
Oracle® NoSQL Database
Spring Data SDK Developers Guide

2.2.0
F58555-22
March 2025

Oracle NoSQL Database Spring Data SDK Developers Guide, 2.2.0

F58555-22

Copyright © 2022, 2025, Oracle and/or its affiliates.

Primary Author: Vandana Rajamani

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1 Introduction to Oracle NoSQL Database SDK for Spring Data

About the Oracle NoSQL Database SDK for Spring Data 1

Components of Oracle NoSQL Database SDK for Spring Data 2

Persistence Model 3

Transactional Model 21

Setting up the Connection 21

Defining a Repository 24

Starting the Application 25

Queries 26

PagingAndSortingRepository Interface 26

Derived Queries 27

Supported Keywords in Derived Queries 30

Native Queries 32

Activating Logging 32

2 Develop Applications Using Oracle NoSQL Database SDK for Spring
Data

Accessing Oracle NoSQL Database Using Spring Data Framework 1

Setting TTL values 6

Using SpEl expressions in NosqlTable annotation 7

Creating Tables with Composite Keys 9

Creating an Index 13

Projections 13

Dropping Tables and Indexes 16

Index

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page i of i

List of Examples

1-1 Setting up the connection in a nonsecure data store 22

1-2 Setting up the connection in a secure data store 22

1-3 Setting up the connection in Oracle NoSQL Database Cloud Service 23

2-1 Accessing NoSQL Database using Spring Data Framework 1

2-2 Setting table level TTL value using Spring Data Framework 6

2-3 Using SpEl expressions in the table name 9

2-4 Creating a table with composite primary key fields 10

2-5 Creating an Index on a table using Spring Data Framework 13

2-6 Using Projections 13

2-7 Dropping Tables and Indexes using Spring Data Framework 16

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page ii of i

List of Figures

1-1 Components of Oracle NoSQL Database SDK for Spring Data 3

1-2 Persistence Model 3

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page iii of i

List of Tables

1-1 Attributes in NosqlTable Annotation 5

1-2 Mapping Between Java and Oracle NoSQL Database Types 12

1-3 Attributes in NosqlId Annotation 13

1-4 Attributes in the Nosqlkey Annotation 14

1-5 Mapping Between Java and NoSQL JSON Types 18

1-6 Supported Keywords for Prefix 30

1-7 Supported Keywords for Body 30

2-1 Using SpEL Expressions 8

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page iv of i

1
Introduction to Oracle NoSQL Database SDK
for Spring Data

Learn about the Spring Data Framework and Oracle NoSQL Database SDK for Spring Data.

Oracle NoSQL Database SDK for Spring Data provides a Spring Data implementation module
to connect to an Oracle NoSQL Database cluster or to Oracle NoSQL Database Cloud
Service.

In the following sections, you will learn about the Spring Data Framework (Spring-based
programming model for data) and how to access the Oracle NoSQL Database using the Oracle
NoSQL Database SDK for Spring Data.

Prerequisites:

This chapter assumes that the user has a good understanding of the following:

• Maven

• Spring Data Framework

About the Oracle NoSQL Database SDK for Spring Data
Connect to the Oracle NoSQL Database with applications using the Spring Data Framework
(Spring-based programming model for data) and the Oracle NoSQL Database SDK for Spring
Data.

The Spring Data Framework provides a familiar and consistent, Spring-based programming
model for data access. For more information about Spring Data Framework, see Spring Data.

The Oracle NoSQL Database SDK for Spring Data provides POJO (Plain Old Java Object)
centric modeling and integration between the Oracle NoSQL Database and the Spring Data
Framework. One of the key benefits available to the Java programmer is the ability to write
your code as a repository-style data access layer, while the Spring Data Framework maps
those repository-style data access operations to Oracle NoSQL Database API calls.

The Oracle NoSQL Database SDK for Spring Data is available in the Maven Central repository,
details are available here. The main location of the project is is the oracle-spring-sdk project
on GitHub.

You can get all the required files for running the Spring Data Framework with the following
POM file dependencies. The version changes with each release. Ensure that you install the
latest supported version as suggested in the GitHub.

<dependencies>
 <dependency>
 <groupId>com.oracle.nosql.sdk</groupId>
 <artifactId>spring-data-oracle-nosql</artifactId>
 <version>2.1.0</version>
 </dependency>
</dependencies>

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 1 of 34

Add the additional dependency to use the Spring Data Framework:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter</artifactId>
 <version>3.3.4</version>
</dependency>

The Oracle NoSQL Database SDK for Spring Data provides you with all the Spring Data
classes, methods, interfaces, and examples. Documentation is available as nosql-spring-sdk in
GitHub or from SDK for Spring Data API Reference.

Note

The Oracle NoSQL Database SDK for Spring Data requires an Oracle NoSQL
Database Proxy to connect to an Oracle NoSQL Database cluster. For more
information about setting up an Oracle NoSQL Database Proxy, see Oracle NoSQL
Database Proxy in the Administrator's Guide.

Supported Features

The following features are currently supported by the Oracle NoSQL Database SDK for Spring
Data.

• Generic CRUD operations on a repository using methods in the CrudRepository interface.
For more information about the CrudRepository interface, see CrudRepository.

• Pagination and sorting operations using methods in the PagingAndSortingRepository
interface. For more information about the PagingAndSortingRepository interface, see
PagingAndSortingRepository.

• Derived Queries.

• Native Queries.

Components of Oracle NoSQL Database SDK for Spring Data
Learn about the modules of Oracle NoSQL Database SDK for Spring Data.

The Oracle NoSQL Database Proxy must be set up to facilitate a connection between Oracle
NoSQL Database and Spring Data Framework. To set up the Oracle NoSQL Database Proxy,
see Oracle NoSQL Database Proxy in the Administrator's Guide. After setting up the proxy,
you configure the Oracle NoSQL Database Proxy details in the NosqlRepository interface.
You provide the Oracle NoSQL Database connection and authentication (if any) details in the
NosqlDBConfig class. The POJOs (entity) with the @NosqlTable annotation are mapped to the
Oracle NoSQL Database tables by the Oracle NoSQL Database SDK for Spring Data. The
following diagram provides the components of the Oracle NoSQL Database SDK for Spring
Data.

Chapter 1
Components of Oracle NoSQL Database SDK for Spring Data

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 2 of 34

Figure 1-1 Components of Oracle NoSQL Database SDK for Spring Data

Persistence Model
Learn about the schema of the persistence table and Spring Data Framework annotations.

An entity is a lightweight persistence domain object. The persistent state of an entity is
represented through persistent fields using Java Beans / Plain Old Java Objects (POJOs).

The Spring Data Framework supports the persistence of entities to Oracle NoSQL Database
tables. An entity is mapped to a table. The ID field in that entity is mapped to the primary key
column of that table. All other fields in the entity are mapped to a JSON column of that table.
Each instance of the entity will be stored as a single row in that table. The value of the ID field
in that instance will be stored as the primary key value of that row. The values of all other fields
(including other objects) (see JSON Column) in that instance will be serialized and stored as
values in the JSON column of that row. Effectively, the table will always have only two columns:
a primary key column and a JSON column.

Figure 1-2 Persistence Model

If a persistent POJO has a reference to another persistent POJO (nested objects) that maps to
a different table, the Spring Data Framework will not serialize objects to multiple tables.
Instead, all the nested objects will be serialized and stored as values in the JSON column. For
more information about JSON Column mappings, see JSON Column.

The following is the syntax of an entity with @NosqlTable and @NosqlId annotations. In the
following example, the Student class with the @NosqlTable annotation will be mapped to a

Chapter 1
Persistence Model

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 3 of 34

table named Student in the Oracle NoSQL Database. The ID field with the @NosqlId
annotation will be the primary key field in the Student table. The firstName and lastName
fields will be mapped to a single JSON field named kv_json_ in the Student table.

When retrieving entries from the repository the driver must instantiate the entity classes. These
classes must have a default constructor or an empty constructor that is public or package
protected.

Note

The classes may have other constructors too.

/*The @NosqlTable annotation specifies that
this class will be mapped to an Oracle NoSQL Database table.*/
@NosqlTable
public class Student {
 //The @NosqlId annotation specifies that this field will act as the ID
field.
 @NosqlId
 public long ID;

 public String firstName;
 public String lastName;

 public Student() {}
}

Table Name

By default, the entity class name is used for the table name. You can provide a different table
name using the @NosqlTable annotation. The @NosqlTable annotation enables you to define
additional configuration parameters such as table name and timeout.

For example, an entity named Student will be persisted in a table named Student. If you want
to persist an entity named Student in a table named Learner, you can achieve that using the
@NosqlTable annotation.

If the @NosqlTable annotation is specified, then the following configuration can be provided.

Chapter 1
Persistence Model

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 4 of 34

Table 1-1 Attributes in NosqlTable Annotation

Parameter Type Ignored/
Optional/
Required
in Oracle
NoSQL
Database

Ingnored/
Optional/
Required
in Oracle
NoSQL
Database
Cloud
Service

Default Description

tableNam
e

String Optional Optional empty Specifies the name of the table, simple
or namespace-qualified form.

If empty, then the entity class name will
be used.

For more information about the
namespace, see Namespace
Management in the SQL Reference
Guide.

In the Oracle NoSQL Database Cloud
Service, the namespace part, if
provided, is used as the compartment
name. For more information about using
compartments, see Creating a
Compartment in the Oracle NoSQL
Database Cloud Service Guide.

autoCrea
teTable

boolean Optional Optional true Specifies if the table must be created if it
does not exist.

Note

The Spring
Data
Framework
looks for the
repositories
used in the
application
in the init
phase. If the
table does
not exist,
and if the
@NosqlTab
le
annotation
has the
autoCreat
eTable as
true, then
the table will
be created
in the init
phase.

Chapter 1
Persistence Model

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 5 of 34

Table 1-1 (Cont.) Attributes in NosqlTable Annotation

Parameter Type Ignored/
Optional/
Required
in Oracle
NoSQL
Database

Ingnored/
Optional/
Required
in Oracle
NoSQL
Database
Cloud
Service

Default Description

readUnit
s

int Ignored Required -1 Specifies the maximum read throughput
to be used if the table is to be created.

For more information about readUnits,
see Plan your service in the Oracle
NoSQL Database Cloud Service.

Note

In Oracle
NoSQL
Database
Cloud
Service, you
must set the
readUnits
parameter to
a value
greater than
0. If you do
not set the
value, the
Oracle
NoSQL
Database
Cloud
Service
return an
error.

Chapter 1
Persistence Model

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 6 of 34

Table 1-1 (Cont.) Attributes in NosqlTable Annotation

Parameter Type Ignored/
Optional/
Required
in Oracle
NoSQL
Database

Ingnored/
Optional/
Required
in Oracle
NoSQL
Database
Cloud
Service

Default Description

writeUni
ts

int Ignored Required -1 Specifies the maximum write throughput
to be used if the table is to be created.

For more information about
writeUnits, see Plan your service in
the Oracle NoSQL Database Cloud
Service.

Note

In Oracle
NoSQL
Database
Cloud
Service, you
must set the
writeUnit
s parameter
to a value
greater than
0. If you do
not set the
value, the
Oracle
NoSQL
Database
Cloud
Service will
return an
error.

Chapter 1
Persistence Model

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 7 of 34

Table 1-1 (Cont.) Attributes in NosqlTable Annotation

Parameter Type Ignored/
Optional/
Required
in Oracle
NoSQL
Database

Ingnored/
Optional/
Required
in Oracle
NoSQL
Database
Cloud
Service

Default Description

storageG
B

int Ingored Required -1 Specifies the maximum amount of
storage, in gigabytes, permitted for the
table, if the table is to be created.

For more information about storageGB,
see Plan your service in the Oracle
NoSQL Database Cloud Service.

Note

In Oracle
NoSQL
Database
Cloud
Service, you
must set the
storageGB
parameter to
a value
greater than
0. If you do
not set the
value, the
Oracle
NoSQL
Database
Cloud
Service will
return an
error.

Chapter 1
Persistence Model

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 8 of 34

Table 1-1 (Cont.) Attributes in NosqlTable Annotation

Parameter Type Ignored/
Optional/
Required
in Oracle
NoSQL
Database

Ingnored/
Optional/
Required
in Oracle
NoSQL
Database
Cloud
Service

Default Description

timeout int Optional Optional 0 Specifies the maximum time length, in
milliseconds, that the operations are
permitted to take before a timeout
exception is thrown.

If the value for timeout is not set then
the timeout set in NoSQLHandleConfig
class is used. For information about
getting the timeout from
NoSQLHandleConfig class using the
getTableRequestTimeout() method,
see NoSQLHandleConfig in the Java
SDK API Reference.

The timeout value can also be
changed using
NosqlRepository.setTimeout(int)
method. For more information, see
setTimeout in the SDK for Spring Data
API Reference.

Chapter 1
Persistence Model

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 9 of 34

Table 1-1 (Cont.) Attributes in NosqlTable Annotation

Parameter Type Ignored/
Optional/
Required
in Oracle
NoSQL
Database

Ingnored/
Optional/
Required
in Oracle
NoSQL
Database
Cloud
Service

Default Description

consiste
ncy

String Optional Optional EVENTUAL Specifies the consistency used for read
operations.

Valid values are based on
oracle.nosql.driver.Consistency
are EVENTUAL and ABSOLUTE . See
Consistency in the Java SDK API
Reference.

Note

This is the
default for
all read
operations.
It can be
overridden
by using
NosqlRepo
sitory.se
tConsiste
ncy(Strin
g). For
more
information,
see
setConsiste
ncy in the
SDK for
Spring Data
API
Reference.

durability String Optional Optional COMMIT_N
O_SYNC

Sets the default durability for all the write
operations applied to this table.

Valid values based on
oracle.nosql.driver.Durability
are COMMIT_NO_SYNC, COMMIT_SYNC,
and COMMIT_WRITE_NO_SYNC. See
Durability in the Java SDK API
Reference.

Chapter 1
Persistence Model

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 10 of 34

Table 1-1 (Cont.) Attributes in NosqlTable Annotation

Parameter Type Ignored/
Optional/
Required
in Oracle
NoSQL
Database

Ingnored/
Optional/
Required
in Oracle
NoSQL
Database
Cloud
Service

Default Description

capacityM
ode

NosqlCapa
cityMode
For more
information
, see
NosqlCapa
cityMode.

Optional Optional NosqlCap
acityMod
e.PROVIS
IONED

Sets the capacity mode when the table
is created. This applies only in cloud or
cloud sim scenarios.

A table is created with either
Provisioned Capacity or On-Demand
Capacity. For more details, see Cloud
Concepts in the Oracle NoSQL
Database Cloud Service.

Set the values for the TableLimits
instance based on the capacity mode as
follows:
• Set capacityMode to

PROVISIONED and all three
TableLimits: readUnits,
writeUnits, and storageGB to
values greater than 0.

• Set capacityMode to
ON_DEMAND and storageGB to a
value greater than 0.

ttl int Optional Optional 0 Sets the default table level Time to Live
(TTL) when the table is created. The
TTL enables the automatic expiration of
table rows after the elapse of the
specified duration.

If the value is not set, the value
Constants.NOTSET_TABLE_TTL is
used, that is, table-level TTL is not
applicable. See NOTSET_TABLE_TTL
in the SDK for Spring Data API
Reference.

This parameter is applicable only when
autoCreateTable is set to true.

ttlUnit TtlUnit Optional Optional NosqlTab
le.TtlUn
it.DAYS

Sets the unit of TTL value. The valid
values are:
NosqlTable.TtlUnit.DAYS and
NosqlTable.TtlUnit.HOURS.

If the value is not set, the default value of
days is used.

This parameter is applicable only when
autoCreateTable is set to true.

Primary Key

The table requires a primary key. The field named ID in the entity will be used as the primary
key. You can select a different field in the entity (a field with a different name other than ID) to
designate as the primary key using the @NosqlId annotation or the @id annotation.

Chapter 1
Persistence Model

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 11 of 34

When an ID field is mapped to a primary key column, the Spring Data Framework will
automatically assign the corresponding data type to the ID field before storing it in the table.
The following is a list of data type mappings between a Java type and an Oracle NoSQL
Database type for the ID field.

The Java types that are provided in the following table are the only valid data types that can be
used for a primary key.

Table 1-2 Mapping Between Java and Oracle NoSQL Database Types

Java Type Oracle NoSQL Database Type

java.lang.String STRING

int

java.lang.Integer

INTEGER

long

java.lang.Long

LONG

double

java.lang.Double

float

java.lang.Float

DOUBLE

Note

double, java.lang.Double, float, and
java.lang.Float can be a primary key
but it's not a valid generated=true type

Note

Since FLOAT in Oracle NoSQL Database
type is not explicitly used in NoSQL SDK for
Java, the Java float and
java.lang.Float are mapped to the
DOUBLE type.

java.math.BigDecimal

java.math.BigInteger

NUMBER

boolean

java.lang.Boolean

BOOLEAN

java.util.Date

java.sql.Timestamp

java.time.Instant

TIMESTAMP (P)

The Spring Data Framework deduces the primary key using the following rules:

• @NosqlId annotation: If @NosqlId annotation is used on a field with a valid data type for
the primary key, then that field is considered the primary key. If @NosqlId is used on a field
of a type other than a valid data type for the primary key, an error is raised. For more
information, see NosqlId in the SDK for Spring Data API Reference.

• @org.springframework.data.annotation.Id annotation: If
@org.springframework.data.annotation.Id field annotation is used on a field with a valid
data type for the primary key, then that field is considered as the primary key. If

Chapter 1
Persistence Model

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 12 of 34

@org.springframework.data.annotation.Id is used on a field of a type other than a valid
data type for the primary key, an error is raised.

• Not specified: If none of the preceding two annotations are specified, then the Spring
Data Framework will use the field named ID as the primary key.

An error is raised if:

• No @NosqlId annotation or @org.springframework.data.annotation.Id annotation or ID
field is found in the entity, as no primary key field can be inferred.

• Two or more of the @NosqlId or @org.springframework.data.annotation.Id annotated
fields are used in the entity, as multiple primary key fields can be inferred.

Note

The name of the fields that take the @NosqlId or
@org.springframework.data.annotation.Id annotations must not be named
kv_json_. This is because the data column of the table created by the Spring Data
Framework will be named kv_json_ and will be a JSON column where all attributes in
the persistent entity that are not listed as primary key attributes will be stored.

The @NosqlId field annotation can take the following additional configuration:

Table 1-3 Attributes in NosqlId Annotation

Paramete
r

Type Optional/
Required

Default Description

generate
d

boolean Optional false Specifies if the ID is autogenerated or not.

• If true, then it is defined as autogenerated by the
program.
– If int/Integer, long/Long, BigInteger or

BigDecimal, then GENERATED ALWAYS as
IDENTITY is used.

– If String, then "String as UUID GENERATED
BY DEFAULT" is used.

• If false, then the value must be managed by your
application.

Note

You can't autogenerate
composite keys. Setting
@NosqlId.autoGenerated
=true leads to an error. You
must manage the key values
for all read/write calls when
using the composite keys. If
the key values are not set,
the Oracle NoSQL Database
generates an error.

Chapter 1
Persistence Model

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 13 of 34

Composite Primary Keys

Composite primary keys contain more than one primary key field. You can define a composite
key class type to represent the composite keys.

A composite key class is a type that is mapped to multiple primary key fields of the entity class.
A composite key class must be serializable and must define equals and hashcode methods.
This class must consist of fields that are primitive data types.

Note

The equality checks for the user-defined methods in the composite key class must be
consistent with the equality checks performed in the Oracle NoSQL Database between
the database types and their mapped keys.

You can use @NosqlKey annotation to specify the components of a composite primary key in
the composite key class.

Table 1-4 Attributes in the Nosqlkey Annotation

Parameter Type Optional/Required Default Description

shardKey boolean Optional true Identifies if a
primary key field is
also a Shard Key.
Shard keys affect
the distribution of
rows across
shards.

• If true, the
Spring Data
Framework
considers the
primary key
field as a part
of the shard
key.

• If false, the
primary key
field is not a
part of the
shard key.

If you do not supply
the shardKey
parameter in the
Nosqlkey
annotation, the
Spring Data
Framework creates
the primary key
field as a shard key.

Chapter 1
Persistence Model

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 14 of 34

Table 1-4 (Cont.) Attributes in the Nosqlkey Annotation

Parameter Type Optional/Required Default Description

order int Optional System determined Specifies the
ordering of the
shard keys and
non-shard keys
within the primary
key in a composite
key class.

You can set the
order value based
on the following
rules, otherwise,
the Spring Data
Framework
generates an error.

• The order of
the shard keys
must be less
than the order
of the non-
shard primary
key fields.

• The order must
be specified for
all the primary
key fields or
none. The
Spring Data
Framework
does not
support
specifying the
order for a
partial list of
primary key
fields.

• The order
value of each
primary key
field must be
unique.

If you do not
specify the order
parameter in the
Nosqlkey
annotation, the
Spring Data
Framework orders
shard keys and
non-shard keys
individually in the
alphabetic order of
the field names.
See Ordering the
composite keys
example.

Chapter 1
Persistence Model

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 15 of 34

For more details on @NosqlKey annotation, see NosqlKey in the SDK for Spring Data API
Reference document.

Example: Ordering the composite keys

Consider primary key fields universityId, academicYear, and studentId defined in a composite
key class.

You can define the universityId and academicYear fields to be a part of the shard key. The
order values of these shard keys must be lesser than the studentId field, which is a non-shard
key. You can use the following sample code to create a composite class.

/* Define a composite Key class */

public class StudentKey implements Serializable {

 @NosqlKey(shardKey = true, order = 1)
 long universityId;

 @NosqlKey(shardKey = true, order = 0)
 int academicYear;

 @NosqlKey(shardKey = false, order = 2)
 long studentId;

 /* public or package protected constructor required when retrieving from
database */
 public StudentKey() {
 }
}

In the preceding example, the academicYear field is considered as the first primary key field
during the creation of the table.

The Spring Data Framework creates the table with the following DDL:

/* Table DDL */

CREATE TABLE IF NOT EXISTS Students (
 academicYear INTEGER,
 universityId LONG,
 studentId LONG,
 kv_json_ JSON,
 PRIMARY KEY(SHARD(academicYear, universityId), studentId)
)

Consider a composite key class without specifying the order field.

/* Define a composite Key class */

public class StudentKey implements Serializable {

 @NosqlKey(shardKey = true)
 long universityId;

 @NosqlKey(shardKey = true)

Chapter 1
Persistence Model

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 16 of 34

 int academicYear;

 @NosqlKey(shardKey = false)
 long studentId;

 @NosqlKey(shardKey = false)
 long branchId;

 /* public or package protected constructor required when retrieving from
database */
 public StudentKey() {
 }
}

In the preceding example, the Spring Data Framework creates the shard keys and non-shard
keys in the alphabetic order of the field names within the primary key. The table DDL is as
follows:

/* Table DDL */

CREATE TABLE IF NOT EXISTS Students (
 academicYear INTEGER,
 universityId LONG,
 branchId LONG,
 studentId LONG,
 kv_json_ JSON,
 PRIMARY KEY(SHARD(academicYear, universityId), branchId, studentId)
)

In the following cases, the Spring Data Framework considers all the primary key fields as shard
keys and uses alphabetical ordering:

• If you declare the primary key fields in the composite key class without using the
@NosqlKey annotation.

• If you declare the primary key fields in the composite key class without specifying the
shardKey and the order values in the @NosqlKey annotation.

Note the following properties of the composite key class.

• You must have at least one field with shardKey=true in the composite key class, otherwise,
the Spring Data Framework will generate an error.

• You can use a composite key class with repositories (as the ID type) and to represent an
entity’s identity in a single object.

• You can annotate the fields as @transient to designate the nonpersistent state of the field.

• You can't nest composite key classes. This will generate an error.

• You can't autogenerate composite primary key fields. Setting
@NosqlId.autoGenerated=true leads to an error. You must manage the key values for all
read/write calls when using the composite keys. If the key values are not set, the Oracle
NoSQL Database generates an error.

JSON Column

All other fields in the entity other than the primary key field will be converted into a NoSQL
JSON value with the following rules:

Chapter 1
Persistence Model

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 17 of 34

• The Java scalar values will be converted to NoSQL JSON atomic values.

• The Java collections and array structures will be converted to a NoSQL JSON array.

• The Java nonscalar values will be recursively converted to NoSQL JSON objects.

• The Java null values will be converted to NoSQL JSON NULL values.

• The complex values will be converted to NoSQL JSON objects according to the following
table.

Table 1-5 Mapping Between Java and NoSQL JSON Types

Java Type Representation within Oracle NoSQL Database JSON data type

java.lang.String STRING

int

java.lang.Integer

INTEGER

long

java.lang.Long

LONG

double

java.lang.Double

float

java.lang.Float

DOUBLE

Note

Since FLOAT in Oracle NoSQL Database
type is not explicitly used in NoSQL SDK for
Java, Java float, and java.lang.Float
are mapped to the DOUBLE type.

java.math.BigDecimal

java.math.BigInteger

NUMBER

boolean

java.lang.Boolean

BOOLEAN

byte[] STRING - a binary base64-encoded representation.

java.util.Date

java.sql.Timestamp

java.time.Instant

STRING - an ISO-8601 UTC time stamp encoded representation.

org.springframework.dat
a.geo.Point

GeoJson Point

For more information about GeoJson Data, see About GeoJson Data in
the SQL Reference Guide.

Chapter 1
Persistence Model

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 18 of 34

Table 1-5 (Cont.) Mapping Between Java and NoSQL JSON Types

Java Type Representation within Oracle NoSQL Database JSON data type

org.springframework.dat
a.geo.Polygon

GeoJson Polygon

For more information about GeoJson Data, see About GeoJson Data in
the SQL Reference Guide .

Note

Polygons must conform to the following
rules to be well-formed, otherwise they will
be ignored when used in queries.

1. A linear ring is a closed LineString
with four or more positions.

2. The first and last positions are
equivalent, and they must contain
identical values.

3. A linear ring is either the boundary of a
surface or the boundary of a hole in a
surface.

4. A linear ring must follow the right-hand
rule for the area it bounds, that is, for
exterior rings, their positions must be
ordered counterclockwise, and for
holes, their position must be ordered
clockwise.

Before inserting new polygons in the table,
the geo_is_geometry() function can be
used for verification. If polygon data is
indexed an error will be raised if for some
row the value of the index path is not valid,
unless that value is NULL, json null, or
EMPTY.

Chapter 1
Persistence Model

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 19 of 34

Table 1-5 (Cont.) Mapping Between Java and NoSQL JSON Types

Java Type Representation within Oracle NoSQL Database JSON data type

java.util.ArrayList

java.util.Collection

java.util.List

java.util.AbstractList

java.util.HashSet

java.util.Set

java.util.AbstractSet

java.util.TreeSet

java.util.SortedSet

java.util.NavigableSet

java.util.Array []

ARRAY(JSON)

Note

• A java.util.ArrayList object is
instantiated for fields of type
java.util.Collection,
java.util.List,
java.util.AbstractList, and
java.util.ArrayList.

• A java.util.HashSet object is
instantiated for fields of type
java.util.Set,
java.util.AbstractSet, and
java.util.HashSet.

• A java.util.TreeSet object is
instantiated for fields of type
java.util.SortedSet,
java.util.NavigableSet, and
java.util.TreeSet.

POJO<f1 T1, f2 T2...> MAP(JSON)

java enum types STRING

java.util.Map

java.util.NavigableMap

java.util.SortedMap

java.util.HashMap

java.util.LinkedHashMap

java.util.Hashtable

java.util.TreeMap

MAP(JSON)

Note

• A java.util.HashMap is instantiated
for fields of type java.util.HashMap

• A java.util.LinkedHashMap is
instantiated for fields of type
java.util.Map and
java.util.LinkedHasMap.

• A java.util.TreeMap is instantiated
for fields of type
java.util.NavigableMap,
java.util.SortedMap, and
java.util.TreeMap.

Note

Java data structures that contain cycles are neither supported nor detected. That is, if
the entity object is traversed from the root down the fields and encounters the same
object twice it becomes a cycle.

Chapter 1
Persistence Model

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 20 of 34

Transactional Model
Learn about how the Oracle NoSQL Database SDK for Spring Data handles transactions on
Oracle NoSQL Database.

The transaction model for the Oracle NoSQL Database SDK for Spring Data builds on top of
the existing transaction model exposed by the Oracle NoSQL Database. That is, ACID
transactions are only supported for operations that do not span database shards. From the
perspective of your Spring application, you must think about ACID transactions as being
supported for those repository methods that operate over single objects. Repository methods
such as deleteAll() are implemented in the Oracle NoSQL Database SDK for Spring Data to
make a "best-effort" to complete across all database shards but make no ACID guarantees.

The write operations when using save(), saveAll(), delete(), deleteById(), deleteAll() or
write queries will be performed based on the default Java driver durability. For more
information about default Java driver durability, see COMMIT_NO_SYNC in the Java Direct
Driver API Reference.

The read operations when using findByID(), findAllById(), findAll(), count() or select
queries will be performed based on the default eventual consistency or as specified in the
@NosqlTable annotation. For more information about default eventual consistency, see
getDefaultConsistency in the Java SDK API Reference.

Setting up the Connection
Learn how to set up a connection from Oracle NoSQL Database SDK for Spring Data to the
Oracle NoSQL Database.

To expose the connection and security parameters to the Oracle NoSQL Database SDK for
Spring Data, you must create a class that extends the AbstractNosqlConfiguration class.
You can customize this code as required. Perform the following steps to set up a connection to
the Oracle NoSQL Database.

Step 1: In your application, create the NosqlDbConfig class. This class will have the
connection details to the Oracle NoSQL Database Proxy. Provide the @Configuration and
@EnableNoSQLRepositories annotations to this NosqlDbConfig class. The @Configuration
annotation tells the Spring Data Framework that the @Configuration annotated class is a
configuration class that must be loaded before running the program. The
@EnableNoSQLRepositories annotation tells the Spring Data Framework that it must load the
program and lookup for the repositories that extends the NosqlRepository interface. The
@Bean annotation is required for the repositories to be instantiated.

Step 2: Create an @Bean annotated method to return an instance of the NosqlDBConfig class.
The NosqlDBConfig class will also be used by the Spring Data Framework to authenticate the
Oracle NoSQL Database.

Step 3: Instantiate the NosqlDbConfig class. Instantiating the NosqlDbConfig class will cause
the Spring Data Framework to internally instantiate an Oracle NoSQL Database handle by
authenticating with the Oracle NoSQL Database.

Note

You can add an exception code block to catch any connection error that might be
thrown upon authentication failure.

Chapter 1
Transactional Model

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 21 of 34

Note

Creating an Oracle NoSQL Database handle using the previously-mentioned steps
has a limitation. The limitation is that the application will not be able to connect to two
or more different clusters at the same time. This is a Spring Data Framework limitation.
For more information about Spring Data Framework, see Spring Core.

Note

If you have trouble connecting to Oracle NoSQL Database from your Spring
application, you can add an exception block and print the message for debugging.

Example 1-1 Setting up the connection in a nonsecure data store

As given in the following example, you can use the StoreAccessTokenProvider class to configure
the Spring Data Framework to connect and authenticate with an Oracle NoSQL Database. You
must provide the URL of the Oracle NoSQL Database Proxy with nonsecure access.

/* Annotation to specify that this class can be used by the
 Spring Data Framework as a source of bean definitions.*/
@Configuration
/* Annotation to enable NoSQL repositories.*/
@EnableNosqlRepositories
public class AppConfig extends AbstractNosqlConfiguration {

 /* Annotation to tell the Spring Data Framework that the returned object
 must be registered as a bean in the Spring application.*/
 @Bean
 public NosqlDbConfig nosqlDbConfig() {
 AuthorizationProvider authorizationProvider;
 authorizationProvider = new StoreAccessTokenProvider();
 /* Provide the host name and port number of the NoSQL cluster.*/
 return new NosqlDbConfig("http://<host:port>", authorizationProvider);
 }
}

Example 1-2 Setting up the connection in a secure data store

The following example modifies the previous example to connect to a secure Oracle NoSQL
Database store. For more details on StoreAccessTokenProvider class, see
StoreAccessTokenProvider in the Java SDK API Reference.

/*Annotation to specify that this class can be used by the
 Spring Data Framework as a source of bean definitions.*/
@Configuration
/* Annotation to enable NoSQL repositories.*/
@EnableNosqlRepositories
public class AppConfig extends AbstractNosqlConfiguration {

 /* Annotation to tell the Spring Data Framework that the returned object
 must be registered as a bean in the Spring application.*/
 @Bean
 public NosqlDbConfig nosqlDbConfig() {

Chapter 1
Setting up the Connection

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 22 of 34

 AuthorizationProvider authorizationProvider;
 /* Provide the user name and password of the NoSQL cluster.*/
 authorizationProvider = new StoreAccessTokenProvider(user, password);
 /* Provide the host name and port number of the NoSQL cluster.*/
 return new NosqlDbConfig("http://<host:port>", authorizationProvider);
 }
}

For secure access, the StoreAccessTokenProvider parameterized constructor takes the
following arguments.

• user is the user name of the kvstore.

• password is the password of the kvstore user.

For more details on the security configuration, see Obtaining a NoSQL Handle.

Example 1-3 Setting up the connection in Oracle NoSQL Database Cloud Service

You can use different methods to connect to the Oracle NoSQL Database Cloud Service. For
more details, see Connecting your Application to NDCS.

As given in the following example, you can use the SignatureProvider class to configure the
Spring Data Framework to connect and authenticate with the Oracle NoSQL Database Cloud
Service. See SignatureProvider in the Java SDK API Reference.

You require tenancy id, user id, and fingerprint information which can be found on the user
profile page of the cloud account under the User Information tab on View Configuration
File. You can also add the passphrase to your private key. For more details, see
Authentication to connect to Oracle NoSQL Database.

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import oracle.nosql.driver.kv.StoreAccessTokenProvider;
import oracle.nosql.driver.Region;
import oracle.nosql.driver.iam.SignatureProvider;
import java.io.File;

public class AppConfig extends AbstractNosqlConfiguration

{
 /* Annotation to tell that the returned object must be registered as a
bean in the Spring application.*/
 @Bean
 public NosqlDbConfig nosqlDbConfig()
 {
 SignatureProvider signatureProvider;
 char passphrase[] = < Pass phrase > ; // Optional. A passphrase for
the key, if it is encrypted.

 /* Details that are required to authenticate and authorize access to
the Oracle NDCS are provided.*/
 signatureProvider = new SignatureProvider(
 < tenantID > , // The Oracle Cloud Identifier (OCID) of the
tenancy.
 < userID > , // The Oracle Cloud Identifier (OCID) of a user in
the tenancy.
 < fingerprint > , // The fingerprint of the key pair used for

Chapter 1
Setting up the Connection

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 23 of 34

signing.
 new File(< privateKeyFile >), // Full path to the key file.
 passphrase //Optional.
);

 /* Provide the service URL of the Oracle NoSQL Database Cloud Service
*/
 /* Update the Region.<Region name>.endpoint() with the appropriate
value. */
 /* For example, Region.US_ASHBURN_1.endpoint() .*/

 return new NosqlDbConfig(Region. < Region name > .endpoint(),
signatureProvider);
 }

Defining a Repository
Learn about Oracle NoSQL Database SDK for Spring Data's NosqlRepository interface, which
includes methods to save, delete, update individual entities and also findAll, deleteAll on sets
of entities.

The entity class that is used for persistence is discoverable by the Spring Data Framework
either via annotation or inheritance. The NosqlRepository interface enables you to inherit and
create an interface for each entity that will use the Oracle NoSQL Database for persistence.

The NosqlRepository interface extends Spring's PagingAndSortingRepository interface that
provides many methods that define queries.

In addition to those methods that are provided by the NosqlRepository interface, you can add
methods to your repository interface to define derived queries. These interface methods follow
a specific naming pattern for Spring derived queries (for more information derived queries, see
Query Creation) intercepted by the Spring Data Framework. The Spring Data Framework will
use this naming pattern to generate an expression tree, passing this tree to the Oracle NoSQL
Database SDK for Spring Data, where this expression tree is converted into an Oracle NoSQL
Database query, which is compiled and then executed. These Oracle NoSQL Database
queries are executed when you call the repository's respective methods.

If you want to create your derived queries, this must be performed by extending the
NosqlRepository interface and adding your own Java method signatures that conform to the
naming patterns as discussed in the derived queries section.

The following is an example of a code that implements the NosqlRepository interface. You
must provide the bounded type parameters: the entity type and the data type of the ID field.
This interface implements a derived query findByLastName and returns an iterable instance of
the Student class.

import com.oracle.nosql.spring.data.repository.NosqlRepository;

/*The Student is the entity class, and Long is the data type of the
 primary key in the Student class. This interface implements a derived query
 findByLastName and returns an iterable instance of the Student class.*/
public interface StudentRepository extends NosqlRepository<Student, Long> {

 /*The Student is searched by lastname and
 an iterable instance of the Student class is returned.*/

Chapter 1
Defining a Repository

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 24 of 34

 Iterable<Student> findByLastName(String lastname);
}

Starting the Application
Learn how to create a program to run the Spring boot application.

After creating the entity and repository, you must write a program to run the Spring application.
You can do that using a Spring boot application or a Spring core application.

Create an @SpringBootApplication annotated class to run a Spring boot application. You can
override the run method in the CommandLineRunner interface to write your code.

The following is an example of a Spring boot application.

/* The annotation helps to build an application using Spring Data Framework
rapidly.*/
@SpringBootApplication
public class BootExample implements CommandLineRunner {

 /*The annotation enables Spring Data Framework to
 look up the configuration file for a matching bean.*/
 @Autowired
 private StudentRepository nosqlRepo;

 @Override
 public void run(String... args) throws Exception {
 ...
 }
}

The following is an example of a Spring core application.

public class CoreExample {
 public static void main(String[] args) {
 ApplicationContext ctx =
 new AnnotationConfigApplicationContext(AppConfig.class);
 NosqlOperations ops = (NosqlOperations)ctx.getBean("nosqlTemplate");
 ...
 }
}

Note

The Spring Data Framework will look in the class path for a class with the
@configuration annotation and contains a method named NosqlTemplate with the
@Bean annotation.

Chapter 1
Starting the Application

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 25 of 34

Queries
Learn about the types of queries supported by the Spring Data Framework.

You can use the queries provided in the repository base classes such as the
PagingAndSortingRepository interface, or write your queries. The Spring Data Framework
supports the following types of queries.

1. Generic queries - queries provided by methods in the PagingAndSortingRepository
interface and CrudRepository interfaces.

2. Derived queries - queries derived/generated by Spring SDK from the name of the method
based on the keywords.

3. Native queries - queries provided by user in the SQL for NoSQL Database format.

PagingAndSortingRepository Interface
Learn about the PagingAndSortingRepository interface supported by the Spring Data
Framework.

The NosqlRepository interface extends the PagingAndSortingRepository interface.

The PagingAndSortingRepository interface extends the CrudRepository interface and
provides methods such as:

• Page<T> findAll(Pageable pageable)

• Iterable<T> findAll(Sort sort)

• long count()

• void delete(T entity)

• void deleteAll()

• void deleteAll(Iterable<? extends T> entities)

• void deleteAllById(Iterable<? extends ID> ids)

• void deleteById(ID id)

• boolean existsById(ID id)

• Iterable<T> findAll()

• Iterable<T> findAllById(Iterable<ID> ids)

• Optional<T> findById(ID id)

• <S extends T> S save(S entity)

• <S extends T> Iterable<S> saveAll(Iterable<S> entities)

You can use any of these methods for the required functionality.

For more information about the Spring's PagingAndSortingRepository interface, see
PagingAndSortingRepository.

Chapter 1
Queries

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 26 of 34

Derived Queries
Learn about the customized query creation feature supported by the Spring Data Framework.

Apart from those query methods that are provided by Spring's PagingAndSortingRepository
interface, you can also define derived queries. Spring Data Framework has an inbuilt query
creation feature. Spring Data Framework creates queries directly from the Java method name
alone.

For example, if we have a Java method name with the following construct,

List<Customer> findByFirstName(String firstName);

then the following derived query will be created automatically by the Spring Data Framework.

declare $firstName String;

SELECT * FROM Customer AS c WHERE c.kv_json_.firstName = $firstName;

The only requirement for this derived query to work is that this Java method must be defined in
the interface that extends the NosqlRepository interface. The NosqlRepository interface
extends the Repository interface which is responsible for the derived queries. The common
prefixes from the Java method name are removed and the constraints of the query are parsed
from the rest of the Java method name. For more information about Spring derived query
creation, see Query Creation.

The Java methods with the prefixes find…By, read…By, query…By, count…By, get…By, exists…
By, delete…By, and remove…By are considered as derived query methods by Spring Data
Framework. Apart from these prefixes, the Java method name can also have other keywords.
The following section provides the detailed derived query snippets that will be generated if the
given keywords are used.

And

If a method name has the word and in the following construct,

Iterable<Student> findByFirstNameAndLastName(String firstname, String
lastname);

then the following derived query will be auto-created by the Spring Data Framework.

declare $p_firstName String;
$p_lastName String;

SELECT * FROM Student AS s WHERE (
 s.kv_json_.firstName = $p_firstName AND s.kv_json_.lastName = $p_lastName)

Chapter 1
Queries

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 27 of 34

Note

The Oracle NoSQL Database SDK for Spring Data supports derived queries that use a
combination of the logical operators (and, or). The generated query will follow the rules
of operator precedence defined in the Oracle NoSQL Database SQL query language.
For more information about the operator precedence in the Oracle NoSQL Database
SQL query language, see Operator Precedence in the SQL Reference Guide.

Or

If a method name has the word or in the following construct,

Iterable<Student> findByFirstNameOrLastName(String firstname, String
lastname);

then the following derived query will be auto-created by the Spring Data Framework.

declare $p_firstName String;
$p_lastName String;

SELECT * FROM Student AS s WHERE (
 s.kv_json_.firstName = $p_firstName OR s.kv_json_.lastName = $p_lastName)

Note

The Oracle NoSQL Database SDK for Spring Data supports derived queries that use a
combination of the logical operators (and, or). The generated query will follow the rules
of operator precedence defined in the Oracle NoSQL Database SQL query language.
For more information about the operator precedence in the Oracle NoSQL Database
SQL query language, see Operator Precedence in the SQL Reference Guide.

OrderBy (Asc/Desc)

If a method name has the word orderby in the following construct,

Iterable<Student> findByLastNameOrderByFirstNameAsc(String lastname);

then the following derived query will be created automatically by the Spring Data Framework.

declare $p_lastName String;

SELECT * FROM Student AS s
 WHERE s.kv_json_.lastName = $p_lastName ORDER BY s.kv_json_.firstName ASC

If a method name has the word orderby in the following construct,

Iterable<Student> findByLastNameOrderByFirstNameDesc(String lastname);

Chapter 1
Queries

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 28 of 34

then the following derived query will be created automatically by the Spring Data Framework.

declare $p_lastName String;

SELECT * FROM Student AS s
 WHERE s.kv_json_.lastName = $p_lastName ORDER BY s.kv_json_.firstName DESC

First

If a method name has the word first in the following construct,

Page<Student> queryFirst5ByLastname(String lastname, Pageable pageable);

then the following derived query will be created automatically by the Spring Data Framework.

For more information about Page, see Page. For more information about Pageable, see
Pageable.

declare $p_lastName String;
$kv_limit_ Long;
$kv_offset_ Long;

SELECT * FROM Student AS s
 WHERE s.kv_json_.lastName = $p_lastName LIMIT $kv_limit_
OFFSET $kv_offset_

Top

If a method name has the word top in the following construct,

Slice<Student> findTop10ByLastName(String lastname, Pageable pageable);

then the following derived query will be created automatically by the Spring Data Framework.

For more information about Slice, see Slice.

declare $p_lastName String;
$kv_limit_ Long;
$kv_offset_ Long;

SELECT * FROM Student AS s
 WHERE s.kv_json_.lastName = $p_lastName LIMIT $kv_limit_
OFFSET $kv_offset_

For the complete list of supported keywords in query methods in Oracle NoSQL Database SDK
for Spring Data, see Supported Keywords in Query Method.

The following is an example of an Oracle NoSQL Database repository. It must extend the
NosqlRepository interface. The bounded types represent the entity type and the data type of
the ID field.

interface PersonRepository extends NosqlRepository<Person, Long> {
 List<Person> findByFirstNameAndLastName(String firstname, String
lastname);

Chapter 1
Queries

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 29 of 34

 List<Person> findByLastNameOrderByFirstNameDesc(String lastname);
}

Supported Keywords in Derived Queries
Learn about the keywords supported by the Spring Data Framework for prefixing the method
names in derived queries.

The following is the list of supported keywords for prefix in the derived query method name.

Table 1-6 Supported Keywords for Prefix

Prefix Keyword Example

findBy List<Customer> findByFirstName(String firstName)

queryBy List<Customer> queryByFirstName(String firstName)

getBy List<Customer> getByFirstName(String firstName)

readBy List<Customer> readByFirstName(String firstName)

countBy long countByFirstName(String firstName) - returns the count of the
matching rows

existsBy boolean existsByLastName(String lastname) - returns true if returned
rows > 0

The following is the list of supported keywords for body in the derived query method name.

Table 1-7 Supported Keywords for Body

Body Keyword No. of
Parts

No. of
Params

Example

fieldname 1 1 List<Customer> findByLastName(String
lastName)

fieldnameReferencef
ieldname

1 1 List<Customer> findByAddressCity(String
city)

class Customer { Address adress; ...}

class Address { String city; ...}

And 2 0 List<Customer>
findByFirstNameAndLastName(String
firstName, String lastName)

Or 2 0 List<Customer>
findByFirstNameOrLastName(String firstName,
String lastName

GreaterThan 1 1 List<Customer> findByAgeGreaterThan(int
minAge)

GreaterThanEqual 1 1 List<Customer>
findByAgeGreaterThanEqual(int minAge)

LessThan 1 1 List<Customer> findByAgeLessThan(int
maxAge)

LessThanEqual 1 1 List<Customer> findByAgeLessThanEqual(int
maxAge)

IsTrue 1 0 List<Customer> findByVanillaIsTrue()

Chapter 1
Queries

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 30 of 34

Table 1-7 (Cont.) Supported Keywords for Body

Body Keyword No. of
Parts

No. of
Params

Example

Desc 1 0 List<Customer>
queryByLastNameOrderByFirstNameDesc(String
lastname)

Asc 1 0 List<Customer>
getByLastNameOrderByFirstNameAsc(String
lastname)

In 1 1 List<Customer>
findByAddressCityIn(List<Object> cities) -
param must be a List

NotIn 1 1 List<Customer>
findByAddressCityNotIn(List<String> cities)
- param must be a List

Between 2 2 List<Customer> findByKidsBetween(int min,
int max)

Regex 1 1 List<Customer> findByFirstNameRegex(String
regex)

Exists 1 0 List<Customer> findByAddressCityExists() -
find all that have a city set

Near 1 1 List<Customer>
findByAddressGeoJsonPointNear(Circle
circle) - param must be of
org.springframework.data.geo.Circle type

Within 1 1 List<Customer>
findByAddressGeoJsonPointWithin(Polygon
point) - param must be of
org.springframework.data.geo.Polygon type

IgnoreCase 1 0 List<Customer>
findByLastNameAndFirstNameIgnoreCase(String
lastname, String firstname); -Enable ignore
case only for firstName field

AllIgnoreCase many 0 List<Customer>
findByLastNameAndFirstNameAllIgnoreCase(Str
ing lastname, String firstname); - Enable
ignore case for all suitable properties

Distinct 0 0 List<CustomerView>
findAllDistinctByLastName(String lastName);
- Projection to interface CustomerView
List<CustomerProjection>
getAllDistinctByLastName(String lastName); -
Projection to POJO class CustomerProjection

Chapter 1
Queries

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 31 of 34

Native Queries
Learn to run the native SQL queries using the
@oracle.spring.data.nosql.repository.Query annotation.

The @oracle.spring.data.nosql.repository.Query annotation enables you to execute the
native SQL query.

public interface AuthorRepository extends NoSQLRepository<Author, Long> {
 @Query(value = "DECLARE $firstName STRING;
 SELECT * FROM author WHERE first_name = $firstName")
 List<Author> findAuthorsByFirstName(@Param("$firstName") String
firstName);

 @Query("DECLARE $firstName STRING; $last STRING; " +
 "SELECT * FROM Customer AS c " +
 "WHERE c.kv_json_.firstName = $firstName AND " +
 "c.kv_json_.lastName = $last")
 List<Customer> findCustomersWithLastAndFirstNosqlValues(
 @Param("$last") StringValue paramLast,
 @Param("$firstName") StringValue firstName
);
}

Parameters are matched by name using the
@org.springframework.data.repository.query.Param annotation. The @Param annotation
value field must match exactly, including the '$' char, the name of the declared bind variable. If
@Param annotation is not used an exception is thrown. All the parameters will get mapped
according to the mapping rules mentioned in the Persistence Model section.

Note

The second method findAuthorsWithLastAndFirstNosqlValues works with
oracle.nosql.driver.values.StringValue. All FieldValue subclasses are
supported for query parameters. FieldValue is the base class of all data items in the
NoSQL SDK for Java. Each data item is an instance of FieldValue allowing access to
its type and its value as well as additional utility methods that operate on FieldValue.
On top of that, parameters of type FieldValue are also supported. For more
information about FieldValue, see FieldValue.

For details on full query support in the Oracle NoSQL Database, see SQL Reference Guide.

Activating Logging
Learn to enable logs to capture the exceptions from Oracle NoSQL Database module.

The Spring Data errors are thrown as exceptions when you build or run your application.

For example, the Oracle NoSQL Database SDK for Spring Data uses
IllegalArgumentException for invalid parameters and passes through Java SDK and Spring
Data Framework exceptions. The Spring Data Framework throws exceptions directly for some
classes, such as BeansException.

Chapter 1
Activating Logging

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 32 of 34

You can add an exception code block to catch any error that might be thrown such as
authentication failure during connection setup. Additionally, to enable logging in Oracle NoSQL
Database SDK for Spring Data, you must include the following parameter when running the
application.

-Dlogging.level.com.oracle.nosql.spring.data=DEBUG

The following are the logging levels that you can provide:

• ERROR: The ERROR level logging includes any unexpected errors.

• DEBUG: The DEBUG level logging includes generated SQL statements that the module
generates internally.

The following example contains the code to run the application with logging.

To run the application with Nosql module logging at DEBUG level
$ java -cp $CP:target/example-spring-data-oracle-nosql-1.3-SNAPSHOT.jar
 -Dlogging.level.com.oracle.nosql.spring.data=DEBUG org.example.App
...
020-12-02 11:50:18.426 DEBUG 20325 --- [main]
 c.o.n.spring.data.core.NosqlTemplate : DDL: CREATE TABLE IF NOT EXISTS
 StudentTable (id LONG GENERATED ALWAYS as IDENTITY (NO CYCLE),
 kv_json_ JSON, PRIMARY KEY(id))
2020-12-02 11:50:19.334 INFO 20325 --- [main]
 org.example.App : Started App in 2.464 seconds (JVM running for 2.782)
=== Start of App ====
2020-12-02 11:50:19.340 DEBUG 20325 --- [main]
 c.o.n.spring.data.core.NosqlTemplate : Q: DELETE FROM StudentTable
Saving s1: Student{id=0, firstName='John', lastName='Doe'}
2020-12-02 11:50:19.362 DEBUG 20325 --- [main]
 c.o.n.spring.data.core.NosqlTemplate : execute insert in table
StudentTable
Saving s2: Student{id=0, firstName='John', lastName='Smith'}
2020-12-02 11:50:19.387 DEBUG 20325 --- [main]
 c.o.n.spring.data.core.NosqlTemplate : execute insert in table
StudentTable

findAll:
2020-12-02 11:50:19.392 DEBUG 20325 --- [main]
 c.o.n.spring.data.core.NosqlTemplate : Q: SELECT * FROM StudentTable t
Student: Student{id=1, firstName='John', lastName='Doe'}
Student: Student{id=2, firstName='John', lastName='Smith'}

findByLastName: Smith
2020-12-02 11:50:19.412 DEBUG 20325 --- [main]
 c.o.n.spring.data.core.NosqlTemplate : Q: declare $p_lastName String;
 select * from StudentTable as t where t.kv_json_.lastName
= $p_lastName
Student: Student{id=2, firstName='John', lastName='Smith'}
2020-12-02 11:50:19.426 DEBUG 20325 --- [main]
 c.o.n.spring.data.core.NosqlTemplate : DDL: DROP TABLE IF EXISTS
StudentTable
=== End of App ====

To enable Nosql module logging when running tests

Chapter 1
Activating Logging

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 33 of 34

$ mvn test -Dlogging.level.com.oracle.nosql.spring.data=DEBUG
...

You can enable additional logging and client statistics at the NoSQL Java SDK level. For more
details, see Logging in the SDK and Logging internal SDK statistics in the oracle.nosql.driver
package.

Chapter 1
Activating Logging

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 34 of 34

2
Develop Applications Using Oracle NoSQL
Database SDK for Spring Data

Learn to create applications using Oracle NoSQL Database SDK for Spring Data.

The Oracle NoSQL Database SDK for Spring Data supports applications to access the NoSQL
Database and perform database operations such as updating and deleting records, reading,
index creation and removal, as well as queries. This section provides an overview of these
capabilities.

Accessing Oracle NoSQL Database Using Spring Data
Framework

Learn to access Oracle NoSQL Database from Spring using Oracle NoSQL Database SDK for
Spring Data.

Using the Spring Data Framework, you can set up a connection with Oracle NoSQL Database
nonsecure store, insert a row in a table, and then retrieve the data from the table.

Example 2-1 Accessing NoSQL Database using Spring Data Framework

The following example shows how to set up a Maven Project and then add the following
classes/interfaces:

• AppConfig class

• Student class

• StudentRepository interface

• App class

After that, you will run the Spring application to get the required output. The following steps
discuss this in detail.

1. Setting up a Maven project:
Set up a Maven project with the required POM file dependencies. For details, see About
the Oracle NoSQL Database SDK for Spring Data.

2. Setting up an Appconfig class:
Set up the AppConfig class that extends the AbstractNosqlConfiguration class to
provide a NosqlDbConfig Spring bean. The NosqlDbConfig Spring bean describes how to
connect to the Oracle NoSQL Database.

import oracle.nosql.driver.kv.StoreAccessTokenProvider;

import com.oracle.nosql.spring.data.config.AbstractNosqlConfiguration;
import com.oracle.nosql.spring.data.config.NosqlDbConfig;
import
com.oracle.nosql.spring.data.repository.config.EnableNosqlRepositories;

import org.springframework.context.annotation.Bean;

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 1 of 16

import org.springframework.context.annotation.Configuration;

/* The @Configuration annotation specifies that this class can be
 used by the Spring Data Framework as a source of bean definitions.*/
@Configuration
/* annotation to enable NoSQL repositories.*/
@EnableNosqlRepositories
public class AppConfig extends AbstractNosqlConfiguration {

 public static NosqlDbConfig nosqlDBConfig =
 new NosqlDbConfig("hostname:port", new StoreAccessTokenProvider());

/* The @Bean annotation tells the Spring Data Framework that the returned
object
 must be registered as a bean in the Spring application.*/
@Bean
 public NosqlDbConfig nosqlDbConfig() {
 return nosqlDBConfig;
 }
}

Note

See Setting up the Connection section to know more about connecting to an
Oracle NoSQL Database secure store.

3. Defining an entity class:
Create a new package and add the following Student entity class to persist. This entity
class represents a table in the Oracle NoSQL Database and an instance of this entity
corresponds to a row in that table.

Supply the @NosqlId annotation to indicate that the id field will act as the ID and be the
primary key of the underlying storage table and generated=true attribute to specify that
this ID will be autogenerated by a sequence.

If the ID field type is a String, a UUID will be used. If the ID field type is integer or long, a
"GENERATED ALWAYS as IDENTITY (NO CYCLE)" sequence is used.

For details on all the Spring Data classes, methods, interfaces, and examples see SDK for
Spring Data API Reference.

import com.oracle.nosql.spring.data.core.mapping.NosqlId;
import com.oracle.nosql.spring.data.core.mapping.NosqlTable;

/* The @NosqlTable annotation specifies that
 this class will be mapped to an Oracle NoSQL Database table.*/
@NosqlTable
public class Student {
 /* The @NosqlId annotation specifies that this field will act
 as the ID field. And the generated=true attribute specifies
 that this ID will be autogenerated by a sequence.*/
 @NosqlId(generated = true)
 long id;
 String firstName;
 String lastName;
 /* public or package protected constructor required when retrieving

Chapter 2
Accessing Oracle NoSQL Database Using Spring Data Framework

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 2 of 16

from database */
 public Student() {
 }
 /* This method overrides the toString() method, and then
 concatenates id, firstname, and lastname, and then returns a String*/
 @Override
 public String toString() {
 return "Student{" +
 "id=" + id + ", " +
 "firstName=" + firstName + ", " +
 "lastName=" + lastName +
 '}';
 }
}

When a table is created through the Spring Data application, a schema is created
automatically, which includes two columns - the primary key column (types String, integer,
long, or timestamp) and a JSON column called kv_json_.

If a table exists already, it must comply with the generated schema.

Note

• You can set the table level TTL by supplying the ttl() and ttlUnit()
parameters in the @NosqlTable annotation of the entity class. For more
details, see Setting TTL values.

• You can set the default TableLimits for Oracle NoSQL Database Cloud
Service tables in the @NosqlDbConfig instance using
NosqlDbConfig.getDefaultCapacityMode(),
NosqlDbConfig.getDefaultStorageGB(),
NosqlDbConfig.getDefaultReadUnits(), and
NosqlDbConfig.getDefaultWriteUnits() methods. The TableLimits can
also be specified per table if the @NosqlTable annotation is used, through
capacityMode, readUnits, writeUnits, and storageGB fields as shown in the
following code sample.

/* Set the TableLimits and TTL values. */
@NosqlTable(readUnits = 50, writeUnits = 50, storageGB = 25)

4. Declaring a repository that extends NosqlRepository:
Create the following StudentRepository interface. This interface must extend the
NosqlRepository interface and provide the entity class and the data type of the primary
key in that class as parameterized types to the NosqlRepository interface. This
NosqlRepository interface provides methods that can be used to retrieve data from the
database.

import com.oracle.nosql.spring.data.repository.NosqlRepository;

/* The Student is the entity class, and Long is the data type of the
 primary key in the Student class. This interface implements a derived
query
 findByLastName and returns an iterable instance of the Student class.*/

Chapter 2
Accessing Oracle NoSQL Database Using Spring Data Framework

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 3 of 16

public interface StudentRepository extends NosqlRepository<Student, Long> {
 /* The Student table is searched by lastname and
 returns an iterable instance of the Student class.*/
 Iterable<Student> findByLastName(String lastname);
}

5. Creating an application class:
Code the functionality as required by implementing any of the various interfaces provided
by the Spring Data Framework. This example uses the CommandLineRunner interface to
show the application code that implements the run method and has the main method. For
more information about setting up a Spring boot application, see Spring Boot.

In Spring data applications, the tables are automatically created at the beginning of the
application when the entities are initialized unless @NosqlTable.autoCreateTable is set to
false.
You can create the application code to insert data to the table, read the rows from the
table, and also run the queries as follows:

• Adding and deleting data: Use one of these methods to add rows to the table -
NosqlRepository.save(entity_object), saveAll(Iterable<T> iterable), or
NosqlTemplate.insert(entity). To delete any exisiting rows from the table, you can
use one of these methods - NosqlRepository.deleteById(), delete(),
deleteAll(Iterable<? extends T> entities), deleteAll() or use
NosqlTemplate.delete(), deleteAll(), deleteById(), deleteInShard().
In the following code sample, you first delete the rows from the Student table using the
NosqlRepository.deleteAll() method. This ensures the deletion of all the rows from
the table if the table already preexists in the database. You then use the
NosqlRepository.save(entity_object) method to add the rows to the table. You
create and save two student entities.

import com.oracle.nosql.spring.data.core.NosqlTemplate;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.CommandLineRunner;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.ConfigurableApplicationContext;

/* The @SpringBootApplication annotation helps you to build
 an application using Spring Data Framework rapidly.*/
@SpringBootApplication
public class App implements CommandLineRunner {

 /* The annotation enables Spring Data Framework to look up the
 configuration file for a matching bean.*/
 @Autowired
 private StudentRepository repo;

 public static void main(String[] args) {
 ConfigurableApplicationContext ctx =
 SpringApplication.run(App.class, args);
 SpringApplication.exit(ctx, () -> 0);
 ctx.close();
 System.exit(0);
 }

 @Override

Chapter 2
Accessing Oracle NoSQL Database Using Spring Data Framework

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 4 of 16

 public void run(String... args) throws Exception {

 /* Delete all the existing rows of data, if any, in the Student
table.*/
 repo.deleteAll();

 /* Create a new Student instance and load values into it.*/
 Student s1 = new Student();
 s1.firstName = "John";
 s1.lastName = "Doe";

 /* Save the Student instance.*/
 repo.save(s1);

 /* Create a new Student instance and load values into it.*/
 Student s2 = new Student();
 s2.firstName = "John";
 s2.lastName = "Smith";

 /* Save the Student instance.*/
 repo.save(s2);
 }
}

The @NosqlId annotation in the Student entity class specifies that the id field will act
as the ID and be the primary key of the underlying storage table. The rest of the entity
fields, that is, the firstName and lastName fields are stored in the JSON column.

• Reading data: Use one of these methods to read the data from the table -
NosqlRepository.findById(), findAllById(), findAll() or using
NosqlTemplate.find(), findAll(), findAllById().
In the following code sample, you use the NosqlRepository.findAll() method to
read all the rows from the table. You select all the rows from the Student table and
supply them to an iterable instance. Print the values to the output from the iterable
object.

 System.out.println("\nfindAll:");
 /* Selects all the rows in the Student table
 and load it into an iterable instance.*/
 Iterable<Student> students = repo.findAll();

 /* Print the values to the output from the iterable object.*/
 for (Student s : students) {
 System.out.println(" Student: " + s);
 }

• Using queries: Use one of these methods to run your query - The NosqlRepository
derived queries, native queries, or using NosqlTemplate.runQuery(),
runQueryJavaParams(), runQueryNosqlParams().
In following code sample, you use the derived queries to select a row from the Student
table with the required last name and print the values to the output from the object. For
more details on the derived queries, see Derived Queries.

 System.out.println("\nfindByLastName: Smith");
 /* The Student table is searched by lastname

Chapter 2
Accessing Oracle NoSQL Database Using Spring Data Framework

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 5 of 16

 and an iterable instance of the Student class is returned.*/
 students = repo.findByLastName("Smith");

 /* Print the values to the output from the iterable instance.*/
 for (Student s : students) {
 System.out.println(" Student: " + s);
 }

6. Running the program: Execute the application code samples from step 5. The Spring
Data Framework adds rows to the Student table, searches for all the rows and prints the
results to the output. It also fetches an individual row from the table.

findAll:
 Student: Student{id=5, firstName=John, lastName=Doe}
 Student: Student{id=6, firstName=John, lastName=Smith}

findByLastName: Smith
 Student: Student{id=6, firstName=John, lastName=Smith}

Modifying the table: To modify a table, you can use the NosqlTemplate.runTableRequest()
method.

Note

While the Oracle NoSQL Database SDK for Spring Data provides an option to modify
the tables, it is not recommended to alter the schemas as the Spring Data Framework
expects tables to comply with the default schema (two columns - the primary key
column of types string, integer, long, or timestamp and a JSON column called
kv_json_).

Setting TTL values
Learn to set table level Time To Live (TTL) from Oracle NoSQL Database SDK for Spring Data.

You can set the table level TTL by setting the following parameters in the @NosqlTable
annotation of an entity class:

• ttl(): Sets the table level TTL value in either DAYS or HOURS. If not specified, the
default value is set to 0, which means the TTL value is not set.

• ttlUnit(): Sets the TTL unit to either DAYS or HOURS. If not specified, the default value
is set to DAYS.

Example 2-2 Setting table level TTL value using Spring Data Framework

The following example shows how to create the Student entity class and set the TTL value to
10 days.

When the ttl() value is provided in the @NosqlTable annotation, the Spring Data driver
creates the Student table with the specified TTL value.

import com.oracle.nosql.spring.data.core.mapping.NosqlId;
import com.oracle.nosql.spring.data.core.mapping.NosqlTable;

/* The @NosqlTable annotation specifies that this class will be mapped to an

Chapter 2
Setting TTL values

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 6 of 16

Oracle NoSQL Database table. */

/* Sets the table level TTL to 10 Days. */
@NosqlTable(ttl = 10, ttlUnit = NosqlTable.TtlUnit.DAYS)

public class Student {
 /* The @NosqlId annotation specifies that this field will act as the ID
field.

 The generated=true attribute specifies that this ID will be autogenerated
by a sequence. */
 @NosqlId(generated = true)
 long id;
 String firstName;
 String lastName;

 /* public or package protected constructor required when retrieving
from database. */
 public Student() {

 }
 /* This method overrides the toString() method, and then concatenates id,
firstname, lastname,
 and then returns a String. */
 @Override
 public String toString() {
 return "Student{" +
 "id=" + id + ", " +
 "firstName=" + firstName + ", " +
 "lastName=" + lastName +
 '}';
 }
}

Using SpEl expressions in NosqlTable annotation
Learn about using Spring Expression Language (SpEl) expressions in @NosqlTable.tableName
annotation.

You can specify the name of the table by setting the tableName parameter in the @NosqlTable
annotation. In the Student class example discussed in previous topics, since the tableName is
not explicitly provided, by default an empty value is set and the entity class name is used as
the name of the table by the Spring driver.

SpEl is a way to evaluate complex expressions at runtime. For more details, see Spring
Expression Language.

The @NosqlTable.tableName parameter supports evaluating (SpEl) expressions. You can use
the SpEL expressions while setting the tableName parameter in the @NosqlTable annotation as
shown in the following examples. The expressions are evaluated dynamically at runtime.

Chapter 2
Using SpEl expressions in NosqlTable annotation

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 7 of 16

Table 2-1 Using SpEL Expressions

SpEL expression in the
tableName parameter

Description

@NosqlTable(tableName =
"#{ systemProperties['sys_ns']}:Custo
mer")

The Customer table is created in the namespace defined by JVM
system property sys_ns. If the system property doesn't exist, the
SpEl expression evaluates to empty string, in which case the
table is created in the default namespace, sysdefault.

The systemProperties attribute is a predefined variable.

To run with the JVM system property use:

java -Dsys_ns=myCustomNamespace ...

@NosqlTable(tableName =
"#{ @environment.getProperty('ENV
_NS')}:Customer")

The Customer table is created in the namespace defined by the
environment property ENV_NS. If the environment variable doesn't
exist the table is created in the default namespace, sysdefault.

To run by setting environment property use:

ENV_NS=myCustomNamespace; java ...

@NosqlTable(tableName = "$
{app.ns}:Customer")

The Customer table is created in the namespace defined by the
app.ns property in application.properties resource file. An
error is thrown if the property does not exist.

@NosqlTable(tableName = "$
{app.ns}:Customer")

The Customer table is created in the namespace defined by the
app.ns property in application.properties resource file. If
the property does not exist, the table is created in the namespace
ns2.

@NosqlTable(tableName =
"#{ systemProperties['sys_ns'] !=
null ? systemProperties['sys_ns'] :
@environment.getProperty('ENV_NS
') != null ?
@environment.getProperty('ENV_NS
') : '${app.ns:srcNs}' }:Customer")

In this example, the namespace is evaluated in the following
order:

1. If the namespace defined by the JVM system property
sys_ns.

2. If sys_ns is not available, then environment variable ENV_NS
is tried.

3. If ENV_NS is not available, then the namespace defined by
the app.ns property in application.properties
resource file is tried.

4. If none of the previously mentioned namespaces are
available, the Customer table is created in the srcNs
namespace.

@NosqlTable(tableName =
":Customer")

The starting colon ':' is automatically ignored when SpEl
expressions '#' and '$' are used and result is an "" empty string
namespace.

In this example, an error is returned since neither of them are
present.

For more details on namespace management, see Introducing Namespaces in the Java Direct
Driver Developer's Guide.

Chapter 2
Using SpEl expressions in NosqlTable annotation

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 8 of 16

Example 2-3 Using SpEl expressions in the table name

The following example shows how to create the Student entity class and provide the table
name as Customer in the namespace (JVM system property sys_ns) using the @NosqlTable
annotation.

The Spring Data driver evaluates the SpEL expressions and the Customer table is created in
sys_ns namespace. If the namespace does not exist, the table is created in the sysdefault
namespace.

import com.oracle.nosql.spring.data.core.mapping.NosqlId;
import com.oracle.nosql.spring.data.core.mapping.NosqlTable;

/* The @NosqlTable annotation specifies that this class will be mapped to an
Oracle NoSQL Database table. */

/* Sets the table name. */
@NosqlTable(tableName = "#{ systemProperties['sys_ns']}:Customer")

public class Student {
 /* The @NosqlId annotation specifies that this field will act as the ID
field.
 The generated=true attribute specifies that this ID will be
autogenerated by a sequence. */
 @NosqlId(generated = true)
 long id;
 String firstName;
 String lastName;

 /* public or package protected constructor required when retrieving
from database. */
 public Student() {

 }
 /* This method overrides the toString() method, and then concatenates id,
firstname, lastname,
 and then returns a String. */
 @Override
 public String toString() {
 return "Student{" +
 "id=" + id + ", " +
 "firstName=" + firstName + ", " +
 "lastName=" + lastName +
 '}';
 }
}

Creating Tables with Composite Keys
Learn to create a table with composite primary key fields using Oracle NoSQL Database SDK
for Spring Data.

You use the @NosqlKey annotation to identify the annotated field as a component of the
composite primary key.

Chapter 2
Creating Tables with Composite Keys

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 9 of 16

Example 2-4 Creating a table with composite primary key fields

The following examples shows how to model Student as an entity and use universityId,
academicYear, and studentId fields as composite keys.

A Composite key is helpful when you want to use more than one primary key field conjointly to
identify a unique row. Within the composite key, you can identify the primary key fields that can
be a part of the Shard Key and also specify the ordering of the fields.

The following example shows how to create a composite key with the key fields from student
data. You define a class named StudentKey to represent the composite key class and then use
that in the Student entity as described in the following example:

Create a composite key class with the @NosqlKey annotation to identify the composite keys.
Set the shardKey value to true if the field is a part of the shard key. Set the order value for all
the fields in the order of primary key field generation in the table. For more details on the
shardKey and order elements, see Table 1-4.

In the following code sample, the universityId, academicYear, and studentId fields represent
the key fields for identifying a student's data and are declared as the primary key fields using
the @NosqlKey annotation. For an illustration of ordering within the primary key fields, consider
two of the primary key fields as shard keys and the third as a non-shard key.

Set the shardKey value of the universityId and academicYear fields to true, and the
studentId field to false. Set the order value for the universityId field to 0 to create the
universityId field as the first primary key field and academicYear to 1 to create as second
primary key field. As the studentId field is a non-shard key, its order value must be higher than
the shard keys. Set the order value of the studentId field to 2.

import com.oracle.nosql.spring.data.core.mapping.NosqlKey;
import java.io.Serializable;
import java.util.Objects;

/* Define a composite Key class */

public class StudentKey implements Serializable {

 @NosqlKey(shardKey = true, order = 0)
 long universityId;

 @NosqlKey(shardKey = true, order = 1)
 int academicYear;

 @NosqlKey(shardKey = false, order = 2)
 long studentId;

 /* public or package protected constructor required when retrieving from
database */
 public StudentKey() {
 }

 public StudentKey(long universityId, int academicYear, long studentId) {
 this.universityId = universityId;
 this.academicYear = academicYear;
 this.studentId = studentId;
 }

Chapter 2
Creating Tables with Composite Keys

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 10 of 16

 public long getUniversityId() {
 return universityId;
 }

 public void setUniversityId(long universityId) {
 this.universityId = universityId;
 }

 public int getAcademicYear() {
 return academicYear;
 }

 public void setAcademicYear(int academicYear) {
 this.academicYear = academicYear;
 }

 public long getStudentId() {
 return studentId;
 }

 public void setStudentId(long studentId) {
 this.studentId = studentId;
 }

 /* Define equals method */
 @Override
 public boolean equals(Object o) {
 if (this == o) {
 return true;
 }
 if (!(o instanceof StudentKey)) {
 return false;
 }
 StudentKey studentKey = (StudentKey) o;
 return Objects.equals(universityId, studentKey.universityId) &&
 Objects.equals(academicYear, studentKey.academicYear) &&
 Objects.equals(studentId, studentKey.studentId);
 }

 /* Define hashcode method */
 @Override
 public int hashCode() {
 return Objects.hash(universityId, academicYear, studentId);
 }
}

Create the Student entity class with StudentKey as a composite primary key. The StudentKey
is annotated with @NosqlId in the entity class to indicate the primary key.

You can declare any non-key fields in the entity class. The non-key fields will be included as
JSON data in the kv_json_ column.

import com.oracle.nosql.spring.data.core.mapping.NosqlId;
import com.oracle.nosql.spring.data.core.mapping.NosqlTable;
import com.oracle.nosql.spring.data.core.mapping.NosqlKey;

Chapter 2
Creating Tables with Composite Keys

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 11 of 16

import java.io.Serializable;
import java.util.Objects;

/*The @NosqlTable annotation specifies that
 this class will be mapped to an Oracle NoSQL Database table.*/

@NosqlTable

public class Student {
 @NosqlId
 StudentKey studentKey;
 String firstName;
 String lastName;
 String resident;

 /* public or package protected constructor required when retrieving from
database */
 public Student() {
 studentKey = new StudentKey();
 }

 /*This method overrides the toString() method, and then concatenates id
and name, and then returns a String*/
 @Override
 public String toString() {
 return "Student{" +
 "universityId=" + studentKey.universityId + ", " +
 "academicYear=" + studentKey.academicYear + ", " +
 "studentId=" + studentKey.studentId + ", " +
 "firstName=" + firstName + ", " +
 "lastName=" + lastName + ", " +
 "resident=" + resident+
 '}';
 }
}

Note

You must set up the AppConfig class that provides a NosqlDbConfig Spring bean. The
NosqlDbConfig Spring bean describes how to connect to the Oracle NoSQL
Database. You must also create an interface that extends the NosqlRepository
interface to retrieve the data from the Oracle NoSQL Database. For details, see the
section Accessing Oracle NoSQL Database Using Spring Data Framework.

The Spring Data Framework creates the Student table with the following DDL:

/* Student table DDL */

CREATE TABLE IF NOT EXISTS Student (
 universityId LONG,
 academicYear INTEGER,
 studentId LONG,
 kv_json_ JSON,

Chapter 2
Creating Tables with Composite Keys

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 12 of 16

 PRIMARY KEY(SHARD(universityId, academicYear), studentId)
)

The primary key fields universityId and academicYear are also shard keys and studentId is
a non-shard primary key field.

Creating an Index
Learn to create an index on a field in a Oracle NoSQL Database table using Oracle NoSQL
Database SDK for Spring Data.

To create an index on a field in an Oracle NoSQL Database table from the Spring Data
Framework, you use NosqlTemplate.runTableRequest() method.

In the application, you instantiate the NosqlTemplate class by providing the
NosqlTemplate.create(NosqlDbConfig nosqlDBConfig) method with the instance of the
AppConfig class. You then modify the table using the NosqlTemplate.runTableRequest()
method. You provide the NoSQL statement for the index creation in the
NosqlTemplate.runTableRequest() method.

Example 2-5 Creating an Index on a table using Spring Data Framework

The following example shows how to create an index on the lastName field in the Student
table.

/* Create an Index on the lastName field of the Users Table. */

try {
 AppConfig config = new AppConfig();
 NosqlTemplate idx = NosqlTemplate.create(config.nosqlDbConfig());
 idx.runTableRequest("CREATE INDEX IF NOT EXISTS nameIdx ON
Student(kv_json_.lastName AS STRING)");
 System.out.println("Index created successfully");
} catch (Exception e) {
 System.out.println("Exception creating index" + e);
}

For details on table creation, see Accessing Oracle NoSQL Database Using Spring Data
Framework.

Projections
Learn to use Projections to customize a part of the entity class.

Use Projections when the required result is a subset of an entity, that is when the required
result is a small part of the entity. You can define an interface or a POJO class with a subset of
the properties found in the entity class. Then you use these interfaces or POJO classes as the
parametrized type result of the custom repository methods.

Example 2-6 Using Projections

The following example defines projections in the context of Student entity class. See
Accessing Oracle NoSQL Database Using Spring Data Framework to get the details on
creating the Student entity class and the StudentRepository interface.

Chapter 2
Creating an Index

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 13 of 16

1. Define an interface StudentView and a POJO class StudentProjection.

public interface StudentView {
 String getLastName();
}

public class StudentProjection {
 private String firstName;
 private String lastName;
 public StudentProjection(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }
 public String getFirstName() {
 return firstName;
 }
 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }
 public String getLastName() {
 return lastName;
 }
 public void setLastName(String lastName) {
 this.lastName = lastName;
 }
}

2. You can use the new types (StudentView and StudentProjection) as the result of the
custom find methods in the StudentRepository class.

import java.util.Date;
import com.oracle.nosql.spring.data.repository.NosqlRepository;
public interface StudentRepository
extends NosqlRepository<Student, Long>
{
 Iterable<Student> findByLastName(String lastname);
 Iterable<Student> findByCreatedAtBetween(Date start, Date end);
 Iterable<StudentView> findAllByLastName(String lastName);
 Iterable<StudentProjection> getAllByLastName(String lastName);
}

Since these results contain a subset of the row, if the Id property is not included the
returned set must contain duplicates. If these duplicates are not required then you can use
the Distinct keyword to eliminate them as follows:

List<StudentView>findAllDistinctByLastName(String lastName);
List<StudentProjection> getAllDistinctByLastName(String lastName);

Chapter 2
Projections

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 14 of 16

These methods will generate the following queries:

declare $p_lastName String;
select distinct {'lastName': t.kv_json_.lastName} as kv_json_ from Student
 as t where t.kv_json_.lastName = $p_lastName

declare $p_lastName String;
select distinct {'firstName': t.kv_json_.firstName, 'lastName':
t.kv_json_.lastName} as kv_json_
from Student as t where t.kv_json_.lastName = $p_lastName

Note

Only interface and class based projections that contain a subset of entity
properties are supported by Oracle NoSQL Database SDK for Spring Data.
Projections using @Value annotations are not supported. Dynamic projections,
when return type is parametrized, are also not supported.

3. Modify the run method and call the custom methods (defined with Projection interface and
POJO Class).

/* Using projection interface */
System.out.println("\n With projection findAllByLastName: Smith");
repo.findAllByLastName("Smith")
.forEach(c -> System.out.println("StudentView :" + c));
/* using projection POJO class here */
System.out.println("\n With projection getAllByLastName: Smith");
repo.getAllByLastName("Smith")
.forEach(c -> System.out.println("StudentProjection.firstName :" +
c.getFirstName()
 + " StudentProjection.lastName :" +
c.getLastName()));

Note

See Accessing Oracle NoSQL Database Using Spring Data Framework to get
more details on the AppConfig class to provide the connection details of the
database and the App class that implements the run method and has the main
method.

4. Run the program from the runner class. You will get the following output.

With projection findAllByLastName: Smith
StudentView :Student{id=0, firstName='null', lastName='Smith',
createdAt='null'}
With projection getAllByLastName: Smith
StudentProjection.firstName :John
StudentProjection.lastName :Smith

Chapter 2
Projections

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 15 of 16

Dropping Tables and Indexes
Learn to drop Oracle NoSQL Database tables and indexes using Oracle NoSQL Database
SDK for Spring Data.

To drop the tables and indexes on the fields in tables, you use
NosqlTemplate.runTableRequest() or NosqlTemplate.dropTableIfExists() methods.

Create the AppConfig class that extends AbstractNosqlConfiguration class to provide the
connection details of the database. For details, see Accessing Oracle NoSQL Database Using
Spring Data Framework.

In the application, you instantiate the NosqlTemplate class by providing the
NosqlTemplate.create(NosqlDbConfig nosqlDBConfig) method with the instance of the
AppConfig class. You then drop the table using the NosqlTemplate.dropTableIfExists()
method. The NosqlTemplate.dropTableIfExists() method drops the table and returns true if
the result indicates a change of the table's state to DROPPED or DROPPING.

Example 2-7 Dropping Tables and Indexes using Spring Data Framework

The following code sample shows how to drop the Student table.

try {
 AppConfig config = new AppConfig();
 NosqlTemplate tabledrop = NosqlTemplate.create(config.nosqlDbConfig());
 Boolean result = tabledrop.dropTableIfExists("Student");
 if (result == true) {
 System.out.println("Table dropped successfully");
 } else {
 System.out.println("Failed to drop table");
 }
} catch (Exception e) {
 System.out.println("Exception creating index" + e);
}

Chapter 2
Dropping Tables and Indexes

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 16 of 16

Glossary

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Glossary-1 of Glossary-1

Index

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Index-1 of Index-1

	Contents
	List of Examples
	List of Figures
	List of Tables
	1 Introduction to Oracle NoSQL Database SDK for Spring Data
	About the Oracle NoSQL Database SDK for Spring Data
	Components of Oracle NoSQL Database SDK for Spring Data
	Persistence Model
	Transactional Model
	Setting up the Connection
	Defining a Repository
	Starting the Application
	Queries
	PagingAndSortingRepository Interface
	Derived Queries
	Supported Keywords in Derived Queries
	Native Queries

	Activating Logging

	2 Develop Applications Using Oracle NoSQL Database SDK for Spring Data
	Accessing Oracle NoSQL Database Using Spring Data Framework
	Setting TTL values
	Using SpEl expressions in NosqlTable annotation
	Creating Tables with Composite Keys
	Creating an Index
	Projections
	Dropping Tables and Indexes

	Glossary
	Index

