
Oracle® NoSQL Database
Security Guide

Release 25.3
E85375-34
October 2025

Oracle NoSQL Database Security Guide, Release 25.3

E85375-34

Copyright © 2011, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Conventions Used in This Book i

1 Introducing Oracle NoSQL Database Security

2 Security Configuration

Security Configuration Overview 1

Configuring Security with Makebootconfig 3

Configuring Security with Securityconfig 4

Creating the security configuration 4

Adding the security configuration 7

Verifying the security configuration 7

Updating the security configuration 8

Showing the security configuration 9

Removing the security configuration 10

Merging truststore configuration 10

3 Performing a Secure Oracle NoSQL Database Installation

Single Node Secure Deployment 1

Adding Security to a New Installation 1

Adding Security to an Existing Installation 5

Multiple Node Secure Deployment 7

Adding Security to a New Installation 7

Adding Security to an Existing Installation 11

4 Kerberos Authentication Service

Installation Prerequisites 1

Kerberos Principal 1

Keytabs 2

Kadmin and kadmin.local 2

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page i of iv

Kerberos Security Properties 2

Setting Security Properties in a security login file 3

Setting Security Properties through KVStoreConfig 4

Using Security Properties to Log In 4

Using credential cache 5

Using a keytab 6

JAAS programming framework integration 6

Performing a Secure Oracle NoSQL Database Installation with Kerberos 8

Adding Kerberos to a New Installation 8

Adding Kerberos to an Existing Secure Installation 12

Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD) 15

5 External Password Storage

Oracle Wallet 1

Password store file 3

6 Security.xml Parameters

Top-level parameters 1

Transport parameters 2

7 Encryption

SSL model 1

SSL communication properties 2

Disk Encryption in a Linux Environment 3

8 Configuring Authentication

User Management 1

User Creation 1

User Modification 3

User Removal 3

User Status 4

User Login 5

Password Management 5

Sessions 6

9 Configuring Authorization

Privileges 1

System Privileges 1

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page ii of iv

Object Privileges 2

Table Ownership 4

Privilege Hierarchy 4

Roles 5

System Built-in Roles 5

User-Defined Roles 6

Managing Roles, Privileges and Users 8

Role Creation 8

Role Removal 9

Role Status 9

Grant Roles or Privileges 10

Revoke Roles or Privileges 11

Granting Authorization Access to Namespaces 12

10

Security Policies

Security Policy Modifications 1

11

Audit Logging

Security Log Messages 1

12

Keeping Oracle NoSQL Database Secure

Guidelines for Securing the Configuration 1

Guideline for Securing Store Topology 1

Guidelines for Deploying Secure Applications 2

Guidelines for Securing the SSL protocol 2

Guidelines for Disabling TLSv1.1 and TLSv1 Protocols 2

Guidelines for enabling TLSV1.3 protocol 4

Guidelines for using JMX securely 6

Guidelines for using PKCS12 Java KeyStore 7

Default Security Configuration 7

Updating KeyStore Type of an Existing Security Configuration 8

Updating SSL Keys and Certificates 10

Guidelines for Updating Keystore Passwords 10

Guidelines for Updating Kerberos Passwords 12

Guidelines for Updating SSL Keys and Certificates 14

Guidelines for Configuring External Certificates for a new Installation 20

Guidelines for Configuring External Certificates for an Existing Default Secure Installation 22

Guidelines for Updating the External Certificates 25

Guidelines for Operating System Security 28

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page iii of iv

Guidelines for Resetting Admin Password 28

A Password Complexity Policies

B SSL keystore generation

C Java KeyStore Preparation

Import Key Pair to Java Keystore C-2

D KVStore Required Privileges

Privileges for Accessing CLI Commands D-1

Privileges for DDL Commands D-3

Privileges for Accessing KVStore APIs D-4

Privileges for Accessing KVStore TableAPIs D-5

Privileges for Accessing KvLargeObject APIs D-6

Privileges for Running XRegion Service D-6

E Configuring the Kerberos Administrative Utility

F Manually Registering Oracle NoSQL Database Service Principal

G Generating Certificate and Private Key for the Oracle NoSQL Database
Proxy

Guidelines for Generating Self-Signed Certificate and Private Key using OpenSSL G-1

Guidelines for Generating Certificate Chain and Private Key using OpenSSL G-3

Troubleshooting issues with self-signed certificate G-6

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page iv of iv

Preface

This document describes how you can configure security for Oracle NoSQL Database using
the default database features.

This book is aimed at the systems administrator responsible for the security of an Oracle
NoSQL Database installation.

Conventions Used in This Book
The following typographical conventions are used within this manual:

Information that you are to type literally is presented in monospaced font.

Variable or non-literal text is presented in italics. For example: "Go to your KVHOME directory."

Note

Finally, notes of special interest are represented using a note block such as this.

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page i of i

1
Introducing Oracle NoSQL Database Security

Oracle NoSQL Database can be configured securely. In a secure configuration, network
communications between NoSQL clients, utilities, and NoSQL server components are
encrypted using SSL/TLS, and all processes must authenticate themselves to the components
to which they connect.

There are two levels of security to be aware of. These are network security, which provides an
outer layer of protection at the network level, and user authentication/authorization. Network
security is configured at the file system level typically during the installation process, while user
authentication/authorization is managed through NoSQL utilities.

You can use the following Oracle NoSQL Database features to configure security for your
Oracle NoSQL Database installation:

• Security Configuration Utility. Allows you to configure and add security to a new or
to an existing Oracle NoSQL Database installation.

• Authentication methods. Oracle NoSQL Database provides password authentication for
users and systems. The EE version of Oracle NoSQL Database also supports Kerberos
authentication.

• Encryption. Data is encrypted on the network to prevent unauthorized access to that data.

• External Password Storage. Oracle NoSQL Database provides two types of external
password storage methods that you can manipulate (one type for CE deployments).

• Security Policies. Oracle NoSQL Database allows you to set up behaviors in order to
ensure a secure environment.

• Role-based authorization. Oracle NoSQL Database provides predefined system roles,
privileges, and user-defined roles to users. You can set desired privileges to users by role-
granting.

In addition, Keeping Oracle NoSQL Database Secure provides guidelines that you should
follow when securing your Oracle NoSQL Database installation.

Note

Full Text Search and a secure Oracle NoSQL Database store are disjoint, that is, if
Oracle NoSQL Database is configured as a secure store, Full Text Search should be
disabled. On the other hand, if Full Text Search is enabled (that is, an external
Elasticsearch cluster is registered) in a nonsecure store, users cannot reconfigure the
nonsecure store to a secure store, unless Full Text Search is disabled before
reconfiguration. See Security in Full Text Search in the Integrations Guide.

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 1 of 1

2
Security Configuration

This chapter describes how to use either the makebootconfig or securityconfig tool to
perform the security configuration of your store. If you are installing a store with security for the
first time, you can skip ahead to the next chapter Performing a Secure Oracle NoSQL
Database Installation.

Note

For simpler use cases (lab environments) it is possible to perform a basic installation
of your store by explicitly opting out of security on the command line. If you do this,
your store loses all the security features described in this book. For more information
see Configuring Security with Makebootconfig.

Security Configuration Overview
To set up security, you need to create an initial security configuration. To do this, run either the
securityconfig or the makebootconfig before starting the SNA on an initial node. You should
not create a security configuration at each node. Instead, you should distribute the initial
security configuration across all the Storage Nodes in your store. If the stores do not share a
common security configuration they will be unable to communicate with one another.

Note

The makebootconfig utility embeds the functionality of securityconfig tool.

The by-product of using one of the tools is they create a set of security files based on the
standard configuration. It is possible to perform the same tasks manually, and advanced
security configuration might require manual setup, but using these tools help to ensure a
consistent setup. For more information on the manual setup, see SSL keystore generation.

Note

It is possible to modify the security configuration after it is created in order to use a
non-standard configuration. It is recommended that you use a standard configuration.

Those security files are generated, by default, within a directory named "security". In a secure
configuration, the bootstrap configuration file for a Storage Node includes a reference to that

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 1 of 11

directory, which must be within the KVROOT directory for the Storage Node. The security
directory contains:

security/security.xml
security/store.keys
security/store.trust
security/store.passwd (CE or EE installations)
security/store.wallet (EE installations only)
security/store.wallet/cwallet.sso (EE installations only)
security/client.security
security/client.trust

where:

• security.xml

A configuration file that tells the Oracle NoSQL Database server how to apply security.

• store.keys

A Java keystore file containing one or more SSL/TLS key pairs. This keystore is protected
by a keystore password, which is recorded in an accompanying password store. The
password store may be either an Oracle Wallet or a FileStore. The password is stored
under the alias "keystore" in the password store. This file should be accessible only by the
Oracle NoSQL Database server processes, and not to Oracle NoSQL Database clients.

• store.trust

A Java truststore file, which is a keystore file that contains only public certificates, and no
private keys.

• store.passwd (CE or EE installations)

A password file that acts as the password store for a Community Edition (CE) installation.
It contains secret information that should be known only to the server processes.

For Enterprise Edition (EE) installations, Oracle Wallet usage is preferred over the
password file option.

• store.wallet (EE installations only)

An Oracle Wallet directory that acts as the password store for an Enterprise Edition (EE)
installation. It contains secret information that should be known only to the server
processes.

• cwallet.sso (EE installations only)

The wallet password storage file.

• client.security

A security configuration file that captures the communication transport properties for
connecting clients to the data store.

• client.trust

A truststore file used by clients is generated.

Chapter 2
Security Configuration Overview

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 2 of 11

Note

In a multi-host store environment, the security directory and all files contained in it
should be copied to each server that will host a Storage Node.

Configuring Security with Makebootconfig
Use the makebootconfig command with the -store-security option to set up the basic store
configuration with security:

java -Xmx64m -Xms64m
-jar $KVHOME/lib/kvstore.jar makebootconfig
-root <kvroot> -port <port>
-host <hostname> -harange <harange>
-store-security configure -capacity <capacity>
[-secdir <security dir>]
[-pwdmgr {pwdfile | wallet | <class-name>}]
[-kspwd <server key and trust store password>]
[-kstype <key and trust store type>]
[-ctspwd <client.trust password>]
[-external-auth {kerberos}]
[-krb-conf <kerberos configuration>]
[-kadmin-path <kadmin utility path>]
[-instance-name <database instance name>]
[-admin-principal <kerberos admin principal name>]
[-kadmin-keytab <keytab file>]
[-kadmin-ccache <credential cache file>]
[-princ-conf-param <param=value>]*
[-security-param <param=value>]*
[-noadmin]

where -store-security has the following options:

• -store-security none

No security will be used. If a directory named "security" exists, a warning message will be
displayed. When you opt out of security, you lose all the security features in your store; you
are not able to set password authentication for users and systems, encrypt your data to
prevent unauthorized access, etc.

• -store-security configure

Security will be used and the security configuration utility will be invoked as part of the
makebootconfig process. If the security directory already exists, an error message is
displayed, otherwise the directory will be created.

For script-based configuration you can use the -kspwd<password> option to allow tools to
specify the keystore password on the command line. If it is not specified, the user is
prompted to enter the password.

Use the -pwdmgr option to select a password manager implementation. Its usage is
introduced later in this section.

Use the -external-auth option to specify Kerberos as an external authentication service.
This option is only available in the Oracle NoSQL Database EE version. If information for
the Kerberos admin interface (e.g. password) is needed and no keytab or credential cache

Chapter 2
Configuring Security with Makebootconfig

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 3 of 11

has been specified on the command line, an interactive version of securityconfig config
create utility will run.

Using the -external-auth flag allows Oracle NoSQL Database to generate the security
files needed for Kerberos authentication, based on a standard configuration. Although not
recommended, it is possible to use a non-standard configuration. To do this, see Manually
Registering Oracle NoSQL Database Service Principal.

• -store-security enable

Security will be used. You will need to configure security either by utilizing the security
configuration utility or by copying a previously created configuration from another
system.

Note

The -store-security command is optional. Even if the user does not specify -
store-security, it would be enabled by default.

For more information on configuring security in single node and multi-node deployments, see
Performing a Secure Oracle NoSQL Database Installation.

Configuring Security with Securityconfig
You can also run the securityconfig tool before or after the makebootconfig process by using
the following command:

java -Xmx64m -Xms64m -jar $KVHOME/lib/kvstore.jar securityconfig

For more information on creating, adding, removing or merging the security configuration using
securityconfig, see the following sections.

Creating the security configuration
You can use the config create command to create the security configuration:

config create
-root <secroot> [-secdir <security dir>]
[-pwdmgr { pwdfile | wallet <class-name>}]
[-kspwd <server key and trust store password>]
[-kstype <key and trust store type>]
[-ctspwd <client.trust password>]
[-external-auth {kerberos}]
 [-krb-conf <kerberos configuration>]
 [-kadmin-path <kadmin utility path>]
 [-instance-name <database instance name>]
 [-admin-principal <kerberos admin principal name>]
 [-kadmin-keytab <keytab file>]
 [-kadmin-ccache <credential cache file>]
 [-princ-conf-param <param=value>]*
 [-param [client:|ha:|internal:|]<param>=<value>]*

where:

Chapter 2
Configuring Security with Securityconfig

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 4 of 11

• -root <secroot>

Specifies the directory in which the security configuration will be created. It is not required
that this directory be a full KVROOT, but the directory must exist.

• -kspwd <server key and trust store password>

Specifies the password used to create keystore and truststore needed by NoSQL
Database Server.

• -kstype <key and trust store type>

Specifies the store type of keystore and truststore. It must be either JKS or PKCS12.

• -ctspwd <client.trust password>

Specifies the password to create PKCS12 password-protected truststore used by client
applications to connect NoSQL Database Server.

• -external-auth {kerberos} Specifies Kerberos as an external authentication service.
This option is only available in the Oracle NoSQL Database EE version. If no keytab or
credential cache has been specified on the command line, an interactive version of the
securityconfig utility will run.

Using this flag allows Oracle NoSQL Database to generate the security files needed for
Kerberos authentication, based on a standard configuration. Although not recommended, it
is possible to use a non-standard configuration. To do this, see Manually Registering
Oracle NoSQL Database Service Principal.

This flag is only permitted when the value of the -store-security flag is specified as
configure or enable.

To remove Kerberos authentication from a running store, set the value of the
userExternalAuth security.xml parameter to NONE.

where -external-auth can have the following flags:

– -admin-principal <kerberos admin principal name>

Specifies the principal used to login to the Kerberos admin interface. This is required
while using kadmin keytab or password to connect to the admin interface.

– -kadmin-ccache <credential cache file>

Specifies the complete path name to the Kerberos credentials cache file that should
contain a service ticket for the kadmin/ADMINHOST. ADMINHOST is the fully-qualified
hostname of the admin server or kadmin/admin service.

If not specified, the user is prompted to enter the password for principal while logging
to the Kerberos admin interface. This flag cannot be specified in conjunction with the -
kadmin-keytab flag.

– -kadmin-keytab <keytab file>

Specifies the location of a Kerberos keytab file that stores Kerberos admin user
principals and encrypted keys. The security configuration tool will use the specified
keytab file to login to the Kerberos admin interface.

The default location of the keytab file is specified by the Kerberos configuration file. If
the keytab is not specified there, then the system looks for the file user.home/
krb5.keytab.

You need to specify the -admin-principal flag when using keytab to login to the
Kerberos admin, otherwise the correct admin principal will not be recognized. This flag
cannot be specified in conjunction with the -kadmin-ccache flag.

Chapter 2
Configuring Security with Securityconfig

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 5 of 11

– -kadmin-path <kadmin utility path>

Indicates the absolute path of the Kerberos kadmin utility. The default value is /usr/
kerberos/sbin/kadmin.

– -krb-conf <kerberos configuration>

Specifies the location of the Kerberos configuration file that contains the default realm
and KDC information. If not specified, the default value is /etc/krb5.conf.

– -princ-conf-param <param=value>*

A repeatable argument that allows configuration defaults to be overridden.

Use the krbPrincValidity parameter to specify the expiration date of the Oracle
NoSQL Database Kerberos service principal.

Use the krbPrincPwdExpire parameter to specify the password expiration date of the
Oracle NoSQL Database Kerberos service principal.

Use the krbKeysalt parameter to specify the keysalt list used to generate the keytab
file.

• -secdir <security dir>

Specifies the name of the directory within KVROOT that will hold the security configuration.
This must be specified as a name relative to the specified secroot. If not specified, the
default value is "security".

• -pwdmgr [pwdfile | wallet]

Indicates the password manager mechanism used to hold passwords that are needed for
accessing keystores, etc.

where -pwdmgr can have the following options:

– -pwdmgr pwdfile

Indicates that the password store is a read-protected clear-text password file. This is
the only available option for Oracle NoSQL Database CE deployments. You can
specify an alternate implementation. For more information on pwdfile manipulation,
see Password store file.

– -pwdmgr wallet

Specifies Oracle Wallet as the password storage mechanism. This option is only
available in the Oracle NoSQL Database EE version. For more information on Oracle
wallet manipulation, see Oracle Wallet.

• -param [client:|ha:|internal:|]<param>=<value>]

A repeatable argument that allows configuration defaults to be overridden. The value may
be either a simple parameter, such as "truststore", or a qualified parameter such as
"client:serverKeyAlias". If specified in qualified form, the qualifier (for example, "client")
names a transport within the security configuration, and the assignment is specific to that
transport. If in simple form, it applies to either the securityParams structure or to all
transports within the file, depending on the type of parameter.

For more information on configuring security in single node and multi-node deployments, see
Performing a Secure Oracle NoSQL Database Installation.

For more information on configuring Kerberos with securityconfig, see Kerberos Authentication
Service.

Chapter 2
Configuring Security with Securityconfig

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 6 of 11

Adding the security configuration
You can use the config add-security command to add the security configuration you created
earlier:

config add-security
-root $KVROOT [-secdir <security dir>]
[-config <config.xml>]

Note

When running this command, the securityconfig tool will verify the existence of the
referenced files and will update the specified bootstrap configuration file to refer to the
security configuration. This process is normally done with the data store instance
stopped, and must be performed on each Storage Node of the store.

where:

• -root $KVROOT

A data store root directory must be provided as an argument.

• -secdir <security dir>

Specifies the name of the directory within the KVROOT that holds the security
configuration. This must be specified as a name relative to the KVROOT. If not specified,
the default value is "security".

• -config <config.xml>

Specifies the bootstrap configuration file that is to be updated. This must be specified as a
name relative to the KVROOT. If not specified, the default value is "config.xml".

When using Kerberos as an external authentication service, you can use the config add-
kerberos command to add the security configuration you created earlier:

config add-kerberos -root <secroot> [-secdir <security dir>]
[-krb-conf <Kerberos configuration>]
[-kadmin-path <kadmin utility path>]
[-instance-name <database instance name>]
[-admin-principal <kerberos admin principal name>]
[-kadmin-keytab <keytab file>]
[-kadmin-ccache <credential cache file>]
[-princ-conf-param <param=value>]*
[-param <param=value>]*

Verifying the security configuration
You can use the config verify command to verify the consistency and correctness of a
security configuration:

config verify -secdir <security dir>

Chapter 2
Configuring Security with Securityconfig

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 7 of 11

where:

• -secdir <securitydir>

Specifies the name of the directory within the KVROOT that holds the security
configuration. This must be specified as a name relative to the KVROOT. If not specified,
the default value is "security".

For example:

security-> config verify -secdir security
Security configuration verification passed.

Updating the security configuration
You can use the config update command to update the security parameters of a security
configuration:

config update -secdir <security dir> [-kstype <keystore type>] [-ctspwd
<client.trust password>] [-param <param=value>]*

where:

• -secdir <securitydir>

Specifies the name of the directory within the KVROOT that holds the security
configuration. This must be specified as a name relative to the KVROOT. If not specified,
the default value is "security".

• -kstype <keystore type>

Specify the store type to update. Only PKCS12 is allowed. This command updates the
keystore (store.keys) and truststore (store.trust) used by NoSQL Database Server to
PKCS12 password-protected store. If the Java used to run this command supports
password-less truststore, utilities create the truststore used by client applications
(client.trust) as a PKCS12 password-less store. If not, utilities fall back to create a JKS
store instead if no password specified using -ctspwd <client.trust password>.

• -ctspwd <client.trust password>

When updating JKS keystore and truststore in a security configuration to PKCS12, you can
use this flag to specify the password to create PKCS12 password-protected truststore
used by client applications (client.trust).

• -param <param=value*>

List of security parameters to update.

For example:

security-> config update -secdir security -kstype PKCS12 -param
clientAuthRequired=false
Configuration updated.

Chapter 2
Configuring Security with Securityconfig

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 8 of 11

Showing the security configuration
You can use the config show command to print out all security configuration information.

config show -secdir <security dir>

where:

For example:

security-> config show -secdir security
Security parameters:
certMode=shared
internalAuth=ssl
keystore=store.keys
keystorePasswordAlias=keystore
passwordClass=oracle.kv.impl.security.filestore.FileStoreManager
passwordFile=store.passwd
securityEnabled=true
truststore=store.trust

internal Transport parameters:
clientAllowProtocols=TLSv1.2
clientAuthRequired=true
clientIdentityAllowed=dnmatch(CN=NoSQL)
clientKeyAlias=shared
serverIdentityAllowed=dnmatch(CN=NoSQL)
serverKeyAlias=shared
transportType=ssl

client Transport parameters:
clientAllowProtocols=TLSv1.2
serverIdentityAllowed=dnmatch(CN=NoSQL)
serverKeyAlias=shared
transportType=ssl

ha Transport parameters:
allowProtocols=TLSv1.2
clientAuthRequired=true
clientIdentityAllowed=dnmatch(CN=NoSQL)
serverIdentityAllowed=dnmatch(CN=NoSQL)
serverKeyAlias=shared
transportType=ssl

Keystore:
security/store.keys

Keystore type: JKS
Keystore provider: SUN

Your keystore contains 1 entry

shared, Jun 1, 2016, PrivateKeyEntry,
Certificate fingerprint (SHA1): A6:54:9C:42:13:66:DC:E9:A8:62:DB:

Chapter 2
Configuring Security with Securityconfig

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 9 of 11

A8:87:FD:DE:23:F7:AD:11:FB

Keystore:
security/store.trust

Keystore type: JKS
Keystore provider: SUN

Your keystore contains 1 entry

mykey, Jun 1, 2016, trustedCertEntry,
Certificate fingerprint (SHA1):A6:54:9C:42:13:66:DC:E9:A8:62:DB:
A8:87:FD:DE:23:F7:AD:11:FB

• -secdir <securitydir>

Specifies the name of the directory within the KVROOT that holds the security
configuration. This must be specified as a name relative to the KVROOT. If not specified,
the default value is "security".

Removing the security configuration
If you want to disable security for some reason in an existing installation, you can use the
config remove-security command:

config remove-security -root <kvroot> [-config >config.xml>]

Note

When running this command, the securityconfig tool will update the specified
bootstrap configuration file to refer to the security configuration. This process is
normally done with the KVStore instance stopped, and must be performed on each
Storage Node of the store.

where:

• -root <kvroot>

A KVStore root directory must be provided as an argument.

• -config <config.xml>

Specifies the bootstrap configuration file that is to be updated. This must be specified as a
name relative to the KVROOT. If not specified, the default value is "config.xml".

For example:

security-> config remove-security -secdir security
Configuration updated.

Merging truststore configuration
If you want to merge truststore entries from one security configuration into another security
configuration use the config merge-trust command. This command is helpful when

Chapter 2
Configuring Security with Securityconfig

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 10 of 11

performing security maintenance, particularly when you need to update the SSL key/certificate.
See Guidelines for Updating SSL Keys and Certificates

When running the config merge-trust command, the securityconfig tool will verify the
existence of the referenced files (client.trust and store.trust) and will combine trust
entries from the source security configuration (For example: /users/user_name/tmp/kvroot/
newKey) into the primary security configuration($KVROOT/security). After running this
command, the client.trust and store.trust files will have two SSL certificate entries.

config merge-trust
-root <secroot> [-secdir <security dir>]
-source-root <source secroot> [-source-secdir <source secdir>] [-ctspwd
<client.trust password>]

Note

When running this command, the securityconfig tool will verify the existence of the
referenced files and will combine trust entries from the source security configuration
into the primary security configuration.

where:

• -root <secroot>

Specifies the directory that contains the security configuration that will be updated. It is not
required that this directory be a full KVROOT, but the directory must exist and contain an
existing security configuration.

• -secdir <security dir>

Specifies the name of the directory within the secroot that holds the security configuration.
This must be specified as a name relative to the secroot. If not specified, the default value
is "security".

• -source-root <secroot>

Specifies the directory that contains the security configuration that will provide new trust
information. It is not required that this directory be a full KVROOT, but the directory must
exist and must contain an existing security configuration.

• -source-secdir <security dir>

Specifies the name of the security directory within the source secroot that will provide new
trust information. If not specified, the default value is "security".

• ctspwd <client.trust password>

When merging truststore entries from a security configuration that uses PKCS12 store,
utilities create a PKCS12 password-protected truststore used by client applications
(client.trust) if password specified using -ctspwd.

Chapter 2
Configuring Security with Securityconfig

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 11 of 11

3
Performing a Secure Oracle NoSQL Database
Installation

It is possible to add security to a new or an existing Oracle NoSQL Database installation.

To add security to a new or an existing Oracle NoSQL Database single host deployment, see
the next section. For multiple node deployments, see Multiple Node Secure Deployment.

If you want to use Kerberos as an external authentication service, you should instead complete
the steps under Performing a Secure Oracle NoSQL Database Installation with Kerberos.

Single Node Secure Deployment
The following examples describe how to add security to a new or an existing Oracle NoSQL
Database single host deployment.

Adding Security to a New Installation
To install Oracle NoSQL Database securely:

1. Run the makebootconfig utility with the -store-security option to set up the basic store
configuration with security:

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar makebootconfig \
-root $KVROOT -port 5000 \
-host $KVHOST -harange 5010,5020 \
-store-security configure -pwdmgr pwdfile -capacity 1

2. In this example, -store-security configure is used, so the security configuration
utility is run as part of the makebootconfig process and you are prompted for a password to
use for your keystore file:

Enter a password for the Java KeyStore:

3. Enter a password for your store and then reenter it for verification. In this case, the
password file is used, and the securityconfig tool will automatically generate the
following security related files:

Enter a password for the Java KeyStore: ***********
Re-enter the KeyStore password for verification: ***********
Created files:
security/client.trust
security/client.security
security/store.keys
security/store.trust
security/store.passwd
security/security.xml

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 1 of 14

Note

In a multi-host store environment, the security directory and all files contained in it
should be copied to each server that will host a Storage Node.

4. Start the Storage Node Agent (SNA):

Note

Before starting the SNA, set the environment variable MALLOC_ARENA_MAX to 1.
Setting MALLOC_ARENA_MAX to 1 ensures that the memory usage is restricted to the
specified heap size.

nohup java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar start -root $KVROOT&

When a newly created store with a secure configuration is first started, there are no user
definitions available against which to authenticate access. In order to reduce risk of
unauthorized access, an admin will only allow you to connect to it from the host on which it
is running. This security measure is not a complete safeguard against unauthorized
access. It is important that you do not provide local access to machines running the data
store. In addition, you should perform steps 5, 6 and 7 soon after this step in order to
minimize the time period in which the admin might be accessible without full authentication.
For more information on maintaining a secure store see Guidelines for Securing the
Configuration.

5. Start runadmin in security mode on the data store server host ($KVHOST). To do this, use
the following command:

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar \
runadmin -port 5000 -host $KVHOST \
-security $KVROOT/security/client.security
Logged in admin as anonymous

6. Use the configure -name command to specify the name of the data store that you want to
configure:

kv-> configure -name mystore
Store configured: mystore

After naming the data store, you can create at least one zone.

kv-> plan deploy-zone -name zone_name -rf 1 -type primary -wait

Every data store has an administration database. You must deploy the Storage Node first
and then deploy an Administration process on the same node to continue configuring the
database.

Chapter 3
Single Node Secure Deployment

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 2 of 14

When you deploy the node, provide the zone ID, the node's network name, and its registry
port number.

kv-> plan deploy-sn -znname zone_name -host hostname -port 5000 -wait

Having deployed the node, create the Admin process on the node that you just deployed,
using the deploy-admin command. This command requires the Storage Node ID and an
optional plan name.

Note

Note: You can obtain the Storage Node ID using the show topology command.
See show topology for more details.

kv-> plan deploy-admin -sn sn1 -wait

The final step in your configuration process is to create Replication Nodes on every node
in your store. You do this using the topology create and plan deploy-topology
commands.

kv-> topology create -name storeTopo -pool AllStorageNodes -partitions 150
kv-> plan deploy-topology -name storeTopo -wait

Your store is fully installed and configured.

7. Create an admin user. The password should comply with the security policies described in
Password Complexity Policies. In this case, user root is defined:

kv-> execute 'CREATE USER root IDENTIFIED BY \"password\" ADMIN
Statement completed successfully

For more information on user creation and administration, see User Management.

8. Create a new password file to store the credentials needed to allow clients to login as the
admin user (root):

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar securityconfig \
pwdfile create -file $KVROOT/security/login.passwd
java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar securityconfig pwdfile secret \
-file $KVROOT/security/login.passwd -set -alias root
Enter the secret value to store: ********
Re-enter the secret value for verification: ********
Secret created

Note

The password must match the one set for the admin in the previous step.

Chapter 3
Single Node Secure Deployment

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 3 of 14

For more information on user creation and administration, see User Management.

9. At this point, it is possible to connect to the store as the root user. To login, you can use
either the -username <user> runadmin argument or specify the "oracle.kv.auth.username"
property in the security file.

In this example, a security file (mylogin.txt) is used. To login, use the following command:

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar runadmin -port 5000 \
-host localhost -security mylogin.txt
Logged in admin as root

The file mylogin.txt should be a copy of the client.security file with additional
properties settings for authentication. The file would then contain content like this:

oracle.kv.auth.username=root
oracle.kv.auth.pwdfile.file=$KVROOT/security/login.passwd
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=$KVROOT/security/client.trust
oracle.kv.ssl.protocols=TLSv1.2
oracle.kv.ssl.hostnameVerifier=dnmatch(CN\=NoSQL)

Note that the hostname verifier provides a way for Oracle NoSQL Database clients to
specify the name that they expect the Oracle NoSQL Database server hosts to use during
SSL handshake (when they attempt to connect server using SSL/TLS).

For a secure store using the standard configuration, server hosts will be required to
authenticate themselves, and clients will use their SSL truststore to confirm that the server
authenticates with a trusted identity. The hostname verifier provides the additional
assurance that the server host authenticates using the expected identity, not just any
trusted identity.

This additional check is desirable if either the truststore contains multiple certificates or if
the certificate it contains is a CA certificate rather than a self-signed or leaf certificate. In
both those cases, the truststore can vouch for multiple identities. The host verifier allows
the user to specify the specific identity that is expected.

The only hostname verifier currently supported is the dnmatch verifier, which must be
specified in the form of dnmatch(distinguished-name), where distinguished name
must be the NoSQL DB server certificate's distinguished name. If you are using the default
security configuration, then the hostname verifier in the example specifies that the server
should authenticate with a certificate whose distinguished name is CN=NoSQL. This is the
name used in the server certificates that the system generates by default.

The verification is performed by checking if the distinguished name of server certificate
match the specified dnmatch expressions, which uses regular expressions as specified by
java.util.regex.Pattern. The distinguished name specified in dnmatch must be in
RFC 1779 format, using the exact order, capitalization, and spaces of the attribute value.
RFC 1779 defines well-known attributes for distinguished names, including CN, L, ST O,
OU, C and STREET. If the distinguished name of the external certificate contains non-
standard attributes, for example, EMAILADDRESS, then the expression used for dnmatch
must replace these attribute names with an OID that is valid in RFC 1779 form, or use
special constructs of regular expression to skip checking these attributes. If you are using
a wild card to match a certificate with a non-standard distinguished name attribute, the
dnmatch expression needs to match the attribute name in its OID format properly. See
User Login.

Chapter 3
Single Node Secure Deployment

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 4 of 14

Adding Security to an Existing Installation
To add security to an existing Oracle NoSQL Database installation:

1. Shut down the KVStore instance:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar stop \
-root KVROOT

2. Run the securityconfig utility to set up the basic store configuration with security:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar securityconfig

3. Use the config create command with the -pwdmgr option to specify the mechanism used
to hold passwords that is needed for accessing the stores. In this case, Oracle Wallet is
used. Oracle Wallet is only available in the Oracle NoSQL Database EE version. CE
deployments should use the pwdfile option instead.

config create -pwdmgr wallet -root KVROOT
Enter a password for the Java KeyStore:

4. Enter a password for your store and then reenter it for verification. The configuration tool
will automatically generate some security related files:

Enter a password for the Java KeyStore: ***********
Re-enter the KeyStore password for verification: ***********
Created files:
security/security.xml
security/store.keys
security/store.trust
security/store.wallet/cwallet.sso
security/client.security
security/client.trust

Note

In a multi-host store environment, the security directory and all files contained in it
should be copied to each server that will host a Storage Node.

5. Use the config add-security command to add the security configuration you just
created:

security-> config add-security -root KVROOT
-secdir security -config config.xml
Configuration updated.

Chapter 3
Single Node Secure Deployment

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 5 of 14

Note

When running this command, the securityconfig tool will verify the existence of
the referenced files and will update the specified bootstrap configuration file to
refer to the security configuration. This process is normally done with the KVStore
instance stopped, and must be performed on each Storage Node of the store.

6. Start the Storage Node Agent (SNA):

Note

Before starting the SNA, set the environment variable MALLOC_ARENA_MAX to 1.
Setting MALLOC_ARENA_MAX to 1 ensures that the memory usage is restricted to the
specified heap size.

nohup java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start -root KVROOT &

7. Start runadmin in security mode on the KVStore server host (node01). To do this, use the
following command:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar \
runadmin -port 5000 -host node01 \
-security KVROOT/security/client.security
Logged in admin as anonymous.

This command sets SSL as a connection method and names a copy of the generated
truststore file (client.security). For more information on SSL properties, see SSL
communication properties.

8. Create an admin user. The password should comply with the security policies described in
Password Complexity Policies. In this case, user root is defined:

kv-> execute 'CREATE USER root IDENTIFIED BY \"password\" ADMIN
Statement completed successfully

For more information on user creation and administration, see User Management.

9. Create a new wallet file to store the credentials needed to allow clients to login as the
admin user (root):

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar securityconfig \
wallet create -dir KVROOT/security/login.wallet
java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar securityconfig wallet secret \
-dir KVROOT/security/login.wallet -set -alias root
Enter the secret value to store: ********
Re-enter the secret value for verification: ********
Secret created

Chapter 3
Single Node Secure Deployment

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 6 of 14

Note

The password must match the one set for the admin in the previous step.

For more information on user creation and administration, see User Management.

10. At this point, it is possible to connect to the store as the root user. To login, you can use
either the -username <user> runadmin argument or specify the "oracle.kv.auth.username"
property in the security file.

In this example, the oracle.kv.security property is used. To login use the following
command:

java -Xmx64m -Xms64m \
-Doracle.kv.security=mylogin \
-jar KVHOME/lib/kvstore.jar runadmin -port 5000 -host localhost
Logged in admin as root

The file mylogin.txt should be a copy of the client.security file with additional
properties settings for authentication. The file would then contain content like this:

oracle.kv.auth.username=root
oracle.kv.auth.wallet.dir=KVROOT/security/login.wallet
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=KVROOT/security/client.trust
oracle.kv.ssl.protocols=TLSv1.2
oracle.kv.ssl.hostnameVerifier=dnmatch(CN\=NoSQL)

For more information, see User Login.

Multiple Node Secure Deployment
The following examples describe how to add security to a new or to an existing Oracle NoSQL
Database multiple host deployment.

Adding Security to a New Installation
To install an Oracle NoSQL Database three node, capacity=3 (3x3) secure deployment:

1. Run the makebootconfig utility with the -store-security option to set up the basic store
configuration with security:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT -port 5000 \
-host node01 -harange 5010,5020 \
-store-security configure -pwdmgr wallet -capacity 3

Chapter 3
Multiple Node Secure Deployment

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 7 of 14

2. In this example, -store-security configure is used, so the security configuration
utility is run as part of the makebootconfig process and you are prompted for a password to
use for your keystore file:

Enter a password for the Java KeyStore:

3. Enter a password for your store and then reenter it for verification. For example, using
wallet, the securityconfig tool will automatically generate the following security related
files:

Enter a password for the Java KeyStore: ***********
Re-enter the KeyStore password for verification: ***********
Created files:
security/security.xml
security/store.keys
security/store.trust
security/store.wallet/cwallet.sso
security/client.security
security/client.trust

4. In a multi-host store environment, the security directory and all files contained in it should
be copied from the first node to each server that will host a Storage Node, to setup internal
cluster authentication. For example, the following commands assume that the different
nodes are visible and accessible on the current node (node01):

cp -R node01/KVROOT/security node02/KVROOT/
cp -R node01/KVROOT/security node03/KVROOT/

Note

You may need to use a remote copying command, like scp, to do the copying if the
files for the different nodes are not visible on the current node.

5. Enable security on the other two nodes using the -store-security enable command:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT \
-host node02 \
-port 6000 \
-harange 6010,6020 \
-capacity 3 \
-store-security enable \
-pwdmgr wallet

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT \
-host node03 \
-port 7000 \
-harange 7010,7020 \
-capacity 3 \

Chapter 3
Multiple Node Secure Deployment

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 8 of 14

-store-security enable \
-pwdmgr wallet

6. Start the Storage Node Agent (SNA) on each node:

Note

Before starting the SNA, set the environment variable MALLOC_ARENA_MAX to 1.
Setting MALLOC_ARENA_MAX to 1 ensures that the memory usage is restricted to the
specified heap size.

nohup java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start -root KVROOT&

7. Start runadmin in security mode on the KVStore server host (node01). To do this, use the
following command:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar \
runadmin -port 5000 -host node01 \
-security KVROOT/security/client.security
Logged in admin as anonymous

8. Use the configure -name command to specify the name of the KVStore that you want to
configure:

kv-> configure -name mystore
Store configured: mystore

9. Create an admin user. The password should comply with the security policies described in
Password Complexity Policies. In this case, user root is defined:

kv-> execute 'CREATE USER root IDENTIFIED BY \"password\" ADMIN
Statement completed successfully

For more information on user creation and administration, see User Management.

10. Create the wallet to enable client credentials for the admin user (root):

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar securityconfig \
wallet create -dir KVROOT/security/login.wallet
java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar securityconfig wallet secret \
-dir KVROOT/security/login.wallet -set -alias root
Enter the secret value to store: ********
Re-enter the secret value for verification: ********
Secret created

Chapter 3
Multiple Node Secure Deployment

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 9 of 14

Note

The password must match the one set for the admin in the previous step.

11. At this point, it is possible to connect to the store as the root user. To login, you can use
either the -username <user> runadmin argument or specify the "oracle.kv.auth.username"
property in the security file.

In this example, a security file (adminlogin.txt) is used. To login, use the following
command:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar runadmin -port 5000 \
-host localhost -security adminlogin.txt
Logged in admin as root

The file adminlogin.txt should be a copy of the client.security file with additional
properties settings for authentication. The file would then contain content like this:

oracle.kv.auth.username=root
oracle.kv.auth.wallet.dir=KVROOT/security/login.wallet
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=KVROOT/security/client.trust
oracle.kv.ssl.protocols=TLSv1.2
oracle.kv.ssl.hostnameVerifier=dnmatch(CN\=NoSQL)

For more information, see User Login.

12. Once logged in as admin, you can create some users:

kv-> execute 'CREATE USER user1 IDENTIFIED BY \"password\"
Statement completed successfully

kv-> execute 'CREATE USER user2 IDENTIFIED BY \"password\"
Statement completed successfully

13. Create the wallet to enable client credentials for each user. Typically you will reuse this
wallet for all your regular users:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar securityconfig \
wallet create -dir KVROOT/security/users.wallet
java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar securityconfig wallet secret \
-dir KVROOT/security/users.wallet -set -alias user1
Enter the secret value to store: ********
Re-enter the secret value for verification: ********
Secret created
java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar securityconfig wallet secret \
-dir KVROOT/security/users.wallet -set -alias user2
Enter the secret value to store: ********

Chapter 3
Multiple Node Secure Deployment

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 10 of 14

Re-enter the secret value for verification: ********
Secret created

Note

Each password must match the one set for each user in the previous step. This
wallet is independent from the admin one. It is possible to store admin/user
passwords using the same wallet.

14. At this point, it is possible to connect to the store as a user. To login, you can use either the
-username <user> runadmin argument or specify the "oracle.kv.auth.username" property
in the security file.

In this example, a security file (userlogin.txt) is used. To login, use the following command:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar runadmin -port 5000 \
-host localhost -security userlogin
Logged in admin as user1

The file userlogin.txt should be a copy of the client.security file with additional
properties settings for authentication. The file would then contain content like this:

oracle.kv.auth.username=user1
oracle.kv.auth.wallet.dir=KVROOT/security/users.wallet
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=KVROOT/security/client.trust
oracle.kv.ssl.protocols=TLSv1.2
oracle.kv.ssl.hostnameVerifier=dnmatch(CN\=NoSQL)

For more information, see User Login.

Adding Security to an Existing Installation
To add security to an existing three node, capacity=3 (3x3) Oracle NoSQL Database
installation:

1. Shut down the KVStore instance on each node:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar stop \
-root KVROOT

2. Run the securityconfig utility to set up the basic store configuration with security:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar securityconfig

Chapter 3
Multiple Node Secure Deployment

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 11 of 14

3. Use the config create command with the -pwdmgr option to specify the mechanism used
to hold passwords that is needed for accessing the stores. In this case, Oracle Wallet is
used:

config create -pwdmgr wallet -root KVROOT
Enter a password for the Java KeyStore:

4. Enter a password for your store and then reenter it for verification. The configuration tool
will automatically generate some security related files:

Enter a password for the Java KeyStore: ***********
Re-enter the KeyStore password for verification: ***********
Created files:
security/security.xml
security/store.keys
security/store.trust
security/store.wallet/cwallet.sso
security/client.security
security/client.trust

5. In a multi-host store environment, the security directory and all files contained in it should
be copied from the first node to each server that will host a Storage Node, to setup internal
cluster authentication. For example, the following commands assume that the different
nodes are visible and accessible on the current node (node01):

cp -R node01/KVROOT/security node02/KVROOT/
cp -R node01/KVROOT/security node03/KVROOT/

Note

You may need to use a remote copying command, like scp, to do the copying if the
files for the different nodes are not visible on the current node.

6. Use the config add-security command on each node to add the security configuration
you just created:

security-> config add-security -root KVROOT -secdir security

Note

When running this command, the securityconfig tool will verify the existence of
the referenced files and will update the specified bootstrap configuration file to
refer to the security configuration. This process is normally done with the KVStore
instance stopped, and must be performed on each Storage Node of the store.

7. Start the Storage Node Agent (SNA) on each node:

Chapter 3
Multiple Node Secure Deployment

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 12 of 14

Note

Before starting the SNA, set the environment variable MALLOC_ARENA_MAX to 1.
Setting MALLOC_ARENA_MAX to 1 ensures that the memory usage is restricted to the
specified heap size.

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start -root KVROOT&

8. Start runadmin in security mode on the KVStore server host (node01). To do this, use the
following command:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar \
runadmin -port 5000 -host node01 \
-security KVROOT/security/client.security

This command sets SSL as a connection method and names a copy of the generated
truststore file (client.security). For more information on SSL properties, see SSL
communication properties.

9. Create an admin user. The password should comply with the security policies described in
Password Complexity Policies. In this case, user root is defined:

kv-> execute 'CREATE USER root IDENTIFIED BY \"password\" ADMIN
Statement completed successfully

For more information on user creation and administration, see User Management.

10. Create the wallet to enable client credentials for the admin user (root):

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar securityconfig \
wallet create -dir KVROOT/security/login.wallet
java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar securityconfig wallet secret \
-dir KVROOT/security/login.wallet -set -alias root
Enter the secret value to store: ********
Re-enter the secret value for verification: ********
Secret created

Note

The password must match the one set for the admin in the previous step.

11. At this point, it is possible to connect to the store as the root user. To login, you can use
either the -username <user> runadmin argument or specify the "oracle.kv.auth.username"
property in the security file.

Chapter 3
Multiple Node Secure Deployment

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 13 of 14

In this example, the oracle.kv.security property is used. To login use the following
command:

java -Xmx64m -Xms64m \
-Doracle.kv.security=adminlogin.txt \
-jar KVHOME/lib/kvstore.jar runadmin -port 5000 -host localhost
Logged in admin as root >

The file adminlogin.txt should be a copy of the client.security file with additional
properties settings for authentication. The file would then contain content like this:

oracle.kv.auth.username=root
oracle.kv.auth.wallet.dir=KVROOT/security/login.wallet
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=KVROOT/security/client.trust
oracle.kv.ssl.protocols=TLSv1.2
oracle.kv.ssl.hostnameVerifier=dnmatch(CN\=NoSQL)

For more information, see User Login.

Chapter 3
Multiple Node Secure Deployment

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 14 of 14

4
Kerberos Authentication Service

Existing or new installations of Oracle NoSQL Database can be configured to use Kerberos as
an external authentication service. Kerberos is an industry standard authentication protocol for
large client/server systems.

Setting up and configuring a Kerberos deployment is beyond the scope of this chapter. This
chapter assumes that you have a running Key Distribution Center (KDC) and realm setup.

This chapter first describes some Kerberos concepts and then shows you how to configure
existing or new installations of Oracle NoSQL Database to use Kerberos as an external
authentication service.

Installation Prerequisites
Make sure that you have Kerberos V5 installed. Oracle NoSQL Database is compatible and
tested with MIT Kerberos V5.

If your Kerberos installation/keytab is configured to use a strong encryption type - for example,
AES with 256-bit keys - the JCE Unlimited Strength Jurisdiction Policy Files must be obtained
and installed in the JDK/JRE. Be aware that these files might already exist in your installation.
If so, they must be updated.

Kerberos Principal
A Kerberos Principal represents a unique identity in a Kerberos system to which Kerberos can
assign tickets to access Kerberos-aware services. A service principal should be created for
each Storage Node. Oracle NoSQL Database service principals follow this naming format:
<service_name>/instance@REALM.

where:

• service_name

Is a case-sensitive string that represents the Oracle NoSQL Database service. The default
value is oraclenosql.

All Oracle NoSQL Database service principals should use the same service name across
different Storage Nodes.

• instance

Represents the service principal instance name. It is recommended to use the fully
qualified domain name (FQDN) of the Storage Node where Oracle NoSQL Database is
running.

If instance is not specified, the default principal will be created as oraclenosql@REALM.

• REALM

Represents the Kerberos realm name where the database service is registered. It must be
specified in UPPERCASE and is typically the DNS domain name.

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 1 of 22

If no realm is given, the service principal is assumed to belong to the default realm, as
configured in the Kerberos configuration file.

Keytabs
A keytab is a file containing pairs of Kerberos principals and an encrypted copy of that
principal's key.

Keytabs are used to authenticate a principal on a host to Kerberos.

Note

Because having access to the keytab file for a principal allows one to act as that
principal, access to the keytab files should be tightly secured.

Kadmin and kadmin.local
Kadmin and kadmin.local are command-line interfaces to the Kerberos administration system.

In general, both interfaces provide the same functionality. When creating Kerberos principals
and keytabs, you can use kadmin.local or kadmin depending on your access and account.

For more information, see the MIT Kerberos documentation.

Kerberos Security Properties
To set up the Kerberos security properties, you can set them in a login file or through the
KVStoreConfig class.

The minimal configuration needed to set up Kerberos includes the following properties:

• oracle.kv.auth.username

Specifies the Kerberos user name in Oracle NoSQL Database. It must match the principal
name in KDC and match the Kerberos user account name created in the database. The
client will use the value of this option to create the credential which is used in the client-
server authentication. If the short name of principal is specified in this field, you must also
specify oracle.kv.auth.kerberos.realm.

If KerberosCredentials is not used, this field has to be specified in the login file or security
properties field of KVStoreConfig.

• oracle.kv.auth.kerberos.services

Specifies the Kerberos principals for services associated with each helper host. Setting this
property is required if, as recommended, each host uses a different principal that includes
its own principal name. All principals should specify the same service and realm. If this
property is not set, the client will use oraclenosql as the principal name for services on all
helper hosts.

Each entry should specify the helper host name followed by the Kerberos service name,
and optionally an instance name and realm name. The entries are separated by commas,
ignoring spaces. If any entry does not specify a realm, each entry will use the default realm

Chapter 4
Keytabs

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 2 of 22

specified in Kerberos configuration file. If any entry specifies a realm name, then all entries
must specify the same one. The syntax is:

host:service[:instance[@realm]][, host:service[:instance[@realm]]]*

For example:

host37:nosql/host37@EXAMPLE.COM,
host53:nosql/host53@EXAMPLE.COM

• oracle.kv.auth.kerberos.keytab

The default location of the keytab file is specified by the Kerberos configuration file. If the
keytab is not specified there, then the system looks for the file user.home/krb5.keytab.

• oracle.kv.auth.kerberos.realm

Specifies the Kerberos realm for the user principal if using a short name to specify the
client login principal.

• oracle.kv.auth.kerberos.ccache

Specifies the path of the Kerberos ticket cache. This field is optional. The default ticket
cache is "/tmp/krbcc_<uid>". If the credential cache is not found, the system will look for
the file user.home/krb5cc_user.name. If you want to use your own ticket cache, set this
field to the path of the ticket cache.

• oracle.kv.auth.kerberos.mutualAuth

Specifies whether the client should use mutual authentication. If this value is set to true,
the client will authenticate the server's identity in the login results.

The default value is false, so mutual authentication is disabled.

Setting Security Properties in a security login file
To set the properties in a security file, specify the location of the login file by setting the
oracle.kv.security Java system property. For example:

java -Doracle.kv.security=kerberoslogin.txt HelloWorld

where the file kerberoslogin.txt should be a copy of the client.security file with additional
properties settings for Kerberos authentication. The file would then contain content like this:

oracle.kv.auth.username=krbuser@EXAMPLE.COM
oracle.kv.auth.external.mechanism=kerberos
oracle.kv.auth.kerberos.keytab=/kerberos/krb5.keytab
oracle.kv.auth.kerberos.services=
 node01:oraclenosql/node01.example.com@EXAMPLE.COM
oracle.kv.auth.kerberos.mutualAuth=false

You can specify the location of the Kerberos configuration file by specifying the
java.security.krb5.conf Java system property. For example:

java -Djava.security.krb5.conf=/kerberos/krb5.conf \
-Doracle.kv.security=kerberoslogin.txt HelloWorld

Chapter 4
Kerberos Security Properties

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 3 of 22

You can also set the default realm using java.security.krb5.realm. To set the default KDC,
use java.security.krb5.kdc.

Note

Set the Java system properties for both the realm and the KDC or neither of them.
These properties override the default realm and KDC values specified in the
krb5.conf file.

Setting Security Properties through KVStoreConfig
You can also set security properties using KVStoreConfig. For example:

Properties securityProps = new Properties();
securityProps.setProperty("oracle.kv.auth.username",
 "krbuser@EXAMPLE.COM");
securityProps.setProperty("oracle.kv.auth.external.mechanism",
 "kerberos");
securityProps.setProperty("oracle.kv.auth.kerberos.keytab",
 "/kerberos/krb5.keytab");
securityProps.setProperty("oracle.kv.auth.kerberos.services",
 "node01:oraclenosql/node01.example.com@EXAMPLE.COM");
securityProps.setProperty("oracle.kv.auth.kerberos.ccache",
 "/kerberos/krbcc_501");
securityProps.setProperty("oracle.kv.auth.kerberos.mutualAuth",
 "false");

KVStoreConfig kvConfig = new KVStoreConfig("mystore", "node01:5000");
kvConfig.setSecurityProperties(securityProps);

Using Security Properties to Log In
To log in to Oracle NoSQL Database using security properties, you can use credential cache, a
keytab file or the principal password.

Note

When connecting through the Admin CLI, if credential cache or keytabs login attempts
fail, Oracle NoSQL Database prompts for the principal's password.

Using Credential Cache

To login to Oracle NoSQL Database using credential cache:

1. Run the kinit Kerberos tool to save the credential in the credential cache.

For example, to authenticate the client principal krbuser@EXAMPLE.COM to KDC:

kinit krbuser@EXAMPLE.COM
Password for krbuser@EXAMPLE.COM: ********

Chapter 4
Kerberos Security Properties

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 4 of 22

The granted ticket-granting ticket (TGT) will be saved in the default credential cache for
later authentication.

2. You can also generate a separate cache. To do this run the following command:

kinit krbuser@EXAMPLE.COM -c krbcc_krbuser

3. Perform the login by specifying oracle.kv.auth.kerberos.ccache in a security login file or
through KVStoreConfig. In this case, a security login file is used:

java -Xmx64m -Xms64m \
-Doracle.kv.security=mylogin.txt \
-jar KVHOME/lib/kvstore.jar runadmin -port 5000 -host localhost
Logged in admin as krbuser

The file mylogin.txt should be a copy of the client.security file with additional
properties settings for Kerberos authentication. The file would then contain content like
this:

oracle.kv.auth.kerberos.ccache=/kerberos/krbcc_krbuser
oracle.kv.auth.username = krbuser@EXAMPLE.COM
oracle.kv.auth.external.mechanism=kerberos
oracle.kv.auth.kerberos.services=
 node01:oraclenosql/node01.example.com@EXAMPLE.COM
oracle.kv.auth.kerberos.mutualAuth=false

In this case, Oracle NoSQL Database reads the credential cache and logins to Kerberos
without needing a password.

Using credential cache
To login to Oracle NoSQL Database using credential cache:

1. Run the kinit Kerberos tool to save the credential in the credential cache.

For example, to authenticate the client principal krbuser@EXAMPLE.COM to KDC:

kinit krbuser@EXAMPLE.COM
Password for krbuser@EXAMPLE.COM: ********

The granted ticket-granting ticket (TGT) will be saved in the default credential cache for
later authentication.

2. You can also generate a separate cache. To do this run the following command:

kinit krbuser@EXAMPLE.COM -c krbcc_krbuser

3. Perform the login by specifying oracle.kv.auth.kerberos.ccache in a security login file or
through KVStoreConfig. In this case, a security login file is used:

java -Xmx64m -Xms64m \
-Doracle.kv.security=mylogin.txt \
-jar $KVHOME/lib/kvstore.jar runadmin -port 5000 -host localhost
Logged in admin as krbuser

Chapter 4
Kerberos Security Properties

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 5 of 22

The file mylogin.txt should be a copy of the client.security file with additional
properties settings for Kerberos authentication. The file would then contain content like
this:

oracle.kv.auth.kerberos.ccache=/kerberos/krbcc_krbuser
oracle.kv.auth.username = krbuser@EXAMPLE.COM
oracle.kv.auth.external.mechanism=kerberos
oracle.kv.auth.kerberos.services=
 node01:oraclenosql/node01.example.com@EXAMPLE.COM
oracle.kv.auth.kerberos.mutualAuth=false

In this case, Oracle NoSQL Database reads the credential cache and logins to Kerberos
without needing a password.

Using a keytab
To login to Oracle NoSQL Database using a keytab:

1. Run the kinit Kerberos tool to extract the keytab:

kadmin.local: ktadd -k /tmp/mykeytab krbuser@EXAMPLE.COM
Entry for principal krbuser@EXAMPLE.COM added to
keytab WRFILE:/tmp/mykeytab.

2. Copy the keytab file to any client machine that will use the krbuser@EXAMPLE.COM
principal to login automatically to Oracle NoSQL Database.

3. Set the Kerberos security properties, including the keytab file location, on each client by
specifying them in a security file or through the KVStoreConfig class.

In this example, a security file (login) is used. To login, specify the keytab location by using
oracle.kv.auth.kerberos.keytab. You must also specify the username using
oracle.kv.auth.username. For example, the login file would then contain content like this:

oracle.kv.auth.kerberos.keytab = /kerberos/mykeytab
oracle.kv.auth.username = krbuser@EXAMPLE.COM
oracle.kv.auth.external.mechanism=kerberos
oracle.kv.auth.kerberos.services=
 node01:oraclenosql/node01.example.com@EXAMPLE.COM
oracle.kv.auth.kerberos.mutualAuth=false

In this case, Oracle NoSQL Database reads the keytab and logins to Kerberos without
needing a password.

For more information on Kerberos security properties, see Kerberos Security Properties.

JAAS programming framework integration
Oracle NoSQL Database allows client applications to integrate with programs using the Java
Authentication and Authorization Service (JAAS) programming framework.

Use the oracle.kv.jaas.login.conf.entryName security property to specify the JAAS login
configuration.

Chapter 4
JAAS programming framework integration

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 6 of 22

Note

If a JAAS login configuration file is set, you cannot specify keytab or credential cache
in security properties.

A login configuration file would then contain content like this:

oraclenosql {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab=test.keytab
 storeKey=true
 principal=krbuser
 doNotPrompt=false;
};

where oraclenosql is the value for oracle.kv.jaas.login.conf.entryName. This
configuration file can be used for Kerberos login.

In the following example, assume the client application has already obtained the Kerberos
credentials for user krbuser before it tries to connect to Oracle NoSQL Database. You do not
have to specify security properties in the login file. You can specify the credentials using the
Subject.doAs method:

final LoginContext lc =
 new LoginContext("oraclenosql", new TextCallbackHandler());

// Attempt authentication
lc.login();

// Get the authenticated Subject
final Subject subj = lc.getSubject();

// Specify configuration
final KVStoreConfig kvConfig =
 new KVStoreConfig("mystore", "nosql1:5000");

// Set security properties SSL needed
final Properties securityProps = new Properties();
securityProps.setProperty(KVSecurityConstants.TRANSPORT_PROPERTY,
 KVSecurityConstants.SSL_TRANSPORT_NAME);
securityProps.setProperty(
 KVSecurityConstants.SSL_TRUSTSTORE_FILE_PROPERTY,
 trustStore);
kvConfig.setSecurityProperties(securityProps);

// Set Kerberos properties
final Properties krbProperties = new Properties();

// Set service principal associated with helper host
krbProperties.setProperty(KVSecurityConstants.AUTH_KRB_SERVICES_PROPERTY,
 hostName + ":" + servicePrincipal);

Chapter 4
JAAS programming framework integration

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 7 of 22

// Set default realm name, because the short name
// for user principal is used.
krbProperties.setProperty(KVSecurityConstants.AUTH_KRB_REALM_PROPERTY,
 "EXAMPLE.COM");

// Specify Kerberos principal
final KerberosCredentials krbCreds =
 new KerberosCredentials("krbuser", krbProperties);

// Get store using credentials in subject
KVStore kvstore = Subject.doAs(
 subj, new PrivilegedExceptionAction<KVStore>() {
 @Override
 public KVStore run() throws Exception {
 return KVStoreFactory.getStore(kvConfig, krbCreds, null);
 }
 });

In this case, a KerberosCredentials instance is used to set the security properties needed to
retrieve the credentials of the specified user principal from KDC.

Performing a Secure Oracle NoSQL Database Installation with
Kerberos

It is possible to add Kerberos to a new or an existing Oracle NoSQL Database secure
installation.

At a high-level, to configure a Oracle NoSQL Database installation to use Kerberos, you first
need to register Oracle NoSQL Database as a service principal in KDC and extract
corresponding keytab files on each database server node. Then, to allow client login, a user
principal must be added in KDC and a mapped user account with the same name of principal
needs to be created in the database. Finally, login can be performed through the CLI or the
kvclient driver.

Adding Kerberos to a New Installation
To install Oracle NoSQL Database with Kerberos authentication:

Note

The following example assumes you have configured an admin/admin principal on the
KDC and that you distributed its keytab (kadm5.keytab) to the Oracle NoSQL
Database Storage Nodes. For more information, see Configuring the Kerberos
Administrative Utility.

1. Run the makebootconfig utility with the -store-security configure and -external-auth
kerberos flags to set up the basic store configuration with Kerberos security:

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar makebootconfig \
-root $KVROOT -port 5000 \

Chapter 4
Performing a Secure Oracle NoSQL Database Installation with Kerberos

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 8 of 22

-host node01 -harange 5010,5020 \
-capacity 3 \
-store-security configure \
-external-auth kerberos \
-instance-name node01.example.com \
-kadmin-keytab /kerberos/kadm5.keytab \
-admin-principal admin/admin

2. In this example, -store-security configure is used, so the security configuration
utility is run as part of the makebootconfig process and you are prompted for a password to
use for your data store file:

Enter a password for the Java KeyStore:

3. Enter a password for your store and then reenter it for verification. In this case, Oracle
Wallet is used. Oracle Wallet and Kerberos support are only available in the Oracle NoSQL
Database EE version.

Enter a password for the Java KeyStore: ***********
Re-enter the KeyStore password for verification: ***********

4. In this case, -kadmin-keytab points to the admin/admin keytab file you distributed earlier.
Once authenticated, the configuration tool will automatically generate some security
related files:

Login Kerberos admin via
keytab /kerberos/kadm5.keytab
Adding principal oraclenosql/node01.example.com@EXAMPLE.COM
Authenticating as principal admin/admin with
keytab /kerberos/kadm5.keytab
Extracting keytab KVROOT/security/store.keytab
Created files:
security/security.xml
security/store.keys
security/store.trust
security/store.wallet/cwallet.sso
security/store.keytab
security/client.security
security/client.trust

5. In a multi-host store environment, the security directory and all files contained in it should
be copied from the first node to each server that will host a Storage Node, to setup internal
cluster authentication. For example, the following commands assume that the different
nodes are visible and accessible on the current node (node01):

cp -R node01/$KVROOT/security node02/$KVROOT/
cp -R node01/KVROOT/security node03/$KVROOT/

Note

You may need to use a remote copying command, like Secure Copy Protocol
(SCP), to do the copying if the files for the different nodes are not visible on the
current node.

Chapter 4
Performing a Secure Oracle NoSQL Database Installation with Kerberos

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 9 of 22

6. Run makebootconfig on the other two nodes:

• Add Kerberos and create their individual service principal and keytab:

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar makebootconfig \
-root $KVROOT -port 6000 \
-host node02 -harange 6010,6020 \
-capacity 3 \
-store-security configure \
-external-auth kerberos \
-instance-name node02.example.com \
-kadmin-keytab /kerberos/kadm5.keytab \
-admin-principal admin/admin

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar makebootconfig \
-root $KVROOT -port 7000 \
-host node03 -harange 7010,7020 \
-capacity 3 \
-store-security configure \
-external-auth kerberos \
-instance-name node03.example.com \
-kadmin-keytab /kerberos/kadm5.keytab \
-admin-principal admin/admin

Note

The service principal name of node2 and node3 are using the same service
name "oraclenosql", but different instance names. Their keytab files are
different, which contains the key for principal "oraclenosql/
node2.example.com" and "oraclenosql/node3.example.com" respectively.

• To enable Kerberos authentication if the store is using the same service principal on
every node:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT -port 6000 \
-host node02 -harange 6010,6020 \
-capacity 3 \
-store-security enable

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar makebootconfig \
-root $KVROOT -port 6000 \
-host node03 -harange 6010,6020 \
-capacity 3 \
-store-security enable

Chapter 4
Performing a Secure Oracle NoSQL Database Installation with Kerberos

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 10 of 22

Note

The service principal created in step one is "oraclenosql/
node01.example.com". The instance name can be replaced with any more
general one like "nosql". In above example, node02 and node03 are all using
the same service principal and keytab file without creating new one
individually.

7. Start the Storage Node Agent (SNA) on each node:

Note

Before starting the SNA, set the environment variable MALLOC_ARENA_MAX to 1.
Setting MALLOC_ARENA_MAX to 1 ensures that the memory usage is restricted to the
specified heap size.

nohup java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start -root KVROOT&

When a newly created store with a secure configuration is first started, there are no user
definitions available against which to authenticate access. In order to reduce risk of
unauthorized access, an admin will only allow you to connect to it from the host on which it
is running. This security measure is not a complete safeguard against unauthorized
access. It is important that you do not provide local access to machines running KVStore.
In addition, you should perform the following steps soon after this step in order to minimize
the time period in which the admin might be accessible without full authentication. For
more information on maintaining a secure store see Guidelines for Securing the
Configuration.

8. Start runadmin in security mode on the KVStore server host (node01). To do this, use the
following command:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar \
runadmin -port 5000 -host node01 \
-security KVROOT/security/client.security
Logged in admin as anonymous

9. Use the configure -name command to specify the name of the KVStore that you want to
configure:

kv-> configure -name mystore
Store configured: mystore

10. Register the user principal on the KDC. To do this, use kadmin or kadmin.local:

kadmin.local: addprinc krbuser@EXAMPLE.COM
Enter password for principal: "krbuser@EXAMPLE.COM": ***********
Re-enter password for principal: "krbuser@EXAMPLE.COM": **********

Chapter 4
Performing a Secure Oracle NoSQL Database Installation with Kerberos

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 11 of 22

11. After user principal is registered on KDC, create the user in Oracle NoSQL Database. The
username needs to match the full principal name in the KDC (includes realm name). In this
case, user krbuser is defined:

kv-> execute 'CREATE USER "krbuser@EXAMPLE.COM" IDENTIFIED EXTERNALLY'

For more information on user creation and administration, see User Management.

12. At this point, it is possible to connect to the store as the krbuser. To login, you can use
credential cache, a keytab file or enter the principal password.

In this example, a keytab file is used. To do this, first extract the keytab of principal
krbuser@EXAMPLE.COM on the KDC host by using kadmin.local.

kadmin.local: ktadd -k /tmp/mykeytab krbuser@EXAMPLE.COM
Entry for principal krbuser@EXAMPLE.COM added to
keytab WRFILE:/tmp/mykeytab.

13. Copy the keytab file to client machines that will use the krbuser@EXAMPLE.COM principal
to login automatically to Oracle NoSQL Database.

14. Set the Kerberos security properties, including the keytab file location, on each client by
specifying them in a security file or through the KVStoreConfig class.

In this example, a security file (mylogin.txt) is used. To login, specify the file location by
using the oracle.kv.security property. For example:

java -Xmx64m -Xms64m \
-Doracle.kv.security=mylogin.txt \
-jar KVHOME/lib/kvstore.jar runadmin -port 5000 -host localhost
Logged in admin as krbuser

The file mylogin.txt should be a copy of the client.security file with additional
properties settings for Kerberos authentication. The file would then contain content like
this:

oracle.kv.auth.kerberos.keytab = kerberos/mykeytab
oracle.kv.auth.username = krbuser@EXAMPLE.COM
oracle.kv.auth.external.mechanism=kerberos
oracle.kv.auth.kerberos.services=
 node01:oraclenosql/node01.example.com@EXAMPLE.COM
oracle.kv.auth.kerberos.mutualAuth=false

In this case, Oracle NoSQL Database reads the keytab and logins to Kerberos without
needing a password.

For more information on Kerberos security properties, see Kerberos Security Properties.

Adding Kerberos to an Existing Secure Installation
To add Kerberos to an existing Oracle NoSQL Database secure installation:

Chapter 4
Performing a Secure Oracle NoSQL Database Installation with Kerberos

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 12 of 22

Note

The following example assumes you have configured an admin/admin principal on the
KDC and that you distributed its keytab (kadm5.keytab) to the Oracle NoSQL
Database Storage Nodes. For more information, see Configuring the Kerberos
Administrative Utility.

Note

If your Kerberos installation/keytab will be configured to use a strong encryption type
— for example, AES with 256-bit keys — the JCE Unlimited Strength Jurisdiction
Policy Files must be obtained and installed in the JDK/JRE. Be aware that these files
might already exist in your installation. If so, they must be updated.

1. Shut down the data store instance:

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar stop \
-root $KVROOT

2. Use the config add-kerberos command to add Kerberos authentication:

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar securityconfig \
config add-kerberos -root $KVROOT \
-secdir security \
-admin-principal admin/admin

Adding principal oraclenosql@EXAMPLE.COM
Password for admin/admin: *******
Created files:
 security/store.keytab
Updated Kerberos configuration

Note

When running this command, the securityconfig tool will verify the existence of
the referenced files and will update the specified bootstrap configuration file to
refer to the security configuration. This process is normally done with the data
store instance stopped, and must be performed on each Storage Node of the
store.

3. Start the Storage Node Agent (SNA) on each node:

Chapter 4
Performing a Secure Oracle NoSQL Database Installation with Kerberos

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 13 of 22

Note

Before starting the SNA, set the environment variable MALLOC_ARENA_MAX to 1.
Setting MALLOC_ARENA_MAX to 1 ensures that the memory usage is restricted to the
specified heap size.

nohup java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar start -root $KVROOT&

4. Start runadmin in security mode on the data store server host (node01). To do this, use the
following command:

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar \
runadmin -port 5000 -host node01 \
-security $KVROOT/security/client.security
Logged in admin as anonymous.

This command sets SSL as a connection method and names a copy of the generated
truststore file (client.security). For more information on SSL properties, see SSL
communication properties.

5. Register the user principal on the KDC. To do this, use kadmin or kadmin.local:

kadmin.local: addprinc krbuser@EXAMPLE.COM
Enter password for principal: "krbuser@EXAMPLE.COM": ***********
Re-enter password for principal: "krbuser@EXAMPLE.COM": **********

6. After user principal is registered on KDC, create the user in Oracle NoSQL Database. The
username needs to match the full principal name in the KDC (includes realm name). In this
case, user krbuser is defined:

kv-> execute 'CREATE USER "krbuser@EXAMPLE.COM" IDENTIFIED EXTERNALLY'

For more information on user creation and administration, see User Management.

7. At this point, it is possible to connect to the store as the krbuser. To login, you can use
credential cache, a keytab file or enter the principal password.

In this example, a keytab file is used. To do this, first extract the keytab of principal
krbuser@EXAMPLE.COM on the KDC host by using kadmin.local.

kadmin.local: ktadd -k /tmp/mykeytab krbuser@EXAMPLE.COM
Entry for principal krbuser@EXAMPLE.COM added to
keytab WRFILE:/tmp/mykeytab.

8. Copy the keytab file to any client machine that will use the krbuser@EXAMPLE.COM
principal to login automatically to Oracle NoSQL Database.

9. Set the Kerberos security properties, including the keytab file location, on each client by
specifying them in a security file or through the KVStoreConfig class.

Chapter 4
Performing a Secure Oracle NoSQL Database Installation with Kerberos

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 14 of 22

In this example, a security file (mylogin.txt) is used. To login, specify the file location by
using the oracle.kv.security property. For example:

java -Xmx64m -Xms64m \
-Doracle.kv.security=mylogin.txt \
-jar $KVHOME/lib/kvstore.jar runadmin -port 5000 -host localhost
Logged in admin as krbuser

The file mylogin.txt should be a copy of the client.security file with additional
properties settings for Kerberos authentication. The file would then contain content like
this:

oracle.kv.auth.kerberos.keytab = kerberos/mykeytab
oracle.kv.auth.username = krbuser@EXAMPLE.COM
oracle.kv.auth.external.mechanism=kerberos
oracle.kv.auth.kerberos.services=
 node01:oraclenosql/node01.example.com@EXAMPLE.COM
oracle.kv.auth.kerberos.mutualAuth=false

In this case, Oracle NoSQL Database reads the keytab and logins to Kerberos without
needing a password.

For more information on Kerberos security properties, see Kerberos Security Properties.

Using Oracle NoSQL Database with Kerberos and Microsoft
Active Directory (AD)

To use Oracle NoSQL Database with Kerberos and Microsoft Active Directory:

1. Update Kerberos Configuration krb5.conf with AD.

The Microsoft Guide (see here) details how to update the Kerberos configuration file on a
Unix host in step 3: Edit the file (/etc/krb5.conf) to refer to the Windows 2000 domain
controller as the Kerberos KDC. After changing the Kerberos configuration file, run kinit
using a user account in AD to verify that the configuration is correct.

For example, suppose you have user account krbuser08 on domain TEST08 of AD, and the
KDC realm name is TEST08.LOCAL:

$ kinit krbuser08@TEST08.LOCAL
Password for krbuser08@TEST08.LOCAL

After you provide the password, the command should return without error. An error
indicates there are probably configuration issues. If the kinit command ran successfully,
then run klist to check that the ticket cache contains the TGT of krbuser08.

$ klist
Ticket cache: FILE:/tmp/krb5cc_500
Default principal: krbuser08@TEST08.LOCAL

Valid starting Expires Service principal
08/12/16 11:45:03 08/12/16 21:45:11 krbtgt/TEST08.LOCAL@TEST08.LOCAL
 renew until 08/19/16 11:45:03

Chapter 4
Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 15 of 22

The klist shows the tickets in your ticket cache. Perform this step to check if the ticket-
granting ticket has been properly obtained using the principal krbuser08 described by
"Default Principal." The "Service Principal" describes each ticket, the ticket-granting ticket
has the primary krbtgt, and the instance name is the KDC realm name. Also check if the
lifetime indicated by "Valid Starting" and "Expires" is correct.

2. Create service instance account and generate keytab on AD.

The Microsoft Guide (see https://technet.microsoft.com/en-us/library/
bb742433.aspx#EEAA) details how to support a service running on a Unix system when
using Active Directory. Follow the steps in this document to generate the service principal
and keytab file for Oracle NoSQL Database. Note that you do not need to perform step 3 in
the Microsoft Guide to merge keytab files if you plan to use same keytab file on every host.

For example, you can set the instance name to nosql and use this keytab on every node.

• Use the Active Directory Management tool to create a user account named
oraclenosql.

In the user creation interface, you can choose which Kerberos encryption type this
account can support. The user account may use Data Encryption Standard (DES)
encryption as default. To enable other encryption types for this account, you need to
manually configure in the "Properties" interface, or by using ktpass utility. Note that
you need to disable the "User must change password at next logon" setting.

• Use ktpass tool on Windows Server to set up an identity mapping.

c:\ktpass -princ oraclenosql/nosql@TEST08.LOCAL
-mapuser oraclenosql -pass "*"-cypto DES-CBC-MD5 -ptype
KRB5_NT_PRINCIPAL -out c:\store.keytab

You may need to add allow_weak_crypto = true to the krb5.conf file on the Unix
host, as well as default_tkt_enctypes and default_tgs_enctypes, if you use the
DES decryption type. The default name of the keytab for Oracle NoSQL Database is
store.keytab and the default service name of the service principal is oraclenosql.

• Copy the keytab file to your Unix hosts used by Oracle NoSQL Database.

Typically, you can use Secure Copy Protocol (scp) or PuTTY Secure Copy (PSCP) to
transfer this file securely, or upload this file to an FTP server shared by Windows
Server and Unix hosts. After creating the service principal and keytab, run kinit tests
on your Unix hosts (described next) to confirm that they are configured properly.

3. Test if the user account can acquire service tickets for the service principal, and if the
service keytab is generated correctly by running kinit:

• Test if the user account can acquire service tickets for service principal oraclenosql.

$ kinit -S oraclenosql/nosql@TEST08.LOCAL krbuser08@TEST08.LOCAL
Password for krbuser08@TEST08.LOCAL:
$ klist
Ticket cache: FILE:/tmp/krb5cc_500
Default principal: krbuser08@TEST08.LOCAL

Valid starting Expires Service principal
08/12/16 11:50:55 08/12/16 21:51:00 oraclenosql/nosql@TEST08.LOCAL
 renew until 08/19/16 11:50:55

Chapter 4
Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 16 of 22

https://technet.microsoft.com/en-us/library/bb742433.aspx#EEAA
https://technet.microsoft.com/en-us/library/bb742433.aspx#EEAA

If the ticket cache does not contains a service ticket for oraclenosql/nosql, or if any
errors are reported in the first command, then check if the account was created
properly.

• Test if the service keytab was generated correctly by running kinit oraclenosql.

$ kinit -k -t store.keytab oraclenosql/nosql@TEST08.LOCAL
$ klist
Ticket cache: FILE:/tmp/krb5cc_500
Default principal: oraclenosql/nosql@TEST08.LOCAL

Valid starting Expires Service principal
08/12/16 11:51:44 08/12/16 21:51:45 krbtgt/TEST08.LOCAL@TEST08.LOCAL
 renew until 08/19/16 11:51:44

As with the previous tests, any errors need to be fixed before attempting to configure
Oracle NoSQL Database. Some versions of the kinit utility may need to explicitly
specify default_tkt_enctypes and default_tgs_enctypes with the encryption type
you configured for the service account oraclenosql in Active Directory, otherwise kinit
cannot successfully obtain tickets from AD.

4. Begin to configure Oracle NoSQL Database.

Oracle NoSQL Database utilizes the Unix kadmin tool to help users create service principal
and generate keytab file. However, AD does not have remote admin utility support, so it is
necessary to skip this step in AD Kerberos environment.

For Oracle NoSQL Database releases prior to 4.2, you must specify none as the value for
both the -kadmin-path and -admin-principal makebootconfig command line options.

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar makebootconfig -root $KVROOT \
-port 5000 \
-host node01.example.com -harange 5010,5020 \
-store-security configure -kspwd password \
-external-auth kerberos \
-kadmin-path none \
-admin-principal none \
-instance-name nosql
Adding principal oraclenosql/nosql
IO error encountered: Cannot run program "none": error=13,
Permission denied
Created files
 $KVROOT/security/client.security
 $KVROOT/security/client.trust
 $KVROOT/security/security.xml
 $KVROOT/security/store.wallet/cwallet.sso
 $KVROOT/security/store.keys
 $KVROOT/security/store.trust

The IO error can be ignored in this example, because we did not specify a correct kadmin
path.

Chapter 4
Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 17 of 22

For Oracle NoSQL Database 4.2 and later releases, you only need to specify none as the
value for the -kadmin-path flag:

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar makebootconfig -root $KVROOT \
-port 5000 \
-host node01.example.com -harange 5010,5020 \
-store-security configure -kspwd password \
-external-auth kerberos \
-kadmin-path none \
-instance-name nosql

The kadmin path was specified as NONE, so this example is not creating a keytab for the
database server. The keytab must be generated and copied to the security configuration
directory manually.

Created files
 $KVROOT/security/client.security
 $KVROOT/security/client.trust
 $KVROOT/security/security.xml
 $KVROOT/security/store.wallet/cwallet.sso
 $KVROOT/security/store.keys
 $KVROOT/security/store.trust

After the security directory is created, it is worth checking that the Kerberos parameters are
configured as expected.

Check security.xml in $kvroot/security and look for the following parameters:

• krbInstanceName

• krbRealmName

For Oracle NoSQL Database 4.2 and later releases, you can use the securityconfig tool
to view the parameters:

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar securityconfig \
config show -secdir $KVROOT/security
...
krbInstanceName=nosql
krbRealmName=TEST08.LOCAL

5. Manage service principals in a multi-node environment.

• In a multi-node environment, if you want to use a single service principal oraclenosql/
nosql for all nodes, you can simply copy the contents of the first security directory to
the other nodes. For example, the following commands assume that the different
nodes are visible and accessible on the current node (node01):

cp -R node01/$KVROOT/security node02/$KVROOT/
cp -R node01/$KVROOT/security node03/$KVROOT/

You may need to use a remote copying command, like scp, to do the copying if the
files for the different nodes are not visible on the current node.

Chapter 4
Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 18 of 22

Run makebootconfig on the other two nodes to enable Kerberos authentication.

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar makebootconfig \
-root $KVROOT -port 5000 \
-host node02 -harange 5010,5020 \
-store-security enable

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar makebootconfig \
-root $KVROOT -port 5000 \
-host node03 -harange 5010,5020 \
-store-security enable

Note

The service principal for node02 and node03 will be configured as
oraclenosql/nosql@TEST08.LOCAL. Also they will use the same keytab file
generated in step two.

• To set up individual service principals for each node, run step two to create a service
account on AD and generate a new keytab for each node. For example, each node
uses host name as instance name of service principal and their corresponding keytab
files.

oracelnosql/node01@TEST08.LOCAL
oracelnosql/node02@TEST08.LOCAL
oracelnosql/node03@TEST08.LOCAL

Copy the security directory created on node01 to other nodes. For example, the
following commands assume that the different nodes are accessible using ssh from the
current node (host01):

cp -R node01/$KVROOT/security node02/$KVROOT/
cp -R node01/$KVROOT/security node03/$KVROOT/

Note

You may need to use a remote copying command, like scp, to copy the files
for the different nodes if they are not visible on the current node.

Replace keytab files of node2 and node3 generated in step two with the one in their
security configuration directory. For example:

cp store.keytab node02/$KVROOT/security
cp store.keytab node03/$KVROOT/security

Chapter 4
Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 19 of 22

Note

The name of all of the keytab files generated in step two is store.keytab by
default. Make sure that you have given each node the proper keytab file. Use
the klist tool to check keytab file on each node to make sure they contain the
correct key of service principal for the node.

Run the securityconfig tool on node02 and node03 to modify instance name of
security configuration:

security -> config update -secdir $KVROOT/security \
-param krbInstanceName=node02

security -> config update -secdir $KVROOT/security \
-param krbInstanceName=node03

Run makebootconfig on the other two nodes to enable Kerberos authentication.

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar makebootconfig \
-root $KVROOT -port 5000 \
-host node02 -harange 5010,5020 \
-store-security enable

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar makebootconfig \
-root $KVROOT -port 5000 \
-host node03 -harange 5010,5020 \
-store-security enable

6. Start the Storage Node Agent (SNA) on each node:

Note

Before starting the SNA, set the environment variable MALLOC_ARENA_MAX to 1.
Setting MALLOC_ARENA_MAX to 1 ensures that the memory usage is restricted to the
specified heap size.

nohup java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar start -root $KVROOT&

When a newly created store with a secure configuration is first started, there are no user
definitions available against which to authenticate access. To reduce risk of unauthorized
access, an admin will only allow you to connect to it from the host on which it is running.
This security measure is not a complete safeguard against unauthorized access. It is
important that you do not provide local access to machines running the data store. In
addition, perform the following steps to minimize the time period in which the admin might
be accessible without full authentication. For more information on maintaining a secure
store see Guidelines for Securing the Configuration.

Chapter 4
Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 20 of 22

7. Start runadmin in security mode on the data store server host (node01). To do this:

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar \
runadmin -port 5000 -host node01 \
-security $KVROOT/security/client.security
Logged in admin as anonymous

8. Use the configure -name command to specify the name of the data store that you want to
configure, and then complete store deployment. For more information, see the Oracle
NoSQL Database Administrator's Guide:

kv-> configure -name mystore
Store configured: mystore
...

9. Create a user account on Microsoft Active Directory. In this example, krbuser is created on
Active Directory.

10. Create mapping user in Oracle NoSQL Database. The username needs to match the full
principal name in the KDC (includes realm name). In this case, user krbuser is defined:

kv-> execute 'CREATE USER "krbuser@TEST08.LOCAL"
IDENTIFIED EXTERNALLY'

For more information on user creation and administration, see User Management.

11. At this point, it is possible to connect to the store as the krbuser. To login, you can use
credential cache, a keytab file or enter the principal password.

12. Set the Kerberos security properties, including the keytab file location, on each client by
specifying them in a security file or through the KVStoreConfig class.

In this example, a security file (mylogin.txt) is used. To login, specify the file location by
using the oracle.kv.security property. For example:

java -Xmx64m -Xms64m \
-Doracle.kv.security=mylogin.txt \
-jar $KVHOME/lib/kvstore.jar runadmin -port 5000 -host localhost
krbuser@TEST08.LOCAL's kerberos password:
Logged in admin as krbuser@TEST08.LOCAL
kv->

The file mylogin.txt should be a copy of the client.security file with additional
properties settings for Kerberos authentication. The file would then contain content like
this:

oracle.kv.auth.username = krbuser@TEST08.LOCAL
oracle.kv.auth.external.mechanism=kerberos
oracle.kv.auth.kerberos.services=node01:oraclenosql/nosql@TEST08.LOCAL
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=$KVROOT/security/client.trust
oracle.kv.ssl.protocols=TLSv1.2
oracle.kv.ssl.hostnameVerifier=dnmatch(CN\=NoSQL)

Chapter 4
Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 21 of 22

In this example, the store nodes are using the single service principal oraclenosql/nosql.
Without specifying keytab or credential cache, Admin CLI prompts for principal password.

For more information on Kerberos security properties, see Kerberos Security Properties.

Chapter 4
Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 22 of 22

5
External Password Storage

Depending on the type of store deployment, there are two ways passwords can be externally
stored. For Enterprise Edition (EE) deployments, Oracle Wallet is used. For Community Edition
(CE) deployments, a simple read protected clear-text password file is used.

In the most basic mode of operation, external passwords are used only by the server to track
the keystore password. User passwords, which are stored securely within the database, can
also be supplied during client authentication.

When a password store is used as a component of a login file, the alias that is used for the
password store type should be the username to which the password applies. For example, for
a user named root, the password should be stored under the alias root.

When a password store is used as part of the server, the alias keystore is used. The user
password store should be a completely different file than the one in the security directory
located under $KVROOT.

Oracle Wallet
An Oracle wallet is a mechanism used to securely store sensitive information such as
passwords that are required for authentication and secure communication. It is only available
in the Enterprise Edition version of Oracle NoSQL Database.

If you want to use a wallet to store your passwords, you must specify wallet as the password
management mechanism while configuring the store security using the securityconfig utility
or makebootconfig utility.

The following steps show you how this can be done.

• Using securityconfig:
Run the securityconfig utility to set up the basic store configuration with security. For
more information on the securityconfig utility, see Configuring Security with
Securityconfig.

java -Xmx64m -Xms64m -jar $KVHOME/lib/kvstore.jar securityconfig

Use the config create command with the -pwdmgr option to specify the password
management mechanism. In this case, the mechanism is wallet.

security-> config create -pwdmgr wallet -root $KVROOT
Enter a password for the Java KeyStore:

• Using makebootconfig:
Run the makebootconfig utility with -store-security configure option. For more
information on the makebootconfig utility, see Configuring Security with Makebootconfig.
For example:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 1 of 5

-root KVROOT -port 5000 \
-host node01 -harange 5010,5020 \
-store-security configure -pwdmgr wallet -capacity 3

Enter a password for the Java KeyStore:

Enter a password for your store and then re-enter it for verification. The configuration tool
generates the security related files. It creates a wallet directory store.wallet that contains the
keystore access password. The keystore access password protects the keys and certificates
used for secure communication within the database cluster. It contains secret information that
should be known only to the server processes. The file should remain on the server side.

The client.security and client.trust files should be copied to the client and used when
connecting to the data store.

Created files
 $KVROOT/security/store.keys
 $KVROOT/security/store.trust
 $KVROOT/security/client.trust
 $KVROOT/security/client.security
 $KVROOT/security/store.wallet/cwallet.sso.lck
 $KVROOT/security/store.wallet/cwallet.sso
 $KVROOT/security/security.xml
Created

You can create and manipulate wallets to store user passwords. User passwords are required
to authenticate individual users or clients to the database for data access and operations
based on the privileges granted to them.

The following commands show you how this can be done.

To create a new wallet, run the wallet create command:

wallet create -dir <wallet directory>

For example:

security-> wallet create -dir $KVROOT/security/loginwallet
Created

To manipulate secrets (passwords), which are associated with a name (alias), run the wallet
secret command:

wallet secret -dir <wallet directory>
{-set | -delete} -alias <alias>

If the -set option is specified, the user is prompted for a new password for the specified alias
and required to verify the new secret.

If the -delete option is specified, the secret is deleted from the store.

Chapter 5
Oracle Wallet

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 2 of 5

For example, to manipulate the secret (password) associated with user John, run the wallet
secret command as follows:

security-> wallet secret -dir $KVROOT/security/loginwallet -set -alias John
Enter the secret value to store: <password for user John>
Re-enter the secret value for verification: <password for user John>
Secret created

Special considerations should be taken if Oracle wallet is used and you are deploying your
Oracle NoSQL Database. For more information, see Guidelines for Deploying Secure
Applications.

In order to authenticate as a user, you must provide the user name and the wallet directory as
security properties while connecting to the data store. To do this, create a copy of the
client.security file present in the security folder that was created earlier. The
client.security file contains the security properties and configuration details required for
clients to securely connect to the data store. In the copied file, include additional properties
containing the user name and the wallet directory.

The following steps show you how this can be done.

Make a copy of the client.security file present in the security folder. Let us call it
user.login.

cp client.security user.login

Include the following additional properties in user.login file:

oracle.kv.auth.username=John
oracle.kv.auth.wallet.dir=$KVROOT/security/loginwallet

Now, you can use user.login to securely connect to the store as user John:

java -Xmx64m -Xms64m -jar lib/kvstore.jar runadmin -port 8000 -host localhost
-security kvroot/security/user.login
Logged in to Admin as John
kv->

Password store file
A password store file is a mechanism used to securely store sensitive information such as
passwords that are required for authentication and secure communication. This mechanism is
available in the Community and Enterprise Edition versions of Oracle NoSQL Database. The
password store file is an unencrypted file. It is read-protected to prevent unauthorized access.

If you want to use a password store file to store your passwords, you must specify password
file (pwdfile) as the password management mechanism while configuring the store security
using the securityconfig utility or makebootconfig utility.

The following steps show you how this can be done.

• Using securityconfig:

Chapter 5
Password store file

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 3 of 5

Run the securityconfig utility to set up the basic store configuration with security. For
more information on the securityconfig utility, see Configuring Security with
Securityconfig.

java -Xmx64m -Xms64m -jar $KVHOME/lib/kvstore.jar securityconfig

Use the config create command with the -pwdmgr option to specify the password
management mechanism. In this case, the mechanism is pwdfile.

security-> config create -pwdmgr pwdfile -root $KVROOT
Enter a password for the Java KeyStore:

• Using makebootconfig:
Run the makebootconfig utility with -store-security configure option. For more
information on the makebootconfig utility, see Configuring Security with Makebootconfig.
For example:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT -port 5000 \
-host node01 -harange 5010,5020 \
-store-security configure -pwdmgr pwdfile -capacity 3

Enter a password for the Java KeyStore:

Enter a password for your store and then re-enter it for verification. The configuration tool
generates the security related files. The file store.passwd is the password store file that
contains the keystore access password. It contains secret information that should be known
only to the server processes. The file should should remain on the server side.

The client.security and client.trust files should be copied to the client and used when
connecting to the data store.

Created files
 $KVROOT/security/store.keys
 $KVROOT/security/store.trust
 $KVROOT/security/client.trust
 $KVROOT/security/client.security
 $KVROOT/security/store.passwd
 $KVROOT/security/security.xml
Created

You can create and manipulate password store files to store user passwords. User passwords
are required to authenticate individual users or clients to the database for data access and
operations based on the privileges granted to them.

The following commands show you how this can be done.

To create a new password store file, run the pwdfile create command:

pwdfile create -file <password store file>

Chapter 5
Password store file

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 4 of 5

For example:

security-> pwdfile create -file $KVROOT/security/login.pwd
Created

To manipulate secrets (passwords), which are associated with a name (alias), run the pwdfile
secret command:

pwdfile secret -file <password store file>
{-set | -delete} -alias <alias>

If the user specifies the -set option, the user is prompted for a new password for the specified
alias and required to verify the new password.

If the -delete option is specified, the alias is deleted from the store.

For example, to manipulate the secret (password) associated with user John, run the pwdfile
secret command as follows:

security-> pwdfile secret -file $KVROOT/security/login.pwd -set -alias John
Enter the secret value to store: <password for user John>
Re-enter the secret value for verification: <password for user John>
Secret created

In order to authenticate as a user, you must provide the user name and the password file as
security properties while connecting to the data store. To do this, create a copy of the
client.security file present in the security folder that was created earlier. The
client.security file contains the security properties and configuration details required for
clients to securely connect to the data store. In the copied file, include additional properties
containing the user name and the password file.

The following steps show you how this can be done.

Make a copy of the client.security file present in the security folder. Let us call it
user.login.

cp client.security user.login

Include the following additional properties in user.login file:

oracle.kv.auth.username=John
oracle.kv.auth.pwdfile.file=$KVROOT/security/login.pwd

Now, you can use user.login to securely connect to the store as user John:

java -Xmx64m -Xms64m -jar lib/kvstore.jar runadmin -port 8000 -host localhost
-security kvroot/security/user.login
Logged in to Admin as John
kv->

Chapter 5
Password store file

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 5 of 5

6
Security.xml Parameters

This chapter describes the parameters that can be set in the security.xml configuration file.
This file is generated by makebootconfig or securityconfig and tells the Oracle NoSQL
Database server how to apply security.

The security.xml file specifies parameters that primarily control network communications. It
contains top-level parameters, plus nested transport parameters. A transport is a grouping of
parameter settings that are specific to a particular type of network connection.

Note

A subset of all the configuration options listed below related to SSL can be specified
through Java system properties, security file properties, or through the KVStoreConfig
API. For more information, see SSL communication properties.

Top-level parameters
The following top-level parameters can be set to the security.xml file:

• internalAuth

Specifies how internal systems authenticate. This parameter must be set to SSL.

• keystore

Identifies the keystore file within the security directory. This parameter is normally set to
store.keys.

• keystoreType

Identifies the type of keystore that the keystore property references. If not set, the JKS
keystore type is used by default.

• keystoreSigPrivateKeyAlias

Specifies the keystore alias that identifies the keypair used by replication nodes to create
signatures. If not specified, the alias "shared" is used.

• truststoreSigPublicKeyAlias

Specifies the truststore alias that identifies the certificate used by replication nodes to
verify signatures. If not specified, the alias "mykey" is used.

• securityEnabled

To enable security this parameter must be set to true.

• certMode

Specifies the key/certificate management model in use. This must be set to "shared".

• truststore

Identifies the truststore file within the security directory. This is normally set to store.trust.

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 1 of 3

• truststoreType

Identifies the type of keystore that the truststore property references. If not set, the JKS
keystore type is used by default.

• walletDir

Identifies a directory within the security directory that contains a wallet password store,
which in turn holds the password for the keystore.

• passwordFile

Identifies a file within the security directory that contains a file password store, which in
turn holds the password for the keystore.

• krbServiceName

Specifies the service name of the Oracle NoSQL Database Kerberos service principal.

• krbInstanceName

Specifies the service principal instance name.

• krbServiceKeytab

Specifies the keytab file name in the security directory that contains the KVStore server
service principal and encrypted copy of principal’s key.

• krbConf

Specifies the location of the Kerberos configuration file that contains the default realm and
KDC information. If not specified, the default value is /etc/krb5.conf.

• krbRealmName

Specifies the realm name of service principal. If not specified, this value is acquired from
the Kerberos configuration file.

• userExternalAuth

Specifies and enables the external mechanism used for authentication. Kerberos is
supported. Set the value to KERBEROS to enable Kerberos authentication. To remove
Kerberos authentication from a running store, set the value to NONE.

Transport parameters
There are three standard transport types:

• ha

Controls the communications between the data replication layer.

• client

Controls most RMI communication.

• internal

Controls the SSL internal authentication mechanism.

The following parameters can be set and associated to a transport type:

• transportType

This parameter should be set to SSL.

• serverKeyAlias

Chapter 6
Transport parameters

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 2 of 3

The keystore alias that identifies the keypair used by the store services, including Storage
Nodes, Replication Nodes, Admins, and Arbiter Nodes. If not specified, the alias "shared"
is used.

• clientKeyAlias

The keystore alias that identifies the keypair used by either a direct connect Java client or
a proxy. See Configuring the Proxy for more details. If not specified, the alias "shared" is
used.

• clientAuthRequired

Should always be true for ha and internal transports and should be false for client
transports.

• clientIdentityAllowed

When clientAuthRequired is true, this specifies what client identification check should be
applied. This should be set to dnmatch(XXX) where XXX is the Distinguished name from
the client certificate.

• serverIdentityAllowed

This specifies what server verification should be performed. This should normally be set to
dnmatch(XXX) where XXX is the Distinguished name from the server certificate.

• allowCipherSuites

This is a comma-delimited list of SSL/TLS cipher suites that should be considered for use.
For valid options, see the Java JSSE documentation corresponding to your JDK version. If
not specified, the JDK default set of cipher suites is allowed.

• allowProtocols

This is a comma-delimited list of SSL/TLS protocols that should be considered for use. For
valid options, see the Java JSSE documentation corresponding to your JDK version. If not
specified, the JDK default set of protocols is used.

• clientAllowCipherSuites

See allowCipherSuites for a description of the format. This parameter sets the cipher suite
requirements only for the initiating side of a connection. If set, it overrides any setting of
allowCipherSuites for the connection initiator.

• clientAllowProtocols

See allowProtocols for a description of the format. This parameter sets the protocol
requirements only for the initiating side of a connection. If set, it overrides any setting of
allowProtocols for the connection initiator.

Chapter 6
Transport parameters

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 3 of 3

7
Encryption

Network data encryption provides data privacy so that unauthorized parties are unable to view
plain text data during transmission across the network.

Oracle NoSQL Database uses SSL-based encryption to encrypt network traffic between
applications and the server, command line-utilities and the server, as well as between server
components.

Note

JMX access requires the use of SSL.

SSL model
Oracle NoSQL Database uses a simple SSL key management strategy. A single, shared, RSA
key is used to protect communication. In this shared key model, you must be sure that there is
a master copy of the security directory and that it gets copied to each server. You should not
run makebootconfig with the -store-security configure option on all servers. Most servers
should have the -store-security enable option specified in their makebootconfig command.

The shared key has an associated self-signed certificate with a Subject Distinguished Name
that is not server-specific. The automatically-created certificates are generated with the
Distinguished Name: CN=NoSQL.

Each server component listens on SSL interfaces and presents the shared certificate to clients
and other servers that connect to it, as proof of its authenticity. Each client and server
component uses a Java truststore containing a copy of the shared certificate to validate the
certificate presented by servers.

When accessing a NoSQL instance that is secured using SSL/TLS, you must specify at least
the following information:

1. You must specify that the client will connect using SSL. This is done by setting the security
property oracle.kv.transport to "ssl".

2. You must specify the Java truststore file that is used to validate the server certificate. This
is done by setting the security property oracle.kv.ssl.trustStore.

For example, to start runadmin in security mode use the following command:

java -Xmx64m -Xms64m \
-Doracle.kv.security=mylogin.txt \
-jar $KVHOME/lib/kvstore.jar runadmin

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 1 of 4

where the file mylogin.txt should be a copy of the client.security file with additional
properties settings for authentication. The file would then contain content like this:

oracle.kv.auth.username=root
oracle.kv.auth.wallet.dir=login.wallet
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=client.trust
oracle.kv.ssl.protocols=TLSv1.2
oracle.kv.ssl.hostnameVerifier=dnmatch(CN\=NoSQL)

Note

If you fail to correctly specify the oracle.kv.transport property or the truststore, the
client will fail to connect to the server.

SSL communication properties
Assuming that the NoSQL server is secured by SSL, client connections from Oracle NoSQL
Database administrative clients will need to connect over SSL as well. This can be achieved by
providing security properties for the connection.

For Oracle-provided command line tools, a security file must be specified. The security
configuration process automatically generates a basic security file (client.security) that can
be used to connect to the store. You may wish to make a copy of this and modify it to include
additional configuration properties.

The minimal configuration needed to connect to a secure store includes setting the following
properties:

• oracle.kv.transport=ssl

Directs KVStore clients and utilities to connect to the KVStore RMI registry via SSL.

• oracle.kv.ssl.trustStore=<path-to-ssl-truststore>

Names a copy of the truststore file generated by makebootconfig or securityconfig to
enable validation of the KVStore server SSL certificate.

Note

You can use SSL to communicate an application with other SSL servers without
using truststore-based certification validation.

In addition to the two properties listed above, the following properties are also supported for
control of SSL communications:

• oracle.kv.ssl.ciphersuites

Specifies a comma-separated list of SSL cipher suites that should be allowed in
communication with the server.

• oracle.kv.ssl.protocols

Specifies a comma-separated list of SSL protocols that should be allowed in
communication with the server.

Chapter 7
SSL communication properties

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 2 of 4

• oracle.kv.ssl.trustStoreType

Specifies the type of truststore being used. If not specified, the default type for the Java
runtime is used.

Note

Applications may also set these security properties through API methods on
KVStoreConfig.

Disk Encryption in a Linux Environment
If you are using the Linux operating system, you can secure your data by configuring disk
encryption to encrypt whole disks (including removable media), partitions, software RAID
volumes, logical volumes, as well as your NoSQL files.

dm-crypt is the Linux kernel's device mapper crypto target which provides transparent disk
encryption subsystem in the Linux kernel using the kernel crypto API.

Cryptsetup is the command line tool to interface with dm-crypt for creating, accessing and
managing encrypted devices. The most commonly used encryption is Cryptsetup for the Linux
Unified Key Setup (LUKS) extension, which stores all of the needed setup information for dm-
crypt on the disk itself and abstracts partition and key management in an attempt to improve
ease of use.

This topic demonstrates how to convert a normal disk to a dm-crypt enabled disk and vice
versa using the command-line interface.

Assume that you have the following disks in your Linux system. The df -h command displays
the amount of available disk space for each disk.

$df -h
/dev/nvme0n1 2.9T 76G 2.7T 3% /ons/nvme0n1
/dev/nvme1n1 2.9T 76G 2.7T 3% /ons/nvme1n1
...

If you nominate disk /dev/nvme0n1 to store databases, then you should encrypt this disk to
secure the data within it.

Normal disk to a dm-crypt enabled disk:

Execute the following commands to convert a normal disk to a dm-crypt enabled disk:

1. Unmount the file system on the disk.

sudo umount -l /dev/nvme0n1

2. Generate the key to be used by luksFormat.

sudo dd if=/dev/urandom of=/home/opc/key0.key bs=1 count=4096

Chapter 7
Disk Encryption in a Linux Environment

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 3 of 4

3. Initialize a LUKS partition and set the initial key.

sudo /usr/sbin/cryptsetup -q -s 512 \
luksFormat /dev/nvme0n1 /home/opc/key0.key

4. Open the LUKS partition on disk/device and set up a mapping name.

sudo /usr/sbin/cryptsetup --allow-discards \
luksOpen -d /home/opc/key0.key /dev/nvme0n1 dm-nvme0n1

5. Create an ext4 file system on the disk.

sudo /sbin/mkfs.ext4 /dev/mapper/dm-nvme0n1

6. Set parameters for the ext4 file system.

sudo /usr/sbin/tune2fs -e remount-ro /dev/mapper/dm-nvme0n1

7. Mount the file system to a specified directory.

sudo mount /dev/mapper/dm-nvme0n1 /ons/nvme0n1

dm-crypt enabled disk to normal disk:

If you want to convert the encrypted disk back to its normal state, execute the following steps:

1. Unmount the file system on the disk.

sudo umount -l /ons/nvme0n1

2. Remove luks mapping.

sudo /usr/sbin/cryptsetup luksClose /dev/mapper/dm-nvme0n1

3. Create an ext4 file system on the disk.

sudo /sbin/mkfs.ext4 /dev/nvme0n1

4. Mount the file system on a specified directory.

sudo mount /dev/nvme0n1 /ons/nvme0n1

Note

If you convert a normal disk to a dm-crypt enabled disk or convert a dm-crypt enabled
disk to a normal disk, you cannot bring the disk back to its previous state without
losing its data. This is because the mkfs.ext4 command will format the disk.
Therefore, all the data stored in the disk will be lost.

Chapter 7
Disk Encryption in a Linux Environment

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 4 of 4

8
Configuring Authentication

Authentication means verifying the identity of someone (a user, server, or other entity) who
wants to use data, resources, or applications. Validating that identity establishes a trust
relationship for further interactions. Authentication also enables accountability by making it
possible to link access and actions to specific identities.

Within a secure Oracle NoSQL Database, access to the database and internal APIs is
generally limited to authenticated users. When a secure Oracle NoSQL Database is first
started, there are no users defined, and login to the administrative interface is allowed without
authentication. However, no data access operations can be performed without user
authentication.

User Management
You can create, modify, or remove users in the Oracle NoSQL Database through the Admin
CLI, where the commands for manipulating users are exposed in SQL format through DDL
API. You can also display information about a specific user account, as well as get a summary
list of registered users. For more information, see the next sections describing each user
management operation.

All user passwords should follow the password security policies. For more information see
Password Complexity Policies.

User Creation
To create a user, use the following command:

CREATE USER user_name
 (IDENTIFIED EXTERNALLY | IDENTIFIED BY password
 [PASSWORD EXPIRE | PASSWORD LIFETIME duration_time_unit])
 [ACCOUNT LOCK|UNLOCK]
 [ADMIN]

where:

• user_name

Assigns a name to identify a user. If you are creating a Kerberos user, the user_name must
match the fully qualified principal name created in the Key Distribution Center (KDC) at
your site. A username is an ID, just as a table name. The formal definition for each ID is as
follows:

ALPHA (ALPHA | DIGIT | UNDER)* ;

Each ID must start with a letter (a-z, A-Z), followed by other letters, numerical values (0 -
9), and underscore (_) characters. There is no ID size limit for the number of characters it
contains. An an ID can consist of as many characters as the memory required to

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 1 of 7

accommodate its length. In practice, most sites have name length recommendations, but
they are not checked or enforced by Oracle NoSQL Database.

Kerberos users must have different names from existing users, since you cannot change
the authentication type of an existing user.

• IDENTIFIED EXTERNALLY

Indicates that Oracle NoSQL Database will use an external mechanism to authenticate the
user. Currently, Oracle NoSQL Database supports only Kerberos as an external
authentication service.

• IDENTIFIED BY "password"

Indicates that Oracle NoSQL Database authenticates the new user by the password you
assign. The new user must log on using that password.

Note

You must specify a user password with quotation marks, for example, "password".

• PASSWORD EXPIRE

Specifies that the assigned password has already expired. With this setting the user is
forced to change the given password as soon as they initially login. They must enter a
password of their choice (which meets any site requirements) before accessing Oracle
NoSQL Database.

• PASSWORD LIFETIME {INT duration_time_unit}

Indicates the password duration unit, which is required for using the assigned password.
Enter the integer time_unit as follows:

time_unit : (SECONDS | MINUTES | HOURS | DAYS)

Using zero (0) with any time unit specifies that the password never expires. Entering a
negative value causes an error. If you do not specify a PASSWORD LIFETIME time_unit,
the lifetime from the global configuration is used. The default for this parameter is 180
days.

Following is a basic example of creating new user Kate, IDENTIFIED BY a password you
assign to her, represented here as "password", with a PASSWORD LIFETIME duration
specifying the integer unit of time as 30 DAYS. We do not recommend using this practice.

kv-> execute 'CREATE USER Kate IDENTIFIED BY \”password\”
 PASSWORD LIFETIME: 30 DAYS'

• ACCOUNT {LOCK | UNLOCK}

Specify ACCOUNT LOCK to lock a user's account to disable access. An Admin can use this
option to remove access from a user, but retain the account. Then, as required, reinstate
the user account specifying ACCOUNT UNLOCK.

• ADMIN Clause

Specify ADMIN to grant the user sysadmin role automatically.

Chapter 8
User Management

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 2 of 7

User Modification
To alter a user, use the following command:

ALTER USER user_name [IDENTIFIED BY password
[RETAIN CURRENT PASSWORD]] [CLEAR RETAINED PASSWORD] [PASSWORD EXPIRE]
[PASSWORD LIFETIME duration] [ACCOUNT UNLOCK|LOCK]

where:

• user_name

Name of user to alter. If specifying a Kerberos user, you can only alter the ACCOUNT
clause options.

• IDENTIFIED Clause

Specify BY password to specify a new password for the user.

• RETAIN CURRENT PASSWORD

Used with BY password clause. If specified, causes the current password defined for the
user to be remembered as a valid alternate password for a limited duration (24 hours by
default), or until the password is explicitly cleared. Only one alternate password may be
retained at a time. This option allows a password to be changed while an application is still
running without affecting its operation.

• CLEAR RETAINED PASSWORD Clause

Erases the current alternate retained password.

• PASSWORD EXPIRE

Causes the user's password to expire immediately, then the user or the user having
sysadmin role must change the password before attempting to log in to the database
following the expiration.

• PASSWORD LIFETIME duration

Specify the duration that current password can be used for authentication.

duration: [0-9]+ unit
unit: S | M | H | SECONDS | MINUTES | HOURS | DAYS

Note that specifying 0 time unit for PASSWORD LIFETIME will make the password as
"never expired".

• ACCOUNT Clause

Specify ACCOUNT LOCK to lock the user's account and disable access. Specify
ACCOUNT UNLOCK to enable the user.

If you are updating the password of an existing user, the new password should comply with the
password security policies. For more information see Password Complexity Policies.

User Removal

DROP USER user_name [CASCADE]

Chapter 8
User Management

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 3 of 7

Use the DROP USER user_name command to remove the specified user account (users cannot
remove themselves), where user_name is the name of the user to drop.

If the user has existing tables, drop each of the tables first, and then drop the user.
Alternatively, use the optional CASCADE option, which drops the user tables along with the user.

For example:

kv-> execute 'DROP USER Kate CASCADE'

Dropping a user occurs immediately. If another user was accessing tables that the user owned,
the tables are no longer available for DML or DDL operations.

User Status

SHOW USER[S] [-name user_name] [-json | -json-v1]

Notice that the S on the SHOW USERS command is optional for the Admin CLI, except for DDL
statements you call with execute. For DDL "SHOW USER -name user_name" shows information
about a single user, and SHOW USERS displays information about all users.

Note

The SHOW USERS command differs between the Admin CLI and the SQL CLI. This
section describes the differences wherever possible. For example, the JSON options
are not available for all the Admin CLI commands.

From the SQL CLI, add one of the -json flags to output the information in JSON.

From the Admin CLI, use the SHOW USERS without further qualification to list all existing users in
the system. For example, here are three users in the system:

kv-> execute 'SHOW USERS'
user: id=u1 name=Ken
user: id=u2 name=Kate
user: id=u3 name=Alice

Note

The User ID values are incremented sequentially as you add each user. They are an
internal mechanism for ensuring each user is unique.

From the Admin CLI, specify SHOW USERS -name user_name to view detailed information about
a specific user:

kv-> execute 'SHOW USERS -name Kate'
id=u2 name=kate enabled=true auth-type=LOCAL retain-passwd=inactive
granted-role=[public]

Chapter 8
User Management

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 4 of 7

From the SQL CLI, you can omit the -name flag:

sql-> show user Kate

From this CLI, entering SHOW USER name automatically interprets name as a user_name.

To specify a Kerberos user from the Admin CLI, the returned auth-type value is EXTERNAL:

kv-> execute 'SHOW USERS krbuser@EXAMPLE.COM'
user: id=u4 name=krbuser@EXAMPLE.COM enabled=true auth-type=EXTERNAL
retain-passwd=inactive granted-roles=[readwrite, public, sysadmin]

User Login
You can use either the -username <user> or the -security <path to security file>
runadmin argument to login to the admin CLI:

• -username <user>

Specifies the username to log in as. This option is used in conjunction with security
properties like oracle.kv.transport.

• -security <path-to-security-file>

Specifies the security file that contains property settings for the login. Relative filename
references within the security file are interpreted relative to the location of the security
properties file. For example, if a security properties file contains the setting
oracle.kv.ssl.truststore=client.trust then, the client.trust file should be in the same
directory as the security properties file. If the file is named with an absolute path then it can
be anywhere in the file system.

The following properties can be set in the file in addition to any of the SSL communication
properties documented in the previous chapter:

oracle.kv.auth.username
oracle.kv.auth.wallet.dir
oracle.kv.auth.pwdfile.file

where the oracle.kv.auth.wallet.dir and oracle.kv.auth.pwdfile.file properties in this file
indicate the location of an EE wallet directory or CE password store file, respectively.

Note

The oracle.kv.security Java system property can be used as an alternative
mechanism for providing a security file path. Setting this system property is
equivalent to adding the -security option to the command line for the Admin CLI .
This property is supported by all tools as well as by the KVStore client library.

Password Management
The Admin can configure the lifetime of users’ passwords for various units of time, or make
them expire immediately. When a password expires, the user needs to renew it to log in Oracle
NoSQL Database successfully. All user passwords should follow the password security
policies. For more information see Password Complexity Policies.

Chapter 8
User Management

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 5 of 7

The two ways to manage passwords from expiring are as follows:

• Explicit Expiration

It makes the current password expire immediately as well as the retained password, if it
exists. For this user, the user must change the password before attempting to log in the
database.

For example:

kv-> execute 'CREATE USER John IDENTIFIED BY \”password\” PASSWORD EXPIRE'

• Password Lifetime Configuration

If a user logs into the database with John’s account, the user must input the new password
for John.

Logged in admin as John
The password of John has expired, it is required to change the
password.
Enter the new password:
Re-enter the new password:

Password lifetime limits the duration that current password can be used for authentication.

Note

This configuration only works for the current password but not the retained one.

For example:

kv-> execute 'ALTER USER John PASSWORD LIFETIME 15 days'

In the example above, the current password for user John will expire after 15 days. After
expiration, if the user John attempts to log into the database, the system displays a
notification to change the password.

A retained password is used to allow a password to be changed while an application is still
running without affecting its operation. It is only saved by the system for a limited duration
(24 hours) and there is no way to specify individual duration for each user. For retained
password, only explicit expiration is supported using the following command:

kv->execute 'ALTER USER John CLEAR RETAINED PASSWORD'

Sessions
When a user successfully logs in, it receives an identifier for a login session that allows a
single login operation to be shared across Storage Nodes. That session has an initial lifetime
associated with it, after which the session is no longer valid.

The server notifies the user with an error once the session is no longer valid. The application
then needs to re-authenticate.

Chapter 8
Sessions

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 6 of 7

Note

The KVStoreFactory API provides a reauthentication handler, which allows the
reauthentication to be completed transparently, except for the delay in reauthentication
processing.

If allowed, the Oracle NoSQL Database client will transparently attempt to extend session
lifetime. For best results, your application should include logic to deal with reauthentication, as
operational issues could prevent it from succeeding initially. In this way, you can avoid the use
of extended logic in your application to reacquire a valid session state.

You can configure the behavior regarding session management to meet the needs of the
application and environment. To do this, you can modify the following parameters using the
plan change-parameters command: sessionTimeout, sessionExtendAllowed and
loginCacheTimeout. For more information, see Security Policy Modifications.

Chapter 8
Sessions

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 7 of 7

9
Configuring Authorization

Oracle NoSQL Database provides role-based authorization which enables the user to assign
kvstore roles to user accounts to define accessible data and allow database administrative
operations for each user account.

Users can acquire desired privileges by role-granting. The user-defined role feature allows the
user to create new roles using kvstore built-in privileges, and add new privilege groups to users
by assigning newly-defined roles to users. You can grant users multiple roles.

For more information, see:

• Privileges

• Roles

• Managing Roles, Privileges and Users

Privileges
A privilege is an approval to perform an operation on one or more Oracle NoSQL Database
objects. In Oracle NoSQL Database, all privileges fall into the two general categories:

• System privileges

This gives a user the ability to perform a particular action, or to perform an action on any
data objects of a particular type.

• Object privileges

This gives a user the ability to perform a particular action on a specific object, such as a
table.

System Privileges
Oracle NoSQL Database provides the following system privileges, covering both data access
and administrative operations:

• SYSDBA

Can perform Oracle NoSQL Database management, including table create/drop/evolve
and index create/drop.

• SYSVIEW

Can view/show system information, configuration and metadata.

• DBVIEW

Can query data object information. The object is defined as a resource in Oracle NoSQL
Database, subject to access control. At present, you can have this privilege to query the
table and index information.

• USRVIEW

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 1 of 15

Can query users' own information, like their own user information, the status of commands
they issued and have access to the current topology information using Oracle NoSQL
Database Java direct driver.

• SYSOPER

Can perform Oracle NoSQL Database system configuration, topology management, user
privilege/role management, diagnostic and maintenance operations. Allows a role to
perform cancel, execute, interrupt, and wait on any plan.

• WRITE_SYSTEM_TABLE

Can make modifications to system tables if the necessary read and write privileges are
granted for the table. The multi-region agent is the intended user of this privilege. The
WRITE_SYSTEM_TABLE privilege is needed when you need to use the Load program to
restore records into a secure data store. See Using the Load Program for more details.
Typically, normal users should not modify system tables.

• READ_ANY

Can get/iterate keys and values in the entire store, including any tables.

• WRITE_ANY

Can put/delete values in the entire store, including any tables.

• CREATE_ANY_TABLE

Can create any table in the store.

• DROP_ANY_TABLE

Can drop any table from the store.

• EVOLVE_ANY_TABLE

Can evolve any table in the store.

• CREATE_ANY_INDEX

Can create any index on any table in the store.

• DROP_ANY_INDEX

Can drop any index from any table in the store.

• READ_ANY_TABLE

Can read from any table in the store.

• DELETE_ANY_TABLE

Can delete data from any table in the store.

• INSERT_ANY_TABLE

Can insert and update data in any table in the store.

Object Privileges
The object privileges defined in Oracle NoSQL Database are:

• READ_TABLE

Can read from a specific table.

• DELETE_TABLE

Can delete data from a specific table.

Chapter 9
Privileges

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 2 of 15

• INSERT_TABLE

Can insert and update data to a specific table.

• EVOLVE_TABLE

Can evolve a specific table.

• CREATE_INDEX

Can create indexes on a specific table.

• DROP_INDEX

Can drop indexes from a specific table.

For more information on the privileges required by the user to access specific KVStore APIs as
well as CLI commands, see KVStore Required Privileges.

The object privileges defined in Oracle NoSQL Database for namespaces are:

• CREATE_ANY_NAMESPACE

Can create any namespace. When creating a new namespace the user will also be able to
READ_IN_NAMESPACE, INSERT_IN_NAMESPACE, DELETE_IN_NAMESPACE on the
respective new namespace.

• DROP_ANY_NAMESPACE

Can drop any namespace.

• CREATE_TABLE_IN_NAMESPACE

Can create tables in a specific namespace.

• DROP_TABLE_IN_NAMESPACE

Can drop tables in a specific namespace.

• EVOLVE_TABLE_IN_NAMESPACE

Can evolve tables in a specific namespace.

• CREATE_INDEX_IN_NAMESPACE

Can create an index in a specific namespace.

• DROP_INDEX_IN_NAMESPACE

Can drop an index in a specific namespace.

• READ_IN_NAMESPACE

Can read items in a specific namespace.

• INSERT_IN_NAMESPACE

Can insert items in a specific namespace.

• DELETE_IN_NAMESPACE

Can delete items in a specific namespace.

• MODIFY_IN_NAMESPACE

Has all the DDL privileges for a specific namespace.

Chapter 9
Privileges

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 3 of 15

Table Ownership
When you are using a secure store, tables are owned by the user that created them. A table's
owner has by default full privileges to the table. That is, the owner has all the table object
privileges.

Note

For tables created in a non-secured store, or tables created prior to the 3.3 release,
the table's owner is null.

Once a table is created, its owner cannot be changed. If a table is dropped and then recreated,
all previously granted table privileges must be granted again.

Parent and child tables are required to have the same owner. However, table privileges are not
automatically granted to the table's children. For example, if READ_TABLE is granted to table
myTable, then that privilege is not automatically granted to any of that table's children. To grant
READ_TABLE to the child tables, you must individually grant the privilege to each child table in
turn.

A table's owner can grant or revoke all table privileges to or from other roles. To do this, use
the GRANT DDL statement. (See Grant Roles or Privileges for details.) To make a user other
than the owner be able to read/insert/delete a specific table, two conditions must be met:

1. The user has the read/insert/delete privilege for the table in question; and

2. The user has the same privilege, or read privilege, for all parent tables of that table.

For example, for table myTable and its child myTable.child1, a non-owner user can only insert
data to myTable.child1 when she has insert privilege (or better) on myTable.child1, and read
and/or insert privilege on myTable.

If you have one or more namespaces in your store, you can grant authorization permissions to
a namespace to determine who can access both the namespace and the tables within it. For
more details, see Granting Authorization Access to Namespaces.

Privilege Hierarchy
In Oracle NoSQL Database, there is a relationship between parts of existing privileges, called
'implications'. Implication means that a privilege may be a superset of some other privileges.

For example, Privilege A implies (=>) B means that privilege A has all the permissions defined
in privilege B.

The following illustration depicts all implication relationship among Oracle NoSQL Database
privileges:

Chapter 9
Privileges

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 4 of 15

Note

All implications are transitive, that is, if A=>B and B=>C, then A=>C.

You can perform read operation on a table in namespace ns1:t1 if the user has any of the
following privileges specified:

• READ_ANY

• READ_ANY_TABLE

• READ_IN_NAMESPACE ns1

• READ_TABLE ns1:t1

Roles
In Oracle NoSQL Database a role is a set of privileges that defines the authority and
responsibility of users assigned to the role. Oracle NoSQL Database provides a set of system
built-in roles. Users can create new roles to group together privileges or other roles.

System Built-in Roles
The following system roles are predefined:

• readonly

Contains the READ_ANY privilege. Users with this role can read all data in the KVStore.

• writeonly

Contains the WRITE_ANY privilege. Users with this role can write to the entire KVStore.

Chapter 9
Roles

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 5 of 15

• readwrite

Contains both the READ_ANY and WRITE_ANY privileges. Users with this role can both
read and write the entire KVStore.

• dbadmin

Contains the SYSDBA privilege. Users with this role can execute data definition
operations, including table and index administration.

• sysadmin

Contains the SYSDBA, SYSVIEW and SYSOPER privileges. Users with this role can
execute the same operations as dbadmin, and have the ability of executing all Oracle
NoSQL Database management tasks. A user created with the -admin option is granted
with the sysadmin role besides the default public role.

• writesystable

Contains the WRITE_SYSTEM_TABLE privilege. Users with this role can modify system
tables if they have the necessary read and write privileges. The multi-region table agent is
the intended user of this role. The WRITE_SYSTEM_TABLE privilege is needed when you need
to use the Load program to restore records into a secure data store. See Using the Load
Program for more details. Typically, normal users should not modify system tables.

• public

Contains the USRVIEW and DBVIEW privileges. A default role for all Oracle NoSQL
Database users, which cannot be revoked. Users with this role can login to database, view
and change their own user information, as well as check and operate the plans owned by
them. Users with this role can also obtain a read-only view of the data object information,
for example, table names, indices, and others. Users with this role can view current
topology of store using Oracle NoSQL Database Java direct driver.

User-Defined Roles
Oracle NoSQL Database allows the user to create new roles using kvstore built-in privileges,
and add new privilege groups to users by assigning defined roles to the users. To perform role
and privilege granting and revocation operations, the user must have a role having SYSOPER
privilege, for example, the sysadmin role.

To manage user-defined roles, use the following commands from the Admin CLI:

kv-> execute 'CREATE ROLE role_name'

kv-> execute 'DROP ROLE role_name'

Note

The names of user-defined roles are case-insensitive, and are not the same as any
existing privilege names or names of system built-in roles. Also, a reserved keyword
cannot be used as a role name. For a list of reserved keywords, see Reserved Words
in the SQL Reference Guide.

The following example shows how to create user-defined roles and grant them to, or revoke
them from users:

Chapter 9
Roles

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 6 of 15

Create two users with the following commands:

kv-> execute 'CREATE USER Ken IDENTIFIED BY \"password\" '

kv-> execute 'CREATE USER Kate IDENTIFIED BY \"password\" '

Note

Use the following guidelines to define a password :

• Password must have at least 9 characters

• Password must have at least 2 upper case letters

• Password must have at least 2 special characters

Now, create two roles – manager with the write_any privilege and employee with the read_any
privilege:

kv-> execute 'CREATE ROLE manager'
kv-> execute 'GRANT WRITE_ANY TO manager'
kv-> execute 'CREATE ROLE employee'
kv-> execute 'GRANT READ_ANY TO employee'

The next example shows granting role employee to role manager (sub-role of manager), and
then grants role manager to user Kate. User Kate then has both manager and employee role,
with both of their privileges, to write_any data to the store, and read_any data.

kv-> execute 'GRANT employee TO ROLE manager'
kv-> execute 'GRANT manager TO USER Kate'

Note

Make sure the security feature is enabled for the store. Else you get the following
error.

Error: User error in query: GrantRoles failed for: Cannot grant or
revoke roles. Please make sure the security
 feature is enabled.

See Configuring Security with Securityconfig for more details.

Chapter 9
Roles

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 7 of 15

Use the following command to see the user’s role status:

kv-> execute 'SHOW USER Kate'
id=u2 name=Kate enabled=true type=LOCAL retain-passwd=inactive
granted-role=[public, manager]

Once the user drops a role, this role and its sub-roles will be revoked automatically from any
users and user-defined roles having this role. However, all of its sub-roles will not be removed
from the Oracle NoSQL Database.

For example:

kv-> execute 'DROP ROLE manager'
kv->execute 'SHOW USERS Kate'
id=u2 name=Kate enabled=true type=LOCAL retain-passwd=inactive
granted-role=[public]

Now, the show roles command will list the roles in the system without the 'manager' role.

If the administrator decides to drop the manager role, the system revokes the manager role
from user Kate automatically, as well as the employee role. In the above example, Kate cannot
perform any read or write operations.

Note

Granting circular roles is not allowed. For example, role manager cannot be granted to
role employee if role employee has previously been granted to role manager.

Managing Roles, Privileges and Users
Oracle NoSQL Database provides a set of security operations, including commands to create,
drop, show, grant or revoke roles to or from users, and to grant or revoke privileges to or from
roles. All these statements can be executed through the SQL CLI or the Admin CLI execute
command, or the API of KVStore.execute() or KVStore.executeSync().

To start Admin CLI, see Start the Administration CLI.

Role Creation

CREATE ROLE role_name

Where, role_name is the case insensitive name of the role.

For example,

kv-> execute 'CREATE ROLE administrator'
Statement completed successfully

Chapter 9
Managing Roles, Privileges and Users

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 8 of 15

Role Removal

DROP ROLE role_name

Where, role_name is the name of the role, which is case insensitive.

For example,

kv-> execute 'DROP ROLE administrator'
Statement completed successfully

Role Status

SHOW [AS JSON] ROLES | ROLE role_name

Where, role_name is the name of the role.

List all available role names by running 'SHOW ROLES', or view the detailed information of a
role if the role name is specified.

For example,

kv->execute 'SHOW ROLES'
role:name=dbadmin
role:name=public
role:name=readonly
role:name=readwrite
role:name=sysadmin
role:name=writeonly

The detailed information of a role can be viewed by specifying the role name:

kv->execute 'SHOW ROLE dbadmin'
name=dbadmin assignable=true readonly=true
granted-privileges=[SYSDBA, DBVIEW]

Note

Assignable indicates whether this role can be explicitly granted to or revoked from a
user.

Object privileges will appear in the form of PRIVILEGE(obj). For example, privilege of
READ_TABLE on table 'emp' will appear as:

kv->execute 'CREATE ROLE emptablereader'
kv->execute 'GRANT READ_TABLE ON emp TO emptablereader'
kv->execute 'SHOW ROLE emptablereader'

Chapter 9
Managing Roles, Privileges and Users

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 9 of 15

name=emptablereader assignable=true readonly=false
granted-privileges=[READ_TABLE(emp)]

Grant Roles or Privileges

GRANT { grant_roles | grant_system_privileges
| grant_object_privileges }
grant_roles ::= role [, role]... TO { USER user | ROLE role }
grant_system_privileges ::=
{system_privilege | ALL PRIVILEGES}
[,{system_privilege | ALL PRIVILEGES}]...
TO role
grant_object_privileges ::=
{object_privileges| ALL [PRIVILEGES]}
[,{object_privileges| ALL [PRIVILEGES]}]...
ON object TO role

where:

• role

The role that is granted.

• user

The user to which the privileges are granted.

• system_privileges

The system privileges that are granted.

• object_privileges

The object privileges that are granted.

• object

The object on which the privilege is granted. Currently only table privileges are supported.

• ALL PRIVILEGES

Grants all of the system privileges. This is a shortcut for specifying all system privileges.

• ALL [PRIVILEGES]

Grants all object privileges defined for the object. The keyword PRIVILEGES is provided
for semantic clarity and is optional.

For example, you can grant a role with fewer privileges to one with more privileges, such as
employee to role manager:

kv-> execute 'GRANT EMPLOYEE TO ROLE manager'
kv-> execute 'GRANT MANAGER TO USER Kate'
Statement completed successfully

If you try to grant the same role in the other direction, an error occurs:

kv-> execute 'GRANT employee to ROLE manager'

Chapter 9
Managing Roles, Privileges and Users

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 10 of 15

You will receive an error of "Could not recursively grant role employee to role manager"
because this would lead to a cyclic definition of role manager.

The user can now add new privileges to their defined role. For example:

kv-> execute 'GRANT READ_ANY TO Kate'

For example, to grant read permission on table T1 to Kate:

kv-> execute 'GRANT READ_TABLE on T1 TO Kate'

See also notes on granting table privileges in Table Ownership.

Revoke Roles or Privileges

REVOKE { revoke_roles | revoke_system_privileges
| revoke_object_privileges}
revoke_roles ::= role [, role]... FROM { USER user | ROLE role }
revoke_system_privileges ::=
{ system_privilege | ALL PRIVILEGES }
[, {system_privilege | ALL PRIVILEGES}]...
FROM role
revoke_object_privileges ::=
{ object_privileges| ALL [PRIVILEGES] }
[, { object_privileges | ALL [PRIVILEGES] }]...
ON object FROM role

where:

• role

The role to revoke.

• user

The user from which the privileges are revoked.

• system_privileges

The system privileges to revoke.

• object_privileges

The object privileges to revoke.

• object

The table from which the privileges are revoked. Currently, the only objects supported are
tables.

• ALL PRIVILEGES

Revokes all of the system privileges that have been granted to the revokee.

• ALL [PRIVILEGES]

Revokes all object privileges defined on the object from the revokee. The keyword
PRIVILEGES is provided for semantic clarity and is optional.

Chapter 9
Managing Roles, Privileges and Users

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 11 of 15

For example, to revoke role 'employee' from role 'manager':

kv-> execute 'REVOKE employee FROM ROLE manager'
Statement completed successfully

To revoke the role 'manager' from user 'Kate':

kv-> execute 'REVOKE manager FROM USER Kate'
Statement completed successfully

Granting Authorization Access to Namespaces
You can manage permission for users or roles to access namespaces and tables. These are
the applicable permissions given to the developers and other users:

Table 9-1 Namespace Privileges and Permissions

Privilege Description

CREATE_ANY_NAMESPACE

DROP_ANY_NAMESPACE

Grant permission to a user or to a role to create or drop any namespace.

GRANT CREATE_ANY_NAMESPACE TO <User|Role>;
GRANT DROP_ANY_NAMESPACE TO <User|Role>;

CREATE_TABLE_IN_NAMESPACE

DROP_TABLE_IN_NAMESPACE

EVOLVE_TABLE_IN_NAMESPACE

Grant permission to a user or to a role to create, drop or evolve tables in a
specific namespace. You can evolve tables to update table definitions, add
or remove fields, or change field properties, such as a default value. You
may even add a particular kind of column, like an IDENTITY column, to
increment some value automatically. Only tables that already exist in the
store are candidates for table evolution. For more details, see Alter Table.

GRANT CREATE_TABLE_IN_NAMESPACE ON NAMESPACE
namespace_name TO <User|Role>;
GRANT DROP_TABLE_IN_NAMESPACE ON NAMESPACE
namespace_name TO <User|Role>;
GRANT EVOLVE_TABLE_IN_NAMESPACE ON NAMESPACE
namespace_name TO <User|Role>user_role;

CREATE_INDEX_IN_NAMESPACE

DROP_INDEX_IN_NAMESPACE

Grant permission to a user or to a role to create or drop an index in a
specific namespace.

GRANT CREATE_INDEX_IN_NAMESPACE ON NAMESPACE
namespace_name TO <User|Role>;
GRANT DROP_INDEX_IN_NAMESPACE ON NAMESPACE
namespace_name TO <User|Role>;

Chapter 9
Managing Roles, Privileges and Users

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 12 of 15

Table 9-1 (Cont.) Namespace Privileges and Permissions

Privilege Description

READ_IN_NAMESPACE

INSERT_IN_NAMESPACE

DELETE_IN_NAMESPACE

Grant permission to a role to read, insert, or delete items in a specific
namespace.

GRANT READ_IN_NAMESPACE ON NAMESPACE namespace_name TO
<User|Role>;
GRANT INSERT_IN_NAMESPACE ON NAMESPACE namespace_name
TO <User|Role>;
GRANT DELETE_IN_NAMESPACE ON NAMESPACE namespace_name
TO <User|Role>;

MODIFY_IN_NAMESPACE Helper label for granting or revoking permissions to all DDL privileges for a
specific namespace to a user or role.

GRANT MODIFY_IN_NAMESPACE ON NAMESPACE namespace_name
TO <User|Role>;
REVOKE MODIFY_IN_NAMESPACE ON NAMESPACE namespace_name
TO <User|Role>;

Grant privileges on a namespace

You can grant permissions to a role or a user on a namespace. Following is the syntax for
granting permissions on a namespace:

GRANT {Namespace-scoped privileges} ON NAMESPACE namespace_name TO <User|Role>
Namespace-scoped privileges ::= namespace_privilege [, namespace_privilege]

where,

• namespace_privilege

The namespace privilege that can be granted to a user or a role. For more information on
the applicable privileges, see the Privilege column in the Namespace Privileges and
Permissions table.

• namespace_name

The namespace that the user wishes to access.

• <User|Role>

The name of the KVStore user or the role of a user.

For example, you can grant read access to a user for all the tables in the namespace.

Example:

GRANT READ_IN_NAMESPACE ON NAMESPACE ns1 TO Kate;

Here, ns1 is the namespace and Kate is the user.

Chapter 9
Managing Roles, Privileges and Users

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 13 of 15

Note

The label MODIFY_IN_NAMESPACE can be used as a helper for granting or revoking
permissions to all DDL privileges for a specific namespace to a user or role.

Revoke privileges on a namespace

You can revoke the permissions from a role or a user on a namespace. Following is the syntax
for revoking the permissions on a namespace.

REVOKE {Namespace-scoped privileges} ON NAMESPACE namespace_name FROM <User|
Role>
Namespace-scoped privileges ::= namespace_privilege [, namespace_privilege]

where,

• namespace_privilege

The namespace privilege that can be revoked from a user or a role. For more information
on the applicable privileges, see the Privilege column in the Namespace Privileges and
Permissions table.

• namespace_name

The namespace that the user wishes to access.

• <User|Role>

The name of the KVStore user or the role of a user.

For example, you can revoke the read access from a user for all the tables in the namespace.

Example:

REVOKE READ_IN_NAMESPACE ON NAMESPACE ns1 FROM Kate;

Here, ns1 is the namespace and Kate is the user.

Note

The label MODIFY_IN_NAMESPACE can be used as a helper for granting or revoking
permissions to all DDL privileges for a specific namespace to a user or role.

The following example shows:

1. Creation of a namespace and a table.

2. Revocation of the privilege to create any other new tables in the namespace, but allow the
table to be dropped.

Example: Namespace Scoped Privileges

CREATE NAMESPACE IF NOT EXISTS ns1;
GRANT MODIFY_IN_NAMESPACE ON NAMESPACE ns1 TO usersRole;
CREATE TABLE ns1:t (id INTEGER, name STRING, primary key (id));

Chapter 9
Managing Roles, Privileges and Users

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 14 of 15

INSERT INTO ns1:t VALUES (1, 'Smith');
SELECT * FROM ns1:t;
REVOKE CREATE_TABLE_IN_NAMESPACE ON NAMESPACE ns1 FROM usersRole;
DROP NAMESPACE ns1 CASCADE;

Note

You can save all of the above commands as a sql script and execute it in a single
command. If you want to execute any of the above commands outside of a SQL
prompt, remove the semi colon at the end.

Chapter 9
Managing Roles, Privileges and Users

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 15 of 15

10
Security Policies

The following default policies in Oracle NoSQL Database may be used to tailor system
behavior to meet your security requirements:

• Login sessions have a limited duration of validity. After that duration has passed, the
session needs re-authentication.

• Session login errors are tracked at the component level. Access to an account for a single
client host is temporarily disabled if too many failed logins occur at that component within a
configurable time duration.

Note

Both of these behaviors can be customized by modifying the values of their
respective security parameters. For more information, see the following section.

Security Policy Modifications
You can use the plan change-parameters command in order to change a security policy in the
system:

plan change-parameters -security <id>...

Security parameters are applied implicitly and uniformly across all SNs, RNs and Admins.

The following security parameters can be set:

• sessionTimeout=<Long TimeUnit>

Specifies the length of time for which a login session is valid, unless extended. The default
value is 24 hours.

• sessionExtendAllowed=<Boolean>

Indicates whether session extensions should be granted. Default value is true.

• accountErrorLockoutThresholdInterval=<Long TimeUnit>

Specifies the time period over which login error counts are tracked for account lockout
monitoring. The default value is 10 minutes.

• accountErrorLockoutThresholdCount=<Integer>

Number of invalid login attempts for a user account from a particular host address over the
tracking period needed to trigger an automatic account lockout for a host. The default
value is 10 attempts.

• accountErrorLockoutTimeout=<Long TimeUnit>

Time duration for which an account will be locked out once a lockout has been triggered.
The default value is 30 minutes.

• loginCacheTimeout=<Long TimeUnit>

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 1 of 2

Time duration for which KVStore components cache login information locally to avoid the
need to query other servers for login validation on every request. The default value is 5
minutes.

Chapter 10
Security Policy Modifications

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 2 of 2

11
Audit Logging

Oracle NoSQL Database monitors and records security sensitive activities. These log
messages are available through the SN-local log files and the store-wide logging view. High
risky security activities are also visible by using the show events command.

Security Log Messages
For ease of grepping and analysis, the auditing log message uses KVAuditInfo as a prefix. For
example:

General audit logging:
<Timestamp>: KVAuditInfo[user: <user_name>,
clienthost: <client_host>, operation:
<operation_description>, status: <SUCCESS/FORBIDDEN>,
reason: <failure_reason>]

General audit logging:
Particular logging for successful execution of plan:
<Timestamp>: KVAuditInfo[<plan_name>, owned by <plan_owner>,
executed by <plan_executor> from <client_host>,
state=<end state of plan execution>]

Note

If the log files are compressed, you can use the gzcat command to view the contents
without uncompressing the zipped files. Use the zgrep command to search the
compressed log files. You can also uncompress the files into another directory. For
more information, see Log File Compression in the Administrator's Guide.

To distinguish security related messages from standard log messages, the following two
security related logging levels are introduced:

• SEC_WARNING

Logs unauthenticated login, unauthorized read/write data access and unauthorized
execution of CLI commands. Unauthenticated login does not log the reasons of failure.

• SEC_INFO

Logs the success of a user login and the successful execution of plans that require
dbadmin or sysadmin role related privileges.

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 1 of 1

12
Keeping Oracle NoSQL Database Secure

This chapter provides a set of guidelines to keep your Oracle NoSQL Database secure. To
maximize the security features offered by Oracle NoSQL Database, it is imperative that the
database itself be well protected.

Security guidelines provide advice about how to securely configure Oracle NoSQL Database
by recommending security practices for operational database deployments.

Guidelines for Securing the Configuration
Follow these guidelines to keep the security configuration secure:

• The initial security configuration should be generated on a host that is not intended for
KVStore operational use, using the securityconfig create config command.

• Storage Nodes should be deployed by running makebootconfig with the -store-security
enable argument. The configured security directory from the reference host should be
copied to the new Storage Node KVROOT using a secure copy mechanism prior to
starting the store.

• The security configuration should be kept in a protected location for future use.

• Updates to the security configuration should be performed on the configuration host and
copied to the operational Storage Node hosts using a secure copy mechanism.

• After the first user is configured but before allowing applications to use the store, you may
wish to restart all SNA processes on hosts running Admin processes and then use the
Admin CLI show users command to ensure that there is only the single user definition that
is expected. This step validates that no other user creation occurred during the period
when administrative login was not required.

Guideline for Securing Store Topology
All Oracle NoSQL Database users will be granted a default role public, which cannot be
revoked.

Authenticated applications using Oracle NoSQL Database Java direct driver will keep a
memory copy of the current topology of the database store for dispatching requests to the right
node in the store. All database users can view the content of the current topology of the
database store. A topology in Oracle NoSQL Database has the basic information about store
layout including zones, storage nodes, shards, replication nodes, and administrative services,
as well as hostnames and registry ports of each storage node. For more information on
topologies see topologies in the Concepts Guide.

If there is a security and compliance requirement that the access of topology information must
be limited to a certain group of users, applications should access Oracle NoSQL Database
through Oracle NoSQL Database Proxy using various Oracle NoSQL Database Drivers instead
of Java direct driver. For more information on Oracle NoSQL Database Drivers, see Oracle
NoSQL Database Drivers in Developer's Guide. Oracle NoSQL Database Proxy should be
deployed as an intermediary between applications and Oracle NoSQL Database store in this

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 1 of 29

case. For more information on the Oracle NoSQL Database Proxy, see Oracle NoSQL
Database Proxy in the Administrator's Guide.

Guidelines for Deploying Secure Applications
Follow these guidelines when deploying your Oracle NoSQL Database and if the properties
include oracle.kv.auth.wallet.dir in order to use Oracle wallet to hold a user password:

• Include the kvstore-ee.jar file in the application classpath.

• The kvstore-ee.jar file should be made available on the application machine.

Guidelines for Securing the SSL protocol
Follow these guidelines to keep the SSL protocol secure:

• When configuring SSL communication for your store, you should consider both
performance and security.

• For a more secure store you should opt for higher security where possible.

• The Oracle JDK 7 supports TLSv1.2 as an SSL protocol level.

Guidelines for Disabling TLSv1.1 and TLSv1 Protocols
Update TLS protocol configuration to TLSv1.2 only

NoSQL Database has disabled TLSv1 and TLSv1.1 protocols in the default security
configuration, the only protocol enabled is TLSv1.2.

Upgrade Implication:

This change doesn't remove the support of TLSv1.1 and TLSv1.2 but only disable them in the
default security configuration. Upgrading to 24.1.11 release with security configuration created
by previous release won't have compatibility issue, but it's recommended to disable the
TLSv1.1 and TLSv1 in the existing NoSQL Database installation.

Prerequisite:

Before updating the TLS protocol to TLSv1.2 only, you must ensure the existing security
configuration has already enabled the TLSv1.2 protocol, otherwise your NoSQL Database
server won't be functional during the update.

1. . Check if protocol settings in the security configuration of your NoSQL Database server
has enabled TLSv1.2 protocol. Run securityconfig utility to verify if protocols have
TLSv1.2 included.

java -jar $KVHOME/lib/kvstore.jar securityconfig config show -secdir
 $KVROOT/security

If protocols in the security configuration don't have TLSv1.2, follow the section "Enable
TLSv1.2 protocol" to enable TLSv1.2 first.

2. Check the client application login properties. Verify if the following NoSQL login property
has TLSv1.2.

Chapter 12
Guidelines for Deploying Secure Applications

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 2 of 29

For example:

oracle.kv.ssl.protocols="TLSv1.2,TLSv1.1,TLSv1"

Add TLSv1.2 and restart the client application if it wasn't specified in this security property.

Enable TLSv1.2 protocol

This is the procedure to enable TLSv1.2 in the NoSQL Database security configuration. It
assumes the existing security configuration only has enabled TLSv1.1 and TLSv1.

1. Make two copies of the existing security configuration directory. Keep one as backup, and
use the other for updating the protocols.

2. Update the SSL protocols in the copied security configuration directory.

java -jar $KVHOME/lib/kvstore.jar securityconfig \
 config update -secdir security \
 -param "allowProtocols=TLSv1.2,TLSv1.1,TLSv1" \
 -param "clientAllowProtocols=TLSv1.2,TLSv1.1,TLSv1"

3. Verify if protocols in the updated security configuration has TLSv1.2 enabled.

java -jar $KVHOME/lib/kvstore.jar securityconfig config show -secdir
 $KVROOT/security

Verify if the protocol has TLSv1.2.

4. Copy the updated security directory to each Storage Node, and replace the old security
configuration directory. Then, check that all Replication Nodes (RN) are online and restart
each Storage Node, one by one, using the following command.

java -jar $KVHOME/lib/kvstore.jar stop -root $KVROOT
java -jar $KVHOME/lib/kvstore.jar start -root $KVROOT&

5. Start the Admin CLI, and check that all Replication Nodes (RNs) are up using the ping
command:

java -jar $KVHOME/lib/kvstore.jar runadmin -host localhost -port 5000 -
security
$KVROOT/security/client.security

Output:

Logged in admin as anonymous

kv-> ping

Update TLS protocol to TLSv1.2 only

This is the procedure to update the existing security configuration to only enable protocol
TLSv1.2. It assumes the TLSv1.2 is already enabled in the security configuration.

1. Update login properties of the client application. Update oracle.kv.ssl.protocols to have
TLSv1.2 only (if it exists).

Chapter 12
Guidelines for Disabling TLSv1.1 and TLSv1 Protocols

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 3 of 29

2. Make two copies of existing security configuration directory. Keep one as backup, and use
the other one for updating the protocols.

3. Update the SSL protocols in the copied security configuration directory.

java -jar $KVHOME/lib/kvstore.jar securityconfig \
config update -secdir security \
-param "allowProtocols=TLSv1.2" -param "clientAllowProtocols=TLSv1.2"

4. Verify if protocols in the updated security configuration has only TLSv1.2.

java -jar $KVHOME/lib/kvstore.jar securityconfig config show -secdir
 $KVROOT/security

Verify if protocols has TLSv1.2 only.

5. Copy the updated security directory to each server node (Storage Node), and replace the
old security configuration directory. Then, check that all Replication Nodes are online and
restart each Storage Node, one by one, using the following command:

java -jar $KVHOME/lib/kvstore.jar stop -root $KVROOT
java -jar $KVHOME/lib/kvstore.jar start -root KVROOT&

6. Start the Admin CLI, and check that all Replication Nodes (RNs) are up using the ping
command:

java -jar $KVHOME/lib/kvstore.jar runadmin -host localhost -port 5000 -
security
$KVROOT/security/client.security

Output:

Logged in admin as anonymous

kv-> ping

Guidelines for enabling TLSV1.3 protocol
Update TLS protocol configuration to enable TLSv1.3

Oracle NoSQL Database now supports TLSv1.3 protocol. To run NoSQL Database and
application with TLSv1.3, you must use JDK11 or later, JDK8 Update 261 (JDK 8u261) or later.
Since 21.3 release, NoSQL Database adds TLSv1.3 protocol to the default TLS protocols of
security configuration created via makebootconfig or securityconfig utility. It's recommended
to update the TLS protocol of existing security configuration to latest protocol TLSv1.3 since it
is the most secure.

Enable TLSv1.3 protocol

This is the procedure to update the existing security configuration to enable protocol TLSv1.3.
It assumes the existing security configuration is made by previous NoSQL Database releases,
which has TLSv1.2 enabled.

Chapter 12
Guidelines for enabling TLSV1.3 protocol

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 4 of 29

1. Update login properties of client application. Add TLSv1.3 to oracle.kv.ssl.protocols if it
exists. Then restart the client application to make the protocol change to take effect.

oracle.kv.ssl.protocols="TLSv1.3,TLSv1.2"

2. Make two copies of existing security configuration directory of the storage node. Keep one
as backup, and the other one for updating the protocols.

Note

This step is to update the security configuration of storage node used by NoSQL
Database server, as opposed to the client application changes in the previous
step.

3. Update the SSL protocols in the copied security configuration directory.

java -jar $KVHOME/lib/kvstore.jar securityconfig \
config update -secdir security \
-param "allowProtocols=TLSv1.3,TLSv1.2" \
-param "clientAllowProtocols=TLSv1.3,TLSv1.2"

4. Verify if protocols in the updated security configuration has TLSv1.3.

java -jar $KVHOME/lib/kvstore.jar securityconfig config
show -secdir $KVROOT/security

Verify if the protocol has TLSv1.3.

5. Copy the updated security directory to each Storage Node, and replace the old security
configuration directory. Then, check that all Replication Nodes (RN) are online and restart
each Storage Node, one by one, using the following command.

java -jar $KVHOME/lib/kvstore.jar stop -root $KVROOT
java -jar $KVHOME/lib/kvstore.jar start -root $KVROOT&

6. Start the Admin CLI, and check that all Replication Nodes (RNs) are up using the ping
command:

java -jar $KVHOME/lib/kvstore.jar runadmin -host localhost -port 5000 -
security
$KVROOT/security/client.security

Output:

Logged in admin as anonymous

kv-> ping

Chapter 12
Guidelines for enabling TLSV1.3 protocol

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 5 of 29

Update TLS protocol to TLSv1.3 only

This is the procedure to enable TLSv1.3 only in NoSQL Database security configuration. It
assumes the existing security configuration has already TLSv1.3 protocol, if not, follow the last
procedure to enable TLSv1.3 first.

After this change, all client application only can establish TLS connections with NoSQL
Database using TLSv1.3 protocol. Before this change, you must ensure oracle.kv.ssl.protocols
in login properties file of the client applications have TLSv1.3 enabled, otherwise follow the
section "Enable TLSv1.3 protocol" to enable TLSv1.3 first.

1. Make two copies of existing security configuration directory. Keep one as backup, and use
the other one for updating the protocols.

2. Update the SSL protocols in the copied security configuration directory.

java -jar $KVHOME/lib/kvstore.jar securityconfig \
config update -secdir security \
-param "allowProtocols=TLSv1.3" \
-param "clientAllowProtocols=TLSv1.3"

3. Verify if protocols in the updated security configuration has TLSv1.3 only.

java -jar kv/lib/kvstore.jar securityconfig config
show -secdir KVROOT/security

Verify if protocols has TLSv1.3 only.

4. Copy the updated security directory to each Storage Node, and replace the old security
configuration directory. Then, check that all Replication Nodes (RN) are online and restart
each Storage Node, one by one, using the following command.

java -jar $KVHOME/lib/kvstore.jar stop -root $KVROOT
java -jar $KVHOME/lib/kvstore.jar start -root $KVROOT&

5. Start the Admin CLI, and check that all Replication Nodes (RNs) are up using the ping
command:

java -jar $KVHOME/lib/kvstore.jar runadmin -host localhost -port 5000 -
security
$KVROOT/security/client.security

Output:

Logged in admin as anonymous

kv-> ping

Guidelines for using JMX securely
Follow these guidelines to securely use your Java Management Extensions (JMX) agent:

Chapter 12
Guidelines for using JMX securely

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 6 of 29

• If you enable JMX for a secure store, your JMX monitoring application must access the
store using SSL.

• You should consult the configuration details for the JMX product you wish to use. In this
case, you can use jconsole with a secure store by running the following command:

jconsole -J-Djavax.net.ssl.trustStore=/home/nosql/client.trust \
node01:5000

where node01 is the registry host to be monitored and 5000 is the registry port configured
for the Storage Node.

• If you create the client.trust in PKCS12 format and protected by password, you need to
specify the password for client.trust by running the jconsole command:

jconsole -J-Djavax.net.ssl.trustStore=/home/nosql/client.trust \
-J-Djavax.net.ssl.trustStorePassword=<client.trust password> node01:5000

Guidelines for using PKCS12 Java KeyStore
Oracle NoSQL Database supports Java KeyStore in PKCS12 format. From the 22.1 release
onward, NoSQL Database switched the KeyStore type of default security configuration created
by makebootconfig or securityconfig utility to PKCS12.

Note

Oracle recommends that you switch the KeyStore format of the existing security
configuration to PKCS12, which is an industry-standard format.

Default Security Configuration
Starting from release 22.1, in the default security configuration, the database server KeyStore
and TrustStore, typically named store.keys and store.trust respectively, are created in PKCS12
format and protected by password specified using -kspwd.

The TrustStore, client.trust, that is used by the client application is created in PKCS12 format
and password-less, by default, if no password is specified using -ctspwd. Additionally, if the
Java used to run the configuration utilities does not support password-less PKCS12 store,
utilities fall back to create the client.trust in JKS format. The Java version supporting password-
less PKCS12 must have security properties keystore.pkcs12.certProtectionAlgorithm and
keystore.pkcs12.macAlgorithm available. The minimum JAVA versions required for this feature
are JDK 8u301 for Java 8, JDK 11.0.12 for Java 11, and the first release of Java 17.

When creating the configuration, you can create the client.trust in PKCS12 format and
protected by the password specified using -ctspwd. If you are using the client.trust protected
by password, the password must be specified in the login properties file. The following two
login properties are supported:

• oracle.kv.ssl.trustStorePassword

• oracle.kv.ssl.trustStorePasswordAlias

The client application can specify the password in the login properties file using the
oracle.kv.ssl.trustStorePassword property or store the password in External

Chapter 12
Guidelines for using PKCS12 Java KeyStore

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 7 of 29

Password Storage and specify only the alias name using the
oracle.kv.ssl.trustStorePasswordAlias property.

Example:

#Security property settings for communication with KVStore servers using
password
oracle.kv.ssl.trustStore=client.trust
oracle.kv.ssl.trustStoreType=PKCS12
oracle.kv.ssl.trustStorePassword=<client.trust password>
oracle.kv.ssl.protocols=TLSv1.3,TLSv1.2
oracle.kv.ssl.hostnameVerifier=dnmatch(CN\=NoSQL)
oracle.kv.transport=ssl

#Security property settings for communication with KVStore servers using
password alias
oracle.kv.ssl.trustStore=client.trust
oracle.kv.ssl.trustStoreType=PKCS12
oracle.kv.ssl.trustStorePasswordAlias=cts
oracle.kv.ssl.protocols=TLSv1.3,TLSv1.2
oracle.kv.ssl.hostnameVerifier=dnmatch(CN\=NoSQL)
oracle.kv.transport=ssl
oracle.kv.auth.wallet.dir=<wallet_directory>
oracle.kv.auth.username=<user_name>

Updating KeyStore Type of an Existing Security Configuration
The security configuration created by releases earlier than NoSQL Database Release 22.1
generates all Java KeyStores in JKS format. You need to perform the following steps to
upgrade Java KeyStores to PKCS12 format.

1. Copy the existing security configuration directory from one of the NoSQL Database storage
nodes.

2. Run the following command to update the KeyStore to PKCS12 format:

java -jar $KVHOME/lib/kvstore.jar securityconfig config update -secdir
<security dir> -kstype PKCS12 [-ctspwd <client.trust password>]

This command converts the existing KeyStore (store.keys) and TrustStore (store.trust)
used by the NoSQL Database server to PKCS12 format and reuses the KeyStore
password of stores in the existing configuration. Similar to the configuration creation, this
command also creates a new password-less client.trust in PKCS12 format, if no password
is specified using -ctspwd. If Java doesn't support the password-less PKCS12 store, it
falls back to creating a JKS format client.trust.

3. Run the show security configuration command to verify that the store type is updated to
PKCS12 format.

java -jar $KVHOME/lib/kvstore.jar securityconfig config show -secdir
security
 Security parameters:
 certMode=shared
 internalAuth=ssl

Chapter 12
Guidelines for using PKCS12 Java KeyStore

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 8 of 29

 keystore=store.keys
 keystorePasswordAlias=keystore
 keystoreType=PKCS12
 securityEnabled=true
 truststore=store.trust
 truststoreType=PKCS12
 walletDir=store.wallet

 internal Transport parameters:
 ...
 Keystore: security/store.keys
 Keystore type: PKCS12
 Keystore provider: SUN

 Your keystore contains 1 entry

 shared, Feb 11, 2022, PrivateKeyEntry,
 Certificate fingerprint (SHA-256): AA:98:B8:C6...

 Keystore: security/store.trust
 Keystore type: PKCS12
 Keystore provider: SUN

 Your keystore contains 1 entry

 mykey, Feb 11, 2022, trustedCertEntry,
 Certificate fingerprint (SHA-256): AA:98:B8:C6...

4. In the configuration directory, verify that there is a backup of each Java KeyStore named
with the suffix '.old'.

ls $KVROOT/security
 store.wallet
 store.trust.old
 store.trust
 store.keys.old
 store.keys
 security.xml
 client.trust.old
 client.trust
 client.security

5. Verify that the base login properties file, client.security, is updated with PKCS12
format.

cat security/client.security
 #Security property settings for communication with KVStore servers
 #Fri Feb 11 10:59:39 PST 2022
 oracle.kv.ssl.trustStore=client.trust
 oracle.kv.ssl.trustStoreType=PKCS12
 oracle.kv.ssl.protocols=TLSv1.2
 oracle.kv.ssl.hostnameVerifier=dnmatch(CN\=NoSQL)
 oracle.kv.transport=ssl

Chapter 12
Guidelines for using PKCS12 Java KeyStore

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 9 of 29

6. Copy the updated security directory to each server node (Storage Node), and replace the
old security configuration directory. Then, check that all Replication Nodes are online and
restart each Storage Node, one by one, using the following command:

java -jar $KVHOME/lib/kvstore.jar stop -root $KVROOT
java -jar $KVHOME/lib/kvstore.jar start -root KVROOT&

7. Start the Admin CLI, and check that all Replication Nodes (RNs) are up using the ping
command:

java -jar $KVHOME/lib/kvstore.jar runadmin -host localhost -port 5000 -
security
$KVROOT/security/client.security

Output:

Logged in admin as anonymous

kv-> ping

Updating SSL Keys and Certificates
When updating the SSL keys and certificates with a new security configuration using
Guidelines for Updating SSL Keys and Certificates, the merge-trust command automatically
converts the merged truststore (store.trust) used by the NoSQL Database server to PKCS12
format and protected by the original KeyStore password of the existing security configuration. It
also creates a new password-less client.trust in PKCS12 format if no password is specified
using -ctspwd. If the Java used to run merge-trust command doesn't support the
password-less PKCS12 store, it falls back to create a JKS client.trust.

After updating the key and certificate, if you want to keep KeyStore and truststore in JKS
format, you need to create the new security configuration to be merged by running the
following command:

java -jar $KVHOME/lib/kvstore.jar securityconfig config /
create -root /Users/my_name/tmp/kvroot/newKey -kspwd 123456 -kstype JKS

Guidelines for Updating Keystore Passwords
Follow these steps to update the keystore passwords:

1. In the security directory on the configuration host run the keytool command. You can
provide the new passwords through the keytool interactive prompt or using arguments. For
example, to set the new key and store passwords for store.keys as well as the new store
password for store.trust using the keytool prompt:

Chapter 12
Guidelines for Updating Keystore Passwords

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 10 of 29

Note

The 3 new passwords must be equal, otherwise the store cannot be successfully
restarted.

keytool -keypasswd -keystore store.keys -alias shared
Enter keystore password:
New key password for <shared>:
Re-enter new key password for <shared>:

keytool -storepasswd -keystore store.keys
Enter keystore password:
New keystore password:
Re-enter new keystore password:

keytool -storepasswd -keystore store.trust
Enter keystore password:
New keystore password:
Re-enter new keystore password:

You could also run the keytool command and set the new passwords using arguments
instead. For example:

keytool -keypasswd -keystore store.keys \
-alias shared -keypass <old_pwd> -new <new_pwd> -storepass <old_pwd>

keytool -storepasswd -keystore store.keys \
-storepass <old_pwd> -new <new_pwd>

keytool -storepasswd -keystore store.trust \
-storepass <old_pwd> -new <new_pwd>

2. If using a Password File store, skip ahead to the next step. To update the keystore
password for wallets, use the following command:

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar securityconfig \
wallet secret -directory store.wallet -set -alias keystore

Securityconfig will prompt for the new password. The new password should match the new
one provided earlier to the keytool command.

3. If using Password File stores instead of wallets, use the following command to update the
keystore password:

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar securityconfig \
pwdfile secret -file store.pwd -set -alias keystore

Chapter 12
Guidelines for Updating Keystore Passwords

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 11 of 29

Securityconfig will prompt for the new password. The new password should match the new
one provided earlier to the keytool command.

4. Copy the updated store.keys, store.trust file, and either store.pwd or the contents of
store.wallet to the security directory on each host and restart the Storage Node using the
following commands:

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar stop -root $KVROOT

Note

Before starting the SNA, set the environment variable MALLOC_ARENA_MAX to 1.
Setting MALLOC_ARENA_MAX to 1 ensures that the memory usage is restricted to the
specified heap size.

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar start -root $KVROOT&

Guidelines for Updating Kerberos Passwords
The password of Kerberos principal should be periodically changed. To do this, you can either
manually specify it by using kadmin.local or automatically randomize principal keys by using
the config renew-keytab command of the securityconfig tool.

The syntax for this command is:

config renew-keytab -root <secroot> [-secdir <security dir>]
[-keysalt <enc:salt[,enc:salt,..]>]
[-kadmin-path <kadmin utility path>]
[-instance-name <database instance name>]
[-admin-principal <kerberos admin principal name>]
[-kadmin-keytab <keytab file>]
[-kadmin-ccache <credential cache file>]

where:

• -keysalt

Sets the list of encryption types and salt types to be used for any new keys created. The
default value is des3-cbc-sha1:normal,aes128-cts-hmac-sha1-96:normal,arcfour-
hmac:normal.

• -kadmin-path

Indicates the absolute path of Kerberos kadmin utility. The default value is /usr/kerberos/
sbin/kadmin.

• -instance-name

Specifies the service principal name. The default value is the fully qualified domain name
(FQDN) of the Storage Node where Oracle NoSQL Database is running.

• -admin-principal

Chapter 12
Guidelines for Updating Kerberos Passwords

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 12 of 29

Specifies the principal used to login to the Kerberos admin interface. This is required while
using kadmin keytab or password to connect to the admin interface.

• -kadmin-keytab

Specifies the location of a Kerberos keytab file that stores Kerberos admin user principals
and encrypted keys. The security configuration tool will use the specified keytab file to
login to the Kerberos admin interface.

You need to specify the -admin-principal flag when using keytab to login to the Kerberos
admin, otherwise the correct admin principal will not be recognized. This flag cannot be
specified in conjunction with the -kadmin-ccache flag.

• -kadmin-ccache

Specifies the complete path name to the Kerberos credentials cache file that should
contain a service ticket for the kadmin/ADMINHOST. ADMINHOST is the fully-qualified
hostname of the admin server or kadmin/admin service.

If not specified, the user is prompted to enter the password for principal while logging to
the Kerberos admin interface. This flag cannot be specified in conjunction with the -
kadmin-keytab flag.

To manually update the Kerberos principal password instead, you should follow these steps:

1. Use kadmin.local utility to change the service principal password:

kadmin.local: cpw nosql/myhost
Enter password for principal nosql/myhost@EXAMPLE.COM
Re-enter password for principal nosql/myhost@EXAMPLE.COM

2. Regenerate the keytab file for Oracle NoSQL Database service principal.

kadmin.local: ktadd –norandkey –k new.keytab

3. Copy the new keytab file for Oracle NoSQL Database service principal to each Storage
Node. For example:

scp new.keytab kvuser@mystore:KVROOT/security/store.keytab
...

4. Validate the keytab file by comparing the key version number (kvno):

kadmin.local:getprinc nosql/myhost@EXAMPLE.COM
Principal: nosql/myhost@EXAMPLE.COM
Expiration date: [never]
Last password change: Thu Jun 04 03:16:38 UTC 2015
Password expiration date: [none]
Maximum ticket life: 1 day 00:00:00
Maximum renewable life: 0 days 00:00:00
Last modified: Thu Jun 04 03:16:38 UTC 2015
(root/admin@ORACLE.EXAMPLE.COM)
Last successful authentication: [never]
Last failed authentication: [never]
Failed password attempts: 0
Number of keys: 4
Key: vno 12, aes256-cts-hmac-sha1-96
Key: vno 12, aes128-cts-hmac-sha1-96
Key: vno 12, des3-cbc-sha1

Chapter 12
Guidelines for Updating Kerberos Passwords

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 13 of 29

Key: vno 12, arcfour-hmac
MKey: vno 1
Attributes:
Policy: [none]
Kadmin.local: quit
klist –k new.keytab
KVNO Principal
---- ------------------------
12 nosql/myhost@EXAMPLE.COM
12 nosql/myhost@EXAMPLE.COM
12 nosql/myhost@EXAMPLE.COM
12 nosql/myhost@EXAMPLE.COM

Client side user principals require similar password rotation. Keytab or credential cache used
to login to the database should be renewed. If kinit tool is used to create a credential cache,
you should run kdestroy to clear cached tickets and re-run kinit to generate a new credential
cache.

For example:

kdestroy –c /tmp/krb5ccache
kinit –c /tmp/krb5ccache

Guidelines for Updating SSL Keys and Certificates
If the certificate that the server uses is going to expire, or is no longer valid, you may need to
replace the SSL key and certificate. This section describes the procedure to complete this task.

These directions describe creating a self-signed certificate, and an associated key, which is the
default for Oracle NoSQL Database. Alternatively, you can use an external certificate, as
described in Guidelines for Configuring External Certificates for an Existing Default Secure
Installation.

You can update SSL Keys and certificates using one of the following two methods:

• Use the plan update-tls-credentials command.

• Use the manual process in each of the SNs to create a new SSL key and certificate, merge
the truststore entries, copy the store.keys file to the security directory, and stop and start
each SN sequentially as part of a rolling restart, if needed. Restarting the SNs will now only
be needed if the data store has not yet been fully upgraded to Oracle NoSQL Database
24.4 or later.

Use the plan command

The plan update-tls-credentials command retrieves and installs the credential updates to
the set of shared TLS (Transport Layer Security, earlier known as SSL) credentials used by
Storage Node Agents (SNA) in the data store. You should use this plan only with data stores
where all SNAs share the same credentials, and not for data stores with host-specific
credentials.

plan update-tls-credentials [-retrieve-only|-install-only] [-force]

The plan command can be used in multiple ways depending on your requirements.

Chapter 12
Guidelines for Updating SSL Keys and Certificates

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 14 of 29

• You can manually copy the new credentials and use the plan update-tls-credentials
command with the -install-only flag. This is the best choice which you can use by
default.

• If you need to automate the entire process of updating SSL credentials and keys, you
could use the plan update-tls-credentials command without specifying any options or
flags. Then the plan command retrieves the credentials and installs them.

• You could use the plan update-tls-credentials command with the -retrieve-only flag
if you just want to retrieve the credentials and plan to install it later.

See plan update-tls-credentials for more details on how the SSL Keys and certificates are
updated automatically using this plan command.

Manual process of updating SSL Keys and certificates

Updating the SSL key/certificate involves several steps:

1. Create a new key/certificate pair on a storage node.

2. Copy the new key/certificate pair to every storage node and merge the new certificate into
the existing trust store files: client.trust and store.trust.

3. Restart each storage node sequentially, if needed. You will need to restart the SNs only if
the data store has not yet been fully upgraded to Oracle NoSQL Database 24.4 or later.
Once all SNs have been upgraded, they will notice the key and certificate changes without
needing a restart.

4. Copy the client.trust with the merged entries to each of the clients.

5. Copy the store.keys that has the merged entries to each of the storage nodes, and restart
each storage node sequentially, a second time. You need this step only for SNs running
Oracle NoSQL Database 24.3 or earlier.

6. Remove the old certificate in store.trust in all the storage nodes.

7. Verify that only the new certificate is in use.

Complete these steps to update the SSL keys and certificates on a running store. Oracle
NoSQL Database can remain operational throughout the entire process.

Note

The Oracle NoSQL Database environment used below is deployed on 3 Storage
Nodes with capacity=3 and Replication Factor (RF)=3.

For more information on security configuration files, see Security Configuration.
Create a New SSL Key Certificate

1. In the first Storage Node (SN1), create a temporary directory to store the key.

cd /users/user_name/tmp/kvroot/
mkdir newKey

On SN1 run the securityconfig utility to create a new key/certificate pair in the new
directory, newKey. The new configuration needs to specify the same keystore password as

Chapter 12
Guidelines for Updating SSL Keys and Certificates

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 15 of 29

your current configuration. If you do not specify a password with the -kspwd option, the
utility prompts you to set a password.

java -jar $KVHOME/lib/kvstore.jar securityconfig \
config create -root /users/user_name/tmp/kvroot/newKey -kspwd 123456

cd /users/user_name/tmp/kvroot/newKey
ls -R security

Output:

./security:client.security
security.xml store.trust temp.cert client.trust store.keys store.wallet
./security/store.wallet:
cwallet.sso

2. On SN1, merge the truststore entries using the config merge-trust command, as follows.
After running this command, the client.trust and store.trust files will have two SSL
certificate entries.

java -jar $KVHOME/lib/kvstore.jar securityconfig \
config merge-trust -root $KVROOT -source-root \
/users/user_name/tmp/kvroot/newKey

Use keytool -list to list the entries in the keystore.

cd $KVROOT/security
keytool -list -keystore store.trust
Enter keystore password: *********

Output:

Keystore type:
JKS Keystore provider: SUN
Your keystore contains 2 entries
mykey_2, Feb 6, 2024,trustedCertEntry,
Certificate fingerprint (SHA1):
A3:75:F2:97:25:20:F9:AD:52:61:71:8F:6B:7E:B1:BB:E8:54:D1:7A
mykey, Feb 6, 2024,trustedCertEntry,
Certificate fingerprint SHA1):
89:71:8C:F1:6D:7E:25:D7:AD:C4:7E:23:8C:09:0D:AC:CE:AE:3F:67

Note

The client.trust file also contains the same two entries as store.trust file
shown above.

In a multiple Storage Node deployment, you must copy the new configuration (the security
directory and its contents) to each Storage Node host's new configuration directory and run
merge-trust as described on each host.

Chapter 12
Guidelines for Updating SSL Keys and Certificates

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 16 of 29

In SN2 and SN3, do the following:

cd /users/user_name/tmp/kvroot/
mkdir newKey

Copy the contents of the directory newKey from SN1 to the /users/user_name/tmp/
kvroot/newKey directory in SN2 and SN3.

In SN2 and SN3, merge the truststore entries using the config merge-trust command as
shown below.

java -jar $KVHOME/lib/kvstore.jar securityconfig \
config merge-trust -root $KVROOT \
-source-root /users/user_name/tmp/kvroot/newKey

You can optionally list the entries in the keystore in SN2 and SN3 using keytool command
(as shown above for SN1).

3. In an Oracle NoSQL Database running with a self-signed certificate, the client-side
application will be able to connect to the data store with either the old or the new
credentials once they switch to using the merged client truststore. It is a good practice to
modify the clients at this point in the update procedure because that will allow the clients to
connect to the data store now and throughout the update process. You need to copy the
client.trust file with the merged entries (2 certificate entries) to each of the clients
replacing the existing client.trust file used by the client applications. Once the update is
complete, clients should switch to using the new truststore, so that the old certificates are
cleared.

scp <SN1_host>:$KVROOT/security/client.trust \
<client_host>:<directory_client.trust>/client.trust

Note

The client.trust is used to authenticate client-server communication, and
store.trust to authenticate server-server communication.

4. Stop and start each Storage Node sequentially, making sure that each SN is completely up
before restarting the next SN. Restarting one SN at a time is necessary because the data
store must maintain the quorum during the restart of Storage Nodes while the SSL
certificate is updated.
After the restart, the Storage Nodes will load both the new and old certificates from the
merged store.trust, so that the Storage Nodes can recognize both the new and old SSL
credentials. The Storage Nodes that are not yet restarted will continue to use the old SSL
credentials from store.trust file.

In each of the Storage Nodes (SN1, SN2 and SN3), perform the following steps:

java -jar $KVHOME/lib/kvstore.jar stop -root $KVROOT
java -jar $KVHOME/lib/kvstore.jar start -root $KVROOT&

Chapter 12
Guidelines for Updating SSL Keys and Certificates

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 17 of 29

Start the Admin CLI, and check that all Replication Nodes (RNs) are up using the ping
command:

java -jar $KVHOME/lib/kvstore.jar runadmin -host $HOSTNAME -port 5000 \
-security $KVROOT/security/client.security

Logged in admin as anonymous

kv-> ping

Note

You need to restart the SNs only if the data store has not yet been fully upgraded
to Oracle NoSQL Database 24.4 or later. Once all SNs have been upgraded, they
will notice the key and certificate changes without needing a restart.

5. The store.keys file contains the generated private key. The merge-trust utility used
above merges only the certificates in the store.trust, but does not merge the private
keys. To make the NoSQL Database use the new SSL private key, the new store.keys
needs to be copied to the security directory under $KVROOT in every Storage Node as
shown below.
In each of the Storage Nodes (SN1, SN2 and SN3), perform the following steps:

Copy the store.keys file to the security directory, stop the Storage Node and start it again.
Stop and start each storage node sequentially as a rolling restart, making sure that each
SN is completely up before restarting the next SN. Restarting one SN at a time is
necessary because the data store must maintain the quorum during the restart.

cp /users/user_name/tmp/kvroot/newKey/security/store.keys $KVROOT/
security/.
java -jar $KVHOME/lib/kvstore.jar stop -root $KVROOT
java -jar $KVHOME/lib/kvstore.jar start -root $KVROOT&

Note

You need to restart the SNs only if the data store has not yet been fully upgraded
to Oracle NoSQL Database 24.4 or later. Once all SNs have been upgraded, they
will notice the key and certificate changes without needing a restart.

6. On each Storage Node, remove the obsolete certificate mykey in store.trust. Then,
rename the new certificate mykey_2 to mykey.
In each of the Storage Nodes (SN1, SN2 and SN3), perform the following steps:

Remove the old certificate named mykey.

keytool -delete -keystore $KVROOT/security/store.trust -alias mykey
Enter keystore password:

Chapter 12
Guidelines for Updating SSL Keys and Certificates

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 18 of 29

Rename the newly created certificate, mykey_2, to the previous key's name, mykey.

keytool -changealias -keystore $KVROOT/security/store.trust \
-alias mykey_2 -destalias mykey

Only one key now exists, which is the newly generated one, called mykey. Verify that the
new certificate is the only one listed using the following command:

keytool -list -keystore $KVROOT/security/store.trust
Enter keystore password:

Keystore type: JKS
Keystore provider: SUN
Your keystore contains 1 entry
mykey, Feb 6, 2024,trustedCertEntry,
Certificate fingerprint (SHA1):
A3:75:F2:97:25:20:F9:AD:52:61:71:8F:6B:7E:B1:BB:E8:54:D1:7A

The SSL keys and certificates have now been updated on the data store.

Additional verification while updating SSL Keys and Certificates

When you update SSL keys and certificates for a data store, these additional checks are
performed. These checks are intended to detect potential problems with the new credentials.

• The passwords for the keystore and truststore files must be the same as the ones for the
keystore and truststore currently in use by the data store.

• The types of the keystore and truststore files that you specified using the keystoreType
and truststoreType parameters must match the exact types of the files.

• The keystore must have an entry for the alias that you specified using the
keystoreSigPrivateKeyAlias parameter. The alias identifies the keypair used to create
signatures. The certificate corresponding to this key pair must be validated successfully
with the certificate in the truststore. In this case, the keystore and truststore need to
contain the same certificate although, the truststore can contain more than one certificate
(For example, if it is part of a certificate chain).

• The truststore must have an entry for the alias that you specified using the
truststoreSigPublicKeyAlias parameter. This alias identifies the certificate used to verify
signatures. The associated certificate must be validated successfully and match the
certificate for the keystoreSigPrivateKeyAlias entry in the keystore.

• The keystore must have entries for all of the serverKeyAlias parameters that you
specified for any transport type. This alias identifies the keypair used by the store services.
If you have not specified anything, the alias shared is used. The certificate corresponding
to this key pair must be validated successfully with the certificate in the truststore.

Note

The truststore can contain multiple certificates (For example, if it is part of a
certificate chain). Additionally, the validation of the keystore certificate may also
require multiple certificates in the truststore.

Chapter 12
Guidelines for Updating SSL Keys and Certificates

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 19 of 29

• All serverKeyAlias entries must satisfy the verification requirements of the associated
clientIdentityAllowed parameter, if any.

• For transports for which the parameter clientAuthRequired is true, the keystore must
have entries for all of the clientKeyAlias parameters that you specified. The
clientkeyAlias parameter identifies the keypair used by either a direct connect Java
client or a proxy. If you have not specified anything, the alias shared is used. The
certificate corresponding to this key pair must be validated successfully with the certificate
in the truststore.

• All clientKeyAliasentries must satisfy the verification requirements of the associated
serverIdentityAllowed parameter, if any.

Guidelines for Configuring External Certificates for a new
Installation

Follow these steps to configure a new store to use external certificates:

Note

This procedure assumes you already have a Java keystore and truststore setup. For
more information see Java KeyStore Preparation.

1. Collect the distinguished name from the verbose information of the external certificate. In
this example, it is the value of the owner field.

keytool -list -v -keystore store.keys alias shared
Certificate chain length: 3
Certificate[1]:
Owner: CN=myhost, OU=TeamA, O=MyCompany, L=Unknown, ST=California,
C=US
Issuer: CN=intermediate CA, OU=CA, O=MyCompany, ST=California,
C=US

2. Prepare dnmatch expression using a distinguished name. Oracle NoSQL Database verifies
identities of server and client while establishing SSL connection between the server
components. The verification is performed by checking if principal names on each side
match the specified dnmatch expressions, which uses regular expressions as specified by
java.util.regex.Pattern. The principal names represent the identities, which are
specified by the subject name attribute of the certificate, represented as a distinguished
name in RFC 1779 format, using the exact order, capitalization, and spaces of the attribute
value. RFC 1779 defines well-known attributes for distinguished names, including CN, L,
ST O, OU, C and STREET. If the distinguished name of the external certificate contains
non-standard attributes, for example, EMAILADDRESS, then the expression used for
dnmatch must replace these attribute names with an OID that is valid in RFC 1779 form, or
use special constructs of regular expression to skip checking these attributes. The format
for a dnmatch expression is:

dnmatch(regular expression)

Chapter 12
Guidelines for Configuring External Certificates for a new Installation

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 20 of 29

In above example, the dnmatch expression is:

dnmatch(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US)

If you are using a wild card to match a certificate with a non-standard distinguished name
attribute, the dnmatch expression needs to match the attribute name in its OID format
properly. For example, if the distinguished name is:

EMAILADDRESS=person@example.com, CN=myhost, OU=TeamA, O=MyCompany,
L=Unknown, ST=California, C=US

Then wild card should represent the entire EMAILADDRESS attribute name:

dnmatch(.*=person@example.com, CN=myhost, OU=TeamA, O=MyCompany,
L=Unknown, ST=California, C=US)

3. Run makebootconfig to setup the secure store. Also specify the keystore password and
dnmatch expressions in the security parameters. The keystore password "password" must
use the same password as the Java Keystore of the external certificates. See:

java -Xmx64m -Xms64m -jar $KVHOME/lib/kvstore.jar makebootconfig \
-root $KVROOT -host $KVHOST -port 5000 -harange 5010,5020 -admin 5001 \
-store-security configure \
-pwdmgr wallet -kspwd password \
-security-param client:serverIdentityAllowed="dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown, ST=California, C=US)" \
-security-param internal:serverIdentityAllowed="dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown, ST=California, C=US)" \
-security-param internal:clientIdentityAllowed="dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown, ST=California, C=US)" \
-security-param ha:serverIdentityAllowed="dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown, ST=California, C=US)" \
-security-param ha:clientIdentityAllowed="dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown, ST=California, C=US)"

By default the keystore entry is stored under an alias "shared" and the truststore entry is
stored under an alias "mykey". If you are using customized aliases for keystore and
truststore, then additional flags need to be specified in the makebootconfig command.

For example if your customized keystore alias is "currentKey" and the certificate is stored
in the truststore under the "currentCert" alias, the following additional parameters have to
be included in the makebootconfig command.

-security-param "client:serverKeyAlias=currentKey"
-security-param "ha:serverKeyAlias=currentKey"
-security-param "internal:clientKeyAlias=currentKey"
-security-param "internal:serverKeyAlias=currentKey"
-security-param "keystoreSigPrivateKeyAlias=currentKey"
-security-param "truststoreSigPublicKeyAlias=currentCert"

Chapter 12
Guidelines for Configuring External Certificates for a new Installation

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 21 of 29

The modified makebootconfig command with these additional flags is given below.

java -Xmx64m -Xms64m -jar $KVHOME/lib/kvstore.jar makebootconfig \
-root $KVROOT -host $KVHOST -port 5000 -harange 5010,5020 -admin 5001 \
-store-security configure \
-pwdmgr wallet -kspwd password \
-security-param client:serverIdentityAllowed="dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown, ST=California, C=US)" \
-security-param internal:serverIdentityAllowed="dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown, ST=California, C=US)" \
-security-param internal:clientIdentityAllowed="dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown, ST=California, C=US)" \
-security-param ha:serverIdentityAllowed="dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown, ST=California, C=US)" \
-security-param ha:clientIdentityAllowed="dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown, ST=California, C=US)"
-security-param "client:serverKeyAlias=currentKey" \
-security-param "ha:serverKeyAlias=currentKey" \
-security-param "internal:clientKeyAlias=currentKey" \
-security-param "internal:serverKeyAlias=currentKey" \
-security-param "keystoreSigPrivateKeyAlias=currentKey" \
-security-param "truststoreSigPublicKeyAlias=currentCert"

4. The makebootconfig command automatically generates keystore, server, and client
truststore files using self-signed certificates. To use external certificates instead, you need
to replace the keystore and truststore files with your own on each server that will host a
Storage Node. For example:

copy store.keys store.trust client.trust $KVROOT/security/

5. Use the securityconfig tool to verify installation. For example:

security-> config verify -secdir $KVROOT/security
Security configuration verification passed.

Note

For older releases (prior 4.1), you needed to verify the configuration manually. In
that case, the distinguished name of the certificate must match the content inside
of dnmatch in security.xml. Also, the user-generated keystore password must be
the same as the one stored in the wallet (store.wallet) or the password file
(store.pwd). Finally, the truststore (store.trust) must contain the CA certificates
and the one used for Oracle NoSQL Database.

6. Finally, deliver the client.trust or import the CA certificates into the client truststore.

Guidelines for Configuring External Certificates for an Existing
Default Secure Installation

Follow these steps to install external certificates in an existing secure NoSQL database
installation that uses a default security configuration and a self-signed certificate:

Chapter 12
Guidelines for Configuring External Certificates for an Existing Default Secure Installation

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 22 of 29

Note

This procedure assumes you already have a Java keystore and truststore setup. For
more information see Java KeyStore Preparation.

1. Create a new security configuration that uses external certificates:

security-> config create -root $NEW_KVROOT \
-pwdmgr wallet -kspwd password \
-param "client:serverIdentityAllowed=dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US)" \
-param "internal:serverIdentityAllowed=dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US)" \
-param "internal:clientIdentityAllowed=dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US)" \
-param "ha:serverIdentityAllowed=dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US)" \
-param "ha:clientIdentityAllowed=dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US)"

Note

$NEW_KVROOT should be a temporary directory that only holds the generated
security files.

2. Replace the keystore and truststore files with your own on each server that will host a
Storage Node. For example:

copy store.keys store.trust client.trust $NEW_KVROOT/security/

3. It is easier to install an external certificate if the existing store does not needs to be kept
accessible during the certificate installation. To do this, you only need to copy the entire
new security configuration to each Storage Node and then restart all of the Storage Nodes.

Note

Before starting the SNA, set the environment variable MALLOC_ARENA_MAX to 1.
Setting MALLOC_ARENA_MAX to 1 ensures that the memory usage is restricted to the
specified heap size.

copy -r $NEW_KVROOT/security $KVROOT
java -Xmx64m -Xms64m -jar $KVHOME/lib/kvstore.jar stop -root $KVROOT
java -Xmx64m -Xms64m -jar $KVHOME/lib/kvstore.jar start -root KVROOT&

Chapter 12
Guidelines for Configuring External Certificates for an Existing Default Secure Installation

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 23 of 29

4. If the existing store need to be kept accessible during the credential changes instead, then
you should create an interim truststore and modify the security parameters having dnmatch
field. On the configuration host, merge the truststore entries by using the config merge-
trust command, and also import the root and intermediate certificate:

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar securityconfig \
config merge-trust -root $KVROOT -source-root $NEW_KVROOT
keytool -import -keystore $KVROOT/security/store.trust -file
ca.cert.pem -alias root
keytool -import -keystore $KVROOT/security/store.trust -file
intermediate.cert.pem -alias intermediate
copy $KVROOT/security/store.trust $KVROOT/security/client.trust

Note

In a multiple Storage Node deployment, you need to copy the new configuration to
each host's new configuration directory and run merge-trust on each host like in
the example above.

5. Copy the updated client.trust file to the security directory on each host so that clients can
use it to access the store.

6. To keep the store accessible during the process, change the dnmatch value in the security
configuration to be a compatible one. The values specified in the various dnmatch(xxx)
expressions are a regular expression, as specified by java.util.regex.Pattern. The
compatible "dnmatch" value should be in the form of old certificate DN | new
certificate DN. In this case, the CN=NoSQL| represents the DN of the original self-signed
certificate.

security-> config update \
-secdir $KVROOT/security \
-param "client:serverIdentityAllowed=dnmatch
(CN=NoSQL|CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US)" \
-param "internal:serverIdentityAllowed=dnmatch
(CN=NoSQL|CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US)" \
-param "internal:clientIdentityAllowed=dnmatch
(CN=NoSQL|CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US)" \
-param "ha:serverIdentityAllowed=dnmatch
(CN=NoSQL|CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US)" \
-param "ha:clientIdentityAllowed=dnmatch
(CN=NoSQL|CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US)"

If clients set the login property oracle.kv.ssl.hostnameVerifier, change the value of the
dnmatch field. For example:

oracle.kv.ssl.trustStore=client.trust
oracle.kv.transport=ssl

Chapter 12
Guidelines for Configuring External Certificates for an Existing Default Secure Installation

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 24 of 29

oracle.kv.ssl.protocols=TLSv1.2
oracle.kv.ssl.hostnameVerifier=dnmatch(CN\=NoSQL|CN\=myhost,
OU\=TeamA, O\=MyCompany, L\=Unknown, ST\=California, C\=US)

7. Check that all Replication Nodes are online and then restart each Storage Node one by
one using the following commands:

java -Xmx64m -Xms64m -jar $KVHOME/lib/kvstore.jar stop -root $KVROOT

java -Xmx64m -Xms64m -jar $KVHOME/lib/kvstore.jar start -root $KVROOT&

8. Copy the updated store.keys file to the security directory on each host. Then, check that all
Replication Nodes are online and restart each Storage Node one by one using the
following commands:

java -Xmx64m -Xms64m -jar $KVHOME/lib/kvstore.jar stop -root $KVROOT

java -Xmx64m -Xms64m -jar $KVHOME/lib/kvstore.jar start -root $KVROOT&

9. For all Storage Nodes, remove the obsolete certificate mykey in store.trust. Also, rename
the new certificate mykey_2 to mykey using the following command:

keytool -delete -keystore $KVROOT/security/store.trust \
-alias mykey

keytool -changealias -keystore \
$KVROOT/security/store.trust -alias mykey_2 -destalias mykey

Guidelines for Updating the External Certificates
If the external certificate that the data store uses has expired, or is no longer valid, you may
need to replace the SSL key and certificate. This section describes the procedure to complete
this task.

You can update the external certificates using one of the following two methods:

• Use the plan update-tls-credentials command

• Use the manual process in each of the SNs to create a certificate, merge the truststore
entries, copy the store.keys file to the security directory, and stop and start each Storage
Node sequentially as part of a rolling restart, if needed. You need to restart the SNs only if
the data store has not yet been fully upgraded to Oracle NoSQL Database 24.4 or later.
Once all SNs have been upgraded, they will notice the key and certificate changes without
needing a restart.

Use the plan command

The plan update-tls-credentials command retrieves and installs the credential updates to
the set of shared TLS (Transport Layer Security, earlier known as SSL) credentials used by
Storage Node Agents (SNA) in the data store. You should use this plan only with data stores

Chapter 12
Guidelines for Updating the External Certificates

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 25 of 29

where all SNAs share the same credentials, and not for data stores with host-specific
credentials.

plan update-tls-credentials [-retrieve-only|-install-only] [-force]

The plan command can be used in multiple ways depending on your requirements.

• You can manually copy the new credentials and use the plan update-tls-credentials
command with the -install-only flag. This is the best choice which you can use by
default.

• If you need to automate the entire process of updating SSL credentials and keys, you
could use the plan update-tls-credentials command without specifying any options or
flags. Then the plan command retrieves the credentials and installs them.

• You could use the plan update-tls-credentials command with the -retrieve-only flag
if you just want to retrieve the credentials and plan to install it later.

See plan update-tls-credentials for more details on how the SSL Keys and certificates are
updated automatically using this plan command.

Manual process of updating external certificates

Follow these steps to update the external certificates for a secure installation that is already
using external certificates.

Note

This procedure assumes you already have a Java keystore and truststore setup
having the updated external certificates. For more information see Java KeyStore
Preparation.

1. Create a new security configuration that uses external certificates.

security-> config create -root $NEW_KVROOT \
-pwdmgr wallet -kspwd password \
-param "client:serverIdentityAllowed=dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US)" \
-param "internal:serverIdentityAllowed=dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US)" \
-param "internal:clientIdentityAllowed=dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US)" \
-param "ha:serverIdentityAllowed=dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US)" \
-param "ha:clientIdentityAllowed=dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US)"

Chapter 12
Guidelines for Updating the External Certificates

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 26 of 29

2. Replace the keystore and server truststores with your own:

copy store.keys store.trust $NEW_KVROOT/security/

3. On the configuration host, merge the truststore entries with the $NEW_KVROOT directory.
Check that all Replication Nodes are online and then restart each Storage Node one by
one using the following commands. If the updated external certificate uses a different
distinguished name, update the dnmatch value in the security configuration to a compatible
one using the procedures found in Guidelines for Configuring External Certificates for an
Existing Default Secure Installation.

Note

Before starting the SNA, set the environment variable MALLOC_ARENA_MAX to 1.
Setting MALLOC_ARENA_MAX to 1 ensures that the memory usage is restricted to the
specified heap size.

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar securityconfig \
config merge-trust -root $KVROOT \
-source-root $NEW_KVROOT

java -Xmx64m -Xms64m -jar $KVHOME/lib/kvstore.jar stop -root $KVROOT
java -Xmx64m -Xms64m -jar $KVHOME/lib/kvstore.jar start -root $KVROOT&

Note

You do not need to update the client truststore if the new certificates are signed by
the same Certificate Authority (CA).

You need to restart the SNs only if the data store has not yet been fully upgraded
to Oracle NoSQL Database 24.4 or later. Once all SNs have been upgraded, they
will notice the key and certificate changes without needing a restart.

4. Copy the updated store.keys file to the security directory on each host. Then, check that all
Replication Nodes are online and restart each Storage Node one by one using the
following commands:

java -Xmx64m -Xms64m -jar $KVHOME/lib/kvstore.jar stop -root $KVROOT
java -Xmx64m -Xms64m -jar $KVHOME/lib/kvstore.jar start -root $KVROOT&

Note

You need to restart the SNs only if the data store has not yet been fully upgraded
to Oracle NoSQL Database 24.4 or later. Once all SNs have been upgraded, they
will notice the key and certificate changes without needing a restart.

Chapter 12
Guidelines for Updating the External Certificates

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 27 of 29

5. For all Storage Nodes, remove the obsolete certificate mykey in store.trust. Also, rename
the new certificate mykey_2 to mykey using the following command:

keytool -delete -keystore $KVROOT/security/store.trust \
-alias mykey

keytool -changealias -keystore \
$KVROOT/security/store.trust -alias mykey_2 -destalias mykey

Guidelines for Operating System Security
Follow these guidelines regarding operating system security:

• There should be a single user identity that runs the KVStore software.

• The data store user should be in its own group, independent of other users.

• JE log files, audit log files, and password stores should have mode 0600 on Linux/UNIX
platforms with equivalent settings for Windows systems. The simplest way to achieve this
on Linux/UNIX is to set an umask of 0077.

• Security configuration files must be write-protected.

• The $KVROOT directory and the security directory must be protected from modification by
other users. On UNIX/Linux this should include having the sticky bit (01000) set in order to
prevent renaming and deletion of files/directories.

• Access to the systems that are running the data store should be limited in order to avoid
the risk of tampering.

Note

Access protections do not guard against users who have sufficiently elevated
access rights (for example, the UNIX root user).

Guidelines for Resetting Admin Password
From Oracle NoSQL Database 24.3 release, Admin Command Line Interface (Admin CLI)
supports authentication with the data store SSL credentials.

When you invoke the Admin CLI, you need to provide the security directory in the Storage
Node of the data store. Administrators who have access to this security directory can login to
the Admin CLI to reset the password when the password has been forgotten.

Note

It is not recommended to run other CLI commands when you login to the Admin CLI
with server SSL credentials.

Steps to reset admin password:

Chapter 12
Guidelines for Operating System Security

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 28 of 29

1. Login with the store SSL credentials.

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar runadmin \
-host $HOSTNAME -port 5000 -store mystore \
-store-security-dir $KVROOT/security

Logged in to Admin and store with store SSL credentials.

2. Reset the admin password using ALTER USER command.

kv-> execute 'ALTER USER <user_name> IDENTIFIED BY "<new_password>"'

Statement completed successfully.

Administrator should now be able to login with the new password.

Chapter 12
Guidelines for Resetting Admin Password

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 29 of 29

A
Password Complexity Policies

A set of default rules should be followed when creating or updating a user password in order to
enhance security. Password complexity policies do not apply to the SSL keystore password.

Any user that has the SYSOPER privilege can customize the global password policies and
control the password complexity when creating or updating the passwords for users. Oracle
NoSQL Database checks if the new passwords are sufficiently complex to prevent attackers to
break into the system.

When using the CREATE USER and ALTER USER commands, Oracle NoSQL Database will check
if the passwords set comply with the password complexity policies. Otherwise, a message will
be shown with all the violating policies. For example:

kv-> exec "create user test identified by \"password\""
Error handling command
exec "create user test identified by \"password\"":
Error: User error in query: CreateUser failed for:
Password must have at least 9 characters

You can enable or disable the password complexity policy like this:

kv-> change-policy -params passwordComplexityCheck=true

Then, you can change the password complexity policies by using the change-policy
command. For example:

kv-> change-policy -params
passwordMinLength=20 passwordMaxLength=50 passwordMinUpper=3
passwordMinLower=3 passwordMinDigit=3 passwordMinSpecial=3

The following password security parameters can be set:

Parameter Name Value Range and Type Description

passwordAllowedSpecial Sub set or full set of #$
%&'()*+,-./:; <=>?@[]^_`{|}
(string)~

Lists the allowed special
characters.

passwordComplexityCheck [true|false] (boolean) Whether to enable the password
complexity checking. The default
value is true.

passwordMaxLength 1 - 2048 (integer) The maximum length of a
password. The default value is
256.

passwordMinDigit 0 - 2048 (integer) The minimum required number of
numeric digits. The default value
is 2.

passwordMinLength 1 - 2048 (integer) The Minimum length of a
password. The default value is 9.

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix A-1 of A-3

Parameter Name Value Range and Type Description

passwordMinLower 0 - 2048 (integer) The minimum required number of
lower case letters. The default
value is 2.

passwordMinSpecial 0 - 2048 (integer) The minimum required number of
special characters. The default
value is 2.

passwordMinUpper 0 - 2048 (integer) The minimum required number of
upper case letters. The default
value is 2.

passwordNotStoreName [true|false] (boolean) If true, password should not be
the same as current store name,
nor is it the store name spelled
backwards or with the numbers
1–100 appended. The default
value is true.

passwordNotUserName [true|false] (boolean) If true, password should not be
the same as current user name,
nor is it the user name spelled
backwards or with the numbers
1-100 appended. The default
value is true.

passwordProhibited list of strings separated by
comma (string)

Simple list of words that are not
allowed to be used as a
password. The default reserved
words are:
oracle,password,user,nosql.

passwordRemember 0 - 256 (integer) The maximum number of
passwords to be remembered
that are not allowed to be reused
when setting a new password.
The default value is 3.

Most of the special characters in the standard US keyboard are allowed to be used in a
password with exception of " (double quote) and \ (back slash).

If you want to allow certain special characters use the passwordAllowedSpecial parameter.
For example:

kv-> change-policy -params passwordAllowedSpecial="@# $"

If you want to enforce the password complexity for existing users, then you need to set the
existing user's password to expired, like this:

1. Review the existing users in the system:

kv-> exec "show users"
user:id=u1 name=root
user:id=u3 name=user1
user:id=u4 name=user2
user:id=u5 name=user3

Appendix A

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix A-2 of A-3

2. Set the new password complexity policies:

kv-> change-policy -params
passwordComplexityCheck=true passwordMinLength=9
passwordMinUpper=2 passwordMinLower=2
passwordMinSpecial=2 passwordMinDigit=2

3. Finally, change the existing user's password life time to be expired:

kv-> exec "alter user user1 password expire"
Statement completed successfully
kv-> exec "alter user user2 password expire"
Statement completed successfully
kv-> exec "alter user user3 password expire"
Statement completed successfully

In this case, user 1, 2, and 3 will need to re-new their password according to the new policy.
For example, when trying to login with user 1, the system will prompt to change the password:

java -Xmx64m -Xms64m \
-jar kvstore.jar runadmin -host localhost \
-port 5000 -security login_file
user1's password:
The password of user1 has expired, it is required to
change the password.
Enter the new password:
Re-enter the new password:

If the new password violates any password complexity policies, an exception with a violation
message will be thrown. For example:

user1's password:
The password of user1 has expired, it is required to
change the password.
Enter the new password: password
Re-enter the new password: password
Exception in thread "main" oracle.kv.AuthenticationFailureException:
Renew password failed:
Password must have at least 9 characters
Password must contain at least 2 upper case letters
Password must contain at least 2 lower case letters
...

Note

After the password is reset, if you’re using Oracle Wallet for external password
storage, you must recreate the wallet files for all your Oracle NoSQL Database user
accounts. See Oracle Wallet.

Appendix A

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix A-3 of A-3

B
SSL keystore generation

The keystores (store.keys and store.trust) that are automatically generated by makebootconfig
or securityconfig is using a RSA private key with size of 2048 and the associated certificate
that has 365 days lifetime. They can also be manually created to have different key algorithm,
size, validity or other characteristics, using the following keytool (Java built-in key and
certificate management tool) commands:

To generate the keypair, use the keytool -genkeypair command:

keytool -genkeypair \
-keystore store.keys \
-storepass <passwd> \
-keypass <passwd> \
-alias shared \
-dname "CN=NoSQL" \
-keyAlg RSA \
-keysize 1024 \
-validity 365

To export the keypair, use the keytool -export command:

keytool -export \
-file <temp file> \
-keystore store.keys \
-storepass <passwd> \
-alias shared

To import the keypair, use the keytool -import command:

keytool -import \
-file <temp file> \
-keystore store.keys \
-storepass <passwd>
-noprompt

You can also use the keytool commands described above to manually generate other
keystore and truststore keys and substitute them for the ones that Oracle NoSQL Database
generates, provided you adhere to the following rules:

• The store.keys file should have a key pair with the alias "shared".

• The store.keys store password (-storepass) must match the key password (-keypass),
they must be the same as the password specified in the (-kspwd) when the security
configuration directory is created via makebootconfig or securityconfig.

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix B-1 of B-2

• If a subject distinguished name other than CN=NoSQL is chosen for the self-signed
certificate, then you must specify the following options to the makebootconfig or
securityconfig command:

-param "ha:serverIdentityAllowed=dnmatch(SOMEDN)"
-param "ha:clientIdentityAllowed=dnmatch(SOMEDN)"
-param "internal:serverIdentityAllowed=dnmatch(SOMEDN)"
-param "internal:clientIdentityAllowed=dnmatch(SOMEDN)"
-param "client:serverIdentityAllowed=dnmatch(SOMEDN)"

where SOMEDN is the distinguished name (-dname) chosen.

• The store password for store.trust should match the store password for store.keys.

After creating the keystores (store.keys and store.trust) with above commands, replace the old
ones in the security configuration directory created by makebootconfig or securityconfig
utility.

Appendix B

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix B-2 of B-2

C
Java KeyStore Preparation

The following example demonstrates how to use keytool to prepare keystore and truststore
with external certificate. If you want to import an existing private/public key pair generated by
an external tool instead, see Import Key Pair to Java Keystore.

1. Generate a keypair and store it into store.keys

keytool -genkeypair -keystore store.keys \
-alias shared -keyAlg RSA -keysize 1024 \
-validity 365 -dname \
"CN=my-nosql-cluster.example.com, \
OU=My Company, O=IT, L=San Francisco, ST=CA, C=US" \
-storepass <passwd> -keypass <passwd>

Enter key password for <shared>
(RETURN if same as keystore password):

Note

Store.keys is the default name of Oracle NoSQL Database keystore and shared
is the default alias of the Oracle NoSQL Database certificate You can customize
the name by specifying a security parameter in the makebootconfig command or
the securityconfig utility. Additionally, you can specify the algorithm, size and
validity of key.

To export the keypair, use the keytool -export command:

keytool -export \
-file <temp file> \
-keystore store.keys \
-storepass <passwd> \
-alias shared

2. Generate a certificate request and send to CA.

keytool -certreq -keystore store.keys -alias
shared -file myhost.csr
Enter keystore password:

3. A public trusted CA usually signs the certificate after receiving your csr file. A pem file is
generated (myhost.cert.pem).

4. Import certificates that are part of a certificate chain in order. If there are multiple
intermediate certificates, they also need to be imported in order.

keytool -import -file ca.cert.pem
-keystore store.keys -alias root

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix C-1 of C-3

keytool -import -file intermediate.cert.pem -keystore store.keys
-alias intermediate
After importing the root and intermediate certificates,
install the signed certificate for this server. The alias name
must be specified.
keytool -import -file myhost.cert.pem -keystore store.keys
-alias shared
Certificate reply was installed in keystore

5. Verify the installation by checking the certificate content in store.keys:

keytool -list -v -keystore store.keys -alias shared
Certificate chain length: 3
Certificate[1]:
Owner: CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US
Issuer: CN=intermediate CA, OU=CA, O=MyCompany,
ST=California, C=US

The certificate chain length should match the number of certificates in the chain that were
imported, in this case, three.

6. Build server truststore (store.trust). The server truststore must contain the signed
certificate as well as the root and intermediate certificate. Note that the server and client
truststores need to use the same password as that of the keystore.

keytool -export -file store.tmp
-keystore store.keys -alias shared
keytool -import -keystore store.trust -file store.tmp
keytool -import -keystore store.trust -file ca.cert.pem
-alias root
keytool -import -keystore store.trust -file intermediate.cert.pem
-alias intermediate

7. Create client truststore (client.trust). In this case, import the root and intermediate
certificates into the client truststore.

keytool -import -keystore client.trust
-file ca.cert.pem -alias root
keytool -import -keystore client.trust -file intermediate.cert.pem
-alias intermediate

Import Key Pair to Java Keystore
This section describes how to import an existing private/public key pair into Java keystore. This
is useful if you have your own tools for generating a CA signed key pair. The procedure
assumes you already have the root and intermediate certificates as well as the private key and
its signed certificate.

To import an existing key pair:

Appendix C
Import Key Pair to Java Keystore

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix C-2 of C-3

1. Build the certificate chain and convert the private key and certificate files into a PKCS12
file.

cat myhost.pem intermediate.pem root.pem > import.pem
openssl pkcs12 -export -in import.pem -inkey myhost.key.pem
-name shared > server.p12

2. Import the PKCS12 file into Java keystore:

keytool -importkeystore -srckeystore server.p12
-destkeystore store.keys -srcstoretype pkcs12 -alias shared

3. Finally, to complete the preparation of the Java keystore, perform the procedures for
creating the server and client truststore described in the previous section.

Appendix C
Import Key Pair to Java Keystore

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix C-3 of C-3

D
KVStore Required Privileges

This section lists the user required privileges to access specific KVStore APIs as well as CLI
commands.

Privileges for Accessing CLI Commands
READ_ANY:

• get kv

READ_ANY_TABLE or READ_TABLE (on $table_name):

• get table –name table_name

WRITE_ANY:

• delete kv

• put kv

INSERT_ANY_TABLE or INSERT_TABLE (on $table_name):

• put table –name table_name

DELETE_ANY_TABLE or DELETE_TABLE (on $table_name):

• delete table –name table_name

SYSDBA:

• ddl

• plan add-index

• plan add-table

• plan evolve-table

• plan remove-index

• plan remove-table

CREATE_ANY_TABLE:

• plan add-table

DROP_ANY_TABLE:

• plan remove-table

EVOLVE_ANY_TABLE or EVOLVE_TABLE (on $table_name):

• plan evolve-table –name table_name

CREATE_ANY_INDEX or CREATE_INDEX (on $table_name):

• plan add-index –table table_name

DROP_ANY_INDEX or DROP_INDEX (on $table_name):

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix D-1 of D-6

• plan remove-index –table table_name

SYSVIEW:

• logtail

• ping

• show admins

• show events

• show topology

• show upgrade-order

• show users (all users)

• show zones

• verify

• show parameters

• show perf

• show plans (plans created by all users)

• show pools

• show snapshots

DBVIEW:

• show indexes

• show tables

USRVIEW:

• show users (for self)

• show plans (plans created by self)

• plan change-user (for self)

• await-consistent

DBVIEW and READ_ANY:

• aggregate

SYSOPER:

• change-policy

• configure

• plan change-parameters

• plan change-storagedir

• plan change-user (for all users)

• plan deploy-admin

• plan deploy-datacenter

• plan deploy-sn

• plan deploy-topology

• plan deploy-zone

Appendix D
Privileges for Accessing CLI Commands

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix D-2 of D-6

• plan drop-user

• plan failover

• plan grant

• plan migrate-sn

• plan remove-admin

• plan remove-sn

• plan remove-zone

• plan repair-topology

• plan revoke

• plan start-service

• plan stop-service

• pool (all sub-commands)

• repair-admin-quorum

• snapshot (all sub-commands)

• topology (all sub-commands)

No privilege is required for the following commands:

• connect

• exit

• help

• hidden

• history

• verbose

• show faults

• table (all sub-commands)

Privilege required depends on the command being timed:

• time

Privilege required depends on the commands contained in the script file:

• load

Privilege required depends on the privilege needed for the plan being referred to:

• plan cancel

• plan execute

• plan interrupt

• plan wait

Privileges for DDL Commands
SYSDBA:

• CREATE TABLE

Appendix D
Privileges for DDL Commands

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix D-3 of D-6

• CREATE INDEX

• DROP INDEX

• DROP TABLE

• ALTER TABLE

CREATE_ANY_TABLE:

• CREATE TABLE

DROP_ANY_TABLE:

• DROP TABLE

EVOLVE_ANY_TABLE or EVOLVE_TABLE (on $table_name):

• ALTER TABLE table_name

CREATE_ANY_INDEX or CREATE_INDEX (on $table_name):

• CREATE INDEX ON table_name

DROP_ANY_INDEX or DROP_INDEX (on $table_name):

• DROP INDEX ON table_name

SYSOPER:

• CREATE USER

• CREATE ROLE

• DROP USER

• DROP ROLE

• ALTER USER

• GRANT

• REVOKE

DBVIEW:

• SHOW TABLE

• SHOW INDEX

• DESCRIBE TABLE

• DESCRIBE INDEX

SYSVIEW:

• SHOW USERS

• SHOW ROLES

USRVIEW:

• SHOW USERS (for self only)

Privileges for Accessing KVStore APIs
Privilege(s) required: READ_ANY, or READ_TABLE/READ_ANY_TABLE if accessing key-
values are in tables.

• get

Appendix D
Privileges for Accessing KVStore APIs

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix D-4 of D-6

• multiGet

• multiGetIterator

• multiGetKeys

• multiGetKeysIterator

Note

For multi-XYZ and storeXYZiterator APIs, the parentKey may be null for scanning
the whole store. In this case, if the user has no required roles, an empty result set
will be returned rather than throwing the UnauthorizedException.

• storeIterator

• storeKeysIterator

Privilege(s) required: WRITE_ANY, or DELETE_TABLE/DELETE_ANY_TABLE if accessing
key-values are in tables:

• delete

• deleteIfVersion

• multiDelete

Privilege(s) required: WRITE_ANY, or INSERT_TABLE/INSERT_ANY_TABLE if accessing
key-values are in tables:

• put

• putIfAbsent

• putIfPresent

• putIfVersion

Privilege(s) required: DBVIEW

• getAvroCatalog

Privilege(s) required: None:

• getOperationFactory

• getStats

Privilege(s) required: Union of all required roles of each single operation in the operation list:

• execute

Privilege required depends on the privilege needed for the statement being executed:

• execute(String statement)

• executeSync(String statement)

Privileges for Accessing KVStore TableAPIs
Privileges(s) required: READ_TABLE/READ_ANY_TABLE:

• get

• multiGet

Appendix D
Privileges for Accessing KVStore TableAPIs

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix D-5 of D-6

• multiGetKeys

• tableIterator

• tableIKeysIterator

Privilege(s) required: DELETE_TABLE/DELETE_ANY_TABLE:

• delete

• deleteIfVersion

• multiDelete

Privilege(s) required: INSERT_TABLE/INSERT_ANY_TABLE:

• put

• putIfAbsent

• putIfPresent

• putIfVersion

Privilege(s) required: USRVIEW:

• getTable

• getTables

Privilege(s) required: None:

• getTableOperationFactory

Privilege(s) required: Union of all required roles of each single operation in the operation list:

• execute

Privileges for Accessing KvLargeObject APIs
Privilege(s) required: READ_ANY:

• getLOB

Privilege(s) required: READ_ANY and WRITE_ANY:

• appendLOB

• deleteLOB

• putLOB

• putLOBIfAbsent

• putLOBIfPresent

Privileges for Running XRegion Service
Privilege(s) required:

• WRITE_SYSTEM_TABLE

• READ_ANY_TABLE

• INSERT_ANY_TABLE

Appendix D
Privileges for Accessing KvLargeObject APIs

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix D-6 of D-6

E
Configuring the Kerberos Administrative Utility

Before using kadmin, you first need to configure permissions on the KDC. Kerberos uses an
Access Control List (ACL) file to determine which principals have administrative access to the
Kerberos database and their level of access.

The default location of the Kerberos ACL file is <LOCALSTATEDIR>/krb5kdc/kadm5.acl, where
LOCALSTATEDIR is the directory prefix where the KDC databases are located. This location can
be modified by the acl_file variable in kdc.conf.

Lines containing ACL entries have this format:

principal permissions [target_principal [restrictions]]

Note

Line order in the ACL file is important. The first matching entry will control access for
an actor principal on a target principal.

To configure kadmin, perform the following steps:

1. Create an access control list file and put the Kerberos principal of at least one of the
administrators into it. For example:

*/admin@EXAMPLE.COM *

In this case, any principal in the EXAMPLE.COM realm with an admin instance has all
administrative privileges on the KDC.

For example, joe/admin@EXAMPLE.com has all privileges over the realm's Kerberos
database.

2. Create the first principal before accessing the KDC remotely:

kadmin.local: addprinc -randkey admin/admin
kadmin.local: ktadd –k kadm5.keytab admin/admin

Note

To enable passwordless autentication, copy kadm5.keytab to any client machine.

Kadmin can also be used to perform security maintenance. For more information, see
Guidelines for Updating Kerberos Passwords.

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix E-1 of E-1

F
Manually Registering Oracle NoSQL Database
Service Principal

The securityconfig tool allows you to create service principals and generate keytabs assuming
that each Storage Node is able to access the Kerberos admin interface remotely. Although this
is the typical configuration most Kerberos deployments have, you may want to use a non-
standard configuration. You can manage service principals by using only kadmin.local or ktutil
utility on the KDC host.

To register Oracle NoSQL Database service principal by using kadmin.local:

1. Register the service principal:

kadmin.local: addprinc -randkey nosql/abc.example.com

2. Extract the keytab file using the ktadd command:

kadmin.local: ktadd –norandkey –k keytab nosql/abc.example.com

3. Verify the entries of the generated keytab using the klist tool:

klist –k –e /tmp/keytab
Keytab name: FILE:keytab
KVNO Principal
---- --
12 nosql/abc.example.com@EXAMPLE.COM
 (AES-128 CTS mode with 96-bit SHA-1 HMAC)
12 nosql/abc.example.com@EXAMPLE.COM
 (AES-256 CTS mode with 96-bit SHA-1 HMAC)

4. Copy the keytab of Oracle NoSQL Database server principal to each Storage Node. The
default location is under kvroot/security. You need to create the security directory.

5. Run makebootconfig or securityconfig utility to complete the rest of the Kerberos security
configuration.

To register Oracle NoSQL Database service principal by using ktutil utility:

1. Add principal entries:

ktutil: add_entry –password –p \
nosql/abc.example.com –k 1 –e aes128-cts-hmac-sha1-96
Password for nosql/abc.example.com@EXAMPLE.COM:
ktutil:add_entry –password –p nosql/abc.example.com \
–k 1 –e aes256-cts-hmac-sha1-96
Password for nosql/abc.example.com@EXAMPLE.COM

2. Write the current keylist into the keytab file:

Ktutil: write_kt keytab

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix F-1 of F-2

3. Verify the entries of the generated keytab using the klist tool:

klist –k –e /tmp/keytab
Keytab name: FILE:keytab
KVNO Principal
---- --
12 nosql/abc.example.com@EXAMPLE.COM
 (AES-128 CTS mode with 96-bit SHA-1 HMAC)
12 nosql/abc.example.com@EXAMPLE.COM
 (AES-256 CTS mode with 96-bit SHA-1 HMAC)

4. Copy the keytab of Oracle NoSQL Database server principal to each Storage Node. The
default location is under kvroot/security. You need to create the security directory.

5. Run makebootconfig or securityconfig utility to complete the rest of the Kerberos security
configuration.

Appendix F

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix F-2 of F-2

G
Generating Certificate and Private Key for the
Oracle NoSQL Database Proxy

Topics

• Guidelines for Generating Self-Signed Certificate and Private Key using OpenSSL

• Guidelines for Generating Certificate Chain and Private Key using OpenSSL

• Troubleshooting issues with self-signed certificate

Guidelines for Generating Self-Signed Certificate and Private
Key using OpenSSL

Self-signed certificates can be used to securely connect to the Oracle NoSQL Database Proxy.
This section provides the steps to generate the self-signed certificate and other required files
for a secure connection using OpenSSL.

As a pre-requisite, download and install OpenSSL on the host machine. See OpenSSL.

Note

In the examples below, the OpenSSL command has been used in Oracle Linux
Version 8 (OL8). The syntax of openssl can be different in other Oracle Linux
versions.

Before generating your certificate, list all the different hostnames, domains, sub-domains, and
IP addresses that need to be secured. Understanding how the application connects to the
Oracle NoSQL Database Proxy, allows you to understand the needs of SSL/TLS certificates.
First you need to determine how many hostnames, domains and sub-domains need to be
secured. This will help in determining the right SSL/TLS certificate or a certificate mix that is
needed to encrypt the traffic between the applications and the Oracle NoSQL Database Proxy.

To generate a self-signed certificate and private key using the OpenSSL, complete the
following steps:

1. On the configuration host, navigate to the directory where the certificate file is required to
be placed.

2. Use one of the following OpenSSL command to generate the self-signed certificate and
private key. When prompted, provide a secure password of your choice for the certificate
file.

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix G-1 of G-8

Note

All prompt password will use 123456 in this example.

openssl req -x509 -days 365 -newkey rsa:4096 -keyout key.pem -out
certificate.pem
 -subj "/C=US/ST=CA/L=San/CN=*.example.com/
emailAddress=localhost@oracle.com"
or
openssl req -x509 -days 365 -newkey rsa:4096 -keyout key.pem -out
certificate.pem
 -subj "/C=US/ST=CA/L=San/CN=proxy-nosql.example.com/
emailAddress=localhost@oracle.com"

where, CN in the subj should map to either the NoSQL Database proxy server hostname or
the NoSQL Database proxy domain name.
Using CN and optionally SAN while generating a self-signed certificate:

• Common Name (CN) is used to specify the NoSQL Database proxy server hostname
or NoSQL Database proxy server domain name.

• When a client tries to connect to the Oracle NoSQL Database Proxy it will get the SSL
certificate and compare the NoSQL Database proxy server hostname or NoSQL
Database proxy server domain name it wants to connect, with the CN provided in the
SSL certificate. If they are exactly the same it will use the SSL certificate to encrypt the
connection, otherwise, the connection fails.

• The standard X509 defines that single SSL certificate can only use a single CN. This
means an SSL certificate can be used only for a single NoSQL Database proxy server
hostname or NoSQL Database proxy server domain name.

• To solve this limitation, Subject Alternative Name(SAN) is created. SAN is used to
define multi-name or many CNs in SSL certificates.

• SAN is shown as a separate attribute in SSL Certificates. Here is an example of a
SAN.

openssl req -x509 -days 365 -newkey rsa:4096 -sha256 \
 -keyout key.pem -out certificate.pem -extensions san -config \
 <(echo "[req]";
 echo distinguished_name=req;
 echo "[san]";
 echo subjectAltName=DNS:proxy-nosql,IP:10.0.0.9
) \
 -subj "/C=US/ST=CA/L=San/CN=proxy-nosql.example.com/
emailAddress=localhost@example.com"

3. Convert the private key to PKCS#8 format. When prompted, provide a secure password of
your choice for the encryption.

openssl pkcs8 -topk8 \
-inform PEM -outform PEM \
-in key.pem -out key-pkcs8.pem

The following files are generated in the directory:

Appendix G
Guidelines for Generating Self-Signed Certificate and Private Key using OpenSSL

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix G-2 of G-8

• key.pem is the private key.

• key-pkcs8.pem is the private key in PKCS#8 format.

• certificate.pem is the SSL certificate file in pem format.

Note

The below conversion should be done if your key is encrypted with the PKCS#5 v2.0
algorithm. Otherwise, you might encounter IllegalArgumentException exception that
indicates the file does not contain a valid private key due to the unsupported algorithm.
The encryption algorithm can be converted via OpenSSL pkcs8 utility by specifying
PKCS#5 v1.5 or PKCS#12 algorithms with -v1 flag. The following command converts the
encryption algorithm of a key to PBE-SHA1-3DES.

openssl pkcs8 -topk8 -in <PKCS#5v2.0_key_file> -out <new_key_file> -v1
PBE-SHA1-3DES

Additionally, a driver.trust file is also required if you are using the Java driver. This
driver.trust file is not required for other language drivers. To generate the driver.trust file,
import the certificate to the Java keystore. When prompted, provide the keystore password.

keytool -import -alias example -keystore driver.trust -file certificate.pem

Guidelines for Generating Certificate Chain and Private Key
using OpenSSL

Certificate chains can be used to securely connect to the Oracle NoSQL Database Proxy. This
section provides the steps to generate certificate chains and other required files for a secure
connection using OpenSSL.

A certificate chain is provided by a Certificate Authority (CA). There are many CAs. Each CA
has a different registration process to generate a certificate chain. Follow the steps provided by
your CA for the process to obtain a certificate chain from them.

As a pre-requisite, download and install OpenSSL on the host machine. See OpenSSL.

Note

In the examples below, the OpenSSL command has been used in Oracle Linux
Version 8 (OL8). The syntax of openssl can be different in other Oracle Linux
versions.

Before generating your certificate, list all the different hostnames, domains, sub-domains, and
IP addresses that need to be secured. Understanding how the application connects to the
Oracle NoSQL Database Proxy, allows you to understand the needs of SSL/TLS certificates.
First you need to determine how many hostnames, domains and sub-domains need to be
secured. This will help in determining the right SSL/TLS certificate or a certificate mix that is
needed to encrypt the traffic between the applications and the Oracle NoSQL Database Proxy.

Appendix G
Guidelines for Generating Certificate Chain and Private Key using OpenSSL

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix G-3 of G-8

To generate a certificate chain and private key using the OpenSSL, complete the following
steps:

1. On the configuration host, navigate to the directory where the certificate file is required to
be placed.

2. Create a 2048 bit server private key.

openssl genrsa -out key.pem 2048

The following output is displayed.

Generating RSA private key, 2048 bit long modulus
..................+++
...................+++
e is 65537 (0x10001)

3. This step is required only when your server private key is not in PKCS#8 format. Convert
the private key to PKCS#8 format. When prompted, provide a secure password of your
choice for the encryption.

openssl pkcs8 -topk8 \
-inform PEM -outform PEM \
-in key.pem -out key-pkcs8.pem

The following output is displayed.

Enter Encryption Password:
Verifying - Enter Encryption Password:

Note

The below conversion should be done if your key is encrypted with the PKCS#5
v2.0 algorithm. Otherwise, you might encounter IllegalArgumentException
exception that indicates the file does not contain a valid private key due to the
unsupported algorithm. The encryption algorithm can be converted via OpenSSL
pkcs8 utility by specifying PKCS#5 v1.5 or PKCS#12 algorithms with -v1 flag. The
following command converts the encryption algorithm of a key to PBE-SHA1-3DES.

openssl pkcs8 -topk8 -in <PKCS#5v2.0_key_file> -out <new_key_file> -
v1 PBE-SHA1-3DES

4. Create a Certificate Signing Request (CSR).

openssl req -new -key key.pem -out request.csr \
-subj "/C=US/ST=CA/L=San/CN=proxy-nosql.example.com"

where, CN in the subj should map to either the NoSQL Database proxy server hostname or
the NoSQL Database proxy domain name.
Using CN and optionally SAN while generating a self-signed certificate:

Appendix G
Guidelines for Generating Certificate Chain and Private Key using OpenSSL

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix G-4 of G-8

• Common Name (CN) is used to specify the NoSQL Database proxy server hostname
or NoSQL Database proxy server domain name.

• When a client tries to connect to the Oracle NoSQL Database Proxy it will get the SSL
certificate and compare the NoSQL Database proxy server hostname or NoSQL
Database proxy server domain name it wants to connect, with the CN provided in the
SSL certificate. If they are exactly the same it will use the SSL certificate to encrypt the
connection, otherwise, the connection fails.

• The standard X509 defines that single SSL certificate can only use a single CN. This
means an SSL certificate can be used only for a single NoSQL Database proxy server
hostname or NoSQL Database proxy server domain name.

• To solve this limitation, Subject Alternative Name(SAN) is created. SAN is used to
define multi-name or many CNs in SSL certificates.

• SAN is shown as a separate attribute in SSL Certificates. Here is an example of a
SAN.

openssl req -new \
-key key.pem -out request.csr -config \
<(echo "[req]";
echo distinguished_name=req;
echo req_extensions=req_ext
echo "[req_ext]";
echo subjectAltName=@alt_names
echo "[alt_names]";
echo DNS.1=proxy-nosql.example.com
echo DNS.2=proxy-nosql
echo DNS.3=localhost
echo IP.1=10.0.0.9
) \
-subj "/C=US/ST=CA/L=San/CN=proxy-nosql.example.com"

5. Send Certificate Signing Request (CSR) data file to CA. CA will use CSR data to issue a
SSL certificate.

6. CA returns a signed certificate certificate.pem. If it is not yet chained up with CA's
certificate (ca-chain.cert.pem), you need to manually chain up.

cat intermediateCA.crt > ca-chain.cert.pem
cat rootCA.crt > ca-chain.cert.pem
cat ca-chain.cert.pem >> certificate.pem

The following files are generated in the directory:

• key.pem is the server private key.

• key-pkcs8.pem is the server private key in PKCS#8 format.

• certificate.pem is the certificate chain file in pem format. It includes the server
certificates issued by CA.

• request.csr is the server certificate request file.

• rootCA.crt is the root certificate provided by the CA.

• intermediateCA.crt is the intermediate certificate(s) provided by CA.

Additionally, a driver.trust file is also required if you are using the Java driver, and if the
rootCA.crt is not listed in Java default trust store JAVA_HOME/jre/lib/security/cacerts.

Appendix G
Guidelines for Generating Certificate Chain and Private Key using OpenSSL

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix G-5 of G-8

This driver.trust file is not required for other language drivers. To generate the
driver.trust file, import the rootCA.crt certificate to the Java keystore. When prompted,
provide the keystore password.

keytool -import -alias example -keystore driver.trust -file rootCA.crt

For the Python driver, if your selected CA is not trusted by default, you need to get the
rootCA.crt or the entire chain of certificates from CA and set the system environment variable
accordingly:

Example:

REQUESTS_CA_BUNDLE=PATH_OF_CA_FILE/rootCA.crt

Troubleshooting issues with self-signed certificate
After you create a self-signed certificate and try to connect to the Oracle NoSQL Database
Proxy, sometimes the connection fails.

Table G-1 Connection failure scenarios and fixes

Value of CN Client Connection URL Result of the connection

CN=localhost https://localhost:8089 Connection successful

CN=proxy-nosql.example.com https://proxy-
nosql.example.com:8089

Connection successful

CN=*.example.com https://proxy-
nosql.example.com:8089

Connection successful

CN=proxy-nosql https://proxy-nosql:808 Connection successful

CN=proxy-nosql.example.com https://proxy-nosql:8089 Connection fails

CN=proxy-nosql.example.com https://10.0.0.9:8089 Connection fails

CN=localhost https://10.0.0.9:8089 Connection fails

CN=localhost https://proxy-nosql:8089 Connection fails

CN=localhost https://proxy-
nosql.example.com:8089

Connection fails

CN=proxy-nosql https://proxy-
nosql.example.com:8089

Connection fails

CN=*.example.com https://proxy-
nosql.subdomain.example.com:8
089

Connection fails

General Guidelines in avoiding connection failure errors:

• When a client tries to connect to the Oracle NoSQL Database Proxy it fetches the SSL
certificate and compares the NoSQL Database proxy server hostname or NoSQL
Database proxy server domain name. it wants to connect with the Common Name (CN)
provided in the SSL certificate. If they are exactly the same it will use the SSL certificate to
encrypt the connection, otherwise, the connection fails.

• When the connections fails, determine if you need to change the CN or add a SAN and
regenerate the certificate.

Appendix G
Troubleshooting issues with self-signed certificate

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix G-6 of G-8

Example:

 CN=proxy-nosql.example.com
subjectAltName=DNS:proxy-nosql,DNS:localhost,IP:10.0.0.9,DNS:proxy-
alias.example.com

Sample error scenarios with solution:

Example 1 : The value of CN=proxy-nosql.example.com and the application is connecting
using https://proxy-nosql:8089 and the connection fails.

The reason for connection failure is that the hostnames are not the same. You can implement
one of the following solutions:

• The client connection URL can be modified to https://proxy-nosql.example.com:8089

• You can change the CN in the certificate as CN=proxy-nosql

• You can add proxy-nosql as SAN subjectAltName=DNS:proxy-nosql

Example 2 : The value of CN=*.example.com and the application is connecting usinghttps://
proxy-nosql.subdomain.example.com:8089 and the connection fails.

The reason for connection failure is that domain names are not the same. You can implement
one of the following solutions:

• You can change the CN in the certificate as CN=*.subdomain.example.com

• You can add subdomain.example.com SAN
subjectAltName=DNS:*.subdomain.example.com

Example 3: The value of CN=proxy-nosql.example.com and the application is connecting
using https://localhost:8089 and the connection fails.

The reason for connection failure is that the hostnames are not the same. You can implement
one of the following solutions:

• The client connection URL can be modified to https://proxy-nosql.example.com:8089

• You can change the CN in the certificate as CN=localhost

• You can add localhost as SAN subjectAltName=DNS:localhost

Example 4: The vale of CN=proxy-nosql.example.com and the application is connecting using
https://10.0.0.9:8089 and the connection fails

The reason for connection failure is that you are trying to use an IP to do the connection. You
can implement one of the following solutions:

• The client connection URL can be modified to https://proxy-nosql.example.com:8089

• You can add the IP as SAN subjectAltName=IP:10.0.0.9

Simple commands to test if the connection would be successful :

You can use simple curl commands to simulate the connection and validate your
configuration.

Use case 1: View the certificate only CN:

$ openssl x509 -text -noout -in certificate.pem | grep CN
Issuer: C=US, ST=CA, L=San,CN=proxy-nosql/emailAddress=localhost@oraclevcn.com

Appendix G
Troubleshooting issues with self-signed certificate

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix G-7 of G-8

Subject: C=US, ST=CA, L=San, CN=proxy-nosql/
emailAddress=localhost@oraclevcn.com

Fail test using curl:

$ curl --cacert certificate.pem https://node1-nosql.example.com:8087
curl: (51) Unable to communicate securely with peer: requested domain name
does
not match the server's certificate.

Reason: The address in the url node1-nosql.example.com doesn't match with CN=proxy-nosql
in the certificate. And there is no SAN.

Success test using curl:

$ curl --cacert certificate.pem https://proxy-nosql:8087

Reason: The address in the url matches with CN=proxynosql in the certificate

Use case 2: Viewing the certificate CN and SAN

$ openssl x509 -text -noout -in
certificate.pem | grep CN
Issuer: CN=*.example.com
Subject: CN=*.example.com

$ openssl x509 -text -noout -in certificate.pem | grep -e DNS -e IP
 DNS:proxy-nosql, DNS:*.subdomain.example.com, IP Address:10.0.0.9

Success test using curl:

$ curl --cacert certificate.pem https://proxy-nosql.subdomain.example.com:8087

Reason: Even if the address in the url proxy-nosql.subdomain.example.com doesn't match
with CN=*.example.com in the certificate, it matches with the SAN in the certificate
subjectAltName=DNS:*.subdomain.example.com.

$ curl --cacert certificate.pem https://proxy-nosql:8087

Reason: Even if the address in the url proxy-nosql doesn't match with CN=*.example.com in
the certificate, it matches with the SAN in the certificate subjectAltName=DNS:proxy-nosql.

Appendix G
Troubleshooting issues with self-signed certificate

Security Guide
E85375-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix G-8 of G-8

	Contents
	Preface
	Conventions Used in This Book

	1 Introducing Oracle NoSQL Database Security
	2 Security Configuration
	Security Configuration Overview
	Configuring Security with Makebootconfig
	Configuring Security with Securityconfig
	Creating the security configuration
	Adding the security configuration
	Verifying the security configuration
	Updating the security configuration
	Showing the security configuration
	Removing the security configuration
	Merging truststore configuration

	3 Performing a Secure Oracle NoSQL Database Installation
	Single Node Secure Deployment
	Adding Security to a New Installation
	Adding Security to an Existing Installation

	Multiple Node Secure Deployment
	Adding Security to a New Installation
	Adding Security to an Existing Installation

	4 Kerberos Authentication Service
	Installation Prerequisites
	Kerberos Principal
	Keytabs
	Kadmin and kadmin.local
	Kerberos Security Properties
	Setting Security Properties in a security login file
	Setting Security Properties through KVStoreConfig
	Using Security Properties to Log In
	Using credential cache
	Using a keytab

	JAAS programming framework integration
	Performing a Secure Oracle NoSQL Database Installation with Kerberos
	Adding Kerberos to a New Installation
	Adding Kerberos to an Existing Secure Installation

	Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

	5 External Password Storage
	Oracle Wallet
	Password store file

	6 Security.xml Parameters
	Top-level parameters
	Transport parameters

	7 Encryption
	SSL model
	SSL communication properties
	Disk Encryption in a Linux Environment

	8 Configuring Authentication
	User Management
	User Creation
	User Modification
	User Removal
	User Status
	User Login
	Password Management

	Sessions

	9 Configuring Authorization
	Privileges
	System Privileges
	Object Privileges
	Table Ownership
	Privilege Hierarchy

	Roles
	System Built-in Roles
	User-Defined Roles

	Managing Roles, Privileges and Users
	Role Creation
	Role Removal
	Role Status
	Grant Roles or Privileges
	Revoke Roles or Privileges
	Granting Authorization Access to Namespaces

	10 Security Policies
	Security Policy Modifications

	11 Audit Logging
	Security Log Messages

	12 Keeping Oracle NoSQL Database Secure
	Guidelines for Securing the Configuration
	Guideline for Securing Store Topology
	Guidelines for Deploying Secure Applications
	Guidelines for Securing the SSL protocol
	Guidelines for Disabling TLSv1.1 and TLSv1 Protocols
	Guidelines for enabling TLSV1.3 protocol
	Guidelines for using JMX securely
	Guidelines for using PKCS12 Java KeyStore
	Default Security Configuration
	Updating KeyStore Type of an Existing Security Configuration
	Updating SSL Keys and Certificates

	Guidelines for Updating Keystore Passwords
	Guidelines for Updating Kerberos Passwords
	Guidelines for Updating SSL Keys and Certificates
	Guidelines for Configuring External Certificates for a new Installation
	Guidelines for Configuring External Certificates for an Existing Default Secure Installation
	Guidelines for Updating the External Certificates
	Guidelines for Operating System Security
	Guidelines for Resetting Admin Password

	A Password Complexity Policies
	B SSL keystore generation
	C Java KeyStore Preparation
	Import Key Pair to Java Keystore

	D KVStore Required Privileges
	Privileges for Accessing CLI Commands
	Privileges for DDL Commands
	Privileges for Accessing KVStore APIs
	Privileges for Accessing KVStore TableAPIs
	Privileges for Accessing KvLargeObject APIs
	Privileges for Running XRegion Service

	E Configuring the Kerberos Administrative Utility
	F Manually Registering Oracle NoSQL Database Service Principal
	G Generating Certificate and Private Key for the Oracle NoSQL Database Proxy
	Guidelines for Generating Self-Signed Certificate and Private Key using OpenSSL
	Guidelines for Generating Certificate Chain and Private Key using OpenSSL
	Troubleshooting issues with self-signed certificate

