Oracle® NoSQL Database
Spring Data SDK Developers Guide

ORACLE"

Oracle NoSQL Database Spring Data SDK Developers Guide, 2.2.0
F58555-22

Copyright © 2022, 2025, Oracle and/or its affiliates.

Primary Author: Vandana Rajamani

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1 Introduction to Oracle NoSQL Database SDK for Spring Data

About the Oracle NoSQL Database SDK for Spring Data
Components of Oracle NoSQL Database SDK for Spring Data

Persistence Model 3
Transactional Model 21
Setting up the Connection 21
Defining a Repository 24
Starting the Application 25
Queries 26
PagingAndSortingRepository Interface 26
Derived Queries 27
Supported Keywords in Derived Queries 30
Native Queries 32
Activating Logging 32

2 Develop Applications Using Oracle NoSQL Database SDK for Spring

Data

Accessing Oracle NoSQL Database Using Spring Data Framework 1
Setting TTL values 6
Using SpEl expressions in NosglTable annotation 7
Creating Tables with Composite Keys 9
Creating an Index 13
Projections 13
Dropping Tables and Indexes 16

Index

Spring Data SDK Developers Guide
F58555-22 October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Pageiofi

List of Examples

1-1
1-2
1-3
2-1
2-2
2-3
2-4
2-5
2-6
2-7

Setting up the connection in a nonsecure data store

Setting up the connection in a secure data store

Setting up the connection in Oracle NoSQL Database Cloud Service

Accessing NoSQL Database using Spring Data Framework

Setting table level TTL value using Spring Data Framework

Using SpEl expressions in the table name

Creating a table with composite primary key fields

Creating an Index on a table using Spring Data Framework

Using Projections

Dropping Tables and Indexes using Spring Data Framework

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

& & & B B RN
o W w O W o Ik W N IN

October 12, 2025
Page ii of i

List of Figures

1-1 Components of Oracle NoSQL Database SDK for Spring Data

1-2 Persistence Model

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

W w

October 12, 2025
Page iii of i

List of Tables

1-1
1-2
1-3
1-4
1-5
1-6
1-7
2-1

Attributes in NosqlTable Annotation

Mapping Between Java and Oracle NoSQL Database Types

Attributes in Nosqlld Annotation

Attributes in the Nosqlkey Annotation

Mapping Between Java and NoSQL JSON Types

Supported Keywords for Prefix

Supported Keywords for Body

Using SpEL Expressions

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

o 8Bk EER o

October 12, 2025
Page iv of i

Introduction to Oracle NoSQL Database SDK
for Spring Data

Learn about the Spring Data Framework and Oracle NoSQL Database SDK for Spring Data.

Oracle NoSQL Database SDK for Spring Data provides a Spring Data implementation module
to connect to an Oracle NoSQL Database cluster or to Oracle NoSQL Database Cloud
Service.

In the following sections, you will learn about the Spring Data Framework (Spring-based
programming model for data) and how to access the Oracle NoSQL Database using the Oracle
NoSQL Database SDK for Spring Data.

Prerequisites:

This chapter assumes that the user has a good understanding of the following:
* Maven

e Spring Data Framework

About the Oracle NoSQL Database SDK for Spring Data

Connect to the Oracle NoSQL Database with applications using the Spring Data Framework
(Spring-based programming model for data) and the Oracle NoSQL Database SDK for Spring
Data.

The Spring Data Framework provides a familiar and consistent, Spring-based programming
model for data access. For more information about Spring Data Framework, see Spring Data.

The Oracle NoSQL Database SDK for Spring Data provides POJO (Plain Old Java Obiject)
centric modeling and integration between the Oracle NoSQL Database and the Spring Data
Framework. One of the key benefits available to the Java programmer is the ability to write
your code as a repository-style data access layer, while the Spring Data Framework maps
those repository-style data access operations to Oracle NoSQL Database API calls.

The Oracle NoSQL Database SDK for Spring Data is available in the Maven Central repository,
details are available here. The main location of the project is is the or acl e- spri ng- sdk project
on GitHub.

You can get all the required files for running the Spring Data Framework with the following
POM file dependencies. The version changes with each release. Ensure that you install the
latest supported version as suggested in the GitHub.

<dependenci es>
<dependency>
<groupl d>com oracl e. nosql . sdk</ gr oupl d>
<artifactld>spring-data-oracle-nosql </artifactld>
<versi on>2. 1. 0</ versi on>
</ dependency>
</ dependenci es>

Spring Data SDK Developers Guide
F58555-22 October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 1 of 34

ORACLE’

Chapter 1
Components of Oracle NoSQL Database SDK for Spring Data

Add the additional dependency to use the Spring Data Framework:

<dependency>
<groupl d>or g. spri ngf ranewor k. boot </ gr oupl d>
<artifact!ld>spring-boot-starter</artifactld>
<versi on>3. 3. 4</ ver si on>

</ dependency>

The Oracle NoSQL Database SDK for Spring Data provides you with all the Spring Data
classes, methods, interfaces, and examples. Documentation is available as nosql-spring-sdk in
GitHub or from SDK for Spring Data API Reference.

@® Note

The Oracle NoSQL Database SDK for Spring Data requires an Oracle NoSQL
Database Proxy to connect to an Oracle NoSQL Database cluster. For more
information about setting up an Oracle NoSQL Database Proxy, see Oracle NoSQL
Database Proxy in the Administrator's Guide.

Supported Features

The following features are currently supported by the Oracle NoSQL Database SDK for Spring
Data.

» Generic CRUD operations on a repository using methods in the Cr udReposi t ory interface.
For more information about the Cr udReposi t ory interface, see CrudRepository.

e Pagination and sorting operations using methods in the Pagi ngAndSorti ngReposi t ory
interface. For more information about the Pagi ngAndSor t i ngReposi t ory interface, see
PagingAndSortingRepository.

e Derived Queries.

e Native Queries.

Components of Oracle NoSQL Database SDK for Spring Data

Learn about the modules of Oracle NoSQL Database SDK for Spring Data.

The Oracle NoSQL Database Proxy must be set up to facilitate a connection between Oracle
NoSQL Database and Spring Data Framework. To set up the Oracle NoSQL Database Proxy,
see Oracle NoSQL Database Proxy in the Administrator's Guide. After setting up the proxy,
you configure the Oracle NoSQL Database Proxy details in the Nosql Reposi t ory interface.
You provide the Oracle NoSQL Database connection and authentication (if any) details in the
Nosql DBConf i g class. The POJOs (entity) with the @Nosql Tabl e annotation are mapped to the
Oracle NoSQL Database tables by the Oracle NoSQL Database SDK for Spring Data. The
following diagram provides the components of the Oracle NoSQL Database SDK for Spring
Data.

Spring Data SDK Developers Guide

F58555-22

October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 2 of 34

ORACLE Chapter 1
Persistence Model

Figure 1-1 Components of Oracle NoSQL Database SDK for Spring Data

Spring Application Oracle NoSQL
Database Cloud Service

Spring Framework

)) . Oracle NoSQL Database . HTTP
{ NosgIDBConfig J.t .| SDK for Spring Data ‘ Proxy

. KVStore
. HTTR/
) . = HTTPS |
] ; NoSQL SDK Oracle NoSQL
{ Persistence Entity J‘ g for Java ~ HTTP/ Database Cluster
- HTTPS

[

{ NosglRepaository }4 >

KVStore

Persistence Model

Learn about the schema of the persistence table and Spring Data Framework annotations.

An entity is a lightweight persistence domain object. The persistent state of an entity is
represented through persistent fields using Java Beans / Plain Old Java Objects (POJOs).

The Spring Data Framework supports the persistence of entities to Oracle NoSQL Database
tables. An entity is mapped to a table. The | Dfield in that entity is mapped to the primary key
column of that table. All other fields in the entity are mapped to a JSON column of that table.
Each instance of the entity will be stored as a single row in that table. The value of the | Dfield
in that instance will be stored as the primary key value of that row. The values of all other fields
(including other objects) (see JSON Column) in that instance will be serialized and stored as
values in the JSON column of that row. Effectively, the table will always have only two columns:
a primary key column and a JSON column.

Figure 1-2 Persistence Model

L 4

Entity Table

‘ ID field » Primary key column 1

Y

" Other flelds

(including Classes) JSON column }

If a persistent POJO has a reference to another persistent POJO (nested objects) that maps to
a different table, the Spring Data Framework will not serialize objects to multiple tables.
Instead, all the nested objects will be serialized and stored as values in the JSON column. For
more information about JSON Column mappings, see JSON Column.

The following is the syntax of an entity with @Nosql Tabl e and @osql | d annotations. In the
following example, the St udent class with the @osql Tabl e annotation will be mapped to a

Spring Data SDK Developers Guide
F58555-22 October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 3 of 34

ORACLE

Chapter 1
Persistence Model

table named St udent in the Oracle NoSQL Database. The | D field with the @osql I d
annotation will be the primary key field in the St udent table. The first Nane and | ast Name
fields will be mapped to a single JSON field named kv_j son_ in the St udent table.

When retrieving entries from the repository the driver must instantiate the entity classes. These
classes must have a default constructor or an empty constructor that is public or package
protected.

@® Note

The classes may have other constructors too.

/*The @losql Tabl e annotation specifies that
this class will be mapped to an Oracle NoSQL Dat abase table.*/
@\osql Tabl e
public class Student {
/1 The @Nosql Id annotation specifies that this field will act as the ID
field.

@osql I d
public long ID

public String firstNang;
public String |astNane;

public Student() {}

Table Name

By default, the entity class name is used for the table name. You can provide a different table
name using the @osgl Tabl e annotation. The @osql Tabl e annotation enables you to define
additional configuration parameters such as table name and timeout.

For example, an entity named St udent will be persisted in a table named St udent . If you want
to persist an entity named St udent in a table named Lear ner, you can achieve that using the
@\osql Tabl e annotation.

If the @\osql Tabl e annotation is specified, then the following configuration can be provided.

Spring Data SDK Developers Guide

F58555-22

October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 4 of 34

ORACLE

Table 1-1 Attributes in NosqlTable Annotation

Chapter 1
Persistence Model

Parameter Type Ignored/ Ingnored/ Default Description
Optionall Optionall
Required Required
in Oracle in Oracle
NoSQL NoSQL
Database Database
Cloud
Service
tabl eNam String Optional ~ Optional empty Specifies the name of the table, simple
e or namespace-qualified form.
If empty, then the entity class name will
be used.
For more information about the
namespace, see Namespace
Management in the SQL Reference
Guide.
In the Oracle NoSQL Database Cloud
Service, the namespace part, if
provided, is used as the compartment
name. For more information about using
compartments, see Creating a
Compartment in the Oracle NoSQL
Database Cloud Service Guide.
autoCrea boolean Optional Optional true Specifies if the table must be created if it

teTabl e

does not exist.

® Note

The Spring
Data
Framework
looks for the
repositories
used in the
application
intheinit
phase. If the
table does
not exist,
and if the
@osql Tab
le
annotation
has the

aut oCr eat
eTabl e as
true, then
the table will
be created
intheinit
phase.

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 5 of 34

ORACLE

Table 1-1 (Cont.) Attributes in NosqlTable Annotation
]

Chapter 1

Persistence Model

Parameter Type Ignored/ Ingnored/ Default Description
Optionall Optionall
Required Required
in Oracle in Oracle
NoSQL NoSQL
Database Database
Cloud
Service
readUnit int Ignored Required -1 Specifies the maximum read throughput

S

to be used if the table is to be created.

For more information about r eadUni t s,
see Plan your service in the Oracle
NoSQL Database Cloud Service.

@ Note

In Oracle
NoSQL
Database
Cloud
Service, you
must set the
readunits
parameter to
a value
greater than
0. If you do
not set the
value, the
Oracle
NoSQL
Database
Cloud
Service
return an
error.

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 6 of 34

ORACLE

Table 1-1 (Cont.) Attributes in NosqlTable Annotation

Chapter 1

Persistence Model

Parameter Type Ignored/ Ingnored/ Default Description
Optionall Optionall
Required Required
in Oracle in Oracle
NoSQL NoSQL
Database Database
Cloud
Service
witeUni int Ignored Required -1 Specifies the maximum write throughput
ts to be used if the table is to be created.

For more information about
writeUnits, see Plan your service in
the Oracle NoSQL Database Cloud

@® Note

In Oracle
NoSQL
Database
Cloud
Service, you
must set the
writeUnit
S parameter
to a value
greater than
0. If you do
not set the
value, the
Oracle
NoSQL
Database
Cloud
Service will
return an
error.

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 7 of 34

ORACLE

Table 1-1 (Cont.) Attributes in NosqlTable Annotation
]

Chapter 1

Persistence Model

Parameter Type Ignored/ Ingnored/ Default Description
Optionall Optionall
Required Required
in Oracle in Oracle
NoSQL NoSQL
Database Database
Cloud
Service
storageG int Ingored Required -1 Specifies the maximum amount of

B

storage, in gigabytes, permitted for the
table, if the table is to be created.

For more information about St or ageGB,
see Plan your service in the Oracle
NoSQL Database Cloud Service.

@ Note

In Oracle
NoSQL
Database
Cloud
Service, you
must set the
st orageGB
parameter to
a value
greater than
0. If you do
not set the
value, the
Oracle
NoSQL
Database
Cloud
Service will
return an
error.

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 8 of 34

ORACLE Chapter 1
Persistence Model

Table 1-1 (Cont.) Attributes in NosqlTable Annotation

Parameter Type Ignored/ Ingnored/ Default Description
Optionall Optionall
Required Required
in Oracle in Oracle
NoSQL NoSQL
Database Database
Cloud
Service

timeout int Optional ~ Optional 0 Specifies the maximum time length, in
milliseconds, that the operations are
permitted to take before a timeout
exception is thrown.

If the value for t i meout is not set then
the timeout set in NoSQLHandl eConfi g
class is used. For information about
getting the timeout from

NoSQLHandl eConf i g class using the
get Tabl eRequest Ti neout () method,
see NoSQLHandleConfig in the Java
SDK API Reference.

The ti meout value can also be
changed using

Nosql Reposi tory. set Ti meout (i nt)
method. For more information, see
setTimeout in the SDK for Spring Data
API| Reference.

Spring Data SDK Developers Guide
F58555-22 October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 9 of 34

ORACLE

Chapter 1
Persistence Model

Table 1-1 (Cont.) Attributes in NosqlTable Annotation
]

Parameter Type

Ignored/
Optional/
Required
in Oracle
NoSQL
Database

Ingnored/
Optionall
Required
in Oracle
NoSQL
Database
Cloud
Service

Default

Description

consiste String
ncy

Optional

Optional

EVENTUAL Specifies the consistency used for read

operations.

Valid values are based on

oracl e.nosqgl . driver. Consi st ency
are EVENTUAL and ABSOLUTE . See
Consistency in the Java SDK API
Reference.

@ Note

This is the
default for
all read
operations.
It can be
overridden
by using
Nosql Repo
sitory.se
t Consi ste
ncy(Strin
g) . For
more
information,
see
setConsiste
ncy in the
SDK for
Spring Data
API
Reference.

durability String

Optional

Optional

COW T_N Sets the default durability for all the write

0 SYNC

operations applied to this table.

Valid values based on
oracle.nosql.driver.Durability
are COM T_NO SYNC, COW T_SYNC,
and COW T_WRI TE_NO_SYNC. See
Durability in the Java SDK API
Reference.

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 10 of 34

ORACLE

Chapter 1
Persistence Model

Table 1-1 (Cont.) Attributes in NosqlTable Annotation
]

Parameter Type Ignored/ Ingnored/
Optionall Optionall
Required Required
in Oracle in Oracle
NoSQL NoSQL
Database Database
Cloud
Service

Default

Description

capacityM NosqglCapa Optional Optional
ode cityMode

For more

information

, see

NosglCapa

cityMode.

Nosql Cap
aci t yhod
e. PROVI S
| ONED

Sets the capacity mode when the table
is created. This applies only in cloud or
cloud sim scenarios.

A table is created with either

Provi si oned Capacity or On- Demand
Capaci ty. For more details, see Cloud
Concepts in the Oracle NoSQL
Database Cloud Service.

Set the values for the TableLimits
instance based on the capacity mode as
follows:

e SetcapacityMde to
PROVISIONED and all three
TableLim ts: readUnits,
witeUnits, andstorageGBto
values greater than 0.

e SetcapacityMde to
ON_DEMAND and st orage@Bto a
value greater than 0.

ttl int Optional Optional

Sets the default table level Time to Live
(TTL) when the table is created. The
TTL enables the automatic expiration of
table rows after the elapse of the
specified duration.

If the value is not set, the value

Const ants. NOTSET_TABLE TTL is
used, that is, table-level TTL is not
applicable. See NOTSET_TABLE TTL
in the SDK for Spring Data API
Reference.

This parameter is applicable only when
autoCreateTable is set to true.

ttiUnit TtlUnit Optional Optional

Nosql Tab
le. TtIUn
i t.DAYS

Sets the unit of TTL value. The valid
values are:

Nosql Tabl e. Tt1 Uni t. DAYS and
Nosql Tabl e. Tt | Uni t. HOURS.

If the value is not set, the default value of
days is used.

This parameter is applicable only when
autoCreateTable is set to true.

Primary Key

The table requires a primary key. The field named | D in the entity will be used as the primary
key. You can select a different field in the entity (a field with a different name other than | D) to
designate as the primary key using the @losql | d annotation or the @ d annotation.

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 11 of 34

ORACLE

Chapter 1
Persistence Model

When an | Dfield is mapped to a primary key column, the Spring Data Framework will
automatically assign the corresponding data type to the ID field before storing it in the table.
The following is a list of data type mappings between a Java type and an Oracle NoSQL
Database type for the | Dfield.

The Java types that are provided in the following table are the only valid data types that can be
used for a primary key.

Table 1-2 Mapping Between Java and Oracle NoSQL Database Types
|

Java Type Oracle NoSQL Database Type
java.lang. String STRI NG

i nt | NTEGER

java.lang. | nteger

| ong LONG

java.lang. Long

doubl e DOUBLE

j ava. |l ang. Doubl e

fl oat @ Note

j ava. |l ang. Fl oat
doubl e, j ava. | ang. Doubl e, f | oat, and
j ava. |l ang. Fl oat can be a primary key
but it's not a valid gener at ed=t r ue type

@ Note

Since FLOAT in Oracle NoSQL Database
type is not explicitly used in NoSQL SDK for
Java, the Java f | oat and

j ava.l ang. Fl oat are mapped to the
DOUBLE type.

j ava. mat h. Bi gDeci mal NUMBER

j ava. mat h. Bi gl nt eger

bool ean BOOLEAN

java. | ang. Bool ean

java.util.Date TI MESTAMP (P)

j ava. sql . Ti nest anp
java.tine. I nstant

The Spring Data Framework deduces the primary key using the following rules:

e (@osql I d annotation: If @osqgl | d annotation is used on a field with a valid data type for
the primary key, then that field is considered the primary key. If @osql | d is used on a field
of a type other than a valid data type for the primary key, an error is raised. For more
information, see Nosqlld in the SDK for Spring Data API Reference.

e @rg.springfranework. data. annot ation. | d annotation: If
@r g. spri ngf ramewor k. dat a. annot ati on. | d field annotation is used on a field with a valid
data type for the primary key, then that field is considered as the primary key. If

Spring Data SDK Developers Guide

F58555-22

October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 12 of 34

ORACLE Chapter 1
Persistence Model

@r g. springframewor k. dat a. annot ati on. I d is used on a field of a type other than a valid
data type for the primary key, an error is raised.

* Not specified: If none of the preceding two annotations are specified, then the Spring
Data Framework will use the field named | D as the primary key.

An error is raised if:

e No @sql | d annotation or @r g. spri ngf ramewor k. dat a. annot ati on. | d annotation or | D
field is found in the entity, as no primary key field can be inferred.

e Two or more of the @osql | d or @r g. spri ngf ramewor k. dat a. annot ati on. | d annotated
fields are used in the entity, as multiple primary key fields can be inferred.

@ Note

The name of the fields that take the @osql I d or

@r g. springframewor k. dat a. annot ati on. | d annotations must not be named

kv_j son_. This is because the data column of the table created by the Spring Data
Framework will be named kv_j son_ and will be a JISON column where all attributes in
the persistent entity that are not listed as primary key attributes will be stored.

The @osql | d field annotation can take the following additional configuration:

Table 1-3 Attributes in Nosqlld Annotation
|

Paramete Type Optionall Default Description

r Required

generate bool ean Optional false Specifies if the | Dis autogenerated or not.

d e Iftrue, then it is defined as autogenerated by the
program.

— Ifint/Integer,long/Long, Bi gl nteger or
Bi gDeci mal , then GENERATED ALWAYS as
| DENTI TY is used.
— IfString, then "String as UUID GENERATED
BY DEFAULT" is used.
- Iffal se, then the value must be managed by your
application.

@ Note

You can't autogenerate
composite keys. Setting
@osql | d. aut oGener at ed
=t r ue leads to an error. You
must manage the key values
for all read/write calls when
using the composite keys. If
the key values are not set,
the Oracle NoSQL Database
generates an error.

Spring Data SDK Developers Guide
F58555-22 October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 13 of 34

ORACLE

Spring Data SDK Developers Guide

F58555-22

Composite Primary Keys

Chapter 1
Persistence Model

Composite primary keys contain more than one primary key field. You can define a composite
key class type to represent the composite keys.

A composite key class is a type that is mapped to multiple primary key fields of the entity class.
A composite key class must be serializable and must define equals and hashcode methods.
This class must consist of fields that are primitive data types.

@® Note

The equality checks for the user-defined methods in the composite key class must be
consistent with the equality checks performed in the Oracle NoSQL Database between

the database types and their mapped keys.

You can use @osqgl Key annotation to specify the components of a composite primary key in
the composite key class.

Table 1-4 Attributes in the Nosglkey Annotation

Parameter

Type

Optional/lRequired Default

Description

shar dKey

bool ean

Opt i onal

true

Identifies if a
primary key field is
also a Shard Key.
Shard keys affect
the distribution of
rows across
shards.

e Iftrue,the
Spring Data
Framework
considers the
primary key
field as a part
of the shard
key.

- Iffal se, the
primary key
field is not a
part of the
shard key.

If you do not supply

the shar dKey

parameter in the

Nosql key

annotation, the

Spring Data

Framework creates

the primary key

field as a shard key.

Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 14 of 34

ORACLE

Table 1-4 (Cont.) Attributes in the Nosqlkey Annotation

Chapter 1
Persistence Model

Parameter Type Optional/lRequired Default

Description

or der i nt Opti onal System determined

Specifies the
ordering of the
shard keys and
non-shard keys
within the primary
key in a composite
key class.

You can set the

or der value based
on the following
rules, otherwise,
the Spring Data
Framework
generates an error.

e The order of
the shard keys
must be less
than the order
of the non-
shard primary
key fields.

e The order must
be specified for
all the primary
key fields or
none. The
Spring Data
Framework
does not
support
specifying the
order for a
partial list of
primary key
fields.

e Theorder
value of each
primary key
field must be
unique.

If you do not

specify the or der

parameter in the

Nosqgl key

annotation, the

Spring Data

Framework orders

shard keys and

non-shard keys
individually in the
alphabetic order of
the field names.

See Ordering the

composite keys

example.

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 15 of 34

ORACLE

Chapter 1
Persistence Model

For more details on @osgl Key annotation, see NosglKey in the SDK for Spring Data API
Reference document.

Example: Ordering the composite keys

Consider primary key fields universityld, academicYear, and studentld defined in a composite
key class.

You can define the uni versityl d and academ cYear fields to be a part of the shard key. The
order values of these shard keys must be lesser than the st udent | d field, which is a non-shard
key. You can use the following sample code to create a composite class.

/* Define a conposite Key class */

public class StudentKey inplenments Serializable {

@osql Key(shardKey = true, order = 1)
[ong universityld,
@osql Key(shardKey = true, order = 0)

i nt academni cYear;

@osql Key(shar dKey
[ong studentld;

false, order = 2)

/* public or package protected constructor required when retrieving from
dat abase */
public StudentKey() {

}

In the preceding example, the acadeni cYear field is considered as the first primary key field
during the creation of the table.

The Spring Data Framework creates the table with the following DDL:

/* Table DDL */

CREATE TABLE I F NOT EXI STS Students (
academ cYear | NTEGER,
uni versityld LONG
studentld LONG
kv_json_ JSON,
PRI MARY KEY(SHARD(acadeni cYear, universityld), studentld)

Consider a composite key class without specifying the or der field.

/* Define a conposite Key class */

public class StudentKey inplenments Serializable {

@osql Key(shar dKey
[ong universityld,

true)

@osql Key(shardkey = true)

Spring Data SDK Developers Guide

F58555-22

October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 16 of 34

ORACLE

Chapter 1
Persistence Model

i nt academni cYear;

@osql Key(shardKey = fal se)
[ong studentld;
@osql Key(shardKey = fal se)

[ong branchl d;

/* public or package protected constructor required when retrieving from
dat abase */
public StudentKey() {

}

In the preceding example, the Spring Data Framework creates the shard keys and non-shard
keys in the alphabetic order of the field names within the primary key. The table DDL is as
follows:

/* Table DDL */
CREATE TABLE | F NOT EXI STS Students (

academ cYear | NTEGER,
uni versityld LONG

branchld LONG
studentld LONG
kv_json_ JSON,

PRI MARY KEY(SHARD(acadeni cYear, universityld), branchld, studentld)

In the following cases, the Spring Data Framework considers all the primary key fields as shard
keys and uses alphabetical ordering:

* If you declare the primary key fields in the composite key class without using the
@osql Key annotation.

« If you declare the primary key fields in the composite key class without specifying the
shar dKey and the or der values in the @osql Key annotation.

Note the following properties of the composite key class.

* You must have at least one field with shar dKey=t r ue in the composite key class, otherwise,
the Spring Data Framework will generate an error.

* You can use a composite key class with repositories (as the | D type) and to represent an
entity’s identity in a single object.

* You can annotate the fields as @r ansi ent to designate the nonpersistent state of the field.
* You can't nest composite key classes. This will generate an error.

* You can't autogenerate composite primary key fields. Setting
@osql 1 d. aut oGener at ed=t r ue leads to an error. You must manage the key values for all
read/write calls when using the composite keys. If the key values are not set, the Oracle
NoSQL Database generates an error.

JSON Column

All other fields in the entity other than the primary key field will be converted into a NoSQL
JSON value with the following rules:

Spring Data SDK Developers Guide

F58555-22

October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 17 of 34

ORACLE Chapter 1
Persistence Model

e The Java scalar values will be converted to NoSQL JSON atomic values.

e The Java collections and array structures will be converted to a NoSQL JSON array.
e The Java nonscalar values will be recursively converted to NoSQL JSON objects.

e The Java null values will be converted to NoSQL JSON NULL values.

* The complex values will be converted to NoSQL JSON objects according to the following
table.

Table 1-5 Mapping Between Java and NoSQL JSON Types
]

Java Type Representation within Oracle NoSQL Database JSON data type
java.lang. String STRI NG

i nt | NTEGER

j ava.lang. I nteger

[ong LONG

j ava.lang. Long

doubl e DOUBLE

j ava.lang. Doubl e

fl oat © Note

j ava. | ang. Fl oat
Since FLOAT in Oracle NoSQL Database
type is not explicitly used in NoSQL SDK for
Java, Java fl oat, and j ava. | ang. Fl oat
are mapped to the DOUBLE type.

j ava. mat h. Bi gDeci mal NUMBER

j ava. mat h. Bi gl nt eger

bool ean BOOLEAN

j ava. |l ang. Bool ean

byte[] STRI NG - a binary base64-encoded representation.
java.util.Date STRI NG- an 1SO-8601 UTC time stamp encoded representation.

j ava. sql . Ti mest anp
java.tine.Instant

org. springframework. dat GeoJson Point

a. geo. Poi nt For more information about GeoJson Data, see About GeoJson Data in
the SQL Reference Guide.

Spring Data SDK Developers Guide
F58555-22 October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 18 of 34

ORACLE Chapter 1
Persistence Model

Table 1-5 (Cont.) Mapping Between Java and NoSQL JSON Types

__|
Java Type Representation within Oracle NoSQL Database JSON data type

org. springframework. dat GeoJson Polygon

a. geo. Pol ygon For more information about GeoJson Data, see About GeoJson Data in
the SQL Reference Guide .

@ Note

Polygons must conform to the following
rules to be well-formed, otherwise they will
be ignored when used in queries.

1. Alinearringis a closed Li neString
with four or more positions.

2. The first and last positions are
equivalent, and they must contain
identical values.

3. Alinear ring is either the boundary of a
surface or the boundary of a hole in a
surface.

4. Alinear ring must follow the right-hand
rule for the area it bounds, that is, for
exterior rings, their positions must be
ordered counterclockwise, and for
holes, their position must be ordered
clockwise.

Before inserting new polygons in the table,
the geo_i s_geonetry() function can be
used for verification. If polygon data is
indexed an error will be raised if for some
row the value of the index path is not valid,
unless that value is NULL, json null, or
EMPTY.

Spring Data SDK Developers Guide
F58555-22 October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 19 of 34

ORACLE

Chapter 1
Persistence Model

Table 1-5 (Cont.) Mapping Between Java and NoSQL JSON Types

Java Type Representation within Oracle NoSQL Database JSON data type

java.util.Arrayli st ARRAY(JSON)

java.util.Collection

java.util.List

java.util. AbstractList @ Note

java. util.HashSet e Ajava.util.ArrayList objectis

java. util . Set !nstantlatgd for fields qf type

: _ java.util.Collection,

java.util. Abstract Set java.util.List,

java.util. TreeSet java.util.AbstractList,and

java.util. SortedSet java. util. Arraylist. o

java.util. Navi gabl eSet P Gl GUER (L . HashSet objectis

i . instantiated for fields of type

java.util.Array [] java.util. Set,
java.util.Abstract Set, and
java.util.HashSet.

e Ajava.util.TreeSet objectis
instantiated for fields of type
java.util. SortedSet,
java.util. Navi gabl eSet, and
java.util. TreeSet.

PQIO<f1 T1, f2 T2...> MAP(JSON)

java enum types STRI NG

java.util. Mp MAP(JSON)

java. util. Navi gabl eMap

java.util.SortedMap

. . Note

java.util.HashMap ©

. . for fields of type j ava. uti | . HashMap

ava. util.Hashtable . . ;

J. . e Ajava.util.LinkedHashMap is

java.util. TreeMap instantiated for fields of type
java.util.Mp and
java. util.Li nkedHasMap.

e Ajava.util.TreeMp is instantiated
for fields of type
java. util.Navi gabl eMap,
java.util.SortedMap, and
java.util. TreeMap.

@ Note

Java data structures that contain cycles are neither supported nor detected. That is, if
the entity object is traversed from the root down the fields and encounters the same
object twice it becomes a cycle.

Spring Data SDK Developers Guide
F58555-22

Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 20 of 34

ORACLE

Chapter 1
Transactional Model

Transactional Model

Learn about how the Oracle NoSQL Database SDK for Spring Data handles transactions on
Oracle NoSQL Database.

The transaction model for the Oracle NoSQL Database SDK for Spring Data builds on top of
the existing transaction model exposed by the Oracle NoSQL Database. That is, ACID
transactions are only supported for operations that do not span database shards. From the
perspective of your Spring application, you must think about ACID transactions as being
supported for those repository methods that operate over single objects. Repository methods
such as del et eAl | () are implemented in the Oracle NoSQL Database SDK for Spring Data to
make a "best-effort" to complete across all database shards but make no ACID guarantees.

The write operations when using save(), saveAl | (), del ete(), del eteByl d(), del eteAl | () or
write queries will be performed based on the default Java driver durability. For more
information about default Java driver durability, see COMMIT_NO_SYNC in the Java Direct
Driver API Reference.

The read operations when using fi ndByl D(), fi ndAl I Byl d(), findAll (), count() or select
queries will be performed based on the default eventual consistency or as specified in the
@osql Tabl e annotation. For more information about default eventual consistency, see
getDefaultConsistency in the Java SDK API Reference.

Setting up the Connection

Learn how to set up a connection from Oracle NoSQL Database SDK for Spring Data to the
Oracle NoSQL Database.

To expose the connection and security parameters to the Oracle NoSQL Database SDK for
Spring Data, you must create a class that extends the Abst r act Nosql Confi gurati on class.
You can customize this code as required. Perform the following steps to set up a connection to
the Oracle NoSQL Database.

Step 1: In your application, create the Nosql DobConfi g class. This class will have the
connection details to the Oracle NoSQL Database Proxy. Provide the @onfi guration and
@nabl eNoSQLReposi t ori es annotations to this Nosql DbConf i g class. The @onfi gurati on
annotation tells the Spring Data Framework that the @onf i gur ati on annotated class is a
configuration class that must be loaded before running the program. The

@nabl eNoSQLReposi t ori es annotation tells the Spring Data Framework that it must load the
program and lookup for the repositories that extends the Nosql Reposi t ory interface. The
@ean annotation is required for the repositories to be instantiated.

Step 2: Create an @ean annotated method to return an instance of the Nosql DBConf i g class.
The Nosql DBConfi g class will also be used by the Spring Data Framework to authenticate the
Oracle NoSQL Database.

Step 3: Instantiate the Nosql DbConf i g class. Instantiating the Nosql DbConf i g class will cause
the Spring Data Framework to internally instantiate an Oracle NoSQL Database handle by
authenticating with the Oracle NoSQL Database.

@® Note

You can add an exception code block to catch any connection error that might be
thrown upon authentication failure.

Spring Data SDK Developers Guide

F58555-22

October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 21 of 34

ORACLE Chapter 1
Setting up the Connection

@® Note

Creating an Oracle NoSQL Database handle using the previously-mentioned steps
has a limitation. The limitation is that the application will not be able to connect to two
or more different clusters at the same time. This is a Spring Data Framework limitation.
For more information about Spring Data Framework, see Spring Core.

@® Note

If you have trouble connecting to Oracle NoSQL Database from your Spring
application, you can add an exception block and print the message for debugging.

Example 1-1 Setting up the connection in a honsecure data store

As given in the following example, you can use the StoreAccessTokenProvider class to configure
the Spring Data Framework to connect and authenticate with an Oracle NoSQL Database. You
must provide the URL of the Oracle NoSQL Database Proxy with nonsecure access.

/* Annotation to specify that this class can be used by the
Spring Data Framework as a source of bean definitions.*/

@onfiguration

/* Annotation to enable NoSQL repositories.*/

@nabl eNosql Repositories

public class AppConfig extends Abstract Nosql Configuration {

/* Annotation to tell the Spring Data Framework that the returned object
must be registered as a bean in the Spring application.*/
@ean
publ i c Nosqgl DbConfig nosql DbConfig() {
Aut hori zat i onProvi der authori zationProvider;
aut hori zati onProvi der = new St oreAccessTokenProvider();
/* Provide the host name and port number of the NoSQL cluster.*/
return new Nosql DbConfi g("http://<host:port>", authorizationProvider);

Example 1-2 Setting up the connection in a secure data store

The following example modifies the previous example to connect to a secure Oracle NoSQL
Database store. For more details on St or eAccessTokenPr ovi der class, see
StoreAccessTokenProvider in the Java SDK API Reference.

/*Annotation to specify that this class can be used by the
Spring Data Framework as a source of bean definitions.*/

@onf i guration

/* Annotation to enable NoSQL repositories.*/

@nabl eNosql Repositories

public class AppConfig extends Abstract Nosql Configuration {

/* Annotation to tell the Spring Data Framework that the returned object
must be registered as a bean in the Spring application.*/

@ean

public Nosgl DbConfig nosqgl DbConfig() {

Spring Data SDK Developers Guide
F58555-22 October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 22 of 34

ORACLE

Chapter 1
Setting up the Connection

Aut hori zati onProvi der authorizationProvider;

/* Provide the user name and password of the NoSQ cluster.*/

aut hori zati onProvi der = new St oreAccessTokenProvi der (user, password);
/* Provide the host name and port number of the NoSQL cluster.*/
return new Nosql DbConfig("http://<host:port>", authorizationProvider);

For secure access, the St or eAccessTokenPr ovi der parameterized constructor takes the
following arguments.

e user is the user name of the kvstore.

e password is the password of the kvstore user.

For more details on the security configuration, see Obtaining a NoSQL Handle.
Example 1-3 Setting up the connection in Oracle NoSQL Database Cloud Service

You can use different methods to connect to the Oracle NoSQL Database Cloud Service. For
more details, see Connecting your Application to NDCS.

As given in the following example, you can use the Si gnat ur ePr ovi der class to configure the
Spring Data Framework to connect and authenticate with the Oracle NoSQL Database Cloud
Service. See SignatureProvider in the Java SDK API Reference.

You require tenancy id, user id, and fingerprint information which can be found on the user
profile page of the cloud account under the User | nformation tab on Vi ew Confi guration
Fi | e. You can also add the passphrase to your private key. For more details, see
Authentication to connect to Oracle NoSQL Database.

i nport org.springframework. cont ext.annot ation. Bean;

i nport org.springframework. cont ext. annot ation. Confi guration;
i nport oracle.nosql.driver.kv. StoreAccessTokenProvi der;

i nport oracle.nosql.driver. Region;

i nport oracle.nosql.driver.iam SignatureProvider;

inport java.io.File;

public class AppConfig extends Abstract Nosqgl Configuration

{
/* Annotation to tell that the returned object nmust be registered as a
bean in the Spring application.*/
@ean
publ ic Nosqgl DbConfi g nosql DbConfi g()
{
Si gnat ur eProvi der si gnat ureProvi der;
char passphrase[] = < Pass phrase > ; // Optional. A passphrase for
the key, if it is encrypted.

/* Details that are required to authenticate and authorize access to
the Oracle NDCS are provided. */
si gnat ureProvi der = new Si gnat ureProvi der (
< tenantID >, // The Oracle Coud Identifier (OCID) of the
t enancy.
<userlD>, // The Oacle Coud Identifier (OCID) of a user in
t he tenancy.
< fingerprint >, // The fingerprint of the key pair used for

Spring Data SDK Developers Guide

F58555-22

October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 23 of 34

ORACLE

Chapter 1
Defining a Repository

si gni ng.
new File(< privateKeyFile >), // Full path to the key file.
passphrase //Optional.

)

/* Provide the service URL of the Oracle NoSQ. Database C oud Service
*/

/* Update the Region. <Regi on name>. endpoint() with the appropriate
val ue. */

/* For exanple, Region.US ASHBURN 1.endpoint() .*/

return new Nosql DbConfi g(Regi on. < Region nane > .endpoint(),
si gnat ur eProvi der);

}

Defining a Repository

Learn about Oracle NoSQL Database SDK for Spring Data's Nosql Reposi t ory interface, which
includes methods to save, delete, update individual entities and also findAll, deleteAll on sets
of entities.

The entity class that is used for persistence is discoverable by the Spring Data Framework
either via annotation or inheritance. The Nosql Reposi t ory interface enables you to inherit and
create an interface for each entity that will use the Oracle NoSQL Database for persistence.

The Nosql Reposi t ory interface extends Spring's Pagi ngAndSor t i ngReposi t ory interface that
provides many methods that define queries.

In addition to those methods that are provided by the Nosql Reposi t ory interface, you can add
methods to your repository interface to define derived queries. These interface methods follow
a specific naming pattern for Spring derived queries (for more information derived queries, see
Query Creation) intercepted by the Spring Data Framework. The Spring Data Framework will
use this naming pattern to generate an expression tree, passing this tree to the Oracle NoSQL
Database SDK for Spring Data, where this expression tree is converted into an Oracle NoSQL
Database query, which is compiled and then executed. These Oracle NoSQL Database
queries are executed when you call the repository's respective methods.

If you want to create your derived queries, this must be performed by extending the
Nosql Reposi t ory interface and adding your own Java method signatures that conform to the
naming patterns as discussed in the derived queries section.

The following is an example of a code that implements the Nosql Reposi t ory interface. You
must provide the bounded type parameters: the entity type and the data type of the | Dfield.
This interface implements a derived query fi ndByLast Name and returns an iterable instance of
the St udent class.

i nport com oracl e. nosql.spring.data.repository. Nosql Repository;

/*The Student is the entity class, and Long is the data type of the
primary key in the Student class. This interface inplements a derived query
findByLast Name and returns an iterable instance of the Student class.*/
public interface StudentRepository extends Nosql Repository<Student, Long> {

/*The Student is searched by |astname and
an iterable instance of the Student class is returned. */

Spring Data SDK Developers Guide

F58555-22

October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 24 of 34

ORACLE Chapter 1
Starting the Application

I terabl e<Student> findByLast Nane(String |astname);

Starting the Application

Learn how to create a program to run the Spring boot application.

After creating the entity and repository, you must write a program to run the Spring application.
You can do that using a Spring boot application or a Spring core application.

Create an @pri ngBoot Appl i cat i on annotated class to run a Spring boot application. You can
override the run method in the CommandLi neRunner interface to write your code.

The following is an example of a Spring boot application.

/* The annotation helps to build an application using Spring Data Framework
rapidly.*/

@pr i ngBoot Appl i cation

publ i c cl ass Boot Exanpl e inpl ements ConmandLi neRunner {

/*The annotation enables Spring Data Framework to

| ook up the configuration file for a matching bean.*/
@\wut ow red
private StudentRepository nosqgl Repo;

@verride
public void run(String... args) throws Exception {
}

The following is an example of a Spring core application.

public class CoreExanple {
public static void main(String[] args) {
ApplicationContext ctx =
new Annot ati onConfi gAppl i cationCont ext (AppConfig. cl ass);
Nosql Oper ations ops = (Nosql Operations)ctx. get Bean("nosqgl Tenpl ate");

@® Note

The Spring Data Framework will look in the class path for a class with the
@onfiguration annotation and contains a method named Nosql Tenpl at e with the
@Bean annotation.

Spring Data SDK Developers Guide
F58555-22 October 12, 2025
Copyright © 2022, 2025, Oracle and/or its affiliates. Page 25 of 34

ORACLE

Queries

Learn about the types of queries supported by the Spring Data Framework.

You can use the queries provided in the repository base classes such as the

Chapter 1
Queries

Pagi ngAndSort i ngReposi t ory interface, or write your queries. The Spring Data Framework
supports the following types of queries.

1.

3.

Generic queries - queries provided by methods in the Pagi ngAndSor t i ngReposi t ory

interface and Cr udReposi t ory interfaces.

Derived queries - queries derived/generated by Spring SDK from the name of the method

based on the keywords.

Native queries - queries provided by user in the SQL for NoSQL Database format.

Pagi ngAndSor t i ngReposi tory Interface

Learn about the Pagi ngAndSor t i ngReposi t ory interface supported by the Spring Data
Framework.

The Nosql Reposi t ory interface extends the Pagi ngAndSorti ngReposi t ory interface.

The Pagi ngAndSor t i ngReposi t ory interface extends the CrudReposi t ory interface and
provides methods such as:

You can use any of these methods for the required functionality.

Page<T> findAll(Pageable pageable)
Iterable<T> findAll(Sort sort)

long count()

void delete(T entity)

void deleteAll()

void deleteAll(lterable<? extends T> entities)
void deleteAllByld(Iterable<? extends ID> ids)
void deleteByld(ID id)

boolean existsByld(ID id)

Iterable<T> findAll()

Iterable<T> findAlIByld(Iterable<ID> ids)
Optional<T> findByld(ID id)

<S extends T> S save(S entity)

<S extends T> Iterable<S> saveAll(lterable<S> entities)

For more information about the Spring's Pagi ngAndSor t i ngReposi t ory interface, see
PagingAndSortingRepository.

Spring Data SDK Developers Guide

F58555-22

Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 26 of 34

ORACLE Chapter 1
Queries

Derived Queries

Learn about the customized query creation feature supported by the Spring Data Framework.

Apart from those query methods that are provided by Spring's Pagi ngAndSor t i ngReposi t ory
interface, you can also define derived queries. Spring Data Framework has an inbuilt query
creation feature. Spring Data Framework creates queries directly from the Java method name
alone.

For example, if we have a Java method name with the following construct,

Li st <Customer> findByFirst Name(String firstName);

then the following derived query will be created automatically by the Spring Data Framework.

declare $firstName String;

SELECT * FROM Customer AS ¢ WHERE c. kv_json_.firstNane = $first Nang;

The only requirement for this derived query to work is that this Java method must be defined in
the interface that extends the Nosql Reposi t ory interface. The Nosql Reposi t ory interface
extends the Reposi t ory interface which is responsible for the derived queries. The common
prefixes from the Java method name are removed and the constraints of the query are parsed
from the rest of the Java method name. For more information about Spring derived query
creation, see Query Creation.

The Java methods with the prefixes fi nd..By, read..By, query..By, count ..By, get ..By, exi sts...
By, del et e..By, and r enove..By are considered as derived query methods by Spring Data
Framework. Apart from these prefixes, the Java method name can also have other keywords.
The following section provides the detailed derived query snippets that will be generated if the
given keywords are used.

And

If a method name has the word and in the following construct,

I terabl e<Student > findByFirst NameAndLast Nane(String firstnane, String
| ast nane) ;

then the following derived query will be auto-created by the Spring Data Framework.

declare $p firstName String;
$p_last Name String;

SELECT * FROM Student AS s WHERE (
s.kv_json_.firstName = $p_firstName AND s. kv_json_.|astName = $p_| ast Nane)

Spring Data SDK Developers Guide
F58555-22 October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 27 of 34

ORACLE

Chapter 1
Queries

@® Note

The Oracle NoSQL Database SDK for Spring Data supports derived queries that use a
combination of the logical operators (and, or). The generated query will follow the rules
of operator precedence defined in the Oracle NoSQL Database SQL query language.
For more information about the operator precedence in the Oracle NoSQL Database
SQL query language, see Operator Precedence in the SQL Reference Guide.

O

If a method name has the word or in the following construct,

I'terabl e<Student> findByFirstNameOr Last Name(String firstname, String
| ast nane) ;

then the following derived query will be auto-created by the Spring Data Framework.

declare $p_firstName String;
$p_l ast Nane String;

SELECT * FROM Student AS s WHERE (
s.kv_json_.firstName = $p_firstName OR s.kv_json_.|astNane = $p_| ast Narme)

@® Note

The Oracle NoSQL Database SDK for Spring Data supports derived queries that use a
combination of the logical operators (and, or). The generated query will follow the rules
of operator precedence defined in the Oracle NoSQL Database SQL query language.
For more information about the operator precedence in the Oracle NoSQL Database
SQL query language, see Operator Precedence in the SQL Reference Guide.

OrderBy (Asc/ Desc)

If a method name has the word orderby in the following construct,

I'terabl e<Student > findByLast NaneOr der ByFi r st NameAsc(String | astname);

then the following derived query will be created automatically by the Spring Data Framework.

decl are $p_l ast Nane String;

SELECT * FROM Student AS s
VWHERE s. kv_j son_. | ast Name = $p_| ast Name ORDER BY s. kv_j son_.firstName ASC

If a method name has the word orderby in the following construct,

I terabl e<Student> findByLast NaneOr der ByFi r st NameDesc(String | astnane);

Spring Data SDK Developers Guide

F58555-22

October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 28 of 34

ORACLE

Chapter 1
Queries

then the following derived query will be created automatically by the Spring Data Framework.

decl are $p_l ast Nane String;

SELECT * FROM Student AS s
VWHERE s. kv_j son_.l ast Name = $p_| ast Name ORDER BY s. kv_j son_. firstName DESC

First

If a method name has the word first in the following construct,

Page<St udent > queryFi rst5BylLast nane(String | astname, Pageabl e pageabl e);

then the following derived query will be created automatically by the Spring Data Framework.

For more information about Page, see Page. For more information about Pageabl e, see
Pageable.

declare $p_l ast Nane String;
$kv_limt_ Long;
$kv_of fset _ Long;

SELECT * FROM Student AS s
WHERE s. kv_json_.lastName = $p_lastName LIMT $kv_limt_
OFFSET $kv_of fset _

Top

If a method name has the word top in the following construct,

Slice<Student> findToplOByLast Name(String | astnane, Pageabl e pageabl e);

then the following derived query will be created automatically by the Spring Data Framework.

For more information about Sl i ce, see Slice.

decl are $p_l ast Nane String;
$kv_limt_ Long;
$kv_of fset _ Long;

SELECT * FROM Student AS s
WHERE s.kv_json_.lastNane = $p lastName LIMT $kv limt_
OFFSET $kv_of fset

For the complete list of supported keywords in query methods in Oracle NoSQL Database SDK
for Spring Data, see Supported Keywords in Query Method.

The following is an example of an Oracle NoSQL Database repository. It must extend the
Nosql Reposi t ory interface. The bounded types represent the entity type and the data type of
the | Dfield.

interface PersonRepository extends Nosql Repository<Person, Long> {
Li st <Person> findByFi r st NameAndLast Name(String firstname, String
| ast name) ;

Spring Data SDK Developers Guide

F58555-22

October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 29 of 34

ORACLE’

Chapter 1
Queries

Li st <Person> fi ndByLast NameQOr der ByFi r st NameDesc(String | ast name);

Supported Keywords in Derived Queries

Learn about the keywords supported by the Spring Data Framework for prefixing the method
names in derived queries.

The following is the list of supported keywords for prefix in the derived query method name.

Table 1-6 Supported Keywords for Prefix

Prefix Keyword

Example

findBy Li st <Cust omer> findByFirstNane(String firstName)

queryBy Li st <Cust omer > quer yByFi rst Name(String firstNange)

get By Li st <Cust omer > get ByFi rst Name(String firstNange)

r eadBy Li st <Cust omer > readByFi rst Nane(String firstName)

count By ong count ByFirstNanme(String firstNanme) - returns the count of the
matching rows

exi st sBy bool ean exi stsByLast Nane(String | astnane) - returns true if returned

rows >0

The following is the list of supported keywords for body in the derived query method name.

Table 1-7 Supported Keywords for Body

Body Keyword No.of No.of Example
Parts Params
fiel dname 1 1 Li st <Cust omer > findByLast Nane(String
| ast Name)
fiel dnameRef erencef 1 1 Li st <Cust omer> findByAddressCity(String
i el dnarme city)
class Custonmer { Address adress; ...}
class Address { String city; ...}
And 2 0 Li st <Cust oner >
findByFirst NameAndLast Nane(St ri ng
firstName, String |astNane)
O 2 0 Li st <Cust oner >

findByFirst NameQr Last Name(String firstName,
String | ast Name

G eat er Than 1 1 Li st <Cust omer > fi ndByAgeG eat er Than(i nt
m nAge)

G eat er ThanEqual 1 1 Li st <Cust oner >
fi ndByAgeG eat er ThanEqual (i nt ni nAge)

LessThan 1 1 Li st <Cust omer > findByAgeLessThan(i nt
maxAge)

LessThanEqual 1 1 Li st <Cust omer > fi ndByAgeLessThanEqual (i nt
maxAge)

I sTrue 1 0 Li st<Cust omer> findByVanillal sTrue()

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 30 of 34

ORACLE’

Chapter 1
Queries

Table 1-7 (Cont.) Supported Keywords for Body

Body Keyword No. of No. of Example
Parts Params

Desc 1 0 Li st <Cust oner >
quer yByLast NanmeQOr der ByFi r st NaneDesc(String
| ast name)

Asc 1 0 Li st <Cust oner >
get ByLast NanmeQOr der ByFi r st NaneAsc(String
| ast name)

In 1 1 Li st <Cust omer >
findByAddressCityln(List<Object> cities) -
param must be a List

Not I n 1 1 Li st <Cust oner >
findByAddressCityNotIn(List<String> cities)
- param must be a List

Bet ween 2 2 Li st <Cust ormer > findByKi dsBet ween(int min,
int max)

Regex 1 1 Li st <Cust omer > findByFi r st NameRegex(String
regex)

Exi sts 1 0 Li st <Cust omer> findByAddressGityExists() -
find all that have a city set

Near 1 1 Li st <Cust oner >
findByAddr essGeoJsonPoi nt Near (Circl e
circle) - param must be of
org.springframework.data.geo.Circle type

Wthin 1 1 Li st <Cust oner >
fi ndByAddr essGeoJsonPoi nt W t hi n(Pol ygon
poi nt) - param must be of
org.springframework.data.geo.Polygon type

| gnor eCase 1 0 Li st <Cust oner >
findByLast NameAndFi r st Nanel gnor eCase(String
| astname, String firstname); -Enable ignore
case only for firstName field

Al'l I gnoreCase many 0 Li st <Cust oner >
findByLast NameAndFi r st NanmeAl | | gnor eCase(Str
ing lastname, String firstnanme); - Enable
ignore case for all suitable properties

Di stinct 0 0 Li st <Cust orer Vi ew>

findAl I DistinctByLast Name(String |astNang);
- Projection to interface CustomerView

Li st <Cust omer Pr oj ect i on>

get Al | Di stinctByLast Name(String |astName); -
Projection to POJO class CustomerProjection

Spring Data SDK Developers Guide
F58555-22
Copyright © 2022, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 31 of 34

ORACLE Chapter 1
Activating Logging

Native Queries

Learn to run the native SQL queries using the
@r acl e. spring. data. nosql . reposi tory. Query annotation.

The @r acl e. spring. dat a. nosql . reposi tory. Query annotation enables you to execute the
native SQL query.

public interface AuthorRepository extends NoSQLRepository<Author, Long> {
@uery(val ue = "DECLARE $firstNane STRI NG
SELECT * FROM aut hor WHERE first_name = $first Name")
Li st <Aut hor> findAut hor sByFi r st Nane(@ar an(" $firstNane") String
firstName);

@uery("DECLARE $firstNane STRING $last STRING " +
"SELECT * FROM Customer AS c " +
"WHERE c. kv_json_.firstName = $firstNanme AND " +
"c.kv_json_.lastNane = $last")

Li st <Cust omer > fi ndCust omer sSWt hLast AndFi r st Nosql Val ues(
@Paran("$l ast") StringVal ue paraniast,
@ar an(" $f i rst Name") StringVal ue firstNane

);

Parameters are matched by name using the

@r g. springframewor k. dat a. reposi tory. query. Par amannotation. The @ar amannotation
value field must match exactly, including the '$' char, the name of the declared bind variable. If
@ar amannotation is not used an exception is thrown. All the parameters will get mapped
according to the mapping rules mentioned in the Persistence Model section.

@® Note

The second method fi ndAut hor sWt hLast AndFi r st Nosgl Val ues works with

oracl e.nosqgl . driver.val ues. StringVal ue. All Fi el dVal ue subclasses are
supported for query parameters. Fi el dVal ue is the base class of all data items in the
NoSQL SDK for Java. Each data item is an instance of Fi el dval ue allowing access to
its type and its value as well as additional utility methods that operate on Fi el dval ue.
On top of that, parameters of type Fi el dVval ue are also supported. For more
information about Fi el dval ue, see FieldVvalue.

For details on full query support in the Oracle NoSQL Database, see SQL Reference Guide.

Activating Logging
Learn to enable logs to capture the exceptions from Oracle NoSQL Database module.

The Spring Data errors are thrown as exceptions when you build or run your application.

For example, the Oracle NoSQL Database SDK for Spring Data uses

Il egal Argunent Except i on for invalid parameters and passes through Java SDK and Spring
Data Framework exceptions. The Spring Data Framework throws exceptions directly for some
classes, such as BeansExcepti on.

Spring Data SDK Developers Guide
F58555-22 October 12, 2025
Copyright © 2022, 2025, Oracle and/or its affiliates. Page 32 of 34

ORACLE

Chapter 1
Activating Logging

You can add an except i on code block to catch any error that might be thrown such as
authentication failure during connection setup. Additionally, to enable logging in Oracle NoSQL
Database SDK for Spring Data, you must include the following parameter when running the
application.

- Dl oggi ng. | evel . com or acl e. nosql . spri ng. dat a=DEBUG

The following are the logging levels that you can provide:
* ERROR: The ERROR level logging includes any unexpected errors.

° DEBUG: The DEBUG level logging includes generated SQL statements that the module
generates internally.

The following example contains the code to run the application with logging.

To run the application with Nosql nodule |ogging at DEBUG | evel
$ java -cp $CP: target/exanpl e-spring-data-oracl e-nosql - 1. 3- SNAPSHOT. j ar
- Dl oggi ng. | evel . com oracl e. nosql . spri ng. dat a=DEBUG or g. exanpl e. App

020- 12- 02 11:50: 18. 426 DEBUG 20325 --- [main]
C.0.n.spring.data.core.Nosql Tenpl ate : DDL: CREATE TABLE | F NOT EXI STS
Student Tabl e (id LONG GENERATED ALWAYS as | DENTITY (NO CYCLE)
kv_json_ JSON, PRI MARY KEY(id))
2020-12-02 11:50:19. 334 I NFO 20325 --- [main]
org.exanple. App : Started App in 2.464 seconds (JVMrunning for 2.782)
=== Start of App ====
2020-12-02 11:50: 19. 340 DEBUG 20325 --- [mmain]
C.0.n.spring.data.core.Nosgl Tenplate : Q DELETE FROM St udent Tabl e
Saving sl: Student{id=0, firstName="John', |astName='Doe'}
2020-12-02 11:50: 19. 362 DEBUG 20325 --- [main]
C.0.n.spring.data.core. Nosql Tenpl ate : execute insert in table
St udent Tabl e
Saving s2: Student{id=0, firstName="John', |astName="Smith'}
2020-12-02 11:50: 19. 387 DEBUG 20325 --- [mmain]
C.0.n.spring.data.core. Nosql Tenpl ate : execute insert in table
St udent Tabl e

findAl:
2020-12-02 11:50: 19. 392 DEBUG 20325 --- [nmin]
C.0.n.spring.data.core. Nosql Tenplate : Q SELECT * FROM Student Tabl e t
Student: Student{id=1, firstName="John', |astName=' Doe'}
Student: Student{id=2, firstNanme="John', |astName="Smith'}

findByLast Name: Smith
2020-12-02 11:50: 19.412 DEBUG 20325 --- [nmin]
c.0.n.spring.data.core. Nosql Tenplate : Q declare $p_lastName String;
select * from StudentTable as t where t.kv_json_.|astNane
= $p_l ast Name
Student: Student{id=2, firstName="John', |astName="Snith'}
2020-12-02 11:50: 19.426 DEBUG 20325 --- [nmin]
C.0.n.spring.data.core. Nosql Tenpl ate : DDL: DROP TABLE I F EXI STS
St udent Tabl e
=== End of App ====

To enabl e Nosql nmodul e | oggi ng when running tests

Spring Data SDK Developers Guide

F58555-22

October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 33 of 34

ORACLE Chapter 1
Activating Logging

$ mvn test -Diogging.!level.comoracle.nosql.spring.dat a=DEBUG

You can enable additional logging and client statistics at the NoSQL Java SDK level. For more
details, see Logging in the SDK and Logging internal SDK statistics in the oracle.nosql.driver
package.

Spring Data SDK Developers Guide

F58555-22 October 12, 2025
Copyright © 2022, 2025, Oracle and/or its affiliates. Page 34 of 34

Develop Applications Using Oracle NoSQL
Database SDK for Spring Data

Learn to create applications using Oracle NoSQL Database SDK for Spring Data.

The Oracle NoSQL Database SDK for Spring Data supports applications to access the NoSQL
Database and perform database operations such as updating and deleting records, reading,
index creation and removal, as well as queries. This section provides an overview of these
capabilities.

Accessing Oracle NoSQL Database Using Spring Data
Framework

Learn to access Oracle NoSQL Database from Spring using Oracle NoSQL Database SDK for
Spring Data.

Using the Spring Data Framework, you can set up a connection with Oracle NoSQL Database
nonsecure store, insert a row in a table, and then retrieve the data from the table.

Example 2-1 Accessing NoSQL Database using Spring Data Framework

The following example shows how to set up a Maven Project and then add the following
classes/interfaces:

e AppConfi g class
e Student class
e Student Reposi tory interface

e App class

After that, you will run the Spring application to get the required output. The following steps
discuss this in detail.

1. Setting up a Maven project:
Set up a Maven project with the required POM file dependencies. For details, see About
the Oracle NoSQL Database SDK for Spring Data.

2. Setting up an Appconfig class:
Set up the AppConfi g class that extends the Abst ract Nosql Confi gurati on class to
provide a Nosgl DbConf i g Spring bean. The Nosql DbConf i g Spring bean describes how to
connect to the Oracle NoSQL Database.

i nport oracle.nosql.driver.kv. StoreAccessTokenProvi der;

i nport com oracl e. nosql . spring. data. config. Abstract Nosql Confi gurati on;
inport com oracl e. nosql . spring.data. config.Nosqgl DbConfi g;

i nport

com oracl e. nosql . spring. data. reposi tory. config. Enabl eNosql Reposi tori es;

i nport org.springframework. cont ext.annot ati on. Bean;

Spring Data SDK Developers Guide

F58555-22

October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 1 of 16

ORACLE

Chapter 2
Accessing Oracle NoSQL Database Using Spring Data Framework

i nport org.springframework. cont ext.annot ation. Confi guration;

/* The @onfiguration annotation specifies that this class can be
used by the Spring Data Framework as a source of bean definitions.*/

@onf i guration

/* annotation to enabl e NoSQL repositories.*/

@nabl eNosql Repositories

public class AppConfig extends Abstract Nosql Configuration {

public static Nosql DbConfig nosql DBConfig =
new Nosql DbConfi g("host name: port", new StoreAccessTokenProvider());

/* The @ean annotation tells the Spring Data Framework that the returned
obj ect
must be registered as a bean in the Spring application.*/
@ean
public Nosgl DbConfig nosqgl DbConfig() {
return nosql DBConfi g;
}

@® Note

See Setting up the Connection section to know more about connecting to an
Oracle NoSQL Database secure store.

Defining an entity class:

Create a new package and add the following St udent entity class to persist. This entity
class represents a table in the Oracle NoSQL Database and an instance of this entity
corresponds to a row in that table.

Supply the @osql | d annotation to indicate that the i d field will act as the ID and be the
primary key of the underlying storage table and gener at ed=t r ue attribute to specify that
this ID will be autogenerated by a sequence.

If the ID field type is a String, a UUID will be used. If the ID field type is integer or long, a
"GENERATED ALWAYS as IDENTITY (NO CYCLE)" sequence is used.

For details on all the Spring Data classes, methods, interfaces, and examples see SDK for
Spring Data API Reference.

i nport com oracl e. nosqgl . spring. dat a. core. mappi ng. Nosql | d;
inport com oracl e. nosql.spring. data. core. mappi ng. Nosql Tabl e;

/* The @\osql Tabl e annotation specifies that

this class will be mapped to an Oracle NoSQL Dat abase table.*/
@\osql Tabl e
public class Student {

[* The @osqlId annotation specifies that this field will act
as the IDfield. And the generated=true attribute specifies
that this IDw Il be autogenerated by a sequence.*/

@osql I d(generated = true)

long id;

String firstNane;

String | astNane;

/* public or package protected constructor required when retrieving

Spring Data SDK Developers Guide

F58555-22

October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 2 of 16

ORACLE Chapter 2
Accessing Oracle NoSQL Database Using Spring Data Framework

from dat abase */
public Student() {
}
/* This method overrides the toString() method, and then
concatenates id, firstnane, and lastname, and then returns a String*/
@verride
public String toString() {
return "Student{" +

llid:" + id + Il7 n +

"firstNane=" + firstName + ", " +
"] ast Nane=" + | ast Nane +

I}l;

When a table is created through the Spring Data application, a schema is created
automatically, which includes two columns - the primary key column (types String, integer,
long, or timestamp) and a JSON column called kv_j son_.

If a table exists already, it must comply with the generated schema.

@® Note

* You can set the table level TTL by supplying thett! () andtt! Unit ()
parameters in the @osgl Tabl e annotation of the entity class. For more
details, see Setting TTL values.

* You can set the default Tabl eLi ni t s for Oracle NoSQL Database Cloud
Service tables in the @osql DbConfi g instance using
Nosql DbConfi g. get Def aul t Capaci t yMode(),
Nosql DbConfi g. get Def aul t St or ageGB() ,
Nosql DbConfi g. get Def aul t ReadUni t s(), and
Nosql DbConfi g. get Def aul t Wit eUni t s() methods. The Tabl eLinits can
also be specified per table if the @osql Tabl e annotation is used, through
capaci t yMode, readUnits, witeUnits, and st or ageGB fields as shown in the
following code sample.

[* Set the TableLinmits and TTL val ues. */
@osql Tabl e(readUnits = 50, witeUnits = 50, storageGB = 25)

4. Declaring a repository that extends NosqlRepository:
Create the following St udent Reposi t ory interface. This interface must extend the
Nosql Reposi t ory interface and provide the entity class and the data type of the primary
key in that class as parameterized types to the Nosql Reposi t ory interface. This
Nosql Reposi t ory interface provides methods that can be used to retrieve data from the
database.

i nport com oracl e. nosql . spring.data.repository. Nosql Repository;

/* The Student is the entity class, and Long is the data type of the
primary key in the Student class. This interface inplements a derived

query
findByLast Name and returns an iterable instance of the Student class.*/

Spring Data SDK Developers Guide
F58555-22 October 12, 2025
Copyright © 2022, 2025, Oracle and/or its affiliates. Page 3 of 16

ORACLE

Chapter 2
Accessing Oracle NoSQL Database Using Spring Data Framework

public interface StudentRepository extends Nosql Repository<Student, Long> {
/* The Student table is searched by |astname and
returns an iterable instance of the Student class.*/
I terabl e<Student> findByLast Nane(String |astnane);

}

Creating an application class:

Code the functionality as required by implementing any of the various interfaces provided
by the Spring Data Framework. This example uses the ComrandLi neRunner interface to
show the application code that implements the run method and has the main method. For
more information about setting up a Spring boot application, see Spring Boot.

In Spring data applications, the tables are automatically created at the beginning of the
application when the entities are initialized unless @osql Tabl e. aut oCr eat eTabl e is set to
fal se.

You can create the application code to insert data to the table, read the rows from the
table, and also run the queries as follows:

* Adding and deleting data: Use one of these methods to add rows to the table -
Nosql Repository. save(entity_object), saveAll (Iterabl e<T> iterable), or
Nosql Tenpl ate.insert(entity). To delete any exisiting rows from the table, you can
use one of these methods - Nosql Reposi t ory. del et eByl d(), del ete(),
del eteAl | (I1terabl e<? extends T> entities), deleteA () oruse
Nosql Tenpl ate. del ete(), del eteAl | (), del eteByl d(), del et el nShard() .
In the following code sample, you first delete the rows from the St udent table using the
Nosql Reposi tory. del et eAl | () method. This ensures the deletion of all the rows from
the table if the table already preexists in the database. You then use the
Nosql Repository. save(entity_object) method to add the rows to the table. You
create and save two student entities.

i nport com oracl e. nosql . spring. dat a. core. Nosqgl Tenpl at e;

i nport org.springframework. beans. factory. annot ati on. Aut ow r ed;

i nport org.springframework. boot . CormandLi neRunner ;

i nport org.springframework. boot. SpringApplication;

i nport org.springframework. boot . aut oconfi gure. SpringBoot Appl i cati on;
i nport org.springframework. cont ext. Confi gurabl eApplicati onCont ext;

/* The @pringBoot Application annotation helps you to build
an application using Spring Data Framework rapidly.*/

@pr i ngBoot Appl i cation

public class App inplements CommandLi neRunner {

/* The annotation enables Spring Data Framework to | ook up the
configuration file for a matching bean.*/

@\ut ow r ed

private StudentRepository repo;

public static void main(String[] args) {
Confi gurabl eApplicationContext ctx =
SpringApplication.run(App.class, args);
SpringApplication.exit(ctx, () -> 0);
ctx. close();
Systemexit(0);
}

@verride

Spring Data SDK Developers Guide

F58555-22

October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 4 of 16

ORACLE Chapter 2
Accessing Oracle NoSQL Database Using Spring Data Framework

public void run(String... args) throws Exception {

/* Delete all the existing rows of data, if any, in the Student
table. */
repo. deleteAll ();

/* Create a new Student instance and | oad values into it.*/
Student s1 = new Student();

sl.firstName = "John";

sl.last Name = "Doe";

/* Save the Student instance.*/
repo. save(sl);

/* Create a new Student instance and | oad values into it.*/
Student s2 = new Student();

s2. firstName = "John";

s2.lastName = "Smith";

/* Save the Student instance.*/
repo. save(s2);

The @osql | d annotation in the St udent entity class specifies that the i d field will act
as the ID and be the primary key of the underlying storage table. The rest of the entity
fields, that is, the fi r st Name and | ast Nane fields are stored in the JSON column.

* Reading data: Use one of these methods to read the data from the table -
Nosql Repository. findByld(), findA lByld(),findAll() orusing
Nosql Tenpl ate.find(), findAll (), findAIByld().
In the following code sample, you use the Nosql Repository. findAl | () method to
read all the rows from the table. You select all the rows from the St udent table and
supply them to an iterable instance. Print the values to the output from the iterable
object.

Systemout. printin("\nfindAll:");
[* Selects all the rows in the Student table
and load it into an iterable instance.*/
I'terabl e<Student> students = repo.findAll();

[* Print the values to the output fromthe iterable object.*/
for (Student s : students) {

Systemout.printin(" Student: " + s);
}

* Using queries: Use one of these methods to run your query - The Nosgl Reposi tory
derived queries, native queries, or using Nosql Tenpl at e. runQuery(),
runQuer yJavaPar ans(), runQuer yNosql Par ams() .
In following code sample, you use the derived queries to select a row from the St udent
table with the required last name and print the values to the output from the object. For
more details on the derived queries, see Derived Queries.

Systemout. println("\nfindByLast Name: Smth");
/* The Student table is searched by |astnane

Spring Data SDK Developers Guide
F58555-22 October 12, 2025
Copyright © 2022, 2025, Oracle and/or its affiliates. Page 5 of 16

ORACLE

Chapter 2
Setting TTL values

and an iterable instance of the Student class is returned.*/
students = repo. findByLast Name("Smith");

[* Print the values to the output fromthe iterable instance.*/
for (Student s : students) {
Systemout.printin(" Student: " + s);

}

6. Running the program: Execute the application code samples from step 5. The Spring

Data Framework adds rows to the St udent table, searches for all the rows and prints the
results to the output. It also fetches an individual row from the table.

findAl:
Student: Student{id=5, firstName=John, |astNane=Doe}
Student: Student{id=6, firstNanme=John, |astNane=Snith}

findByLast Name: Snith
Student: Student{id=6, firstNanme=John, |astNane=Snith}

Modifying the table: To modify a table, you can use the Nosql Tenpl at e. runTabl eRequest ()
method.

@ Note

While the Oracle NoSQL Database SDK for Spring Data provides an option to modify
the tables, it is not recommended to alter the schemas as the Spring Data Framework
expects tables to comply with the default schema (two columns - the primary key
column of types string, integer, long, or timestamp and a JSON column called

kv_json_).

Setting TTL values

Learn to set table level Time To Live (TTL) from Oracle NoSQL Database SDK for Spring Data.

You can set the table level TTL by setting the following parameters in the @Nosql Tabl e
annotation of an entity class:

e ttl(): Sets the table level TTL value in either DAYS or HOURS. If not specified, the
default value is set to 0, which means the TTL value is not set.

e ttlUnit(): Setsthe TTL unit to either DAYS or HOURS. If not specified, the default value
is set to DAYS.

Example 2-2 Setting table level TTL value using Spring Data Framework

The following example shows how to create the St udent entity class and set the TTL value to
10 days.

When the ttl () value is provided in the @osql Tabl e annotation, the Spring Data driver
creates the St udent table with the specified TTL value.

i nport com oracl e. nosql . spring. data. core. mappi ng. Nosql | d;
i nport com oracl e. nosql . spring. data. core. mappi ng. Nosql Tabl e;

/* The @Nosql Tabl e annotation specifies that this class will be napped to an

Spring Data SDK Developers Guide

F58555-22

October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 6 of 16

ORACLE’

Chapter 2
Using SpEI expressions in NosglTable annotation

Oracl e NoSQL Dat abase table. */

/* Sets the table level TTL to 10 Days. */
@osql Tabl e(ttl = 10, ttlUnit = Nosqgl Table. Tt1 Unit. DAYS)

public class Student {
/* The @Nosql Id annotation specifies that this field will act as the ID
field.

The generated=true attribute specifies that this IDw Il be autogenerated
by a sequence. */

@osql I d(generated = true)

long id;

String firstNane;

String | astNane;

/* public or package protected constructor required when retrieving
from dat abase. */
public Student() {

}

/* This nmethod overrides the toString() method, and then concatenates id,
firstname, |astnane,
and then returns a String. */
@verride
public String toString() {
return "Student{" +

llid:" + id + Il7 n +

"firstNane=" + firstName + ", " +
"] ast Nane=" + | ast Nane +

I}l;

Using SpEI expressions in sq ta e annotation

Learn about using Spring Expression Language (SpEI) expressions in @osql Tabl e. t abl eNarre
annotation.

You can specify the name of the table by setting the t abl eName parameter in the @losql Tabl e
annotation. In the St udent class example discussed in previous topics, since the t abl eNane is
not explicitly provided, by default an empty value is set and the entity class name is used as
the name of the table by the Spring driver.

SpEl is a way to evaluate complex expressions at runtime. For more details, see Spring
Expression Language.

The @osql Tabl e. t abl eName parameter supports evaluating (SpEl) expressions. You can use
the SpEL expressions while setting the t abl eNane parameter in the @osql Tabl e annotation as
shown in the following examples. The expressions are evaluated dynamically at runtime.

Spring Data SDK Developers Guide

F58555-22

October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 7 of 16

ORACLE Chapter 2
Using SpEI expressions in NosglTable annotation

Table 2-1 Using SpEL Expressions

SpEL expression in the Description
t abl eNamre parameter

@NosglTable(tableName = The Cust oner table is created in the namespace defined by JVM
"#{ systemProperties['sys_ns'}:Custo system property Sys_ns. If the system property doesn't exist, the
mer") SpEl expression evaluates to empty string, in which case the

table is created in the default namespace, sysdef aul t .
The systemProperties attribute is a predefined variable.
To run with the JVM system property use:

java - Dsys_ns=myCust omNanmespace ...

@NosglTable(tableName = The Cust oner table is created in the namespace defined by the
"#{ @environment.getProperty(ENV environment property ENV_NS. If the environment variable doesn't
_NS’)}:Customer”) exist the table is created in the default namespace, sysdef aul t .

To run by setting environment property use:

ENV_NS=nyCust omNamespace; java ...

@NosqlTable(tableName ="$ The Cust oner table is created in the namespace defined by the

{app.ns}:Customer") app. ns property in appl i cati on. properties resource file. An
error is thrown if the property does not exist.

@NosglTable(tableName = "$ The Cust oner table is created in the namespace defined by the

{app.ns}:Customer") app. ns property in appl i cati on. properti es resource file. If
the property does not exist, the table is created in the namespace
ns2.

@NosqlTable(tableName = In this example, the namespace is evaluated in the following

"#{ systemProperties['sys_ns'] != order:

null ? systemProperties['sys_ns'] : 1 Ifth defined by the JVM
@environment.getProperty(ENV_NS 1 the namespace defined by the system property

') 1= null 2 Sys_ns.

@environment.getProperty(ENV_NS If Sys_ns is not available, then environment variable ENV_NS
") : '${app.ns:srcNs}' }:Customer") is tried.

N

3. If ENV_NSis not available, then the namespace defined by
the app. ns property in appl i cati on. properties
resource file is tried.

4. If none of the previously mentioned namespaces are
available, the Cust orer table is created in the srcNs

namespace.
@NosglTable(tableName = The starting colon "' is automatically ignored when SpEl
":Customer") expressions '# and '$' are used and result is an " empty string
namespace.

In this example, an error is returned since neither of them are
present.

For more details on namespace management, see Introducing Namespaces in the Java Direct
Driver Developer's Guide.

Spring Data SDK Developers Guide
F58555-22 October 12, 2025
Copyright © 2022, 2025, Oracle and/or its affiliates. Page 8 of 16

ORACLE’

Chapter 2
Creating Tables with Composite Keys

Example 2-3 Using SpEIl expressions in the table name

The following example shows how to create the St udent entity class and provide the table
name as Cust oner in the namespace (JVM system property sys_ns) using the @losql Tabl e
annotation.

The Spring Data driver evaluates the SpEL expressions and the Cust oner table is created in
sys_ns namespace. If the namespace does not exist, the table is created in the sysdef aul t
namespace.

i nport com oracl e. nosql . spring. data. core. mappi ng. Nosql | d;
i nport com oracl e. nosql . spring.data. core. mappi ng. Nosql Tabl e;

/* The @Nosql Tabl e annotation specifies that this class will be napped to an
Oracl e NoSQL Dat abase table. */

/* Sets the table name. */
@\osql Tabl e(t abl eNanme = "#{ systenProperties['sys _ns']}:Customer")

public class Student {

/* The @osql Id annotation specifies that this field will act as the ID
field.

The generated=true attribute specifies that this IDw Il be

aut ogenerated by a sequence. */

@osql I d(generated = true)

long id;

String firstNang;

String | astNane;

/* public or package protected constructor required when retrieving
from dat abase. */
public Student() {

}

/* This nethod overrides the toString() method, and then concatenates id,
firstname, |astnane,
and then returns a String. */
@verride
public String toString() {
return "Student{" +

"fd=" +id + ", "+

"firstName=" + firstName + ", " +
"] ast Nane=" + | astNane +

1

Creating Tables with Composite Keys

Learn to create a table with composite primary key fields using Oracle NoSQL Database SDK
for Spring Data.

You use the @osqgl Key annotation to identify the annotated field as a component of the
composite primary key.

Spring Data SDK Developers Guide

F58555-22

October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 9 of 16

ORACLE

Chapter 2
Creating Tables with Composite Keys

Example 2-4 Creating a table with composite primary key fields

The following examples shows how to model St udent as an entity and use universityld,
academicYear, and studentld fields as composite keys.

A Composite key is helpful when you want to use more than one primary key field conjointly to
identify a unique row. Within the composite key, you can identify the primary key fields that can
be a part of the Shard Key and also specify the ordering of the fields.

The following example shows how to create a composite key with the key fields from student
data. You define a class named St udent Key to represent the composite key class and then use
that in the St udent entity as described in the following example:

Create a composite key class with the @osgl Key annotation to identify the composite keys.
Set the shar dKey value to t r ue if the field is a part of the shard key. Set the or der value for all
the fields in the order of primary key field generation in the table. For more details on the

shar dKey and or der elements, see Table 1-4.

In the following code sample, the uni versityl d, acadeni cYear, and st udent | d fields represent
the key fields for identifying a student's data and are declared as the primary key fields using
the @losqgl Key annotation. For an illustration of ordering within the primary key fields, consider
two of the primary key fields as shard keys and the third as a non-shard key.

Set the shar dKey value of the uni versi tyl d and academ cYear fields to t rue, and the

student | d field to false. Set the order value for the uni versityl d field to O to create the

uni versi tyl d field as the first primary key field and academni cYear to 1 to create as second
primary key field. As the st udent | d field is a non-shard key, its order value must be higher than
the shard keys. Set the or der value of the st udent | d field to 2.

i nport com oracl e. nosqgl . spring. dat a. cor e. mappi ng. Nosql Key;
inport java.io.Serializable;

inport java.util.QObjects;

/* Define a conposite Key class */

public class StudentKey inplements Serializable {

@osql Key(shardKey = true, order = 0)
[ong universityld,

@osql Key(shardKey = true, order
int academi cYear;

1)

@osql Key(shar dkey
[ong studentld;

false, order = 2)

/* public or package protected constructor required when retrieving from
dat abase */
public StudentKey() {

}

public StudentKey(long universityld, int academ cYear, |ong studentld) {
this.universityld = universityld,
this. acadeni cYear = acadeni cYear;
this.studentld = student!d;

Spring Data SDK Developers Guide

F58555-22

October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 10 of 16

ORACLE

Chapter 2

Creating Tables with Composite Keys

public long getUniversityld() {
return universityld,

}

public void setUniversityld(long universityld) {
this.universityld = universityld;

}

public int getAcadem cYear() {
return academi cYear;

}

public void setAcadenicYear(int acadenicYear) {
this. acadeni cYear = acadeni cYear;

}

public long getStudentld() {
return studentld;

}

public void setStudent!d(long studentld) {
this.studentld = studentld;

}

/* Define equals method */
@verride
public bool ean equal s(bject o) {
if (this == 0) {
return true;
}
if (!(o instanceof StudentKey)) {
return fal se;
}
St udent Key student Key = (Student Key) o;
return Qojects.equal s(universityld, studentKey.universityld) &&
hj ect s. equal s(academni cYear, studentKey.acadenicYear) &&
hj ect s. equal s(student!d, studentKey.studentld);

}

/* Define hashcode nethod */
@verride
public int hashCode() {
return Qojects. hash(universityld, academicYear, studentld);

}

i nport com oracl e. nosqgl . spring. data. core. mappi ng. Nosql | d;
i nport com oracl e. nosql.spring.data.core. mappi ng. Nosql Tabl e;
i nport com oracl e. nosql . spring. data. core. mappi ng. Nosql Key;

Spring Data SDK Developers Guide

F58555-22

Copyright © 2022, 2025, Oracle and/or its affiliates.

Create the St udent entity class with St udent Key as a composite primary key. The St udent Key
is annotated with @osql I d in the entity class to indicate the primary key.

You can declare any non-key fields in the entity class. The non-key fields will be included as
JSON data in the kv_j son_ column.

October 12, 2025

Page 11 of 16

ORACLE

Chapter 2
Creating Tables with Composite Keys

inport java.io.Serializable;
inport java.util.QObjects;

/*The @losql Tabl e annotation specifies that
this class will be mapped to an Oracle NoSQL Dat abase table.*/

@\osql Tabl e

public class Student {
@osql I d
St udent Key st udent Key;
String firstNaneg;
String | astNane;
String resident;

/* public or package protected constructor required when retrieving from
dat abase */
public Student() {
st udent Key = new Student Key();
}

[*This method overrides the toString() method, and then concatenates id
and name, and then returns a String*/
@verride
public String toString() {
return "Student{" +

“universityld=" + studentKey.universityld + ", " +
"academ cYear=" + studentKey.acadenicYear + ", " +
"student|d=" + studentKey.studentld + ", " +
“firstName=" + firstName + ", " +
"l ast Nane=" + |astNanme + ", " +
"resident=" + resident+
1

1

}
® Note

You must set up the AppConfi g class that provides a Nosqgl DbConfi g Spring bean. The
Nosqgl DbConf i g Spring bean describes how to connect to the Oracle NoSQL
Database. You must also create an interface that extends the Nosql Reposi tory
interface to retrieve the data from the Oracle NoSQL Database. For details, see the
section Accessing Oracle NoSQL Database Using Spring Data Framework.

The Spring Data Framework creates the St udent table with the following DDL:

/* Student table DDL */

CREATE TABLE | F NOT EXI STS Student (
uni versityld LONG
academ cYear | NTEGER,
studentld LONG
kv_j son_ JSON,

Spring Data SDK Developers Guide

F58555-22

October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 12 of 16

ORACLE Chapter 2
Creating an Index

PRI MARY KEY(SHARD(uni versityld, academ cYear), studentld)

The primary key fields uni ver si tyl d and academni cYear are also shard keys and st udent | d is
a non-shard primary key field.

Creating an Index

Learn to create an index on a field in a Oracle NoSQL Database table using Oracle NoSQL
Database SDK for Spring Data.

To create an index on a field in an Oracle NoSQL Database table from the Spring Data
Framework, you use Nosql Tenpl at e. runTabl eRequest () method.

In the application, you instantiate the Nosqgl Tenpl at e class by providing the

Nosql Tenpl at e. cr eat e(Nosqgl DbConfi g nosql DBConfi g) method with the instance of the
AppConfi g class. You then modify the table using the Nosql Tenpl at e. runTabl eRequest ()
method. You provide the NoSQL statement for the index creation in the

Nosql Tenpl at e. runTabl eRequest () method.

Example 2-5 Creating an Index on a table using Spring Data Framework

The following example shows how to create an index on the | ast Nane field in the St udent
table.

/* Create an Index on the lastName field of the Users Table. */

try {
AppConfig config = new AppConfig();

Nosql Tenpl ate i dx = Nosql Tenpl at e. creat e(confi g. nosqgl DbConfig());
i dx. runTabl eRequest (" CREATE | NDEX | F NOT EXI STS nanel dx ON
Student (kv_j son_.last Name AS STRING");
Systemout. println("Index created successfully");
} catch (Exception e) {
System out. println("Exception creating index" + e);

}

For details on table creation, see Accessing Oracle NoSQL Database Using Spring Data
Framework.

Projections

Learn to use Projections to customize a part of the entity class.

Use Projections when the required result is a subset of an entity, that is when the required
result is a small part of the entity. You can define an interface or a POJO class with a subset of
the properties found in the entity class. Then you use these interfaces or POJO classes as the
parametrized type result of the custom repository methods.

Example 2-6 Using Projections

The following example defines projections in the context of St udent entity class. See
Accessing Oracle NoSQL Database Using Spring Data Framework to get the details on
creating the St udent entity class and the St udent Reposi t ory interface.

Spring Data SDK Developers Guide
F58555-22 October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 13 of 16

ORACLE

1.

Chapter 2
Projections

Define an interface St udent Vi ewand a POJO class St udent Proj ect i on.

public interface StudentView {
String getLast Name();
}

public class StudentProjection {

private String firstNane;

private String |astName;

public StudentProjection(String firstNane, String |astNane) {
this.firstName = firstNane;
this.lastName = | ast Nane;

}

public String getFirstName() {
return firstName;

}

public void setFirstNane(String firstNane) {
this.firstName = firstNane,

1

public String getlLastName() {
return | ast Nane;

}

public void setlLastNane(String |astName) {
this.lastName = | ast Nane;
}

}

You can use the new types (St udent Vi ewand St udent Pr oj ect i on) as the result of the
custom find methods in the St udent Reposi t ory class.

inport java.util.Date;

i nport com oracl e. nosql . spring.data.repository. Nosql Repository;
public interface StudentRepository

ext ends Nosgl Reposi tory<Student, Long>

{
I terabl e<Student> findByLast Nane(String |astname);
I terabl e<Student> findByCreat edAt Between(Date start, Date end);
I terabl e<Student Vi ew> findAl | ByLast Nane(String |astName);
I terabl e<Student Proj ecti on> get Al | ByLast Nane(String | ast Nane);
}

Since these results contain a subset of the row, if the Id property is not included the
returned set must contain duplicates. If these duplicates are not required then you can use
the Di stinct keyword to eliminate them as follows:

Li st <Student Vi ew>f i ndAl | Di sti nct ByLast Nane(String | astName);
Li st <Student Proj ecti on> get Al | Di stinctByLast Name(String |astNane);

Spring Data SDK Developers Guide

F58555-22

October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 14 of 16

ORACLE Chapter 2
Projections

These methods will generate the following queries:

decl are $p_l ast Nane String;
select distinct {'lastNane': t.kv_json_.lastNane} as kv_json_ from Student
as t where t.kv_json_.lastName = $p_| ast Name

decl are $p_l ast Nane String;

select distinct {'firstName': t.kv_json .firstNane, 'lastName':
t.kv_json_.lastNane} as kv_json_

from Student as t where t.kv_json_.lastNane = $p_| ast Nane

@® Note

Only interface and class based projections that contain a subset of entity
properties are supported by Oracle NoSQL Database SDK for Spring Data.
Projections using @/al ue annotations are not supported. Dynamic projections,
when return type is parametrized, are also not supported.

3. Modify the run method and call the custom methods (defined with Projection interface and
POJO Class).

[* Using projection interface */
Systemout.printIn("\n Wth projection findAllByLastName: Smith");
repo. findAl | ByLast Name(" Smith")
.forEach(c -> Systemout.printIn("StudentView:" + c));
[* using projection PQIO class here */
Systemout.printIn("\n Wth projection getAllByLastNane: Smith");
repo. get Al | ByLast Name(" Snmith")
.forEach(c -> Systemout.println("StudentProjection.firstNane :" +
c. get Fi rst Nane()

+ " StudentProjection.lastName :" +
c.getLast Name()));

@® Note

See Accessing Oracle NoSQL Database Using Spring Data Framework to get
more details on the AppConfi g class to provide the connection details of the
database and the App class that implements the r un method and has the nai n
method.

4. Run the program from the runner class. You will get the following output.

Wth projection findAllByLastName: Smith

Student Vi ew : Student {id=0, firstName="null', |astNanme='Snith',
createdAt="null"}

Wth projection getAllByLastNane: Smith

St udent Proj ection. firstName :John

St udent Proj ection. | astNane :Snmith

Spring Data SDK Developers Guide
F58555-22 October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 15 of 16

ORACLE’

Chapter 2
Dropping Tables and Indexes

Dropping Tables and Indexes

Learn to drop Oracle NoSQL Database tables and indexes using Oracle NoSQL Database
SDK for Spring Data.

To drop the tables and indexes on the fields in tables, you use
Nosql Tenpl at e. runTabl eRequest () or Nosql Tenpl at e. dropTabl el f Exi st s() methods.

Create the AppConfi g class that extends Abst ract Nosql Confi gurati on class to provide the
connection details of the database. For details, see Accessing Oracle NoSQL Database Using
Spring Data Framework.

In the application, you instantiate the Nosql Tenpl at e class by providing the

Nosql Tenpl at e. cr eat e(Nosgl DbConfi g nosqgl DBConfi g) method with the instance of the
AppConfi g class. You then drop the table using the Nosql Tenpl at e. dr opTabl el f Exi st s()
method. The Nosql Tenpl at e. dropTabl el f Exi st s() method drops the table and returns tr ue if
the result indicates a change of the table's state to DROPPED or DROPPING.

Example 2-7 Dropping Tables and Indexes using Spring Data Framework

The following code sample shows how to drop the St udent table.

try {
AppConfig config = new AppConfig();
Nosql Tenpl ate tabl edrop = Nosql Tenpl at e. creat e(confi g. nosql DbConfig());
Bool ean result = tabl edrop. dropTabl el f Exi sts("Student");

if (result == true) {
Systemout. println("Tabl e dropped successful ly");
} else {

Systemout.printin("Failed to drop table");

}
} catch (Exception e) {
Systemout. println("Exception creating index" + e);

}

Spring Data SDK Developers Guide

F58555-22

October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Page 16 of 16

Glossary

Spring Data SDK Developers Guide
F58555-22 October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Glossary-1 of Glossary-1

Index

Spring Data SDK Developers Guide
F58555-22 October 12, 2025

Copyright © 2022, 2025, Oracle and/or its affiliates. Index-1 of Index-1

	Contents
	List of Examples
	List of Figures
	List of Tables
	1 Introduction to Oracle NoSQL Database SDK for Spring Data
	About the Oracle NoSQL Database SDK for Spring Data
	Components of Oracle NoSQL Database SDK for Spring Data
	Persistence Model
	Transactional Model
	Setting up the Connection
	Defining a Repository
	Starting the Application
	Queries
	PagingAndSortingRepository Interface
	Derived Queries
	Supported Keywords in Derived Queries
	Native Queries

	Activating Logging

	2 Develop Applications Using Oracle NoSQL Database SDK for Spring Data
	Accessing Oracle NoSQL Database Using Spring Data Framework
	Setting TTL values
	Using SpEl expressions in NosqlTable annotation
	Creating Tables with Composite Keys
	Creating an Index
	Projections
	Dropping Tables and Indexes

	Glossary
	Index

