Oracle® NoSQL Database
Java Direct Driver Developer's Guide

Release 25.3
E85378-35
October 2025

ORACLE"

Oracle NoSQL Database Java Direct Driver Developer's Guide, Release 25.3
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Conventions Used in This Book i
Diversity and Inclusion ii

1 Developing for Oracle NoSQL Database

Configuring Logging
Obtaining a KVStore Handle
Using the KVStoreConfig Class
Using the Authentication APIs
Configuring SSL
Identifying the Trust Store
Setting the SSL Transport Property
Authentication using a LoginCredentials Instance
Renewing Expired Login Credentials

O© N o ok AW WOWDNDN

Authentication using Kerberos
Authentication using Kerberos and JAAS

=
N O

Unauthorized Access

2 Introduction to Oracle KVLite

Starting KVLite
Stopping and Restarting KVLite
Verifying the Installation

w NN

kvlite Utility Command Line Parameter Options

3 Introducing Oracle NoSQL Database Tables and Indexes

Defining Tables
Executing DDL Statements From the Admin CLI
Supported Table Data Types
Record Fields
Defining Child Tables
Defining Multi-Region Tables

o O~ W W

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page i of v

Using CRDT datatype in a multi-region table 6
Add MR_COUNTER datatype in a multi-region table 8
Inserting JSON MR_COUNTER Values Programmatically 8
Table Evolution 9
Using the UUID data type 9
Inserting rows into a table with a UUID column 11
Updating rows of a table with a UUID column 12
Add or Remove a UUID column 13
Creating Indexes 14
4 Introducing Oracle NoSQL Database Namespaces
Creating Namespaces 1
Granting Authorization Access to Namespaces 2
Using and Setting Namespaces 5
Showing and Describing Namespaces 6
Dropping Namespaces 7
5 Primary and Shard Key Design
Primary Keys 1
Composite Keys 2
Data Type Limitations 2
Partial Primary Keys 3
Shard Keys 3
Row Data 4
6 Writing and Deleting Table Rows
Write Exceptions 1
Writing Rows to a Table in the Store 1
Writing Rows to a Child Table 3
Writing rows to an IDENTITY column 4
Other put Operations 8
Bulk Put Operations 9
Using Time to Live 12
Specifying a TTL Value 12
Updating a TTL Value 13
Deleting TTL Expiration 14
Setting Default Table TTL Values 14
Deleting Rows from the Store 15

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page ii of v

Using multiDelete() 16

7 Reading Table Rows

Read Exceptions

Retrieving a Single Row
Retrieve a Child Table

Using multiGet()

Iterating over Table Rows

O o A WODN P

Specifying Field Ranges
Iterating with Nested Tables 11
Reading Indexes 15
Parallel Scans 18
Bulk Get Operations 20

8 Using Data Types

Using Arrays
Using Binary
Using Enums
Using Fixed Binary
Using JSON

Using Maps

0 N o WDN PP

Using Embedded Records

o Indexing Non-Scalar Data Types

Indexing Arrays
Indexing JSON Fields
Indexing Maps
Indexing by Map Keys
Indexing by Map Values
Indexing by a Specific Map Key Name

© N o B~ A DN PP

Indexing by Map Key and Value
Indexing Embedded Records 1

10 Using Row Versions

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page iii of v

11 Consistency Guarantees

Specifying Consistency Policies 1
Using Simple Consistency 2
Using Time-Based Consistency 3
Using Version-Based Consistency 4
12 Durability Guarantees
Setting Acknowledgment-Based Durability Policies
Setting Synchronization-Based Durability Policies
Setting Durability Guarantees
13 Executing a Sequence of Operations
Sequence Errors
Creating a Sequence
Executing a Sequence 4
14 Introduction to SQL for Oracle NoSQL Database
Running a simple query 1
Using binding variables 2
Accessing metadata 3
Using a query to update data 3
A JSON By Example
Sample Data A-2
UpdateJSON A-5
UpdateJSON.run() A-6
UpdateJSON.defineTable() A-7
UpdateJSON.createlndex() A-7
UpdateJSON.runDDLY() A-8
UpdateJSON.updateTableWithoutQuery() A-8
UpdateJSON.updateTableWithindex() A-10
UpdateJSON.updateTableUsingSQLQuery() A-11
UpdateJSON.updateZipCode() A-11
UpdateJSON.loadTable() A-12
UpdateJSON.displayTable() A-14
UpdateJSON.displayResult() A-15
UpdateJSON.parseArgs() A-15

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page iv of v

B Table Data Definition Language Overview

Name Constraints
DDL Comments
CREATE TABLE
Field Definitions
Supported Data Types
Field Constraints
Integer Serialized Constraints
COMMENT
DEFAULT
IDENTITY
uuID
MR_COUNTER
NOT NULL
USING TTL
Table Creation Examples
Modify Table Definitions
ALTER TABLE ADD field
ALTER TABLE DROP Option
ALTER TABLE USING TTL
ALTER TABLE ADD REGIONS
ALTER TABLE DROP REGIONS
DROP TABLE
CREATE INDEX
Indexable Field Types
Simple Indexes
Multi-Key Indexes
Multi-Key Index Restrictions
JSON Indexes
CREATE FULL TEXT INDEX
DROP INDEX
DESCRIBE AS JSON TABLE
DESCRIBE AS JSON INDEX
SHOW TABLES
SHOW INDEXES

C Exceptions

B-1
B-2
B-2
B-3
B-4
B-5

B-6

B-6

B-6

B-7

B-7

B-8

B-8

B-9
B-10
B-10
B-11
B-11
B-11
B-12
B-12
B-13
B-13
B-14
B-15
B-15
B-17
B-18
B-18
B-19
B-20
B-20
B-20

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page v of v

ORACLE

Preface

There are two different APIs that can be used to write Oracle NoSQL Database applications:
the original Key/Value API, and the Table API. In addition, the Key/Value API is available in
Java and C. The Table API is available in Java, C, node.js (Javascript), Python, and C#. This
document describes how to write Oracle NoSQL Database applications using the Table API in
Java.

@® Note

Most application developers should use one of the Table drivers because the Table
API offers important features not found in the Key/Value API. The Key/Value API will
no longer be enhanced in future releases of Oracle NoSQL Database.

This document provides the concepts surrounding Oracle NoSQL Database, data schema
considerations, as well as introductory programming examples.

This document is aimed at the software engineer responsible for writing an Oracle NoSQL
Database application.

Conventions Used in This Book

The following typographical conventions are used within in this manual:

Class names are represented in monospaced font, as are met hod nanes. For example: "The
KVSt or eConfi g() constructor returns a KVSt or eConf i g class object.”

Variable or non-literal text is presented in italics. For example: "Go to your KVHOME directory."

Program examples are displayed in a nonospaced font on a shaded background. For
example:

inport oracle. kv.KVStore;
i nport oracle. kv. KVSt oreConfi g;

KVSt oreConfi g kconfig = new KVSt oreConfi g("exanpl eStore",
"nodel. exanpl e. org: 5088, node2. exanpl e. org: 4129");
KVStore kvstore = null;

In some situations, programming examples are updated from one chapter to the next. When
this occurs, the new code is presented in monospaced bold font. For example:

i nport oracle.kv. KVStore;
i nport oracle. kv. KVSt oreConfi g;

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page i of ii

ORACLE

Preface

import oracle.kv._KVStoreFactory;

KVSt oreConfi g kconfig = new KVSt oreConfi g("exanpl eStore",
"nodel. exanpl e. org: 5088, node2. exanpl e. org: 4129");
KVStore kvstore = nul | ;

try {
kvstore = KVStoreFactory.getStore(kconfig);

} catch (FaultException fe) {
// Some internal error occurred. Either abort your application

// or retry the operation.

@® Note

Finally, notes of special interest are represented using a note block such as this.

Diversity and Inclusion

Java Direct Driver Developer's Guide

E85378-35

Copyright © 2011, 2025, Oracle and/or its affiliates.

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

October 12, 2025
Page ii of ii

Developing for Oracle NoSQL Database

You access the data in the Oracle NoSQL Database KVStore using Java drivers that are
provided for the product. In addition to the Java drivers, several other drivers are also
available. They are:

Java Key/Value Driver
C Table Driver

C Key/Value Driver
Python Table Driver
node.js Table Driver
C# Table Driver

o g & w b P

@® Note

New users should use one of the Table drivers unless they require a feature only
available in the Key/Value API (such as Large Object support). The Key/Value API will
no longer be enhanced in future releases of Oracle NoSQL Database.

The Java and C Key/Value driver provides access to store data using key/value pairs. All other
drivers provide access using tables. Also, the Java Key/Value driver provides Large Object
(LOB) support that as of this release does not appear in the other drivers. However, users of
the Java Tables driver can access the LOB API, even though the LOB API is accessed using
the Key/Value interface.

Finally, the Java driver provides access to SQL for Oracle NoSQL Database, so you can run
queries. For more information see Introduction to SQL for Oracle NoSQL Database.

Users of the Table drivers are able to create and use secondary indexing. The Java and C Key/
Value drivers do not provide this support.

To work, the C Table, Python Table, node.js Table, and C# Table drivers require use of a proxy
server which translates network activity between the driver and the Oracle NoSQL Database
store. The proxy is written in Java, and can run on any machine that is network accessible by
both your client code and the Oracle NoSQL Database store. However, for performance and
security reasons, Oracle recommends that you run the proxy on the same local host as your
driver, and that the proxy be used in a 1:1 configuration with your drivers (that is, each instance
of the proxy should be used with just a single driver instance).

Regardless of the driver you decide to use, the provided classes and methods allow you to
write data to the store, retrieve it, and delete it. You use these APIs to define consistency and
durability guarantees. It is also possible to execute a sequence of store operations atomically
so that all the operations succeed, or none of them do.

The rest of this book introduces the Java APlIs that you use to access the store, and the
concepts that go along with them.

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 1 of 13

ORACLE Chapter 1
Configuring Logging

Configuring Logging

The Oracle NoSQL Database Java drivers use standard Java logging to capture debugging
output using loggers in the "oracle.kv" hierarchy. These loggers are configured to use a
oracle.kv.util. Consol eHandl er class, and to ignore any handlers for loggers above

oracl e. kv in the logger hierarchy. As a result, logging will be performed to the console at
whatever logging levels are configured for the various loggers and for the
oracle.kv.util.Consol eHandl er class. You can adjust what console output appears for these
loggers by modifying the logging levels for the loggers and the logging handler in their
application's logging configuration file.

You can also configure additional logging handlers for all loggers used by the Java driver by
specifying handlers for the or acl e. kv logger.

For example, if you want to enable file output for Java driver logging at the INFO level or
above, add the following to your application's configuration file (that is, the file you identify
using the java. util.loggi ng. config.file system property):

Set the logging level for the FileHandl er |ogging handler to I NFO
java.util.logging. FileHandl er.Ievel =I NFO

Set the logging level for all Java driver |oggers to | NFO
oracl e. kv. | evel =I NFO

Specify that Java driver |oggers should supply |log output to the
standard file handler

oracl e. kv. handl ers=java. util .| oggi ng. Fi | eHandl er
For information on managing logging in a Java application, see the j ava. util .| oggi ng
Javadoc.

Obtaining a KVStore Handle

To acccess the store for any reason, you must first obtain a KVSt or e handle, using the
KVSt or eFact ory. get St ore() method.

When you get a KVSt or e handle, provide a KVSt or eConf i g object to the handle. The
configuration object identifies important properties about the store that you are accessing. This
section describes the KVSt or eConf i g class. Minimally, use this class to identify the following
information:

e The store name. The name you provide must be identical to the name used when you
installed the store.

e The network contact information for one or more helper hosts. Such contact information
consists of the network name and port information for hosts currently belonging to the
store. Identify multiple hosts using an array of strings, from one element to several. We
recommend using multiple hosts, since any host can be down temporarily, and other hosts
are then useful.

In addition to the KVSt or eConfi g class object, you can also provide a Passwor dCr edenti al s
class object to KVSt or eFact ory. get Store() . Do this if you are using a store configured to
require authentication, which is recommended. See Using the Authentication APIs for more
information.

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 2 of 13

ORACLE

Chapter 1
Using the Authentication APIs

For a store that does not require authentication, get a store handle like this:

package kvstore. basi cExanpl e;

i nport oracle.kv.KVStore;
i nport oracle. kv. KVStoreConfi g;
i nport oracle. kv. KVSt oreFact ory;

String[] hhosts = {"nl.exanple.org:5088", "n2.exanple.org:4129"};
KVSt oreConfi g kconfig = new KVSt oreConfi g("exanpl eStore", hhosts);
KVStore kvstore = KVStoreFactory. get Store(kconfig);

Using the KVStoreConfig Class

Use the KVSt or eConf i g class to describe properties about a KVSt or e handle. Most of the
properties are optional, and those that are required are provided when you construct a class
instance.

The properties that you can provide using KVSt or eConfi g are as follows:

e Consistency

Consistency is a property describing how likely it is that a record read from a replica node
is identical to the same record stored on a master node. For more information, see
Consistency Guarantees.

e Durability

Durability is a property describing how likely it is that a write operation performed on the
master node will not be lost if the master node is lost or is shut down abnormally. For more
information, see Durability Guarantees.

e Helper Hosts

Helper hosts are hostname and port pairs that identify how to contact helper nodes within
the store. Use an array of strings to identify multiple helper hosts . Typically, you will obtain
these hostname and port pairs from the store's deployer or administrator. For example:

String[] hhosts = {"nl.exanple.org:3333", "n2.exanple.org:3333"};

* Request Timeout

Configures the amount of time the KVSt or e handle will wait for an operation to complete
before it times out.

e Store name
Identifies the name of the store.
e Password credentials and optionally a reauthentication handler

See the next section on authentication.

Using the Authentication APIs

You can install Oracle NoSQL Database so that your client code does not have to authenticate
to the store. (For the sake of clarity, most of the examples in this book do not perform
authentication.) However, if you want your store to operate securely, you can require

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 3 of 13

ORACLE

Chapter 1
Using the Authentication APIs

authentication. Requiring authentication incurs a performance cost, due to the overhead of
using SSL and authentication. While we recommend that your production store requires
authentication over SSL, some sites that are particularly performance sensitive can forgo that
level of security.

Authentication involves sending username/password credentials to the store at the time a store
handle is acquired.

If you configure your store to support authentication, it is automatically configured to
communicate with clients using SSL. The use of SSL ensures privacy of the authentication and
other sensitive information. To use SSL, you must install SSL certificates on the machines
where your client code runs, to validate that the store being accessed is trustworthy.

Be aware that you can authenticate to the store in several different ways. You can use
Kerberos, or you can specify a Logi nCredent i al s implementation instance to

KVSt or eFact ory. get St ore() . (Oracle NoSQL Database provides the Passwor dCr edenti al s
class as a Logi nCredenti al s implementation.) If you use Kerberos, you can either use security
properties that Oracle NoSQL Database understands to provide necessary Kerberos
information, or you can use the Java Authentication and Authorization Service (JAAS)
programming framework.

For information on using Logi nCredenti al s, see Authentication using a LoginCredentials
Instance. For information on using Kerberos, see Authentication using Kerberos. For
information on using JAAS with Kerberos, see Authentication using Kerberos and JAAS.

For information on configuring a store for authentication, see Configuring Authentication in the
Security Guide.

Configuring SSL

If you are using a secure store, then all communications between your client code and the
store is transported over SSL, including authentication credentials. You must therefore
configure your client code to use SSL. To do this, you identify where the SSL certificate data is,
and you also separately indicate that the SSL transport is to be used.

|dentifying the Trust Store

When an Oracle NoSQL Database store is configured to use the SSL transport, a series of
security files are generated using a security configuration tool. One of these files is the
client.trust file, which must be copied to any machine running Oracle NoSQL Database
client code.

For information on using the security configuration tool, see Security Configuration in the
Security Guide.

Your code must be told where the cl i ent.trust file can be found because it contains the
certificates necessary to establish an SSL connection with the store. You indicate where this
file is physically located on your machine using the oracl e. kv. ssl . trust St or e property.
There are two ways to set this property:

1. Identify the location of the trust store by using a Properti es object to set the
oracl e. kv. ssl.trust Store property. You then use
KVSt oreConfi g. set SecurityProperties() to pass the Properties object to your KVSt or e
handle.

When you use this method, you use
KVSecurityConstants. SSL_TRUSTSTORE_FI LE_PROPERTY as the property name.

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 4 of 13

ORACLE

Chapter 1
Using the Authentication APIs

2. Usetheoracle. kv. security property to refer to a properties file, such as the
client.trust file. In that file, set the oracl e. kv. ssl . trust St or e property.

Setting the SSL Transport Property

In addition to identifying the location of the cl i ent. trust file, you must also tell your client
code to use the SSL transport. You do this by setting the or acl e. kv. transport property. There
are two ways to set this property:

1. Identify the location of the trust store by using a Properti es object to set the
oracl e. kv.transport property. You then use KVSt or eConfi g. set SecurityProperties()
to pass the Properti es object to your KVSt or e handle.

When you use this method, you use KVSecuri t yConst ant s. TRANSPORT PROPERTY as the
property name, and KVSecurit yConst ant s. SSL_ TRANSPORT _NAME as the property value.

2. Usetheoracle. kv. security property to refer to a properties file, such as the
client.trust file. In that file, set the oracl e. kv. transport property.

Authentication using a LoginCredentials Instance

You can authenticate to the store by specifying a Logi nCr edent i al s implementation instance
to KVSt or eFact ory. get St ore() . Oracle NoSQL Database provides the Passwor dCredenti al s
class as a Logi nCredenti al s implementation. If your store requires SSL to be used as the
transport, configure that prior to performing the authentication. (See the previous section for
details.)

Your code should be prepared to handle a failed authentication attempt.
KVSt or eFact ory. get St ore() will throw Aut henti cati onFai | ur e in the event of a failed
authentication attempt. You can catch that exception and handle the problem there.

The following is a simple example of obtaining a store handle for a secured store. The SSL
transport is used in this example.

inport java.util.Properties;

inport oracle. kv. Aut henti cationFail ure;
i nport oracle. kv. PasswordCredenti al s;
inport oracle. kv. KVSecurityConstants;

i nport oracle. kv. KVStoreConfi g;

i nport oracle. kv. KVSt oreFact ory;

KVStore store
try {

/*

* storeNanme, hostName, port, username, and password are all

* strings that would cone from somewhere else in your

* application.

*/

KVSt oreConfig kconfig =

new KVSt oreConfi g(storeNanme, hostNane + ":" + port);

nul | ;

/* Set the required security properties */
Properties secProps = new Properties();
secProps. set Property(KVSecurityConst ants. TRANSPORT PROPERTY,

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 5 of 13

ORACLE Chapter 1
Using the Authentication APIs

KVSecuri t yConst ant s. SSL_TRANSPORT_NAME) ;
secProps. set Property
(KVSecurityConstants. SSL_TRUSTSTORE_FI LE_PROPERTY,
“/home/ kv/client.trust");
kconfi g. set SecurityProperties(secProps);

store =
KVSt or eFact ory. get St ore(kconfi g,
new Passwor dCr edent i al s(user nane,
password.toCharArray()),
nul | /* ReauthenticateHandl er */);
} catch (AuthenticationFailureException afe) {

/*

* Could potentially retry the login, possibly with different

* credentials, but in this sinple exanple, we just fail the

* attenpt.

*/

Systemout. println("authentication failed!'");

return;

}

Another way to handle the login is to place your authentication credentials in a flat text file that
contains all the necessary properties for authentication. In order for this to work, a password
store must have been configured for your Oracle NoSQL Database store. See the Security
Guide for information on setting up password stores.

For example, suppose your store has been configured to use a password file password store
and it is contained in a file called | ogi n. pwd. In that case, you might create a login properties
file called | ogi n. t xt that looks like this:

oracl e. kv. aut h. user name=cl i ent Ul D1
oracle.kv.auth. pwdfile.file=/hone/nosql/login.pwd
oracl e. kv.transport =ssl

oracl e. kv. ssl . trust St ore=/home/ nosql /client.trust

In this case, you can perform authentication in the following way:

inport oracle. kv. Aut henti cati onFail ure;
i nport oracle. kv. PasswordCredenti al s;

i nport oracle. kv. KVStoreConfi g;

i nport oracle. kv. KVSt oreFact ory;

/* the client gets login credentials fromthe login.txt file */
/* can be set on command line as well */
System set Property("oracle. kv.security", "/honme/nosql/login.txt");

KVStore store = null;

try {
/*
* storeName, hostName, port are all strings that would come
* from sonmewhere el se in your application.
*
* Notice that we do not pass in any login credentials.
* All of that information comes froml ogin.txt
*

/

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 6 of 13

ORACLE Chapter 1
Using the Authentication APIs

nmySt or eHandl e =
KVSt or eFact ory. get St or e(
new KVSt or eConfi g(storeName, hostNane + ":" + port))
} catch (AuthenticationFailureException afe) {
/*
* Could potentially retry the login, possibly with different
* credentials, but in this sinple exanple, we just fail the
* attenpt.
*/
Systemout. println("authentication failed ")
return;

Renewing Expired Login Credentials

It is possible for an authentication session to expire. This can happen for several reasons. One
is that the store's administrator has configured the store to not allow session extension and the
session has timed out. These properties are configured using sessi onExt endAl | owand

sessi onTi meout .

Reauthentication might also be required if some kind of a major disruption has occurred to the
store which caused the authentication session to become invalidated. This is a pathological
condition which you should not see with any kind of frequency in a production store. Stores
which are installed in labs might exhibit this condition more, especially if the stores are
frequently restarted.

An application can encounter an expired authentication session at any point in its lifetime, so
robust code that must remain running should always be written to respond to authentication
session expirations.

When an authentication session expires, by default the method which is attempting store
access will throw Aut hent i cati onRequi redExcept i on. Upon seeing this, your code needs to
reauthenticate to the store, and then retry the failed operation.

You can manually reauthenticate to the store by using the KVSt ore. | ogi n() method. This
method requires you to provide the login credentials via a Logi nCr edent i al s class instance
(such as Passwor dCr edent i al s):

try {

/* Store access code happens here */

} cailclh (Aut henti cati onRequi redException are) {
*
/* myStoreHandl e is a KVStore class instance.
*
* pwCreds is a PasswordCredentials class instance, obtained
* from somewhere el se in your code.
*
rTy/St or eHandl e. | ogi n(pwCr eds) ;

Note that this is not required if you use the or acl e. kv. aut h. user nane and

oracl e. kv. auth. pwdfile.file properties, as shown in the previous section. In that case, your
Oracle NoSQL Database client code will automatically and silently reauthenticate your client
using the values specified by those properties.

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 7 of 13

ORACLE

Chapter 1
Using the Authentication APIs

A third option is to create a Reaut hent i cati onHandl er class implementation that performs your
reauthentication for you. This option is only necessary if you provided a Logi nCr edenti al s
implementation instance (that is, Passwor dCr edenti al s) in a call to

KVSt or eFact ory. get St ore(), and you want to avoid a subsequent need to retry operations by
catching Aut hent i cat i onRequi r edExcepti on.

A truly robust example of a Reaut hent i cati onHandl er implementation is beyond the scope of
this manual (it would be driven by highly unique requirements that are unlikely to be
appropriate for your site). Still, in the interest of completeness, the following shows a very
simple and not very elegant implementation of Reaut henti cati onHandl er:

package kvstore. basi cExanpl e

i nport oracle. kv. Reaut henti cati onHandl er;
i nport oracle. kv. PasswordCredenti al s;

public class MyReaut hHandl er inpl ements Reaut henticationHandl er {
public void reauthenticate(KVStore reauthStore) {

/*
* The code to obtain the username and password strings woul d
* go here. This should be consistent with the code to perform
* sinple authentication for your client.

*/

Passwor dCredential s cred = new Passwor dCredenti al s(user nane,

password.toCharArray());

reaut hStore. |l ogin(cred);

You would then supply a MyReaut hHandl er instance when you obtain your store handle:

inport java.util.Properties;

i nport oracle.kv. AuthenticationFail ure;
i nport oracle.kv. PasswordCredenti al s;

i nport oracle.kv. KVSecurityConstants;

i nport oracle. kv. KVStoreConfig;

i nport oracle. kv. KVSt or eFact ory;

i nport kvstore. basi cExanpl e. MyReaut hHandl er;

KVStore store = null;
try {
/

*

* storeName, hostName, port, username, and password are all
* strings that would come from somewhere el se in your

* application. The code you use to obtain your usernane

* and password should be consistent with the code used to
* obtain that information in MyReaut hHandl er.

*/

KVSt oreConfig kconfig =

new KVSt oreConfi g(st oreNanme, hostNane + ":" + port);

[* Set the required security properties */

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 8 of 13

ORACLE

Chapter 1
Using the Authentication APIs

Properties secProps = new Properties();
secProps. set Property(KVSecurityConst ant s. TRANSPORT PROPERTY,
KVSecuri t yConst ant s. SSL_TRANSPORT_NAME) ;
secProps. set Property
(KVSecurityConstants. SSL_TRUSTSTORE_FI LE_PROPERTY,
“/home/ kv/client.trust");
kconfi g. set SecurityProperties(secProps);

store =
KVSt or eFact ory. get St ore(kconfi g,
new Passwor dCredent i al s(user nane,
password.toCharArray()));
new MyReaut hHandl er());
} catch (AuthenticationFailureException afe) {
/*
* Could potentially retry the login, possibly with different
* credentials, but in this sinple exanple, we just fail the
* attenpt.
*/
Systemout. println("authentication failed ")
return;

Authentication using Kerberos

You can authenticate to the store by using Kerberos. To do this, you must already have
installed Kerberos and obtained the necessary login and service information.

The following is a simple example of obtaining a store handle for a secured store, and using
Kerberos to authenticate. Information specific to Kerberos, such as the Kerberos user name, is
specified using KVSecuri t yConst ant s that are set as properties to the KVSt or eConf i g instance
which is used to create the store handle.

inport java.util.Properties;

i nport oracle. kv. KVSecurityConstants;
i nport oracle.kv.KVStore;

i nport oracle. kv. KVStoreConfi g;

i nport oracle. kv. KVSt oreFact ory;

KVStore store = nul l;
/*
* storeName, hostNanme, port, username, and password are all
* strings that would come from somewhere el se in your
* application.
*/
KVSt oreConfig kconfig =
new KVSt oreConfi g(st oreName, hostNane +

+ port);

/* Set the required security properties */
Properties secProps = new Properties();

/* Set the user name */
secProps. set Property(KVSecurityConstants. AUTH USERNAVE PROPERTY,
"krbuser");

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 9 of 13

ORACLE Chapter 1
Using the Authentication APIs

/* Use Kerberos */
secProps. set Property(KVSecurityConstants. AUTH EXT MECH PROPERTY,
"kerberos");

/* Set SSL for the wire level encryption */
secProps. set Property(KVSecurityConst ant s. TRANSPORT PROPERTY,
KVSecuri t yConst ant s. SSL_TRANSPORT_NAME) ;

/* Set the location of the public trust file for SSL */
secProps. set Property
(KVSecurityConstants. SSL_TRUSTSTORE FI LE PROPERTY,
"/home/kv/client.trust");

/* Set the service principal associated with the hel per host */
final String servicesDesc =

"l ocal host : oracl enosql /| ocal host @XAMPLE. COM';
secProps. set Property(

KVSecuri t yConst ant s. AUTH_KRB_SERVI CES_PROPERTY,

servi cesDesc) ;

/*
* Set the default realmnanme to pernit using a short nane for the
* user principal
*/
secProps. set Property(KVSecurityConstants. AUTH KRB_REALM PROPERTY,
" EXAMPLE. COM') ;

/* Specify the client keytab file location */
secProps. set Property(KVSecurityConstants. AUTH KRB_KEYTAB PROPERTY,
"/t nmp/ krbuser. keytab");

kconfi g. set SecurityProperties(secProps);

store = KVStoreFactory. get Store(kconfig);

Authentication using Kerberos and JAAS

You can authenticate to the store by using Kerberos and the Java Authentication and
Authorization Service (JAAS) login API. To do this, you must already have installed Kerberos
and obtained the necessary login and service information.

The following is a simple example of obtaining a store handle for a secured store, and using
Kerberos with JAAS to authenticate.

To use JAAS, you create a configuration file that contains required Kerberos configuration
information. For example, the following could be placed in the file named j aas. confi g:

oracl enosgl {

com sun. securi ty. aut h. nodul e. Krb5Logi nMbdul e requi red
princi pal ="krbuser"

useKeyTab="true"

keyTab="/t np/ kr buser . keyt ab"

b

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 10 of 13

ORACLE Chapter 1
Using the Authentication APIs

To identify this file to your application, set the Java property
java.security.auth.login. config using the - D option when you run your application.

Beyond that, you use KVSecuri t yConst ant s to specify necessary properties, such as the SSL
transport. You can also specify necessary Kerberos properties, such as the Kerberos user
name, using KVSecuri t yConst ant s, or you can use the Ker ber osCredenti al s class to do this.

inport java.security.PrivilegedActionException;
inport java.security.PrivilegedExceptionAction;
inport java.util.Properties;

i nport javax.security.auth. Subject;
i nport javax.security.auth.|ogin.LoginContext;
i nport javax.security.auth.|ogin.Logi nExcepti on;

i nport oracle. kv. KerberosCredential s;
i nport oracle. kv. KVSecurityConstants;
i nport oracle.kv.KVStore;

i nport oracle. kv. KVStoreConfi g;

i nport oracle. kv. KVSt oreFact ory;

/*
* storeName, hostNanme, port, username, and password are all
* strings that would come from somewhere else in your
* application.
*/
final KVStoreConfig kconfig =
new KVSt oreConfi g(storeName, hostName + ":" + port);

/* Set the required security properties */
Properties secProps = new Properties();

/* Set SSL for the wire |evel encryption */
secProps. set Property(KVSecurityConst ants. TRANSPORT PROPERTY,
KVSecurit yConst ant s. SSL_ TRANSPORT NAME) ;

/* Set the location of the public trust file for SSL */
secProps. set Property
(KVSecurityConstants. SSL_TRUSTSTORE FI LE PROPERTY,
"/home/ kv/client.trust");

/* Use Kerberos */
secProps. set Property(KVSecurityConstants. AUTH EXT MECH PROPERTY,
"kerberos");

/* Set Kerberos properties */
final Properties krbProperties = new Properties();

/* Set the service principal associated with the hel per host */
final String servicesPpal =
"l ocal host: oracl enosql /| ocal host @XAMPLE. COM';
krbProperties. set Property(KVSecurityConstants. AUTH KRB_SERVI CES PROPERTY,
host Name + ":" + servicesPpal);

/* Set default real mnanme, because the short nane
* for the user principal is used.

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 11 of 13

ORACLE

Chapter 1
Using the Authentication APIs

*/
krbProperties. set Property(KVSecurityConstants. AUTH KRB_REALM PROPERTY,
" EXAMPLE. COM') ;

/* Specify Kerberos principal */
final KerberosCredentials krbCreds =
new Ker berosCredential s("krbuser", krbProperties);

try {
/* CGet a login context */

final Subject subj = new Subject();
final LoginContext |c = new Logi nContext("oraclenosqgl", subj);

[* Attenmpt to log in */
[c.login();

/* CGet the store using the credentials specified in the subject */
kconfi g. set SecurityProperties(secProps);

store = Subj ect. doAs(
subj, new PrivilegedExceptionAction<KVStore>() {
@verride
public KVStore run() throws Exception {
return KVStoreFactory. get Store(kconfig, krbCreds, null);
}

D

} catch (Logi nException le) {

Il Logi nException handling goes here
} catch (PrivilegedActionException pae) {

/1 PrivilegedActionException handling goes here
} catch (Exception e) {

/'l CGeneral Exception handling goes here
}

Unauthorized Access

Clients which must authenticate to a store are granted some amount of access to the store.
This could range from a limited set of privileges to full, complete access. The amount of access
is defined by the roles and privileges granted to the authenticating user. Therefore, a call to the
Oracle NoSQL Database API could fail due to not having the authorization to perform the
operation. When this happens, Unaut hor i zedExcept i on will be thrown.

When Unaut hori zedExcept i on is seen, the operation should not be retried. Instead, the
operation should either be abandoned entirely, or your code could attempt to reauthenticate
using different credentials that would have the required permissions necessary to perform the
operation. Note that a client can log out of a store using KVSt or e. | ogout () . How your code
logs back in is determined by how your store is configured for access, as described in the
previous sections.

/1 Open a store handl e, and perform authentication as you do
/] as described earlier in this section.

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 12 of 13

ORACLE Chapter 1
Using the Authentication APIs

try {
/1 Wen you attenpt sonme operation (such as a put or delete)
Il to a secure store, you should catch UnauthorizedException
/1 in case the user credentials you are using do not have the
/'l privileges necessary to performthe operation.

} catch (UnauthorizedException ue) {
/*
* Wen you see this, either abandon the operation entirely,
* or log out and log back in with credentials that night
* have the proper permnissions for the operation.
*/
Systemout. println("authorization failed!")
return;

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 13 of 13

Introduction to Oracle KVLite

KVLite is a single-node, single shard store. It usually runs in a single process and is used to
develop and test client applications. KVLite is installed when you install Oracle NoSQL
Database.

Starting KVLite

You start KVLite by using the kvl i t e utility, which can be found in KYHOWE/ | i b/ kvstore.jar. If
you use this utility without any command line options, then KVLite will run with the following
default values:

e The store name is kvstore.
¢ The hostname is the local machine.
e The registry port is 5000.

e The directory where Oracle NoSQL Database data is placed (known as KVROOT) is . /
kvr oot .

e The administration process is turned on.
e Security is turned on.

This means that any processes that you want to communicate with KVLite can only connect to
it on the local host (127.0.0.1) using port 5000. If you want to communicate with KVLite from
some machine other than the local machine, then you must start it using non-default values.
The command line options are described later in this chapter.

For example:

> java - Xnx64m - Xms64m -j ar KVHOME/ | i b/ kvstore.jar kvlite

@® Note

To avoid using too much heap space, you should specify the - Xmx and - Xns flags for
Java when running administrative and utility commands.

When KVLite has started successfully, it writes one of two statements to stdout, depending on
whether it created a new store or is opening an existing store (the following assumes security
is enabled):

CGenerated password for user admin: password

User login file: ./kvroot/security/user.security

Created new kvlite store with args:

-root ./kvroot -store <kvstore> -host |ocal host -port 5000
-secure-config enable

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 1 of 4

ORACLE Chapter 2
Stopping and Restarting KVLite

@® Note

The password is randomly generated.

or

Opened existing kvlite store with config:
-root ./kvroot -store <kvstore nane> -host <l ocal host> -port 5000
-secure-config enable

where <kvst ore nanme> is the name of the store and <localhost> is the name of the local host.
It takes about 10 - 60 seconds before this message is issued, depending on the speed of your
machine.

Note that you will not get the command line prompt back until you stop KVLite.

Stopping and Restarting KVLite

To stop KVLite, use ~C from within the shell where KVLite is running.

To restart the process, simply run the kvl i t e utility without any command line options. Do this
even if you provided non-standard options when you first started KVLite. This is because
KVLite remembers information such as the port value and the store name in between run
times. You cannot change these values by using the command line options.

If you want to start over with different options than you initially specified, delete the KVROOT
directory (. / kvr oot , by default), and then re-run the kvl i t e utility with whatever options you
desire. Alternatively, specify the - r oot command line option, making sure to specify a location
other than your original KVROOT directory, as well as any other command line options that you
want to change.

Verifying the Installation

There are several things you can do to verify your installation, and ensure that KVLite is
running:

e Start another shell and run:

ips -m

The output should show KVLite (and possibly other things as well, depending on what you
have running on your machine).

e Runthe kvclient test application:
1. cd KVHOME
2. java -Xmx64m -Xms64m -jar lib/kvclient.jar

This should write the release to stdout:

12cR1.MN. Q...

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 2 of 4

ORACLE

Chapter 2
kvlite Utility Command Line Parameter Options

Download the examples package and unpack it so that the examples directory is in
KVHOME. You can obtain the examples package from the same place as you obtained
your server download package.

Compile and run the example program:
1. cd KVHOME

2. Compile the example:

javac -g -cp lib/kvclient.jar:exanpl es exanpl es/ hello/*.]ava
3. Run the example using all default parameters:

java - Xmx64m - Xms64m \

- Doracl e. kv. securi t y=<KVROOT>/ security/user.security \
-cp lib/kvclient.jar:exanples hello.Hell oBi gbhataWrld

Or run it using non-default parameters, if you started KVLite using non-default values:

java - Xmk64m - Xms64m \
-cp lib/kvclient.jar:exanples hello.HelloBi gbhataWrld \
-host <host name> -port <hostport> -store <kvstore name>

kvlite Utility Command Line Parameter Options

This section describes the command line options that you can use with the kvl i t e utility.

Note that you can only specify these options the first time KVLite is started. Most of the
parameter values specified here are recorded in the KVHOME directory, and will be used when
you restart the KVLite process regardless of what you provide as command line options. If you
want to change your initial values, either delete your KVHOME directory before starting KVLite
again, or specify the - r oot option (with a different KVYHOME location than you initially used)
when you provide the new values.

-hel p

Print a brief usage message, and exit.

-host <host nane>

Identifies the name of the host on which KVLite is running.

If you want to access this instance of KVLite from remote machines, supply the local host's
real hosthame. Otherwise, specify | ocal host for this option.

-noadnin
If this option is not specified, the administration user interface is started.
-port <port>

Identifies the port on which KVLite is listening for client connections. Use this option ONLY
if you are creating a new store.

-root <path>

Identifies the path to the Oracle NoSQL Database home directory. This is the location
where the store's database files are contained. The directory identified here must exist. If
the appropriate database files do not exist at the location identified by the option, they are
created for you.

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 3 of 4

ORACLE Chapter 2
kvlite Utility Command Line Parameter Options

e -secure-config <enabl e| di sabl e>

If enabled, causes security to be enabled for the store. This means all clients connecting to
the store must present security credentials. Security is enabled by default.

e -store <storenanme>
Identifies the name of a new store. Use this option ONLY if you are creating a new store.

For information on configuring your client code to connect to a secure store, see Using the
Authentication APIs .

Java Direct Driver Developer's Guide

E85378-35 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 4 of 4

Introducing Oracle NoSQL Database Tables
and Indexes

Using the Table API (in one of the supported languages) is the recommended method of
developing an Oracle NoSQL Database client application. Table APIs let you manipulate data
using a tables metaphor, in which data is organized in multiple columns of data. The table APIs
support an unlimited number of subtables. You can also create indexes to improve query
performance against your tables.

If you have a mix of clients accessing your store using both Table and Key/Value APIs, a
remote chance exists that keys from different clients could collide. As a best practice, it is
recommended that you do not use your data store to store both raw key/value data and table
data. If this is required for your situation, then it is recommended that you store your key/value
data in a table with 2 columns: a key column and a data column. Doing so will allow you to use
the Table APIs on both your table and key/value data. To avoid any possible conflict between
keys, however unlikely, make sure that every KV key has either only:

e Asingle component

e A single major component

@® Note

Throughout this manual, examples call Tabl eAPI . get Tabl e() . The cost of calling this
API is relatively high, because doing so requires a round trip to the store to fulfill the
request. For optimal performance, call this method sparingly in your code.

Defining Tables

Before an Oracle NoSQL Database client can read or write to a table in the store, you must
first create the tables. There are several ways to do this, but this document focuses on using
Table DDL statements. You can submit these statements to the store directly using both the
Admin command line interface (CLI), with the execut e command), or the SQL CLI. However,
the recommended approach is to submit DDL statements to the store programmatically. This
section describes both direct and programmatic methods.

The DDL language that you use to define tables is described in Table Data Definition
Language Overview. This section provides a brief overview of how to use that language.

As an introductory example, suppose you want to create a table called nmyTabl e with four
columns:item description, count, and per cent age. To create your table, use the following
statement from the SQL CLI:

sql -> CREATE TABLE nyTabl e (
i tem STRI NG,
description STRING
count | NTEGER,
per cent age DOUBLE,

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 1 of 16

ORACLE Chapter 3
Defining Tables

PRIMARY KEY (item) // Every table nmust have a primary key
);

Statenent conpl eted successfully

® Note

Primary keys are a concept that have not yet been introduced. See Primary and Shard
Key Design for a complete explanation of what they are, and how you should use
them. For now, be sure a primary key exists for every table you create, just as the
previous example illustrates.

Executing DDL Statements Programmatically

To add the table definition to the store programmatically use the KVSt or e. execut e() or
KVSt or e. execut eSync() methods. (The latter method executes the statement synchronously.)

For example:

package kvstore. basi cExanpl e;

i nport oracle. kv. Faul t Excepti on;
i nport oracle.kv. Statenment Resul t;
i nport oracle.kv.KVStore;

i nport oracle. kv. tabl e. Tabl eAPI ;

/1 store handl e creation and open onitted

StatementResult result = null;
String statenent = null;

public void createTable() {
StatementResult result = null;
String statenent = null;

try {
/*
* Add a table to the database.
* Execute this statenent asynchronously.
*/
statenment =
"CREATE TABLE nyTable (" +
"item STRING " +
"description STRING " +
“count INTEGER " +
"percentage DOUBLE," +
"PRIMARY KEY (item))"; // Required"
result = store.executeSync(statenment);

di splayResult(result, statement);

} catch (I11egal Argunent Exception e) {
Systemout.printin("Invalid statement:\n" + e.getMessage());
} catch (Faul t Exception e) {

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 2 of 16

ORACLE

Chapter 3
Defining Tables

Systemout. println
("Statenment couldn't be executed, please retry: " + e);

}

private void displayResult(StatementResult result, String statement) {
Systemout. println(" ");
if (result.isSuccessful()) {
Systemout. println("Statement was successful :\n\t" +
statenent);
Systemout.printIn("Results:\n\t" + result.getinfo());
} else if (result.isCancelled()) {
Systemout. println("Statement was cancelled:\n\t" +
statenent);
} else {
/*
* statement was not successful: nay be in error, or may still
* be in progress.
*/
if (result.isDone()) {
Systemout.printin("Statement failed:\n\t" + statenent);
Systemout. printin("Problem\n\t" +
resul t.get Error Message());
} else {
Systemout.printin("Statement in progress:\n\t" +
statenent);
Systemout. printin("Status:\n\t" + result.getlnfo());

Executing DDL Statements From the Admin CLI

You can execute DDL statements using the Admin CLI's execut e command. This executes
DDL statements synchronously. For example:

kv-> execute "CREATE TABLE nmyTabl e (
> item STRI NG

> description STRI NG

> count | NTEGER,

> percent age DOUBLE,

> PRI MARY KEY (item))"

Statenent conpl eted successfully
kv->

Supported Table Data Types

You specify schema for each column in an Oracle NoSQL Database table. This schema can be
a primitive data type, or complex data types that are handled as objects.

Oracle NoSQL Database tables support the following data types:

Java Direct Driver Developer's Guide

E85378-35

Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 3 of 16

ORACLE’

Chapter 3
Defining Tables

Data Type Description

Array An array of values, all of the same type.

Binary Implemented as a byte array with no predetermined fixed size.

Boolean

Double

Enum An enumeration, represented as an array of strings.

Fixed Binary Implemented as a byte array with no predetermined fixed size.

Float

Integer

Json Any valid JSON data.

Long

Number A numeric type capable of handling any type of number or any value
or precision.

Map An unordered map type, where all entries are constrained by a
single type.

Records See the following section.

String

Timestamp An absolute timestamp encapsulating a date and, optionally, a time

value.

Record Fields

As described in Defining Child Tables, you can create child tables to hold subordinate
information, such as addresses in a contacts database, or vendor contact information for an
inventory system. When you do this, you can create an unlimited number of rows in the child
table, and you can index the fields in the child table's rows.

However, you do not need to create child tables to organize subordinate data. If you have
simple requirements for subordinate data, you can use record fields, instead of child tables. In
general, you can use record fields instead of child tables if you want only a fixed, small number
of instances of the record for each parent table row. For anything beyond trivial cases, use
child tables.

® Note

There is no downside to using child tables for even trivial cases.

The assumption when using record fields is that you have a fixed, known number of records to
manage (unless you organize them as arrays). For example, in a contacts database, child
tables let you have an unlimited number of addresses associated for each user. By using
records, rather than child tables, you can associate a fixed number of addresses by creating a
record field for each supported address (home and work, for example).

For example:

CREATE TABLE nmyCont actsTabl e (
ui d STRI NG
surname STRI NG,
fam i arNanme STRI NG
hormrePhone STRI NG,

Java Direct Driver Developer's Guide

E85378-35

Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 4 of 16

ORACLE

Chapter 3
Defining Tables

wor kPhone STRI NG
homeAddress RECORD (street STRING city STRING state STRING

zip I NTEGER),
wor kAddress RECORD (street STRING city STRING state STRING
zip I NTEGER),

PRI MARY KEY(ui d))

Alternatively, you can create an array of record fields. This lets you create an unlimited number
of address records per field. In general, however, you should use child tables in this case.

CREATE TABLE nyContactsTabl e (
uid STRING
surname STRI NG
fam |iarNane STRI NG
honePhone STRI NG,
wor kPhone STRI NG,
addresses ARRAY(RECORD (street STRING city STRING state STRING
zip INTEGER))),
PRI MARY KEY(ui d))

Defining Child Tables

Oracle NoSQL Database tables can be organized in a parent/child hierarchy. There is no limit
to how many child tables you can create, nor is there a limit to how deep the child table nesting
can go.

By default, child tables are not retrieved when you retrieve a parent table, nor is the parent
retrieved when you retrieve a child table.

To create a child table, you name the table using the format:
<parentTableName>.<childTableName>. For example, suppose you had the trivial table called
nmyl nventory:

CREATE TABLE nylnventory (
i tenCategory STRING
description STRING
PRI MARY KEY (it entat egory)

)

We can create a child table called i t enDet ai | s in the following way:

CREATE TABLE nylnventory.itenDetails (
i tenSKU STRI NG,
i temDescription STRING
price FLOAT,
i nvent oryCount | NTEGER,
PRI MARY KEY (it enBKU)

Note that when you do this, the child table inherits the parent table's primary key. In this trivial
case, the child table's primary key is actually two fields: i t enCat egory and i t enSKU. This has
several ramifications, one of which is that the parent's primary key fields are retrieved when
you retrieve the child table. See Retrieve a Child Table for more information.

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 5 of 16

ORACLE

Chapter 3
Defining Tables

Defining Multi-Region Tables

A Multi-Region Table or MR Table is a global logical table that is stored and maintained in
different regions or installations. It is a read-anywhere and write-anywhere table that lives in
multiple regions.

Consider an Oracle NoSQL Database with three regions, Frankfurt, London, and Dublin. To
create a table called user s that stores user details for all the three regions, you must create an
MR table on each KVStore in the connected graph, and specify the list of regions that the table
should span.

For example, to create the users table in all the three regions, you must execute the following
command from each region separately:

CREATE TABLE users (
id | NTEGER
firstName STRI NG
| ast Name STRI NG,
age | NTECER
prinmary key (id)
) INREGONS fra, |nd, dub;

For information about MR Tables, see Life Cycle of MR Tables in the Concepts Guide.

Using CRDT datatype in a multi-region table

Overview of the MR_COUNTER data type

MR_Counter data type is a counter CRDT. CRDT stands for Conflict-free Replicated Data
Type. In a multi-region setup of an Oracle NoSQL Database, a CRDT is a data type that can
be replicated across servers where regions can be updated independently and it converges on
a correct common state. Changes in the regions are concurrent and not synchronized with one
another. In short, CRDTs provide a way for concurrent modifications to be merged across
regions without user intervention. Oracle NoSQL Database currently supports the counter
CRDT which is called MR_Counter. The MR_COUNTER datatype is a subtype of the
INTEGER or LONG or NUMBER data type. You can also use the MR_COUNTER data type in
a schema-less JSON field, which means one or more fields in a JSON document can be of
MR_COUNTER data type.

Why do you need MR_Counter in a multi-region table?

In a multi-region database configuration, copies of the same data need to be stored in multiple
regions. This configuration needs to deal with the fact that the data may be concurrently
modified in different regions.

Take an example of a multi-region table in three different regions (where data is stored in three
different Oracle NoSQL Database stores). Concurrent updates of the same data in multiple
regions, without coordination between the machines hosting the regions, can result in
inconsistencies between the regions, which in the general case may not be resolvable.
Restoring consistency and data integrity when there are conflicts between updates may require
some or all of the updates to be entirely or partially dropped. For example, in the current
configuration of a multi-region table in the Oracle NoSQL Database, if the same column (a
counter) of a multi-region table is updated across two regions at the same time with different
values, a conflict arises.

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 6 of 16

ORACLE

Chapter 3
Defining Tables

Currently, the conflict resolution is that the latest write overwrites the value across regions. For
example, Region 1 updates columnl with a value R1, and region2 updates columnl with a
value R2, and if the region2 update happens after regionl, the value of the column (counter) in
both the regions becomes R2. This is not what is actually desired. Rather every region should
update the column (a counter) at their end and also the system internally needs to determine
the sum of the column across regions.

One way to handle this conflict is making serializable/linearizable transactions (one transaction
is completed and changes are synchronized in all regions and only then the next transaction
happens). A significant problem of having serializable transactions is performance. This is
where MR_COUNTER datatype comes in handy. With MR_COUNTER datatype, we don't
need serializable transactions and the conflict resolution is taken care of. That is,
MR_COUNTER datatype ensures that though data modifications can happen simultaneously
on different regions, the data can always be merged into a consistent state. This merge is
performed automatically by MR_COUNTER datatype, without requiring any special conflict
resolution code or user intervention.

Use-case for MR_COUNTER datatype

Consider a Telecom provider providing different services and packages to its customers. One
such service is a "Family Plan" option where a customer and their family share the Data Usage
plan. The customer is allocated a free data usage limit for a month which your the customer's
entire family collectively uses. When the total usage of customer's family reaches 90 percent of
the data limit, the telecom provider sends the customer an alert. Say there are four members in
customer's family plan who are spread across different physical regions. The customer needs
to get an alert from the telecom provider once the total consumption of their family reaches 90
percent of the free usage. The data is replicated in different regions to cater to latency,
throughput, and better performance. That means there are four regions and each has a kvstore
containing the details of the customer's data usage. The usage of their family members needs
to be updated in different regions and at any point in time, the total usage should be monitored
and an alert should be sent if the data usage reaches the limit.

An MR_COUNTER data type is ideal in such a situation to do conflict-free tracking of the data
usage across different regions. In the above example, an increment counter in every data
region's data store will track the data usage in that region. The consolidated data usage for all
regions can be determined by the system at any point without any user intervention. That is the
total data usage at any point in time can be easily determined by the system using an
MR_COUNTER datatype.

Types of MR_COUNTER Datatype

Currently, Oracle NoSQL Database supports only one type of MR_COUNTER data type. which
is Positive-Negative (PN) counter.

Positive-Negative (PN) Counter

A PN counter can be incremented or decremented. Therefore, these can serve as a general-
purpose counter. For example, you can use these counters to count the number of users active
on a social media website at any point. When the users go offline you need to decrement the
counter.

To create a multi-region table with an MR_COUNTER column, See Create multi-region table
with an MR_COUNTER column section in the Administrator's Guide.

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 7 of 16

ORACLE

Chapter 3
Defining Tables

Add MR_COUNTER datatype in a multi-region table

For example, to create a multi-region table nyTabl e with a counter data type, you must execute
the following command from each region.

CREATE Tabl e nyTabl e(nanme STRING
count | NTEGER AS MR_COUNTER,
PRI MARY KEY(nane)) | N REG ONS DEN, LON;

Example using JSON MR_COUNTER data type:
Create a JSON MR_COUNTER data type in a multi-region table as shown below:

CREATE TABLE denpJSONMR(nanme STRI NG

j sonWt hCounter JSON(counter as | NTEGER MR_COUNTER,
person. count as LONG MR_COUNTER),

PRI MARY KEY(nane)) |N REG ONS FRA, LND;

In the statement above, you create a multi-region table with a STRING column and a
column(JSON documents). You are identifying two of the fields in the JSON document as
MR_COUNTER data type.. The first field is count er, which is an INTEGER MR_COUNTER
data type. The second field is count within an embedded JSON document (per son). The count
field is of LONG MR_COUNTER data type.

Inserting JSON MR_COUNTER Values Programmatically

You can insert row (and MR_COUNTER values) into your application table programmatically
using PUT APIL.

Create a sample table:

CREATE TABLE exanpl eTabl e (id | NTEGER,

j sonCol uim JSON(counter AS | NTEGER MR_COUNTER,
person. score AS LONG MR_COUNTER),

PRI MARY KEY(id));

Insert row of data using PUT API:

KVStore store = KVStoreFactory. get Store(kvStoreConfig);

Tabl eAPl api = store. get Tabl eAPI ();

Tabl e tabl e = api.get Tabl e("exanpl eTabl e");

Row row = tabl e.createRow);

String json = "{\"counter\": 0, \"person\": {\"score\" : 0}}";
row. put("id", 1);

row. put Json("j sonCol um", json);

api.put(row, null, null);

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 8 of 16

ORACLE

Chapter 3
Using the UUID data type

@® Note

You need to include all defined json mr_counters when inserting a row. For example,
in the above code, giving an empty JSON MR_COUNTER like | NSERT | NTO

exanpl eTabl e VALUES (1, {}) will throw an error. The values of the JISON
MR_COUNTER need not be 0 but it can be any atomic values.

Updating JSON MR_COUNTER values: You cannot update a JSON MR_COUNTER
programatically using API. It can be done using UPDATE statement (DML) only.

Table Evolution

As your application is used over time, it's often necessary to update your tables to either add
new fields or remove existing fields that are no longer required. Table evolution is the term
used to update table definitions, adding or removing fields, or changing field properties, such
as a default value. You may even add a particular kind of column, like an IDENTITY column, to
increment some value automatically. Only tables that already exist in the store are candidates
for table evolution.

Use the ALTER TABLE statement to perform table evolution. See Modify Table Definitions.

® Note

You cannot remove a field if it is a primary key field, or if it participates in an index. You
also cannot add primary key fields during table evolution.

For example, the following statements evolve the table that was created in the previous
section. In this example, you would submit each statement to the store consecutively, using
either the API or the CLI.

ALTER TABLE nylnventory.itenDetails (ADD sal ePrice FLOAT)

ALTER TABLE nylnventory.itenDetails (DROP inventoryCount)

Using the UUID data type

Overview of the UUID data type

A universally unique identifier (UUID) is a 128-bit number used to identify information in
computer systems. You can create a UUID and use it to uniquely identify something. In its
canonical textual representation, the 16 octets of a UUID are represented as 32 hexadecimal
(base-16) digits, displayed in five groups separated by hyphens, in the form 8-4-4-4-12 for a
total of 36 characters (32 hexadecimal characters and 4 hyphens). For example, a81bc81b-
dead- 4e5d- abf f - 90865d1e13b1.

In Oracle NoSQL, UUID values are represented by the UUID data type. The UUID data type is
considered a subtype of the STRING data type, because UUID values are displayed in their
canonical textual format and, in general, behave the same as string values in the various SQL
operators and expressions. However, in order to save disk space, the UUID value is saved in a
compact format on disk. If the UUID value is the primary key, the canonical 36-byte string is

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 9 of 16

ORACLE

Chapter 3
Using the UUID data type

converted to a 19-byte string, then is saved on disk. If the UUID value is a non-primary key, the
canonical 36-byte string is converted to a 16-byte array, then is saved on disk.

A table column can be declared as having UUID type in a CREATE TABLE statement. The
UUID data type is best-suited in situations where you need a globally unique identifier for the
records in a table that span multiple regions since identity columns are only guaranteed to be
unigue within a NoSQL cluster in a region.

Using the UUID data type:

Declare a column with UUID data type. UUID is a subtype of the STRING data type. This UUID
column can be defined as GENERATED BY DEFAULT. The system then automatically
generates a value for the UUID column if you do not supply a value for it.

Syntax:

uui d_definition := AS UUl D [GENERATED BY DEFAULT]

Semantics

Declares the type of a column to be the UUID type. If the GENERATED BY DEFAULT
keywords are used, the system generates a value for the UUID column automatically, if the
user does not supply one.

UUID Column Characteristics :

e One table can have multiple columns defined as "STRING AS UUID". However, one table
can have only one column defined as "STRING AS UUID GENERATED BY DEFAULT".

e Since the Identity column is also generated by the system, the Identity column and the
UUID GENERATED BY DEFAULT columns are mutually exclusive. That means only one
IDENTITY column or one "UUID GENERATED BY DEFAULT" can exist per table.

e You create a UUID column as part of a CREATE TABLE DDL statement or add a UUID
column to an existing table with an ALTER TABLE DDL statement.

e You can also index UUID columns via secondary indexes.

Example 1: UUID Column without GENERATED BY DEFAULT

CREATE TABLE nyTable (id STRING AS UUI D, name STRING PRI MARY KEY (id));
Statenent conpl eted successfully

In the above example, the id column has no "GENERATED BY DEFAULT" defined, therefore,
whenever you insert a new row, you need to explicitly specify a value for the id column.

I NSERT | NTO nyTabl e
val ues("a81bc81b- dead- 4e5d- abf f - 90865d1e13b1", "testl1l");
St atenent conpl eted successfully

Input format: The input string must conform to the format specified by RFC 4122. An
lllegalArgumentException is thrown if the input string does not conform to the string
representation as described at Class UUID.

Output format: The output is a UUID canonical format. This is 32 hexadecimal(base-16)
digits, displayed in five groups separated by hyphens, in the form 8-4-4-4-12 for a total of 36
characters (32 hexadecimal characters and 4 hyphens).

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 10 of 16

ORACLE

Chapter 3
Using the UUID data type

The value for a UUID column can also be generated using the random uui d function, which
returns a randomly generated UUID, as a string of 36 characters. See Function to generate a
UUID string.

Example 2: UUID Column using GENERATED BY DEFAULT

CREATE TABLE nyTable (id STRING AS UUI D GENERATED BY DEFAULT, nanme STRI NG
PRI MARY KEY (id));
Statenent conpl eted successfully

In the above example, the id column has "GENERATED BY DEFAULT" defined, therefore,
whenever you insert a new row without specifying the value for the id column, Oracle NoSQL
Database automatically generates a value for it.

I NSERT | NTO nyTabl e VALUES(default,"test1");
Statement conpl eted successful Iy

Table 3-1 Comparison between Identity Column and UUID column

|
Identity Column UUID column

Declare a column as Identity to have Oracle Declare a column as UUID if you need unique
NoSQL Cluster automatically assign values to it values to be assigned to a NoSQL Cluster column
in a multi-region system

An INTEGER, LONG, or NUMBER column in a A UUID is a subtype of the STRING data type
table can be defined as an Identity column

An Identity column can be defined either as A UUID column can be defined as GENERATED
GENERATED ALWAYS or GENERATED BY BY DEFAULT or you can supply the value of the
DEFAULT string while inserting or updating data

Ideal in a single cluster architecture The UUID data type is best suited In situations

where you need a globally unique identifier for the
records in a table that span multiple regions since
identity columns are only guaranteed to be unique
within a NoSQL cluster in a region.

Costs less storage space than a corresponding Costs more storage space than a corresponding
UUID column. Identity column.

If LONG is the primary key, it costs a maximum of If the UUID value is the primary key, it costs 19-
10 bytes. If LONG is a non-primary key, it costs a bytes. If the UUID value is a non-primary key, it
maximum of 8 bytes. costs 16-bytes.

Inserting rows into a table with a UUID column

The system generates a UUID column value when the keyword DEFAULT is used as the
insert_clause for the UUID column.

Here are a few examples that show INSERT statements for both flavors of the UUID column —
GENERATED BY DEFAULT and when no DEFAULT CLAUSE is specified in a CREATE
TABLE statement. The keyword DEFAULT in the INSERT statement applies only when the UUID
column is declared as GENERATED BY DEFAULT.

Example : Inserting rows into a table with a UUID column without GENERATED BY
DEFAULT clause

CREATE TABLE nyTable (id STRING AS UUI D, nane STRING PRI MARY KEY (id));
St atenent conpl eted successfully

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 11 of 16

ORACLE

Chapter 3
Using the UUID data type

I NSERT I NTO nyTabl e val ues("a81bc81b- dead- 4e5d- abf f - 90865d1e13b1", "t est1");
Statenent conpl eted successfully

In the above example, the id column in the table myTabl e has no "GENERATED BY
DEFAULT" defined. Therefore, whenever you insert a new row, you need to explicitly specify
the value for the id column.

Example : Inserting rows into a table with a UUID column using the random_uuid function

The value for a UUID column can also be generated using the r andom uui d function. See
Function to generate a UUID string.

sgl -> I NSERT | NTO nyTabl e val ues(random uuid(),"test2");
{"NunRowsl| nserted": 1}

1 row returned

Statenent conpl eted successfully

sqgl -> select * fromnyTabl e;

{"id":"d576ab3b- 8a36- 4df f - b50c- 9d9d4ca6072c", "nane": "test 2"}
{"id":"a8lbc81b- dead- 4e5d- abf f - 90865d1e13b1", "nane": "test 1"}
2 rows returned

Statenent conpl eted successfully

In this example, a randomly generated UUID is fetched using the r andom uui d function. This
value is used in the INSERT statement.

Example : Inserting rows into a table with a UUID column with GENERATED BY
DEFAULT clause

CREATE TABLE nyTable (id STRING AS UUl D GENERATED BY DEFAULT, name STRI NG
PRI MARY KEY (id));
Statenent conpl eted successfully

I NSERT | NTO nyTabl e VALUES(default,"test1") returning id;
{"id":"e7fbab63- 7730- 4ec9- be73- a62e33ea73c3"}
Statenent conpl eted successfully

In the above example, the id column in nyTabl e has "GENERATED BY DEFAULT" defined.
The system generates a UUID column value when the keyword DEFAULT is used in the
insert_clause for the UUID column. The system generated UUID value is fetched using the
ret ur ni ng clause.

Updating rows of a table with a UUID column

You can update a UUID column whether or not it is GENERATED BY DEFAULT. You can use
the function random uui d to generate a random UUID value to update the column. The function
random uui d returns a randomly generated UUID, as a string of 36 characters.

Example : Updating a UUID Column defined without GENERATED BY DEFAULT clause

CREATE TABLE nyTable (tabld INTEGER, id STRING AS UUID, PRI MARY KEY (tabld));
St atenent conpl eted successfully

I NSERT I NTO nyTabl e val ues(1, "a81bc81b- dead- 4e5d- abf f - 90865d1e13b1");

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 12 of 16

ORACLE

Chapter 3
Using the UUID data type

Statenent conpl eted successfully

UPDATE nyTabl e set id=random uuid() where tabld=1;
Statenent conpl eted successfully

The above example shows how you can update a UUID column which is NOT GENERATED
BY DEFAULT. To do so, the UUID column should not be part of the primary key, as NoSQL
Primary key values are immutable. In the above example, t abl d is the Primary key. So you
can update the UUID column using the r andom uui d function.

Add or Remove a UUID column

An existing table can be altered and a new UUID column can be added. The existing records in
the table will have a NULL value for the newly added UUID column. An existing UUID column
can also be removed from a table.

Adding a UUID Column to an Existing Table

Use ALTER TABLE to add a UUID column to an existing table.
Create a table t est _al t er without a UUID column.

sql -> CREATE TABLE test_alter(id | NTEGER

name STRING PRI MARY KEY(id));
Statenent conpl eted successfully

Use ALTER TABLE to add a UUID column to t est _al t er. You can specify the default clause,
GENERATED BY DEFAULT.

sql -> ALTER TABLE test_alter
(ADD new_id STRING AS UUI D GENERATED BY DEFAULT);
Statenent conpl eted successfully

Dropping a UUID Column
To remove a UUID column from a table, use ALTER TABLE with a DROP id clause.

@® Note

You cannot drop a UUID column if it is the primary key, or if it participates in an index.

sql -> CREATE Table Test alter (nane STRING ,
id STRING AS UUl D GENERATED BY DEFAULT,
PRI MARY KEY (name));

St atenent conpl eted successfully

sql -> ALTER TABLE Test _alter (DROP id);
St atenent conpl eted successfully

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 13 of 16

ORACLE Chapter 3
Creating Indexes

Creating Indexes

Indexes represent an alternative way of retrieving table rows. Normally you retrieve table rows
using the row's primary key. By creating an index, you can retrieve rows with dissimilar primary
key values, but which share some other characteristic.

You can create indexes on any field that has a data type capable of indexing, including primary
key fields. You can index table IDENTITY fields. For information on the types of fields that can
be indexed, see Indexable Field Types.

For example, if you had a table representing types of automobiles, the primary keys for each
row might be the automobile's manufacturer and model type. However, if you wanted to be
able to query for all red automobiles, regardless of the manufacturer or model type, you could
create an index on the field containing color information.

@ Note

Indexes can take a long time to create because Oracle NoSQL Database must
examine all of the data contained in the relevant table in your store. The smaller the
data contained in the table, the faster index creation will complete. Conversely, if a
table contains a lot of data, then it can take a long time to create indexes for it.

CREATE TABLE nylnventory.itenDetails (
i tenSKU STRI NG,
i temDescription STRING
price FLOAT,
i nvent oryCount | NTEGER,
PRI MARY KEY (it enBKU)

To create an index, use the CREATE | NDEX statement. See CREATE INDEX. For example:

CREATE | NDEX i nventoryldx on nylnventory.itenDetails(inventoryCount)

Similarly, to remove an index, use the DROP | NDEX statement. See DROP INDEX. For example:

DROP | NDEX inventoryldx on nylnventory.itenDetails

Be aware that adding and dropping indexes can be time consuming. You may want to run drop
index operations asynchronously using the KVSt or e. execut e() method.

package kvstore. basi cExanpl e;

inport java.util.concurrent.Executi onException;
inport java.util.concurrent. TimeUnit;
inport java.util.concurrent. Ti meout Exception;

inport oracle. kv. ExecutionFuture;
i nport oracle. kv. Faul t Excepti on;
inport oracle. kv. StatenentResult;

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 14 of 16

ORACLE

i nport
i nport
i nport
i nport

Chapter 3

Creating Indexes

oracl e. kv. KVSt or e;

oracl e. kv. KVSt or eConfi g;
oracl e. kv. KVSt or eFact ory;
oracl e. kv. t abl e. Tabl eAPI ;

/] Store open skipped

public void createl ndex() {
Tabl eAPI tabl eAPI = store. get Tabl eAPI ();
ExecutionFuture future = null;

St
St

tr

}

}
}
privat

i f

atementResult result = null;
ring statement = null;

y {

statement = "CREATE I NDEX inventoryldx on " +
"mylnventory.itenmDetail s(inventoryCount)"

future = store. execute(statenent);

di spl ayResul t (future. getLast Status(), statenent);

/*

* Limt the amount of time to wait for the
* operation to finish.

*/

result = future.get(3, TinmeUnit.SECONDS);
di splayResul t(result, statement);

catch (111 egal Argurment Exception e) {
Systemout.printin("Invalid statement:\n" + e.getMessage());
catch (Faul t Exception e) {
Systemout. println
("Statenment couldn't be executed, please retry: " + e);
cl eanupQperation(future);
catch (ExecutionException e) {
Systemout. println
("Problem detected while waiting for a DDL statement: " +
e. get Cause());
cl eanupQperation(future);
catch (InterruptedException e) {
Systemout. println
("Interrupted while waiting for a DDL statenent: " + e);
cl eanupQperation(future);
catch (Timeout Exception e) {
Systemout. println("Statement execution took too long: " + e);
cl eanupQperation(future);

e void cleanupQperation(ExecutionFuture future) {
(future == null) {

/* nothing to do */

return;

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates.

Page 15 of 16

ORACLE Chapter 3
Creating Indexes

Systemout. printin("Statement:");
Systemout. printin(future.getStatement());
Systemout. printlin("has status: ");
Systemout. println(future.getlastStatus());

if (!future.isbone()) {
future. cancel (true);
Systemout.printIn("Statement is cancelled");

}
}
private void displayResult(StatementResult result, String statement) {
Systemout. println(" ");
if (result.isSuccessful()) {
Systemout. println("Statement was successful :\n\t" +
statenent);
Systemout.printIn("Results:\n\t" + result.getinfo());
} else if (result.isCancelled()) {
Systemout. println("Statement was cancelled:\n\t" +
statenent);
} else {
/*
* statement wasn't successful: may be in error, or may still be
* in progress.
*/
if (result.isDone()) {
Systemout.printin("Statement failed:\n\t" + statenent);
Systemout. printin("Problem\n\t" + result.getErrorMssage());
} else {
Systemout. printin("Statement in progress:\n\t" + statenent);
Systemout. printin("Status:\n\t" + result.getlnfo());
}
}
}

For examples of how to index supported non-scalar types, see Indexing Non-Scalar Data
Types.

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 16 of 16

Introducing Oracle NoSQL Database
Namespaces

You can create one or more global namespaces to extend table identification. Namespaces
permit tables with the same name to exist in your database store. To access such tables from
the command line, or with DDL commands, use a fully-qualified table name with the table
preceded by its namespace, followed with a colon (:), such as ns1:tabl el.

As with tables, you grant authorization permissions to determine who can access both the
namespace and the tables within them. After your namespaces exist, you can create any
number of parent and child tables within the namespace, such as ns1:tabl el. chi | d1.

There is a default Oracle NoSQL Database namespace, called sysdef aul t . For new
installations, all tables are assigned to the default sysdef aul t namespace, until or unless you
create other namespaces, and create new tables within them. After upgrading from an earlier
Oracle NoSQL Database release, all existing tables become part of the default sysdef aul t
namespace automatically. You cannot change an existing table’s namespace.

Tables in the sysdef aul t namespace do not require further qualification for existing queries.
For example, using a basic SQL table query does not require the default namespace prefix
(sysdefaul t:tabl enane), for SQL access. Also, the Tabl eAPI . get Tabl e() method does not
require any updates at existing sites, since it accepts one argument for table name, or two
when you are ready to use namespaces. For information see Using and Setting Namespaces.

sel ect * from sal esi ncone;

Referencing a table name without a namespace prefix (nanespace:) implies that the table is
part of the default, sysdef aul t namespace. However, by creating namespaces, and then
tables within them, you can have same name tables, such as the following for a

support _ticket table:

e support_ticket
e acne:support _ticket
e international abc:support_ticket

e international xyz:support ticket

No additional permissions are required for tables in the default sysdef aul t namespace, so
existing authentication remains. For example, if you grant user Joe permission to access tables
t1,t3,and t4, but nott?2, Joe can still access all tables except t 2 after they are subsumed into
the sysdef aul t namespace.

Creating Namespaces

You can add and one or more namespaces to your store. Then, create tables within the
namespaces, and grant various permissions to users to access namespaces and tables. For
the security administrator, several new permissions are available for namespaces, described in
Granting Authorization Access to Namespaces .

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 1 of 8

ORACLE’

Chapter 4
Granting Authorization Access to Namespaces

You create a new namespace by using a CREATE NAVESPACE DDL statement, as follows, with
whatever name you choose.

sql -> CREATE NAMESPACE [I F NOT EXI STS] nanespace_nane;

All namespace names use standard identifiers, with the same restrictions as tables and
indexes:

* Names must begin with an alphabetic character (a-z, A-Z).
* Remaining characters are alphanumeric (a-z, A-Z, 0-9).
* Name characters can include period (.), and underscore (_) characters.

* The maximum name length for a namespace is 128 characters.

® Note

You cannot use the prefix sys for any namespaces. The sys prefix is reserved. No
other keywords are restricted.

Following is the namespace syntax showing the identifier rules similar to a table name:

tabl e_nanme : (namespace ':')? id_path;
-namespace : id_path ;

id path : id (DOT id)* ;
id: (... | ID);
ID: ALPHA (ALPHA | DIGA T | UNDER)* ;

Here are a couple of examples using DDL statements in the SQL CLI. The SHON NAMESPACES
directive in the SQL CLI lists the namespaces that currently exist:

sql -> CREATE NAMESPACE nsl;
Statenent conpl eted successfully

sql -> CREATE NAMESPACE | F NOT EXI STS ns2;
Statenent conpl eted successfully

sql - > SHOWN NAMESPACES
nanespaces

nsl

sysdef aul t

ns2

Granting Authorization Access to Namespaces

You can manage permission for users or roles to access namespaces and tables. These are
the applicable permissions given to the developers and other users:

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 2 of 8

ORACLE

Chapter 4
Granting Authorization Access to Namespaces

Table 4-1 Namespace Privileges and Permissions

Privilege

Description

CREATE_ANY_NANESPACE
DROP_ANY_NANESPACE

Grant permission to a user or to a role to create or drop any nhamespace.

GRANT CREATE_ANY_NAMESPACE TO <User | Rol e>;
GRANT DROP_ANY_NAMESPACE TO <User | Rol e>;

CREATE_TABLE_| N_NAVESPACE
DROP_TABLE_| N_NAVESPACE
EVOLVE_TABLE_| N_NAVESPACE

Grant permission to a user or to a role to create, drop or evolve tables in a
specific namespace. You can evolve tables to update table definitions, add
or remove fields, or change field properties, such as a default value. You
may even add a particular kind of column, like an IDENTITY column, to
increment some value automatically. Only tables that already exist in the
store are candidates for table evolution. For more details, see Alter Table.

GRANT CREATE_TABLE_| N_NAMESPACE ON NAMESPACE
namespace_nanme TO <User| Rol e>;

GRANT DROP_TABLE_| N_NAMESPACE ON NAMESPACE
namespace_name TO <User| Rol e>;

GRANT EVOLVE_TABLE_ | N_NAMESPACE ON NAMESPACE
namespace_name TO <User| Rol e>user _rol e;

CREATE_| NDEX_| N_NAVESPACE
DROP_| NDEX_| N_NAVESPACE

Grant permission to a user or to a role to create or drop an index in a
specific namespace.

GRANT CREATE_| NDEX_| N_NAMESPACE ON NAMESPACE
nanespace_nane TO <User| Rol e>;

GRANT DROP_| NDEX_| N_NAMESPACE ON NAMESPACE
nanespace_nane TO <User| Rol e>;

READ | N_NAVESPACE
| NSERT | N_NAVESPACE
DELETE_| N_NAVESPACE

Grant permission to a role to read, insert, or delete items in a specific
namespace.

GRANT READ | N_NAMESPACE ON NAMESPACE namespace_name TO
<User | Rol e>;

GRANT | NSERT_I N_NAVESPACE ON NAMESPACE nanespace_nane
TO <User | Rol e>;

CGRANT DELETE_I N_NAMESPACE ON NAMESPACE nanespace_name
TO <User | Rol e>;

MODI FY_| N_NAVESPACE

Helper label for granting or revoking permissions to all DDL privileges for a
specific namespace to a user or role.

GRANT MCODI FY_I N_NAMESPACE ON NAMESPACE nanmespace_nane
TO <User | Rol e>;

REVOKE MODI FY_I N_NAMESPACE ON NAMESPACE nanespace_nane
TO <User | Rol e>;

Java Direct Driver Developer's Guide
E85378-35

Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 3 of 8

ORACLE

Chapter 4
Granting Authorization Access to Namespaces

Grant privileges on a namespace
You can grant permissions to a role or a user on a namespace. Following is the syntax for
granting permissions on a hamespace:

CGRANT { Nanespace-scoped privileges} ON NAMESPACE nanespace_name TO <User| Rol e>
Nanespace-scoped privileges ::= namespace_privilege [, nanespace privilege]

where,
* namespace_privilege

The namespace privilege that can be granted to a user or a role. For more information on
the applicable privileges, see the Privilege column in the Namespace Privileges and
Permissions table.

* namespace_name
The namespace that the user wishes to access.
* <User|Role>

The name of the KVStore user or the role of a user.

For example, you can grant read access to a user for all the tables in the namespace.

Exanpl e:

GRANT READ_| N_NAMESPACE ON NAMESPACE nsl1l TO Kat e;

Here, nsl is the namespace and Kate is the user.

@® Note

The label MODIFY_IN_NAMESPACE can be used as a helper for granting or revoking
permissions to all DDL privileges for a specific namespace to a user or role.

Revoke privileges on a namespace

You can revoke the permissions from a role or a user on a namespace. Following is the syntax
for revoking the permissions on a namespace.

REVOKE {Namespace-scoped privileges} ON NAMESPACE nanespace_nanme FROM <User |
Rol e>
Nanespace- scoped privileges ::= namespace_privilege [, nanespace_privil ege]

where,
e namespace_privilege

The namespace privilege that can be revoked from a user or a role. For more information
on the applicable privileges, see the Privilege column in the Namespace Privileges and
Permissions table.

° namespace_name

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 4 of 8

ORACLE

Chapter 4
Using and Setting Namespaces

The namespace that the user wishes to access.
e <User|Role>

The name of the KVStore user or the role of a user.

For example, you can revoke the read access from a user for all the tables in the namespace.
Exanpl e:

REVOKE READ_| N_NAMESPACE ON NAMESPACE ns1l FROM Kat e;

Here, nsl is the namespace and Kate is the user.

@® Note

The label MODIFY_IN_NAMESPACE can be used as a helper for granting or revoking
permissions to all DDL privileges for a specific namespace to a user or role.

The following example shows:
1. Creation of a namespace and a table.

2. Revocation of the privilege to create any other new tables in the namespace, but allow the
table to be dropped.

Exanpl e: Nanespace Scoped Privil eges

CREATE NAMESPACE | F NOT EXI STS ns1;

GRANT MODI FY_I N_NAMESPACE ON NAMESPACE nsl1l TO usersRol e;

CREATE TABLE nsl:t (id INTEGER, nane STRING prinmary key (id));

I NSERT | NTO nsl:t VALUES (1, 'Snith');

SELECT * FROM nsl:t;

REVOKE CREATE_TABLE_I N_NAMESPACE ON NAMESPACE nsl FROM usersRol e;
DROP NAMESPACE ns1 CASCADE;

@® Note

You can save all of the above commands as a sql script and execute it in a single
command. If you want to execute any of the above commands outside of a SQL
prompt, remove the semi colon at the end.

Using and Setting Namespaces

Once you have created one or more namespaces, and tables within them, you can fully qualify
table names in any references. If your store has tables with the same name, the namespace
differentiates them from each other.

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 5 of 8

ORACLE

Chapter 4
Showing and Describing Namespaces

Here is the syntax for specifying a fully qualified table, or child table name from the CLI:

nanespace: t abl enane
nanespace: t abl enane. chi |l d1

To reference a table in a namespace in a SELECT statement:

SELECT * FROM nsl:tabl el;

Set Namespace for Method Execution

You can use the Execut eOpt i ons. set Namespace method to set a default namespace for the
duration of a KVSt or e. execut e() method. While set, you do not need to qualify table and other
object references. If you do not use set Namespace, or fully qualify table names, the store uses
sysdef aul t as the default namespace.

Execut eOpti ons. set Namespace("nsl");
SELECT * FROM tabl el;

Determine Table Namespace

To find out which namespace was set on an option object, use the
Execut eOpt i ons. get Namespace method.

Get a Table in a Specific Namespace

You can call Tabl eAPI . get Tabl e() with two arguments:

Tabl eAPI . get Tabl e(String namespace, String tableFull Nane);

Here, the first argument for Tabl eAPI . get Tabl e method, namespace, is the namespace in
which you created the table. If this argument is NULL, the method uses the default sysdef aul t
namespace. This case is equivalent to calling the function with a single argument, described
next.

The second argument, tableFullName, is the full table name. This interface retrieves only top-
level tables, without parent tables. To retrieve child tables, use Tabl eAPI . get Chi | dTabl e() .

Get a Fully-Qualified Table

You can call Tabl eAPI . get Tabl e() with one argument:

Tabl eAPI . get Tabl e(String ful |l NanespaceNane) ;

The f ul | NamespaceName argument indicates the full name or namespace-qualified name of the
target table. If you supply an unqualified name, the method uses the sysdef aul t namespace.
If you supply a namespace that contains a table name prefixed with a namespace followed
with a colon (namespace:), this usage is equivalent to calling the function as

get Tabl e(String, String) with the namespace, and TableFullIName described above.

Showing and Describing Namespaces

You can use the following ways to show namespaces and their tables from the SQL CLI:

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 6 of 8

ORACLE Chapter 4
Dropping Namespaces

e SHOW
- DESCRI BE

The next example shows creating a namespace (nsl), a table within that namespace

(nsl: foo), and using SHOWnamespaces and SHOW t abl e ns1:f oo to see the table hierarchy
(that the table was created in the ns1 namespace). Finally, using DESCRI BE t abl e ns1:foo to
see more table details:

sql -> create nanespace nsl;
Statement conpl eted successful Iy

sql-> create table nsl:foo (id integer, primary key (id));
Statement conpl eted successful Iy

sql -> show nanmespaces;
nanespaces

nsl

sysdef aul t

sql -> show tabl e nsl:foo;
t abl eHi erarchy(namespace nsl)
foo

sql -> describe table nsl:foo;

=== |nformation ===

S F [E Fome e - S R Fome e -
Fome oo e +

| nanespace | nanme | ttl | owner | sysTable | r2conpat | parent | children
i ndexes | description

S F [E Fome e - S R Fome e -
Fome oo e +

| nsi | foo | | | N | N

| | |

S F [E Fome e - S R Fome e -
Fome oo e +

=== Fields ===

[R [S S S S Fomm e - -
S +

| id| nane | type | nullable | default | shardKey | primaryKey
identity

[R [S S S S Fomm e - -
S +

| 1] id | Integer | N | NullValue | Y | Y

|+----+----|--+ --------- S S S Fomm e - -
S +

Dropping Namespaces

You can drop a namespace only if you have been granted the DROP_ANY_NAMESPACE
privilege, and the namespace has no associated tables. Also, you must have the appropriate
privileges.

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 7 of 8

ORACLE Chapter 4
Dropping Namespaces

To drop a namespace:

DROP NAMESPACE [| F EXI STS] namespace_name [CASCADE]

Using the CASCADE option with DROP NAMESPACE lets you extend the activity to tables and
other objects within the NAMESPACE.

Dropping a hamespace is not an atomic operation, and completes the following steps:

» First check to make sure privileges to drop a namespace exist. Continue if privileges are in
place.

e If no privileges exist, stop process with an error.

* If privileges are in place and CASCADE is not specified, check for tables, or other objects
in the namespace. Drop the nhamespace if no objects exist.

» If tables or other objects exist in the namespace, stop process with an error.

» If privileges are in place to drop the namespace and CASCADE is specified, the statement
drops the namespace, removing all tables, indexes related to the tables, and table
privileges.

@ Note

You cannot drop the default namespace, sysdef aul t .

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 8 of 8

Primary and Shard Key Design

Primary keys and shard keys are important concepts for your table design. What you use for
primary and shard keys has implications in terms of your ability to read multiple rows at a time.
But beyond that, your key design has important performance implications.

Primary Keys

Every table must have one or more fields designated as the primary key. This designation
occurs at the time that the table is created, and cannot be changed after the fact. Oracle
NoSQL Database supports the following types for the primary key: INTEGER, LONG, FLOAT,
DOUBLE, NUMBER, STRING, ENUM, BOOLEAN, and TIMESTAMP.

A table's primary key uniquely identifies every row in the table. In the simplest case, it is used
to retrieve a specific row so that it can be examined and/or modified.

For example, a table might have five fields: pr oduct Nane, product Type, col or, si ze, and

i nvent oryCount . To retrieve individual rows from the table, it might be enough to just know the
product's name. In this case, you would set the primary key field as pr oduct Nane and then
retrieve rows based on the product name that you want to examine/manipulate.

The table statement you use to define this table is:

CREATE TABLE nyProducts (
product Nane STRI NG
product Type STRI NG
col or ENUM (bl ue, green, red),
size ENUM (snal |, nedi um | ar ge),
i nvent oryCount | NTEGER,
/1 Define the primary key. Every table nust have one.
PRI MARY KEY (product Name)

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 1 of 5

ORACLE Chapter 5
Primary Keys

@® Note

» If the primary key field is an INTEGER data type, you can apply a serialized size
constraint to it. See Integer Serialized Constraints.

» If the primary key must represent an approximate numeric type, you have an
option to choose between FLOAT and DOUBLE data types. When serialized as a
primary key, the DOUBLE data type uses 10 bytes and stores up to 16 decimal
places. The FLOAT data type uses 5 bytes and stores up to 8 decimal places.
Therefore, DOUBLE data type is more suitable as it provides a higher precision
and a wider range as compared to the FLOAT data type.

« If the primary key must represent a string data type, you have an option to choose
between STRING and ENUM. The ENUM data type mandates choosing from a list
of permitted values. When used as a primary key, the cardinality is small. Also,
any addition or deletion to the ENUM values requires schema evolution. The
primary keys can only be changed by dropping and recreating the table.
Therefore, changing the ENUM values of a primary key is an invasive operation.
The STRING data type is better suited for primary keys as its value is a sequence
of zero or more Unicode characters

Composite Keys

You can use multiple fields for your primary key, which is termed as a composite key.

For example, consider the following table statement:

CREATE TABLE nyProducts (
product Nane STRI NG
product Type STRI NG
col or ENUM (bl ue, green, red),
Size ENUM (snal I, medi um | arge),
i nvent oryCount | NTEGER,
/1 Define the primary key. Every table nust have one.
PRI MARY KEY (product Name, product Type)

Here, the columns pr oduct Nane and pr oduct Type are both declared as primary key fields.

The composite keys are useful in cases where the keys conjointly help in identifying a unique
row.

See Reading Table Rows to retrieve multiple rows from your table.

See Using multiDelete() to delete multiple rows at a time.

Data Type Limitations

Fields can be designated as primary keys only if they are declared to be one of the following

types:

* Integer
e Long

* Number

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 2 of 5

ORACLE

Chapter 5

Primary Keys
* Float
e Double
« String

e Timestamp

¢ Enum

Partial Primary Keys

Shard Keys

Some of the methods you use to perform multi-row operations allow, or even require, a partial
primary key. A partial primary key is, simply, a key where only some of the fields comprising the
row's primary key are specified.

For example, the following example specifies three fields for the table's primary key:

CREATE TABLE nyProducts (
product Nane STRI NG
product Type STRI NG
product d ass STRI NG,
col or ENUM (bl ue, green, red),
size ENUM (snal I, medi um | arge),
i nvent oryCount | NTEGER,
/1 Define the primary key. Every table nust have one.
PRI MARY KEY (product Name, product Type, productC ass)

In this case, a full primary key would be one where you provide value for all three primary key
fields: pr oduct Nane, pr oduct Type, and pr oduct Cl ass. A partial primary key would be one
where you provide values for only one or two of those fields.

Note that order matters when specifying a partial key. The partial key must be a subset of the
full key, starting with the first field specified and then adding fields in order. So the following
partial keys are valid:

e product Nane
e product Name, product Type

Shard keys identify which primary key fields are meaningful in terms of shard storage. That is,
rows that contain the same values for all the shard key fields are guaranteed to be stored on
the same shard offering high-performance retrievals and horizontal scalability. This matters for
some operations that promise atomicity of the results. (See Executing a Sequence of
Operations for more information.)

For example, suppose you set the following primary keys:

PRI MARY KEY (product Type, productNane, productC ass)

You can guarantee that rows are placed on the same shard using the values set for the
product Type and pr oduct Nane fields like this:

PRI MARY KEY (SHARD(product Type, product Name), productC ass)

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 3 of 5

ORACLE Chapter 5
Row Data

@® Note

* The order matters when it comes to the shard keys. The keys must be specified in
the order that they are defined as primary keys, with no gaps in the key list. In
other words, given the above example, it is impossible to set pr oduct Type and
product O ass as shard keys without also specifying pr oduct Nane as a shard key.

* The shard keys can't be declared in the create table statement of a non-root table
(in cases of child tables). An error is returned in such scenarios.

For more details on table modeling and design using primary keys, see Choice of Keys in
NoSQL Database.

Row Data

There are no restrictions on the size of your rows, or the amount of data that you store in a
field. However, you should consider your store's performance when deciding how large you are
willing to allow your individual tables and rows to become. As is the case with any data storage
scheme, the larger your rows, the longer it takes to read the information from storage, and to
write the information to storage.

On the other hand, every table row carries with it some amount of overhead. Also, as the
number of your rows grows very large, search times may be adversely affected. As a result,
choosing to use a large number of tables, each of which use rows with just a small handful of
fields, can also harm your store's performance.

Therefore, when designing your tables' content, you must find the appropriate balance
between a small number of tables, each of which uses very large rows; and a large number of
tables, each of which uses very small rows. You should also consider how frequently any given
piece of information will be accessed.

For example, suppose your table contains information about users, where each user is
identified by their first and last names (surname and familiar name). There is a set of
information that you want to maintain about each user. Some of this information is small in
size, and some of it is large. Some of it you expect will be frequently accessed, while other
information is infrequently accessed.

Small properties are:

e name
e gender
e address

e phone number

Large properties are:

* image file

* publickey 1

* public key 2

e recorded voice greeting

There are several possible ways you can organize this data. How you should do it depends on
your data access patterns.

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 4 of 5

ORACLE Chapter 5
Row Data

For example, suppose your application requires you to read and write all of the properties
identified above every time you access a row. (This is unlikely, but it does represent the
simplest case.) In that event, you might create a single table with rows containing fields for
each of the properties you maintain for the users in your application.

However, the chances are good that your application will not require you to access all of a
user's properties every time you access his information. While it is possible that you will always
need to read all of the properties every time you perform a user look up, it is likely that on
updates you will operate only on some properties.

Given this, it is useful to consider how frequently data will be accessed, and its size. Large,
infrequently accessed properties should be placed in tables other than that used by the
frequently accessed properties.

For example, for the properties identified above, suppose the application requires:

« all of the small properties to always be used whenever the user's record is accessed.
- all of the large properties to be read for simple user look ups.

e on user information updates, the public keys are always updated (written) at the same
time.

e The image file and recorded voice greeting can be updated independently of everything
else.

In this case, you might store user properties using a table and a child table. The parent table
holds rows containing all the small properties, plus public keys. The child table contains the
image file and voice greeting.

CREATE TABLE userInfo (
surname STRI NG
fam |iarNane STRING
gender ENUM (mal e, femal e),
street STRING
city STRING
state STRING
zi pcode STRING
user Phone STRI NG
publ i ckeyl Bl NARY,
publ i ckey2 Bl NARY,
PRI MARY KEY (SHARD(surnarme), fami |iarName)

CREATE TABLE userInfo.largeProps (
propType STRI NG
voi ceG eeting Bl NARY,
i mageFi | e Bl NARY,
PRI MARY KEY (propType)

Because the parent table contains all the data that is accessed whenever user data is
accessed, you can update that data all at once using a single atomic operation. At the same
time, you avoid retrieving the big data values whenever you retrieve a row by splitting the
image data and voice greeting into a child table.

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 5 of 5

Writing and Deleting Table Rows

This chapter discusses two different write operations: putting table rows into the store, and
then deleting them.

Write Exceptions

There are many exceptions that you should handle whenever you perform a write operation to
the store. Some of the more common exceptions are described here. For simple cases where
you use default policies or are not using a secure store, you can probably avoid explicitly
handling these. However, as your code complexity increases, so too will the desirability of
explicitly managing these exceptions.

The first of these is Dur abi | i t yExcept i on. This exception indicates that the operation cannot
be completed because the durability policy cannot be met. For more information, see Durability
Guarantees.

The second is Request Ti meout Except i on. This simply means that the operation could not be
completed within the amount of time provided by the store's timeout property. This probably
indicates an overloaded system. Perhaps your network is experiencing a slowdown, or your
store's nodes are overloaded with too many operations (especially write operations) coming in
too short of a period of time.

To handle a Request Ti meout Except i on, you could simply log the error and move on, or you
could pause for a short period of time and then retry the operation. You could also retry the
operation, but use a longer timeout value. (There is a version of the Tabl eAPI . put () method
that allows you to specify a timeout value for that specific operation.)

You can also receive an | | | egal Ar gunent Except i on, which will be thrown if a Row that you are
writing to the store does not have a primary key or is otherwise invalid.

You can also receive a general Faul t Except i on, which indicates that some exception occurred
which is neither a problem with durability nor a problem with the request timeout. Your only
recourse here is to either log the error and move along, or retry the operation.

Finally, if you are using a secure store that requires authentication, you can receive

Aut henti cati onFai | ureExcepti on or Aut henti cati onRequi r edExcepti on if you do not
provide the proper authentication credentials. When using a secure store, you can also see
Unaut hori zedExcept i on, which means you are attempting an operation for which the
authenticated user does not have the proper permissions.

Writing Rows to a Table in the Store

Writing a new row to a table in the data store, and updating an existing row are similar
operations. Later in this section, we describe methods that work only if a row is being updated,
or only if you are creating a row. You can write data to a table only after it has been added to
the store. See Introducing Oracle NoSQL Database Tables and Indexes for details.

Along with writing a row to the table, you can also add user-defined metadata for each
individual row. This row metadata is stored along with the row but remains independent from
your primary data model. You can use set RowMet adat a() from the Put Request class to insert

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 1 of 17

ORACLE

Chapter 6
Writing Rows to a Table in the Store

metadata along with the row. For more information with an example, see Using row metadata
in Write Operations, in Developers Guide.

To write a row to a table in the store:

1. Construct a handle for the table to which are writing data. You do this by retrieving a
Tabl eAPI interface instance using KVSt or e. get Tabl eAPI () . Use that instance to retrieve a
handle for the table using the Tabl eAPI . get Tabl e(), which then returns a Tabl e interface
instance.

@ Note

The Tabl eAPI . get Tabl e() method is an expensive call requiring server side
access. For best performance, do not call this method each time you need a table
handle. If possible, call this method for all relevant tables in the set up section of
your code. Then, reuse the handles throughout your application.

2. Use the Tabl e. creat eRow() method to create a Row interface instance, using the Tabl e
instance you retrieved in the previous step.

3. Using the Row. put () method, write to each field in the row.
To write a NULL value, use Row. put Nul | (), rather than Row. put ().

4. Write the new row to the store using Tabl eAPI . put () .

® Note
If the table you are writing to contains an IDENTITY column, the generated value
from the sequence generator will be available in the row.

You can also load rows into the store using special purpose streams. For more information,
see Bulk Put Operations.

The following example shows how to write a row to the store, assuming that you have already
created the KVSt or e handle.

package kvstore. basi cExanpl e;

i nport oracle.kv.KVStore;

i nport oracle. kv.tabl e. Row;

i nport oracle.kv.tabl e. Tabl e;

i nport oracle. kv. tabl e. Tabl eAPI ;

/1 KVStore handle creation is omtted for brevity

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();

/1 The name you give get Table() nust be identical

/1 to the name of the table when you created it with

/1 the CREATE TABLE DDL statement (nyTable in this exanple).
Tabl e myTabl e = tabl eH. get Tabl e("nyTabl e");

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 2 of 17

ORACLE

Chapter 6
Writing Rows to a Table in the Store

|l Get a Row instance
Row row = nyTabl e. creat eRow() ;

/1 Use row.put to put all of the cells into the row
/1 This does NOT actually wite the data to the store.

row. put ("item', "Bolts");

row. put ("description", "Hex head, stainless");
row. put ("count", 5);

row. put ("percentage", 0.2173913);

/I Now write the table to the store.

[l "item' is the rows primary key. If we had not set that key and its val ue,
/1 this operation will result in an IIlegal Argument Exception.

tabl eH put (row, null, null);

Writing Rows to a Child Table

To write to a child table, complete the tasks that you do for a parent table, except using the
two-part table name, such as parent-table.child-table.

For example, in Defining Child Tables we showed how to create a child table. To write data to
that table, do this:

package kvstore. basi cExanpl e;

i nport oracle.kv. KVStore;

i nport oracle.kv.tabl e. Row,

i nport oracle.kv.tabl e. Tabl e;

i nport oracle.kv.tabl e. Tabl eAPI;

/1 KVStore handle creation is onitted for brevity

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();

/1 Get the corresponding child table
Tabl e myChi | dTabl e = tabl eH. get Tabl e("myl nventory.itenDetails");

/] Get a row instance
Row chi | dRow = nyChi | dTabl e. creat eRow() ;

/1 Populate the rows. Because the parent table's "itenCategory"
/] fieldis a primary key, this nust be popul ated in addition
/1 to all of the child table's rows

chi | dRow. put ("itenCategory", "Bolts");

chi | dRow. put ("itenSKU', "1392610");

chi | dRow. put ("itenDescription", "1/4-20 x 1/2 Gade 8 Hex");
chi | dRow. put ("price", new Float(11.99));

chi | dRow. put ("i nvent oryCount", 1457);

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 3 of 17

ORACLE Chapter 6
Writing Rows to a Table in the Store

Writing rows to an IDENTITY column

Special considerations arise when you are inserting values into an IDENTITY column
programmatically. This section presents the issues that exist, and how to work around them
using put () and other methods.

You create each IDENTITY column in a table with one of these choices:
e GENERATED ALWAYS AS IDENTITY

e GENERATED BY DEFAULT AS IDENTITY

e GENERATED BY DEFAULT ON NULL AS IDENTITY

Additionally, an identity column can be a primary key, which prevents you from changing the
IDENTITY value.

Each of the ways in which you create your identity column affects activities when you add rows
using the put function, with one of its variants:

e put (unconditional)

e« put if absent (only if the row does not have values)

e put if present (only if the row has values)

This section describes the different effects of inserting and updating IDENTITY columns.

For example, create the following table with a column defined with GENERATED ALWAYS AS
IDENTITY. The IDENTITY field is a primary key:

CREATE Tabl e foo(
i dVal ue | NTEGER GENERATED ALWAYS AS | DENTI TY
(START WTH 1 I NCREMENT BY 1 MAXVALUE 2 NO CYCLE),
name STRI NG
PRI MARY KEY(i dVal ue));

Insert a row into the IDENTITY Column

To insert a row into the f 0o table, here's what to do in your application:

L1: Tabl eAPl api = store.getTableAPI(); // Gets the TableAPl for the store
L2: Table table = api.getTable("fo0"); // Cets the Table foo instance

L3: Row row = table.createRow); // constructs an enpty Row row for Table
f oo.

L4: row put("name", "joe"); // populates the values for the Row row

L5: api.put(row, null /* previous-row */, null /* wite-options */);

/1 The client driver recognizes that the system nust generate the id val ues
and \

generates value 1 for the id field in the row before putting it in the DB.
L6: Systemout.printin("Value of idvalue: " + row.get("idvalue")); // 1

L7: row put("name", "snith");

L8: api.put(row, null /* previous-row */, null /* wite-options */);

[l driver sets id field to 2

L9: System.out.printIn(*Value of id: " + row.get(idvalue™)); // 2

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 4 of 17

ORACLE Chapter 6
Writing Rows to a Table in the Store

@® Note

To get the value of a generated IDENTITY column, use a get () call to the IDENTITY
column, as shown in L6 and L9.

Also, to return the i dVal ue use the RETURNI NG i dVal ue clause, as follows:

Statenment Result sr = store.executeSync("INSERT INTO foo " + "(name) VALUES
('foe")

RETURNING idvalue");

int id=sr.iterator().next().get("idValue").aslnteger().get();

Updating an IDENTITY Column

When you define a column as GENERATED ALWAYS AS | DENTI TY you cannot supply a value for
the IDENTITY column, because the Sequence Generator(SG) must always supply the next
value.

The following example illustrates what happens when you try to specify a value for the
IDENTITY column. The first additions, j oe and j ohn are fine, and the SG supplies an i dVal ue
for both:

CREATE TABLE f oo(
i dVal ue | NTEGER GENERATED ALWAYS AS | DENTI TY,
nane STRING PRI MARY KEY (i dVal ue))
api . put('joe")
api . put (*john")
get (i dval ue, nane) or
select * from foo;
1, joe
2, john

Trying to update with any of the put() methods causes the following errors when a column is
defined as GENERATED ALWAYS AS | DENTI TY:

api .put(2,'dave') // error — cannot specify a value for \
a columm defined as GENERATED ALWAYS AS | DENTI TY

api .putlfPresent (2, 'dave') -- The followi ng error occurs first in the code
pat h,

even though idvalue = 2 is present

/] error — user cannot specify a value for \

| DENTI TY col utm defined as GENERATED ALWAYS

api .putlfPresent (3,'cezar') -- The follow ng error occurs, first in the code
pat h,

even though idvalue = 3 is NOT present

/] error - user cannot specify a value for \

| DENTI TY col utm defined as GENERATED ALWAYS

api . putlfPresent ('hema')
[lerror — a primary key is not provided to | ook up the record.

put | f Absent (10, 'joe') -—is an insert

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 5 of 17

ORACLE

Chapter 6
Writing Rows to a Table in the Store

/] error - user cannot specify a value for \
| DENTITY col um defined as GENERATED ALWAYS

To use UPDATE on a column defined as GENERATED ALWAYS AS | DENTI TY:

Create table foo(idValue | NTEGER GENERATED ALWAYS AS | DENTI TY,
nane STRI NG
PRI MARY KEY (i dVal ue))

UPDATE foo SET idValue = 10 WHERE name="joe"
/] error - user cannot set a value for an IDENTITY col um defined as
CENERATED ALWAYS
UPDATE foo SET name=hema WHERE idValue=2
/1 Success! By using the Primary Key value (idValue=2)to locate its name
record
/1 you can update the value and hema replaces john
select * fromfoo
1, joe
2, hema

To use put, put | f Present, and put | f Absent on an IDENTITY column that is not a PRIMARY
KEY:

Create table Foo(idVal ue | NTEGER GENERATED ALWAYS AS | DENTI TY
acct Nunber | NTEGER

nane STRI NG

PRI MARY KEY (acct Number))

//Put two acctNunber and nane val ues.
api.put(100, 'joe')
api.put (200, 'john")

/1SG increnments the IDENTITY values, 1 and 2:
api . get (i dval ue, acctNunmber, name)

1, 100, joe

2, 200, john

/I Attenpt to put an idVal ue

api.put (2, 200, ' dave')

/1 error — Cannot specify a value for IDENTITY colum defined as GENERATED
ALWAYS

api.putlfPresent(3, 200,'cezar')
/lerror — Cannot specify a value for IDENTITY colum defined as GENERATED
ALWAYS

api.putlfPresent (400, cezar') // not IDENTITY colum val ue error
/] error - Cannot specify a primary key (400) that is not present

api.putlFPresent (200, ' cezar')

1, 100, joe

2, 200, cezar

/1 Success! The IDENTITY value is updated

The system generates a value on putlfPresent as the APl semantics are to
updat e

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 6 of 17

ORACLE

Chapter 6
Writing Rows to a Table in the Store

the entire record, and not update fields within the record selectively.

api.putlfAbsent (300, ' hema')
/1 Success! IDENTITY idValue was generated (3), and 300, hema were absent
get (i dVal ue, acctNunber, nane)

1, 100, joe
2, 200, cezar
3, 300, hem

api.putlfAbsent (20, 300,' hema')
/1 error — user cannot specify a value for IDENTITY col um defined as
CENERATED ALWAYS

api.putlfAbsent (300, ' hema')
[lerror - no rowwth primary key = 300 is present

api.putlfAbsent (3,400, ' hema')
/] error — user cannot specify a value for IDENTITY col um defined as
CENERATED ALWAYS

To use UPDATE on an IDENTITY column that is not a PRIMARY KEY:

Create table Foo(idVal ue | NTEGER GENERATED ALWAYS AS | DENTI TY
acct Nunber | NTEGER,

nanme STRI NG

PRI MARY KEY (acct Number))

select * fromfoo

1, 100, joe
2, 200, cezar
3, 300, hem

UPDATE foo set name= dave where PRIMARY KEY = 200
/1 replaces (2, 200, cezar) with (2, 200, dave)

select * fromfoo

1, 100, joe
2, 200, dave
3, 300, hemm

UPDATE foo set name=george where acctNumber=100
/] acctNumber is the PRI MARY KEY

/'l replaces (1, 100, joe) with (1, 100, george)
select * fromfoo

1, 100, george

2, 200, dave

3, 300, hemn

UPDATE foo set idValue=10 where acctNumber=100

/1 acctNunber is the PRI MARY KEY

/] error - Cannot specify a value for IDENTITY colum defined as GENERATED
ALWAYS

To use put () on a column defined as GENERATED BY DEFAULT AS IDENTITY, which is a
PRIMARY KEY, review the following examples. In this case, not specifying a value for the

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 7 of 17

ORACLE

Chapter 6
Writing Rows to a Table in the Store

IDENTITY column causes the SG to generate a value. Specifying a value, the system uses
what you supply.

Create table foo(idValue | NTEGER GENERATED BY DEFAULT AS | DENTITY,
nane STRI NG
PRI MARY KEY (i dVal ue))

api . put('joe')
api . put ('john")

/1Since you supplied no idValue, SG supplies them
get (i dVal ue, nane)

1, joe

2, john

/1You supply 4 as the idValue, so systemuses it
api . put (4,'george')

get (i dval ue, nanme)
1, joe

2, john

4, george

api.put (2,'sam) // replaces (2, john) with (2, san)
get (i dval ue, nane)

1, joe

2, sam

4, george

To use UPDATE() on the column:

select * from foo;
1, joe

2, sam

4, george

UPDATE foo SET name='brian' where idVal ue=2
/1 Updates idvalue 2 (2, sanm) with 2, brian
select * fromfoo

1, joe

2, brian

4, george

You can update any column other than the primary key column using the UPDATE clause.

Deleting an IDENTITY Column
Deleting a row with an IDENTITY column follows the existing delete logic in the product. There
is no change.

Other put Operations

Beyond the very simple usage of the Tabl eAPI . put () method illustrated above, there are three
other put operations that you can use:

e Tabl eAPI . put | f Absent ()

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 8 of 17

ORACLE

Chapter 6
Bulk Put Operations

This method will only put the row if the row's primary key value DOES NOT currently exist
in the table. That is, this method is successful only if it results in a create operation.

e Tabl eAPI. put|fPresent()

This method will only put the row if the row's primary key value already exists in the table.
That is, this method is only successful if it results in an update operation.

e Tabl eAPI. put | fVersion()

This method will put the row only if the value matches the supplied version information. For
more information, see Using Row Versions .

Bulk Put Operations

Bulk put operations allow you to load records supplied by special purpose streams into the
store.

The bulk loading of the entries is optimized to make efficient use of hardware resources. As a
result, this operation can achieve much higher throughput when compared with single put
APlIs.

The behavior of the bulk put operation with respect to duplicate entries contained in different
streams is thus undefined. If the duplicate entries are just present in a single stream, then the
first entry will be inserted (if it is not already present) and the second entry and subsequent
entries will result in the invocation of Ent rySt r eam keyExi st s(E) method. If duplicates exist
across streams, then the first entry to win the race is inserted and subsequent duplicates will
result in Ent rySt ream keyExi st s(E) being invoked on them.

To use bulk put, use one of the Tabl eAPI . put () methods that provide bulk put. These accept a
set of streams to bulk load data. The rows within each stream may be associated with different
tables.

When using these methods, you can also optionally specify a Bul kWit eQpti ons class
instance which allows you to specify the durability, timeout, and timeout unit to configure the
bulk put operation.

For example, suppose you are loading 1000 rows with 3 input streams:

i mport java.util.ArraylList;

i mport java.util.List;

i mport java.util.concurrent. atonic. AtoncLong;
i mport oracle.kv.Bul kWiteOptions;
i mport oracle.kv. EntryStream

i mport oracle. kv. Faul t Excepti on;

i mport oracle. kv. KVStore;

i mport oracle. kv. KVStoreConfi g;

i mport oracle. kv. KVSt oreFact ory;

i mport oracle. kv. tabl e. Row,

i mport oracle. kv.tabl e. Tabl e;

i mport oracle. kv.tabl e. Tabl eAPI ;

/1l KVStore handle creation is omtted for brevity

I nteger streanParallelism= 3;
I nt eger perShardParallelism= 3;

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 9 of 17

ORACLE

Chapter 6

Bulk Put Operations

I nteger heapPercent = 30;
I/l Inthis case, sets the anpunt of 1000 rows to | oad
i nt nLoad = 1000;

Bul kWiteOptions bul kWiteOptions =
new Bul kWiteOptions(null, 0, null);
[l Set the nunmber of streams. The default is 1 stream
bul kWiteOptions. set StreanParal | elism(streanParallelisn;
[l Set the nunber of witer threads per shard.
[l The default is 3 witer threads.
bul kWiteOptions. set Per ShardParal | el i sm(per ShardParal [el ism;
/1 Set the percentage of max memory used for bulk put.
/1 The default is 40 percent.
bul kWiteOptions. set Bul kHeapPer cent (heapPercent);

Systemerr.printin("Loading rows to " + TABLE_NAME + "...");

final List<EntryStreankRow>> streans =

new Arrayli st <EntryStreankRow>>(streanParal l elisn;
final int num= (nLoad + (streanmParallelism- 1)) / streanParallelism
for (int i =0; i < streanParallelism i++) {

final int min=num* i;

final int max = Math.min((mn + num , nLoad);

streans. add(new LoadRowStrean(i, mn, max));

}

final Tabl eAPl tablelnpl = store.getTabl eAPI ();
tabl el npl . put (streams, bul kWiteOptions);

long total = 0;
[ong keyExists = 0;
for (EntryStreankRow> stream streams) {
total += ((LoadRowStreamn)streanj.getCount();
keyExi sts += ((LoadRowStrean)strean). get KeyExi st sCount ();
}
final String fn = "Loaded %d rows to %, %d pre-existing.";
Systemerr.printIn(String.format(fnt, total, TABLE NAME, keyExists));

You should implement the stream interface that supplies the data to be batched and loaded
into the store. Entries are supplied by a list of Ent r ySt r eaminstances. Each stream is read
sequentially, that is, each Ent ryStream get Next () is allowed to finish before the next operation
is issued. The load operation typically reads from these streams in parallel as determined by

Bul kWiteOptions. getStreanParal lelisn().

private class LoadRowStream i npl enents EntryStreanx<Row> {

private final String name;

private final |ong index;

private final |ong max;

private final long min;

private long id;

private |ong count;

private final Atomi cLong keyExi stsCount;

LoadRowSt rean(String nane, |ong index, |ong

Java Direct Driver Developer's Guide

E85378-35

Copyright © 2011, 2025, Oracle and/or its affiliates.

mn, |ong

October 12, 2025
Page 10 of 17

ORACLE

Chapter 6
Bulk Put Operations

this.index = index;
this. max = max;

this.mn = mn;

this. name = nang;

id=nmn;

count = 0;

keyExi st sCount = new Atomi cLong();
!
@verride
public String nanme() {

return name + "-" +index +": " + mn+ "~" + nBx;
!
@verride

public Row get Next () {
if (id++ == max) {
return null;
}

final Row row = userTabl e. createRow();
row. put("id", id);

row. put ("name", "name" + id);
row. put ("age", 20 + id %50);
count ++;
return row,

}

@verride

public void conpleted() {
Systemerr.printin(name() + " conpleted, |oaded: " + count);
}

@verride

public void keyExists(Row entry) {
keyExi st sCount . i ncrement AndGet () ;

}

@verride
public void catchException(RuntimeException exception, Row entry) {
Systemerr.printin(name() + " catch exception: " +
exception. get Message() + ": " +
entry.todsonString(false));
t hrow exception;

}

public long getCount() {
return count;
}

public I ong get KeyExi stsCount () {
return keyExi stsCount.get();
}

Java Direct Driver Developer's Guide

E85378-35

Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 11 of 17

ORACLE Chapter 6
Using Time to Live

Using Time to Live

Time to Live (TTL) is a mechanism that allows you to automatically expire table rows. TTL is
expressed as the amount of time data is allowed to live in the store. Data which has reached
its expiration timeout value can no longer be retrieved, and will not appear in any store
statistics. Whether the data is physically removed from the store is determined by an internal
mechanism that is not user-controllable.

TTL represents a minimum guaranteed time to live. Data expires on hour or day boundaries.
This means that with a one hour TTL, there can be as much as two hours worth of unexpired
data. For example (using a time format of hour:minute:second), given a one hour TTL, data
written between 00:00:00.000 and 00:59:59.999 will expire at 02:00:00.000 because the data is
guaranteed to expire no less than one hour from when it is written.

In case of MR Tables with TTL value defined, the rows replicated to other regions carry the
expiration time when the row was written. This can be either the default table level TTL value
or a row level override that is set by your application. Therefore, this row will expire in all the
regions at the same time, irrespective of when they were replicated.

Expired data is invisible to queries and store statistics, but even so it is using disk space until it
has been purged. Here, store statistics refer to the statistics related to your store's
performance and availability. See Monitoring the Store. The expired data is purged from disk at
some point in time after its expiration date. The exact time when the data is purged is driven by
internal mechanisms and the workload on your store.

The TTL value for a table row can be updated at any time before the expiration value has been
reached. Data that has expired can no longer be modified, and this includes its TTL value.

TTL is more efficient than manual user-deletion of the row because it avoids the overhead of
writing a database log entry for the data deletion. The deletion also does not appear in the
replication stream.

Specifying a TTL Value

TTL values are specified on a row by row basis using Row. set TTL() . This method accepts a
Ti neToLi ve class instance, which allows you to identify the number of days or hours the row
will live in the store before expiring. A duration interval specified in days is recommended
because this results in the least amount of storage consumed in the store. However, if you
want a TTL value that is not an even multiple of days, then specify the TTL value in hours.

The code example from Writing Rows to a Table in the Store can be extended to specify a TTL
value of 5 days like this:

package kvstore. basi cExanpl e;

i nport oracle.kv.KVStore;

i nport oracle.kv.tabl e. Row,

i nport oracle.kv.tabl e. Tabl e;

i nport oracle.kv.table. TimeTolLi ve;
i nport oracle.kv.tabl e. Tabl eAPI ;

/1 KVStore handle creation is omtted for brevity

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 12 of 17

ORACLE

Chapter 6
Using Time to Live

Tabl eAPI tabl eH = kvstore. get Tabl eAPI ();
Tabl e nmyTabl e = tabl eH. get Tabl e("nyTabl e");

/] Get a Row instance
Row row = myTabl e. creat eRow() ;

// Add a TTL value to the row
row.setTTL(TimeToLive.ofDays(5));

/1 Now put all of the cells in the row

row. put ("itenf, "Bolts");

row. put ("description", "Hex head, stainless");
row. put ("count", 5);

row. put ("percentage", 0.2173913);

// Nowwite the table to the store.
tabl eH put (row, null, null);

Updating a TTL Value

To update the expiration time for a table row, you write the row as normal, and at the same
time specify the new expiration time. However, you must also indicate that the expiration time
is to be updated. By default, you can modify the row data and the expiration time will not be
modified, even if you specify a new TTL value for the row.

To indicate that the the expiration time is to be updated, specify t r ue to the
WiteOptions. set Updat eTTL() method. For example, using the previous example, to change
the TTL value to 10 days, do the following:

package kvstore. basi cExanpl e;

inport oracle.kv.KVStore

i nport oracle. kv.tabl e. Row,

inport oracle.kv.table. Table;

inport oracle.kv.table. Tabl e. Ti neToLi ve
i nport oracle.kv.tabl e. Tabl eAPI

import oracle.kv.table_WriteOptions;

/1 KVStore handle creation is onmtted for brevity

Tabl eAPI tabl eH = kvstore. get Tabl eAPI ();
Tabl e myTabl e = tabl eH. get Tabl e("nyTabl e");

/] Get a Row instance
Row row = nyTabl e. creat eRow() ;

// Change the TTL value for the row from 5 days to 10.
row.setTTL(TimeToLive.ofDays(10));

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 13 of 17

ORACLE

Chapter 6
Using Time to Live

/1 Now put all of the cells in the row
row. put ("item', "Bolts");

row. put ("description", "Hex head, stainless");
row. put ("count", 5);

row. put ("percentage", 0.2173913);

/1 Now write the table to the store.
tabl eH put (row, null, new WriteOptions().setUpdateTTL(true));

Deleting TTL Expiration

If you have set a TTL value for a row and you later decide you do not want it to ever
automatically expire, you can turn off TTL by setting a TTL value of
Ti meToLi ve. DO_NOT_EXPI RE:

package kvstore. basi cExanpl e;

i nport oracle. kv. KVStore;

inport oracle.kv.table. Row

inport oracle.kv.table. Table;

inport oracle.kv.table. Tabl e. Ti neToLi ve;
inport oracle.kv.table. Tabl eAPI ;

inport oracle.kv.table. WiteQptions;

/1 KVStore handle creation is omtted for brevity

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();
Tabl e myTabl e = tabl eH. get Tabl e("nyTabl e");

/| Get a Row instance
Row row = myTabl e. creat eRow() ;

// Modify the row"s TTL so that it will never expire
row.setTTL(TimeToLive.DO_NOT_EXPIRE);

/1 Now put all of the cells in the row

row. put("item', "Bolts");

row. put ("description", "Hex head, stainless");
row. put ("count", 5);

row. put ("percentage", 0.2173913);

/1 Now write the table to the store.
tabl eH put (row, null, new WiteOptions().setUpdateTTL(true));

Setting Default Table TTL Values

You can set a default TTL value for the table when you define the table using the USI NG TTL
DDL statement. It may be optionally applied when a table is created using CREATE TABLE or

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 14 of 17

ORACLE

Chapter 6
Deleting Rows from the Store

when a table is modified using one of the ALTER TABLE statements. See USING TTL for details
on this statement.

For example:

CREATE TABLE nyTabl e (

i tem STRI NG

description STRING

count | NTEGER,

per cent age DOUBLE,

PRI MARY KEY (item) // Every table nmust have a primary key
) USING TTL 5 days

At program run time, you can examine the default TTL value for a table using the
Tabl e. get Def aul t TTL() method.

Deleting Rows from the Store

You delete a single row from the store using the Tabl eAPI . del et e() method. Rows are
deleted based on a Pri mar yKey, which you obtain using the Tabl e. cr eat ePri mar yKey()
method. You can also require a row to match a specified version before it will be deleted. To do
this, use the Tabl eAPI . del et el f Ver si on() method. Versions are described in Using Row
Versions .

When you delete a row, you must handle the same exceptions as occur when you perform any
write operation on the store. See Write Exceptions for a high-level description of these
exceptions.

If you delete a row that has associated user-defined row metadata, both the row data and its
metadata are permanently removed from the table. This metadata will be included in the
change stream event, allowing the change stream subscriber to track the cause of deletion.
For more information, see Using row metadata in Write Operations in Developers Guide.

package kvstore. basi cExanpl e;

i mport oracle. kv. KVSt ore;

i mport oracle. kv. tabl e. PrinaryKey;
i mport oracle. kv.tabl e. Tabl e;

i mport oracle. kv. tabl e. Tabl eAPI ;

/1 KVStore handle creation is omtted for brevity

Tabl eAPl tabl eH = kvstore. get Tabl eAPI () ;

/1 The nane you give to getTabl e() nust be identical

/1l to the nane that you gave the table when you created
/1l the table using the CREATE TABLE DDL st atenent.

Tabl e myTabl e = tabl eH. get Tabl e("nyTabl e");

/1 Get the primary key for the row that we want to delete
PrimaryKey primaryKey = nyTabl e. createPrimaryKey();

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 15 of 17

ORACLE

primaryKey. put ("itent, "Bolts");

/] Delete the row
/1 This perfornms a store wite operation

tabl eH. del et e(pri maryKey, null,

null);

Using multiDelete()

You can delete multiple rows at once in a single atomic operation, as long as they all share the
shard key values. Recall that shard keys are at least a subset of your primary keys. This
results in using a partial primary key, which is the shard key, to perform a multi-delete.

Chapter 6
Deleting Rows from the Store

To delete multiple rows at once, use the Tabl eAPI . mul ti Del et e() method.

For example, suppose you create a table like this:

CREATE TABLE nyTabl e (

i teniType STRI NG

i tenCat egory STRING

i tenCl ass STRING

i tenCol or STRI NG

i tenBize STRING

price FLOAT,

i nvent oryCount | NTEGER,

PRI MARY KEY (SHARD(iteniype, itentCategory,
i tentize)

With tables containing data like this:

Row 1:

— itemType: Hats

— itemCategory: baseball
— itemClass: longbill

— itemColor: red

— itemSize: small

— price: 12.07

— inventoryCount: 127
Row 2:

— itemType: Hats

— itemCategory: baseball
— itemClass: longbill

— itemColor: red

— itemSize: medium

— price: 13.07

— inventoryCount: 201
Row 3:

Java Direct Driver Developer's Guide

E85378-35

Copyright © 2011, 2025, Oracle and/or its affiliates.

i tenC ass), itentCol or,

October 12, 2025
Page 16 of 17

ORACLE

— itemType: Hats

— itemCategory: baseball
— itemClass: longbill

— itemColor: red

— itemSize: large

— price: 14.07

inventoryCount: 39

Chapter 6
Deleting Rows from the Store

In this case, you can delete all the rows sharing the partial primary key Hat s, basebal | ,

| ongbi | | as follows:

package kvstore. basi cExanpl e;

i nport oracle.kv.KVStore;

i nport oracle.kv.table.PrinaryKey;
i nport oracle.kv.tabl e. Tabl e;

i nport oracle. kv. tabl e. Tabl eAPI ;

/1 KVStore handle creation is omtted for brevity

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();

/1 The name you give to get Tabl e() nust be identical

/1 to the name that you gave the table when you created
/1 it using the CREATE TABLE DDL statenent.

Tabl e myTabl e = tabl eH. get Tabl e("nyTabl e");

/1 Get the primary key for the row that we want to delete
PrimaryKey primaryKey = myTabl e. creat ePri maryKey();

pri maryKey. put ("itenlype", "Hats");

pri maryKey. put ("itenCategory", "baseball");

pri maryKey. put ("itenC ass", "longbill");

/1 Exception handling omtted
tabl eH mul tiDel ete(prinaryKey, null, null);

Java Direct Driver Developer's Guide

E85378-35

Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 17 of 17

Reading Table Rows

There are several ways to retrieve table rows from the store. You can:

1. Retrieve a single row at a time using the Tabl eAPI . get () method.

2. Retrieve rows associated with a shard key (which is based on at least part of your primary
keys) using either the Tabl eAPI . nul ti Get () or Tabl eAPI. mul ti Getlterator() methods.

3. Retrieve table rows that share a shard key, or an index key, using the
Tabl eAPI . t abl el terat or () method.

4. Retrieve and process records from each shard in parallel using a single key as the retrieval
criteria. Use one of the Tabl eAPI . tabl el terat or () or Tabl eAPI . t abl eKeyslterator()
methods that provide parallel scans.

5. Retrieve and process records from each shard in parallel using a set of keys as the
retrieval criteria. Use one of the Tabl eAPI . tabl elterator() or
Tabl eAPI . t abl eKeysl t er at or () methods that provide bulk retrievals.

Each of these are described in the following sections.

Read Exceptions

Several exceptions can occur when you attempt a read operation in the store. The first of these
is Consi st encyExcept i on. This exception indicates that the operation cannot be completed
because the consistency policy cannot be met. For more information, see Consistency
Guarantees.

The second exception is Request Ti meout Except i on. This means that the operation could not
be completed within the amount of time provided by the store's timeout property. This probably
indicates a store that is attempting to service too many read requests all at once. Remember
that your data is partitioned across the shards in your store, with the partitioning occurring
based on your shard keys. If you designed your keys such that a large number of read
requests are occurring against a single key, you could see request timeouts even if some of the
shards in your store are idle.

A request timeout could also be indicative of a network problem that is causing the network to
be slow or even completely unresponsive.

To handle a Request Ti meout Except i on, you could simply log the error and move on, or you
could pause for a short period of time and then retry the operation. You could also retry the
operation, but use a longer timeout value.

You can also receive an | | | egal Argunent Except i on, which will be thrown if a Row that you are
writing to the store does not have a primary key or is otherwise invalid.

You can also receive a general Faul t Except i on, which indicates that some exception occurred
which is neither a problem with consistency nor a problem with the request timeout. Your only
recourse here is to either log the error and move along, or retry the operation.

You can also receive a Met adat aNot FoundExcept i on, which indicates that a client's metadata
may be out of sync. It extends Faul t Except i on and can be caught by applications to trigger

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 1 of 23

ORACLE

Chapter 7
Retrieving a Single Row

the need for a refresh of their metadata, and in particular, Table handles obtained via
TableAPl.getTable().

Finally, if you are using a secure store that requires authentication, you can receive

Aut henti cati onFai | ureExcepti on or Aut henti cat i onRequi r edExcepti on if you do not
provide the proper authentication credentials. When using a secure store, you can also see
Unaut hori zedExcept i on, which means you are attempting an operation for which the
authenticated user does not have the proper permissions.

Retrieving a Single Row

To retrieve a single row from the store:

1. Construct a handle for the table from which you want to read. You do this by retrieving a
Tabl eAPI class instance using KVSt or e. get Tabl eAPI () . You then use that instance to
retrieve the desired table handle using Tabl eAPI . get Tabl e() . This returns a Tabl e class
instance.

® Note

Tabl eAPI . get Tabl e() is an expensive call that requires server side access. From
a performance point of view, it is a mistake to call this method whenever you need
a table handle. Instead, call this method for all relevant tables in the set up section
of your code, and then reuse those handles throughout your application.

2. Use the Tabl e instance retrieved in the previous step to create a Pri mar yKey class
instance. In this case, the key you create must be the entire primary key.

3. Retrieve the row using Tabl eAPI . get () . This performs a store read operation.
4. Retrieve individual fields from the row using the Row. get () method.

For example, in Writing Rows to a Table in the Store we showed a trivial example of storing a
table row to the store. The following trivial example shows how to retrieve that row.

package kvstore. basi cExanpl e;

i nport oracle.kv.KVStore;

i nport oracle. kv.table. PrinaryKey;
i nport oracle.kv.tabl e. Row,

i nport oracle.kv.tabl e. Tabl e;

i nport oracle. kv.tabl e. Tabl eAPI ;

/1 KVStore handle creation is omtted for brevity

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();

/1 The name you give to get Tabl e() nust be identical

/1 to the name that you gave the table when you created
/1 the table using the CREATE TABLE DDL st atenent.

Tabl e nmyTabl e = tabl eH. get Tabl e("nyTabl e");

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 2 of 23

ORACLE Chapter 7
Retrieving a Single Row

/1 Construct the PrimaryKey. This is driven by your table
/1 design, which designated one or nore fields as

/1 being part of the table's primary key. In this

/] case, we have a single field primary key, which is the
[l "item field. Specifically, we want to retrieve the
/1 row where the "item field contains 'Bolts'.
PrimaryKey key = nyTabl e. createPrimryKey();
key.put("item', "Bolts");

/I Retrieve the row. This performs a store read operation.
/1 Exception handling is skipped for this trivial exanple.
Row row = tabl eH. get (key, null);

/1 Now retrieve the individual fields fromthe row.

String item=row get("iten).asString().get();

String description = row get("description").asString().get();
I nteger count = row. get("count").aslnteger().get();

Doubl e percentage = row. get ("percentage").asDoubl e().get();

Retrieve a Child Table

In Writing Rows to a Child Table we showed how to populate a child table with data. To retrieve
that data, you must specify the primary key used for the parent table row, as well as the
primary key for the child table row. For example:

package kvstore. basi cExanpl e;

i nport oracle.kv. KVStore;

i nport oracle.kv.table.PrimaryKey;
i nport oracle.kv.tabl e. Row,

i nport oracle.kv.table. Tabl e;

i nport oracle.kv.tabl e. Tabl eAPI;

/] KVStore handle creation is omtted for brevity

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();

/] W omt retrieval of the parent table because it is not required.
Tabl e nmyChi |l dTabl e = tabl eH. get Tabl e("nylnventory.itenDetails");

/] Construct the PrinmaryKey. This key must contain the primry key
[l fromthe parent table row, as well as the primary key fromthe
/] child table row that you want to retrieve.

Pri maryKey key = myChil dTabl e. creat ePri maryKey();

key. put ("itenCategory", "Bolts");

key. put ("itenBKU', "1392610");

/] Retrieve the row. This perforns a store read operation.
/] Exception handling is skipped for this trivial exanple.
Row row = tabl eH get (key, null);

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 3 of 23

ORACLE

Chapter 7
Using multiGet()

/1 Now retrieve the individual fields fromthe row.

String description = row get("itenDescription").asString().get();
Float price = row get("price").asFloat().get();

Integer invCount = row. get("inventoryCount").aslnteger().get();

For information on how to iterate over nested tables, see lterating with Nested Tables.

Using multiGet()

Tabl eAPI . mul ti Get () allows you to retrieve multiple rows at once, so long as they all share
the same shard keys. You must specify a full set of shard keys to this method.

Use Tabl eAPI . nul ti Get () only if your retrieval set will fit entirely in memory.

For example, suppose you have a table that stores information about products, which is
designed like this:

CREATE TABLE nyTabl e (
i tenType STRING
i tenCategory STRING
i tenCl ass STRING
i tenCol or STRI NG,
itenSi ze STRING
price FLOAT,
i nvent oryCount | NTEGER,
PRI MARY KEY (SHARD(iteniype, itenCategory, itenC ass), itentColor,
i tentize)

With tables containing data like this:

* Rowl:
— itemType: Hats
— itemCategory: baseball
— itemClass: longhill
— itemColor: red
— itemSize: small
— price: 12.07
— inventoryCount: 127
* Row2:
— itemType: Hats
— itemCategory: baseball
— itemClass: longhill
— itemColor: red
— itemSize: medium
— price: 13.07

— inventoryCount: 201

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 4 of 23

ORACLE

Chapter 7
Using multiGet()

* Row 3:
— itemType: Hats
— itemCategory: baseball
— itemClass: longbill
— itemColor: red
— itemSize: large
— price: 14.07
— inventoryCount: 39

In this case, you can retrieve all of the rows with their i t eniType field set to Hat s and their
i t enCat egory field set to basebal | . Notice that this represents a partial primary key, because
itend ass, itenCol or anditenfi ze are not used for this query.

package kvstore. basi cExanpl e;

inport java.util.List;

inport java.util.lterator;

i nport oracle. kv. Consi st encyExcept i on;

i nport oracle.kv.KVStore;

i nport oracle. kv. Request Ti meout Excepti on;
inport oracle.kv.table.PrimaryKey;

i nport oracle.kv.tabl e. Row,

inport oracle.kv.table. Table;

i nport oracle.kv.tabl e. Tabl eAPI;

/1 KVStore handle creation is onmtted for brevity

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();

/1 The name you give to get Table() nust be identical

/1 to the name that you gave the table when you created
/1 the table using the CREATE TABLE DDL st atenent.

Tabl e myTabl e = tabl eH. get Tabl e("nyTabl e");

/1 Construct the PrimaryKey. In this case, we are
/] using a partial primry key.

Pri maryKey key = nyTabl e. creat ePri maryKey();

key. put ("itenType", "Hats");

key. put ("itenCategory", "baseball");

key. put("itend ass", "longbill");

Li st <Row> myRows = nul | ;

try {
myRows = tabl eH nul tiGet(key, null, null);

} catch (ConsistencyException ce) {
/1 The consistency guarantee was not net

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 5 of 23

ORACLE

Chapter 7
Iterating over Table Rows

} catch (Request Ti meout Exception re) {
/1 The operation was not conpleted within the
/1 timeout val ue

You can then iterate over the resulting list as follows:

for (Row theRow. nyRows) {
String itenflype = theRow. get ("itenType").asString().get();
String itenCategory = theRow. get ("itenCategory").asString().get();
String itenC ass = theRow. get ("itenC ass").asString().get();
String itenmColor = theRow. get("itemColor").asString().get();
String itenSize = theRow. get ("itenBize").asString().get();
Float price = theRow. get("price").asFloat().get();
I nteger price = theRow. get("itenmCount").aslnteger().get();

lterating over Table Rows

Tabl eAPI . tabl el terator () provides non-atomic table iteration. Use this method to iterate
over indexes. This method performs a parallel scan of your tables if you set a concurrent
request size other than 1.

Tabl eAPI . tabl el terator () does not return the entire set of rows all at once. Instead, it
batches the fetching of rows in the iterator, to minimize the number of network round trips,
while not monopolizing the available bandwidth. Also, the rows returned by this method are in
unsorted order.

Note that this method does not result in a single atomic operation. Because the retrieval is
batched, the return set can change over the course of the entire retrieval operation. As a result,
you lose the atomicity of the operation when you use this method.

This method provides for an unsorted traversal of rows in your table. If you do not provide a
key, then this method will iterate over all of the table's rows.

When using this method, you can optionally specify:

e A MiltiRowOptions class instance. This class allows you to specify a field range, and the
ancestor and parent tables you want to include in this iteration.

« ATablelteratorOptions class instance. This class allows you to identify the suggested
number of keys to fetch during each network round trip. If you provide a value of 0, an
internally determined default is used. You can also use this class to specify the traversal
order (FORWARD, REVERSE, and UNORDERED are supported).

This class also allows you to control how many threads are used to perform the store read.
By default this method determines the degree of concurrency based on the number of
available processors. You can tune this concurrency by explicitly stating how many threads
to use for table retrieval. See Parallel Scans for more information.

Finally, you use this class to specify a consistency policy. See Consistency Guarantees for
more information.

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 6 of 23

ORACLE Chapter 7
Iterating over Table Rows

@® Note

When using Tabl eAPI . t abl el terator (), it is important to call

Tabl el terator. cl ose() when you are done with the iterator to avoid resource leaks.
This is especially true for long-running applications, especially if you do not iterate
over the entire result set.

For example, suppose you have a table that stores information about products, which is
designed like this:

CREATE TABLE nyTabl e (
i tenifype STRI NG
i tenCat egory STRI NG
i tenCl ass STRING
i temCol or STRI NG
itenBize STRING
price FLOAT,
i nvent oryCount | NTEGER,
PRI MARY KEY (SHARD(iteniype, itenCategory, itenC ass), itenColor,
itenfize)

With tables containing data like this:
* Row1l:
— itemType: Hats
— itemCategory: baseball
— itemClass: longbill
— itemColor: red
— itemSize: small
— price: 12.07
— inventoryCount: 127
* Row2:
— itemType: Hats
— itemCategory: baseball
— itemClass: longbill
— itemColor: red
— itemSize: medium
— price: 13.07
— inventoryCount: 201
* Row 3:
— itemType: Hats
— itemCategory: baseball

— itemClass: longbill

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 7 of 23

ORACLE

— itemColor: red

— itemSize: large

— price: 14.07

— inventoryCount: 39
* Rown:

— itemType: Coats

— itemCategory: Casual

— itemClass: Winter

— itemColor: red

— itemSize: large

— price: 247.99

— inventoryCount: 9

Chapter 7
Iterating over Table Rows

Then in the simplest case, you can retrieve all of the rows related to 'Hats' using

Tabl eAPI . tabl el terator () as follows. Note that this simple example can also be
accomplished using the Tabl eAPI . mul ti Get () method. If you have a complete shard key, and
if the entire results set will fit in memory, then nul ti Get () will perform much better than

tabl el terator (). However, if the results set cannot fit entirely in memory, or if you do not
have a complete shard key, then t abl el t erat or () is the better choice. Note that reads
performed using t abl el terator () are non-atomic, which may have ramifications if you are

performing a long-running iteration over records that are being updated.

package kvstore. basi cExanpl e;

i nport oracle.kv. KVStore;

inport oracle.kv.table.PrimaryKey;

i nport oracle.kv.tabl e. Row,

inport oracle.kv.table. Table;

i nport oracle.kv.tabl e. Tabl eAPI;

i nport oracle.kv.table. Tablelterator;

/1 KVStore handle creation is onitted for brevity

Tabl eAPl tabl eH = kvstore. get Tabl eAPI () ;

/1 The name you give to getTable() nust be identical

/1 to the nane that you gave the table when you created
/1 the table using the CREATE TABLE DDL st atenent.

Tabl e nmyTabl e = tabl eH. get Tabl e("nyTabl e");

/1 Construct the PrimaryKey. In this case, we are
/] using a partial primry key.

PrimaryKey key = nyTabl e. createPrimryKey();

key. put ("itenType", "Hats");

Java Direct Driver Developer's Guide

E85378-35

Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 8 of 23

ORACLE

Chapter 7
Specifying Field Ranges

/1 Exception handling is omitted, but in production code
/1 Consi stencyException, RequestTi meException, and Faul t Exception
/1 woul d have to be handl ed.
Tabl elterator<Row> iter = tableH tablelterator(key, null, null);
try {
while (iter.hasNext()) {
Row row = iter.next();
/1 Exanmine your row s fields here

}
} finally {
if (iter '=null) {
iter.close();
}
}

Specifying Field Ranges

When performing multi-key operations in the store, you can specify a range of rows to operate
upon. You do this using the Fi el dRange class, which is accepted by any of the methods which
perform bulk reads. This class is used to restrict the selected rows to those matching a range
of field values.

For example, suppose you defined a table like this:

CREATE TABLE nyTabl e (
surname STRI NG
fam |iarName STRI NG
user | D STRI NG
phonenunber STRI NG
address STRI NG
emai | STRING
dateOdf Birth STRI NG
PRI MARY KEY (SHARD(surname, faniliarNane), userlD)

The sur nane contains a person's family name, such as Sni t h. The fani | i ar Name contains their
common name, such as Bob, Patri ci a, Robert, and so forth.

Given this, you could perform operations for all the rows related to users with a surname of
Smi t h, but we can limit the result set to just those users with familiar names that fall
alphabetically between Bob and Pat ri ci a by specifying a field range.

A Fi el dRange is created using Tabl e. cr eat eFi el dRange() . This method takes just one
argument — the name of the primary key for which you want to set the range.

In this case, we will define the start of the key range using the string "Bob" and the end of the
key range to be "Patricia". Both ends of the key range will be inclusive.

In this example, we use Tabl el t er at or, but we could just as easily use this range on any
multi-row read operation, such as the Tabl eAPI . nul ti Get () or Tabl eAPI . mul ti Get Keys()
methods. The Fi el dRange object is passed to these methods using a Mil ti RowOpt i ons class

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 9 of 23

ORACLE

Chapter 7
Specifying Field Ranges

instance, which we construct using the Fi el dRange. creat eMul ti RowOpt i ons() convenience
method.

package kvstore. basi cExanpl e;

inport oracle.kv.KVStore

inport oracle. kv.table.Fiel dRange
inport oracle. kv.table. MiltiRowOptions
inport oracle.kv.table.PrimaryKey;

i nport oracle. kv.tabl e. Row,

inport oracle.kv.table. Table;

i nport oracle.kv.tabl e. Tabl eAPI

inport oracle.kv.table. Tablelterator;

/1 KVStore handle creation is onitted for brevity

Tabl eAPl tabl eH = kvstore. get Tabl eAPI () ;

/1 The name you give to getTable() nust be identica

/1 to the nane that you gave the table when you created
/1 the table using the CREATE TABLE DDL st atenent.
Tabl e myTabl e = tabl eH. get Tabl e("nyTabl e");

/1 Construct the PrimaryKey. In this case, we are
/] using a partial primry key.

PrimaryKey key = nyTabl e. createPrimryKey();

key. put ("surnane", "Smth");

/I Create the field range

FieldRange fth = myTable.createFieldRange(" ' familiarName™);
fh.setStart("'Bob™, true);

fh.setEnd("Patricia", true);

MultiRowOptions mro = fh.createMultiRowOptions();

/1 Exception handling is omtted, but in production code
/1 Consi st encyException, RequestTi meException, and Faul t Exception
/1 woul d have to be handl ed.
Tabl elterator<Row> iter = tableH tablelterator(key, mro, null);
try {
while (iter.hasNext()) {
Row row = iter.next();
/1 Examine your row s fields here

1
} finally {
if (iter '=null) {
iter.close();
1

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 10 of 23

ORACLE Chapter 7
Iterating with Nested Tables

lterating with Nested Tables

When you are iterating over a table, or performing a multi-get operation, by default only rows
are retrieved from the table on which you are operating. However, you can use
Mul ti RowOpt i ons to specify that parent and child tables are to be retrieved as well.

When you do this, parent tables are retrieved first, then the table you are operating on, then
child tables. In other words, the tables' hierarchical order is observed.

The parent and child tables retrieved are identified by specifying a Li st of Tabl e objects to the
ancest ors and chi | dr en parameters on the class constructor. You can also specify these
using the Mul ti RowOpt i ons. set | ncl udedChi | dTabl es() or

Ml ti RowOpt i ons. set | ncl udedPar ent Tabl es() methods.

When operating on rows retrieved from multiple tables, it is your responsibility to determine
which table the row belongs to.

For example, suppose you create a table with a child and grandchild table like this:

CREATE TABLE prodTabl e (
prodType STRI NG
typeDescription STRING
PRI MARY KEY (prodType)

CREATE TABLE prodTabl e. prodCat egory (
cat egoryName STRI NG
cat egoryDescription STRI NG
PRI MARY KEY (cat egor yNane)

CREATE TABLE prodTabl e. prodCat egory.item (
i temBKU STRI NG
i temDescription STRING
i tenPrice FLOAT,
vendor U D STRI NG
i nvent oryCount | NTECGER,
PRI MARY KEY (itenSKU)

With tables containing data like this:

* Row1l:
— prodType: Hardware
— typeDescription: Equipment, tools and parts
— Row1.1:
* categoryName: Bolts
* categoryDescription: Metric & US Sizes
* Row 1.1.1:
* itemSKU: 1392610

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 11 of 23

ORACLE Chapter 7
Iterating with Nested Tables

* itemDescription: 1/4-20 x 1/2 Grade 8 Hex
* itemPrice: 11.99
* vendorUID: ABLN99
* inventoryCount: 1457
* Row 2:
— prodType: Tools
— typeDescription: Hand and power tools
— Row2.1:
* categoryName: Handtools
* categoryDescription: Hammers, screwdrivers, saws
* Row 2.1.1:
* jitemSKU: 1582178
* itemDescription: Acme 20 ounce claw hammer
* itemPrice: 24.98
* vendorUID: D6BQ27
* inventoryCount: 249

In this case, you can display all of the data contained in these tables in the following way.

Start by getting all our table handles:

package kvstore.tabl eExanpl e;
inport java.util.Arrays;

i nport oracle.kv. KVStore;
i nport oracle.kv. KVStoreConfig;
i nport oracle. kv. KVSt or eFact ory;

i nport oracle.kv.table.PrimaryKey;
i nport oracle.kv.tabl e. Row,

i nport oracle.kv.tabl e. Tabl e;

i nport oracle.kv.tabl e. Tabl eAPI;

inport oracle.kv.table.Tablelterator;
i nport oracle.kv.table. MltiRowOpti ons;

private static Table prodTabl e;
private static Table categoryTabl e;
private static Table iteniable;

private static Tabl eAPl tabl eH;

/] KVStore handle creation is omtted for brevity

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 12 of 23

ORACLE

Chapter 7
Iterating with Nested Tables

tabl eH = kvstore. get Tabl eAPI () ;

prodTabl e = tabl eH. get Tabl e(" prodTabl e");

categoryTabl e = tabl eH. get Tabl e(" prodTabl e. pr odCat egory");
i tenfTabl e = tabl eH. get Tabl e(" prodTabl e. prodCat egory.itent);

Now we need the Pri mar yKey and the Mul ti RowOpt i ons that we will use to iterate over the top-
level table. Because we want all the rows in the top-level table, we create an empty
Pri mar yKey.

The Mil ti RowOpt i ons identifies the two child tables in the constructor's chi | d parameter. This
causes the iteration to return all the rows from the top-level table, as well as all the rows from
the nested children tables.

/1 Construct a prinary key
Pri maryKey key = prodTabl e. creat ePrimaryKey();

/1 Get a Multi RowOptions and tell it to ook at both the child
/1 tables
Mul ti RowOptions nro = new Multi RowOptions(null, null,

Arrays. asLi st (categoryTable, itenfable));

Now we perform the iteration:

/] Get the table iterator
/] Exception handling is omtted, but in production code
/] Consi stencyException, RequestTi meException, and Faul t Exception
/1 woul d have to be handl ed.
Tabl elterator<Row> iter = tableH tablelterator(key, nro, null);
try {

while (iter.hasNext()) {

Row row = iter.next();

di spl ayRow(row) ;

}
} finally {
if (iter '=null) {
iter.close();
}
}

Our di spl ayRow() method is used to determine which table a row belongs to, and then display
it in the appropriate way.

private static void di spl ayRow Row row) {
/1 Display the row depending on which table it belongs to
if (row getTable().equal s(prodTable)) {
di spl ayPr odTabl eRow(r ow) ;
} else if (row. getTable().equals(categoryTable)) {
di spl ayCat egor yTabl eRow(r ow) ;
} else {
di spl ayl t enifabl eRow(r ow) ;

}

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 13 of 23

ORACLE

Chapter 7
Iterating with Nested Tables

Finally, we just need the methods used to display each row. These are trivial, but in a more
sophisticated application they could be used to do more complex things, such as construct
HTML pages or write XSL-FO for the purposes of generating PDF copies of a report.

private static void displayProdTabl eRow(Row row) {
Systemout. println("\nType: " +
row. get ("prodType").asString().get());
Systemout. println("Description: " +
row. get ("typeDescription").asString().get());

}

private static void di splayCategoryTabl eRow(Row row) {
Systemout.printin("\tCategory: " +
row. get ("cat egoryName").asString().get());
Systemout. printlIn("\tDescription: " +
row. get ("cat egoryDescription").asString().get());

}

private static void displayltenTabl eRow Row row) {

Systemout.printin("\t\tSKU. " +

row. get ("itenBKU').asString().get());
Systemout. printIn("\t\tDescription: " +

row. get ("itemDescription").asString().get());
Systemout.printin("\t\tPrice: " +

row.get("itenPrice").asFloat().get());
Systemout.printin("\t\tVendorUD: " +

row. get ("vendorU D').asString().get());
Systemout. printin("\t\tlnventory count: " +

row. get ("i nventoryCount").aslnteger().get());
Systemout. printin("\n");

Note that the retrieval order remains the top-most ancestor to the lowest child, even if you
retrieve by lowest child. For example, you can retrieve all the Bolts, and all of their parent
tables, like this:

/1 Get all the table handles

prodTabl e = tabl eH. get Tabl e(" prodTabl e");

cat egoryTabl e = tabl eH. get Tabl e(" prodTabl e. pr odCat egory") ;
i tenfTabl e = tabl eH get Tabl e("prodTabl e. prodCat egory.itent);

/] Construct a primary key

Pri maryKey key = iteniabl e.createPrimryKey();
key. put ("prodType", "Hardware");

key. put ("cat egor yName", "Bolts");

/] Get a Milti RowOptions and tell it to |ook at both the ancestor
/1 tables
Mul ti RowOptions nro = new Mul ti RowOptions(null,

Arrays. asLi st (prodTabl e, categoryTable), null);

/] Get the table iterator

/] Exception handling is omtted, but in production code

/1 Consi stencyException, RequestTi meException, and Faul t Exception
/1 woul d have to be handl ed.

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 14 of 23

ORACLE Chapter 7
Reading Indexes

Tabl elterator<Row> iter = tableH tablelterator(key, nro, null);

try {
while (iter.hasNext()) {
(

Row row = iter.next();
di spl ayRow(row) ;

}
} finally {
if (iter !'=null) {
iter.close();
}
}

Reading Indexes

You use Tabl el t erat or to retrieve table rows using a table's indexes. Just as when you use
Tabl el terat or to read table rows using a table's primary key(s), when reading using indexes
you can set options such as field ranges, traversal direction, and so forth. By default, index
scans return entries in forward order.

In this case, rather than provide Tabl el t er at or with a Pri mar yKey instance, you use an
instance of | ndexKey.

For example, suppose you defined a table like this:

CREATE TABLE nyTabl e (
surname STRI NG
fam i arNane STRI NG
user | D STRI NG
phonenunber STRI NG
address STRI NG
emai | STRI NG
dateOBirth STRI NG
PRI MARY KEY (SHARD(surname, familiarName), userlD)

CREATE | NDEX DoB ON nyTabl e (dateCOfBirth)

This creates an index named DoB for table nyTabl e based on the value of the dat e Birth
field. To read using that index, you use Tabl e. get | ndex() to retrieve the index named Dob.
You then create an | ndexKey from the | ndex object. For example:

package kvstore. basi cExanpl e;

i nport oracle.kv. KVStore;

i nport oracle.kv.tabl e. | ndex;

i nport oracle.kv.tabl e. | ndexKey;

i nport oracle.kv.tabl e. Row

i nport oracle.kv.tabl e. Tabl e;

i nport oracle.kv.tabl e. Tabl eAPI;
inport oracle.kv.table. Tablelterator;

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 15 of 23

ORACLE

Chapter 7
Reading Indexes

/1 KVStore handle creation is onmtted for brevity

Tabl eAPI tabl eH = kvstore. get Tabl eAPI ();
Tabl e myTabl e = tabl eH. get Tabl e("nyTabl e");

/1 Construct the IndexKey. The name we gave our index when
/1 we created it was 'DoB' .

I ndex dobl dx = myTabl e. get | ndex(" DoB");

I ndexKey dobl dxKey = dobl dx. creat el ndexKey();

/1 Exception handling is omitted, but in production code
/1 Consi stencyException, RequestTi meException, and Faul t Exception
/1 woul d have to be handl ed.
Tabl el terator<Row> iter = tableH tablelterator(dobldxKey, null, null);
try {
while (iter.hasNext()) {
Row row = iter.next();
/1 Exanmine your row s fields here

}
} finally {
if (iter !'=null) {
iter.close();
}
}

If you want to return entries that match a specific field name and field value, then use the
I ndexKey. put () method:

/1 Construct the IndexKey. The name we gave our index when
/1 we created it was 'DoB' .

I ndex dobl dx = myTabl e. get | ndex(" DoB");

I ndexKey dobl dxKey = dobl dx. creat el ndexKey();

// Return only those entries with a dateOfBirth equal to
// "1991-08-23"

dobldxKey.put(*'date0fBirth™, "1991-08-23");

/] Exception handling is omtted, but in production code
/1 Consi stencyException, RequestTi meException, and Faul t Exception
/1 woul d have to be handl ed.
Tabl elterator<Row> iter = tableH. tablelterator(dobldxKey, null, null);
try {
while (iter.hasNext()) {
Row row = iter.next();
/] Examine your row s fields here

}
} finally {
if (iter '=null) {
iter.close();
}

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 16 of 23

ORACLE

Chapter 7
Reading Indexes

If you want to return all the entries with a null value for the field, use the | ndexKey. put Nul | ()
method:

/1 Construct the IndexKey. The name we gave our index when
/1 we created it was 'DoB' .

I ndex dobl dx = nyTabl e. get | ndex("DoB");

I ndexKey dobl dxKey = dobl dx. creat el ndexKey();

// Return only those entries with a NULL dateOfBirth

// value.

dobldxKey.putNull (*"dateOfBirth™);

/] Exception handling is omtted, but in production code
/1 Consi stencyException, RequestTi meException, and Faul t Exception
/1 woul d have to be handl ed.
Tabl elterator<Row> iter = tableH. tablelterator(dobldxKey, null, null);
try {
while (iter.hasNext()) {
Row row = iter.next();
/] Examine your row s fields here

}
} finally {
if (iter '=null) {
iter.close();
}
}

In the previous example, the code examines every row indexed by the DoB index. A more likely,
and useful, example in this case would be to limit the rows returned through the use of a field
range. You do that by using | ndex. cr eat eFi el dRange() to create a Fi el dRange object. When
you do this, you must specify the field to base the range on. Recall that an index can be based
on more than one table field, so the field name you give the method must be one of the
indexed fields.

For example, if the rows hold dates in the form of yyyy- nm dd, you could retrieve all the people
born in the month of May, 1994 in the following way. This index only examines one field,
dat e Bi rt h, so we give that field name to | ndex. cr eat eFi el dRange() :

package kvstore. basi cExanpl e;

i nport oracle.kv.KVStore;

i nport oracle.kv.tabl e. Fi el dRange;

i nport oracle.kv.table.lndex;

i nport oracle.kv.tabl e. | ndexKey;

i nport oracle.kv.table. MltiRowOpti on;
i nport oracle.kv.tabl e. Row,

i nport oracle.kv.table. Tabl e;

i nport oracle.kv.tabl e. Tabl eAPI;
inport oracle.kv.table.Tablelterator;

/] KVStore handle creation is omtted for brevity

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 17 of 23

ORACLE

Chapter 7
Parallel Scans

Tabl eAPI tabl eH = kvstore. get Tabl eAPI ();
Tabl e nmyTabl e = tabl eH. get Tabl e("nyTabl e");

/1 Construct the IndexKey. The name we gave our index when
/1 we created it was 'DoB' .

I ndex dobl dx = myTabl e. get | ndex(" DoB");

I ndexKey dobl dxKey = dobl dx. creat el ndexKey();

/I Create the field range

FieldRange fth = dobldx.createFieldRange(‘'dateOfBirth™);
fh.setStart('1994-05-01", true);
fh.setEnd(*'1994-05-30", true);

MultiRowOptions mro = fh.createMultiRowOptions();

/'l Exception handling is omitted, but in production code
/'l Consi st encyException, RequestTi meException, and Faul t Exception
/1 woul d have to be handl ed.
Tabl el terator<Row> iter = tabl eH tablelterator(dobldxKey, mro, null);
try {
while (iter.hasNext()) {
Row row = iter.next();
/1 Examine your row s fields here

}
} finally {
if (iter '=null) {
iter.close();
}

Parallel Scans

By default, store reads are performed using multiple threads, the number of which is chosen by
the number of cores available to your code. You can configure the maximum number of client-
side threads to be used for the scan, as well as the number of results per request and the
maximum number of result batches that the Oracle NoSQL Database client can hold before the
scan pauses. To do this, use the Tabl el t er at or Opt i ons class. You pass this to

Tabl eAPI . tabl el terator (). This creates a Tabl el t er at or that uses the specified parallel
scan configuration.

@® Note

You cannot configure the number of scans you use for your reads if you are using
indexes.

For example, to retrieve all of the records in the store using 5 threads in parallel, you would do
this:

package kvstore. basi cExanpl e;

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 18 of 23

ORACLE

i nport oracle. kv. Consi stency;

i nport oracle.kv.Direction;

inport oracle. kv.KVStore

inport oracle. kv.table.Fiel dRange

i nport oracle.kv.table.PrinmaryKey;
inport oracle.kv.table. MiltiRowOption
i nport oracle.kv.tabl e. Row,

inport oracle.kv.table. Table;

i nport oracle.kv.tabl e. Tabl eAPI

i nport oracle.kv.table. Tabl elterator
inport oracle.kv.table. TablelteratorOptions;

/1 KVStore handle creation is onmtted for brevity

Tabl eAPI tabl eH = kvstore. get Tabl eAPI ();
Tabl e myTabl e = tabl eH. get Tabl e("nyTabl e");

/1 Construct the PrimaryKey.

Pri maryKey key = nyTabl e. creat ePri maryKey();
key. put ("itenType", "Hats");

key. put ("itenCategory", "baseball");

TablelteratorOptions tio =
new TablelteratorOptions(Direction.UNORDERED,
Consistency.NONE_REQUIRED,

0, // timeout

null, // timeout units

5, // number of concurrent
// threads

0, // results per request

0); // max result sets

/1 Exception handling is omitted, but in production code
/1 Consi stencyException, RequestTi meException, and Faul t Exception
/1 woul d have to be handl ed.
Tabl elterator<Row> iter =
tableH. tablelterator(key, null, tio);
try {
while (iter.hasNext()) {
Row row = iter.next();
/1 Exanmine your rows fields here

}
} finally {
if (iter '=null) {
iter.close();
}
}

Java Direct Driver Developer's Guide

E85378-35

Copyright © 2011, 2025, Oracle and/or its affiliates.

Chapter 7
Parallel Scans

October 12, 2025
Page 19 of 23

ORACLE Chapter 7
Bulk Get Operations

Bulk Get Operations

Bulk get operations allow you to retrieve and process records from each shard in parallel, like a
parallel scan, but using a set of keys instead of a single key as retrieval criteria.

A bulk get operation does not return the entire set of rows all at once. Instead, it batches the
fetching of rows in the iterator, to minimize the number of network round trips, while not
monopolizing the available bandwidth. Batches are fetched in parallel across multiple
Replication Nodes. If more threads are specified on the client side, then the user can expect
better retrieval performance — until processor or network resources are saturated.

To use bulk get, use one of the Tabl eAPI . tabl el terator () or

Tabl eAPI . t abl eKeysl t er at or () methods that provide bulk retrievals. These accept a set of
keys instead of a single key as the retrieval criteria. The set is provided using either an

It erator<Key> or Li st <lterat or <Key>> value.

The methods retrieve the rows or primary keys matching the keys supplied by the iterator(s).

@ Note

If the iterator yields duplicate keys, the row associated with the duplicate keys will be
returned at least once and potentially multiple times.

The supplied keys should follow these rules:

1. All supplied primary keys should belong to the same table.
2. The input key must be a complete shard key.

3. If afield range is specified, then the partial primary keys should be uniform. That is, they
should have the same number of components. Also, the field range must be the first
unspecified field of the supplied key.

When using these methods, you can also optionally specify:

« A MiltiRowOptions class instance which allows you to specify a field range, as well as the
ancestor and parent tables you want to include in the iteration.

e The number of keys to fetch during each network round trip using a
Tabl el t erat or Opti ons class instance. If you provide a value of 0, an internally determined
default is used. You can also specify the traversal order (UNORDERED is supported).

You can control how many threads are used to perform the store read using the
MaxConcur r ent Request s parameter.

Finally, you can specify a consistency policy. See Consistency Guarantees for more
information.

For example, suppose you have a table that stores information about products, which is
designed like this:

CREATE TABLE nyTabl e (
i tenType STRING
i tenCategory STRING
i tend ass STRI NG,
i tenCol or STRI NG,
itenBi ze STRING

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 20 of 23

ORACLE

price FLOAT,
i nvent oryCount | NTEGER,

PRI MARY KEY (SHARD(iteniType, itenCategory),

i tenSize))

With tables containing data like this:

¢ Row 1:

itemType: Hats
itemCategory: baseball
itemClass: longbill
itemColor: red
itemSize: small

price: 12.07

inventoryCount: 127

¢ Row 2:

itemType: Hats
itemCategory: baseball
itemClass: longbill
itemColor: red
itemSize: medium
price: 13.07

inventoryCount: 201

¢ Row 3:

itemType: Pants
itemCategory: baseball
itemClass: Summer
itemColor: red
itemSize: large

price: 14.07

inventoryCount: 39

e Row 4.

itemType: Pants
itemCategory: baseball
itemClass: Winter
itemColor: white
itemSize: large

price: 16.99

inventoryCount: 9

e Rown:

Java Direct Driver Developer's Guide

E85378-35

Copyright © 2011, 2025, Oracle and/or its affiliates.

i tend ass,

Bul

i tenCol or,

Chapter 7
k Get Operations

October 12, 2025
Page 21 of 23

ORACLE

Chapter 7
Bulk Get Operations

— itemType: Coats

— itemCategory: Casual
— itemClass: Winter

— itemColor: red

— itemSize: large

— price: 247.99

— inventoryCount: 13

If you want to locate all the Hats and Pants used for baseball, using nine threads in parallel,
you can retrieve all of the records as follows:

package kvstore. basi cExanpl e;

inport java.util.ArraylList;

inport java.util.List;

i nport oracle. kv. Consi st ency;

i nport oracle.kv.Direction;

i nport oracle.kv.table.PrinaryKey;

i nport oracle. kv.tabl e. Row,

i nport oracle.kv.tabl e. Tabl eAPI ;

inport oracle.kv.table. Tablelterator;

i nport oracle.kv.table. Tabl elteratorQptions;

/1 KVStore handle creation is omtted for brevity

/1 Construct the Table Handl e
Tabl eAPI tabl eH = store. get Tabl eAPI ();
Tabl e table = tabl eH. get Tabl e("nmyTabl e");

/1 Use multi-threading for this store iteration and linit the nunber
/1 of threads (degree of parallelism to 9.
final int maxConcurrent Requests = 9;
final int batchResultsSize = 0;
final TablelteratorOptions tio =
new Tabl el t erat or Opti ons(Directi on. UNORDERED,
Consi st ency. NONE_REQUI RED,
0, null,
maxConcur r ent Request s,
bat chResul t sSi ze) ;

/1 Create retrieval keys

PrimaryKey nyKey = table. createPrimryKey();
myKey. put ("itenType", "Hats");

myKey. put ("itenCategory", "baseball");

Pri maryKey otherKey = table.createPrimryKey();
ot her Key. put ("iteniType", "Pants");

ot her Key. put ("itentCat egory", "baseball");

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 22 of 23

ORACLE Chapter 7
Bulk Get Operations

Li st <Pri maryKey> searchKeys = new ArrayLi st <Pri maryKey>();

/1 Add the retrieval keys to the list.
sear chKeys. add(nyKey) ;
sear chKeys. add(ot her Key) ;

final Tablelterator<Row> iterator = tableH. tablelterator(
searchKeys.iterator(), null, tio);

/1 Now retrieve the records.

try {
while (iterator.hasNext()) {
Row row = (Row) iterator.next();
/1 Do sone work with the Row here
!

} finally {
if (iterator !'=null) {

iterator.close();

}

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 23 of 23

Using Data Types

Many of the types that Oracle NoSQL Database offers are easy to use. Examples of their
usage has been scattered throughout this manual. However, some types are a little more
complicated to use because they use container methods. This chapter describes their usage.

The types described in this chapter are: Arrays, Maps, Records, Enums, and Byte Arrays. This
chapter shows how to read and write values of each of these types.

Using Arrays

Arrays are a sequence of values all of the same type.
When you declare a table field as an array, you use the ARRAY() statement.

To define a simple two-field table where the primary key is a UID and the second field contains
array of strings, you use the following DDL statement:

CREATE TABLE nyTabl e (
uid | NTEGER,
nmyArray ARRAY(STRI NG,
PRI MARY KEY(ui d)

DEFAULT and NOT NULL constraints are not supported for arrays.

To write the array, use Row. put Array(), which returns an ArrayVal ue class instance. You then
use ArrayVal ue. put () to write elements to the array:

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();
Tabl e nmyTabl e = tabl eH. get Tabl e("nyTabl e");

Row row = nyTabl e. creat eRow() ;
row. put ("uid", 12345);

ArrayValue av = row. put Array("myArray");
av. add("One");

av. add(" Two");

av.add("Three");

tabl eH put(row, null, null);

Note that ArrayVal ue has methods that allow you to add multiple values to the array by
appending an array of values to the array. This assumes the array of values matches the
array's schema. For example, the previous example could be done in the following way:

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 1 of 9

ORACLE

Chapter 8
Using Binary

Tabl e nmyTabl e = tabl eH. get Tabl e("nyTabl e");

Row row = nyTabl e. creat eRow() ;
row. put ("uid", 12345);

ArrayVal ue av = row. put Array("nyArray");
String nyStrings[] = {"One", "Two", "Three"};
av.add(nyStrings);

tabl eH put (row, null, null);

To read the array, use Row. get (). asArray(). This returns an ArrayVal ue class instance. You
can then use ArrayVal ue. get () to retrieve an element of the array from a specified index, or
you can use ArrayVal ue. tolLi st () to return the array as a Java Li st . In either case, the
retrieved values are returned as a Fi el dval ue, which allows you to retrieve the encapsulated
value using a cast method such as Fi el dval ue. asString().

For example, to iterate over the array created in the previous example:

Tabl eAPl tabl eH = kvstore. get Tabl eAPI () ;
Tabl e myTabl e = tabl eH. get Tabl e("nyTabl e");

/* Create a primary key for user id 12345 and get a row */
PrimaryKey key = nyTabl e. createPrimaryKey();

key. put ("uid", 12345);

Row row = tabl eH. get (key, null);

/* Iterate over the array, displaying each elenent as a string */

ArrayVal ue av = row. get ("nyArray").asArray();

for (Fieldvalue fv: av.tolList()) {
Systemout.printlin(fv.asString().get()); }

Using Binary

You can declare a field as binary using the Bl NARY statement. You then read and write the field
value using a Java byte array.

If you want to store a large binary object, then you should use the LOB APIs rather than a
binary field.

Note that fixed binary should be used over the binary datatype any time you know that all the
field values will be of the same size. Fixed binary is a more compact storage format because it
does not need to store the size of the array. See Using Fixed Binary for information on the fixed
binary datatype.

To define a simple two-field table where the primary key is a UID and the second field contains
a binary field, you use the following statement:

CREATE TABLE nyTabl e (
ui d | NTEGER,
nyByt eArray Bl NARY,
PRI MARY KEY(ui d)

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 2 of 9

ORACLE

Chapter 8
Using Enums

DEFAULT and NOT NULL constraints are not supported for binary values.

To write the byte array, use Row. put () .

Tabl eAPI tabl eH = kvstore. get Tabl eAPI ();
Tabl e nmyTabl e = tabl eH get Tabl e("nyTabl e");

Row row = nyTabl e. creat eRow() ;
row. put ("uid", 12345);

String aString = "The quick brown fox.";

try {

row. put ("nyByteArray", aString.getBytes("UTF-8"));
} catch (UnsupportedEncodi ngException uee) {

uee. print StackTrace();

}

tabl eH put (row, null, null);

To read the binary field, use Row. get (). asBi nary() . This returns a Bi nar yVal ue class
instance. You can then use Bi naryVal ue. get () to retrieve the stored byte array.

For example:

Tabl eAPI tabl eH = kvstore. get Tabl eAPI ();
Tabl e nyTabl e = tabl eH get Tabl e("nyTabl e");

/[* Create a primary key for user id 12345 and get a row */
Pri maryKey key = nyTabl e. createPri maryKey();

key. put ("uid", 12345);

Row row = tabl eH get (key, null);

byte[] b = row get("nyByteArray").asBinary().get();
String aString = new String(b);

Systemout.printIn("aString: " + aString);

Using Enums

Enumerated types are declared using the ENUM) statement. You must declare the acceptable
enumeration values when you use this statement.

To define a simple two-field table where the primary key is a UID and the second field contains
an enum, you use the following DDL statement:

CREATE TABLE nyTabl e (
ui d | NTEGER,
myEnum ENUM (Appl e, Pear s, Oranges),
PRI MARY KEY (ui d)

DEFAULT and NOT NULL constraints are supported for enumerated fields. See DEFAULT for
more information.

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 3 of 9

ORACLE

Chapter 8
Using Fixed Binary

To write the enum, use Row. put Enun{() . If the enumeration value that you use with this method
does not match a value defined on the - enum val ues parameter during table definition, an
Il egal Argument Excepti on is thrown.

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();
Tabl e nmyTabl e = tabl eH. get Tabl e("nyTabl e");

Row row = nyTabl e. creat eRow() ;
row. put ("uid", 12345);

row. put Enun(" myEnunt, "Pears");

tabl eH put (row, null, null);

To read the enum, use Row. get (). asEnun() . This returns a EnunVal ue class instance. You can
then use EnunVal ue. get () to retrieve the stored enum value's name as a string. Alternatively,
you can use EnunVal ue. get | ndex() to retrieve the stored value's index position.

For example:

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();
Tabl e nmyTabl e = tabl eH. get Tabl e("nyTabl e");

/* Create a primary key for user id 12345 and get a row */
Pri maryKey key = nyTabl e. creat ePri maryKey();

key. put ("uid", 12345);

Row row = tabl eH. get (key, null);

EnunVval ue ev = row. get ("test Enunt'). asEnum();

Systemout.printIn("enumas string: " +
ev.get()); // returns "Pears"

Systemout.println("enumindex: " +
ev.getindex()); // returns '1'

Using Fixed Binary

You can declare a fixed binary field using the Bl NARY() statement. When you do this, you must
also specify the field's size in bytes. You then read and write the field value using Java byte
arrays. However, if the byte array does not equal the specified size, then

I'l I egal Argunent Excepti on is thrown when you attempt to write the field. Write the field value
using a Java byte array.

If you want to store a large binary object, then you should use the LOB APIs rather than a
binary field.

Fixed binary should be used over the binary datatype any time you know that all the field
values will be of the same size. Fixed binary is a more compact storage format because it does
not need to store the size of the array. See Using Binary for information on the binary datatype.

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 4 of 9

ORACLE

Chapter 8
Using JSON

To define a simple two-field table where the primary key is a UID and the second field contains
a fixed binary field, you use the following DDL statement:

CREATE TABLE nyTabl e (
ui d | NTEGER
myByt eArray Bl NARY(20),
PRI MARY KEY (uid)

DEFAULT and NOT NULL constraints are not supported for binary values.

To write the byte array, use Row. put Fi xed() . Again, if the byte array does not match the size
defined for this field, then I 1 | egal Ar gunent Excepti on is thrown.

Tabl eAPI tabl eH = kvstore. get Tabl eAPI ();
Tabl e nmyTabl e = tabl eH get Tabl e("nyTabl e");

Row row = nyTabl e. creat eRow() ;
row. put ("uid", 12345);

String aString = "The quick brown fox.";

try {

row. put Fi xed(" nyByteArray", aString.getBytes("UTF-8"));
} catch (UnsupportedEncodi ngException uee) {

uee. print StackTrace();

}

tabl eH put (row, null, null);

To read the fixed binary field, use Row. get () . asFi xedBi nary() . This returns a
Fi xedBi nar yVal ue class instance. You can then use Fi xedBi naryVal ue. get () to retrieve the
stored byte array.

For example:

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();
Tabl e myTabl e = tabl eH. get Tabl e("nyTabl e");

/* Create a primary key for user id 12345 and get a row */
Pri maryKey key = nyTabl e. creat ePri maryKey();

key. put ("uid", 12345);

Row row = tabl eH. get (key, null);

byte[] b = row get("nyByteArray"). asFi xedBi nary().get();
String asString = new String(b);

Systemout.printin("aString: " + aString);

Using JSON

The JSON datatype cannot be used as part of a primary or shard key.

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 5 of 9

ORACLE

CREATE TABLE nyJsonTabl e (

ui d | NTEGER
nmyJSON JSON,
PRI MARY KEY (ui d)

final String jsonNunber = "2";

final String jsonString = "\"a json string\"";

final String jsonCbject_null = "{}";

final String jsonCbject = "{\"a\": 1.006, \"b\": null," +

“\"bool\" : true, \"mp\": {\"m\": 5}, " +
“\"ar\" : [1,2.7,3]}";

final String jsonNull = "null";

To store a JSON value in the table that we defined, above:

Tabl eAPI tabl eH = kvstore. get Tabl eAPI ();

Tabl e nyJsonTabl e = tabl eH. get Tabl e("nyJsonTabl e");
Row row = myTabl e. creat eRow() ;

row. put ("uid", 12345);

String jsonArray="[1,5,11.1,88]";

row. put Json("myJSON', jsonArray);

tabl eH put (row, null, null);

To retrieve it:

Tabl eAPI tabl eH = kvstore. get Tabl eAPI ();

Tabl e nyTabl e = tabl eH. get Tabl e("myJsonTabl e");
Pri maryKey pkey = nyTabl e. createPrinmaryKey();
pkey. put ("uid", 12345);

Row row = tabl eH. get (pkey, null);
int uid = row.get("uid").aslnteger().get();
String jsonStr = row. get("nyJSON').toString();

Systemout.printin("uid: " + uid + " JSON. " + jsonStr);

Tabl eAPI tabl eH = kvstore. get Tabl eAPI ();

Tabl e nyTabl e = tabl eH. get Tabl e("nyJsonTabl e");

Java Direct Driver Developer's Guide

E85378-35

Copyright © 2011, 2025, Oracle and/or its affiliates.

Chapter 8
Using JSON

To define a simple two-field table where the primary key is a UID and the second field contains
a JSON data field, you use the following DDL statement:

The data that you write for this datatype can be any valid JSON stored as a string. For
example, all of the following are valid:

Be aware that a version of Row. put Json() exists that allows you to use Java Readers to
stream JSON data from 1/O locations (such as files on disk). For example, to stream a small
file from disk use j ava. i 0. Fi | eReader :

October 12, 2025
Page 6 of 9

ORACLE

Chapter 8
Using Maps

Row row = myTabl e. creat eRow() ;
row. put ("uid", 666);

try {
Fil eReader fr = new Fil eReader("myJsonFile.txt");

row. put Json("nyJson", fr);
tabl eH put (row, null, null);
} catch (FileNotFoundException fnfe) {
Systemout.printIn("File not found: " + fnfe);
}

For a more complete example of using JSON data fields, see JSON By Example.

Using Maps

All map entries must be of the same type. Regardless of the type of the map's values, its keys
are always strings.

The string "[]" is reserved and must not be used for key names.

When you declare a table field as a map, you use the MAP() statement. You must also declare
the map element's data types.

To define a simple two-field table where the primary key is a UID and the second field contains
a map of integers, you use the following DDL statement:

CREATE TABLE nyTabl e (
ui d | NTEGER
nyMap MAP(| NTEGER),
PRI MARY KEY (ui d)

DEFAULT and NOT NULL constraints are not supported for map fields.

To write the map, use Row. put Map(), which returns a MapVal ue class instance. You then use
MapVal ue. put () to write elements to the map:

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();
Tabl e nmyTabl e = tabl eH. get Tabl e("nyTabl e");

Row row = nyTabl e. creat eRow() ;
row. put ("uid", 12345);

MapVal ue nv = row. put Map("nyMap");
m/. put ("fieldl", 1);
mv. put ("field2", 2);
mv. put ("field3", 3);

tabl eH put (row, null, null);

To read the map, use Row. get (). asMap() . This returns a MapVal ue class instance. You can
then use MapVal ue. get () to retrieve an map value. The retrieved value is returned as a

Fi el dval ue, which allows you to retrieve the encapsulated value using a cast method such as
Fi el dval ue. asl nteger().

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 7 of 9

ORACLE

Chapter 8
Using Embedded Records

For example, to retrieve elements from the map created in the previous example:

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();
Tabl e myTabl e = tabl eH. get Tabl e("nyTabl e");

/* Create a primary key for user id 12345 and get a row */
PrimaryKey key = nyTabl e. creat ePri maryKey();

key. put ("uid", 12345);

Row row = tabl eH. get (key, null);

MapVal ue nv = row. get ("test Map").asMap();
Fieldvalue fv = nv.get("field3");
Systemout.printin("fv: " + fv.aslnteger().get());

Using Embedded Records

A record entry can contain fields of differing types. However, embedded records should be
used only when the data is relatively static. In general, child tables provide a better solution
over embedded records, especially if the child dataset is large or is likely to change in size.

Use the RECORD() statement to declare a table field as a record.

To define a simple two-field table where the primary key is a UID and the second field contains
a record, you use the following DDL statement:

CREATE TABLE nyTabl e (
ui d | NTEGER,
myRecord RECORD(firstField STRING secondField | NTEGER),
PRI MARY KEY (ui d)

DEFAULT and NOT NULL constraints are not supported for embedded record fields. However,
these constraints can be applied to the individual fields in an embedded record. See Field
Constraints for more information.

To write the record, use Row. put Recor d(), which returns a Recor dVal ue class instance. You
then use Recor dVal ue. put () to write fields to the record:

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();
Tabl e myTabl e = tabl eH. get Tabl e("nyTabl e");

Row row = nyTabl e. creat eRow() ;
row. put ("uid", 12345);

RecordVal ue rv = row. put Record("myRecord");
rv.put("firstField", "An enbedded record STRING field");
rv.put ("secondFiel d', 3388);

tabl eH put(row, null, null);

To read the record, use Row. get (). asRecord() . This returns a Recor dVal ue class instance.
You can then use Recor dVal ue. get () to retrieve a field from the record. The retrieved value is

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 8 of 9

ORACLE

Chapter 8
Using Embedded Records

returned as a Fi el dVal ue, which allows you to retrieve the encapsulated value using a cast
method such as Fi el dval ue. asl nteger ().

For example, to retrieve field values from the embedded record created in the previous
example:

Tabl eAPI tabl eH = kvstore. get Tabl eAPI ();
Tabl e nmyTabl e = tabl eH. get Tabl e("nyTabl e");

/[* Create a primary key for user id 12345 and get a row */
Pri maryKey key = nyTabl e. creat ePri maryKey();

key. put ("uid", 12345);

Row row = tabl eH get (key, null);

RecordVal ue rv = row. get ("nyRecord").asRecord();
Fieldvalue fv = rv.get("firstField");
Systemout.printin("firstField: " + fv.asString().get());
fv = rv.get("secondField");
System out . println("secondFi el d:

+ fv.aslnteger().get());

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 9 of 9

Indexing Non-Scalar Data Types

We describe how to index scalar data types in Creating Indexes, and we show how to read
using indexes in Reading Indexes. However, non-scalar data types (Arrays, Maps and
Records) require more explanation, which we give here.

Index creation is accomplished using the CREATE | NDEX statement. See CREATE INDEX for
details on this statement.

Indexing Arrays

You can create an index on an array field (or a field of an array nested inside another array).

Be aware that indexing an array potentially results in multiple index entries for each row, which
can lead to very large indexes.

To create the index, first create the table:

CREATE TABLE nyArrayTable (
ui d | NTEGER,
test Array ARRAY(STRI NG,
PRI MARY KEY(ui d)

Once the table has been added to the store, create the index. Be sure to use [] with the field
name to indicate that it is an array:

CREATE | NDEX arrayFi el dl ndex on nyArrayTable (testArray[])

In the case of arrays, the field can be indexed only if the array contains values that are of one
of the other indexable types.

An index on an array is a multikey index. An index is called a multikey index if for each row of
data in the table, there are multiple entries created in the index. In a multikey index there is at
least one index path that uses [] steps. Any such index path will be called a multikey index
path.

In a multikey index, for each table row, index entries are created on all the elements in arrays
that are being indexed. If the evaluation returns an empty result, the special value EMPTY is
used as the index entry. Any duplicate index entries are then eliminated.

To retrieve data using an index of arrays, you first retrieve the index using its name, and create
an instance of | ndexKey that you will use to perform the index lookup:

I ndex arraylndex = nyTabl e. get|ndex("arrayFiel dl ndex");
I ndexKey indexKey = arrayl ndex. creat el ndexKey();

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 1 of 12

ORACLE

Chapter 9
Indexing JSON Fields

Next you assign the array field name and its value to the | ndexKey that you created using the
| ndexKey. put () method:

i ndexKey. put ("testArray[]", "One");

When you perform the index lookup, the only records that will be returned will be those which
have an array with at least one item matching the value set for the | ndexKey object. For
example, if you have individual records that contain arrays like this:

Record 1: ["One," "Two", "Three"]
Record 2: ["Two", "Three", "One"]
Record 3: ["One", "Three", "One"]
Record 4: ["Two", "Three", "Four"]

and you then perform an array lookup on the array value "One", then Records 1 - 3 will be
returned, but not 4.

After that, you retrieve the matching table rows, and iterate over them in the same way you
would any other index type. For example:

Tabl el terator<Row> iter = tableH tablelterator(indexKey, null, null);
Systemout.printin("Results for Array value 'One' : ");
try {
while (iter.hasNext()) {
Row rowRet = iter.next();
int uid = rowRet.get("uid").aslnteger().get();
Systemout.printin("uid: " + uid);
ArrayVal ue avRet = rowRet.get("testArray").asArray();
for (Fieldvalue fv: avRet.toList()) {
Systemout.printin(fv.asString().get());

}
}
} finally {
if (iter '=null) {
iter.close();
}

Indexing JSON Fields

You can create an index on a JSON field. To create the index, specify it as you would any other
index, except that you must define the data type of the JSON field you are indexing.

Note that there are some restrictions on the data type of the JSON field that you can index.
See JSON Indexes for more information.

To create the index, first create the table:

CREATE Tabl e JSONPersons (
i d | NTECER,
person JSON,
PRI MARY KEY (i d)

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 2 of 12

ORACLE Chapter 9
Indexing JSON Fields

To create the index, you must specify the JSON field to be indexed using dot notation.
Suppose your table rows look like this:

"id": 1,
"person" : {
“firstname": " David",
"l astnane": "Morrison",
"age": 25,
“inconme": 100000,
"l astLogin" : "2016-10-29T18: 43: 59. 8319",
"address":{"street":"150 Route 2",
"city":"Antioch",
"state":"TN',
"zipcode" : 37013,
"phones": [{"type":"hone", "areacode": 423,
"nunber": 8634379}]
¥
“connections":[2, 3],
"expenses":{"food": 1000, "gas": 180}

Then once the table has been added to the store, you can create an index for one of the JSON
fields like this:

CREATE | NDEX i dx_j son_i ncone on JSONPersons (person.income AS integer)

To retrieve data using a JSON index, you first retrieve the index using its name, and create an
instance of | ndexKey that you will use to perform the index lookup. The following is used to
retrieve all table rows where the per son. i ncone field is 100000:

I ndex jsonlndex = nyTabl e. get|ndex("idx_json_incone");
I ndexKey indexKey = jsonlndex. createl ndexKey();
i ndexKey. put ("person.inconme", 100000);

When you perform the index lookup, the only rows returned will be those which have a JSON
field with the specified field value. You then retrieve the matching table rows, and iterate over
them in the same way you would any other index type. For example:

Tablelterator<Row> iter = tableH tablelterator(indexKey, null, null);

Systemout.println("Results for person.incone, value 100000: ");

try {

while (iter.hasNext()) {

Row rowRet = iter.next();
int id=rowRet.get("id").aslnteger().get();
Systemout.printin("id: " +id);
MapVal ue mapRet = rowRet. get (" person").asMap();
Systemout.printIn("person: " + mapRet.toString());

}
} finally {
if (iter '=null) {
iter.close();
}
}

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 3 of 12

ORACLE

Chapter 9
Indexing Maps

For a more complete example of using JSON data fields, including a JSON index, see JSON
By Example.

Indexing Maps

You can create an index on a map field (or a field of a map nested inside another array or
map). An index created on a map field inside another array or map is a multi key index.

An index is called a multikey index if for each row of data in the table, there are multiple entries
created in the index. In a multikey index, there is at least one index path that

uses . keys(), .values().Any such index path will be called a multikey index path. In a
multikey index, for each table row, index entries are created on entries in maps that are being
indexed. If the evaluation returns an empty result, the special value EMPTY is used as the
index entry. Any duplicate index entries are then eliminated.

To create the index, define the map as normal. Once the map is defined for the table, there are
several different ways to index it:

* Based on the map's keys without regard to the actual key values.
« Based on the map's values, without regard to the actual key used.

* By a specific map key. To do this, you specify the name of the map field and the name of a
map key using dot notation. If the map key is ever created using your client code, then it
will be indexed.

« Based on the map's key and value without identifying a specific value (such as is required
by the previous option in this list).

Indexing by Map Keys

You can create indexes based on a map's keys without regard to the corresponding values.

Be aware that creating an index like this can potentially result in multiple index entries for each
row, which can lead to very large indexes.

First create the table:
CREATE TABLE nyMapTabl e (
ui d | NTEGER

test Map MAP(I NTEGER),
PRI MARY KEY(ui d)

Once the table has been added to the store, create the index using the . keys() path step:

CREATE | NDEX mapKeyl ndex on nmyMapTabl e (testMap. keys())

Data is retrieved if the table row contains the identified map with the identified key. So, for
example, if you create a series of table rows like this:

Tabl eAPI tabl eH = kvstore. get Tabl eAPI ();
Tabl e nmyTabl e = tabl eH. get Tabl e("myMapTabl e");

Row row = nyTabl e. creat eRow() ;

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 4 of 12

ORACLE

Chapter 9
Indexing Maps

row. put ("uid", 12345);

MapVal ue nv = row. put Map("test Map");
m/.put ("fieldl", 1);

mv. put ("field2", 2);

mv.put ("field3", 3);

tabl eH put (row, null, null);

row = myTabl e. creat eRow() ;
row. put ("uid", 12);

m/ = row. put Map("test Map");
m/.put ("fieldl", 1);

mv. put ("field2", 2);
tabl eH put (row, null, null);

row = myTabl e. creat eRow() ;
row. put ("uid", 666);

m/ = row. put Map("test Map");
m/.put ("fieldl", 1);

mv.put ("field3", 4);

tabl eH put (row, null, null);

then you can retrieve any table rows that contain the map with any key currently in use by the
map. For example, "field3".

To retrieve data using a map index, you first retrieve the index using its name, and create an
instance of | ndexKey that you will use to perform the index lookup:

I ndex mapl ndex = myTabl e. get | ndex(" mapKeyl ndex");
I ndexKey indexKey = mapl ndex. cr eat el ndexKey() ;

Next, you populate the | ndexKey instance with the field name that you want to retrieve. Use the
keys() path step to indicate that you want to retrieve using the field name without regard for
the field value. When you perform the index lookup, the only records that will be returned will
be those which have a map with the specified key name:

i ndexKey. put ("t est Map. keys()", "field3");

After that, you retrieve the matching table rows, and iterate over them in the same way you
would any other index type. For example:

Tabl el terator<Row> iter = tableH tablelterator(indexKey, null, null);
Systemout.printin("Results for testMap field3: ");
try {
while (iter.hasNext()) {
Row rowRet = iter.next();
int uid = rowRet.get("uid").aslnteger().get();
Systemout.printin("uid: " + uid);
MapVal ue mapRet = rowRet. get ("testMap").asMap();
Systemout.printin("testMap: " + mapRet.toString());
}
} finally {
if (iter '=null) {
iter.close();

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 5 of 12

ORACLE Chapter 9
Indexing Maps

Indexing by Map Values

You can create indexes based on the values contained in a map without regard to the keys in
use.

Be aware that creating an index like this can potentially result in multiple index entries for each
row, which can lead to very large indexes.

First create the table:

CREATE TABLE nyMapTabl e (
ui d | NTEGER
test Map MAP(| NTEGER),
PRI MARY KEY(ui d)

Once the table has been added to the store, create the index using the . val ues() path step:

CREATE | NDEX mapEl enent | ndex on nmyMapTabl e (testMp. val ues())

Data is retrieved if the table row contains the identified map with the identified value. So, for
example, if you create a series of table rows like this:

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();
Tabl e myTabl e = tabl eH. get Tabl e("nyMapTabl e");

Row row = nyTabl e. creat eRow() ;

row. put ("uid", 12345);

MapVal ue nv = row. put Map("test Map");
m/. put ("fieldl", 1);

mv. put ("field2", 2);

m/. put ("field3", 3);

tabl eH put(row, null, null);

row = nyTabl e. creat eRow() ;
row. put ("uid", 12);

m/ = row. put Map("test Map");
m/. put ("fieldl", 1);

mv. put ("field2", 2);
tabl eH put (row, null, null);

row = nyTabl e. creat eRow() ;
row. put ("uid", 666);

m/ = row. put Map("test Map");
m/. put ("fieldl", 1);

m/. put ("field3", 4);

tabl eH put(row, null, null);

then you can retrieve any table rows that contain the map with any value currently in use by
the map. For example, a value of "2".

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 6 of 12

ORACLE

Chapter 9
Indexing Maps

To retrieve data using a map index, you first retrieve the index using its name, and create an
instance of | ndexKey that you will use to perform the index lookup:

I ndex nmapl ndex = myTabl e. get | ndex(" mapEl ement | ndex");
I ndexKey indexKey = mapl ndex. creat el ndexKey() ;

Next, you populate the | ndexKey instance with the field value (2) that you want to retrieve. Use
the val ues() path step with the field name to indicate that you want to retrieve entries based
on the value only. When you perform the index lookup, the only records that will be returned
will be those which have a map with a value of 2.

i ndexKey. put ("t est Map. val ues()", 2);

After that, you retrieve the matching table rows, and iterate over them in the same way you
would any other index type. For example:

Tabl elterator<Row> iter = tableH. tablelterator(indexKey, null, null);

Systemout.printIn("Results for testMap value 2: ");

try {

while (iter.hasNext()) {

Row rowRet = iter.next();
int uid = rowRet.get("uid").aslnteger().get();
Systemout.printin("uid: " + uid);
MapVal ue mapRet = rowRet. get ("testMap").asMap();
Systemout.printin("testMap: " + mapRet.toString());

}
} finally {
if (iter '=null) {
iter.close();
}

Indexing by a Specific Map Key Name

You can create an index based on a specified map key name. Any map entries containing the
specified key nhame are indexed. This can create a small and very efficient index because the
index does not contain every key/value pair contained by the map fields. Instead, it just
contains those map entries using the identified key, which results in at most a single index
entry per row.

To create the index, first create the table:

CREATE TABLE nyMapTabl e (
ui d | NTEGER
test Map MAP(| NTEGER),
PRI MARY KEY(ui d)

Once the table has been added to the store, create the index by specifying the key name you
want indexed using dot notation. In this example, we will index the key name of "field3":

CREATE | NDEX mapFi el d31 ndex on nyMapTabl e (testMap.fiel d3)

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 7 of 12

ORACLE

Chapter 9
Indexing Maps

Data is retrieved if the table row contains the identified map with the indexed key and a
specified value. So, for example, if you create a series of table rows like this:

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();
Tabl e myTabl e = tabl eH. get Tabl e("myMapTabl e");

Row row = nyTabl e. creat eRow() ;

row. put ("uid", 12345);

MapVal ue nv = row. put Map("test Map");
m/. put ("fieldl", 1);

m/. put ("field2", 2);

m/. put ("field3", 3);

tabl eH put(row, null, null);

row = nyTabl e. creat eRow();
row. put ("uid", 12);

m/ = row. put Map("test Map");
m/. put ("fieldl", 1);

m/. put ("field2", 2);
tabl eH put(row, null, null);

row = nyTabl e. creat eRow();
row. put ("uid", 666);

m/ = row. put Map("test Map");
m/. put ("fieldl", 1);

mv. put ("field3", 4);

tabl eH put(row, null, null);

then you can retrieve any table rows that contain the map with key "field3" (because that is
what you indexed) when "field3" maps to a specified value — such as "3". If you try to do an
index lookup on, for example, "field2" then that will fail because you did not index "field2".

To retrieve data using a map index, you first retrieve the index using its name and create an
instance of | ndexKey that you will use to perform the index lookup:

I ndex mapl ndex = nyTabl e. getl ndex(" mapFi el d3I ndex");
I ndexKey i ndexKey = mapl ndex. creat el ndexKey();

Then you populate the map field name (using dot notation) and the desired value using
I ndexKey. put () . When you perform the index lookup, the only records that will be returned will
be those which have a map with the matching key name and corresponding value.

i ndexKey. put ("t est Map. field3", 3);

After that, you retrieve the matching table rows, and iterate over them in the same way you
would any other index type. For example:

Tabl elterator<Row> iter = tableH. tablelterator(indexKey, null, null);
Systemout.printIn("Results for testMap field3, value 3: ");
try {

while (iter.hasNext()) {
Row rowRet = iter.next();
int uid = rowRet.get("uid").aslnteger().get();

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 8 of 12

ORACLE

Chapter 9
Indexing Maps

Systemout.printin("uid: " + uid);
MapVal ue mapRet = rowRet.get("testMap").asMap();
Systemout.printin("testMap: " + mapRet.toString());

}
} finally {
if (iter !'=null) {
iter.close();
}

Indexing by Map Key and Value

In the previous section, we showed how to create a map index by specifying a pre-determined
key name. This allows you to perform map index look ups by providing both key and value, but
the index lookup will only be successful if the specified key is the key that you indexed.

You can do the same thing in a generic way by indexing every key/value pair in your map. The
result is a more flexible index, but also an index that is potentially much larger than the
previously described method. It is likely to result in multiple index entries per row.

To create an index based on every key/value pair used by the map field, first create the table:

CREATE TABLE nyMapTabl e (
ui d | NTEGER
test Map MAP(| NTEGER),
PRI MARY KEY(ui d)

Once the table has been added to the store, create the index by using the . keys()
and . val ues() path steps:

CREATE | NDEX mapKeyVal uel ndex on nyMapTabl e
(test Map. keys(), test Map. val ues())

Data is retrieved if the table row contains the identified map with the identified key and the
identified value. So, for example, if you create a series of table rows like this:

Tabl eAPI tabl eH = kvstore. get Tabl eAPI ();
Tabl e myTabl e = tabl eH. get Tabl e("myMapTabl e");

Row row = myTabl e. creat eRow() ;

row. put ("uid", 12345);

MapVal ue nv = row. put Map("test Map");
m/.put ("“fieldl", 1);

mv. put ("field2", 2);

mv. put ("field3", 3);

tabl eH put (row, null, null);

row = nyTabl e. creat eRow() ;
row. put ("uid", 12);

m/ = row. put Map("test Map");
mv. put ("fieldl", 1);

mv. put ("field2", 2);

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 9 of 12

ORACLE

Chapter 9
Indexing Maps

tabl eH put (row, null, null);

row = myTabl e. creat eRow() ;
row. put ("uid", 666);

m/ = row. put Map("test Map");
m/.put ("fieldl", 1);

mv. put ("field3", 4);

tabl eH put (row, null, null);

then you can retrieve any table rows that contain the map with specified key/value pairs — for
example, key "field3" and value "3".

To retrieve data using a map index, you first retrieve the index using its name and create an
instance of | ndexKey that you will use to perform the index lookup:

I ndex nmapl ndex = myTabl e. get | ndex(" mapKeyVal uel ndex") ;
I ndexKey indexKey = mapl ndex. creat el ndexKey() ;

Next, you populate the | ndexKey class instance with the field name and value you want to
retrieve. In this case, you must specify two sets of information, using two calls to
I ndexKey. put () :

* The name of the field. Here, use the keys() path step with the field name.
e The field value you want to retrieve. Here, use the val ues() path step the field name.

For example:

i ndexKey. put ("t est Map. keys()", "field3");
i ndexKey. put ("t est Map. val ues()", 3);:

When you perform the index lookup, the only records that will be returned will be those which
have a map with the matching key/value pair. Once you have performed the index lookup, you
retrieve the matching table rows, and iterate over them in the same way you would any other
index type. For example:

Tabl elterator<Row> iter = tableH tablelterator(indexKey, null, null);

Systemout.printIn("Results for testMap field3, value 3: ");

try {

while (iter.hasNext()) {

Row rowRet = iter.next();
int uid = rowRet.get("uid").aslnteger().get();
Systemout.printin("uid: " + uid);
MapVal ue mapRet = rowRet. get ("testMap"). asMap();
Systemout.printIn("testMap: " + mapRet.toString());

1
} finally {
if (iter '=null) {
iter.close();
1

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 10 of 12

ORACLE Chapter 9
Indexing Embedded Records

Indexing Embedded Records

You can create an index on an embedded record field so long as the record field contains
scalar data. To create the index, define the record as normal. To index the field, you specify the
name of the embedded record and the name of the field using dot notation.

To create the index, first create the table:

CREATE Tabl e myRecordTabl e (
uid | NTEGER
myRecord RECORD (firstField STRING secondField | NTEGER),
PRI MARY KEY (uid)

Once the table has been added to the store, create the index:

CREATE | NDEX recor dFi el dl ndex on nmyRecordTabl e (nyRecord. secondFi el d)

Data is retrieved if the table row contains the identified record field with the specified value. So,
for example, if you create a series of table rows like this:

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();
Tabl e nmyTabl e = tabl eH. get Tabl e("nyRecor dTabl e");

Row row = nyTabl e. creat eRow() ;

row. put ("uid", 12345);

RecordVval ue rv = row. put Record("myRecord");
rv.put("firstField", "String field for 12345");
rv. put ("secondFi el d*, 3388);

tabl eH put (row, null, null);

row = nyTabl e. creat eRow() ;

row. put ("uid", 345);

rv = row. put Record("nmyRecord");
rv.put("firstField, "String field for 345");
rv. put ("secondFi el d*, 3388);

tabl eH put (row, null, null);

row = nyTabl e. creat eRow() ;

row. put ("uid", 111);

rv = row. put Record("nmyRecord");
rv.put("firstField, "String field for 111");
rv. put ("secondFiel d", 12);

tabl eH put(row, null, null);

then you can retrieve any table rows that contain the embedded record where "secondField" is
set to a specified value. (The embedded record index that we specified, above, indexed
myRecord.secondField.)

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 11 of 12

ORACLE

Chapter 9
Indexing Embedded Records

To retrieve data using a record index, you first retrieve the index using its name, and create an
instance of | ndexKey that you will use to perform the index lookup:

I ndex recordlndex = nyTabl e. getlndex("recordFiel dl ndex");
I ndexKey indexKey = recordl ndex. creat el ndexKey();
i ndexKey. put (“nyRecord. secondFi el d", 3388);

When you perform the index lookup, the only records returned will be those which have an
embedded record with the specified field and field value. You then retrieve the matching table
rows, and iterate over them in the same way you would any other index type. For example:

Tabl elterator<Row> iter = tableH tablelterator(indexKey, null, null);
Systemout.printIn("Results for testRecord.secondField, value 3388: ");
try {
while (iter.hasNext()) {
Row rowRet = iter.next();
int uid = rowRet.get("uid").aslnteger().get();
Systemout.printin("uid: " + uid);
Recor dval ue recordRet = rowRet. get ("myRecord").asRecord();
Systemout. printlIn("nmyRecord: " + recordRet.toString());

1
} finally {
if (iter '=null) {
iter.close();
}

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 12 of 12

Using Row Versions

When a row is initially inserted in the store, and each time it is updated, it is assigned a unique
version token. The version is always returned by the method that wrote to the store (for
example, Tabl eAPI . put ()). The version information is also returned by methods that retrieve

rows from the store.

There are two reasons why versions might be important.

1. When an update or delete is to be performed, it may be important to perform the operation
only if the row's value has not changed. This is particularly interesting in an application
where there can be multiple threads or processes simultaneously operating on the row. In
this case, read the row, examining its version when you do so. You can then perform a put
operation, but only allow the put to proceed if the version has not changed (this is often
referred to as a Compare and Set (CAS) or Read, Modify, Write (RMW) operation). You
use Tabl eAPI . put | f Ver si on() or Tabl eAPI . del et el f Ver si on() to guarantee this.

2. When a client reads data that was previously written, it may be important to ensure that the
Oracle NoSQL Database node servicing the read operation has been updated with the
information previously written. This can be accomplished by passing the version of the
previously written data as a consistency parameter to the read operation. For more

information on using consistency, see Consistency Guarantees.

Versions are managed using the Ver si on class. In some situations, it is returned as part of

another encapsulating class, such as the Row class.

The following code fragment retrieves a row, and then writes that row back to the store only if
the version has not changed:

package kvstore. basi cExanpl e;

i nport
i nport
i nport
i nport
i nport
i nport
i nport
i nport

|/l Retrieve the row. Note that we do not show the creation

oracl e.
oracl e.
oracl e.
oracl e.
oracl e.
oracl e.
oracl e.
oracl e.

kv.
kv.
kv.
kv.
kv.
kv.
kv.
kv.

Ver si on

KVSt or e

t abl e. | ndex;

t abl e. I ndexKey;

t abl e. Row;

t abl e. Tabl e;

t abl e. Tabl eAPI

tabl e. Tabl el terat or

|l the kvstore handl e here.

Tabl eAPI tabl eH = kvstore. get Tabl eAPI ();
Tabl e nmyTabl e = tabl eH get Tabl e("nyTabl e");

/] Construct the IndexKey. The name we gave our index when

/]l we created it was 'DoB'.

Java Direct Driver Developer's Guide

E85378-35

Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 1 of 2

ORACLE

I ndex dobl dx = myTabl e. get | ndex(" DoB");
I ndexKey dobl dxKey = dobl dx. creat el ndexKey();

Tabl el terator<Row> iter =

tabl eH. tabl el terat or (dobl dxKey, null, null);

while (iter.hasNext()) {

Row aRow = iter.next();

Il Retrieve the row s version information
Version rowersion = aRow. get Version();

LHEELLEELET i
/! Do work on the row here
LHEELLEELET i

[/ Put if the version is correct. Notice that here we exam ne
[l the return code. If it is null, that means that the put was

/'l unsuccessful, probably because the row was changed el sewhere.

Ver si on newVersion =
tabl eH. put | f Versi on(row, rowersion, null, null);
if (newersion == null) {
/1 Unsuccessful. Someone el se probably nodified the record.

}

Java Direct Driver Developer's Guide

E85378-35

Copyright © 2011, 2025, Oracle and/or its affiliates.

Chapter 10

October 12, 2025
Page 2 of 2

Consistency Guarantees

A Oracle NoSQL Database store is built from some number of computers (generically referred
to as nodes) that are working together using a network. All data in your store is first written to a
master node. The master node then copies that data to other nodes in the store. Nodes which
are not master nodes are referred to as replicas.

Because of the nature of distributed systems, there is a possibility that, at any given moment, a
write operation that was performed on the master node will not yet have been performed on
some other node in the store.

Consistency, then, is the policy describing whether it is possible for a row on Node A to be
different from the same row on Node B.

When there is a high likelihood that a row stored on one node is identical to the same row
stored on another node, we say that we have a high consistency guarantee. Likewise, a low
consistency guarantee means that there is a good possibility that a row on one node differs in
some way from the same row stored on another node.

You can control how high you want your consistency guarantee to be. Note that the trade-off in
setting a high consistency guarantee is that your store's read performance might not be as high
as if you use a low consistency guarantee.

There are several different forms of consistency guarantees that you can use. They are
described in the following sections.

Note that by default, Oracle NoSQL Database uses the lowest possible consistency possible.

Specifying Consistency Policies

To specify a consistency policy, you use one of the static instances of the Consi st ency class,
or one of its nested classes.

Once you have selected a consistency policy, you can put it to use in one of two ways. First,
you can use it to define a default consistency policy using the

KVSt or eConf i g. set Consi st ency() method. Specifying a consistency policy in this way means
that all store operations will use that policy, unless they are overridden on an operation by
operation basis.

The second way to use a consistency policy is to override the default policy using a
ReadOpt i on class instance you provide to the Tabl eAPI method that you are using to perform
the store read operation.

The following example shows how to set a default consistency policy for the store. We will
show the per-operation method of specifying consistency policies in the following sections.

package kvstore. basi cExanpl e;

i nport oracle. kv. Consi st ency;

i nport oracle.kv. KVStore;

i nport oracle. kv. KVSt oreConfi g;
i nport oracle. kv. KVSt or eFact ory;

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 1 of 6

ORACLE

Chapter 11
Using Simple Consistency

KVSt oreConfi g kconfig = new KVSt oreConfi g("exanpl eStore",

"nodel. exanpl e. org: 5088, node2. exanpl e. org: 4129");

kconfi g. set Consi st ency(Consi st ency. NONE_REQUI RED) ;

KVStore kvstore = KVStoreFactory. get Store(kconfig);

Using Simple Consistency

You can use static instances of the Consi st ency base class to specify certain rigid consistency
guarantees. There are two such instances that you can use:

1.

Consi st ency. ABSOLUTE

Requires that the operation be serviced at the master node. In this way, the row(s) will
always be consistent with the master.

This is the strongest possible consistency guarantee that you can require, but it comes at
the cost of servicing all read and write requests at the master node. If you direct all your
traffic to the master node (which is just one machine for each partition), then you will not be
distributing your read operations across your replicas. You also will slow your write
operations because your master will be busy servicing read requests. For this reason, you
should use this consistency guarantee sparingly.

Consi st ency. NONE_REQUI RED

Allows the store operation to proceed regardless of the state of the replica relative to the
master. This is the most relaxed consistency guarantee that you can require. It allows for
the maximum possible store performance, but at the high possibility that your application
will be operating on stale or out-of-date information.

For example, suppose you are performing a critical read operation that you know must
absolutely have the most up-to-date data. Then do this:

package kvstore. basi cExanpl e;

i nport oracle. kv. Consi st ency;

i nport oracle. kv. Consi st encyExcepti on;
i nport oracle.kv. KVStore;

i nport oracle.kv.table. PrimaryKey;

i nport oracle.kv.tabl e. ReadOpti ons;

i nport oracle.kv.tabl e. Row,

i nport oracle.kv.tabl e. Tabl e;

i nport oracle.kv.tabl e. Tabl eAPI;

/] KVStore handle creation is omtted for brevity

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();

/1 The name you give to get Table() nust be identical

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 2 of 6

ORACLE

Chapter 11
Using Time-Based Consistency

/1 to the name that you gave the table when you created
/1 the table using the CREATE TABLE DDL st atenent.
Tabl e nmyTabl e = tabl eH. get Tabl e("nyTabl e");

/1 Construct the PrimaryKey.
Pri maryKey key = nyTabl e. createPri maryKey();
key.put("iten, "Bolts");

/] Create the ReadOption with our Consistency policy
ReadOptions ro = new ReadOpti ons(Consi st ency. ABSOLUTE,
0, /1 Timeout paraneter.
/1 0 means use the default.
null); // Timeout units. Null because
/1 the Timeout is 0.

/1 Retrieve the row. This performs a store read operation.
/1 Exception handling is skipped for this trivial exanple.
try {

Row row = tabl eH. get (key, ro);
} catch (ConsistencyException ce) {

/1 The consistency guarantee was not net

}

Using Time-Based Consistency

A time-based consistency policy describes the amount of time that a replica node is allowed to
lag behind the master node. If the replica's data is more than the specified amount of time out-
of-date relative to the master, then a Consi st encyExcepti on is thrown. In that event, you can
either abandon the operation, retry it immediately, or pause and then retry it.

In order for this type of a consistency policy to be effective, the clocks on all the nodes in the
store must be synchronized using a protocol such as NTP.

In order to specify a time-based consistency policy, you use the Consi st ency. Ti ne class. The
constructor for this class requires the following information:

e perm ssiblelag

Al ong that describes the number of Ti meUni t s the replica is allowed to lag behind the
master.

e permssiblelLagUnits

A Ti neUni t that identifies the units used by per ni ssi bl eLag. For example:
Ti meUni t. M LLI SECONDS.

e tineout

Al ong that describes how long the replica is permitted to wait in an attempt to meet the
permissible lag limit. That is, if the replica cannot immediately meet the permissible lag
requirement, then it will wait this amount of time to see if it is updated with the required
data from the master. If the replica cannot meet the permissible lag requirement within the
timeout period, a Consi st encyExcept i on is thrown.

e tinmeoutUnit

A Ti meUni t that identifies the units used by t i meout . For example: Ti meUni t . SECONDS.

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 3 of 6

ORACLE

Chapter 11
Using Version-Based Consistency

The following sets a default time-based consistency policy of 2 seconds. The timeout is 4
seconds.

package kvstore. basi cExanpl e;

i nport oracle. kv. Consi stency;

i nport oracle.kv.KVStore;

i nport oracle. kv. KVStoreConfig;
i nport oracle. kv. KVSt oreFact ory;

inport java.util.concurrent. TimeUnit;

KVSt oreConfi g kconfig = new KVSt oreConfi g("exanpl eStore",
"nodel. exanpl e. or g: 5088, node2. exanpl e. org: 4129");

Consi stency. Tine cpolicy =
new Consi stency. Ti ne(2, TimeUnit. SECONDS,
4, TinmeUnit. SECONDS);
kconfi g. set Consi st ency(cpolicy);

KVStore kvstore = KVStoreFactory. get Store(kconfig);

Using Version-Based Consistency

Version-based consistency is used on a per-operation basis. It ensures that a read performed
on a replica is at least as current as some previous write performed on the master.

An example of how this might be used is a web application that collects some information from
a customer (such as her name). It then customizes all subsequent pages presented to the
customer with her name. The storage of the customer’'s name is a write operation that can only
be performed by the master node, while subsequent page creation is performed as a read-only
operation that can occur at any node in the store.

Use of this consistency policy might require that version information be transferred between
processes in your application.

To create a version-based consistency policy, use the Consi st ency. Ver si on class. When you
do this, you must provide the following information:

e version

The Ver si on that the read must match. The value returned is either equal or newer than
the version specified in the policy.

e timeout

Al ong that describes how long the replica is permitted to wait in an attempt to meet the
version requirement. That is, if the replica cannot immediately meet the version
requirement, then it will wait this amount of time to see if it is updated with the required
data from the master. If the replica cannot meet the requirement within the timeout period,
a Consi st encyExcept i on is thrown.

e tinmeoutUnit

A Ti neUni t that identifies the units used by ti neout . For example: Ti meUni t . SECONDS.

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 4 of 6

ORACLE

Chapter 11
Using Version-Based Consistency

For example, the following code performs a store write, collects the version information, then
uses it to construct a version-based consistency policy.

package kvstore. basi cExanpl e;

i nport oracle.kv.KVStore;

i nport oracle. kv.tabl e. Row,

i nport oracle.kv.tabl e. Tabl e;

i nport oracle.kv.tabl e. Tabl eAPI ;
i nport oracle. kv. Version;

/1 KVStore handle creation is omtted for brevity

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();
Tabl e myTabl e = tabl eH. get Tabl e("nyTabl e");

/1 Get a Row instance
Row row = nyTabl e. creat eRow() ;

/1 Now put all of the cells in the row

row. put("item', "Bolts");

row. put ("count1", 5);

row. put ("count2", 23);

row. put ("percentage", 0.2173913);

/1 Now write the table to the store, capturing the
/1 Version information as we do.

Version matchVersion = tableH put(row, null, null);

Versi on mat chVersion = kvstore. put (myKey, nyVal ue);

At some other point in this application's code, or perhaps in another application entirely, we use
the mat chVer si on captured above to create a version-based consistency policy.

package kvstore. basi cExanpl e;

i nport oracle. kv. Consi st ency;

i nport oracle. kv. Consi st encyExcepti on;
i nport oracle.kv.KVStore;

i nport oracle.kv.table. PrinaryKey;

i nport oracle.kv.tabl e. ReadOpti ons;

i nport oracle. kv.tabl e. Row;

i nport oracle.kv.tabl e. Tabl e;

i nport oracle.kv.tabl e. Tabl eAPI ;

inport java.util.concurrent. TimeUnit;

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 5 of 6

ORACLE’

Chapter 11
Using Version-Based Consistency

/1 KVStore handle creation is onmtted for brevity

/1 Construct the PrimaryKey.

Pri maryKey key = nyTabl e. createPri maryKey();
key.put("iten, "Bolts");

/1 Create the consistency policy, using the
/1 Version object we captured, above.
Consi st ency. Ver si on versi onConsi stency =
new Consi st ency. Versi on(mat chVersi on,
200,
Ti meUni t . NANOSECONDS) ;

/1 Create a ReadOptions using our new consistency policy.
ReadOptions ro = new ReadOpti ons(versionConsistency, 0, null);

/1 Now performthe read.
try {

Row row = tabl eH. get (key, ro);

/1 Do work with the row here
} catch (ConsistencyException ce) {

/1 The consistency guarantee was not net
}

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 6 of 6

Durability Guarantees

Writes are performed in the Oracle NoSQL Database store by performing the write operation
(be it a creation, update, or delete operation) on a master node. As a part of performing the
write operation, the master node will usually make sure that the operation has made it to stable
storage before considering the operation complete.

The master node will also transmit the write operation to the replica nodes in its shard. It is
possible to ask the master node to wait for acknowledgments from its replicas before
considering the operation complete.

@® Note

If your store is configured such that secondary zones are in use, then write
acknowledgements are never required for the replicas in the secondary zones. That is,
write acknowledgements are only returned by replicas in primary zones. For more
information on zones, see Administrator's Guide.

The replicas, in turn, will not acknowledge the write operation until they have applied the
operation to their own database.

A durability guarantee, then, is a policy which describes how strongly persistent your data is in
the event of some kind of catastrophic failure within the store. (Examples of a catastrophic
failure are power outages, disk crashes, physical memory corruption, or even fatal application
programming errors.)

A high durability guarantee means that there is a very high probability that the write operation
will be retained in the event of a catastrophic failure. A low durability guarantee means that the
write is very unlikely to be retained in the event of a catastrophic failure.

The higher your durability guarantee, the slower your write-throughput will be in the store. This
is because a high durability guarantee requires a great deal of disk and network activity.

Usually you want some kind of a durability guarantee, although if you have highly transient
data that changes from run-time to run-time, you might want the lowest possible durability
guarantee for that data.

Durability guarantees include two types of information: acknowledgment guarantees and
synchronization guarantees. These two types of guarantees are described in the next sections.
We then show how to set a durability guarantee.

Note that by default, Oracle NoSQL Database uses a low durability guarantee.

Setting Acknowledgment-Based Durability Policies

Whenever a master node performs a write operation (create, update or delete), it must send
that operation to its various replica nodes. The replica nodes then apply the write operation(s)
to their local databases so that the replicas are consistent relative to the master node.

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 1 of 5

ORACLE

Chapter 12
Setting Synchronization-Based Durability Policies

Upon successfully applying write operations to their local databases, replicas in primary zones
send an acknowledgment message back to the master node. This message simply says that
the write operation was received and successfully applied to the replica's local database.
Replicas in secondary zones do not send these acknowledgement messages.

@® Note

The exception to this are replicas in secondary zones, which will never acknowledge
write operations.

An acknowledgment-based durability policy describes whether the master node will wait for
these acknowledgments before considering the write operation to have completed successfully.
You can require the master node to not wait for acknowledgments, or to wait for
acknowledgments from a simple majority of replica nodes in primary zones, or to wait for
acknowledgments from all replica nodes in primary zones.

The more acknowledgments the master requires, the slower its write performance will be.
Waiting for acknowledgments means waiting for a write message to travel from the master to
the replicas, then for the write operation to be performed at the replica (this may mean disk
I/0), then for an acknowledgment message to travel from the replica back to the master. From
a computer application's point of view, this can all take a long time.

When setting an acknowledgment-based durability policy, you can require acknowledgment
from:

e Allreplicas. That is, all of the replica nodes in the shard that reside in a primary zone.
Remember that your store has more than one shard, so the master node is not waiting for
acknowledgments from every machine in the store.

e Noreplicas. In this case, the master returns with normal status from the write operation as
soon as it has met its synchronization-based durability policy. These are described in the
next section.

e A simple majority of replicas in primary zones. That is, if the shard has 5 replica nodes
residing in primary zones, then the master will wait for acknowledgments from 3 nodes.

Setting Synchronization-Based Durability Policies

Whenever a node performs a write operation, the node must know whether it should wait for
the data to be written to stable storage before successfully returning from the operation.

As a part of performing a write operation, the data modification is first made to an in-memory
cache. It is then written to the filesystem's data buffers. And, finally, the contents of the data
buffers are synchronized to stable storage (typically, a hard drive).

You can control how much of this process the master node will wait to complete before it
returns from the write operation with a normal status. There are three different levels of
synchronization durability that you can require:

- NO_SYNC

The data is written to the host's in-memory cache, but the master node does not wait for
the data to be written to the file system's data buffers, or for the data to be physically
transferred to stable storage. This is the fastest, but least durable, synchronization policy.

- WRITE_NO_SYNC

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 2 of 5

ORACLE Chapter 12
Setting Durability Guarantees

The data is written to the in-memory cache, and then written to the file system's data
buffers, but the data is not necessarily transferred to stable storage before the operation
completes normally.

* SYNC

The data is written to the in-memory cache, then transferred to the file system's data
buffers, and then synchronized to stable storage before the write operation completes
normally. This is the slowest, but most durable, synchronization policy.

Notice that in all cases, the data is eventually written to stable storage (assuming some failure
does not occur to prevent it). The only question is, how much of this process will be completed
before the write operation returns and your application can proceed to its next operation.

See the next section for an example of setting durability policies.

Setting Durability Guarantees

To set a durability guarantee, use the Dur abi | i ty class. When you do this, you must provide
three pieces of information:

e The acknowledgment policy.
e A synchronization policy at the master node.
e A synchronization policy at the replica nodes.

The combination of policies that you use is driven by how sensitive your application might be to
potential data loss, and by your write performance requirements.

For example, the fastest possible write performance can be achieved through a durability
policy that requires:

* No acknowledgments.
* NO_SYNC at the master.
* NO_SYNC at the replicas.

However, this durability policy also leaves your data with the greatest risk of loss due to
application or machine failure between the time the operation returns and the time when the
data is written to stable storage.

On the other hand, if you want the highest possible durability guarantee, you can use:

e All replicas must acknowledge the write operation.
* SYNC at the master.
¢ SYNC at the replicas.

Of course, this also results in the slowest possible write performance.

Most commonly, durability policies attempt to strike a balance between write performance and
data durability guarantees. For example:

e Simple majority (> 50%) of replicas must acknowledge the write.
* SYNC at the master.
* NO_SYNC at the replicas.

Note that you can set a default durability policy for your KVSt or e handle, but you can also
override the policy on a per-operation basis for those situations where some of your data need
not be as durable (or needs to be MORE durable) than the default.

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 3 of 5

ORACLE

Chapter 12
Setting Durability Guarantees

For example, suppose you want an intermediate durability policy for most of your data, but
sometimes you have transient or easily re-created data whose durability really is not very
important. Then you would do something like this:

First, set the default durability policy for the KVSt or e handle:

package kvstore. basi cExanpl e;

i nport oracle.kv.Durability;
inport oracle. kv.KVStore;

i nport oracle. kv. KVStoreConfi g;
i nport oracle. kv. KVSt oreFact ory;

KVSt oreConfi g kconfig = new KVSt oreConfi g("exanpl eStore",
"nodel. exanpl e. org: 5088, node2. exanpl e. org: 4129");

Durability defaultDurability =
new Durabi | ity(Durability.SyncPolicy. SYNC, /1 Master sync
Durabi lity. SyncPolicy. NO SYNC, // Replica sync
Durabi lity. ReplicaAckPolicy. S| MPLE_MAJORI TY) ;
kconfig.setDurability(defaultDurability);

KVStore kvstore = KVStoreFactory. get Store(kconfig);

In another part of your code, for some unusual write operations, you might then want to relax
the durability guarantee so as to speed up the write performance for those specific write
operations:

package kvstore. basi cExanpl e;

import oracle.kv.Durability;

i mport oracle. kv.DurabilityException;
i mport oracle. kv. KVSt ore;

i mport oracle. kv. tabl e. Row,

i mport oracle. kv.tabl e. Tabl g;

i mport oracle. kv. tabl e. Tabl eAPI ;

Tabl eAPl tabl eH = kvstore. get Tabl eAPI () ;

/1 The nane you give to getTabl e() nust be identical

/1l to the nane that you gave the table when you created
/1l the table using the CREATE TABLE DDL st atemnent.

Tabl e myTabl e = tabl eH. get Tabl e("nyTabl e");

/] CGet a Row instance
Row row = nyTabl e. creat eRow() ;

/1 Now put all of the cells in the row

row put("itent, "Bolts");

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 4 of 5

ORACLE’

Chapter 12

Setting Durability Guarantees

row. put ("description", "Hex head, stainless");
row. put ("count", 5);
row. put ("percentage", 0.2173913);

/1 Construct a durability policy
Durability durability =
new Durabi lity(Durability.SyncPolicy.NO SYNC, // Master sync
Durability. SyncPolicy. NO SYNC, // Replica sync
Durabi lity. ReplicaAckPol i cy. NONE);

/1 Construct a WiteOptions object using the durability policy.
WiteOptions wo = new WiteOptions(durability, 0, null);

/1 Now write the table to the store using the durability policy
/1 defined, above.
tabl eH put (row, null, wo);

Java Direct Driver Developer's Guide

E85378-35

Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 5 of 5

Executing a Sequence of Operations

You can execute a sequence of write operations as a single atomic unit so long as all the rows
that you are operating upon share the same shard key. By atomic unit, we mean all of the
operations will execute successfully, or none of them will.

Also, the sequence is performed in isolation. This means that if you have a thread running a
particularly long sequence, then another thread cannot intrude on the data in use by the
sequence. The second thread will not be able to see any of the modifications made by the
long-running sequence until the sequence is complete. The second thread also will not be able
to modify any of the data in use by the long-running sequence.

Be aware that sequences only support write operations. You can perform puts and deletes, but
you cannot retrieve data when using sequences.

When using a sequence of operations:

e All of the keys in use by the sequence must share the same shard key.

e Operations are placed into a list, but the operations are not necessarily executed in the
order that they appear in the list. Instead, they are executed in an internally defined
sequence that prevents deadlocks.

The rest of this chapter shows how to use Tabl eQper at i onFact ory and Tabl eAPI . execut e()
to create and run a sequence of operations.

Sequence Errors

If any operation within the sequence experiences an error, then the entire operation is aborted.
In this case, your data is left in the same state it would have been in if the sequence had never
been run at all — no matter how much of the sequence was run before the error occurred.

Fundamentally, there are two reasons why a sequence might abort:

1. An internal operation results in an exception that is considered a fault. For example, the
operation throws a Dur abi | i t yExcept i on. Also, if there is an internal failure due to
message delivery or a networking error.

2. Anindividual operation returns normally but is unsuccessful as defined by the particular
operation. (For example, you attempt to delete a row that does not exist). If this occurs
AND you specified t r ue for the abort | f Unsuccessful parameter when the operation was
created using TableOperationFactory, then an Qper at i onExecut i onExcept i on is thrown.
This exception contains information about the failed operation.

Creating a Sequence

You create a sequence by using the Tabl eQper ati onFact ory class to create Tabl eQper ati on
class instances, each of which represents exactly one operation in the store. You obtain an
instance of Tabl eOper ati onFact ory by using Tabl eAPI . get Tabl eOper ati onFact ory().

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 1 of 5

ORACLE

Chapter 13

Creating a Sequence

For example, suppose you are using a table defined like this:

CREATE TABLE nyTabl e (
i tenType STRI NG
i tenCategory STRING
i tenCl ass STRING
i tenCol or STRING
itenBi ze STRING
price FLOAT,
i nvent oryCount | NTEGER,

PRI MARY KEY (SHARD(itenType, itentCategory,

i tentize)

With tables containing data like this:

e Row1:

itemType: Hats
itemCategory: baseball
itemClass: longbill
itemColor: red
itemSize: small

price: 12.07

inventoryCount: 127

¢ Row 2:

itemType: Hats
itemCategory: baseball
itemClass: longbill
itemColor: red
itemSize: medium
price: 13.07

inventoryCount: 201

¢ Row 3:

itemType: Hats
itemCategory: baseball
itemClass: longbill
itemColor: red
itemSize: large

price: 14.07

inventoryCount: 39

i tenC ass), itentCol or,

And further suppose that this table has rows that require an update (such as a price and
inventory refresh), and you want the update to occur in such a fashion as to ensure it is

performed consistently for all the rows.

Java Direct Driver Developer's Guide

E85378-35

Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 2 of 5

ORACLE

Chapter 13

Creating a Sequence

Then you can create a sequence in the following way:

package kvstore. basi cExanpl e;
inport java.util.ArraylList;

i nport oracle.kv.KVStore;
i nport oracle. kv. KVStoreConfig;
i nport oracle. kv. KVSt oreFact ory;

i nport oracle.kv.DurabilityException;

i nport oracle. kv. Faul t Excepti on;

i nport oracle. kv. QperationExecuti onExcepti on;
i nport oracle. kv. Request Ti meout Excepti on;

i nport oracle.kv.table.PrinaryKey;

i nport oracle. kv.tabl e. Row;

i nport oracle.kv.tabl e. Tabl e;

i nport oracle.kv.tabl e. Tabl eAPI ;

i nport oracle.kv.tabl e. Tabl eQperati onFactory;
i nport oracle.kv.tabl e. Tabl eQperati on;

/1 kvstore handl e creation omtted.

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();

Tabl e myTabl e = tabl eH. get Tabl e("nyTabl e");

/1 W use Tabl eQperationFactory to create itens for our
/'l sequence.

Tabl eQperati onFactory tof = tabl eH. get Tabl eCperati onFactory();

/1 This ArrayList is used to contain each itemin our sequence.
ArraylLi st <Tabl eQperati on> opLi st = new Arrayli st <Tabl eQperation>();

/1 Update each row, adding each to the opList as we do.
Row row = nyTabl e. creat eRow() ;

row. put ("itenflype", "Hats");

row. put ("itenCategory", "baseball");
row. put ("itenmd ass", "longbill");
row. put ("itemColor", "red");

row. put ("itensize", "small");

row. put ("price", new Float(13.07));

row. put ("i nventoryCount", 107);
opLi st.add(tof.createPut (row, null, true));

row = nyTabl e. creat eRow() ;
row put ("itenfype", "Hats");

row. put ("itenCategory", "baseball");
row. put ("itenmd ass", "longbill");
row. put ("itemColor", "red");

row. put ("itensi ze", "nediunt);

Java Direct Driver Developer's Guide

E85378-35

Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 3 0of 5

ORACLE

Chapter 13
Executing a Sequence

row. put ("price", new Float(14.07));
row. put ("i nventoryCount", 198);
opLi st.add(tof.createPut (row, null, true));

row = nyTabl e. creat eRow() ;

row. put ("itenflype", "Hats");

row. put ("itenCategory", "baseball");
row. put ("itemd ass", "longbill");
row. put ("itemColor", "red");

row. put ("itensi ze", "large");

row. put ("price", new Float(15.07));

row. put ("i nventoryCount", 139);

opLi st.add(tof.createPut (row, null, true));

Note in the above example that we update only those rows that share the same shard key. In
this case, the shard key includes the i t enType, i t enCat egory, and i t en ass fields. If the
value for any of those fields is different from the others, we could not successfully execute the
sequence.

Executing a Sequence

To execute the sequence we created in the previous section, use the Tabl eAPI . execut e()
method:

package kvstore. basi cExanpl e;

try {
t abl eH. execut e(opList, null);

} catch (QperationExecutionException oee) {
/1 Some error occurred that prevented the sequence
/'l fromexecuting successfully. Use
/'l oee. get Fai |l edQperationlndex() to determ ne which
/1 operation failed. Use oee.getFail edOperationResult()
/1l to obtain an QperationResult object, which you can
/'l use to troubl eshoot the cause of the execution
/'l exception.

} catch (I11egal Argument Exception iae) {
/1 An operation in the list was null or enpty.

/1 O at |east one operation operates on a row
/1 with a shard key that is different
/1 than the others.

/1 O more than one operation uses the same key.
} catch (DurabilityException de) {
/1 The durability guarantee could not be met.
} catch (Request Ti neout Exception rte) {
/'l The operation was not conpleted inside of the
/1 default request timeout limt.
} catch (Faul t Exception fe) {
/'l A generic error occurred

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 4 of 5

ORACLE Chapter 13
Executing a Sequence

Note that if any of the above exceptions are thrown, then the entire sequence is aborted, and
your data will be in the state it would have been in if you had never executed the sequence at
all.

Tabl eAPI . execut e() can optionally take a Wit eQOpti ons class instance. This class instance
allows you to specify:

e The durability guarantee that you want to use for this sequence. If you want to use the
default durability guarantee, pass nul | for this parameter.

* Atimeout value that identifies the upper bound on the time interval allowed for processing
the entire sequence. If you provide 0, the default request timeout value is used.

e« ATineUnit that identifies the units used by the timeout value. For example:
Ti meUni t. M LLI SECONDS.

For an example of using Wit eOpt i ons, see Durability Guarantees.

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 5 of 5

Introduction to SQL for Oracle NoSQL
Database

SQL for Oracle NoSQL Database is an easy to use SQL-like language that supports read-only
queries and data definition (DDL) statements. This chapter focuses on the query part of the
language.

For a detailed description of the language (both DDL and query statements), see SQL
Reference Guide.

To follow along query examples run with the interactive shell, see SQL Beginner's Guide.

This section talks about using SQL through the JAVA API.

Running a simple query

Before running a query, perform store access as usual by obtaining a KVSt or e handle using the
KVSt or eFact ory. get St or e() method and a KVSt or eConf i g object.

To create the query, use KVSt or e. execut eSync() This returns a St at enent Resul t instance,
which represents the result of an execution of a statement. There are two types of results,
results of DDL statements and results of DML statements. DDL statements modify the
database schema. CREATE TABLE, ALTER TABLE, and DROP TABLE are examples of DDL
statements. DDL statements do not return data records, soiterator() and next () will return
as if there was an empty result.

DML statements are non-updating queries. SQL SELECT-FROM-WHERE(SFW) statements
are an example of a DML statement. DML statements may contain a set of records. Objects of
St at ement Resul t are not intended to be used across several threads.

For example, to run a simple query:

/] Setup Store

String[] hhosts = {"nl.exanple.org:5088", "n2.exanple.org:4129"};
KVSt oreConfi g kconfig = new KVSt oreConfi g("exanpl eStore", hhosts);
KVStore store = KVStoreFactory. get Store(kconfig);

/1 Conpile and Execute the SELECT statenent
StatenmentResult result = store.executeSync("SELECT first Nane,
age FROM Users");

/1 Get the results

for(Recordvalue record : result) {
Systemout. println("naneFirst: " +
record.get ("firstName").asString().get());
Systemout. println("age: " +
record. get("age").aslnteger().get());

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 1 of 4

ORACLE Chapter 14
Using binding variables

where the query SELECTS the firsthame and age from the table Users. Then, the results are
displayed.

Using binding variables

To declare a binding variable, you need to create an instance of Pr epar edSt at enent . An
instance of PreparedStatement can be created through the KVSt or e. prepar e() method.

You can specify zero or more variable declarations. The syntax for a variable is:

DECLARE $var name vartype;

If the DML statement contains external variables, the Pr epar edSt at enent can be executed
multiple times by creating an instance of BoundSt at ement . The external variables must be
bound to specific values before the statement can be executed. To allow for the potentially
concurrent execution of the same Pr epar edSt at ement multiple times with different bind values
each time, binding of external variables must be done through one or more instances of
BoundSt at ement . Such instances are created using the cr eat eBoundSt at enent () method.

This instance can then be executed multiple times using the KVSt or e. execut e() or
KVSt or e. execut eSync() methods.

For example:

/1l store handle creation onmtted.

/1 Conmpile the statenent.

PreparedStatenent pStnt = store. prepare(
"DECLARE $mi nAge integer; $maxAge integer; " +
"SELECT id, firstName FROM Users WHERE
age >= $minAge and age < $naxAge "

)

Il lterate decades
for(int age = 0; age <= 100; age = age + 10) {
int nmaxAge = age + (age < 100 ? 10 : 1000);
Systemout. println("Persons with ages between " + age +
" and " + maxAge + ".");

/1 Bind variables, reuse the same pStnt

BoundSt at ement bStnmt = pStnt. creat eBoundSt at enent () ;
bStnt . set Vari abl e("$m nAge", age);

bStnt . set Vari abl e("$maxAge", maxAge);

/'l Execute the statenent
StatementResult result = store.executeSync(bStnt);

[l Get the results in the current decade
for(RecordValue record : result) {
Systemout.printin("id: " +
record.get("id").aslnteger().get());
Systemout.printIn("firstName: " +
record.get("firstNane").asString().get());

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 2 of 4

ORACLE Chapter 14
Accessing metadata

Accessing metadata

You can access the metadata of a BoundStatement, PreparedStatement or StatementResult
by using the get Resul t Def () method.

Additionally, you can use the get Fi el ds(). si ze(), get Fi el dsNane(), and get Fi el d()
Recor dDef methods to obtain the number of fields, field name, and field type respectively.

For example:

|/ store handle creation ontted.

/1 Access netadata on PreparedStatenent or BoundStat ement
PreparedStatenment pStnt = store. prepare(
"DECLARE $mi nAge integer; $maxAge integer; " +
"SELECT id, firstName FROM users WHERE age >= $mi nAge
and age < $maxAge ");

Recor dDef recodDef = pStnt.getResultDef();

int noOfFields = recodDef.getFields().size();

String fieldName = recodDef. getFi el dName(0); // fieldNane is "$m nAge";
Fi el dDef fiel dType = recodDef. getFiel d(0); Il feldType is Integer Def

/1 Access netadata on StatenentResult
StatenmentResult result = store.executeSync("SELECT * FROM Users WHERE
(age > 18 and age < 30)");

recordDef = result.getResultDef();

® Note

DDL operations do not have metadata.

Using a query to update data

You can form queries to UPDATE a row in an Oracle NoSQL Database table. The WHERE
clause must specify an exact primary key as only single row updates are allowed.

For example, to update a field using the UPDATE statement:

/1l store handle creation onmtted.

/1 Updates the age for User with id=2

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 3 of 4

ORACLE

Chapter 14
Using a query to update data

StatenmentResult result = store.executeSync("UPDATE Users SET age=20
WHERE i d=2");

To update multiple rows, you must first form a query to SELECT records. You then use the
result of the SELECT query to update or insert data.

For example, to update a field using a result record from the SELECT statement:

/] store handle creation onmitted.

Tabl eAPl tabl eAPI = store. get Tabl eAPI ();
Tabl e table = tabl eAPI. get Tabl e("Users");

StatenmentResult result = store.executeSync("SELECT * FROM Users WHERE
(age > 13 and age < 17)");

for(RecordValue record : result) {

/1 Update a field

Row row = tabl e.createRow(record);

row. put ("age", record.get("age").aslnteger().get() + 1);
tabl eAPlI. put (row, null, null);

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 4 of 4

JSON By Example

This appendix contains a complete Java example of how to use JSON data in a Oracle NoSQL
Database store.

The example loads a series of table rows, using JSON objects to represent each row. The
example then updates all table rows that contain a home address in Boston so that the zip
code for that address is updated from 02102 to 02102- 1000.

Our sample data deliberately contains some table rows with null and missing fields so as to
illustrate some (but by no means all) of the error handling that is required when working with
JSON data. It is possible to be endlessly creative when providing broken JSON to the store.
Any production code would have to be a great deal more robust than what is shown here.

The update operation is shown three different ways in the following example. While the actual
update is always the same (see the UpdateJSON.updateZipCode() method), there are three
different ways to seek out rows with a home address in Boston:

* No query.

This simply iterates over the entire table, examining each row in turn. See
UpdateJSON.updateTableWithoutQuery().

* With an index.

This uses a JSON index to retrieve all table rows where the home address is in Boston.
See UpdateJSON.updateTableWithIndex().

e With a SQL Query.

This uses a SQL statement with a execut eSync() method to retrieve all relevant table
rows. See UpdateJSON.updateTableUsingSQLQuery().

The next section shows some of the sample data used by this example. The description of the
example itself begins with UpdateJSON.

If you want to follow along with the example, and see all of the sample data, you can find this
example in the Exanpl es download from here. The example and its sample data can be found
in the Tabl e folder.

When compiling the example, make sure that kvcl i ent.j ar is in your classpath. For example:

javac -d . -cp <KVHOVE>/lib/kvclient.jar UpdateJSON. java

You can run this program against a store or a kvlite instance that does not have security
enabled.

java -cp .:<KVHOVE>/lib/kvclient.jar table.UpdateJSON

By default, this example uses | ocal host : 5000, but you can set the helper host and port at the
command line using the - host port parameter.

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix A-1 of A-16

ORACLE Appendix A
Sample Data

Sample Data

Our sample data is contained in per son_cont act s. j son. We use it create a simple two-column
table to hold our JSON data.

The first column is an account ID, and it serves as the primary key. At a minimum, every table
will always have a single non-JSON field that serves as the primary key. If you wish to use
compound primary keys, or one or more shard keys, then the number of non-JSON fields will
expand.

Our second field is a JSON field. Like all such fields, it can contain any valid JSON data. This
provides extreme flexibility for your table schema, which is particularly useful when it is
necessary to evolve your data's schema. However, it comes at the cost of requiring more error
checking to ensure that your JSON contains the data you expect it to contain.

CREATE TABLE personContacts (account | NTEGER,
person JSON,
PRI MARY KEY(account))

We load this table with 23 rows, some of which are deliberately incomplete. Each row is
represented as a single JSON object. We show a representative section of the sample data
file, below, for your reference.

In the following listing, notice that Account 3 only provides a work address — there is no home
address. Account 4 provides no address information at all. Account 5 fails to provide any data
at all for the per son field. Account 22 explicitly sets the address object to nul | . Account 23
explicitly sets both the home and work addresses to null. All of this is valid JSON and all of it
should be handled by our code.

{
"account" : 1,
"person" : {
"] ast Nang" : "Jones",
"firstNane" : "Joe",
"address" : {
“home" : {
"street" : "15 El nf,
"city" @ "Lakeville",
“zip" @ "12345"
b
"work" : {
"street" : "12 Main",
"city" @ "Lakeville",
“zip" : "12345"
}
b
"phone" : {
"home" : "800-555-1234",
"work" : "877-123-4567"
}
}
}
{

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix A-2 of A-16

ORACLE Appendix A
Sample Data

"account" : 2,

"person" : {
"] ast Nang" : "Anderson",
"firstNane" : "N ck",
"address" @ {

“home" : {
"street" : "4032 Kenwood Drive",
"city" : "Boston"
"zip" : "02102"
1
“work" : {
"street" : "541 Bronx Street"
"city" : "Boston"
"zip" : "02102"
}
¥
“phone" : {

"home" : "800-555-9201"
"work" : "877-123-8811"

}
1
}
{
"account" : 3,
"person" : {
"l ast Nane" : "Long",
“firstName" : "Betty",
"address" : {
“work" : {
"street" : "10 Circle Drive",
"city" : "Mnneapolis",
"zip" : "55111"
}
¥
"phone" : {
“hone" : "800-555-2701"
"work" : "877-181-4912"
}
1
}
{
"account" : 4,
"person” : {
"] ast Nang" : "Brown",
"firstNane" : "Harrison"
"phone" : {
“hone" : "800-555-3838"
"work" : "877-753-4110"
}
1
}
{
"account" : 5

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix A-3 of A-16

ORACLE

}
{
"account" : 6,
"person" : {
"l ast Nane" : "Abrams",
“firstName" : "Cynthia"
"address" : {
"home" : {
"street" : "2 Fairfield Drive"
"city" : "San Jose",
"zip" : "95054"
}
¥
“phone" : {
"honme" : "800-528-4897"
"work" : "877-180-5287"
}
}
}
#o...
sanpl e data removed for the book. See person_contact
#1in/exanples/table for the conplete data
file.
#o...
{
"account" : 21
"person” : {
"l ast Nane" : "Bl ase",
“firstName" : "Lisa"
"address" : {
"home" : {
"street" : "72 Rutland Grcle",
"city" . "Boston"
"zip" : "02102"
¥
"work" : {
"street" : "541 Bronx Street"
"city" . "Boston"
"zip" : "02102"
}
¥
"phone" : {
"honme" : "800-555-4404"
"work" : "877-123-2277"
1
}
}
{
"account" : 22
"person" : {
"address" : null
“phone" : {

Java Direct Driver Developer's Guide
E85378-35

Copyright © 2011, 2025, Oracle and/or its affiliates.

.json

Appendix A
Sample Data

October 12, 2025
Appendix A-4 of A-16

ORACLE

"home" :
"wor k" :
1
1
}
{
"account" : 23,
"person" : {
"address" :
"home" :
"wor k" :
b
"phone"
"home" :
"wor k" :
1
1
}

UpdateJSON

" 800- 555-1234",
"877-123-4567"

{

nul I,
nul |

{
"800- 555- 1234",

"877-123-4567"

Appendix A
UpdateJSON

The example program is called Updat eJSON. We deliberately avoid using Java JSON APIs in
this example so as to show how to perform these operations using Oracle NoSQL Database
APIs only. Our imports are therefore limited to or acl e. kv, oracl e. kv. tabl e, j ava. i o, and

java.util.

package tabl e;

i nport oracle.
i nport oracle.
i nport oracle.
i nport oracle.
i nport oracle.

i nport oracle.
i nport oracle.
i nport oracle.
i nport oracle.
i nport oracle.
i nport oracle.
i nport oracle.
i nport oracle.
i nport oracle.
i nport oracle.

kv.
kv.
kv.
kv.
kv.

kv.
kv.
kv.
kv.
kv.
kv.
kv.
kv.
kv.
kv.

Faul t Excepti on;
KVSt or e;

KVSt or eConfi g;
KVSt or eFact ory;
St at enent Resul t;

t abl e. Fi el dval ue;

t abl e. | ndex;

t abl e. | ndexKey;

t abl e. MapVal ue;

t abl e. Pri mar yKey;

t abl e. Recor dVal ue;

t abl e. Row;,

tabl e. Tabl e;

t abl e. Tabl eAPI ;

tabl e. Tabl elterator;

i nport java.io.BufferedReader;

i nport java.io.FileNot FoundExcepti on;
inport java.io.FileReader;

i nport java.io.lCException;

inport java.util.ArraylList;

public class Updat eJSON {

Java Direct Driver Developer's Guide
E85378-35

Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix A-5 of A-16

ORACLE Appendix A
UpdateJSON.run()

private String dataFile = "person_contacts.json";
private String defaul thost = "l ocal host:5000";
private String hel perhosts[];

private String storeName = "kvstore";

private static void usage() {
String nsg = "Creates a table and | oads data into it fromn";
meg += "an external file containing one or nore JSON\n";
msg += "objects. The objects nust conformto the table\n";
msg += "schema. Table rows are then updated so that\n";
msg += "zipcodes for all home addresses in Boston are\n";
meg += "nodified updated. Update is performed 3 different\n";
meg += "ways so as to illustrate the ways to query JSOMnN";
meg += "data in Oracle NoSQL Database.\n";
msg += "\nCommand |ine options: \n";
msg += "-store <storename>\n";
meg += "\tName of the store. Defaults to 'kvstore'\n";
msg += "-hostport <hostname>:<port>\n";
msg += "\tStore location. Defaults to 'local host: 5000 \n";
meg += "-file <filename>\n";
meg += "\tFile containing row data. Defaults to ";
msg += "person_contacts.json";

Systemout . println(nsg);
Systemexit(0);

public static void main(String args[]) {
Updat eJSON uj = new Updat eJSON();

uj.run(args);

UpdateJSON.run()

The Updat eJSON. run() method parses our command line arguments, sets up and opens our
KVSt or e handle, and then calls each of the methods that provide individual steps in this
example.

Notice that there are three different updat eTabl e. .. methods. Each provides the same
functionality as the next, but reads are performed in different ways. Once data is loaded into
the table, they can be run independently of the others. The only other dependency is that
UpdateJSON.createlndex() must be run before UpdateJSON.updateTableWithindex() is run.

private void run(String args[]) {
par seArgs(args);

KVSt oreConfig kconfig =
new KVSt or eConfi g(st or eName,
hel perhosts);
KVStore kvstore = KVStoreFactory. get Store(kconfig);

defineTabl e(kvstore);

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix A-6 of A-16

ORACLE’

Appendix A
UpdateJSON.defineTable()

| oadTabl e(kvstore, dataFile);

di spl ayTabl e(kvstore);

updat eTabl eW t hout Query(kvstore);
creat el ndex(kvstore);

updat eTabl eWt hl ndex(kvstore);
updat eTabl eUsi ngSQ.Quer y(kvstore);
di spl ayTabl e(kvstore);

UpdateJSON.defineTable()

The defi neTabl e() method drops (deletes) the per sonCont act s table if it exists. Dropping a
table deletes all of the table data from the store. The def i neTabl e() method then creates the
new table without data.

As always, we can write no data to the store until the table has been defined in the store using
the appropriate DDL statement.

This method relies on the UpdateJSON.runDDL() method, which we show later in this
appendix.

/1 Drops the exanple table if it exists. This removes all table
/] data and indexes. The table is then created in the store.

/1 The | oadTabl e() method is used to popul ate the newy created
[l table with data.

private void defineTabl e(KVStore kvstore) {

Systemout.printIn("Dropping table....");
String statenent = "DROP TABLE | F EXI STS personCont acts";
bool ean success = runDDL(kvstore, statenent);

if (success) {
statement =
"CREATE TABLE personContacts (" +
“account I NTECGER " +
"person JSON, " +
"PRI MARY KEY(account))";
Systemout.printin("Creating table....");
success = runDDL(kvstore, statenent);
if (!success) {
Systemout.printIn("Table creation failed.");
Systemexit(-1);

UpdateJSON.createlndex()

The Updat eJSON. cr eat el ndex() method creates a JSON index in the store. It must be run
before UpdateJSON.updateTableWithIndex() is run.

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix A-7 of A-16

ORACLE Appendix A
UpdateJSON.runDDL()

For information on JSON indexes, see JSON Indexes.

Il Creates a JSON index. This nmethod nust be

/'l run before updateTabl eWthlndex() is run.

private void createlndex(KVStore kvstore) {
Systemout.printIn("Creating index....");
String statenent = "CREATE I NDEX | F NOT EXI STS ";
statenent += "idx_hone_city on personContacts ";
statenent += "(person. address. hone.city AS String)";

runDDL(kvstore, statenent);

UpdateJSON.runDDL()

The Updat eJSON. runDDL() method is a utility that executes DDL statements against the store
using KVSt or e. execut eSync() .

This method relies on the UpdateJSON.displayResult() method, which simply writes the results
of the DDL execution to the command line. It is shown later in this example.

/1l Executes DDL statements (such as are found in defineTable()
/1 and createlndex()) in the store.
private bool ean runDDL(KVStore kvstore, String statenent) {
StatenentResult result = null;
bool ean success = fal se;

try {
result = kvstore. executeSync(statenent);

di spl ayResul t (result, statenent);
success = true;
} catch (I1legal Argunent Exception e) {
Systemout.printin("Invalid statement:\n" + e.getMessage());
} catch (Faul t Exception e) {
Systemout.println
("Statenent couldn't be executed, please retry:

+e);

}

return success;

UpdateJSON.update TableWithoutQuery()

The Updat eJSON. updat eTabl eW t hout Quer y() method iterates over every row in our table
looking for the proper rows to update.

This is by far the most complicated of the update methods due to the requirement to
continually check for null fields. Notice that all of the following code is used to simply retrieve
table rows. The actual update operation is performed by UpdateJSON.updateZipCode().

/1 Wility method. G ven a MapValue and a field name,

[l return the field as a MapVal ue. Used by

/'l updat eTabl eW t hout Query()

private MapVal ue get W(MapVal ue mv, String field) {
Fieldvalue fv = null;

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix A-8 of A-16

ORACLE Appendix A
UpdateJSON.update TableWithoutQuery()

if ((fv = mv.get(field)) !'=null)
return fv.asMap();
return null;

}

/1 Update the zip code found on all Boston home addresses
/1 to "02102-1000"
I
/1 Because we are not using an index, we must iterate over
Il every rowin the table, nodifying the rows with Boston home
/'l addresses.
private void updateTabl eWthout Query(KVStore kvstore) {
Tabl eAPI tabl eH = kvstore. get Tabl eAPI ();
Tabl e nmyTabl e = tabl eH. get Tabl e(" personCont act s");

PrimaryKey pkey = nyTabl e. createPrimaryKey();
Tabl el terator<Row> iter =
tabl eH. tabl el terator(pkey, null, null);
try {
while (iter.hasNext()) {
int account = 0;
Row row = iter.next();
Fieldvalue fv = null;
try {
account = row. get("account").aslnteger().get();
MapVal ue nv = row. get (" person").asMap();

MapVal ue nvaddress = get MW(v, "address");
if (mvaddress !'= null) {
MapVal ue nvhome = get W(nvaddress, "hone");
if (mvhome != null) {
fv = nmvhome. get("city");
if (fv!=null) {
if (fv.toString()
. equal sl gnoreCase("Boston"))
updat eZi pCode(t abl eH,
r ow,
"hone",
"02102-1000");

}

}
} catch (O assCast Exception cce) {
Systemout.printin("Data error: ");
Systemout. println("Account " + account +
"has a missing or inconplete person field");
[l 1f this is thrown, then the "person" field
/1 doesn't exist for the row

}
}
} finally {
if (iter '=null) {
iter.close();
}

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix A-9 of A-16

ORACLE Appendix A
UpdateJSON.updateTableWithindex()

Systemout. println("Updated a table without using a query.");

UpdateJSON.updateTableWithIndex()

The Updat eJSON. updat eTabl eW't hl ndex() method performs the update using an index.

This read operation is considerably easier to implement than the previous method because we
do not need to perform all the error checking. This method is also more efficient because only
the table rows identified by the index are returned, resulting in less network traffic and fewer
rows for our code to examine. However, if the required index does not exist, then this method
will fail.

/1 Update the zip code found on all Boston home addresses
/1 to "02102-1000"
1
/1 Because we have an index available to us, we only have to | ook
/1 at those rows which have person. address. hore.city = Boston
/1 Al'l other rows are skipped during the read operation
private void updateTabl eWthl ndex(KVStore kvstore) {
Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();
Tabl e myTabl e = tabl eH. get Tabl e(" per sonCont acts");

/1 Construct the |ndexKey.
I ndex honeGityldx = nyTabl e. getlndex("idx_hone _city");
I ndexKey honeCityldxKey = null;

/1 1f NullPointerException is thrown by createl ndexKey(),
/1 it neans that the required i ndex has not been created.
/1 Run the createlndex() nethod before running this method.
honeCi tyl dxKey = honeCityl dx. creat el ndexKey();

/1 Return only those entries with a home city of "Boston"
honeCi t yl dxKey. put (" per son. addr ess. hone. city", "Boston");

[l lterate over the returned table rows. Because we're
/1 using an index, we're guaranteed that
/1 person. address. hone.city exists and equal s Boston
/1 for every table row seen here.
Tabl el terat or<Row> iter =
tabl eH tabl el terator (honeCityldxKey, null, null);
try {
while (iter.hasNext()) {
Row row = iter.next();
updat eZi pCode(t abl eH, row, "hone", "02102-1000");
1
} finally {
if (iter '=null) {
iter.close();
1
}

Systemout. println("Updated a table using an index.");

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix A-10 of A-16

ORACLE Appendix A
UpdateJSON.updateTableUsingSQLQuery()

UpdateJSON.updateTableUsingSQLQuery()

The Updat eJSON. updat eTabl eUsi ngSQLQuer y() method uses a Oracle NoSQL Database SQL
query to retrieve the required table rows.

This third and final query method is the easiest to implement, and it has the advantage of not
requiring an index. If an appropriate index is available, it will be used — with all the advantages
that an index offers — but the index is not required as it was for the previous method.

/1 Update the zip code found on all Boston home addresses
/1 to "02102-1000"
I
/1 This query works with or without an index. If an index is
/1 available, it is automatically used. For |arger datasets,
Il the read operation will be faster with an index because only
/'l the rows where person.address. hone. city=Boston are returned
[l for the read.
private void updateTabl eUsi ngSQLQuery(KVStore kvstore) {

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();

Tabl e myTabl e = tabl eH. get Tabl e(" personCont act s");

String query = "select * from personContacts p ";
query += "where p.person. address. home. ci ty=\"Boston\"";

StatenentResult result = kvstore. executeSync(query);

for (RecordValue rv : result) {
Row row = myTabl e. cr eat eRowFr omJson(rv.toString(),
fal se);
updat eZi pCode(tabl eH, row, "home", "02102-1000");
}
Systemout.printin("Updated a table using a SQL Query to " +
"read.");

UpdateJSON.updateZipCode()

The Updat eJSON. updat eZi pCode() method performs the actual update operation in the store.

Because JSON can be returned as a MapVal ue, it is simple and efficient to update the JSON
data field.

/'l Updates the zipcode for the proper address (either "home"
/1 or "work"™ in this exanple).
I
/1 The calling nethod nust guarantee that this row contains a
/1 home address which refers to the correct city.
private void updateZi pCode(Tabl eAPI tabl eH Row row,

String addr Type, String newzip) {

MapVal ue honeaddr = row. get("person").asMap()
.get ("address").asMap()
. get (addr Type) . asMap() ;

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix A-11 of A-16

ORACLE

Appendix A
UpdateJSON.loadTable()

/1 1f the zip field does not exist in the hone address,
[l it is created with the newzip value. If it currently
/] exists, it is updated with the new val ue.

homeaddr . put (" zi p", newzip);

/1 Wite the updated row back to the store.

/1 Note that if this was production code, we

/1 should be using putlfVersion() when

/1 performing this wite to ensure that the row

/1 has not been changed since it was originally read.
tabl eH put (row, null, null);

UpdateJSON.loadTable()

The Updat eJSON. | oadTabl e() method loads our sample date into the Oracle NoSQL Database

store.

As Sample Data shows, all of our table rows are represented as JSON data in a single text file.
Each row is a single JSON object in the file. Typically JSON files are expected to contain one
and only one JSON object. While there are third party libraries which will iterate over multiple
JSON objects found in a stream, we do not want to rely on them for this example. (In the
interest of simplicity, we avoid adding a third party dependency.) Consequently, this method
provides a primitive custom parser to load the example data into the store.

1
Iy
1
1
I
1
I
I
I
I
I
I

Loads the contents of the sanple data file into
the personContacts table. The defineTabl e() nethod
must have been run at |east once (either in this
runtime, or in one before it) before this method
is run,

JSON parsers ordinarily expect one JSON Object per file.
Qur sanple data contains multiple JSON (hjects, each of
whi ch represents a single table row. So this nethod

i npl ements a sinple, custom not particularly robust
parser to read the input file, collect JSON Qbjects,

and load theminto the table.

private void | oadTabl e(KVStore kvstore, String file2load) {

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();
Tabl e myTabl e = tabl eH. get Tabl e(" per sonCont acts");

Buf f eredReader br = nul | ;
Fil eReader fr = null;

try {
String jGhj ="";
String currlLine;
int pCount = 0;

bool ean buil dObj = fal se;
bool ean beganParsing = fal se;

fr
br

new Fi | eReader (fil e2l oad);
new Buf f er edReader (fr);

/1 Parse the example data file, |oading each JSON obj ect

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix A-12 of A-16

ORACLE Appendix A
UpdateJSON.loadTable()

/1 found there into the table.
while ((currLine = br.readLine()) !'=null) {
pCount += countParens(currLine, '{");

Il Enpty line in the data file
if (currLine.length() == 0)
continue;

/1 Comments nust start at colum O in the
/1 data file.
if (currLine.charAt(0) == "#")

continue;

[l 1f we've found at |east one open paren, it's time to
Il start collecting data
if (pCount > 0) {

bui | dObj = true;

beganParsing = true;

}

if (buildj) {
j Gbj += currlLine;
}

/1 1f our open and cl osing parens bal ance (the count
Il is zero) then we've collected an entire object
pCount -= countParens(currLine, '}");
if (pCount < 1)
bui | dbj = fal se;
Il 1f we started parsing data, but buildOoj is false
/1 then that neans we've reached the end of a JSON
/1 object inthe input file. So wite the object
Il to the table, which means it is witten to the
Il store.
if (beganParsing & !buildbj) {
Row row = myTabl e. cr eat eRowFr omson(j Cbj, fal se);
tableH put(row, null, null);
joj =

}

Systemout. println("Loaded sanple data " + file2load);

} catch (FileNot FoundException fnfe) {
Systemout.printin("File not found: " + fnfe);
Systemexit(-1);

} catch (I CException ioe) {
Systemout. println("lOException:
Systemexit(-1);

+ioe);

} finally {
try {
if (br !'=null)
br.close();
if (fr = null)
fr.close();

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix A-13 of A-16

ORACLE Appendix A
UpdateJSON.displayTable()

} catch (I CException iox) {
Systemout. println("I CException on cl ose:

+i0x);

}
}

/'l Used by | oadTable() to know when a JSON obj ect
/'l begins and ends in the input data file.
private int countParens(String line, char p) {
int ¢ =0;
for(int i=0; i <line.length(); i++) {
if(line.charAt(i) ==p) {
CH++;
}
}

return c;

UpdateJSON.displayTable()

The Updat eJSON. di spl ayTabl e() method simply writes the entire table to the command line.

This method does not format the table's contents in any significant way. It is simply provided as
a convenience to allow the user to see that data has in fact been modified in the store.

/1 Dunps the entire table to the command |ine.
/1 CQutput is unfornatted.
private void displayTabl e(KVStore kvstore) {
Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();
Tabl e nmyTabl e = tabl eH. get Tabl e(" per sonCont acts");

Pri maryKey pkey = nyTabl e. createPrinmaryKey();
Tabl elterator<Row> iter = tableH. tablelterator(pkey, null,
null);
try {
while (iter.hasNext()) {
Row row = iter.next();
Systemout. println("\nAccount: " +
row. get ("account").aslnteger());
if (row get("person").isNull()) {
Systemout. printIn("No person field");
} else {
System out. println(row. get("person").asMap());

}
1
} finally {
if (iter '=null) {
iter.close();
1

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix A-14 of A-16

ORACLE Appendix A
UpdateJSON.displayResult()

UpdateJSON.displayResult()

The Updat eJSON. di spl ayResul t () method shows the contents of a St at ement Resul t object
returned by a KVSt or e. execut eSync() method call. It is used by this example as a
convenience to help the user see that a DDL statement has executed correctly in the store.

/1l Displays the results of an executeSync() call.
private void displayResult(StatementResult result,
String statement) {
Systemout. println(" ")
if (result.isSuccessful()) {
Systemout. println("Statenent was successful:\n\t" +
statenent);
Systemout.printin("Results:\n\t" + result.getinfo());
} else if (result.isCancelled()) {
Systemout. println("Statenent was cancelled:\n\t" +

statenent);
} else {
/1 statenment wasn't successful: may be in error, or may
[l still be in progress.

if (result.isDone()) {
Systemout.printin("Statement failed:\n\t" +
statenent);
Systemout.println("Problem\n\t" +
resul t.get ErrorMessage());
} else {
Systemout.printin("Statement in progress:\n\t" +
statenent);
Systemout.printin("Status:\n\t" +
result.getlnfo());

UpdateJSON.parseArgs()

The Updat eJSON. par seAr gs() method is used to parse the command line arguments used with
this class at run time.

It is unlikely that this method holds any surprises for Java programmers. It is included here
purely for the sake of completeness.

/1 Parse command |ine arguments
private void parseArgs(String[] args)
{
final int nArgs = args.length;
int argc = 0;
ArrayList<String> hhosts = new ArrayList<String>();

while (argc < nArgs) {
final String thisArg

args[argc++];

if (thisArg.equals("-store")) {

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix A-15 of A-16

ORACLE Appendix A
UpdateJSON.parseArgs()

if (argc < nArgs) {
storeNane = args[argc++];
} else {
usage();
}

} else if (thisArg.equals("-hostport")) {
if (argc < nArgs) {
hhost s. add(args[argc++]);
} else {

usage()
}

} else if (thisArg.equals("-file")) {
if (argc < nArgs) {
dataFile = args[argc++];
} else {
usage() ;
}

} else if (thisArg.equals("?") ||
t hi sArg. equal s("hel p")) {
usage();
} else {
usage();

}

if (hhosts.isEmpty()) {
hel perhosts = new String [] {defaulthost};
} else {
hel per host s
hel per host s

new String[hhosts.size()];
hhost s. t oArray(hel perhosts);

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix A-16 of A-16

Table Data Definition Language Overview

Before you can write data to tables in the store, you must provide a definition of the tables you
want to use. This definition includes information such as the table's name, the name of its
various rows and the data type contained in those rows, identification of the primary and
(optional) shard keys, and so forth. To perform these definitions, Oracle NoSQL Database
provides a Data Definition Language (DDL) that you use to form table and index statements.
The best way to run DDL statements is from the SQL Shell as described in Running the SQL
Shell in the SQL Beginner's Guide.

From the SQL, you can use these statements:

* Define tables and sub-tables.

* Modify table definitions.

* Delete table definitions.

» Define indexes.

* Delete index definitions.

e Set and modify default Time-to-Live values for tables.

Table and index statements take the form of ordinary strings, which are then transmitted to the
Oracle NoSQL Database store using the appropriate method or function. For example, to
define a simple user table, the table statement might look like this:

SQ.- > CREATE TABLE Users (
id | NTEGER,
firstName STRI NG
| ast Nane STRI NG
contactlnfo JSON,
PRI MARY KEY (i d)

For information on how to transmit these statements to the store, see Introducing Oracle
NoSQL Database Tables and Indexes.

For overview information on primary and shard keys, see Primary and Shard Key Design.

For overview information on indexes, see Creating Indexes.

The remainder of this appendix describes in detail the DDL statements that you use to
manipulate table and index definitions in the store.

Name Constraints

Throughout this document, and elsewhere in the documentation, using uppercase text signifies
DDL keywords (such as STRING, CREATE TABLE, and so on). These keywords are actually
case-insensitive and you can enter them in lowercase characters. However, all DDL keywords
shown here are reserved words. You cannot use keywords as table, index, or field names.

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix B-1 of B-20

ORACLE

Appendix B
DDL Comments

Table, index, and field names are case-preserving, but case-insensitive. For example, you can
create a field named MY_NAME, and later reference it as nmy_name without error. However,
whenever you display the field name, it displays in the way you created it, M\Y_NAME, in this
case.

Table names are limited to 256 characters. Namespace names, index names, and field names
are limited to 64 characters. All table, index, and field names must begin with a letter (A-Z, a-
z), and are restricted to alphanumeric characters (A-Z, a-z, 0-9), plus underscore (_) and a
period (.) character.

DDL Comments

You can include comments in your DDL statements using one of the following constructs:

id INTEGER, /* this is a comment */
firstName STRING // this is a coment
|astName STRING # this is a comment

CREATE TABLE

To create a table definition, use a CREATE TABLE statement, as follows:

CREATE TABLE [IF NOT EXI STS] [namespace:]tabl e-name
[COWENT "conment string"]
(field-definition, field-definition-2 [,...]
PRI MARY KEY (field-name, field-name-2 [,...]),
) [USING TTL ttl]
[IN REG ONS region-nane, region-name-2 [,...]]

where:
e | F NOT EXI STS

Optional clause. If you use this clause and a table of the same name and definition already
exists in the current namespace, the statement neither creates a new table, nor returns an
error. No action occurs.

If you do not use | F NOT EXI STS, and a table of the same name and definition already
exists in the current namespace, the statement attempts to create the table, and fails. You
cannot have two tables with the same name in one namespace.

¢ tabl e-name

Required. Specifies the full table name, regardless of where it exists in the table hierarchy.
A table can be a top-level table created in the default namespace (sysdef aul t), a table in
a non-default namespace, or a child or grandchild table of a parent table. Specify a fully-
qualified table name as follows:

— parent-tabl e.chil d-tabl e — Specifies a new child table of an existing parent. To
create a child table, specify the parent table followed by a period (.) before the child
name. For example, if the parent table is User s, define a child table named
Mai | i ngAddr ess as User s. Mai | i ngAddr ess.

— parent-table.child-tabl e.grandchil d-tabl e — Specifies a child table of an existing
table. You must also specify the parent table, for example Users. Mai | i ngAddr ess. Zi p.

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix B-2 of B-20

ORACLE

Appendix B
CREATE TABLE

— namespace- nane: t abl e- name — Identifies a new table in a specific namespace, either

user-created or in the default namespace (sysdef aul t :). Use the namespace followed
by a colon (:) as a prefix to the new table name. For a new child table of a table in a
namespace, or any further generation, use a fully qualified table name such as

Sal es: Users. Mai | i ngAddr ess, or Sal es: Users. Mai | i ngAddr ess. Zi p.

COMMVENT

Optional. Use a comment to provide a brief description of the table. The comment is not
interpreted at runtime, but becomes part of the table's metadata.

field-definition

Required. A comma-separated list of fields. There are one or more field definitions for
every table. Field definitions are described next in this section.

PRI MARY KEY

Required for every table. Identifies at least one field in the table that is the primary key. For
information on primary keys, see Primary Keys.

® Note

If the primary key field is an INTEGER data type, you can apply a serialized size
constraint to it. See Integer Serialized Constraints for details.

To optionally define a shard key, use the SHARD keyword within the primary key statement.
For information on shard keys, see Shard Keys.

For example:

PRI MARY KEY (SHARD(id), |astName)

USING TTL

Optional. Defines a default time-to-live value for the table's rows. See USING TTL for
information on this clause.

IN REG ONS

Optional. In case, the table being created is an MR Table, this parameter lists all the
regions that the table should span. You must mention at least one remote region in this
clause to create the table as an MR Table. For information on MR Tables, see Life Cycle of
MR Tables in the Concepts Guide.

Field Definitions

When defining a table, field definitions take the form:

field-nane type [constraints] [COWENT "comment-string"]

where:

field-name is the name of the field. For example: i d or f am | i ar Nane. Every field must
have a name.

type describes the field's data type. This can be a simple type such as INTEGER or
STRING, or it can be a complex type such a RECORD. The list of allowable types is
described in the next section.

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix B-3 of B-20

ORACLE

Appendix B
CREATE TABLE

constraints describes any limits placed on the data contained in the field. That is, allowable
ranges or default values. Ann IDENTITY field, to be created by a sequence generator, is
also permissable. This information is optional. See Field Constraints for more information.

COMMVENT is optional. You can use this to provide a brief description of the field. The
comment will not be interpreted but it is included in the table's metadata.

Supported Data Types

The following data types are supported for table fields:

ARRAY

An array of data. All elements of the array must be of the same data type, and this type
must be declared when you define the array field. For example, to define an array of
strings:

myArray ARRAY(STRI NG

Bl NARY

Binary data.

Bl NARY(| engt h)

Fixed-length binary field of size length (in bytes).

BOCLEAN

A boolean data type.

DOUBLE

A double.

ENUM

An enumerated list. The field definition must provide the list of allowable enumerated

values. For example:

frui t Name ENUM appl e, pear, orange)

FLOAT

A float.

| NTEGER

An integer.

JSON

A JSON-formatted string.
LONG

A long.

MAP

A data map. All map keys are strings, but when defining these fields you must define the
data type of the data portion of the map. For example, if your keys map to integer values,
then you define the field like this:

myMap MAP(| NTEGER)

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix B-4 of B-20

ORACLE

Appendix B
CREATE TABLE

* Number
A numeric type capable of handling any type of number of any value or precision.
e RECORD

An embedded record. This field definition must define all the fields contained in the
embedded record. All of the same syntax rules apply as are used for defining an ordinary
table field. For example, a simple embedded record might be defined as:

myEnmbeddedRecord RECORD(firstField STRING secondFiel d | NTEGER)

Data constraints, default values, and so forth can also be used with the embedded record's
field definitions.

e STRING
A string.
e TI MESTAMP(<pr eci si on>)
Represents a point in time as a date and, optionally, a time value.

Timestamp values have a precision (0 - 9) which represents the fractional seconds to be
held by the timestamp. A value of 0 means that no fractional seconds are stored, 3 means
that the timestamp stores milliseconds, and 9 means a precision of nanoseconds. When
declaring a timestamp field, the precision is required.

Field Constraints

Field constraints define information about the field, such as whether the field can be NULL, or
what a row's default value should be. Not all data types support constraints, and individual data
types do not support all possible constraints.

Integer Serialized Constraints

You can put a serialized size constraint on an INTEGER data type, provided the INTEGER is
used for a primary key field. Doing this can reduce the size the keys in your store.

To do this, use (n) after the primary key field name, where n is the number of bytes allowed for
the integer. The meaningful range for nis 1 - 4. For example:

create table nyld (id integer, primary key(id(3)))

The number of bytes allowed defines how large the integer can be. The range is from negative
to positive.

@® Note

Specifying an integer constraint value for number of bytes on an IDENTITY field is not
permitted.

Number of Bytes Allowed Integer Values

1 -63 to 63
2 -8191 to 8191

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix B-5 of B-20

ORACLE Appendix B
CREATE TABLE

Number of Bytes Allowed Integer Values
3 -1048575 to 1048575
4 -134217727 to 134217727
5 Any integer value

COMMENT
All data types can accept a COMMENT as part of their constraint. COMMENT strings are not
parsed, but do become part of the table's metadata. For example:
myRec RECORD(a STRING b | NTEGER) COWMMENT "Comment string"

DEFAULT
All fields can accept a DEFAULT constraint, except for ARRAY, BINARY, MAP, and RECORD.
The value specified by DEFAULT is used in the event that the field data is not specified when
the table is written to the store.
For example:
id I NTEGER DEFAULT -1,
description STRING DEFAULT " NONE",
size ENUM snal I, medi um | arge) DEFAULT nedi um
i nSt ock BOOLEAN DEFAULT FALSE

IDENTITY
You can define one IDENTITY field per table. All IDENTITY fields must have a numeric type:
INTEGER. LONG, or NUMBER. An IDENTITY field can optionally be a primary key.
There are two ways to define an IDENTITY field. You can optionally specify one or more
Sequence Generator attributes for the Sequence Generator (SG) associated with the
IDENTITY. These are the options:
e GENERATED ALWAYS AS IDENTITY
e GENERATED BY DEFAULT AS IDENTITY
These are the Sequence Generator attributes you can define:

Attribute Type Default Value and Description

StartWth Nunber Default: 1 The first value in the sequence. Zero (0) is not
permitted.

[ncr ement By Long Default: 1 The value to increment the current value, which can
be a positive or a negative number. Specifying a negative number
for I ncr enent By decrements values from the St art W t h value.

M nVal ue Nurber Default: The minimum value of the field data type. The lower
bound of the IDENTITY values that the SG supplies.

MaxVal ue Nurber Default: The maximum value of the field data type. The upper

bound of the IDENTITY values that the SG supplies. If you do not
specify this attribute, SG uses the maximum value of the field
data type.

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix B-6 of B-20

ORACLE Appendix B
CREATE TABLE

Attribute Type Default Value and Description

Cache Long Default: 1000 The number of values stored in cache on the client
to use for the next IDENTITY value. When the set of values is
exhausted, the SG requests another set to store in the local
cache (unless you specify the Cycl e attribute).

Cycle | NoCycle Bool ean Default: NoCycl e Determines whether to reuse the set of stored
values in cache. For example, if the cache stores 1024 integers
for the IDENTITY column, and you specify Cycl e, when the
IDENTITY value reaches 1023, the next row value is 0001. If you
do not specify Cycl e, Oracle NoSQL Database guarantees that
each IDENTITY value in the column is unique, but not
necessarily sequential.

For example:

CREATE Table T (id | NTEGER GENERATED ALWAYS AS | DENTI TY
(START WTH 2 | NCREMENT BY 2 MAXVALUE 200),

nane STRI NG

PRI MARY KEY (id));

CREATE Tabl e T _DEFAULT (i d LONG GENERATED BY DEFAULT AS | DENTITY
(START WTH 1 | NCREMENT BY 1 CYCLE CACHE 200),

account _id | NTECER

nane STRI NG

PRI MARY KEY (account _id));

UUID

You can define one UUID field per table. UUID is a subtype of the STRING data type. The
UUID column can be defined as GENERATED BY DEFAULT. The system then automatically
generates a value for the UUID column if you do not supply a value for it.

For example :

CREATE TABLE nyTable (id STRING AS UUI D, name STRING, PRI MARY KEY (id));

In the above example, the id column has no "GENERATED BY DEFAULT" defined, therefore,
whenever you insert a new row, you need to explicitly specify a value for the id column.

MR_COUNTER

In a multi-region table, you can create an MR_COUNTER datatype. MR_COUNTER datatype
ensures that though data modifications can happen simultaneously on different regions, the
data can always be merged into a consistent state. This merge is performed automatically by
MR_COUNTER datatype, without requiring any special conflict resolution code or user
intervention. You can also use the MR_COUNTER data type in a schema-less JSON field.

Example 1:

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix B-7 of B-20

ORACLE

NOT NULL

USING TTL

Appendix B
CREATE TABLE

In the below example, you create a PN counter data type in two regions DEN and LON.

CREATE Tabl e nyTabl e(nane STRING
count | NTEGER AS MR_COUNTER,
PRI MARY KEY(nane)) | N REG ONS DEN, LON;

In the above example, while inserting data into the table, the system initially inserts the default
value (0) when you either give the "DEFAULT" keyword or skip the column name in the
INSERT clause.

Example 2:

Create a JSON MR_COUNTER data type in a multi-region table.
CREATE TABLE denpJSONMR(nanme STRI NG,

j sonWt hCounter JSON(counter as | NTEGER MR_COUNTER,

person. count as LONG MR _COUNTER),
PRI MARY KEY(nanme)) |N REG ONS FRA, LON,

NOT NULL indicates that the field cannot be NULL. This constraint requires that you also specify
a DEFAULT value. Order is unimportant for these constraints. For example:

id I NTEGER NOT NULL DEFAULT -1,
description STRI NG DEFAULT "NONE' NOT NULL

USI NG TTL is an optional statement that defines a default time-to-live value for a table's rows.
See Using Time to Live for information on TTL.

If specified, this statement must provide a tt/ value, which is an integer greater than or equal to
0, followed by a space, followed by time unit designation which is either hours or days. For
example:

USING TTL 5 days

If 0 is specified, then either days or hour s can be used. A value of 0 causes table rows to have
no expiration time. Note that 0 is the default if a default TTL has never been applied to a table
schema. However, if you previously applied a default TTL to a table schema, and then want to
turn it off, use 0 days or 0 hours.

USING TTL 0 days

Be aware that if you altering an existing table, you can not both add/drop a field and alter the
default TTL value for the field using the same ALTER TABLE statement. These two operations
must be performed using separate statements.

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix B-8 of B-20

ORACLE Appendix B
CREATE TABLE

Table Creation Examples

The following are provided to illustrate the concepts described above.

CREATE TABLE users
COWENT "This coment applies to the table itself" (
id | NTECER,
firstName STRING
| ast Name STRI NG,
age | NTECGER,
PRI MARY KEY (i d),

CREATE TABLE tenporary
COWENT "These rows expire after 3 days" (
sku STRING
id STRING
price FLOAT,
count | NTECGER,
PRI MARY KEY (sku),
) USING TTL 3 days

CREATE TABLE Users
COWENT "This is an MR table"(
id | NTECER,
firstName STRING
| ast Name STRI NG,
age | NTECGER,
primry key (id)
) IN REG ONS us_east, us_west;

CREATE TABLE usersNold (
firstName STRING
| ast Name STRI NG COVWENT "“This comment applies to this field only",
age | NTECGER,
ssn STRING NOT NULL DEFAULT "xxx-yy-zzzz",
PRI MARY KEY (SHARD(| ast Nane), firstNane)

CREATE TABLE users. address (
street Number | NTECGER,
streetName STRING, // this coment is ignored by the DDL parser
city STRING
[* this coment is ignored */
zip I NTEGER
addr Type ENUM (hone, work, other),

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix B-9 of B-20

ORACLE Appendix B
Modify Table Definitions

PRI MARY KEY (addr Type)
)

CREATE TABLE conpl ex
COWENT "this coment goes into the table nmetadata" (
id I NTEGER,
PRI MARY KEY (id), # this comrent is just syntax
nest edVap MAP(RECORD(m MAP(FLOAT), a ARRAY(RECORD(age | NTEGER)))),
address RECORD (street |NTEGER, streetName STRING city STRING \
zi p I NTEGER COWENT "zip comrent"),
friends MAP (STRING),
float Array ARRAY (FLOAT),
aFi xedBi nary Bl NARY(5),
days ENUM non, tue, wed, thur, fri, sat, sun) NOT NULL DEFAULT tue

CREATE TABLE nyJSON (
recordl D | NTEGER,
j sonData JSON,
PRI MARY KEY (recordl D)

Modify Table Definitions

Use ALTER TABLE statements to either add new fields to a table definition, or delete a currently
existing field definition. You can also use an ALTER TABLE statement to change the default
Time-to-Live (TTL) value for a table, and to add an IDENTITY column to a table.

ALTER TABLE ADD field

To add a field to an existing table, use the ADD statement:

ALTER TABLE tabl e-nane (ADD fiel d-definition)

See Field Definitions for a description of what should appear in field-definitions, above. For
example:

ALTER TABLE Users (ADD age | NTEGER)

You can also add fields to nested records. For example, if you have the following table
definition:

CREATE TABLE u (id I NTEGER,
info record(firstName String)),
PRI MARY KEY(id))

then you can add a field to the nested record by using dot notation to identify the nested table,
like this:

ALTER TABLE u(ADD info.lastName STRING

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix B-10 of B-20

ORACLE Appendix B
Modify Table Definitions

ALTER TABLE DROP Option

To delete a field from an existing table, use the DROP option:

ALTER TABLE tabl e-nane (DROP fiel d-nane)

For example, to drop the age field from the User s table:

ALTER TABLE Users (DROP age)

® Note

You cannot drop a field if it is the primary key, or if it participates in an index.

You can also us the ALTER TABLE MODI FY FI ELD clause to add, drop, or modify an IDENTITY
column in a table.

ALTER TABLE USING TTL

To change the default Time-to-Live (TTL) value for an existing table, use the USI NG TTL
statement:

ALTER TABLE tabl e-name USING TTL ttl

For example:

ALTER TABLE Users USING TTL 4 days

In case of MR Tables, you can not use the USI NG TTL clause along with the | N REG ONS clause.
That is, you can not alter an MR table's TTL value and regions in a single statement.

For more information on the USI NG TTL statement, see USING TTL.

ALTER TABLE ADD REGIONS

The add regi ons clause lets you link an existing multi-region table (MR Table) with new
regions in a multi-region Oracle NoSQL Database environment.

The add regi ons clause is used in expanding MR Tables to new regions. See Use Case 2:
Expand a Multi-Region Table in the Administrator's Guide.

To add a region to an existing MR Table, use the ADD REG ONS option:

ALTER TABLE <t abl e name> ADD REG ONS <coma separated |ist of regions>

See Add New Region to Existing Regions for the example code.

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix B-11 of B-20

ORACLE

Appendix B
DROP TABLE

ALTER TABLE DROP REGIONS

The drop regions clause lets you disconnect an existing multi-region table (MR Table) from a
participating region in a multi-region Oracle NoSQL Database environment.

The drop regi ons clause is used in contracting MR Tables to fewer regions. See Use Case 3:
Contract a Multi-Region Table in the Administrator's Guide.

To drop a region from an MR Table, use the DROP REG ONS option:

ALTER TABLE <t abl e name> DROP REG ONS <comma separated |ist of regions>

See Alter the MR Table to Drop Regions for the example code.

DROP TABLE

To delete a table definition, use the DROP TABLE statement:

DROP TABLE [IF EXI STS] tabl e-nane

where:

* | F EXI STSis optional. If you use this option and the specified table does not exist, the
system returns a message:

sql-> drop table if exists foo;
Statenent did not require execution

If you do not specify | F EXI STS, and the table does not currently exist, the DROP
statement returns as follows:

sqgl -> drop table foo;

Error handling comand drop table foo:

Error: User error in query: DROP TABLE failed for table foo:
Tabl e does not exist: foo

If you specify | F EXI STS, and the table exists, the DROP statement executes successfully:

sql-> create table foo (first string, second integer, primry key
(second));

Statenent conpl eted successfully

sql-> drop table if exists foo;

Statenent conpl eted successfully

* table-name is the name of the table you want to drop.

As soon as you execute the DROP TABLE statement, users can no longer access the deleted
table or its data. Deleting all of the table data occurs asynchronously in the background after
you execute the DROP TABLE statement.

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix B-12 of B-20

ORACLE Appendix B
CREATE INDEX

If you choose to drop an MR Table in a particular region, it still continues to remain an MR
Table in the other participating regions. In a case where you want to drop a particular MR Table
from multiple regions, you must execute the DROP TABLE statement in each region separately.

@® Note

In a case where an MR Table is dropped in all remote regions but still exists in local
region, it still continues to be an MR Table linked with a single region. Such an MR
Table with a single region can be expanded to more regions in future. That is, you can
add new regions to this table in future, as needed.

If the table to drop has child tables, you must drop those first. For example, if you have these
tables:

* myTable
* myTable.childTablel
* myTable.childTable2

You must first drop nyTabl e. chi | dTabl el and nyTabl e. chi | dTabl e2 before you can drop the
parent nyTabl e. If you try to drop the parent, the statement returns an error.

CREATE INDEX

To add an index definition to the store, use a CREATE | NDEX statement. It can be used to create
simple indexes and multi-key indexes. It can also be used to create JSON indexes.

Indexable Field Types

Fields can be indexed only if they are declared to be one of the following types. For all complex
types (arrays, maps, and records), the field can be indexed if the ultimate target of the index is

a scalar datatype. So a complex type that contains a hested complex type (such as an array of
records, for example) can be indexed if the index's target is a scalar datatype contained by the

embedded record.

* Integer
* Long

* Number
* Float

* Double
* Json

Note that there are some differences and restrictions on indexing Json data versus other
data types. See JSON Indexes for more information.

« String
e Enum
* Array

In the case of arrays, the field can be indexed only if the array contains values that are of
one of the other indexable scalar types. For example, you can create an index on an array
of Integers. You can also create an index on a specific record in an array of records. Only

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix B-13 of B-20

ORACLE

Appendix B
CREATE INDEX

one array can participate in an index, otherwise the size of the index can grow
exponentially because there is an index entry for each array entry.

Maps

As is the case with Arrays, you can index a map if the map contains scalar types, or if the
map contains a record that contains scalar types.

Records

Like Arrays and Maps, you can index fields in an embedded record if the field contains
scalar data.

Simple Indexes

An index is simple if it does not index any maps or arrays. To create a simple index:

CREATE I NDEX [I F NOT EXI STS] index-name ON table-nane (path_list)

where:

I F NOT EXI STS is optional, and it causes the CREATE | NDEX statement to be ignored if an
index by that name currently exists. If this phrase is not specified, and an index using the
specified name does currently exist, then the CREATE | NDEX statement will fail with an error.

index-name is the name of the index you want to create.
table-name is the name of the table that you want to index.

path_list is a comma-separated list of one or more name_paths. A name_path refers to an
element of a table. Normally these are schema fields — that is, field names that appear in
the CREATE TABLE expression used to create the associated table.

However, if the table contains a record, then the name_path may be record keys that use
dot-notation to identify a record field. For example:

CREATE TABLE exanpl e (
id I NTECER,
myRecord RECORD(field_one STRING field_two STRING,
PRI MARY KEY (i d)

An index can then be created on field_one by using the name_path of
myRecord. fiel d_one. See Indexing Embedded Records for a more detailed explanation of
indexing records.

For example, if table User s has a field called | ast Nane, then you can index that field with the
following statement:

CREATE | NDEX surnamel ndex ON Users (I ast Name)

Note that depending on the amount of data in your store, creating indexes can take a long
time. This is because index creation requires Oracle NoSQL Database to examine all the data
in the store.

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix B-14 of B-20

ORACLE Appendix B
CREATE INDEX

Multi-Key Indexes

Multi-key indexes are used to index all the elements of an array. They are also used to index all
of the elements and/or values of a map.

For each table row, a multi-key index contains as many entries as the number of elements/
entries in the array/map that is being indexed (although duplicate entries are not represented in
the index). To avoid an explosion in the number of index entries, only one array/map may be
contained in a single multi-key index.

To create a multi-key index, use one of the following forms:

CREATE I NDEX [I F NOT EXI STS] index-name ON tabl e-nanme (nane-path. keys())

or

CREATE | NDEX [I F NOT EXI STS] index-name ON tabl e-name (nane-path. val ues())

or

CREATE I NDEX [I F NOT EXI STS] index-name ON tabl e-nane \
(name- pat h. keys(), name- pat h. val ues())

or

CREATE I NDEX [I F NOT EXI STS] index-name ON tabl e-name (nane-path[])

The syntax shown, above, is identical to that described in Simple Indexes, with the following
additions:

e . keys()

The index is created on the keys in a map. If used, name-path must be a map.
e .values()

The index is created on the values in a map. If used, name-path must be a map.
« 1l

The index is created on an array. If used, name-path must be array.

For each of the previously identified forms, a comma-seperated list of name-paths may be
provided. Some restrictions apply.

Multi-Key Index Restrictions

The following restrictions apply to multi-key indexes:

e There is at least one name-path that uses a multi-key step (. keys(), . val ues(), or[]).
Any such path is called a multi-key path, and the associated index field a multi-key field.
The index definition may contain more than one multi-key path, but all multi-key paths must
use the same name-path before their multi-key step.

* Any non-multi-key paths must be simple paths.

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix B-15 of B-20

ORACLE Appendix B
CREATE INDEX

e The combined path specified for the index must contain at least one map and/or array.
These must contain indexable atomic items, or record items, or map items. That is, an
index of an array of arrays is not supported, nor is an index of maps containing arrays.

For example, given the following table definition:

create table Foo (

id I NTEGER,

conpl ex1 RECORD(mapFi el d MAP(ARRAY(MAP(| NTEGER)))),

conpl ex2 RECORD(matrix ARRAY(ARRAY(RECORD(a LONG, b LONG)))
primry key(id)

)

The path expression conpl ex2. matri x[] is not valid, because the result of this path
expression is a sequence of arrays, not atomic items. Neither is conpl ex2. matrix[][].a
valid, because you cannot index arrays inside other arrays (in fact this path will raise a
syntax error, because the syntax allows at most one [] per index path).

On the other hand, the path conpl ex1. mapFi el d. someKey[]. someQ her Key is valid. In this
case, the path conpl ex1. mapFi el d. someKey specifies an array containing maps, which is
valid. Notice that in this index path, someKey and someQt her Key are map-entry keys. So,
although we are indexing arrays that are contained inside maps, and the arrays being
indexed contain maps, the path is valid, because it is selecting specific entries from the
map, rather than indexing all the map entries in addition to all the array entries.

* If the index is indexing an array-valued field:
— If the array contains indexable atomic items:

* There must be a single multi-key index path of the form M] (without any
name_path following after the []). Again, this implies that you cannot index more
than one array in the same index.

* For each table row (R), a number of index entries are created as follows:
The simple index paths (if any) are computed on R.

Then, M[] is computed (as if it were a query path expression), returning either
NULL, or EMPTY, or all the elements of the array returned by M.

Finally, for each value (V) returned by M[], an index entry is created whose field
values are V and the values of the simple paths.

* Any duplicate index entries (having equal field values and the same primary key)
created by the above process are eliminated.

— If the array contains records or maps:

* All of the multi-key paths must be of the form M] . name_pat h. Each name_path
appearing after M[] in the multi-key index path must return at most one indexable
atomic item.

* For each table row (R), a number of index entries are created as follows:
The simple index paths (if any) are computed on R.

Then, M[] is computed (as if it were a query path expression), returning either
NULL, or EMPTY, or all the elements of the array returned by M.

Next, for each value (V) returned by M[], one index entry is created as follows:

The elements contained in each V are computed. This returns a single indexable
atomic item (which may be the NULL or EMPTY item). An index entry is created

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix B-16 of B-20

ORACLE

Appendix B
CREATE INDEX

for each of these, whose field values are the values of the simple index paths plus
the values found for element contained in V.

* Any duplicate index entries (having equal field values and the same primary key)
created by the above process are eliminated.

— Ifthe index is indexing a map-valued field, the index may be indexing only map keys,
or only map elements, or both keys and elements. In all cases, the definition of map
indexes can be given in terms of array indexes, by viewing maps as arrays containing
records with 2 fields: a field with name “key” and value a map key, and a field named
“element” and value the corresponding map element (that is, MAP(T) is viewed as
ARRAY(RECORD(key STRING, element T))). Then, the 2 valid kinds for map indexes
are:

1. A single multi-key index path using a keys() step. Using the array view of maps,
M.keys() is equivalent to M[].key.

2. One or more multi-key index paths, all using a .values() step. If Ri is an value
contained in the map, then each of these has the form M.values().Ri. Using the
array view of maps, each M.values().Ri path is equivalent to M[].element.Ri.

JSON Indexes

An index is a JSON index if it indexes at least one field that is contained inside JSON data.

Because JSON is schema-less, it is possible for JSON data to differ in type across table rows.

However, when indexing JSON data, the data type must be consistent across table rows or the
index creation will fail. Further, once or more JSON indexes have been created, any attempt to
write data of an incorrect type will fail.

Indexing JSON data and working with JSON indexes is performed in much the same way as
indexing non-JSON data. To create the index, specify a path to the JSON field using dot
notation.

When creating JSON indexes, you must specify the data's type, using the AS keyword. The
data type must be atomic, and cannot be a float. That is, only integer, long, double, number,
string, and boolean are supported types for JSON indexes. Note that arrays and maps can be
indexed so long as they contain these atomic values.

CREATE | NDEX [IF NOT EXI STS] index-nanme ON tabl e-nanme \
(JSONRow. JSONFi el d AS data_type)

When creating a multi-key index on a JSON map, a type must not be given for the . keys()
expression because the type will always be St ri ng. However, a type declaration is required for
the . val ues() expression. Beyond that, all the constraints described in Multi-Key Index
Restrictions also apply to a JSON multi-keyed index.

CREATE | NDEX [IF NOT EXI STS] index-nanme ON tabl e-nane \

(JSONRow. JSONFi el d. keys(), \
JSONRow. JSONFi el d. val ues() AS data_type)

For an example of using JSON indexes, see Indexing JSON Fields.

For additional examples of using JSON indexes, see Indexing JSON Data in the SQL
Beginner's Guide.

Java Direct Driver Developer's Guide

E85378-35

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix B-17 of B-20

ORACLE Appendix B
CREATE FULL TEXT INDEX

CREATE FULL TEXT INDEX

To create a text index on that table that indexes the category and txt columns, use CREATE
FULLTEXT | NDEX statement:

CREATE FULLTEXT INDEX [if not exists] <index-nane> ON <tabl e-name>
(<field-name> [<mapping-spec>], ...)
[ES_SHARDS = <n>] [ES_REPLICAS = <n>]

For example:

kv-> execute ' CREATE FULLTEXT | NDEX Jokel ndex
ON Joke (category, txt)'
Statenent conpl eted successfully

While creating index, CREATE FULLTEXT | NDEX statement uses the OVERRI DE flag, which allows
to delete any index existing in Elasticsearch by the same name as would be created by the
command.

CREATE FULLTEXT INDEX [IF NOT EXI STS] index_nanme ON table_nane
(field_nane [{mapping_spec}] [, field_name [{mapping_spec}]]...)
[ES_SHARDS = val ue] [ES_REPLI CAS = val ue]
[OVERRI DE] [COMMENT comment |

For example:

CREATE | NDEX Jokel ndex on Joke (category, txt) OVERRI DE

For more information, see Creating Full Text Index and Mapping a Full Text Index Field to an
Elasticsearch Field in the Integrations Guide.

DROP INDEX

To delete an index definition from the store, use a DROP | NDEX statement. Its form when
deleting an index is:

DROP | NDEX [F EXI STS] index-nanme ON tabl e- nane

where:

e | F EXI STSis optional, and it causes the DROP | NDEX statement to be ignored if an index by
that name does not exist. If this phrase is not specified, and an index using the specified
name does not exist, then the DROP | NDEX statement will fail with an error.

e index-name is the name of the index you want to drop.

* table-name is the name of the table containing the index you want to delete.

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix B-18 of B-20

ORACLE Appendix B
DESCRIBE AS JSON TABLE

For example, if table User s has an index called sur nanel ndex, then you can delete it using the
following statement:

DROP | NDEX | F EXI STS surnanel ndex ON Users

Use DROP | NDEX on a text index to stop the population of the index from NoSQL Database
shards, and removes the mapping and all related documents from Elasticsearch. See the
following statement:

DROP I NDEX [I F EXI STS] index_nanme ON tabl e_nane

For example:

kv-> execute ' DROP | NDEX Jokel ndex on Joke'
Statenent conpl eted successful ly

While deleting index, you can use the OVERRI DE flag. The DROP | NDEX statement uses the
OVERRI DE flag to enable overriding of the default constraints:

DROP INDEX [IF EXI STS] index_name ON table_nane [OVERRI Df]

For example:

DROP | NDEX Jokel ndex on Joke OVERRI DE

For more information, see Deleting FTI in the Integrations Guide.

DESCRIBE AS JSON TABLE

You can retrieve a JSON representation of a table by using the DESCRI BE AS JSON TABLE
statement:

DESCRI BE AS JSON TABLE table_nane [(field-nane, field-name2, ...)]

or

DESC AS JSON TABLE tabl e name [(field-nane, field-nane2, ...)]

where:

* table_name is the name of the table you want to describe.

» field-name is 0 or more fields defined for the table that you want described. If specified, the
output is limited to just the fields listed here.

For Map and Array fields, use [] to restrict the JSON representation to just the map or
array element.

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix B-19 of B-20

ORACLE Appendix B
DESCRIBE AS JSON INDEX

DESCRIBE AS JSON INDEX

You can retrieve a JSON representation of an index by using the DESCRI BE AS JSON | NDEX
statement:

DESCRI BE AS JSON | NDEX i ndex_nanme ON tabl e _nane

where:

e index_name is the name of the index you want to describe.

e table_name is the name of the table to which the index is applied.

SHOW TABLES

You can retrieve a list of all tables currently defined in the store using the SHOV TABLES
statement:

SHOW [AS JSON] TABLES

where AS JSON is optional and causes the resulting output to be JSON-formatted.

SHOW INDEXES

You can retrieve a list of all indexes currently defined for a table using the SHOW | NDEXES
statement:

SHOW [AS JSON| | NDEXES ON tabl e_nane

where:

e AS JSON is optional and causes the resulting output to be JSON-formatted.

e table_name is the name of the table for which you want to list all the indexes.

Java Direct Driver Developer's Guide
E85378-35 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix B-20 of B-20

Exceptions

Exceptions will be translated into Spring Data Framework exceptions as follows:

Table C-1 Exceptions

Oracle NoSQL Database

Spring Data Framework

oracle.nosql.driver.RetryableException
— oracle.nosql.driver.SecurityInfoNotReadyException

— oracle.nosql.driver.SystemException

— oracle.nosql.driver.TableBusyException

— oracle.nosql.driver. ThrottlingException

— oracle.nosql.driver.OperationThrottlingException
— oracle.nosqgl.driver.ReadThrottlingException

— oracle.nosql.driver.WriteThrottlingException

TransientDataAccessResourc
eException

oracle.nosql.driver.InvalidAuthorizationException
oracle.nosql.driver.UnauthorizedException

PermissionDeniedDataAccess
Exception

oracle.nosql.driver.IndexExistsException
oracle.nosql.driver.IndexNotFoundException
oracle.nosgl.driver.JsonParseException
oracle.nosql.driver.OperationNotSupportedException
oracle.nosql.driver.RequestTimeoutException
oracle.nosql.driver.ResourceExistsException
oracle.nosql.driver.ResourceNotFoundException
oracle.nosql.driver.TableExistsException
oracle.nosql.driver. TableNotFoundException

InvalidDataAccessApiUsageE
xception

oracle.nosql.driver.ResourceLimitException
— oracle.nosql.driver.BatchOperationNumberLimitException

— oracle.nosql.driver.DeploymentException

— oracle.nosql.driver.EvolutionLimitException

— oracle.nosql.driver.IndexLimitException

— oracle.nosql.driver.KeySizeLimitException

— oracle.nosql.driver.RequestSizeLimitException
— oracle.nosql.driver.RowSizeLimitException

— oracle.nosql.driver. TableLimitException
oracle.nosql.driver.TableSizeException

InvalidDataAccessResourceU
sageException

Java Direct Driver Developer's Guide

E85378-35

Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix C-1 of C-1

	Contents
	Preface
	Conventions Used in This Book
	Diversity and Inclusion

	1 Developing for Oracle NoSQL Database
	Configuring Logging
	Obtaining a KVStore Handle
	Using the KVStoreConfig Class

	Using the Authentication APIs
	Configuring SSL
	Identifying the Trust Store
	Setting the SSL Transport Property

	Authentication using a LoginCredentials Instance
	Renewing Expired Login Credentials
	Authentication using Kerberos
	Authentication using Kerberos and JAAS
	Unauthorized Access

	2 Introduction to Oracle KVLite
	Starting KVLite
	Stopping and Restarting KVLite
	Verifying the Installation
	kvlite Utility Command Line Parameter Options

	3 Introducing Oracle NoSQL Database Tables and Indexes
	Defining Tables
	Executing DDL Statements From the Admin CLI
	Supported Table Data Types
	Record Fields
	Defining Child Tables
	Defining Multi-Region Tables
	Using CRDT datatype in a multi-region table
	Add MR_COUNTER datatype in a multi-region table
	Inserting JSON MR_COUNTER Values Programmatically

	Table Evolution

	Using the UUID data type
	Inserting rows into a table with a UUID column
	Updating rows of a table with a UUID column
	Add or Remove a UUID column

	Creating Indexes

	4 Introducing Oracle NoSQL Database Namespaces
	Creating Namespaces
	Granting Authorization Access to Namespaces
	Using and Setting Namespaces
	Showing and Describing Namespaces
	Dropping Namespaces

	5 Primary and Shard Key Design
	Primary Keys
	Composite Keys
	Data Type Limitations
	Partial Primary Keys
	Shard Keys

	Row Data

	6 Writing and Deleting Table Rows
	Write Exceptions
	Writing Rows to a Table in the Store
	Writing Rows to a Child Table
	Writing rows to an IDENTITY column
	Other put Operations

	Bulk Put Operations
	Using Time to Live
	Specifying a TTL Value
	Updating a TTL Value
	Deleting TTL Expiration
	Setting Default Table TTL Values

	Deleting Rows from the Store
	Using multiDelete()

	7 Reading Table Rows
	Read Exceptions
	Retrieving a Single Row
	Retrieve a Child Table

	Using multiGet()
	Iterating over Table Rows
	Specifying Field Ranges
	Iterating with Nested Tables
	Reading Indexes
	Parallel Scans
	Bulk Get Operations

	8 Using Data Types
	Using Arrays
	Using Binary
	Using Enums
	Using Fixed Binary
	Using JSON
	Using Maps
	Using Embedded Records

	9 Indexing Non-Scalar Data Types
	Indexing Arrays
	Indexing JSON Fields
	Indexing Maps
	Indexing by Map Keys
	Indexing by Map Values
	Indexing by a Specific Map Key Name
	Indexing by Map Key and Value

	Indexing Embedded Records

	10 Using Row Versions
	11 Consistency Guarantees
	Specifying Consistency Policies
	Using Simple Consistency
	Using Time-Based Consistency
	Using Version-Based Consistency

	12 Durability Guarantees
	Setting Acknowledgment-Based Durability Policies
	Setting Synchronization-Based Durability Policies
	Setting Durability Guarantees

	13 Executing a Sequence of Operations
	Sequence Errors
	Creating a Sequence
	Executing a Sequence

	14 Introduction to SQL for Oracle NoSQL Database
	Running a simple query
	Using binding variables
	Accessing metadata
	Using a query to update data

	A JSON By Example
	Sample Data
	UpdateJSON
	UpdateJSON.run()
	UpdateJSON.defineTable()
	UpdateJSON.createIndex()
	UpdateJSON.runDDL()
	UpdateJSON.updateTableWithoutQuery()
	UpdateJSON.updateTableWithIndex()
	UpdateJSON.updateTableUsingSQLQuery()
	UpdateJSON.updateZipCode()
	UpdateJSON.loadTable()
	UpdateJSON.displayTable()
	UpdateJSON.displayResult()
	UpdateJSON.parseArgs()

	B Table Data Definition Language Overview
	Name Constraints
	DDL Comments
	CREATE TABLE
	Field Definitions
	Supported Data Types
	Field Constraints
	Integer Serialized Constraints
	COMMENT
	DEFAULT
	IDENTITY
	UUID
	MR_COUNTER
	NOT NULL

	USING TTL
	Table Creation Examples

	Modify Table Definitions
	ALTER TABLE ADD field
	ALTER TABLE DROP Option
	ALTER TABLE USING TTL
	ALTER TABLE ADD REGIONS
	ALTER TABLE DROP REGIONS

	DROP TABLE
	CREATE INDEX
	Indexable Field Types
	Simple Indexes
	Multi-Key Indexes
	Multi-Key Index Restrictions

	JSON Indexes

	CREATE FULL TEXT INDEX
	DROP INDEX
	DESCRIBE AS JSON TABLE
	DESCRIBE AS JSON INDEX
	SHOW TABLES
	SHOW INDEXES

	C Exceptions

