Oracle® NoSQL Database
Concepts Guide

Release 25.3
E85371-34
October 2025

ORACLE"

Oracle NoSQL Database Concepts Guide, Release 25.3
E85371-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Conventions Used in This Book i

1 Introduction to Oracle NoSQL Database

NoSQL Database Server Licensing 2
NoSQL Database Client Licensing 2
NoSQL Database Option Differences 3
Architecture 3
Replication Nodes and Shards 5
Replication Factor 6
Partitions 6
Zones !
Arbiter Nodes 7
Topologies 7
Using Master Affinity Zones 8
Benefits of Master Affinity Zones 8

Adding a Master Affinity Zone 9

Losing a Master Affinity Zone Node 11
Multi-Region Architecture 11
Cross Region Service 13
Life Cycle of Multi-Region Tables 16
Using CRDT datatype in a multi-region table 21
Data Models 22
Transactions in NoSQL 23
Consistency 23
Durability 24
Quorum 24
Administration 25
KVLite 26
Saving Admin CLI History 26
Monitoring 26
Troubleshooting 27
Access and Security 27

Concepts Guide
E85371-34 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page i of ii

Integration 27

Hadoop Integration 27
Integration with Elastic Search for Full Text Search 28
Oracle External Tables Integration 28
Oracle GoldenGate Integration 28

Concepts Guide
E85371-34 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page ii of ii

ORACLE’

Preface

This document introduces Oracle NoSQL Database.

This book is aimed at technical users, primarily database administrators and developers who
are new to Oracle NoSQL Database.

Conventions Used in This Book

The following typographical conventions are used within this manual:
Information that you are to type literally is presented in nonospaced font.

Variable or non-literal text is presented in italics. For example: "Go to your KVHOME directory."

@ Note

Finally, notes of special interest are represented using a note block such as this.

Concepts Guide
E85371-34 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Pageiofi

Introduction to Oracle NoSQL Database

Concepts Guide
E85371-34

Welcome to Oracle NoSQL Database, offering a horizontally scalable distributed storage for
key-value pairs, with scalable throughput, and great performance. Oracle NoSQL Database
services network requests to store and retrieve data, accessing data as either tables or key-
value pairs. Oracle NoSQL Database services data requests with low latency, high throughput,
and predictable data consistency, based on how you configure the store.

Oracle NoSQL Database uses Oracle Berkeley DB Java Edition as its underlying storage
engine. For more information about Oracle Berkeley DB Java Edition, see Oracle Berkeley DB
Java Edition.

Oracle NoSQL Database offers full Create, Read, Update and Delete (CRUD) operations with
adjustable durability guarantees. Oracle NoSQL Database is designed with high availability
(HA), excellent throughput, and low latency, while requiring minimal administrative interaction.

Oracle NoSQL Database provides performance scalability. To increase performance, you can
add hardware. If your performance is sufficient for your needs, you can purchase and manage
fewer hardware resources.

Oracle NoSQL Database is designed for applications that require network-accessible data with
user-definable read/write performance levels. A typical example is a web application servicing
requests across the traditional three-tier architecture: web server, application server, and back-
end database. In this configuration, Oracle NoSQL Database should be installed behind the
application server, either taking the place of the back-end database, or working alongside it. To
make use of Oracle NoSQL Database, you must supply code to run on the application server.

An application makes use of Oracle NoSQL Database by performing network requests against
a data store using either Java direct driver or Oracle NoSQL Database language SDKs. The
Java direct driver is packaged with the Oracle NoSQL Database software. You can use the
Java APIs supported by the Java direct driver to access data from the data store. The Oracle
NoSQL Database language SDKs require a proxy server, which translates network activity
between the SDK and the Oracle NoSQL Database data store.

* To use Java direct driver, link the Oracle NoSQL Database driver to your application as a
Java library (.jar file). Your code can then access any of the Java APIs that the library
supplies. See Java Direct Driver Developer's Guide.

* To use alanguage SDK, link the Oracle NoSQL Database language SDK to your
application to access the library and create application requests. Configure the Oracle
NoSQL Database Proxy. The Proxy allows the Oracle NoSQL Database language SDK
access to the Oracle NoSQL Database data store. To learn more about the Proxy
configuration, see Oracle NoSQL Database Proxy.

The language SDKs are compatible with NoSQL on-premises as well as the cloud service.
Therefore, it is advisable to write your application to the language SDK APIs for ultra-flexibility.
If required, the application can run against the cloud service or on-premises without any
application code changes, other than the authentication. For ultra-low latency, it is advisable to
consider the Java direct driver, as this driver removes a network hop from each request.

Oracle NoSQL Database language SDKs support Go, Java, .NET, Node.js/TypeScript, Python,
and Rust programming languages and Spring framework.

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 1 of 29

ORACLE Chapter 1
NoSQL Database Server Licensing

® Note
Oracle NoSQL Database supports both direct driver and language SDK for Java.

Table 1-1 API SDK Reference
]

Language SDK Documentation Libraries
Go GO SDK API Guide Oracle NoSQL Go SDK
Java Java SDK API Guide Oracle NoSQL Java SDK
.NET .NET SDK API Guide Oracle NoSQL Dotnet SDK
Node.js/TypeScript Node.js SDK API Guide Oracle NoSQL Node SDK
Python Python SDK API Guide Oracle NoSQL Python SDK
Rust Rust SDK API Guide Oracle NoSQL Rust SDK
Spring SDK for Spring Data API Guide Oracle NoSQL Spring SDK
® Note

Oracle NoSQL Database requires Java 11 or later version. Because Oracle NoSQL
Database is tested using Java 17, it is recommended to use that Java version with
Oracle NoSQL Database.

Oracle NoSQL Database also provides SQL for Oracle NoSQL Database, which is an easy to
use SQL-like language that supports read-only queries and data definition (DDL) statements.
Use this SQL-like language to access table data for read-only queries and DDL statements.

To follow along with the query examples run with the interactive shell and language SDKs, see
Developers Guide.

To execute queries using the Java API, see Introduction to SQL for Oracle NoSQL Database.

For a more detailed description of the SQL language (DDL, DML, and queries), see SQL
Reference Guide .

NoSQL Database Server Licensing

Oracle NoSQL Database Server is available with two licensing options: Oracle NoSQL
Database Community Edition (CE) and Oracle NoSQL Database Enterprise Edition (EE).

For a description on these two licenses, see NoSQL Database Option Differences.

NoSQL Database Client Licensing

Oracle NoSQL Database client APIs are released as open source. Clients ship with source
code and are released under the Apache 2.0 License. You use the client APIs to access Oracle
NoSQL Database servers using either the Community Edition (CE) or Enterprise Edition (EE)
licenses.

Oracle NoSQL Database also supports access to a data store for client applications using
Oracle NoSQL Database language SDKs. The SDKs are supported for C, Go, Java, .NET,

Concepts Guide
E85371-34 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 2 of 29

ORACLE Chapter 1
NoSQL Database Option Differences

Node.js, Python, Rust, and Spring. The SDK drivers are released under the Universal
Permissive License (UPL), Version 1.0.

NoSQL Database Option Differences

Oracle NoSQL Database Server is available in two different options: Community Edition (CE),
and Enterprise Edition (EE).
Community Edition (CE)

Community Edition is released under the Apache 2.0 License, and ships with source code.

@® Note

The Community Edition is not always at the same release number as EE. For
example, Enterprise Edition can be shipping few versions ahead of Community
Edition.

Enterprise Edition (EE)

Enterprise Edition requires a commercial license. It does not ship with source code.

Feature Differences between EE and CE

Oracle NoSQL Database Server Enterprise Edition includes new and updated features with
each release. However, Community Edition is neither released as frequently as the Enterprise
Edition, nor can it support every EE feature. Currently, CE does not support these features:

* Oracle GeoJSON Data support

» Kerberos Authentication Service integration

* Oracle Database External Table integration

« Oracle Event Processing integration - Streams Processor Engine
e Oracle Wallet integration for external password storage

* Multi Region Tables

* Secure Elastic Search

Architecture

Oracle NoSQL Database applications read and write data by performing network requests
against an Oracle NoSQL Database data store. The data store is a collection of Storage
Nodes, each of which hosts one or more Replication Nodes. Data is automatically spread
across these Replication Nodes by internal data store mechanisms. Given a traditional three-
tier web architecture, the data store either takes the place of your back-end database, or runs
alongside it.

Optionally, a data store installation can be spread across multiple physical locations, each of
which is called a zone. Zones are described in Zones.

Concepts Guide
E85371-34 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 3 of 29

ORACLE’

@® Note

Chapter 1
Architecture

Replication Nodes are implemented using Berkeley DB, Java Edition (JE). JE is an
enterprise-class, transaction-protected database, which is fully described in the Oracle

Berkeley DB Java Edition.

The store contains multiple Storage Nodes. A Storage Node is a physical (or virtual) machine
with its own local storage. The machine is intended to be commodity hardware. While not a
requirement, each storage node is typically identical to all other Storage Nodes within the

store.

The following illustration depicts a typical architecture used by an application that uses an
Oracle NoSQL Database. Specifically, three of nine Storage Nodes each host an Admin
process and a Replication Node. The remaining Storage Nodes each host a Replication node.

Figure 1-1 Typical Architecture for Oracle NoSQL Database Store

Load Balancers and Web Servers

Y

¥

¥

— App Server

No SQL DB
Application Code

App Server

No SQL DB

Application Code

App Server

Application Code

No SQL DB

Traditional
> Backend Database

Concepts Guide
E85371-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

L J

Storage
Node

Admin

Replication

Node

Storage
MNode

Replication

MNode

Storage
Node

Replication

MNode

KVStore

Storage
Mode

Admin

Replication
Node

Storage
Node

Replication
Node

Storage
Node

Heplication
Node

Storage
Node

Admin

Replication
Node

Storage
Node

Replication
Node

Storage
Node

Replication
Node

October 12, 2025
Page 4 of 29

ORACLE’

Replication

Concepts Guide
E85371-34

Chapter 1
Architecture

Every Storage Node hosts one or more Replication Nodes as determined by its capacity. A
Storage Node's capacity serves as a rough measure of the hardware resources associated
with it. Stores can contain Storage Nodes with different capacities, and Oracle NoSQL
Database ensures that a Storage Node is assigned a proportional load size to its capacity.

A Replication Node, in turn, contains a subset of the store's data. Storage node data is
automatically divided evenly into logical collections called partitions. Every Replication Node
contains at least one, and typically many, partitions. Partitions are described in greater detail in
Patrtitions.

Finally, each Storage Node contains monitoring software that captures information ensuring the
Replication Nodes that it hosts are running and healthy.

For more information on how to associate capacity with a Storage Node and know the best
way to balance the number of Storage Nodes and Replication Nodes, see Determining Your
Store's Configuration in the Administrator's Guide.

Nodes and Shards

At a high level, you can think of a Replication Node as a single database containing tables or
key-value pairs. Storage Nodes host one or more Replication Nodes. Because hosting a
Replication Node depends on a healthy amount of resources, generally, Storage Nodes host
only a single Replication Node. However, for installations with hardware that has abundant
resources (memory, CPUs, and disks), Storage Nodes can, and do, host multiple Replication
Nodes.

Your store's Replication Nodes are organized into shards. A single shard contains multiple
Replication Nodes. Each shard has a master node. The master node performs all database
write activities. Each shard also contains one or more read-only replicas. The master node
copies all new write activity data to the replicas. The replicas are then used to service read-
only operations.

While there can be only one master node per shard at any given time, any of the other shard
members can become a master node. An exception to this is for nodes in a secondary zone as
described below.

The following illustration shows how the data store is divided up into shards:

Figure 1-2 Data store Shards

KV Stora
Replication Factor = 3

Shard 1 Shard 2 Shard n

Storage MNode 1: Storage Node 4: Storage Mode SN 3n-2:
Replication Master Replication Master Replication Master

Storage Node 2: Storage Mode 5. | f====+ Storage Mode SN 3n-1:

Replica Replica Replica
Storage Node 3: Storage Mode 6: Storage Mode SN 3n:

Replica Replica Replica

If the machine hosting the master node fails in any way, the master automatically fails over to
one of the other nodes in the shard. One of the replica nodes is promoted automatically to
master.

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 5 of 29

ORACLE

Replication

Partitions

Concepts Guide
E85371-34

Chapter 1
Architecture

Production data stores should contain multiple shards. At installation time you provide
information that allows Oracle NoSQL Database to automatically decide how many shards the
store should contain. The more shards that your store contains, the better your write
performance is because the store contains more nodes that are responsible for servicing write
requests.

Factor

The number of nodes belonging to a shard is called its Replication Factor. The larger a shard's
Replication Factor, the faster its read throughput, because there are more machines servicing
the read requests. However, a large replication factor reduces write performance, because
there are more machines to which writes must be copied.

A store can be installed across multiple physical locations called zones. You set a Replication
Factor on a per-zone basis. Once you set the Replication Factor for each zone in the store,
Oracle NoSQL Database makes sure the appropriate number of Replication Nodes are created
for each shard residing in every zone in your store. Here are the terms used to describe these
aspects of Oracle NoSQL Database:

* Replication Factor: The number of nodes belonging to a shard.

e Zone Replication Factor: The number of copies, or replicas, maintained in a zone.
e Primary Replication Factor: The total number of replicas in all primary zones.

» Secondary Replication factor: The total number in replicas in all secondary zones

» Store Replication Factor The total number of replicas in all zones across the entire store.

For additional information on how to identify the Primary Replication Factor and the
implications of its value, as well on multiple zones and replication factors, see Replication
Factor in the Administrator's Guide.

All data in the store is accessed by one or more keys. A key might be a column in a table, or it
might be the key portion of a key/value pair.

Keys are placed in logical containers called partitions, and each shard contains one or more
partitions. Once a key is placed in a partition, it cannot be moved to a different partition. Oracle
NoSQL Database distributes records evenly across all available partitions by hashing each
record's key.

As part of your planning activities, you must decide how many partitions your store should
have. You cannot configure the number of partitions after the store has been installed. For
information about how to plan your store, see Initial Capacity Planning in the Administrator's
Guide.

You can expand and change the number of Storage Nodes in use by the store. The store is
then reconfigured to take advantage of the new resources by adding new shards. When this
happens, existing data is spread across new and old shards by redistributing partitions from
one shard to another. For this reason, it is desirable to have a large number of partitions to
support fine-grained reconfiguration of your store.

As a general guideline, each shard should have at least 10 to 20 partitions. The number of
partitions should be evenly divisible by the number of shards. Since the number of partitions
cannot be changed after the initial deployment, plan the number of partitions for the maximum
size of your store in the future. For example, while there is overhead in configuring a large
number of shards, it is reasonable to specify a partition number that is 100 times the maximum
number of shards you expect your store to contain.

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 6 of 29

ORACLE

Zones

Chapter 1
Architecture

A zone is a physical location that supports high capacity network connectivity between the
Storage Nodes deployed within it. Each zone has some level of physical separation from other
zones. Typically, each zone includes redundant or backup power supplies, redundant data
communications connections, environmental controls (for example: air conditioning, fire
suppression), and security devices. A zone can represent a physical data center building, the
floor of a building, a room, pod, or rack, depending on the particular deployment.

Oracle recommends installing and configuring your store across multiple zones. Having
multiple zones provides fault isolation, and increases data availability in the event of a single
zone failure. Multiple zones help mitigate systemic failures that affect an entire physical
location, such as a large scale power or network outage.

There are two types of zones — primary and secondary. Primary zones are the default. They
contain nodes that can serve as masters or replicas. Secondary zones contain nodes that can
serve only as replicas. You can use secondary zones to make a copy of the data available at a
distant location, or to maintain an extra copy of the data to increase redundancy or read
capacity.

Only primary zones can have a Replication Factor equal to zero. Zero capacity Storage Nodes
are used for Arbiter Nodes, which only primary zones can host.

You can use the command line interface to create and deploy one or more zones. Each zone
hosts the deployed storage nodes. For additional information on zones and how to create
them, see Create a Zone in the Administrator's Guide.

Arbiter Nodes

Topologies

Concepts Guide
E85371-34

An Arbi ter Node is a lightweight process that is capable of supporting write availability in two
situations. First, when the primary replication factor is two and a single Replication Node
becomes unavailable. Second, when two Replication Nodes are unable to communicate to
determine which one of them is the master. The role of an Arbiter Node is to participate in
elections and respond to acknowledge requests in these situations.

An Arbiter Node does not host any data. You create a Storage Nodes with zero storage
capacity to host an Arbiter Node. While you can allocate Arbiter Nodes on Storage Nodes with
a capacity greater than zero, those Arbiter Nodes have a lower priority during allocation than
those on zero capacity Storage Nodes.

The Arbiter Node is allocated on a Storage Node outside of the shard. An error occurs if there
are not enough Storage Nodes to host an Arbiter Node located on a different Storage Node
from other shard members. The Arbiter Node provides write availability in the absence of a
single Storage Node. The pool of Storage Nodes in a primary zone configured to host Arbiter
Nodes is used for allocating an Arbiter Node.

For more information on Arbiter Nodes, see Deploying an Arbiter Node Enabled Topology in
the Administrator's Guide.

A topology is the collection of zones, storage nodes, shards, replication nodes, and
administrative services that make up your NoSQL Database store. A deployed store has one
topology that describes its state at a given time.

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 7 of 29

ORACLE

Chapter 1
Architecture

After initial deployment, the topology is laid out so as to minimize the possibility of a single
point of failure for any given shard. This means that while a Storage Node might host more
than one Replication Node, those Replication Nodes are never from the same shard. This
improves the chances that the shard will have continuous availability for reads and writes, even
if a hardware failure takes down the host machine.

Arbiter Nodes are automatically configured in a topology if the primary replication factor is two
and a zone is configured to host Ar hi t er Nodes.

Topologies can be changed to achieve different performance characteristics, or in reaction to
changes in the number or characteristics of the Storage Nodes. Changing and deploying a
topology is an iterative process. For information on how to use the command line interface to
create, transform, view, validate and preview a topology, see Steps for Changing the Store's
Topology in the Administrator's Guide.

Using Master Affinity Zones

Master Affinity zones let you specify which Primary Zone handles write requests for your client
applications.

Oracle NoSQL Databases use zones. Zones duplicate the entire data store, spreading the data
store and load across multiple physical locations. Having zones helps to avoid catastrophic
data loss and operational disruptions. A zone consists of a number of Storage Nodes (SNs)
and Replication Nodes (RNs). See Architecture in the Concepts Guide.

Two kinds of zones exist:

e Primary zones — can host both master nodes and replication nodes, though they are not
required to do so. Data read and write requests go to Primary zones configured to handle
such requests.

* Secondary zones — have no master node. They handle only read requests from client
applications.

Each shard has a single Master Node, which is capable of writing data to all RNs. Regardless
of zone type, all zones require high quality network connectivity to maintain optimal
performance for writing data to the RNs, and accessing data from RNs for application data
requests.

You choose which Primary zones have Master Affinity, which provides a way for you to send
write requests to a specific Primary zone. Setting the - mast er - af fi ni ty property confirms its
designation as such, while keeping the default -no- mast er - af fi ni ty property designates that
a zone is not a Master Affinity zone. Using the —mast er - af fi ni t y property organizes Master
nodes from different shards into the Master Affinity zone, providing several advantages:

e Master Affinity zones service high demand write requests across shards.

« When a Master Node fails, a replacement from the Master Affinity zone is available to take
over from the failed node, with virtually no lag in service.

¢ RNs in the Master Affinity zone perform a standard election process to determine the
Master Node that assumes the role of the failed Master Node.

Using Master Affinity zones successfully requires knowledge of the zones that are in closest
proximity to your client applications with the highest demands. The client application is then
predictably serviced by both the Master Node and RNs in the Master Affinity zone.

Benefits of Master Affinity Zones

Concepts Guide
E85371-34

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 8 of 29

ORACLE

Chapter 1
Architecture

Master affinity is a zone property. A zone either has the Master Affinity property (- mast er -
affinity), or does not (- no- mast er - af fi ni ty). Most likely, you will choose a specific Primary
Zone to become a Master Affinity zone because that zone is ideally suited to service
demanding client write requests. The candidate zone is in close proximity to the application
demands, and has high quality communication capabilities to service them.

You can set the Master Affinity property only on Primary Zones. Once you do, only nodes in
Master Affinity zones can become masters during a failover. Having a Master Affinity zone with
one or more Master nodes supports both low latency write activities and high availability.

Typically, when a Master Node fails, the Replication Nodes (RNs) enter a selection process to
elect a new Master node. The election involves an algorithmic approach using, among other
factors, a criteria to elect the RN with the most recent data. Once a zone is a Master Affinity
zone, and a Master Node fails, a similar process occurs. When a new Master node exists, write
requests are automatically directed to the new Master, and absolute consistency requests are
serviced by the new Master in the Master Affinity zone.

All storage nodes (SNs) can determine if they are part of a Master Affinity zone. If they are not
part of a Master Affinity zone, they help determine which SNs are candidates to host RNs that
will transfer to the Master Affinity zone as potential Master Nodes during election. By choosing
and assigning RNs to a Master Affinity zone, if the current Master node fails, the next
applicable node will assume its responsibilities.

Adding a Master Affinity Zone

Concepts Guide
E85371-34

Describes the Master Affinity zone parameter, and the effects of setting it.

Using Master Affinity zones is optional. By default, after upgrading to the current release, all
zones are set to - no- mast er - af fi ni ty. To use Master Affinity, you change the zone property
manually. The Master Affinity zone property affects only the Replication Node masters, and has
no effect on the database Admin masters. This section describes how to use Master Affinity
zones, and what effects they can have on your operations.

Your first choice is to determine which zones should have Master Affinity. The chosen zones
must be in close physical proximity to the applications they serve. In this way, a Master Affinity
zone provides the lowest latency write performance.

As an example, the following topology is for two (2) shards (r g1 and r g2) with a replication
factor of three (3), described as a 2 * 3 data store, where r g2-rnl and r g1-r n2 are the master
nodes in znl and zn2, respectively:

Storage Node [snl] on | ocal host: 5100 Zone: [name=1 id=znl
t ype=PRI MARY al | owAr bi t ers=f al se Status: RUNNI NG
Adm n [adm ni] St at us: RUNNI NG, MASTER
Rep Node [rgl-rnl] St at us: RUNNI NG, REPLI CA
Rep Node [rg2-rnl] St at us: RUNNI NG, MASTER
Storage Node [sn2] on | ocal host: 5200 Zone: [name=2 id=zn2
t ype=PRI MARY al | owAr bi t ers=f al se Status: RUNNI NG
Adm n [adm n2] St at us: RUNNI NG, REPLI CA
Rep Node [rgl-rn2] St at us: RUNNI NG, MASTER
Rep Node [rg2-rn2] St at us: RUNNI NG, REPLI CA
Storage Node [sn3] on | ocal host: 5300 Zone: [name=3 id=zn3
t ype=PRI MARY al | owAr bi t ers=f al se Status: RUNNI NG
Adm n [adm n3] St at us: RUNNI NG, REPLI CA
Rep Node [rgl-rn3] St at us: RUNNI NG, REPLI CA
Rep Node [rg2-rn3] St at us: RUNNI NG, REPLI CA

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 9 of 29

ORACLE Chapter 1

Architecture

Here are the zones before using Master Affinity. Primary Zones 1 and 2 each have a master

Concepts Guide
E85371-34

node in their respective shards (r g1 and r g2):

Figure 1-3 Zone Distribution Before Master Affinity

Primary Zone 1 “ Primary Zone 2 1 Primary Zone 3 “ Secondary Secondary
Zone 4 Zone 5
No-Master- No-Master- No-Master-
Affinity Affinity Affinity
shard 1
Replica Master Replica Replica Replica
rgl-rni rg1-rm2 rgl-m3 rgl-r4 rgi1-m5
hard Master Replica Replica Replica Replica
shard 2 rg2-rni rg2-rn2 rg2-rm3 rg2-md rg2-m5

After choosing the Primary Zone best suited for having Master Affinity, set the —nmast er -
affinity property as follows:

e When deploying a zone for the first time, use the pl an depl oy- zone command.
» After deploying a zone, use the t opol ogy change-zone-mast er-af fini ty command.

For example, here is the pl an depl oy- zone command being used as part of configuring the
store myst or e to change the mast er - af fi ni ty zone property. In this example, you set the
mast er-af finity property for Zone 2.

configure -nane nystore

pl an depl oy-zone -nane 1 -rf 1 -no-master-affinity -wait
pl an depl oy-zone -name 2 -rf 1 -master-affinity -wait

pl an depl oy-zone -name 3 -rf 1 -wait

@® Note

When Master Affinity is in effect for Zone 2, both master nodes for the two shards are
placed in Zone 2.

Figure 1-4 Zone Distribution After Master Affinity

Primary Zone 1 Primary Zone 2 Primary Zone 3 Secondary Secondary
Zone 4 Zone 5
No-Master- Master- No-Master-
Affinity Affinity Affinity
shard 1
Replica Master Replica Replica Replica
rgl-rmi rgl-rn2 rg1-r3 rg1-rn4 rg1-rn5
shard 2 Replica Master Replica Replica Replica
rg2-rmi rg2-rn2 rg2-rn3 rg2-rn4 rg2-rn5

Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 10 of 29

ORACLE Chapter 1
Multi-Region Architecture

Losing a Master Affinity Zone Node

Describes what occurs when a Master Node fails in a Master Affinity Zone.

After your initial setup, you determine which Primary zone will be a Master Affinity zone. Using
Master Affinity zones optimizes write requests to Master Nodes in that zone. The Storage
Nodes (SNs) can detect if they are part of a Master Affinity zone. If an SN is not part of a zone
itself, it detects which SNs are part of a Master Affinity zone.

If a Master Affinity zone master node fails, the RNs detect if an applicable node exists within
the zone. For example, the Master Affinity zone may have another master node. If another
master node is not available, RNs elect the best candidate, or have applicable RNs from other
zones migrate into the Master Affinity zone for Master Node consideration. Such zone
realignment occurs automatically to support the Master Affinity zone.

Finally, the RNs vote to determine which node should become the next Master node. For voting
and deciding on a new master node, only the highest performance RNs can become master
nodes in the Master Affinity zone. Once the next Master node is available, Oracle NoSQL
directs all write requests and absolute consistency requirements to that Master.

Multi-Region Architecture

Oracle NoSQL Database applications read and write data by performing network requests
against an Oracle NoSQL Database data store. Sometimes, organizations may need to set up
multiple data stores to maintain their NoSQL data. In more realistic situations, these data store
clusters may even be geographically distributed. Oracle NoSQL Database multi-region
architecture enables you to create tables in multiple data store clusters and maintain consistent
data across these clusters.

For example, consider a use-case where an organization deploys three on-premises data
stores, one each at Frankfurt, London, and Dublin. In such a setup involving multiple data
stores, each independent Oracle NoSQL Database installation is referred to as a Region. Such
an architecture having two or more independent, geographically distributed data store clusters
bridged by bi-directional NoSQL Streams is known as Multi-Region Architecture.

Concepts Guide
E85371-34 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 11 of 29

ORACLE’

Concepts Guide
E85371-34

Chapter 1
Multi-Region Architecture

Figure 1-5 Multi-Region Architecture

Region 2

Frankfurt

Shard 1 Shard 2 Shard 3

Cross-Region Service

NoSQL NoSQL
Streams Streams
Region 1 Region 3
London y Dublin
=°} -] -°] = =] -°] =°] --]] -] -°] =]
NoSQL —>

<«—— Streams ——

Cross-Region Service Cross-Region Service
I I
I I
I I
Shard 1 Shard 2 Shard 3 Shard 4 Shard 1 Shard 2

Suppose you want to collect and maintain similar data across multiple regions. You need a
mechanism to create tables that can span across multiple regions and keep themselves
updated with the inputs from all the participating regions. You can achieve these using Multi-
Region tables. A Multi-Region Table or MR Table is a global logical table that is stored and
maintained in different regions or installations. It is a read-anywhere and write-anywhere table
that lives in multiple regions.

As you can see in the diagram, all the Multi-Region Tables defined in these regions are
synchronized via NoSQL Streams. Essentially, all the distributed data stores form a fully
connected graph. For each distributed data store cluster, there is one inbound stream from
each remote data store cluster. This inbound stream subscribes the local data store to all the
Multi-Region Tables from the remote data store. Each region must be running a Cross-Region
Service (XRegion Service) to receive the data from the subscribed tables in the remote
regions.

In addition, note that in a Multi-Region Architecture are:
e The local and remote data stores:
— May have different topology

— May experience elastic operations.

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 12 of 29

ORACLE

Chapter 1
Multi-Region Architecture

— Are independently managed, that is, each data store has its own index, security
credentials etc.

— Have sufficient create and read table privileges to each other.
e The inbound and outbound streams are:
— Completely symmetrical.

— Independently managed without any coordination between the outbound and the
inbound streams.

Replication in a Multi-Region Table:

All writes to the table, including insert, update, and delete would be replicated. All DDL
operations (Create Table, Alter Table and Drop Table, Create Index, Alter Index, and Drop
Index) and operations that change the table metadata like TTL, will not be replicated. For
example, the following actions will not be replicated.

e Index creation in one region

« Altering the definition of an existing index from one region
* Dropping the index from one region

e Changing the schema definition in one region

* Changing the Table's default Table Time to Live (TTL) in one region

You can create child tables in the Multi-Region architecture. That means an existing Multi-
Region table can have child tables. If you enable a top-level table in a Multi-Region
architecture, the child tables created are automatically enabled in those regions. You need not
explicitly specify the regions while creating the child tables. That is, the Multi-Region
architecture is enabled for the whole hierarchy.

Cross Region Service

Concepts Guide
E85371-34

In a Multi-Region Oracle NoSQL Database setup, a Cross-Region Service or XRegion Service
is a standalone service running on a separate node. In simple terms, this is also called an
agent. The XRegion Service is deployed when you are connecting the local data store with a
remote data store to create a Multi-Region Table.

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 13 of 29

ORACLE Chapter 1
Multi-Region Architecture

Figure 1-6 Inbound Stream from Remote KVStore

Local KV store Remote KV store
Sharded subscriber
& group
¢ -
Shard 1 : ;rnss-regmn se rwce_ Shard 1
Agent with ID (2.0) €
i OnNext() | €

T

<

Shard 2

Cross-region service
Agent with ID (2.1)
-t OnNext() |

Fa
K
F.i
K

(i
[

T

Shard 3 Shard 4

T
(i
(I

Consider an example where the remote data store has four shards and the local data store has
three shards. The local data store deploys two NoSQL agents to stream two shards each from
the remote data store, as depicted in the diagram above. These agents subscribe to updates
from the remote data store and publish the new and modified rows to the local data store. All
the agents connecting a remote data store to a local data store are referred as the Agent
Group for the local data store. Streams from multiple shards can coordinate by checkpointing
to ensure that for any key, its writes on multiple shards in the data store during the migration
will be delivered to the subscriber on their original order.

You need multiple XRegion Service agents when a single XRegion Service agent handles
concurrent writes in different shards of the data store. You can determine whether additional
XRegion agents are needed using the following steps.

* Determine if the source or target data store is overloaded. You can determine this using
various application statistics like the latency of requests, any timeout, the CPU and
memory usage of the Storage Node.

* If both the source and target data stores are not overloaded, then you can view the
statistics of the XRegion agent. The show command can be used to view nrt abl e- agent -
statistics. A sample output of the show command is shown below.

show nrtabl e-agent-statistics -agent 0 -json

{ "operation": "show nrtabl e-agent-statistics",
"returnCode": 5000,
description": "Qperation ends successfully",

Concepts Guide
E85371-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 14 of 29

ORACLE

Concepts Guide
E85371-34

Chapter 1
Multi-Region Architecture

“returnVal ue": {
" XRegi onServi ce-1_0":
{
"timestamp”: 1592901180001,
"statistics":
{ "agentld": "XRegionService-1_0",
"begi nMs": 1592901120001,
"del s": 1024,
"endMs": 1592901180001,
“inconpati bl eRows": 100,
“interval Ms": 60000,
"l ocal Region": "slcl",
"persistStreanBytes": 524288,
"puts": 2048,
“regionStat":
{ "I'nd":
{ "conpleteWiteQps": 10,
"laggi ngMs": { "avg": 512, "max": 998,
"l ast MessageMs": 1591594977587,
"l ast Modi ficationMs": 1591594941686,
"latencyMs": { "avg": 20, "max": 40, "min": 10 }

mn": 311},

}

Under the section regionStat there is a per-region field called | at encyMs (avg, max, nin).
You should monitor this stat over time. If the target is not overloaded and this stat keeps
increasing, it is likely that XRegion agent cannot keep up with the remote writes and is running
into a scalability issue.

You can achieve horizontal scalability by adding more XRegion Service agents. The mapping
of data store shards to XRegion Service agents is determined in a round-robin manner in order
to balance the load of the agents.

@® Note

You should not configure more agents than the number of shards in your data store or
else you will prevent XRegion Service agent from starting.

Each XRegion Service group consists of a group of independent XRegion Service agents, and
each agent in the group is running on a node and is responsible to handle one or more shards
of the data store. The agents in XRegion Service Group are completely independent of each
other, that is, each agent does not talk directly to any other agent in the group. Any agent can
be shut down and restarted without impacting other agents. It is recommended that you add
XRegion Service agents on individual hosts that do not contain any Storage Node configured.

As you can see in the diagram below, an agent enables streaming the data from a remote data
store to a set of MR Tables in the local data store.

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 15 of 29

ORACLE

Chapter 1
Multi-Region Architecture

Figure 1-7 View of a Single Agent

NoSQL Agent
with ID (2,0) B Shard 1
-—
-—
‘ ’--- OnNext()
Users |
Table | L

Checkpoint to
Remote KVStore

L — —

————>

Shard 3

Each inbound stream utilizes the subscriber group feature in the Streams API to create a group
of subscribers to stream from a store. Each local agent is responsible for:

» Establishing the inbound subscription stream from a remote data store.
e Maintaining the connection and reconnect during any failures.

e Checkpointing the subscription stream in case of any failures.

e Subscribing writes to the MR Tables from a remote data store.

* Automatically dealing with elastic operations in the remote data store.
For a local data store, the overhead of inbound stream consists of:

* A group of threads in the NoSQL agent that streams the data from the remote data store.
Please note that these threads run outside the local store as a standalone agent. Even
though the agent serves the local data store, it does not add to the local data store's
expense.

e Local PUT or DELETE resulting from the streamed data from the remote data store after
conflict resolution.

For a local data store, the overhead of outbound stream involves the create, read, and write
checkpoints for the remote data store.

Life Cycle of Multi-Region Tables

Concepts Guide
E85371-34

To create and use Multi-Region Tables (MR Tables) in Oracle NoSQL Database, you must be
aware of the sequence of tasks to execute and the related concepts.

For clarity, let us discuss the life cycle of MR Tables with an example. Consider an Oracle
NoSQL Database with three regions, Frankfurt, London, and Dublin. Assume that you want to
create a table called User s to store the user details for all the three regions as depicted in the
diagram.

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 16 of 29

ORACLE

Chapter 1
Multi-Region Architecture

Figure 1-8 Multi-Region Table

Region 2
Frankfurt
Shard 1 Shard 2 Shard 3

A A A
EEEEERE
SPE S E S E

NoSQL
Streams

Cross-Region Service

yyY

Users

(] (o) (]

NoSQL
Streams

Region 1

Region 3

Cross-Region Service

Dublin

NoSQL
< Streams

v v

Shard 1 Shard 2

Shard 3
e _0
VACAY

Users

(1) Camy | (e]

Jack IT

n‘

James Sales

Shard 4

I
E B

4

Cross-Region Service

Shard 1

i

Users

Shard 2

e [

Concepts Guide
E85371-34

Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 17 of 29

ORACLE

Chapter 1
Multi-Region Architecture

The sequence of tasks that you must perform to create and manage the User s table as a Multi-
Region Table are:

Concepts Guide
E85371-34

Deploy Independent data stores: You must deploy data store in each region of the Multi-
Region NoSQL Database independently. See Configuration Overview in the
Administrator's Guide.

Set Local Region Name: After deploying the data store and before creating the first MR
Table in each participating region, you must set a local region name. You can change the
local region name as long as no MR Tables are created in that region. After creating the
first MR Table, the local region name becomes immutable. The local region hame is
completely independent of the data stores created in that region. See Set Local Region
Name in the Administrator's Guide.

Configure XRegion Service: Before creating any MR Table, you must deploy an XRegion
Service with one or more agents. The agent runs independently with the local data store
and it is recommended to deploy it close to the local data store.

While setting up a secure data store to support multi-region tables, the administrator has to
grant the following permissions to the XRegion Service agent:

— \\RI TE_SYSTEM TABLE (or the equivalent writesystable role) to the local store.
— Write permission on all the multi-region tables in the local store.

— Read permission on all the multi-region tables in the remote stores.

— Write permission for checkpoint table in the remote stores.

To learn how to deploy an agent, see Configure XRegion Service in the Administrator's
Guide.

Start XRegion Service:You must start XRegion service in each region using the XRSTART
command. As this service is a long-running process, it is recommended to invoke it as a
background process by appending the & at the end of the command. see Start XRegion
Service in the Administrator's Guide.

@ Note

The local data store must be started before starting the XRegion Service. If the
data store in the local region has not started or is not reachable, the XRegion
Service will not start.

Create Remote Regions: Before creating and operating on the MR table, you must define
the remote regions. A remote region signifies a region different from the region where the
command is executed. In this example, to create the MR Table called User s from the
Frankfurt region, you must first define the other two regions, that is, London and Dublin
using the CREATE REG ONDDL command. To learn how to create remote regions, see
Create Remote Regions in the Administrator's Guide.

Create the MR Table: You must create an MR Table on each data store in the connected
graph, and specify the list of regions that the table should span. In this example, to create
the User s table as an MR Table at the Frankfurt and London regions, you need to execute
the CREATE TABLE command specifying Frankfurt and London as the regions. The order in
which you list the regions in the DDL command does not matter. After you create the Users
MR Table, it will be included in the incoming stream from each remote data store specified.
Symmetrically at the remote data store the User s table will be included in its own incoming
stream too. To create the MR table successfully, you must:

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 18 of 29

ORACLE

Concepts Guide
E85371-34

Chapter 1
Multi-Region Architecture

— Ensure that you acquire the necessary privileges to create the table in the specified
regions, in advance. Otherwise, the MR Table creation will fail in all the regions. See
Data store Required Privileges in the Security Guide.

— Specify at least one region in the CREATE TABLE DDL command. If you specify only one
region, then the MR Table is created only in the specified region and no writes will be
replicated to the other regions.

@® Note

Even though a single-region MR table works similar to a local table, the
difference between them is that the single-region MR Table can be expanded
to multiple regions in future.

To learn how to create an MR Table, see Create MR Tables in the Administrator's Guide.

Perform Read/Write Operations on the MR Table (Optional): After creating the MR
Table, you can perform read or write operations on the table using the existing data access
APIs or DML statements. There is no change to any existing data access APIs or DML
statements to work with the MR Tables. The following aspects applicable to the regular
tables apply to the MR Tables also without any deviation:

— Durability and consistency configurations and constraints: For any local writes to
an MR table, the semantics of consistency model does not change. It is the same as
any writes to a regular (non MR) table.

@® Note

In case of MR Tables, absolute consistency is not global across the
participating regions. It is only local to a single region where you perform the
read and write operations.

— Table index infrastructure: Creating primary and secondary indices on the MR Table
in each region remains the same as with any regular (non MR) table. However, if you
wish to drop an MR Table from any region, you must first drop all the indices defined
on this table.

Read Operations:

— Each Read operation on an MR Table is a local read, that is, you read only the local
copy of the data. However, this local copy may have rows that might have come from
one of the other participating regions, as a result of a table sync-up via Oracle NoSQL
Streams.

Write Operations:

— Whenever you execute a write operation (INSERT, UPDATE, or DELETE) on an MR
Table, the changes will be replicated across multiple regions asynchronously. It means,
when you write a row in the local region, the write operation is executed completely in
the local region without waiting for the subscribing regions to update.

— The latency for replicating the changes across multiple regions includes the time taken
to:

* Complete the write operations at the remote region, and
* Receive the data from the subscribed tables.

— If multiple regions update a row with the same primary key, a built-in conflict resolution
rule is applied to decide which region's update is considered as final. In all such cases,

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 19 of 29

ORACLE

Concepts Guide
E85371-34

Chapter 1
Multi-Region Architecture

this built-in conflict resolution rule will cause the update with the latest timestamp to
win and commit to the database.

— The above mentioned built-in conflict resolution rule applies to the TTL value updates
too.

— When you delete a row from an MR Table, the system allows time to ensure that the
change is propagated to all the other regions where this table exists.

— You can define a TTL value while inserting or updating a row in the MR Table. This
value applies only to the row being added or updated. The row-level TTL overrides
table level TTL if any exists.

— An MR Table can have different table level TTL values in different regions.

— When arow is replicated to other regions, its expiration time is replicated as an
absolute timestamp to the replicated rows. This can be either the default table level
TTL value or a row level override that is set by your application. Therefore, this row will
expire in all the regions at the same time, irrespective of when they were replicated.

— If arow expires before it makes it to one of the regions during replication, the rows that
are already replicated to other regions will expire immediately after persistence.

See Access and Manipulate MR Tables in the Administrator's Guide for examples.

Add New Regions to the MR Table (Optional). Oracle NoSQL Database lets you expand
an MR Table to new regions. It effectively means adding new regions to an existing MR
Table. In the example being discussed, suppose you created the User s table only in two
regions, Frankfurt and London. Later, if you want to expand this User s table to the Dublin
region, you must:

— Create the User s MR Table in the new region, that is, Dublin. Note that you must
specify all the three regions while creating the MR Table in the new region. See Create
MR Table in New Region in the Administrator's Guide.

— Add the new region (Dublin) to the User s MR Table in existing regions, that is,
Frankfurt and London. This is achieved with the help of the ALTER TABLE DDL
command. See Add New Region to Existing Regions in the Administrator's Guide.

® Note

Depending on the volume of the data in the existing regions, it might take
some time to initialize the MR Table in the new region with the data from the
other regions. However, the MR Table in the new region is available for read/
write operations immediately after its creation.

To learn how to expand an MR Table with detailed code demonstrations, see Use
Case 2: Expand a Multi-Region Table in the Administrator's Guide.

Remove an Existing Region from the MR Table (Optional): Not only can you add new
regions to an existing MR Table but also remove any regions linked to it. It effectively
means that you disconnect the MR Table from a particular region so that MR Table is not
synchronized with any writes from the removed region. This is called contracting an MR
Table. To learn how to contract an MR Table with detailed code demonstrations, see Use
Case 3: Contract a Multi-Region Table in the Administrator's Guide.

Drop Remote Regions (Optional): You can drop one or more participating regions from a
Multi-Region Oracle NoSQL Database setup as per your business requirement. However,
before removing a region from a Multi-Region NoSQL Database, it is recommended to:

— Stop writing to all the MR Tables linked to that region.

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 20 of 29

ORACLE Chapter 1
Multi-Region Architecture

— Ensure that all writes to the MR Tables in that region have synchronized with other
regions. This helps in maintaining consistent data across the different regions.

® Note

Even though NoSQL Database lets you drop a region directly, it is a
recommended practice to isolate that region from all the other regions before
dropping it. This ensures that the existing regions are no longer linked with the
region being dropped.

To learn how to drop a region from a Multi-Region NoSQL Database, see Use Case 4:
Drop a Region in the Administrator's Guide.

- Shut Down XRegion Service and data stores: In a case where you want to relocate your
XRegion Service to another host machine, you must shut it down in the current machine
and then restart it in the new host machine. See Stop XRegion Service in the
Administrator's Guide.

Using CRDT datatype in a multi-region table

Overview of the MR_COUNTER data type

MR_Counter data type is a counter CRDT. CRDT stands for Conflict-free Replicated Data
Type. In a multi-region setup of an Oracle NoSQL Database, a CRDT is a data type that can
be replicated across servers where regions can be updated independently and it converges on
a correct common state. Changes in the regions are concurrent and not synchronized with one
another. In short, CRDTs provide a way for concurrent modifications to be merged across
regions without user intervention. Oracle NoSQL Database currently supports the counter
CRDT which is called MR_Counter. The MR_COUNTER datatype is a subtype of the
INTEGER or LONG or NUMBER data type. You can also use the MR_COUNTER data type in
a schema-less JSON field, which means one or more fields in a JSON document can be of
MR_COUNTER data type.

Why do you need MR_Counter in a multi-region table?

In a multi-region database configuration, copies of the same data need to be stored in multiple
regions. This configuration needs to deal with the fact that the data may be concurrently
modified in different regions.

Take an example of a multi-region table in three different regions (where data is stored in three
different Oracle NoSQL Database stores). Concurrent updates of the same data in multiple
regions, without coordination between the machines hosting the regions, can result in
inconsistencies between the regions, which in the general case may not be resolvable.
Restoring consistency and data integrity when there are conflicts between updates may require
some or all of the updates to be entirely or partially dropped. For example, in the current
configuration of a multi-region table in the Oracle NoSQL Database, if the same column (a
counter) of a multi-region table is updated across two regions at the same time with different
values, a conflict arises.

Currently, the conflict resolution is that the latest write overwrites the value across regions. For
example, Region 1 updates columnl with a value R1, and region2 updates columnl with a
value R2, and if the region2 update happens after regionl, the value of the column (counter) in
both the regions becomes R2. This is not what is actually desired. Rather every region should
update the column (a counter) at their end and also the system internally needs to determine
the sum of the column across regions.

Concepts Guide
E85371-34 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 21 of 29

ORACLE

Chapter 1
Data Models

One way to handle this conflict is making serializable/linearizable transactions (one transaction
is completed and changes are synchronized in all regions and only then the next transaction
happens). A significant problem of having serializable transactions is performance. This is
where MR_COUNTER datatype comes in handy. With MR_COUNTER datatype, we don't
need serializable transactions and the conflict resolution is taken care of. That is,
MR_COUNTER datatype ensures that though data modifications can happen simultaneously
on different regions, the data can always be merged into a consistent state. This merge is
performed automatically by MR_COUNTER datatype, without requiring any special conflict
resolution code or user intervention.

Use-case for MR_COUNTER datatype

Consider a Telecom provider providing different services and packages to its customers. One
such service is a "Family Plan" option where a customer and their family share the Data Usage
plan. The customer is allocated a free data usage limit for a month which your the customer's
entire family collectively uses. When the total usage of customer's family reaches 90 percent of
the data limit, the telecom provider sends the customer an alert. Say there are four members in
customer's family plan who are spread across different physical regions. The customer needs
to get an alert from the telecom provider once the total consumption of their family reaches 90
percent of the free usage. The data is replicated in different regions to cater to latency,
throughput, and better performance. That means there are four regions and each has a data
store containing the details of the customer's data usage. The usage of their family members
needs to be updated in different regions and at any point in time, the total usage should be
monitored and an alert should be sent if the data usage reaches the limit.

An MR_COUNTER data type is ideal in such a situation to do conflict-free tracking of the data
usage across different regions. In the above example, an increment counter in every data
region's data store will track the data usage in that region. The consolidated data usage for all
regions can be determined by the system at any point without any user intervention. That is the
total data usage at any point in time can be easily determined by the system using an
MR_COUNTER datatype.

Types of MR_COUNTER Datatype

Currently, Oracle NoSQL Database supports only one type of MR_COUNTER data type. which
is Positive-Negative (PN) counter.

Positive-Negative (PN) Counter

A PN counter can be incremented or decremented. Therefore, these can serve as a general-
purpose counter. For example, you can use these counters to count the number of users active
on a social media website at any point. When the users go offline you need to decrement the
counter.

To create a multi-region table with an MR_COUNTER column, See Create multi-region table
with an MR_COUNTER column section in the Administrator's Guide.

A MR_COUNTER (JSON and a non-JSON) can only be defined when the field in a schema is
defined. You can do this in the following places:

* During schema definition in table creation.

* During schema definition when adding a field to the schema.

Data Models

Concepts Guide
E85371-34

You can model your data in Oracle NoSQL Database by using Tables or a key-value interface.

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 22 of 29

ORACLE

Chapter 1
Transactions in NoSQL

Tables are the easiest way to model data. They provide the highest level of abstraction, they
are simple to model and should be familiar to any developer. This model also supports
secondary indices and table evolution.

If you are using tables, then you can use JSON to model data. If strongly typed data is not a
priority, then this is a good choice.

Oracle NoSQL Database also supports multi-region tables. A multi-region table is a global
logical table that is stored and maintained in different regions or installations. In short, they are
called as MR Tables.

Finally, if you want to serialize data, manage the key structure, manage secondary indices
through index views, manage evolution and security through your client code, or work with
large objects, then you can use the key-value interface.

Transactions in NoSQL

In an Oracle NoSQL Database, a transaction is a logical, atomic unit of work which entails one
database access operation. In Oracle NoSQL Database every data operation takes place in a
single transaction, managed by the system. Users do not have the ability to group multiple
operations into a single transaction, although some operations allow multiple rows to
participate in a single operation.

Transactional semantics are often described in terms of ACID properties.
ACID properties:

* Atomicity means a transaction either completes or fails in entirety. There is no state in
between. You don't see a partial completion of a transaction.

* Consistency means the transaction leaves the database in a valid state.

* Isolation means no two transactions mingle or interfere with each other. You get the same
result when the two transactions are executed in sequence or executed in parallel.

* Durability means the changes of a transaction are saved and the changes survive any
type of failure (network, disk, CPU or a power failure).

Oracle NoSQL Database transactions maintain all these properties. Oracle NoSQL Database
offers the user some control over the properties of a transaction. If your transaction involves a
number of write operations on rows that share the same shard key, all of the write operations
can be executed as a single atomic unit. So all of the operations will execute successfully, or
none of them will.

The sequence of the write operations in the transaction is performed in isolation. This means
that if you have a thread running a sequence of write operations, then another thread cannot
intrude on the data in use by the sequence. The second thread will not be able to see any of
the modifications made by the first running sequence until the sequence is complete.

Atomicity and Isolation are not configurable but Oracle NoSQL Database allows users to
control Consistency and Durability policies in order to trade off performance for applications
that have differing needs for these properties.

Consistency

Concepts Guide
E85371-34

Oracle NoSQL Database provides several different consistency policies. At one end of the
spectrum, applications can specify absolute consistency, which guarantees that all reads return
the most recently written value for a designated key. At the other end of the spectrum,
applications capable of tolerating inconsistent data can specify weak consistency, allowing the

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 23 of 29

ORACLE

Durability

Quorum

Concepts Guide
E85371-34

Chapter 1
Transactions in NoSQL

database to return a value efficiently even if it is not entirely up to date. In between these two
extremes, applications can specify time-based consistency to constrain how old a record might
be or version-based consistency to support both atomicity for read-modify-write operations and
reads that are at least as recent as the specified version.

The following illustration depicts the range of consistency policies that can be used by an
application that makes use of Oracle NoSQL Database:

Guarantees) :
Can Read Data is Cperating on Operating on
Stale Data recent as of Known or most recent
given fime later version version
Fastest Most Consistent
None Time-Based Varsion-Based Absolute

Consistency

Flexible consistency policies enables developers to easily create business solutions providing
data guarantees while meeting application latency and scalability requirements.

Oracle NoSQL Database provides a range of durability policies that specify what guarantees
the system makes after a crash. At one extreme, applications can request that write requests
block until the record has been written to stable storage on all copies. This has obvious
performance and availability implications, but ensures that if the application successfully writes
data, that data will persist and can be recovered even if all the copies become temporarily
unavailable due to multiple simultaneous failures. At the other extreme, applications can
request that write operations return as soon as the system has recorded the existence of the
write, even if the data is not persistent anywhere. Such a policy provides the best write
performance, but provides no durability guarantees.

The following illustration depicts the range of durability policies that can be used by an
application that makes use of Oracle NoSQL Database:

Write Memary FS Buffer Disk

+ Fastest Most Durable
Mone Majarity All

HA ack

By specifying when the database writes records to disk and what fraction of the copies of the
record must be persistent (none, all, or a simple majority), applications can enforce a wide
range of durability policies.

Operations that modify data in Oracle NoSQL Database require that at least a simple majority
of primary nodes be available to form a quorum in the shard that stores the specified key.

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 24 of 29

ORACLE

Chapter 1
Administration

Quorum is the minimum number of primary nodes required in a shard, or in the set of admin
nodes, to permit electing a master to support write operations. To form a quorum requires that
a minimum number of primary nodes represent a majority in the group.

® Note

Secondary nodes are not counted when computing the quorum.

Consider the following example using a store with four zones. Zones 1, 2, and 3 are primary
zones with replication factor 1, and zone 4 is a secondary zone with replication factor 1. The
number of primary nodes in each shard is 3, which is the sum of the replication factors for the
primary zones. In a group of 3 nodes, 2 is the smallest number of nodes that represent a
majority, so the quorum is 2. The secondary nodes in zone 4 have no impact on the quorum.

In general, to compute the quorum, first determine the primary replication factor, which is the
sum of the replication factors of all primary zones. The quorum value must be one greater than
half of the primary replication factor, rounding down when computing the half.

For example, for primary replication factor of 1, the quorum is 1. For primary replication factor
of 5 the quorum is 3. For primary replication factor of 6, the quorum is 4.

Administration

Concepts Guide
E85371-34

The Administration command line interface (CLI) is the primary tool you use to manage your
store. You use it to configure, deploy, and change store components. Use the CLI to verify the
system, check the service status, check for critical events and browse the store-wide log file.

You can use the CLI to get, put, and delete store records or tables, retrieve schema, and
display general information about the store. It can also be used to diagnose problems or
potential problems in the system, fix actual problems by adding, removing, or modifying store
data, and/or verify that the store has data. The CLlI is particularly well-suited for a developer
who is creating an Oracle NoSQL Database application. Developers can use the CLI to
populate a store with a small number of records to use for development purposes or to
examine the store's state as part of debugging activities.

Access the command line interface using this command:

java - Xmk64m - Xms64m \
-jar KVHOWE/ | i b/ kvstore.jar runadmn \
-host <host name> -port <portname>

@® Note

To avoid using too much heap space, specify - Xmx and - Xns flags for Java when
running administrative and utility commands.

For a complete list of all CLI commands and their usage, see Admin CLI Reference in the
Administrator's Guide.

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 25 of 29

ORACLE

KVLite

Chapter 1
Monitoring

KVLite is a simplified version of Oracle NoSQL Database. It provides a single-node store that
is not replicated. It runs in a single process without requiring any administrative interface. You
configure, start, and stop KVLite using a command line interface.

KVLite is intended for use by application developers who need to unit test their Oracle NoSQL
Database application. It is not intended for production deployment, or for performance
measurements.

KVLite is installed when you install the data store. It is available in the kvst ore. j ar file in the
I'i b directory of your Oracle NoSQL Database distribution.

For more information on KVLite, see Quick Start to KVLite.

Saving Admin CLI History

By default, Oracle NoSQL Database uses the Java Jline library to support CLI history that you
can save. To disable this feature, set the following Java property while starting the runadmin
program:

java - Xmk64m - Xns64m \
-Doracl e. kv.shell.jline.disable=true -jar KVHOME/ kvstore.jar \
runadm n -host <hostname> -port <portname>

Unless you disable the feature, CLI history is saved to a file so that it is available after restart.
By default, Oracle NoSQL Database attempts to save 500 lines of history in the following file,
which is created and opened automatically:

KVHOVE . jlineoracle.kv.inpl.admn.client.CommandShel | . history

@ Note

If the Admin CLI cannot open the history file, it fails silently. The CLI runs without
saving any history.

To change the default history file path, set the location of the
oracl e. kv.shell . history.file="path" Java property.

To change the default number of lines, set the value of the
oracl e. kv.shel | . history.size=<i nt_val ue> Java property.

Monitoring

Concepts Guide
E85371-34

Information about the performance and availability of your store is available. You can monitor
the information through an API class, log files, and Java Management Extensions (JMX).

These agents provide interfaces on each Storage Node that allow management clients to poll
them for information about the status, performance metrics, and operational parameters of the
Storage Node and its managed services, including replication nodes, and admin instances.
Also, JMX can be used to monitor Arbiter Nodes.

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 26 of 29

ORACLE Chapter 1
Troubleshooting

For more information, see Java Management Extensions (JMX) in the Administrator's Guide.

Troubleshooting

Errors can occur in your store deployment. Tools, commands, logs and procedures can be
used in order to solve problems.

To catch configuration errors early, you can use the Di agnostics Utility. You can also use
this tool to package information and files to send them to Oracle Support, for example.

For more information on troubleshooting your store, see Troubleshooting in the Administrator's
Guide.

Access and Security

There are two ways to access the data store and its data.

For routine access to the data, use Java APIs that application developers use to allow
applications to interact with the Oracle NoSQL Database Driver. The drive communicates with
the store's Storage Nodes to perform whatever data access the developer application requires.

For administrative access to the store, use the command line interface (CLI). System
administrators use this interface to perform any actions that are required by Oracle NoSQL
Database. You can also monitor the store using the CLI interface.

For most production stores, authentication over SSL is normally required by both the command
line interface and the Java APIs. While you can install a store that does not require
authentication, this is not recommended. For details on Oracle NoSQL Database's security
features, see the Security Guide .

@® Note

Oracle NoSQL Database is intended to be installed in a secure location where
physical and network access to the store is restricted to trusted users. For this reason,
at this time Oracle NoSQL Database's security model is designed to prevent
accidental access to the data. It is not designed to prevent denial-of-service attacks.

Integration

Oracle NoSQL Database can be integrated with Apache Hadoop and products in the Oracle
stack. The following sections describe more about integration.

Hadoop Integration

Oracle NoSQL Database can be integrated with Apache Hadoop systems using the

oracl e. kv. hadoop. KVI nput For mat class. This class allows you to read data from Oracle
NoSQL Database and then prepare it for insertion into a Hadoop system. To move data back to
your Oracle NoSQL Database, you can read data from the Hadoop system using the standard
mechanisms, and then write the records to Oracle NoSQL Database using the APIs. An
example of using KVI nput For mat to read data from Oracle NoSQL Database in a Map/Reduce
job can be found in the <KVHOVE>/ exanpl es/ hadoop directory. See Integration with Apache
Hadoop MapReduce in the Integrations Guide.

Concepts Guide
E85371-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 27 of 29

ORACLE Chapter 1
Integration

Integration with Elastic Search for Full Text Search

Full Text Search provides the capability to identify natural-language documents that satisfy a
query, and optionally to sort them by relevance to the query. Oracle NoSQL Database
integrates with the Elasticsearch third-party open-source search engine to enable Full Text
Search capability against data stored in an Oracle NoSQL Database table. See Integration with
Elastic Search for Full Text Search in the Integrations Guide.

Oracle External Tables Integration

Oracle NoSQL Database data can be accessed using Oracle Database's External Tables
feature. This capability allows NoSQL Database data to be read into Oracle Database. Oracle
NoSQL Database data cannot be modified using the External Tables feature.

Note that this is a feature which is only available to users of the Oracle NoSQL Database
Enterprise Edition.

To use the Oracle Database External Table feature to read Oracle NoSQL Database data, you
must use the <KVHOME>/ ext t ab/ bi n/ nosql _st r eampreprocessor to populate our Oracle tables
with the data. You must then configure your Oracle Database to use the External Tables
feature.

For information on how to use the nosql _st r eampreprocessor, and how to configure Oracle
Database to use External Tables, see oracle.kv.exttab package summary in the Java Direct
Driver AP| Reference.

Oracle GoldenGate Integration

The transactional data from Oracle GoldenGate can be replicated to a target Oracle NoSQL
Database using Oracle NoSQL Handler. The Oracle NoSQL Handler streams change data
capture into Oracle NoSQL Database using the Oracle NoSQL Java SDK. The Oracle NoSQL
Java SDK supports both on-premise and OCI cloud instances of Oracle NoSQL database.

The Oracle NoSQL Handler moves operations to Oracle NoSQL using synchronous API. The
insert, update, and delete operations are processed differently in Oracle NoSQL databases
rather than in a traditional RDBMS.

The following explains how insert, update, and delete operations are interpreted by the handler
depending on the mode of operation:

* insert: If the row does not exist in your database, then an insert operation is processed as
an insert. If the row exists, then an insert operation is processed as an update.

* update: If a row does not exist in your database, then an update operation is processed as
an insert. If the row exists, then an update operation is processed as update.

* delete: If the row does not exist in your database, then a delete operation has no effect. If
the row exists, then a delete operation is processed as a delete.

The state of the data in Oracle NoSQL databases is idempotent. You can replay the source
trail files or replay sections of the trail files. Ultimately, the state of an Oracle NoSQL database
is the same regardless of the number of times the trail data was written into Oracle NoSQL.

You configure the Oracle NoSQL Handler operation using the properties file. These properties
are located in the Java Adapter properties file.

For more information, see Using the Oracle NoSQL Handler in the Using Oracle GoldenGate
for Big Data.

Concepts Guide
E85371-34 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 28 of 29

ORACLE Chapter 1
Integration

Concepts Guide
E85371-34 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 29 of 29

	Contents
	Preface
	Conventions Used in This Book

	1 Introduction to Oracle NoSQL Database
	NoSQL Database Server Licensing
	NoSQL Database Client Licensing
	NoSQL Database Option Differences
	Architecture
	Replication Nodes and Shards
	Replication Factor
	Partitions
	Zones
	Arbiter Nodes
	Topologies
	Using Master Affinity Zones
	Benefits of Master Affinity Zones
	Adding a Master Affinity Zone
	Losing a Master Affinity Zone Node

	Multi-Region Architecture
	Cross Region Service
	Life Cycle of Multi-Region Tables
	Using CRDT datatype in a multi-region table

	Data Models
	Transactions in NoSQL
	Consistency
	Durability
	Quorum

	Administration
	KVLite
	Saving Admin CLI History

	Monitoring
	Troubleshooting
	Access and Security
	Integration
	Hadoop Integration
	Integration with Elastic Search for Full Text Search
	Oracle External Tables Integration
	Oracle GoldenGate Integration

