSERT INTO Test_SGSqunsert_Default VALUES (100, 'tim', DEFAULT)

INSERT INTO Test SGSqlInsert Default VALUES (200, 'dave', 210)

INSERT INTO Test SGSqlInsert Default VALUES (300, 'sam', 310)

INSERT INTO Test SGSqlInsert Default VALUES (400, 'Jennifer', DEFAULT)
(

INSERT INTO Test SGSqlInsert Default VALUES (500, 'Barbara', 2)

These sample statements insert the following rows into the database.

300, 'sam', 310
100, 'tim', 1

400, 'Jennifer', 2
500, 'Barbara', 2
200, 'dave', 210

Since you specified two values as DEFAULT in your INSERT statements, the SG supplies them,
as 1 and 2. The other values are inserted as you specify (210, 310, and 2). Each value is

7-9

Chapter 7
Inserting rows into a table with a UUID column

acceptable, even though one results in two DeptID values the same (2 supplied from a
DEFAULT, and 2 as a value you supply).

Because you defined the IDENTITY column as GENERATED BY DEFAULT AS IDENTITY, the SG
supplies a value only when you do not specify a value. Specifying values 210, 310, or 2 is
correct. The system neither checks for duplicates, nor enforces uniqueness for GENERATED BY
DEFAULT AS IDENTITY column values. It is the application’s responsibility to ensure that there
are no duplicate values if that is a requirement.

Example 7-7 Inserting rows into a table with primary key as IDENTITY Column
GENERATED BY DEFAULT

CREATE TABLE Test SGSglInsert Default id (
id INTEGER GENERATED BY DEFAULT AS IDENTITY,
name STRING,
deptId INTEGER,

PRIMARY KEY (id))

INSERT INTO Test SGSqllInsert Default id VALUES (100, 'tim', 3)

INSERT INTO Test SGSqllnsert Default id VALUES (DEFAULT, 'dave', 210)
INSERT INTO Test SGSqgllInsert Default id VALUES (300, 'sam', 310)

INSERT INTO Test SGSqllInsert Default id VALUES (500, 'Jennifer', 410)
INSERT INTO Test SGSqlInsert Default id (name,deptId) VALUES ("Abby", 510)

The above statements will insert the following rows into the database. Notice that when you
supply DEFAULT for the id field, the SG auto-generates an id value because the primary key
field (id) is defined as the IDENTITY column. Similarly, in the last insert statement where you
supply only the name and deptID field values, the SG auto-generates the id value.

{"id":2, "name" : "Abby", "deptId":4}
{"id":300, "name":"sam", "deptId":310}
{"id":100, "name":"tim", "deptId":3}
{"id":1, "name" :"dave", "deptId":210}
{"id":500, "name":"Jennifer", "deptId":410}

Inserting rows into a table with a UUID column

The system generates a UUID column value when the keyword DEFAULT is used as the
insert_clause for the UUID column.

Here are a few examples that show INSERT statements for both flavors of the UUID column —
GENERATED BY DEFAULT and when no DEFAULT CLAUSE is specified in a CREATE
TABLE statement. The keyword DEFAULT in the INSERT statement applies only when the UUID
column is declared as GENERATED BY DEFAULT.

Example 7-8 Inserting rows into a table with a UUID column without GENERATED BY
DEFAULT clause

CREATE TABLE myTable (id STRING AS UUID, name STRING, PRIMARY KEY (id))

ORACLE 7-10

Chapter 7
Inserting rows into a table with a UUID column

Output:

Statement completed successfully

INSERT INTO myTable values("a81lbc8lb-dead-4e5d-abff-90865d1lel3bl"”, "testl")

Output:

Statement completed successfully

In the above example, the id column in the table myTable has no "GENERATED BY
DEFAULT" defined. Therefore, whenever you insert a new row, you need to explicitly specify
the value for the id column.

Example 7-9 Inserting rows into a table with a UUID column using the random uuid
function

The value for a UUID column can also be generated using the random uuid function. See
Function to generate a UUID string.

INSERT INTO myTable values(random uuid(),"test2")

Output:

{"NumRowsInserted":1}
1 row returned
Statement completed successfully

select * from myTable

Output:

{"id":"d576ab3b-8a36-4dff-b50c-9d9d4ca6072c", "name" : "test2"}
{"id":"a81bc81lb-dead-4e5d-abff-90865d1lel3bl", "name" :"testl"}
2 rows returned

Statement completed successfully

In this example, a randomly generated UUID is fetched using the random_uuid() function. This
value is used in the INSERT statement.

Example 7-10 Inserting rows into a table with a UUID column with GENERATED BY
DEFAULT clause

CREATE TABLE myTable (id STRING AS UUID GENERATED BY DEFAULT,name STRING,
PRIMARY KEY (id))

ORACLE 7-11

Chapter 7
Inserting rows with an MR_COUNTER column

Output:

Statement completed successfully

INSERT INTO myTable VALUES (default,"testl") returning id

Output:

{"id":"e7fbab63-7730-4ec9-be73-a62e33ea73c3"}
Statement completed successfully

In the above example, the id column in myTable has "GENERATED BY DEFAULT" defined.
The system generates a UUID column value when the keyword DEFAULT is used in the
insert_clause for the UUID column. The system generated UUID value is fetched using the
returning clause.

Inserting rows with an MR_COUNTER column

ORACLE

While data is inserted in a multi-region table with an MR_COUNTER column, the system
generates a default value of 0 for the MR_COUNTER column value in the following two cases.

* When the keyword DEFAUL is used in the insert_clause for the MR_COUNTER column.

e When the MR_COUNTER column is skipped in the INSERT clause.

Example 1: Specifying DEFAULT clause while inserting data into an MR_COUNTER
column

CREATE Table myTable(name STRING,
count INTEGER AS MR COUNTER,
PRIMARY KEY (name)) IN REGIONS DEN, LON

INSERT INTO myTable VALUES ("Bob", DEFAULT)

SELECT * FROM myTable

Output:

{"name" :"Bob","count":0}

7-12

ORACLE

Chapter 7
Inserting rows with an MR_COUNTER column

Example 2: Skip the MR_COUNTER column while inserting data into a multi-region table
CREATE Table myTable(name STRING,

count INTEGER AS MR COUNTER,
PRIMARY KEY (name)) IN REGIONS DEN, LON

INSERT INTO myTable(name) VALUES ("Chris')

SELECT * FROM myTable

Output:

{"name":"Chris","count":0}

Example 3: Error when MR_COUNTER column is skipped and no DEFAULT clause is
given

If no DEFAULT clause is specified for the MR_COUNTER column and if the column is not
skipped from the INSERT clause, an error is thrown as shown below.

CREATE Table myTable(name STRING,
count INTEGER AS MR COUNTER,
PRIMARY KEY (name)) IN REGIONS DEN, LON

INSERT INTO myTable VALUES ("Chris")

Output:

Error handling command execute 'INSERT INTO myTable VALUES ("Chris")':
Error: at (1, 0) The number of VALUES expressions 1s not equal to the number
of table columns

You cannot insert values into an MR_COUNTER column explicitly. A DEFAULT construct must
always be used or the MR_COUNTER column should be skipped in the INSERT clause. If you
try to insert values into the MR_COUNTER column using the INSERT clause or using API, an
error is thrown as shown below.

CREATE Table myTable (name STRING,
count INTEGER AS MR COUNTER,
PRIMARY KEY (name)) IN REGIONS DEN

INSERT INTO myTable VALUES ("Tom",0)'

Output:

Error handling command execute 'INSERT INTO myTable VALUES ("Tom",0)': Error:
at (1, 38) MRCounter column must use DEFAULT construct.

7-13

Chapter 7
Upsert statement

Inserting rows into a JSON column having MR_COUNTER data type:
Example: Insert data into multi-region table with a JSON MR_COUNTER

When inserting a row into the multi-region table with a JSON MR_COUNTER, you must supply
a value 0 to the MR_COUNTER.

Note:

* The system initially assigns a value of 0 to all MR_COUNTER data types even if
you explicitly supply a non-zero value. This also holds good when you try to
provide a value that is not an INTEGER or LONG or NUMBER.

* You can't supply the keyword DEFAULT while inserting a JSON MR_COUNTER.

» The system will return an error if you try to insert data into an MR table without
supplying a value to the declared JSON MR_COUNTER field or using the
keyword DEFAULT.

INSERT INTO demoJSONMR VALUES ("Anna",
{

"id" . 1,
"counter" : O,
"person" : {
"age" : 10,
"count" : O,
"number" : 100

SELECT * FROM demoJSONMR

Output:
{"name":"Anna", "jsonWithCounter":{"id" : 1,"counter":0,
"person":{"age":10, "count":0, "number":100}
}
}
Upsert statement

The word UPSERT combines UPDATE and INSERT, describing the statement's function.
Syntax:

upsert statement ::=
[variable_declaration]
UPSERT INTO table name
[[AS] table_alias]

ORACLE 7-14

ORACLE

Chapter 7
Upsert statement

["("id (r,moid)x)"l

VALUES " (" insert clause ("," insert clause)* ")"
[SET TTL ttl_clause]

[returning clause]

insert clause ::= DEFAULT | expression

returning clause ::= RETURNING select_list

Use an UPSERT statement to insert a row where it does not exist, or to update the row with new
values when it does.

* Optional column(s) may be specified after the table name. This list contains the column
names for a subset of the table’s columns. The subset must include all the primary key
columns. If no columns list is present, the default columns list is the one containing all the
columns of the table, in the order they are specified in the CREATE TABLE Statement.

* The columns in the columns list correspond one-to-one to the expressions (or DEFAULT
keywords) listed after the VALUES clause (an error is raised if the number of expressions/
DEFAULTs is not the same as the number of columns).

* Following the VALUES list a SET TTL clause may be used to set the expiration time of an
upserted(inserted/updated) row.

* If there is no RETURNING clause, the result of the UPSERT statement is a record with a
single field whose name is NumRowslInserted and whose value is the number of rows
inserted: O if the row existed already and an update happened, or 1 otherwise. If there is a
RETURNING clause, it acts the same way as the SELECT clause: it can be a *, in which
case, a full row will be returned, or it can have a list of expressions specifying what needs
to be returned.

The users table has three rows as shown below:

SELECT count (*) FROM users
Output:
{"Column 1":3}

Example 7-11 Update data in the users table using UPSERT command

The existing value for an user with id 10 is shown below.

SELECT * FROM users WHERE id=10

Output
{
"id" : 10,
"firstName" : "John",
"lastName" : "Smith",
"otherNames" : [{
"first" : "Johny",
"last" : "BeGood"
o
"age" : 22,

7-15

ORACLE

"income" 45000,
"address" : {
"city" "Reno",
"number" : 10,
"state" "NV",
"street" "Main"
}I
"connections" [30, 55, 43],
"expenses" : null

Chapter 7
Upsert statement

You modify the existing row using the UPSERT command. The otherNames array and income

field is modified.

UPSERT INTO users VALUES (
10,
"John",
"Smith",

[{"first"
22,

80000,

{ "street"
[30, 55,
DEFAULT

HJohny", "last"

"Main", "number"

43 1,

Output:
{"NumRowsInserted":0}

1 row returned

"AlwaysGood"}],

10’ "city" "Reno", "state" qun},

You get the result as { "NumRowsInserted":0} which implies that the row has been updated.
The updated value for an user with id 10 can be verified with a SELECT statement as shown

below.

SELECT * FROM users WHERE id=10

Output:
{
"id" : 10,
"firstName" "John",
"lastName" "Smith",
"otherNames" : [{
"first" "Johny",
"last" "AlwaysGood"
o
"age" : 22,
"income" 80000,
"address" : {
"city" "Reno",
"number" : 10,

7-16

ORACLE

Chapter 7

Upsert statement
"state" "NV",
"street" "Main"
} 4
"connections" [30, 55, 43],
"expenses" : null

Example 7-12 Update only some columns using UPSERT statement

If you use the UPSERT statement and specify the values of only few columns in the VALUES
clause but do not specify the corresponding column names in the INTO clause, you get an
error stating the number of columns in the table do not match with the number of values in the
VALUES clause as shown below.

UPSERT INTO users VALUES (11,

"John", "Smith")

Output:

Error handling command UPSERT INTO users VALUES (11, "John", "Smith"):
Error: at (1, 0) The number of VALUES expressions is not equal to the number
of table columns

You can avoid this error by specifying the column list after the table name. Here if you do not
supply values for all the columns in a UPSERT statement, then those columns get a DEFAULT
value if such an option is specified in the corresponding CREATE TABLE statement or those
columns are assigned NULL values as shown below.

UPSERT INTO users(id, firstName, lastName) VALUES (11,"John","Smith")

Output:

{"NumRowsInserted":1}
1 row returned

You get the result as {"NumRowsInserted":1} which implies that one new row has been
inserted. The updated value for an user with id 11 can be verified with a SELECT statement as
shown below.

SELECT * FROM users WHERE id=11

Output:

{
"id" . 11,
"firstName" "John",
"lastName" "Smith",
"otherNames" : null,
"age" : null,
"income" : null,
"address" : null,
"connections" : null,

7-17

Chapter 7
Upsert statement

"expenses" : null

}

All the fields which were not part of the UPSERT statement has a NULL value.

Note:

Even if a column has a non NULL value (for example lastNames in the query above),
it can becomes NULL if it is omitted in a subsequent UPSERT statement as shown
below. Here you are using an optional RETURNING statement to fetch the data after
the UPSERT is performed.

UPSERT INTO users(id, firstName) VALUES (11,"Joseph") returning *

Output:

{
Tig® g i,
"firstName" : "Joseph",
"lastName" : null,
"otherNames" : null,
"age" : null,
"income" : null,
"address" : null,
"connections" : null,
"expenses" : null

The column lastNames has become NULL because of the UPSERT statement.

Example 7-13 Add a new shopper's record to the storeaAcct table.

You can use the UPSERT statement to add a new document or update fields in an existing
document in a JSON collection table. Consider the JSON collection table created for a
shopping application.

UPSERT into storeAcct values ("1417114588", {"firstName" : "Dori",
"lastName" : "Martin", "email" : "dormartin@usmail.com", "address"
{"Dropbox" : "Presidency College"}}) RETURNING *

Explanation: In the above example, you use the UPSERT statement to add a new row to the
storeAcct table.

You can use the UPSERT statement to update a shopper's information. Only the fields
supplied in the UPSERT statement are updated in the document. The omitted fields are
removed from the document.

Output:

{"contactPhone":"1417114588","address": {"Dropbox":"Presidency
College"},"email":"lorphil@usmail.com","firstName":"Dori","lastName":"Martin"}

ORACLE 7-18

Chapter 7
Updating rows of a table with a UUID column

Updating rows of a table with a UUID column

You can update a UUID column whether or not it is GENERATED BY DEFAULT. You can use
the function random uuid to generate a random UUID value to update the column. The function
random_uuid returns a randomly generated UUID, as a string of 36 characters.

Example : Updating a UUID Column defined without GENERATED BY DEFAULT clause

CREATE TABLE myTable (tabId INTEGER, id STRING AS UUID, PRIMARY KEY (tabId))

Output:

Statement completed successfully

INSERT INTO myTable values(l,"a8lbc8lb-dead-4e5d-abff-90865dlel3bl")

Output:

Statement completed successfully

UPDATE myTable set id=random uuid() where tabId=l

Output:

Statement completed successfully

The above example shows how you can update a UUID column which is NOT GENERATED
BY DEFAULT. To do so, the UUID column should not be part of the primary key, as NoSQL
Primary key values are immutable. In the above example, tabid is the Primary key. So you
can update the UUID column using the random uuid function.

DELETE Statement

ORACLE

The DELETE statement is used to remove from a table a set of rows satisfying a condition.

Syntax

delete statement ::=
[variable_declaration]
DELETE FROM table_name [[AS] table_alias]
WHERE expression
[returning clause]

returning clause ::= RETURNING select list

7-19

Chapter 7
UPDATE Statement

Semantics

The delete statement is used to delete from a table a set of rows satisfying a condition. The
condition is specified in a WHERE clause that behaves the same way as in the SELECT
expression. The result of the DELETE statement depends on whether a RETURNING clause is
present or not. Without a RETURNING clause the DELETE returns the number of rows
deleted. Otherwise, for each deleted row the expressions following the RETURNING clause
are computed the same way as in the SELECT clause and the result is returned to the
application. Finally, the DELETE statement may start with declarations of external variables
used in the rest of the statement. As in queries, such declarations are mandatory.

If any error occurs during the execution of a DELETE statement, there is a possibility that
some rows will be deleted and some not. The system does not keep track of what rows got
deleted and what rows are not yet deleted. This is because Oracle NoSQL Database focuses
on low latency operations. Long running operations across shards are not coordinating using
two-phase commit and lock mechanism. In such cases, it is recommended that the application
re-run the DELETE statement.

Example 7-14 Deleting Rows with SQL

The following statement deletes all users whose age is less than 16, returning the first and last
name of each deleted user.

DELETE FROM users
WHERE age < 16
RETURNING firstName, lastName

Example 7-15 Delete from the storeAcctComposite table the shopper's data related to
fulfilled orders in the past year

You can use the DELETE statement to remove data from a JSON collection table. The
DELETE operation works similarly on fixed schema tables. Consider the JSON collection table
created for a shopping application.

DELETE FROM storeAcctComposite s where s.orders.EstDelivery <any "2023-01-01"
AND s.orders.status =any "Delivered" RETURNING contactPhone, id, firstName

Explanation: In the storeAcctComposite table, the shoppers don't have a permanent account.
The contactPhone and id are used to track the orders. As a maintenance activity, the DELETE
statement above deletes the shoppers' data for which all the orders are already delivered and
the delivery dates are before the year 2023.

Output:

{
"contactPhone" : "1517113582",
"id" : 10,
"firstName" : "Dierdre"

UPDATE Statement

An update statement can be used to update a row in a table.

ORACLE 7-20

Chapter 7
UPDATE Statement

Syntax

update statement ::=
UPDATE table_name [[AS] table_alias]
update_clause ("," update clause)*
WHERE expression
[returning clause]

returning clause ::= RETURNING select_list

Semantics

The update takes place at the server, eliminating the read-modify-write cycle, that is, the need
to fetch the whole row at the client, compute new values for the targeted fields (potentially
based on their current values) and then send the whole row back to the server.

Both syntactically and semantically, the update statement of the Oracle NoSQL Database is
similar to the update statement of standard SQL, but with extensions to handle the richer data
model of the Oracle NoSQL Database. So, as shown by the syntax above:

« First, the table to be updated is specified by its name and an optional table alias (the alias
may be omitted only if top-level columns only are to be accessed; otherwise, as in read-
only queries, the alias is required as the first step of path expressions that access nested
fields).

e Then come one or more update clauses.

e The WHERE clause specifies what rows to update. In the current implementation, only
single-row updates are allowed, so the WHERE clause must specify a complete primary key.

* Finally, there is an optional RETURNING clause. If not present, the result of the update
statement is the number of rows updated. In the current implementation, this number will
be 1 or 0. Zero will be returned if there was no row satisfying the conditions in WHERE
clause, or if the updates specified by the update clauses turned out to be no-ops for the
single row selected by the WHERE clause. Otherwise, if there is a RETURNING clause, it acts
the same way as the SELECT clause: it can be a "*", in which case, the full updated row will
be returned, or it can have a list of expressions specifying what needs to be returned.
Furthermore, if no row satisfies the WHERE conditions, the update statement returns an
empty result.

Update Clauses

ORACLE

Syntax

update clause ::=

(SET set_clause ("," (update clause | set clause))¥*) |
ADD add_clause ("," (update clause | add clause))*) |

REMOVE remove_clause ("," remove clause)*) |

(
(PUT put_clause ("," (update clause | put clause))*) |
(
(SET TTL ttl_clause ("," update clause)*)

Semantics

There are 5 kinds of update clauses:

7-21

SET Clause

ORACLE

Chapter 7
UPDATE Statement

SET
Updates the value of one or more existing fields. See SET Clause.

ADD
Adds new elements in one or more arrays. See ADD Clause.

PUT
Adds new fields in one or more maps. It may also update the values of existing map fields.
See PUT Clause.

REMOVE
Removes elements/fields from one or more arrays/maps. See REMOVE Clause.

SET TTL
Updates the expiration time of the row. See SET TTL Clause.

The update clauses are applied immediately, in the order they appear in the update statement,
so the effects of each clause are visible to subsequent clauses. Although the syntax allows for
multiple SET TTL clauses, only the last one will be effective; the earlier ones, if any, are
ignored.

The SET, ADD, PUT, and REMOVE clauses start with a target expression, which computes the
items to be updated or removed. In all cases, the target expression must be either a top-level
column reference of a path expression starting with the table alias. If the target expression
returns nothing, the update clause is a no-op.

Syntax

set clause ::= path_expression "=" expression

Semantics

The SET clause consists of two expressions: the target expression and the new-value
expression. The target expression returns the items to be updated. Notice that a target item
may be atomic or complex, and it will always be nested inside a complex item (its parent item).
For each such target item, the new-value expression is evaluated, and its result replaces the
target item within the parent item.

If the target expression returns a NULL item, then either the target item itself is the NULL item,
or one of its ancestors is NULL. In the former case, the target item will be replaced by the new
item. In the latter case the SET is a no-op.

The new-value expression may return zero or more items. If it returns an empty result, the SET
is a no-op. If it returns more than one item, the items are enclosed inside a newly constructed
array (this is the same as the way the SELECT clause treats multi-valued expressions in the
select list). So, effectively, the result of the new-value expression contains at most one item.
This new item is then cast to the type expected by the parent item for the target field. This cast
behaves like the cast expression as described in the Cast Expression section. If the cast fails,
an error is raised; otherwise, the new item replaces the target item within the parent item.

The new-value expression may reference the implicitly declared variable $, which is bound to
the current target item. Use of the $ variable makes it possible to have target expressions that
return more than one item. As mentioned already, in this case, the SET clause will iterate over
the target items, and for each target item T, bind the $ variable to T, compute the new-value
expression, and replace T with the result of the new-value expression.

7-22

ADD Clause

PUT Clause

ORACLE

Chapter 7
UPDATE Statement

What if the new-value expression is the (reserved) keyword null? Normally, null is interpreted
as the json null value. However, if the parent of the target item is a record, then null will be
interpreted as the SQL NULL, and the targeted record field will be set to the SQL NULL.

See Example: Updating Rows.

Syntax

add clause ::=
path_expression [add_expression] expression

Semantics

The ADD clause is used to add new elements into one or more arrays. It consists of a target
expression, which should normally return one or more array items, an optional position
expression, which specifies the position within each array where the new elements should be
placed, and a new-elements expression that returns the new elements to insert.

The ADD clause iterates over the sequence returned by the target expression. For each target
item, if the item is not an array it is skipped. Otherwise, the position expression (if present) and
the new-elements expression are computed for the current target array. These two expressions
may reference the $ variable, which is bound to the current target array.

If the new-values expression returns nothing, the ADD is a no-op. Otherwise, each item
returned by this expression is cast to the element type of the array. An error is raised if any of
these casts fail. Otherwise, the new elements are inserted into the target array, as described
below.

If the position expression is missing, or if it returns an empty result, the new elements are
appended at the end of the target array. An error is raised if the position expression returns
more than one item or a non-numeric item. Otherwise, the returned item is cast to an integer. If
this integer is less than 0, it is set to 0. If it is greater or equal to the array size, the new
elements are appended. Otherwise, if the integer position is P and the new-elements
expression returns N items, the 1st item is inserted at position P, the 2nd at position P+1, and
so on. The existing array elements at position P and afterwards are shifted N positions to the
right.

See Example: Updating Rows.

Syntax

put clause ::= path_expression expression

Semantics

The PUT clause is used primarily to add new fields into one or more maps. It consists of a
target expression, which should normally return one or more map item and a new-fields
expression that returns one or more maps or records, whose fields are inserted in the target
maps.

The PUT clause iterates over the sequence returned by the target expression. For each target
item, if the item is not a map it is skipped. Otherwise, the new-fields expression is computed for

7-23

Chapter 7
UPDATE Statement

the current target map. The new-maps expression may reference the $ variable, which is
bound to the current target map.

If the new-fields expression returns nothing, the PUT is a no-op. Otherwise, for each item
returned by the new-fields expression, if the item is not a map or a record, it is skipped, else,
the fields of the map/record are "merged" into the current target map. This merge operation will
insert a new field into the target map if the target map does not already have a field with the
same key; Otherwise, it will set the value of the target field to the value of the new field.

See Example: Updating Rows.

REMOVE Clause

Syntax

remove clause ::= path_expression

Semantics

The remove clause consists of a single target expression, which computes the items to be
removed. The REMOVE clause iterates over the target items. For each such item, if its parent
is a record, an error is raised. Otherwise, if the target item is not NULL, it is removed from its
parent. If the target item is NULL, then since arrays and map cannot contain NULLs, one of its
ancestors must be NULL. In this case, the NULL is skipped.

See Example: Updating Rows.

SET TTL Clause

Syntax

ttl clause ::=
(add_expression (HOURS | DAYS))
(USING TABLE DEFAULT)

Semantics

If a SET TTL clause is used with an UPDATE statement, a new expiration time is computed
and applied to the row being updated. In case of MR Tables, the rows replicated to other
regions carry the recalculated expiration time of the row being updated. Therefore, this row will
have the same expiration time in all the regions after successful replication. If a TTL value is
updated to the same row in multiple regions, then the TTL value will be set in all regions to the
value held in the row with the greatest write timestamp.

See Example: Updating TTL.

Updating rows with an IDENTITY Column

An IDENTITY column that is defined as GENERATED ALWAY'S cannot be updated. Only
IDENTITY column that is defined as GENERATED BY DEFAULT can be updated.

ORACLE 7-24

Chapter 7
UPDATE Statement

Updating rows with an MR_COUNTER column

You can update an MR_COUNTER column in a multi-region table by incrementing or
decrementing the values using standard arithmetic computations. For creating a table with
MR_COUNTER column, see Create table using MR_COUNTER datatype

Example 1: Incrementing the value of an MR_COUNTER column.

A simple example would be incrementing the likes a user gets on a social media website.

CREATE Table myTable(name STRING,
count INTEGER AS MR COUNTER,
PRIMARY KEY (name)) IN REGIONS DEN, LON

INSERT INTO myTable (name) VALUES ("Chris')

UPDATE myTable SET count = count + 10 WHERE name = "Chris"

Example 2: Decrementing the value of an MR_COUNTER column.
The following example decrements the value of an MR_COUNTER.
CREATE Table myTable(name STRING,

count INTEGER AS MR COUNTER,
PRIMARY KEY (name)) IN REGIONS DEN, LON

INSERT INTO myTable VALUES ("Chris',10)

UPDATE myTable SET count = count - 4 WHERE name = "Chris"

Note:

The system will return an error if you use the UPDATE clauses on MR_COUNTERS
in the following scenarios:

e SET or PUT clauses to explicitly supply a value to an MR_COUNTER in the
table.

¢ REMOVE clause to remove an MR_COUNTER column from the table.

You can use an ALTER statement to drop an MR_COUNTER column from the table.
For more details, see Add or Remove an MR_COUNTER column.

Update JSON MR_COUNTER values:

You can update a JSON MR_COUNTER column (the same way as an MR_Counter column) in
a multi-region table.

ORACLE 7-25

ORACLE

Chapter 7
UPDATE Statement

Example: Incrementing the value of a JSON MR_COUNTER column: You can update a JSON
MR_COUNTER column by incrementing the value.

UPDATE demoJSONMR a SET a.jsonWithCounter.counter = a.jsonWithCounter.counter
+1
WHERE name = "Anna"

You can also update a JSON MR_COUNTER column by decrementing the value.

UPDATE demoJSONMR a SET a.jsonWithCounter.counter = a.jsonWithCounter.counter
-1
WHERE name = "Anna"

Update counter values in both regions and perform a merge:

When MR_COUNTER fields exist in both the remote JSON field and local JSON field, the
system merges them as MR_COUNTER data types. You can update the MR_COUNTER fields
in the remote and local region independently. The system automatically peforms a merge on
these concurrent modifications without user intervention.

For example, consider the table demoJSONMR has been created in regions FRA and LON with the
same definition as shown below.

CREATE TABLE demoJSONMR (name STRING,
jsonWithCounter JSON(counter as INTEGER MR COUNTER,
person.count as LONG MR COUNTER),
PRIMARY KEY (name)) IN REGIONS FRA,LON

Step 1 : Insert one row into the demoJSONNMR table in the region FRA.

INSERT INTO demoJSONMR VALUES (

Anna,
{
"id" 1,
"counter" : NULL,
"person" : {
"age" : 10,
"number"™ : 100

Step 2: Update the row inserted above and increment JSON MR_COUNTER field "counter".
UPDATE demoJSONMR a SET a.jsonWithCounter.counter = a.jsonWithCounter.counter

+ 1
WHERE name = "Anna"

Step 3 : In the Remote region LON, insert a row into the table with the same primary key
"Anna", but different values for other fields.

INSERT INTO exampleTable VALUES (
Anna,

7-26

ORACLE

Chapter 7
UPDATE Statement

"id" : 2,
"counter" : NULL,
"person" : {
"age" : 10,
"number" : 101

Step 4: In the Remote region LON, update the record and increment the JSON MR_COUNTER
field "counter".

UPDATE demoJSONMR a SET a.jsonWithCounter.counter = a.jsonWithCounter.counter
+1
WHERE name = "Anna"

Step 5: In the statement above, the remote row gets updated. This update gets merged with
the local row and the field "counter", as shown below.

SELECT * FROM demoJSONMR WHERE name = "Anna"

Output:

{"name":"Anna",
"jsonWithCounter": {"counter":2,"id":2, "person":
{"age":10,"count":0, "number":101}}

}

If the remote JSON and local JSON for MR_COUNTER have mismatched definitions, the
INSERT or UPDATE operation is not performed on the mismatched schema. These rows are
logged as incompatible rows.

Update MR_COUNTER values in JSON collection table:

Consider a JSON collection table created for a shopping application with MR_COUNTER. The
mycounter field in the table is an MR_COUNTER with its value set to 0 upon inserting data into
the table. The following is a sample row from the shopping application table:

{"contactPhone":"1817113382", "address":
{"city":"Houston", "number":401, "state":"TX", "street":"Tex
Ave","zip":95085},"cart": [{"item":"handbag", "priceperunit":350, "quantity":1},
{"item":"Lego", "priceperunit":5500, "quantity":1}],"firstName":"Adam", "lastName
":"Smith", "mycounter":0}

To update an MR_COUNTER value, you must supply the MR_COUNTER's name in the SET
clause as illustrated in the query below:

UPDATE storeAcctMR s SET s.mycounter = s.mycounter + 5 WHERE
s.contactPhone="1817113382"

7-27

Chapter 7
UPDATE Statement

In this example, you increment the value of the MR_COUNTER by 5 for the shopper with the
contact number "1817113382". You get the following output when you fetch the shopper's
record:

{"contactPhone":"1817113382", "address":

{"city":"Houston", "number":401,"state":"TX", "street":"Tex

Ave","zip":95085}, "cart": [{"item":"handbag", "priceperunit":350, "quantity":1},
{"item":"Lego", "priceperunit":5500, "quantity":1}],"firstName":"Adam", "lastName
":"Smith", "mycounter":5}

Example: Updating Rows

ORACLE

Let's assume a table, called "People”, with only two columns: an integer "id" column and an
"info" column of type JSON. Furthermore, let's assume the following row to be updated:

CREATE TABLE People (
id INTEGER,
info JSON,
PRIMARY KEY (id))

INSERT INTO People VALUES (

OI

{
"firstName":"John",
"lastName":"Doe",
"profession":"software engineer",
"income":200000,
"address": {

"city" "San Fransisco",
"Statell HCA",
"phones" : [

{ "areacode":415, "number":2840060, "kind":"office" },
{ "areacode":650, "number":3789021, "kind":"mobile" },
{ "areacode":415, "number":6096010, "kind":"home" }

b

"children": {

"Anna" : {
"age" : 10,
"school" "school 1",
"friends" ["Anna", "John", "Maria"]
}I
"Ron" : { "age" : 2},
"Mary" : {
"age" : 7,
"school" "school 3",
"friends" ["Anna", "Mark"]

7-28

Chapter 7
UPDATE Statement

The following update statement updates various fields in the above row:

UPDATE People p
SET p.info.profession = "surfing instructor",
SET p.info.address.city = "Santa Cruz",
SET p.info.income = p.info.income / 10,
SET p.info.children.values().age = $ + 1,
ADD p.info.address.phones
0 { "areacode":831, "number":5294368, "kind":"mobile" },
REMOVE p.info.address.phones [$Selement.kind = "office"],
PUT p.info.children.Ron { "friends" : ["Julie"] },
ADD p.info.children.values().friends seq concat ("Ada", "Aris")
WHERE id = 0
RETURNING *

After the update, the row looks like this:

"id":0,
"info":{
"firstName":"John",
"lastName":"Doe",
"profession":"surfing instructor",
"income":20000,
"address": {
"city":"Santa Cruz",
"phones": [
{"areacode":831,"kind":"mobile", "number":5294368},
{"areacode":650, "kind":"mobile", "number":3789021},
{"areacode":415,"kind" :"home", "number":6096010}
]I
"state":"CA"
}I
"children": {
"Anna": {
"age":11,
"friends":["Anna","John", "Maria","Ada","Aris"],
"school":"school 1"

b

"Ron": {
"age":3,
"friends":["Julie","Ada","Aris"]
}I
"Mary":{
"age":8,
"friends":["Anna", "Mark","Ada","Aris"],

"school":"school 3"

The first two SET clauses change the profession and city of John Doe. The third SET reduces
his income to one-tenth. The fourth SET increases the age of his children by 1. Notice the use
of the $ variable here: the expression p.info.children.values().age returns 3 ages; The SET will

ORACLE 7-29

Chapter 7
UPDATE Statement

iterate over these ages, bind the $ variable to each age in turn, compute the expression $ + 1
for each age, and update the age with the new value. Notice that the income update could (and
can) also have used a $ variable: set p.info.income = $/ 10. This would have saved the re-

evaluation of the p.info.income path on the right-hand side or the "=".

The ADD clause adds a new phone at position 0 inside the phones array. The REMOVE
removes all the office phones (only one in this example). The PUT clause adds a friend for
Ron. In this clause, the expression p.info.children.Ron returns the value associated with the
Ron child. This value is a map (the json object { "age" : 3 }) and becomes the target of the
update. The 2nd expression in the PUT ({ "friends" : ["Julie"] }) constructs and returns a new
map. The fields of this map are added to the target map. Finally, the last ADD clause adds the
same two new friends to each child. See seq_concat function function.

Notice that the update query in this example would have been exactly the same if instead of
type JSON, the info column had the following RECORD type:

RECORD (
firstName STRING,
lastName STRING,
profession STRING,
income INTEGER,
address RECORD (
city STRING,
state STRING,
phones ARRAY (
RECORD (
areacode INTEGER,
number INTEGER,
kind STRING

)
) 14
children MAP (
RECORD (
age INTEGER,
school STRING,
friends ARRAY (STRING)

Example: Updating JSSON Data

ORACLE

You can use ADD clause to update JSON data in a NoSQL table. You can add one or more
array elements to an existing array using the ADD clause. You can also optionally indicate the
position of the new elements to be added in the array.

Example 1: Adding a single element to an existing array in JSON data:

The People table has one row currently as shown below:

SELECT * FROM People

7-30

Chapter 7

UPDATE Statement
"id" . 0,
"info" : {
"address" : {
"city" : "Santa Cruz",
"phones" : [{
"areacode" : 831,
"kind" : "mobile",

"number" : 5294368
b Ao
"areacode" : 650,
"kind" : "mobile",
"number" : 3789021
b Ao
"areacode" : 415,
"kind" : "home",
"number" : 6096010
H
"state" : "CA"
}I
"children" : {

"Anna" : {
"age" : 11,
"friends" : ["Anna", "John", "Maria", "Ada", "Aris"],
"school™ : "school 1"
}I
"Mary" : {
"age" : 8,
"friends" : ["Anna", "Mark", "Ada", "Aris"],
"school™ : "school 3"
}I
"Ron" : {
"age" : 3,
"friends" : ["Julie", "Ada", "Aris"]
}
}I
"firstName" : "John",
"income" : 20000,
"lastName" : "Doe",
"profession" : "surfing instructor"

Add a new element to the phones array at the beginning of the array.

UPDATE People p ADD p.info.address.phones 0
{"areacode":499, "number":33864368, "kind":"mobile" }
WHERE id = 0

SELECT * FROM People

Output:

ORACLE 7-31

ORACLE

"id" . 0,
"info" : {
"address" : {
"city" "Santa Cruz",
"phones" : [{
"areacode" : 499,
"kind" "mobile",
"number" : 33864368
b Ao
"areacode" : 831,
"kind" "mobile",
"number" : 5294368
b Ao
"areacode" : 650,
"kind" "mobile",
"number" : 3789021
b Ao
"areacode" : 415,
"kind" "home",
"number" 6096010
H
"state" : "CA"
}I
"children" : {
"Anna" : {
"age" : 11,
"friends" ["Anna", "John", "Maria", "Ada",
"school" "school 1"
}I
"Mary" : {
"age" : 8,
"friends" ["Anna", "Mark", "Ada", "Aris"],
"school" "school 3"
}I
"Ron" : {
"age" : 3,
"friends" ["Julie", "Ada", "Aris"]
}
}I
"firstName" "John",
"income" : 20000,
"lastName" "Doe",
"profession" "surfing instructor”

Chapter 7
UPDATE Statement

"Z—\ris"] ,

Example 2: Adding an array of elements to an existing array in JSON data

When you need to add more than one element of an array to an existing array in JSON data,
you need to add the new-elements expressions inside parentheses and optionally add the
position expression (if any).

7-32

ORACLE

Chapter 7
UPDATE Statement

The following query throws an error as shown below:

UPDATE People p

ADD p.info.address.phones

0 { "areacode":5, "number":1, "kind":"mobile" },
{ "areacode":6, "number":2, "kind":"mobile" }

WHERE id = 0

Output:

Error handling command UPDATE People p
ADD p.info.address.phones
0 { "areacode":5, "number":1, "kind":"mobile" },
{ "areacode":6, "number":2, "kind":"mobile" }
WHERE id = 0:
Error: at (5, 12) mismatched input '<EOF>' expecting {WHERE, ', '}, at line
5:12
rule stack: [parse, statement, update statement]

This can be corrected using the one of the two different options as shown below:

Option 1:

UPDATE People p

ADD p.info.address.phones

([{ "areacode":1, "number":1, "kind":"mobile" },
{ "areacode":2, "number":2, "kind":"mobile" }

1
WHERE id = 0

Output:

"NumRowsUpdated" : 1
}

1 row returned

Option 2:

UPDATE People p

ADD p.info.address.phones

0 [{ "areacode":3, "number":1, "kind":"mobile" },
{"areacode":4, "number":2, "kind":"mobile" }

]
WHERE id = 0

Output:

"NumRowsUpdated" : 1

7-33

ORACLE

}

1 row returned

The result of the UPDATE statement can be verified as shown below.

select * from People

Output:
{
"id" : 0,
"info" : {
"address" {
"city" "Santa Cruz",
"phones" [0{
"areacode" : 3,
"kind" "mobile",
"number" : 1
b A
"areacode" : 4,
"kind" "mobile",
"number" : 2
o o
"areacode" 499,
"kind" "mobile",
"number" 33864368
b A
"areacode" 831,
"kind" "mobile",
"number" 5294368
b A
"areacode" 650,
"kind" "mobile",
"number" 3789021
b A
"areacode" 415,
"kind" "home",
"number" 6096010
b A
"areacode" : 1,
"kind" "mobile",
"number" : 1
b A
"areacode" : 2,
"kind" "mobile",
"number" : 2
I
"state" : "CA"
}I
"children" {
"Anna" {
"age" 11,
"friends" ["Anna",
"school" "school 1"

"John" ,

"Maria",

"Ada" ,

"Aris"] ,

Chapter 7
UPDATE Statement

7-34

Chapter 7
UPDATE Statement

b

"Mary" : {
"age" : 8,
"friends" : ["Anna", "Mark", "Ada", "Aris"],
"school™ : "school 3"
}I
"Ron" : {
"age" : 3,
"friends" : ["Julie", "Ada", "Aris"]
}
}I
"firstName" : "John",
"income" : 20000,
"lastName" : "Doe",
"profession" : "surfing instructor"

Example: Updating JSON collection tables

ORACLE

You can update data in the JSON collection tables using the UPDATE statement. The UPDATE
operation works in the same way as fixed schema tables.

Consider a row from a JSON collection table created for a shopping application.

{"contactPhone":"1617114988", "address": {"Dropbox":"Presidency
College","city":"Kansas City","state":"Alabama","zip":95065},"cart":
[{"item":"A4 sheets","priceperunit":500,"quantity":2},{"item":"Mobile

Holder", "priceperunit":700, "quantity":1}],"email":"lorphil@usmail.com","firstN
ame":"Lorenzo","lastName":"Phil", "notify":"yes", "orders":
[{"EstDelivery":"2023-11-15","item":"AG Novels

1", "orderID":"101200, "priceperunit":950,"status":"Preparing to dispatch"},
{"EstDelivery":"2023-11-01","item":"Wall

paper","orderID":"101200, "priceperunit":950,"status":"Transit"}]}

Example 7-16 Correct a few inadvertent errors in the shopper's data
Use Update clauses to correct a shopper's data as follows:

UPDATE storeAcct s
SET s.notify = "no",

REMOVE s.cart [$element.item = "A4 sheets"],
PUT s.address {"Block" : "C"},
SET s.orders[0].EstDelivery = "2023-11-17",

ADD s.cart 1 {"item":"A3 sheets", "priceperunit":600, "quantity":2}
WHERE s.contactPhone = "1617114988"

Explanation: In the above example, you update the shopper's record in the storeacct table to
correct a few inadvertent errors. This correction requires updates to various fields of the
storeAcct table. The SET clause deactivates the notification setting in the shopper's data
record. The REMOVE clause checks if any itemn field in the cart matches 24 sheets and
deletes the corresponding element from the orders array. The PUT clause adds a new JSON
field to indicate the landmark for delivery. The second SET clause accesses the deeply nested

7-35

Chapter 7
UPDATE Statement

EstDelivery field and updates the estimated delivery date for the first item in the orders array.
The ADD clause inserts a new element into the cart field to shortlist an additional item.

When you fetch the updated shopper's data, you get the following output:

{"contactPhone":"1617114988", "address": {"Block":"C", "Dropbox":"Presidency
College","city":"Kansas City","state":"Alabama","zip":95065},"cart":
[{"item":"Mobile Holder","priceperunit":700,"quantity":1},{"item":"A3

sheets", "priceperunit":600, "quantity":2}],"email":"lorphil@usmail.com","firstN
ame":"Lorenzo","lastName":"Phil", "notify":"no", "orders":
[{"EstDelivery":"2023-11-17","item":"AG Novels

1", "priceperunit":950, "status":"Preparing to dispatch"},
{"EstDelivery":"2023-11-01","item":"Wall

paper", "priceperunit":950, "status":"Transit"}]}

Example: Updating TTL

This example demonstrates an update of the expiration time of a row. Let's assume that the
People table was created with a TTL value of 10 hours and a row with id 5 was inserted at time
2017-06-01T10:05:30.0. No explicit TTL was given at insertion time, so the expiration time
computed at that time is 2017-06-01T21:00:00.0. Finally, let's assume that the following update
statement is executed at time 2017-06-01T12:35:30.0 (2.5 hours after insertion)

UPDATE People $p
SET TTL remaining hours($p) + 3 hours
WHERE id = 5

The above statement extends the life of a row by 3 hours. Specifically, the remaining_hours
function returns the number of full hours remaining until the expiration time of the row. See
remaining_hours function function. In this example, this number is 8. So, the new TTL value is
8+3 =11, and the expiration time of the row will be set to 2017-06-02:T08:00:00.0.

Notice the use of the '$' character in naming the table alias for People. This is required so that
the table alias acts as a row variable (a variable ranging over the rows of the table) and as a
result it can be passed as the argument to the remaining_hours function (if the $ were not
used, then calling remaining_hours(p) would return an error, because p is interpreted as a
reference to a top-level table column with name "p").

Example: Updating IDENTITY defined as GENERATED ALWAYS

ORACLE

CREATE TABLE Test sglUpdateAlways (
idvalue INTEGER GENERATED ALWAYS AS IDENTITY,
name STRING,

PRIMARY KEY (idValue))

INSERT INTO Test sqlUpdateAlways VALUES (DEFAULT, 'joe')

INSERT INTO Test sqlUpdateAlways VALUES (DEFAULT, 'jasmine')

7-36

Chapter 7
UPDATE Statement

The Test-sglUpdateAlways table will have the following rows:

1, 'joe'
2, 'jasmine'

UPDATE Test sqlUpdateAlways SET idValue = 10 WHERE name=joe

The above UPDATE statement will raise an exception saying that a user cannot set a value for
an IDENTITY column that is defined as GENERATED ALWAYS. An IDENTITY column that is
defined as GENERATED ALWAYS cannot be updated. Only the IDENTITY column that is
defined as GENERATED BY DEFAULT can be updated.

To resolve this exception and be able to update the IDENTITY column value, you need to alter
the IDENTITY column and change the property of the IDENTITY column to GENERATED BY
DEFAULT. But there may be implications to the existing data. For more information on how to
alter an IDENTITY column see, Altering an IDENTITY Column.

Example: Updating IDENTITY defined as GENERATED BY DEFAULT

CREATE TABLE Test sqlUpdateByDefault (
idvValue INTEGER GENERATED BY DEFAULT AS IDENTITY,
acctNum LONG,
name STRING,

primary key(acctNum))

INSERT INTO Test sqlUpdateByDefault VALUES (DEFAULT, 123456, 'joe')
INSERT INTO Test sglUpdateByDefault VALUES (400, 23456, 'sam')

INSERT INTO Test sglUpdateByDefault VALUES (500, 34567, 'carl')

Table Test-sglUpdateByDefault will have the following rows:

1, 123456, 'joe'
400, 23456, 'jasmine'
500, 34567, 'carl'

UPDATE Test sqlUpdateByDefault
SET idvalue = 100
WHERE acctNum = 123456

The above UPDATE statement will replace row (1, 123456, ‘joe") with (100, 123456, 'joe") in the
database.

ORACLE S

Chapter 7
JSON Collection Table Example

JSON Collection Table Example

ORACLE

This section describes a sample JSON collection table created for a shopping application.

Table DDL.:

CREATE TABLE IF NOT EXISTS storeAcct (contactPhone STRING, PRIMARY
KEY (SHARD (contactPhone)))
AS JSON COLLECTION

This table is a collection of documents with the shopper's contactPhone as the primary key.
The rows represent individual shopper's records. The individual rows need not include the
same fields in the document. The shopper's preferences such as name, address, email,
notify, and so forth are stored as top-level fields in the document. The documents can include
any number of JSON fields such as wishlist, cart, and orders that contain shopping-related
information.

The JSON array wishlist contains the items wishlisted by the shoppers. Each element of this
array includes nested JSON fields such as the item and priceperunit to store the product
name and price details of the wishlisted item.

The JSON array cart contains the products that the shopper intends to purchase. Each
element of this array includes nested JSON fields such as item, quantity, and priceperunit
to store the product name, number of units, and price of each unit.

The JSON array orders contains the products that the shopper has purchased. Each element
of this array includes nested JSON fields such as the orderID,

item, priceperunit, EstDelivery, and status to store the order number, product name, price
of each unit, estimated date of delivery for the product, and status of the order.

The following code inserts data into the shopping application table. You can use this data to
follow along with the examples explained in the topics.

insert into storeAcct(contactPhone, firstName, lastName, address, cart)

values ("1817113382", "Adam", "Smith", {"street" : "Tex Ave", "number" : 401,
"city" : "Houston", "state" : "TX", "zip" : 95085}, [{"item" : "handbag",
"quantity" : 1, "priceperunit" : 350}, {"item" : "Lego", "quantity" : 1,

"priceperunit" : 5500}]) RETURNING *

insert into storeAcct(contactPhone, firstName, lastName, gender, address,
notify, cart, wishlist) values("1917113999", "Sharon", "Willard", "F",

{"street" : "Maine", "number" : 501, "city" : "San Jose", "state" : "San
Francisco", "zip" : 95095},"yes", [{"item" : "wallet", "quantity" : 2,
"priceperunit" : 950}, {"item" : "wall art", "quantity" : 1, "priceperunit"
9500}], [{"item" : "Tshirt", "priceperunit" : 500}, {"item" : "Jenga",

"priceperunit" : 850}]) RETURNING *

insert into storeAcct(contactPhone, firstName, lastName, address, notify,
cart, orders) values("1617114988", "Lorenzo", "Phil", {"Dropbox"

"Presidency College", "city" : "Kansas City", "state" : "Alabama", "zip" :
95065}, "yes", [{"item" : "A4 sheets", "quantity" : 2, "priceperunit" : 500},
{"item" : "Mobile Holder", "quantity" : 1, "priceperunit" : 700}],

7-38

ORACLE

Chapter 7
JSON Collection Table Example

[{"orderID" : "101200", "item" : "AG Novels 1", "EstDelivery" : "2023-11-15",
"priceperunit" : 950, "status" : "Preparing to dispatch"}, {"orderID"
"101200", "item" : "Wallpaper", "EstDelivery" : "2023-11-01",

"priceperunit" : 950, "status" : "Transit"}]) RETURNING *

insert into storeAcct(contactPhone, firstName, lastName, address, cart,

orders) values("1517113582", "Dierdre", "Amador", {"street" : "Tex Ave",
"number" : 651, "city" : "Houston", "state" : "TX", "zip" : 95085}, NULL,
[{"orderID" : "201200", "item" : "handbag", "EstDelivery" : "2023-11-01",
"priceperunit" : 350}, {"orderID" : "201201", "item" : "Lego", "EstDelivery"

"2023-11-01", "priceperunit" : 5500}]) RETURNING *

insert into storeAcct(contactPhone, firstName, lastName, address, notify,
cart, orders) values("1417114488", "Doris", "Martin", {"Dropbox"

"Presidency College", "city" : "Kansas City", "state" : "Alabama", "zip"
95065}, "yes", [{"item" : "Notebooks", "quantity" : 2, "priceperunit" : 50},
{"item" : "Pens", "quantity" : 2, "priceperunit" : 50}], [{"orderID"
"301200", "item" : "Laptop Bag", "EstDelivery" : "2023-11-15",
"priceperunit" : 1950, "status" : "Preparing to dispatch"}, {"orderID"
"301200", "item" : "Mouse", "EstDelivery" : "2023-11-02", "priceperunit"
950, "status"™ : "Transit"}]) RETURNING *

7-39

Indexes

This chapter describes indexes and how to create and manage indexes in Oracle NoSQL
Database.

This chapter contains the following topics:

* About Indexes

* Classification of Indexes

« CREATE INDEX Statement

« SHOW INDEXES Statement
- DESCRIBE INDEX Statement
« DROP INDEX Statement

e Appendix

About Indexes

An index is a database structure that enables you to retrieve data from database tables
efficiently.

Indexes provide fast access to the rows of a table when the key(s) you are searching on is
contained in the index.

An index is defined by its name, the name of the table that it indexes, and a list of one or more
index paths that specify which table columns or nested fields are indexed.

An index is an ordered map in which each row of the data is called an entry.
An index can be created on atomic data types, arrays, maps, JSON, and GeoJSON data.

An index can store the following special values:

* NULL

« EMPTY

e json null (It is applicable only for JSON indexes)

Example 8-1 Indexes Example

The following is an example of creating an index. The index is created on the age field present

in the info JSON field in the UserInfo table.

CREATE INDEX indexdemol ON UserInfo(info.age AS ANYATOMIC)

CREATE INDEX Statement

ORACLE

The create index statement generates a new index on the specified columns in the given table.

8-1

ORACLE

Chapter 8
CREATE INDEX Statement

Syntax

create index statement ::=
CREATE INDEX [IF NOT EXISTS] index name

ON table_name " path_list ")" [WITH NO NULLS] [WITH UNIQUE KEYS PER ROW]
[comment]
index name ::= id
path list ::= index path ("," index path)*
index path ::=

name path [path type] |
multikey path prefix [.name path] [path type]
name path ::= field name ("." field name)*
field name ::= id | DSTRING
multikey path prefix ::=
field name (("." field name) | ("["™ "1") | ("." VALUES"("™)"))*
("0 "1") | ("." VALUES" (""")") | ("." KEYS"(""™)"))
path type ::= AS
(INTEGER | LONG | DOUBLE | STRING |
BOOLEAN | NUMBER | ANYATOMIC |POINT | GEOMETRY)

Semantics

The index name is unique to a table. If an index with the same name already exists in a table,
then the statement will fail and report an error. For example, you can have only one index
named idx_incomel in the UserInfo table.

The index name is specific to a table. You can use the same index name in multiple tables. For
example, you can use the same index name idx incomel in the UserInfo and Users3 tables.

The index specification is unique to a table. If an index with the same specification already
exists in a table, then the statement will fail and report an error.

For example, if you have the following idx incomel index on UserInfo table,

CREATE INDEX idx incomel ON UserInfo (info.income AS ANYATOMIC)

then the following statement will throw an error that the idx income2 index is a duplicate of an
existing index with another name. In this case, even though the index names are different, the
index specifications are the same.

CREATE INDEX idx income2 ON UserInfo(info.income AS ANYATOMIC)

If the optional IF NOT EXISTS clause is specified in the CREATE INDEX statement, and if an
index with the same name exists, then the statement will not execute and will not report an
error.

If the optional WITH NO NULLS clause is specified in the CREATE INDEX statement, then the
rows with NULL and/or EMPTY values on the indexed fields will not be indexed.

The indexes that are created with the WITH NO NULLS clause may be useful when the data
contain a lot of NULL and/or EMPTY values on the indexed fields. It will reduce the time and
space overhead during indexing. However, the use of such indexes by queries is restricted. For
more information, see Using Indexes for Query Optimization section.

8-2

Chapter 8
Classification of Indexes

If the optional WITH UNIQUE KEYS PER ROW clause is used, then there will not be any
duplicates among the index keys generated from a row. This property applies to multikey
indexes only and is used in optimizing queries that perform unnesting. You could write an
efficient query to use this index. The use of such an index by any query would yield fewer
results from the FROM clause than if the index was not used.

CREATE INDEX idx phones ON UserInfo (info.phones[].number AS INTEGER)
WITH UNIQUE KEYS PER ROW

If the optional COMMENT is specified, then this becomes part of the index metadata and is not
interpreted. The "comment” will be displayed in the output of the DESCRIBE statement.

If JSON data is indexed, you must specify a data type using the AS keyword next to every
index path into the JSON data. For all other typed data, you should not specify the data type,
as the data type will be inferred from the table schema.

The index entries are automatically updated when rows are inserted, deleted, or updated in the
specified table.

Note: The maximum number of index keys generated per row is 10000. An
IllegalArgumentException will be raised during indexing if the number of index keys
generated per is row exceeds 10000.

Classification of Indexes

ORACLE

Indexes can be classified based on fields, schema, entries, or a combination of them. Each
one of these is described below.

* Fields

— Single Field Index

— Composite Index
* Schema

— Fixed Schema Index

— Schema-less Index (JSON Index)
* Entries

— Simple Index

— Multikey Index

The following classification is made based on the number of fields that are provided while
creating an index.

Single Field Index
An index is called a single field index if it is created on only one field of a table.

Composite Index
An index is called a composite index if it is created on more than one field of a table.

The following classification is made based on the schema type of the fields that are indexed.

Fixed Schema Index
An index is called a fixed schema index if all the fields that are indexed are strongly typed
data. For more information on strongly typed data, see Wildcard Data Types section.

8-3

Chapter 8
Classification of Indexes

Schema-less Index (JSON Index)
An index is called a JSON index if at least one of the fields is JISON data or fields inside JSON
data.

The following classification is made based on the number of index entries created for each row
of data in the table when evaluating an index.

Simple Index
An index is called a simple index if for each row of data in the table, there is one entry created
in the index.

Multikey Index
An index is called a multikey index if for each row of data in the table, there are multiple
entries created in the index.

Figure 8-1 Index Classification

Index
based on based on based on
Fields Schema Entries
SE?e (lje Composite Slc:l]'nxgrﬁa JSON Simple Multikey

Single Field Index

An index is called a single field index if it is created on only one field of a table.
Example 8-2 Single Field Index

The following is an example of a single field index. The index is created on the city field
present in the address record in the info JSON field in the UserInfo table.

CREATE INDEX singlefieldindexl ON UserInfo (
info.address.city AS ANYATOMIC
)

Composite Index

An index is called a composite index if it is created on more than one field of a table.
Example 8-3 Composite Index

The following is an example of a composite index. The index is created on the state and city
fields present in the address record in the info JSON field in the UserInfo table.

CREATE INDEX compositeindexl ON UserInfo (

info.address.state AS ANYATOMIC,

ORACLE -

Chapter 8
Classification of Indexes

info.address.city AS ANYATOMIC

Fixed Schema Index

An index can be created on a field with fixed schema data.
Example 8-4 Fixed Schema Index

The following is an example of a fixed schema index. The index is created on the uname field
having integer data type in the UsersInfo table.

CREATE INDEX fixedschemaindexl ON UserInfo (uname)

JSON Index

ORACLE

An index is called a JSON index if at least one of the fields is inside JSON data.

As JSON is schema-less, the data type of an indexed JSON field may be different across rows.
When creating an index on JSON fields, if you are unsure what data type to expect for the
JSON field, you may use the anyAtomic data type. Alternatively, you can specify one of the
Oracle NoSQL Database atomic data types. You do that by declaring a data type using the AS
keyword next to every index path into the JSON field.

Example 8-5 JSON Index

The following is an example of a JSON index. The index is created on the income field present
in the info JSON field in the UserInfo table. Notice that you provide a data type for the income
field while creating the index.

CREATE INDEX jsonindexl ON UserInfo (
info.income AS INTEGER
)

The creation of a JSON index will fail if the associated table contains any rows with data that
violate the declared data type. Similarly, after creating a JSON index, an insert/update
operation will fail if the new row does not conform to the declared data type in the JSON index.

For example, the jsonindex1 index will be created only if the income field in all the rows of the
UserInfo table is of integer data type, if not the jsonindex1 index creation will fail. Similarly,
after creating the jsonindex1 index on the UserInfo table, you can insert only rows in which
the income field is of integer data type. For example, If you try inserting a row in which the
income field is of string data type, the insert statement will fail.

Declaring a JSON index path as anyAtomic has the advantage of allowing the indexed JSON
field to have values of various data types. The index entries are sorted in ascending order.
When these values are stored in the index, they are sorted as follows:

e Numbers
e String
e boolean

However, this advantage is offset by space and CPU costs. It is because numeric values of any
kind in the indexed field will be cast to Number before being stored in the index. This cast

8-5

Chapter 8
Classification of Indexes

takes CPU time, and the resulting storage for the number will be larger than the original
storage for the number.

Example 8-6 JSON Index Example

The following is an example of a JSON index. The index is created on the street field present
in the address field in the info JSON document in the UserInfo table. Notice that you provide
anyAtomic data type for the street field while creating the index.

CREATE INDEX jsonindex2 ON UserInfo (
info.address.street AS ANYATOMIC
)

Simple Index

ORACLE

An index is called a simple index if, for each row of data in the table, there is one entry created
in the index. The index will return a single value that is of atomic data type or any special value
(SQL NULL, JSON NULL, EMPTY). Essentially, the index paths of a simple index must not
have .keys (), or .values (), or [] steps.

Example 8-7 Simple Index

The following is an example of a simple index. The index is created on the income and age
fields present in the info JSON field in the UserInfo table.

CREATE INDEX simpleindexl ON UserInfo (
info.income AS ANYATOMIC,
info.age AS ANYATOMIC

A simple index path must not include an array since arrays will render multiple index values.
For example, info.connections[] returns the complete set of elements in the
info.connections array. It is not a simple index.

Similarly, a simple index path must not have a map with .keys () or .values (). For example,
info.expenses.keys () returns the complete set of keys in the expenses map. It is not a simple
index path. However, info.expenses.books is a simple index path. Because even though
info.expenses iS @ map, info.expenses.books return an atomic value.

Example 8-8 Simple Index Example

The following is an example of a simple index created on a JSON document in a JSON field.
The index is created on the books item of the expenses JSON document in the info JSON field
in the UserInfo table.

CREATE INDEX simpleindex2 ON UserInfo (
info.expenses.books AS ANYATOMIC
)

If the evaluation of a simple index path returns an empty result, the special value EMPTY is
used as an index entry. In the above example, If there is no books entry in the expenses JSON
document, or if there is no expenses JSON document, then the special value EMPTY is
indexed.

8-6

Chapter 8
Classification of Indexes

Multikey Index

An index is called a multikey index if for each row of data in the table, there are multiple entries
created in the index. In a multikey index there is at least one index path that

uses .keys (), .values (), or [] steps. Any such index path will be called a multikey index
path.

In a multikey index, for each table row, index entries are created on all the elements in arrays
or entries in maps that are being indexed. If the evaluation returns an empty result, the special
value EMPTY is used as the index entry. Any duplicate index entries are then eliminated.

Example 8-9 Multikey Index

The following is an example of a multikey index. The index is created on the connections|]
array in the UserInfo table. Here, all the elements in the connections[] array in each row of
the UserInfo table will be indexed.

CREATE INDEX multikeyindexl ON UserInfo (
info.connections[] AS ANYATOMIC
)

Nested Multikey Index

An index is a nested multikey index if it is created on a field that is present inside an array
which in turn is present inside another array.

Example 8-10 Nested Multikey Index

The following is an example of a nested multikey index where the field is present in an array
that is present inside another array. The index is created on the issuedby field in the vpass
array in the vehicles array in the info JSON of the UserInfo table.

CREATE INDEX multikeyindex2 ON UserInfo (
info.vehicles[].vpass|[].issuedby AS ANYATOMIC
)

Composite Multikey Index

ORACLE

An index is called a composite multikey index if it is created on more than one field, and at
least one of those fields is multikey.

A composite multikey index may have a combination of multikey index paths and simple index
paths.

Example 8-11 Composite Multikey Index

The following is an example of a composite multikey index having one multikey index path and
one simple index path. The index is created on the income field and area field in the info
JSON column of the UserInfo table.

CREATE INDEX multikeyindex3 ON UserInfo (
info.income AS ANYATOMIC,
info.address.phones[].area AS ANYATOMIC

8-7

Chapter 8
Classification of Indexes

A composite multikey index may have more than one multikey index path. Some of the
possibilities of composite multikey indexes are given below.

1.

ORACLE

You can use both the .keys () and .values () steps of a map or JSON together.

The following is an example of a composite multikey index in which both the .keys ()
and .values () steps of a JSON document are used together. The index is created on the
keys and values of the expenses JSON document in the UserInfo table.

CREATE INDEX multikeyindex4 ON UserInfo (
info.expenses.keys (),
info.expenses.values () as ANYATOMIC

You can use multiple fields of an array/record/maps-viewed-as-records together. However,
the restriction here is that a field cannot be treated as both array and map within a single
CREATE INDEX statement.

The following is an example of a composite multikey index in which multiple fields of an
array are used together. The index is created on the passid and issuedby fields in the
vpass array in the UserInfo table.

CREATE INDEX nestedindexl ON UserInfo (
info.vehicles[].vpass|[].passid AS ANYATOMIC,
info.vehicles[].vpass[].issuedby AS ANYATOMIC

Figure 8-2 Composite Multikey Index

{ vehicles array
“vehicles” : [

{ i vpass arra vservice arra
“vid”:12345, G p 4 ¥
“viype”: “car”, ’ :) -
“vpass”: [‘ passid serviceid
{“passid”:678, “issuedby”:"BFD"}, vtype
{"passid”:679, "issuedby” : "NYPD" }

1, ‘ issuedby servicedate

“vservice”: [
{”"serviceid”:20001, “servicedate”:null}
]
}
]
}

You can use fields of an array/record/maps-viewed-as-records, as well as the fields
present inside the inner arrays of those array/record/maps-viewed-as-records together.
However, the restriction here is that the immediate parent array of all such fields should be
the same.

The following is an example of a composite multikey index in which fields of an array and
fields of an inner array are used together. The index is created on the vid field in the
vehicles array and the passid field in the vpass array which is in the vehicles array in the
UserInfo table.

CREATE INDEX nestedindex2 ON UserInfo (
info.vehicles[].vid AS ANYATOMIC,
info.vehicles|[].vpass[].passid AS ANYATOMIC

8-8

Chapter 8
Classification of Indexes

Figure 8-3 Composite Multikey Index

vehicles array

“vehicles” : |)

vid vpass arra vservice arra
“vidr:12345, P Y Y
“vitype”:"car”,) .] .
“vpass”: [passid serviceid
{“passid”:678, “issuedby”:"BFD"}, vtype L J
{"passid”:679,"issuedby” : "NYFD"} .
1. issuedby servicedate

“vservice”: [
{"serviceid”:20001, “servicedate”:null}
]
}
]
}

The following is an example of a composite multikey index in which fields of an array and fields
of an inner array are used together, however, notice that the immediate parent array of the two
fields are not the same. The following is an invalid index creation statement. The index is being
created on the passid and serviceid fields in the vehicles array in the UserInfo table. Note
that within the vehicles array, passid is inside the vpass array, and serviceid is inside the
vservice array.

CREATE INDEX invalidindexl ON UserInfo (
info.vehicles|[].vpass|[].passid AS ANYATOMIC,
info.vehicles[].vservicel[].serviceid AS ANYATOMIC

Figure 8-4 Composite Multikey Index (invalid)

vehicles array

“vehicles” : |
{ vid vpass arra vservice arra
“wid”:12345, p ¥ y
“vtype”:“car”, . r
svpass”: [passid serviceid
{“passid”:678, “issuedby” :"BPD"}, vtype

{"passid”:679,"issuedby” : "NYPD"}
1, issuedby servicedate
“vservice”: [
{"serviceid”:20001, “servicedate”:null}
]
}
]
]

Specifications & Restrictions on Multikey Indexes

ORACLE

The following specifications & restrictions apply to multikey index paths:

* You cannot provide predicate or boundary expressions for .keys (), .values (), and []
steps. For more information on predicate and boundary expressions, see the Map-Filter
Step Expressions and Array-Slice Step Expressions sections respectively.

* When a multikey index path is evaluated on a table row, it must return zero or more atomic
values. If no value is returned, then the special value EMPTY is used.

* No data type declaration is allowed for .keys () step, as the keys () are by default string
data type.

* You can provide .keys () steps only as the last step in an index path.

e For Example, info.expenses.keys () is a valid index path whereas
info.expenses.keys () .books is an invalid index path.

8-9

Chapter 8
Classification of Indexes

You can provide .keys () and .values () only after the fields that are maps in strongly
typed data.

You can provide .keys () and .values () steps after a field that you expect to be atomic
values or JSON documents inside JSON data.

— If the fields are atomic values, then the special value EMPTY will be returned.

— If the fields are json documents, then the corresponding keys or values will be
returned.

You should provide [] steps after those fields that are arrays in strongly typed data.

You should provide [] steps after those fields that you expect to be arrays inside JSON
data.

If you do not provide [] steps after those fields that you expect to be arrays inside JSON
data, then those fields cannot be an array.

— If the rows in the existing table contain any array inside the JSON data, then the index
creation will fail.

— However, if there are no rows in the existing table that contain an array inside the
JSON data, then the index creation will be successful. However, you will not be able to
insert a new row with an array in that JSON data in the existing table.

— For example, in the following badindex1, the [] step is not used with the vehicles
array. There can be two scenarios here:

CREATE INDEX badindexl ON UserInfo(info.vehicles.vid AS ANYATOMIC)

* |If there are existing rows of data in the UserInfo table where the vehicles field
happens to be an array, the index creation will fail.

* |If there are no existing rows of data with the vehicles array in the UserInfo table,
the index will be created successfully. However, if you attempt to insert a new row
of data where the vehicles attribute is an array, the row insertion will fail.

You cannot provide [] steps after the non-array fields in strongly typed data.

You can provide [] steps after the atomic values and JSON documents in JSON data. If
you do so, then that atomic value or JSON document will be used.

If an array contains another array directly, then the corresponding number of []steps are
required to index the elements of the inner arrays. For example, if there are two inner
arrays inside vehicles, then info.vehicles[] [].vid should be used.

Index on JSON Collection Tables

ORACLE

You can index the fields in a JSON collection table. You must specify the name of the indexed
element and ANYATOMIC for the type definition, or, for strongly typed indexes, you can specify
the JSON type of the fields being indexed.

Indexing the fields in the JSON collection table is similar to creating JSON indexes. You must
specify the path expression to the field. If you are indexing a top-level JSON field in the
document, the field name is its path expression. If the element is deeply nested in a JISON
object, you specify the complete path name. In either case, the data type for every index must
be specified and it is recommended to use ANYATOMIC in the JSON collection tables.

Consider the JSON collection table created for a shopping application.

8-10

Chapter 8
Classification of Indexes

Example 8-12 Create an index on the JSON collection table

create index myindex on usersJSON(notify as ANYATOMIC)

In the statement above, you create an untyped index on the notify field of the shopper's data.

Example 8-13 Create a composite index on the JSON collection table

create index idx ntfy cty on storeAcct (address.city as ANYATOMIC, notify as
ANYATOMIC)

The notify field is a top-level field and the city field is nested in the address field of the
storeAcct table. In this statement, you create a composite index using these two fields.

Note:

If you are creating an index on a nested JSON field, the field must be present in all
the rows of the table. Otherwise, an error is displayed.

Example 8-14 Create a strongly typed index on the JSON collection table

create index myindex2 on usersJSON(notify as string)

In the statement above, you create a string index on the top-level notify field of the shopper's
data.

Note that the creation of a strongly typed index will fail if the table includes any rows with data
that violate the declared data type. Also, after successfully creating this index, you can only
insert string data into the notify field. You can use a strongly typed index to act as both an
index and a type constraint on a JSON field.

You can drop the indexes on the JSON collection table using the DROP INDEX Statement. For
details, see DROP INDEX Statement.

Indexes on Functions

ORACLE

You can create indexes on the values of one or more SQL built-in functions.
List of functions that can be indexed:
The following subset of the Built-in Functions can be indexed.

Functions on Timestamps:

e year
¢ month
e day

* hour

° minute
e second

* millisecond

8-11

Chapter 8
Classification of Indexes

e microsecond
* nanosecond

e week

Functions on Strings:

e length
e replace
° reverse

e substring

e trim

o ltrim

e rtrim

* lower
e upper

Functions on Rows:

¢ moadification_time

e expiration_time

e expiration_time_millis
* row_storage_size

See Built-in Functions for more details on what a built-in function is and how to use these
functions.

Examples of creating indexes on functions

ORACLE

You can create indexes on the values of one or more SQL built-in functions.

Create Index on row-property functions

A row-property function expects a row variable as its sole argument in a DML statement. You
can create an index on these row property functions.

* modification_time

* expiration_time

e expiration_time_millis
° row_storage_size

In a CREATE INDEX statement, you must provide these functions without any argument. The row
you are indexing is implicitly considered as the input to the function.

Example:

Create an index which indexes the rows of the Users table by its latest modification time:

CREATE INDEX idx modtime ON users(modification time())

8-12

Chapter 8
Classification of Indexes

This index will be used in a query, which has modification time as the filter condition.

SELECT * FROM Users S$u WHERE
modification time($u) > "2022-08-01T10:45:00"

This query returns all the rows whose most recent modification time is after
2022-08-01T10:45:00. It uses the idx _modtime index defined above. You can verify this by
viewing the query plan using the show query command.

More examples of creating indexes on functions

If you are creating an index on a built-in function that is not a row property function, then the
first argument of the function must be an index path. This is followed by a path type if the path
points to JSON data as shown in the example below. Some string functions need more than
one argument and in that case, all the arguments other than index path and path type should
be constant literal only.

Note:

The path type is not needed if it is a non-JSON as the datatype is the same as the
definition in the table. For JSON data, the type ANYATOMIC can be used to cover all
valid types in JSON.

Characteristics of the built-in functions that can be indexed:

« All of the built-in functions that can be indexed expect at most one item as their first
argument.

e The time-related functions such as YEAR, MONTH etc will throw an exception if their input
is a sequence with more than 1 item, and the string related functions such as length,
reverse and so on will return NULL in this case.

e If the input index path has a multi-key, then the function will be evaluated separately for
each value returned by the multi-key path. The resulting sequence of items will be
combined with the values of the other index paths (if any) in the index definition and index
entries will be created.

Download the script acctstream_loaddata.sql and run it as shown below. This script creates the
stream acct table used in the example below and loads data into the table.

Start your KVSTORE or KVLite and open the SQL.shell.

java -jar lib/kvstore.jar kvlite -secure-config disable
java -jar lib/sqgl.jar -helper-hosts localhost:5000 -store kvstore

Using the 1oad command, run the script.

load -file acctstream loaddata.sql

ORACLE 813

ORACLE

Chapter 8
Classification of Indexes

Example 1: Create an index in the stream acct table to index users by the first three letters of
their country of residence.

CREATE INDEX idx country ON stream acct(substring(acct data.country as
string, 0,3))

e Inthe example above,you declare thecountry field of the acct_data JSON as a string.

e The substring function is used to extract the first three letters of the country and use it as
the index key.

Example 2: Using a multi-key index path

In the following example, you index the users in the stream acct table by the id of the shows
they watch and the year and month of the dates when the show was watched.

CREATE INDEX idx showid year month ON

stream acct (acct data.contentStreamed[].showId AS INTEGER,

substring (acct data.contentStreamed[].seriesInfo[].episodes[].date AS
STRING, 0, 4),

substring (acct data.contentStreamed[].seriesInfo[].episodes[].date AS
STRING, 5, 2))

An example of a query using this index is shown below. The query counts the number of users
who watched any episode of show 16 in the year 2022.

SELECT count (*) FROM stream acct sl WHERE EXISTS
sl.acct data.contentStreamed[$element.showId = 16].seriesInfo.
episodes|[substring ($element.date, 0, 4) = "2022"]

This query will use the index idx showid year month. You can verify this by viewing the query
plan using the show query command.

show query SELECT count (*) FROM stream acct sl WHERE EXISTS
> sl.acct_data.contentStreamed[$element.showId =

16] .seriesInfo.episodes|[substring($element.date, 0, 4) = "2022"]
{

"iterator kind" : "GROUP",

"input variable" : "$gb-1",

"input iterator"

{
"iterator kind" : "RECEIVE",
"distribution kind" : "ALL SHARDS",
"distinct by fields at positions" : [1 1,
"input iterator"

{

"iterator kind" : "SELECT",
"FROM"
{
"iterator kind" : "TABLE",
"target table" : "stream acct",
"row variable" : "$$sl1",
"index used" : "idx showid year month",
"covering index" : true,

8-14

Chapter 8
SHOW INDEXES Statement

"index row variable" : "$Ssl idx",
"index scans" : [
{
"equality conditions"
{"acct data.contentStreamed[].showId":16,"substring#acct data.contentStreamed|
].seriesInfo[].episodes[].date@,0,4":"2022"},
"range conditions" : {}
}
]
}I
"FROM variable" : "$$sl idx",
"SELECT expressions" : [
{
"field name" : "Column 1",
"field expression"

{

"iterator kind" : "CONST",
"value" : 1
}
}I
{
"field name" : "acct id gen",

"field expression"

{
"iterator kind" : "FIELD STEP",
"field name" : "#acct id",
"input iterator"

{
"iterator kind" : "VAR REF",
"variable" : "$$sl idx"

b

"grouping expressions" : [
1,

"aggregate functions" : [

{
"iterator kind" : "FUNC COUNT STAR"

SHOW INDEXES Statement

The SHOW INDEXES statement provides the list of indexes present on the specified table.
Syntax

show_indexes statement ::=
SHOW [AS JSON] INDEXES ON table name

ORACLE o5

Chapter 8
DESCRIBE INDEX Statement

Semantics
If you want the output to be in JSON format, you can specify the optional AS JSON.
Example 8-15 Show Indexes

The following statement lists the indexes present on the UserInfo table.

SHOW INDEXES ON UserInfo

Output

indexes
idx_phones
idx_incomel

Example 8-16 Show Indexes

The following statement lists the indexes present on the UserInfo table in JSON format.

SHOW AS JSON INDEXES ON UserInfo

Output

{"indexes"
["idx phones","idx incomel"]}

DESCRIBE INDEX Statement

ORACLE

The DESCRIBE INDEX statement defines the specified index on a table.
Syntax

describe index statement ::=
(DESCRIBE | DESC) [AS JSON] INDEX index name ON table_name

Semantics

If you want the output to be in JSON format, you can specify the optional AS JSON.
The description for the index contains the following information:

* Name of the table on which the index is defined.

* Name of the index.

e Type of index. Whether the index is primary index or secondary index.

* Whether the index is multikey? If the index is multikey then 'Y is displayed. Otherwise, 'N'
is displayed.

* List of fields on which the index is defined.

e The declared type of the index.

8-16

Chapter 8
DESCRIBE INDEX Statement

* Description of the index.

Example 8-17

The following statement provides information about the index idx incomel on the UserInfo
table.

DESCRIBE AS JSON INDEX idx incomel ON UserInfo

Output
{
"name" : "idx incomel",
"type" : "secondary",
"fields" : ["info.income"],
"types" : ["ANY ATOMIC"],
"withNoNulls" : false,
"withUniqueKeysPerRow" : false
}
Example 8-18

The following statement provides information about the index idx_phones on the UserInfo
table.

DESCRIBE AS JSON INDEX idx phones ON UserInfo

Output

{
"name" : "idx phones",
"type" : "secondary",
"fields" : ["info.phones[].number"],
"types" : ["INTEGER"],
"withNoNulls" : false,
"withUniqueKeysPerRow" : true

}

Example 8-19

The following statement provides information about the index idx modtime on the users table.

DESCRIBE AS JSON INDEX idx modtime ON users

Output
{
"name" : "idx modtime",
"type" : "secondary",
"fields" : ["modification time#"],

"withNoNulls" : false,

ORACLE 8-17

Chapter 8
DROP INDEX Statement

"withUniqueKeysPerRow" : false

}

Example 8-20

The following statement provides information about the index idx showid year month on the
stream acct table.

DESCRIBE AS JSON INDEX idx showid year month ON stream acct

Output:
{
"name" : "idx showid year month",
"type" : "secondary",
"fields" : ["acct data.contentStreamed[].showId",

"substring#acct data.contentStreamed[].seriesInfo[].episodes[].date@,0,4",
"substring#acct data.contentStreamed[].seriesInfo[].episodes[].date@,5,2"],

"types" : ["INTEGER", "STRING", "STRING"],
"withNoNulls" : false,
"withUniqueKeysPerRow" : false

DROP INDEX Statement

Appendix

ORACLE

The DROP INDEX removes the specified index from the database.
Syntax

drop index statement ::=
DROP INDEX [IF EXISTS] index name ON table_name

Semantics

If an index with the given name does not exist, then the statement fails, and an error is
reported.

If the optional IF EXISTS clause is used in the DROP INDEX statement, and if an index with
the same name does not exist, then the statement will not execute, and no error is reported.

The following code creates the UserInfo table.

CREATE TABLE UserInfo (id INTEGER, uname STRING, info JSON, PRIMARY KEY (id))

The following code populates the UsersInfo table with sample rows.

INSERT INTO UserInfo VALUES (
1001,
"Peter",

8-18

Chapter 8
Appendix

"age":42,
"income":65000,
"address": {
"street":"Lane-8",
"city":"Boston",
"state":"MA",
"phones": [
{"area":415, "number":91237468, "kind" :"work"},
{"area":null, "number":95213607, "kind" :"home"}

}I
"vehicles" : [
{

"yid":72132,

"vtype":"car",

"vpass": [
{"passid":396457,"issuedby":"BPD"},
{"passid":312358, "issuedby":"NYPD"}

]I

"vservice": [

{"serviceid":20001, "servicedate":null}

}l
{
"vid":78344,
"vtype":"bike",
"vpass": [
{"passid":396241, "issuedby":"BPD"}
]
}

"expenses": {"housing":1000, "clothes":230, "books":20},
"connections":[100,20,20,10,20]

INSERT INTO UserInfo VALUES (

1002,
"Ram",
{
"age":35,
"income":null,
"address": {
"street":"Hosur Road",
"city":"Bengaluru",
"state":"KA",
"phones": [
{"area":080, "number":2653457, "kind" : "work"},
{"area":080, "number":2659753, "kind" : "home"}
]
}I

"vehicles":null,
"expenses":{"housing":1000,"travel":300},
"connections": []

ORACLE 819

Chapter 8
Appendix

INSERT INTO UserInfo VALUES (
1003,
"Alice",
{
"income":20000,
"address": {
"street":"Fremont Rd",
"city":"San Jose",
"state":"CA",
"phones": []
}I
"expenses":null,
"connections":null

INSERT INTO UserInfo VALUES (1004,"Chan", {})

INSERT INTO UserInfo VALUES (
1005,
"John",
{
"age":60,
"address": {
"street":"Taylor Blvd",
"city":"San Fransisco",
"state":"CA",
"phones": {"area":408, "number":50, "kind" :"work"}
}I
"expenses":{"housing":1000, "travel":300},
"connections":[30,5,null]

INSERT INTO UserInfo VALUES (
1006,
"Cathy",
{
"address": {
"street":"26th Avenue",
"city":"Chennai",

"state":"TN"
I
"vehicles": [
{
"vid":98642,
"vtype":"bike"

ORACLE 820

Query Optimization

This chapter discusses about query optimization in Oracle NoSQL Database.
This chapter contains the following topics:

» Using Indexes for Query Optimization

e Finding Applicable Indexes

* Examples: Using Indexes for Query Optimization

* Choosing the Best Applicable Index

Using Indexes for Query Optimization

ORACLE

In Oracle NoSQL Database, the query processor can identify which of the available indexes
are beneficial for a query and rewrite the query to make use of such an index. "Using" an index
means scanning a contiguous subrange of its entries, potentially applying further filtering
conditions on the entries within this subrange, and using the primary keys stored in the
surviving index entries to extract and return the associated table rows. The subrange of the
index entries to scan is determined by the conditions appearing in the WHERE clause, some of
which may be converted to search conditions for the index. Given that only a (hopefully small)
subset of the index entries will satisfy the search conditions, the query can be evaluated
without accessing each individual table row, thus saving a potentially large number of disk
accesses.

Notice that in Oracle NoSQL Database, a primary-key index is always created by default. This
index maps the primary key columns of a table to the physical location of the table rows.
Furthermore, if no other index is available, the primary index will be used. In other words, there
is no pure "table scan" mechanism; a table scan is equivalent to a scan via the primary-key
index.

When it comes to indexes and queries, the query processor must answer two questions:

1. Is anindex applicable to a query? That is, will accessing the table via this index be more
efficient than doing a full table scan (via the primary index).

2. Among the applicable indexes, which index or combination of indexes is the best to use?

Regarding question (1), for queries with NESTED TABLES, secondary indexes will be
considered for the target table only; in the current implementation, ancestor and/or descendant
tables will always be accessed via their primary index.

Regarding question (2), the current implementation does not support index anding or index
oring. As a result, the query processor will always use exactly one index (which may be the
primary-key index). Furthermore, there are no statistics on the number and distribution of
values in a table column or nested fields. As a result, the query processor has to rely on some
simple heuristics in choosing among the applicable indexes. In addition, SQL for Oracle
NoSQL Database allows for the inclusion of index hints in the queries, which are used as user
instructions to the query processor about which index to use.

9-1

Chapter 9
Finding Applicable Indexes

Finding Applicable Indexes

ORACLE

To find applicable indexes, the query processor looks at the conditions in the WHERE clause,
trying to "match" such predicates with the index paths that define each index and convert the
matched predicates to index search conditions. In general the WHERE clause consists of one
or more conditions connected with AND or OR operators, forming a tree whose leaves are the
conditions and whose internal nodes are the AND/OR operators. Let a predicate be any
subtree of this WHERE-clause tree. The query processor will consider only top-level AND
predicates, i.e., predicates that appear as the operands of a root AND node. If the WHERE
clause does not have an AND root, the whole WHERE expression is considered a single top-
level AND predicate. Notice that the query processor does not currently attempt to reorder the
AND/OR tree in order to put it in conjunctive normal form. On the other hand, it does flatten the
AND/OR tree so that an AND node will not have another AND node as a child, and an OR
node will not have another OR node as a child. For example, the expression a =10 and b <5
and (c > 10 or ¢ < 0) has 3 top-level AND predicates: a =10, b <5, and (c > 10 or c < 0),
whereas the expression a =10 and b <5 and ¢ > 10 or ¢ < 0 has an OR as its root and the
whole of it is considered as a single top-level AND predicate. For brevity, in the rest of this
section we will use the term "predicate" to mean top-level AND predicate.

The query processor will also look at the expressions in the ORDER BY and GROUP BY
clauses in order to find sorting indexes, that is, indexes that sort the table rows according to
the expressions appearing in these clauses. As explained in sections GROUP BY Clause and
ORDER BY Clause,, use of a sorting index will result in more efficient and memory-sparing
sorting and grouping.

The query processor will consider an index applicable to a query if the index is a sorting one or
if the query contains at least one index predicate: a predicate that can be evaluated during an
index scan, using the content of the current index entry only, without the need to access the
associated table row. Index predicates are further categorized as start/stop predicates or
filtering predicates. A start/stop predicate participates in the establishment of the first/last index
entry to be scanned during an index scan. A filtering predicate is applied during the index scan
on the entries being scanned. In the current implementation, the following kinds of predicates
are considered as candidate start/stop predicates:

e comparisons, using either the value or sequence (any) comparison operators, but not !=
or I=any,

* IS NULL and IS NOT NULL operators,
e EXISTS and NOT EXISTS predicates, and
* IN predicates

However, if an index is created with the WITH NO NULLS clause, IS NULL and NOT EXISTS
predicates cannot be used as index predicates for that index. In fact, such an index can be
used by a query only if the query has an index predicate for each of the indexed fields.

An index is called a covering index with respect to a query if the query can be evaluated using
only the entries of that index, that is, without the need to retrieve the associated rows.

If an index is used in a query, its index predicates are removed from the query because they
are evaluated by the index scan. We say that index predicates are "pushed to the index". In the
rest of this section we explain applicable indexes further via a number of example queries, and
using the non-json indexes from the Appendix. The algorithm for finding applicable json
indexes is essentially the same as for non-json indexes. The same is true for geometry
indexes, with the exception that geosearch predicates that are pushed to the index are not
removed from the query, because they need to stay there to eliminate false positive results
from the index scans.

9-2

Chapter 9
Examples: Using Indexes for Query Optimization

Examples: Using Indexes for Query Optimization

ORACLE

Example 9-1 Using Indexes for Query Optimization

SELECT * FROM Users?2
WHERE 10 < income AND income < 20

The query contains 2 index predicates. Indexes idx1, idx2, midx2, and midx3 are all applicable.
For index idx1, 10 < income is a start predicate and income < 20 is a stop predicate. For the
other indexes, both predicates are filtering predicates. If, say, idx2 were to be used, the
subrange to scan is the whole index. Obviously, idx1 is better than the other indexes in this
case. Notice however, that the number of table rows retrieved would be the same whether idx1
or idx2 were used. If midx2 or midx3 were used, the number of distinct rows retrieved would be
the same as for idx1 and idx2, but a row would be retrieved as many times as the number of
elements in the phones array of that row. Such duplicates are eliminated from the final query
result set.

Notice that if index idx2 was created WITH NO NULLS, it would not be applicable to this query,
because it does not have index predicates for fields address.state and address.city. For
example, if Users2 contains a row where address.city is NULL and income is 15, the index
would not contain any entry for this row, and as a result, if the index was used, the row would
not appear in the result, even though it does qualify. The same is true for indexes midx2 and
midx3. On the other hand, even if idx1 was created WITH NO NULLS, it would still be
applicable, because it indexes a single field (income) and the query contains 2 start/stop
predicates on that field.

Example 9-2 Using Indexes for Query Optimization

SELECT * FROM Users?2
WHERE 20 < income OR income < 10

The query contains 1 index predicate, which is the whole WHERE expression. Indexes idx1,
idx2, midx2, midx3 are all applicable. For all of them, the predicate is a filtering predicate.

Example 9-3 Using Indexes for Query Optimization

SELECT * FROM Usersz2
WHERE 20 < income OR age > 70

There is no index predicate in this case, because no index has information about user ages.
Example 9-4 Using Indexes for Query Optimization
SELECT * FROM Users2 u

WHERE u.address.state = "CA"
AND u.address.city = "San Jose"

Only idx2 is applicable. There are 2 index predicates, both of which serve as both start and
stop predicates.

9-3

ORACLE

Chapter 9
Examples: Using Indexes for Query Optimization

Example 9-5 Using Indexes for Query Optimization

SELECT id, 2*income FROM Users2 u
WHERE u.address.state = "CA"
AND u.address.city = "San Jose"

Only idx2 is applicable. There are 2 index predicates, both of which serve as both start and
stop predicates. In this case, the id and income information needed in the SELECT clause is
available in the index. As a result, the whole query can be answered from the index only, with
no access to the table. We say that index idx2 is a covering index for the query in Example 5.
The query processor will apply this optimization.

Example 9-6 Using Indexes for Query Optimization

SELECT * FROM Users2 u

WHERE u.address.state = "CA"
AND u.address.city = "San Jose"
AND u.income > 10

idx1, idx2, midx2, and midx3 are applicable. For idx2, there are 3 index predicates: the state
and city predicates serve as both start and stop predicates; the income predicate is a start
predicate. For idx1 only the income predicate is applicable, as a start predicate. For midx2 and
midx3, the income predicate is a filtering one.

Example 9-7 Using Indexes for Query Optimization

SELECT * FROM Users2 u
WHERE u.address.state = "CA"
AND u.income > 10

idx1, idx2, midx2, and midx3 are applicable. For idx2, there are 2 index predicates: the state
predicate serves as both start and stop predicate; the income predicate is a filtering predicate.
The income predicate is a start predicate for idx1 and a filtering predicate for midx2 and midx3.

Example 9-8 Using Indexes for Query Optimization

DELCARE $city STRING

SELECT * FROM Users2 u
WHERE u.address.state = "CA"
AND u.address.city = S$city
AND (u.income > 50
OR (10 < u.income
AND u.income < 20))

idx1, idx2, midx2, and midx3 are applicable. For idx2, there are 3 index predicates. The state
and city predicates serve as both start and stop predicates. The composite income predicate is
a filtering predicate for all the applicable indexes (it's rooted at an OR node).

Example 9-9 Using Indexes for Query Optimization

SELECT u.address.city, SUM(u.expenses.values())
FROM Users2 u

9-4

ORACLE

Chapter 9
Examples: Using Indexes for Query Optimization

WHERE u.address.state = "CA"
GROUP BY u.address.city
ORDER BY SUM(u.expenses.values())

In this example, for each city in California, the total amount of user expenditures in that city is
returned. The query orders the results by the total amount. Only idx2 is applicable. The state
predicate is both a stop and a start predicate. Furthermore, the index is a sorting index,
because for any given state it sorts the table rows by the names of the cities in that state and
the GROUP BY groups by the cities in CA. As a result, the grouping in this query will be index-
based and the ORDER BY will be generic. Notice that if instead of idx2 there were 2 separate
indexes, one on states and another on cities, both would be applicable: the first because of the
state predicate, and the second because of the grouping. In this case, the query processor
would choose the state index in order to reduce the number of rows accessed, at the expense
of doing a generic GROUP BY.

Example 9-10 Using Indexes for Query Optimization

SELECT id FROM Users3 u
WHERE EXISTS u.info.income

In this example we use table Users3, which stores all information about users as json data.
The query looks for users who record their income. Index jidx1 is applicable. The EXISTS
condition is actually converted to 2 index start/stop conditions: u.info.income < EMPTY and
u.info.income > EMPTY. As a result, two range scans are performed on the index.

Example 9-11 Using Indexes for Query Optimization

SELECT * FROM users2 u
WHERE (u.address.state, u.address.city) IN
(("CA","San Jose"), ("MA","Boston"))

In this example, the idx2 index will be used. Two scans will be performed on the index: one for
entries whose state and city fields are "CA" and "San Jose", respectively, and another for
entries whose state and city fields are "MA" and "Boston", respectively.

Example 9-12 Using Indexes for Query Optimization

SELECT * FROM users2 u
WHERE u.address.state in ("CA", "MA") AND
u.address.city in ("San Jose","Boston")

In this example, the idx2 index will be used. Four scans will be performed on the index. The
search keys for these scans are determined by the cartesian product of the keys in the right-
hand-side of the two IN operators: ("CA", "San Jose"), ("CA", "Boston"), ("MA, "San Jose"), and
("MA", "Boston").

Example 9-13 Using Indexes for Query Optimization

SELECT * FROM users2 u
WHERE (u.address.state, u.income) IN
(("ca", 10000), ("MA", 20000))

In this example, the idx2 index will be used. Two scans will be performed on the index: one for
entries whose state field is "CA", and another for entries whose state field is "MA".

9-5

ORACLE

Chapter 9
Examples: Using Indexes for Query Optimization

Furthermore, the whole IN condition will be used as a filtering predicate on the entries returned
by the two scans.

As the above examples indicate, a predicate will be used as a start/stop predicate for an index
IDX only if:

e ltis of the form <path expr> op <const expr>, or <const expr> op <path expr>, or (<path
exprl>, ... <path exprN>) IN (<const exprs>)

e opis acomparison operator (EXISTS, NOT EXISTS, IS NULL and IS NOT NULL are
converted to predicates of this form, as shown in Q9).

e <const expr> is an expression built from literals and external variables only (does not
reference any tables or internal variables)

e <path expr> is a path expression that is "matches" an index path P appearing in the
CREATE INDEX statement for IDX. So far we have seen examples of exact matches only.
In the examples below we will see some non-exact matches as well.

- If Pis not IDX's 1st index path, there are equality start/stop predicates for each index path
appearing before P in IDX's definition.

e The comparison operator may be one of the "any" operators. Such operators are matched
against the multi-key index paths of multi-key indexes. As shown in the examples below,
additional restrictions apply for such predicates.

Example 9-14 Using Indexes for Query Optimization

SELECT * FROM users2 u
WHERE u.connections[] = any 10

midx1 is applicable and the predicate is both a start and a stop predicate.

Example 9-15 Using Indexes for Query Optimization

SELECT * FROM users2 u
WHERE u.connections[0:4] = any 10

midx1 is applicable. The predicate to push down to mdx1 is u.connections[] =any 10, in order
to eliminate users who are not connected at all with user 10. However, the original predicate
(u.connections[0:4] =any 10) must be retained in the query to eliminate users who do have a
connection with user 10, but not among their 5 strongest connections. This is an example
where the query path expression does not match exactly the corresponding index path.

Example 9-16 Using Indexes for Query Optimization

SELECT * FROM users2 u
WHERE u.connections[] > any 10

midx1 is applicable and the predicate is a start predicate.
Example 9-17 Using Indexes for Query Optimization

SELECT id FROM users2 u
WHERE 10 < any u.connections[]
AND u.connections[] < any 100

9-6

ORACLE

Chapter 9
Examples: Using Indexes for Query Optimization

midx1 is applicable, but although each predicate by itself is an index predicate, only one of
them can actually be used as such. To see why, first notice that the query asks for users that
have a connection with id greater than 10 and another connection (which may or may not be
the same as the 1st one) with id less than 100. Next, consider a Users2 table with only 2 users
(say with ids 200 and 500) having the following connections arrays respectively: [1, 3, 110,
120] and [1, 50, 130]. Both of these arrays satisfy the predicates in the query, and both users
should be returned as a result. Now, consider midx1; it contains the following 7 entries:

[1, 200], [1, 500], [3, 200], [50, 500], [110, 200], [120, 200], [130, 500]

By using only the 1st predicate as a start predicate to scan the index, and applying the 2nd
predicate on the rows returned by the index scan, the result of the query is 500, 200, which is
correct. If on the other hand both predicates were used for the index scan, only entry [50, 500]
would qualify, and the query would return only user 500.

Example 9-18 Using Indexes for Query Optimization

To search for users who have a connection in the range between 10 and 100, the following
guery can be used:

SELECT id FROM users2 u
WHERE exist u.connections
[10 < Selement AND Selement < 100]

Assuming the same 2 users as in Example 13, the result of this query is user 500 only and
both predicates can be used as index predicates (start and stop), because both predicates
apply to the same array element. The query processor will indeed push both predicates to
mdx1.

Example 9-19 Using Indexes for Query Optimization

SELECT * FROM Users2 u

WHERE u.address.phones.area = any 650
AND u.address.phones.kind = any "work"
AND u.income > 10

This query looks for users whose income is greater than 10, and have a phone number with
area code 650, and also have a work phone number (whose area code may not be 650). Index
midx3 is applicable, but the address.phones.kind predicate cannot be used as an index
predicate (for the same reason as in Example 13). Only the area code predicate can be used
as a start/stop predicate and the income predicate as a filtering one. Indexes idx1, idx2, and
midx2 are also applicable in Example 15.

Example 9-20 Using Indexes for Query Optimization

SELECT * FROM Users2 u
WHERE u.expenses.housing = 10000

idx4 is applicable and the predicate is both a start and a stop predicate. midx4 is also
applicable. To use midx4, two predicates must be pushed to it, even though only one appears
in the query. The 1st predicate is on the "keys" index field and the second on the "values" field.
Specifically, the predicates key = "price" and value = 10000 are pushed as start/stop
predicates. This is another example where the match between the query path expression and
an index path is not exact: we match expenses.housing with the expenses.values() index path,
and additionally, generate an index predicate for the properties.keys() index path.

9-7

Chapter 9
Examples: Using Indexes for Query Optimization

Example 9-21 Using Indexes for Query Optimization

SELECT * FROM Users2 u
WHERE u.expenses.travel = 1000
AND u.expenses.clothes > 500

midx4 is applicable. Each of the query predicates is by itself an index predicate and can be
pushed to midx4 the same way as the expenses.housing predicate in the previous example.
However, the query predicates cannot be both pushed (at least not in the current
implementation). The query processor has to choose one of them to push and the other will
remain in the query. Because the expenses.travel predicate is an equality one, it's more
selective than the greater-than predicate and the query processor will use that.

Optimizing unnesting queries with the UNNEST clause

ORACLE

An UNNEST clause is recommended when there is an index on the array(s) or map(s) that are
being unnested. The UNNEST clause places some restrictions on the kinds of expressions that
it contains. These restrictions can help the query processor in choosing the appropriate index
on the unnested arrays/maps, resulting in much better performance.

Note:

See Limitation for expression usage in the UNNEST clause for more details on the
restrictions placed by the UNNEST clause. The SQL statements to create tables and
load data for using unnest queries is available here.

Example 1: Fetch different shows aired in the US and the nhumber of people watching
them

1. The query is specific to a country (US) and a specific show. So create an index on the
country and showid fields of the stream acct table.

CREATE INDEX idx country showid ON stream acct(acct data.country AS
string,

acct data.contentStreamed[].showId AS integer)
WITH UNIQUE KEYS PER ROW

¢ Note:

The index must be created with the “unique keys per row property” in order for
such indexes to be usable by queries that unnest the same array(s)/map(s) as
the index.

2. The query to fetch different shows aired in the US and number of people watching it with
the UNNEST clause.

SELECT $show.showId, count(*) as cnt

FROM stream acct $s, unnest($s.acct data.contentStreamed[] as S$show)
WHERE $s.acct data.country = "USA"

GROUP BY $show.showId ORDER BY count (*) desc

9-8

Chapter 9
Examples: Using Indexes for Query Optimization

Output:

{"showId":15,"cnt":2}
{"showId":16,"cnt":2}

The above query will use the idx_country showid index. The country condition will be
pushed to the index, the group-by will be index-based, and the index is a covering one for
this query. An index that contains all required information to resolve the query is known as
a Covering Index — it completely covers the query. Covering Index includes all the
columns, the query refers to in the SELECT, JOIN, and WHERE clauses. If the UNNEST
clause is not used, the index will not be considered.

Example 2: For every show aired by the application, the total watch time for all users:

The following query returns, for each show, the total time users have spent watching the show.

SELECT $show.showId, sum($show.seriesInfo.episodes.minWatched)
AS total time FROM stream acct $s,

unnest ($s.acct_data.contentStreamed[] AS $show)

GROUP BY S$show.showId

ORDER BY sum($show.seriesInfo.episodes.minWatched)

Let us examine the effect of creating an index on acct data.contentStreamed[].showId as
the data is been grouped based on showId.

Despite the use of the UNNEST clause, this query cannot use the idx showid index. This is
because of the argument to the sum() function. The idx showid index contains just the showId
(and the primary key). So, the expression $show.seriesInfo.episodes.minWatched cannot be
evaluated from the index. There are two ways to optimize this query.

Option 1: Create an additional index:

Create an additional composite index on the showId and minWatched fields as both are used in
the query.

CREATE INDEX idx showid minWatched ON

stream acct(acct data.contentStreamed[].showId AS integer,

acct data.contentStreamed[].seriesInfo[].episodes[].minWatched AS
integer,

acct data.contentStreamed[].seriesInfo[].episodes[].episodeID as
integer)
WITH UNIQUE KEYS PER ROW

Note:

The episodeID must be added in this index, as the last index path, in order for the
"unique keys per row" constraint to be satisfied. This index will be used by the query,
as a covering index.

Option 2: Avoid the cost of an additional index:

ORACLE 0.9

ORACLE

Chapter 9
Examples: Using Indexes for Query Optimization

You can rewrite the query to use the idx showid index.The rewritten query below uses the
idx showid index, but the index is not covering.

SELECT $show.showId, sum($s.acct data.contentStreamed[$element.showId
= Sshow.showId].
seriesInfo.episodes.minWatched) AS total time
FROM stream acct $s, unnest($s.acct data.contentStreamed[] AS $show) GROUP
BY $show.showId
ORDER BY sum($s.acct data.contentStreamed[$element.showId
= S$show.showlId].seriesInfo.episodes.minWatched)

Output:

{"showId":26,"total time":225}
{"showId":16,"total time":440}
{"showId":15,"total time":642}

Example 3: The total watch time of users per show and season

SELECT $show.showId, S$seriesInfo.seasonNum,
sum($seriesInfo.episodes.minWatched) AS length

FROM stream acct n,

unnest (n.acct data.contentStreamed[] AS Sshow, $show.seriesInfol]
as $seriesInfo)

GROUP BY S$show.showId, $seriesInfo.seasonNum

ORDER BY sum($seriesInfo.episodes.minWatched)

Output:

{"showId":26,"seasonNum":2,"length":80}
{"showId":26,"seasonNum":1,"length":145}
{"showId":16,"seasonNum":2,"length":190}
{"showId":16,"seasonNum":1,"length":250}
{"showId":15, "seasonNum":2,"length":295}
{"showId":15,"seasonNum":1,"length":347}

For best performance of the above query, create the following index. The index
idx showid seasonNum minWatched is a multi key index. The episodeID must be added in this
index, as the last index path, in order for the "unique keys per row" constraint to be satisfied.

CREATE INDEX idx showid seasonNum minWatched ON
stream acct(acct data.contentStreamed[].showId as integer,
acct data.contentStreamed[].seriesInfo[].seasonNum as integer,
acct data.contentStreamed[].seriesInfo[].episodes[].minWatched as
integer,
acct data.contentStreamed[].seriesInfo[].episodes[].episodelD as
integer)
WITH UNIQUE KEYS PER ROW

9-10

Choosing

ORACLE

Chapter 9
Choosing the Best Applicable Index

Note:

An index is called a multikey index if for each row of data in the table, there are
multiple entries created in the index. In a multikey index, there is at least one index
path that uses .keys(), .values(), or [] steps. Any such index path will be called a
multikey index path.

If you want your query to use an index on the array(s)/maps() that it is unnesting, each path
expression in the UNNEST clause must match with the multikey path_prefix of an index path
in the index. As shown in the syntax for the CREATE INDEX Statement the

multikey path_prefix is the part of an index path up to and including the last multikey step. For
example, the multikey path_prefix of the first index path should match the first path expression
in the UNNEST clause and so on. If this is not the case, the index will not be used.

In the above query the expression n.value.contentStreamed[] matches the
multikey_path_prefix of the first index path in idx_showid seasonNum minWatched, and the
expression $show.seriesInfo[] matches the multikey path_prefix of the second index path,
after the $show variable is replaced with its domain expression. So this index will be used in the

query.

the Best Applicable Index

To choose an index for a query, the query processor uses a simple heuristic together with any
user-provided index hints.

Syntax

hints ::= '/*+' hint* '*/'

hint ::= (
(PREFER _INDEXES " (" name path index name* ")") |
(FORCE_INDEX " (" name path index name ")") |
(PREFER_PRIMARY_INDEX " name_path M
(FORCE_PRIMARY INDEX " (" name path ")")
) [STRING]

There are 2 kinds of hints: a FORCE_INDEX hint and a PREFER_INDEXES hint. The
FORCE_INDEX hint specifies a single index and the query is going to use that index without
considering any of the other indexes (even if there are no index predicates for the forced
index). The PREFER_INDEXES hint specifies one or more indexes. The query processor may
or may not use one of the preferred indexes. Specifically, in the absence of a forced index,
index selection works as follows.

The query processor uses the heuristic to assign a score to each applicable index and then
chooses the one with the highest score. If two or more indexes have the same score, the index
chosen is the one whose name is alphabetically before the others. In general, preferred
indexes will get high scores, but it is possible that other indexes may still win. Describing the
details of the heuristic is beyond the scope of this document, but a few high-level decisions are
worth mentioning:

« If the query has a complete primary key, the primary index is used.

9-11

Chapter 9
Appendix

* Indexes that are preferred (via a PREFER hint), covering, or have a complete key (i.e.,
there is an equality predicate on each of its index fields) get high stores and will normally
prevail over other indexes.

* Among 2 indexes where one is a sorting index, the other is not, and the 2 indexes would
otherwise have the same score, the sorting index is chosen.

The FORCE_INDEX and PREFER_INDEXES hints specify indexes by their name. Since the
primary index has no explicit name, 2 more hints are available to force or to prefer the primary
index: FORCE_PRIMARY_INDEX and PREFER_PRIMARY _INDEX. Hints are inserted in the
query as a special kind of comment that appears immediately after the SELECT keyword. Here
is the relevant syntax:

The '+' character immediately after (with no spaces) the comment opening sequence ('/*') is
what turns the comment into a hint. The string at the end of the hint is just for informational
purposes (a comment for the hint) and does not play any role in the query execution.

Appendix
The following code creates Users2 and User3 tables.

CREATE TABLE Users2 (
id INTEGER,
income INTEGER,
address RECORD (
street STRING,
city STRING,
state STRING,
phones ARRAY (
RECORD (
area INTEGER,
number INTEGER,
kind STRING

)y
connections ARRAY (INTEGER),

expenses MAP (INTEGER),
PRIMARY KEY (id)

CREATE TABLE users3 (id INTEGER, info JSON, PRIMARY KEY (id))

The following code populates Users2 and User3 tables with sample rows.

INSERT INTO Users2 VALUES (

0,

1000,

{
"street" : "somewhere",
"city": "Boston",
"state" : "MA",
"phones" : [

{ "area":408, "number":50, "kind":"work" },
{ "area":415, "number":60, "kind":"work" },

ORACLE 012

Chapter 9
Appendix

{ "area":NULL, "number":52, "kind":"home" }

by
[100, 20, 20, 10, 20],
{ "housing” : 1000, "clothes" : 230, "books" : 20 }

INSERT INTO Users2 VALUES (
ll
NULL,
{
"street" : "everywhere",
"city": "San Fransisco",
"state" : "CA",
"phones" : [
{ "area":408, "number":50, "kind":"work" },
{ "area":408, "number":60, "kind":"home" }

by
(1,
{ "housing" : 1000, "travel"™ : 300 }

INSERT INTO Users2 VALUES (

2!

2000,

{
"street" : "nowhere",
"city": "San Jose",
"state" : "CA",
"phones" : []

}I

NULL,

NULL

INSERT INTO users3 VALUES (
OI
{
"income" : 1000,
"address": {

"street" : "somewhere",
"city": "Boston",
"state" : "MA",
"phones" : [

{ "area":408, "number":50, "kind":"work" },
{ "area":415, "number":60, "kind":"work" },
{ "area":null, "number":52, "kind":"home" }

b

"expenses" : { "housing" : 1000, "clothes" : 230, "books" : 20 },
"connections"™ : [100, 20, 20, 10, 20]

ORACLE 013

INSERT INTO users3 VALUES (

ll
{
"income" : null,
"address": {
"street" "everywhere",
"city": "San Fransisco",
"state" "CA",
"phones" : [

{ "area":408,
{ "area":408,
"4083451232"

"number":50,
"number": 60,

b
"expenses" { "housing"
"connections" : []

1000,

INSERT INTO users3 VALUES (

2!
{
"income" 2000,
"address": {
"street" "nowhere",
"city": "San Jose",
"state" "CA",
"phones" : []
}I
"expenses" : null,
"connections" : null

INSERT INTO users3 VALUES (3,{})
INSERT INTO users3 VALUES (

4,

{

"address": {

"street" "top of the hill",
"city": "San Fransisco",
"state" "CA",
"phones" : { "area":408,
}I
"expenses" { "housing" 1000,
"connections" [30, 5, null]

INSERT INTO Users3 VALUES (
5!
{
"address": {
"street" "end of the road",
"city": "Portland",

ORACLE

"travel"

"number":50,

"travel"

Chapter 9
Appendix

"kind":"work" },
"kind":"home" },

300 1},

"kind":"work" }

300},

9-14

ORACLE

Chapter 9
Appendix

"state" : "OR"

The following are some examples of indexes.

Example 9-22 Simple Index

CREATE INDEX idxl ON Users? (income)

It creates an index with one entry per user in the Users table. The entry contains the income
and id of the user represented by the row. The contents of this index for the sample rows in
Users2 are:

[1000, 0 1
[2000, 2]
[NULL, 1]

If the WITH NO NULLS clause were used in the above create index statement, the last of the
above 3 entries would not appear in the index.

Example 9-23 Simple Index

CREATE INDEX idx2 ON Users2 (address.state, address.city, income)

It creates an index with one entry per user in the Users table. The entry contains the state, city,
income and id of the user represented by the row. The contents of this index for the sample
rows in Users2 are:

["CA", "San Fransisco", NULL, 1]
["CA", "San Jose", 2000, 2]
["MA", "Boston", 1000, 0]

Example 9-24 Simple Index

CREATE INDEX idx3 ON Users2 (expenses.books)

Creates an index entry for each user. The entry contains the user's spending on books, if the
user does record spending on books, or EMPTY if there is no "books" entry in expenses, or
NULL if there is no expenses map at all (i.e. the value of the expenses column is NULL). The
contents of this index for the sample rows in Users2 are:

[20, 0]

[EMPTY, 1]
[NULL, 2]

If the WITH NO NULLS clause were used in the above create index statement, only the first of
the above 3 entries would appear in the index.

9-15

ORACLE

Chapter 9
Appendix

Example 9-25 Simple Index

CREATE INDEX idx4 ON users2 (expenses.housing, expenses.travel)

Creates an index entry for each user. The entry contains the user's housing expenses, or
EMPTY if the user does not record housing expenses, and the user's travel expenses, or
EMPTY if the user does not record travel expenses. If expenses is NULL, both fields in the
index entry will be NULL. The contents of this index for the sample rows in Users2 are:

[1000, 300, 1]
[1000, EMPTY, 0]
[NULL, NULL, 2]

Example 9-26 Multi-Key Index

CREATE INDEX midxl ON Users2 (connections[])

Creates an index on the elements of the connections array. The contents of this index for the
sample rows in Users2 are:

10,]
20,]
100, 0]
EMPTY, 1]
NULL, 2]

0
0

— — — —

If the WITH NO NULLS clause were used in the above create index statement, the last 2 of the
above entries would not appear in the index.

Example 9-27 Multi-Key Index

CREATE INDEX midx2 ON Users?2 (address.phones[].area, income)

Creates an index on the area codes and income of users. The contents of this index for the
sample rows in Users2 are:

408, 1000, O
408, NULL, 1
415, 1000, O
EMPTY, 2000,
NULL, 1000, 0]

]
]
]
2]

— — — — —

Example 9-28 Multi-Key Index

CREATE INDEX midx3 ON Users?2
(address.phones|[].area, address.phones[].kind, income)

Creates an index on the area codes, the phone number kinds, and the income of users. The
contents of this index for the sample rows in Users2 are:

[408,

"work", 1000, 0]
[408, 1

"home", NULL,]

9-16

ORACLE

Chapter 9
Appendix

[408, "work", NULL, 1]
[415, "work", 1000, 0]
[EMPTY, EMPTY, 2000, 2]
[NULL, "home", 1000, 0]

Example 9-29 Multi-Key Index

CREATE INDEX midx4 ON Users2 (
expenses.keys (), expenses.values())

Creates an index on the fields (both keys and values) of the expenses map. The contents of
this index for the sample rows in Users2 are:

"books", 50, 0]
"clothes", 230, 0]
"housing", 1000, 0]
"housing", 1000, 1]
"travel"”, 300, 1]
NULL, NULL, 2]

Example 9-30 Simple Typed json Index

CREATE INDEX jidxl ON users3(info.income AS INTEGER)

It creates an index with one entry per user in the Users table. The entry contains the income
and id (the primary key) of the user represented by the row. The contents of this index for the
sample rows in Users3 are:

1000, 0]
2000, 2]
EMPTY, 4]
EMPTY, 5]
JNULL, 1]
NULL, 3]

— — — — .

Example 9-31 Simple Typed json Index

CREATE INDEX jidxlu ON users3 (
info.income AS ANYATOMIC)

It creates an untyped index on info.income. The contents of this index are the same as in jidx1
above, but the values 1000 and 200 are stored as Numbers instead of integers. If the following
row is added to the users3 table:

INSERT INTO users3 VALUES (
6’
{
"address": {},
"expenses" : {},
"connections" : []

9-17

ORACLE

Chapter 9
Appendix

The index will look like this:

["none",
[EMPTY,
[EMPTY,
[NULL,

[2000,

[JNULL,
[1000,

O P N W s 0oy

Example 9-32 Simple Typed json Index

CREATE INDEX jidx2 ON users3 (
info.address.state AS STRING,
info.address.city AS STRING,
info.income AS INTEGER)

It creates an index with one entry per user in the Users table. The entry contains the state, city,
income and id (the primary key) of the user represented by the row. The contents of this index
for the sample rows in Users3 are:

"CA", "San Fransisco", EMPTY,
"CA", "San Fransisco", JNULL,
"CA", "San Jose", 2000, 2]
"MA", "Boston", 1000, 0]
"OR", "Portland", EMPTY, 5]
NULL, NULL, NULL, 3]

]

4
1]

— — — — — —

Example 9-33 Simple Typed json Index

CREATE INDEX jidx3 ON users3 (
info.expenses.books AS INTEGER)

Creates an index entry for each user. The entry contains the user's spending on books, if the
user does record spending on books, or EMPTY if there is no "books" entry in expenses or
there is no expenses map at all, or NULL if there is no info at all (i.e. the value of the info
column is NULL). The contents of this index for the sample rows in Users3 are:

Example 9-34 Simple Typed json Index

CREATE INDEX jidx4 ON users3 (
info.expenses.housing AS INTEGER,
info.expenses.travel AS INTEGER)

9-18

ORACLE

Chapter 9
Appendix

Creates an index entry for each user. The entry contains 2 fields: (a) the user's housing
expenses, or EMPTY if the user does not record housing expenses or there is no expenses
field at all, and (b) the user's travel expenses, or EMPTY if the user does not record travel
expenses or there is no expenses field at all. If info is NULL, both fields in the index entry will
be NULL. The contents of this index for the sample rows in Users3 are:

1000, 300, 1]
1000, 300, 4]
1000, EMPTY, 0]
EMPTY, EMPTY, 2]
EMPTY, EMPTY, 5]
NULL, NULL, 3]

— — — — .

Example 9-35 Multi-Key Typed json Index

CREATE INDEX jmidxl ON users3 (
info.connections|[] AS INTEGER)

Creates an index on the elements of the connections array. The contents of this index for the
sample rows in Users3 are:

5, 4]
10, 0]
20, 0]
30, 4]
100, 0]
EMPTY, 1
EMPTY, 5
JNULL, 2
JNULL, 4
NULL, 3]

]
]
]
]

— — e o o

Example 9-36 Multi-Key Typed json Index

CREATE INDEX jmidx2 ON users3 (
info.address.phones[].area AS INTEGER,
info.income AS INTEGER)

Creates an index on the area codes and income of users. The contents of this index for the
sample rows in Users3 are:

408, 1000, 0]
408, EMPTY, 4]
408, JNULL, 1]
415, 1000, O]

EMPTY, 2000, 2]
EMPTY, EMPTY, 5]
EMPTY, JNULL, 1]
JNULL, 1000, 0]
NULL, NULL, 3]

9-19

ORACLE

Chapter 9
Appendix

Example 9-37 Multi-Key Typed json Index

CREATE INDEX jmidx2u ON users3 (
info.address.phones[].area AS ANYATOMIC,
info.income AS INTEGER)

This is a variation of the jmidx2 index, where the first index path is untyped and second is
typed. The contents of jmidx2 and jmidx2u are the same, except that in jmidx2u the numeric
values in the first column are stored as Numbers instead of integers.

Example 9-38 Multi-Key Typed json Index

CREATE INDEX jmidx3 ON users3 (
info.address.phones[].area AS INTEGER,
info.address.phones[].kind AS string,
info.income AS INTEGER)

Creates an index on the area codes, the phone number kinds, and the income of users. The
contents of this index for the sample rows in Users3 are:

408, "home", JNULL, 1]
408, "work", 1000, 0]
408, "work", EMPTY, 4]
408, "work", JNULL, 1]
415, "work", 1000, 0]
EMPTY, EMPTY, 2000, 2]
EMPTY, EMPTY, EMPTY, 5]
EMPTY, EMPTY, JNULL, 1]
JNULL, "home", 1000, 0]
NULL, NULL, NULL, 3]

T N T e B e D s s T e e

Example 9-39 Multi-Key Typed json Index

CREATE INDEX jmidx4 ON users3 (
info.expenses.keys (),
info.expenses.values() AS INTEGER)

Creates an index on the fields (both keys and values) of the expenses map. Notice that the
keys() portion of the index definition must not declare a type. This is because the type will
always be String. The contents of this index for the sample rows in Users2 are:

"books", 50, 0]
"clothes", 230, 0]
"housing", 1000, 0]
"housing", 1000, 1]
"housing", 1000, 4]
"travel™, 300, 1]
"housing", 1000, 4
EMPTY, EMPTY, 2]
EMPTY, EMPTY, 5]
NULL, NULL, 3]

]

— — . o e o

9-20

Query Plan

A query execution plan is the sequence of operations Oracle NoSQL Database performs to run
a query.

Topics:

e Overview of a query plan

« Examples of query execution plan

Overview of a query plan

Internally, a query execution plan is structured as a tree of plan iterators.

Each kind of iterator evaluates a different kind of expression that may appear in a query. In
general the choice of index and the kind of associated index predicates can have a drastic
effect on the query performance. As a result, you as a developer often want to see what index
is used by a query and what predicates have been pushed down to it. Based on this
information, you may want to force the use of a different index via index hints. This information
is contained in the query execution plan. All Oracle NoSQL drivers provide APIs to display the
execution plan of a query. All Oracle NoSQL graphical Uls including the IntelliJ, VSCode, and
Eclipse plugins along with the Oracle Cloud Infrastructure Console include controls for
displaying the query execution plan.

Iterators in a query execution plan
Some of the most common and important iterators used in queries are :
TABLE iterator

A TABLE iterator is responsible for:
e Scanning the index used by the query (which may be the primary index).
« Applying any filtering predicates pushed to the index.

« Retrieving the rows pointed to by the qualifying index entries if necessary. If the index is
covering, the result set of the TABLE iterator is a set of index entries, otherwise it is a set
of table rows.

Note:

An index is called a covering index with respect to a query if the query can be
evaluated using only the entries of that index, that is, without the need to retrieve the
associated rows.

A TABLE iterator will always have the following properties:

e target table: The name of the target table in the query.

ORACLE 104

ORACLE

Chapter 10
Overview of a query plan

* index used: The name of the index used by the query. If the primary index were used,
“primary index” would appear as the value of this property.

* covering index: Whether the index is covering or not.

* row variable: The name of a variable ranging over the table rows produced by the TABLE
iterator. If the index is covering, no table rows are produced and this variable is not used.

* index scans: Contains the start and stop conditions that define the index scans to be
performed.

A TABLE iterator has 2 more optional properties:

* index row variable: The name of a variable ranging over the index entries produced by
the TABLE iterator. Every time a new index entry is produced by the index scan, the index
variable will be bound to that entry.

< index filtering predicate: A predicate evaluated on every index entry produced by the
index scan. If the result of this evaluation is true, the index variable is bound to this entry
and the entry or its associated table row is returned as the result of the next() call on the
TABLE iterator. Otherwise, the entry is skipped, the next entry from the index scan is
produced, the predicate is evaluated again on this entry and it continues until a qualifying
entry is found.

SELECT iterator
It is responsible for executing the SELECT expression.
RECEIVE iterator

It is a special internal iterator that separates the query plan into 2 parts:

« The RECEIVE iterator itself and all iterators that are above it in the iterator tree are
executed at the driver.

e All iterators below the RECEIVE iterator are executed at the replication nodes (RNs); these
iterators form a subtree rooted at the unique child of the RECEIVE iterator.

In general, the RECEIVE iterator acts as a query coordinator. It sends its subplan to
appropriate RNs for execution and collects the results. It may perform additional operations
such as sorting and duplicate elimination, and propagates the results to its ancestor iterators (if
any) for further processing.

Distribution kinds :

A distribution kind specifies how the query will be distributed for execution across the RNs
participating in an Oracle NoSQL database (a store). The distribution kind is a property of the
RECEIVE iterator.

Different choices of Distribution kinds are:

* SINGLE_PARTITION: A SINGLE_PARTITION query specifies a complete shard key in its
WHERE clause. As a result, its full result set is contained in a single partition, and the
RECEIVE iterator will send its subplan to a single RN that stores that partition. A
SINGLE_PARTITION query may use either the primary-key index or a secondary index.

 ALL_PARTITIONS: Queries use the primary-key index here and they don't specify a
complete shard key. As a result, if the store has M partitions, the RECEIVE iterator will
send M copies of its subplan to be executed over one of the M partitions each. See show
topology to determine the number of partitions in your store.

e« ALL_SHARDS: Queries use a secondary index here and they don't specify a complete
shard key. As a result, if the store has N shards, the RECEIVE iterator will send N copies
of its subplan to be executed over one of the N shards each.

10-2

Chapter 10
Examples of query execution plan

Anatomy of a query execution plan:

Query execution takes place in batches. When a query subplan is sent to a partition or shard
for execution, it will execute there until a batch limit is reached. For an on-premises NoSQL
database, batch limit is the number of local results produced from the underlying partition/
shard. The default is 100 results, but you can change it via a query-level option. For NoSQL
Database Cloud Service, the batch limit is the number of read units consumed locally by the
query. The default is 2000 read units (about 2MB of data), and it can only be decreased via a
query-level option.

When the batch limit is reached, any local results that were produced are sent back to the
RECEIVE iterator for further processing along with a boolean flag that says whether more local
results may be available. If the flag is true, the reply includes resume information. If the
RECEIVE iterator decides to resend the query to the same partition/shard, it will include this
resume information in its request, so that the query execution will restart at the point where it
stopped during the previous batch. This is because no query state is maintained at the RN
after a batch finishes. The next batch for the same partition/shard may take place at the same
RN as the previous batch or at a different RN that also stores the same partition/shard.

Examples of query execution plan

ORACLE

You can write some queries using the users table and understand how query execution plan is
generated.

Description of the users table:

CREATE TABLE users (
id INTEGER,
firstName STRING,
lastName STRING,
otherNames ARRAY (RECORD (first STRING, last STRING)),
age INTEGER,
income INTEGER,
address JSON,
connections ARRAY (INTEGER),
expenses MAP (INTEGER),
PRIMARY KEY (id)
)

The following index has been created in the users table.

CREATE INDEX idx state city income on Users(address.state as string,
address.city as string, income)

Some examples of query execution plan :

* Example 1 : Using a covering index in a query plan with only index scans

* Example 2 : Using a covering index in a query plan with index scans and index predicates
* Example 3: Using a non-covering index in a query plan with index scans

* Example 4: Sort the data using a Covering index

* Example 5: Sort the data using a field not part of the index

* Example 6: Group the data using a Covering index

10-3

Chapter 10
Examples of query execution plan

* Example 7: Group data with fields not part of the index

Example 1 : Using a covering index in a query plan with only index scans

ORACLE

An index is called a covering index with respect to a query if the query can be evaluated using
only the entries of that index, that is, without the need to retrieve the associated rows.

Fetch the id and income of users whose state is CA and their city value must be greater or
equal to S and whose income is between 1000 and 2000.

SELECT id, income FROM Users u WHERE u.address.state = "CA" AND
u.address.city >= "S" AND 1000 < income and income < 2000

Query execution plan:

"iterator kind" : "RECEIVE",
"distribution kind" : "ALL SHARDS",
"input iterator"

{

"iterator kind" : "SELECT",
"FROM"
{
"iterator kind" : "TABLE",
"target table" : "users",
"row variable" : "S$Su",
"index used" : "idx state city income",
"covering index" : true,
"index row variable" : "$Su idx",

"index scans" : [
{
"equality conditions"
{"address.state":"CA", "address.city":"Santaclara"},

"range conditions" : { "income" : { "start value" : 1000, "start
inclusive" : false, "end value" : 2000, "end inclusive" : false } }
}
]
}I
"FROM variable" : "S$Su idx",

"SELECT expressions" : [
{

"field name" : "id",

"field expression"

{
"iterator kind" : "FIELD STEP",
"field name" : "#id",
"input iterator"

{

"iterator kind" : "VAR REF",
"variable" : "$Su idx"
}
}
}I
{
"field name" : "income",

10-4

ORACLE

Chapter 10
Examples of query execution plan

"field expression"” :
{
"iterator kind" : "FIELD STEP",
"field name" : "income",
"input iterator" :
{
"iterator kind" : "VAR REF",
"variable" : "$Su idx"

Explanation of the query execution plan :

The root iterator of this query plan is a RECEIVE iterator with a single child (input iterator)
that is a SELECT iterator. The only property of the RECEIVE iterator in this example, is the
distribution kind whose value is ALL_SHARDS.

The index idx_state_city_income is used here and this is a covering index as all the
fields in the SELECT expression can be fetched only using the index entries. .

The index scan property contains the start and stop conditions that define the index scans
to be performed.

"index scans" : [
{
"equality conditions" :
{"address.state":"CA", "address.city":"Santaclara"},
"range conditions" : { "income" : { "start value" : 1000, "start
inclusive" : false, "end value" : 2000, "end inclusive" : false } }

}

In this query, only one index scan will be performed. The equality conditions correspond to
the predicates u.address.state = "CA" and u.address.city = "Santaclara" from the query.
The range conditions correspond to the predicates 1000 < income and income < 2000. The
index scan will start at the first entry whose address.state field is equal to CA, its
address.city field is equal to Santaclara, and its income field is greater than 1000. The
index scan will return all subsequent entries until the first entry whose address.state field
is not CA, orits address.city field is not Santaclara, or its income field is greater that or
equal to 2000.

The index row variable is $$u_idx, which is the name of a variable ranging over the index
entries produced by the TABLE iterator. Every time a new index entry is produced by the
index scan, the $$u_idx variable will be bound to that entry.

When the FROM iterator is a TABLE iterator, the FROM variable is the same as either the
index row variable or the row variable of the TABLE iterator, depending on whether the
used index is covering or not. In this example, the FROM variable is same as the index row
variable ($$u_idx) as the index is covering because all the fields in the SELECT
expression can be evaluated only using the index entries.

This index row variable ($$u_idx) will be referenced by iterators implementing the other
clauses of the SELECT expression.

10-5

Chapter 10
Examples of query execution plan

* Inthe SELECT expression, two fields (id and income) are fetched. These correspond to
two field names and field expressions in the SELECT expression clause.

"field name" : "id",
"field expression"

{
"iterator kind" : "FIELD STEP",

"field name" : "#id",
"input iterator"

{
"iterator kind" : "VAR REF",

"variable" : "$$u idx"

For every field to be fetched by the SELECT expression, the field expression is computed
by a FIELD_STEP iterator. The FIELD_STEP iterator extracts and returns the value of a
field (id as shown above) from the records produced by its input iterator. The same is done
for every field to be fetched in the SELECT expression.

Example 2 : Using a covering index in a query plan with index scans and
index predicates

Fetch the id and income of users whose state is CA and whose income is greater than 2000.

SELECT id, income FROM Users u WHERE u.address.state = "CA" AND income > 2000

Query execution plan:

"iterator kind" : "RECEIVE",
"distribution kind" : "ALL SHARDS",
"input iterator"

{

"iterator kind" : "SELECT",
"FROM"
{
"iterator kind" : "TABLE",
"target table" : "users",
"row variable" : "$Su",
"index used" : "idx state city income",
"covering index" : true,
"index row variable" : "$Su idx",

"index scans" : [

{

"equality conditions" : {"address.state":"CA"},
"range conditions" : {}
}
1y

"index filtering predicate"

{

ORACLE 06

Chapter 10
Examples of query execution plan

"iterator kind" : "GREATER THAN",
"left operand"
{
"iterator kind" : "FIELD STEP",
"field name" : "income",
"input iterator"
{
"iterator kind" : "VAR REF",
"variable" : "$Su idx"
}
}I
"right operand"
{
"iterator kind" : "CONST",
"value" : 2000

}
}I
"FROM variable" : "S$Su idx",
"SELECT expressions" : [
{
"field name" : "id",
"field expression"
{
"iterator kind" : "FIELD STEP",
"field name" : "#id",
"input iterator"

{

"iterator kind" : "VAR REF",
"variable" : "$Su idx"
}
}
}I
{
"field name" : "income",

"field expression"
{
"iterator kind" : "FIELD STEP",
"field name" : "income",
"input iterator"
{
"iterator kind" : "VAR REF",
"variable" : "$Su idx"

Explanation of the query execution plan :

e The root iterator of this query plan is a RECEIVE iterator with a single child (input iterator)
that is a SELECT iterator. The only property of the RECEIVE iterator in this example, is the
distribution kind whose value is ALL_SHARDS.

ORACLE 10-7

ORACLE

Chapter 10
Examples of query execution plan

The index idx_state_city_income is used here and this is a covering index as all the
fields in the SELECT expression can be fetched only using the index entries.

The index scan property contains the start and stop conditions that define the index scans
to be performed.

"index scans" : |
{
"equality conditions" : {"address.state":"CA"},
"range conditions" : {}

In this example, only one index scan will be performed. The conditions correspond to the
predicates u.address.state = "CA" from the query. Specifically, the starting index entry must
have the value CA on the address.state field. All subsequent entries must have CA as
the value of their address. state field, and the scan will stop as soon as an entry with a
different state value is encountered. Although the query contains a range predicate on
income, this predicate does not appear as a range condition of the index scan. This is
because there is no equality condition on the address.city field that appears before the
income field in the index definition, and as a result, the income predicate cannot be used to
determine the boundaries of the scan. Instead, the income predicate can be used as an
index filtering predicate thatis applied on every index entry produced by the index
scan.

The index filtering predicate evaluates the filter criteria on the income field. Using the
greater than operator the filter condition is evaluated.

"index filtering predicate"
{
"iterator kind" : "GREATER THAN",
"left operand"
{
"iterator kind" : "FIELD STEP",
"field name" : "income",
"input iterator"
{
"iterator kind" : "VAR REF",
"variable" : "$Su idx"
}
b
"right operand"
{
"iterator kind" : "CONST",
"value" : 2000

}

The index row variable is $$u_idx which is the name of a variable ranging over the index
entries produced by the TABLE iterator. Every time a new index entry is produced by the
index scan, the $su_idx variable will be bound to that entry.

When the FROM iterator is a TABLE iterator, the FROM variable is the same as either the
index row variable or the row variable of the TABLE iterator, depending on whether the
used index is covering or not. In this example, the FROM variable is same as the index row

10-8

Chapter 10
Examples of query execution plan

variable ($$u_1idx) as the index is covering because all the fields in the SELECT
expression can be evaluated only using the index entries.

« This index row variable ($$u_idx) will be referenced by iterators implementing the other

clauses of the SELECT expression.

e Inthe SELECT expression, two fields (id and income) are fetched. These correspond to

two field names and field expressions in the SELECT expression clause.

"field name" : "id",
"field expression"
{
"iterator kind" : "FIELD STEP",
"field name" : "#id",
"input iterator"
{
"iterator kind" : "VAR REF",
"variable" : "$Su idx"

For every field to be fetched by the SELECT expression, the field expression is computed
by a FIELD_STEP iterator. The FIELD_STEP iterator extracts and returns the value of a
field (id as shown above) from the records produced by its input iterator. The same is done
for every field to be fetched in the SELECT expression.

Example 3: Using a non-covering index in a query plan with index scans

ORACLE

An index becomes non-covering when query cannot be fully evaluated using only the entries of
an index.

Fetch id, age and income of users residing in CA whose income is greater than 5000.

SELECT id, age, income FROM Users u WHERE u.address.state = "CA"
AND income >5000

Query execution plan:

"iterator kind" : "RECEIVE",
"distribution kind" : "ALL SHARDS",
"input iterator"

{

"iterator kind" : "SELECT",
"FROM"
{
"iterator kind" : "TABLE",
"target table" : "users",
"row variable" : "S$Su",
"index used" : "idx state city income",
"covering index" : false,
"index row variable" : "$Su idx",

"index scans" : [

10-9

"equality conditions" {"address.state"
"range conditions"

}

{}

J r
"index filtering predicate"
{
"iterator kind"
"left operand"
{
"iterator kind" "FIELD STEP",
"field name" "income",
"input iterator"

{

"GREATER THAN",

"iterator kind" : "VAR REF",
"variable" "$Su idx"
}
}I
"right operand"
{
"iterator kind" "CONST",
"value" 5000
}
}
}I
"FROM variable" "Ssu",

"SELECT expressions" : [
{

"field name" "id",

"field expression"

{
"iterator kind" "FIELD STEP",
"field name" "id",
"input iterator"

{

"iterator kind" : "VAR REF",
"variable" "sSu"
}
}
}I
{
"field name" "age",

"field expression"

{
"iterator kind" "FIELD STEP",
"field name" "age",
"input iterator"

{

"iterator kind" : "VAR REF",
"variable" "Ssu"
}
}
}I
{
"field name" "income",

"field expression"

ORACLE

:"CA"},

Chapter 10
Examples of query execution plan

10-10

ORACLE

Chapter 10
Examples of query execution plan

"iterator kind" : "FIELD STEP",
"field name" : "income",
"input iterator"
{
"iterator kind" : "VAR REF",
"variable" : "S$sSu"

Explanation of the query execution plan :

The root iterator of this query plan is a RECEIVE iterator with a single child (input iterator)
that is a SELECT iterator. The only property of the RECEIVE iterator in this example, is the
distribution kind whose value is ALL_SHARDS.

The index idx_state_city income is used here and in this example, it is a not a covering
index as the age field to be fetched is not part of the index entry.

The index scan property contains the start and stop conditions that define the index scans
to be performed.

"index scans" : |

{
"equality conditions" : {"address.state":"CA"},
"range conditions" : {}

In this example, only one index scan will be performed. The conditions correspond to the
predicates u.address.state = "CA" from the query. Specifically, the starting index entry must
have the value CA on the address.state field. All subsequent entries must have CA as
the value of their address. state field, and the scan will stop as soon as an entry with a
different state value is encountered. Although the query contains a range predicate on
income, this predicate does not appear as a range condition of the index scan. This is
because there is no equality condition on the address.city field that appears before the
income field in the index definition, and as a result, the income predicate cannot be used to
determine the boundaries of the scan. Instead, the income predicate can be used as an
index filtering predicate thatis applied on every index entry produced by the index
scan.

The index filtering predicate evaluates the filter criteria on the income field. Using the
greater than operator the filter condition is evaluated.

"index filtering predicate"

{
"iterator kind" : "GREATER THAN",
"left operand"

{
"iterator kind" : "FIELD STEP",
"field name" : "income",

10-11

Chapter 10
Examples of query execution plan

"input iterator" :
{
"iterator kind" : "VAR REF",
"variable" : "$Su idx"
}
}I
"right operand" :
{
"iterator kind" : "CONST",
"value" : 5000

}

The index row variable is $$u_idx which is the name of a variable ranging over the index
entries produced by the TABLE iterator. Every time a new index entry is produced by the
index scan, the $$u_idx variable will be bound to that entry.

When the FROM iterator is a TABLE iterator, the FROM variable is the same as either the
index row variable or the row variable of the TABLE iterator, depending on whether the
used index is covering or not. In this example, the FROM variable is same as the row
variable as the index is not covering.

This row variable (s$u) will be referenced by iterators implementing the other clauses of
the SELECT expression.

In the SELECT expression, three fields (id, income and age) are fetched. These
correspond to three field names and field expressions in the SELECT expression clause.

"field name" : "id",
"field expression" :
{
"iterator kind" : "FIELD STEP",
"field name" : "#id",
"input iterator" :
{
"iterator kind" : "VAR REF",
"variable" : "S$Su"

For every field to be fetched by the SELECT expression, the field expression is computed
by a FIELD_STEP iterator. The FIELD_STEP iterator extracts and returns the value of a
field (id as shown above) from the records produced by its input iterator. The same is done
for every field to be fetched in the SELECT expression.

Example 4: Sort the data using a Covering index

ORACLE

Fetch the id and income of users whose state is CA and whose city of residence is Santaclara
and whose income is between 1000 and 10000. Sort the result by the income of the users.

SELECT id, income FROM Users u WHERE u.address.state = "CA" AND
u.address.city= "Santaclara" AND 1000 < income and income < 10000
ORDER BY income

10-12

Chapter 10
Examples of query execution plan

Query execution plan:

"iterator kind" : "RECEIVE",
"distribution kind" : "ALL SHARDS",
"order by fields at positions" : [1 1,

"input iterator"

{

"iterator kind" : "SELECT",
"FROM"
{
"iterator kind" : "TABLE",
"target table" : "users",
"row variable" : "$Su",
"index used" : "idx state city income",
"covering index" : true,
"index row variable" : "$Su idx",

"index scans" : [
{
"equality conditions"
{"address.state":"CA", "address.city":"Santaclara"},

"range conditions" : { "income" : { "start value" : 1000, "start
inclusive" : false, "end value" : 10000, "end inclusive" : false } }
}
]
}I
"FROM variable" : "$Su idx",

"SELECT expressions" : [
{

"field name" : "id",

"field expression"

{
"iterator kind" : "FIELD STEP",
"field name" : "#id",
"input iterator"

{

"iterator kind" : "VAR REF",
"variable" : "$Su idx"
}
}
b
{
"field name" : "income",

"field expression"
{
"iterator kind" : "FIELD STEP",
"field name" : "income",
"input iterator"
{
"iterator kind" : "VAR REF",
"variable" : "$Su idx"

ORACLE 1012

ORACLE

Chapter 10
Examples of query execution plan

Explanation of the query execution plan :

The root iterator of this query plan is a RECEIVE iterator with a single child (input iterator)
that is a SELECT iterator. The only property of the RECEIVE iterator in this example, is the
distribution kind whose value is ALL_SHARDS.

The results need to be sorted by income. The income is a part of the
idx_state_city_income index. So in this example, you don't need a separate SORT
operator. The sorting is done by the RECEIVE operator using its propertyorder by fields
at positions,which is an array. The value of this array depends on the position of the
field that is sorted in the SELECT expression.

"order by fields at positions" : [1]

In this example, the order by is done using the income field, which is the second field in the
SELECT expression. That is why you see "1" in the order by fields at position
property of the iterator.

Note:

If the order of fields in the SELECT expression is different, then the value above
changes. For example, if the query is SELECT income, id FROM Users u
WHERE u.address.state = "CA" AND u.address.city= "Santaclara”AND 1000 <
income and income < 10000 ORDER BY income, the order by fields would be
order by fields at positions : [0] as theincome field is the first field in the
SELECT expression.

The index idx_state_city income is used here and in this example, it is a covering index
as the query can be evaluated using only the entries of the index.

The index scan property contains the start and stop conditions that define the index scans
to be performed.

"index scans" : |
{

"equality conditions" :
{"address.state":"CA", "address.city":"Santaclara"},

"range conditions" : { "income" : { "start value" : 1000, "start
inclusive" : false,

"end value" : 10000, "end

inclusive" : false } }

}

In this query, only one index scan will be performed. The equality conditions correspond to
the predicates u.address.state = "CA" and u.address.city = "Santaclara" from the query.
The index scan will start at the first entry must have the value CA on the address.state
field and its address.city field is equal to Santaclara. Specifically, the starting index entry
must have the value CA on theaddress.state field. All subsequent entries must have CA
as the value of their address.state field, and the scan will stop as soon as an entry with a

10-14

Chapter 10
Examples of query execution plan

different state value is encountered. There is a range condition to be applied here on the
income field.

* The index row variable is $$u_idx which is the name of a variable ranging over the index

entries produced by the TABLE iterator. Every time a new index entry is produced by the
index scan, the $$u_idx variable will be bound to that entry.

« When the FROM iterator is a TABLE iterator, the FROM variable is the same as either the

index row variable or the row variable of the TABLE iterator, depending on whether the
used index is covering or not. In this example, the FROM variable is same as the index row
variable ($$u_idx) as the index is covering because all the fields in the SELECT
expression can be evaluated only using the index entries.

* This index row variable (ssu_idx) will be referenced by iterators implementing the other
clauses of the SELECT expression.

* Inthe SELECT expression, two fields (id and income) are fetched. These correspond to
two field names and field expressions in the SELECT expression clause.

"field name" : "id",
"field expression" :
{
"iterator kind" : "FIELD STEP",
"field name" : "#id",
"input iterator" :
{
"iterator kind" : "VAR REF",
"variable" : "$Su_ idx"

For every field to be fetched by the SELECT expression, the field expression is computed
by a FIELD_STEP iterator. The FIELD_STEP iterator extracts and returns the value of a
field (id as shown above) from the records produced by its input iterator. The same is done
for every field to be fetched in the SELECT expression.

Example 5: Sort the data using a field not part of the index

ORACLE

Fetch the id, income and age of users belonging to the state CA and whose city of residence is
Santaclara and have income between 1000 and 10000. Sort the results by age.

SELECT id, income,age FROM Users u WHERE u.address.state = "CA"
AND u.address.city ="Santaclara" AND 1000 < income AND
income < 10000 ORDER BY age

Query execution plan:

"iterator kind" : "SORT",
"order by fields at positions" : [2],
"input iterator" :
{
"iterator kind" : "RECEIVE",
"distribution kind" : "ALL SHARDS",

10-15

Chapter 10

Examples of query execution plan

"input iterator"

{

"iterator kind" : "SELECT",
"FROM"
{
"iterator kind" : "TABLE",
"target table" : "users",
"row variable" : "$Su",
"index used" : "idx state city income",
"covering index" : false,
"index scans" : [

{
"equality conditions"
{"address.state":"CA", "address.city":"Santaclara"},

"range conditions" : { "income" : { "start value" : 1000,
inclusive" : false, "end value" : 10000, "end inclusive" : false } }
}
]
}I
"FROM variable" : "$Su",

"SELECT expressions" : [
{

"field name" : "id",

"field expression"

{
"iterator kind" : "FIELD STEP",
"field name" : "id",
"input iterator"

{

"iterator kind" : "VAR REF",
"variable" : "S$Su"
}
}
}I
{
"field name" : "income",

"field expression"

{
"iterator kind" : "FIELD STEP",
"field name" : "income",
"input iterator"

{

"iterator kind" : "VAR REF",
"variable" : "S$Su"
}
}
}I
{
"field name" : "age",

"field expression"

{
"iterator kind" : "FIELD STEP",
"field name" : "age",
"input iterator"

{
"iterator kind" : "VAR REF",

ORACLE

"start

10-16

ORACLE

Chapter 10
Examples of query execution plan

"variable" : "$Su"

Explanation of the query execution plan :

In this example, you perform a sort in addition to filtering the data. The results need to be
sorted by age. The age is not part of the idx_state city income index. So in this
example, you need a separate SORT operator.

The sorting is done by a SORT iterator, which is the parent of the RECEIVE iterator. The
order by fields at positions property specifies the field used for sorting. The value of
this array depends on the position of the field that is sorted in the SELECT expression. In
this example, age is the third field in the SELECT expression. So order by fields at
positions has a value of 2.

"order by fields at positions" : [2]

The index idx_state_city_income is used here and in this example, it is not a covering
index as the query has the age field that is not part of the entries of the index.

The index scan property contains the start and stop conditions that define the index scans
to be performed.

"index scans" : |
{

"equality conditions" :
{"address.state":"CA","address.city":"Santaclara"},

"range conditions” : { "income" : { "start value" : 1000, "start
inclusive" : false,

"end value" : 10000, "end

inclusive" : false } }

}

In this example, only one index scan will be performed. The conditions correspond to the
predicates u.address.state = "CA" and u.address.city = "Santaclara" from the query.
Specifically, the starting index entry must have the value CA on the address.state field.
All subsequent entries must have CA as the value of their address. state field, and the
scan will stop as soon as an entry with a different state value is encountered. There is a
range condition to be applied here on the income field.

When the FROM iterator is a TABLE iterator, the FROM variable is the same as either the
index row variable or the row variable of the TABLE iterator, depending on whether the
used index is covering or not. In this example, the FROM variable is same as the row
variable as the index is not covering.

This row variable (s$u) will be referenced by iterators implementing the other clauses of
the SELECT expression.

10-17

Chapter 10
Examples of query execution plan

* Inthe SELECT expression, three fields (id, income and age) are fetched. These
correspond to three field names and field expressions in the SELECT expression clause.

"field name" : "id",
"field expression"

{
"iterator kind" : "FIELD STEP",

"field name" : "#id",

"input iterator"

{
"iterator kind" : "VAR REF",
"variable" : "$Su"

For every field to be fetched by the SELECT expression, the field expression is computed
by a FIELD_STEP iterator. The FIELD_STEP iterator extracts and returns the value of a
field (id as shown above) from the records produced by its input iterator. The same is done
for every field to be fetched in the SELECT expression.

Example 6: Group the data using a Covering index

Fetch the state ,city and sum of income of all users grouped by the state and city.

SELECT u.address.state, u.address.city, sum(income)
AS income FROM Users u GROUP BY u.address.state, u.address.city

Query execution plan:

"iterator kind" : "SELECT",
"FROM"
{
"iterator kind" : "RECEIVE",
"distribution kind" : "ALL SHARDS",
"order by fields at positions" : [0, 1 1,
"input iterator"

{

"iterator kind" : "SELECT",
"FROM"
{
"iterator kind" : "TABLE",
"target table" : "Users",
"row variable" : "S$Su",
"index used" : "idx state city income",
"covering index" : true,
"index row variable" : "$Su idx",

"index scans" : [

{
"equality conditions" : {},
"range conditions" : {}

ORACLE 1018

Chapter 10
Examples of query execution plan

]
b

"FROM variable" : "$Su idx",
"GROUP BY" : "Grouping by the first 2 expressions in the SELECT
list",
"SELECT expressions"” : [
{
"field name" : "state",
"field expression"
{
"iterator kind" : "FIELD STEP",
"field name" : "address.state",
"input iterator"
{
"iterator kind" : "VAR REF",
"variable" : "$Su idx"
}
}
}I
{
"field name" : "city",
"field expression"
{
"iterator kind" : "FIELD STEP",
"field name" : "address.city",
"input iterator"
{
"iterator kind" : "VAR REF",
"variable" : "$Su idx"
}
}
}I
{
"field name" : "income",
"field expression"
{
"iterator kind" : "FUNC SUM",
"input iterator"
{
"iterator kind" : "FIELD STEP",
"field name" : "income",
"input iterator”
{
"iterator kind" : "VAR REF",
"variable" : "$Su idx"
}
}
}
}
]
}
}I
"FROM variable" : "Sfrom-1",
"GROUP BY" : "Grouping by the first 2 expressions in the SELECT list",
"SELECT expressions" : [

{

ORACLE 1019

Chapter 10
Examples of query execution plan

"field name" : "state",

"field expression”

{
"iterator kind" : "FIELD STEP",
"field name" : "state",
"input iterator"

{

"iterator kind" : "VAR REF",
"variable" : "S$from-1"
}
}
}I
{
"field name" : "city",

"field expression”

{
"iterator kind" : "FIELD STEP",
"field name" : "city",
"input iterator"

{

"iterator kind" : "VAR REF",
"variable" : "S$from-1"
}
}
}I
{
"field name" : "income",

"field expression”

{
"iterator kind" : "FUNC SUM",

"input iterator"

{
"iterator kind" : "FIELD STEP",

"field name" : "income",
"input iterator"

{
"iterator kind" : "VAR REF",

"variable" : "S$from-1"

Explanation of the query execution plan :

* In this example, you group the users based on state and city and then you determine the
sum of income of the users grouped.

e The group-by is index-based, that is the group by fields are also part of the index used.
This is indicated by the lack of any GROUP iterators. Instead, the grouping is done by the
SELECT iterators.

e There are two SELECT iterators, the inner one has a GROUP BY property that specifies
which of the SELECT-clause expressions are also grouping expressions. Here the group

ORACLE 1020

ORACLE

Chapter 10
Examples of query execution plan

by fields are the first 2 expressions in the SELECT list
(u.address.state,u.address.city).

"GROUP BY" : "Grouping by the first 2 expressions in the SELECT list"

The index idx_state_city income is used here and in this example, it is a covering index
as the query can be evaluated using only the entries of the index.

The index row variable is $$u_idx, which is the name of a variable ranging over the index
entries produced by the TABLE iterator. Every time a new index entry is produced by the
index scan, the $su_idx variable will be bound to that entry.

This index row variable ($$u_idx) will be referenced by iterators implementing the other
clauses of the SELECT expression.

In the SELECT expression, three fields (state, city and sum(income)) are fetched. These
correspond to three field names and field expressions in the SELECT expression clause.

The results returned by the inner SELECT iterators from the various RNs are patrtial
groups, because rows with the same state and city may exist at multiple RNs. So,
regrouping and re-aggregation has to be performed at the driver. This is done by the outer
SELECT iterator (above the RECEIVE iterator).

The result is also sorted by state and city. The order by fields at positions
property specifies the field used for sorting. The value of this array depends on the position
of the field that is sorted in the SELECT expression. In this example, state is the first field
and city is the second field in the SELECT expression. So order by fields at
positions has avalue of 0, 1.

"order by fields at positions" : [0, 1]

In the outer SELECT expression, three fields are fetched: state, cityand sum(income).
The FROM variable$£rom-1 will be referenced by iterators implementing the other clauses of
the outer SELECT expression. This corresponds to three field names and field expressions
in the outer SELECT expression clause. In this example, two of the field expressions fetch
only the fields and there is one field expression which evaluates a function (sum(income)).

For the two fields to be directly fetched by the SELECT expression, the field expression is
computed by a FIELD_STEP iterator. The FIELD_STEP iterator extracts and returns the
value of a field (state as shown below) from the records produced by its input iterator. The
same is done for the city field.

"field name" : "state",
"field expression" :
{
"iterator kind" : "FIELD STEP",
"field name" : "state",
"input iterator" :
{
"iterator kind" : "VAR REF",
"variable" : "S$from-1"

10-21

Chapter 10
Examples of query execution plan

The third field in the SELECT expression is a function to determine the sum of income. The
FUNC_SUM iterator is used for this. It iterates over the value of the income field and
determines the sum of all incomes from the result of its input iterator.

"field name" : "income",
"field expression"
{
"iterator kind" : "FUNC_SUM",
"input iterator"
{
"iterator kind" : "FIELD STEP",
"field name" : "income",
"input iterator"
{
"iterator kind" : "VAR REF",
"variable" : "S$from-1"

Example 7: Group data with fields not part of the index

Fetch the age and sum of income of all users whose state is CA, grouping the data by age.

SELECT age, sum(income) FROM Users u
WHERE u.address.state = "CA" GROUP BY age

Query execution plan:

"iterator kind" : "GROUP",
"input variable" : "$gb-2",
"input iterator"
{
"iterator kind" : "RECEIVE",
"distribution kind" : "ALL SHARDS",
"input iterator"
{
"iterator kind" : "GROUP",
"input variable" : "$gb-1",
"input iterator" :

{

"iterator kind" : "SELECT",
"FROM"
{
"iterator kind" : "TABLE",
"target table" : "users",
"row variable" : "$Su",
"index used" : "idx state city income",
"covering index" : false,

"index scans" : [

{

ORACLE 10.92

"equality conditions" {"address.state"

"range conditions" {}
]
b

"FROM variable" "ssu",

"SELECT expressions" : [
{

"field name" "age",

"field expression”
{
"iterator kind" "FIELD STEP",
"field name" "age",
"input iterator”
{
"iterator kind" : "VAR REF",
"variable" "Ssu"
}
}I
{
"field name" "Column 2",
"field expression”
{
"iterator kind" "FIELD STEP",
"field name" "income",
"input iterator”

{

"iterator kind" : "VAR REF",
"variable" "Ssu"
}
}
}
]
}I
"grouping expressions" : [

{
"iterator kind" "FIELD STEP",
"field name" "age",
"input iterator"

{

"iterator kind" : "VAR REF",
"variable" "Sgb-1"
}
}
J r
"aggregate functions" : [
{
"iterator kind" "FUNC_SUM",

"input iterator"

{
"iterator kind" "FIELD STEP",
"field name" "Column 2",
"input iterator"
{

"iterator kind" : "VAR REF",

ORACLE

Chapter 10
Examples of query execution plan

:"CA" } ,

10-23

Chapter 10
Examples of query execution plan

"variable" : "S$Sgb-1"

}I
"grouping expressions" : |
{
"iterator kind" : "FIELD STEP",
"field name" : "age",
"input iterator" :
{
"iterator kind" : "VAR REF",
"variable" : "S$gb-2"

}
]I
"aggregate functions" : [
{
"iterator kind" : "FUNC_SUM",
"input iterator" :
{
"iterator kind" : "FIELD STEP",
"field name" : "Column 2",
"input iterator" :
{
"iterator kind" : "VAR REF",
"variable" : "S$gb-2"

Explanation of the query execution plan :

* Inthis example , you group all users in the state CA based on their age and determine the
sum of the income of users belonging to each age group.

» Asthe GROUP BY field (age in this example) is not part of any index, you need a separate
GROUP operator to do the grouping. This is indicated by the existence of the GROUP
iterators in the execution plan. There are two GROUP iterators: one that operates at the
driver (above the RECEIVE iterator) and another that operates at the RNs (below the
RECEIVE iterator).

e The lower GROUP iterator has a SELECT iterator as input. The SELECT returns the age
and income of each user in the state CA. The GROUP iterator will operate until the batch
limit is reached. If the batch limit is defined as the max number N of results produced, the
GROUP iterator will stop when up to N age groups have been created. If the batch limit is
defined as the max number of bytes read, it will stop when this max is reached. The
GROUP operator has an input variable. For the inner GROUP operator the input variable
is $gb-1 and for the outer GROUP operator it is $gb-2.

"iterator kind" : "GROUP","input variable" : "$gb-1",

ORACLE 1094

ORACLE

Chapter 10
Examples of query execution plan

The index idx_state_city_income is used here and in this example, it is not a covering
index as the query has the age field, which is not part of the entries of the index.

The index scan property contains the start and stop conditions that define the index scans
to be performed. In this example, only one index scan will be performed. The conditions
correspond to the predicate u.address.state = "CA". Specifically, the starting index entry
must have the value CA on the address.state field. All subsequent entries must have CA
as the value of their address.state field, and the scan will stop as soon as an entry with a
different state value is encountered.

When the FROM iterator is a TABLE iterator, the FROM variable is the same as either the
index row variable or the row variable of the TABLE iterator, depending on whether the
used index is covering or not. In this example, the FROM variable is same as the row
variable as the index is not covering.

This row variable ($$u) will be referenced by iterators implementing the other clauses of
the inner SELECT expression.

The GROUP iterator creates an internal variable ($gb-1) that iterates over the records
produced by the SELECT expression.

The result set produced by the lower GROUP iterator is partial: it may not contain all the
age groups and for the age groups that it does contain, the income may be a partial sum
(because all rows for a given age may not have been retrieved when query execution
stops). The upper GROUP iterator receives the partial results from each RN and performs
the final grouping and aggregation. It operates the same way as the lower GROUP
iterators and will keep operating until there are no more partial results from the RNs. At
that point, the full and final result set is cached at the upper GROUP iterator and is
returned to the application.

The upper GROUP iterator creates an internal variable ($gb-2) that iterates over the
records produced by the outer SELECT expression. The $gb-2 variable has the age and
sum of income of all users of the CA state, grouped by age.

In the SELECT expression, two fields are fetched: age and sum (income). These
correspond to two field names and field expressions in the SELECT expression clause.

For the age field, the field expression is computed by a FIELD_STEP iterator. The
FIELD_STEP iterator extracts and returns the value of the age field from the records
produced by its input iterator.

"iterator kind" : "FIELD STEP",
"field name" : "age",
"input iterator" :
{
"iterator kind" : "VAR REF",
"variable" : "S$gb-2"

}

The second field to be fetched is an aggregate function sum of income values. The
FUNC_SUM iterator is used for this. It iterates over the value of the income field and
determines the sum of all incomes from the result of its input iterator.

"aggregate functions" : [

{
"iterator kind" : "FUNC_SUM",

"input iterator" :

10-25

Chapter 10
Examples of query execution plan

"iterator kind" : "FIELD STEP",
"field name" : "Column 2",
"input iterator"
{
"iterator kind" : "VAR REF",
"variable" : "S$gb-2"

ORACLE 1096

GeoJdson Data Management

This chapter describes GeoJson data and how to search and index GeoJson data in Oracle
NoSQL Database. Support for GeoJson data is available only in the Enterprise Edition of
Oracle NoSQL Database.

This chapter contains the following topics:
* About GeoJson Data

e Lines and Coordinate System

* Restrictions on GeoJson Data

e Searching for GeoJson Data

* Indexing GeoJson Data

About GeoJson Data

ORACLE

The GeoJson specification (Internet Engineering Task Force) defines the structure and content
of json objects that are supposed to represent geographical shapes on earth (called
geometries). Oracle NoSQL Database implements a number of functions that do indeed
interpret such json objects as geometries and allow for the search for rows containing
geometries that satisfy certain conditions. Search is made efficient via the use of special
indexes.

According to the GeoJson specification, for a json object to be a geometry object it must have
two fields called "type" and "coordinates”, where the value of the "type" field specifies the kind
of geometry and the value of "coordinates" must be an array whose elements define the
geometrical shape (the GeometryCollection kind is an exception to this rule, as we will see
below). The value of the "type" field must be one of the following 7 strings, corresponding to 7
different kinds of geometry objects: "Point", "LineSegment", "Polygon", "MultiPoint",
"MultiLineString", "MultiPolygon", and "GeometryCollection". The value of "coordinates"
depends on the kind of geometry, but in all cases it is composed of a number of positions. A
position specifies a position on the surface of the earth as an array of 2 double numbers,
where the first number is the longitude and the second number is the latitude of the position
(GeoJson allows the position’s altitude as a 3rd coordinate, but Oracle NoSQL Database does
not support altitudes). Longitude and latitude are specified as degrees and must range
between -180 to +180 and -90 to +90, respectively.

The 7 kinds of geometry objects are defined as follows: (with an example given in each case)

Point
For type "Point", the "coordinates" field is a single position.

{ "type" : "point", "coordinates" : [23.549, 35.2908] }

LineString
A LineString is one or more connected lines; the end-point of one line is the start-point of the
next line. The "coordinates" member is an array of two or more positions: the 1st position is

11-1

ORACLE

Chapter 11
About GeoJson Data

the start point of the 1st line and each subsequent position is the end point of the current line
and the start of the next line. Lines may cross each other.

{

"type" : "LineString",

"coordinates™ : [[121.9447, 37.2975],
[121.9500, 37.31711,

121.9892, 37.3182],
122.1554, 37.3882],
122.2899, 37.4589],
122.4273, 37.6032]
122.4304, 37.6267]

]

122.3975, 37.6144

I

I

Polygon

A polygon defines a surface area by specifying its outer perimeter and the perimeters of any
potential holes inside the area. More precisely, a polygon consists of one or more linear rings,
where (a) a linear ring is a closed LineString with four or more positions, (b) the first and last
positions are equivalent, and they must contain identical values, (c) a linear ring is the
boundary of a surface or the boundary of a hole in a surface, and (d) a linear ring must follow
the right-hand rule with respect to the area it bounds, i.e., for exterior rings their positions must
be ordered counterclockwise, and for holes their position must be ordered clockwise. Then,
the "coordinates" field of a polygon must be an array of linear ring coordinate arrays, where
the first must be the exterior ring, and any others must be interior rings. The exterior ring
bounds the surface, and the interior rings (if present) bound holes within the surface. The
example below shows a polygon with no holes.

{

"type" : "polygon",
"coordinates" : [[
[23.48, 35.16]
[24.30, 35.16]
[24.30, 35.50]
[24.16, 35.61],
[23.74, 35.70]
[23.56, 35.60]
[23.48, 35.16]
]

]

}

MultiPoint
For type "MultiPoint", the "coordinates" field is an array of two or more positions.

{

"type" : "MultiPoint",

"coordinates™ : [[-121.9447, 37.2975],
[-121.9500, 37.3171],

[-122.3975, 37.6144]

11-2

Chapter 11
About GeoJson Data

MultiLineString
For type "MultiLineString", the "coordinates" member is an array of LineString coordinate
arrays.

{

"type": "MultiLineString",
"coordinates": [

[100.0, 0.01, [01.0, 1.07 1,

[
[[102.0, 2.0], [103.0, 3.0]]
]
}

MultiPolygon
For type "MultiPolygon", the "coordinates" member is an array of Polygon coordinate arrays.

{
"type": "MultiPolygon",
"coordinates": [

~

[

[

[102.0, 2.01,
[103.0, 2.01,
[103.0, 3.01,
[102.0, 3.01,
[102.0, 2.0]
]

I

[

[

[100.0, 0.01,
[101.0, 0.01,
[101.0, 1.01,
[100.0, 1.01,
[100.0, 0.0]
]

]

]

}

GeometryCollection

Instead of a "coordinates" field, a GeometryCollection has a "geometries" field. The value of
"geometries" is an array. Each element of this array is a GeoJSON object whose kind is one of
the 6 kinds defined earlier. So, in general, a GeometryCollection is a heterogeneous
composition of geometries.

{
"type": "GeometryCollection",
"geometries": [

{

ORACLE 113

Chapter 11
Lines and Coordinate System

"type": "Point",

"coordinates": [100.0, 0.0]

}I

{

"type": "LineString",

"coordinates™: [[101.0, 0.0], [102.0, 1.0]]
}

]

}

The GeoJson specification defines 2 additional kinds of entities, called Feature and
FeatureCollection, which allow for combining geometries with other, non-geometrical
properties. The specification uses defined above) or a Feature or a FeatureCollection. Feature
and FeatureCollection are defined as follows:

Feature

A Feature object has a "type" member with the value "Feature”. A Feature object has a
"geometry" member, whose value either a geometry object of the 7 kinds defined above or the
JSON null value. A Feature object has a "properties” member, whose value is any JSON
object or the JSON null value.

FeatureCollection

A FeatureCollection object has a "type" member with the value "FeatureCollection”. A
FeatureCollection object has a "features" member, whose value is a JSON array. Each
element of the array is a Feature object as defined above. It is possible for this array to be
empty.

Lines and Coordinate System

As shown in the previous section, all kinds of geometries are specified in terms of a set of
positions. However, for line strings and polygons, the actual geometrical shape is formed by
the lines connecting their positions. The GeoJson specification defines a line between two
points as the straight line that connects the points in the (flat) cartesian coordinate system
whose horizontal and vertical axes are the longitude and latitude, respectively. More precisely,
the coordinates of every point on a line that does not cross the antimeridian between a point
P1 = (lonl, latl) and P2 = (lon2, lat2) can be calculated as:

P = (lon, lat) = (lonl + (lon2 - lonl) * t, latl + (lat2 - latl) * t)

with t being a real number greater than or equal to 0 and smaller than or equal to 1.

However, Oracle NoSQL Database uses a geodetic coordinate system (WGS 84) and as a
result deviates from the GeoJson specification by using geodetic lines: A geodetic line
between 2 points is the shortest line that can be drawn between the 2 points on the ellipsoidal
surface of the earth. For a simplified, but more illustrative definition, assume for a moment that
the earth surface is a sphere. Then, the geodetic line between two points on earth is the minor
arc between the two points on the great circle corresponding to the points, i.e., the circle that
is formed by the intersection of the sphere and the plane defined by the center of the earth and
the two points.

The following figure shows the difference between the geodetic and straight lines between Los
Angeles and London.

ORACLE 112

ORACLE

Chapter 11
Lines and Coordinate System

Figure 11-1 Geodetic vs Straight Line

(source: https://developers.arcgis.com)

The following figure shows the difference between the two coordinate systems for a square
defined by points P1, P2, P3, and P4. The square is assumed to be in the northern
hemisphere. The 2 vertical lines of the square are the same in both systems; points on each of
these lines have the same longitude. This is not true for the "horizontal" lines. In the GeoJson
system all points on the P1-P2 line (the blue line) have the same latitude (so this line is part of
an earth parallel). But the geodetic line between P1 and P2 forms a curve (the red line) to the
north of the GeoJson line. The difference between the two lines (the curvature) gets more
pronounced closer to the poles and as the distance between P1 and P2 increases.

Figure 11-2 Geodetic vs GeoJson Box

P4 P3

py —l

When searching for points or other geometries inside the [P1, P2, P3, P4] polygon (using one
of the functions described in the next section), Oracle NoSQL Database uses the geodetic
view of the search polygon. So, for example, points that are between the blue and the red P1-
P2 lines will not appear in the result. What if you really want to search inside the blue box?
Such a search can be approximated by adding points between P1-P2 and P4-P3 in the
definition of the search polygon. This is illustrated in the following figure, where we have added
points P5 and P6. We can see that with the [P1, P6, P2, P3, P5, P4] polygon, the area
difference between the geodetic and GeoJson boxes is smaller than with the [P1, P2, P3, P4]
polygon.

11-5

Chapter 11
Restrictions on GeoJson Data

Figure 11-3 Approximating a Search within a GeoJson Box

P4 P3
P5

P1
= P2

Restrictions on GeoJson Data

The following 2 restrictions apply to the kind of GeoJson data supported by Oracle NoSQL
Database:

Anti-meridian crossing
Geometries that cross the anti-meridian line cannot be indexed and cannot appear as
arguments to the geo search functions described in the following section.

Too big geometries

A geometry is considered "too big" if its Minimum Bounding Box (MBR) has a side whose end
points are more than 120 degrees or latitude or longitude apart. Such geometries cannot be
indexed and cannot appear as arguments to the geo search functions described in the
following section.

Searching for GeoJson Data

ORACLE

Oracle NoSQL Database provides 4 functions to search for GeoJson data that have a certain
relationship with a search geometry.

boolean geo_intersect(any*, any¥*)

Raises an error if it can be detected at compile time that an operand will not return a single
valid geometry object. Otherwise, the runtime behavior is as follows:

* Returns false if any operand returns 0 or more than 1 items.

e Returns NULL if any operand returns NULL.

* Returns false if any operand returns an item that is not a valid geometry object.

Finally, if both operands return a single geometry object, it returns true if the 2 geometries have
any points in common; otherwise false.

boolean geo_inside(any*, any*)

Raises an error if it can be detected at compile time that an operand will not return a single
valid geometry object. Otherwise, the runtime behavior is as follows:

* Returns false if any operand returns 0 or more than 1 items.
e Returns NULL if any operand returns NULL.

* Returns false if any operand returns an item that is not a valid geometry object (however, if
it can be detected at compile time that an operand will not return a valid geometry, an error
is raised).

* Returns false if the second operand returns a geometry object that is not a polygon.

11-6

ORACLE

Chapter 11
Searching for GeoJson Data

Finally, if both operands return a single geometry object and the second geometry is a polygon,
it returns true if the first geometry is completely contained inside the second polygon, i.e., all its
points belong to the interior of the polygon; otherwise false. The interior of a polygon is all the
points in the polygon area except the points on the linear rings that define the polygon’s
boundary.

boolean geo_within_distance(any*, any*, double)

Raises an error if it can be detected at compile time that any of the first two operands will not
return a single valid geometry object. Otherwise, the runtime behavior is as follows:

* Returns false if any of the first two operands returns O or more than 1 items.
e Returns NULL if any of the first two operands returns NULL.

* Returns false if any of the first two operands returns an item that is not a valid geometry
object.

Finally, if both of the first two operands return a single geometry object, it returns true if the first
geometry is within a distance of N meters from the second geometry, where N is the number
returned by the third operand; otherwise false. The distance between 2 geometries is defined
as the minimum among the distances of any pair of points where the first point belongs to the
first geometry and the second point to the second geometry. If N is a negative number, it is set
to 0.

boolean geo_near(any*, any*, double)

geo_near is converted internally to geo_within_distance plus an (implicit) order-by the distance
between the two geometries. However, if the query has an (explicit) order-by already, no
ordering by distance is performed. The geo_near function can appear in the WHERE clause
only, where it must be a top-level predicate, i.e, not nested under an OR or NOT operator.

In addition to the above search functions, the following two functions are also provided:

double geo_distance(any*, any*)

Raises an error if it can be detected at compile time that an operand will not return a single
valid geometry object. Otherwise, the runtime behavior is as follows:

e Returns -1 if any operand returns zero or more than 1 items.
e Returns NULL if any operand returns NULL.
e Returns -1 if any of the operands is not a geometry.

Otherwise it returns the geodetic distance between the 2 input geometries. The returned
distance is the minimum among the distances of any pair of points where the first point belongs
to the first geometry and the second point to the second geometry. Between two such points,
their distance is the length of the geodetic line that connects the points.

boolean geo_is_geometry(any¥)

e Returns false if the operand returns zero or more than 1 items.

e Returns NULL if the operand returns NULL.

e Returns true if the input is a single valid geometry object. Otherwise, false.

Notice that the above geo functions operate on geometry objects, but not on Features or
FeatureCollections. Nevertheless, Features and FeatureCollections can still be queried
effectively by passing their contained geometry objects to the geo function. An example of this
is shown in the following section.

11-7

Chapter 11
Searching for GeoJson Data

Example 11-1 Searching for GeoJson Data

Consider a table whose rows store points of interest. The table has an id column as its primary
key and a poi column of type json.

CREATE TABLE PointsOfInterest (
id INTEGER, poi JSON,
PRIMARY KEY (id))

INSERT INTO PointsOfInterest VALUES (

1,
{
"kind" : "city hall",
"address" : {
"state" : "CA",
"city" : "Campbell",
"street" : "70 North lst street”
b
"location" : {
"type" : "point",
"coordinates" : [121.94,37.29]

)
INSERT INTO PointsOfInterest VALUES (
2,
{
"kind" : "nature park",
"name" : "castle rock state park",
"address" : {
"state" : "CA",
"city" : "Los Gatos",
"street" : "15000 Skyline Blvd"
b
"location" : {
"type" : "polygon",
"coordinates" : [
[
122.1301, 37.2330]
122.1136, 37.2256]
122.0920, 37.22917,
122.1020, 37.2347]
122.1217, 37.2380]
122.1301, 37.2330]

ORACLE 118

ORACLE

Chapter 11
Searching for GeoJson Data

The following query looks for nature parks in northern California. The query uses
geo_intersect, instead of geo_inside, to include parks that straddle the border with neighbor

states.

SELECT t.poi AS park
FROM PointsOfInterest t

WHERE t.poi.kind = "nature park"

AND

geo_intersect (
t.poi.location,

{

"type" . l’polygon",

"coordinates"

[

[

.94,
.52,
.99,
.00,
.21,
.39,
.94,

36.28
37.38
39.00
41.97
41.97
40.42
36.28

The following query looks for gas stations within a mile of a given route. The returned gas

stations are ordered by ascending distance from the route.

SELECT

t.poi AS gas_station,
geo_distance(
t.poi.location,

{

}

"type" : "LineString",

"coordinates"

[121.9447
[121.9500
[121.9892
[122.1554
[122.2899
[122.4273
[122.4304
[122.3975

) AS distance
FROM PointsOfInterest t

WHERE t.poi.kind = "gas station"

AND

geo_near (
t.poi.location,

{

[

, 37,
, 37,
, 37,
, 37,
, 37,
, 37,
, 37,
, 37,

2975
3171
3182
3882
4589
6032
6267
6144

"type" : "LineString",

"coordinates"

[

]
]
]
]
]
]
]
]

11-9

ORACLE

. 9447,
.9500,
.9892,
.1554,
.2899,
L4273,
L4304,
.3975,

b
1609

37.2975]
37.3171]
37.3182]
37.3882],
37.4589]
37.6032]
37.6267]
37.6144]

Example 11-2 Searching for GeoJson data

Chapter 11
Searching for GeoJson Data

This example shows how FeatureCollections can be queried in Oracle NoSQL Database.
Consider a "companies" table that stores info about companies, including the locations where
each company has offices and some properties for each office location.

CREATE TABLE companies
info JSON, PRIMARY KEY (id))

id INTEGER,

(

INSERT INTO companies VALUES (
L
{
"id" @ 1,
"info" : {
"name" "acme",
"CEQ" "some random person",
"locations" {
"type" "FeatureCollection",
"features" : [
{
"type" "Feature",
"geometry" : {
"type" "point",
"coordinates" [23.549, 35.2908]
b
"properties" : {
"kind" "development",
"city" "palo alto"
}
b
{
"type" "Feature",
"geometry" : {
"type" "point",
"coordinates" [23.9, 35.17]
b
"properties" : {
"kind" "sales",
"city" "san jose"

11-10

Chapter 11
Searching for GeoJson Data

The following query looks for companies that have sales offices within a search region and
returns, for each such company, an array containing the geo-locations of the sales offices
within the same search region.

SELECT id,
c.info.locations.features |
geo_intersect (
Selement.geometry,
{
"type" : "polygon",
"coordinates" : [
[
[23.48, 35.16]
[24.30, 35.16]
[24.30, 35.70],
[23.48, 35.70]
[23.48, 35.16]

)
AND

Selement.properties.kind = "sales"
] .geometry AS loc
FROM companies c
WHERE EXISTS c.info.locations.features [
geo_intersect (
Selement.geometry,
{
"type" : "polygon",
"coordinates" : [
[
[23.48, 35.16]
[24.30, 35.16]
[24.30, 35.70],
[23.48, 35.70]
[23.48, 35.16]

)
AND

Selement.properties.kind = "sales"

ORACLE 11

Chapter 11
Indexing GeoJson Data

For efficient execution of this query, the following index can be created:

CREATE INDEX idx kind loc ON companies (
info.locations.features[].properties.kind AS STRING,
info.locations.features[].geometry AS POINT)

Indexing GeoJson Data

ORACLE

Indexing GeoJson data is similar to indexing other json data. In the GeoJson case, the
GEOMETRY or POINT keyword must be used after an index path that leads to geometry
objects. POINT should be used only if all rows in the table are expected to have single point
geometries at the indexed field (GEOMETRY can also be used in this case, but POINT is
recommended for better performance). As in the case of other json data, an error will be raised
if for some row the value of the index path is not a valid GeoJson point or geometry, unless that
value is NULL, json null, or EMPTY.

An index that includes a path to geometry objects is called a geometry index. A geometry index
can index other fields as well, but some restrictions apply: (a) a geometry index cannot index
more than one GeoJson field, (b) the GeoJson field cannot be inside an array, unless it is a
POINT field, and (c) a geometry index cannot be a multi-key index, unless the GeoJson field is
a POINT field and the array or map being indexed is the one that contains the POINT field.

Indexing of geometries is based on geohashing. Geohashing is an encoding of a longitude/
latitude pair to a string. It works by recursively partitioning the 2-D longitude/latitude coordinate
system into a hierarchy of rectangulars called cells. The initial (level-0) cell is the whole world,
i.e., all points with a longitude between -180 and +180 and latitude between -90 and +90. The
first (level-0) split creates the 32 level-1 cells shown in the following figure. Each cell is
assigned a "name", which is a character out of this 32-char-long string G =
"0123456789bcdefghjkmnpgrstuvwxyz". This name is called the geohash of the cell.

Figure 11-4 32 Level-1 Geohash Cells

B C F — U v 1 ‘
L
& [
i A (£
AT
st L2 2] g2
20 |8 W Y -
£ ey s LHR - ‘J\nf B
=l 9 D .= E S PR g L ° & X
BEEeyg MR H BRI
L] v o
=1 Bi=b #5 i
i
Ao B HE R E
BT =RE
o e EERAE Eﬂ_ﬁ!*
wiiz
HHiE AL E DiEhEnE mmEp
b > R Les L
0T R RS N e
R =
™o
0 1 4 5 H 2 N i

11-12

ORACLE"

Chapter 11
Indexing GeoJson Data

The next (level-1) split splits each level-1 cell into 32 level-2 cells. The following figure shows
all the level-2 cells inside the "g" cell.

Figure 11-5 Level-1 and Level-2 Geohash Cells

gp gr .gx gz
an o oqlow oy Afelic Dcean

Arclie OEean

Tah gk gs gu us

gt g6l gd gf
Cwada g" ga s

g? gﬁ " Falard

L
cific
HCLLE

Stk
Pacifie

op

wthern
Yeean

ANTARCTICA

As shown, the geohash of each level-2 is 2 chars long, where the 1st char is the geohash of
the parent cell, and the 2nd char is again drawn from the same char set. This process
continues down to some given level L, called the geohash length. During an even-numbered
split, each cell is split into 8 vertical slices and 4 horizontal slices. During an odd-numbered
split, each cell is split into 4 vertical slices and 8 horizontal slices. In both cases, for each of the
32 sub-cells, its geohash is formed by using the parent-cell geohash as a prefix and appending
a char out of G. The extra char for each sub-cell is chosen the same way as shown in both the
earlier figures for even and odd splits respectively.

Oracle NoSQL Database uses a geohash length of 10. Cells at level 10 have an area of about
1 square meter. When indexing a point, the level-10 cell that contains the point is computed
and the geohash of that cell is placed in the index entry. So, for points, a single index entry is
generated for each point, and a geometry index on a POINT field behaves like a simple (non-

11-13

ORACLE

Chapter 11
Indexing GeoJson Data

multikey) index, unless the POINT field itself is inside an array or map that is being indexed.
Notice that all points inside the same level-10 cell will have the same geohash.

With the geohashing algorithm described above, points that are close to each other will usually
(but not always) be close together in the geometry index as well, i.e., have long common
prefixes. So, searching for points using one of the functions described in the previous section
translates to one or more range scans in the geometry index. These range scans may return
false positives, so the search function itself must still be applied on the rows returned by index
scans to eliminate the false positives.

When indexing a LineString or Polygon, the geometry’s minimum bounding box (MBR) is
computed first, and then a set of cells is found that completely cover the MBR. The level of the
covering cells depends on the size and shape and position of the MBR (usually it will be less
than 10). Then, an index entry is created for each of the covering cells containing the geohash
of that cell. So, a geometry index on a LineString or Polygon is always a multi-key index since
multiple index entries will be created for a single row. For MultiPoints, MultiLineStrings,
MultiPolygons, and GeometryCollections each of the constituent geometries is indexed
separately and the index for such geometries it also a multi-key index.

Example 11-3 Index the coordinates field in a GeoJSON data table

CREATE INDEX IF NOT EXISTS CoordIdx ON PointsOfInterest (poi.coordinates AS
GEOMETRY)

Explanation: PointsOfInterest is a GeoJSON data table, which stores geographical points of
interest as JSON data in the poi field. The poi field includes the type field, which specifies the
kind of geometry and a nested array coordinates field, which includes the geographical
coordinates of the points of interest. For more details, see About GeoJson Data.

In the query above, you create an index on the coordinates field. You use the GEOMETRY
keyword next to the index path to provide the flexibility to include both single-point and
multipoint geometrical types in the coordinates field.

You can verify the index creation as follows:

SHOW INDEXES ON PointsOfInterest

Output:

indexes
CoordIdx

11-14

Built-in Functions

ORACLE

This chapter discusses about the Built-in functions supported in Oracle NoSQL Database.

Most of the examples demonstrated in this section use one of the two common schemas, that

is, the BaggageInfo table schema and stream acct table schema.

The BaggageInfo table contains passenger details and bag information that is made available
as a part of the airline application. The stream acct table includes information about various

shows that the customers watch and can be used on a TV streaming application.

If you want to use the common schema and follow along with the examples, download the
scripts baggageschema_loaddata.sqgl and acctstream_loaddata.sq|l.

Start your KVSTORE or KVLite and open the SQL shell.
java -jar lib/kvstore.jar kvlite -secure-config disable

java -jar lib/sgl.jar -helper-hosts localhost:5000 -store kvstore

Using the 1oad command, run the required script.

Example:
load -file baggageschema loaddata.sql

load -file acctstream loaddata.sql

This creates the tables used in the examples and loads the data into the tables.

For more details on the common schema, see Getting started with SQL for Oracle NoSQL
Database in the Developers Guide.

This chapter contains the following topics:

e Functions on Complex Values

* Functions on Sequences

* Functions on Timestamps

* Functions on Rows

* Function to generate a UUID string
e Functions on GeoJson Data

* Functions on Strings

* Function to Convert String to JSON

* Functions of Mathematical Operations

12-1

Chapter 12
Functions on Complex Values

Functions on Complex Values

ORACLE

size function

Returns the number of fields/entries of a complex item (array, map, record). The function
accepts an empty sequence as argument, in which case it will return the empty sequence. The
function will return NULL if its input is NULL. The result type is Integer.

Syntax:

integer? size(any?)

Semantics:

* any: The any?element in the above syntax is a complex parameter. The size function
accepts any complex parameter such as an array, map, or record. Although the parameter
type appears as any?, the function raises an error if the given item is not complex.

* return type: Integer
Example:

Every passenger usually carries one or more pieces of luggage during their travel. In the airline
application, you can determine the number of bags owned by a passenger using the size
function.

SELECT

fullName AS NAME,

size (bagInfo) AS BagCount
FROM BaggageInfo

Explanation:

In this example, the information on all the luggage owned by each a passenger is available in
the bagInfo array of each passenger record. The size function returns the size of the bagInfo
array, which indicates the number of bags. If a passenger owns two pieces of luggage, the
bagInfo array has two items and the size function returns the value as 2.

Output:

{"NAME" :"Adelaide Willard","BagCount":1}
{"NAME" :"Raymond Griffin","BagCount":1}
{"NAME" :"Henry Jenkins","BagCount":1}
{"NAME":"Lucinda Beckman","BagCount":1}
{"NAME" :"Michelle Payne","BagCount":1}
{"NAME" :"Joanne Diaz","BagCount":1}
{"NAME":"Mary Watson","BagCount":1}
{"NAME":"Gerard Greene","BagCount":1}
{"NAME":"Fallon Clements","BagCount":1}
{"NAME":"Kendal Biddle","BagCount":1}
{"NAME":"Elane Lemons","BagCount":1}
{"NAME" :"Adam Phillips","BagCount":1}
{"NAME" :"Lorenzo Phil","BagCount":2}
{"NAME" :"Omar Harvey","BagCount":1}
{"NAME" :"Lisbeth Wampler","BagCount":1}

12-2

Chapter 12
Functions on Sequences

{"NAME" :"Dierdre Amador","BagCount":1}

{"NAME":"Teena Colley","BagCount":1}

{"NAME":"Rosalia Triplett","BagCount":1}

{"NAME":"Zulema Martindale","BagCount":1}

{"NAME":"Doris Martin","BagCount":1}

{"NAME":"Zina Christenson","BagCount":1}

In the above query, since the bagInfo array contains one JSON document for each bag
checked in by a passenger, the Bagcount in this query displays the number of bags that each
passenger has checked into their flight.

Functions on Sequences

ORACLE

seq_concat function

seq_concat is a variadic function: it can have any number of arguments. It simply evaluates its
arguments (if any) in the order they are listed in the argument list, and concatenates the
sequences returned by these arguments. This function accepts any data type as the input
argument. If the input is a scalar, then the input item is treated as a sequence of size 1.

Syntax:

any* seqg_concat (any*, ...)

Semantics:

* any: The any? element in the above syntax can be of any data type. The seq_concat
function accepts any number of input arguments. The arguments have to be in a comma-
separated format.

* return type: any type
Example 1:

In the TV streaming application, you can offer suggestions to the users regarding upcoming
shows. This is usually based on the shows they have already watched or the genres they
prefer.

SELECT acct _id,

concat (stream acct.acct data[].firstName,

' ',stream acct.acct datal].lastName) AS Fullname,

seq_concat (stream acct.acct data[].contentStreamed[].showName) AS Uwatched,
seq_concat (stream acct.acct data[].contentStreamed[].genres) AS Uprefer
FROM stream acct

ORDER BY acct_id

Explanation:

In this example, the seq concat function lists all the watched shows and their genres as a
comma-separated list.

Output:

{"acct_id":1,"Fullname":"Adam Phillips","Uwatched":["At the
Ranch", "Bienvenu"], "Uprefer":[["action","crime", "spanish"],

12-3

ORACLE

Chapter 12
Functions on Sequences

["comedy", "french"]]}

{"acct_1d":2,"Fullname":"Adelaide Willard","Uwatched":"Bienvenu", "Uprefer":
["comedy", "french"]}

The concat function is also used in the query to concatenate the two strings, firstName and
lastName and display it as a single object Fullname in the output. For more details, see concat
Function.

Example 2:

In this TV streaming application example, you can retrieve the details of the shows watched by
users.

SELECT

concat (stream acct.acct data[].firstName,
' ',stream acct.acct data[].lastName) AS Fullname,
CASE
WHEN exists stream acct.acct data[].contentStreamed[].showId
THEN seq_concat(stream acct.acct data[].contentStreamed[0].showName,
stream acct.acct data[0].contentStreamed[0].seriesInfo[0].episodes[0],
stream acct.acct data[0].contentStreamed[0].seriesInfo[0].episodes[1l],stream a
cct.acct data[].contentStreamed[1].showName,
stream acct.acct data[0].contentStreamed[0].seriesInfo[l].episodes[0],
stream acct.acct data[0].contentStreamed([0].seriesInfo[l].episodes([1])
ELSE "Start streaming your favorite shows here"
END AS Showdetails
FROM stream acct WHERE acct id=1

Explanation:

If a user has watched any show, the details are stored in the contentSreamed JSON field. The
above query retrieves the date of streaming, details of the episode, the duration, and the time
elapsed for each show. The seq concat function is used to concatenate and display all the
details in the output.

Output:

{"Fullname":"Adam Phillips","Showdetails":["At the Ranch",
{"date":"2022-04-18", "episodeID":20,"lengthMin":85, "minWatched":85},
{"date":"2022-04-18", "episodeID":30,"lengthMin":60, "minWatched":60}, "Bienvenu"
,{"date":"2022-04-25","episodeID":40,"lengthMin":50, "minWatched":50},
{"date":"2022-04-27","episodeID":50, "lengthMin":45, "minWatched":30}]}

The concat function is also used in the query to concatenate the two strings, firstName and
lastName and display it as a single object Fullname in the output. For more details, see concat
Function.

In addition to the above there are also the following aggregate functions on sequences. They
are described in the Sequence Aggregate Functions section.

« long seq_count(any*)
e number seq_sum(any*)

e number seq_avg(any*)

12-4

ORACLE

* any_atomic seq_min(any*)

° any_atomic seq_max(any*)

seq_distinct function

Returns the distinct values of its input sequence.

Syntax:

any* seq _distinct (any¥*)

Semantics:

Chapter 12
Functions on Sequences

* any: The seq distinct function accepts any parameter type as the input argument.

+ return type: any type

Example:

Consider an application that maintains the information of the users. Create the schema for

users table as follows:

CREATE TABLE users

PRIMARY KEY (id))

(id INTEGER,

firstName STRING,
lastName STRING,

otherNames ARRAY (RECORD (first STRING, last STRING)),

age INTEGER,

income INTEGER,

address JSON,

connections ARRAY (INTEGER),
expenses MAP (INTEGER),

Insert the following user record into the table.

INSERT INTO users VALUES (

10,
"John",
"Smith",
[{"first" "Johny", "last" "BeGood"} 1,
22,
45000,
{
"street" "Pacific Ave",
"number" 101,
"city" "Santa Cruz",
"state" : "CA",
"zip" 95008,
"phones" : [
{ "area" 408, "number" 4538955, "kind"
{ "area" 831, "number" 7533341, "kind"
{ "area" 831, "number" 7533382, "kind"
]
b
[30, 55, 43],

"work" },
"home" },
"mobile"

}

12-5

Chapter 12
Functions on Timestamps

DEFAULT

Explanation:

A user may have multiple phone numbers in the same area code. To determine the number of
users having phone numbers in different area codes, a particular user should be counted only
once (even if the user has more than one phone number with the same area code).

This is possible using the seq distinct function, which eliminates duplicate values from its
input sequence.

SELECT S$area, count(*) AS cnt
FROM Users u, seq distinct (u.address.phones.area) AS Sarea
GROUP BY S$area

Output:

{"area":408,"cnt":1}
{"area":831,"cnt":1}

The user John Smith has three phone numbers, two of which have the same area code.
However, only distinct area codes are fetched in the query.

Functions on Timestamps

ORACLE

The timestamp functions perform various operations on the supplied timestamps.

You can add a duration to a timestamp, find the difference between two timestamps, and round
timestamp to a specified unit. You can cast a timestamp to/from string with customized
patterns. Some of the functions support the extraction of the date part of a timestamp. You can
also use these functions to display the current time.

A few of these timestamp functions take a second argument, which specifies the units or the
format patterns.

The input timestamp can be a TIMESTAMP value/expression. If required, the timestamp
functions perform an implicit CAST on the supplied timestamp.

You can invoke the timestamp functions from the SELECT/WHERE clauses, and also from
other SQL clauses where function calls are allowed in the syntax. For example, you can supply
the functions as arguments to Aggregate Functions.

The following timestamp functions are supported:

Table 12-1 Timestamp functions
]

Function Description

timestamp_add Adds a duration to a timestamp value.

timestamp_diff Returns the number of milliseconds between two timestamp
values.

get_duration Converts the given number of milliseconds to a duration
string.

timestamp_ceil Rounds-up the timestamp value to the specified unit.

12-6

Chapter 12
Functions on Timestamps

Table 12-1 (Cont.) Timestamp functions

Function

Description

timestamp_floor/timestamp_trunc

Rounds-down the timestamp value to the specified unit.

timestamp_round

Rounds the timestamp value to the specified unit.

timestamp_bucket

Rounds the timestamp value to the beginning of the specified
interval, starting from a specified origin value.

format_timestamp

Converts a timestamp into a string according to the specified
pattern and the timezone.

parse_to_timestamp

Converts a string in the specified pattern into a timestamp
value.

to_last_day_of_month

Returns the last day of the month from a given timestamp.

Timestamp extract functions

Extracts the corresponding date part of a given timestamp.
The following functions are supported:

e year
¢ month
e day

e hour

e minute
e second

e millisecond

* microsecond

¢ nanosecond

Returns the week number within the year. The following
functions are supported:

e week

e isoweek

Returns the corresponding index from a given timestamp. The
following functions are supported:

e quarter

e day_of week

e day_of_month

e day_of year

current_time_millis

Returns the current time as the number of milliseconds.

current_time

Returns the current time as a timestamp value.

The examples in the following sections are based on an airline baggage tracking application
and a TV streaming application. To follow along with the examples, create the tables and load
data as described in Tables used in the examples section.

timestamp_add function

Adds a duration to a timestamp value and returns the new timestamp. The duration can be
positive or negative. The result type is TIMESTAMP (9).

ORACLE

Syntax:

TIMESTAMP (9) timestamp add(TIMESTAMP timestamp, STRING duration)

Semantics:

e timestamp: A TIMESTAMP value or a value that can be cast to TIMESTAMP.

12-7

ORACLE

Chapter 12
Functions on Timestamps

e duration: A STRING with format [-](<n> <UNIT>)+, where 'n'is a number and the <UNIT>
can be YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, MILLISECOND,
NANOSECOND or the plural form of these keywords (e.g. YEARS).

Note:

The UNIT keyword is case-insensitive.

e Return Value: TIMESTAMP(9)

Example 12-1 In the airline application, a buffer of five minutes delay is considered
"on-time" . Print the estimated arrival time on the first leg with a buffer of five minutes
for the passenger with ticket number 1762399766476

SELECT timestamp add(bag.bagInfo.flightLegs[0].estimatedArrival, "5 minutes")
AS ARRIVAL TIME FROM BaggageInfo bag WHERE ticketNo=1762399766476

Explanation: In the airline application, a customer can have any number of flight legs
depending on the source and destination. In the query above, you are fetching the estimated
arrival in the "first leg" of the travel. So the first record of the f1ightsLeg array is fetched and
the estimatedArrival time is fetched from the array and a buffer of "5 minutes" is added to
that and displayed.

Output:

{"ARRIVAL TIME":"2019-02-03T06:05:00.000000000Z"}

Note:

The column estimatedArrival is @ STRING. If the column has STRING values in
1ISO-8601 format, then it will be automatically converted by the SQL runtime into
TIMESTAMP datatype.

Example 12-2 Print the estimated arrival time in every leg with a buffer of five minutes
for the passenger with ticket number 1762399766476

SELECT $s.ticketno, $value as estimate, timestamp add($value, 'S minute') AS
addb5min

FROM baggageinfo s,Ss.bagInfo.flightLegs.estimatedArrival as $value

WHERE ticketNo=1762399766476

Explanation: You want to display the estimatedArrival time in every leg. The number of legs
can be different for every customer. So variable reference is used in the query above and the
baggagelInfo array and the flightsLegs array are unnested to execute the query.

Output:

{"ticketno":1762399766476, "estimate":"2019-02-03T06:00:002", "add5min":"2019-02
-03T06:05:00.0000000002"}
{"ticketno":1762399766476, "estimate":"2019-02-03T08:22:002", "add5min":"2019-02
-03T08:27:00.0000000002"}

12-8

Chapter 12
Functions on Timestamps

Example 12-3 Find the humber of bags arrived in the last week

SELECT count (*) AS COUNT LASTWEEK FROM baggageInfo bag WHERE
EXISTS bag.bagInfo[Selement.bagArrivalDate > current time()
AND Selement.bagArrivalDate < timestamp add(current time(), "-7 days")]

Explanation: You get a count of the number of bags processed by the airline application in the
last week. A customer can have more than one bag(that is bagInfo array can have more than
one record). The bagArrivalDate should have a value between today and the last 7 days. For
every record in thebagInfo array, you determine if the bag arrival time is between the time now
and one week ago. The function current time gives you the time now. An EXISTS condition is
used as a filter for determining if the bag has an arrival date in the last one week. The count
function determines the total number of bags in this time period.

Example 12-4 Find the number of bags arriving in the next 6 hours

SELECT count (*) AS COUNT NEXT6HOURS FROM baggageInfo bag WHERE
exists bag.bagInfo[Selement.bagArrivalDate > current time()
AND Selement.bagArrivalDate < timestamp add(current time(), "6 hours")]

Explanation: You get a count of the number of bags that will be processed by the airline
application in the next 6 hours. A customer can have more than one bag(that is bagInfo array
can have more than one record). The bagArrivalDate should be between the time now and
the next 6 hours. For every record in the bagInfo array, you determine if the bag arrival time is
between the time now and six hours later. The function current time gives you the time now.
An EXISTS condition is used as a filter for determining if the bag has an arrival date in the next
six hours. The count function determines the total number of bags in this time period.

timestamp_diff function

ORACLE

The timestamp diff function returns the number of milliseconds between two timestamp
values. The result type is LONG.

Syntax:

LONG timestamp diff (TIMESTAMP timestampl, TIMESTAMP timestamp2

Semantics:

e timestampl: A TIMESTAMP value or a value that can be cast to TIMESTAMP
e timestamp2: A TIMESTAMP value or a value that can be cast to TIMESTAMP
* Return Value: LONG

Example 12-5 What is the duration between the time the baggage was boarded at one
leg and reached the next leg for the passenger with ticket number 1762355527825?

To determine the duration in milliseconds, use the timestamp diff function.

SELECT $bagInfo.bagArrivalDate, $flightLeg.flightDate,

timestamp diff ($bagInfo.bagArrivalDate, $flightLeg.flightDate) AS diff
FROM baggageinfo $s,

$s.bagInfo[] AS S$SbagInfo, SbagInfo.flightLegs[] AS $flightLeg

WHERE ticketNo=1762355527825

12-9

ORACLE

Chapter 12
Functions on Timestamps

Explanation: In an airline application every customer can have different number of hops/legs
between their source and destination. In this query, you determine the time taken between
every flight leg. This is determined by the difference between bagArrivalDate and flightDate
for every flight leg.

Output:

{"bagArrivalDate":"2019-03-22T10:17:00Z","flightDate":"2019-03-22T07:00:00zZ", "
diff":11820000}
{"bagArrivalDate":"2019-03-22T10:17:00Z","flightDate":"2019-03-22T07:23:00zZ","
diff":10440000}
{"bagArrivalDate":"2019-03-22T10:17:00Z","flightDate":"2019-03-22T08:23:00zZ","
diff":6840000}

Example 12-6 How long does it take from the time of check-in to the time the bag is
scanned at the point of boarding for the passenger with ticket number 1762344638137

To determine the duration in milliseconds, use the timestamp diff function.

SELECT $flightLeg.flightNo,

$flightLeg.actions[contains ($Selement.actionCode, "Checkin")].actionTime AS
checkinTime,
$flightLeg.actions[contains ($Selement.actionCode, "BagTag Scan")].actionTime

AS bagScanTime,

timestamp diff (
$flightLeg.actions[contains ($element.actionCode, "Checkin")].actionTime,
$flightLeg.actions[contains ($Selement.actionCode, "BagTag Scan")].actionTime

) AS diff

FROM baggageinfo $s,

$s.bagInfo[].flightLegs[] AS $flightlLeg

WHERE ticketNo=176234463813 AND

starts_with($s.bagInfo[].routing, $flightLeg.fltRouteSrc)

Explanation: In the baggage data, every f1ightLeg has an actions array. There are three
different actions in the actions array. The action code for the first element in the array is
Checkin/0Offload. For the first leg, the action code is Checkin and for the other legs, the action
code is Offload at the hop . The action code for the second element of the array is BagTag
Scan. In the query above, you determine the difference in action time between the bag tag scan
and check-in time. You use the contains function to filter the action time only if the action code
is Checkin or BagScan. Since only the first flight leg has details of check-in and bag scan, you
additionally filter the data using starts with function to fetch only the source code
fltRouteSrc.

Output:

{"flightNo":"BM572", "checkinTime":"2019-03-02T03:28:00Z", "bagScanTime":"2019-0
3-02T04:52:002","diff":-5040000}

Example 12-7 How long does it take for the bags of a customer with ticket no
1762320369957 to reach the first transit point?

To determine the duration in milliseconds, use the timestamp diff function.

SELECT S$bagInfo.flightLegs[0].flightDate,
$bagInfo.flightLegs[0].estimatedArrival,

12-10

Chapter 12
Functions on Timestamps

timestamp diff ($bagInfo.flightLegs[0].estimatedArrival,
S$bagInfo.flightlLegs[0].flightDate) AS diff

FROM baggageinfo s, Ss.bagInfo[] AS $baglInfo

WHERE ticketNo=1762320369957

Explanation: In an airline application every customer can have different number of hops/legs
between their source and destination. In the example above, you determine the time taken for
the bag to reach the first transit point. In the baggage data, the f1ightLeg is an array. The first
record in the array refers to the first transit point details. The f1ightDate in the first record is
the time when the bag leaves the source and the estimatedarrival in the first flight leg record
indicates the time it reaches the first transit point. The difference between the two gives the
time taken for the bag to reach the first transit point.

Output:

{"flightDate":"2019-03-12T03:00:002", "estimatedArrival”:"2019-03-12T16:00:00Z"
,"diff":46800000}
{"flightDate":"2019-03-12T03:00:002", "estimatedArrival”:"2019-03-12T16:40:00Z"
,"diff":49200000})

get_duration function

ORACLE

The get duration function converts the given number of milliseconds to a duration string. The
result type is STRING.

Syntax:

STRING get duration(LONG duration millis)

Semantics:
e duration_millis: the duration in milliseconds.

e Return Value: STRING. The returned duration string format is [-](<n> <UNIT>)+, where
the <UNIT> can be DAY, HOUR, MINUTE, SECOND and MILLISECOND, e.g. "1 day 2
hours" or "-10 minutes 0 second 500 milliseconds".

Example 12-8 What is the duration in days, hours, or minutes between the time the
baggage was boarded at one leg and reached the next leg for the passenger with ticket
number 1762355527825?

SELECT $s.ticketno, S$SbagInfo.bagArrivalDate, $flightLeg.flightDate,

get duration(timestamp diff (SbagInfo.bagArrivalDate, $flightLeg.flightDate))
AS diff FROM

baggageinfo $s, $s.bagInfo[] AS $bagInfo, S$SbagInfo.flightLegs|]
AS $flightLeg WHERE

ticketNo=1762355527825;

Explanation: In an airline application every customer can have different number of hops/legs
between their source and destination. In this query, you determine the time taken between
every flight leg. This is determined by the difference between bagArrivalDate and flightDate
for every flight leg.

12-11

ORACLE

Chapter 12
Functions on Timestamps

The bagArrivalDate and flightDate is in an unsupported format for the get duration
function, so wrap it in the timestamp_diff function to make it valid.

Output:

{"bagArrivalDate":"2019-03-22T10:17:00Z","flightDate":"2019-03-22T07:00:00zZ", "
diff":"3 hours 17 minutes"}
{"bagArrivalDate":"2019-03-22T10:17:00Z","flightDate":"2019-03-22T07:23:00zZ","
diff":"2 hours 54 minutes"}
{"bagArrivalDate":"2019-03-22T10:17:00Z","flightDate":"2019-03-22T08:23:00zZ","
diff":"1 hour 54 minutes"}

Example 12-9 How long does it take in days, hours, or minutes from the time of check-
in to when the bag is scanned at the point of boarding for the passenger with ticket
number 1762344638137

SELECT $flightLeg.flightNo, $flightLeg.actions[contains($element.actionCode,
"Checkin")].actionTime AS
checkinTime, $flightlLeg.actions[contains($element.actionCode,
"BagTag Scan")].actionTime AS bagScanTime, get duration(timestamp diff (
$flightLeg.actions[contains (Selement.actionCode, "Checkin")].actionTime,
$flightLeg.actions[contains ($element.actionCode, "BagTag
Scan")].actionTime)) AS diff FROM
baggageinfo $s, $s.bagInfo[].flightLegs[] AS $flightLeg WHERE
ticketNo=176234463813 AND
starts_with($s.bagInfo[].routing, $flightLeg.fltRouteSrc)

Explanation: In the baggage data, every f1ightLeg has an actions array. There are three
different actions in the actions array. The action code for the first element in the array is
Checkin/Offload. For the first leg, the action code is Checkin and for the other legs, the action
code is Offload at the hop. The action code for the second element of the array is BagTag
Scan. In the query above, you determine the difference in action time between the bag tag scan
and check-in time. You use the contains function to filter the action time only if the action code
is Checkin or BagScan. Since only the first flight leg has details of check-in and bag scan, you
additionally filter the data using starts_with function to fetch only the source code
fltRouteSrc.

The input values for the get durration function is in an unsupported format, so pass it in the
timestamp_diff function to make it valid.

Output:

{"flightNo":"BM572", "checkinTime":"2019-03-02T03:28:00Z",
"bagScanTime":"2019-03-02T04:52:00Z","diff":"~ 1 hour 24 minutes"}

Example 12-10 How long does it take in days, hours, or minutes for the baggage of a
customer with ticket no 1762320369957 to reach the first transit point?

SELECT $bagInfo.flightLegs[l].actions[2].actionTime,
$bagInfo.flightLegs[0].actions[0].actionTime,

get duration(timestamp diff ($bagInfo.flightLegs[1l].actions[2].actionTime,
$bagInfo.flightLegs[0].actions[0].actionTime)) AS diff FROM

baggageinfo S$s, $s.bagInfo[] as S$SbagInfo

WHERE ticketNo=1762320369957;

12-12

Chapter 12
Functions on Timestamps

Explanation: In an airline application every customer can have different number of hops/legs
between their source and destination. In the example above, you determine the time taken for
the bag to reach the first transit point. In the baggage data, the f1ightLeg is an array. The first
record in the array refers to the first transit point details. The f1ightDate in the first record is
the time when the bag leaves the source and the estimatedarrival in the first flight leg record
indicates the time it reaches the first transit point. The difference between the two gives the
time taken for the bag to reach the first transit point.

The input values for the get durration function is in an unsupported format, so pass it in the
timestamp_diff function to make it valid.

Output:

{"flightDate":"2019-03-12T03:00:002", "estimatedArrival™:"2019-03-12T16:00:00Z"
,"diff":"13 hours"}

{"flightDate":"2019-03-12T03:00:002", "estimatedArrival™:"2019-03-12T16:40:00Z"
,"diff":"13 hours 40 minutes"}

timestamp_ceil function

ORACLE

The timestamp ceil function returns the rounded-up value of the given timestamp to the
specified unit.

If the input timestamp value is already rounded up to the specified unit, then the return value is
the same as the input timestamp value.

Syntax:

TIMESTAMP timestamp ceil (<timestamp>[, unit])

Semantics:

o timestamp: The timestamp argument takes a TIMESTAMP value or a value that can be
cast to TIMESTAMP type.

e unit: The unit argument is optional and a STRING data type. If not specified, DAY is the
default unit. For more details, see Supported units.

e Return Value: TIMESTAMP(0)
The function returns NULL in the following cases:

— If either the timestamp Or unit argument is set to NULL.

— Ifthe input timestamp is not castable to TIMESTAMP type.

Example 12-11 For airline passengers with reservation code 'LE6J4Z' to 'ZG8Z5N',
print the routing information and bag arrival dates rounded up to closest hour

SELECT $b.routing AS ROUTE,
timestamp ceil ($b.bagArrivalDate, 'HOUR') AS BAGTIME
FROM BaggageInfo bag, bag.bagInfo[0] AS S$Sb

WHERE confNo BETWEEN 'LE6J4Z' and 'ZG8Z5N'

Explanation: Use the timestamp ceil function with the unit value of HOUR to round up the
checked bag arrival dates to the beginning of the next hour.

12-13

Chapter 12
Functions on Timestamps

To avoid the duplication of results due to multiple checked baggage by a passenger, you
consider only the first element of the bagInfo array in this query.

Output:

{"ROUTE":"SFO/IST/ATH/JTR", "BAGTIME":"2019-02-03T00:00:002"}
{"ROUTE":"JFK/IST/VIE", "BAGTIME":"2019-03-05T12:00:002"}
{"ROUTE":"SFO/IST/ATH/JTR", "BAGTIME":"2019-03-12T16:00:002"}
{"ROUTE": "MSQ/FRA/HKG", "BAGTIME":"2019-02-03T09:00:002"}
{"ROUTE" : "MXP/CDG/SLC/BZN", "BAGTIME":"2019-03-15T11:00:002"}
{"ROUTE":"MIA/LAX/MEL", "BAGTIME":"2019-02-04T11:00:002"}
{"ROUTE":"SFO/ORD/FRA", "BAGTIME":"2019-03-02T14:00:002"}
{"ROUTE":"SFO/IST/ATH/JTR", "BAGTIME":"2019-03-12T16:00:002"}
{"ROUTE":"SFO/IST/ATH/JTR", "BAGTIME":"2019-03-07T17:00:002"}
{"ROUTE":"MIA/LAX/MEL", "BAGTIME":"2019-02-02T00:00:002"}
{"ROUTE":"MEL/LAX/MIA", "BAGTIME":"2019-03-02T17:00:002"}
{"ROUTE" : "MXP/CDG/SLC/BZN", "BAGTIME":"2019-02-21T15:00:002"}
{"ROUTE": "MSQ/FRA/HKG", "BAGTIME":"2019-02-13T12:00:002"}
{"ROUTE":"JFK/MAD", "BAGTIME":"2019-03-07T14:00:00z2"}

Example 12-12 From airline baggage tracking data, print the bag arrival date and the
bag auction date for a passenger with ticket number 1762344493810, considering 90
days as the luggage retention period

SELECT $b.bagArrivalDate AS BagArrival,

timestamp ceil (timestamp add($b.bagArrivalDate, "90 Days"), 'day') AS
BagCollection

FROM BaggageInfo bag, bag.bagInfo AS S$b

WHERE ticketNo=1762344493810

Explanation: This query shows how to nest the timestamp functions. To determine the date an
unclaimed bag is retained, add 90 days to the bagArrivalDate using the timestamp_add
function. The timestamp ceil function rounds up the value to the beginning of the next day.

Output:

{"BagArrival":"2019-02-01T16:13:002", "BagCollection":"2019-05-03T00:00:00Z2"}

timestamp_floor or timestamp_trunc function

ORACLE

The timestamp floor Or timestamp trunc function returns the rounded-down value of the
given timestamp to the specified unit. The functions can be used interchangeably in a query.

If the input timestamp value is already rounded down to the specified unit, then the return value
is the same as the input timestamp value.

Syntax:

TIMESTAMP timestamp floor (<timestamp>[, unit])
TIMESTAMP timestamp trunc(<timestamp>[, unit])

Semantics:

12-14

ORACLE

Chapter 12
Functions on Timestamps

o timestamp: The timestamp argument takes a TIMESTAMP value or a value that can be
cast to TIMESTAMP type.

e unit: The unit argument is optional and a STRING data type. If not specified, DAY is the
default unit. For more details, see Supported units.

e Return Value: TIMESTAMP(0)
The function returns NULL in the following cases:

— If either the timestamp oOr unit argument is set to NULL.

— Ifthe input timestamp is not castable to TIMESTAMP type.

Example 12-13 Print the name, flight number, and travel date for all the passengers
who boarded at originating airport JFK in the month of March 2019

SELECT bag.fullName, $f.flightNo, $f.flightDate

FROM BaggageInfo bag, bag.bagInfo[0].flightLegs[0] AS $f

WHERE $f.fltRouteSrc = "JFK" AND timestamp floor ($f.flightDate, 'MONTH') =
'2019-03-01"

Explanation: You use the timestamp floor function with the unit value as MONTH to round
down the travel dates to the beginning of the month. You then compare the resulting timestamp
value with the string "2019-03-01" to select the desired passengers. This query does not
consider the passengers in transit.

This example supplies the date in an 1ISO-8601 formatted string, which gets implicitly CAST
into a TIMESTAMP value.

To avoid the duplication of results due to multiple checked bags by a passenger, you consider
only the first element of the bagInfo array in this query.

Output:

{"fullName":"Kendal
Biddle","flightNo":"BM127","flightDate":"2019-03-04T06:00:00Z"}
{"fullName":"Dierdre
Amador","flightNo":"BM495","flightDate":"2019-03-07T07:00:00Z"}

Example 12-14 Fetch the flight number, flight departure time, and security check-in
time for a passenger

SELECT $b.flightLegs[0].flightNo,

$b.flightLegs[0].flightDate,

timestamp add(timestamp trunc($b.flightLegs([0].flightDate, 'HOUR'), '-2
HOURS') AS SECURITYCHECK

FROM BaggageInfo bag, bag.bagInfo[0] AS S$b

WHERE ticketNo=1762344493810

Explanation: Usually in an airline, the passengers are allowed to proceed through security
check approximately two hours before the departure. To calculate the security check-in time,
you subtract two hours from the flight departure time. You first approximate the flightDate
value by using the timestamp trunc function with HOUR as unit to round down the
flightDate to the beginning of the hour. Supply the resulting timestamp to the timestamp_add
function with a negative value of '-2 HOURS' to subtract the truncated flight departure time by
two hours.

12-15

Chapter 12
Functions on Timestamps

To avoid the duplication of results due to multiple checked baggage by a passenger, you
consider only the first element of the bagInfo array in this query.

Output:

{"flightNo":"BM604","flightDate":"2019-02-01T06:00:00Z", "SECURITYCHECK":"2019-
02-01T04:00:00.000000000Z™}

timestamp_round function

ORACLE

The timestamp round function returns a timestamp after rounding the supplied timestamp to
the specified unit.

Note:

See also, timestamp_ceil and timestamp_floor/timestamp_trunc functions.

If the input timestamp value is already rounded to the specified unit, then the return value is the
same as the input timestamp value.

Syntax:

TIMESTAMP timestamp round(<timestamp>[, unit])

Semantics:

o timestamp: The timestamp argument takes a TIMESTAMP value or a value that can be
cast to TIMESTAMP type.

e unit: The unit argument is optional and a STRING data type. If not specified, DAY is the
default unit. For more details, see Supported units.

e Return Value: TIMESTAMP(0)
The function returns NULL in the following cases:

— If either the timestamp Or unit argument is set to NULL.

— Ifthe input timestamp is not castable to TIMESTAMP type.

The units and their behavior are as follows:

Table 12-2 timestamp_round functional behavior
]

Unit Actions

YEAR, IYEAR Rounds up to the next year if the timestamp is on or after July
first, otherwise rounds down.

QUARTER Rounds up to the next quarter if the timestamp is on or after

the 16th day of the 2nd month of the quarter, otherwise
rounds down.

MONTH Rounds up to the next month if the timestamp is on or after
the 16th day, otherwise rounds down.

WEEK, IWEEK Rounds up to the next week if the timestamp is on or after the
mid-day(12 PM) of the 4th day of the week, otherwise rounds
down.

12-16

Chapter 12
Functions on Timestamps

Table 12-2 (Cont.) timestamp_round functional behavior
]

Unit Actions

DAY Rounds up to the next day if the timestamp is on or after the
mid-day(12 PM) of the current day, otherwise rounds down.

HOUR Rounds up to the next hour if the timestamp is on or after half
an hour of the current hour, otherwise rounds down.

MINUTE Rounds up to the next minute if the timestamp is on or after
30 seconds of the current minute, otherwise rounds down.

SECOND Rounds up to the next second if the timestamp is on or after
500 milliseconds of the current second, otherwise rounds
down.

Example 12-15 From the airline baggage tracking data, print all the activities
performed on the checked bags in the originating station MEL. Align the actions to one
minute interval

SELECT $b.actionAt,

Sb.actionCode,

timestamp round(Sb.actionTime, 'MINUTE') as actionTime
FROM baggageInfo bag, bag.bagInfo[0].flightLegs[0].actions[] AS $b
WHERE bag.bagInfo[0].flightLegs[0].fltRouteSrc = "MEL"

Explanation: In this query, you use the timestamp round function with unit as MINUTE to
round the actionTime to the nearest minute.

To avoid the duplication of results due to multiple checked baggage by a passenger, you
consider only the first element of the bagInfo array in this query.

Output:

{"actionAt":"MEL", "actionCode" :"ONLOAD to
LAX","actionTime":"2019-03-01T12:20:00z2"}
{"actionAt":"MEL","actionCode":"BagTag Scan at
MEL","actionTime":"2019-03-01T11:52:002"}
{"actionAt":"MEL", "actionCode":"Checkin at
MEL", "actionTime":"2019-03-01T11:43:002"}

timestamp_bucket function

ORACLE

The timestamp bucket function rounds the given timestamp value to the beginning of the
specified interval (bucket). The interval starts at a specified origin on the timeline.

You can use this function for aggregating time series data to a desired time interval, known as
periodicity. In certain cases, it is desirable to place all your time series data into equidistant
buckets of given periodicity, with each bucket representing the same amount of time.

Syntax:

TIMESTAMP timestamp bucket (<timestamp>[, interval [,origin])

Semantics:

12-17

ORACLE

Chapter 12
Functions on Timestamps

o timestamp: The timestamp argument takes a TIMESTAMP value or a value that can be

cast to TIMESTAMP type.

* interval: The interval argument is optional and a STRING data type. The interval is

specified as <n> unit.
where,

n specifies the value of the interval. The n must be >0

unit defines the interval component. The function supports WEEK, DAY, HOUR, MINUTE,
and SECOND in either singular or plural format.

For example, "5 MINUTE" or "5 MINUTES".

Note:

The units are not case-sensitive.

e origin: The origin argument represents the starting point of buckets on the timeline. This

argument is optional and takes a TIMESTAMP value. The origin can be of any data type
that can be cast to TIMESTAMP type. If not specified, Unix epoch 1970-01-01 is the
default value.

Note:

The function also rounds the input timestamps that are lesser than the origin to
the beginning of the specified interval. That is, you can supply an origin with a
future timestamp value as compared to the input timestamp value on the
timeline.

* Return Value: TIMESTAMP(9)
The function returns NULL in the following cases:

— If any of the arguments are set to NULL.

— Ifthe input timestamp is not castable to TIMESTAMP type.

Example 12-16 Fetch the statistics of the number of passengers departing from the
IST airport every 12 hrs with buckets starting from January 1st, 2019. Consider data
only for the month of February 2019

SELECT $t AS DATE,

count ($t) AS FLIGHTCOUNT

FROM BaggageInfo bag, bag.bagInfo[0].flightLegs[] $f,
timestamp bucket ($f.flightDate, '12 HOURS', '2019-01-01T00') $t

WHERE $f.fltRouteSrc =any "IST" AND timestamp floor ($f.flightDate, 'MONTH') =
'2019-02-01T00:00:002"

GROUP BY St

ORDER BY $t

Explanation: To consider passengers traveling in February 2019, use the timestamp_floor
function and round down the flightDate to the beginning of the month. Compare the result
with the string "2019-02-01T00:00:00Z". This example supplies the date in an ISO-8601
formatted string, which gets implicitly CAST into a TIMESTAMP value.

12-18

Chapter 12
Functions on Timestamps

To include the transit flights from the IST airport, use the array constructor [] to indicate that
the flightLegs is an array and consider each fl1tRouteSrc array element in the search.

Use the timsestamp bucket function on the flightDate fields with interval as 12 hours and
origin as 1st of January 2019.

Output:

{"DATE":"2019-02-02T12:00:00.000000000Z2", "FLIGHTCOUNT": 1}
{"DATE":"2019-02-04T00:00:00.0000000002", "FLIGHTCOUNT":1}
{"DATE":"2019-02-04T12:00:00.000000000Z2", "FLIGHTCOUNT":2}
{"DATE":"2019-02-07T712:00:00.000000000Z2", "FLIGHTCOUNT": 1}
{"DATE":"2019-02-11T12:00:00.0000000002", "FLIGHTCOUNT":1}
{"DATE":"2019-02-12T00:00:00.000000000Z2", "FLIGHTCOUNT": 2}
{"DATE":"2019-02-12T12:00:00.000000000Z2", "FLIGHTCOUNT": 1}

Example 12-17 From the Streaming media service data, fetch the statistics of number
of accounts that expire each week with buckets starting from noon of January 1st, 2023.
Consider data from 1st of December 2023

SELECT array collect(s.account expiry) as ACCOUNT EXPIRY,

St AS WEEK,

count ($t) AS ACCOUNTS

FROM stream acct s,

timestamp bucket (s.account expiry, 'l week', '2023-01-01T12') St
WHERE s.account expiry >= '2023-12-01"

GROUP BY $t

ORDER BY $t;

Explanation: Use the timsestamp bucket function on the account expiry fields with
interval as 1 week and origin as 1st of January 12 PM. The function calculates a periodicity
of a week from 1st of January 2023, 12 PM and rounds the account expiry values to the
beginning of the corresponding week bucket.

Notice that you use the array_collect function to display the account expiry fields. You can
reference only grouping expressions, aggregate functions, or external variables when the
SELECT expression includes a grouping function.

Output:

{"ACCOUNT EXPIRY":

["2023-12-18T00:00:00.000000000Z"], "WEEK":"2023-12-17T12:00:00.000000000Z", "AC
COUNTS":1}

{"ACCOUNT EXPIRY":

["2023-12-31T00:00:00.000000000Z"], "WEEK":"2023-12-24T12:00:00.000000000Z", "AC
COUNTS":1}

{"ACCOUNT EXPIRY":

["2024-03-18T00:00:00.000000000Z"], "WEEK":"2024-03-17T12:00:00.000000000Z", "AC
COUNTS":1}

format_timestamp function

The format timestamp function converts a timestamp into a string according to the specified
pattern and the timezone.

ORACLE 1910

ORACLE

Chapter 12
Functions on Timestamps

Syntax:

STRING format timestamp (<timestamp>, [pattern [, timezone])

Semantics:

timestamp: The timestamp argument takes a TIMESTAMP value or a value that can be
cast to a TIMESTAMP type.

pattern: The pattern argument is optional and takes STRING data type as an input. It
supports all pattern symbols in Java DateTimeFormatter class, except the timezone

symbols 'z, 'zz', 'zzz', and 'v'. For more details on which timezone symbols are supported,
see the table below:

Symbol Meaning Presentation Example

\% time-zone ID zone-id America/Los_Angeles;
Z; -08:30

(@] localized zone-offset Offset-O GMT+8; GMT+08:00;
UTC-08:00

X zone-offset 'Z' for zero offset-X Z; -08; -0830; -08:30;
-083015; -08:30:15

X zone-offset offset-x +0000; -08; -0830;
-08:30; -083015;
-08:30:15

Z zone-offset offset-Z +0000; -0800; -08:00

Note:

The default pattern is ISO-8601 format: yyyy-MM-dd'T'HH:mm:ss[.S..S].

timezone: The timezone argument is optional and takes STRING data type as an input.
The timezone argument uses TimeZonelD (an identifier that represents a specific
timezone). For example, use well-defined name such as "Asia/Calcutta”, or a custom ID
such as "GMT-08:00". For more examples, see List of TimeZonelD. Default is UTC.

Note:
Except for UTC and GMT, use the well-defined names for the timezones instead
of abbreviations (for example, PST, IST).
Return Value: STRING
The function returns NULL in the following cases:
— Ifthe timestamp, pattern, Or timezone argument is set to NULL.

— Ifthe input timestamp is not castable to TIMESTAMP type.

Example 12-18 For a passenger with a specific ticket number, print the estimated
arrival time on the first leg according to the pattern and the timezone entered.

SELECT $info.estimatedArrival, format timestamp($info.estimatedArrival, "MMM
dd, yyyy HH:mm:ss O", "America/Vancouver") AS FormattedTimestamp

12-20

Chapter 12
Functions on Timestamps

FROM BaggageInfo bag, bag.bagInfo.flightLegs[0] AS $info
WHERE ticketNo= 1762399766476

Explanation: In this query, you specify the estimatedArrival field, pattern, and full name of
the timezone as arguments to the format timestamp function to convert the timestamp String
to the specified "MMM dd, yyyy HH:mm:ss" pattern.

Note:

The letter 'O’ in the pattern argument represents the ZoneOffset, which prints the
amount of time that differs from Greenwich/UTC in the resulting string.

Output:

{"estimatedArrival":"2019-02-03T06:00:00Z", "FormattedTimestamp":"Feb 02, 2019
22:00:00 GMT-8"}

Example 12-19 Display the formatted timestamp.

SELECT format timestamp('2024-05-08T09:41:00',"dd MMM, uuuu HH:mm:ss","Asia/
Calcutta") AS TIMESTAMP1

FROM BaggageInfo

WHERE ticketNo=1762399766476

Explanation: In this query, you use the format timestamp function to print the given
timestamp in the specified pattern. During formatting, the function adjust the timestamp to the
"Asia/Calcutta” timezone and displays the resulting timestamp in the "dd MMM, uuuu
HH:mm:ss" pattern.

Output:

{"TIMESTAMP1":"08 May, 2024 15:11:00"}

parse_to_timestamp function

The parse to_timestamp function converts a string into a timestamp, requiring the pattern
parameter to match the format of the specified string.

Syntax:

TIMESTAMP parse to timestamp (<string>[, pattern])

Semantics:

e string: The string argument takes a STRING data type of a TIMESTAMP value in the
format of the specified pattern.

ORACLE 1991

ORACLE

Note:

Chapter 12
Functions on Timestamps

The string argument with the timestamp uses TimeZonelD (an identifier that
represents a specific timezone). Except for UTC and GMT, use the well-defined
names for the timezones instead of abbreviations (for example, PST, IST).

e pattern: The pattern argument is optional and takes STRING data type as an input. It
supports all pattern symbols in Java DateTimeFormatter class, except the timezone
symbols 'Z', 'zz', 'zzz', and 'v'. For more details on which timezone symbols are supported,

see the table below.

Symbol Meaning Presentation Example

\% time-zone ID zone-id America/Los_Angeles;
Z:-08:30

(@] localized zone-offset Offset-O GMT+8; GMT+08:00;
UTC-08:00

X zone-offset 'Z' for zero offset-X Z; -08; -0830; -08:30;
-083015; -08:30:15

X zone-offset offset-x +0000; -08; -0830;
-08:30; -083015;
-08:30:15

Z zone-offset offset-Z +0000; -0800; -08:00

Note:

The default pattern is ISO-8601 format: yyyy-MM-dd'T'HH:mm:ss[.S..S]

The table below displays what the pattern argument needs to contain to match a string
argument containing timezone information.

If string argument

Then pattern argument must include

ends with a 'Z'

zone symbols like, 'VV', 'X', 'zzzz'.

ends with a full timezone name, for example,

America/Los_Angeles, Europe/Paris, and so on.

For more example, see List of TimeZonelD.

zone symbols like, 'VV', 'zzzz'.

ends with GMT +/- some value

zone symbols like, 'VV', 'zzzz' or ZoneOffset 'O,

‘0000

* Return Value: TIMESTAMP (9)

— The function returns NULL if the string or pattern argument is NULL.

Example 12-20 Parse the streaming account's expiry date string for a user using a

specified pattern.

SELECT parse to_ timestamp (sa.account expiry,"yyyy-MM-

dd'T'hh:mm:ss.SSSSSSSSSzzzz")AS DAY

FROM stream acct sa
WHERE acct id=1

12-22

Chapter 12
Functions on Timestamps

Explanation: In the query, you must supply a pattern that matches the format of the string
argument, and the parse to timestamp function will convert the account expiry date into a
timestamp value.

Output:

{"DAY":"2023-10-18T00:00:00.0000000002"}

Example 12-21 Parse the given string with the specified pattern, which includes a
zone symbol, into a timestamp.

SELECT parse to timestamp('03/14/23 09:04:01 America/Los_Angeles', "MM/dd/yy
HH:mm:ss VV") AS TIMESTAMP

FROM BaggageInfo

WHERE ticketNo=1762390789239

Explanation: In this query, use the zone symbol, 'VV', for any TimeZonelD in the string
argument. Unless wrapped in a format_timestamp function, the output timestamp will be
displayed relative to UTC.

Output:

{"TIMESTAMP":"2023-03-14T16:04:01.0000000002"}

Example 12-22 Parse the given string with the specified pattern, which includes a
zone offset, into a timestamp.

SELECT format timestamp (parse to timestamp('2024/02/12 18:30:54 GMT+02:00',
"yyyy/dd/MM HH:mm:ss 0000"),"yyyy-MM-dd HH:mm:ss OO000","GMT+02:00")AS
TIMESTAMP

FROM BaggageInfo

WHERE ticketNo=1762390789239

Explanation: In this query, the string argument has a TimeZonelD, GMT+02:00, so the
pattern argument must include a zone symbol or a ZoneOffset. When wrapped in the
format_timestamp function, the output timestamp will display in the GMT+02:00 timezone.

Output:

{"TIMESTAMP":"2024-12-02 18:30:54 GMT+02:00"}

to_last _day of month function

ORACLE

The to_last day of month function returns the last day of the month for a given timestamp.

Syntax:
TIMESTAMP to_last day of month(<timestamp>)
Semantics:

» timestamp: The timestamp argument takes a TIMESTAMP value or a value that can be
cast to a TIMESTAMP type

12-23

Chapter 12
Functions on Timestamps

* Return Value: TIMESTAMP (0)
The function return NULL in the following cases:

— Ifthe timestamp argument is NULL.

— Ifthe input timestamp is not castable to TIMESTAMP type.

Example 12-23 For a subscriber, print the last day of the month in which the account
subscription expires.

SELECT sa.acct id, to last day of month(sa.account expiry) AS lastday

FROM stream acct sa
WHERE profile name="DM"

Output:

{"acct_id":4,"lastday":"2024-03-31T00:00:002"}

Timestamp extract functions

The timestamp extract functions allow you to fetch the date/week number/timestamp index
from the input timestamps. The following sections describe these functions.

» year/month/day/hour/minute/second/millisecond/microsecond/nanosecond functions
* week/isoweek functions

e quarter/week/month/year index functions

Date extract functions

ORACLE

These functions return the corresponding year/month/day/hour/minute/second/millisecond/
microsecond/nanosecond from a timestamp. The timestamp must be supplied as an argument
to the function.

Syntax:

INTEGER year (<timestamp>)
INTEGER month (<timestamp>)
INTEGER day (<timestamp>)

INTEGER hour (<timestamp>)
INTEGER minute (<timestamp>)
INTEGER second (<timestamp>)
INTEGER millisecond (<timestamp>)
INTEGER microsecond (<timestamp>)

INTEGER nanosecond (<timestamp>)

Semantics:

12-24

Chapter 12
Functions on Timestamps

* timestamp: These functions expects a timestamp as the input argument.
* Return Value: INTEGER

Table 12-3 Timestamp date extract functions
|

Function Return Value

year Returns the year for the given timestamp. The returned value is in the
range -6383 to 9999.

month Returns the month for the given timestamp, in the range 1 ~ 12.

day Returns the day of month for the timestamp, in the range 1 ~ 31.

hour Returns the hour of day for the timestamp, in the range 0 ~ 23.

minute Returns the minute for the timestamp, in the range 0 ~ 59.

second Returns the second for the timestamp, in the range 0 ~ 59.

millisecond Returns the fractional second in millisecond for the timestamp, in the
range 0 ~ 999.

microsecond Returns the fractional second in microsecond for the timestamp, in
the range 0 ~ 999999.

nanosecond Returns the fractional second in hanosecond for the timestamp, in the

range 0 ~ 999999999.

Note:

If the argument is NULL or empty, the result is also NULL or empty.

Example 12-24 Get consolidated travel details of the passengers from airline baggage
tracking data

In an airline application, it is beneficial to the passengers to have a quick summary of their
upcoming travel details. You can use miscellaneous time functions to get consolidated travel
details of the passengers from the BaggageInfo table.

SELECT DISTINCT

$s.fullName,

$s.bagInfo[].flightLegs[].flightNo AS flightnumbers,
$s.bagInfo[].flightLegs[].fltRouteSrc AS From,

concat ($tl1,":", S$t2,":", $t3) AS Traveldate

FROM baggageinfo s, Ss.bagInfo[].flightLegs[].flightDate AS S$bagInfo,

day (CAST (SbagInfo AS Timestamp(0))) Stl,
month (CAST (SbagInfo AS Timestamp (0))) $t2,
year (CAST (SbagInfo AS Timestamp(0))) $t3

Explanation:

You can use the time functions to retrieve the travel date, month, and year. The concat function
is used to concatenate the retrieved travel records to display them in the desired format on the
application. You first use CAST expression to convert the f1ightDates to a TIMESTAMP and
then fetch the date, month, and year details from the timestamp.

ORACLE 1908

Chapter 12
Functions on Timestamps

Output:

{"fullName":"Adam Phillips","flightnumbers": ["BM604", "BM667"],"From":
["MIA","LAX"],"Traveldate":"1:2:2019"}

{"fullName":"Adelaide Willard","flightnumbers":["BM79","BMO07"],"From":
["GRU","ORD"],"Traveldate":"15:2:2019"}

The query returns the flight details which can serve as a quick look-up for the passengers.

week/isoweek functions

ORACLE

These functions return the corresponding week/isoweek from a timestamp. The timestamp
must be supplied as an argument to the function.

Syntax:

INTEGER week (<timestamp>)
INTEGER isoweek (<timestamp>)
Semantics:

« timestamp: These functions expects a timestamp as the input argument.
* Return Value: INTEGER

Table 12-4 Timestamp week extract functions

|
Function Return Value

week Returns the week number within the year where a week starts on
Sunday and the first week has a minimum of 1 day in this year, in
the range 1 ~ 54.

isoweek Returns the week number within the year based on ISO-8601,
where a week starts on Monday and the first week has a
minimum of 4 days in this year, in range 0 ~ 53.

< Note:

If the argument is NULL or empty, the result is also NULL or empty.

Example 12-25 Determine the week and ISO week humber from a passenger's travel
date

SELECT

$s.fullName,

$s.contactPhone,

week (CAST (SbagInfo.flightLegs[1l].flightDate AS Timestamp(0))) AS TravelWeek,
isoweek (CAST (SbagInfo.flightLegs[1l].flightDate AS Timestamp(0))) AS

ISO TravelWeek

FROM baggageinfo s, Ss.bagInfo[] AS $baglInfo

12-26

Chapter 12
Functions on Timestamps

Explanation: You first use CAST expression to convert the f1ightDate to a TIMESTAMP and

then fetch the week and isoweek from the timestamp.

Output:

{"fullName":"Adelaide
Willard","contactPhone":"421-272-8082", "TravelWeek":7,"ISO TravelWeek":7}

{"fullName":"Adam
Phillips", "contactPhone":"893-324-1064", "TravelWeek":5,"ISO TravelWeek":5}

Timestamp index extract functions

These functions return the corresponding quarter/week/month/year index from a timestamp.
The timestamp must be supplied as an argument to the function.

Syntax:

INTEGER quarter (<timestamp>)
INTEGER day of week (<timestamp>)
INTEGER day of month (<timestamp>)

INTEGER day of year (<timestamp>)

Semantics:

o timestamp: The timestamp argument takes a TIMESTAMP value or a value that can be

cast to TIMESTAMP type. If you supply an unsupported timestamp format, the functions
return an error.

* Return Value: INTEGER
The functions adhere to the 1ISO-8601 calendar system.

Table 12-5 Timestamp index extraction functions

|
Function Return Value

quarter lto4
1 indicates Quarter 1, and 4 indicates Quarter 4.

day_of week lto7
1 indicates the first day of the week (Monday) and 7 is the
last day of the week (Sunday).

day_of month 1to31

1 indicates the first day of the month and 31 is the last day
of the month.

day of year 1to 366

1 indicates the first day of the year and 366 is the last day
of the year.

ORACLE 12-27

ORACLE

Chapter 12
Functions on Timestamps

Note:
The functions return NULL in the following cases:
e If the timestamp argument is set to NULL.

e Ifthe input timestamp is not castable to TIMESTAMP type.

Example 12-26 Print the quarter in which a subscriber viewed the given episode from a
series

SELECT

quarter (show.acct data.contentStreamed[l].seriesInfo[0].episodes[1l].date) AS
quarter

FROM stream acct show

WHERE profile name="AP"

Output:

{"quarter":1}

Example 12-27 Find the day of the week for given timestamps

SELECT day of week("2024-06-19") AS DAYVALI,

day of week(parse to timestamp('06/19/24', 'MM/dd/yy')) AS DAYVAL2
FROM BaggageInfo

WHERE ticketNo=1762344493810

Explanation: The second timestamp in the query is in an unsupported format '06/19/24' by
itself, so wrap it in the parse_to_timestamp function to make it valid.

Output:

"DAYVALL" : 3,
"DAYVAL2" : 3

Example 12-28 From the airline baggage tracking data, print the flight numbers, bag
arrival date, and the day on which the checked bags arrive at MEL airport

SELECT DISTINCT $b.flightLegs[].flightNo,
$b.bagArrivalDate,

day of week($b.bagArrivalDate) AS DAY

FROM BaggageInfo bag, bag.bagInfo[0] AS $b
WHERE regex like ($b.routing,".*/MEL")

Explanation: You use the day of week function to determine the day index corresponding to
the timestamp value in the bagArrivalDate field.

To display the results for the MEL airport, use the regular expression condition to match the
pattern of the destination airport with the string "MEL".

12-28

Chapter 12
Functions on Timestamps

Output:

{"flightNo": ["BM604", "BM667"], "bagArrivalDate":"2019-02-25T20:15:00Z", "DAY":1}
{"flightNo": ["BM604", "BM667"], "bagArrivalDate":"2019-02-04T10:08:00Z", "DAY":1}
{"flightNo": ["BM604", "BM667"], "bagArrivalDate":"2019-02-16T16:13:00Z", "DAY":6}
{"flightNo": ["BM604", "BM667"], "bagArrivalDate":"2019-02-01T16:13:00Z", "DAY":5}

Example 12-29 From the airline baggage tracking data, print the flight numbers,
departure date, and the day of the month for all the flights starting from SFO airport

SELECT DISTINCT $f.flightNo AS FLIGHT,

$f.flightDate AS DEPARTURE,

day of month($f.flightDate) AS DAY

FROM BaggageInfo bag, bag.bagInfo[0].flightLegs[0] AS S$f
WHERE $f.fltRouteSrc =any "SFO"

Output:

{"FLIGHT":"BM318","DEPARTURE":"2019-02-02T12:00:002", "DAY":2}
{"FLIGHT":"BM318","DEPARTURE":"2019-03-12T03:00:002", "DAY":12}
{"FLIGHT":"BM572", "DEPARTURE":"2019-03-02T05:00:002", "DAY":2}
{"FLIGHT":"BM318", "DEPARTURE":"2019-03-07T04:00:002", "DAY":7}

Example 12-30 From the airline baggage tracking data, find the passengers who
traveled on the 60th day of the launch of flight "BM114"

SELECT fullName, $f.fltRouteSrc AS BOARDING,

$f.flightNo AS FLIGHT,

$f.flightDate AS DEPARTURE

FROM BaggageInfo bag, bag.bagInfo[0].flightLegs[0] AS $f

WHERE day of year($f.flightDate)= 60 AND $f.flightNo =any "BM114"

Output:

{"fullName":"Omar
Harvey", "BOARDING":"MEL", "FLIGHT":"BM114", "DEPARTURE":"2019-03-01T12:00:002"}

current_time_millis function

ORACLE

Returns the current time in UTC, as the number of milliseconds since January 1, 1970 UTC.

Syntax:
long current time millis()

Semantics:

* This function does not expect any input argument.

* Return Value: long

Example: See current_time function.

12-29

Chapter 12
Functions on Timestamps

current_time function

ORACLE

Returns the current time in UTC, as a timestamp value with millisecond precision.

Syntax:

timestamp (3) current time()

Semantics:

* This function does not expect any input argument.

* Return Value: timestamp(3)
Example 2: Miscellaneous timestamp functions

Example 12-31 Determine the time lapse between the last travel date of a passenger
and the current date

In an airline application, a few customers travel very frequently and are entitled to frequent flier
miles rewards. You can determine the time lapse between the last travel date of a passenger
and the current date to assess if they can be considered for such a reward program.

SELECT

$s.fullName,

$s.contactPhone,

get duration(timestamp diff (current time(),

CAST (SbagInfo.flightLegs[1].flightDate AS Timestamp(0)))) AS LastTravel
FROM baggageinfo $s, $s.bagInfo[] AS S$bagInfo

Explanation:

You can use the current time function to get the current time. To determine the timespan
between the last travel date and the current date, you can supply the current time to the
get duration/timestamp diff function along with the last travel time. For more details on
timestamp diff and get duration functions, see timestamp_diff function.

Output:

{"fullName":"Adelaide
Willard","contactPhone":"421-272-8082","LastTravel":"1453 days 6 hours 20
minutes 56 seconds 601 milliseconds"}

{"fullName":"Adam Phillips","contactPhone":"893-324-1064", "LastTravel":"1451
days 23 hours 19 minutes 39 seconds 543 milliseconds"}

You use the current time function to calculate the current time. Use the timestamp diff
function to calculate the time difference between the current time and the last flight date. You
first use CAST expression to convert the flightDates to a TIMESTAMP and then fetch the
day, month, and year details from the timestamp. Since the timestamp diff function returns
the number of milliseconds between two timestamp values, you then use the get duration
function to convert the milliseconds to a duration string.

12-30

Chapter 12
Functions on Timestamps

The get_duration function converts the milliseconds to days, hours, minutes, seconds, and
milliseconds based on the return value. The following conversions are considered for
calculation purposes:

1000 milliseconds = 1 second
60 seconds = 1 minute

60 minutes = 1 hour

24 hours = 1 day

For example: If the timestamp diff function returns the value 129084684821 milliseconds, the
get duration function converts it correspondingly to 1494 days 52 minutes 4 seconds 687
milliseconds.

Supported units

ORACLE

The unit is an identifier that specifies the precision to be considered while rounding the input
timestamp. The unit takes a STRING value. You can supply a unit as the second argument to
the following timestamp functions: timestamp_ceil, timestamp_floor, timestamp_round, and
timestamp_trunc.

You can specify the following units. If not specified, the unit defaults to DAY.

Note:

The units are not case-sensitive.

12-31

Chapter 12
Functions on Timestamps

Table 12-6 Description and Examples of Units

L ___
Units Description

YEAR, IYEAR * YEAR: The first day of a year.

* IYEAR: The Monday of the first calendar week as defined by the
ISO 8601 standard.

Example:

SELECT

timestamp ceil ('2019-05-14T11:47:56.0000000002",
"YEAR') AS CEILI,

timestamp ceil('2019-10-21T14:16:00z', 'YEAR') AS
CEIL2,

timestamp floor('2019-05-14T11:47:56.0000000002",
"YEAR') AS FLOORI,

timestamp floor('2019-10-21T14:16:00z2"', 'YEAR') AS
FLOOR2,

timestamp round('2019-05-14T11:47:56.0000000002",
"YEAR') AS ROUNDI,

timestamp round('2019-10-21T14:16:00z2"', 'YEAR') AS
ROUND2,

timestamp trunc('2019-05-14T11:47:56.0000000002",
"YEAR') AS TRUNC1,

timestamp trunc('2019-10-21T14:16:00z2"', 'YEAR') AS
TRUNC?2

FROM BaggageInfo WHERE ticketNo=1762344493810

Output:

{
"CEIL1" : "2020-01-01T00:00:002",
"CEIL2" : "2020-01-01T00:00:002",
"FLOOR1" : "2019-01-01T00:00:00z",
"FLOOR2" : "2019-01-01T00:00:00z",
"ROUND1" : "2019-01-01T00:00:00z",
"ROUND2" : "2020-01-01T00:00:00z",
"TRUNC1" : "2019-01-01T00:00:00z",
"TRUNC2" : "2019-01-01T00:00:00Z"

ORACLE 1930

Chapter 12
Functions on Timestamps

Table 12-6 (Cont.) Description and Examples of Units

Units Description

QUARTER The first day of the quarter as defined by the ISO 8601 standard.
Example:
SELECT

timestamp ceil('2019-05-14T11:47:56.000000000Z",
'QUARTER') AS CEIL1,

timestamp ceil('2019-10-21T14:16:00Z', 'QUARTER') AS
CEIL2,

timestamp floor('2019-05-14T11:47:56.000000000Z",
'QUARTER') AS FLOORI,

timestamp floor('2019-10-21T14:16:00Z"', 'QUARTER')
AS FLOOR2,

timestamp round('2019-05-14T11:47:56.000000000Z",
'QUARTER') AS ROUNDI,

timestamp round('2019-11-21T14:16:00Z', 'QUARTER')
AS ROUND2,

timestamp trunc('2019-05-14T11:47:56.000000000Z",
'QUARTER') AS TRUNCI,

timestamp trunc('2019-10-21T14:16:00Z', 'QUARTER')
AS TRUNC2

FROM BaggageInfo WHERE ticketNo=1762344493810

Output:

{
"CEIL1" : "2019-07-01T00:00:002",
"CEIL2" : "2020-01-01T00:00:002",
"FLOOR1" : "2019-04-01T00:00:002",
"FLOOR2" : "2019-10-01T00:00:002",
"ROUNDI" : "2019-04-01T00:00:002",
"ROUND2" : "2020-01-01T00:00:002",
"TRUNC1" : "2019-04-01T00:00:002",
"TRUNC2" : "2019-10-01T00:00:002"

ORACLE 1533

ORACLE

Chapter 12
Functions on Timestamps

Table 12-6 (Cont.) Description and Examples of Units

Units Description

MONTH The first day of the month.
Example:
SELECT

timestamp ceil('2019-05-14T11:47:56.000000000Z",
'MONTH') AS CEILL,

timestamp ceil('2019-10-21T14:16:00Z', 'MONTH') AS
CEIL2,

timestamp floor('2019-05-14T11:47:56.000000000Z",
'MONTH') AS FLOORI,

timestamp floor('2019-10-21T14:16:002', 'MONTH') AS
FLOOR2,

timestamp round('2019-05-14T11:47:56.000000000Z",
'MONTH') AS ROUNDI,

timestamp round('2019-11-21T14:16:002', 'MONTH') AS
ROUND2,

timestamp trunc('2019-05-14T11:47:56.000000000Z",
'MONTH') AS TRUNCI,

timestamp trunc('2019-10-21T14:16:002"', 'MONTH') AS
TRUNC2

FROM BaggageInfo WHERE ticketNo=1762344493810

Output:

{
"CEIL1" : "2019-06-01T00:00:002",
"CEIL2" : "2019-11-01T00:00:002",
"FLOOR1" : "2019-05-01T00:00:002",
"FLOOR2" : "2019-10-01T00:00:002",
"ROUNDI" : "2019-05-01T00:00:002",
"ROUND2" : "2019-12-01T00:00:002",
"TRUNC1" : "2019-05-01T00:00:002",
"TRUNC2" : "2019-10-01T00:00:002"

12-34

Chapter 12
Functions on Timestamps

Table 12-6 (Cont.) Description and Examples of Units

__|
Units Description

WEEK,IWEEK « WEEK: Same day of the week as 1st of January.
For example: If the first day of the year in the given timestamp is a
Tuesday, using the WEEK unit rounds the timestamp up or down to
the nearest Tuesday depending on the timestamp function used.
* IWEEK: The first day of the calendar week as defined by the ISO
8601 standard, which is Monday.
Example:

SELECT

timestamp ceil ('2019-05-14T11:47:56.0000000002",
"WEEK') AS CEILI,

timestamp ceil('2019-10-21T14:16:00z', 'WEEK') AS
CEIL2,

timestamp floor ('2019-05-14T11:47:56.0000000002",
"WEEK') AS FLOOR1,

timestamp floor('2019-10-21T14:16:00z2', 'WEEK') AS
FLOOR2,

timestamp round('2019-05-14T11:47:56.0000000002",
"WEEK') AS ROUNDI,

timestamp round('2019-11-15T05:00:00z2"', 'WEEK') AS
ROUND2,

timestamp trunc('2019-05-14T11:47:56.0000000002",
"WEEK') AS TRUNC1,

timestamp trunc('2019-10-21T14:16:00z2"', 'WEEK') AS
TRUNC?2

FROM BaggageInfo WHERE ticketNo=1762344493810

Output:

{
"CEIL1I" : "2019-05-21T00:00:00z",
"CEIL2" : "2019-10-22T00:00:00z",
"FLOOR1" : "2019-05-14T00:00:00z",
"FLOOR2" : "2019-10-15T00:00:00z",
"ROUND1" : "2019-05-14T00:00:00z2",
"ROUND2" : "2019-11-12T00:00:00z",
"TRUNC1" : "2019-05-14T00:00:00z",
"TRUNC2" : "2019-10-15T00:00:00z"

ORACLE 1538

Chapter 12
Functions on Timestamps

Table 12-6 (Cont.) Description and Examples of Units
-

Units Description

DAY Day.
Example:
SELECT

timestamp ceil('2019-05-14T11:47:56.000000000Z",

'DAY') AS CEIL1,

timestamp ceil('2019-10-21T14:16:00Z2', 'DAY') AS

CEIL2,

timestamp floor('2019-05-14T11:47:56.000000000Z",
'DAY') AS FLOORI,

timestamp floor('2019-10-21T14:16:002', 'DAY') AS
FLOOR2,

timestamp round('2019-05-14T11:47:56.000000000Z",
'DAY') AS ROUNDI,

timestamp round('2019-11-15T15:00:00Z2', 'DAY') AS
ROUND2,

timestamp trunc('2019-05-14T11:47:56.000000000Z",
'DAY') AS TRUNCI,

timestamp trunc('2019-10-21T14:16:002', 'DAY') AS
TRUNC2

FROM BaggageInfo WHERE ticketNo=1762344493810

Output:

{
"CEIL1" : "2019-05-15T00:00:002",
"CEIL2" : "2019-10-22T00:00:002",
"FLOOR1" : "2019-05-14T00:00:002",
"FLOOR2" : "2019-10-21T00:00:002",
"ROUND1" : "2019-05-14T00:00:002",
"ROUND2" : "2019-11-16T00:00:002",
"TRUNC1" : "2019-05-14T00:00:002",
"TRUNC2" : "2019-10-21T00:00:002"

ORACLE 1536

Chapter 12
Functions on Timestamps

Table 12-6 (Cont.) Description and Examples of Units
-

Units Description

HOUR Hour.
Example:
SELECT

timestamp ceil('2019-05-14T11:47:56.000000000Z",
"HOUR') AS CEILI,

timestamp ceil('2019-10-21T14:16:00Z', 'HOUR') AS
CEIL2,

timestamp floor('2019-05-14T11:47:56.000000000Z",
"HOUR') AS FLOORI,

timestamp floor('2019-10-21T14:16:002', 'HOUR') AS
FLOOR2,

timestamp round('2019-05-14T11:47:56.000000000Z",
"HOUR') AS ROUNDI,

timestamp round('2019-11-15T15:30:00Z2', 'HOUR') AS
ROUND2,

timestamp trunc('2019-05-14T11:47:56.000000000Z",
'HOUR') AS TRUNCI,

timestamp trunc('2019-10-21T14:16:002', 'HOUR') AS
TRUNC2

FROM BaggageInfo WHERE ticketNo=1762344493810

Output:

{
"CEIL1" : "2019-05-14T12:00:002",
"CEIL2" : "2019-10-21T15:00:002",
"FLOOR1" : "2019-05-14T11:00:002",
"FLOOR2" : "2019-10-21T14:00:00z",
"ROUNDI" : "2019-05-14T12:00:002",
"ROUND2" : "2019-11-15T16:00:002",
"TRUNC1" : "2019-05-14T11:00:002",
"TRUNC2" : "2019-10-21T14:00:00Z"

ORACLE 12-37

ORACLE

Table 12-6 (Cont.) Description and Examples of Units
-

Chapter 12
Functions on Timestamps

Units Description

MINUTE Minute.
Example:
SELECT

timestamp ceil('2019-05-14T11:47:56.000000000Z",

'MINUTE")

timestamp ceil('2019-10-21T14:16:247",

CEIL2,

AS CEILI,

'MINUTE') AS

timestamp floor('2019-05-14T11:47:56.000000000Z",

'MINUTE')

timestamp floor('2019-10-21T14:

FLOOR2,

timestamp round('2019-05-14T11:

'MINUTE')

timestamp round('2019-11-15T15:

ROUND2,

timestamp trunc('2019-05-14T11:

'MINUTE')

timestamp trunc('2019-10-21T14:

TRUNC2

AS FLOORI,

AS ROUNDI,

AS TRUNCI,

16:24Z', 'MINUTE') AS

47:56.000000000z2",

30:24z', 'MINUTE') AS

47:56.000000000z2",

16:24Z', 'MINUTE') AS

FROM BaggageInfo WHERE ticketNo=1762344493810

Output:

{
"CEIL1"
"CEIL2"
"FLOORL"
"FLOOR2"
"ROUNDL"
"ROUND2"
"TRUNCL"
"TRUNC2"

"2019-05-14T11:48:00z2",
: "2019-10-21T14:17:00z2",

"2019-05-14T11:
"2019-10-21T14:
"2019-05-14T11:
"2019-11-15T15:
"2019-05-14T11:
"2019-10-21T14:

47
16:
48:
30:
47
16:

ooz",
ooz",
ooz",
ooz",
ooz",
ooz"

12-38

Function to generate a UUID string

ORACLE

Table 12-6 (Cont.) Description and Examples of Units

Chapter 12

Function to generate a UUID string

Units Description
SECOND Second.
Example:

SELECT timestamp ceil('2019-05-14T11:47:56.49992"',

'SECOND'")

AS CEILI,

timestamp ceil('2019-10-21T14:16:24.99999Z2"',

'SECOND'")

timestamp floor('2019-05-14T11:47:

'SECOND'")

timestamp floor('2019-10-21T14:

'SECOND'")

timestamp round('2019-05-14T11:

'SECOND'")

timestamp round('2019-11-15T15:

'SECOND'")

timestamp trunc('2019-05-14T11:

'SECOND'")

timestamp trunc('2019-10-21T14:

'SECOND'")

FROM BaggageInfo WHERE ticketNo=1762344493810

Output:

{
"CEIL1"

"CEIL2"

"FLOORL"
"FLOOR2"
"ROUNDL"
"ROUND2"
"TRUNCL"
"TRUNC2"

AS CEIL2,

AS FLOORI,

AS FLOOR2,

AS ROUNDI,

AS ROUND2,

AS TRUNCI,

AS TRUNC2

16:

47

30:

47

16:

56.

24.

56.

24.

56.

24.

"2019-05-14T11:47:572",

"2019-10-21T14:
"2019-05-14T11:
"2019-11-15T15:
"2019-05-14T11:
"2019-10-21T14:

47
16:
: 562",
30:
47
16:

47

: "2019-10-21T14:16:252",
: "2019-05-14T11:

567",
247",

252",
567",
247"

©9997",

500z",

4999z",

©9997",

3552,

7000z2",

The function random uuid returns a randomly generated UUID, as a string of 36 characters.
This function can be used to generate values for columns of type UUID in an INSERT or

UPDATE SQL statement.

Syntax:

string random uuid()

Semantics:

e This function does not expect any input argument.

e return type: string

12-39

ORACLE

Chapter 12
Function to generate a UUID string

Example:

In certain applications like maintaining student records in a university, you can auto-generate
the ID instead of providing the value. Consider a simple table schema with an id as the primary
key and a name column.

CREATE TABLE myTable (id STRING AS UUID, name STRING, PRIMARY KEY (id))

Insert the following data into the table. You can use the random uuid function to generate the
primary key values.

INSERT INTO myTable values(random uuid(), "Adam")

INSERT INTO myTable values(random uuid(),"Lily")

Explanation:

The random uuid function internally generates unigue UUID during the INSERT operation and
assigns them to the id fields. Run the query to select the elements from the table.

select * from myTable order by name

Output:

"id":"££7057c2-cda9-4£6b-b94£-2270259a94d3", "name" : "Adam" }
{"id":"37166790-4470-4484-bfbb-66364e0££807", "name" : "Lily"}

The output of the query displays the assigned UUID values against the student names.

The random uuid function generates a random but unique 36-byte string. Consider the multi-
region tables where the identity columns are unique to a single region. You can use the
random uuid function to generate a globally unique identity during the record insertion.

You can retrieve the UUID of the inserted record by using the RETURNING clause in the
INSERT or UPDATE statement as follows:

INSERT INTO myTable values(random uuid(),"Adam") RETURNING *

Output:

{"id":"9f05eb60-2fa7-4c32-a90a-64371961cb9d", "name" : "Adam" }

For more details on the RETURNING clause, see the Upsert statement

You can retrieve the generated value of an identity column using class methods from various
Oracle NoSQL Database Drivers.

For example: If your application is using the Java SDK, you can use the getGeneratedvValue ()
method, which returns the generated value if the operation creates a new value for an identity
column. For more details, see PutResult.

If your application is using the Python SDK, you can use the get return row() method, which
succeeds only if the row exists. For more details, see PutRequest.

12-40

Chapter 12
Functions on Rows

Similarly, each language SDK exposes an interface for retrieving the generated value.

Functions on Rows

ORACLE

As described in the Table Management section, table rows are record values conforming to the
table schema, but with some additional properties that are not part of the table schema. To
extract the value of such properties, the functions listed in this section must be used.

Although the signature of these functions specifies AnyRecord as the type of the input
parameter, the functions actually require a row as input. The only expression that returns a row
is a row variable, that is, a table alias whose name starts with '$'. The Example: Updating TTL
section shows an example of using the remaining hours () function, which is one of the row
available functions.

modification_time function

The modification time function allows you to see the most recent modification time (in UTC)
of a row. The time is returned as a timestamp value of precision 3 (milliseconds). If the row has
never been modified since its insertion, it returns the insertion time. You may find this useful in
deployments where tables span multiple regions and the Oracle NoSQL Database cross-
region agent is updating your table by replicating data from remote regions.

Syntax:

timestamp (3) modification time (AnyRecord)

Semantics:

* AnyRecord: This function expects a row as the input value.
e return type: timestamp(3)
Example:

In an airline application, you can schedule periodic back-ups of passenger travel records
based on the last modification time. Only the records that have been modified after the last
scheduled backup can be considered for the next iteration.

SELECT modification time ($u)
FROM BaggageInfo $u
WHERE ticketNo = 1762344493810

Explanation:

You can use the modification time function to retrieve the last modified time details for a
passenger record from the BaggageInfo table.

Output:
o +
| Column 1 \
o +
| 2023-01-18T07:53:02.048Z |
o +

12-41

ORACLE

Chapter 12
Functions on Rows

The query returns the information on the most recent modification time for the passenger with
ticketNo 1762344493810 from the BaggageInfo table.

remaining_hours function

Returns the number of full hours remaining until the row expires. If the row has no expiration
time, it returns a negative number.

Syntax:

integer remaining hours (AnyRecord)

Semantics:

* AnyRecord: This function expects a row as the input value.
e return type: integer

remaining_days function

Returns the number of full days remaining until the row expires. If the row has no expiration
time, it returns a negative number.

Syntax:

integer remaining days (AnyRecord)

Semantics:

* AnyRecord: This function expects a row as the input value.
e return type: integer

expiration_time function

Returns the expiration time of the row, as a timestamp value of precision zero. If the row has
no expiration time, it returns a timestamp set on January 1, 1970 UTC.

Syntax:
timestamp (0) expiration time (AnyRecord)

Semantics:

* AnyRecord: This function expects a row as the input value.

e return type: timestamp(0)

expiration_time_millis function

Returns the expiration time of the row, as the number of milliseconds since January 1, 1970
UTC. If the row has no expiration time, it returns zero.

Syntax:

long expiration time millis(AnyRecord)

Semantics:

12-42

ORACLE

Chapter 12
Functions on Rows

e AnyRecord: This function expects a row as the input value.

e return type: long
Example: TTL-related functions

In an airline application, you may want to back up the passenger records before the data
expiration time or extend the expiration date to retain the information in the table for a longer
period.

SELECT

remaining hours($u) AS hours,
remaining days ($u) AS days,
expiration time ($u) AS expirytime,
expiration time millis($u) AS expirytime ms
FROM BaggageInfo S$Su

WHERE ticketNo = 1762344493810

Explanation:

You can use the TTL expiration functions to check the expiration details (if any) of the rows
containing the passenger records in the BaggageInfo table.

Output:

{"hours":376,"days":15, "expirytime":"2023-02-04T00:00:00.000Z", "expirytime ms"
:1675468800000}

The query returns the TTL information on the row that contains the passenger data for
ticketNo 1762344493810 from the BaggageInfo table.

Here, the row expires after 15 days. The same information is displayed in hours, timestamp
value, and number of milliseconds since January 1, 1970, UTC using the row functions
described above.

You can update the expiration day/time of a row using the UPDATE statement as follows:

UPDATE BaggageInfo S$u
SET TTL remaining days(Su) + 15 days
WHERE ticketNo = 1762344493810

The above statement extends the life of the row by 15 days. In this example, the remaining
days until the expiry of the row is 15 days, to which the above statement adds 15 more days,
effectively rendering the row to expire after 30 days. You can use the remaining hours
function and add hours to it to extend the expiration of a row by hours.

For more details on updating the TTL values, see Example: Updating TTL.

The following functions allow you to see how the data is distributed across the store and collect
statistics.

version or row_version function

The version or row_version function allows you to see the version of a given row. Every time
a row is inserted or modified, the row version value is automatically calculated and the
previous row version value is replaced with the new value. The row version value is unique for
every row within the table and cannot be modified manually. Both version and row version

12-43

ORACLE

Chapter 12
Functions on Rows

functions fetch the same result and can be used interchangeably in a query. You can use the
version and row version functions in both SELECT and WHERE clauses as demonstrated in
the Example section.

Syntax:

binary version (AnyRecord)

binary row version (AnyRecord)

Semantics:
* AnyRecord: The version or row_version function expects a row as the input value.

* return type: The version or row_version function returns a binary value. To use the
version as a string in a query, you must cast the value to a string using the CAST
expression.

Example:

Fetch from the airline baggage tracking application table, the version of the row with passenger
ticket number 1762344493810.

SELECT row version($t) from Baggageinfo St WHERE ticketNo =
1762344493810

Explanation:

In this query, you fetch the version of the row that includes passenger data with ticket number
1762344493810. You supply the row as an input argument to the row version function. Using
the version function instead will also return the same result.

Output:

{"Column 1":"rOOABXcsACEZ1TNcQVVExr5UL PEJixAJAAAAAAAAKDIBAWAAAAEAAAABAAAAAAAQL
xE="}

In the following example, you use the UPDATE statement to modify the confNo field in a
passenger's data and fetch the updated row version.

UPDATE baggageinfo $t
SET confNo = "LE6J6Z"

WHERE ticketNo = 1762344493810
RETURNING row version($t) as rowVersion

Output:

{"rowVersion":"rO0ABXcSACEZ1TNCQVVExr5ULPEJixAJAAAAAAAATPSBAWAAAAEAAAABAAAAARA
ayla="})

After the row is updated, the version of the corresponding row is replaced with a new value
automatically by theOracle NoSQL Database server.

12-44

ORACLE

Chapter 12
Functions on Rows

In the following example, you use the row version function in a WHERE clause to fetch the
passenger data associated with a row version.

SELECT ticketNo AS TICKET, fullName AS NAME

FROM baggageinfo $t

WHERE cast (row version($t) as String)
="rO0ABXcsACEZ1TNcQVVExr5U1PEJixAJAAAAAAAAKDIBAWAAAAEAAAABAAAAAAAOLXE="

Notice that you cast the result of the row_version function to a string using the CAST
expression to compare the versions. In this example, a previous row version is used to fetch
the passenger data. As the previous row version no longer exists when the data is updated,
there is no passenger data associated with it.

0 row returned

You can also use the row_version function in other NoSQL expressions. The following
example determines if passenger data has been modified using the row version function in a
CASE expression:

SELECT ticketNo AS TICKET, modification time(St) AS TIME,

CASE

WHEN CAST (row version($t) as String) =

"rO0ABXcSACEZ1TNcQVVExr5Ul1PEJixAJAAAAAAAAKDIBAWAAAAEAAAABAAAAAAAOLXE="
THEN "row is not modified"
ELSE "row is modified"

END AS REPORT

FROM baggageinfo S$t

WHERE ticketNo = 1762344493810;

You first cast the result of the row version function to a string using the CAST expression and
then compare the value with the previously stored version. Depending on the result of the
string comparison operation, the corresponding message is displayed. This query also uses
the modification_time function to see the most recent modification time of the passenger's
data.

Output:

{"TICKET":1762344493810,"TIME":"2024-04-04T09:42:52.128Z", "REPORT" : "row 1is
modified"}
integer shard (AnyRecord)

The shard function allows you to retrieve the shard ID in which a given rows of data is stored. It
returns an integer value. For more information on shard ID, see the Viewing Key Distribution
Statistics section in the Administrator's Guide.

Syntax:

integer shard (AnyRecord)

Semantics:

* AnyRecord: This function expects a row as the input value.

12-45

ORACLE

Chapter 12
Functions on Rows
* return type: integer
Example:

You may identify potential storage hotspots or an imbalance in your Oracle NoSQL Database
cluster using the function. For example, you may notice that a particular shard seems to
consume more storage than any other shard.

SELECT shard($u) AS Shard
FROM BaggageInfo S$Su
WHERE ticketNo = 1762344493810

Explanation:

In an airline application, you use the shard function to determine the shard details where the
passenger record is stored.

Output:

{"Shard":1}

The query returns the shard in which the row with ticketNo 1762344493810 is stored in the
BaggageInfo table.

You can compare the number of records in that shard with the other shards in your store by
issuing the following command.

SELECT count (ticketNo) AS Shard count
FROM BaggageInfo S$Su
WHERE shard($u) =1

Output:

{"Shard count":2}

partition function

All data in the KV Store is accessed by one or more Keys. A Key might be a column in a table,
or it might be the key portion of a Key/Value pair. The Keys are placed in logical containers
called partitions, and each shard contains one or more partitions. For more details, see
Partitions in the Concepts Guide.

The partition function allows you to see the partition id in which a given rows of data is
stored.

Syntax:
integer partition (AnyRecord)

Semantics:

* AnyRecord: This function expects a row as the input value.

e return type: integer

Example:

12-46

ORACLE

Chapter 12
Functions on Rows

Use the partition function to determine the partitions in which the rows are stored in your
Oracle NoSQL Database cluster.

SELECT partition($u) AS partition
FROM BaggageInfo Su
WHERE ticketNo = 1762344493810

Explanation:

In this example, the partition function returns the partition details of where the passenger
record is stored. The query returns the partition in which the row with ticketNo
1762344493810 is stored in the BaggageInfo table.

Output:

{"partition":80}

The following query returns the list of partitions in the shard with id 1.

SELECT partition ($u) AS partition count
FROM BaggageInfo Su
WHERE shard (Su)=1

Output:

{"partition count":80}
{"partition count":131}
row_storage_size function

The row_storage size function allows you to see the persistent storage size (in bytes) used
by the given rows of data. It returns an integer value.

Syntax:

integer row storage size (AnyRecord)

Semantics:

* AnyRecord: This function expects a row as the input value.

e return type: integer
Example:

You can use the row_storage size function to obtain the record size for a given row.

SELECT row storage size($u) AS storage size
FROM BaggageInfo S$Su
WHERE ticketNo = 1762344493810

Explanation:

In an airline application, you can use the row storage size function to determine the
storage size of the individual passenger records.

12-47

Chapter 12
Functions on Rows

Output:

{"storage size":1123}

The query returns the storage size of the row containing the passenger record with ticketNo
1762344493810 in the BaggageInfo table. The storage size is displayed in bytes.

index_storage_size function

The index storage size function allows you to see the persistent storage size (in bytes) used
by the index for the given row(s) of data. It returns an integer value. This function takes two
arguments. The first argument is the table reference in which the index is created. The second
argument is the index name for which the storage size is required. The index name is case-
insensitive.

Syntax:

integer index storage size (AnyRecord, String)

Semantics:

* AnyRecord: A table reference in which the index is created as its first argument.
e string: The name of the index.

e return type: integer

Example:

You can use the index storage size function to determine the storage size of the individual
index on a Table. The storage size of each index must be queried separately. To determine the
total storage size of all the indexes on a table, you have to call the function for every index.

SELECT index storage size(Su,"idx contact")
FROM baggageInfo S$Su
WHERE ticketNo = 1762344493810

Explanation:

In an airline application, you can create an index for required fields on your Oracle NoSQL
Database table. You use the index storage size function to retrieve the storage size of each
index.

In this example, an index is created on the contactPhone field in the table. The table name
BaggageInfo table and the index name idx contact are supplied as arguments to the function.

For more information on Indexes, see About Indexes.

Output:
e e +
| Column 1 |
e e +
| 40 |
e e +

ORACLE o

Chapter 12
Functions on GeoJson Data

The query returns the storage size of the row containing the passenger record with ticketNo
1762344493810 in the BaggageInfo table. The storage size is displayed in bytes.

Example:

In an airline application, you can get a detailed view of how your storage is distributed for your
table across the partitions in your cluster by using the following query. For each partition, the
total number of bytes used to store all the rows of the table contained in that partition is
retrieved.

SELECT

partition(Su) AS partition,
sum(row_storage_size(Su)) AS sum
FROM BaggageInfo S$Su

GROUP BY partition (Su)

Explanation:

In this example, the partition function determines the partitions in which the passenger
records are stored in the BaggageInfo table. The sum function computes the storage size of
each row and sums up the result.

Output:
fomm - B +
| partition| sum |
fomm - B +
| 80| 1123
| 131 1115
fomm - B +

The first column in the output is the list of partition numbers, and the second column is the
current size of those partitions.

Functions on GeoJson Data

ORACLE

The GeoJson specification defines the structure and content of JSON objects that are
supposed to represent geographical shapes on earth (called geometries). The following
functions interpret the JSON objects as geometries and allow the search for rows containing
geometries that satisfy certain conditions.

For more information on the functions and examples, see Managing GeoJSON data in the
Developers Guide.

boolean geo_intersect(any*, any*)

Raises an error if it can be detected at compile time that an operand will not return a single
valid geometry object. Otherwise, the runtime behavior is as follows:

* Returns false if any operand returns 0 or more than 1 items.
* Returns NULL if any operand returns NULL.
* Returns false if any operand returns an item that is not a valid geometry object.

Finally, if both operands return a single geometry object, it returns true if the 2 geometries have
any points in common; otherwise false.

12-49

ORACLE

Chapter 12
Functions on GeoJson Data

boolean geo_inside(any*, any*)

Raises an error if it can be detected at compile time that an operand will not return a single
valid geometry object. Otherwise, the runtime behavior is as follows:

* Returns false if any operand returns 0 or more than 1 items.
e Returns NULL if any operand returns NULL.

* Returns false if any operand returns an item that is not a valid geometry object (however, if
it can be detected at compile time that an operand will not return a valid geometry, an error
is raised).

e Returns false if the second operand returns a geometry object that is not a polygon.

Finally, if both operands return a single geometry object and the second geometry is a polygon,

it returns true if the first geometry is completely contained inside the second polygon, i.e., all its

points belong to the interior of the polygon; otherwise false. The interior of a polygon is all the

points in the polygon area except the points on the linear rings that define the polygon’s
boundary.

boolean geo_within_distance(any*, any*, double)

Raises an error if it can be detected at compile time that any of the first two operands will not
return a single valid geometry object. Otherwise, the runtime behavior is as follows:

» Returns false if any of the first two operands returns O or more than 1 items.
e Returns NULL if any of the first two operands returns NULL.

* Returns false if any of the first two operands returns an item that is not a valid geometry
object.

Finally, if both of the first two operands return a single geometry object, it returns true if the first
geometry is within a distance of N meters from the second geometry, where N is the number
returned by the third operand; otherwise false. The distance between 2 geometries is defined
as the minimum among the distances of any pair of points where the first point belongs to the
first geometry and the second point to the second geometry. If N is a negative number, it is set
to 0.

boolean geo_near(any*, any*, double)

geo_near is converted internally to geo_within_distance plus an (implicit) order-by the distance
between the two geometries. However, if the query has an (explicit) order-by already, no
ordering by distance is performed. The geo_near function can appear in the WHERE clause
only, where it must be a top-level predicate, i.e, not nested under an OR or NOT operator.
double geo_distance(any*, any*)

Raises an error if it can be detected at compile time that an operand will not return a single
valid geometry object. Otherwise, the runtime behavior is as follows:

e Returns -1 if any operand returns zero or more than 1 items.
e Returns NULL if any operand returns NULL.
* Returns -1 if any of the operands is not a geometry.

Otherwise it returns the geodetic distance between the 2 input geometries. The returned
distance is the minimum among the distances of any pair of points where the first point belongs
to the first geometry and the second point to the second geometry. Between two such points,
their distance is the length of the geodetic line that connects the points.

12-50

ORACLE

boolean geo_is_geometry(any*)

Chapter 12
Functions on Strings

* Returns false if the operand returns zero or more than 1 items.

e Returns NULL if the operand returns NULL.

e Returns true if the input is a single valid geometry object. Otherwise, false.

Functions on Strings

This section describes various functions on strings.

To follow along with the examples in the section, create users table that provides information
about users. See the seq_distinct function in Functions on Sequences section for users table

creation.

The following string functions are supported:

Table 12-7 String Functions

Function

Description

substring Function

Extracts a substring from a string based on a
specified starting position and length.

concat Function

Returns a single value of concatenating the two
arguments.

upper Function

Converts the characters in the string to uppercase.

lower Function

Converts the characters in the string to lowercase.

trim Function

Returns a string with leading, trailing, or both sets
of characters trimmed.

Itrim Function

Returns a string with leading characters trimmed.

rtrim Function

Returns a string with trailing characters trimmed.

length Function

Returns the length of the character string.

contains Function

Returns a boolean indicating if the search string is
present in the source string.

starts_with Function

Returns a boolean indicating if the source string
begins with the search string.

ends_with Function

Returns a boolean indicating if the source string
ends with the search string.

index_of Function

Returns the position of the first character of the
search string at its first occurrence.

replace Function

Returns the source string with each occurrence of
the search string replaced by the replacement
string.

reverse Function

Returns the characters of the source string in the
reverse order.

substring Function

The substring function extracts a string from a given string according to a given numeric
starting position and a given numeric substring length.

12-51

ORACLE

Chapter 12
Functions on Strings

Syntax

returnvalue substring (source, position [, substring length])
source ::= any*

position ::= integer*

substring length ::= integer*

returnvalue ::= string

Semantics

source

The input string from which the substring should be extracted. This argument is implicitly cast
to a sequence of strings.

position

This argument indicates the starting point of the substring within the source. The first
character of the source string has position 0.

An error is thrown if a non-integer value is supplied for the position.

substring_length

This argument indicates the length of the substring starting from the position value. If the
supplied value is greater than the length of the source, then the length of the source is
assumed for this argument.

An error is thrown if a non-integer value is supplied for the substring_length.

returnvalue

Returns an empty string (") if the function did not return any characters.

Returns an empty string (") if the substring_length is less than 1.

Returns NULL if the source argument is NULL.

Returns NULL if the position argument is less than O or greater or equal to the source length.

Example 12-32 substring Function

In this example, the first character in the firstname is selected from the users table. Notice that
to select the first character, we have provided the value 0 for the position argument.

SELECT substring(firstname,0,1) as Initials FROM users

Output

fommmm - +
| Initials |
fommmm - +
| J \
| P \
| M \
fommmm - +

12-52

ORACLE

Chapter 12
Functions on Strings

Example 12-33 substring Function

This example illustrates that providing a negative value for the position argument will result in a
NULL output value.

SELECT substring (firstname, -5, 4) FROM users

Output
tommm e +
| Column 1 |
TR JE—
| NULL
| NULL \
| NULL \
tommm e +

Example 12-34 substring Function

In this example, we select the first 4 characters from the firsthame in the users table.

SELECT substring (firstname, 0, 4) FROM users

Output
e +
| Column 1 |
e +
| John |
| Pete \
| Mary |
e +

Example 12-35 substring Function

In this example, we select 100 characters starting from position 2. Notice that even though
none of the rows has more than 5 characters in firstname, still we get the output up to the
length of the source starting from position 2.

SELECT substring (firstname, 2, 100) FROM users

Output
e +
| Column 1 |
TR -
| hn \
| ter |
| ry \
e +

12-53

Chapter 12
Functions on Strings

Example 12-36 substring Function

In this example, the substring_length argument is not provided as it is optional. In such cases,
we get the complete substring starting from the given position.

SELECT substring (firstname, 2) FROM users

Output
R +
| Column 1 |
T ———4
| hn \
| ter \
| ry \
R +

concat Function

ORACLE

The concat function returns argl concatenated with arg2. Both argl and arg2 can be of any
data type.

Syntax
returnvalue concat (source, [source*])

source ::= any*
returnvalue ::= boolean

Semantics

source
The input values that are joined to get a character string. This argument is implicitly cast to a
sequence of strings.

returnvalue

Returns the character string made by joining its character string operands in the order given.

If any of the arguments is a sequence, then all the items are concatenated to the result in the
order they appear in the sequence.

If all the arguments are empty sequence, then an empty sequence is returned.

If all the arguments are NULL, then a NULL is returned. This is because a NULL argument is
converted to an empty string during concatenation unless all arguments are NULL, in which
case the result is NULL. So NULL can result only from the concatenation of two or more NULL
values.

Note:

For security/denial of service reasons the maximum number of chars of the returned
string will be less than STRING_MAX_SIZE = 2718 - 1 in chars i.e. 512kb. If the
number of chars exceeds this number, then a runtime query exception is thrown.

12-54

Chapter 12
Functions on Strings

Example 12-37 concat function

This example joins id, firsthame, and lastname into a single string and provides the output.
Notice that id, which is an integer type, also gets concatenated with the string values.

SELECT concat(id, firstname, lastname) AS name FROM users

| 10JohnSmith |
| 30PeterPaul |
| 20MaryAnn |

upper Function

ORACLE

The upper function converts all the characters in a string to uppercase.
Syntax
returnvalue upper (source)

source ::= any*
returnvalue ::= string
Semantics

source
The input string that should be converted to uppercase. This argument is implicitly cast to a
sequence of strings.

returnvalue

Returns NULL if the source argument is NULL.

Returns NULL if the source argument is an empty sequence or a sequence with more than
one item.

< Note:

If you want to convert a sequence with more than one item, see the Sequence
Transform Expressions section.

Example 12-38 upper Function

In this example, the lastname field is converted to uppercase.

SELECT id, firstname, upper (lastname) FROM users

12-55

Chapter 12
Functions on Strings

Output
e T e ettt +
| id | firstname | Column 3 |
e T e ettt +
10	John	SMITH
20	Mary	ANN
30	Peter	PAUL
e T e ettt +

lower Function

ORACLE

The lower function converts all the characters in a string to lowercase.
Syntax

returnvalue lower (source)
source ::= any*

returnvalue ::= string

Semantics

source
The input string that should be converted to lowercase. This argument is implicitly cast to a
sequence of strings.

returnvalue

Returns NULL if the source argument is NULL.

Returns NULL if the source argument is an empty sequence or a sequence with more than
one item.

Note:

If you want to convert a sequence with more than one item, see the Sequence
Transform Expressions section.

Example 12-39 lower Function

In this example, the lastname field is converted to lowercase.

SELECT id, firstname, lower (lastname) FROM users

Output
et TR tmmm - +
| id | firstname | Column 3 |
et TR tmmm - +
| 10 | John | smith |
| 20 | Mary | ann \
| 30 | Peter | paul \
et TR tmmm - +

12-56

Chapter 12
Functions on Strings

trim Function

ORACLE

The trim function enables you to trim leading or trailing characters (or both) from a string.

Syntax

returnvalue trim(source [, position [, trim character]])

source ::= any*

position ::= "leading"|"trailing"|"both"

trim character ::= string*

returnvalue ::= string

Semantics

source

The input string that should be trimmed. This argument is implicitly cast to a sequence of
strings.

If you provide only the source argument, then the leading and trailing blank spaces are
removed.

position
This argument indicates whether leading or trailing or both leading and trailing characters
should be removed. The following are the valid values that can be specified for this argument.

e If leading is specified, then the characters equal to the trim_character argument are
removed from the beginning of the string.

e If trailing is specified, then the characters equal to the trim_character argument are
removed at the end of the string.

e If both is specified, then the characters equal to the trim_character argument are removed
from both the beginning and end of the string.

e If no value is specified, then both value is assumed.

e If any value other than the above valid values are specified, then NULL is returned.

trim_character

This argument specifies the characters that should be removed from the source string. If you
do not specify this argument, then a blank space is taken as the default value.

Only one character is allowed for this argument. If there are more than one character, then the
first character will be used.

If an empty string is specified, then no trimming happens.

return_value
Returns NULL if any of the arguments is NULL.
Returns NULL if any argument is an empty sequence or a sequence with more than one item.

Example 12-40 trim function

Create this table and insert values in it to run the trim, Itrim, and rtrim function examples.
CREATE TABLE trim demo (
id INTEGER,

name STRING,
yearofbirth STRING,

12-57

Chapter 12
Functions on Strings

PRIMARY KEY (id)

INSERT INTO trim demo VALUES (10, " Peter ", 1980)

INSERT INTO trim demo VALUES (20, "Mary", 1973)

INSERT INTO trim demo VALUES (30, " Oliver", 2000)

INSERT INTO trim demo VALUES (40, "John ", 2000)

SELECT * FROM trim demo

Output
fom e fomm e +
| id | name | yearofbirth |
fom e fomm e +
| 10 | Peter | 1980
| 20 | Mary | 1973
| 30 | Oliver | 2000
| 40 | John | 2000
fom e fomm e +

Example 12-41 trim Function

In this example, the id and yearofbirth are selected from the trim_demo table. Notice that the
zeros at the end of the yearofbirth are removed using the trim function.

SELECT id, trim(yearofbirth,"trailing",'0') FROM trim demo

Output
R R +
| id | Column 2 |
R R +
10	198
20	1973
30	2
40	2
R R +

Example 12-42 trim Function

In this example, '19' is provided as the trim_character. However, as per semantics, only the first
character '1' will be considered for trimming.

SELECT id, trim(yearofbirth,"leading",'19') FROM trim demo

ORACLE 1058

Chapter 12
Functions on Strings

Output
e B +
| id | Column 2 |
e B +
| 10 | 980 |
| 20 | 973 |
| 30 | 2000
| 40 | 2000
e B +

ltrim Function

ORACLE

The Itrim function enables you to trim leading characters from a string.
Syntax
returnvalue ltrim(source)

source ::= any*
returnvalue ::= string
Semantics

source
The input string that should be trimmed. The leading spaces in this string are removed. This
argument is implicitly cast to a sequence of strings.

returnvalue
Returns NULL if the source argument is NULL.

Returns NULL if the source argument is an empty sequence or a sequence with more than
one item.

Example 12-43 trim Function

This example demonstrates Itrim function. Notice that the empty spaces at the beginning are
removed but the empty spaces at the end are not removed.

Note:

You can use JSON query output mode so that the empty spaces are visible.

MODE JSON

SELECT id, ltrim(name) FROM trim demo

Output

"id":10,"Column 2":"Peter "}
{"id":20,"Column_2":"Mary"}

12-59

Chapter 12
Functions on Strings

{"id":30,"Column 2":"Oliver"}
{"id":40,"Column 2":"John "}

rtrim Function

The rtrim function enables you to trim trailing characters from a string.

Syntax
returnvalue rtrim(source)

source ::= any*
returnvalue ::= string
Semantics

source
The input string that should be trimmed. The trailing spaces in this string are removed. This
argument is implicitly cast to a sequence of strings.

returnvalue

Returns NULL if the source argument is NULL.

Returns NULL if the source argument is an empty sequence or a sequence with more than
one item.

Example 12-44 trim Function

This example demonstrates rtrim function. Notice that the empty spaces at the end are
removed but the empty spaces at the beginning are not removed.

¢ Note:

You can use JSON query output mode so that the empty spaces are visible.

MODE JSON

SELECT id, rtrim(name) FROM trim demo

Output

{"id":10,"Column 2":" Peter"}
{"id":20,"Column 2":"Mary"}
{"id":30,"Column 2":" Oliver"}
{ \l

"id":40,"Column 2":"John"}

length Function

ORACLE

The length function returns the length of a character string. The length function calculates the
length using the UTF character set.

12-60

Chapter 12
Functions on Strings

Syntax
returnvalue length (source)

source ::= any*
returnvalue ::= integer
Semantics

source
The input string for which the length should be determined. This argument is implicitly cast to
a sequence of strings.

returnvalue

Returns NULL if the source argument is NULL.

Returns NULL if the source argument is an empty sequence or a sequence with more than
one item.

Note:

Characters that are represented on 32 or more bits, the length is considered 1, while
Java String.length() returns 2 for UTF32 chars, 4 for UTF64, etc.

Example 12-45 length Function

In this example, the length of the first name is selected from the users table.

SELECT firstname, length(firstname) as length FROM users

Output

oo fommm - +
| firstname | length |
oo fommm - +
| John | 4 |
| Mary | 4 |
| Peter \ 5 |
oo fommm - +

contains Function

ORACLE

The contains function indicates whether or not a search string is present inside the source
string.

Syntax

returnvalue contains (source, search string)

source ::= any*
search string ::= any*
returnvalue ::= boolean

12-61

Chapter 12
Functions on Strings

Semantics

source
The input string to be searched. This argument is implicitly cast to a sequence of strings.

search_string
The string that should be searched in the source. This argument is implicitly cast to a
sequence of strings.

returnvalue

Returns true if search_string exists inside source else returns false.

Returns false if any argument is an empty sequence or a sequence with more than one item.
Returns NULL if source or search_string argument is NULL.

Example 12-46 contains Function

In this example, the firstname field values that contain the string "ar" in it is indicated as true.

SELECT firstname, contains(firstname,"ar") FROM users

Output
Fomm - Fomm - +
| firstname | Column 2 |
Fomm - Fomm - +
John	false
Peter	false
Mary	true
Fomm - Fomm - +

starts_with Function

ORACLE

The starts_with function indicates whether or not the source string begins with the search
string.

Syntax

returnvalue starts with(source, search string)

source ::= any*

search string ::= any*
returnvalue ::= boolean
Semantics

source

The input string to be searched. This argument is implicitly cast to a sequence of strings.

search_string
The string that should be searched in the source. This argument is implicitly cast to a
sequence of strings.

12-62

Chapter 12
Functions on Strings

returnvalue

Returns true if source begins with search_string else returns false.

Returns false if any argument is an empty sequence or a sequence with more than one item.
Returns NULL if source or search_string is NULL.

Example 12-47 starts_with Function

In this example, the firstname field values that starts with the string "Pe" is indicated as true.

SELECT firstname, starts with(firstname,"Pe") FROM users

Output
R et R ettt +
| firstname | Column 2 |
R et R ettt +
John	false
Peter	true
Mary	false
R et R ettt +

ends_with Function

ORACLE

The ends_with function indicates whether or not the source string ends with the search string.
Syntax

returnvalue ends_with (source, search string)

source ::= any*

search string ::= any*
returnvalue ::= boolean
Semantics

source

The input string to be searched. This argument is implicitly cast to a sequence of strings.

search_string
The string that should be searched in the source. This argument is implicitly cast to a
sequence of strings.

returnvalue

Returns true if source ends with search_string else returns false.

Returns false if any argument is an empty sequence or a sequence with more than one item.
Returns NULL if source or search_string is NULL.

Example 12-48 ends_with Function

In this example, the firstname field values that ends with the string "hn" is indicated as true.

SELECT firstname, ends with(firstname,"hn") FROM users

12-63

Chapter 12
Functions on Strings

Output
e fomm - +
| firstname | Column 2 |
e fomm - +
John	true
Peter	false
Mary	false
e fomm - +

index_of Function

ORACLE

The index_of function determines the position of the first character of the search string at its
first occurrence, if any.

Syntax

returnvalue index of (source, search string [, start position])
source ::= any*

search string ::= any*

start position ::= integer*

returnvalue ::= integer

Semantics

source

The input string to be searched. This argument is implicitly cast to a sequence of strings.

search_string
The string that should be searched in the source. This argument is implicitly cast to a
sequence of strings.

start_position

An optional integer indicating, numerically, the position in the source from where the search
should begin.

The default start_position is 0 which is also the position of the first character in the source.
If a negative value is supplied to start_position then 0 is assumed.

returnvalue

Returns the position of the first character of the search string at its first occurrence.

Returns -1 if search_string is not present in source.

Returns 0 for any value of source if the search_string is of length 0.

Returns NULL if any argument is NULL.

Returns NULL if any argument is an empty sequence or a sequence with more than one item.
Returns error if start_position argument is not an integer.

< Note:

The returnvalue is relative to the beginning of source, regardless of the value of
start_position.

12-64

Chapter 12
Functions on Strings

Example 12-49 index_of Function
In this example, the index of "r" is selected in the firstname.

In the output, John has no occurrence of "r" so -1 is returned. Peter and Mary has "r* at 4 and 2
position respectively.

SELECT firstname, index of (firstname,"r") FROM users

Output
e R +
| firstname | Column 2 |
e R +
| John \ -1
| Peter | 4 |
| Mary \ 2|
e R +

Example 12-50 index_of Function

In this example, the index of "e" is selected in the firstname. In the output, notice that although
"e" occurs twice in Peter, only the position of the first occurrence is returned.

SELECT firstname, index of (firstname,"e") FROM users

Output
e ettt e +
| firstname | Column 2 |
e ettt e +
| John \ -1
| Peter | 1]
| Mary \ -1
e ettt e +

replace Function

The replace function returns the source with every occurrence of the search string replaced
with the replacement string.

Syntax

returnvalue replace(source, search string [, replacement string])
source ::= any*

search string ::= any*

replacement string ::= any*
returnvalue ::= string

ORACLE 1068

Chapter 12
Functions on Strings

Semantics

source
The input string that should be searched. This argument is implicitly cast to a sequence of
strings.

search_string
The string that should be searched in the source. This argument is implicitly cast to a
sequence of strings.

replacement_string

The string that should be substitued in place of search_string in the source. This is an optional
argument. If replacement_string is omitted or empty sequence, then all occurrences of
search_string are removed from source. The result will be checked so that the result would not
be bigger than STRING_MAX_SIZE = 2718 - 1 in chars ie. 512kb, if that is the case a runtime
query exception is thrown. This argument is implicitly cast to a sequence of strings.

returnvalue

Returns source if the search_string argument is NULL.

Returns NULL if source argument is NULL.

Returns NULL if either source or search_string argument is an empty sequence.
Returns NULL if any argument is a sequence with more than one item.

Example 12-51 replace Function

In this example, the string "e" is replaced with "X" in all the occurences in firsthame. Notice the
occurrence of "X" in Peter.

SELECT firstname, replace(firstname,"e","X") FROM users

Output
oo fommmmm o +
| firstname | Column 2 |
oo fommmmm o +
John	John
Peter	PXtXr
Mary	Mary
oo fommmmm o +

Example 12-52 replace Function

In this example, the string "ar" is replaced with "urph". Notice that in the source the remaining
characters after the search_string are retained for output. This yields the output for "Mary" as
"Murphy".

SELECT firstname, replace(firstname,"ar","urph") FROM users

Output
oo mm - fommmmm - +
| firstname | Column 2 |
oo mm - fommmmm - +
| John | John |

ORACLE 1566

Chapter 12
Functions on Strings

| Peter | Peter |
| Mary | Murphy |
e fom e +

Example 12-53 replace Function

In this example, the replacement_string is not specified. Since the replacement_string is not
specified, the search_string is removed and the remaining source is displayed.

SELECT firstname, replace(firstname,"oh") FROM users

Output
e e +
| firstname | Column 2 |
e e +
John	Jn
Peter	Peter
Mary	Mary
e e +

reverse Function

The reverse function returns the characters of the source string in reverse order, where the
string is written beginning with the last character first. For example, the reverse order for
"welcome" is "emoclew".

Syntax
returnvalue reverse (source)

source ::= any*
returnvalue ::= string
Semantics

source
The input string for which the characters should be reversed. This argument is implicitly cast
to a sequence of strings.

returnvalue

Returns NULL if the source argument is NULL.

Returns NULL if the source argument is an empty sequence or a sequence with more than
one item.

Example 12-54 reverse Function

In this example, the first name is displayed along with its reverse order.

SELECT firstname, reverse(firstname) FROM users

ORACLE 12-67

Chapter 12
Function to Convert String to JSON

Output

e R +
| firstname | Column 2 |
e R +
| John | nhod

| Peter | reteP |
| Mary | yraM |
e R +

Function to Convert String to JSON

ORACLE

parse_json function

The function parse json converts a string argument to a JSON instance. The input string must
be a comma-separated list of one or more name-value pairs.

Syntax:

json parse json(string)

Semantics:

The input string argument must be a valid JSON text. The parse json function parses the
string and converts it to a JSON object.

For more details on JSON data type in Oracle NoSQL Database data model, see JSON Data
Type. An error is displayed if an incorrect JSON text is supplied in the string argument (for
example, a missing colon to separate the name and field values).

Example 1: Consider a user data table for a library application. Currently, the subscription
details are in a JSON document, which is stored as a string. You want to add them as a JSON
object.

To achieve this, consider the following schema for the table:

CREATE TABLE userslib (id LONG GENERATED BY DEFAULT AS IDENTITY, details
JSON, Bookl json,
Book2 Json, Book3 Json, PRIMARY KEY (id))

You can declare the subscription ID as an IDENTITY column. The current subscription details
can be included as a JSON object in the details field. Assuming, three books are allowed per
subscription at any point, you can update the details of the borrowed books as JSON objects in
the corresponding Book fields.

You use the parse json function to convert the subscription data of a user, which is in a string
format to a JSON object and insert it into the JSON field as follows:

mode json -pretty

insert into userslib (details) values

(parse json("{\"firstName\":\"John\",\"lastName\":\"Smith\",\"DOB\":\"22-2-199
5\",\"address\": {\"city\":\"Santa
Cruz\",\"number\":101,\"contactphone\":\"408-453-8955\", \"state\":\"CA\",\"str

12-68

ORACLE

Chapter 12
Function to Convert String to JSON

eet\":\"Pacific
Ave\",\"zip\":95008}, \"email\":\"Jjohn.smith@reachmail.com\"}")) RETURNING *

Explanation:

You must provide a string that is a valid JSON text. In this example, the INSERT statement
parses the string using the parse json function to create JSON objects, which are then
updated as elements in the detalils field. Notice that the value for the id field, which is the
primary key is auto-generated as you have declared it as an IDENTITY column. For more
details, see Inserting Rows with an IDENTITY Column. Also, since you have not provided any
values for the books fields in this example, they are populated with NULL values.

Output:
{
"id" . 2,
"details" : {
"DOB" : "22-2-1995",
"address" : {
"city" : "Santa Cruz",
"contactphone" : "408-453-8955",
"number" : 101,
"state" : "CA",
"street" : "Pacific Ave",
"zip" : 95008
} 14
"email"™ : "john.smith@reachmail.com",
"firstName" : "John",
"lastName" : "Smith"

b

"Bookl" : null,
"Book2" : null,
"Book3" : null

Example 2: Fetch from the library application, the book titles of the borrowed books for a user.

In the userslib table above, update the book fields for a user with the details of the books that
are borrowed from the library.

UPSERT into userslib values (2, {"DOB":"22-2-1995","address":{"city":"Santa
Cruz", "contactphone":"408-453-8955", "number":101, "state":"CA", "street":"Pacifi
c
Ave","zip":95008},"email":"john.smith@reachmail.com","firstName":"John", "lastN
ame":"Smith"}, '{"doc":{"title":"A Tale of two cities", "author":"Charles
Dickens", "site":"brooks.publishers.com"}}', {"doc":'{"title":"Harry Potter",
"author":"J K Rowling", "site":"brooks.publishers.com"}'}, {"doc":
{"title":"Percy Jackson", "author":"Rick Riodran",
"site":"brooks.publishers.com"}}) RETURNING *

12-69

ORACLE

Chapter 12
Function to Convert String to JSON

If any JSON data is in a string format inadvertently while updating the book details, the
operation still succeeds as the string data is a valid JSON. However, the fields are populated
with the unparsed string as follows:

"id" . 2,
"details" : {
"DOB" : "22-2-1995",
"address" : {
"city" : "Santa Cruz",
"contactphone" : "408-453-8955",
"number" : 101,
"state" : "CA",
"street" : "Pacific Ave",
"zip" : 95008
}I
"email"™ : "john.smith@reachmail.com",
"firstName" : "John",
"lastName" : "Smith"
}I
"Bookl" : "{\"doc\":{\"title\":\"A Tale of two cities\",
\"author\":\"Charles Dickens\", \"site\":\"brooks.publishers.com\"}}",
"Book2" : {
"doc" : "{\"title\":\"Harry Potter\", \"author\":\"J K Rowling\",

\"site\":\"brooks.publishers.com\"}"
b

"Book3" : {
"doc" : {
"author" : "Rick Riordan",
"site" : "brooks.publishers.com",
"title" : "Percy Jackson"

Here, the Book1 field is populated as a complete string. The Book? field has a doc attribute,
which is JSON, however, the value is a string. The Book3 field is a proper JSON document.

You can use the parse json function to select the JSON values from the table as follows:

SELECT

u.id, u.details.email,
parse_json(u.Bookl).doc.title as titlel,
parse_json(u.Book2.doc).title as title2,
u.Book3.doc.title as title3

FROM userslib u WHERE id=2

Explanation:

You can use the parse json function to parse the string values in the JSON field. In the Bookl
field above, the value is a JSON document stored as a string. You parse the complete string to
convert it to a JSON object and then select the title field. In the Book2 field, the value of the doc
attribute is a JISON document stored as a string. Here, you parse the attribute value to convert
it to a JSON object and then select the title field. The Book3 field is a valid JSON object, from
which you can extract the title value directly using the path expression.

12-70

Functions of Mathematical Operations

ORACLE

Output:

"id" 2,

"email"

"titlel"
"title2"
"title3"

"john.smith@reachmail.com",
"A Tale of two cities",
"Harry Potter",

"Percy Jackson"

Chapter 12
Functions of Mathematical Operations

Learn about the Mathematical functions supported in Oracle NoSQL Database.

The mathematical functions are used to perform mathematical calculations on the input
arguments. Here, the supplied arguments are expressions that resolve to numbers.

You can invoke the mathematical functions from the SELECT/WHERE clauses, and also from
other Oracle NoSQL statements where function calls are allowed in the syntax. For example,
you can supply mathematical functions as arguments to Using Aggregate Functions.

The following functions are supported in the Oracle NoSQL Database:

Table 12-8 Mathematical functions

Function Description

abs(n) Returns the absolute value of n.

acos(n) Returns the arc cosine of n expressed in radians.
asin(n) Returns the arc sine of n expressed in radians.
atan(n) Returns the arc tangent of n expressed in radians.

atan2(nl,n2)

Returns the arc tangent of arguments nl and n2
expressed in radians.

ceil(n) Returns the smallest integer that is greater than or
equal to n.

cos(n) Returns the cosine of an angle n specified in
radians.

cot(n) Returns the cotangent of an angle n specified in
radians.

degrees(n) Converts n from radians to degrees.

e() Returns the value of the Euler number e.

exp(n) Returns the exponential value of the expression n.

floor(n) Returns the largest integer that is less than or
equal to n.

In(n) Returns the natural logarithmic (base e) value of n.

log(n,b) Returns the logarithmic base b value of n.

log10(n) Returns the logarithmic base 10 value of n.

pi() Returns the value of pi.

power(n2,n1)

Returns the value of n2 raised to the power n1l.

radians(n)

Converts n from degrees to radians.

rand()

Returns a pseudo-random number between zero
and one.

12-71

Chapter 12
Functions of Mathematical Operations

Table 12-8 (Cont.) Mathematical functions
]

Function Description

round(n [,d]) Rounds n to d places to the right of the decimal
point.

sign(n) Returns the sign of n.

sin(n) Returns the sine of an angle n specified in radians.

sqgrt(n) Returns the square root of n.

tan(n) Returns the tangent of an angle n specified in
radians.

trunc(n [,d]) Returns the value of n truncated to d decimal
places.

Note:

The mathematical function names are case-sensitive.

« All the mathematical functions expect numeric types (integer, long, float, double,
and number) as arguments. These functions return NULL in the following cases.
Here, the NULL refers to SQL NULL unless specified otherwise.

— Any of the arguments resolves to NULL.

— Any of the arguments is a field in a JSON column whose value is NULL, that
is, JSON NULL.

— Any of the arguments is a field in a JSON column, which does not exist.
— Any of the arguments is a field in JSON collection, which does not exist.
— Any of the arguments does not resolve to a numeric type.

* While using trigonometric functions such as sin(n), cos(n), and so forth, you must
specify the input value in radians. You can convert an angle from degrees to
radians using the radians(n) function. Similarly, for inverse trigopnometric functions
like asin(n), acos(n), and so forth, you can convert the resultant radians value to
degrees using the degrees(n) function.

To follow along with the examples in the sections, you can create the tables and load data as
described in the Additional Examples section.

abs function

The abs function returns the absolute value of the input expression.

Syntax:

number abs (n)

Semantics:

e n: The argument n is an expression that resolves to a number.

e return type: number.

ORACLE 1975

Chapter 12
Functions of Mathematical Operations

— Returns the same type as the argument n.
— Returns a NULL value in the following cases:
* nresolves to a NULL value
* ndoes not resolve to a number
— Returns a positive infinity if n resolves to a positive/negative infinity.
— Returns NaN if n resolves to NaN.
— Returns a zero if n resolves to a positive/negative zero.

— Returns Integer.MIN_VALUE if n resolves to an integer type value and is equal to
Integer.MIN_VALUE.

— Returns Long.MIN_VALUE if n resolves to a long type value and is equal to
Long.MIN_VALUE.

Example:

SELECT abs(n) FROM Userstocks

Value of n Output
10 10

-10 10
1.67 1.67
-1.67 1.67

arc cosine function

The acos function is an inverse trigonometric function. The acos function returns the arc cosine
(inverse of cosine) of the input expression.

Syntax:

double acos(n)

Semantics:

* n: The argument n is an expression that resolves to a number.

e return type: double.
The resultant angle is expressed in radians and is in the range 0.0 through pi with the
following exceptions:

— Returns a NULL value in the following cases:
* nresolves to a NULL value
* ndoes not resolve to a number
— Returns NaN in the following cases:
* nresolves to NaN
* absolute value of n is greater than one

* nresolves to positive/negative infinity

ORACLE 12-73

Chapter 12
Functions of Mathematical Operations

Example:

SELECT acos(n) FROM Archery

Value of n Output
1 0.0
0 1.5707963267948966
sqrt(3)/2 0.5235987755982989
0.5 1.0471975511965979
-1 3.141592653589793

arc sine function

The asi
(inverse

Syntax:

double

Semant

n:T

retu
The
follo

n function is an inverse trigonometric function. The asin function returns the arc sine
of sine) of the input expression.

asin(n)

ics:
he argument n is an expression that resolves to a number.

rn type: double.

resultant angle is expressed in radians and is in the range -pi/2 through pi/2 with the
wing exceptions:

Returns a NULL value in the following cases:

*

n resolves to a NULL value

*

n does not resolve to a number

Returns NaN in the following cases:

*

n resolves to NaN

*

absolute value of n is greater than one
*

n resolves to positive/negative infinity

Results in a zero with the same sign as n, when n is zero.

Example:
SELECT asin(n) FROM Archery
Value of n Output
1 1.5707963267948966
sqrt(3)/2 1.0471975511965976
0.5 0.5235987755982989
-1 -1.5707963267948966

ORACLE

12-74

Chapter 12
Functions of Mathematical Operations

arc tan function

The atan function is an inverse trigonometric function. The atan function returns the arc
tangent (inverse of tangent) of the input expression.

Syntax:

double atan (n)

Semantics:

* n: The argument n is an expression that resolves to a number.

e return type: double.
The resultant angle is expressed in radians and is in the range -pi/2 through -pi/2 with the
following exceptions:

— Returns a NULL value in the following cases:
* nresolves to a NULL value
* ndoes not resolve to a number

— Returns NaN if n resolves to NaN.

— Results in a zero with the same sign as n, when n is zero.

Example:

SELECT atan(n) FROM Archery

Value of n Output
1 0.7853981633974483
sqrt(3) 1.0471975511965976

arc tan2 function

ORACLE

The atan2 function is an inverse trigonometric function. The atan2 function is a two-argument
arc tangent (inverse of tan) function, which returns the arc tangent of a coordinate or point in
two-dimensional space (n1, n2) calculated as atan(n2/nl).

Syntax:

double atan2(nl,n2)

Semantics:

* nl, n2: The arguments n1 and n2 are expressions that resolve to numbers.

e return type: double.
The resultant angle is expressed in radians and is in the range -pi through pi with the
following exceptions:

— Returns a NULL value in the following cases:

* |If either of the arguments resolves to a NULL value

12-75

Chapter 12
Functions of Mathematical Operations

* If either of the arguments does not resolve to a number

— Returns a NaN if either of the arguments resolves to NaN.

Example:

SELECT atan2(nl,n2) FROM Archery

Value of n1 Value of n2 Output
1 1 0.7853981633974483
1 sqrt(3) 1.0471975511965976
2 0 1.5707963267948966
ceil function
The ceil function returns the smallest integer that is greater than or equal to the specified
expression.
Syntax:

number ceil (n)

Semantics:

e n: The argument n is an expression that resolves to a number.
e return type:
— Returns the same type as the argument n.
— Returns a NULL value in the following cases:
* nresolves to a NULL value
* ndoes not resolve to a number
— Returns NaN if n resolves to NaN.
— Returns a positive/negative infinity if n resolves to the respective infinity.

— Returns a positive/negative zero if n resolves to the respective zero value.

Example:

SELECT ceil(n) FROM Userstocks

Value of n Output
1.34 2.0
-1.34 -1.0
pi() 4.0

cosine function

The cos function is a trigonometric function. The cos function returns the cosine of an angle
specified in radians.

ORACLE 12-76

Chapter 12
Functions of Mathematical Operations

Syntax:

double cos(n)

Semantics:

* n: The argument n is an expression that resolves to a number (an angle expressed in
radians).

* return type: double.
The resultant value is in the range -1 through 1 with the following exceptions:

— Returns a NULL value in the following cases:
* nresolves to a NULL value
* n does not resolve to a number

— Returns NaN if n resolves to NaN or infinity(positive/negative).

Example:

SELECT cos(n) FROM Archery

Value of n Output
0 1.0
radians(90) 6.123233995736766E-17
pi() -1.0
cotangent function

ORACLE

The cot function is a trigonometric function. The cot function returns the cotangent of an angle
specified in radians.

Syntax:

double cot (n)

Semantics:

* n: The argument n is an expression that resolves to a number (an angle expressed in
radians).

e return type: double.
— Returns a NULL value in the following cases:
* nresolves to a NULL value
* ndoes not resolve to a number

— Returns NaN if n resolves to NaN or infinity(positive/negative).

Example:

SELECT cot(n) FROM Archery

12-77

Chapter 12
Functions of Mathematical Operations

Value of n Output

0 Infinity

radians(90) 6.123233995736766E-17
pi()/4 1.0000000000000002

degrees function

The degrees function converts the specified expression from radians to degrees.

Syntax:

double degrees (n)

Semantics:

* n: The argument n is expressed in radians. Here, n is an expression that resolves to a
number.

* return type: double.

Returns a NULL value in the following cases:
* nresolves to a NULL value

* ndoes not resolve to a number

Returns NaN if n resolves to NaN.

Returns respective infinity if n resolves to positive/negative infinity.

Note:

The conversion from radians to degrees does not generally return an exact value. For
example, consider the query:
SELECT degrees (atan(sqrt(3))) AS ATAN60O FROM Archery

The degrees to radians conversion results in; {"ATAN60":59.99999999999999}

Example:

SELECT degrees(n) FROM Archery

Value of n Output
pi()/2 90
0 0.0

Euler function

The e function returns the value of Euler number e, thatis, 2.718281828459045.

ORACLE

12-78

Chapter 12
Functions of Mathematical Operations

Syntax:

double e()

Semantics:

e The e function does not expect any input arguments.

e return type: double.

Example:

SELECT e() AS EULER FROM Archery

Output
oo - oo +
| EULER | 2.718281828459045 |
oo - oo +
exp function

ORACLE

The exp function returns the exponential value of the given expression, that is, e raised to the
power of the specified expression. Here, e is the base of the natural logarithm and has the
value 2.718281828459045.

Syntax:

double exp (n)

Semantics:

* n: The argument n is an expression that resolves to a number.
e return type: double.
— Returns a NULL value in the following cases:
* nresolves to a NULL value
* ndoes not resolve to a number
— Returns NaN if n resolves to NaN.
— Returns positive infinity if n resolves to positive infinity.

— Returns positive zero if n resolves to negative infinity.

Example:

SELECT exp(n) FROM PHtable

Value of n Output

0 1.0

2 7.38905609893065
-2 0.1353352832366127

12-79

Chapter 12
Functions of Mathematical Operations

floor function

The floor function returns the largest integer that is less than or equal to the specified
expression.

Syntax:

number floor (n)

Semantics:

* n: The argument n is an expression that resolves to a number.
e return type:
— Returns the same type as the argument n.
— Returns a NULL value in the following cases:
* nresolves to a NULL value
* ndoes not resolve to a number
— Returns NaN if n resolves to NaN.
— Returns a positive/negative infinity if n resolves to the respective infinity.

— Returns a positive/negative zero if n resolves to the respective zero value.

Example:

SELECT floor(n) FROM Userstocks

Value of n Output
1.34 1.0
-1.34 -2.0
pi() 3.0
In function
The 1n function returns the natural logarithmic value (base ¢) of the specified expression.
Syntax:
double 1n(n)
Semantics:

* n: The argument n is an expression that resolves to a number.
* return type: double.
— Returns a NULL value in the following cases:
* nresolves to a NULL value
* ndoes not resolve to a number

— Returns NaN in the following cases:

ORACLE 1580

Chapter 12
Functions of Mathematical Operations

* nresolves to NaN
* nisless than zero
— Returns positive infinity if n resolves to positive infinity.

— Returns negative infinity if n is positive/negative zero.

Example:

SELECT 1n(n) FROM PHtable

Value of n Output

1 0.0

10 2.302585092994046
1.0E-7 -16.11809565095832

log function

The 1log function returns the logarithmic value with the specified base for the given expression.

Syntax:

double log(n,b)

Semantics:

e n, b: The arguments n and b are expressions that resolve to numbers. The base b can
resolve to any positive value except zero and one. n can resolve to any positive value.

e return type: double.
— Returns a NULL value in the following cases:
* |If either of the arguments resolves to a NULL value
* If either of the arguments does not resolve to a number

— Returns positive infinity if either of the arguments resolves to positive infinity.

Example:

SELECT log(n,b) FROM PHtable

Value of n Value of b Output

2 2 1.0

81 3 4.0

255 5 3.442980622208573

log10 function

The 1og10 function returns the logarithmic value with base 10 for the specified expression.

ORACLE 1081

Chapter 12
Functions of Mathematical Operations

Syntax:

double 1loglO(n)

Semantics:

* n: The argument n is an expression that resolves to a number.

* return type: double.

Returns a NULL value in the following cases:

* nresolves to a NULL value

* ndoes not resolve to a number

Returns NaN in the following cases:

* nresolves to NaN

* nisless than zero

Returns positive infinity if n resolves to positive infinity.
Returns negative infinity if n is positive/negative zero.

Returns n if the value of n is equal to 10", where n is an integer.

Example:

SELECT loglO(n) FROM PHtable

Value of n Output

1 0.0

10 1.0

1.0E-7 -7.0

pi function

The pi function returns the value of pi, that is, 3.141592653589793.
Syntax:
double pi()
Semantics:

e The pi function does not expect any input arguments.

e return type: double.

Example:

SELECT pi() AS PI FROM Archery

ORACLE

12-82

Chapter 12
Functions of Mathematical Operations

Output:
fomm - o +
| PI | 3.141592653589793 |
fomm - o +
power function

The pow function returns the value of the first expression raised to the power of the second
expression.

Syntax:

double pow(n2,nl)

Semantics:

* nl, n2: The arguments n1 and n2 are expressions that resolve to numbers.
e return type: double.
— Returns a NULL value in the following cases:
* If either of the arguments resolves to a NULL value
* If either of the arguments does not resolve to a number
— Returns positive infinity if n2 resolves to positive/negative infinity.

— Returns positive infinity if n1 resolves to positive infinity and zero if n1 resolves to
negative infinity.

Example:

SELECT pow(n2,nl) FROM PHtable

Value of n Value of b Output

2 4 16.0

2 0 1.0

-0.5 4 0.0625

0.5 -4 16.0
radians function

ORACLE

The radians function converts the specified expression from degrees to radians.

Syntax:
double radians (n)

Semantics:

* n: The argument n is expressed in degrees. Here, n is an expression that resolves to a
number.

e return type: double.

12-83

Chapter 12
Functions of Mathematical Operations

— Returns a NULL value in the following cases:
* nresolves to a NULL value
* n does not resolve to a number

— Returns NaN if n resolves to NaN.

— Returns respective infinity if n resolves to positive/negative infinity.

Note:

The conversion from degrees to radians does not generally return an exact value. For
example, consider the query:
SELECT cot (radians(90)) COT90 FROM Archery

The degrees to radians conversion results in: {"COT90":6.123233995736766E-17}

Example:

SELECT radians(n) FROM Archery

Value of n Output
180 3.141592653589793
0 0.0

random function

The rand function returns a positive pseudo-random number. The resultant value can be
greater than or equal to zero and less than one.

Syntax:

double rand()

Semantics:
* The rand function does not expect any input arguments.
e The rand function is evaluated for each row if used in a WHERE clause.

e return type: double.

Example:

SELECT rand() AS RANDOM from Archery WHERE sim=1

Output

Fomm Fom +
| RANDOM | 0.891655403699787 |
Fomm Fom +

ORACLE 1584

round function

The round function rounds the value of an input expression to the specified decimal places to
the right of the decimal point.

ORACLE

Syntax:

double

Semant
e n,d

Chapter 12
Functions of Mathematical Operations

round(n [, d])

ics:

: The arguments n and d are expressions that resolve to numbers. The value of d must

be in the range of -30 <=d<=30. Any value of d exceeding the maximum absolute value of
30 is truncated to 30 or -30 respectively. If d is not an integer, it is cast to an integer value.

For

example, round (123.456,1.5) is considered round (123.456,1), and

round (123.456,50) is treated as round (123.456,30).

e return type: double.
Depending on the values of n and d, the round function behaves as follows:

If d is a positive value, the function rounds n to d places on the right of the decimal
point. If the fractional part of n is 0.5 or greater, the value is rounded away from 0.
For example, round (0.5) returns 1.0 and round (-0.5) returns -1.0.

If d is greater than or equal the number of digits to the right of the decimal point in n,
the value of n is returned.

If d is not specified or zero, the function rounds n to zero decimal places.

If d is a negative value, the function rounds n to the left of the decimal point. If the
number of digits in n to the left of the decimal point is less than or equal to the absolute
value of d, then the function returns 0.0.

Returns zero if n is zero, regardless of the value of d (except when d is NULL).
Returns a NULL value in the following cases:

* |If either of the arguments is a NULL value

* If either of the arguments does not resolve to a number

Returns n if either of the arguments resolves to a NaN or infinity.

Example:

SELECT round(n,d) FROM Userstocks

Value of n Value of d Output
100.331 2 100.33
100.367 2 100.37
111.567 0.5 112.0
111.567 4 111.567
10.361 0 or not specified 10.0
111.331 -2 100.0
111.331 -4 0.0
-100.331 2 -100.33
-111.331 -2 -100.0

12-85

sign function

The sign function returns the sign of the specified expression, that is, zero if the argument is
zero, 1 if the argument is greater than zero, and -1 if the argument is less than zero.

Syntax:

Chapter 12
Functions of Mathematical Operations

double sign(n)

Semantics:

* n: The argument n is an expression that resolves to a number.

e return type: double.

Returns 1.0 if n resolves to a positive number.
Returns -1.0 if n resolves to a negative number.
Returns 0.0 if n resolves to zero.

Returns a NULL value in the following cases:

* nresolves to a NULL value

* ndoes not resolve to a number

Returns NaN if n resolves to NaN.

Example:

SELECT sign(n) FROM PHtable

Value of n Output
1.89 1.0
-1.89 -1.0

0 0.0
sin(3*pi()/2) -1.0

sine function

The sin function is a trigonometric function. The sin function returns the sine of an angle
specified in radians.

ORACLE

Syntax:

double sin(n)

Semantics:

* n: The argument n is an expression that resolves to a number (an angle expressed in
radians).

e return type: double.
The resultant value is in the range -1 through 1 with the following exceptions:

Returns a NULL value in the following cases:

12-86

Chapter 12
Functions of Mathematical Operations

* nresolves to a NULL value
* n does not resolve to a number
— Returns NaN if n resolves to NaN or infinity(positive/negative).

— Returns a zero if n resolves to a positive/negative zero.

Example:

SELECT sin(n) FROM Archery

Value of n Output

radians(90) 1.0

pi()/4 0.7071067811865475
3*pi()/2 -1.0

square root function

The sqrt function returns the square root of the specified expression.

Syntax:

double sqgrt (n)

Semantics:

e n: The argument n is an expression that resolves to a number.
e return type: double.
— Returns a NULL value in the following cases:
* nresolves to a NULL value
* ndoes not resolve to a number
— Returns NaN in the following cases:
* nresolves to NaN
* nis less than zero
— Returns positive infinity if n resolves to positive infinity.
— Returns the same value as the argument, if n resolves to positive/negative zero.

Example:

SELECT sqgrt (n) FROM Archery

Value of n Output
16 4.0
12.57/pi() 2.00028879648171

ORACLE 12-87

Chapter 12
Functions of Mathematical Operations

tangent function

The tan function is a trigonometric function. The tan function returns the tangent of an angle
specified in radians.
Syntax:

double tan(n)

Semantics:

* n: The argument n is an expression that resolves to a number (an angle expressed in
radians).

* return type: double.
The resultant value is in the range -1 through 1 with the following exceptions:

— Returns a NULL value in the following cases:
* nresolves to a NULL value
* n does not resolve to a number

— Returns NaN if n resolves to NaN or infinity(positive/negative).

Example:

SELECT tan(n) FROM Archery

Value of n Output

0 0.0

radians(90) 1.633123935319537E16

pi()/4 0.9999999999999999
truncate function

ORACLE

The trunc function truncates the value of an input expression to the specified decimal places
on the right of the decimal point.

Syntax:

double trunc(n [, d 1)

Semantics:

* n,d: The arguments n and d are expressions that resolve to numbers. The value of d must
be in the range of -30 <=d<=30. Any value of d exceeding the maximum absolute value of
30 is truncated to 30 or -30 respectively. If d is not an integer, it is cast to an integer value.
For example, trunc (123.456,1.5) is considered trunc(123.456,1), and
trunc(123.456,50) is treated as trunc(123.456,30).

e return type: double.
Depending on the values of n and d, the trunc function behaves as follows:

— If dis a positive value, the function truncates n to d places on the right of the decimal
point, that is, retains only d decimal digits to the right of the decimal point.

12-88

Chapter 12
Functions of Mathematical Operations

— If dis greater than or equal the number of digits to the right of the decimal point in n,
the value of n is returned.

— If dis not specified or zero, the function truncates n to zero places.

— If dis a negative value, the function truncates n to the left of the decimal point, that is,
sets d digits to the left of the decimal point to zero. The right of the decimal point is
also set to zero. If the number of digits in n to the left of the decimal point is less than
or equal to the absolute value of d, then the function returns 0.0.

— Returns zero if n is zero, regardless of the value of d (except when d is NULL).
— Returns a NULL value in the following cases:

* If either of the arguments is a NULL value

* If either of the arguments does not resolve to a number

— Returns n if either of the arguments resolves to a NaN or infinity.

Example:

SELECT trunc(n,d) FROM Userstocks

Value of n Value of d Output
111.567 0 or not specified 100.00
111.567 2 100.56
111.567 3 111.567
111.567 -2 100.0
111.567 -3 0.0
-111.567 2 -100.567
-111.567 -1 -110.0

Additional Examples

ORACLE

Learn to use mathematical functions in applications.

Example 12-55 Apply mathematical functions to retrieve intra-day transactions from a
trading application

Consider a Userstocks table containing intra-day transactions of a Stock trader in a trading
application.

The table DDL is as follows:

CREATE TABLE Userstocks (id INTEGER,
stock STRING,
units INTEGER,
buyRate DOUBLE,
sellRate DOUBLE,

PRIMARY KEY (id))

The id field contains the ID of the company, stock field contains the company name in which
the user has stock options, the units field contains the number of stocks owned by the user,
buyRate is the price at which the user has purchased the stocks, and sellRate is the price at
which the user sells his stocks.

12-89

ORACLE

Chapter 12
Functions of Mathematical Operations

Insert sample rows into the table:

INSERT into Userstocks VALUES (1, "companyl", 100, 10.2, 11.5)
INSERT into Userstocks VALUES (2, "company2", 20, 15, 14.7)

You can use the following query to apply mathematical functions and retrieve the required
transaction details from the table:

SELECT stock,

ceil (units*sellRate-units*buyRate) AS PROFIT,

abs (units*sellRate-units*buyRate) AS TURNOVER,

round (abs (units*sellRate-units*buyRate)*0.5/100, 2) AS BROKERAGE
FROM Userstocks

Explanation: In the above query, you fetch the day's turnover, profit/loss, and brokerage
charges. You calculate the profit/loss using the given arithmetic expressions and apply the cell
function to get the result as the nearest integer value. You calculate the profit/loss and apply
the abs function to calculate the turnover for each transaction. You calculate the brokerage
charges by applying 0.5% on each turnover and round the result to two decimal places using
the round function.

Output:

{"stock":"company2","PROFIT":-6.0, "TURNOVER":6.0, "BROKERAGE":0.03}
{"stock":"companyl","PROFIT":131.0, "TURNOVER":130.0000000000001, "BROKERAGE" : 0.
65}

Example 12-56 Apply mathematical functions to calculate the shooting distance in a
gaming application

Consider an Archery table containing data for target shooting in a gaming application.

The table DDL is as follows:

CREATE TABLE Archery (sim INTEGER,
angle DOUBLE,
elevation DOUBLE,

PRIMARY KEY (sim))

The sim field identifies the simulation count, the angle field includes different angles (in
degrees) at which a gamer can aim at a target, elevation field contains the height (in meters)
at which the target is placed.

Insert sample rows into the table:
INSERT INTO Archery VALUES (1, 30, 50)

INSERT INTO Archery VALUES (2, 45, 50)
INSERT INTO Archery VALUES (3, 70, 95)

12-90

ORACLE

Chapter 12
Functions of Mathematical Operations

You can apply mathematical functions in the following query to calculate the shooting distance
for various angles and elevations of the target.

SELECT sim, trunc(elevation/sin(radians(angle)),2) AS SLOPE FROM Archery
ORDER BY
sim

Explanation: To hit a target placed at a certain elevation, the gamer aims at an angle and
shoots a certain distance. These elements form a side of a right-angle triangle, an acute angle,
and a hypotenuse. In this query, you calculate the shooting distance for various combinations
of target elevation and angles based on the gamer's position from the target. You use the
radians function to convert the angles to radians and calculate the sine value using the sine
function. You divide the elevation by the sine value to calculate the distance and truncate the
result to two decimal places using the truncate function.

Output:

{"sim":1,"SLOPE ":100.0}
{"sim":2,"SLOPE ":70.71}
{"sim":3,"SLOPE ":101.09}

Example 12-57 Use the mathematical functions to calculate the PH value for a given
solution

Consider a PHtable containing Hydrogen ions concentration for different solutions.

The table DDL is as follows:

CREATE TABLE PHtable (id INTEGER,
sampleName STRING,
hIons DOUBLE,
phValue DOUBLE,

PRIMARY KEY (id))

The id field contains the identifier of the solution sample, the sampleNane field contains the
name of the given sample, the hions field is the Hydrogen ion concentration in moles per liter
of the liquid, and the phvalue field is the PH value of the solution. You can use the hIons value
to calculate the phvalue of a solution. You initialize the phvalue column to NULL while inserting
data into the table.

Insert sample rows into the table:
INSERT INTO PHtable VALUES (1, "samplel", 0.0063095734448019, NULL)

INSERT INTO PHtable VALUES (2, "sample2", 5.0118723362727E-9, NULL)
INSERT INTO PHtable VALUES (3, "sample3", 1.0E-7, NULL)

You can use the mathematical functions to calculate the PH value for a given solution and
update the table using the following query:

UPDATE PHtable SET phValue=trunc((logl0(1/hIons)),1l) where id=1 RETURNING

*

Explanation: The PH value indicates the strength of acids or bases in a solution. In this query,
you use log10 function to calculate the PH value of a solution using the formula PH=log10(1/

12-91

Chapter 12
Functions of Mathematical Operations

hlons). As the return value of the function is double, you use the truncate function to truncate
the result to one decimal place. You use the UPDATE Statement to set the resultant PH value
in the phvalue field for the specified solution.

Output:

{"id":1, "sampleName":"samplel", "hIons":0.0063095734448019, "phvValue":2.2}

You can also use the mathematical functions in the WHERE clause. In this example, you find
the acidic samples (PH < 7) using the following query:

SELECT sampleName AS ACIDIC FROM PHtable WHERE trunc((logl0(1/hIons)),1) <
7.0

Output:

{"ACIDIC":"samplel"}

ORACLE 1595

Introduction to the SQL for Oracle NoSQL
Database Shell

This appendix describes how to configure, start and use the SQL for Oracle NoSQL Database
shell to execute SQL statements. This section also describes the available shell commands.

You can directly execute DDL, DML, user management, security, and informational statements
using the SQL shell.

Running the SQL Shell

ORACLE

You can run the SQL shell interactively or use it to run single commands. Here is the general
usage to start the shell:

java -jar KVHOME/lib/sql.jar

-helper-hosts <host:port[,host:port]*> -store <storeName>
[-username <user>] [-security <security-file-path>]
[-timeout <timeout ms>]
[-consistency <NONE REQUIRED (default) |

ABSOLUTE | NONE REQUIRED NO MASTER>]
[-durability <COMMIT SYNC(default) |

COMMIT NO SYNC | COMMIT WRITE NO_SYNC>]
[single command and arguments]

The following are the mandatory parameters:

-helper-hosts: Specifies a comma-separated list of hosts and ports.

-store: Specifies the name of the store.

-security: Specifies the path to the security file in a secure deployment of the store.
For example: $SKVROOT/security/user.security

The store supports the following optional parameters:

-consistency: Configures the read consistency used for this session. The read operations are
serviced either on a master or a replica node depending on the configured value. For more
details on consistency, see Consistency Guarantees. The following policies are supported.
They are defined in the Consistency class of Java APIs.

If you do not specify this value, the default value ABSOLUTE is applied for this session.

* ABSOLUTE - The read operation is serviced on a master node. With ABSOLUTE
consistency, you are guaranteed to obtain the latest updated data.

« NONE-REQUIRED - The read operation can be serviced on a replica node. This implies,
that if the data is read from the replica node, it may not match what is on the master.
However, eventually, it will be consistent with the master.

For more details on the policies, see Consistency in the Java Direct Driver APl Reference
Guide.

A-1

Appendix A
Configuring the shell

-durability: Configures the write durability setting used in this session. This value defines the
durability policies to be applied for achieving master commit synchronization, that is, the
actions performed by the master node to return with a normal status from the write operations.
For more details on durability, see Durability Guarantees.

If you do not specify this value, the default value COMMIT_SYNC is applied for this session.

¢ COMMIT_NO_SYNC - The data is written to the host's in-memory cache, but the master
node does not wait for the data to be written to the file system's data buffers or subsequent
physical storage.

e COMMIT_SYNC - The data is written to the in-memory cache, transferred to the file
system's data buffers, and then synchronized to a stable storage before the write operation
completes normally.

e COMMIT_WRITE_NO_SYNC - The data is written to the in-memory cache, and
transferred to the file system's data buffers, but not necessarily into physical storage.

For more details on the policies, see Durability in the Java Direct Driver APl Reference Guide.
-timeout: Configures the request timeout used for this session. The default value is 5000ms.
-username: Specifies the username to log in as.

For example, you can start the shell like this:

java -jar KVHOME/lib/sqgl.jar
-helper-hosts node01:5000 -store kvstore
sql->

This command assumes that a store kvstore is running at port 5000. After the SQL starts
successfully, you execute queries. In the next part of this document, you will find an
introduction to SQL. for Oracle NoSQL Database and how to create query statements.

If you want to import records from a file in either JSON or CSV format, you can use the import
command. For more information see import.

If you want to run a script, use the 1oad command. For more information see load.

sql-> command [arguments]

-single command and arguments: Specifies the utility commands that can be accessed from
the SQL shell. You can use them with the syntax shown above.

For a complete list of utility commands accessed through "java -jar" <kvhome>/lib/sql.jar
<command> see Shell Utility Commands.

Configuring the shell

ORACLE

You can also set the shell start-up arguments by modifying the configuration file .kvclirc
found in your home directory.

Arguments can be configured in the . kvclirc file using the name=value format. This file is
shared by all shells, each having its named section. [sql] is used for the Query shell, while
[kvcli] is used for the Admin Command Line Interface (CLI).

A-2

For example, the .kvclirc file would then contain content like this:

[sqll
helper-hosts=node01:5000
store=kvstore
timeout=10000
consistency=NONE REQUIRED
durability=COMMIT NO SYNC
username=root
security=/tmp/login_ root

[kvecli]

host=nodel1

port=5000

store=kvstore
admin-host=node01
admin-port=5001
username=userl
security=/tmp/login user
admin-username=root
admin-security=/tmp/login_ root
timeout=10000
consistency=NONE REQUIRED
durability=COMMIT NO SYNC

Shell Utility Commands

The following sections describe the utility commands accessed through "java -jar"

ORACLE

<kvhome>/1ib/sgl.jar <command>".

The interactive prompt for the shell is:

sql->

Appendix A
Shell Utility Commands

The shell comprises a number of commands. All commands accept the following flags:

* -help

Displays online help for the command.

e 7
Synonymous with -help. Displays online help for the command.
The shell commands have the following general format:

1. All commands are structured like this:

sql-> command [arguments]

2. All arguments are specified using flags that start with

3. Commands and subcommands are case-insensitive and match on partial strings(prefixes)

if possible. The arguments, however, are case-sensitive.

connect

consistency

describe

ORACLE

Appendix A
Shell Utility Commands

connect -host <hostname> -port <port> -name <storeName>
[-timeout <timeout ms>]
[-consistency <NONE REQUIRED (default) |

ABSOLUTE | NONE REQUIRED NO MASTER>]
[-durability <COMMIT SYNC(default) |

COMMIT NO SYNC | COMMIT WRITE NO SYNC>]
[-username <user>] [-security <security-file-path>]

Connects to a KVStore to perform data access functions. If the instance is secured, you may
need to provide login credentials.

consistency [[NONE REQUIRED | NONE REQUIRED NO MASTER |
ABSOLUTE] [-time -permissible-lag <time ms> -timeout <time ms>]]

Configures the read consistency used for this session.

describe | desc [as Json]
{table table name [field name[,...]] |
index index name on table name

}

Describes information about a table or index, optionally in JSON format.

Specify a fully-qualified table name as follows:

Entry specification Description

table name Required. Specifies the full table name. Without further
qualification, this entry indicates a table created in the
default namespace (sysdefault), which you do not have to
specify.

parent-table.child-table Specifies a child table of a parent. Specify the parent
table followed by a period (.) before the child name. For
example, if the parent table is Users, specify the child
table named MailingAddress as
Users.MailingAddress.

namespace-name : table-name Specifies a table created in the non-default namespace.
Use the namespace followed by a colon (). For example,
to reference table Users, created in the Sales
namespace, enter table_name as Sales:Users.

ORACLE

Appendix A
Shell Utility Commands

Following is the output of describe for table ns1:t1:

sql-> describe table nsl:tl;

=== Information ===

Fomm - o o= fomm -
fomm Fomm e +

| namespace | name | ttl | owner
indexes | description |

Fomm - o o= fomm -
fomm Fomm e +

| nsl | tl | |

| | |

Fomm - o o= fomm -
fomm Fomm e +

=== Fields ===

Fomm - fomm fomm
Fomm +

| id | name | type | nullable
identity |

Fomm - fomm fomm
Fomm +

|1] id | Integer | N

| |

Fomm - fomm fomm
Fomm +

| 2 | name | String | Y

| |

Fomm - fomm fomm
Fomm +
sql->

—————————— e e e

sysTable | r2compat | parent | children

default |

shardKey | primaryKey |
___________ B W
NullValue | Y | Y

___________ B W

NullValue | |

___________ +__________+____________

This example shows using describe as json for the same table:

sql-> describe as json table nsl:tl;

{

"json version" 1,
"type" "table",
"name" "tl",
"namespace" "nsl",
"shardKey" ["id" 71,
"primaryKey" : ["id"],
"fields" : [{
"name" "id",
"type" "INTEGER",
"nullable" false,
"default" : null
oo A
"name" "name",
"type" "STRING",
"nullable" true,
"default" : null

b

Appendix A
Shell Utility Commands

durability

durability [[COMMIT WRITE NO SYNC | COMMIT SYNC |

COMMIT NO SYNC] | [-master-sync <sync-policy> -replica-sync <sync-policy>
-replica-ask <ack-policy>]] <sync-policy>: SYNC, NO SYNC, WRITE NO SYNC
<ack-policy>: ALL, NONE, SIMPLE MAJORITY

Configures the write durability used for this session.
exit

exit | quit

Exits the interactive command shell.

help

help [command]

Displays help message for all shell commands and sql command.

history

history [-last <n>] [-from <n>] [-to <n>]

Displays command history. By default all history is displayed. Optional flags are used to choose
ranges for display.

import
import -table table name -file file name [JSON | CSV]
Imports records from the specified file into table table name.
Specify a fully-qualified table name as follows:
Entry specification Description
table name Required. Specifies the full table name. Without further
qualification, this entry indicates a table created in the
default namespace (sysdefault), which you do not have to
specify.
parent-table.child-table Specifies a child table of a parent. Specify the parent
table followed by a period (.) before the child name. For
example, if the parent table is Users, specify the child
table named MailingAddress as
Users.MailingAddress.
ORACLE

Appendix A
Shell Utility Commands

Entry specification Description

namespace-name:table-name Specifies a table created in the non-default namespace.
Use the namespace followed by a colon (:). For example,
to reference table Users, created in the Sales
namespace, enter table_name as Sales:Users.

Use -table to specify the name of a table into which the records are loaded. The alternative
way to specify the table is to add the table specification "Table: table name" before its records
in the file.

For example, this file contains the records to insert into two tables, users and email:

Table: users
<records of users>

Table: emails
<record of emails>

The imported records can be either in JSON or CSV format. If you do not specify the format,
JSON is assumed.

load
load -file <path to file>
Load the named file and interpret its contents as a script of commands to be executed. If any
command in the script fails execution will end.
For example, suppose the following commands are collected in the script file test.sgl:
Begin Script
load -file test.ddl
import -table users -file users.json
End Script
Where the file test.ddl would contain content like this:
DROP TABLE IF EXISTS users;
CREATE TABLE users(id INTEGER, firstname STRING, lastname STRING,
age INTEGER, primary key (id));
And the file users. json would contain content like this:
{"id":1,"firstname":"Dean", "lastname":"Morrison", "age":51}
{"id":2,"firstname":"Idona", "lastname":"Roman", "age":36}
"id":3,"firstname":"Bruno", "lastname":"Nunez", "age":49}
ORACLE

mode

ORACLE

Appendix A
Shell Utility Commands

Then, the script can be run by using the 1oad command in the shell:

> java -jar KVHOME/lib/sql.jar -helper-hosts node01:5000 \
-store kvstore

sql-> load -file ./test.sql

Statement completed successfully.

Statement completed successfully.

Loaded 3 rows to users.

mode [COLUMN | LINE | JSON [-pretty] | CSV]
Sets the output mode of query results. The default value is JISON.
For example, a table shown in COLUMN mode:

sgl-> mode column;
sgql-> SELECT * from users;

o= fomm e fomm e fo———= +
| id | firstname | lastname | age |
o= fomm e fomm e fo———= +
8	Len	Aguirre	42
10	Montana	Maldonado	40
24	Chandler	Oneal	25
30	Pascale	Mcdonald	35
34	Xanthus	Jensen	55
35	Ursula	Dudley	32
39	Alan	Chang	40
6	Lionel	Church	30
25	Alyssa	Guerrero	43
33	Gannon	Bray	24
48	Ramona	Bass	43
76	Maxwell	Mcleod	26
82	Regina	Tillman	58
96	Iola	Herring	31
100	Keane	Sherman	23
o= fomm e fom e fo———= +

100 rows returned

Empty strings are displayed as an empty cell.

sgl-> mode column;
sqgl-> SELECT * from tabl where id = 1;

fom— - R Rttt +
| id | sl | s2 | s3 |
fom— - R Rttt +
| 1 | NULL | | NULL |
fom— - R Rttt +

1 row returned

Appendix A
Shell Utility Commands

For nested tables, identation is used to indicate the nesting under column mode:

sgql-> SELECT * from nested;

e ittt o +
| id | name | details

e ittt o +
| 1 | one | address

| | | city | Waitakere

| | | country | French Guiana

| \ \ zipcode | 7229 |
| | | attributes |
| | | color | blue

| \ \ price | expensive

| | | size | large

| \ | phone | [(08)2435-0742, (09)8083-8862, (08)0742-2526]|
e ittt o +
| 3 | three | address

| \ \ city | Viddalba

		country	Bhutan
\ \ zipcode	280071		
		attributes	
		color	blue

| | | price | cheap

| \ \ size | small

| | | phone | [(08)5361-2051, (03)5502-9721, (09)7962-8693]|
e ittt o +

For example, a table shown in LINE mode, where the result is displayed vertically and one
value is shown per line:

sgl-> mode line;
sql-> SELECT * from users;

> Row 1
fomm - o +
| id | 8 |
| firstname | Len |
| lastname | Aguirre |
| age | 42 |
fomm - o +
> Row 2
fomm - o +
| id | 10 |
| firstname | Montana |
| lastname | Maldonado |
| age | 40
fomm - o +
> Row 3
fomm - o +
| id | 24 |
| firstname | Chandler |
| lastname | Oneal |

ORACLE

ORACLE

100 rows returned

Just as in COLUMN mode, empty strings are displayed as an empty cell:

sql-> mode line;
sql-> SELECT * from tabl where id = 1;

> Row 1

e R +
id	1
sl	NULL
s2	
s3	NULL
e R +

1 row returned

For example, a table shown in JSON mode:

sgl-> mode json;
sql-> SELECT * from users;

{"id":8,"firstname":"Len", "lastname":"Aquirre", "age":42}
{"id":10, "firstname":"Montana", "lastname":"Maldonado", "age":40}
{"id":24,"firstname":"Chandler", "lastname":"Oneal", "age":25}
{"id":30,"firstname":"Pascale", "lastname":"Mcdonald", "age":35}
{"id":34,"firstname":"Xanthus", "lastname":"Jensen", "age":55}
{"id":35,"firstname":"Ursula", "lastname":"Dudley", "age":32}
{"id":39,"firstname":"Alan", "lastname":"Chang", "age":40}
{"id":6,"firstname":"Lionel", "lastname":"Church", "age":30}
{"id":25,"firstname":"Alyssa", "lastname" :"Guerrero", "age":43}
{"id":33,"firstname":"Gannon", "lastname":"Bray", "age":24}
{"id":48,"firstname":"Ramona", "lastname":"Bass", "age":43}
{"id":76,"firstname":"Maxwell", "lastname":"Mcleod", "age":26}
{"id":82,"firstname":"Regina", "lastname":"Tillman", "age":58}
{"id":96,"firstname":"Iola","lastname":"Herring", "age":31}
{"id":100, "firstname":"Keane", "lastname":"Sherman", "age":23}
{"id":3,"firstname":"Bruno", "lastname":"Nunez", "age":49}
{"id":14,"firstname":"Thomas", "lastname":"Wallace", "age":48}
{"id":41,"firstname":"Vivien", "lastname":"Hahn", "age":47}

100 rows returned

Empty strings are displayed as ™.

sgql-> mode json;

sql-> SELECT * from tabl where id = 1;
{ "id" : l, "Sl" : null, IISZH : " H, "53" : HNULL" }

1 row returned

Appendix A
Shell Utility Commands

A-10

output

page

ORACLE

Finally, a table shown in CSV mode:

sql-> mode csv;

sql-> SELECT * from users;
8,Len,Aguirre, 42
10,Montana,Maldonado, 40
24,Chandler,Oneal, 25
30, Pascale,Mcdonald, 35
34,Xanthus, Jensen, 55
35,Ursula,Dudley, 32
39,Alan, Chang, 40
6,Lionel, Church, 30
25,Alyssa,Guerrero, 43
33,Gannon, Bray, 24
48,Ramona, Bass, 43
76,Maxwell,Mcleod, 26
82,Regina,Tillman, 58
96,Iola,Herring, 31

100, Keane, Sherman, 23
3,Bruno,Nunez, 49

14, Thomas,Wallace, 48
41,Vivien, Hahn, 47

100 rows returned

Like in JSON mode, empty strings are displayed as

sql-> mode csv;

sgl-> SELECT * from tabl where id = 1;

1,NULL,"", "NULL"

1 row returned

Note:

values are not supported.

output [stdout | file]

Appendix A
Shell Utility Commands

Only rows that contain simple type values can be displayed in CSV format. Nested

Enables or disables output of query results to a file. If no argument is specified, it shows the

current output.

page [on | <n> | off]

A-11

show faults

show ddl

Appendix A
Shell Utility Commands
Turns query output paging on or off. If specified, n is used as the page height.

If nis O, or "on" is specified, the default page height is used. Setting n to "off" turns paging off.

show faults [-last] [-command <index>]

Encapsulates commands that display the state of the store and its components.

show ddl <table>

The show ddl query retrieves the DDL statement for a specified table. If the table has indexes,
the statement returns the DDLs for the table and the indexes.

Example : Fetch the DDL for a specified table.

The following statement fetches the DDL for the BaggageInfo table.

show ddl BaggageInfo;

Output:

CREATE TABLE IF NOT EXISTS BaggageInfo (ticketNo LONG, fullName STRING,
gender STRING,
contactPhone STRING, confNo STRING, bagInfo JSON, PRIMARY
KEY (SHARD (ticketNo)))

In the following example, the fixedschema contact index exists in the BaggageInfo table. The
statement retrieves the DDLs for the BaggageInfo table and fixedschema contact index on
the table.

show ddl BaggageInfo;

Output:

CREATE TABLE IF NOT EXISTS BaggageInfo (ticketNo LONG, fullName STRING,
gender STRING,
contactPhone STRING, confNo STRING, bagInfo JSON, PRIMARY
KEY (SHARD (ticketNo)))CREATE INDEX IF NOT EXISTS fixedschema contact ON
BaggageInfo (contactPhone)

show indexes

ORACLE

show indexes statement ::= SHOW [AS JSON] INDEXES ON table name

A-12

Appendix A
Shell Utility Commands

The show indexes statement provides the list of indexes present on a specified table. The
parameter AS JSON is optional and can be specified if you want the output to be in JISON
format.

Example 1: List indexes on the specified table

The following statement lists the indexes present on the users?2 table.

SHOW INDEXES ON users2;
indexes
idx1

Example 2: List indexes on the specified table in JSON format

The following statement lists the indexes present on the users2 table in JSON format.

SHOW AS JSON INDEXES ON users2;
{"indexes"
["idx1"]

show namespaces

show [AS JSON] namespaces

Shows a list of all namespaces in the system.

For example:

sgl-> show namespaces

namespaces
nsl
sysdefault
sql-> show as json namespaces
{"namespaces" : ["nsl","sysdefault"]}
show query

show query <statement>

Displays the query plan for a query.

For example:

sql-> show query SELECT * from Users;
RECV([6], O, 1, 2, 3, 4)
[
DistributionKind : ALL PARTITIONS,
Number of Registers :7,
Number of Iterators :12,
SFW([e], 0, 1, 2, 3, 4)

ORACLE e

Appendix A
Shell Utility Commands

FROM:
BASE_TABLE([S], 0, 1, 2, 3, 4)
[Users via primary index] as $$Users

SELECT:

*

show regions

show regions_statement ::= SHOW [AS JSON] REGIONS

The show regions statement provides the list of regions present in a multi-region Oracle
NoSQL Database setup. The parameter AS JSON is optional and can be specified if you want
the output to be in JSON format.

Example 1: Fetching all regions in a multi-region database setup
SHOW REGIONS;
regions

my regionl (remote, active)
my region2 (remote, active)

Example 2: Fetching all regions in a multi-region database setup in JSON format

SHOW AS JSON REGIONS;

{"regions" : [
{"name" : "my regionl", "type" : "remote", "state" : "active"},
{"name" : "my region2", "type" : "remote", "state" : "active"}

1}

show roles

show [as Jjson] roles | role <role name>

Shows either all the roles currently defined for the store, or the named role.
show tables

show [as json] {tables | table table name}

Shows either all tables in the data store, or one specific table, table_name.

Specify a fully-qualified table name as follows:

ORACLE s

Appendix A
Shell Utility Commands

Entry specification

Description

table name

Required. Specifies the full table name. Without further
qualification, this entry indicates a table created in the
default namespace (sysdefault), which you do not have to

specify.

parent-table.child-table

Specifies a child table of a parent. Specify the parent
table followed by a period (.) before the child name. For
example, if the parent table is Users, specify the child
table named MailingAddress as
Users.MailingAddress.

namespace-name:table-name

Specifies a table created in the non-default namespace.
Use the namespace followed by a colon (:). For example,
to reference table Users, created in the Sales
namespace, enter table_name as Sales:Users.

The following example indicates how to list all tables, or just one table. The empty
tableHierarchy field indicates that table t1 was created in the default namespace:

sql-> show tables

tables
SYS$SIndexStatsLease
SYSSPartitionStatsLease
SYSSSGAttributesTable
SYSSTableStatsIndex
SYSSTableStatsPartition
nsl0:t10
parent
parent.child
sgl
tl

sql-> show table tl
tableHierarchy
tl

To show a table created in a namespace, as shown in the list of all tables, fully-qualify
table name as follows. In this case, tableHierarchy field lists namespace ns1 in which table
t1 was created. The example also shows how the table is presented as json:

sql-> show tables;

tables
SYS$IndexStatsLease
SYSSPartitionStatsLease
SYSSSGAttributesTable
SYSSTableStatsIndex
SYSSTableStatsPartition
nsl:foo
nsl:tl

sqgl-> show table nsl:tl;

tableHierarchy (namespace nsl)
tl

ORACLE

A-15

show users

timeout

ORACLE

Appendix A
Shell Utility Commands

sql-> show as json table nsl:tl;
{"namespace": "nsl"
"tableHierarchy" : ["tl1l"]}

show [as json] users | user <user name>

Shows either all the users currently existing in the store, or the named user.

timeout [<timeout ms>]

The timeout command configures or displays the request timeout for this session in
milliseconds(ms).

The request timeout is the amount of time that the client will wait to get a response to a request
that it has sent.

If the optional timeout ms attribute is specified, then the request timeout is set to the specified
value.

If the optional timeout ms attribute is not specified, then the current value of request timeout is
displayed.

Example A-1 timeout

The following example gets the current value of the request timeout.

sgql-> timeout
Request timeout used: 5,000ms

Example A-2 timeout

The following example set the request timeout value to 20000 milliseconds (20 seconds).

sgl-> timeout 20000
Request timeout used: 20,000ms

Note:

A shell command may require multiple requests to a server or servers. The timeout
applies to each such individual request. A shell command sends out multiple
requests and has to wait for each of them to return before the command is finished.
As a result, a shell command may have to wait for longer time than the specified
timeout and this total wait could be greater than the wait time of the individual
request.

A-16

Appendix A
Shell Utility Commands

timer
timer [on | off]
Turns the measurement and display of execution time for commands on or off. If not specified,
it shows the current state of timer. For example:
sgl-> timer on
sql-> SELECT * from users where id <= 10 ;
N, T e o N +
| id | firstname | lastname | age |
N, T e o N +
8	Len	Aguirre	42
10	Montana	Maldonado	40
6	Lionel	Church	30
3	Bruno	Nunez	49
2	Idona	Roman	36
4	Cooper	Morgan	39
7	Hanae	Chapman	50
9	Julie	Taylor	38
1	Dean	Morrison	51
5	Troy	Stuart	30
N, T e o N +
10 rows returned
Time: Osec 98ms
verbose
verbose [on | off]
Toggles or sets the global verbosity setting. This property can also be set on a per-command
basis using the -verbose flag.
Version

version

Display client version information.

ORACLE Jr

	Contents
	1 Introduction to SQL for Oracle NoSQL Database
	SQL Program
	EBNF Syntax
	Comments
	Identifiers
	Literals
	Operator Precedence
	Reserved Words
	Case Sensitivity
	Constraints

	2 Oracle NoSQL Database Data Model
	Atomic Data Types
	Complex Data Types
	JSON Data Type
	Wildcard Data Types
	Data Type Hierarchy
	Data Type Definitions

	3 Namespace Management
	CREATE NAMESPACE Statement
	SHOW NAMESPACES Statement
	DROP NAMESPACE Statement
	Namespace Resolution
	Namespace Scoped Privileges
	Granting Authorization Access to Namespaces

	4 Region Management
	CREATE REGION Statement
	SHOW REGIONS Statement
	DROP REGION Statement

	5 Table Management
	CREATE TABLE Statement
	SHOW TABLES Statement
	DESCRIBE TABLE Statement
	Table Hierarchies
	Using JSON Collection Tables
	Using the IDENTITY Column
	Creating Tables With an IDENTITY Column

	Using the UUID data type
	Using the MR_COUNTER datatype
	Using CRDT datatype in a multi-region table
	Create table using MR_COUNTER datatype

	Sequence Generator
	DROP TABLE Statement
	ALTER TABLE Statement
	Altering an IDENTITY Column
	Add or Remove a UUID column
	Add or Remove an IDENTITY column
	Add or Remove an MR_COUNTER column

	6 SQL Query Management
	Expressions
	Sequences
	Sequence Types
	Variable Declaration
	SELECT Expression
	FROM Clause
	WHERE Clause
	GROUP BY Clause
	Using Aggregate Functions
	Sequence Aggregate Functions

	ORDER BY Clause
	SELECT Clause
	LIMIT Clause
	OFFSET Clause

	Path Expressions
	Field Step Expressions
	Map-Filter Step Expressions
	Array-Filter Step Expressions
	Array-Slice Step Expressions

	Comparison Expressions
	Logical Operators: AND, OR, and NOT
	IS NULL and IS NOT NULL Operators
	Value Comparison Operators
	Sequence Comparison Operators
	BETWEEN Operator
	IN Operator
	Regular Expression Conditions
	Exists Operator
	Is-Of-Type Operator

	Concatenation Operator
	Arithmetic Expressions
	Primary Expressions
	Parenthesized Expressions
	Constant Expressions
	Column References
	Variable References
	Array and Map Constructors
	Case Expressions
	Cast Expression
	Extract Expressions
	Function Calls
	Sequence Transform Expressions

	Unnest Arrays & Maps
	Example: Using unnesting with a GROUP BY clause

	Joins
	Using NESTED TABLES clause to query multiple tables in the same hierarchy
	Example: Using NESTED TABLES clause to query multiple tables in the same hierarchy
	Left Outer Join (LOJ)
	Different scenarios of using an LOJ
	Limitations of LOJ
	Nested tables Vs LOJ
	Example: Using Left Outer Joins

	7 Data Row Management
	INSERT Statement
	Inserting Rows into JSON Collection Tables
	Inserting Rows with an IDENTITY Column
	Inserting rows into a table with a UUID column
	Inserting rows with an MR_COUNTER column
	Upsert statement
	Updating rows of a table with a UUID column
	DELETE Statement
	UPDATE Statement
	Update Clauses
	SET Clause
	ADD Clause
	PUT Clause
	REMOVE Clause
	SET TTL Clause

	Updating rows with an IDENTITY Column
	Updating rows with an MR_COUNTER column
	Example: Updating Rows
	Example: Updating JSON Data
	Example: Updating JSON collection tables
	Example: Updating TTL
	Example: Updating IDENTITY defined as GENERATED ALWAYS
	Example: Updating IDENTITY defined as GENERATED BY DEFAULT

	JSON Collection Table Example

	8 Indexes
	About Indexes
	CREATE INDEX Statement
	Classification of Indexes
	Single Field Index
	Composite Index
	Fixed Schema Index
	JSON Index
	Simple Index
	Multikey Index
	Nested Multikey Index
	Composite Multikey Index
	Specifications & Restrictions on Multikey Indexes

	Index on JSON Collection Tables
	Indexes on Functions
	Examples of creating indexes on functions

	SHOW INDEXES Statement
	DESCRIBE INDEX Statement
	DROP INDEX Statement
	Appendix

	9 Query Optimization
	Using Indexes for Query Optimization
	Finding Applicable Indexes
	Examples: Using Indexes for Query Optimization
	Optimizing unnesting queries with the UNNEST clause

	Choosing the Best Applicable Index
	Appendix

	10 Query Plan
	Overview of a query plan
	Examples of query execution plan
	Example 1 : Using a covering index in a query plan with only index scans
	Example 2 : Using a covering index in a query plan with index scans and index predicates
	Example 3: Using a non-covering index in a query plan with index scans
	Example 4: Sort the data using a Covering index
	Example 5: Sort the data using a field not part of the index
	Example 6: Group the data using a Covering index
	Example 7: Group data with fields not part of the index

	11 GeoJson Data Management
	About GeoJson Data
	Lines and Coordinate System
	Restrictions on GeoJson Data
	Searching for GeoJson Data
	Indexing GeoJson Data

	12 Built-in Functions
	Functions on Complex Values
	Functions on Sequences
	Functions on Timestamps
	timestamp_add function
	timestamp_diff function
	get_duration function
	timestamp_ceil function
	timestamp_floor or timestamp_trunc function
	timestamp_round function
	timestamp_bucket function
	format_timestamp function
	parse_to_timestamp function
	to_last_day_of_month function
	Timestamp extract functions
	Date extract functions
	week/isoweek functions
	Timestamp index extract functions

	current_time_millis function
	current_time function
	Supported units

	Function to generate a UUID string
	Functions on Rows
	Functions on GeoJson Data
	Functions on Strings
	substring Function
	concat Function
	upper Function
	lower Function
	trim Function
	ltrim Function
	rtrim Function
	length Function
	contains Function
	starts_with Function
	ends_with Function
	index_of Function
	replace Function
	reverse Function

	Function to Convert String to JSON
	Functions of Mathematical Operations
	abs function
	arc cosine function
	arc sine function
	arc tan function
	arc tan2 function
	ceil function
	cosine function
	cotangent function
	degrees function
	Euler function
	exp function
	floor function
	ln function
	log function
	log10 function
	pi function
	power function
	radians function
	random function
	round function
	sign function
	sine function
	square root function
	tangent function
	truncate function
	Additional Examples

	A Introduction to the SQL for Oracle NoSQL Database Shell
	Running the SQL Shell
	Configuring the shell
	Shell Utility Commands
	connect
	consistency
	describe
	durability
	exit
	help
	history
	import
	load
	mode
	output
	page
	show faults
	show ddl
	show indexes
	show namespaces
	show query
	show regions
	show roles
	show tables
	show users
	timeout
	timer
	verbose
	version

