
Oracle® NoSQL Database
Java Direct Driver Developer's Guide

Release 25.3
E85378-35
October 2025

Oracle NoSQL Database Java Direct Driver Developer's Guide, Release 25.3

E85378-35

Copyright © 2011, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Conventions Used in This Book i

Diversity and Inclusion ii

1 Developing for Oracle NoSQL Database

Configuring Logging 2

Obtaining a KVStore Handle 2

Using the KVStoreConfig Class 3

Using the Authentication APIs 3

Configuring SSL 4

Identifying the Trust Store 4

Setting the SSL Transport Property 5

Authentication using a LoginCredentials Instance 5

Renewing Expired Login Credentials 7

Authentication using Kerberos 9

Authentication using Kerberos and JAAS 10

Unauthorized Access 12

2 Introduction to Oracle KVLite

Starting KVLite 1

Stopping and Restarting KVLite 2

Verifying the Installation 2

kvlite Utility Command Line Parameter Options 3

3 Introducing Oracle NoSQL Database Tables and Indexes

Defining Tables 1

Executing DDL Statements From the Admin CLI 3

Supported Table Data Types 3

Record Fields 4

Defining Child Tables 5

Defining Multi-Region Tables 6

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page i of v

Using CRDT datatype in a multi-region table 6

Add MR_COUNTER datatype in a multi-region table 8

Inserting JSON MR_COUNTER Values Programmatically 8

Table Evolution 9

Using the UUID data type 9

Inserting rows into a table with a UUID column 11

Updating rows of a table with a UUID column 12

Add or Remove a UUID column 13

Creating Indexes 14

4 Introducing Oracle NoSQL Database Namespaces

Creating Namespaces 1

Granting Authorization Access to Namespaces 2

Using and Setting Namespaces 5

Showing and Describing Namespaces 6

Dropping Namespaces 7

5 Primary and Shard Key Design

Primary Keys 1

Composite Keys 2

Data Type Limitations 2

Partial Primary Keys 3

Shard Keys 3

Row Data 4

6 Writing and Deleting Table Rows

Write Exceptions 1

Writing Rows to a Table in the Store 1

Writing Rows to a Child Table 3

Writing rows to an IDENTITY column 4

Other put Operations 8

Bulk Put Operations 9

Using Time to Live 12

Specifying a TTL Value 12

Updating a TTL Value 13

Deleting TTL Expiration 14

Setting Default Table TTL Values 14

Deleting Rows from the Store 15

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page ii of v

Using multiDelete() 16

7 Reading Table Rows

Read Exceptions 1

Retrieving a Single Row 2

Retrieve a Child Table 3

Using multiGet() 4

Iterating over Table Rows 6

Specifying Field Ranges 9

Iterating with Nested Tables 11

Reading Indexes 15

Parallel Scans 18

Bulk Get Operations 20

8 Using Data Types

Using Arrays 1

Using Binary 2

Using Enums 3

Using Fixed Binary 4

Using JSON 5

Using Maps 7

Using Embedded Records 8

9 Indexing Non-Scalar Data Types

Indexing Arrays 1

Indexing JSON Fields 2

Indexing Maps 4

Indexing by Map Keys 4

Indexing by Map Values 6

Indexing by a Specific Map Key Name 7

Indexing by Map Key and Value 9

Indexing Embedded Records 11

10

Using Row Versions

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page iii of v

11

Consistency Guarantees

Specifying Consistency Policies 1

Using Simple Consistency 2

Using Time-Based Consistency 3

Using Version-Based Consistency 4

12

Durability Guarantees

Setting Acknowledgment-Based Durability Policies 1

Setting Synchronization-Based Durability Policies 2

Setting Durability Guarantees 3

13

Executing a Sequence of Operations

Sequence Errors 1

Creating a Sequence 1

Executing a Sequence 4

14

Introduction to SQL for Oracle NoSQL Database

Running a simple query 1

Using binding variables 2

Accessing metadata 3

Using a query to update data 3

A JSON By Example

Sample Data A-2

UpdateJSON A-5

UpdateJSON.run() A-6

UpdateJSON.defineTable() A-7

UpdateJSON.createIndex() A-7

UpdateJSON.runDDL() A-8

UpdateJSON.updateTableWithoutQuery() A-8

UpdateJSON.updateTableWithIndex() A-10

UpdateJSON.updateTableUsingSQLQuery() A-11

UpdateJSON.updateZipCode() A-11

UpdateJSON.loadTable() A-12

UpdateJSON.displayTable() A-14

UpdateJSON.displayResult() A-15

UpdateJSON.parseArgs() A-15

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page iv of v

B Table Data Definition Language Overview

Name Constraints B-1

DDL Comments B-2

CREATE TABLE B-2

Field Definitions B-3

Supported Data Types B-4

Field Constraints B-5

Integer Serialized Constraints B-5

COMMENT B-6

DEFAULT B-6

IDENTITY B-6

UUID B-7

MR_COUNTER B-7

NOT NULL B-8

USING TTL B-8

Table Creation Examples B-9

Modify Table Definitions B-10

ALTER TABLE ADD field B-10

ALTER TABLE DROP Option B-11

ALTER TABLE USING TTL B-11

ALTER TABLE ADD REGIONS B-11

ALTER TABLE DROP REGIONS B-12

DROP TABLE B-12

CREATE INDEX B-13

Indexable Field Types B-13

Simple Indexes B-14

Multi-Key Indexes B-15

Multi-Key Index Restrictions B-15

JSON Indexes B-17

CREATE FULL TEXT INDEX B-18

DROP INDEX B-18

DESCRIBE AS JSON TABLE B-19

DESCRIBE AS JSON INDEX B-20

SHOW TABLES B-20

SHOW INDEXES B-20

C Exceptions

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page v of v

Preface

There are two different APIs that can be used to write Oracle NoSQL Database applications:
the original Key/Value API, and the Table API. In addition, the Key/Value API is available in
Java and C. The Table API is available in Java, C, node.js (Javascript), Python, and C#. This
document describes how to write Oracle NoSQL Database applications using the Table API in
Java.

Note

Most application developers should use one of the Table drivers because the Table
API offers important features not found in the Key/Value API. The Key/Value API will
no longer be enhanced in future releases of Oracle NoSQL Database.

This document provides the concepts surrounding Oracle NoSQL Database, data schema
considerations, as well as introductory programming examples.

This document is aimed at the software engineer responsible for writing an Oracle NoSQL
Database application.

Conventions Used in This Book
The following typographical conventions are used within in this manual:

Class names are represented in monospaced font, as are method names. For example: "The
KVStoreConfig() constructor returns a KVStoreConfig class object."

Variable or non-literal text is presented in italics. For example: "Go to your KVHOME directory."

Program examples are displayed in a monospaced font on a shaded background. For
example:

import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;

...

KVStoreConfig kconfig = new KVStoreConfig("exampleStore",
 "node1.example.org:5088, node2.example.org:4129");
KVStore kvstore = null;

In some situations, programming examples are updated from one chapter to the next. When
this occurs, the new code is presented in monospaced bold font. For example:

import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page i of ii

import oracle.kv.KVStoreFactory;

...

KVStoreConfig kconfig = new KVStoreConfig("exampleStore",
 "node1.example.org:5088, node2.example.org:4129");
KVStore kvstore = null;

try {
 kvstore = KVStoreFactory.getStore(kconfig);
} catch (FaultException fe) {
 // Some internal error occurred. Either abort your application
 // or retry the operation.
}

Note

Finally, notes of special interest are represented using a note block such as this.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page ii of ii

1
Developing for Oracle NoSQL Database

You access the data in the Oracle NoSQL Database KVStore using Java drivers that are
provided for the product. In addition to the Java drivers, several other drivers are also
available. They are:

1. Java Key/Value Driver

2. C Table Driver

3. C Key/Value Driver

4. Python Table Driver

5. node.js Table Driver

6. C# Table Driver

Note

New users should use one of the Table drivers unless they require a feature only
available in the Key/Value API (such as Large Object support). The Key/Value API will
no longer be enhanced in future releases of Oracle NoSQL Database.

The Java and C Key/Value driver provides access to store data using key/value pairs. All other
drivers provide access using tables. Also, the Java Key/Value driver provides Large Object
(LOB) support that as of this release does not appear in the other drivers. However, users of
the Java Tables driver can access the LOB API, even though the LOB API is accessed using
the Key/Value interface.

Finally, the Java driver provides access to SQL for Oracle NoSQL Database, so you can run
queries. For more information see Introduction to SQL for Oracle NoSQL Database.

Users of the Table drivers are able to create and use secondary indexing. The Java and C Key/
Value drivers do not provide this support.

To work, the C Table, Python Table, node.js Table, and C# Table drivers require use of a proxy
server which translates network activity between the driver and the Oracle NoSQL Database
store. The proxy is written in Java, and can run on any machine that is network accessible by
both your client code and the Oracle NoSQL Database store. However, for performance and
security reasons, Oracle recommends that you run the proxy on the same local host as your
driver, and that the proxy be used in a 1:1 configuration with your drivers (that is, each instance
of the proxy should be used with just a single driver instance).

Regardless of the driver you decide to use, the provided classes and methods allow you to
write data to the store, retrieve it, and delete it. You use these APIs to define consistency and
durability guarantees. It is also possible to execute a sequence of store operations atomically
so that all the operations succeed, or none of them do.

The rest of this book introduces the Java APIs that you use to access the store, and the
concepts that go along with them.

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 1 of 13

Configuring Logging
The Oracle NoSQL Database Java drivers use standard Java logging to capture debugging
output using loggers in the "oracle.kv" hierarchy. These loggers are configured to use a
oracle.kv.util.ConsoleHandler class, and to ignore any handlers for loggers above
oracle.kv in the logger hierarchy. As a result, logging will be performed to the console at
whatever logging levels are configured for the various loggers and for the
oracle.kv.util.ConsoleHandler class. You can adjust what console output appears for these
loggers by modifying the logging levels for the loggers and the logging handler in their
application's logging configuration file.

You can also configure additional logging handlers for all loggers used by the Java driver by
specifying handlers for the oracle.kv logger.

For example, if you want to enable file output for Java driver logging at the INFO level or
above, add the following to your application's configuration file (that is, the file you identify
using the java.util.logging.config.file system property):

 # Set the logging level for the FileHandler logging handler to INFO
java.util.logging.FileHandler.level=INFO

Set the logging level for all Java driver loggers to INFO
oracle.kv.level=INFO

Specify that Java driver loggers should supply log output to the
standard file handler
oracle.kv.handlers=java.util.logging.FileHandler

For information on managing logging in a Java application, see the java.util.logging
Javadoc.

Obtaining a KVStore Handle
To acccess the store for any reason, you must first obtain a KVStore handle, using the
KVStoreFactory.getStore() method.

When you get a KVStore handle, provide a KVStoreConfig object to the handle. The
configuration object identifies important properties about the store that you are accessing. This
section describes the KVStoreConfig class. Minimally, use this class to identify the following
information:

• The store name. The name you provide must be identical to the name used when you
installed the store.

• The network contact information for one or more helper hosts. Such contact information
consists of the network name and port information for hosts currently belonging to the
store. Identify multiple hosts using an array of strings, from one element to several. We
recommend using multiple hosts, since any host can be down temporarily, and other hosts
are then useful.

In addition to the KVStoreConfig class object, you can also provide a PasswordCredentials
class object to KVStoreFactory.getStore(). Do this if you are using a store configured to
require authentication, which is recommended. See Using the Authentication APIs for more
information.

Chapter 1
Configuring Logging

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 2 of 13

For a store that does not require authentication, get a store handle like this:

package kvstore.basicExample;

import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;

...

String[] hhosts = {"n1.example.org:5088", "n2.example.org:4129"};
KVStoreConfig kconfig = new KVStoreConfig("exampleStore", hhosts);
KVStore kvstore = KVStoreFactory.getStore(kconfig);

Using the KVStoreConfig Class
Use the KVStoreConfig class to describe properties about a KVStore handle. Most of the
properties are optional, and those that are required are provided when you construct a class
instance.

The properties that you can provide using KVStoreConfig are as follows:

• Consistency

Consistency is a property describing how likely it is that a record read from a replica node
is identical to the same record stored on a master node. For more information, see
Consistency Guarantees.

• Durability

Durability is a property describing how likely it is that a write operation performed on the
master node will not be lost if the master node is lost or is shut down abnormally. For more
information, see Durability Guarantees.

• Helper Hosts

Helper hosts are hostname and port pairs that identify how to contact helper nodes within
the store. Use an array of strings to identify multiple helper hosts . Typically, you will obtain
these hostname and port pairs from the store's deployer or administrator. For example:

String[] hhosts = {"n1.example.org:3333", "n2.example.org:3333"};

• Request Timeout

Configures the amount of time the KVStore handle will wait for an operation to complete
before it times out.

• Store name

Identifies the name of the store.

• Password credentials and optionally a reauthentication handler

See the next section on authentication.

Using the Authentication APIs
You can install Oracle NoSQL Database so that your client code does not have to authenticate
to the store. (For the sake of clarity, most of the examples in this book do not perform
authentication.) However, if you want your store to operate securely, you can require

Chapter 1
Using the Authentication APIs

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 3 of 13

authentication. Requiring authentication incurs a performance cost, due to the overhead of
using SSL and authentication. While we recommend that your production store requires
authentication over SSL, some sites that are particularly performance sensitive can forgo that
level of security.

Authentication involves sending username/password credentials to the store at the time a store
handle is acquired.

If you configure your store to support authentication, it is automatically configured to
communicate with clients using SSL. The use of SSL ensures privacy of the authentication and
other sensitive information. To use SSL, you must install SSL certificates on the machines
where your client code runs, to validate that the store being accessed is trustworthy.

Be aware that you can authenticate to the store in several different ways. You can use
Kerberos, or you can specify a LoginCredentials implementation instance to
KVStoreFactory.getStore(). (Oracle NoSQL Database provides the PasswordCredentials
class as a LoginCredentials implementation.) If you use Kerberos, you can either use security
properties that Oracle NoSQL Database understands to provide necessary Kerberos
information, or you can use the Java Authentication and Authorization Service (JAAS)
programming framework.

For information on using LoginCredentials, see Authentication using a LoginCredentials
Instance. For information on using Kerberos, see Authentication using Kerberos. For
information on using JAAS with Kerberos, see Authentication using Kerberos and JAAS.

For information on configuring a store for authentication, see Configuring Authentication in the
Security Guide.

Configuring SSL
If you are using a secure store, then all communications between your client code and the
store is transported over SSL, including authentication credentials. You must therefore
configure your client code to use SSL. To do this, you identify where the SSL certificate data is,
and you also separately indicate that the SSL transport is to be used.

Identifying the Trust Store
When an Oracle NoSQL Database store is configured to use the SSL transport, a series of
security files are generated using a security configuration tool. One of these files is the
client.trust file, which must be copied to any machine running Oracle NoSQL Database
client code.

For information on using the security configuration tool, see Security Configuration in the
Security Guide.

Your code must be told where the client.trust file can be found because it contains the
certificates necessary to establish an SSL connection with the store. You indicate where this
file is physically located on your machine using the oracle.kv.ssl.trustStore property.
There are two ways to set this property:

1. Identify the location of the trust store by using a Properties object to set the
oracle.kv.ssl.trustStore property. You then use
KVStoreConfig.setSecurityProperties() to pass the Properties object to your KVStore
handle.

When you use this method, you use
KVSecurityConstants.SSL_TRUSTSTORE_FILE_PROPERTY as the property name.

Chapter 1
Using the Authentication APIs

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 4 of 13

2. Use the oracle.kv.security property to refer to a properties file, such as the
client.trust file. In that file, set the oracle.kv.ssl.trustStore property.

Setting the SSL Transport Property
In addition to identifying the location of the client.trust file, you must also tell your client
code to use the SSL transport. You do this by setting the oracle.kv.transport property. There
are two ways to set this property:

1. Identify the location of the trust store by using a Properties object to set the
oracle.kv.transport property. You then use KVStoreConfig.setSecurityProperties()
to pass the Properties object to your KVStore handle.

When you use this method, you use KVSecurityConstants.TRANSPORT_PROPERTY as the
property name, and KVSecurityConstants.SSL_TRANSPORT_NAME as the property value.

2. Use the oracle.kv.security property to refer to a properties file, such as the
client.trust file. In that file, set the oracle.kv.transport property.

Authentication using a LoginCredentials Instance
You can authenticate to the store by specifying a LoginCredentials implementation instance
to KVStoreFactory.getStore(). Oracle NoSQL Database provides the PasswordCredentials
class as a LoginCredentials implementation. If your store requires SSL to be used as the
transport, configure that prior to performing the authentication. (See the previous section for
details.)

Your code should be prepared to handle a failed authentication attempt.
KVStoreFactory.getStore() will throw AuthenticationFailure in the event of a failed
authentication attempt. You can catch that exception and handle the problem there.

The following is a simple example of obtaining a store handle for a secured store. The SSL
transport is used in this example.

import java.util.Properties;

import oracle.kv.AuthenticationFailure;
import oracle.kv.PasswordCredentials;
import oracle.kv.KVSecurityConstants;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;

KVStore store = null;
try {
 /*
 * storeName, hostName, port, username, and password are all
 * strings that would come from somewhere else in your
 * application.
 */
 KVStoreConfig kconfig =
 new KVStoreConfig(storeName, hostName + ":" + port);

 /* Set the required security properties */
 Properties secProps = new Properties();
 secProps.setProperty(KVSecurityConstants.TRANSPORT_PROPERTY,

Chapter 1
Using the Authentication APIs

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 5 of 13

 KVSecurityConstants.SSL_TRANSPORT_NAME);
 secProps.setProperty
 (KVSecurityConstants.SSL_TRUSTSTORE_FILE_PROPERTY,
 "/home/kv/client.trust");
 kconfig.setSecurityProperties(secProps);

 store =
 KVStoreFactory.getStore(kconfig,
 new PasswordCredentials(username,
 password.toCharArray()),
 null /* ReauthenticateHandler */);
} catch (AuthenticationFailureException afe) {
 /*
 * Could potentially retry the login, possibly with different
 * credentials, but in this simple example, we just fail the
 * attempt.
 */
 System.out.println("authentication failed!");
 return;
 }

Another way to handle the login is to place your authentication credentials in a flat text file that
contains all the necessary properties for authentication. In order for this to work, a password
store must have been configured for your Oracle NoSQL Database store. See the Security
Guide for information on setting up password stores.

For example, suppose your store has been configured to use a password file password store
and it is contained in a file called login.pwd. In that case, you might create a login properties
file called login.txt that looks like this:

oracle.kv.auth.username=clientUID1
oracle.kv.auth.pwdfile.file=/home/nosql/login.pwd
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=/home/nosql/client.trust

In this case, you can perform authentication in the following way:

import oracle.kv.AuthenticationFailure;
import oracle.kv.PasswordCredentials;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;

/* the client gets login credentials from the login.txt file */
/* can be set on command line as well */
System.setProperty("oracle.kv.security", "/home/nosql/login.txt");

KVStore store = null;
try {
 /*
 * storeName, hostName, port are all strings that would come
 * from somewhere else in your application.
 *
 * Notice that we do not pass in any login credentials.
 * All of that information comes from login.txt
 */

Chapter 1
Using the Authentication APIs

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 6 of 13

 myStoreHandle =
 KVStoreFactory.getStore(
 new KVStoreConfig(storeName, hostName + ":" + port))
} catch (AuthenticationFailureException afe) {
 /*
 * Could potentially retry the login, possibly with different
 * credentials, but in this simple example, we just fail the
 * attempt.
 */
 System.out.println("authentication failed!")
 return;
}

Renewing Expired Login Credentials
It is possible for an authentication session to expire. This can happen for several reasons. One
is that the store's administrator has configured the store to not allow session extension and the
session has timed out. These properties are configured using sessionExtendAllow and
sessionTimeout.

Reauthentication might also be required if some kind of a major disruption has occurred to the
store which caused the authentication session to become invalidated. This is a pathological
condition which you should not see with any kind of frequency in a production store. Stores
which are installed in labs might exhibit this condition more, especially if the stores are
frequently restarted.

An application can encounter an expired authentication session at any point in its lifetime, so
robust code that must remain running should always be written to respond to authentication
session expirations.

When an authentication session expires, by default the method which is attempting store
access will throw AuthenticationRequiredException. Upon seeing this, your code needs to
reauthenticate to the store, and then retry the failed operation.

You can manually reauthenticate to the store by using the KVStore.login() method. This
method requires you to provide the login credentials via a LoginCredentials class instance
(such as PasswordCredentials):

try {
 ...
 /* Store access code happens here */
 ...
} catch (AuthenticationRequiredException are) {
 /*
 * myStoreHandle is a KVStore class instance.
 *
 * pwCreds is a PasswordCredentials class instance, obtained
 * from somewhere else in your code.
 */
 myStoreHandle.login(pwCreds);
}

Note that this is not required if you use the oracle.kv.auth.username and
oracle.kv.auth.pwdfile.file properties, as shown in the previous section. In that case, your
Oracle NoSQL Database client code will automatically and silently reauthenticate your client
using the values specified by those properties.

Chapter 1
Using the Authentication APIs

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 7 of 13

A third option is to create a ReauthenticationHandler class implementation that performs your
reauthentication for you. This option is only necessary if you provided a LoginCredentials
implementation instance (that is, PasswordCredentials) in a call to
KVStoreFactory.getStore(), and you want to avoid a subsequent need to retry operations by
catching AuthenticationRequiredException.

A truly robust example of a ReauthenticationHandler implementation is beyond the scope of
this manual (it would be driven by highly unique requirements that are unlikely to be
appropriate for your site). Still, in the interest of completeness, the following shows a very
simple and not very elegant implementation of ReauthenticationHandler:

package kvstore.basicExample

import oracle.kv.ReauthenticationHandler;
import oracle.kv.PasswordCredentials;

public class MyReauthHandler implements ReauthenticationHandler {
 public void reauthenticate(KVStore reauthStore) {
 /*
 * The code to obtain the username and password strings would
 * go here. This should be consistent with the code to perform
 * simple authentication for your client.
 */
 PasswordCredentials cred = new PasswordCredentials(username,
 password.toCharArray());

 reauthStore.login(cred);
 }
}

You would then supply a MyReauthHandler instance when you obtain your store handle:

import java.util.Properties;

import oracle.kv.AuthenticationFailure;
import oracle.kv.PasswordCredentials;
import oracle.kv.KVSecurityConstants;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;

import kvstore.basicExample.MyReauthHandler;

KVStore store = null;
try {
 /*
 * storeName, hostName, port, username, and password are all
 * strings that would come from somewhere else in your
 * application. The code you use to obtain your username
 * and password should be consistent with the code used to
 * obtain that information in MyReauthHandler.
 */
 KVStoreConfig kconfig =
 new KVStoreConfig(storeName, hostName + ":" + port);

 /* Set the required security properties */

Chapter 1
Using the Authentication APIs

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 8 of 13

 Properties secProps = new Properties();
 secProps.setProperty(KVSecurityConstants.TRANSPORT_PROPERTY,
 KVSecurityConstants.SSL_TRANSPORT_NAME);
 secProps.setProperty
 (KVSecurityConstants.SSL_TRUSTSTORE_FILE_PROPERTY,
 "/home/kv/client.trust");
 kconfig.setSecurityProperties(secProps);

 store =
 KVStoreFactory.getStore(kconfig,
 new PasswordCredentials(username,
 password.toCharArray()));
 new MyReauthHandler());
} catch (AuthenticationFailureException afe) {
 /*
 * Could potentially retry the login, possibly with different
 * credentials, but in this simple example, we just fail the
 * attempt.
 */
 System.out.println("authentication failed!")
 return;
}

Authentication using Kerberos
You can authenticate to the store by using Kerberos. To do this, you must already have
installed Kerberos and obtained the necessary login and service information.

The following is a simple example of obtaining a store handle for a secured store, and using
Kerberos to authenticate. Information specific to Kerberos, such as the Kerberos user name, is
specified using KVSecurityConstants that are set as properties to the KVStoreConfig instance
which is used to create the store handle.

import java.util.Properties;

import oracle.kv.KVSecurityConstants;
import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;

KVStore store = null;
/*
 * storeName, hostName, port, username, and password are all
 * strings that would come from somewhere else in your
 * application.
 */
KVStoreConfig kconfig =
 new KVStoreConfig(storeName, hostName + ":" + port);

/* Set the required security properties */
Properties secProps = new Properties();

/* Set the user name */
secProps.setProperty(KVSecurityConstants.AUTH_USERNAME_PROPERTY,
 "krbuser");

Chapter 1
Using the Authentication APIs

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 9 of 13

/* Use Kerberos */
secProps.setProperty(KVSecurityConstants.AUTH_EXT_MECH_PROPERTY,
 "kerberos");

/* Set SSL for the wire level encryption */
secProps.setProperty(KVSecurityConstants.TRANSPORT_PROPERTY,
 KVSecurityConstants.SSL_TRANSPORT_NAME);

/* Set the location of the public trust file for SSL */
secProps.setProperty
 (KVSecurityConstants.SSL_TRUSTSTORE_FILE_PROPERTY,
 "/home/kv/client.trust");

/* Set the service principal associated with the helper host */
final String servicesDesc =
 "localhost:oraclenosql/localhost@EXAMPLE.COM";
secProps.setProperty(
 KVSecurityConstants.AUTH_KRB_SERVICES_PROPERTY,
 servicesDesc);

/*
 * Set the default realm name to permit using a short name for the
 * user principal
 */
secProps.setProperty(KVSecurityConstants.AUTH_KRB_REALM_PROPERTY,
 "EXAMPLE.COM");

/* Specify the client keytab file location */
secProps.setProperty(KVSecurityConstants.AUTH_KRB_KEYTAB_PROPERTY,
 "/tmp/krbuser.keytab");

kconfig.setSecurityProperties(secProps);

store = KVStoreFactory.getStore(kconfig);

Authentication using Kerberos and JAAS
You can authenticate to the store by using Kerberos and the Java Authentication and
Authorization Service (JAAS) login API. To do this, you must already have installed Kerberos
and obtained the necessary login and service information.

The following is a simple example of obtaining a store handle for a secured store, and using
Kerberos with JAAS to authenticate.

To use JAAS, you create a configuration file that contains required Kerberos configuration
information. For example, the following could be placed in the file named jaas.config:

oraclenosql {
 com.sun.security.auth.module.Krb5LoginModule required
 principal="krbuser"
 useKeyTab="true"
 keyTab="/tmp/krbuser.keytab";
};

Chapter 1
Using the Authentication APIs

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 10 of 13

To identify this file to your application, set the Java property
java.security.auth.login.config using the -D option when you run your application.

Beyond that, you use KVSecurityConstants to specify necessary properties, such as the SSL
transport. You can also specify necessary Kerberos properties, such as the Kerberos user
name, using KVSecurityConstants, or you can use the KerberosCredentials class to do this.

import java.security.PrivilegedActionException;
import java.security.PrivilegedExceptionAction;
import java.util.Properties;

import javax.security.auth.Subject;
import javax.security.auth.login.LoginContext;
import javax.security.auth.login.LoginException;

import oracle.kv.KerberosCredentials;
import oracle.kv.KVSecurityConstants;
import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;

/*
 * storeName, hostName, port, username, and password are all
 * strings that would come from somewhere else in your
 * application.
 */
final KVStoreConfig kconfig =
 new KVStoreConfig(storeName, hostName + ":" + port);

/* Set the required security properties */
Properties secProps = new Properties();

/* Set SSL for the wire level encryption */
secProps.setProperty(KVSecurityConstants.TRANSPORT_PROPERTY,
 KVSecurityConstants.SSL_TRANSPORT_NAME);

/* Set the location of the public trust file for SSL */
secProps.setProperty
 (KVSecurityConstants.SSL_TRUSTSTORE_FILE_PROPERTY,
 "/home/kv/client.trust");

/* Use Kerberos */
secProps.setProperty(KVSecurityConstants.AUTH_EXT_MECH_PROPERTY,
 "kerberos");

/* Set Kerberos properties */
final Properties krbProperties = new Properties();

/* Set the service principal associated with the helper host */
final String servicesPpal =
 "localhost:oraclenosql/localhost@EXAMPLE.COM";
krbProperties.setProperty(KVSecurityConstants.AUTH_KRB_SERVICES_PROPERTY,
 hostName + ":" + servicesPpal);

/* Set default realm name, because the short name
 * for the user principal is used.

Chapter 1
Using the Authentication APIs

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 11 of 13

 */
krbProperties.setProperty(KVSecurityConstants.AUTH_KRB_REALM_PROPERTY,
 "EXAMPLE.COM");

/* Specify Kerberos principal */
final KerberosCredentials krbCreds =
 new KerberosCredentials("krbuser", krbProperties);

try {
 /* Get a login context */
 final Subject subj = new Subject();
 final LoginContext lc = new LoginContext("oraclenosql", subj);

 /* Attempt to log in */
 lc.login();

 /* Get the store using the credentials specified in the subject */
 kconfig.setSecurityProperties(secProps);

 store = Subject.doAs(
 subj, new PrivilegedExceptionAction<KVStore>() {
 @Override
 public KVStore run() throws Exception {
 return KVStoreFactory.getStore(kconfig, krbCreds, null);
 }
 });
} catch (LoginException le) {
 // LoginException handling goes here
} catch (PrivilegedActionException pae) {
 // PrivilegedActionException handling goes here
} catch (Exception e) {
 // General Exception handling goes here
}

Unauthorized Access
Clients which must authenticate to a store are granted some amount of access to the store.
This could range from a limited set of privileges to full, complete access. The amount of access
is defined by the roles and privileges granted to the authenticating user. Therefore, a call to the
Oracle NoSQL Database API could fail due to not having the authorization to perform the
operation. When this happens, UnauthorizedException will be thrown.

When UnauthorizedException is seen, the operation should not be retried. Instead, the
operation should either be abandoned entirely, or your code could attempt to reauthenticate
using different credentials that would have the required permissions necessary to perform the
operation. Note that a client can log out of a store using KVStore.logout(). How your code
logs back in is determined by how your store is configured for access, as described in the
previous sections.

// Open a store handle, and perform authentication as you do
// as described earlier in this section.

...

Chapter 1
Using the Authentication APIs

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 12 of 13

try {
 // When you attempt some operation (such as a put or delete)
 // to a secure store, you should catch UnauthorizedException
 // in case the user credentials you are using do not have the
 // privileges necessary to perform the operation.
} catch (UnauthorizedException ue) {
 /*
 * When you see this, either abandon the operation entirely,
 * or log out and log back in with credentials that might
 * have the proper permissions for the operation.
 */
 System.out.println("authorization failed!")
 return;
}

Chapter 1
Using the Authentication APIs

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 13 of 13

2
Introduction to Oracle KVLite

KVLite is a single-node, single shard store. It usually runs in a single process and is used to
develop and test client applications. KVLite is installed when you install Oracle NoSQL
Database.

Starting KVLite
You start KVLite by using the kvlite utility, which can be found in KVHOME/lib/kvstore.jar. If
you use this utility without any command line options, then KVLite will run with the following
default values:

• The store name is kvstore.

• The hostname is the local machine.

• The registry port is 5000.

• The directory where Oracle NoSQL Database data is placed (known as KVROOT) is ./
kvroot.

• The administration process is turned on.

• Security is turned on.

This means that any processes that you want to communicate with KVLite can only connect to
it on the local host (127.0.0.1) using port 5000. If you want to communicate with KVLite from
some machine other than the local machine, then you must start it using non-default values.
The command line options are described later in this chapter.

For example:

> java -Xmx64m -Xms64m -jar KVHOME/lib/kvstore.jar kvlite

Note

To avoid using too much heap space, you should specify the -Xmx and -Xms flags for
Java when running administrative and utility commands.

When KVLite has started successfully, it writes one of two statements to stdout, depending on
whether it created a new store or is opening an existing store (the following assumes security
is enabled):

Generated password for user admin: password
User login file: ./kvroot/security/user.security
Created new kvlite store with args:
-root ./kvroot -store <kvstore> -host localhost -port 5000
-secure-config enable

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 1 of 4

Note

The password is randomly generated.

or

Opened existing kvlite store with config:
-root ./kvroot -store <kvstore name> -host <localhost> -port 5000
-secure-config enable

where <kvstore name> is the name of the store and <localhost> is the name of the local host.
It takes about 10 - 60 seconds before this message is issued, depending on the speed of your
machine.

Note that you will not get the command line prompt back until you stop KVLite.

Stopping and Restarting KVLite
To stop KVLite, use ^C from within the shell where KVLite is running.

To restart the process, simply run the kvlite utility without any command line options. Do this
even if you provided non-standard options when you first started KVLite. This is because
KVLite remembers information such as the port value and the store name in between run
times. You cannot change these values by using the command line options.

If you want to start over with different options than you initially specified, delete the KVROOT
directory (./kvroot, by default), and then re-run the kvlite utility with whatever options you
desire. Alternatively, specify the -root command line option, making sure to specify a location
other than your original KVROOT directory, as well as any other command line options that you
want to change.

Verifying the Installation
There are several things you can do to verify your installation, and ensure that KVLite is
running:

• Start another shell and run:

jps -m

The output should show KVLite (and possibly other things as well, depending on what you
have running on your machine).

• Run the kvclient test application:

1. cd KVHOME

2. java -Xmx64m -Xms64m -jar lib/kvclient.jar

This should write the release to stdout:

12cR1.M.N.O...

Chapter 2
Stopping and Restarting KVLite

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 2 of 4

• Download the examples package and unpack it so that the examples directory is in
KVHOME. You can obtain the examples package from the same place as you obtained
your server download package.

• Compile and run the example program:

1. cd KVHOME

2. Compile the example:

javac -g -cp lib/kvclient.jar:examples examples/hello/*.java

3. Run the example using all default parameters:

java -Xmx64m -Xms64m \
-Doracle.kv.security=<KVROOT>/security/user.security \
-cp lib/kvclient.jar:examples hello.HelloBigDataWorld

Or run it using non-default parameters, if you started KVLite using non-default values:

java -Xmx64m -Xms64m \
-cp lib/kvclient.jar:examples hello.HelloBigDataWorld \
 -host <hostname> -port <hostport> -store <kvstore name>

kvlite Utility Command Line Parameter Options
This section describes the command line options that you can use with the kvlite utility.

Note that you can only specify these options the first time KVLite is started. Most of the
parameter values specified here are recorded in the KVHOME directory, and will be used when
you restart the KVLite process regardless of what you provide as command line options. If you
want to change your initial values, either delete your KVHOME directory before starting KVLite
again, or specify the -root option (with a different KVHOME location than you initially used)
when you provide the new values.

• -help

Print a brief usage message, and exit.

• -host <hostname>

Identifies the name of the host on which KVLite is running.

If you want to access this instance of KVLite from remote machines, supply the local host's
real hostname. Otherwise, specify localhost for this option.

• -noadmin

If this option is not specified, the administration user interface is started.

• -port <port>

Identifies the port on which KVLite is listening for client connections. Use this option ONLY
if you are creating a new store.

• -root <path>

Identifies the path to the Oracle NoSQL Database home directory. This is the location
where the store's database files are contained. The directory identified here must exist. If
the appropriate database files do not exist at the location identified by the option, they are
created for you.

Chapter 2
kvlite Utility Command Line Parameter Options

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 3 of 4

• -secure-config <enable|disable>

If enabled, causes security to be enabled for the store. This means all clients connecting to
the store must present security credentials. Security is enabled by default.

• -store <storename>

Identifies the name of a new store. Use this option ONLY if you are creating a new store.

For information on configuring your client code to connect to a secure store, see Using the
Authentication APIs .

Chapter 2
kvlite Utility Command Line Parameter Options

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 4 of 4

3
Introducing Oracle NoSQL Database Tables
and Indexes

Using the Table API (in one of the supported languages) is the recommended method of
developing an Oracle NoSQL Database client application. Table APIs let you manipulate data
using a tables metaphor, in which data is organized in multiple columns of data. The table APIs
support an unlimited number of subtables. You can also create indexes to improve query
performance against your tables.

If you have a mix of clients accessing your store using both Table and Key/Value APIs, a
remote chance exists that keys from different clients could collide. As a best practice, it is
recommended that you do not use your data store to store both raw key/value data and table
data. If this is required for your situation, then it is recommended that you store your key/value
data in a table with 2 columns: a key column and a data column. Doing so will allow you to use
the Table APIs on both your table and key/value data. To avoid any possible conflict between
keys, however unlikely, make sure that every KV key has either only:

• A single component

• A single major component

Note

Throughout this manual, examples call TableAPI.getTable(). The cost of calling this
API is relatively high, because doing so requires a round trip to the store to fulfill the
request. For optimal performance, call this method sparingly in your code.

Defining Tables
Before an Oracle NoSQL Database client can read or write to a table in the store, you must
first create the tables. There are several ways to do this, but this document focuses on using
Table DDL statements. You can submit these statements to the store directly using both the
Admin command line interface (CLI), with the execute command), or the SQL CLI. However,
the recommended approach is to submit DDL statements to the store programmatically. This
section describes both direct and programmatic methods.

The DDL language that you use to define tables is described in Table Data Definition
Language Overview. This section provides a brief overview of how to use that language.

As an introductory example, suppose you want to create a table called myTable with four
columns: item, description, count, and percentage. To create your table, use the following
statement from the SQL CLI:

sql-> CREATE TABLE myTable (
 item STRING,
 description STRING,
 count INTEGER,
 percentage DOUBLE,

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 1 of 16

 PRIMARY KEY (item) // Every table must have a primary key
);
Statement completed successfully

Note

Primary keys are a concept that have not yet been introduced. See Primary and Shard
Key Design for a complete explanation of what they are, and how you should use
them. For now, be sure a primary key exists for every table you create, just as the
previous example illustrates.

Executing DDL Statements Programmatically

To add the table definition to the store programmatically use the KVStore.execute() or
KVStore.executeSync() methods. (The latter method executes the statement synchronously.)

For example:

package kvstore.basicExample;

import oracle.kv.FaultException;
import oracle.kv.StatementResult;
import oracle.kv.KVStore;
import oracle.kv.table.TableAPI;
...
// store handle creation and open omitted
...

StatementResult result = null;
String statement = null;

public void createTable() {
 StatementResult result = null;
 String statement = null;

 try {
 /*
 * Add a table to the database.
 * Execute this statement asynchronously.
 */
 statement =
 "CREATE TABLE myTable (" +
 "item STRING," +
 "description STRING," +
 "count INTEGER," +
 "percentage DOUBLE," +
 "PRIMARY KEY (item))"; // Required"
 result = store.executeSync(statement);

 displayResult(result, statement);

 } catch (IllegalArgumentException e) {
 System.out.println("Invalid statement:\n" + e.getMessage());
 } catch (FaultException e) {

Chapter 3
Defining Tables

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 2 of 16

 System.out.println
 ("Statement couldn't be executed, please retry: " + e);
 }
}

private void displayResult(StatementResult result, String statement) {
 System.out.println("===========================");
 if (result.isSuccessful()) {
 System.out.println("Statement was successful:\n\t" +
 statement);
 System.out.println("Results:\n\t" + result.getInfo());
 } else if (result.isCancelled()) {
 System.out.println("Statement was cancelled:\n\t" +
 statement);
 } else {
 /*
 * statement was not successful: may be in error, or may still
 * be in progress.
 */
 if (result.isDone()) {
 System.out.println("Statement failed:\n\t" + statement);
 System.out.println("Problem:\n\t" +
 result.getErrorMessage());
 } else {
 System.out.println("Statement in progress:\n\t" +
 statement);
 System.out.println("Status:\n\t" + result.getInfo());
 }
 }
}

Executing DDL Statements From the Admin CLI
You can execute DDL statements using the Admin CLI's execute command. This executes
DDL statements synchronously. For example:

kv-> execute "CREATE TABLE myTable (
> item STRING,
> description STRING,
> count INTEGER,
> percentage DOUBLE,
> PRIMARY KEY (item))"
Statement completed successfully
kv->

Supported Table Data Types
You specify schema for each column in an Oracle NoSQL Database table. This schema can be
a primitive data type, or complex data types that are handled as objects.

Oracle NoSQL Database tables support the following data types:

Chapter 3
Defining Tables

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 3 of 16

Data Type Description

Array An array of values, all of the same type.

Binary Implemented as a byte array with no predetermined fixed size.

Boolean

Double

Enum An enumeration, represented as an array of strings.

Fixed Binary Implemented as a byte array with no predetermined fixed size.

Float

Integer

Json Any valid JSON data.

Long

Number A numeric type capable of handling any type of number or any value
or precision.

Map An unordered map type, where all entries are constrained by a
single type.

Records See the following section.

String

Timestamp An absolute timestamp encapsulating a date and, optionally, a time
value.

Record Fields
As described in Defining Child Tables, you can create child tables to hold subordinate
information, such as addresses in a contacts database, or vendor contact information for an
inventory system. When you do this, you can create an unlimited number of rows in the child
table, and you can index the fields in the child table's rows.

However, you do not need to create child tables to organize subordinate data. If you have
simple requirements for subordinate data, you can use record fields, instead of child tables. In
general, you can use record fields instead of child tables if you want only a fixed, small number
of instances of the record for each parent table row. For anything beyond trivial cases, use
child tables.

Note

There is no downside to using child tables for even trivial cases.

The assumption when using record fields is that you have a fixed, known number of records to
manage (unless you organize them as arrays). For example, in a contacts database, child
tables let you have an unlimited number of addresses associated for each user. By using
records, rather than child tables, you can associate a fixed number of addresses by creating a
record field for each supported address (home and work, for example).

For example:

CREATE TABLE myContactsTable (
 uid STRING,
 surname STRING,
 familiarName STRING,
 homePhone STRING,

Chapter 3
Defining Tables

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 4 of 16

 workPhone STRING,
 homeAddress RECORD (street STRING, city STRING, state STRING,
 zip INTEGER),
 workAddress RECORD (street STRING, city STRING, state STRING,
 zip INTEGER),
 PRIMARY KEY(uid))

Alternatively, you can create an array of record fields. This lets you create an unlimited number
of address records per field. In general, however, you should use child tables in this case.

CREATE TABLE myContactsTable (
 uid STRING,
 surname STRING,
 familiarName STRING,
 homePhone STRING,
 workPhone STRING,
 addresses ARRAY(RECORD (street STRING, city STRING, state STRING,
 zip INTEGER))),
 PRIMARY KEY(uid))

Defining Child Tables
Oracle NoSQL Database tables can be organized in a parent/child hierarchy. There is no limit
to how many child tables you can create, nor is there a limit to how deep the child table nesting
can go.

By default, child tables are not retrieved when you retrieve a parent table, nor is the parent
retrieved when you retrieve a child table.

To create a child table, you name the table using the format:
<parentTableName>.<childTableName>. For example, suppose you had the trivial table called
myInventory:

CREATE TABLE myInventory (
 itemCategory STRING,
 description STRING,
 PRIMARY KEY (itemCategory)
)

We can create a child table called itemDetails in the following way:

CREATE TABLE myInventory.itemDetails (
 itemSKU STRING,
 itemDescription STRING,
 price FLOAT,
 inventoryCount INTEGER,
 PRIMARY KEY (itemSKU)
)

Note that when you do this, the child table inherits the parent table's primary key. In this trivial
case, the child table's primary key is actually two fields: itemCategory and itemSKU. This has
several ramifications, one of which is that the parent's primary key fields are retrieved when
you retrieve the child table. See Retrieve a Child Table for more information.

Chapter 3
Defining Tables

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 5 of 16

Defining Multi-Region Tables
A Multi-Region Table or MR Table is a global logical table that is stored and maintained in
different regions or installations. It is a read-anywhere and write-anywhere table that lives in
multiple regions.

Consider an Oracle NoSQL Database with three regions, Frankfurt, London, and Dublin. To
create a table called users that stores user details for all the three regions, you must create an
MR table on each KVStore in the connected graph, and specify the list of regions that the table
should span.

For example, to create the users table in all the three regions, you must execute the following
command from each region separately:

CREATE TABLE users (
 id INTEGER,
 firstName STRING,
 lastName STRING,
 age INTEGER,
 primary key (id)
) IN REGIONS fra, lnd, dub;

For information about MR Tables, see Life Cycle of MR Tables in the Concepts Guide.

Using CRDT datatype in a multi-region table
Overview of the MR_COUNTER data type

MR_Counter data type is a counter CRDT. CRDT stands for Conflict-free Replicated Data
Type. In a multi-region setup of an Oracle NoSQL Database, a CRDT is a data type that can
be replicated across servers where regions can be updated independently and it converges on
a correct common state. Changes in the regions are concurrent and not synchronized with one
another. In short, CRDTs provide a way for concurrent modifications to be merged across
regions without user intervention. Oracle NoSQL Database currently supports the counter
CRDT which is called MR_Counter. The MR_COUNTER datatype is a subtype of the
INTEGER or LONG or NUMBER data type. You can also use the MR_COUNTER data type in
a schema-less JSON field, which means one or more fields in a JSON document can be of
MR_COUNTER data type.

Why do you need MR_Counter in a multi-region table?

In a multi-region database configuration, copies of the same data need to be stored in multiple
regions. This configuration needs to deal with the fact that the data may be concurrently
modified in different regions.

Take an example of a multi-region table in three different regions (where data is stored in three
different Oracle NoSQL Database stores). Concurrent updates of the same data in multiple
regions, without coordination between the machines hosting the regions, can result in
inconsistencies between the regions, which in the general case may not be resolvable.
Restoring consistency and data integrity when there are conflicts between updates may require
some or all of the updates to be entirely or partially dropped. For example, in the current
configuration of a multi-region table in the Oracle NoSQL Database, if the same column (a
counter) of a multi-region table is updated across two regions at the same time with different
values, a conflict arises.

Chapter 3
Defining Tables

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 6 of 16

Currently, the conflict resolution is that the latest write overwrites the value across regions. For
example, Region 1 updates column1 with a value R1, and region2 updates column1 with a
value R2, and if the region2 update happens after region1, the value of the column (counter) in
both the regions becomes R2. This is not what is actually desired. Rather every region should
update the column (a counter) at their end and also the system internally needs to determine
the sum of the column across regions.

One way to handle this conflict is making serializable/linearizable transactions (one transaction
is completed and changes are synchronized in all regions and only then the next transaction
happens). A significant problem of having serializable transactions is performance. This is
where MR_COUNTER datatype comes in handy. With MR_COUNTER datatype, we don't
need serializable transactions and the conflict resolution is taken care of. That is,
MR_COUNTER datatype ensures that though data modifications can happen simultaneously
on different regions, the data can always be merged into a consistent state. This merge is
performed automatically by MR_COUNTER datatype, without requiring any special conflict
resolution code or user intervention.

Use-case for MR_COUNTER datatype

Consider a Telecom provider providing different services and packages to its customers. One
such service is a "Family Plan" option where a customer and their family share the Data Usage
plan. The customer is allocated a free data usage limit for a month which your the customer's
entire family collectively uses. When the total usage of customer's family reaches 90 percent of
the data limit, the telecom provider sends the customer an alert. Say there are four members in
customer's family plan who are spread across different physical regions. The customer needs
to get an alert from the telecom provider once the total consumption of their family reaches 90
percent of the free usage. The data is replicated in different regions to cater to latency,
throughput, and better performance. That means there are four regions and each has a kvstore
containing the details of the customer's data usage. The usage of their family members needs
to be updated in different regions and at any point in time, the total usage should be monitored
and an alert should be sent if the data usage reaches the limit.

An MR_COUNTER data type is ideal in such a situation to do conflict-free tracking of the data
usage across different regions. In the above example, an increment counter in every data
region's data store will track the data usage in that region. The consolidated data usage for all
regions can be determined by the system at any point without any user intervention. That is the
total data usage at any point in time can be easily determined by the system using an
MR_COUNTER datatype.

Types of MR_COUNTER Datatype

Currently, Oracle NoSQL Database supports only one type of MR_COUNTER data type. which
is Positive-Negative (PN) counter.

Positive-Negative (PN) Counter

A PN counter can be incremented or decremented. Therefore, these can serve as a general-
purpose counter. For example, you can use these counters to count the number of users active
on a social media website at any point. When the users go offline you need to decrement the
counter.

To create a multi-region table with an MR_COUNTER column, See Create multi-region table
with an MR_COUNTER column section in the Administrator's Guide.

Chapter 3
Defining Tables

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 7 of 16

Add MR_COUNTER datatype in a multi-region table
For example, to create a multi-region table myTable with a counter data type, you must execute
the following command from each region.

CREATE Table myTable(name STRING,
 count INTEGER AS MR_COUNTER,
 PRIMARY KEY(name)) IN REGIONS DEN,LON;

Example using JSON MR_COUNTER data type:

Create a JSON MR_COUNTER data type in a multi-region table as shown below:

CREATE TABLE demoJSONMR(name STRING,
jsonWithCounter JSON(counter as INTEGER MR_COUNTER,
 person.count as LONG MR_COUNTER),
PRIMARY KEY(name)) IN REGIONS FRA,LND;

In the statement above, you create a multi-region table with a STRING column and a
column(JSON documents). You are identifying two of the fields in the JSON document as
MR_COUNTER data type.. The first field is counter, which is an INTEGER MR_COUNTER
data type. The second field is count within an embedded JSON document (person). The count
field is of LONG MR_COUNTER data type.

Inserting JSON MR_COUNTER Values Programmatically
You can insert row (and MR_COUNTER values) into your application table programmatically
using PUT API.

Create a sample table:

CREATE TABLE exampleTable (id INTEGER,
jsonColumn JSON(counter AS INTEGER MR_COUNTER,
 person.score AS LONG MR_COUNTER),
PRIMARY KEY(id));

Insert row of data using PUT API:

KVStore store = KVStoreFactory.getStore(kvStoreConfig);
TableAPI api = store.getTableAPI();
Table table = api.getTable("exampleTable");
Row row = table.createRow();
String json = "{\"counter\": 0, \"person\": {\"score\" : 0}}";
row.put("id", 1);
row.putJson("jsonColumn", json);
api.put(row, null, null);

Chapter 3
Defining Tables

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 8 of 16

Note

You need to include all defined json mr_counters when inserting a row. For example,
in the above code, giving an empty JSON MR_COUNTER like INSERT INTO
exampleTable VALUES (1, {}) will throw an error. The values of the JSON
MR_COUNTER need not be 0 but it can be any atomic values.

Updating JSON MR_COUNTER values: You cannot update a JSON MR_COUNTER
programatically using API. It can be done using UPDATE statement (DML) only.

Table Evolution
As your application is used over time, it's often necessary to update your tables to either add
new fields or remove existing fields that are no longer required. Table evolution is the term
used to update table definitions, adding or removing fields, or changing field properties, such
as a default value. You may even add a particular kind of column, like an IDENTITY column, to
increment some value automatically. Only tables that already exist in the store are candidates
for table evolution.

Use the ALTER TABLE statement to perform table evolution. See Modify Table Definitions.

Note

You cannot remove a field if it is a primary key field, or if it participates in an index. You
also cannot add primary key fields during table evolution.

For example, the following statements evolve the table that was created in the previous
section. In this example, you would submit each statement to the store consecutively, using
either the API or the CLI.

ALTER TABLE myInventory.itemDetails (ADD salePrice FLOAT)

ALTER TABLE myInventory.itemDetails (DROP inventoryCount)

Using the UUID data type
Overview of the UUID data type

A universally unique identifier (UUID) is a 128-bit number used to identify information in
computer systems. You can create a UUID and use it to uniquely identify something. In its
canonical textual representation, the 16 octets of a UUID are represented as 32 hexadecimal
(base-16) digits, displayed in five groups separated by hyphens, in the form 8-4-4-4-12 for a
total of 36 characters (32 hexadecimal characters and 4 hyphens). For example, a81bc81b-
dead-4e5d-abff-90865d1e13b1.

In Oracle NoSQL, UUID values are represented by the UUID data type. The UUID data type is
considered a subtype of the STRING data type, because UUID values are displayed in their
canonical textual format and, in general, behave the same as string values in the various SQL
operators and expressions. However, in order to save disk space, the UUID value is saved in a
compact format on disk. If the UUID value is the primary key, the canonical 36-byte string is

Chapter 3
Using the UUID data type

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 9 of 16

converted to a 19-byte string, then is saved on disk. If the UUID value is a non-primary key, the
canonical 36-byte string is converted to a 16-byte array, then is saved on disk.

A table column can be declared as having UUID type in a CREATE TABLE statement. The
UUID data type is best-suited in situations where you need a globally unique identifier for the
records in a table that span multiple regions since identity columns are only guaranteed to be
unique within a NoSQL cluster in a region.

Using the UUID data type:

Declare a column with UUID data type. UUID is a subtype of the STRING data type. This UUID
column can be defined as GENERATED BY DEFAULT. The system then automatically
generates a value for the UUID column if you do not supply a value for it.

Syntax:

uuid_definition := AS UUID [GENERATED BY DEFAULT]

Semantics

Declares the type of a column to be the UUID type. If the GENERATED BY DEFAULT
keywords are used, the system generates a value for the UUID column automatically, if the
user does not supply one.

UUID Column Characteristics :

• One table can have multiple columns defined as "STRING AS UUID". However, one table
can have only one column defined as "STRING AS UUID GENERATED BY DEFAULT".

• Since the Identity column is also generated by the system, the Identity column and the
UUID GENERATED BY DEFAULT columns are mutually exclusive. That means only one
IDENTITY column or one "UUID GENERATED BY DEFAULT" can exist per table.

• You create a UUID column as part of a CREATE TABLE DDL statement or add a UUID
column to an existing table with an ALTER TABLE DDL statement.

• You can also index UUID columns via secondary indexes.

Example 1: UUID Column without GENERATED BY DEFAULT

CREATE TABLE myTable (id STRING AS UUID,name STRING, PRIMARY KEY (id));
Statement completed successfully

In the above example, the id column has no "GENERATED BY DEFAULT" defined, therefore,
whenever you insert a new row, you need to explicitly specify a value for the id column.

INSERT INTO myTable
 values("a81bc81b-dead-4e5d-abff-90865d1e13b1", "test1");
Statement completed successfully

Input format: The input string must conform to the format specified by RFC 4122. An
IllegalArgumentException is thrown if the input string does not conform to the string
representation as described at Class UUID.

Output format: The output is a UUID canonical format. This is 32 hexadecimal(base-16)
digits, displayed in five groups separated by hyphens, in the form 8-4-4-4-12 for a total of 36
characters (32 hexadecimal characters and 4 hyphens).

Chapter 3
Using the UUID data type

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 10 of 16

The value for a UUID column can also be generated using the random_uuid function, which
returns a randomly generated UUID, as a string of 36 characters. See Function to generate a
UUID string.

Example 2: UUID Column using GENERATED BY DEFAULT

CREATE TABLE myTable (id STRING AS UUID GENERATED BY DEFAULT, name STRING,
PRIMARY KEY (id));
Statement completed successfully

In the above example, the id column has "GENERATED BY DEFAULT" defined, therefore,
whenever you insert a new row without specifying the value for the id column, Oracle NoSQL
Database automatically generates a value for it.

INSERT INTO myTable VALUES(default,"test1");
Statement completed successfully

Table 3-1 Comparison between Identity Column and UUID column

Identity Column UUID column

Declare a column as Identity to have Oracle
NoSQL Cluster automatically assign values to it

Declare a column as UUID if you need unique
values to be assigned to a NoSQL Cluster column
in a multi-region system

An INTEGER, LONG, or NUMBER column in a
table can be defined as an Identity column

A UUID is a subtype of the STRING data type

An Identity column can be defined either as
GENERATED ALWAYS or GENERATED BY
DEFAULT

A UUID column can be defined as GENERATED
BY DEFAULT or you can supply the value of the
string while inserting or updating data

Ideal in a single cluster architecture The UUID data type is best suited In situations
where you need a globally unique identifier for the
records in a table that span multiple regions since
identity columns are only guaranteed to be unique
within a NoSQL cluster in a region.

Costs less storage space than a corresponding
UUID column.

If LONG is the primary key, it costs a maximum of
10 bytes. If LONG is a non-primary key, it costs a
maximum of 8 bytes.

Costs more storage space than a corresponding
Identity column.

If the UUID value is the primary key, it costs 19-
bytes. If the UUID value is a non-primary key, it
costs 16-bytes.

Inserting rows into a table with a UUID column
The system generates a UUID column value when the keyword DEFAULT is used as the
insert_clause for the UUID column.

Here are a few examples that show INSERT statements for both flavors of the UUID column –
GENERATED BY DEFAULT and when no DEFAULT CLAUSE is specified in a CREATE
TABLE statement. The keyword DEFAULT in the INSERT statement applies only when the UUID
column is declared as GENERATED BY DEFAULT.

Example : Inserting rows into a table with a UUID column without GENERATED BY
DEFAULT clause

CREATE TABLE myTable (id STRING AS UUID, name STRING, PRIMARY KEY (id));
Statement completed successfully

Chapter 3
Using the UUID data type

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 11 of 16

INSERT INTO myTable values("a81bc81b-dead-4e5d-abff-90865d1e13b1","test1");
Statement completed successfully

In the above example, the id column in the table myTable has no "GENERATED BY
DEFAULT" defined. Therefore, whenever you insert a new row, you need to explicitly specify
the value for the id column.

Example : Inserting rows into a table with a UUID column using the random_uuid function

The value for a UUID column can also be generated using the random_uuid function. See
Function to generate a UUID string.

sql-> INSERT INTO myTable values(random_uuid(),"test2");
{"NumRowsInserted":1}
1 row returned
Statement completed successfully

sql-> select * from myTable;
{"id":"d576ab3b-8a36-4dff-b50c-9d9d4ca6072c","name":"test2"}
{"id":"a81bc81b-dead-4e5d-abff-90865d1e13b1","name":"test1"}
2 rows returned
Statement completed successfully

In this example, a randomly generated UUID is fetched using the random_uuid function. This
value is used in the INSERT statement.

Example : Inserting rows into a table with a UUID column with GENERATED BY
DEFAULT clause

CREATE TABLE myTable (id STRING AS UUID GENERATED BY DEFAULT,name STRING,
PRIMARY KEY (id));
Statement completed successfully

INSERT INTO myTable VALUES(default,"test1") returning id;
{"id":"e7fbab63-7730-4ec9-be73-a62e33ea73c3"}
Statement completed successfully

In the above example, the id column in myTable has "GENERATED BY DEFAULT" defined.
The system generates a UUID column value when the keyword DEFAULT is used in the
insert_clause for the UUID column. The system generated UUID value is fetched using the
returning clause.

Updating rows of a table with a UUID column
You can update a UUID column whether or not it is GENERATED BY DEFAULT. You can use
the function random_uuid to generate a random UUID value to update the column. The function
random_uuid returns a randomly generated UUID, as a string of 36 characters.

Example : Updating a UUID Column defined without GENERATED BY DEFAULT clause

CREATE TABLE myTable (tabId INTEGER, id STRING AS UUID, PRIMARY KEY (tabId));
Statement completed successfully

INSERT INTO myTable values(1,"a81bc81b-dead-4e5d-abff-90865d1e13b1");

Chapter 3
Using the UUID data type

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 12 of 16

Statement completed successfully

UPDATE myTable set id=random_uuid() where tabId=1;
Statement completed successfully

The above example shows how you can update a UUID column which is NOT GENERATED
BY DEFAULT. To do so, the UUID column should not be part of the primary key, as NoSQL
Primary key values are immutable. In the above example, tabId is the Primary key. So you
can update the UUID column using the random_uuid function.

Add or Remove a UUID column
An existing table can be altered and a new UUID column can be added. The existing records in
the table will have a NULL value for the newly added UUID column. An existing UUID column
can also be removed from a table.

Adding a UUID Column to an Existing Table

Use ALTER TABLE to add a UUID column to an existing table.

Create a table test_alter without a UUID column.

sql-> CREATE TABLE test_alter(id INTEGER,
 name STRING, PRIMARY KEY(id));
Statement completed successfully

Use ALTER TABLE to add a UUID column to test_alter. You can specify the default clause,
GENERATED BY DEFAULT.

sql-> ALTER TABLE test_alter
 (ADD new_id STRING AS UUID GENERATED BY DEFAULT);
Statement completed successfully

Dropping a UUID Column

To remove a UUID column from a table, use ALTER TABLE with a DROP id clause.

Note

You cannot drop a UUID column if it is the primary key, or if it participates in an index.

sql-> CREATE Table Test_alter (name STRING ,
 id STRING AS UUID GENERATED BY DEFAULT,
 PRIMARY KEY (name));
Statement completed successfully

sql-> ALTER TABLE Test_alter (DROP id);
Statement completed successfully

Chapter 3
Using the UUID data type

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 13 of 16

Creating Indexes
Indexes represent an alternative way of retrieving table rows. Normally you retrieve table rows
using the row's primary key. By creating an index, you can retrieve rows with dissimilar primary
key values, but which share some other characteristic.

You can create indexes on any field that has a data type capable of indexing, including primary
key fields. You can index table IDENTITY fields. For information on the types of fields that can
be indexed, see Indexable Field Types.

For example, if you had a table representing types of automobiles, the primary keys for each
row might be the automobile's manufacturer and model type. However, if you wanted to be
able to query for all red automobiles, regardless of the manufacturer or model type, you could
create an index on the field containing color information.

Note

Indexes can take a long time to create because Oracle NoSQL Database must
examine all of the data contained in the relevant table in your store. The smaller the
data contained in the table, the faster index creation will complete. Conversely, if a
table contains a lot of data, then it can take a long time to create indexes for it.

CREATE TABLE myInventory.itemDetails (
 itemSKU STRING,
 itemDescription STRING,
 price FLOAT,
 inventoryCount INTEGER,
 PRIMARY KEY (itemSKU)
)

To create an index, use the CREATE INDEX statement. See CREATE INDEX. For example:

CREATE INDEX inventoryIdx on myInventory.itemDetails(inventoryCount)

Similarly, to remove an index, use the DROP INDEX statement. See DROP INDEX. For example:

DROP INDEX inventoryIdx on myInventory.itemDetails

Be aware that adding and dropping indexes can be time consuming. You may want to run drop
index operations asynchronously using the KVStore.execute() method.

package kvstore.basicExample;

import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

import oracle.kv.ExecutionFuture;
import oracle.kv.FaultException;
import oracle.kv.StatementResult;

Chapter 3
Creating Indexes

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 14 of 16

import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;
import oracle.kv.table.TableAPI;

...
// Store open skipped
...

public void createIndex() {
 TableAPI tableAPI = store.getTableAPI();
 ExecutionFuture future = null;
 StatementResult result = null;
 String statement = null;

 try {

 statement = "CREATE INDEX inventoryIdx on " +
 "myInventory.itemDetails(inventoryCount)"
 future = store.execute(statement);
 displayResult(future.getLastStatus(), statement);

 /*
 * Limit the amount of time to wait for the
 * operation to finish.
 */
 result = future.get(3, TimeUnit.SECONDS);
 displayResult(result, statement);

 } catch (IllegalArgumentException e) {
 System.out.println("Invalid statement:\n" + e.getMessage());
 } catch (FaultException e) {
 System.out.println
 ("Statement couldn't be executed, please retry: " + e);
 cleanupOperation(future);
 } catch (ExecutionException e) {
 System.out.println
 ("Problem detected while waiting for a DDL statement: " +
 e.getCause());
 cleanupOperation(future);
 } catch (InterruptedException e) {
 System.out.println
 ("Interrupted while waiting for a DDL statement: " + e);
 cleanupOperation(future);
 } catch (TimeoutException e) {
 System.out.println("Statement execution took too long: " + e);
 cleanupOperation(future);
 }
}

private void cleanupOperation(ExecutionFuture future) {
 if (future == null) {
 /* nothing to do */
 return;
 }

Chapter 3
Creating Indexes

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 15 of 16

 System.out.println("Statement:");
 System.out.println(future.getStatement());
 System.out.println("has status: ");
 System.out.println(future.getLastStatus());

 if (!future.isDone()) {
 future.cancel(true);
 System.out.println("Statement is cancelled");
 }
}

private void displayResult(StatementResult result, String statement) {
 System.out.println("===========================");
 if (result.isSuccessful()) {
 System.out.println("Statement was successful:\n\t" +
 statement);
 System.out.println("Results:\n\t" + result.getInfo());
 } else if (result.isCancelled()) {
 System.out.println("Statement was cancelled:\n\t" +
 statement);
 } else {
 /*
 * statement wasn't successful: may be in error, or may still be
 * in progress.
 */
 if (result.isDone()) {
 System.out.println("Statement failed:\n\t" + statement);
 System.out.println("Problem:\n\t" + result.getErrorMessage());
 } else {
 System.out.println("Statement in progress:\n\t" + statement);
 System.out.println("Status:\n\t" + result.getInfo());
 }
 }
}

For examples of how to index supported non-scalar types, see Indexing Non-Scalar Data
Types.

Chapter 3
Creating Indexes

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 16 of 16

4
Introducing Oracle NoSQL Database
Namespaces

You can create one or more global namespaces to extend table identification. Namespaces
permit tables with the same name to exist in your database store. To access such tables from
the command line, or with DDL commands, use a fully-qualified table name with the table
preceded by its namespace, followed with a colon (:), such as ns1:table1.

As with tables, you grant authorization permissions to determine who can access both the
namespace and the tables within them. After your namespaces exist, you can create any
number of parent and child tables within the namespace, such as ns1:table1.child1.

There is a default Oracle NoSQL Database namespace, called sysdefault. For new
installations, all tables are assigned to the default sysdefault namespace, until or unless you
create other namespaces, and create new tables within them. After upgrading from an earlier
Oracle NoSQL Database release, all existing tables become part of the default sysdefault
namespace automatically. You cannot change an existing table’s namespace.

Tables in the sysdefault namespace do not require further qualification for existing queries.
For example, using a basic SQL table query does not require the default namespace prefix
(sysdefault:tablename), for SQL access. Also, the TableAPI.getTable() method does not
require any updates at existing sites, since it accepts one argument for table name, or two
when you are ready to use namespaces. For information see Using and Setting Namespaces.

select * from salesincome;

Referencing a table name without a namespace prefix (namespace:) implies that the table is
part of the default, sysdefault namespace. However, by creating namespaces, and then
tables within them, you can have same name tables, such as the following for a
support_ticket table:

• support_ticket

• acme:support_ticket

• international_abc:support_ticket

• international_xyz:support_ticket

No additional permissions are required for tables in the default sysdefault namespace, so
existing authentication remains. For example, if you grant user Joe permission to access tables
t1, t3, and t4, but not t2, Joe can still access all tables except t2 after they are subsumed into
the sysdefault namespace.

Creating Namespaces
You can add and one or more namespaces to your store. Then, create tables within the
namespaces, and grant various permissions to users to access namespaces and tables. For
the security administrator, several new permissions are available for namespaces, described in
Granting Authorization Access to Namespaces .

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 1 of 8

You create a new namespace by using a CREATE NAMESPACE DDL statement, as follows, with
whatever name you choose.

sql-> CREATE NAMESPACE [IF NOT EXISTS] namespace_name;

All namespace names use standard identifiers, with the same restrictions as tables and
indexes:

• Names must begin with an alphabetic character (a-z, A-Z).

• Remaining characters are alphanumeric (a-z, A-Z, 0–9).

• Name characters can include period (.), and underscore (_) characters.

• The maximum name length for a namespace is 128 characters.

Note

You cannot use the prefix sys for any namespaces. The sys prefix is reserved. No
other keywords are restricted.

Following is the namespace syntax showing the identifier rules similar to a table name:

table_name : (namespace ':')? id_path;
-namespace : id_path ;

id_path : id (DOT id)* ;
id : (... | ID);
ID : ALPHA (ALPHA | DIGIT | UNDER)* ;

Here are a couple of examples using DDL statements in the SQL CLI. The SHOW NAMESPACES
directive in the SQL CLI lists the namespaces that currently exist:

sql-> CREATE NAMESPACE ns1;
Statement completed successfully

sql-> CREATE NAMESPACE IF NOT EXISTS ns2;
Statement completed successfully

sql-> SHOW NAMESPACES
namespaces
 ns1
 sysdefault
 ns2

Granting Authorization Access to Namespaces
You can manage permission for users or roles to access namespaces and tables. These are
the applicable permissions given to the developers and other users:

Chapter 4
Granting Authorization Access to Namespaces

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 2 of 8

Table 4-1 Namespace Privileges and Permissions

Privilege Description

CREATE_ANY_NAMESPACE

DROP_ANY_NAMESPACE

Grant permission to a user or to a role to create or drop any namespace.

GRANT CREATE_ANY_NAMESPACE TO <User|Role>;
GRANT DROP_ANY_NAMESPACE TO <User|Role>;

CREATE_TABLE_IN_NAMESPACE

DROP_TABLE_IN_NAMESPACE

EVOLVE_TABLE_IN_NAMESPACE

Grant permission to a user or to a role to create, drop or evolve tables in a
specific namespace. You can evolve tables to update table definitions, add
or remove fields, or change field properties, such as a default value. You
may even add a particular kind of column, like an IDENTITY column, to
increment some value automatically. Only tables that already exist in the
store are candidates for table evolution. For more details, see Alter Table.

GRANT CREATE_TABLE_IN_NAMESPACE ON NAMESPACE
namespace_name TO <User|Role>;
GRANT DROP_TABLE_IN_NAMESPACE ON NAMESPACE
namespace_name TO <User|Role>;
GRANT EVOLVE_TABLE_IN_NAMESPACE ON NAMESPACE
namespace_name TO <User|Role>user_role;

CREATE_INDEX_IN_NAMESPACE

DROP_INDEX_IN_NAMESPACE

Grant permission to a user or to a role to create or drop an index in a
specific namespace.

GRANT CREATE_INDEX_IN_NAMESPACE ON NAMESPACE
namespace_name TO <User|Role>;
GRANT DROP_INDEX_IN_NAMESPACE ON NAMESPACE
namespace_name TO <User|Role>;

READ_IN_NAMESPACE

INSERT_IN_NAMESPACE

DELETE_IN_NAMESPACE

Grant permission to a role to read, insert, or delete items in a specific
namespace.

GRANT READ_IN_NAMESPACE ON NAMESPACE namespace_name TO
<User|Role>;
GRANT INSERT_IN_NAMESPACE ON NAMESPACE namespace_name
TO <User|Role>;
GRANT DELETE_IN_NAMESPACE ON NAMESPACE namespace_name
TO <User|Role>;

MODIFY_IN_NAMESPACE Helper label for granting or revoking permissions to all DDL privileges for a
specific namespace to a user or role.

GRANT MODIFY_IN_NAMESPACE ON NAMESPACE namespace_name
TO <User|Role>;
REVOKE MODIFY_IN_NAMESPACE ON NAMESPACE namespace_name
TO <User|Role>;

Chapter 4
Granting Authorization Access to Namespaces

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 3 of 8

Grant privileges on a namespace

You can grant permissions to a role or a user on a namespace. Following is the syntax for
granting permissions on a namespace:

GRANT {Namespace-scoped privileges} ON NAMESPACE namespace_name TO <User|Role>
Namespace-scoped privileges ::= namespace_privilege [, namespace_privilege]

where,

• namespace_privilege

The namespace privilege that can be granted to a user or a role. For more information on
the applicable privileges, see the Privilege column in the Namespace Privileges and
Permissions table.

• namespace_name

The namespace that the user wishes to access.

• <User|Role>

The name of the KVStore user or the role of a user.

For example, you can grant read access to a user for all the tables in the namespace.

Example:

GRANT READ_IN_NAMESPACE ON NAMESPACE ns1 TO Kate;

Here, ns1 is the namespace and Kate is the user.

Note

The label MODIFY_IN_NAMESPACE can be used as a helper for granting or revoking
permissions to all DDL privileges for a specific namespace to a user or role.

Revoke privileges on a namespace

You can revoke the permissions from a role or a user on a namespace. Following is the syntax
for revoking the permissions on a namespace.

REVOKE {Namespace-scoped privileges} ON NAMESPACE namespace_name FROM <User|
Role>
Namespace-scoped privileges ::= namespace_privilege [, namespace_privilege]

where,

• namespace_privilege

The namespace privilege that can be revoked from a user or a role. For more information
on the applicable privileges, see the Privilege column in the Namespace Privileges and
Permissions table.

• namespace_name

Chapter 4
Granting Authorization Access to Namespaces

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 4 of 8

The namespace that the user wishes to access.

• <User|Role>

The name of the KVStore user or the role of a user.

For example, you can revoke the read access from a user for all the tables in the namespace.

Example:

REVOKE READ_IN_NAMESPACE ON NAMESPACE ns1 FROM Kate;

Here, ns1 is the namespace and Kate is the user.

Note

The label MODIFY_IN_NAMESPACE can be used as a helper for granting or revoking
permissions to all DDL privileges for a specific namespace to a user or role.

The following example shows:

1. Creation of a namespace and a table.

2. Revocation of the privilege to create any other new tables in the namespace, but allow the
table to be dropped.

Example: Namespace Scoped Privileges

CREATE NAMESPACE IF NOT EXISTS ns1;
GRANT MODIFY_IN_NAMESPACE ON NAMESPACE ns1 TO usersRole;
CREATE TABLE ns1:t (id INTEGER, name STRING, primary key (id));
INSERT INTO ns1:t VALUES (1, 'Smith');
SELECT * FROM ns1:t;
REVOKE CREATE_TABLE_IN_NAMESPACE ON NAMESPACE ns1 FROM usersRole;
DROP NAMESPACE ns1 CASCADE;

Note

You can save all of the above commands as a sql script and execute it in a single
command. If you want to execute any of the above commands outside of a SQL
prompt, remove the semi colon at the end.

Using and Setting Namespaces
Once you have created one or more namespaces, and tables within them, you can fully qualify
table names in any references. If your store has tables with the same name, the namespace
differentiates them from each other.

Chapter 4
Using and Setting Namespaces

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 5 of 8

Here is the syntax for specifying a fully qualified table, or child table name from the CLI:

namespace:tablename
namespace:tablename.child1

To reference a table in a namespace in a SELECT statement:

SELECT * FROM ns1:table1;

Set Namespace for Method Execution

You can use the ExecuteOptions.setNamespace method to set a default namespace for the
duration of a KVStore.execute() method. While set, you do not need to qualify table and other
object references. If you do not use setNamespace, or fully qualify table names, the store uses
sysdefault as the default namespace.

ExecuteOptions.setNamespace("ns1");
SELECT * FROM table1;

Determine Table Namespace

To find out which namespace was set on an option object, use the
ExecuteOptions.getNamespace method.

Get a Table in a Specific Namespace

You can call TableAPI.getTable() with two arguments:

TableAPI.getTable(String namespace, String tableFullName);

Here, the first argument for TableAPI.getTable method, namespace, is the namespace in
which you created the table. If this argument is NULL, the method uses the default sysdefault
namespace. This case is equivalent to calling the function with a single argument, described
next.

The second argument, tableFullName, is the full table name. This interface retrieves only top-
level tables, without parent tables. To retrieve child tables, use TableAPI.getChildTable().

Get a Fully-Qualified Table

You can call TableAPI.getTable() with one argument:

TableAPI.getTable(String fullNamespaceName);

The fullNamespaceName argument indicates the full name or namespace-qualified name of the
target table. If you supply an unqualified name, the method uses the sysdefault namespace.
If you supply a namespace that contains a table name prefixed with a namespace followed
with a colon (namespace:), this usage is equivalent to calling the function as
getTable(String,String) with the namespace, and TableFullName described above.

Showing and Describing Namespaces
You can use the following ways to show namespaces and their tables from the SQL CLI:

Chapter 4
Showing and Describing Namespaces

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 6 of 8

• SHOW

• DESCRIBE

The next example shows creating a namespace (ns1), a table within that namespace
(ns1:foo), and using SHOW namespaces and SHOW table ns1:foo to see the table hierarchy
(that the table was created in the ns1 namespace). Finally, using DESCRIBE table ns1:foo to
see more table details:

sql-> create namespace ns1;
Statement completed successfully

sql-> create table ns1:foo (id integer, primary key (id));
Statement completed successfully

sql-> show namespaces;
namespaces
 ns1
 sysdefault

sql-> show table ns1:foo;
tableHierarchy(namespace ns1)
 foo

sql-> describe table ns1:foo;
 === Information ===
 +-----------+------+-----+-------+----------+----------+--------+----------
+---------+-------------+
 | namespace | name | ttl | owner | sysTable | r2compat | parent | children |
indexes | description |
 +-----------+------+-----+-------+----------+----------+--------+----------
+---------+-------------+
 | ns1 | foo | | | N | N | |
| | |
 +-----------+------+-----+-------+----------+----------+--------+----------
+---------+-------------+

 === Fields ===
 +----+------+---------+----------+-----------+----------+------------
+----------+
 | id | name | type | nullable | default | shardKey | primaryKey |
identity |
 +----+------+---------+----------+-----------+----------+------------
+----------+
 | 1 | id | Integer | N | NullValue | Y | Y
| |
 +----+------+---------+----------+-----------+----------+------------
+----------+

Dropping Namespaces
You can drop a namespace only if you have been granted the DROP_ANY_NAMESPACE
privilege, and the namespace has no associated tables. Also, you must have the appropriate
privileges.

Chapter 4
Dropping Namespaces

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 7 of 8

To drop a namespace:

DROP NAMESPACE [IF EXISTS] namespace_name [CASCADE]

Using the CASCADE option with DROP NAMESPACE lets you extend the activity to tables and
other objects within the NAMESPACE.

Dropping a namespace is not an atomic operation, and completes the following steps:

• First check to make sure privileges to drop a namespace exist. Continue if privileges are in
place.

• If no privileges exist, stop process with an error.

• If privileges are in place and CASCADE is not specified, check for tables, or other objects
in the namespace. Drop the namespace if no objects exist.

• If tables or other objects exist in the namespace, stop process with an error.

• If privileges are in place to drop the namespace and CASCADE is specified, the statement
drops the namespace, removing all tables, indexes related to the tables, and table
privileges.

Note

You cannot drop the default namespace, sysdefault.

Chapter 4
Dropping Namespaces

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 8 of 8

5
Primary and Shard Key Design

Primary keys and shard keys are important concepts for your table design. What you use for
primary and shard keys has implications in terms of your ability to read multiple rows at a time.
But beyond that, your key design has important performance implications.

Primary Keys
Every table must have one or more fields designated as the primary key. This designation
occurs at the time that the table is created, and cannot be changed after the fact. Oracle
NoSQL Database supports the following types for the primary key: INTEGER, LONG, FLOAT,
DOUBLE, NUMBER, STRING, ENUM, BOOLEAN, and TIMESTAMP.

A table's primary key uniquely identifies every row in the table. In the simplest case, it is used
to retrieve a specific row so that it can be examined and/or modified.

For example, a table might have five fields: productName, productType, color, size, and
inventoryCount. To retrieve individual rows from the table, it might be enough to just know the
product's name. In this case, you would set the primary key field as productName and then
retrieve rows based on the product name that you want to examine/manipulate.

The table statement you use to define this table is:

CREATE TABLE myProducts (
 productName STRING,
 productType STRING,
 color ENUM (blue,green,red),
 size ENUM (small,medium,large),
 inventoryCount INTEGER,
 // Define the primary key. Every table must have one.
 PRIMARY KEY (productName)
)

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 1 of 5

Note

• If the primary key field is an INTEGER data type, you can apply a serialized size
constraint to it. See Integer Serialized Constraints.

• If the primary key must represent an approximate numeric type, you have an
option to choose between FLOAT and DOUBLE data types. When serialized as a
primary key, the DOUBLE data type uses 10 bytes and stores up to 16 decimal
places. The FLOAT data type uses 5 bytes and stores up to 8 decimal places.
Therefore, DOUBLE data type is more suitable as it provides a higher precision
and a wider range as compared to the FLOAT data type.

• If the primary key must represent a string data type, you have an option to choose
between STRING and ENUM. The ENUM data type mandates choosing from a list
of permitted values. When used as a primary key, the cardinality is small. Also,
any addition or deletion to the ENUM values requires schema evolution. The
primary keys can only be changed by dropping and recreating the table.
Therefore, changing the ENUM values of a primary key is an invasive operation.
The STRING data type is better suited for primary keys as its value is a sequence
of zero or more Unicode characters

Composite Keys
You can use multiple fields for your primary key, which is termed as a composite key.

For example, consider the following table statement:

CREATE TABLE myProducts (
 productName STRING,
 productType STRING,
 color ENUM (blue,green,red),
 size ENUM (small,medium,large),
 inventoryCount INTEGER,
 // Define the primary key. Every table must have one.
 PRIMARY KEY (productName, productType)
)

Here, the columns productName and productType are both declared as primary key fields.

The composite keys are useful in cases where the keys conjointly help in identifying a unique
row.

See Reading Table Rows to retrieve multiple rows from your table.

See Using multiDelete() to delete multiple rows at a time.

Data Type Limitations
Fields can be designated as primary keys only if they are declared to be one of the following
types:

• Integer

• Long

• Number

Chapter 5
Primary Keys

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 2 of 5

• Float

• Double

• String

• Timestamp

• Enum

Partial Primary Keys
Some of the methods you use to perform multi-row operations allow, or even require, a partial
primary key. A partial primary key is, simply, a key where only some of the fields comprising the
row's primary key are specified.

For example, the following example specifies three fields for the table's primary key:

CREATE TABLE myProducts (
 productName STRING,
 productType STRING,
 productClass STRING,
 color ENUM (blue,green,red),
 size ENUM (small,medium,large),
 inventoryCount INTEGER,
 // Define the primary key. Every table must have one.
 PRIMARY KEY (productName, productType, productClass)
)

In this case, a full primary key would be one where you provide value for all three primary key
fields: productName, productType, and productClass. A partial primary key would be one
where you provide values for only one or two of those fields.

Note that order matters when specifying a partial key. The partial key must be a subset of the
full key, starting with the first field specified and then adding fields in order. So the following
partial keys are valid:

• productName

• productName, productType

Shard Keys
Shard keys identify which primary key fields are meaningful in terms of shard storage. That is,
rows that contain the same values for all the shard key fields are guaranteed to be stored on
the same shard offering high-performance retrievals and horizontal scalability. This matters for
some operations that promise atomicity of the results. (See Executing a Sequence of
Operations for more information.)

For example, suppose you set the following primary keys:

PRIMARY KEY (productType, productName, productClass)

You can guarantee that rows are placed on the same shard using the values set for the
productType and productName fields like this:

PRIMARY KEY (SHARD(productType, productName), productClass)

Chapter 5
Primary Keys

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 3 of 5

Note

• The order matters when it comes to the shard keys. The keys must be specified in
the order that they are defined as primary keys, with no gaps in the key list. In
other words, given the above example, it is impossible to set productType and
productClass as shard keys without also specifying productName as a shard key.

• The shard keys can't be declared in the create table statement of a non-root table
(in cases of child tables). An error is returned in such scenarios.

For more details on table modeling and design using primary keys, see Choice of Keys in
NoSQL Database.

Row Data
There are no restrictions on the size of your rows, or the amount of data that you store in a
field. However, you should consider your store's performance when deciding how large you are
willing to allow your individual tables and rows to become. As is the case with any data storage
scheme, the larger your rows, the longer it takes to read the information from storage, and to
write the information to storage.

On the other hand, every table row carries with it some amount of overhead. Also, as the
number of your rows grows very large, search times may be adversely affected. As a result,
choosing to use a large number of tables, each of which use rows with just a small handful of
fields, can also harm your store's performance.

Therefore, when designing your tables' content, you must find the appropriate balance
between a small number of tables, each of which uses very large rows; and a large number of
tables, each of which uses very small rows. You should also consider how frequently any given
piece of information will be accessed.

For example, suppose your table contains information about users, where each user is
identified by their first and last names (surname and familiar name). There is a set of
information that you want to maintain about each user. Some of this information is small in
size, and some of it is large. Some of it you expect will be frequently accessed, while other
information is infrequently accessed.

Small properties are:

• name

• gender

• address

• phone number

Large properties are:

• image file

• public key 1

• public key 2

• recorded voice greeting

There are several possible ways you can organize this data. How you should do it depends on
your data access patterns.

Chapter 5
Row Data

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 4 of 5

For example, suppose your application requires you to read and write all of the properties
identified above every time you access a row. (This is unlikely, but it does represent the
simplest case.) In that event, you might create a single table with rows containing fields for
each of the properties you maintain for the users in your application.

However, the chances are good that your application will not require you to access all of a
user's properties every time you access his information. While it is possible that you will always
need to read all of the properties every time you perform a user look up, it is likely that on
updates you will operate only on some properties.

Given this, it is useful to consider how frequently data will be accessed, and its size. Large,
infrequently accessed properties should be placed in tables other than that used by the
frequently accessed properties.

For example, for the properties identified above, suppose the application requires:

• all of the small properties to always be used whenever the user's record is accessed.

• all of the large properties to be read for simple user look ups.

• on user information updates, the public keys are always updated (written) at the same
time.

• The image file and recorded voice greeting can be updated independently of everything
else.

In this case, you might store user properties using a table and a child table. The parent table
holds rows containing all the small properties, plus public keys. The child table contains the
image file and voice greeting.

CREATE TABLE userInfo (
 surname STRING,
 familiarName STRING,
 gender ENUM (male,female),
 street STRING,
 city STRING,
 state STRING,
 zipcode STRING,
 userPhone STRING,
 publickey1 BINARY,
 publickey2 BINARY,
 PRIMARY KEY (SHARD(surname), familiarName)
)

CREATE TABLE userInfo.largeProps (
 propType STRING,
 voiceGreeting BINARY,
 imageFile BINARY,
 PRIMARY KEY (propType)
)

Because the parent table contains all the data that is accessed whenever user data is
accessed, you can update that data all at once using a single atomic operation. At the same
time, you avoid retrieving the big data values whenever you retrieve a row by splitting the
image data and voice greeting into a child table.

Chapter 5
Row Data

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 5 of 5

6
Writing and Deleting Table Rows

This chapter discusses two different write operations: putting table rows into the store, and
then deleting them.

Write Exceptions
There are many exceptions that you should handle whenever you perform a write operation to
the store. Some of the more common exceptions are described here. For simple cases where
you use default policies or are not using a secure store, you can probably avoid explicitly
handling these. However, as your code complexity increases, so too will the desirability of
explicitly managing these exceptions.

The first of these is DurabilityException. This exception indicates that the operation cannot
be completed because the durability policy cannot be met. For more information, see Durability
Guarantees.

The second is RequestTimeoutException. This simply means that the operation could not be
completed within the amount of time provided by the store's timeout property. This probably
indicates an overloaded system. Perhaps your network is experiencing a slowdown, or your
store's nodes are overloaded with too many operations (especially write operations) coming in
too short of a period of time.

To handle a RequestTimeoutException, you could simply log the error and move on, or you
could pause for a short period of time and then retry the operation. You could also retry the
operation, but use a longer timeout value. (There is a version of the TableAPI.put() method
that allows you to specify a timeout value for that specific operation.)

You can also receive an IllegalArgumentException, which will be thrown if a Row that you are
writing to the store does not have a primary key or is otherwise invalid.

You can also receive a general FaultException, which indicates that some exception occurred
which is neither a problem with durability nor a problem with the request timeout. Your only
recourse here is to either log the error and move along, or retry the operation.

Finally, if you are using a secure store that requires authentication, you can receive
AuthenticationFailureException or AuthenticationRequiredException if you do not
provide the proper authentication credentials. When using a secure store, you can also see
UnauthorizedException, which means you are attempting an operation for which the
authenticated user does not have the proper permissions.

Writing Rows to a Table in the Store
Writing a new row to a table in the data store, and updating an existing row are similar
operations. Later in this section, we describe methods that work only if a row is being updated,
or only if you are creating a row. You can write data to a table only after it has been added to
the store. See Introducing Oracle NoSQL Database Tables and Indexes for details.

Along with writing a row to the table, you can also add user-defined metadata for each
individual row. This row metadata is stored along with the row but remains independent from
your primary data model. You can use setRowMetadata() from the PutRequest class to insert

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 1 of 17

metadata along with the row. For more information with an example, see Using row metadata
in Write Operations, in Developers Guide.

To write a row to a table in the store:

1. Construct a handle for the table to which are writing data. You do this by retrieving a
TableAPI interface instance using KVStore.getTableAPI(). Use that instance to retrieve a
handle for the table using the TableAPI.getTable(), which then returns a Table interface
instance.

Note

The TableAPI.getTable() method is an expensive call requiring server side
access. For best performance, do not call this method each time you need a table
handle. If possible, call this method for all relevant tables in the set up section of
your code. Then, reuse the handles throughout your application.

2. Use the Table.createRow() method to create a Row interface instance, using the Table
instance you retrieved in the previous step.

3. Using the Row.put() method, write to each field in the row.

To write a NULL value, use Row.putNull(), rather than Row.put().

4. Write the new row to the store using TableAPI.put().

Note

If the table you are writing to contains an IDENTITY column, the generated value
from the sequence generator will be available in the row.

You can also load rows into the store using special purpose streams. For more information,
see Bulk Put Operations.

The following example shows how to write a row to the store, assuming that you have already
created the KVStore handle.

package kvstore.basicExample;

import oracle.kv.KVStore;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;

...

// KVStore handle creation is omitted for brevity

...

TableAPI tableH = kvstore.getTableAPI();

// The name you give getTable() must be identical
// to the name of the table when you created it with
// the CREATE TABLE DDL statement (myTable in this example).
Table myTable = tableH.getTable("myTable");

Chapter 6
Writing Rows to a Table in the Store

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 2 of 17

// Get a Row instance
Row row = myTable.createRow();

// Use row.put to put all of the cells into the row.
// This does NOT actually write the data to the store.

row.put("item", "Bolts");
row.put("description", "Hex head, stainless");
row.put("count", 5);
row.put("percentage", 0.2173913);

// Now write the table to the store.
// "item" is the row's primary key. If we had not set that key and its value,
// this operation will result in an IllegalArgumentException.
tableH.put(row, null, null);

Writing Rows to a Child Table
To write to a child table, complete the tasks that you do for a parent table, except using the
two-part table name, such as parent-table.child-table.

For example, in Defining Child Tables we showed how to create a child table. To write data to
that table, do this:

package kvstore.basicExample;

import oracle.kv.KVStore;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;

...

// KVStore handle creation is omitted for brevity

...

TableAPI tableH = kvstore.getTableAPI();

// Get the corresponding child table
Table myChildTable = tableH.getTable("myInventory.itemDetails");

// Get a row instance
Row childRow = myChildTable.createRow();

// Populate the rows. Because the parent table's "itemCategory"
// field is a primary key, this must be populated in addition
// to all of the child table's rows
childRow.put("itemCategory", "Bolts");
childRow.put("itemSKU", "1392610");
childRow.put("itemDescription", "1/4-20 x 1/2 Grade 8 Hex");
childRow.put("price", new Float(11.99));
childRow.put("inventoryCount", 1457);

Chapter 6
Writing Rows to a Table in the Store

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 3 of 17

Writing rows to an IDENTITY column
Special considerations arise when you are inserting values into an IDENTITY column
programmatically. This section presents the issues that exist, and how to work around them
using put() and other methods.

You create each IDENTITY column in a table with one of these choices:

• GENERATED ALWAYS AS IDENTITY

• GENERATED BY DEFAULT AS IDENTITY

• GENERATED BY DEFAULT ON NULL AS IDENTITY

Additionally, an identity column can be a primary key, which prevents you from changing the
IDENTITY value.

Each of the ways in which you create your identity column affects activities when you add rows
using the put function, with one of its variants:

• put (unconditional)

• put if absent (only if the row does not have values)

• put if present (only if the row has values)

This section describes the different effects of inserting and updating IDENTITY columns.

For example, create the following table with a column defined with GENERATED ALWAYS AS
IDENTITY. The IDENTITY field is a primary key:

CREATE Table foo(
 idValue INTEGER GENERATED ALWAYS AS IDENTITY
 (START WITH 1 INCREMENT BY 1 MAXVALUE 2 NO CYCLE),
 name STRING,
 PRIMARY KEY(idValue));

Insert a row into the IDENTITY Column

To insert a row into the foo table, here's what to do in your application:

L1: TableAPI api = store.getTableAPI(); // Gets the TableAPI for the store
L2: Table table = api.getTable("foo"); // Gets the Table foo instance
L3: Row row = table.createRow(); // constructs an empty Row row for Table
foo.
L4: row.put("name", "joe"); // populates the values for the Row row
L5: api.put(row, null /* previous-row */, null /* write-options */);

// The client driver recognizes that the system must generate the id values
and \
generates value 1 for the id field in the row before putting it in the DB.
L6: System.out.println("Value of idValue: " + row.get("idValue")); // 1
L7: row.put("name", "smith");
L8: api.put(row, null /* previous-row */, null /* write-options */);
// driver sets id field to 2
L9: System.out.println("Value of id: " + row.get("idValue")); // 2

Chapter 6
Writing Rows to a Table in the Store

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 4 of 17

Note

To get the value of a generated IDENTITY column, use a get() call to the IDENTITY
column, as shown in L6 and L9.

Also, to return the idValue use the RETURNING idValue clause, as follows:

StatementResult sr = store.executeSync("INSERT INTO foo " + "(name) VALUES
('foe')
RETURNING idValue");
int id = sr.iterator().next().get("idValue").asInteger().get();

Updating an IDENTITY Column
When you define a column as GENERATED ALWAYS AS IDENTITY you cannot supply a value for
the IDENTITY column, because the Sequence Generator(SG) must always supply the next
value.

The following example illustrates what happens when you try to specify a value for the
IDENTITY column. The first additions, joe and john are fine, and the SG supplies an idValue
for both:

CREATE TABLE foo(
 idValue INTEGER GENERATED ALWAYS AS IDENTITY,
 name STRING, PRIMARY KEY (idValue))
 api.put('joe')
 api.put('john')
 get(idValue, name) or
select * from foo;
1, joe
2, john

Trying to update with any of the put() methods causes the following errors when a column is
defined as GENERATED ALWAYS AS IDENTITY:

api.put(2,'dave') // error –- cannot specify a value for \
 a column defined as GENERATED ALWAYS AS IDENTITY

api.putIfPresent (2, 'dave') -- The following error occurs first in the code
path,
even though idValue = 2 is present
// error – user cannot specify a value for \
 IDENTITY column defined as GENERATED ALWAYS

api.putIfPresent (3,'cezar') -- The following error occurs, first in the code
path,
even though idValue = 3 is NOT present
// error - user cannot specify a value for \
 IDENTITY column defined as GENERATED ALWAYS

api.putIfPresent ('hema')
//error – a primary key is not provided to look up the record.

putIfAbsent (10, 'joe') -– is an insert

Chapter 6
Writing Rows to a Table in the Store

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 5 of 17

// error - user cannot specify a value for \
IDENTITY column defined as GENERATED ALWAYS

To use UPDATE on a column defined as GENERATED ALWAYS AS IDENTITY:

Create table foo(idValue INTEGER GENERATED ALWAYS AS IDENTITY,
 name STRING,
 PRIMARY KEY (idValue))

UPDATE foo SET idValue = 10 WHERE name='joe'
// error - user cannot set a value for an IDENTITY column defined as
GENERATED ALWAYS
 UPDATE foo SET name=hema WHERE idValue=2
// Success! By using the Primary Key value (idValue=2)to locate its name
record,
// you can update the value and hema replaces john
select * from foo
1, joe
2, hema

To use put, putIfPresent, and putIfAbsent on an IDENTITY column that is not a PRIMARY
KEY:

Create table Foo(idValue INTEGER GENERATED ALWAYS AS IDENTITY,
 acctNumber INTEGER,
 name STRING,
 PRIMARY KEY (acctNumber))

//Put two acctNumber and name values.
api.put(100, 'joe')
api.put (200, 'john')

//SG increments the IDENTITY values, 1 and 2:
api.get(idValue, acctNumber, name)
1, 100, joe
2, 200, john

//Attempt to put an idValue
api.put (2, 200,'dave')
// error – Cannot specify a value for IDENTITY column defined as GENERATED
ALWAYS

api.putIfPresent(3, 200,'cezar')
//error – Cannot specify a value for IDENTITY column defined as GENERATED
ALWAYS

api.putIfPresent (400,'cezar') // not IDENTITY column value error
// error - Cannot specify a primary key (400) that is not present

api.putIFPresent (200,'cezar')
1, 100, joe
2, 200, cezar
// Success! The IDENTITY value is updated.
The system generates a value on putIfPresent as the API semantics are to
update

Chapter 6
Writing Rows to a Table in the Store

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 6 of 17

the entire record, and not update fields within the record selectively.

api.putIfAbsent (300,'hema')
// Success! IDENTITY idValue was generated (3), and 300, hema were absent
get(idValue, acctNumber, name)
1, 100, joe
2, 200, cezar
3, 300, hema

api.putIfAbsent (20, 300,'hema')
// error – user cannot specify a value for IDENTITY column defined as
GENERATED ALWAYS

api.putIfAbsent (300,'hema')
//error - no row with primary key = 300 is present

api.putIfAbsent (3,400,'hema')
// error – user cannot specify a value for IDENTITY column defined as
GENERATED ALWAYS

To use UPDATE on an IDENTITY column that is not a PRIMARY KEY:

Create table Foo(idValue INTEGER GENERATED ALWAYS AS IDENTITY,
 acctNumber INTEGER,
 name STRING,
 PRIMARY KEY (acctNumber))

select * from foo
1, 100, joe
2, 200, cezar
3, 300, hema

UPDATE foo set name= dave where PRIMARY KEY = 200
// replaces (2, 200, cezar) with (2, 200, dave)

select * from foo;
1, 100, joe
2, 200, dave
3, 300, hema

UPDATE foo set name=george where acctNumber=100
// acctNumber is the PRIMARY KEY
// replaces (1, 100, joe) with (1, 100, george)
select * from foo;
1, 100, george
2, 200, dave
3, 300, hema

UPDATE foo set idValue=10 where acctNumber=100
// acctNumber is the PRIMARY KEY
// error - Cannot specify a value for IDENTITY column defined as GENERATED
ALWAYS

To use put() on a column defined as GENERATED BY DEFAULT AS IDENTITY, which is a
PRIMARY KEY, review the following examples. In this case, not specifying a value for the

Chapter 6
Writing Rows to a Table in the Store

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 7 of 17

IDENTITY column causes the SG to generate a value. Specifying a value, the system uses
what you supply.

Create table foo(idValue INTEGER GENERATED BY DEFAULT AS IDENTITY,
 name STRING,
 PRIMARY KEY (idValue))

api.put('joe')
api.put('john')

//Since you supplied no idValue, SG supplies them:
get(idValue,name)
1, joe
2, john

//You supply 4 as the idValue, so system uses it
api.put (4,'george')

get(idValue, name)
1, joe
2, john
4, george

api.put (2,'sam') // replaces (2, john) with (2, sam)
get(idValue,name)
1, joe
2, sam
4, george

To use UPDATE() on the column:

select * from foo;
1, joe
2, sam
4, george

UPDATE foo SET name='brian' where idValue=2
// Updates idValue 2 (2, sam) with 2, brian
select * from foo
1, joe
2, brian
4, george

You can update any column other than the primary key column using the UPDATE clause.

Deleting an IDENTITY Column
Deleting a row with an IDENTITY column follows the existing delete logic in the product. There
is no change.

Other put Operations
Beyond the very simple usage of the TableAPI.put() method illustrated above, there are three
other put operations that you can use:

• TableAPI.putIfAbsent()

Chapter 6
Writing Rows to a Table in the Store

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 8 of 17

This method will only put the row if the row's primary key value DOES NOT currently exist
in the table. That is, this method is successful only if it results in a create operation.

• TableAPI.putIfPresent()

This method will only put the row if the row's primary key value already exists in the table.
That is, this method is only successful if it results in an update operation.

• TableAPI.putIfVersion()

This method will put the row only if the value matches the supplied version information. For
more information, see Using Row Versions .

Bulk Put Operations
Bulk put operations allow you to load records supplied by special purpose streams into the
store.

The bulk loading of the entries is optimized to make efficient use of hardware resources. As a
result, this operation can achieve much higher throughput when compared with single put
APIs.

The behavior of the bulk put operation with respect to duplicate entries contained in different
streams is thus undefined. If the duplicate entries are just present in a single stream, then the
first entry will be inserted (if it is not already present) and the second entry and subsequent
entries will result in the invocation of EntryStream.keyExists(E) method. If duplicates exist
across streams, then the first entry to win the race is inserted and subsequent duplicates will
result in EntryStream.keyExists(E) being invoked on them.

To use bulk put, use one of the TableAPI.put() methods that provide bulk put. These accept a
set of streams to bulk load data. The rows within each stream may be associated with different
tables.

When using these methods, you can also optionally specify a BulkWriteOptions class
instance which allows you to specify the durability, timeout, and timeout unit to configure the
bulk put operation.

For example, suppose you are loading 1000 rows with 3 input streams:

 import java.util.ArrayList;
 import java.util.List;
 import java.util.concurrent.atomic.AtomicLong;
 import oracle.kv.BulkWriteOptions;
 import oracle.kv.EntryStream;
 import oracle.kv.FaultException;
 import oracle.kv.KVStore;
 import oracle.kv.KVStoreConfig;
 import oracle.kv.KVStoreFactory;
 import oracle.kv.table.Row;
 import oracle.kv.table.Table;
 import oracle.kv.table.TableAPI;

 ...

 // KVStore handle creation is omitted for brevity

 ...
 Integer streamParallelism = 3;
 Integer perShardParallelism = 3;

Chapter 6
Bulk Put Operations

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 9 of 17

 Integer heapPercent = 30;
 // In this case, sets the amount of 1000 rows to load
 int nLoad = 1000;

 BulkWriteOptions bulkWriteOptions =
 new BulkWriteOptions(null, 0, null);
 // Set the number of streams. The default is 1 stream.
 bulkWriteOptions.setStreamParallelism(streamParallelism);
 // Set the number of writer threads per shard.
 // The default is 3 writer threads.
 bulkWriteOptions.setPerShardParallelism(perShardParallelism);
 // Set the percentage of max memory used for bulk put.
 // The default is 40 percent.
 bulkWriteOptions.setBulkHeapPercent(heapPercent);

 System.err.println("Loading rows to " + TABLE_NAME + "...");

 final List<EntryStream<Row>> streams =
 new ArrayList<EntryStream<Row>>(streamParallelism);
 final int num = (nLoad + (streamParallelism - 1)) / streamParallelism;
 for (int i = 0; i < streamParallelism; i++) {
 final int min = num * i;
 final int max = Math.min((min + num) , nLoad);
 streams.add(new LoadRowStream(i, min, max));
 }

 final TableAPI tableImpl = store.getTableAPI();
 tableImpl.put(streams, bulkWriteOptions);

 long total = 0;
 long keyExists = 0;
 for (EntryStream<Row> stream: streams) {
 total += ((LoadRowStream)stream).getCount();
 keyExists += ((LoadRowStream)stream).getKeyExistsCount();
 }
 final String fmt = "Loaded %,d rows to %s, %,d pre-existing.";
 System.err.println(String.format(fmt, total, TABLE_NAME, keyExists));

You should implement the stream interface that supplies the data to be batched and loaded
into the store. Entries are supplied by a list of EntryStream instances. Each stream is read
sequentially, that is, each EntryStream.getNext() is allowed to finish before the next operation
is issued. The load operation typically reads from these streams in parallel as determined by
BulkWriteOptions.getStreamParallelism().

private class LoadRowStream implements EntryStream<Row> {

 private final String name;
 private final long index;
 private final long max;
 private final long min;
 private long id;
 private long count;
 private final AtomicLong keyExistsCount;

 LoadRowStream(String name, long index, long min, long max) {

Chapter 6
Bulk Put Operations

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 10 of 17

 this.index = index;
 this.max = max;
 this.min = min;
 this.name = name;
 id = min;
 count = 0;
 keyExistsCount = new AtomicLong();
 }

 @Override
 public String name() {
 return name + "-" + index + ": " + min + "~" + max;
 }

 @Override
 public Row getNext() {
 if (id++ == max) {
 return null;
 }
 final Row row = userTable.createRow();
 row.put("id", id);
 row.put("name", "name" + id);
 row.put("age", 20 + id % 50);
 count++;
 return row;
 }

 @Override
 public void completed() {
 System.err.println(name() + " completed, loaded: " + count);
 }

 @Override
 public void keyExists(Row entry) {
 keyExistsCount.incrementAndGet();
 }

 @Override
 public void catchException(RuntimeException exception, Row entry) {
 System.err.println(name() + " catch exception: " +
 exception.getMessage() + ": " +
 entry.toJsonString(false));
 throw exception;
 }

 public long getCount() {
 return count;
 }

 public long getKeyExistsCount() {
 return keyExistsCount.get();
 }
}

Chapter 6
Bulk Put Operations

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 11 of 17

Using Time to Live
Time to Live (TTL) is a mechanism that allows you to automatically expire table rows. TTL is
expressed as the amount of time data is allowed to live in the store. Data which has reached
its expiration timeout value can no longer be retrieved, and will not appear in any store
statistics. Whether the data is physically removed from the store is determined by an internal
mechanism that is not user-controllable.

TTL represents a minimum guaranteed time to live. Data expires on hour or day boundaries.
This means that with a one hour TTL, there can be as much as two hours worth of unexpired
data. For example (using a time format of hour:minute:second), given a one hour TTL, data
written between 00:00:00.000 and 00:59:59.999 will expire at 02:00:00.000 because the data is
guaranteed to expire no less than one hour from when it is written.

In case of MR Tables with TTL value defined, the rows replicated to other regions carry the
expiration time when the row was written. This can be either the default table level TTL value
or a row level override that is set by your application. Therefore, this row will expire in all the
regions at the same time, irrespective of when they were replicated.

Expired data is invisible to queries and store statistics, but even so it is using disk space until it
has been purged. Here, store statistics refer to the statistics related to your store's
performance and availability. See Monitoring the Store. The expired data is purged from disk at
some point in time after its expiration date. The exact time when the data is purged is driven by
internal mechanisms and the workload on your store.

The TTL value for a table row can be updated at any time before the expiration value has been
reached. Data that has expired can no longer be modified, and this includes its TTL value.

TTL is more efficient than manual user-deletion of the row because it avoids the overhead of
writing a database log entry for the data deletion. The deletion also does not appear in the
replication stream.

Specifying a TTL Value
TTL values are specified on a row by row basis using Row.setTTL(). This method accepts a
TimeToLive class instance, which allows you to identify the number of days or hours the row
will live in the store before expiring. A duration interval specified in days is recommended
because this results in the least amount of storage consumed in the store. However, if you
want a TTL value that is not an even multiple of days, then specify the TTL value in hours.

The code example from Writing Rows to a Table in the Store can be extended to specify a TTL
value of 5 days like this:

package kvstore.basicExample;

import oracle.kv.KVStore;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TimeToLive;
import oracle.kv.table.TableAPI;

...

// KVStore handle creation is omitted for brevity

...

Chapter 6
Using Time to Live

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 12 of 17

TableAPI tableH = kvstore.getTableAPI();
Table myTable = tableH.getTable("myTable");

// Get a Row instance
Row row = myTable.createRow();

// Add a TTL value to the row
row.setTTL(TimeToLive.ofDays(5));

// Now put all of the cells in the row.
row.put("item", "Bolts");
row.put("description", "Hex head, stainless");
row.put("count", 5);
row.put("percentage", 0.2173913);

// Now write the table to the store.
tableH.put(row, null, null);

Updating a TTL Value
To update the expiration time for a table row, you write the row as normal, and at the same
time specify the new expiration time. However, you must also indicate that the expiration time
is to be updated. By default, you can modify the row data and the expiration time will not be
modified, even if you specify a new TTL value for the row.

To indicate that the the expiration time is to be updated, specify true to the
WriteOptions.setUpdateTTL() method. For example, using the previous example, to change
the TTL value to 10 days, do the following:

package kvstore.basicExample;

import oracle.kv.KVStore;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.Table.TimeToLive;
import oracle.kv.table.TableAPI;
import oracle.kv.table.WriteOptions;

...

// KVStore handle creation is omitted for brevity

...

TableAPI tableH = kvstore.getTableAPI();
Table myTable = tableH.getTable("myTable");

// Get a Row instance
Row row = myTable.createRow();

// Change the TTL value for the row from 5 days to 10.
row.setTTL(TimeToLive.ofDays(10));

Chapter 6
Using Time to Live

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 13 of 17

// Now put all of the cells in the row.
row.put("item", "Bolts");
row.put("description", "Hex head, stainless");
row.put("count", 5);
row.put("percentage", 0.2173913);

// Now write the table to the store.
tableH.put(row, null, new WriteOptions().setUpdateTTL(true));

Deleting TTL Expiration
If you have set a TTL value for a row and you later decide you do not want it to ever
automatically expire, you can turn off TTL by setting a TTL value of
TimeToLive.DO_NOT_EXPIRE:

package kvstore.basicExample;

import oracle.kv.KVStore;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.Table.TimeToLive;
import oracle.kv.table.TableAPI;
import oracle.kv.table.WriteOptions;

...

// KVStore handle creation is omitted for brevity

...

TableAPI tableH = kvstore.getTableAPI();
Table myTable = tableH.getTable("myTable");

// Get a Row instance
Row row = myTable.createRow();

// Modify the row's TTL so that it will never expire
row.setTTL(TimeToLive.DO_NOT_EXPIRE);

// Now put all of the cells in the row.
row.put("item", "Bolts");
row.put("description", "Hex head, stainless");
row.put("count", 5);
row.put("percentage", 0.2173913);

// Now write the table to the store.
tableH.put(row, null, new WriteOptions().setUpdateTTL(true));

Setting Default Table TTL Values
You can set a default TTL value for the table when you define the table using the USING TTL
DDL statement. It may be optionally applied when a table is created using CREATE TABLE or

Chapter 6
Using Time to Live

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 14 of 17

when a table is modified using one of the ALTER TABLE statements. See USING TTL for details
on this statement.

For example:

CREATE TABLE myTable (
 item STRING,
 description STRING,
 count INTEGER,
 percentage DOUBLE,
 PRIMARY KEY (item) // Every table must have a primary key
) USING TTL 5 days

At program run time, you can examine the default TTL value for a table using the
Table.getDefaultTTL() method.

Deleting Rows from the Store
You delete a single row from the store using the TableAPI.delete() method. Rows are
deleted based on a PrimaryKey, which you obtain using the Table.createPrimaryKey()
method. You can also require a row to match a specified version before it will be deleted. To do
this, use the TableAPI.deleteIfVersion() method. Versions are described in Using Row
Versions .

When you delete a row, you must handle the same exceptions as occur when you perform any
write operation on the store. See Write Exceptions for a high-level description of these
exceptions.

If you delete a row that has associated user-defined row metadata, both the row data and its
metadata are permanently removed from the table. This metadata will be included in the
change stream event, allowing the change stream subscriber to track the cause of deletion.
For more information, see Using row metadata in Write Operations in Developers Guide.

package kvstore.basicExample;

import oracle.kv.KVStore;
import oracle.kv.table.PrimaryKey;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;

...

// KVStore handle creation is omitted for brevity

...

TableAPI tableH = kvstore.getTableAPI();

// The name you give to getTable() must be identical
// to the name that you gave the table when you created
// the table using the CREATE TABLE DDL statement.
Table myTable = tableH.getTable("myTable");

// Get the primary key for the row that we want to delete
PrimaryKey primaryKey = myTable.createPrimaryKey();

Chapter 6
Deleting Rows from the Store

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 15 of 17

primaryKey.put("item", "Bolts");

// Delete the row
// This performs a store write operation
tableH.delete(primaryKey, null, null);

Using multiDelete()
You can delete multiple rows at once in a single atomic operation, as long as they all share the
shard key values. Recall that shard keys are at least a subset of your primary keys. This
results in using a partial primary key, which is the shard key, to perform a multi-delete.

To delete multiple rows at once, use the TableAPI.multiDelete() method.

For example, suppose you create a table like this:

CREATE TABLE myTable (
 itemType STRING,
 itemCategory STRING,
 itemClass STRING,
 itemColor STRING,
 itemSize STRING,
 price FLOAT,
 inventoryCount INTEGER,
 PRIMARY KEY (SHARD(itemType, itemCategory, itemClass), itemColor,
 itemSize)
)

With tables containing data like this:

• Row 1:

– itemType: Hats

– itemCategory: baseball

– itemClass: longbill

– itemColor: red

– itemSize: small

– price: 12.07

– inventoryCount: 127

• Row 2:

– itemType: Hats

– itemCategory: baseball

– itemClass: longbill

– itemColor: red

– itemSize: medium

– price: 13.07

– inventoryCount: 201

• Row 3:

Chapter 6
Deleting Rows from the Store

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 16 of 17

– itemType: Hats

– itemCategory: baseball

– itemClass: longbill

– itemColor: red

– itemSize: large

– price: 14.07

– inventoryCount: 39

In this case, you can delete all the rows sharing the partial primary key Hats, baseball,
longbill as follows:

package kvstore.basicExample;

import oracle.kv.KVStore;
import oracle.kv.table.PrimaryKey;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;

...

// KVStore handle creation is omitted for brevity

...

TableAPI tableH = kvstore.getTableAPI();

// The name you give to getTable() must be identical
// to the name that you gave the table when you created
// it using the CREATE TABLE DDL statement.
Table myTable = tableH.getTable("myTable");

// Get the primary key for the row that we want to delete
PrimaryKey primaryKey = myTable.createPrimaryKey();
primaryKey.put("itemType", "Hats");
primaryKey.put("itemCategory", "baseball");
primaryKey.put("itemClass", "longbill");

// Exception handling omitted
tableH.multiDelete(primaryKey, null, null);

Chapter 6
Deleting Rows from the Store

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 17 of 17

7
Reading Table Rows

There are several ways to retrieve table rows from the store. You can:

1. Retrieve a single row at a time using the TableAPI.get() method.

2. Retrieve rows associated with a shard key (which is based on at least part of your primary
keys) using either the TableAPI.multiGet() or TableAPI.multiGetIterator() methods.

3. Retrieve table rows that share a shard key, or an index key, using the
TableAPI.tableIterator() method.

4. Retrieve and process records from each shard in parallel using a single key as the retrieval
criteria. Use one of the TableAPI.tableIterator() or TableAPI.tableKeysIterator()
methods that provide parallel scans.

5. Retrieve and process records from each shard in parallel using a set of keys as the
retrieval criteria. Use one of the TableAPI.tableIterator() or
TableAPI.tableKeysIterator() methods that provide bulk retrievals.

Each of these are described in the following sections.

Read Exceptions
Several exceptions can occur when you attempt a read operation in the store. The first of these
is ConsistencyException. This exception indicates that the operation cannot be completed
because the consistency policy cannot be met. For more information, see Consistency
Guarantees.

The second exception is RequestTimeoutException. This means that the operation could not
be completed within the amount of time provided by the store's timeout property. This probably
indicates a store that is attempting to service too many read requests all at once. Remember
that your data is partitioned across the shards in your store, with the partitioning occurring
based on your shard keys. If you designed your keys such that a large number of read
requests are occurring against a single key, you could see request timeouts even if some of the
shards in your store are idle.

A request timeout could also be indicative of a network problem that is causing the network to
be slow or even completely unresponsive.

To handle a RequestTimeoutException, you could simply log the error and move on, or you
could pause for a short period of time and then retry the operation. You could also retry the
operation, but use a longer timeout value.

You can also receive an IllegalArgumentException, which will be thrown if a Row that you are
writing to the store does not have a primary key or is otherwise invalid.

You can also receive a general FaultException, which indicates that some exception occurred
which is neither a problem with consistency nor a problem with the request timeout. Your only
recourse here is to either log the error and move along, or retry the operation.

You can also receive a MetadataNotFoundException, which indicates that a client's metadata
may be out of sync. It extends FaultException and can be caught by applications to trigger

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 1 of 23

the need for a refresh of their metadata, and in particular, Table handles obtained via
TableAPI.getTable().

Finally, if you are using a secure store that requires authentication, you can receive
AuthenticationFailureException or AuthenticationRequiredException if you do not
provide the proper authentication credentials. When using a secure store, you can also see
UnauthorizedException, which means you are attempting an operation for which the
authenticated user does not have the proper permissions.

Retrieving a Single Row
To retrieve a single row from the store:

1. Construct a handle for the table from which you want to read. You do this by retrieving a
TableAPI class instance using KVStore.getTableAPI(). You then use that instance to
retrieve the desired table handle using TableAPI.getTable(). This returns a Table class
instance.

Note

TableAPI.getTable() is an expensive call that requires server side access. From
a performance point of view, it is a mistake to call this method whenever you need
a table handle. Instead, call this method for all relevant tables in the set up section
of your code, and then reuse those handles throughout your application.

2. Use the Table instance retrieved in the previous step to create a PrimaryKey class
instance. In this case, the key you create must be the entire primary key.

3. Retrieve the row using TableAPI.get(). This performs a store read operation.

4. Retrieve individual fields from the row using the Row.get() method.

For example, in Writing Rows to a Table in the Store we showed a trivial example of storing a
table row to the store. The following trivial example shows how to retrieve that row.

package kvstore.basicExample;

import oracle.kv.KVStore;
import oracle.kv.table.PrimaryKey;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;

...

// KVStore handle creation is omitted for brevity

...

TableAPI tableH = kvstore.getTableAPI();

// The name you give to getTable() must be identical
// to the name that you gave the table when you created
// the table using the CREATE TABLE DDL statement.
Table myTable = tableH.getTable("myTable");

Chapter 7
Retrieving a Single Row

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 2 of 23

// Construct the PrimaryKey. This is driven by your table
// design, which designated one or more fields as
// being part of the table's primary key. In this
// case, we have a single field primary key, which is the
// 'item' field. Specifically, we want to retrieve the
// row where the 'item' field contains 'Bolts'.
PrimaryKey key = myTable.createPrimaryKey();
key.put("item", "Bolts");

// Retrieve the row. This performs a store read operation.
// Exception handling is skipped for this trivial example.
Row row = tableH.get(key, null);

// Now retrieve the individual fields from the row.
String item = row.get("item").asString().get();
String description = row.get("description").asString().get();
Integer count = row.get("count").asInteger().get();
Double percentage = row.get("percentage").asDouble().get();

Retrieve a Child Table
In Writing Rows to a Child Table we showed how to populate a child table with data. To retrieve
that data, you must specify the primary key used for the parent table row, as well as the
primary key for the child table row. For example:

package kvstore.basicExample;

import oracle.kv.KVStore;
import oracle.kv.table.PrimaryKey;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;

...

// KVStore handle creation is omitted for brevity

...

TableAPI tableH = kvstore.getTableAPI();

// We omit retrieval of the parent table because it is not required.
Table myChildTable = tableH.getTable("myInventory.itemDetails");

// Construct the PrimaryKey. This key must contain the primary key
// from the parent table row, as well as the primary key from the
// child table row that you want to retrieve.
PrimaryKey key = myChildTable.createPrimaryKey();
key.put("itemCategory", "Bolts");
key.put("itemSKU", "1392610");

// Retrieve the row. This performs a store read operation.
// Exception handling is skipped for this trivial example.
Row row = tableH.get(key, null);

Chapter 7
Retrieving a Single Row

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 3 of 23

// Now retrieve the individual fields from the row.
String description = row.get("itemDescription").asString().get();
Float price = row.get("price").asFloat().get();
Integer invCount = row.get("inventoryCount").asInteger().get();

For information on how to iterate over nested tables, see Iterating with Nested Tables.

Using multiGet()
TableAPI.multiGet() allows you to retrieve multiple rows at once, so long as they all share
the same shard keys. You must specify a full set of shard keys to this method.

Use TableAPI.multiGet() only if your retrieval set will fit entirely in memory.

For example, suppose you have a table that stores information about products, which is
designed like this:

CREATE TABLE myTable (
 itemType STRING,
 itemCategory STRING,
 itemClass STRING,
 itemColor STRING,
 itemSize STRING,
 price FLOAT,
 inventoryCount INTEGER,
 PRIMARY KEY (SHARD(itemType, itemCategory, itemClass), itemColor,
 itemSize)
)

With tables containing data like this:

• Row 1:

– itemType: Hats

– itemCategory: baseball

– itemClass: longbill

– itemColor: red

– itemSize: small

– price: 12.07

– inventoryCount: 127

• Row 2:

– itemType: Hats

– itemCategory: baseball

– itemClass: longbill

– itemColor: red

– itemSize: medium

– price: 13.07

– inventoryCount: 201

Chapter 7
Using multiGet()

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 4 of 23

• Row 3:

– itemType: Hats

– itemCategory: baseball

– itemClass: longbill

– itemColor: red

– itemSize: large

– price: 14.07

– inventoryCount: 39

In this case, you can retrieve all of the rows with their itemType field set to Hats and their
itemCategory field set to baseball. Notice that this represents a partial primary key, because
itemClass, itemColor and itemSize are not used for this query.

package kvstore.basicExample;

...

import java.util.List;
import java.util.Iterator;
import oracle.kv.ConsistencyException;
import oracle.kv.KVStore;
import oracle.kv.RequestTimeoutException;
import oracle.kv.table.PrimaryKey;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;

...

// KVStore handle creation is omitted for brevity

...

TableAPI tableH = kvstore.getTableAPI();

// The name you give to getTable() must be identical
// to the name that you gave the table when you created
// the table using the CREATE TABLE DDL statement.
Table myTable = tableH.getTable("myTable");

// Construct the PrimaryKey. In this case, we are
// using a partial primary key.
PrimaryKey key = myTable.createPrimaryKey();
key.put("itemType", "Hats");
key.put("itemCategory", "baseball");
key.put("itemClass", "longbill");

List<Row> myRows = null;

try {
 myRows = tableH.multiGet(key, null, null);
} catch (ConsistencyException ce) {
 // The consistency guarantee was not met

Chapter 7
Using multiGet()

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 5 of 23

} catch (RequestTimeoutException re) {
 // The operation was not completed within the
 // timeout value
}

You can then iterate over the resulting list as follows:

for (Row theRow: myRows) {
 String itemType = theRow.get("itemType").asString().get();
 String itemCategory = theRow.get("itemCategory").asString().get();
 String itemClass = theRow.get("itemClass").asString().get();
 String itemColor = theRow.get("itemColor").asString().get();
 String itemSize = theRow.get("itemSize").asString().get();
 Float price = theRow.get("price").asFloat().get();
 Integer price = theRow.get("itemCount").asInteger().get();
}

Iterating over Table Rows
TableAPI.tableIterator() provides non-atomic table iteration. Use this method to iterate
over indexes. This method performs a parallel scan of your tables if you set a concurrent
request size other than 1.

TableAPI.tableIterator() does not return the entire set of rows all at once. Instead, it
batches the fetching of rows in the iterator, to minimize the number of network round trips,
while not monopolizing the available bandwidth. Also, the rows returned by this method are in
unsorted order.

Note that this method does not result in a single atomic operation. Because the retrieval is
batched, the return set can change over the course of the entire retrieval operation. As a result,
you lose the atomicity of the operation when you use this method.

This method provides for an unsorted traversal of rows in your table. If you do not provide a
key, then this method will iterate over all of the table's rows.

When using this method, you can optionally specify:

• A MultiRowOptions class instance. This class allows you to specify a field range, and the
ancestor and parent tables you want to include in this iteration.

• A TableIteratorOptions class instance. This class allows you to identify the suggested
number of keys to fetch during each network round trip. If you provide a value of 0, an
internally determined default is used. You can also use this class to specify the traversal
order (FORWARD, REVERSE, and UNORDERED are supported).

This class also allows you to control how many threads are used to perform the store read.
By default this method determines the degree of concurrency based on the number of
available processors. You can tune this concurrency by explicitly stating how many threads
to use for table retrieval. See Parallel Scans for more information.

Finally, you use this class to specify a consistency policy. See Consistency Guarantees for
more information.

Chapter 7
Iterating over Table Rows

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 6 of 23

Note

When using TableAPI.tableIterator(), it is important to call
TableIterator.close() when you are done with the iterator to avoid resource leaks.
This is especially true for long-running applications, especially if you do not iterate
over the entire result set.

For example, suppose you have a table that stores information about products, which is
designed like this:

CREATE TABLE myTable (
 itemType STRING,
 itemCategory STRING,
 itemClass STRING,
 itemColor STRING,
 itemSize STRING,
 price FLOAT,
 inventoryCount INTEGER,
 PRIMARY KEY (SHARD(itemType, itemCategory, itemClass), itemColor,
 itemSize)
)

With tables containing data like this:

• Row 1:

– itemType: Hats

– itemCategory: baseball

– itemClass: longbill

– itemColor: red

– itemSize: small

– price: 12.07

– inventoryCount: 127

• Row 2:

– itemType: Hats

– itemCategory: baseball

– itemClass: longbill

– itemColor: red

– itemSize: medium

– price: 13.07

– inventoryCount: 201

• Row 3:

– itemType: Hats

– itemCategory: baseball

– itemClass: longbill

Chapter 7
Iterating over Table Rows

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 7 of 23

– itemColor: red

– itemSize: large

– price: 14.07

– inventoryCount: 39

• Row n:

– itemType: Coats

– itemCategory: Casual

– itemClass: Winter

– itemColor: red

– itemSize: large

– price: 247.99

– inventoryCount: 9

Then in the simplest case, you can retrieve all of the rows related to 'Hats' using
TableAPI.tableIterator() as follows. Note that this simple example can also be
accomplished using the TableAPI.multiGet() method. If you have a complete shard key, and
if the entire results set will fit in memory, then multiGet() will perform much better than
tableIterator(). However, if the results set cannot fit entirely in memory, or if you do not
have a complete shard key, then tableIterator() is the better choice. Note that reads
performed using tableIterator() are non-atomic, which may have ramifications if you are
performing a long-running iteration over records that are being updated.

package kvstore.basicExample;

...

import oracle.kv.KVStore;
import oracle.kv.table.PrimaryKey;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;
import oracle.kv.table.TableIterator;

...

// KVStore handle creation is omitted for brevity

...

TableAPI tableH = kvstore.getTableAPI();

// The name you give to getTable() must be identical
// to the name that you gave the table when you created
// the table using the CREATE TABLE DDL statement.
Table myTable = tableH.getTable("myTable");

// Construct the PrimaryKey. In this case, we are
// using a partial primary key.
PrimaryKey key = myTable.createPrimaryKey();
key.put("itemType", "Hats");

Chapter 7
Iterating over Table Rows

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 8 of 23

// Exception handling is omitted, but in production code
// ConsistencyException, RequestTimeException, and FaultException
// would have to be handled.
TableIterator<Row> iter = tableH.tableIterator(key, null, null);
try {
 while (iter.hasNext()) {
 Row row = iter.next();
 // Examine your row's fields here
 }
} finally {
 if (iter != null) {
 iter.close();
 }
}

Specifying Field Ranges
When performing multi-key operations in the store, you can specify a range of rows to operate
upon. You do this using the FieldRange class, which is accepted by any of the methods which
perform bulk reads. This class is used to restrict the selected rows to those matching a range
of field values.

For example, suppose you defined a table like this:

CREATE TABLE myTable (
 surname STRING,
 familiarName STRING,
 userID STRING,
 phonenumber STRING,
 address STRING,
 email STRING,
 dateOfBirth STRING,
 PRIMARY KEY (SHARD(surname, familiarName), userID)
)

The surname contains a person's family name, such as Smith. The familiarName contains their
common name, such as Bob, Patricia, Robert, and so forth.

Given this, you could perform operations for all the rows related to users with a surname of
Smith, but we can limit the result set to just those users with familiar names that fall
alphabetically between Bob and Patricia by specifying a field range.

A FieldRange is created using Table.createFieldRange(). This method takes just one
argument — the name of the primary key for which you want to set the range.

In this case, we will define the start of the key range using the string "Bob" and the end of the
key range to be "Patricia". Both ends of the key range will be inclusive.

In this example, we use TableIterator, but we could just as easily use this range on any
multi-row read operation, such as the TableAPI.multiGet() or TableAPI.multiGetKeys()
methods. The FieldRange object is passed to these methods using a MultiRowOptions class

Chapter 7
Specifying Field Ranges

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 9 of 23

instance, which we construct using the FieldRange.createMultiRowOptions() convenience
method.

package kvstore.basicExample;

...

import oracle.kv.KVStore;
import oracle.kv.table.FieldRange;
import oracle.kv.table.MultiRowOptions;
import oracle.kv.table.PrimaryKey;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;
import oracle.kv.table.TableIterator;

...

// KVStore handle creation is omitted for brevity

...

TableAPI tableH = kvstore.getTableAPI();

// The name you give to getTable() must be identical
// to the name that you gave the table when you created
// the table using the CREATE TABLE DDL statement.
Table myTable = tableH.getTable("myTable");

// Construct the PrimaryKey. In this case, we are
// using a partial primary key.
PrimaryKey key = myTable.createPrimaryKey();
key.put("surname", "Smith");

// Create the field range.
FieldRange fh = myTable.createFieldRange("familiarName");
fh.setStart("Bob", true);
fh.setEnd("Patricia", true);
MultiRowOptions mro = fh.createMultiRowOptions();

// Exception handling is omitted, but in production code
// ConsistencyException, RequestTimeException, and FaultException
// would have to be handled.
TableIterator<Row> iter = tableH.tableIterator(key, mro, null);
try {
 while (iter.hasNext()) {
 Row row = iter.next();
 // Examine your row's fields here
 }
} finally {
 if (iter != null) {
 iter.close();
 }
}

Chapter 7
Specifying Field Ranges

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 10 of 23

Iterating with Nested Tables
When you are iterating over a table, or performing a multi-get operation, by default only rows
are retrieved from the table on which you are operating. However, you can use
MultiRowOptions to specify that parent and child tables are to be retrieved as well.

When you do this, parent tables are retrieved first, then the table you are operating on, then
child tables. In other words, the tables' hierarchical order is observed.

The parent and child tables retrieved are identified by specifying a List of Table objects to the
ancestors and children parameters on the class constructor. You can also specify these
using the MultiRowOptions.setIncludedChildTables() or
MultiRowOptions.setIncludedParentTables() methods.

When operating on rows retrieved from multiple tables, it is your responsibility to determine
which table the row belongs to.

For example, suppose you create a table with a child and grandchild table like this:

CREATE TABLE prodTable (
 prodType STRING,
 typeDescription STRING,
 PRIMARY KEY (prodType)
)

CREATE TABLE prodTable.prodCategory (
 categoryName STRING,
 categoryDescription STRING,
 PRIMARY KEY (categoryName)
)

CREATE TABLE prodTable.prodCategory.item (
 itemSKU STRING,
 itemDescription STRING,
 itemPrice FLOAT,
 vendorUID STRING,
 inventoryCount INTEGER,
 PRIMARY KEY (itemSKU)
)

With tables containing data like this:

• Row 1:

– prodType: Hardware

– typeDescription: Equipment, tools and parts

– Row 1.1:

* categoryName: Bolts

* categoryDescription: Metric & US Sizes

* Row 1.1.1:

* itemSKU: 1392610

Chapter 7
Iterating with Nested Tables

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 11 of 23

* itemDescription: 1/4-20 x 1/2 Grade 8 Hex

* itemPrice: 11.99

* vendorUID: A8LN99

* inventoryCount: 1457

• Row 2:

– prodType: Tools

– typeDescription: Hand and power tools

– Row 2.1:

* categoryName: Handtools

* categoryDescription: Hammers, screwdrivers, saws

* Row 2.1.1:

* itemSKU: 1582178

* itemDescription: Acme 20 ounce claw hammer

* itemPrice: 24.98

* vendorUID: D6BQ27

* inventoryCount: 249

In this case, you can display all of the data contained in these tables in the following way.

Start by getting all our table handles:

package kvstore.tableExample;

import java.util.Arrays;

import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;

import oracle.kv.table.PrimaryKey;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;

import oracle.kv.table.TableIterator;
import oracle.kv.table.MultiRowOptions;

...

private static Table prodTable;
private static Table categoryTable;
private static Table itemTable;

private static TableAPI tableH;

...

// KVStore handle creation is omitted for brevity

Chapter 7
Iterating with Nested Tables

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 12 of 23

...

tableH = kvstore.getTableAPI();
prodTable = tableH.getTable("prodTable");
categoryTable = tableH.getTable("prodTable.prodCategory");
itemTable = tableH.getTable("prodTable.prodCategory.item");

Now we need the PrimaryKey and the MultiRowOptions that we will use to iterate over the top-
level table. Because we want all the rows in the top-level table, we create an empty
PrimaryKey.

The MultiRowOptions identifies the two child tables in the constructor's child parameter. This
causes the iteration to return all the rows from the top-level table, as well as all the rows from
the nested children tables.

// Construct a primary key
PrimaryKey key = prodTable.createPrimaryKey();

// Get a MultiRowOptions and tell it to look at both the child
// tables
MultiRowOptions mro = new MultiRowOptions(null, null,
 Arrays.asList(categoryTable, itemTable));

Now we perform the iteration:

// Get the table iterator
// Exception handling is omitted, but in production code
// ConsistencyException, RequestTimeException, and FaultException
// would have to be handled.
TableIterator<Row> iter = tableH.tableIterator(key, mro, null);
try {
 while (iter.hasNext()) {
 Row row = iter.next();
 displayRow(row);
 }
} finally {
 if (iter != null) {
 iter.close();
 }
}

Our displayRow() method is used to determine which table a row belongs to, and then display
it in the appropriate way.

private static void displayRow(Row row) {
 // Display the row depending on which table it belongs to
 if (row.getTable().equals(prodTable)) {
 displayProdTableRow(row);
 } else if (row.getTable().equals(categoryTable)) {
 displayCategoryTableRow(row);
 } else {
 displayItemTableRow(row);
 }
}

Chapter 7
Iterating with Nested Tables

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 13 of 23

Finally, we just need the methods used to display each row. These are trivial, but in a more
sophisticated application they could be used to do more complex things, such as construct
HTML pages or write XSL-FO for the purposes of generating PDF copies of a report.

private static void displayProdTableRow(Row row) {
 System.out.println("\nType: " +
 row.get("prodType").asString().get());
 System.out.println("Description: " +
 row.get("typeDescription").asString().get());
}

private static void displayCategoryTableRow(Row row) {
 System.out.println("\tCategory: " +
 row.get("categoryName").asString().get());
 System.out.println("\tDescription: " +
 row.get("categoryDescription").asString().get());
}

private static void displayItemTableRow(Row row) {
 System.out.println("\t\tSKU: " +
 row.get("itemSKU").asString().get());
 System.out.println("\t\tDescription: " +
 row.get("itemDescription").asString().get());
 System.out.println("\t\tPrice: " +
 row.get("itemPrice").asFloat().get());
 System.out.println("\t\tVendorUID: " +
 row.get("vendorUID").asString().get());
 System.out.println("\t\tInventory count: " +
 row.get("inventoryCount").asInteger().get());
 System.out.println("\n");
}

Note that the retrieval order remains the top-most ancestor to the lowest child, even if you
retrieve by lowest child. For example, you can retrieve all the Bolts, and all of their parent
tables, like this:

// Get all the table handles
prodTable = tableH.getTable("prodTable");
categoryTable = tableH.getTable("prodTable.prodCategory");
itemTable = tableH.getTable("prodTable.prodCategory.item");

// Construct a primary key
PrimaryKey key = itemTable.createPrimaryKey();
key.put("prodType", "Hardware");
key.put("categoryName", "Bolts");

// Get a MultiRowOptions and tell it to look at both the ancestor
// tables
MultiRowOptions mro = new MultiRowOptions(null,
 Arrays.asList(prodTable, categoryTable), null);

// Get the table iterator
// Exception handling is omitted, but in production code
// ConsistencyException, RequestTimeException, and FaultException
// would have to be handled.

Chapter 7
Iterating with Nested Tables

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 14 of 23

TableIterator<Row> iter = tableH.tableIterator(key, mro, null);
try {
 while (iter.hasNext()) {
 Row row = iter.next();
 displayRow(row);
 }
} finally {
 if (iter != null) {
 iter.close();
 }
}

Reading Indexes
You use TableIterator to retrieve table rows using a table's indexes. Just as when you use
TableIterator to read table rows using a table's primary key(s), when reading using indexes
you can set options such as field ranges, traversal direction, and so forth. By default, index
scans return entries in forward order.

In this case, rather than provide TableIterator with a PrimaryKey instance, you use an
instance of IndexKey.

For example, suppose you defined a table like this:

CREATE TABLE myTable (
 surname STRING,
 familiarName STRING,
 userID STRING,
 phonenumber STRING,
 address STRING,
 email STRING,
 dateOfBirth STRING,
 PRIMARY KEY (SHARD(surname, familiarName), userID)
)

CREATE INDEX DoB ON myTable (dateOfBirth)

This creates an index named DoB for table myTable based on the value of the dateOfBirth
field. To read using that index, you use Table.getIndex() to retrieve the index named Dob.
You then create an IndexKey from the Index object. For example:

package kvstore.basicExample;

...

import oracle.kv.KVStore;
import oracle.kv.table.Index;
import oracle.kv.table.IndexKey;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;
import oracle.kv.table.TableIterator;

Chapter 7
Reading Indexes

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 15 of 23

...

// KVStore handle creation is omitted for brevity

...

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myTable");

// Construct the IndexKey. The name we gave our index when
// we created it was 'DoB'.
Index dobIdx = myTable.getIndex("DoB");
IndexKey dobIdxKey = dobIdx.createIndexKey();

// Exception handling is omitted, but in production code
// ConsistencyException, RequestTimeException, and FaultException
// would have to be handled.
TableIterator<Row> iter = tableH.tableIterator(dobIdxKey, null, null);
try {
 while (iter.hasNext()) {
 Row row = iter.next();
 // Examine your row's fields here
 }
} finally {
 if (iter != null) {
 iter.close();
 }
}

If you want to return entries that match a specific field name and field value, then use the
IndexKey.put() method:

// Construct the IndexKey. The name we gave our index when
// we created it was 'DoB'.
Index dobIdx = myTable.getIndex("DoB");
IndexKey dobIdxKey = dobIdx.createIndexKey();
// Return only those entries with a dateOfBirth equal to
// "1991-08-23"
dobIdxKey.put("dateOfBirth", "1991-08-23");

// Exception handling is omitted, but in production code
// ConsistencyException, RequestTimeException, and FaultException
// would have to be handled.
TableIterator<Row> iter = tableH.tableIterator(dobIdxKey, null, null);
try {
 while (iter.hasNext()) {
 Row row = iter.next();
 // Examine your row's fields here
 }
} finally {
 if (iter != null) {
 iter.close();
 }
}

Chapter 7
Reading Indexes

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 16 of 23

If you want to return all the entries with a null value for the field, use the IndexKey.putNull()
method:

// Construct the IndexKey. The name we gave our index when
// we created it was 'DoB'.
Index dobIdx = myTable.getIndex("DoB");
IndexKey dobIdxKey = dobIdx.createIndexKey();
// Return only those entries with a NULL dateOfBirth
// value.
dobIdxKey.putNull("dateOfBirth");

// Exception handling is omitted, but in production code
// ConsistencyException, RequestTimeException, and FaultException
// would have to be handled.
TableIterator<Row> iter = tableH.tableIterator(dobIdxKey, null, null);
try {
 while (iter.hasNext()) {
 Row row = iter.next();
 // Examine your row's fields here
 }
} finally {
 if (iter != null) {
 iter.close();
 }
}

In the previous example, the code examines every row indexed by the DoB index. A more likely,
and useful, example in this case would be to limit the rows returned through the use of a field
range. You do that by using Index.createFieldRange() to create a FieldRange object. When
you do this, you must specify the field to base the range on. Recall that an index can be based
on more than one table field, so the field name you give the method must be one of the
indexed fields.

For example, if the rows hold dates in the form of yyyy-mm-dd, you could retrieve all the people
born in the month of May, 1994 in the following way. This index only examines one field,
dateOfBirth, so we give that field name to Index.createFieldRange():

package kvstore.basicExample;

...

import oracle.kv.KVStore;
import oracle.kv.table.FieldRange;
import oracle.kv.table.Index;
import oracle.kv.table.IndexKey;
import oracle.kv.table.MultiRowOption;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;
import oracle.kv.table.TableIterator;

...

// KVStore handle creation is omitted for brevity

Chapter 7
Reading Indexes

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 17 of 23

...

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myTable");

// Construct the IndexKey. The name we gave our index when
// we created it was 'DoB'.
Index dobIdx = myTable.getIndex("DoB");
IndexKey dobIdxKey = dobIdx.createIndexKey();

// Create the field range.
FieldRange fh = dobIdx.createFieldRange("dateOfBirth");
fh.setStart("1994-05-01", true);
fh.setEnd("1994-05-30", true);
MultiRowOptions mro = fh.createMultiRowOptions();

// Exception handling is omitted, but in production code
// ConsistencyException, RequestTimeException, and FaultException
// would have to be handled.
TableIterator<Row> iter = tableH.tableIterator(dobIdxKey, mro, null);
try {
 while (iter.hasNext()) {
 Row row = iter.next();
 // Examine your row's fields here
 }
} finally {
 if (iter != null) {
 iter.close();
 }
}

Parallel Scans
By default, store reads are performed using multiple threads, the number of which is chosen by
the number of cores available to your code. You can configure the maximum number of client-
side threads to be used for the scan, as well as the number of results per request and the
maximum number of result batches that the Oracle NoSQL Database client can hold before the
scan pauses. To do this, use the TableIteratorOptions class. You pass this to
TableAPI.tableIterator(). This creates a TableIterator that uses the specified parallel
scan configuration.

Note

You cannot configure the number of scans you use for your reads if you are using
indexes.

For example, to retrieve all of the records in the store using 5 threads in parallel, you would do
this:

package kvstore.basicExample;

Chapter 7
Parallel Scans

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 18 of 23

...

import oracle.kv.Consistency;
import oracle.kv.Direction;
import oracle.kv.KVStore;
import oracle.kv.table.FieldRange;
import oracle.kv.table.PrimaryKey;
import oracle.kv.table.MultiRowOption;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;
import oracle.kv.table.TableIterator;
import oracle.kv.table.TableIteratorOptions;

...

// KVStore handle creation is omitted for brevity

...

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myTable");

// Construct the PrimaryKey.
PrimaryKey key = myTable.createPrimaryKey();
key.put("itemType", "Hats");
key.put("itemCategory", "baseball");

TableIteratorOptions tio =
 new TableIteratorOptions(Direction.UNORDERED,
 Consistency.NONE_REQUIRED,
 0, // timeout
 null, // timeout units
 5, // number of concurrent
 // threads
 0, // results per request
 0); // max result sets
// Exception handling is omitted, but in production code
// ConsistencyException, RequestTimeException, and FaultException
// would have to be handled.
TableIterator<Row> iter =
 tableH.tableIterator(key, null, tio);
try {
 while (iter.hasNext()) {
 Row row = iter.next();
 // Examine your row's fields here
 }
} finally {
 if (iter != null) {
 iter.close();
 }
}

Chapter 7
Parallel Scans

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 19 of 23

Bulk Get Operations
Bulk get operations allow you to retrieve and process records from each shard in parallel, like a
parallel scan, but using a set of keys instead of a single key as retrieval criteria.

A bulk get operation does not return the entire set of rows all at once. Instead, it batches the
fetching of rows in the iterator, to minimize the number of network round trips, while not
monopolizing the available bandwidth. Batches are fetched in parallel across multiple
Replication Nodes. If more threads are specified on the client side, then the user can expect
better retrieval performance – until processor or network resources are saturated.

To use bulk get, use one of the TableAPI.tableIterator() or
TableAPI.tableKeysIterator() methods that provide bulk retrievals. These accept a set of
keys instead of a single key as the retrieval criteria. The set is provided using either an
Iterator<Key> or List<Iterator<Key>> value.

The methods retrieve the rows or primary keys matching the keys supplied by the iterator(s).

Note

If the iterator yields duplicate keys, the row associated with the duplicate keys will be
returned at least once and potentially multiple times.

The supplied keys should follow these rules:

1. All supplied primary keys should belong to the same table.

2. The input key must be a complete shard key.

3. If a field range is specified, then the partial primary keys should be uniform. That is, they
should have the same number of components. Also, the field range must be the first
unspecified field of the supplied key.

When using these methods, you can also optionally specify:

• A MultiRowOptions class instance which allows you to specify a field range, as well as the
ancestor and parent tables you want to include in the iteration.

• The number of keys to fetch during each network round trip using a
TableIteratorOptions class instance. If you provide a value of 0, an internally determined
default is used. You can also specify the traversal order (UNORDERED is supported).

You can control how many threads are used to perform the store read using the
MaxConcurrentRequests parameter.

Finally, you can specify a consistency policy. See Consistency Guarantees for more
information.

For example, suppose you have a table that stores information about products, which is
designed like this:

CREATE TABLE myTable (
 itemType STRING,
 itemCategory STRING,
 itemClass STRING,
 itemColor STRING,
 itemSize STRING,

Chapter 7
Bulk Get Operations

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 20 of 23

 price FLOAT,
 inventoryCount INTEGER,
 PRIMARY KEY (SHARD(itemType, itemCategory), itemClass, itemColor,
 itemSize))

With tables containing data like this:

• Row 1:

– itemType: Hats

– itemCategory: baseball

– itemClass: longbill

– itemColor: red

– itemSize: small

– price: 12.07

– inventoryCount: 127

• Row 2:

– itemType: Hats

– itemCategory: baseball

– itemClass: longbill

– itemColor: red

– itemSize: medium

– price: 13.07

– inventoryCount: 201

• Row 3:

– itemType: Pants

– itemCategory: baseball

– itemClass: Summer

– itemColor: red

– itemSize: large

– price: 14.07

– inventoryCount: 39

• Row 4:

– itemType: Pants

– itemCategory: baseball

– itemClass: Winter

– itemColor: white

– itemSize: large

– price: 16.99

– inventoryCount: 9

• Row n:

Chapter 7
Bulk Get Operations

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 21 of 23

– itemType: Coats

– itemCategory: Casual

– itemClass: Winter

– itemColor: red

– itemSize: large

– price: 247.99

– inventoryCount: 13

If you want to locate all the Hats and Pants used for baseball, using nine threads in parallel,
you can retrieve all of the records as follows:

package kvstore.basicExample;

...
import java.util.ArrayList;
import java.util.List;
import oracle.kv.Consistency;
import oracle.kv.Direction;
import oracle.kv.table.PrimaryKey;
import oracle.kv.table.Row;
import oracle.kv.table.TableAPI;
import oracle.kv.table.TableIterator;
import oracle.kv.table.TableIteratorOptions;

...

// KVStore handle creation is omitted for brevity

...

// Construct the Table Handle
TableAPI tableH = store.getTableAPI();
Table table = tableH.getTable("myTable");

// Use multi-threading for this store iteration and limit the number
// of threads (degree of parallelism) to 9.
final int maxConcurrentRequests = 9;
final int batchResultsSize = 0;
final TableIteratorOptions tio =
 new TableIteratorOptions(Direction.UNORDERED,
 Consistency.NONE_REQUIRED,
 0, null,
 maxConcurrentRequests,
 batchResultsSize);

// Create retrieval keys
PrimaryKey myKey = table.createPrimaryKey();
myKey.put("itemType", "Hats");
myKey.put("itemCategory", "baseball");
PrimaryKey otherKey = table.createPrimaryKey();
otherKey.put("itemType", "Pants");
otherKey.put("itemCategory", "baseball");

Chapter 7
Bulk Get Operations

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 22 of 23

List<PrimaryKey> searchKeys = new ArrayList<PrimaryKey>();

// Add the retrieval keys to the list.
searchKeys.add(myKey);
searchKeys.add(otherKey);

final TableIterator<Row> iterator = tableH.tableIterator(
 searchKeys.iterator(), null, tio);

// Now retrieve the records.
try {
 while (iterator.hasNext()) {
 Row row = (Row) iterator.next();
 // Do some work with the Row here
 }
} finally {
 if (iterator != null) {
 iterator.close();
 }
}

Chapter 7
Bulk Get Operations

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 23 of 23

8
Using Data Types

Many of the types that Oracle NoSQL Database offers are easy to use. Examples of their
usage has been scattered throughout this manual. However, some types are a little more
complicated to use because they use container methods. This chapter describes their usage.

The types described in this chapter are: Arrays, Maps, Records, Enums, and Byte Arrays. This
chapter shows how to read and write values of each of these types.

Using Arrays
Arrays are a sequence of values all of the same type.

When you declare a table field as an array, you use the ARRAY() statement.

To define a simple two-field table where the primary key is a UID and the second field contains
array of strings, you use the following DDL statement:

CREATE TABLE myTable (
 uid INTEGER,
 myArray ARRAY(STRING),
 PRIMARY KEY(uid)
)

DEFAULT and NOT NULL constraints are not supported for arrays.

To write the array, use Row.putArray(), which returns an ArrayValue class instance. You then
use ArrayValue.put() to write elements to the array:

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myTable");

Row row = myTable.createRow();
row.put("uid", 12345);

ArrayValue av = row.putArray("myArray");
av.add("One");
av.add("Two");
av.add("Three");

tableH.put(row, null, null);

Note that ArrayValue has methods that allow you to add multiple values to the array by
appending an array of values to the array. This assumes the array of values matches the
array's schema. For example, the previous example could be done in the following way:

TableAPI tableH = kvstore.getTableAPI();

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 1 of 9

Table myTable = tableH.getTable("myTable");

Row row = myTable.createRow();
row.put("uid", 12345);

ArrayValue av = row.putArray("myArray");
String myStrings[] = {"One", "Two", "Three"};
av.add(myStrings);

tableH.put(row, null, null);

To read the array, use Row.get().asArray(). This returns an ArrayValue class instance. You
can then use ArrayValue.get() to retrieve an element of the array from a specified index, or
you can use ArrayValue.toList() to return the array as a Java List. In either case, the
retrieved values are returned as a FieldValue, which allows you to retrieve the encapsulated
value using a cast method such as FieldValue.asString().

For example, to iterate over the array created in the previous example:

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myTable");

/* Create a primary key for user id 12345 and get a row */
PrimaryKey key = myTable.createPrimaryKey();
key.put("uid", 12345);
Row row = tableH.get(key, null);

/* Iterate over the array, displaying each element as a string */
ArrayValue av = row.get("myArray").asArray();
for (FieldValue fv: av.toList()) {
 System.out.println(fv.asString().get()); }

Using Binary
You can declare a field as binary using the BINARY statement. You then read and write the field
value using a Java byte array.

If you want to store a large binary object, then you should use the LOB APIs rather than a
binary field.

Note that fixed binary should be used over the binary datatype any time you know that all the
field values will be of the same size. Fixed binary is a more compact storage format because it
does not need to store the size of the array. See Using Fixed Binary for information on the fixed
binary datatype.

To define a simple two-field table where the primary key is a UID and the second field contains
a binary field, you use the following statement:

CREATE TABLE myTable (
 uid INTEGER,
 myByteArray BINARY,
 PRIMARY KEY(uid)
)

Chapter 8
Using Binary

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 2 of 9

DEFAULT and NOT NULL constraints are not supported for binary values.

To write the byte array, use Row.put().

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myTable");

Row row = myTable.createRow();
row.put("uid", 12345);

String aString = "The quick brown fox.";
try {
 row.put("myByteArray", aString.getBytes("UTF-8"));
} catch (UnsupportedEncodingException uee) {
 uee.printStackTrace();
}

tableH.put(row, null, null);

To read the binary field, use Row.get().asBinary(). This returns a BinaryValue class
instance. You can then use BinaryValue.get() to retrieve the stored byte array.

For example:

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myTable");

/* Create a primary key for user id 12345 and get a row */
PrimaryKey key = myTable.createPrimaryKey();
key.put("uid", 12345);
Row row = tableH.get(key, null);

byte[] b = row.get("myByteArray").asBinary().get();
String aString = new String(b);
System.out.println("aString: " + aString);

Using Enums
Enumerated types are declared using the ENUM() statement. You must declare the acceptable
enumeration values when you use this statement.

To define a simple two-field table where the primary key is a UID and the second field contains
an enum, you use the following DDL statement:

CREATE TABLE myTable (
 uid INTEGER,
 myEnum ENUM (Apple,Pears,Oranges),
 PRIMARY KEY (uid)
)

DEFAULT and NOT NULL constraints are supported for enumerated fields. See DEFAULT for
more information.

Chapter 8
Using Enums

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 3 of 9

To write the enum, use Row.putEnum(). If the enumeration value that you use with this method
does not match a value defined on the -enum-values parameter during table definition, an
IllegalArgumentException is thrown.

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myTable");

Row row = myTable.createRow();
row.put("uid", 12345);

row.putEnum("myEnum", "Pears");

tableH.put(row, null, null);

To read the enum, use Row.get().asEnum(). This returns a EnumValue class instance. You can
then use EnumValue.get() to retrieve the stored enum value's name as a string. Alternatively,
you can use EnumValue.getIndex() to retrieve the stored value's index position.

For example:

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myTable");

/* Create a primary key for user id 12345 and get a row */
PrimaryKey key = myTable.createPrimaryKey();
key.put("uid", 12345);
Row row = tableH.get(key, null);

EnumValue ev = row.get("testEnum").asEnum();
System.out.println("enum as string: " +
 ev.get()); // returns "Pears"
System.out.println("enum index: " +
 ev.getIndex()); // returns '1'

Using Fixed Binary
You can declare a fixed binary field using the BINARY() statement. When you do this, you must
also specify the field's size in bytes. You then read and write the field value using Java byte
arrays. However, if the byte array does not equal the specified size, then
IllegalArgumentException is thrown when you attempt to write the field. Write the field value
using a Java byte array.

If you want to store a large binary object, then you should use the LOB APIs rather than a
binary field.

Fixed binary should be used over the binary datatype any time you know that all the field
values will be of the same size. Fixed binary is a more compact storage format because it does
not need to store the size of the array. See Using Binary for information on the binary datatype.

Chapter 8
Using Fixed Binary

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 4 of 9

To define a simple two-field table where the primary key is a UID and the second field contains
a fixed binary field, you use the following DDL statement:

CREATE TABLE myTable (
 uid INTEGER,
 myByteArray BINARY(20),
 PRIMARY KEY (uid)
)

DEFAULT and NOT NULL constraints are not supported for binary values.

To write the byte array, use Row.putFixed(). Again, if the byte array does not match the size
defined for this field, then IllegalArgumentException is thrown.

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myTable");

Row row = myTable.createRow();
row.put("uid", 12345);

String aString = "The quick brown fox.";
try {
 row.putFixed("myByteArray", aString.getBytes("UTF-8"));
} catch (UnsupportedEncodingException uee) {
 uee.printStackTrace();
}

tableH.put(row, null, null);

To read the fixed binary field, use Row.get().asFixedBinary(). This returns a
FixedBinaryValue class instance. You can then use FixedBinaryValue.get() to retrieve the
stored byte array.

For example:

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myTable");

/* Create a primary key for user id 12345 and get a row */
PrimaryKey key = myTable.createPrimaryKey();
key.put("uid", 12345);
Row row = tableH.get(key, null);

byte[] b = row.get("myByteArray").asFixedBinary().get();
String aString = new String(b);
System.out.println("aString: " + aString);

Using JSON
The JSON datatype cannot be used as part of a primary or shard key.

Chapter 8
Using JSON

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 5 of 9

To define a simple two-field table where the primary key is a UID and the second field contains
a JSON data field, you use the following DDL statement:

CREATE TABLE myJsonTable (
 uid INTEGER,
 myJSON JSON,
 PRIMARY KEY (uid)
)

The data that you write for this datatype can be any valid JSON stored as a string. For
example, all of the following are valid:

final String jsonNumber = "2";
final String jsonString = "\"a json string\"";
final String jsonObject_null = "{}";
final String jsonObject = "{\"a\": 1.006, \"b\": null," +
 "\"bool\" : true, \"map\": {\"m1\": 5}," +
 "\"ar\" : [1,2.7,3]}";
final String jsonNull = "null";

To store a JSON value in the table that we defined, above:

 TableAPI tableH = kvstore.getTableAPI();

 Table myJsonTable = tableH.getTable("myJsonTable");
 Row row = myTable.createRow();
 row.put("uid", 12345);
 String jsonArray="[1,5,11.1,88]";
 row.putJson("myJSON", jsonArray);
 tableH.put(row, null, null);

To retrieve it:

 TableAPI tableH = kvstore.getTableAPI();

 Table myTable = tableH.getTable("myJsonTable");
 PrimaryKey pkey = myTable.createPrimaryKey();
 pkey.put("uid", 12345);

 Row row = tableH.get(pkey, null);
 int uid = row.get("uid").asInteger().get();
 String jsonStr = row.get("myJSON").toString();

 System.out.println("uid: " + uid + " JSON: " + jsonStr);

Be aware that a version of Row.putJson() exists that allows you to use Java Readers to
stream JSON data from I/O locations (such as files on disk). For example, to stream a small
file from disk use java.io.FileReader:

 TableAPI tableH = kvstore.getTableAPI();

 Table myTable = tableH.getTable("myJsonTable");

Chapter 8
Using JSON

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 6 of 9

 Row row = myTable.createRow();
 row.put("uid", 666);

 try {
 FileReader fr = new FileReader("myJsonFile.txt");
 row.putJson("myJson", fr);
 tableH.put(row, null, null);
 } catch (FileNotFoundException fnfe) {
 System.out.println("File not found: " + fnfe);
 }

For a more complete example of using JSON data fields, see JSON By Example.

Using Maps
All map entries must be of the same type. Regardless of the type of the map's values, its keys
are always strings.

The string "[]" is reserved and must not be used for key names.

When you declare a table field as a map, you use the MAP() statement. You must also declare
the map element's data types.

To define a simple two-field table where the primary key is a UID and the second field contains
a map of integers, you use the following DDL statement:

CREATE TABLE myTable (
 uid INTEGER,
 myMap MAP(INTEGER),
 PRIMARY KEY (uid)
)

DEFAULT and NOT NULL constraints are not supported for map fields.

To write the map, use Row.putMap(), which returns a MapValue class instance. You then use
MapValue.put() to write elements to the map:

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myTable");

Row row = myTable.createRow();
row.put("uid", 12345);

MapValue mv = row.putMap("myMap");
mv.put("field1", 1);
mv.put("field2", 2);
mv.put("field3", 3);

tableH.put(row, null, null);

To read the map, use Row.get().asMap(). This returns a MapValue class instance. You can
then use MapValue.get() to retrieve an map value. The retrieved value is returned as a
FieldValue, which allows you to retrieve the encapsulated value using a cast method such as
FieldValue.asInteger().

Chapter 8
Using Maps

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 7 of 9

For example, to retrieve elements from the map created in the previous example:

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myTable");

/* Create a primary key for user id 12345 and get a row */
PrimaryKey key = myTable.createPrimaryKey();
key.put("uid", 12345);
Row row = tableH.get(key, null);

MapValue mv = row.get("testMap").asMap();
FieldValue fv = mv.get("field3");
System.out.println("fv: " + fv.asInteger().get());

Using Embedded Records
A record entry can contain fields of differing types. However, embedded records should be
used only when the data is relatively static. In general, child tables provide a better solution
over embedded records, especially if the child dataset is large or is likely to change in size.

Use the RECORD() statement to declare a table field as a record.

To define a simple two-field table where the primary key is a UID and the second field contains
a record, you use the following DDL statement:

CREATE TABLE myTable (
 uid INTEGER,
 myRecord RECORD(firstField STRING, secondField INTEGER),
 PRIMARY KEY (uid)
)

DEFAULT and NOT NULL constraints are not supported for embedded record fields. However,
these constraints can be applied to the individual fields in an embedded record. See Field
Constraints for more information.

To write the record, use Row.putRecord(), which returns a RecordValue class instance. You
then use RecordValue.put() to write fields to the record:

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myTable");

Row row = myTable.createRow();
row.put("uid", 12345);

RecordValue rv = row.putRecord("myRecord");
rv.put("firstField", "An embedded record STRING field");
rv.put("secondField", 3388);

tableH.put(row, null, null);

To read the record, use Row.get().asRecord(). This returns a RecordValue class instance.
You can then use RecordValue.get() to retrieve a field from the record. The retrieved value is

Chapter 8
Using Embedded Records

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 8 of 9

returned as a FieldValue, which allows you to retrieve the encapsulated value using a cast
method such as FieldValue.asInteger().

For example, to retrieve field values from the embedded record created in the previous
example:

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myTable");

/* Create a primary key for user id 12345 and get a row */
PrimaryKey key = myTable.createPrimaryKey();
key.put("uid", 12345);
Row row = tableH.get(key, null);

RecordValue rv = row.get("myRecord").asRecord();
FieldValue fv = rv.get("firstField");
System.out.println("firstField: " + fv.asString().get());
fv = rv.get("secondField");
System.out.println("secondField: " + fv.asInteger().get());

Chapter 8
Using Embedded Records

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 9 of 9

9
Indexing Non-Scalar Data Types

We describe how to index scalar data types in Creating Indexes, and we show how to read
using indexes in Reading Indexes. However, non-scalar data types (Arrays, Maps and
Records) require more explanation, which we give here.

Index creation is accomplished using the CREATE INDEX statement. See CREATE INDEX for
details on this statement.

Indexing Arrays
You can create an index on an array field (or a field of an array nested inside another array).

Be aware that indexing an array potentially results in multiple index entries for each row, which
can lead to very large indexes.

To create the index, first create the table:

CREATE TABLE myArrayTable (
 uid INTEGER,
 testArray ARRAY(STRING),
 PRIMARY KEY(uid)
)

Once the table has been added to the store, create the index. Be sure to use [] with the field
name to indicate that it is an array:

CREATE INDEX arrayFieldIndex on myArrayTable (testArray[])

In the case of arrays, the field can be indexed only if the array contains values that are of one
of the other indexable types.

An index on an array is a multikey index. An index is called a multikey index if for each row of
data in the table, there are multiple entries created in the index. In a multikey index there is at
least one index path that uses [] steps. Any such index path will be called a multikey index
path.

In a multikey index, for each table row, index entries are created on all the elements in arrays
that are being indexed. If the evaluation returns an empty result, the special value EMPTY is
used as the index entry. Any duplicate index entries are then eliminated.

To retrieve data using an index of arrays, you first retrieve the index using its name, and create
an instance of IndexKey that you will use to perform the index lookup:

Index arrayIndex = myTable.getIndex("arrayFieldIndex");
IndexKey indexKey = arrayIndex.createIndexKey();

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 1 of 12

Next you assign the array field name and its value to the IndexKey that you created using the
IndexKey.put() method:

indexKey.put("testArray[]", "One");

When you perform the index lookup, the only records that will be returned will be those which
have an array with at least one item matching the value set for the IndexKey object. For
example, if you have individual records that contain arrays like this:

Record 1: ["One," "Two", "Three"]
Record 2: ["Two", "Three", "One"]
Record 3: ["One", "Three", "One"]
Record 4: ["Two", "Three", "Four"]

and you then perform an array lookup on the array value "One", then Records 1 - 3 will be
returned, but not 4.

After that, you retrieve the matching table rows, and iterate over them in the same way you
would any other index type. For example:

TableIterator<Row> iter = tableH.tableIterator(indexKey, null, null);
System.out.println("Results for Array value 'One' : ");
try {
 while (iter.hasNext()) {
 Row rowRet = iter.next();
 int uid = rowRet.get("uid").asInteger().get();
 System.out.println("uid: " + uid);
 ArrayValue avRet = rowRet.get("testArray").asArray();
 for (FieldValue fv: avRet.toList()) {
 System.out.println(fv.asString().get());
 }
 }
} finally {
 if (iter != null) {
 iter.close();
 }
}

Indexing JSON Fields
You can create an index on a JSON field. To create the index, specify it as you would any other
index, except that you must define the data type of the JSON field you are indexing.

Note that there are some restrictions on the data type of the JSON field that you can index.
See JSON Indexes for more information.

To create the index, first create the table:

CREATE Table JSONPersons (
 id INTEGER,
 person JSON,
 PRIMARY KEY (id)
)

Chapter 9
Indexing JSON Fields

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 2 of 12

To create the index, you must specify the JSON field to be indexed using dot notation.
Suppose your table rows look like this:

 "id":1,
 "person" : {
 "firstname":"David",
 "lastname":"Morrison",
 "age":25,
 "income":100000,
 "lastLogin" : "2016-10-29T18:43:59.8319",
 "address":{"street":"150 Route 2",
 "city":"Antioch",
 "state":"TN",
 "zipcode" : 37013,
 "phones":[{"type":"home", "areacode":423,
 "number":8634379}]
 },
 "connections":[2, 3],
 "expenses":{"food":1000, "gas":180}
 }

Then once the table has been added to the store, you can create an index for one of the JSON
fields like this:

CREATE INDEX idx_json_income on JSONPersons (person.income AS integer)

To retrieve data using a JSON index, you first retrieve the index using its name, and create an
instance of IndexKey that you will use to perform the index lookup. The following is used to
retrieve all table rows where the person.income field is 100000:

Index jsonIndex = myTable.getIndex("idx_json_income");
IndexKey indexKey = jsonIndex.createIndexKey();
indexKey.put("person.income", 100000);

When you perform the index lookup, the only rows returned will be those which have a JSON
field with the specified field value. You then retrieve the matching table rows, and iterate over
them in the same way you would any other index type. For example:

TableIterator<Row> iter = tableH.tableIterator(indexKey, null, null);
System.out.println("Results for person.income, value 100000: ");
try {
 while (iter.hasNext()) {
 Row rowRet = iter.next();
 int id = rowRet.get("id").asInteger().get();
 System.out.println("id: " + id);
 MapValue mapRet = rowRet.get("person").asMap();
 System.out.println("person: " + mapRet.toString());
 }
} finally {
 if (iter != null) {
 iter.close();
 }
}

Chapter 9
Indexing JSON Fields

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 3 of 12

For a more complete example of using JSON data fields, including a JSON index, see JSON
By Example.

Indexing Maps
You can create an index on a map field (or a field of a map nested inside another array or
map). An index created on a map field inside another array or map is a multi key index.

An index is called a multikey index if for each row of data in the table, there are multiple entries
created in the index. In a multikey index, there is at least one index path that
uses .keys(), .values(). Any such index path will be called a multikey index path. In a
multikey index, for each table row, index entries are created on entries in maps that are being
indexed. If the evaluation returns an empty result, the special value EMPTY is used as the
index entry. Any duplicate index entries are then eliminated.

To create the index, define the map as normal. Once the map is defined for the table, there are
several different ways to index it:

• Based on the map's keys without regard to the actual key values.

• Based on the map's values, without regard to the actual key used.

• By a specific map key. To do this, you specify the name of the map field and the name of a
map key using dot notation. If the map key is ever created using your client code, then it
will be indexed.

• Based on the map's key and value without identifying a specific value (such as is required
by the previous option in this list).

Indexing by Map Keys
You can create indexes based on a map's keys without regard to the corresponding values.

Be aware that creating an index like this can potentially result in multiple index entries for each
row, which can lead to very large indexes.

First create the table:

CREATE TABLE myMapTable (
 uid INTEGER,
 testMap MAP(INTEGER),
 PRIMARY KEY(uid)
)

Once the table has been added to the store, create the index using the .keys() path step:

CREATE INDEX mapKeyIndex on myMapTable (testMap.keys())

Data is retrieved if the table row contains the identified map with the identified key. So, for
example, if you create a series of table rows like this:

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myMapTable");

Row row = myTable.createRow();

Chapter 9
Indexing Maps

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 4 of 12

row.put("uid", 12345);
MapValue mv = row.putMap("testMap");
mv.put("field1", 1);
mv.put("field2", 2);
mv.put("field3", 3);
tableH.put(row, null, null);

row = myTable.createRow();
row.put("uid", 12);
mv = row.putMap("testMap");
mv.put("field1", 1);
mv.put("field2", 2);
tableH.put(row, null, null);

row = myTable.createRow();
row.put("uid", 666);
mv = row.putMap("testMap");
mv.put("field1", 1);
mv.put("field3", 4);
tableH.put(row, null, null);

then you can retrieve any table rows that contain the map with any key currently in use by the
map. For example, "field3".

To retrieve data using a map index, you first retrieve the index using its name, and create an
instance of IndexKey that you will use to perform the index lookup:

Index mapIndex = myTable.getIndex("mapKeyIndex");
IndexKey indexKey = mapIndex.createIndexKey();

Next, you populate the IndexKey instance with the field name that you want to retrieve. Use the
keys() path step to indicate that you want to retrieve using the field name without regard for
the field value. When you perform the index lookup, the only records that will be returned will
be those which have a map with the specified key name:

indexKey.put("testMap.keys()", "field3");

After that, you retrieve the matching table rows, and iterate over them in the same way you
would any other index type. For example:

TableIterator<Row> iter = tableH.tableIterator(indexKey, null, null);
System.out.println("Results for testMap field3: ");
try {
 while (iter.hasNext()) {
 Row rowRet = iter.next();
 int uid = rowRet.get("uid").asInteger().get();
 System.out.println("uid: " + uid);
 MapValue mapRet = rowRet.get("testMap").asMap();
 System.out.println("testMap: " + mapRet.toString());
 }
} finally {
 if (iter != null) {
 iter.close();

Chapter 9
Indexing Maps

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 5 of 12

 }
}

Indexing by Map Values
You can create indexes based on the values contained in a map without regard to the keys in
use.

Be aware that creating an index like this can potentially result in multiple index entries for each
row, which can lead to very large indexes.

First create the table:

CREATE TABLE myMapTable (
 uid INTEGER,
 testMap MAP(INTEGER),
 PRIMARY KEY(uid)
)

Once the table has been added to the store, create the index using the .values() path step:

CREATE INDEX mapElementIndex on myMapTable (testMap.values())

Data is retrieved if the table row contains the identified map with the identified value. So, for
example, if you create a series of table rows like this:

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myMapTable");

Row row = myTable.createRow();
row.put("uid", 12345);
MapValue mv = row.putMap("testMap");
mv.put("field1", 1);
mv.put("field2", 2);
mv.put("field3", 3);
tableH.put(row, null, null);

row = myTable.createRow();
row.put("uid", 12);
mv = row.putMap("testMap");
mv.put("field1", 1);
mv.put("field2", 2);
tableH.put(row, null, null);

row = myTable.createRow();
row.put("uid", 666);
mv = row.putMap("testMap");
mv.put("field1", 1);
mv.put("field3", 4);
tableH.put(row, null, null);

then you can retrieve any table rows that contain the map with any value currently in use by
the map. For example, a value of "2".

Chapter 9
Indexing Maps

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 6 of 12

To retrieve data using a map index, you first retrieve the index using its name, and create an
instance of IndexKey that you will use to perform the index lookup:

Index mapIndex = myTable.getIndex("mapElementIndex");
IndexKey indexKey = mapIndex.createIndexKey();

Next, you populate the IndexKey instance with the field value (2) that you want to retrieve. Use
the values() path step with the field name to indicate that you want to retrieve entries based
on the value only. When you perform the index lookup, the only records that will be returned
will be those which have a map with a value of 2.

indexKey.put("testMap.values()", 2);

After that, you retrieve the matching table rows, and iterate over them in the same way you
would any other index type. For example:

TableIterator<Row> iter = tableH.tableIterator(indexKey, null, null);
System.out.println("Results for testMap value 2: ");
try {
 while (iter.hasNext()) {
 Row rowRet = iter.next();
 int uid = rowRet.get("uid").asInteger().get();
 System.out.println("uid: " + uid);
 MapValue mapRet = rowRet.get("testMap").asMap();
 System.out.println("testMap: " + mapRet.toString());
 }
} finally {
 if (iter != null) {
 iter.close();
 }
}

Indexing by a Specific Map Key Name
You can create an index based on a specified map key name. Any map entries containing the
specified key name are indexed. This can create a small and very efficient index because the
index does not contain every key/value pair contained by the map fields. Instead, it just
contains those map entries using the identified key, which results in at most a single index
entry per row.

To create the index, first create the table:

CREATE TABLE myMapTable (
 uid INTEGER,
 testMap MAP(INTEGER),
 PRIMARY KEY(uid)
)

Once the table has been added to the store, create the index by specifying the key name you
want indexed using dot notation. In this example, we will index the key name of "field3":

CREATE INDEX mapField3Index on myMapTable (testMap.field3)

Chapter 9
Indexing Maps

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 7 of 12

Data is retrieved if the table row contains the identified map with the indexed key and a
specified value. So, for example, if you create a series of table rows like this:

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myMapTable");

Row row = myTable.createRow();
row.put("uid", 12345);
MapValue mv = row.putMap("testMap");
mv.put("field1", 1);
mv.put("field2", 2);
mv.put("field3", 3);
tableH.put(row, null, null);

row = myTable.createRow();
row.put("uid", 12);
mv = row.putMap("testMap");
mv.put("field1", 1);
mv.put("field2", 2);
tableH.put(row, null, null);

row = myTable.createRow();
row.put("uid", 666);
mv = row.putMap("testMap");
mv.put("field1", 1);
mv.put("field3", 4);
tableH.put(row, null, null);

then you can retrieve any table rows that contain the map with key "field3" (because that is
what you indexed) when "field3" maps to a specified value — such as "3". If you try to do an
index lookup on, for example, "field2" then that will fail because you did not index "field2".

To retrieve data using a map index, you first retrieve the index using its name and create an
instance of IndexKey that you will use to perform the index lookup:

Index mapIndex = myTable.getIndex("mapField3Index");
IndexKey indexKey = mapIndex.createIndexKey();

Then you populate the map field name (using dot notation) and the desired value using
IndexKey.put(). When you perform the index lookup, the only records that will be returned will
be those which have a map with the matching key name and corresponding value.

indexKey.put("testMap.field3", 3);

After that, you retrieve the matching table rows, and iterate over them in the same way you
would any other index type. For example:

TableIterator<Row> iter = tableH.tableIterator(indexKey, null, null);
System.out.println("Results for testMap field3, value 3: ");
try {
 while (iter.hasNext()) {
 Row rowRet = iter.next();
 int uid = rowRet.get("uid").asInteger().get();

Chapter 9
Indexing Maps

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 8 of 12

 System.out.println("uid: " + uid);
 MapValue mapRet = rowRet.get("testMap").asMap();
 System.out.println("testMap: " + mapRet.toString());
 }
} finally {
 if (iter != null) {
 iter.close();
 }
}

Indexing by Map Key and Value
In the previous section, we showed how to create a map index by specifying a pre-determined
key name. This allows you to perform map index look ups by providing both key and value, but
the index lookup will only be successful if the specified key is the key that you indexed.

You can do the same thing in a generic way by indexing every key/value pair in your map. The
result is a more flexible index, but also an index that is potentially much larger than the
previously described method. It is likely to result in multiple index entries per row.

To create an index based on every key/value pair used by the map field, first create the table:

CREATE TABLE myMapTable (
 uid INTEGER,
 testMap MAP(INTEGER),
 PRIMARY KEY(uid)
)

Once the table has been added to the store, create the index by using the .keys()
and .values() path steps:

CREATE INDEX mapKeyValueIndex on myMapTable
(testMap.keys(),testMap.values())

Data is retrieved if the table row contains the identified map with the identified key and the
identified value. So, for example, if you create a series of table rows like this:

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myMapTable");

Row row = myTable.createRow();
row.put("uid", 12345);
MapValue mv = row.putMap("testMap");
mv.put("field1", 1);
mv.put("field2", 2);
mv.put("field3", 3);
tableH.put(row, null, null);

row = myTable.createRow();
row.put("uid", 12);
mv = row.putMap("testMap");
mv.put("field1", 1);
mv.put("field2", 2);

Chapter 9
Indexing Maps

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 9 of 12

tableH.put(row, null, null);

row = myTable.createRow();
row.put("uid", 666);
mv = row.putMap("testMap");
mv.put("field1", 1);
mv.put("field3", 4);
tableH.put(row, null, null);

then you can retrieve any table rows that contain the map with specified key/value pairs — for
example, key "field3" and value "3".

To retrieve data using a map index, you first retrieve the index using its name and create an
instance of IndexKey that you will use to perform the index lookup:

Index mapIndex = myTable.getIndex("mapKeyValueIndex");
IndexKey indexKey = mapIndex.createIndexKey();

Next, you populate the IndexKey class instance with the field name and value you want to
retrieve. In this case, you must specify two sets of information, using two calls to
IndexKey.put():

• The name of the field. Here, use the keys() path step with the field name.

• The field value you want to retrieve. Here, use the values() path step the field name.

For example:

indexKey.put("testMap.keys()", "field3");
indexKey.put("testMap.values()", 3);

When you perform the index lookup, the only records that will be returned will be those which
have a map with the matching key/value pair. Once you have performed the index lookup, you
retrieve the matching table rows, and iterate over them in the same way you would any other
index type. For example:

TableIterator<Row> iter = tableH.tableIterator(indexKey, null, null);
System.out.println("Results for testMap field3, value 3: ");
try {
 while (iter.hasNext()) {
 Row rowRet = iter.next();
 int uid = rowRet.get("uid").asInteger().get();
 System.out.println("uid: " + uid);
 MapValue mapRet = rowRet.get("testMap").asMap();
 System.out.println("testMap: " + mapRet.toString());
 }
} finally {
 if (iter != null) {
 iter.close();
 }
}

Chapter 9
Indexing Maps

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 10 of 12

Indexing Embedded Records
You can create an index on an embedded record field so long as the record field contains
scalar data. To create the index, define the record as normal. To index the field, you specify the
name of the embedded record and the name of the field using dot notation.

To create the index, first create the table:

CREATE Table myRecordTable (
 uid INTEGER,
 myRecord RECORD (firstField STRING, secondField INTEGER),
 PRIMARY KEY (uid)
)

Once the table has been added to the store, create the index:

CREATE INDEX recordFieldIndex on myRecordTable (myRecord.secondField)

Data is retrieved if the table row contains the identified record field with the specified value. So,
for example, if you create a series of table rows like this:

TableAPI tableH = kvstore.getTableAPI();
Table myTable = tableH.getTable("myRecordTable");

Row row = myTable.createRow();
row.put("uid", 12345);
RecordValue rv = row.putRecord("myRecord");
rv.put("firstField", "String field for 12345");
rv.put("secondField", 3388);
tableH.put(row, null, null);

row = myTable.createRow();
row.put("uid", 345);
rv = row.putRecord("myRecord");
rv.put("firstField", "String field for 345");
rv.put("secondField", 3388);
tableH.put(row, null, null);

row = myTable.createRow();
row.put("uid", 111);
rv = row.putRecord("myRecord");
rv.put("firstField", "String field for 111");
rv.put("secondField", 12);
tableH.put(row, null, null);

then you can retrieve any table rows that contain the embedded record where "secondField" is
set to a specified value. (The embedded record index that we specified, above, indexed
myRecord.secondField.)

Chapter 9
Indexing Embedded Records

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 11 of 12

To retrieve data using a record index, you first retrieve the index using its name, and create an
instance of IndexKey that you will use to perform the index lookup:

Index recordIndex = myTable.getIndex("recordFieldIndex");
IndexKey indexKey = recordIndex.createIndexKey();
indexKey.put(“myRecord.secondField", 3388);

When you perform the index lookup, the only records returned will be those which have an
embedded record with the specified field and field value. You then retrieve the matching table
rows, and iterate over them in the same way you would any other index type. For example:

TableIterator<Row> iter = tableH.tableIterator(indexKey, null, null);
System.out.println("Results for testRecord.secondField, value 3388: ");
try {
 while (iter.hasNext()) {
 Row rowRet = iter.next();
 int uid = rowRet.get("uid").asInteger().get();
 System.out.println("uid: " + uid);
 RecordValue recordRet = rowRet.get("myRecord").asRecord();
 System.out.println("myRecord: " + recordRet.toString());
 }
} finally {
 if (iter != null) {
 iter.close();
 }
}

Chapter 9
Indexing Embedded Records

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 12 of 12

10
Using Row Versions

When a row is initially inserted in the store, and each time it is updated, it is assigned a unique
version token. The version is always returned by the method that wrote to the store (for
example, TableAPI.put()). The version information is also returned by methods that retrieve
rows from the store.

There are two reasons why versions might be important.

1. When an update or delete is to be performed, it may be important to perform the operation
only if the row's value has not changed. This is particularly interesting in an application
where there can be multiple threads or processes simultaneously operating on the row. In
this case, read the row, examining its version when you do so. You can then perform a put
operation, but only allow the put to proceed if the version has not changed (this is often
referred to as a Compare and Set (CAS) or Read, Modify, Write (RMW) operation). You
use TableAPI.putIfVersion() or TableAPI.deleteIfVersion() to guarantee this.

2. When a client reads data that was previously written, it may be important to ensure that the
Oracle NoSQL Database node servicing the read operation has been updated with the
information previously written. This can be accomplished by passing the version of the
previously written data as a consistency parameter to the read operation. For more
information on using consistency, see Consistency Guarantees.

Versions are managed using the Version class. In some situations, it is returned as part of
another encapsulating class, such as the Row class.

The following code fragment retrieves a row, and then writes that row back to the store only if
the version has not changed:

package kvstore.basicExample;

...

import oracle.kv.Version;
import oracle.kv.KVStore;
import oracle.kv.table.Index;
import oracle.kv.table.IndexKey;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;
import oracle.kv.table.TableIterator;

...

// Retrieve the row. Note that we do not show the creation of
// the kvstore handle here.

TableAPI tableH = kvstore.getTableAPI();
Table myTable = tableH.getTable("myTable");

// Construct the IndexKey. The name we gave our index when
// we created it was 'DoB'.

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 1 of 2

Index dobIdx = myTable.getIndex("DoB");
IndexKey dobIdxKey = dobIdx.createIndexKey();

TableIterator<Row> iter =
 tableH.tableIterator(dobIdxKey, null, null);

while (iter.hasNext()) {
 Row aRow = iter.next();

 // Retrieve the row's version information
 Version rowVersion = aRow.getVersion();

 //////////////////////////
 // Do work on the row here
 //////////////////////////

 // Put if the version is correct. Notice that here we examine
 // the return code. If it is null, that means that the put was
 // unsuccessful, probably because the row was changed elsewhere.

 Version newVersion =
 tableH.putIfVersion(row, rowVersion, null, null);
 if (newVersion == null) {
 // Unsuccessful. Someone else probably modified the record.
 }
}

Chapter 10

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 2 of 2

11
Consistency Guarantees

A Oracle NoSQL Database store is built from some number of computers (generically referred
to as nodes) that are working together using a network. All data in your store is first written to a
master node. The master node then copies that data to other nodes in the store. Nodes which
are not master nodes are referred to as replicas.

Because of the nature of distributed systems, there is a possibility that, at any given moment, a
write operation that was performed on the master node will not yet have been performed on
some other node in the store.

Consistency, then, is the policy describing whether it is possible for a row on Node A to be
different from the same row on Node B.

When there is a high likelihood that a row stored on one node is identical to the same row
stored on another node, we say that we have a high consistency guarantee. Likewise, a low
consistency guarantee means that there is a good possibility that a row on one node differs in
some way from the same row stored on another node.

You can control how high you want your consistency guarantee to be. Note that the trade-off in
setting a high consistency guarantee is that your store's read performance might not be as high
as if you use a low consistency guarantee.

There are several different forms of consistency guarantees that you can use. They are
described in the following sections.

Note that by default, Oracle NoSQL Database uses the lowest possible consistency possible.

Specifying Consistency Policies
To specify a consistency policy, you use one of the static instances of the Consistency class,
or one of its nested classes.

Once you have selected a consistency policy, you can put it to use in one of two ways. First,
you can use it to define a default consistency policy using the
KVStoreConfig.setConsistency() method. Specifying a consistency policy in this way means
that all store operations will use that policy, unless they are overridden on an operation by
operation basis.

The second way to use a consistency policy is to override the default policy using a
ReadOption class instance you provide to the TableAPI method that you are using to perform
the store read operation.

The following example shows how to set a default consistency policy for the store. We will
show the per-operation method of specifying consistency policies in the following sections.

package kvstore.basicExample;

import oracle.kv.Consistency;
import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 1 of 6

...

KVStoreConfig kconfig = new KVStoreConfig("exampleStore",
 "node1.example.org:5088, node2.example.org:4129");

kconfig.setConsistency(Consistency.NONE_REQUIRED);

KVStore kvstore = KVStoreFactory.getStore(kconfig);

Using Simple Consistency
You can use static instances of the Consistency base class to specify certain rigid consistency
guarantees. There are two such instances that you can use:

1. Consistency.ABSOLUTE

Requires that the operation be serviced at the master node. In this way, the row(s) will
always be consistent with the master.

This is the strongest possible consistency guarantee that you can require, but it comes at
the cost of servicing all read and write requests at the master node. If you direct all your
traffic to the master node (which is just one machine for each partition), then you will not be
distributing your read operations across your replicas. You also will slow your write
operations because your master will be busy servicing read requests. For this reason, you
should use this consistency guarantee sparingly.

2. Consistency.NONE_REQUIRED

Allows the store operation to proceed regardless of the state of the replica relative to the
master. This is the most relaxed consistency guarantee that you can require. It allows for
the maximum possible store performance, but at the high possibility that your application
will be operating on stale or out-of-date information.

For example, suppose you are performing a critical read operation that you know must
absolutely have the most up-to-date data. Then do this:

package kvstore.basicExample;

import oracle.kv.Consistency;
import oracle.kv.ConsistencyException;
import oracle.kv.KVStore;
import oracle.kv.table.PrimaryKey;
import oracle.kv.table.ReadOptions;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;

...

// KVStore handle creation is omitted for brevity

...

TableAPI tableH = kvstore.getTableAPI();

// The name you give to getTable() must be identical

Chapter 11
Using Simple Consistency

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 2 of 6

// to the name that you gave the table when you created
// the table using the CREATE TABLE DDL statement.
Table myTable = tableH.getTable("myTable");

// Construct the PrimaryKey.
PrimaryKey key = myTable.createPrimaryKey();
key.put("item", "Bolts");

// Create the ReadOption with our Consistency policy
ReadOptions ro = new ReadOptions(Consistency.ABSOLUTE,
 0, // Timeout parameter.
 // 0 means use the default.
 null); // Timeout units. Null because
 // the Timeout is 0.

// Retrieve the row. This performs a store read operation.
// Exception handling is skipped for this trivial example.
try {
 Row row = tableH.get(key, ro);
} catch (ConsistencyException ce) {
 // The consistency guarantee was not met
}

Using Time-Based Consistency
A time-based consistency policy describes the amount of time that a replica node is allowed to
lag behind the master node. If the replica's data is more than the specified amount of time out-
of-date relative to the master, then a ConsistencyException is thrown. In that event, you can
either abandon the operation, retry it immediately, or pause and then retry it.

In order for this type of a consistency policy to be effective, the clocks on all the nodes in the
store must be synchronized using a protocol such as NTP.

In order to specify a time-based consistency policy, you use the Consistency.Time class. The
constructor for this class requires the following information:

• permissibleLag

A long that describes the number of TimeUnits the replica is allowed to lag behind the
master.

• permissibleLagUnits

A TimeUnit that identifies the units used by permissibleLag. For example:
TimeUnit.MILLISECONDS.

• timeout

A long that describes how long the replica is permitted to wait in an attempt to meet the
permissible lag limit. That is, if the replica cannot immediately meet the permissible lag
requirement, then it will wait this amount of time to see if it is updated with the required
data from the master. If the replica cannot meet the permissible lag requirement within the
timeout period, a ConsistencyException is thrown.

• timeoutUnit

A TimeUnit that identifies the units used by timeout. For example: TimeUnit.SECONDS.

Chapter 11
Using Time-Based Consistency

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 3 of 6

The following sets a default time-based consistency policy of 2 seconds. The timeout is 4
seconds.

package kvstore.basicExample;

import oracle.kv.Consistency;
import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;

import java.util.concurrent.TimeUnit;

...

KVStoreConfig kconfig = new KVStoreConfig("exampleStore",
 "node1.example.org:5088, node2.example.org:4129");

Consistency.Time cpolicy =
 new Consistency.Time(2, TimeUnit.SECONDS,
 4, TimeUnit.SECONDS);
kconfig.setConsistency(cpolicy);

KVStore kvstore = KVStoreFactory.getStore(kconfig);

Using Version-Based Consistency
Version-based consistency is used on a per-operation basis. It ensures that a read performed
on a replica is at least as current as some previous write performed on the master.

An example of how this might be used is a web application that collects some information from
a customer (such as her name). It then customizes all subsequent pages presented to the
customer with her name. The storage of the customer's name is a write operation that can only
be performed by the master node, while subsequent page creation is performed as a read-only
operation that can occur at any node in the store.

Use of this consistency policy might require that version information be transferred between
processes in your application.

To create a version-based consistency policy, use the Consistency.Version class. When you
do this, you must provide the following information:

• version

The Version that the read must match. The value returned is either equal or newer than
the version specified in the policy.

• timeout

A long that describes how long the replica is permitted to wait in an attempt to meet the
version requirement. That is, if the replica cannot immediately meet the version
requirement, then it will wait this amount of time to see if it is updated with the required
data from the master. If the replica cannot meet the requirement within the timeout period,
a ConsistencyException is thrown.

• timeoutUnit

A TimeUnit that identifies the units used by timeout. For example: TimeUnit.SECONDS.

Chapter 11
Using Version-Based Consistency

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 4 of 6

For example, the following code performs a store write, collects the version information, then
uses it to construct a version-based consistency policy.

package kvstore.basicExample;

import oracle.kv.KVStore;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;
import oracle.kv.Version;

...

// KVStore handle creation is omitted for brevity

...

TableAPI tableH = kvstore.getTableAPI();
Table myTable = tableH.getTable("myTable");

// Get a Row instance
Row row = myTable.createRow();

// Now put all of the cells in the row.

row.put("item", "Bolts");
row.put("count1", 5);
row.put("count2", 23);
row.put("percentage", 0.2173913);

// Now write the table to the store, capturing the
// Version information as we do.

Version matchVersion = tableH.put(row, null, null);

Version matchVersion = kvstore.put(myKey, myValue);

At some other point in this application's code, or perhaps in another application entirely, we use
the matchVersion captured above to create a version-based consistency policy.

package kvstore.basicExample;

import oracle.kv.Consistency;
import oracle.kv.ConsistencyException;
import oracle.kv.KVStore;
import oracle.kv.table.PrimaryKey;
import oracle.kv.table.ReadOptions;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;

import java.util.concurrent.TimeUnit;

...

Chapter 11
Using Version-Based Consistency

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 5 of 6

// KVStore handle creation is omitted for brevity

...

// Construct the PrimaryKey.

PrimaryKey key = myTable.createPrimaryKey();
key.put("item", "Bolts");

// Create the consistency policy, using the
// Version object we captured, above.
Consistency.Version versionConsistency =
 new Consistency.Version(matchVersion,
 200,
 TimeUnit.NANOSECONDS);

// Create a ReadOptions using our new consistency policy.
ReadOptions ro = new ReadOptions(versionConsistency, 0, null);

// Now perform the read.
try {

 Row row = tableH.get(key, ro);

 // Do work with the row here
} catch (ConsistencyException ce) {
 // The consistency guarantee was not met
}

Chapter 11
Using Version-Based Consistency

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 6 of 6

12
Durability Guarantees

Writes are performed in the Oracle NoSQL Database store by performing the write operation
(be it a creation, update, or delete operation) on a master node. As a part of performing the
write operation, the master node will usually make sure that the operation has made it to stable
storage before considering the operation complete.

The master node will also transmit the write operation to the replica nodes in its shard. It is
possible to ask the master node to wait for acknowledgments from its replicas before
considering the operation complete.

Note

If your store is configured such that secondary zones are in use, then write
acknowledgements are never required for the replicas in the secondary zones. That is,
write acknowledgements are only returned by replicas in primary zones. For more
information on zones, see Administrator's Guide.

The replicas, in turn, will not acknowledge the write operation until they have applied the
operation to their own database.

A durability guarantee, then, is a policy which describes how strongly persistent your data is in
the event of some kind of catastrophic failure within the store. (Examples of a catastrophic
failure are power outages, disk crashes, physical memory corruption, or even fatal application
programming errors.)

A high durability guarantee means that there is a very high probability that the write operation
will be retained in the event of a catastrophic failure. A low durability guarantee means that the
write is very unlikely to be retained in the event of a catastrophic failure.

The higher your durability guarantee, the slower your write-throughput will be in the store. This
is because a high durability guarantee requires a great deal of disk and network activity.

Usually you want some kind of a durability guarantee, although if you have highly transient
data that changes from run-time to run-time, you might want the lowest possible durability
guarantee for that data.

Durability guarantees include two types of information: acknowledgment guarantees and
synchronization guarantees. These two types of guarantees are described in the next sections.
We then show how to set a durability guarantee.

Note that by default, Oracle NoSQL Database uses a low durability guarantee.

Setting Acknowledgment-Based Durability Policies
Whenever a master node performs a write operation (create, update or delete), it must send
that operation to its various replica nodes. The replica nodes then apply the write operation(s)
to their local databases so that the replicas are consistent relative to the master node.

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 1 of 5

Upon successfully applying write operations to their local databases, replicas in primary zones
send an acknowledgment message back to the master node. This message simply says that
the write operation was received and successfully applied to the replica's local database.
Replicas in secondary zones do not send these acknowledgement messages.

Note

The exception to this are replicas in secondary zones, which will never acknowledge
write operations.

An acknowledgment-based durability policy describes whether the master node will wait for
these acknowledgments before considering the write operation to have completed successfully.
You can require the master node to not wait for acknowledgments, or to wait for
acknowledgments from a simple majority of replica nodes in primary zones, or to wait for
acknowledgments from all replica nodes in primary zones.

The more acknowledgments the master requires, the slower its write performance will be.
Waiting for acknowledgments means waiting for a write message to travel from the master to
the replicas, then for the write operation to be performed at the replica (this may mean disk
I/O), then for an acknowledgment message to travel from the replica back to the master. From
a computer application's point of view, this can all take a long time.

When setting an acknowledgment-based durability policy, you can require acknowledgment
from:

• All replicas. That is, all of the replica nodes in the shard that reside in a primary zone.
Remember that your store has more than one shard, so the master node is not waiting for
acknowledgments from every machine in the store.

• No replicas. In this case, the master returns with normal status from the write operation as
soon as it has met its synchronization-based durability policy. These are described in the
next section.

• A simple majority of replicas in primary zones. That is, if the shard has 5 replica nodes
residing in primary zones, then the master will wait for acknowledgments from 3 nodes.

Setting Synchronization-Based Durability Policies
Whenever a node performs a write operation, the node must know whether it should wait for
the data to be written to stable storage before successfully returning from the operation.

As a part of performing a write operation, the data modification is first made to an in-memory
cache. It is then written to the filesystem's data buffers. And, finally, the contents of the data
buffers are synchronized to stable storage (typically, a hard drive).

You can control how much of this process the master node will wait to complete before it
returns from the write operation with a normal status. There are three different levels of
synchronization durability that you can require:

• NO_SYNC

The data is written to the host's in-memory cache, but the master node does not wait for
the data to be written to the file system's data buffers, or for the data to be physically
transferred to stable storage. This is the fastest, but least durable, synchronization policy.

• WRITE_NO_SYNC

Chapter 12
Setting Synchronization-Based Durability Policies

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 2 of 5

The data is written to the in-memory cache, and then written to the file system's data
buffers, but the data is not necessarily transferred to stable storage before the operation
completes normally.

• SYNC

The data is written to the in-memory cache, then transferred to the file system's data
buffers, and then synchronized to stable storage before the write operation completes
normally. This is the slowest, but most durable, synchronization policy.

Notice that in all cases, the data is eventually written to stable storage (assuming some failure
does not occur to prevent it). The only question is, how much of this process will be completed
before the write operation returns and your application can proceed to its next operation.

See the next section for an example of setting durability policies.

Setting Durability Guarantees
To set a durability guarantee, use the Durability class. When you do this, you must provide
three pieces of information:

• The acknowledgment policy.

• A synchronization policy at the master node.

• A synchronization policy at the replica nodes.

The combination of policies that you use is driven by how sensitive your application might be to
potential data loss, and by your write performance requirements.

For example, the fastest possible write performance can be achieved through a durability
policy that requires:

• No acknowledgments.

• NO_SYNC at the master.

• NO_SYNC at the replicas.

However, this durability policy also leaves your data with the greatest risk of loss due to
application or machine failure between the time the operation returns and the time when the
data is written to stable storage.

On the other hand, if you want the highest possible durability guarantee, you can use:

• All replicas must acknowledge the write operation.

• SYNC at the master.

• SYNC at the replicas.

Of course, this also results in the slowest possible write performance.

Most commonly, durability policies attempt to strike a balance between write performance and
data durability guarantees. For example:

• Simple majority (> 50%) of replicas must acknowledge the write.

• SYNC at the master.

• NO_SYNC at the replicas.

Note that you can set a default durability policy for your KVStore handle, but you can also
override the policy on a per-operation basis for those situations where some of your data need
not be as durable (or needs to be MORE durable) than the default.

Chapter 12
Setting Durability Guarantees

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 3 of 5

For example, suppose you want an intermediate durability policy for most of your data, but
sometimes you have transient or easily re-created data whose durability really is not very
important. Then you would do something like this:

First, set the default durability policy for the KVStore handle:

package kvstore.basicExample;

import oracle.kv.Durability;
import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;

...

KVStoreConfig kconfig = new KVStoreConfig("exampleStore",
 "node1.example.org:5088, node2.example.org:4129");

Durability defaultDurability =
 new Durability(Durability.SyncPolicy.SYNC, // Master sync
 Durability.SyncPolicy.NO_SYNC, // Replica sync
 Durability.ReplicaAckPolicy.SIMPLE_MAJORITY);
kconfig.setDurability(defaultDurability);

KVStore kvstore = KVStoreFactory.getStore(kconfig);

In another part of your code, for some unusual write operations, you might then want to relax
the durability guarantee so as to speed up the write performance for those specific write
operations:

package kvstore.basicExample;

...

import oracle.kv.Durability;
import oracle.kv.DurabilityException;
import oracle.kv.KVStore;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;

...

TableAPI tableH = kvstore.getTableAPI();

// The name you give to getTable() must be identical
// to the name that you gave the table when you created
// the table using the CREATE TABLE DDL statement.
Table myTable = tableH.getTable("myTable");

// Get a Row instance
Row row = myTable.createRow();

// Now put all of the cells in the row.

row.put("item", "Bolts");

Chapter 12
Setting Durability Guarantees

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 4 of 5

row.put("description", "Hex head, stainless");
row.put("count", 5);
row.put("percentage", 0.2173913);

// Construct a durability policy
Durability durability =
 new Durability(Durability.SyncPolicy.NO_SYNC, // Master sync
 Durability.SyncPolicy.NO_SYNC, // Replica sync
 Durability.ReplicaAckPolicy.NONE);

// Construct a WriteOptions object using the durability policy.
WriteOptions wo = new WriteOptions(durability, 0, null);

// Now write the table to the store using the durability policy
// defined, above.
tableH.put(row, null, wo);

Chapter 12
Setting Durability Guarantees

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 5 of 5

13
Executing a Sequence of Operations

You can execute a sequence of write operations as a single atomic unit so long as all the rows
that you are operating upon share the same shard key. By atomic unit, we mean all of the
operations will execute successfully, or none of them will.

Also, the sequence is performed in isolation. This means that if you have a thread running a
particularly long sequence, then another thread cannot intrude on the data in use by the
sequence. The second thread will not be able to see any of the modifications made by the
long-running sequence until the sequence is complete. The second thread also will not be able
to modify any of the data in use by the long-running sequence.

Be aware that sequences only support write operations. You can perform puts and deletes, but
you cannot retrieve data when using sequences.

When using a sequence of operations:

• All of the keys in use by the sequence must share the same shard key.

• Operations are placed into a list, but the operations are not necessarily executed in the
order that they appear in the list. Instead, they are executed in an internally defined
sequence that prevents deadlocks.

The rest of this chapter shows how to use TableOperationFactory and TableAPI.execute()
to create and run a sequence of operations.

Sequence Errors
If any operation within the sequence experiences an error, then the entire operation is aborted.
In this case, your data is left in the same state it would have been in if the sequence had never
been run at all — no matter how much of the sequence was run before the error occurred.

Fundamentally, there are two reasons why a sequence might abort:

1. An internal operation results in an exception that is considered a fault. For example, the
operation throws a DurabilityException. Also, if there is an internal failure due to
message delivery or a networking error.

2. An individual operation returns normally but is unsuccessful as defined by the particular
operation. (For example, you attempt to delete a row that does not exist). If this occurs
AND you specified true for the abortIfUnsuccessful parameter when the operation was
created using TableOperationFactory, then an OperationExecutionException is thrown.
This exception contains information about the failed operation.

Creating a Sequence
You create a sequence by using the TableOperationFactory class to create TableOperation
class instances, each of which represents exactly one operation in the store. You obtain an
instance of TableOperationFactory by using TableAPI.getTableOperationFactory().

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 1 of 5

For example, suppose you are using a table defined like this:

CREATE TABLE myTable (
 itemType STRING,
 itemCategory STRING,
 itemClass STRING,
 itemColor STRING,
 itemSize STRING,
 price FLOAT,
 inventoryCount INTEGER,
 PRIMARY KEY (SHARD(itemType, itemCategory, itemClass), itemColor,
 itemSize)
)

With tables containing data like this:

• Row 1:

– itemType: Hats

– itemCategory: baseball

– itemClass: longbill

– itemColor: red

– itemSize: small

– price: 12.07

– inventoryCount: 127

• Row 2:

– itemType: Hats

– itemCategory: baseball

– itemClass: longbill

– itemColor: red

– itemSize: medium

– price: 13.07

– inventoryCount: 201

• Row 3:

– itemType: Hats

– itemCategory: baseball

– itemClass: longbill

– itemColor: red

– itemSize: large

– price: 14.07

– inventoryCount: 39

And further suppose that this table has rows that require an update (such as a price and
inventory refresh), and you want the update to occur in such a fashion as to ensure it is
performed consistently for all the rows.

Chapter 13
Creating a Sequence

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 2 of 5

Then you can create a sequence in the following way:

package kvstore.basicExample;

import java.util.ArrayList;

import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;

import oracle.kv.DurabilityException;
import oracle.kv.FaultException;
import oracle.kv.OperationExecutionException;
import oracle.kv.RequestTimeoutException;

import oracle.kv.table.PrimaryKey;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;
import oracle.kv.table.TableOperationFactory;
import oracle.kv.table.TableOperation;

...

// kvstore handle creation omitted.

...

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myTable");

// We use TableOperationFactory to create items for our
// sequence.
TableOperationFactory tof = tableH.getTableOperationFactory();

// This ArrayList is used to contain each item in our sequence.
ArrayList<TableOperation> opList = new ArrayList<TableOperation>();

// Update each row, adding each to the opList as we do.
Row row = myTable.createRow();
row.put("itemType", "Hats");
row.put("itemCategory", "baseball");
row.put("itemClass", "longbill");
row.put("itemColor", "red");
row.put("itemSize", "small");
row.put("price", new Float(13.07));
row.put("inventoryCount", 107);
opList.add(tof.createPut(row, null, true));

row = myTable.createRow();
row.put("itemType", "Hats");
row.put("itemCategory", "baseball");
row.put("itemClass", "longbill");
row.put("itemColor", "red");
row.put("itemSize", "medium");

Chapter 13
Creating a Sequence

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 3 of 5

row.put("price", new Float(14.07));
row.put("inventoryCount", 198);
opList.add(tof.createPut(row, null, true));

row = myTable.createRow();
row.put("itemType", "Hats");
row.put("itemCategory", "baseball");
row.put("itemClass", "longbill");
row.put("itemColor", "red");
row.put("itemSize", "large");
row.put("price", new Float(15.07));
row.put("inventoryCount", 139);
opList.add(tof.createPut(row, null, true));

Note in the above example that we update only those rows that share the same shard key. In
this case, the shard key includes the itemType, itemCategory, and itemClass fields. If the
value for any of those fields is different from the others, we could not successfully execute the
sequence.

Executing a Sequence
To execute the sequence we created in the previous section, use the TableAPI.execute()
method:

package kvstore.basicExample;
try {
 tableH.execute(opList, null);
} catch (OperationExecutionException oee) {
 // Some error occurred that prevented the sequence
 // from executing successfully. Use
 // oee.getFailedOperationIndex() to determine which
 // operation failed. Use oee.getFailedOperationResult()
 // to obtain an OperationResult object, which you can
 // use to troubleshoot the cause of the execution
 // exception.
} catch (IllegalArgumentException iae) {
 // An operation in the list was null or empty.

 // Or at least one operation operates on a row
 // with a shard key that is different
 // than the others.

 // Or more than one operation uses the same key.
} catch (DurabilityException de) {
 // The durability guarantee could not be met.
} catch (RequestTimeoutException rte) {
 // The operation was not completed inside of the
 // default request timeout limit.
} catch (FaultException fe) {
 // A generic error occurred
}

Chapter 13
Executing a Sequence

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 4 of 5

Note that if any of the above exceptions are thrown, then the entire sequence is aborted, and
your data will be in the state it would have been in if you had never executed the sequence at
all.

TableAPI.execute() can optionally take a WriteOptions class instance. This class instance
allows you to specify:

• The durability guarantee that you want to use for this sequence. If you want to use the
default durability guarantee, pass null for this parameter.

• A timeout value that identifies the upper bound on the time interval allowed for processing
the entire sequence. If you provide 0, the default request timeout value is used.

• A TimeUnit that identifies the units used by the timeout value. For example:
TimeUnit.MILLISECONDS.

For an example of using WriteOptions, see Durability Guarantees.

Chapter 13
Executing a Sequence

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 5 of 5

14
Introduction to SQL for Oracle NoSQL
Database

SQL for Oracle NoSQL Database is an easy to use SQL-like language that supports read-only
queries and data definition (DDL) statements. This chapter focuses on the query part of the
language.

For a detailed description of the language (both DDL and query statements), see SQL
Reference Guide.

To follow along query examples run with the interactive shell, see SQL Beginner's Guide.

This section talks about using SQL through the JAVA API.

Running a simple query
Before running a query, perform store access as usual by obtaining a KVStore handle using the
KVStoreFactory.getStore() method and a KVStoreConfig object.

To create the query, use KVStore.executeSync() This returns a StatementResult instance,
which represents the result of an execution of a statement. There are two types of results,
results of DDL statements and results of DML statements. DDL statements modify the
database schema. CREATE TABLE, ALTER TABLE, and DROP TABLE are examples of DDL
statements. DDL statements do not return data records, so iterator() and next() will return
as if there was an empty result.

DML statements are non-updating queries. SQL SELECT-FROM-WHERE(SFW) statements
are an example of a DML statement. DML statements may contain a set of records. Objects of
StatementResult are not intended to be used across several threads.

For example, to run a simple query:

// Setup Store
String[] hhosts = {"n1.example.org:5088", "n2.example.org:4129"};
KVStoreConfig kconfig = new KVStoreConfig("exampleStore", hhosts);
KVStore store = KVStoreFactory.getStore(kconfig);

// Compile and Execute the SELECT statement
StatementResult result = store.executeSync("SELECT firstName,
age FROM Users");

// Get the results
for(RecordValue record : result) {
 System.out.println("nameFirst: " +
 record.get("firstName").asString().get());
 System.out.println("age: " +
 record.get("age").asInteger().get());
}

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 1 of 4

where the query SELECTS the firstname and age from the table Users. Then, the results are
displayed.

Using binding variables
To declare a binding variable, you need to create an instance of PreparedStatement. An
instance of PreparedStatement can be created through the KVStore.prepare() method.

You can specify zero or more variable declarations. The syntax for a variable is:

DECLARE $varname vartype;

If the DML statement contains external variables, the PreparedStatement can be executed
multiple times by creating an instance of BoundStatement. The external variables must be
bound to specific values before the statement can be executed. To allow for the potentially
concurrent execution of the same PreparedStatement multiple times with different bind values
each time, binding of external variables must be done through one or more instances of
BoundStatement. Such instances are created using the createBoundStatement() method.

This instance can then be executed multiple times using the KVStore.execute() or
KVStore.executeSync() methods.

For example:

// store handle creation omitted.

...

// Compile the statement.
PreparedStatement pStmt = store.prepare(
 "DECLARE $minAge integer; $maxAge integer; " +
 "SELECT id, firstName FROM Users WHERE
 age >= $minAge and age < $maxAge "
);

// Iterate decades
for(int age = 0; age <= 100; age = age + 10) {
 int maxAge = age + (age < 100 ? 10 : 1000);
 System.out.println("Persons with ages between " + age +
 " and " + maxAge + ".");

 // Bind variables, reuse the same pStmt
 BoundStatement bStmt = pStmt.createBoundStatement();
 bStmt.setVariable("$minAge", age);
 bStmt.setVariable("$maxAge", maxAge);

 // Execute the statement
 StatementResult result = store.executeSync(bStmt);

 // Get the results in the current decade
 for(RecordValue record : result) {
 System.out.println("id: " +
 record.get("id").asInteger().get());
 System.out.println("firstName: " +
 record.get("firstName").asString().get());

Chapter 14
Using binding variables

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 2 of 4

 }
}

Accessing metadata
You can access the metadata of a BoundStatement, PreparedStatement or StatementResult
by using the getResultDef() method.

Additionally, you can use the getFields().size(), getFieldsName(), and getField()
RecordDef methods to obtain the number of fields, field name, and field type respectively.

For example:

// store handle creation omitted.

...

// Access metadata on PreparedStatement or BoundStatement
PreparedStatement pStmt = store.prepare(
 "DECLARE $minAge integer; $maxAge integer; " +
 "SELECT id, firstName FROM users WHERE age >= $minAge
 and age < $maxAge ");

RecordDef recodDef = pStmt.getResultDef();
int noOfFields = recodDef.getFields().size();
String fieldName = recodDef.getFieldName(0); // fieldName is "$minAge";
FieldDef fieldType = recodDef.getField(0); // feldType is IntegerDef

// Access metadata on StatementResult
StatementResult result = store.executeSync("SELECT * FROM Users WHERE
(age > 18 and age < 30)");

recordDef = result.getResultDef();

Note

DDL operations do not have metadata.

Using a query to update data
You can form queries to UPDATE a row in an Oracle NoSQL Database table. The WHERE
clause must specify an exact primary key as only single row updates are allowed.

For example, to update a field using the UPDATE statement:

// store handle creation omitted.

...

// Updates the age for User with id=2

Chapter 14
Accessing metadata

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 3 of 4

StatementResult result = store.executeSync("UPDATE Users SET age=20
WHERE id=2");

To update multiple rows, you must first form a query to SELECT records. You then use the
result of the SELECT query to update or insert data.

For example, to update a field using a result record from the SELECT statement:

// store handle creation omitted.

...

TableAPI tableAPI = store.getTableAPI();
Table table = tableAPI.getTable("Users");

StatementResult result = store.executeSync("SELECT * FROM Users WHERE
(age > 13 and age < 17)");

for(RecordValue record : result) {

 // Update a field
 Row row = table.createRow(record);
 row.put("age", record.get("age").asInteger().get() + 1);
 tableAPI.put(row, null, null);
}

Chapter 14
Using a query to update data

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 4 of 4

A
JSON By Example

This appendix contains a complete Java example of how to use JSON data in a Oracle NoSQL
Database store.

The example loads a series of table rows, using JSON objects to represent each row. The
example then updates all table rows that contain a home address in Boston so that the zip
code for that address is updated from 02102 to 02102-1000.

Our sample data deliberately contains some table rows with null and missing fields so as to
illustrate some (but by no means all) of the error handling that is required when working with
JSON data. It is possible to be endlessly creative when providing broken JSON to the store.
Any production code would have to be a great deal more robust than what is shown here.

The update operation is shown three different ways in the following example. While the actual
update is always the same (see the UpdateJSON.updateZipCode() method), there are three
different ways to seek out rows with a home address in Boston:

• No query.

This simply iterates over the entire table, examining each row in turn. See
UpdateJSON.updateTableWithoutQuery().

• With an index.

This uses a JSON index to retrieve all table rows where the home address is in Boston.
See UpdateJSON.updateTableWithIndex().

• With a SQL Query.

This uses a SQL statement with a executeSync() method to retrieve all relevant table
rows. See UpdateJSON.updateTableUsingSQLQuery().

The next section shows some of the sample data used by this example. The description of the
example itself begins with UpdateJSON.

If you want to follow along with the example, and see all of the sample data, you can find this
example in the Examples download from here. The example and its sample data can be found
in the Table folder.

When compiling the example, make sure that kvclient.jar is in your classpath. For example:

javac -d . -cp <KVHOME>/lib/kvclient.jar UpdateJSON.java

You can run this program against a store or a kvlite instance that does not have security
enabled.

java -cp .:<KVHOME>/lib/kvclient.jar table.UpdateJSON

By default, this example uses localhost:5000, but you can set the helper host and port at the
command line using the -hostport parameter.

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix A-1 of A-16

Sample Data
Our sample data is contained in person_contacts.json. We use it create a simple two-column
table to hold our JSON data.

The first column is an account ID, and it serves as the primary key. At a minimum, every table
will always have a single non-JSON field that serves as the primary key. If you wish to use
compound primary keys, or one or more shard keys, then the number of non-JSON fields will
expand.

Our second field is a JSON field. Like all such fields, it can contain any valid JSON data. This
provides extreme flexibility for your table schema, which is particularly useful when it is
necessary to evolve your data's schema. However, it comes at the cost of requiring more error
checking to ensure that your JSON contains the data you expect it to contain.

CREATE TABLE personContacts (account INTEGER,
 person JSON,
 PRIMARY KEY(account))

We load this table with 23 rows, some of which are deliberately incomplete. Each row is
represented as a single JSON object. We show a representative section of the sample data
file, below, for your reference.

In the following listing, notice that Account 3 only provides a work address — there is no home
address. Account 4 provides no address information at all. Account 5 fails to provide any data
at all for the person field. Account 22 explicitly sets the address object to null. Account 23
explicitly sets both the home and work addresses to null. All of this is valid JSON and all of it
should be handled by our code.

{
"account" : 1,
"person" : {
 "lastName" : "Jones",
 "firstName" : "Joe",
 "address" : {
 "home" : {
 "street" : "15 Elm",
 "city" : "Lakeville",
 "zip" : "12345"
 },
 "work" : {
 "street" : "12 Main",
 "city" : "Lakeville",
 "zip" : "12345"
 }
 },
 "phone" : {
 "home" : "800-555-1234",
 "work" : "877-123-4567"
 }
 }
}

{

Appendix A
Sample Data

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix A-2 of A-16

"account" : 2,
"person" : {
 "lastName" : "Anderson",
 "firstName" : "Nick",
 "address" : {
 "home" : {
 "street" : "4032 Kenwood Drive",
 "city" : "Boston",
 "zip" : "02102"
 },
 "work" : {
 "street" : "541 Bronx Street",
 "city" : "Boston",
 "zip" : "02102"
 }
 },
 "phone" : {
 "home" : "800-555-9201",
 "work" : "877-123-8811"
 }
 }
}

{
"account" : 3,
"person" : {
 "lastName" : "Long",
 "firstName" : "Betty",
 "address" : {
 "work" : {
 "street" : "10 Circle Drive",
 "city" : "Minneapolis",
 "zip" : "55111"
 }
 },
 "phone" : {
 "home" : "800-555-2701",
 "work" : "877-181-4912"
 }
 }
}

{
"account" : 4,
"person" : {
 "lastName" : "Brown",
 "firstName" : "Harrison",
 "phone" : {
 "home" : "800-555-3838",
 "work" : "877-753-4110"
 }
 }
}

{
"account" : 5

Appendix A
Sample Data

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix A-3 of A-16

}

{
"account" : 6,
"person" : {
 "lastName" : "Abrams",
 "firstName" : "Cynthia",
 "address" : {
 "home" : {
 "street" : "2 Fairfield Drive",
 "city" : "San Jose",
 "zip" : "95054"
 }
 },
 "phone" : {
 "home" : "800-528-4897",
 "work" : "877-180-5287"
 }
 }
}

...
sample data removed for the book. See person_contact.json
in/examples/table for the complete data
file.
...

{
"account" : 21,
"person" : {
 "lastName" : "Blase",
 "firstName" : "Lisa",
 "address" : {
 "home" : {
 "street" : "72 Rutland Circle",
 "city" : "Boston",
 "zip" : "02102"
 },
 "work" : {
 "street" : "541 Bronx Street",
 "city" : "Boston",
 "zip" : "02102"
 }
 },
 "phone" : {
 "home" : "800-555-4404",
 "work" : "877-123-2277"
 }
 }
}

{
"account" : 22,
"person" : {
 "address" : null,
 "phone" : {

Appendix A
Sample Data

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix A-4 of A-16

 "home" : "800-555-1234",
 "work" : "877-123-4567"
 }
 }
}

{
"account" : 23,
"person" : {
 "address" : {
 "home" : null,
 "work" : null
 },
 "phone" : {
 "home" : "800-555-1234",
 "work" : "877-123-4567"
 }
 }
}

UpdateJSON
The example program is called UpdateJSON. We deliberately avoid using Java JSON APIs in
this example so as to show how to perform these operations using Oracle NoSQL Database
APIs only. Our imports are therefore limited to oracle.kv, oracle.kv.table, java.io, and
java.util.

package table;

import oracle.kv.FaultException;
import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;
import oracle.kv.StatementResult;

import oracle.kv.table.FieldValue;
import oracle.kv.table.Index;
import oracle.kv.table.IndexKey;
import oracle.kv.table.MapValue;
import oracle.kv.table.PrimaryKey;
import oracle.kv.table.RecordValue;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;
import oracle.kv.table.TableIterator;

import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;

import java.util.ArrayList;

public class UpdateJSON {

Appendix A
UpdateJSON

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix A-5 of A-16

 private String dataFile = "person_contacts.json";
 private String defaulthost = "localhost:5000";
 private String helperhosts[];
 private String storeName = "kvstore";

 private static void usage() {
 String msg = "Creates a table and loads data into it from\n";
 msg += "an external file containing one or more JSON\n";
 msg += "objects. The objects must conform to the table\n";
 msg += "schema. Table rows are then updated so that\n";
 msg += "zipcodes for all home addresses in Boston are\n";
 msg += "modified updated. Update is performed 3 different\n";
 msg += "ways so as to illustrate the ways to query JSON\n";
 msg += "data in Oracle NoSQL Database.\n";
 msg += "\nCommand line options: \n";
 msg += "-store <storename>\n";
 msg += "\tName of the store. Defaults to 'kvstore'\n";
 msg += "-hostport <hostname>:<port>\n";
 msg += "\tStore location. Defaults to 'localhost:5000'\n";
 msg += "-file <filename>\n";
 msg += "\tFile containing row data. Defaults to ";
 msg += "person_contacts.json";

 System.out.println(msg);
 System.exit(0);
 }

 public static void main(String args[]) {
 UpdateJSON uj = new UpdateJSON();

 uj.run(args);
 }

UpdateJSON.run()
The UpdateJSON.run() method parses our command line arguments, sets up and opens our
KVStore handle, and then calls each of the methods that provide individual steps in this
example.

Notice that there are three different updateTable... methods. Each provides the same
functionality as the next, but reads are performed in different ways. Once data is loaded into
the table, they can be run independently of the others. The only other dependency is that
UpdateJSON.createIndex() must be run before UpdateJSON.updateTableWithIndex() is run.

 private void run(String args[]) {
 parseArgs(args);

 KVStoreConfig kconfig =
 new KVStoreConfig(storeName,
 helperhosts);
 KVStore kvstore = KVStoreFactory.getStore(kconfig);

 defineTable(kvstore);

Appendix A
UpdateJSON.run()

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix A-6 of A-16

 loadTable(kvstore, dataFile);
 displayTable(kvstore);
 updateTableWithoutQuery(kvstore);
 createIndex(kvstore);
 updateTableWithIndex(kvstore);
 updateTableUsingSQLQuery(kvstore);
 displayTable(kvstore);
 }

UpdateJSON.defineTable()
The defineTable() method drops (deletes) the personContacts table if it exists. Dropping a
table deletes all of the table data from the store. The defineTable() method then creates the
new table without data.

As always, we can write no data to the store until the table has been defined in the store using
the appropriate DDL statement.

This method relies on the UpdateJSON.runDDL() method, which we show later in this
appendix.

 // Drops the example table if it exists. This removes all table
 // data and indexes. The table is then created in the store.
 // The loadTable() method is used to populate the newly created
 // table with data.
 private void defineTable(KVStore kvstore) {
 System.out.println("Dropping table....");
 String statement = "DROP TABLE IF EXISTS personContacts";
 boolean success = runDDL(kvstore, statement);

 if (success) {
 statement =
 "CREATE TABLE personContacts (" +
 "account INTEGER," +
 "person JSON," +
 "PRIMARY KEY(account))";
 System.out.println("Creating table....");
 success = runDDL(kvstore, statement);
 if (!success) {
 System.out.println("Table creation failed.");
 System.exit(-1);
 }
 }

 }

UpdateJSON.createIndex()
The UpdateJSON.createIndex() method creates a JSON index in the store. It must be run
before UpdateJSON.updateTableWithIndex() is run.

Appendix A
UpdateJSON.defineTable()

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix A-7 of A-16

For information on JSON indexes, see JSON Indexes.

 // Creates a JSON index. This method must be
 // run before updateTableWithIndex() is run.
 private void createIndex(KVStore kvstore) {
 System.out.println("Creating index....");
 String statement = "CREATE INDEX IF NOT EXISTS ";
 statement += "idx_home_city on personContacts ";
 statement += "(person.address.home.city AS String)";
 runDDL(kvstore, statement);
 }

UpdateJSON.runDDL()
The UpdateJSON.runDDL() method is a utility that executes DDL statements against the store
using KVStore.executeSync().

This method relies on the UpdateJSON.displayResult() method, which simply writes the results
of the DDL execution to the command line. It is shown later in this example.

 // Executes DDL statements (such as are found in defineTable()
 // and createIndex()) in the store.
 private boolean runDDL(KVStore kvstore, String statement) {
 StatementResult result = null;
 boolean success = false;

 try {
 result = kvstore.executeSync(statement);
 displayResult(result, statement);
 success = true;
 } catch (IllegalArgumentException e) {
 System.out.println("Invalid statement:\n" + e.getMessage());
 } catch (FaultException e) {
 System.out.println
 ("Statement couldn't be executed, please retry: " + e);
 }

 return success;
 }

UpdateJSON.updateTableWithoutQuery()
The UpdateJSON.updateTableWithoutQuery() method iterates over every row in our table
looking for the proper rows to update.

This is by far the most complicated of the update methods due to the requirement to
continually check for null fields. Notice that all of the following code is used to simply retrieve
table rows. The actual update operation is performed by UpdateJSON.updateZipCode().

 // Utility method. Given a MapValue and a field name,
 // return the field as a MapValue. Used by
 // updateTableWithoutQuery()
 private MapValue getMV(MapValue mv, String field) {
 FieldValue fv = null;

Appendix A
UpdateJSON.runDDL()

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix A-8 of A-16

 if ((fv = mv.get(field)) != null)
 return fv.asMap();
 return null;
 }

 // Update the zip code found on all Boston home addresses
 // to "02102-1000"
 //
 // Because we are not using an index, we must iterate over
 // every row in the table, modifying the rows with Boston home
 // addresses.
 private void updateTableWithoutQuery(KVStore kvstore) {
 TableAPI tableH = kvstore.getTableAPI();
 Table myTable = tableH.getTable("personContacts");

 PrimaryKey pkey = myTable.createPrimaryKey();
 TableIterator<Row> iter =
 tableH.tableIterator(pkey, null, null);
 try {
 while (iter.hasNext()) {
 int account = 0;
 Row row = iter.next();
 FieldValue fv = null;
 try {
 account = row.get("account").asInteger().get();
 MapValue mv = row.get("person").asMap();

 MapValue mvaddress = getMV(mv, "address");
 if (mvaddress != null) {
 MapValue mvhome = getMV(mvaddress, "home");
 if (mvhome != null) {
 fv = mvhome.get("city");
 if (fv != null) {
 if (fv.toString()
 .equalsIgnoreCase("Boston"))
 updateZipCode(tableH,
 row,
 "home",
 "02102-1000");
 }
 }
 }
 } catch (ClassCastException cce) {
 System.out.println("Data error: ");
 System.out.println("Account " + account +
 "has a missing or incomplete person field");
 // If this is thrown, then the "person" field
 // doesn't exist for the row.
 }
 }
 } finally {
 if (iter != null) {
 iter.close();
 }
 }

Appendix A
UpdateJSON.updateTableWithoutQuery()

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix A-9 of A-16

 System.out.println("Updated a table without using a query.");
 }

UpdateJSON.updateTableWithIndex()
The UpdateJSON.updateTableWithIndex() method performs the update using an index.

This read operation is considerably easier to implement than the previous method because we
do not need to perform all the error checking. This method is also more efficient because only
the table rows identified by the index are returned, resulting in less network traffic and fewer
rows for our code to examine. However, if the required index does not exist, then this method
will fail.

 // Update the zip code found on all Boston home addresses
 // to "02102-1000"
 //
 // Because we have an index available to us, we only have to look
 // at those rows which have person.address.home.city = Boston.
 // All other rows are skipped during the read operation.
 private void updateTableWithIndex(KVStore kvstore) {
 TableAPI tableH = kvstore.getTableAPI();
 Table myTable = tableH.getTable("personContacts");

 // Construct the IndexKey.
 Index homeCityIdx = myTable.getIndex("idx_home_city");
 IndexKey homeCityIdxKey = null;

 // If NullPointerException is thrown by createIndexKey(),
 // it means that the required index has not been created.
 // Run the createIndex() method before running this method.
 homeCityIdxKey = homeCityIdx.createIndexKey();

 // Return only those entries with a home city of "Boston"
 homeCityIdxKey.put("person.address.home.city", "Boston");

 // Iterate over the returned table rows. Because we're
 // using an index, we're guaranteed that
 // person.address.home.city exists and equals Boston
 // for every table row seen here.
 TableIterator<Row> iter =
 tableH.tableIterator(homeCityIdxKey, null, null);
 try {
 while (iter.hasNext()) {
 Row row = iter.next();
 updateZipCode(tableH, row, "home", "02102-1000");
 }
 } finally {
 if (iter != null) {
 iter.close();
 }
 }
 System.out.println("Updated a table using an index.");
 }

Appendix A
UpdateJSON.updateTableWithIndex()

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix A-10 of A-16

UpdateJSON.updateTableUsingSQLQuery()
The UpdateJSON.updateTableUsingSQLQuery() method uses a Oracle NoSQL Database SQL
query to retrieve the required table rows.

This third and final query method is the easiest to implement, and it has the advantage of not
requiring an index. If an appropriate index is available, it will be used — with all the advantages
that an index offers — but the index is not required as it was for the previous method.

 // Update the zip code found on all Boston home addresses
 // to "02102-1000"
 //
 // This query works with or without an index. If an index is
 // available, it is automatically used. For larger datasets,
 // the read operation will be faster with an index because only
 // the rows where person.address.home.city=Boston are returned
 // for the read.
 private void updateTableUsingSQLQuery(KVStore kvstore) {
 TableAPI tableH = kvstore.getTableAPI();
 Table myTable = tableH.getTable("personContacts");

 String query = "select * from personContacts p ";
 query += "where p.person.address.home.city=\"Boston\"";

 StatementResult result = kvstore.executeSync(query);

 for (RecordValue rv : result) {
 Row row = myTable.createRowFromJson(rv.toString(),
 false);
 updateZipCode(tableH, row, "home", "02102-1000");
 }
 System.out.println("Updated a table using a SQL Query to " +
 "read.");
 }

UpdateJSON.updateZipCode()
The UpdateJSON.updateZipCode() method performs the actual update operation in the store.

Because JSON can be returned as a MapValue, it is simple and efficient to update the JSON
data field.

 // Updates the zipcode for the proper address (either "home"
 // or "work" in this example).
 //
 // The calling method must guarantee that this row contains a
 // home address which refers to the correct city.
 private void updateZipCode(TableAPI tableH, Row row,
 String addrType, String newzip) {

 MapValue homeaddr = row.get("person").asMap()
 .get("address").asMap()
 .get(addrType).asMap();

Appendix A
UpdateJSON.updateTableUsingSQLQuery()

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix A-11 of A-16

 // If the zip field does not exist in the home address,
 // it is created with the newzip value. If it currently
 // exists, it is updated with the new value.
 homeaddr.put("zip", newzip);

 // Write the updated row back to the store.
 // Note that if this was production code, we
 // should be using putIfVersion() when
 // performing this write to ensure that the row
 // has not been changed since it was originally read.
 tableH.put(row, null, null);
 }

UpdateJSON.loadTable()
The UpdateJSON.loadTable() method loads our sample date into the Oracle NoSQL Database
store.

As Sample Data shows, all of our table rows are represented as JSON data in a single text file.
Each row is a single JSON object in the file. Typically JSON files are expected to contain one
and only one JSON object. While there are third party libraries which will iterate over multiple
JSON objects found in a stream, we do not want to rely on them for this example. (In the
interest of simplicity, we avoid adding a third party dependency.) Consequently, this method
provides a primitive custom parser to load the example data into the store.

 // Loads the contents of the sample data file into
 // the personContacts table. The defineTable() method
 // must have been run at least once (either in this
 // runtime, or in one before it) before this method
 // is run.
 //
 // JSON parsers ordinarily expect one JSON Object per file.
 // Our sample data contains multiple JSON Objects, each of
 // which represents a single table row. So this method
 // implements a simple, custom, not particularly robust
 // parser to read the input file, collect JSON Objects,
 // and load them into the table.
 private void loadTable(KVStore kvstore, String file2load) {
 TableAPI tableH = kvstore.getTableAPI();
 Table myTable = tableH.getTable("personContacts");

 BufferedReader br = null;
 FileReader fr = null;

 try {
 String jObj = "";
 String currLine;
 int pCount = 0;
 boolean buildObj = false;
 boolean beganParsing = false;

 fr = new FileReader(file2load);
 br = new BufferedReader(fr);

 // Parse the example data file, loading each JSON object

Appendix A
UpdateJSON.loadTable()

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix A-12 of A-16

 // found there into the table.
 while ((currLine = br.readLine()) != null) {
 pCount += countParens(currLine, '{');

 // Empty line in the data file
 if (currLine.length() == 0)
 continue;

 // Comments must start at column 0 in the
 // data file.
 if (currLine.charAt(0) == '#')
 continue;

 // If we've found at least one open paren, it's time to
 // start collecting data
 if (pCount > 0) {
 buildObj = true;
 beganParsing = true;
 }

 if (buildObj) {
 jObj += currLine;
 }

 // If our open and closing parens balance (the count
 // is zero) then we've collected an entire object
 pCount -= countParens(currLine, '}');
 if (pCount < 1)
 buildObj = false;
 // If we started parsing data, but buildObj is false
 // then that means we've reached the end of a JSON
 // object in the input file. So write the object
 // to the table, which means it is written to the
 // store.
 if (beganParsing && !buildObj) {
 Row row = myTable.createRowFromJson(jObj, false);
 tableH.put(row, null, null);
 jObj = "";
 }

 }

 System.out.println("Loaded sample data " + file2load);

 } catch (FileNotFoundException fnfe) {
 System.out.println("File not found: " + fnfe);
 System.exit(-1);
 } catch (IOException ioe) {
 System.out.println("IOException: " + ioe);
 System.exit(-1);
 } finally {
 try {
 if (br != null)
 br.close();
 if (fr != null)
 fr.close();

Appendix A
UpdateJSON.loadTable()

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix A-13 of A-16

 } catch (IOException iox) {
 System.out.println("IOException on close: " + iox);
 }
 }
 }

 // Used by loadTable() to know when a JSON object
 // begins and ends in the input data file.
 private int countParens(String line, char p) {
 int c = 0;
 for(int i=0; i < line.length(); i++) {
 if(line.charAt(i) == p) {
 c++;
 }
 }

 return c;
 }

UpdateJSON.displayTable()
The UpdateJSON.displayTable() method simply writes the entire table to the command line.

This method does not format the table's contents in any significant way. It is simply provided as
a convenience to allow the user to see that data has in fact been modified in the store.

 // Dumps the entire table to the command line.
 // Output is unformatted.
 private void displayTable(KVStore kvstore) {
 TableAPI tableH = kvstore.getTableAPI();
 Table myTable = tableH.getTable("personContacts");

 PrimaryKey pkey = myTable.createPrimaryKey();
 TableIterator<Row> iter = tableH.tableIterator(pkey, null,
 null);
 try {
 while (iter.hasNext()) {
 Row row = iter.next();
 System.out.println("\nAccount: " +
 row.get("account").asInteger());
 if (row.get("person").isNull()) {
 System.out.println("No person field");
 } else {
 System.out.println(row.get("person").asMap());
 }
 }
 } finally {
 if (iter != null) {
 iter.close();
 }
 }
 }

Appendix A
UpdateJSON.displayTable()

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix A-14 of A-16

UpdateJSON.displayResult()
The UpdateJSON.displayResult() method shows the contents of a StatementResult object
returned by a KVStore.executeSync() method call. It is used by this example as a
convenience to help the user see that a DDL statement has executed correctly in the store.

 // Displays the results of an executeSync() call.
 private void displayResult(StatementResult result,
 String statement) {
 System.out.println("===========================");
 if (result.isSuccessful()) {
 System.out.println("Statement was successful:\n\t" +
 statement);
 System.out.println("Results:\n\t" + result.getInfo());
 } else if (result.isCancelled()) {
 System.out.println("Statement was cancelled:\n\t" +
 statement);
 } else {
 // statement wasn't successful: may be in error, or may
 // still be in progress.
 if (result.isDone()) {
 System.out.println("Statement failed:\n\t" +
 statement);
 System.out.println("Problem:\n\t" +
 result.getErrorMessage());
 } else {
 System.out.println("Statement in progress:\n\t" +
 statement);
 System.out.println("Status:\n\t" +
 result.getInfo());
 }
 }
 }

UpdateJSON.parseArgs()
The UpdateJSON.parseArgs() method is used to parse the command line arguments used with
this class at run time.

It is unlikely that this method holds any surprises for Java programmers. It is included here
purely for the sake of completeness.

 // Parse command line arguments
 private void parseArgs(String[] args)
 {
 final int nArgs = args.length;
 int argc = 0;
 ArrayList<String> hhosts = new ArrayList<String>();

 while (argc < nArgs) {
 final String thisArg = args[argc++];

 if (thisArg.equals("-store")) {

Appendix A
UpdateJSON.displayResult()

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix A-15 of A-16

 if (argc < nArgs) {
 storeName = args[argc++];
 } else {
 usage();
 }
 } else if (thisArg.equals("-hostport")) {
 if (argc < nArgs) {
 hhosts.add(args[argc++]);
 } else {
 usage();
 }
 } else if (thisArg.equals("-file")) {
 if (argc < nArgs) {
 dataFile = args[argc++];
 } else {
 usage();
 }
 } else if (thisArg.equals("?") ||
 thisArg.equals("help")) {
 usage();
 } else {
 usage();
 }
 }

 if (hhosts.isEmpty()) {
 helperhosts = new String [] {defaulthost};
 } else {
 helperhosts = new String[hhosts.size()];
 helperhosts = hhosts.toArray(helperhosts);
 }
 }
}

Appendix A
UpdateJSON.parseArgs()

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix A-16 of A-16

B
Table Data Definition Language Overview

Before you can write data to tables in the store, you must provide a definition of the tables you
want to use. This definition includes information such as the table's name, the name of its
various rows and the data type contained in those rows, identification of the primary and
(optional) shard keys, and so forth. To perform these definitions, Oracle NoSQL Database
provides a Data Definition Language (DDL) that you use to form table and index statements.
The best way to run DDL statements is from the SQL Shell as described in Running the SQL
Shell in the SQL Beginner's Guide.

From the SQL, you can use these statements:

• Define tables and sub-tables.

• Modify table definitions.

• Delete table definitions.

• Define indexes.

• Delete index definitions.

• Set and modify default Time-to-Live values for tables.

Table and index statements take the form of ordinary strings, which are then transmitted to the
Oracle NoSQL Database store using the appropriate method or function. For example, to
define a simple user table, the table statement might look like this:

SQL-> CREATE TABLE Users (
 id INTEGER,
 firstName STRING,
 lastName STRING,
 contactInfo JSON,
 PRIMARY KEY (id)
)

For information on how to transmit these statements to the store, see Introducing Oracle
NoSQL Database Tables and Indexes.

For overview information on primary and shard keys, see Primary and Shard Key Design.

For overview information on indexes, see Creating Indexes.

The remainder of this appendix describes in detail the DDL statements that you use to
manipulate table and index definitions in the store.

Name Constraints
Throughout this document, and elsewhere in the documentation, using uppercase text signifies
DDL keywords (such as STRING, CREATE TABLE, and so on). These keywords are actually
case-insensitive and you can enter them in lowercase characters. However, all DDL keywords
shown here are reserved words. You cannot use keywords as table, index, or field names.

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix B-1 of B-20

Table, index, and field names are case-preserving, but case-insensitive. For example, you can
create a field named MY_NAME, and later reference it as my_name without error. However,
whenever you display the field name, it displays in the way you created it, MY_NAME, in this
case.

Table names are limited to 256 characters. Namespace names, index names, and field names
are limited to 64 characters. All table, index, and field names must begin with a letter (A-Z, a-
z), and are restricted to alphanumeric characters (A-Z, a-z, 0–9), plus underscore (_) and a
period (.) character.

DDL Comments
You can include comments in your DDL statements using one of the following constructs:

id INTEGER, /* this is a comment */
firstName STRING, // this is a comment
lastName STRING, # this is a comment

CREATE TABLE
To create a table definition, use a CREATE TABLE statement, as follows:

CREATE TABLE [IF NOT EXISTS] [namespace:]table-name
 [COMMENT "comment string"]
 (field-definition, field-definition-2 [,...]
 PRIMARY KEY (field-name, field-name-2 [,...]),
) [USING TTL ttl]
 [IN REGIONS region-name,region-name-2 [,...]]

where:

• IF NOT EXISTS

Optional clause. If you use this clause and a table of the same name and definition already
exists in the current namespace, the statement neither creates a new table, nor returns an
error. No action occurs.

If you do not use IF NOT EXISTS, and a table of the same name and definition already
exists in the current namespace, the statement attempts to create the table, and fails. You
cannot have two tables with the same name in one namespace.

• table-name

Required. Specifies the full table name, regardless of where it exists in the table hierarchy.
A table can be a top-level table created in the default namespace (sysdefault), a table in
a non-default namespace, or a child or grandchild table of a parent table. Specify a fully-
qualified table name as follows:

– parent-table.child-table – Specifies a new child table of an existing parent. To
create a child table, specify the parent table followed by a period (.) before the child
name. For example, if the parent table is Users, define a child table named
MailingAddress as Users.MailingAddress.

– parent-table.child-table.grandchild-table – Specifies a child table of an existing
table. You must also specify the parent table, for example Users.MailingAddress.Zip.

Appendix B
DDL Comments

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix B-2 of B-20

– namespace-name:table-name – Identifies a new table in a specific namespace, either
user-created or in the default namespace (sysdefault:). Use the namespace followed
by a colon (:) as a prefix to the new table name. For a new child table of a table in a
namespace, or any further generation, use a fully qualified table name such as
Sales:Users.MailingAddress, or Sales:Users.MailingAddress.Zip.

• COMMENT

Optional. Use a comment to provide a brief description of the table. The comment is not
interpreted at runtime, but becomes part of the table's metadata.

• field-definition

Required. A comma-separated list of fields. There are one or more field definitions for
every table. Field definitions are described next in this section.

• PRIMARY KEY

Required for every table. Identifies at least one field in the table that is the primary key. For
information on primary keys, see Primary Keys.

Note

If the primary key field is an INTEGER data type, you can apply a serialized size
constraint to it. See Integer Serialized Constraints for details.

To optionally define a shard key, use the SHARD keyword within the primary key statement.
For information on shard keys, see Shard Keys.

For example:

PRIMARY KEY (SHARD(id), lastName)

• USING TTL

Optional. Defines a default time-to-live value for the table's rows. See USING TTL for
information on this clause.

• IN REGIONS
Optional. In case, the table being created is an MR Table, this parameter lists all the
regions that the table should span. You must mention at least one remote region in this
clause to create the table as an MR Table. For information on MR Tables, see Life Cycle of
MR Tables in the Concepts Guide.

Field Definitions
When defining a table, field definitions take the form:

field-name type [constraints] [COMMENT "comment-string"]

where:

• field-name is the name of the field. For example: id or familiarName. Every field must
have a name.

• type describes the field's data type. This can be a simple type such as INTEGER or
STRING, or it can be a complex type such a RECORD. The list of allowable types is
described in the next section.

Appendix B
CREATE TABLE

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix B-3 of B-20

• constraints describes any limits placed on the data contained in the field. That is, allowable
ranges or default values. Ann IDENTITY field, to be created by a sequence generator, is
also permissable. This information is optional. See Field Constraints for more information.

• COMMENT is optional. You can use this to provide a brief description of the field. The
comment will not be interpreted but it is included in the table's metadata.

Supported Data Types
The following data types are supported for table fields:

• ARRAY

An array of data. All elements of the array must be of the same data type, and this type
must be declared when you define the array field. For example, to define an array of
strings:

myArray ARRAY(STRING)

• BINARY

Binary data.

• BINARY(length)

Fixed-length binary field of size length (in bytes).

• BOOLEAN

A boolean data type.

• DOUBLE

A double.

• ENUM

An enumerated list. The field definition must provide the list of allowable enumerated
values. For example:

fruitName ENUM(apple,pear,orange)

• FLOAT

A float.

• INTEGER

An integer.

• JSON

A JSON-formatted string.

• LONG

A long.

• MAP

A data map. All map keys are strings, but when defining these fields you must define the
data type of the data portion of the map. For example, if your keys map to integer values,
then you define the field like this:

myMap MAP(INTEGER)

Appendix B
CREATE TABLE

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix B-4 of B-20

• Number

A numeric type capable of handling any type of number of any value or precision.

• RECORD

An embedded record. This field definition must define all the fields contained in the
embedded record. All of the same syntax rules apply as are used for defining an ordinary
table field. For example, a simple embedded record might be defined as:

myEmbeddedRecord RECORD(firstField STRING, secondField INTEGER)

Data constraints, default values, and so forth can also be used with the embedded record's
field definitions.

• STRING

A string.

• TIMESTAMP(<precision>)

Represents a point in time as a date and, optionally, a time value.

Timestamp values have a precision (0 - 9) which represents the fractional seconds to be
held by the timestamp. A value of 0 means that no fractional seconds are stored, 3 means
that the timestamp stores milliseconds, and 9 means a precision of nanoseconds. When
declaring a timestamp field, the precision is required.

Field Constraints
Field constraints define information about the field, such as whether the field can be NULL, or
what a row's default value should be. Not all data types support constraints, and individual data
types do not support all possible constraints.

Integer Serialized Constraints
You can put a serialized size constraint on an INTEGER data type, provided the INTEGER is
used for a primary key field. Doing this can reduce the size the keys in your store.

To do this, use (n) after the primary key field name, where n is the number of bytes allowed for
the integer. The meaningful range for n is 1 - 4. For example:

create table myId (id integer, primary key(id(3)))

The number of bytes allowed defines how large the integer can be. The range is from negative
to positive.

Note

Specifying an integer constraint value for number of bytes on an IDENTITY field is not
permitted.

Number of Bytes Allowed Integer Values

1 -63 to 63

2 -8191 to 8191

Appendix B
CREATE TABLE

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix B-5 of B-20

Number of Bytes Allowed Integer Values

3 -1048575 to 1048575

4 -134217727 to 134217727

5 Any integer value

COMMENT
All data types can accept a COMMENT as part of their constraint. COMMENT strings are not
parsed, but do become part of the table's metadata. For example:

myRec RECORD(a STRING, b INTEGER) COMMENT "Comment string"

DEFAULT
All fields can accept a DEFAULT constraint, except for ARRAY, BINARY, MAP, and RECORD.
The value specified by DEFAULT is used in the event that the field data is not specified when
the table is written to the store.

For example:

id INTEGER DEFAULT -1,
description STRING DEFAULT "NONE",
size ENUM(small,medium,large) DEFAULT medium,
inStock BOOLEAN DEFAULT FALSE

IDENTITY
You can define one IDENTITY field per table. All IDENTITY fields must have a numeric type:
INTEGER. LONG, or NUMBER. An IDENTITY field can optionally be a primary key.

There are two ways to define an IDENTITY field. You can optionally specify one or more
Sequence Generator attributes for the Sequence Generator (SG) associated with the
IDENTITY. These are the options:

• GENERATED ALWAYS AS IDENTITY

• GENERATED BY DEFAULT AS IDENTITY

These are the Sequence Generator attributes you can define:

Attribute Type Default Value and Description

StartWith Number Default: 1 The first value in the sequence. Zero (0) is not
permitted.

IncrementBy Long Default: 1 The value to increment the current value, which can
be a positive or a negative number. Specifying a negative number
for IncrementBy decrements values from the StartWith value.

MinValue Number Default: The minimum value of the field data type. The lower
bound of the IDENTITY values that the SG supplies.

MaxValue Number Default: The maximum value of the field data type. The upper
bound of the IDENTITY values that the SG supplies. If you do not
specify this attribute, SG uses the maximum value of the field
data type.

Appendix B
CREATE TABLE

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix B-6 of B-20

Attribute Type Default Value and Description

Cache Long Default: 1000 The number of values stored in cache on the client
to use for the next IDENTITY value. When the set of values is
exhausted, the SG requests another set to store in the local
cache (unless you specify the Cycle attribute).

Cycle | NoCycle Boolean Default: NoCycle Determines whether to reuse the set of stored
values in cache. For example, if the cache stores 1024 integers
for the IDENTITY column, and you specify Cycle, when the
IDENTITY value reaches 1023, the next row value is 0001. If you
do not specify Cycle, Oracle NoSQL Database guarantees that
each IDENTITY value in the column is unique, but not
necessarily sequential.

For example:

CREATE Table T (id INTEGER GENERATED ALWAYS AS IDENTITY
(START WITH 2 INCREMENT BY 2 MAXVALUE 200),
name STRING,
PRIMARY KEY (id));

CREATE Table T_DEFAULT (id LONG GENERATED BY DEFAULT AS IDENTITY
(START WITH 1 INCREMENT BY 1 CYCLE CACHE 200),
account_id INTEGER,
name STRING,
PRIMARY KEY (account_id));

UUID
You can define one UUID field per table. UUID is a subtype of the STRING data type. The
UUID column can be defined as GENERATED BY DEFAULT. The system then automatically
generates a value for the UUID column if you do not supply a value for it.

For example :

CREATE TABLE myTable (id STRING AS UUID,name STRING, PRIMARY KEY (id));

In the above example, the id column has no "GENERATED BY DEFAULT" defined, therefore,
whenever you insert a new row, you need to explicitly specify a value for the id column.

MR_COUNTER
In a multi-region table, you can create an MR_COUNTER datatype. MR_COUNTER datatype
ensures that though data modifications can happen simultaneously on different regions, the
data can always be merged into a consistent state. This merge is performed automatically by
MR_COUNTER datatype, without requiring any special conflict resolution code or user
intervention. You can also use the MR_COUNTER data type in a schema-less JSON field.

Example 1:

Appendix B
CREATE TABLE

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix B-7 of B-20

In the below example, you create a PN counter data type in two regions DEN and LON.

CREATE Table myTable(name STRING,
 count INTEGER AS MR_COUNTER,
 PRIMARY KEY(name)) IN REGIONS DEN,LON;

In the above example, while inserting data into the table, the system initially inserts the default
value (0) when you either give the "DEFAULT" keyword or skip the column name in the
INSERT clause.

Example 2:

Create a JSON MR_COUNTER data type in a multi-region table.

CREATE TABLE demoJSONMR(name STRING,
jsonWithCounter JSON(counter as INTEGER MR_COUNTER,
 person.count as LONG MR_COUNTER),
PRIMARY KEY(name)) IN REGIONS FRA,LON;

NOT NULL
NOT NULL indicates that the field cannot be NULL. This constraint requires that you also specify
a DEFAULT value. Order is unimportant for these constraints. For example:

id INTEGER NOT NULL DEFAULT -1,
description STRING DEFAULT "NONE" NOT NULL

USING TTL
USING TTL is an optional statement that defines a default time-to-live value for a table's rows.
See Using Time to Live for information on TTL.

If specified, this statement must provide a ttl value, which is an integer greater than or equal to
0, followed by a space, followed by time unit designation which is either hours or days. For
example:

USING TTL 5 days

If 0 is specified, then either days or hours can be used. A value of 0 causes table rows to have
no expiration time. Note that 0 is the default if a default TTL has never been applied to a table
schema. However, if you previously applied a default TTL to a table schema, and then want to
turn it off, use 0 days or 0 hours.

USING TTL 0 days

Be aware that if you altering an existing table, you can not both add/drop a field and alter the
default TTL value for the field using the same ALTER TABLE statement. These two operations
must be performed using separate statements.

Appendix B
CREATE TABLE

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix B-8 of B-20

Table Creation Examples
The following are provided to illustrate the concepts described above.

CREATE TABLE users
COMMENT "This comment applies to the table itself" (
 id INTEGER,
 firstName STRING,
 lastName STRING,
 age INTEGER,
 PRIMARY KEY (id),
)

CREATE TABLE temporary
COMMENT "These rows expire after 3 days" (
 sku STRING,
 id STRING,
 price FLOAT,
 count INTEGER,
 PRIMARY KEY (sku),
) USING TTL 3 days

CREATE TABLE Users
COMMENT "This is an MR table"(
 id INTEGER,
 firstName STRING,
 lastName STRING,
 age INTEGER,
 primary key (id)
) IN REGIONS us_east, us_west;

CREATE TABLE usersNoId (
 firstName STRING,
 lastName STRING COMMENT "This comment applies to this field only",
 age INTEGER,
 ssn STRING NOT NULL DEFAULT "xxx-yy-zzzz",
 PRIMARY KEY (SHARD(lastName), firstName)
)

CREATE TABLE users.address (
 streetNumber INTEGER,
 streetName STRING, // this comment is ignored by the DDL parser
 city STRING,
 /* this comment is ignored */
 zip INTEGER,
 addrType ENUM (home, work, other),

Appendix B
CREATE TABLE

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix B-9 of B-20

 PRIMARY KEY (addrType)
)

CREATE TABLE complex
COMMENT "this comment goes into the table metadata" (
 id INTEGER,
 PRIMARY KEY (id), # this comment is just syntax
 nestedMap MAP(RECORD(m MAP(FLOAT), a ARRAY(RECORD(age INTEGER)))),
 address RECORD (street INTEGER, streetName STRING, city STRING, \
 zip INTEGER COMMENT "zip comment"),
 friends MAP (STRING),
 floatArray ARRAY (FLOAT),
 aFixedBinary BINARY(5),
 days ENUM(mon, tue, wed, thur, fri, sat, sun) NOT NULL DEFAULT tue
)

CREATE TABLE myJSON (
 recordID INTEGER,
 jsonData JSON,
 PRIMARY KEY (recordID)
)

Modify Table Definitions
Use ALTER TABLE statements to either add new fields to a table definition, or delete a currently
existing field definition. You can also use an ALTER TABLE statement to change the default
Time-to-Live (TTL) value for a table, and to add an IDENTITY column to a table.

ALTER TABLE ADD field
To add a field to an existing table, use the ADD statement:

ALTER TABLE table-name (ADD field-definition)

See Field Definitions for a description of what should appear in field-definitions, above. For
example:

ALTER TABLE Users (ADD age INTEGER)

You can also add fields to nested records. For example, if you have the following table
definition:

CREATE TABLE u (id INTEGER,
 info record(firstName String)),
 PRIMARY KEY(id))

then you can add a field to the nested record by using dot notation to identify the nested table,
like this:

ALTER TABLE u(ADD info.lastName STRING)

Appendix B
Modify Table Definitions

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix B-10 of B-20

ALTER TABLE DROP Option
To delete a field from an existing table, use the DROP option:

ALTER TABLE table-name (DROP field-name)

For example, to drop the age field from the Users table:

ALTER TABLE Users (DROP age)

Note

You cannot drop a field if it is the primary key, or if it participates in an index.

You can also us the ALTER TABLE MODIFY FIELD clause to add, drop, or modify an IDENTITY
column in a table.

ALTER TABLE USING TTL
To change the default Time-to-Live (TTL) value for an existing table, use the USING TTL
statement:

ALTER TABLE table-name USING TTL ttl

For example:

ALTER TABLE Users USING TTL 4 days

In case of MR Tables, you can not use the USING TTL clause along with the IN REGIONS clause.
That is, you can not alter an MR table's TTL value and regions in a single statement.

For more information on the USING TTL statement, see USING TTL.

ALTER TABLE ADD REGIONS
The add regions clause lets you link an existing multi-region table (MR Table) with new
regions in a multi-region Oracle NoSQL Database environment.

The add regions clause is used in expanding MR Tables to new regions. See Use Case 2:
Expand a Multi-Region Table in the Administrator's Guide.

To add a region to an existing MR Table, use the ADD REGIONS option:

ALTER TABLE <table name> ADD REGIONS <comma separated list of regions>

See Add New Region to Existing Regions for the example code.

Appendix B
Modify Table Definitions

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix B-11 of B-20

ALTER TABLE DROP REGIONS
The drop regions clause lets you disconnect an existing multi-region table (MR Table) from a
participating region in a multi-region Oracle NoSQL Database environment.

The drop regions clause is used in contracting MR Tables to fewer regions. See Use Case 3:
Contract a Multi-Region Table in the Administrator's Guide.

To drop a region from an MR Table, use the DROP REGIONS option:

ALTER TABLE <table name> DROP REGIONS <comma separated list of regions>

See Alter the MR Table to Drop Regions for the example code.

DROP TABLE
To delete a table definition, use the DROP TABLE statement:

DROP TABLE [IF EXISTS] table-name

where:

• IF EXISTS is optional. If you use this option and the specified table does not exist, the
system returns a message:

sql-> drop table if exists foo;
Statement did not require execution

If you do not specify IF EXISTS , and the table does not currently exist, the DROP
statement returns as follows:

sql-> drop table foo;
Error handling command drop table foo:
Error: User error in query: DROP TABLE failed for table foo:
Table does not exist: foo

If you specify IF EXISTS, and the table exists, the DROP statement executes successfully:

sql-> create table foo (first string, second integer, primary key
(second));
Statement completed successfully
sql-> drop table if exists foo;
Statement completed successfully

• table-name is the name of the table you want to drop.

As soon as you execute the DROP TABLE statement, users can no longer access the deleted
table or its data. Deleting all of the table data occurs asynchronously in the background after
you execute the DROP TABLE statement.

Appendix B
DROP TABLE

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix B-12 of B-20

If you choose to drop an MR Table in a particular region, it still continues to remain an MR
Table in the other participating regions. In a case where you want to drop a particular MR Table
from multiple regions, you must execute the DROP TABLE statement in each region separately.

Note

In a case where an MR Table is dropped in all remote regions but still exists in local
region, it still continues to be an MR Table linked with a single region. Such an MR
Table with a single region can be expanded to more regions in future. That is, you can
add new regions to this table in future, as needed.

If the table to drop has child tables, you must drop those first. For example, if you have these
tables:

• myTable

• myTable.childTable1

• myTable.childTable2

You must first drop myTable.childTable1 and myTable.childTable2 before you can drop the
parent myTable. If you try to drop the parent, the statement returns an error.

CREATE INDEX
To add an index definition to the store, use a CREATE INDEX statement. It can be used to create
simple indexes and multi-key indexes. It can also be used to create JSON indexes.

Indexable Field Types
Fields can be indexed only if they are declared to be one of the following types. For all complex
types (arrays, maps, and records), the field can be indexed if the ultimate target of the index is
a scalar datatype. So a complex type that contains a nested complex type (such as an array of
records, for example) can be indexed if the index's target is a scalar datatype contained by the
embedded record.

• Integer

• Long

• Number

• Float

• Double

• Json

Note that there are some differences and restrictions on indexing Json data versus other
data types. See JSON Indexes for more information.

• String

• Enum

• Array

In the case of arrays, the field can be indexed only if the array contains values that are of
one of the other indexable scalar types. For example, you can create an index on an array
of Integers. You can also create an index on a specific record in an array of records. Only

Appendix B
CREATE INDEX

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix B-13 of B-20

one array can participate in an index, otherwise the size of the index can grow
exponentially because there is an index entry for each array entry.

• Maps

As is the case with Arrays, you can index a map if the map contains scalar types, or if the
map contains a record that contains scalar types.

• Records

Like Arrays and Maps, you can index fields in an embedded record if the field contains
scalar data.

Simple Indexes
An index is simple if it does not index any maps or arrays. To create a simple index:

CREATE INDEX [IF NOT EXISTS] index-name ON table-name (path_list)

where:

• IF NOT EXISTS is optional, and it causes the CREATE INDEX statement to be ignored if an
index by that name currently exists. If this phrase is not specified, and an index using the
specified name does currently exist, then the CREATE INDEX statement will fail with an error.

• index-name is the name of the index you want to create.

• table-name is the name of the table that you want to index.

• path_list is a comma-separated list of one or more name_paths. A name_path refers to an
element of a table. Normally these are schema fields — that is, field names that appear in
the CREATE TABLE expression used to create the associated table.

However, if the table contains a record, then the name_path may be record keys that use
dot-notation to identify a record field. For example:

CREATE TABLE example (
 id INTEGER,
 myRecord RECORD(field_one STRING, field_two STRING),
 PRIMARY KEY (id)
)

An index can then be created on field_one by using the name_path of
myRecord.field_one. See Indexing Embedded Records for a more detailed explanation of
indexing records.

For example, if table Users has a field called lastName, then you can index that field with the
following statement:

CREATE INDEX surnameIndex ON Users (lastName)

Note that depending on the amount of data in your store, creating indexes can take a long
time. This is because index creation requires Oracle NoSQL Database to examine all the data
in the store.

Appendix B
CREATE INDEX

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix B-14 of B-20

Multi-Key Indexes
Multi-key indexes are used to index all the elements of an array. They are also used to index all
of the elements and/or values of a map.

For each table row, a multi-key index contains as many entries as the number of elements/
entries in the array/map that is being indexed (although duplicate entries are not represented in
the index). To avoid an explosion in the number of index entries, only one array/map may be
contained in a single multi-key index.

To create a multi-key index, use one of the following forms:

CREATE INDEX [IF NOT EXISTS] index-name ON table-name (name-path.keys())

or

CREATE INDEX [IF NOT EXISTS] index-name ON table-name (name-path.values())

or

CREATE INDEX [IF NOT EXISTS] index-name ON table-name \
(name-path.keys(),name-path.values())

or

CREATE INDEX [IF NOT EXISTS] index-name ON table-name (name-path[])

The syntax shown, above, is identical to that described in Simple Indexes, with the following
additions:

• .keys()

The index is created on the keys in a map. If used, name-path must be a map.

• .values()

The index is created on the values in a map. If used, name-path must be a map.

• []

The index is created on an array. If used, name-path must be array.

For each of the previously identified forms, a comma-seperated list of name-paths may be
provided. Some restrictions apply.

Multi-Key Index Restrictions
The following restrictions apply to multi-key indexes:

• There is at least one name-path that uses a multi-key step (.keys(), .values(), or []).
Any such path is called a multi-key path, and the associated index field a multi-key field.
The index definition may contain more than one multi-key path, but all multi-key paths must
use the same name-path before their multi-key step.

• Any non-multi-key paths must be simple paths.

Appendix B
CREATE INDEX

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix B-15 of B-20

• The combined path specified for the index must contain at least one map and/or array.
These must contain indexable atomic items, or record items, or map items. That is, an
index of an array of arrays is not supported, nor is an index of maps containing arrays.

For example, given the following table definition:

create table Foo (
id INTEGER,
complex1 RECORD(mapField MAP(ARRAY(MAP(INTEGER)))),
complex2 RECORD(matrix ARRAY(ARRAY(RECORD(a LONG, b LONG)))
primary key(id)
)

The path expression complex2.matrix[] is not valid, because the result of this path
expression is a sequence of arrays, not atomic items. Neither is complex2.matrix[][].a
valid, because you cannot index arrays inside other arrays (in fact this path will raise a
syntax error, because the syntax allows at most one [] per index path).

On the other hand, the path complex1.mapField.someKey[].someOtherKey is valid. In this
case, the path complex1.mapField.someKey specifies an array containing maps, which is
valid. Notice that in this index path, someKey and someOtherKey are map-entry keys. So,
although we are indexing arrays that are contained inside maps, and the arrays being
indexed contain maps, the path is valid, because it is selecting specific entries from the
map, rather than indexing all the map entries in addition to all the array entries.

• If the index is indexing an array-valued field:

– If the array contains indexable atomic items:

* There must be a single multi-key index path of the form M[] (without any
name_path following after the []). Again, this implies that you cannot index more
than one array in the same index.

* For each table row (R), a number of index entries are created as follows:

The simple index paths (if any) are computed on R.

Then, M[] is computed (as if it were a query path expression), returning either
NULL, or EMPTY, or all the elements of the array returned by M.

Finally, for each value (V) returned by M[], an index entry is created whose field
values are V and the values of the simple paths.

* Any duplicate index entries (having equal field values and the same primary key)
created by the above process are eliminated.

– If the array contains records or maps:

* All of the multi-key paths must be of the form M[].name_path. Each name_path
appearing after M[] in the multi-key index path must return at most one indexable
atomic item.

* For each table row (R), a number of index entries are created as follows:

The simple index paths (if any) are computed on R.

Then, M[] is computed (as if it were a query path expression), returning either
NULL, or EMPTY, or all the elements of the array returned by M.

Next, for each value (V) returned by M[], one index entry is created as follows:

The elements contained in each V are computed. This returns a single indexable
atomic item (which may be the NULL or EMPTY item). An index entry is created

Appendix B
CREATE INDEX

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix B-16 of B-20

for each of these, whose field values are the values of the simple index paths plus
the values found for element contained in V.

* Any duplicate index entries (having equal field values and the same primary key)
created by the above process are eliminated.

– If the index is indexing a map-valued field, the index may be indexing only map keys,
or only map elements, or both keys and elements. In all cases, the definition of map
indexes can be given in terms of array indexes, by viewing maps as arrays containing
records with 2 fields: a field with name “key” and value a map key, and a field named
“element” and value the corresponding map element (that is, MAP(T) is viewed as
ARRAY(RECORD(key STRING, element T))). Then, the 2 valid kinds for map indexes
are:

1. A single multi-key index path using a keys() step. Using the array view of maps,
M.keys() is equivalent to M[].key.

2. One or more multi-key index paths, all using a .values() step. If Ri is an value
contained in the map, then each of these has the form M.values().Ri. Using the
array view of maps, each M.values().Ri path is equivalent to M[].element.Ri.

JSON Indexes
An index is a JSON index if it indexes at least one field that is contained inside JSON data.

Because JSON is schema-less, it is possible for JSON data to differ in type across table rows.
However, when indexing JSON data, the data type must be consistent across table rows or the
index creation will fail. Further, once or more JSON indexes have been created, any attempt to
write data of an incorrect type will fail.

Indexing JSON data and working with JSON indexes is performed in much the same way as
indexing non-JSON data. To create the index, specify a path to the JSON field using dot
notation.

When creating JSON indexes, you must specify the data's type, using the AS keyword. The
data type must be atomic, and cannot be a float. That is, only integer, long, double, number,
string, and boolean are supported types for JSON indexes. Note that arrays and maps can be
indexed so long as they contain these atomic values.

CREATE INDEX [IF NOT EXISTS] index-name ON table-name \
(JSONRow.JSONField AS data_type)

When creating a multi-key index on a JSON map, a type must not be given for the .keys()
expression because the type will always be String. However, a type declaration is required for
the .values() expression. Beyond that, all the constraints described in Multi-Key Index
Restrictions also apply to a JSON multi-keyed index.

CREATE INDEX [IF NOT EXISTS] index-name ON table-name \
(JSONRow.JSONField.keys(),\
 JSONRow.JSONField.values() AS data_type)

For an example of using JSON indexes, see Indexing JSON Fields.

For additional examples of using JSON indexes, see Indexing JSON Data in the SQL
Beginner's Guide.

Appendix B
CREATE INDEX

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix B-17 of B-20

CREATE FULL TEXT INDEX
To create a text index on that table that indexes the category and txt columns, use CREATE
FULLTEXT INDEX statement:

CREATE FULLTEXT INDEX [if not exists] <index-name> ON <table-name>
(<field-name> [<mapping-spec>], ...)
[ES_SHARDS = <n>] [ES_REPLICAS = <n>]

For example:

kv-> execute 'CREATE FULLTEXT INDEX JokeIndex
ON Joke (category, txt)'
Statement completed successfully

While creating index, CREATE FULLTEXT INDEX statement uses the OVERRIDE flag, which allows
to delete any index existing in Elasticsearch by the same name as would be created by the
command.

CREATE FULLTEXT INDEX [IF NOT EXISTS] index_name ON table_name
 (field_name [{mapping_spec}] [, field_name [{mapping_spec}]]...)
 [ES_SHARDS = value] [ES_REPLICAS = value]
 [OVERRIDE] [COMMENT comment]

For example:

CREATE INDEX JokeIndex on Joke (category, txt) OVERRIDE

For more information, see Creating Full Text Index and Mapping a Full Text Index Field to an
Elasticsearch Field in the Integrations Guide.

DROP INDEX
To delete an index definition from the store, use a DROP INDEX statement. Its form when
deleting an index is:

DROP INDEX [IF EXISTS] index-name ON table-name

where:

• IF EXISTS is optional, and it causes the DROP INDEX statement to be ignored if an index by
that name does not exist. If this phrase is not specified, and an index using the specified
name does not exist, then the DROP INDEX statement will fail with an error.

• index-name is the name of the index you want to drop.

• table-name is the name of the table containing the index you want to delete.

Appendix B
CREATE FULL TEXT INDEX

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix B-18 of B-20

For example, if table Users has an index called surnameIndex, then you can delete it using the
following statement:

DROP INDEX IF EXISTS surnameIndex ON Users

Use DROP INDEX on a text index to stop the population of the index from NoSQL Database
shards, and removes the mapping and all related documents from Elasticsearch. See the
following statement:

DROP INDEX [IF EXISTS] index_name ON table_name

For example:

kv-> execute 'DROP INDEX JokeIndex on Joke'
 Statement completed successfully

While deleting index, you can use the OVERRIDE flag. The DROP INDEX statement uses the
OVERRIDE flag to enable overriding of the default constraints:

DROP INDEX [IF EXISTS] index_name ON table_name [OVERRIDE]

For example:

DROP INDEX JokeIndex on Joke OVERRIDE

For more information, see Deleting FTI in the Integrations Guide.

DESCRIBE AS JSON TABLE
You can retrieve a JSON representation of a table by using the DESCRIBE AS JSON TABLE
statement:

DESCRIBE AS JSON TABLE table_name [(field-name, field-name2, ...)]

or

DESC AS JSON TABLE table_name [(field-name, field-name2, ...)]

where:

• table_name is the name of the table you want to describe.

• field-name is 0 or more fields defined for the table that you want described. If specified, the
output is limited to just the fields listed here.

For Map and Array fields, use [] to restrict the JSON representation to just the map or
array element.

Appendix B
DESCRIBE AS JSON TABLE

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix B-19 of B-20

DESCRIBE AS JSON INDEX
You can retrieve a JSON representation of an index by using the DESCRIBE AS JSON INDEX
statement:

DESCRIBE AS JSON INDEX index_name ON table_name

where:

• index_name is the name of the index you want to describe.

• table_name is the name of the table to which the index is applied.

SHOW TABLES
You can retrieve a list of all tables currently defined in the store using the SHOW TABLES
statement:

SHOW [AS JSON] TABLES

where AS JSON is optional and causes the resulting output to be JSON-formatted.

SHOW INDEXES
You can retrieve a list of all indexes currently defined for a table using the SHOW INDEXES
statement:

SHOW [AS JSON] INDEXES ON table_name

where:

• AS JSON is optional and causes the resulting output to be JSON-formatted.

• table_name is the name of the table for which you want to list all the indexes.

Appendix B
DESCRIBE AS JSON INDEX

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix B-20 of B-20

C
Exceptions

Exceptions will be translated into Spring Data Framework exceptions as follows:

Table C-1 Exceptions

Oracle NoSQL Database Spring Data Framework

• oracle.nosql.driver.RetryableException
– oracle.nosql.driver.SecurityInfoNotReadyException
– oracle.nosql.driver.SystemException
– oracle.nosql.driver.TableBusyException
– oracle.nosql.driver.ThrottlingException
– oracle.nosql.driver.OperationThrottlingException
– oracle.nosql.driver.ReadThrottlingException
– oracle.nosql.driver.WriteThrottlingException

TransientDataAccessResourc
eException

• oracle.nosql.driver.InvalidAuthorizationException
• oracle.nosql.driver.UnauthorizedException

PermissionDeniedDataAccess
Exception

• oracle.nosql.driver.IndexExistsException
• oracle.nosql.driver.IndexNotFoundException
• oracle.nosql.driver.JsonParseException
• oracle.nosql.driver.OperationNotSupportedException
• oracle.nosql.driver.RequestTimeoutException
• oracle.nosql.driver.ResourceExistsException
• oracle.nosql.driver.ResourceNotFoundException
• oracle.nosql.driver.TableExistsException
• oracle.nosql.driver.TableNotFoundException

InvalidDataAccessApiUsageE
xception

• oracle.nosql.driver.ResourceLimitException
– oracle.nosql.driver.BatchOperationNumberLimitException
– oracle.nosql.driver.DeploymentException
– oracle.nosql.driver.EvolutionLimitException
– oracle.nosql.driver.IndexLimitException
– oracle.nosql.driver.KeySizeLimitException
– oracle.nosql.driver.RequestSizeLimitException
– oracle.nosql.driver.RowSizeLimitException
– oracle.nosql.driver.TableLimitException

• oracle.nosql.driver.TableSizeException

InvalidDataAccessResourceU
sageException

Java Direct Driver Developer's Guide
E85378-35
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix C-1 of C-1

	Contents
	Preface
	Conventions Used in This Book
	Diversity and Inclusion

	1 Developing for Oracle NoSQL Database
	Configuring Logging
	Obtaining a KVStore Handle
	Using the KVStoreConfig Class

	Using the Authentication APIs
	Configuring SSL
	Identifying the Trust Store
	Setting the SSL Transport Property

	Authentication using a LoginCredentials Instance
	Renewing Expired Login Credentials
	Authentication using Kerberos
	Authentication using Kerberos and JAAS
	Unauthorized Access

	2 Introduction to Oracle KVLite
	Starting KVLite
	Stopping and Restarting KVLite
	Verifying the Installation
	kvlite Utility Command Line Parameter Options

	3 Introducing Oracle NoSQL Database Tables and Indexes
	Defining Tables
	Executing DDL Statements From the Admin CLI
	Supported Table Data Types
	Record Fields
	Defining Child Tables
	Defining Multi-Region Tables
	Using CRDT datatype in a multi-region table
	Add MR_COUNTER datatype in a multi-region table
	Inserting JSON MR_COUNTER Values Programmatically

	Table Evolution

	Using the UUID data type
	Inserting rows into a table with a UUID column
	Updating rows of a table with a UUID column
	Add or Remove a UUID column

	Creating Indexes

	4 Introducing Oracle NoSQL Database Namespaces
	Creating Namespaces
	Granting Authorization Access to Namespaces
	Using and Setting Namespaces
	Showing and Describing Namespaces
	Dropping Namespaces

	5 Primary and Shard Key Design
	Primary Keys
	Composite Keys
	Data Type Limitations
	Partial Primary Keys
	Shard Keys

	Row Data

	6 Writing and Deleting Table Rows
	Write Exceptions
	Writing Rows to a Table in the Store
	Writing Rows to a Child Table
	Writing rows to an IDENTITY column
	Other put Operations

	Bulk Put Operations
	Using Time to Live
	Specifying a TTL Value
	Updating a TTL Value
	Deleting TTL Expiration
	Setting Default Table TTL Values

	Deleting Rows from the Store
	Using multiDelete()

	7 Reading Table Rows
	Read Exceptions
	Retrieving a Single Row
	Retrieve a Child Table

	Using multiGet()
	Iterating over Table Rows
	Specifying Field Ranges
	Iterating with Nested Tables
	Reading Indexes
	Parallel Scans
	Bulk Get Operations

	8 Using Data Types
	Using Arrays
	Using Binary
	Using Enums
	Using Fixed Binary
	Using JSON
	Using Maps
	Using Embedded Records

	9 Indexing Non-Scalar Data Types
	Indexing Arrays
	Indexing JSON Fields
	Indexing Maps
	Indexing by Map Keys
	Indexing by Map Values
	Indexing by a Specific Map Key Name
	Indexing by Map Key and Value

	Indexing Embedded Records

	10 Using Row Versions
	11 Consistency Guarantees
	Specifying Consistency Policies
	Using Simple Consistency
	Using Time-Based Consistency
	Using Version-Based Consistency

	12 Durability Guarantees
	Setting Acknowledgment-Based Durability Policies
	Setting Synchronization-Based Durability Policies
	Setting Durability Guarantees

	13 Executing a Sequence of Operations
	Sequence Errors
	Creating a Sequence
	Executing a Sequence

	14 Introduction to SQL for Oracle NoSQL Database
	Running a simple query
	Using binding variables
	Accessing metadata
	Using a query to update data

	A JSON By Example
	Sample Data
	UpdateJSON
	UpdateJSON.run()
	UpdateJSON.defineTable()
	UpdateJSON.createIndex()
	UpdateJSON.runDDL()
	UpdateJSON.updateTableWithoutQuery()
	UpdateJSON.updateTableWithIndex()
	UpdateJSON.updateTableUsingSQLQuery()
	UpdateJSON.updateZipCode()
	UpdateJSON.loadTable()
	UpdateJSON.displayTable()
	UpdateJSON.displayResult()
	UpdateJSON.parseArgs()

	B Table Data Definition Language Overview
	Name Constraints
	DDL Comments
	CREATE TABLE
	Field Definitions
	Supported Data Types
	Field Constraints
	Integer Serialized Constraints
	COMMENT
	DEFAULT
	IDENTITY
	UUID
	MR_COUNTER
	NOT NULL

	USING TTL
	Table Creation Examples

	Modify Table Definitions
	ALTER TABLE ADD field
	ALTER TABLE DROP Option
	ALTER TABLE USING TTL
	ALTER TABLE ADD REGIONS
	ALTER TABLE DROP REGIONS

	DROP TABLE
	CREATE INDEX
	Indexable Field Types
	Simple Indexes
	Multi-Key Indexes
	Multi-Key Index Restrictions

	JSON Indexes

	CREATE FULL TEXT INDEX
	DROP INDEX
	DESCRIBE AS JSON TABLE
	DESCRIBE AS JSON INDEX
	SHOW TABLES
	SHOW INDEXES

	C Exceptions

