Oracle® NoSQL Database
SQL Beginner's Guide

Release 25.3
E85380-34
October 2025

ORACLE"

Oracle NoSQL Database SQL Beginner's Guide, Release 25.3
E85380-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Conventions Used in This Book i

1 Introduction to SQL for Oracle NoSQL Database

2 Working with Namesapce

Managing Namespace 1
Namespace Resolution
Namespace Privileges and Authorization 3

3 Simple SELECT Queries

SQLBasicExamples Script

Starting the SQL Shell

Choosing column data

Substituting column names for a query
Computing values for new columns
Identifying tables and their columns
Filtering Results

Grouping Results

Ordering Results

Limiting and Offsetting Results

© 0 ~N ~N O AN ®WNDN PR

Using External Variables

4 Working with complex data

SQLAdvancedExamples Script 1
Working with Timestamps

Working With Arrays 5
Working with Records 10
Using ORDER BY to Sort Results 12
Working With Maps 13

SQL Beginner's Guide
E85380-34 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page i of iii

Using the size() Function 15

5 Working with JSON

SQLJSONExamples Script

Basic Queries

Using WHERE EXISTS with JSON
Seeking NULLS in Arrays

Examining Data Types JSON Columns
Using Map Steps with JSON Data 10
Casting Datatypes 12

o o o B~

Using Searched Case 13

6 Working with Expressions

Primary Expressions 1

7 Working With GeoJSON Data

Geodetic Coordinates
GeoJSON Data Definitions
Searching GeoJSON Data

8 Working With Indexes

Basic Indexing
Using Index Hints
Complex Indexes
Multi-Key Indexes
Indexing JSON Data

© b WODN P

o Working with Table Rows

Adding Table Rows using INSERT and UPSERT
Modifying Table Rows using UPDATE Statements
Example Data
Changing Field Values
Modifying Array Values
Adding Elements to an Array
Changing an Existing Element in an Array

© © oo oo b~ b~ b P

Removing Elements from Arrays

[ERN
N

Modifying Map Values

=
w

Removing Elements from a Map

SQL Beginner's Guide
E85380-34 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page ii of iii

Adding Elements to a Map 13

Updating Existing Map Elements 16
Managing Time to Live Values 20
Avoiding the Read-Modify-Write Cycle 22

10 Working with Multi-Region Setup

Managing Regions
Using MR_COUNTERS

A Introduction to the SQL for Oracle NoSQL Database Shell

Running the SQL Shell A-1
Configuring the shell A-2
Shell Utility Commands A-3
connect A-4
consistency A-4
describe A-4
durability A-6
exit A-6
help A-6
history A-6
import A-6
load A-7
mode A-8
output A-11
page A-11
show faults A-12
show ddl A-12
show indexes A-12
show namespaces A-13
show query A-13
show regions A-14
show roles A-14
show tables A-14
show users A-16
timeout A-16
timer A-17
verbose A-17
version A-17

SQL Beginner's Guide
E85380-34 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page iii of iii

ORACLE

Preface

Conventio

SQL Beginner's Guide
E85380-34

This document is intended to provide a rapid introduction to the SQL for Oracle NoSQL
Database and related concepts. SQL for Oracle NoSQL Database is an easy to use SQL-like
language that supports read-only queries and data definition (DDL) statements. This document
focuses on the query part of the language. For a more detailed description of the language
(both DDL and query statements), see SQL Reference Guide.

This book is aimed at developers who are looking to manipulate Oracle NoSQL Database data
using a SQL-like query language. Knowledge of standard SQL is not required but it does allow
you to easily learn SQL for Oracle NoSQL Database.

ns Used in This Book

The following typographical conventions are used within this manual:
Information that you are to type literally is presented in nonospaced font.
Variable or non-literal text is presented in italics. For example: "Go to your KVHOME directory."

Case-insensitive keywords, like SELECT, FROM, WHERE, ORDER BY, are presented in
UPPERCASE.

Case sensitive keywords, like the function size(item) are presented in lowercase.

@® Note

Finally, notes of special interest are represented using a note block such as this.

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Pageiofi

Introduction to SQL for Oracle NoSQL
Database

SQL Beginner's Guide
E85380-34

Welcome to SQL for Oracle NoSQL Database. This language provides a SQL-like interface to
Oracle NoSQL Database. The SQL for Oracle NoSQL Database data model supports flat
relational data, hierarchical typed (schema-full) data, and schema-less JSON data. You have
the flexibility to create tables with a well-defined schema for applications that require fixed data
or a combination of fixed data and schema-less JSON. For pure document-oriented
applications, you can use JSON collection tables that do not have any schema definition other
than the primary key fields. The SQL for Oracle NoSQL Database is designed to handle all
such data seamlessly without any impedance mismatch among the different sub-models.
Impedance mismatch is a problem that occurs due to differences between the database model
and the programming language mode.

For information on the command line shell you can use to run SQL for Oracle NoSQL
Database queries, see Introduction to the SQL for Oracle NoSQL Database Shell.

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 1 of 1

Working with Namesapce

This chapter provides examples on how to manage namespaces.

A namespace in Oracle NoSQL Database groups tables and ensures that table names are
unigue within it. It enables table privilege management as a group. You can have multiple
tables with the same name across different namespaces. To access these tables, you must
use the fully qualified table name. A fully qualified table name begins with a namespace,
followed by a table name, separated by a colon (). For example, ns1:t abl el.

® Note

Namespaces are case-insensitive, so ns1 or NSl are treated as same.

You can create multiple namespaces in your store. Each table belongs to a specific
namespace. The default Oracle NoSQL Database namespace is sysdef aul t. You do not need
a fully qualified name to access tables in the sysdef aul t namespace. For example, you can
access the table by specifying t abl e2 instead of sysdef aul t: t abl e2.

All namespaces names use standard identifiers, with the same restrictions as tables and
indexes:

* Names must begin with an alphabetic character (a-z,A-Z).
* Remaining characters are alphanumeric (a-z, A-Z, 0-9).
* Name characters can include period (.), and underscore (_) characters.

* The maximum name length for a namespace is 128 characters.

@ Note

You cannot use the prefix sys for any namespaces. The sys prefix is reserved. No
other keywords are restricted.

Managing Namespace

To manage namespaces, run the below commands in the SQL Shell.
CREATE NAMESPACE

Example 1: Use the CREATE NAMESPACE statement to add a new namespace.

CREATE NAMESPACE | F NOT EXI STS nsl1

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 1 of 4

ORACLE Chapter 2
Managing Namespace

® Note
I F NOT EXI STS clause is optional.

Output:

Statenent conpl eted successfully

SHOW NAMESPACES

Example 2: Use the show namespaces statement to show the existing namespaces.

SHOW NAMESPACES

Output:

namespaces
nsl
sysdef aul t

Example 3: To show the namespaces in a JSON format, use the statement below

SHOW AS JSON NAMESPACES

Output:

{"namespaces" : ["nsl","sysdefault"]}

DROP NAMESPACE
To delete a namespace, use the DROP NAMESPACE statement

Example 4: Delete a namespace from your store.

DRCP NAMESPACE | F EXI STS ns1 CASCADE

Explanation: The above statement removes the namespace, nsl.

| F EXI STSis an optional clause. Specifying it prevents an error if the namespace doesn't
exist. However, not including results in an error that the namespace is missing.

e CASCALE is an optional clause. It deletes the namespace and all the tables in it collectively.
If not specified, the system throws an error, stating that the namespace is not empty.

@® Note

You cannot delete the default namespace, sysdefaul t.

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 2 of 4

ORACLE’

Chapter 2
Namespace Resolution

Namespace Resolution

Namespace resolution determines which table a SQL query refers to, ensuring that the query
targets the correct table, especially when multiple tables with the same name exist across
different namespaces.

The rules are as follows:

e If you provide the table name with a namespace, no further resolution is needed because
the namespace uniquely identifies the table.

< If you provide the table name without a namespace, the system resolves the table based
on the namespace specified in the ExecuteOptions class.

e If ExecuteOptions does not specify a namespace, the system defaults to the sysdef aul t
namespace to resolve the table.

* By using different namespaces in ExecuteOptions, you can execute the same queries on
similar tables present in different namespace.

Namespace Privileges and Authorization

You can add multiple namespaces to your store, create tables within them, and assign specific
permissions to users, allowing them to access specific namespaces and tables. Additionally,
you can manage access control by authorizing which users can create and drop namespaces
and indexes or modify any data within each namespace, providing greater flexibility and data
handling.

To understand more about the user and role privileges, see Namespace Privileges and
Permissions (Table 4-1) in Java Direct Driver Developer's Guide.

Before granting access to namespaces, create the following using SQL Shell.

First, create a user:

CREATE USER John | DENTI FI ED BY " NewPwd123!!"

Where,
1. John is the user_name

2. NewPwd123!! is the password

Next, grant dbadm n privilege to user, John

GRANT DBADM N TO USER John

Where, DBADM Nis a built-in role. See, Built-in Roles, for more predefined roles.

And now you can grant the user, John, to create tables in the ns1 namespace.

GRANT CREATE_TABLE_I N_NAMESPACE ON NAMESPACE ns1 TO John

Now, grant permission to the user to create an index on any table in ns1 namespace.

GRANT CREATE_| NDEX_| N_NAMESPACE ON NAMESPACE ns1 TO John

SQL Beginner's Guide

E85380-34

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 3 of 4

ORACLE Chapter 2
Namespace Privileges and Authorization

Also, you can now grant permission to user to delete items in ns1 namespace.

GRANT DELETE | N_NAMESPACE ON NAMESPACE nsl TO John

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 4 of 4

Simple SELECT Queries

This section presents examples of simple queries for relational data. To follow along with the
examples, get the Exanpl es download from here and run the SQLBasi cExanpl es script found in

the sqgl folder. The script creates the table as shown, and imports the data.

SQLBasicExamples Script

The script SQLBasi cExanpl es creates the following table:

CREATE TABLE Users (

idinteger,
firstname string,
| ast name string,
age integer,

i ncone integer,
primry key (id)

The script also load data into the Users table with the following rows (shown here in JISON

);
format):
{

"id":l,

SQL Beginner's Guide
E85380-34
Copyright © 2011, 2025,

"firstnane":"David",

"l ast nane":"Morrison",

"age": 25,
"i ncone": 100000,

"id":2,
"firstnane":"John",

"] ast nane": " Ander son",

"age": 35,
"i ncone": 100000,

"id": 3,
“firstname":"John",
"| ast nane": " Morgan”,
"age": 38,
"income":null,

"id": 4,
"firstnane":"Peter",

Oracle and/or its affiliates.

October 12, 2025
Page 1 of 9

ORACLE Chapter 3
Starting the SQL Shell

"l astnane":"Snmith",

"age": 38,
"income": 80000,
}
{
"id":5,

"firstnane":"Dana",
"lastnane": " Scul | y",
"age": 47,

"income": 400000,

You run the SQLBasicExamples script using the load command:

> cd <installdir>/exanpl es/sql

> java -jar <KVHOVE>/lib/sql.jar -hel per-hosts <host>:<port>\
-store <storenane> | oad \

-file <KVHOVE>/ exanpl es/ sql / SQLBasi cExanpl es. cl i

Starting the SQL Shell

You can run SQL queries and execute DDL statements directly from the SQL shell. This is
described in Introduction to the SQL for Oracle NoSQL Database Shell. To run the queries
shown in this document, start the SQL shell as follows:

java -jar KVHOW |ib/sql.jar
- hel per - hosts node01: 5000 -store kvstore
sql ->

® Note

This document shows examples displayed in COLUMN mode, although the default
output type is JSON. Use the node command to toggle between COLUMN and JSON
(or JSON pretty) output.

Choosing column data

You can choose columns from a table. To do so, list the names of the desired table columns
after SELECT in the statement, before noting the table after the FROM clause.

The FROM clause can name only one table. To retrieve data from a child table, use dot
notation, such as parent.child.

To choose all table columns, use the asterisk (*) wildcard character as follows:

sql -> SELECT * FROM Users;

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 2 of 9

ORACLE Chapter 3
Substituting column names for a query

The SELECT statement displays these results:

oo S Fomem- S S +
| id | firstnane | lastnane | age | incone |
oo S Fomem- S S +
3	John	Morgan	38	NULL
4	Peter	Smith	38	80000
2	John	Anderson	35	100000
5	Dana	Scully	47	400000
1	David	Morrison	25	100000
oo S Fomem- S S +

5 rows returned

To choose specific column(s) from the table Users, include the column names as a comma-
separated list in the SELECT statement:

sql -> SELECT firstnane, |astname, age FROM Users;

S S [+
| firstnane | lastname | age |
S S [+
John	Mrgan	38
David	Mrrison	25
Dana	Scully	47
Peter	Smith	38
John	Anderson	35
S S [+

5 rows returned

Substituting column names for a query

You can use a different name for a column during a SELECT statement. Substituting a name in
a query does not change the column name, but uses the substitute in the returned data
returned. In the next example, the query substitutes Surname for the actual column name
lastname, by using the actual-name AS substitute-name clause, in the SELECT statement.

sql -> SELECT | astnane AS Surname FROM Users;

- +
| Surname |
- +
| Scully |
| Smith |
| Morgan |
| Anderson |
| Morrison |
- +

5 rows returned

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 3 of 9

ORACLE’

Chapter 3
Computing values for new columns

Computing values for new columns

The SELECT statement can contain computational expressions based on the values of
existing columns. For example, in the next statement, you select the values of one column,
income, divide each value by 12, and display the output in another column. The SELECT
statement can use almost any type of expression. If more than one value is returned, the items
are inserted into an array.

This SELECT statement uses the yearly income values divided by 12 to calculate the
corresponding values for nont hl ysal ary:

sql -> SELECT id, |astname, income, incone/12
AS nont hl ysal ary FROM users;

o R R S +
| id | lastnane | income | monthlysalary |
o R R S +
2	Anderson	100000	8333
1	Mrrison	100000	8333
5 Scully	400000	33333	
4	Smth	80000	6666
3	Mrgan	NULL	NULL
o R R S +

5 rows returned

This SELECT statement performs an addition operation that adds a bonus of 5000 to income
to return sal ar ywi t hbonus:

sql -> SELECT id, |astname, income, income+5000
AS sal aryw t hbonus FROM users;

L Fomme e o +
| id | lastname | income | salaryw thbonus |
L Fomme e o +
4] Smith	80000	85000	
1	Mrrison	100000	105000
5] Scully	400000	405000	
3] Mrgan	NULL	NULL	
2] Anderson	100000	105000	
L Fomme e o +

5 rows returned

Identifying tables and their columns

The FROM clause can contain one table only (that is, joins are not supported). The table is
specified by its name, which may be followed by an optional alias. The table can be referenced
in the other clauses either by its name or its alias. As we will see later, sometimes the use of
the table name or alias is mandatory. However, for table columns, the use of the table name or
alias is optional. For example, here are three ways to write the same query:

sql -> SELECT Users.lastname, age FROM Users;
e - Fome o - +

SQL Beginner's Guide

E85380-34

Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 4 of 9

ORACLE

Chapter 3
Filtering Results

| lastname | age |
R Fommm - +
Scully | 47
Snmith | 38
I

Anderson | 35

I
I
| Morgan
I
| Morrison | 25

5 rows returned

To identify the table Users with the alias u:

sql -> SELECT | astname, u.age FROM Users u ;

The keyword AS can optionally be used before an alias. For example, to identify the table
Users with the alias Peopl e:

sql -> SELECT Peopl e. | ast nane, Peopl e. age FROM Users AS Peopl e;

Filtering Results

You can filter query results by specifying a filter condition in the WHERE clause. Typically, a
filter condition consists of one or more comparison expressions connected through logical
operators AND or OR. The comparison operators are also supported: =, !=, >, >=, <, and <=.

This query filters results to return only users whose first name is John:

sql -> SELECT id, firstnanme, |astname FROM Users WHERE firstnanme = "John";

| id | firstnanme | lastnane |
. e +
| 3| John | Morgan |
| 2| John | Anderson |
. e +

2 rows returned

To return users whose calculated nont hl ysal ary is greater than 6000:

sql -> SELECT id, lastname, income, incone/12 AS nonthlysalary
FROM Users WHERE income/ 12 > 6000;

e B ook +
| id | lastname | income | nmonthlysalary |
e B ook +
5 Scully	400000	33333	
4	Smth	80000	6666
2	Anderson	100000	8333
1	Mrrison	100000	8333
e B ook +

5 rows returned

SQL Beginner's Guide

E85380-34

Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 5 of 9

ORACLE Chapter 3
Filtering Results

To return users whose age is between 30 and 40 or whose income is greater than 100,000:

sql -> SELECT | astname, age, incone FROM Users
WHERE age >= 30 and age <= 40 or incone > 100000;

S Foemm- S +
| lastname | age | incone |
S Foemm- S +
Smith	38	80000
Morgan	38	NULL
Anderson	35	100000
Scully	47	400000
S Foemm- S +

4 rows returned

You can use parenthesized expressions to alter the default precedence among operators. For
example:

To return the users whose age is greater than 40 and either their age is less than 30 or their
income is greater or equal than 100,000:

sql -> SELECT id, |astName FROM Users WHERE
(income >= 100000 or age < 30) and age > 40;

R +
| id | lastName |
R +
| 5] Scully |
R +

1 row returned

You can use the IS NULL condition to return results where a field column value is set to SQL
NULL (SQL NULL is used when a non-JSON field is set to null):

sql -> SELECT id, lastname from Users WHERE income |'S NULL;

oo +
| id | lastname |
oo +
| 3] Mrgan |
oo +

1 row returned

You can use the IS NOT NULL condition to return column values that contain non-null data:

sql -> SELECT id, lastname from Users WHERE income |'S NOT NULL,;

|

+

| Smth |
| Morrison |
| Scully |
| Anderson |
+

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 6 of 9

ORACLE Chapter 3
Grouping Results

4 rows returned

Grouping Results

Use the GROUP BY clause to group the results by one or more table columns. Typically, a
GROUP BY clause is used in conjunction with an aggregate expression such as COUNT,
SUM, and AVG.

@® Note

You can use the GROUP BY clause only if there exists an index that sorts the rows by
the grouping columns.

For example, this query returns the average income of users, based on their age.

sql -> SELECT age, AVQEincome) FROM Users GROUP BY age;

Fommme o Fomm e +
| age | AVGEincone) |
Fommme o Fomm e +
25	100000
35	100000
38	80000
47	400000
Fommme o Fomm e +

4 rows returned

Ordering Results

Use the ORDER BY clause to order the results by a primary key column or a non-primary key
column.

To order using the required column, specify the sort column in the ORDER BY clause:

ORDER BY using the primary key column:

SELECT id, |astname FROM Users ORDER BY i d;

Foo i +
| id | lastname |
Foo i +
| 1] Mrrison |
2	Anderson
3	Mrgan
4	Smth
5] Scully	
Foo i +

ORDER BY using a non-primary key column:

SELECT id, |astname FROM Users ORDER BY | ast nane;
T +

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 7 of 9

ORACLE’

Chapter 3
Limiting and Offsetting Results

Ander son |
Morgan |
Morrison |
Scully |
Smith |

Using this example data, you can order by more than one column. For example, to order users
by age and income:

SELECT id, lastnane, age, income FROM Users ORDER BY age, incong;

e R Foeeea +
| id | lastname | age | incone |
e R Foeeea +
1	Mrrison	25	100000
2	Anderson	35	100000
4	Smth	38] 80000	
3	Mrgan	38	NULL
5	Scully	47	400000
e R Foeeea +

By default, sorting is performed in ascending order. To sort in descending order use the DESC
keyword in the ORDER BY clause:

SELECT id, |astname FROM Users ORDER BY id DESC;

e oo - +
| id | lastname |
e oo - +
| 5] Scully |
4	Smth
3	Mrgan
2	Anderson
1	Mrrison
e oo - +

Limiting and Offsetting Results

Use the LI M T clause to limit the number of results returned from a SELECT statement. For
example, if there are 1000 rows in the Users table, limit the number of rows to return by
specifying a LIMIT value. For example, this statement returns the first four ID rows from the
table:

sql -> SELECT * from Users ORDER BY id LIMT 4;

e a e - Fomm - R +
| id | firstname | lastname | age | incone |
e a e - Fomm - R +
1] David	Morrison	25	100000	
2] John	Anderson	35	100000	
3	John	Morgan	38	NULL
4] Peter	Smith	38	80000	
e a e - Fomm - R +

SQL Beginner's Guide

E85380-34

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 8 of 9

ORACLE’

Chapter 3
Using External Variables

4 rows returned

To return only results 3 and 4 from the 10000 rows use the LI M T clause to indicate 2 values,
and the OFFSET clause to specify where the offset begins (after the first two rows). For
example:

sql -> SELECT * from Users ORDER BY id LIMT 2 OFFSET 2;

oo S e m - S +
| id| firstname | lastname | age | incone |
oo S e m - S +
| 3| John | Mrgan | 38 | NULL |
| 4] Peter | Smith | 38| 80000 |
oo S e m - S +

2 rows returned

® Note

We recommend using LIMIT and OFFSET with an ORDER BY clause. Otherwise, the
results are returned in a random order, producing unpredictable results.

Using External Variables

Using external variables lets a query to written and compiled once, and then run multiple times
with different values for the external variables. Binding the external variables to specific values
is done through APIs, which you use before executing the query.

You must declare external variables in your SQL query before referencing them in the SELECT
statement. For example:

DECLARE $age i nteger;

SELECT firstnane, |astnane, age
FROM User s

WHERE age > $age;

If the variable $age is set to value 39, the result of the above query is:

[S — S [+
| firstnane | |astname | age |
[S — S [+
| Dana | Scully | 47 |
[S — S [+

SQL Beginner's Guide

E85380-34

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 9 of 9

Working with complex data

In this chapter, we present query examples that use complex data types (arrays, maps,
records). To follow along with the examples, get the Exanpl es download from here and run the
SQLAdvancedExanpl es script found in the sql folder. This script creates the table and imports

the data used.

SQLAdvancedExamples Script

The SQLAdvancedExanpl es script creates the following table:

CREATE TABLE Persons (
idinteger,
firstname string,
| ast name string,
age integer,
i ncone integer,
| astLogin tinestanmp(4),
address record(street string,
city string,
state string,
phones array(record(type enun{work, hone),
areacode integer,
nunber integer
)
)
),
connections array(integer),
expenses map(integer),
primry key (id)
);

The script also imports the following table rows:

"id' 1,

"firstname": " David",

"l astnanme":"Mrrison",

"age": 25,

"incone": 100000,

"lastLogin" : "2016-10-29T18: 43: 59. 8319",

"address":{"street":"150 Route 2",
"city":"Antioch",
"state":"TN',
"zipcode" : 37013,
"phones": [{"type":"home", "areacode": 423,

"nunber": 8634379}]

}

SQL Beginner's Guide
E85380-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 1 of 16

ORACLE

"connections":[2, 3],
"expenses": {"food": 1000, "gas": 180}

"id": 2,
“firstname":"John",
"l ast nane": " Ander son",

"age": 35,
"incone": 100000,
"lastLogin" : "2016-11-28T13:01:11.2088",
"address":{"street":"187 Hill Street",
"city":"Beloit",
"state":"W",

"zipcode" : 53511,
"phones": [{"type":"hone", "areacode": 339,
“nunber": 1684972}]

}1

“connections":[1, 3],

"expenses": {"books": 100, "food":1700, "travel":2100}

||i dll 3’
“firstname":"John",
"l ast nane": " Morgan",

"age": 38,
"incone": 100000000,
"l astLogin" : "2016-11-29T08: 21: 35. 4971",

"address":{"street":"187 Aspen Drive",
"city":"Mddl eburg",
"state":"FL",
"phones": [{"type":"work", "areacode": 305,
“number": 1234079},
{"type":"home", "areacode": 305,
“number": 2066401}

]
¥
“connections":[1, 4, 2],
"expenses": {"food": 2000, "travel":700, "gas":10}

"id" 4,
“firstname":"Peter",
“lastnane":"Smith",
"age": 38,
"income": 80000,
"l astLogin" : "2016-10-19T09: 18: 05. 5555",
"address":{"street":"364 Mil berry Street",
"city":"Leom nster",
"state":"M\",
"phones": [{"type":"work", "areacode": 339,
"nunber": 4120211},
{"type":"work", "areacode": 339,
“number": 8694021},

SQL Beginner's Guide
E85380-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

Chapter 4
SQLAdvancedExamples Script

October 12, 2025
Page 2 of 16

ORACLE Chapter 4
SQLAdvancedExamples Script

{"type":"home", "areacode": 339,
"nunber"; 1205678},
{"type":"home", "areacode": 305,
“number": 8064321}
]
¥

"connections":[3, 5, 1, 2],
"expenses": {"food": 6000, "books":240, "clothes":2000, "shoes": 1200}

}
{
"id":5,
“firstname":"Dana",
"l astnane": " Scul | y",
"age": 47,
"income": 400000,
"l astLogin" : "2016-11-08T09: 16: 46. 3929",
"address":{"street":"427 Linden Avenue",
"city":"Mnroe Township",
"state":"NJ",
"phones": [{"type":"work", "areacode":201,
“number": 3213267},
{"type":"work", "areacode": 201,
“number": 8765421},
{"type":"home", "areacode": 339,
"nunber " 3414578}
]
¥
“connections":[2, 4, 1, 3],
"expenses": {"food": 900, "shoes":1000, "clothes": 1500}
}

You run the SQLAdvancedExamples script using the load command:

> cd <installdir>/exanpl es/ sql

> java -jar <KVHOVE>/lib/sql.jar -helper-hosts <host>:<port>\
-store <storenane> | oad \

-file <KVHOVE>/ exanpl es/ sql / SQLAdvancedExanpl es. cl i

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 3 of 16

ORACLE

Chapter 4
Working with Timestamps

@® Note

The Persons table schema models people that can be connected to other people in
the table. All connections are stored in the "connections" column, which consists of an
array of integers. Each integer is an ID of a person with whom the subject is
connected. The entries in the "connections" array are sorted in descending order,
indicating the strength of the connection. For example, looking at the record for person
3, we see that John Morgan has these connections: [1, 4, 2]. The order of the array
elements specifies that John is most strongly connected with person 1, less connected
with person 4, and least connected with person 2.

Records in the Persons table also include an "expenses" column, declared as an
integer map. For each person, the map stores key-value pairs of string item types and
integers representing money spent on the item. For example, one record has these
expenses: {"food":900, "shoes":1000, “clothes":1500}, other records have different
items. One benefit of modelling expenses as a map type is to facilitate the categories
being different for each person. Later, we may want to add or delete categories
dynamically, without changing the table schema, which maps readily support. An item
to note about this map is that it is an integer map always contains key-value pairs, and
keys are always strings.

Working with Timestamps

To specify a timestamp value in a query, provide it as a string, and cast it to a Timestamp data
type. For example:

sql -> SELECT id, firstname, |astname FROM Persons WHERE
| ast Logi n = CAST("2016-10- 19T09: 18: 05. 5555" AS TI MESTAMP) ;

S S SR +
| id | firstnane | |astnane |
S S SR +
| 4| Peter | Smith |
S S SR +

1 row returned

Timestamp queries often involve a range of time, which requires multiple casts:

sql -> SELECT id, firstnane, |astnane, |astlLogin FROM Persons WHERE
| astLogin > CAST("2016-11-01" AS TI MESTAMP) AND
| ast Logi n < CAST("2016-11-30" AS TI MESTAWP);

oo S oo +
| id | firstnane | lastnane | | ast Login |
oo S oo +
3	John	Morgan	2016-11-29T08: 21; 35. 4971
2	John	Anderson	2016-11-28T13:01;11.2088
5	Dana	Scully	2016-11-08T09: 16: 46. 3929
oo S oo +

3 rows returned

SQL Beginner's Guide

E85380-34

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 4 of 16

ORACLE

Chapter 4
Working With Arrays

You can also use various Timestamp functions to return specific time and date values from the

Timestamp data. For example:

sql -> SELECT id, firstnane, |astnane,
year (| astLogin) AS Year,
mont h(l ast Logi n) AS Month,
day(l astLogi n) AS Day,
hour (I ast Logi n) AS Hour,
m nute(l astLogin) AS Mnute

FROM Per sons;

oo S P Foe o
| id | firstnane | lastname | Year | Month
oo S P Foe o
| 3| John | Morgan | 2016 | 11
| 2| John | Anderson | 2016 | 11
| 4| Peter | Smith | 2016 | 10
| 5| Dana | Scully | 2016 | 11
| 1| David | Morrison | 2016 | 10
oo S P Foe o

Alternatively, use the EXTRACT function:

sql -> SELECT id, firstnane, |astnane,
EXTRACT(YEAR FROM | ast Logi n) AS Year,

EXTRACT(MONTH FROM | ast Logi n) AS Mont h,
EXTRACT(DAY FROM | ast Logi n) AS Day,
EXTRACT(HOUR FROM | ast Logi n) AS Hour,
EXTRACT(M NUTE FROM | ast Login) AS M nute
FROM Per sons;
Fomm e T E [S
| id | firstnane | lastname | Year | Month
Fomm e T E [S
| 3| John | Morgan | 2016 | 11
| 4] Peter | Smith | 2016 | 10
| 1| David | Morrison | 2016 | 10
| 2| John | Anderson | 2016 | 11
| 5| Dana | Scully | 2016 | 11
Fomm e T E [S

5 rows returned
sql ->

Working With Arrays

You can use slice or filter steps to select elements out of an array. We start with some

examples using slice steps.

Day

Day

To select and display the second connection of each person, we use this query:

sql -> SELECT | ast nane, connections[1]
AS connection FROM Persons;

SQL Beginner's Guide
E85380-34
Copyright © 2011, 202

Fommmma - o +

| lastname | connection |
Fome - S +

5, Oracle and/or its affiliates.

October 12, 2025
Page 5 of 16

ORACLE

Chapter 4
Working With Arrays

| Scully |
| Smith |
| Morgan |
| Anderson |
| Morrison |

5 rows returned

In the example, the slice step [1] is applied to the connections array. Since array elements
start with 0, 1 selects the second connection value.

You can also use a slice step to select all array elements whose positions are within a range:
[low:high], where low and high are expressions to specify the range boundaries. You can omit
low and high expressions if you do not require a low or high boundary.

For example, the following query returns the lasthame and the first 3 connections of person 5
as strongconnections:

sql -> SELECT | astname, [connections[0:2]]
AS strongconnections FROM Persons WHERE id = 5;

o o +
| lastname | strongconnections |
o o +
Scully	2
	4
	1
o o +

1 row returned

In the above query for Person 5, the path expression connecti ons[0: 2] returns the person's
first 3 connections. Here, the range is [0:2], so 0 is the low expression and 2 is the high. The
path expression returns its result as a list of 3 items. The list is converted to an array (a single
item) by enclosing the path expression in an array-constructor expression ([]). The array
constructor creates a new array containing the three connections. Notice that although the
query shell displays the elements of this constructed array vertically, the number of rows
returned by this query is 1.

Use of the array constructor in the select clause is optional. If no array constructor is used, an
array will still be constructed, but only if the select-clause expression does indeed return more
than one item. If exactly one item is returned, the result will contain just that one item. If the
expression returns nothing (an empty result), NULL is used as the result. This behavior is
illustrated in the next example, which we will run with and without an array constructor.

As mentioned above, you can omit the low or high expression when specifying the range for a
slice step. For example the following query specifies a range of [3:] which returns all
connections after the third one. Notice that for persons having only 3 connections or less, an
empty array is constructed and returned due to the use of the array constructor.

To fully illustrate this behavior, we display this output in mode JSON because the COLUMN
mode does not differentiate between a single item and an array containing a single item.

sql -> node JSON
Query output node is JSON
sql -> SELECT id, [connections[3:]] AS weakConnections FROM Persons;

SQL Beginner's Guide

E85380-34

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 6 of 16

ORACLE Chapter 4
Working With Arrays

{"id":3,"weakConnections":[]}
"id": 4, "weakConnections":[2]
{"id": 2, "weakConnections":[]}
"id": 5, "weakConnections": [3]
"id": 1, "weakConnections":[]}

5 rows returned

Now we run the same query, but without the array constructor. Notice how single items are not
contained in an array, and for rows with no match, NULL is returned instead of an empty array.

sql -> SELECT id, connections[3:] AS weakConnections FROM Persons;
{"id":2, "weakConnections":null}

{"id":3, "weakConnections":null}

{"id": 4, "weakConnections": 2}

{"id":5, "weakConnections": 3}

{"id": 1, "weakConnections":null}

5 rows returned

sql -> nmode COLUWN

Query output nmode is COLUW
sql ->

As a last example of slice steps, the following query returns the last 3 connections of each
person. In this query, the slice step is [si ze($) - 3:] . In this expression, the $ is an implicitly
declared variable that references the array that the slice step is applied to. In this example, $
references the connections array. The size() built-in function returns the size (number of
elements) of the input array. So, in this example, size($) is the size of the current connections
array. Finally, size($)-3 computes the third position from the end of the current connections
array.

sql -> SELECT id, [connections[size($)-3:]]
AS weakConnecti ons FROM Per sons;

e +
| id | weakConnections |
e +
| 51 4 |
| | 1 |
| | 3 |
e +
| 415 |
| | 1 |
| | 2 |
e +
| 311 |
| | 4 |
| | 2 |
e +
| 2] 1 |
| | 3 |
e +
| 1] 2 |
| | 3 |
e +

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 7 of 16

ORACLE

Chapter 4
Working With Arrays

5 rows returned

We now turn our attention to filter steps on arrays. Like slice steps, filter steps also use the
square brackets ([]) syntax. However, what goes inside the [] is different. With filter steps there
is either nothing inside the [] or a single expression that acts as a condition (returns a boolean
result). In the former case, all the elements of the array are selected (the array is "unnested").
In the latter case, the condition is applied to each element in turn, and if the result is true, the
element is selected, otherwise it is skipped. For example:

The following query returns the id and connections of persons who are connected to person 4:

sql -> SELECT id, connections
FROM Persons p WHERE p. connections[] =any 4;

Fomm ot +
| 3] 1 |
| | 4 |
| | 2 |
Fomm ot +
| 5] 2 |
	4
	1
	3
Fomm ot +

2 rows returned

In the above query, the expression p. connecti ons[] returns all the connections of a person.
Then, the =any operator returns true if this sequence of connections contains the number 4.

The following query returns the id and connections of persons who are connected with any
person having an id greater than 4:

sql -> SELECT id, connections FROM Persons p
VWHERE p. connections[] >any 4;
Fomm e +

| id | connections |

1 row returned

The following query returns, for each person, the person's last name and the phone numbers
with area code 339:

sql -> SELECT | ast nane,

[p.address. phones[$el enent . areacode = 339]. nunber]
AS phoneNunbers FROM Persons p;

S e +

SQL Beginner's Guide

E85380-34

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 8 of 16

ORACLE

Chapter 4

Working With Arrays
| lastname | phoneNunbers |
e oo +
| Scully | 3414578 |
e oo +
Smith	4120211
	8694021
	1205678
e oo +	
Morgan	
e oo +	
Anderson	1684972
e oo +	
Morrison	
e oo +

5 rows returned

In the above query, the filter step [$el enent . areacode = 339] is applied to the phones array
of each person. The filter step evaluates the condition $el ement . ar eacode = 339 on each
element of the array. This condition expression uses the implicitly declared variable $element,
which references the current element of the array. An empty array is returned for persons that
do not have any phone number in the 339 area code. If we wanted to filter out such persons
from the result, we would write the following query:

sql -> SELECT | ast nane,

[p.address. phones[$el ement . areacode = 339]. nunber]

AS phoneNunbers FROM Persons p WHERE p. addr ess. phones. areacode =any 339;
o e +

| lastname | phoneNunbers |

o e +
| Scully | 3414578 |
o e +
Smith	4120211
	8694021
	1205678
o e +	
Anderson	1684972
o e +

3 rows returned

The previous query contains the path expression p. addr ess. phones. ar eacode. In that
expression, the field step . ar eacode is applied to an array field (phones). In this case, the field
step is applied to each element of the array in turn. In fact, the path expression is equivalent to
p. addr ess. phones[] . ar eacode.

In addition to the implicitly-declared $ and $element variables, the condition inside a filter step
can also use the $pos variable (also implicitly declared). $pos references the position within
the array of the current element (the element on which the condition is applied). For example,
the following query selects the "interesting” connections of each person, where a connection is
considered interesting if it is among the 3 strongest connections and connects to a person with
an id greater or equal to 4.

sql -> SELECT id, [p.connections[$el enent >= 4 and $pos < 3]]
AS interestingConnections FROM Persons p;

SQL Beginner's Guide

E85380-34

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 9 of 16

ORACLE Chapter 4
Working with Records

e +
| id | interestingConnections |
e +
| 51 4 |
e +
| 415 |
e +
| 31 4 |
e +
| 2] |
e +
| 1] |
e +

5 rows returned

Finally, two arrays can be compared with each other using the usual comparison operators (=, !
=, >, >=, >, and >=). For example the following query constructs the array [1,3] and selects
persons whose connections array is equal to [1,3].

sql -> SELECT | ast name FROM Persons p
WHERE p. connections = [1, 3];

| l'astname |

1 row returned

Working with Records

You can use a field step to select the value of a field from a record. For example, to return the
id, last name, and city of persons who reside in Florida:

sql -> SELECT id, lastname, p.address.city
FROM Persons p WHERE p. address.state = "FL";

o S +
| id | lastname | city |
o S +
| 3| Mrgan | Mddleburg |
o S +

1 row returned

In the above query, the path expression p. addr ess. st at e consists of 2 field steps: . addr ess
selects the address field of the current row (rows can be viewed as records, whose fields are
the row columns), and . st at e selects the state field of the current address.

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 10 of 16

ORACLE

Chapter 4
Working with Records

The example record contains an array of phone numbers. You can form queries against that
array using a combination of path steps and sequence comparison operators. For example, to
return the last name of persons who have a phone number with area code 423:

sql -> SELECT | ast nane FROM Per sons
p WHERE p. addr ess. phones. areacode =any 423;

1 row returned

In the above query, the path expression p. addr ess. phones. ar eacode returns all the area
codes of a person. Then, the =any operator returns true if this sequence of area codes
contains the number 423. Notice also that the field step . ar eacode is applied to an array field
(phones). This is allowed if the array contains records or maps. In this case, the field step is
applied to each element of the array in turn.

The following example returns all the persons who had three connections. Notice the use of []
after connections: it is an array filter step, which returns all the elements of the connections
array as a sequence (it is unnesting the array).

sql -> SELECT id, firstName, |astNanme, connections from Persons where
connections[] =any 3 ORDER BY id;

e R o +
| id | firstName | lastNane | connections |
e R o +
| 1| David | Mrrison | 2 |
| | | | 3 |
e R o +
| 2] John | Anderson | 1 |
| | | | 3 |
oo R o +
4	Peter	Smith	3
			5
			1
			2
oo R o +			
5	Dana	Scully	2
			4
			1
			3
oo R o +

4 rows returned

This query can use ORDER BY to sort the results because the sort is being performed on the
table's primary key. The next section shows sorting on non-primary key fields through the use
of indexes.

For more examples of querying against data contained in arrays, see Working With Arrays.

SQL Beginner's Guide

E85380-34

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 11 of 16

ORACLE

Chapter 4
Using ORDER BY to Sort Results

Using ORDER BY to Sort Results

To sort the results from a SELECT statement using a field that is not the table's primary key,
you must first create an index for the column of choice. For example, for the next table, to

guery based on a Timestamp and sort the results in descending order by the timestamp, create
an index:

sql -> SELECT id, firstnane, |astnane, |astLogin FROM Persons;

o S oo +
| id | firstnane | lastnane | | ast Login |
o S oo +
3	John	Morgan	2016-11-29T08: 21; 35. 4971
4	Peter	Smith	2016-10-19T09: 18: 05. 5555
2	John	Anderson	2016-11-28T13:01;11.2088
5	Dana	Scully	2016-11-08T09: 16: 46.3929
1	David	Morrison	2016-10-29T18: 43;59. 8319
o S oo +

5 rows returned

sql -> CREATE | NDEX tsidxl on Persons (lastLogin);
Statenent conpl eted successfully

sql -> SELECT id, firstname, |astnane, |astlLogin
FROM Per sons ORDER BY | astLogi n DESC,

o S oo +
| id | firstnane | |astnanme | | ast Login |
o S oo +
3	John	Morgan	2016-11-29T08: 21; 35. 4971
2	John	Anderson	2016-11-28T13:01;11.2088
5	Dana	Scully	2016-11-08T09: 16: 46.3929
1	David	Morrison	2016-10-29T18: 43;59. 8319
4	Peter	Smith	2016-10-19T09: 18: 05. 5555
o S oo +

5 rows returned

SQL for Oracle NoSQL Database can also sort query results by the values of nested records.
To do so, create an index of the nested field (or fields). For example, you can create an index
of address.state from the Persons table, and then order by state:

sql -> CREATE | NDEX i ndx1 on Persons (address.state);
Statenent conpl eted successfully

sql -> SELECT id, $p.address.state FROM

Persons $p ORDER BY $p. address. state;

R +
| id| state |
R +
| 3| FL |
| 41 M
| S| N
[1] TN
27w
R +

SQL Beginner's Guide
E85380-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 12 of 16

ORACLE

Chapter 4
Working With Maps

5 rows returned

To learn more about indexes, see Working With Indexes.

Working With Maps

The path steps applicable to maps are field and filter steps. Slice steps do not make sense for
maps, because maps are unordered, and as a result, their entries do not have any fixed
positions.

You can use a field step to select the value of a field from a map. For example, to return the
lastname and the food expenses of all persons:

sql -> SELECT | astname, p.expenses. food
FROM Persons p;

5 rows returned

In the above query, the path expression p. expenses. f ood consists of 2 field steps: . expenses
selects the expenses field of the current row and . f ood selects the value of the food field/entry
from the current expenses map.

To return the lastname and amount spent on travel for each person who spent less than $3000
on food:

sql -> SELECT | ast nane, p.expenses.travel
FROM Persons p WHERE p. expenses. food < 3000;

o f SRR +
| lastname | travel |
o f SRR +
Scully	NULL
Morgan	700
Anderson	2100
Morrison	NULL
o f SRR +

4 rows returned

Notice that NULL is returned for persons who did not have any travel expenses.

Filter steps are performed using either the . val ues() or . keys() path steps. To select values
of map entries, use . val ues(<cond>) . To select keys of map entries, use . keys(<cond>). If no
condition is used in these steps, all the values or keys of the input map are selected. If the

SQL Beginner's Guide

E85380-34

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 13 of 16

ORACLE

Chapter 4
Working With Maps

steps do contain a condition expression, the condition is evaluated for each entry, and the
value or key of the entry is selected/skipped if the result is true/false.

The implicitly-declared variables $key and $value can be used inside a map filter

condition. $key references the key of the current entry and $value references the associated
value. Notice that, contrary to arrays, the $pos variable can not be be used inside map filters
(because map entries do not have fixed positions).

To show, for each user, their id and the expense categories where they spent more
than $1000:

sql -> SELECT id, p.expenses.keys($val ue > 1000) as Expenses
from Persons p;

o +
| id]| Expenses |
o +
4	clothes
	food
	shoes
o +	
3	food
o +	
2	food
	travel
o +	
5 clothes	
o +	
1] NULL	

o +

To return the id and the expense categories in which the user spent more than they spent on
clothes, use the following filter step expression. In this query, the context-item variable ($)
appearing in the filter step expression [$value > $.clothes] refers to the expenses map as a
whole.

sql -> SELECT id, p.expenses.keys($val ue > $.clothes) FROM Persons p;

e e +
| id | Col um_2 |
e e +
| 3] NULL |
e e +
| 2] NULL |
e e +
| 5] NULL |
e e +
| 1] NULL |
e e +
| 4| food |
e e +

To return the id and expenses data of any person who spent more on any category than what
they spent on food:

sql -> SELECT id, p.expenses
FROM Persons p

SQL Beginner's Guide

E85380-34

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 14 of 16

ORACLE’

Using the

Chapter 4
Using the size() Function

VWHERE p. expenses. val ues() >any p.expenses. f ood,;

o +
| id]| expenses |
o +
| 5| clothes | 1500 |
| | food | 900 |
| | shoes | 1000

o +
| 2| books | 100

| | food | 1700 |
| | travel | 2100

o +

2 rows returned

To return the id of all persons who consumed more than $2000 in any category other than
food:

sql -> SELECT id FROM Persons p
VWHERE p. expenses. val ues($key != "food") >any 2000;
R

| id|
oot
| 2]
oot

1 row returned

size() Function

The size function can be used to return the size (number of fields/entries) of a complex item
(record, array, or map). For example:

To return the id and the number of phones that each person has:

sql -> SELECT id, size(p.address. phones)
AS regi st eredphones FROM Persons p;

e +
| id | registeredphones |
e +
| 5] 3 |
| 3] 2 |
| 4] 4 |
| 2] 1]
| 1] 1]
e +

5 rows returned

To return the id and the number of expenses categories for each person: has:

sql -> SELECT id, size(p.expenses) AS
cat egori es FROM Persons p;
LT TRy +

SQL Beginner's Guide

E85380-34

Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 15 of 16

ORACLE Chapter 4
Using the size() Function

| id | categories |
oo +
| 4] 4 |
| 3] 3 |
| 2] 3 |
| 1] 2 |
| 51 3
oo +

5 rows returned

To return for each person their id and the number of expenses categories for which the
expenses were more than 2000:

sql -> SELECT id, size([p.expenses.values($val ue > 2000)]) AS
expensi veCat egori es FROM Persons p;

e +
| id | expensiveCategories |
e +
| 3] 0 |
| 2] 1|
| 5] 0 |
| 1] 0 |
| 4] 1]
e +

5 rows returned

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 16 of 16

Working with JSON

This chapter provides examples on working with JSON data. If you want to follow along with
the examples, get the Exanpl es download from here and run the SQLJSONExanpl es script found
in the sql folder. This creates the table and imports the data used.

JSON data is written to JSON data columns by providing a JSON object. This object can
contain any valid JSON data. The input data is parsed and stored internally as Oracle NoSQL
Database datatypes:

* When numbers are encountered, they are converted to integer, long, or double items,
depending on the actual value of the number (float items are not used for JSON).

e Strings in the input text are mapped to string items.
* Boolean values are mapped to boolean items.
e JSON nulls are mapped to JSON null items.

* When an array is encountered in the input text, an array item is created whose type is
Array(JSON) . This is done unconditionally, no matter what the actual contents of the array
might be.

* When a JSON object is encountered in the input text, a map item is created whose type is
Map(JSON) , unconditionally.

@® Note

There is no JSON equivalent to the TIMESTAMP datatype, so if input text contains a
string in the TIMESTAMP format it is simply stored as a string item in the JISON
column.

The remainder of this chapter provides an overview to querying JSON data.

SQLJSONExamples Script

The SQLIJSONExample is available to illustrate JSON usage. This script creates the following
table:

create table if not exists JSONPersons (
idinteger,

person JSON,

primary key (id)

);

The script imports the following table rows. Notice that the content for the per son column,
which is of type JSON contains a JSON object. That object contains a series of fields which

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 1 of 17

ORACLE Chapter 5
SQLJSONExamples Script

represent our person. We have deliberately included inconsistent information in this example
S0 as to illustrate how to handle various queries when working with JSON data.

{
"id": 1,
"person" : {
“firstname": " David",
"l astnane": "Morrison",
"age": 25,
“inconme": 100000,
"l astLogin" : "2016-10-29T18: 43: 59. 8319",
"address":{"street":"150 Route 2",
"city":"Antioch",
"state":"TN',
"zipcode" : 37013,
“phones": [{"type":"hone", "areacode": 423,
"nunber": 8634379}]
¥
"connections":[2, 3],
"expenses": {"food": 1000, "gas": 180}
}
}
{
"id": 2,
"person" : {
“firstname":"John",
"l ast nane": " Ander son",
"age": 35,
“inconme": 100000,
"l astLogin" : "2016-11-28T13:01: 11.2088",
"address":{"street":"187 Hill Street",
"city":"Beloit",
"state":"W",
"zipcode" : 53511,
“phones": [{"type":"hone", "areacode": 339,
"nunber": 1684972}]
¥
“connections":[1, 3],
"expenses":{"books": 100, "food":1700, "travel":2100}
}
}
{
"id":3,
"person" : {

“firstname":"John",
"l ast nane": " Morgan",
"age": 38,
“incone": 100000000,
"lastLogin" : "2016-11-29T08: 21: 35. 4971",
"address":{"street":"187 Aspen Drive",
"city":"Mddl eburg",
"state":"FL",
“phones": [{"type":"work", "areacode": 305,
"nunber": 1234079},

SQL Beginner's Guide
E85380-34 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 2 of 17

ORACLE

{"type":"home", "areacode": 305

"nunber": 2066401}

]
b,

“connections":[1, 4, 2],

"expenses":{"food": 2000, "travel":700, "gas":10}

}
}
{
"id" 4,
"person": {
“firstname":"Peter",
"lastnang":"Smth",
"age": 38
"i ncome": 80000,
"lastLogin" : "2016-10-19T09: 18: 05. 5555"
"address":{"street":"364 Milberry Street"
“city":"Leom nster",
"state":"MA",
"phones": [{"type": "work", "areacode":339
"nunber": 4120211},
{"type":"work", "areacode":339
"nunber ": 8694021},
{"type":"honme", "areacode": 339
"nunber": 1205678},
nul I,
{"type":"honme", "areacode": 305
"nunber": 8064321}
]
b
“connections":[3, 5, 1, 2],
"expenses": {"food": 6000, "books":240, "clothes":2000,
"shoes": 1200}
}
}
{
"id":5
"person" : {

"firstname":"Dana",

"l astnane": " Scul | y",

"age": 47,

"inconme": 400000,

"l astLogin" : "2016-11-08T09: 16: 46. 3929"

"address":{"street":"427 Linden Avenue"
"city":"Monroe Township",
"state":"NJ",

"phones": [{"type":"work", "areacode":201

"nunber": 3213267},

{"type":"work", "areacode": 201

"nunber": 8765421},

{"type":"home", "areacode": 339

"nunber": 3414578}

]
},

"connections":[2, 4, 1, 3],

SQL Beginner's Guide
E85380-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

Chapter 5
SQLJSONExamples Script

October 12, 2025
Page 3 of 17

ORACLE’

Chapter 5
Basic Queries

"expenses": {"food":900, "shoes":1000, "clothes": 1500}

}
}
{

"id":8,

"person" : {
"mynunber": 5,
"myarray":[1,2,3,4]

}

}
{

"id": 7,

"person" : {
“mynunber":"5",
“nyarray":["1","2","3","4"]

}

}

You run the SQLISONExamples script using the load command:

> cd <installdir>/exanpl es/sql

> java -jar <KVHOVE>/lib/sql.jar -helper-hosts <host>:<port>\
-store <storenane> | oad \

-file <KVHOVE>/ exanpl es/ sql / SQLISONExanpl es. cl i

Basic Queries

Because JSON is parsed and stored internally in native data formats with Oracle NoSQL
Database, querying JSON data is no different than querying data in other column types. See
Simple SELECT Queries and Working with complex data for introductory examples of how to
form these queries.

In our JSONPersons example, all of the data for each person is contained in a column of type
JSON called per son. This data is presented as a JSON object, and mapped internally into a
Map(JSON) type. You can query information in this column as you would query a Map of any
other type. For example:

sql -> SELECT id, j.person.|astnane, j.person.age FROM JSONPersons j;

Fom e e a s Fomm e a +
| id | | ast name | age |
Fom e e a s Fomm e a +
| 3| Mrgan | 38 |
Fom e e a s Fomm e a +
| 2| Anderson | 35 |
Fom e e a s Fomm e a +
| 5] Scully | 47 |
Fom e e a s Fomm e a +
| 1] Mrrison | 25 |
Fom e e a s Fomm e a +
| 4] Smth | 38 |
Fom e e a s Fomm e a +

SQL Beginner's Guide

E85380-34

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 4 of 17

ORACLE

Chapter 5
Using WHERE EXISTS with JSON

7 rows returned

The last two rows in returned from this query contain all NULLs. This is because those rows
were populated using JSON objects that are different than the objects used to populate the
rest of the table. This capability of JSON is both a strength and a weakness. As a plus, you can
modify your schema easily. However, if you are not careful, you can end up with tables
containing dissimilar data in both large and small ways.

Because the JSON object is stored as a map, you can use normal map step functions on the
column. For example:

sql -> SELECT id, j.person.expenses. keys($val ue > 1000) as Expenses
from JSONPer sons j;

oo - +
| id| Expenses |
o e +
| 3| food |
o e +
| 2| food |
| | travel |
o e +
4	clothes
	food
	shoes
o e +	
6] NULL	
o e +	
5 clothes	
o e +	
7 NULL	
o e +	
1] NULL	
o e +

7 rows returned

Here, id 1 is NULL because that user had no expenses greater than $1000, while id 6 and 7
are NULL because they have no j . per son. expenses field.

Using WHERE EXISTS with JSON

As we saw in the previous section, different rows in the same table can have dissimilar
information in them when a column type is JSON. To identify whether desired information
exists for a given JSON column, use the EXI STS operator.

For example, some of the JSON persons have a zip code entered for their address, and others
do not. Use this query to see all the users with a zipcode:

sql -> SELECT id, j.person.address AS Address FROM JSONPersons |
WHERE EXI STS j . person. addr ess. zi pcode;

SQL Beginner's Guide

E85380-34

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 5 of 17

ORACLE Chapter 5
Seeking NULLS in Arrays

o +
| id]| Addr ess
o +
| 2] city | Beloit |
| | phones |
| | areacode | 339

	nunber	1684972
	type	home
	state	W
	street	187 Hill Street

| | zipcode | 53511
o +
| 1] city | Antioch

	phones	
	areacode	423
	nunber	8634379
	type	home
	state	TN
	street	150 Route 2

| | zipcode | 37013
o +

2 rows returned

When querying data for inconsistencies, it is often more useful to see all rows where
information is missing by using WHERE NOT EXI STS:

sql -> SELECT * FROM JSONPersons j WHERE NOT EXI STS j. person. | ast nare;

o +
| id | person |
o +
7	myarray	
	1	
	2	
	3	
	4	
	mynunber	5
o +		
6	nyarray	
	1	
	2	
	3	
	4	
	mynunber	5
o +

1 row returned

Seeking NULLS in Arrays

All arrays found in a JSON input stream are stored internally as ARRAY(JSON). This means
that it is possible for the array to have inconsistent types for its members.

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 6 of 17

ORACLE Chapter 5
Seeking NULLS in Arrays

In our example, the phones array for user id 4 contains a null element:

sql -> SELECT j. person. address. phones FROM JSONPersons | WHERE j.id=4;

areacode | 339 |
nunber | 4120211 |

areacode | 305
nunber | 8064321
type | hone

|

|

| type | work

|

| areacode | 339 |
| nunber | 8694021 |
| type | work

|

areacode	339
nunber	1205678
type	home
null	

A way to discover this in your table is to examine the phones array for null values:

sql -> SELECT id, j.person.address. phones FROM JSONPer sons |j
VWHERE | . person. addr ess. phones[] =any nul | ;

oo +
| id| phones |
oo +
| 4| areacode | 339

| | number | 4120211

I I type | work I
| | areacode | 339

| | number | 8694021

I I type | work I
| | areacode | 339

| | number | 1205678

	type	home
	null	
	areacode	305

| | number | 8064321

| | type | home |
oo +

1 row returned

Notice the use of the array filter step ([]) in the previous query. This is needed to unpack the
array into a sequence so that the =any comparison operator can be used with it.

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 7 of 17

ORACLE Chapter 5
Examining Data Types JSON Columns

Examining Data Types JSON Columns

The example data contains a couple of rows with unusual data:

{

"id":e,

"person" : {
"mynunber": 5,
"myarray":[1,2,3,4]

}

}
{

"id": 7,

"person" : {
“nmynunber":"5",
"nmyarray":["1","2","3","4"]

}

}

You can locate them using the query:

sql -> SELECT * FROM JSONPersons j WHERE EXI STS j. person. nynunber;

o e +
| id | person |
o e +
| 6] nyarray |
	1	
	2	
	3	
	4	
	mynunber	5
o e +		
7] nyarray		
	1	
	2	
	3	
	4	
	mynunber	5
o e +

2 rows returned

However, notice that these two rows actually contain numbers stored as different types. ID 6
stores integers while ID 7 stores strings. You can select a row based on its type:

sql -> SELECT * FROM JSONPersons j
VWHERE | . per son. nynunber |S OF TYPE (integer);

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 8 of 17

ORACLE Chapter 5
Examining Data Types JSON Columns

Notice that if you use | S NOT OF TYPE then every row in the table is returned except id 6. This
is because for all the other rows, j . per son. nynunber evaluates to jnull, which is not an integer.

sql -> SELECT id FROM JSONPersons |

WHERE | . person. nynunber |'S NOT OF TYPE (integer);
+----t

| id |

+----t

| 3]

~NkF, B~

| |
| |
| |
| |
| |
+ +

6 rows returned

To solve this problem, also check for the existence of j . per son. mynunber :

sql -> SELECT id from JSONPersons | WHERE EXI STS j . person. nynunber
and j.person.mynunber 1S NOT OF TYPE (integer);
+----t

| id|
R——
| 71
R——

1 row returned

You can also perform type checking based on the type of data contained in the array. Recall
that our rows contain arrays with integers and arrays with strings. You can return the row with
just the array of strings using:

sql -> SELECT id, j.person.myarray FROM JSONPersons j
VWHERE | . person.nyarray[] 1S OF TYPE (string+);

om e e o +
| id | nyarray |
om e e o o +
| 711 I
I | 2 I
I | 3 I
I | 4 I
om e e o o +

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 9 of 17

ORACLE

Chapter 5
Using Map Steps with JSON Data

1 row returned

Here, we use the array filter step ([]) in the WHERE clause to unpack the array into a
sequence. This allows is-of-type to iterate over the sequence, checking the type of each
element. If every element in the sequence matches the identified type (st ri ng, in this case),
then the is-of-type returns true.

Also notice that the query uses the + cardinality modifier. This means that is-of-type will return
true only if the input sequence (myarray[], in this case) contains ONE OR MORE elements that
match the identified type (string). If we used *, then 0 or more elements would have to match
the identified type in order for true to return. Because our table contains a mix of rows with
different schema, the result is that every row except id 6 is returned:

sql -> SELECT id, j.person.nyarray FROM JSONPersons j
WHERE | . person. nyarray[] IS OF TYPE (string*);

e +
| id| nyarr ay |
e +
| 3] NULL |
e +
| 5] NULL |
e +
| 1] NULL |
e +
| 711 |
	2
	3
	4
e +	
4] NULL	
e +	
2] NULL	
e +

6 rows returned

Finally, if we do not provide a cardinality modifier at all, then is-of-type returns true if ONE AND
ONLY one member of the input sequence matches the identified type. In this example, the
result is that no rows are returned.

sql -> SELECT id, j.person.myarray FROM JSONPersons |j
VWHERE | . person.nyarray[] IS OF TYPE (string);

0 row returned

Using Map Steps with JSON Data

On import, Oracle NoSQL Database stores JSON objects as MAP(JSON). This means you can
use map filter steps with your JSON objects.

SQL Beginner's Guide

E85380-34

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 10 of 17

ORACLE Chapter 5
Using Map Steps with JSON Data

For example, if you want to visually examine the JSON fields in use by your rows:

sql -> SELECT id, j.person.keys() FROM JSONPersons j;

| 4 | address

| age
connections
expenses
firstnane

i ncome

| ast Login

| ast nane

6 | nyarray
| mynunber

3 | address

| age
connections
expenses
firstnane
i ncome
| ast Login
| ast nane

5 | address

| age
connections
expenses
firstnane
i ncome
| ast Login
| ast nane

1 | address

| age
connections
expenses
firstnane
i ncome
| ast Login
| ast nane

7 | nyarray
| mynunber

2 | address

| age
connections
expenses
firstnane
i ncome
| ast Login
| ast nane

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 11 of 17

ORACLE Chapter 5
Casting Datatypes

o e eeeeoaiaooo +

7 rows returned

Casting Datatypes

You can cast one data type to another using the cast expression.

In JSON, casting is particularly useful for timestamp information because JSON has no
equivalent to the Oracle NoSQL Database Timestamp data type. Instead, the timestamp
information is carried in a JSON object as a string. To work with it as a Timestamp, use cast .

In Working with Timestamps we showed how to work with the timestamp data type. In this
case, what you do is no different except you must cast both sides of the expression. Also,
because the left side of the expression is a sequence, you must specify a type quantifier (* in
this case):

sql -> SELECT id,
j .person.firstnane, j.person.|astnane, j.person.|astlLogin
FROM JSONPer sons |
WHERE CAST(j . person.lastLogin AS TI MESTAWP*) >
CAST("2016-11-01" AS TI MESTAMP) AND
CAST(j . person. | astLogin AS TI MESTAMP*) <
CAST("2016-11- 30" AS TI MESTAMP) ;

oo Fom e e +
| id | firstname | [astname | | ast Login |
oo Fom e e +
| 3| John | Morgan | 2016-11-29T08: 21:35.4971 |
oo Fom e e +
| 2] John | Anderson | 2016-11-28T13:01:11.2088 |
oo Fom e e +
| 5| Dana | Scully | 2016-11-08T09: 16: 46.3929 |
oo Fom e e +

3 rows returned

As another example, you can cast to an integer and then operate on that number:

sql -> SELECT id, j.person.nynunber,
CAST(j . person. nynunber as integer) * 10 AS TenTi nes
FROM JSONPer sons | WHERE EXI STS j . per son. mynunber ;

s [R +
| id| mynunber | TenTimes |
s [R +
| 715 | 50 |
s [R +
| 615 | 50 |
s [R +

If you want to operate on just the row that contains the number as a string, use IS OF TYPE:

sql -> SELECT id, j.person. mynunber,
CAST(j . person. nynunmber as integer) * 10 AS TenTi nes

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 12 of 17

ORACLE Chapter 5
Using Searched Case

FROM JSONPer sons j WHERE EXI STS | . per son. nynumber
AND j . person. nynunber IS OF TYPE (string);

o [R +
| id]| mynunber | TenTinmes |
o [R +
| 715 | 50 |
o [R +

Using Searched Case

A searched case expression can be helpful in identifying specific problems with the JSON data
in your JSON columns. The example data we have been using in this chapter sometimes
provides a JSONPersons.address field, and sometimes it does not. When an address is
present, sometimes it provides a zipcode, and sometimes it does not. We can use a searched
case expression to identify and describe the specific problem with each row.

sql -> SELECT id,
CASE
VWHEN NOT EXI STS | . person. addr ess
THEN j . person. keys()
VWHEN NOT EXI STS | . person. addr ess. zi pcode
THEN "No Zi pcode"
ELSE j . person. addr ess. zi pcode

END

FROM JSONPer sons | ;

o e - - +
| id| Col um_2 |
o e - - +
| 4| No Zipcode |
o e - - +
| 3| No Zipcode |
o e - - +
| 5| No Zipcode |
o e - - +
| 1| 37013 |
o e - - +
| 7| nyarray |
| | mynunber |
o e - - +
| 6| nyarray |
| | mynunber |
o e - - +
| 2| 53511 |
o e - - +

7 rows returned

We can improve the report by adding a third column that uses a second searched case
expression:

sql -> SELECT id,

CASE
VWHEN NOT EXI STS j . person. address
THEN "No Address"

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 13 of 17

ORACLE

VHEN NOT EXI STS j. person. addr ess. zi pcode

THEN "No Zi pcode"

ELSE j . person. addr ess. zi pcode

END,
CASE

VWHEN NOT EXI STS j. person. address

THEN j . person. keys()
ELSE j . person. addr ess

END
FROM JSONPer sons j ;
o s
| id |
o s
| 3| No Zpcode
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
o s
| 2] 53511
| |
| |
| |
| |
| |
| |
| |
o s
| 5| No Zpcode
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
o s
1] 37013
|
|
|
|
|

SQL Beginner's Guide

E85380-34

Copyright © 2011, 2025, Oracle and/or its affiliates.

+—- " 4+ — +

——— - — - ——.—

phones
areacode
nurber

type

ar eacode
nurber
type
state
street

phones
ar eacode
nunber
type

state

street

zi pcode

city

phones
ar eacode
nunber

type

ar eacode
nunber

type

ar eacode
nurber
type
state
street

phones
ar eacode
nunber
type
state

M ddl eburg

305
1234079
wor k

305

2066401

hone

FL

187 Aspen Drive

Bel oi t

339
1684972
hone

W

187 H I
53511

Street

Monroe Townshi p

201
3213267
wor k

201
8765421
wor k

339

3414578

hone

NJ

427 Linden Avenue

Antioch

423
8634379
hone
N

Chapter 5

Using Searched Case

October 12, 2025
Page 14 of 17

ORACLE

stre
zi pc

mynu

phon

st at
stre
nyar
nynu

7 rows returned

et |
ode |

nmber

es
areacode |
nunber |

type |

areacode |
nunber |

type |

areacode |
nunber |

type |

areacode |
nunber |
type |
e |
et |

ray
nmber

150 Route 2
37013

Leomi nst er

339
4120211
wor k

339
8694021
wor k

339
1205678
hone

nul |

305
8064321
hone

MA

Chapter 5

Using Searched Case

Finally, it is possible to nest search case expressions. Our sample data also has a spurious null
in the phones array (see id 4). We can report that in the following way (output is modified

slightly to fit in the space allowed):

sql -> SELECT id,

in the phones array"

array"

CASE
VWHEN EXI STS j . person. addr ess
THEN
CASE
WHEN EXI STS j . person. addr ess. zi pcode
THEN
CASE
WHEN j . per son. addr ess. phones[] =any nul
THEN " Zi pcode exists but nul
ELSE | . person. address. zi pcode
END
WHEN j . per son. addr ess. phones[] =any nul
THEN "No zi pcode and null in phones
ELSE "No zi pcode"
END
ELSE "No Address"
END,

SQL Beginner's Guide
E85380-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 15 of 17

ORACLE

CASE

VWHEN NOT EXI STS j. person. address

THEN j . person. keys()
ELSE j . person. addr ess

END

FROM JSONPer sons | ;
o s
| id] Col um_2
o s
| 3| No zipcode
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
o s
| 2] 53511
| |
| |
| |
| |
| |
| |
| |
o s
| 5| No zipcode
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
o s
| 1] 37013
| |
| |
| |
| |
| |
| |
| |
o s

|

SQL Beginner's Guide

E85380-34

Copyright © 2011, 2025, Oracle and/or its affiliates.

+-—- " 4+ — +

+-- T+

—_—

phones
ar eacode
nurber

type

ar eacode
nurber
type
state
street

phones
ar eacode
nunber
type

state

street

zi pcode

city

phones
ar eacode
nunber

type

ar eacode
nunber

type

ar eacode
nurber
type
state
street

phones
ar eacode
nunber
type

state

street

zi pcode

nyarray

M ddl eburg

305
1234079
wor k

305

2066401

hone

FL

187 Aspen Drive

339

1684972

hone

W

187 H Il Street
53511

Monroe Townshi p

201
3213267
wor k

201
8765421
wor k

339

3414578

hone

NJ

427 Linden Avenue

Anti och

423

8634379
hone

N

150 Route 2
37013

Chapter 5

Using Searched Case

October 12, 2025
Page 16 of 17

ORACLE

| |
e
| 4| No zipcode and nul

| | in phones array

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |
e
| 6| No Address

| |
e

7 rows returned

SQL Beginner's Guide
E85380-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

phones
ar eacode
nurber

type

ar eacode
nunber

type

ar eacode
nunber

type

ar eacode
nunber

Chapter 5

Using Searched Case

Leom nst er

339
4120211
wor k

339
8694021
wor k

1205678
home
nul |

305
8064321
home

I

I

I

I

I

I

I

I

I

I

339

I

I

I

I

I

I

I

MA I
I

October 12, 2025
Page 17 of 17

Working with Expressions

An expression represents a set of operations to be performed in order to produce a result. This
chapter describes the various kinds of expressions supported by Oracle NoSQL Database.

Primary Expressions

Primary expressions form the building blocks of more complex expressions used in SQL
queries.

Column Reference:

A column-reference expression returns the item stored in the specified column within the
context row (the row that a SELECT expression is currently working on). A column reference
expression consists of one identifier, or two identifiers separated by a dot.

If there are two identifiers, the first is considered as the table alias and the second as the name
of a column in that table. This form is called a qualified column name.

Example 6-1 Fetch the first name of all persons using qualified column name

select p.firstname FROM Persons p

Explanation:
p is the table alias and f i r st name is the name of a column in the table.

Output:

{"firstname": "Dana"}
{"firstname": "David"}
{"firstname":"John"}
{"firstname":"Peter"}
{"firstname":"John"}

If there is a single identifier, it is resolved to the name of a column in one of the tables
referenced in the FROM clause. However, in this case, there must not be more than one
participating table having a column with the same name. This form is called an unqualified
column name.

Example 6-2 Fetch the first name of all persons using unqualified column name

sel ect firstname FROM Persons p
Explanation:
firstnanme is the name of a column in the Per sons table.

Output:

{"firstname":"Dana"}
{"firstname":"David"}

SQL Beginner's Guide
E85380-34 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 1 of 5

ORACLE

Chapter 6
Primary Expressions

{"firstname":"John"}
{"firstname":"Peter"}
{"firstname":"John"}

Variable Reference:

A variable-reference expression returns the item that the specified variable is currently bound
to. Oracle NoSQL Database allows the declaration of internal and external variables. For more
details on declaring the variables and their scope, see Variable Declarations.

Internal variables are bound to their values during the execution of the expressions that
declare them.

Example 6-3 Fetch the number of phones using variable reference

select p.firstname AS NAME, $nunphones AS NUM OF PHONES FROM Persons p,
si ze(p. addr ess. phones) $nunphones

Explanation:
nunphones is an internal variable that is assigned to the size of the phones array when the
query is executed.

Output:

{"NAME": " Dana", " NUM OF_PHONES": 3}
{"NAME": " Davi d", "NUM_OF_PHONES': 1}
{"NAME": " John", " NUM OF_PHONES": 1}
{"NAME": "Pet er", "NUM OF_PHONES' : 4}
{"NAME": " John", " NUM OF_PHONES": 2}

5 rows returned

Constant Expression:
Constant expressions are string, integer, number, floating point or boolean literals.

Example 6-4 Fetch names of persons who have a phone number of type 'work'

select p.firstname, p.lastname FROM Persons p WHERE p. addr ess. phones. type =any
“wor k"

Explanation:

The string literal wor k is the constant expression in the WHERE clause. phones is an array and
phones. t ype is a sequence. You want to check if there is any element in the sequence whose
type is wor k.

As the Value Comparison Operators cannot operate on sequences of more than one item, you

use the Sequence Comparison Operator any in addition to the value comparison operator '=' to
compare the t ype field. The first name and last name of the persons having any phone number
of type wor k are returned.

Output:

non

{"firstname": "Dana", "l astname":" Scul | y"}
{"firstname":"John", "l ast name": " Morgan"}

non

{"firstname": "Peter","lastnane": "Smith"}

SQL Beginner's Guide

E85380-34

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 2 of 5

ORACLE

Chapter 6
Primary Expressions

3 rows returned

Parenthesized Expression:

Parenthesized expressions are used primarily to alter the default precedence among
operators, and to avoid syntactic ambiguities.

Example 6-5 Fetch name of persons whose age, income satisfy the conditions in the
expression

select p.firstname FROM Persons p WHERE p.age <= 30 AND (p.age > 20 OR
p.incone > 400000)

Explanation:

In this query, we are returning the first name of persons whose age is less than or equal to 30,
and either their age is greater than 20 or their income is greater than 400K. If the parenthesis
is not present, then the order of evaluation would change as AND has a higher precedence
than OR.

Output:

{"firstname": " David"}
1 row returned

Function Call:

Function call expressions are used to invoke built-in (system) functions. The function call starts
with an id which identifies the function to call by name, followed by a parenthesized list of zero
or more arguments separated by comma.

Example 6-6 Fetch names of persons who have 'books' as one of their expense
category

sel ect p.firstname FROM Persons p WHERE EXI STS
p. expenses[cont ai ns($el enent, "books")]

Explanation:

In the per sons table, the expenses field contains the various categories across which the

per sons have spent their income. In the query above, you use a function call to the contains
function. The contains function is one of the built-in functions, which indicates whether or not a
search string is present inside the source string. The square brackets in the query iterates over
the elements of the expenses map. During the iteration, the $el enent variable is bound to the
current map element. Each iteration computes the expression inside the cont ai ns function on
the map element. If the element includes the string "books", it returns true otherwise it is
skipped. As a result, only the firstname of the persons who have an expense category of books
are displayed in the output.

Output:

{"firstname":"John"}
{"firstname":"Peter"}

2 rows returned

SQL Beginner's Guide

E85380-34

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 3 of 5

ORACLE

Chapter 6
Primary Expressions

Sequence Transform:

A sequence transform expression transforms a sequence to another sequence. Syntactically it
looks like a function whose name is seq_t ransf or m The first argument is an expression that
generates the sequence to be transformed (the input sequence) and the second argument is a
"mapper" expression that is computed for each item of the input sequence. The result of the
seq_t ransf or mexpression is the concatenation of sequences produced by each evaluation of
the mapper expression. The mapper expression can access the current input item using the $
variable.

Example 6-7 Fetch the contact information as a flat list of area code concatenated with
phone humber

sel ect p.firstname, seq_transforn(p. address. phones[], {concat ($.type,"
phone"): concat ($. areacode, "-", $. number)}) AS CONTACT INFO FROM Persons p

Explanation:
In this query, you concatenate the ar eacode and nunber fields for each phone and get a flat
array of these as the contact information of each person.

Output:

{"firstname": "Dana", " CONTACT_ I NFO': [{"work phone":"201-3213267"}, {"work
phone": "201-8765421"}, {"hone phone":"339-3414578"}]}
{"firstname":"David"," CONTACT | NFO': {"home phone":"423-8634379"}}
{"firstname":"Peter"," CONTACT I NFO": [{"work phone":"339-4120211"}, {"work
phone": " 339-8694021"}, {"hone phone":"339-1205678"}, {"hone

phone": " 305- 8064321"}]}

{"firstname":"John", " CONTACT I NFO': [{"work phone":"305-1234079"},{"home
phone": " 305-2066401"}]}

{"firstname":"John", " CONTACT_ | NFO': {"hone phone":"339-1684972"}}

5 rows returned

Array and Map Constructors:

An array constructor constructs a new array out of the items returned by the expressions
provided inside the square brackets in a SELECT expression. These expressions are
computed left to right, and the produced items are appended to the array.

Similarly, a map constructor constructs a new map or JSON object out of the items returned by
the expressions provided inside the curly brackets in a SELECT expression. These
expressions come in pairs; each pair computes one field. The first expression in a pair must
return at most one string which serves as the field's name and the second returns the
associated field value. If a value expression returns more than one item, an array is implicitly
constructed to store the items, and that array becomes the field value. If either a field name or
a field value expression returns an empty sequence, no field is constructed.

Example 6-8 Construct an 'expense sheet' map with a 'high expenses' array in it

SELECT {"first_name" : p.firstName,"income" : p.incong,"high_expenses" :
[p. expenses. keys($val ue > 2000)]} AS Expense_Sheet FROM Persons p

Explanation:

In this query, we are constructing a map named Expense_Sheet with elements first_nane,

hi gh_expenses and i ncome. We use an array constructor for hi gh_expenses and this contains
all the categories that have expense value > 2000. Notice that the use of an explicit array for

SQL Beginner's Guide

E85380-34

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 4 of 5

ORACLE Chapter 6
Primary Expressions

the hi gh_expenses field guarantees that the field will exist in all the constructed maps, even if
the evaluation inside the array constructor returns empty.

Output:

{"Expense_Sheet": {"first_nane":"Dana","hi gh_expenses":[],"income": 400000} }
{"Expense_Sheet": {"first_nane":"David","high_expenses":[],"incone": 100000}}
{"Expense_Sheet ": {"first_name":"John", "hi gh_expenses"
["travel "], "incone": 100000} }
{"Expense_Sheet ": {"first_name":"Peter","hi gh_expenses"
["food"],"inconme":80000}}

{"Expense_Sheet": {"first_nane":"John", "hi gh_expenses":[],"inconme": 100000000} }
5 rows returned

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 5 of 5

Working With GeoJSON Data

The GeoJSON specification (https://tools.ietf.org/html/rfc7946) defines the structure and
content of JSON objects representing geographical shapes on earth (called geometries).
Oracle NoSQL Database implements several functions that interpret JSON geometry objects.
The functions also let you search table rows containing geometries that satisfy certain
conditions. Search is made efficient through the use of special indexes, as described in the
SQL Reference Guide.

@® Note

Support for GeoJson data is available only in the Oracle NoSQL Database Enterprise
Edition.

Geodetic Coordinates

As described, all kinds of geometries are specified in terms of a set of positions. However, for
line strings and polygons, the actual geometrical shape is formed by lines connecting their
positions. The GeoJSON specification defines a line between two points as the straight line
that connects the points in the (flat) cartesian coordinate system, whose horizontal and vertical
axes are the longitude and latitude, respectively. More precisely, the coordinates of every point
on a line that does not cross the antimeridian between a point P1 = (lon1, latl) and P2 = (lon2,
lat2) can be calculated as:

P={(lon, lat) = (lonl + (lon2 - lonl) * t, latl + (lat2 - latl) * t)

with t being a real number, greater than or equal to 0, and less than or equal to 1.

Unlike the GeoJSON specification, the Oracle NoSQL Database uses a geodetic coordinate
system, as defined in the World Geodetic System, WGS84, (https://gisgeography.com/wgs84-
world-geodetic-system). A geodetic line between two points is the shortest line that can be
drawn between the two points on the ellipsoidal surface of the earth.

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 1 of 6

ORACLE Chapter 7
GeoJSON Data Definitions

GeoJSON Data Definitions

The GeoJSON specification (https://tools.ietf.org/html/rfc7946) states that for a JSON object to
be a geometry, it requires two fields, type and coordinates. The value of the t ype field specifies
the kind of geometric shape the object describes. The value of the t ype field must be one of
the following strings, corresponding to different kinds of geometries:

* Point

* LineSegment

* Polygon

* MultiPoint

* MultiLineString
* MultiPolygon

* GeometryCollection

The coor di nat es value is an array with elements that define the geometrical shape. An
exception to this is the GeometryCollection type, which is described below. The coor di nat es
value depends on the geometric shape, but in all cases, specifies a number of positions. A
position defines a position on the surface of the earth as an array of two double numbers,
where the first number is the longitude and the second number is the latitude. Longitude and
latitude are specified as degrees and must range between -180 — +180 and -90 — +90,
respectively.

@® Note

The GeoJSON specification allows a third coordinate for the altitude of the position,
but Oracle NoSQL Database does not support altitudes.

The kinds of geometries are defined as follows, each with an example of such an object:

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 2 of 6

ORACLE

Chapter 7
GeoJSON Data Definitions

Point — For type Point, the coordinates field is a single position:

{ "type" : "point", "coordinates" : [23.549, 35.2908] }

LineString — A LineString is one or more connected lines, with the end-point of one line being
the start-point of the next. The coordinates field is an array of two or more positions. The first
position is the start point of the first line, and each subsequent position is the end point of the
previous line and the start of the next line. Lines can cross each other.

{

"type" : "LineString",
"coordinates" : [
[-121.9447, 37.2975],
[-121.9500, 37.3171],
[-121.9892, 37.3182],
[-122. 1554, 37.3882],
[-122.2899, 37.4589],
[-122.4273, 37.6032],
[-122.4304, 37.6267],
[-122.3975, 37.6144]

]
}

Polygon — A polygon defines a surface area by specifying its outer perimeter and the
perimeters of any potential holes inside the area. More precisely, a polygon consists of one or
more linear rings, where (a) a linear ring is a closed LineString with four or more positions, (b)
the first and last positions are equivalent, and they must contain identical values, (c) a linear
ring is the boundary of a surface or the boundary of a hole in a surface, and (d) a linear ring
must follow the right-hand rule with respect to the area it bounds. That is, positions for exterior
rings must be ordered counterclockwise, and positions for holes must be ordered clockwise.
Then, the coordinates field of a polygon must be an array of linear ring coordinate arrays,
where the first must be the exterior ring, and any others must be interior rings.

The exterior ring bounds the surface, and the interior rings (if present) bound holes within the
surface. The example below shows a polygon with no holes.

{

"type" : "polygon",
“coordinates" : [|
[23.48, 35.16],
[24.30, 35.16],
[24.30, 35.50],
[24.16, 35.61],
[23.74, 35.70],
[23.56, 35.60],
[23.48, 35.16]

]
]
}
MultiPoint — For type MultiPoint, the coordinates field is an array of two or more positions:

{
"type" : "MultiPoint",

SQL Beginner's Guide

E85380-34

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 3 of 6

ORACLE Chapter 7
GeoJSON Data Definitions

"coordinates" : |
[-121.9447, 37.2975],
[-121.9500, 37.3171],
[-122.3975, 37.6144]

]
}

MultiLineString — For type MultiLineString, the coordinates member is an array of LineString
coordinate arrays.

{

“type": "MiltiLineString",
“coordinates": |

[[100.0, 0.0], [01.0, 1.0] T,
[[102.0, 2.0], [103.0, 3.0]]
]

}

MultiPolygon — For type MultiPolygon, the coordinates member is an array of Polygon
coordinate arrays.

{
"type": "MiltiPolygon",
"coordinates": |
[
[

[102.0, 2.0],
[103.0, 2.0],
[103.0, 3.0],
[102.0, 3.0],
[102.0, 2.0]
]

1

[

[

[100.0, 0.0],
[101.0, 0.0],
[101.0, 1.0],
[100.0, 1.0],
[100.0, 0.0]

GeometryCollection — Instead of a coordinates field, a GeometryCollection has a
geometries” field. The value of geometries is an array. Each element of this array is a
GeoJSON object whose kind is one of the six kinds defined above. In general, a
GeometryCollection is a heterogeneous composition of smaller geometries.

{ "type": "GeonetryCollection",
"geonetries": [

{

SQL Beginner's Guide
E85380-34 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 4 of 6

ORACLE Chapter 7
Searching GeoJSON Data

“type": "Point",
“coordinates": [100.0, 0.0]

}1
{"type": "LineString",
“coordinates": [[101.0, 0.0], [102.0, 1.0]]

}
]
}

® Note

The GeoJSON specification defines two additional kinds of entities, Feature and
FeatureCollection. The Oracle NoSQL Database does not support these entities.

Searching GeoJSON Data

The Oracle NoSQL Database has the following functions to use for searching GeoJSON data
that has some relationship with a search geometry.

e bool ean geo_i ntersect(any*, any*)

* bool ean geo_i nsi de(any*, any*)

* Dbool ean geo_wi thin_distance(any*, any*, double)
e bool ean geo_near (any*, any*, double)

In addition to the search functions, two other functions are available, and listed as the last two
rows of the table:

Function Type Details

geo_i ntersect (any*, any*) boolean | Raises an error at compile time if the function can detect that any

operand will not return a single valid GeoJson object. Otherwise, the

runtime behavior is as follows:

* Returns false if any operand returns 0 or more than 1 items.

¢ Returns NULL if any operand returns NULL.

e Returns false if any operand returns an item that is not a valid
GeoJson object.

e Finally, if both operands return a single GeoJson object, returns
true if the two geometries have any points in common. Otherwise,
returns false.

geo_i nsi de(any*, any*) boolean | Raises an error at compile time if the function can detect that any

operand will not return a single valid GeoJson object. Otherwise, the

runtime behavior is as follows:

e Returns false if any operand returns 0 or more than 1 item.

* Returns NULL if any operand returns NULL.

e Returns false if any operand returns an item that is not a valid
GeoJson object.

e Finally, if both operands return a single GeoJson object and the
second GeoJson is a polygon, the function returns true if the first
geometry is completely contained inside the second polygon, with
all of its points belonging to the interior of the polygon. The interior
of a polygon is all the points in the polygon, except the points of the
linear rings that define the polygon’s boundary. Otherwise, returns
false.

SQL Beginner's Guide
E85380-34 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 5 of 6

ORACLE Chapter 7
Searching GeoJSON Data
Function Type Details
geo_wi t hi n_di stance(any*, any*, | boolean | Raises an error at compile time if the function detects that the first two
doubl e) operands will not return a single valid GeoJson object. Otherwise, the
runtime behavior is as follows:

* Returns false if any of the first two operands returns O or more than
1item.

¢ Returns NULL if any of the first two operands returns NULL.

* Returns false if any of the first two operands returns an item that is
not a valid GeoJson object.

« Finally, if both of the first two operands return a single GeoJson
object, the function returns true if the first geometry is within a
distance of N meters from the second geometry, where N is the
number returned by the third operand. The distance between 2
geometries is defined as the minimum among the distances of any
pair of points where the first point belongs to the first geometry, and
the second point to the second geometry. Otherwise, returns false.

geo_near (any*, any*, double) boolean | The geo_near funcion is converted internally to a

geo_wi t hi n_di st ance function, with an an (implicit) order by the

distance between the two geometries. However, if the query has an

(explicit) order-by already, the function performs no ordering by

distance. The geo_near function can appear only in the WHERE

clause, and must be a top-level predicate. The geo_near function
cannot be nested under an OR or NOT operator.

geo_di st ance(any*, any*) double [Raises an error at compile time if the function detects that an operand
will not return a single valid GeoJson object. Otherwise, the runtime
behavior is as follows:

e Returns -1 if any of the operands returns zero or more than 1 item.

e Returns -1 if any of the operands is not a geometry.

e Returns NULL if any operand returns NULL.

» Otherwise the function returns the geodetic distance between the 2
input geometries. The returned distance is the minimum among the
distances of any pair of points, where the first point belongs to the
first geometry and the second point to the second geometry.
Between two such points, their distance is the length of the
geodetic line that connects the points.

geo_i s_geomet ry(any*) boolean |+ Returns false if an operand returns zero or more than 1 item.

e Returns NULL if an operand returns NULL.

e Returns true if the input is a single valid GeoJson object.
Otherwise, false.

SQL Beginner's Guide
E85380-34

Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 6 of 6

Working With Indexes

The SQL for Oracle NoSQL Database query processor can detect which of the existing
indexes on a table can be used to optimize the execution of a query. This chapter provides a
brief examples-based introduction to index creation, and queries using indexes. For a more
detailed description of index creation and usage, see SQL Reference Guide.

To make it possible to fit the example output on the page, the examples in this chapter use
nmode LI NE.

Basic Indexing

This section builds on the examples that you began in Working with complex data.

sql -> nmode LINE

Query output mode is LINE

sql -> create index idx_incone on Persons (inconge);
St atenent conpl eted successfully

sql -> create index idx_age on Persons (age);

St atenent conpl eted successfully

sql -> SELECT * from Persons

WHERE i ncone > 10000000 and age < 40;

> Row 0

S o e m e e e e e e e ee e —ea - +
| id | 3 |
S o e m e e e e e e e ee e —ea - +
| firstname | John |
S o e m e e e e e e e ee e —ea - +
| lastname | Morgan |
S o e m e e e e e e e ee e —ea - +
| age | 38 |
S o e m e e e e e e e ee e —ea - +
| income | 100000000 |
S o e m e e e e e e e ee e —ea - +
| lastLogin | 2016-11-29T08: 21: 35. 4971 |
S o e m e e e e e e e ee e —ea - +
address	street	187 Aspen Drive
	city	M ddl eburg
	state	FL
	zipcode	NULL
	phones	
	type	work
	areacode	305
	nunber	1234079
	type	hone
	areacode	305
	nunber	2066401
S o e m e e e e e e e ee e —ea - +

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 1 of 12

ORACLE Chapter 8
Using Index Hints

connections	1
	4
	2
S o e e e e e e +	
expenses	food
	gas
	travel
S o e e e e e e +

1 row returned

Using Index Hints

In the previous section, both indexes are applicable. For index idx_income, the query condition
income > 10000000 can be used as the starting point for an index scan that will retrieve only
the index entries and associated table rows that satisfy this condition. Similarly, for index
idx_age, the condition age < 40 can be used as the stopping point for the index scan. SQL for
Oracle NoSQL Database has no way of knowing which of the 2 predicates is more selective,
and it assigns the same "value" to each index, eventually picking the one whose name is first
alphabetically. In the previous example, idx_age was used. To choose the idx_income index
instead, the query should be written with an index hint:

sql -> SELECT /*+ FORCE_| NDEX(Persons idx_income) */ * from Persons
WHERE i ncone > 10000000 and age < 40;

> Row 0
e e e e e e e e e e e e e e e oo +
| id | 3 |
e e e e e e e e e e e e e e e oo +
| firstnane | John |
e e e e e e e e e e e e e e e oo +
| Iastnane | Morgan |
e e e e e e e e e e e e e e e oo +
| age | 38 |
e e e e e e e e e e e e e e e oo +
| income | 100000000 |
e e e e e e e e e e e e e e e oo +
| lastLogin | 2016-11-29T08: 21: 35. 4971 |
e e e e e e e e e e e e e e e oo +
| address | street | 187 Aspen Drive |
| | city | Mddleburg |
| | state | FL |
| | zipcode | NULL |
| | phones |
| | type | work |
| | areacode | 305 |
| | nunber | 1234079 |
| | |
| | type | home |
| | areacode | 305 |
| | nunber | 2066401 |
e e e e e e e e e e e e e e e oo +
| connections | 1 |
| | 4 |
| | 2 |

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 2 of 12

ORACLE Chapter 8
Complex Indexes

S o e e e e e e +
| expenses | food | 2000 |
I | gas | 10 I
| | travel | 700 |
S o e e e e e e +

1 row returned

As shown above, hints are written as a special kind of comment that must be placed
immediately after the SELECT keyword. What distinguishes a hint from a regular comment is
the "+" character immediately after (without any space) the opening "/*".

Complex Indexes

The following example demonstrates indexing of multiple table fields, indexing of nested fields,
and the use of "filtering" predicates during index scans.

sql-> create index idx_state city_income on

Persons (address.state, address.city, income);

Statenent conpl eted successfully

sql -> SELECT * from Persons p WHERE p. address.state = "M\"
and income > 79000;

> Row 0

S o m e e e e e e e e eceeeeaaoas +
| id | 4 I
S o m e e e e e e e e eceeeeaaoas +
| firstnane | Peter |
S o m e e e e e e e e eceeeeaaoas +
| Iastnane | Smith |
S o m e e e e e e e e eceeeeaaoas +
| age | 38 I
S o m e e e e e e e e eceeeeaaoas +
| income | 80000 |
S o m e e e e e e e e eceeeeaaoas +
| lastLogin | 2016-10-19T09: 18: 05. 5555 |
S o m e e e e e e e e eceeeeaaoas +
| address | street | 364 Mul berry Street

	city	Leom nster
	state	MA
	zipcode	NULL
	phones	
I I type	work I	
	ar eacode	339
	nunber	4120211
I I I		
I I type	work I	
	ar eacode	339
	nunber	8694021
I I I		
I I type	hore I	
	ar eacode	339
	nunber	1205678
I I I
I I type | hore I

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 3 of 12

ORACLE

Chapter 8
Multi-Key Indexes

| | areacode | 305

| | nunber | 8064321
S e +
connections	3
	5
	1
	2
S e +	
expenses	books
	clothes

| | food | 6000

| | shoes | 1200

S e +

1 row returned

Index idx_state city_income is applicable to the above query. Specifically, the state = "MA"
condition can be used to establish the boundaries of the index scan (only index entries whose
first field is "MA" will be scanned). Further, during the index scan, the income condition can be
used as a "filtering" condition, to skip index entries whose third field is less or equal to 79000.
As a result, only rows that satisfy both conditions are retrieved from the table.

Multi-Key Indexes

A multi-key index indexes all the elements of an array, or all the elements and/or all the keys of
a map. For such indexes, for each table row, the index contains as many entries as the number
of elements/entries in the array/map that is being indexed. Only one array/map may be
indexed.

sql -> create index idx_areacode on
Persons (address. phones[]. areacode);
Statenent conpl eted successfully

sql -> SELECT * FROM Persons p WHERE
p. addr ess. phones. areacode =any 339;

> Row 0

S o o e e e e e e e e e e eceeeaaaoas +
| id | 2 |
S o o e e e e e e e e e e eceeeaaaoas +
| firstnane | John |
S o o e e e e e e e e e e eceeeaaaoas +
| Iastnane | Anderson |
S o o e e e e e e e e e e eceeeaaaoas +
| age | 35 |
S o o e e e e e e e e e e eceeeaaaoas +
| income | 100000 |
S o o e e e e e e e e e e eceeeaaaoas +
| lastLogin | 2016-11-28T13:01:11.2088

S o o e e e e e e e e e e eceeeaaaoas +
| address | street | 187 Hill Street |
| | city | Beloit

| | state | W

| | zipcode | 53511

| | phones |
| | type | hone |

SQL Beginner's Guide

E85380-34

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 4 of 12

ORACLE

| | areacode | 339 [
| | nunber | 1684972 |
S e +
| connections | 1 |
I | 3 I
S e +
| expenses | books | 100 |
| | food | 1700 [
| | travel | 2100 [
S e +
> Row 1

S e +
| id | 4 I
S e +
| firstname | Peter |
S e +
| Iastnanme | Smith |
S e +
| age | 38 I
S e +
| income | 80000 [
S e +
| lastLogin | 2016-10-19T09: 18: 05. 5555 |
S e +
| address | street | 364 Mulberry Street |
| | city | Leoninster [
| | state | MA |
| | zipcode | NULL [
| | phones [
| | type | work I
| | areacode | 339 [
| | number | 4120211 [
I I I
| | type | work I
| | areacode | 339 [
| | nunber | 8694021 |
I I I
| | type | hone I
| | areacode | 339 [
| | nunber | 1205678 |
I I I
| | type | hone I
| | areacode | 305 [
| | nunber | 8064321 |
S e +
| connections | 3 |
I | 5 I
I | 1 I
I | 2 I
S e +
| expenses | books | 240 [
| | clothes | 2000 |
| | food | 6000 [
| | shoes | 1200 |
S e +

SQL Beginner's Guide
E85380-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

Chapter 8
Multi-Key Indexes

October 12, 2025
Page 5 of 12

ORACLE Chapter 8
Multi-Key Indexes

> Row 2

S o e e e e e eeeea +
| id | 5 |
S o e e e e e eeeea +
| firstname | Dana |
S o e e e e e eeeea +
| Iastnanme | Scully |
S o e e e e e eeeea +
| age | 47 |
S o e e e e e eeeea +
| income | 400000 |
S o e e e e e eeeea +
| lastLogin | 2016-11-08T09: 16: 46. 3929 |
S o e e e e e eeeea +
| address | street | 427 Linden Avenue

| | city | Monroe Township

| | state | NJ

| | zipcode | NULL

| | phones |
| | type | work |
| | ar eacode | 201

| | nunber | 3213267

| | |
| | type | work |
| | areacode | 201

| | nunber | 8765421

| | |
| | type | hone |
| | ar eacode | 339

| | nunber | 3414578
S o e e e e e eeeea +
connections	2
	4
	1
	3
S o e e e e e eeeea +	
expenses	clothes
	food

| | shoes | 1000 |
S o e e e e e eeeea +

3 rows returned

In the above example, a multi-key index is created on all the area codes in the Persons table,
mapping each area code to the persons that have a phone number with that area code. The
query is looking for persons who have a phone number with area code 339. The index is
applicable to the query and so the key 339 will be searched for in the index and all the
associated table rows will be retrieved.

sql -> create index idx_expenses on

Persons (expenses. keys(), expenses.val ues());

St at enent conpl eted successfully

sql -> SELECT * FROM Persons p WHERE p. expenses. food > 1000;

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 6 of 12

ORACLE Chapter 8
Multi-Key Indexes

> Row 0

S o e e e e e e +
| id | 2 |
S o e e e e e e +
| firstname | John |
S o e e e e e e +
| lastname | Anderson |
S o e e e e e e +
| age | 35 |
S o e e e e e e +
| income | 100000 |
S o e e e e e e +
| lastLogin | 2016-11-28T13:01:11.2088 |
S o e e e e e e +
| address | street | 187 Hill Street

| | city | Beloit |
| | state | W

| | zipcode | 53511

	phones	
	type	home
	areacode	339
	nunber	1684972
S o e e e e e e +		
connections	1	
	3	
S o e e e e e e +		
expenses	books	100
	food	1700
	travel	2100
S o e e e e e e +
> Row 1

S o e e e e e e +
| id | 3 |
S o e e e e e e +
| firstname | John |
S o e e e e e e +
| Iastname | Morgan |
S o e e e e e e +
| age | 38 |
S o e e e e e e +
| income | 100000000 |
S o e e e e e e +
| lastLogin | 2016-11-29T08: 21: 35. 4971 |
S o e e e e e e +
| address | street | 187 Aspen Drive

	city	M ddl eburg
	state	FL
	zipcode	NULL
	phones	
	type	work
	areacode	305
	nunber	1234079
	type	home

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 7 of 12

ORACLE

Chapter 8
Multi-Key Indexes

| | areacode | 305 |
| | nunber | 2066401 |
S o e e e e e e +
connections	1
	4
	2
S o e e e e e e +	
expenses	food
	gas
	travel
S o e e e e e e +

> Row 2
S e +
| id | 4 |
S e +
| firstname | Peter |
S e +
| Iastnanme | Smith
S e +
| age | 38 |
S e +
| income | 80000 |
S e +
| lastLogin | 2016-10-19T09: 18: 05. 5555
S e +
| address | street | 364 Mulberry Street
| | city | Leomi nster |
| | state | MA |
| | zipcode | NULL
| | phones |
| | type | work |
| | ar eacode | 339
| | nunber | 4120211
| | |
| | type | work |
| | ar eacode | 339
| | nunber | 8694021
| | |
| | type | home |
| | ar eacode | 339
| | nunber | 1205678
| | |
| | type | home |
| | areacode | 305
| | nunber | 8064321
S e +
| connections | 3 |
| | 5 |
| | 1 |
| | 2 |
S e +
| expenses | books | 240 |
| | clothes | 2000
| | food | 6000
| | shoes | 1200

SQL Beginner's Guide
E85380-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 8 of 12

ORACLE

Chapter 8
Indexing JSON Data

ommmmeeaon o m e eeeeeeaooo-s +

3 rows returned

In the above example, a multi-key index is created on all the expenses entries in the Persons
table, mapping each category C and each amount A associated with that category to the
persons that have an entry (C, A) in their expenses map. The query is looking for persons who
spent more than 1000 on food. The index is applicable to the query and so only the index
entries whose first field (the map key) is equal to "food" and second key (the amount) is greater
than 1000 will be scanned and the associated rows retrieved.

Indexing JSON Data

An index is a JSON index if it indexes at least one field that is contained inside JSON data.

Because JSON is schema-less, it is possible for JSON data to differ in type across table rows.
However, when indexing JSON data, the data type must be consistent across table rows or the
index creation will fail. Further, once one or more JSON indexes have been created, any
attempt to write data of an incorrect type will fail.

With the exception of the previous restriction, indexing JSON data and working with JSON
indexes behaves in much the same way as indexing non-JSON data. To create the index,

specify a path to the JSON field using dot notation. You must also specify the data's type,

using the AS keyword.

The following examples are built on the examples shown in Working with JSON.

sql -> create index idx_json_incone on JSONPersons (person.incone

as integer);

Statenent conpl eted successfully

sqgl -> create index idx_json_age on JSONPersons (person.age as integer);
Statenent conpl eted successfully

sql ->

You can then run a query in the normal way, and the index idx_json_income will be
automatically used. But as shown at the beginning of this chapter (Basic Indexing), the query
processor will not know which index to use. To require the use of a particular index provide an
index hint as normal:

sql -> SELECT /*+ FORCE_| NDEX(JSONPer sons idx_json_incone) */ *
from JSONPer sons j WHERE j . person.income > 10000000 and
j . person.age < 40;

> Row 0

S e m e e e e eieeieaaa +
| id | 3 |
S e m e e e e eieeieaaa +
person	address	
	city	Mddl eburg
	phones	
	areacode	305
	nunber	1234079
	type	work

areacode | 305

SQL Beginner's Guide

E85380-34

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 9 of 12

ORACLE

| | nunber | 2066401 |
I I type | hone I
| | state | FL |
| | street | 187 Aspen Drive |
I | age | 38

| | connections |
I I 1 I
I I 4 I
I I 2 I
| | expenses |
| | food | 2000 |
I I gas | 10 I
	travel	700
	firstname	John
	incone	100000000
	lastLogin	2016-11-29T08:; 21: 35. 4971

| | Iastname | Morgan |
S e m e e e e eeeeea +

1 row returned
sql ->

Chapter 8
Indexing JSON Data

Finally, when creating a multi-key index on a JISON map, a type must not be given for
the . keys() expression. This is because the type will always be St ri ng. However, a type
declaration is required for the . val ues() expression:

sql -> create index idx_json _expenses on JSONPersons

(person. expenses. keys(), person. expenses.val ues() as integer);

St at enent conpl eted successfully

sql -> SELECT * FROM JSONPersons j WHERE | . person. expenses. food > 1000;

| address

| city

| phones
| ar eacode
| nunber
| type
| state

| street

| zi pcode
| age

| connections
I

I

I

I

I

I

I

I

I

expenses
books
f ood
trave

firstnane

i ncome

| ast Login

SQL Beginner's Guide
E85380-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

Bel oi t

339
1684972
home

187 H Il Street
53511
35

1
3

100
1700
2100
John
100000

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
2016- 11- 28T13: 01: 11. 2088

October 12, 2025
Page 10 of 12

ORACLE Chapter 8
Indexing JSON Data

| | lastname | Anderson
S e m e e e e eeeeea +
> Row 1
S e m e e e e eeeeea +
| id | 3 I
S e m e e e e eeeeea +
| person | address | |
| | city | Mddleburg |
| | phones |
| | areacode | 305 |
| | nunber | 1234079 |
I I type | work
| | areacode | 305 |
| | nunber | 2066401 |
I I type | hone I
| | state | FL |
| | street | 187 Aspen Drive |
I | age | 38 I
| | connections |
I I 1 I
I I 4 I
I I 2 I
| | expenses |
| | f ood | 2000 |
I I gas | 10 I
| | travel | 700 |
| | firstname | John |
| | incone | 100000000 |
| | lastLogin | 2016-11-29T08:; 21: 35. 4971
| | Iastname | Morgan |
S e m e e e e eeeeea +
> Row 2
T +
| id 4 |
T +
person addr ess
city | Leoninster
phones
areacode | 339
number | 4120211

areacode | 339

nunber | 8694021

type | work

areacode | 339

nunber | 1205678

type | hone
nul

areacode | 305

+
I
+
I
I
I
I
I
| type | work
I
I
I
I
I
I
I
I
I
I
I
| nunber | 8064321

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 11 of 12

ORACLE’

I I type | hone I
| | state | MA |
| | street | 364 Ml berry Street |
I | age | 38 I
| | connections |
I I 3 I
I I 5 I
I I 1 I
I I 2 I
	expenses	
	books	240
	cl ot hes	2000
	food	6000
	shoes	1200
	firstname	Peter
	incone	80000
	lastLogin	2016-10-19T09: 18: 05. 5555

| | Iastname | Smith |
S e m e e e e eeeeea +

3 rows returned
sql ->

Chapter 8
Indexing JSON Data

Be aware that all the other constraints that apply to a non-JSON multi-keyed index also apply

to a JSON multi-keyed index.

SQL Beginner's Guide
E85380-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 12 of 12

Working with Table Rows

This chapter provides examples on how to insert and update table rows using SQL for Oracle

NoSQL Database INSERT and UPDATE statements.

Adding Table Rows using INSERT and UPSERT

This topic provides examples on how to add table rows using the SQL for Oracle NoSQL

Database INSERT and UPSERT statements.
You use the INSERT statement to insert or update a si

Examples:

ngle row in an existing table.

If you executed the SQLBasicExamples Script, you should already have created the table

named User s. The table had this definition:

CREATE TABLE Users

(
idinteger
firstname string,
| ast name string,
age integer
i ncone integer,
prinmary key (id)
);
sql -> describe table Users;
=== |nformation ===
Homemm- Homm - oo oo R Fomemaeos oo oo
- +
| nanme | ttl | owner | sysTable | r2conmpat | parent | children | indexes
description |
Homemm- Homm - oo oo R Fomemaeos oo oo
- +
| Users | | | N | N
I |
Homemm- Homm - oo oo R Fomemaeos oo oo
- +
=== Fields ===
oo S Fommmem e oo S oo
Fommmieao +
| id] nanme | type | nullable | default | shardKey | primaryKey
identity
oo S Fommmem e oo S oo
Fommmieao +
| 1] id | Integer | N | NullValue | Y | Y
I |
oo S Fommmem e oo S oo
Fommmieao +
| 2| firstnane | String | Y | NullVal ue

SQL Beginner's Guide

E85380-34

Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 1 of 23

ORACLE

Chapter 9
Adding Table Rows using INSERT and UPSERT

oo S [R o N oo
o +

| 3| lastname | String | Y | NullVal ue |

| |

oo S [R o N oo
o +

| 4| age | Integer | Y | NullVal ue |

| |

oo S [R o N oo
o +

| 5 incone | Integer | Y | NullVal ue |

| |

oo S [R o N oo
o +

To insert a new row into the User s table, use the | NSERT statement as follows. Because you
are adding values to all table columns, you do not need to specify column names explicitly:

sql -> I NSERT | NTO Users VALUES (10, "John", "Smth", 22, 45000);
{"NunRows| nserted": 1}

1 row returned

sql -> select * from Users;

{"id":10,"firstnane":"John","l astname": "Smth", "age": 22, "i ncone": 45000}

To insert data into some, but not all, table columns, specify the column names explicitly in the
INSERT statement. Any columns that you do not specify are assigned either NULL or the
default value supplied when you created the table:

sgl-> I NSERT I NTO Users (id, firstnanme, income)
VALUES (11, "Mary", 5000);

{"NunRows| nserted": 1}

1 row returned

sql -> select * from Users;

{"id":11,"firstnane":"Mary", "l astname":null, "age":null,"income": 5000}
{"id":10,"firstnane":"John", "l astname":"Smth", "age": 22, "i ncone": 45000}
2 rows returned

Using the UPSERT Statement

The word UPSERT combines UPDATE and | NSERT, describing it statement's function. Use an
UPSERT statement to insert a row where it does not exist, or to update the row with new values
when it does.

For example, if you already inserted a new row as described in the previous section, executing
the next statement updates user John’s age to 27, and income to 60,000. If you did not
execute the previous | NSERT statement, the UPSERT statement inserts a new row with user id 10
to the User s table.

sql -> UPSERT | NTO Users VALUES (10, "John", "Smith", 27, 60000);
{" NunRows| nsert ed": 0}

1 row returned

sql -> UPSERT | NTO Users VALUES (11, "Mary", "Brown", 28, 70000);
{" NunRows| nsert ed": 0}

SQL Beginner's Guide

E85380-34

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 2 of 23

ORACLE Chapter 9
Adding Table Rows using INSERT and UPSERT
1 row returned
sql -> select * from Users;
"id":10,"firstname":"John","l astnane": "Smth", "age": 22, "i ncone": 60000}
{"id":11,"firstnane":"Mary", "l ast name": " Brown", "age": 28, "i ncone": 70000}
2 rows returned
Using an IDENTITY Column
You can use IDENTITY columns to automatically generate values for a table column each time
you insert a new table row. See Identity Column in the SQL Reference Guide.
Here are a few examples for how to use the INSERT statements for both flavors of an
IDENTITY column:
e GENERATED ALWAYS AS IDENTITY
e GENERATED BY DEFAULT [ON NULL] AS IDENTITY
Create a table named Enpl oyee_t est using one column, Deptld, as GENERATED ALWAYS
AS IDENTITY. This IDENTITY column is not the primary key. Insert a few rows into the table.
sql -> CREATE TABLE Enpl oyee_t est
(
Enpl _id | NTEGER,
Name STRI NG
Dept | d | NTEGER GENERATED ALWAYS AS | DENTITY (CACHE 1),
PRI MARY KEY(Enpl _i d)
);
I NSERT | NTO Enpl oyee_test VALUES (148, 'Sally', DEFAULT);
I NSERT | NTO Enpl oyee_test VALUES (250, 'Joe', DEFAULT);
I NSERT | NTO Enpl oyee_test VALUES (346, 'Dave', DEFAULT);
The INSERT statement inserts the following rows with the system generates values 1, 2, and 3
for the IDENTITY column Dept | d.
Empl_id Name Deptid
148 Sally 1
250 Joe 2
346 Dave 3

You cannot specify a value for the Dept | d IDENTITY column when inserting a row to the

Enpl oyee_t est table, because you defined that column as GENERATED ALWAYS AS | DENTI TY.
Specifying DEFAULT as the column value, the system generates the next IDENTITY value.
Conversely, trying to execute the following SQL statement causes an exception, because you
supply a value (200) for the Dept | d column.

sgl -> I NSERT | NTO Enpl oyee_test VALUES (566, 'Jane', 200);

If you create the column as GENERATED BY DEFAULT AS | DENTI TY for the Enpl oyee_t est table,
the system generates a value only if you fail to supply one. For example, if you define the

SQL Beginner's Guide

E85380-34

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 3 of 23

ORACLE’

Chapter 9
Modifying Table Rows using UPDATE Statements

Enpl oyee_t est table as follows, then execute the INSERT statement as above, the statement
inserts the value 200 for the employee’s Dept | d column.

CREATE Tabl e Enpl oyee_test
(
Enpl _id I NTEGER
Nane STRI NG
Dept 1 d | NTEGER GENERATED BY DEFAULT AS I DENTITY (CACHE 1),
PRI MARY KEY(Enpl _i d)
);

Modifying Table Rows using UPDATE Statements

This topic provides examples of how to update table rows using SQL for Oracle NoSQL
Database UPDATE statements. These are an efficient way to update table row data, because
UPDATE statements make server-side updates directly, without requiring a Read/Modify/Write
update cycle.

@ Note

You can use UPDATE statements to update only an existing row. You cannot use
UPDATE to either create new rows, or delete existing rows. An UPDATE statement
can modify only a single row at a time.

Example Data

This chapter's examples uses the data loaded by the SQLJSONExanpl es script, which can be
found in the Exanpl es download package. For details on using this script, the sample data it
loads, and the Exanpl es download, see See SQLJSONExamples Script.

Changing Field Values

In the simplest case, you can change the value of a field using the Update Statement SET
clause. The JSON example data set has a row which contains just an array and an integer.
This is row ID 6:

sgl -> nmode col um
Query out put nmode is COLUW
sql -> SELECT * from JSONPersons j WHERE j.id = 6;

o e +
| id| person |
o e +
| 6 nyarray |
	1	
	2	
	3	
	4	
	mynunber	5
o e +

1 row returned

SQL Beginner's Guide

E85380-34

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 4 of 23

ORACLE Chapter 9
Modifying Table Rows using UPDATE Statements

You can change the value of mynunber in that row using the following statement:

sql -> UPDATE JSONPersons |
SET j . person. nynunber = 100
VWHERE j.id = 6;

S S +
| Colum_1 |
S S +
| 1]
S S +

1 row returned
sql -> SELECT * from JSONPersons j WHERE j.id = 6;

o +
| id]| per son |
o +
| 6] nyarray |
	1	
	2	
	3	
	4	
	mynunber	100
o +

1 row returned

In the previous example, the results returned by the Update statement was not very
informative, so we were required to reissue the Select statement in order to view the results of
the update. You can avoid that by using a RETURNING clause. This functions exactly like a
Select statement:

sql -> UPDATE JSONPersons |
SET j . person. nynunber = 200
WHERE j.id = 6

RETURNI NG *;
e +
| id| person |
e +
| 6] nyarray |
	1	
	2	
	3	
	4	
	mynunber	200
e +

1 row returned
sql ->

You can further limit and customize the displayed results in the same way that you can do so
using a SELECT statement:

sql -> UPDATE JSONPersons |
SET j . person. mynunber = 300
WHERE j.id = 6

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 5 of 23

ORACLE Chapter 9
Modifying Table Rows using UPDATE Statements

RETURNING id, j.person.nynunber AS MyNumber;

o +
| id]| MyNurber |
o +
| 6 300 |
o +

1 row returned
sql ->

It is normally possible to update the value of a non-JSON field using the SET clause. However,
you cannot change a field if it is a primary key. For example:

sql -> UPDATE JSONPersons |
SET j.id = 1000
WHERE j.id = 6
RETURNI NG *;
Error handling command UPDATE JSONPersons |
SET j.id = 1000
WHERE j.id = 6
RETURNING *: Error: at (2, 4) Cannot update a primary key colum
Usage:

Unknown st at ermrent

sql ->

Modifying Array Values

You use the Update statement ADD clause to add elements into an array. You use a SET
clause to change the value of an existing array element. And you use a REMOVE clause to
remove elements from an array.

Adding Elements to an Array

The ADD clause requires you to identify the array position that you want to operate on,
followed by the value you want to set to that position in the array. If the index value that you set
is 0 or a negative number, the value that you specify is inserted at the beginning of the array.

If you do not provide an index position, the array value that you specify is appended to the end
of the array.

sql -> SELECT * from JSONPersons j WHERE j.id = 6;

o +
| id | per son |
o +
| 6] nyarray |
	1	
	2	
	3	
	4	
	mynunber	300
o +

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 6 of 23

ORACLE Chapter 9
Modifying Table Rows using UPDATE Statements

1 row returned

sql - > UPDATE JSONPersons |
ADD j . person.myarray 0 50,
ADD j . person. myarray 100
WHERE j.id = 6

RETURNI NG *;
e +
| id]| person |
e +
6	nyarray	
	50	
	1	
	2	
	3	
	4	
	100	
	mynunber	300
e +

1 row returned
sql ->

Notice that multiple ADD clauses are used in the query above.

Array values get appended to the end of the array, even if you provide an array position that is
larger than the size of the array. You can either provide an arbitrarily large number, or make
use of the si ze() function:

sql - > UPDATE JSONPersons j
ADD j . person.myarray (size(j.person. nyarray) + 1) 400
WHERE j.id = 6
RETURNI NG *;

1 row returned
sql ->

You can append values to the array using the built-in seq_concat () function:

sql - > UPDATE JSONPersons j
ADD | .person.nyarray seq_concat (66, 77, 88)
WHERE j.id = 6
RETURNI NG *;

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 7 of 23

ORACLE Chapter 9
Modifying Table Rows using UPDATE Statements

400
66
77
88

1 row returned
sql ->

If you provide an array position that is between 0 and the array's size, then the value you
specify will be inserted into the array before the specified position. To determine the correct
position, start counting from 0O:

UPDATE JSONPer sons |
ADD j . person.myarray 3 250
WHERE j.id = 6
RETURNI NG *;

400
66
77
88

1 row returned
sql ->

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 8 of 23

ORACLE Chapter 9
Modifying Table Rows using UPDATE Statements

Changing an Existing Element in an Array

To change an existing value in an array, use the SET clause and identify the value's position
using [] . To determine the value's position, start counting from 0:

sql -> UPDATE JSONPersons |
SET j.person.nyarray[3] = 1000
WHERE j.id = 6
RETURNI NG *;

400
66
77
88

1 row returned
sql ->

Removing Elements from Arrays

To remove an existing element from an array, use the REMOVE clause. To do this, you must
identify the position of the element in the array that you want to remove. To determine the
value's position, start counting from 0:

sql - > UPDATE JSONPersons j
REMOVE | . person. nyarray| 3]
WHERE j.id = 6
RETURNI NG *;

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 9 of 23

ORACLE Chapter 9
Modifying Table Rows using UPDATE Statements

| | mynunber | 300 |
e +

1 row returned
sql ->

It is possible for the array position to be identified by an expression. For example, in our
sample data, some records include an array of phone numbers, and some of those phone
numbers include a work number:

sql -> SELECT * FROM JSONPersons j WHERE j.id = 3;

o m e e e e e e eceeeceeaoas +
| id| person

o m e e e e e e eceeeceeaoas +
3	address	
	city	Mddleburg
	phones	
	areacode	305

| | nunber | 1234079

l { type | work

| | areacode | 305

| | nunber | 2066401

| | type | hone |
| | state | FL

| | street | 187 Aspen Drive

| | age | 38 |
| | connections

	1
	4
	2
	expenses

| | food | 2000

| | gas | 10 |
| | travel | 700

| | firstname | John

| | incone | 100000000

| | lastLogin | 2016-11-29T08: 21: 35. 4971

| | |astnane | Morgan |
o m e e e e e e eceeeceeaoas +

1 row returned
sql ->

We can remove the work number from the array in one of two ways. First, we can directly
specify its position in the array (position 0), but that only removes a single element at a time. If
we want to remove all the work numbers, we can do it by using the $element variable. To
illustrate, we first add another work number to the array:

sql -> UPDATE JSONPersons |
ADD | . person. address. phones 0
{"type":"work", "areacode":415, "number":9998877}
WHERE j.id = 3
RETURNI NG *;
o m o m e e e e e e e e e e +

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 10 of 23

ORACLE Chapter 9
Modifying Table Rows using UPDATE Statements

| id]| person

o m e e e e e emeeeeeeaoa +
3	address	
	city	M ddl eburg
	phones	
	areacode	415

| | nunber | 9998877

I I type | work

| | areacode | 305

| | nunber | 1234079

I I type | work

| | areacode | 305

| | nunber | 2066401

| | type | hone

| | state | FL

| | street | 187 Aspen Drive

| | age | 38

| | connections

	1
	4
	2
	expenses
	food

| | gas | 10

| | travel | 700

| | firstname | John

| | incone | 100000000

| | lastLogin | 2016-11-29T08:; 21: 35. 4971

| | Iastname | Morgan |
o m e e e e e emeeeeeeaoa +

1 row returned
sql ->

Now we can remove all the work numbers as follows:

sql -> UPDATE JSONPersons |
REMOVE | . per son. addr ess. phones[$el enent . type = "work"]
WHERE j.id = 3

RETURNI NG *;
o m e e e e e e eceeeceeaoas +
| id| person
o m e e e e e e eceeeceeaoas +
3	address	
	city	M ddleburg
	phones	
	areacode	305
	nunber	2066401
	type	hone
	state	FL
	street	187 Aspen Drive
l { age | 38

connections

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 11 of 23

ORACLE

expenses
f ood
gas
travel

firstnane

i ncome

| ast Login

| ast nane

1 row returned

sql ->

Modifying Map Values

To write a new field to a map, use the PUT clause. You can also use the PUT clause to change

an existing map value. To remove a map field, use the REMOVE clause.

For example, consider the following two rows from our sample data:

sql -> SELECT * FROM JSONPersons j WHERE j.id = 6 OR j.i

o m e e e e e e e eeeeeeaoas +
| id | person

o m e e e e e e e eeeeeeaoas +
3	address	
	city	M ddl eburg
	phones	
	areacode	305

| | nunber | 2066401

| | type | hone |
| | state | FL

| | street | 187 Aspen Drive |
| | age | 38 |
| | connections

	1
	4
	2
	expenses
	food

| | gas | 10 |
| | travel | 700

| | firstname | John

| | incone | 100000000

| | lastLogin | 2016-11-29T08:; 21: 35. 4971

| | Iastname | Morgan |
o m e e e e e e e eeeeeeaoas +
| 6] nyarray |
	50
	1
	2
	3
	4

SQL Beginner's Guide

E85380-34

Copyright © 2011, 2025, Oracle and/or its affiliates.

1
4
2

2000

10

700

John
100000000

2016-11-29T08: 21: 35. 4971

Chapter 9

Modifying Table Rows using UPDATE Statements

October 12, 2025
Page 12 of 23

ORACLE Chapter 9
Modifying Table Rows using UPDATE Statements

2 rows returned
sql ->

These two rows look nothing alike. Row 3 contains information about a person, while row 6
contains, essentially, random data. This is possible because the per son column is of type
JSON, which is not strongly typed. But because we interact with JSON columns as if they are
maps, we can fix row 6 by modifying it as a map.

Removing Elements from a Map

To begin, we remove the two existing elements from row six (myar ray and mynunber). We do
this with a single UPDATE statement, which allows us to execute multiple update clauses so
long as they are comma-separated:

sql - > UPDATE JSONPer sons |
REMOVE | . person. nyarray,
REMOVE | . per son. nynunber
WHERE j.id = 6

RETURNI NG *;
oo +
| id | person |
oo +
| 6] I
oo +

1 row returned
sql ->

Adding Elements to a Map

Next, we add person data to this table row. We could do this with a single UPDATE statement
by specifying the entire map with a single PUT clause, but for illustration purposes we do this
in multiple steps.

To begin, we specify the person's name. Here, we use a single PUT clause that specifies a
map with multiple elements:

sql -> UPDATE JSONPersons |
PUT j.person {"firstname" : "Wendy",

"l astnane" : "Purvis"}
VWHERE j.id = 6
RETURNI NG *;
e +
| id] person |
e +
| 6] firstnane | Wendy |

SQL Beginner's Guide
E85380-34 October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 13 of 23

ORACLE Chapter 9
Modifying Table Rows using UPDATE Statements

| | lastname | Purvis |
o +

1 row returned
sql ->

Next, we specify the age, connections, expenses, income, and lastLogin fields using multiple
PUT clauses on a single UPDATE statement:

sql -> UPDATE JSONPersons |
PUT j.person {"age" : 43},
PUT j.person {"connections" : [2,3]},
PUT j.person {"expenses" : {"food" : 1100,
“books" : 210,
“travel" : 50}},
PUT j.person {"incone" : 80000},
PUT j.person {"lastLogin" : "2017-06-29T16: 12: 35. 0285"}
WHERE j.id = 6

RETURNI NG *;
e e e e e e ieeieaaoas +
| id| person
e e e e e e ieeieaaoas +
| 6| age | 43 |
| | connections
	2
	3
	expenses
	books
	food
	travel
	firstname
	incone
	lastLogin
	Iastname
e e e e e e ieeieaaoas +

1 row returned
sql ->

We still need an address. Again, we could do this with a single PUT clause, but for illustration
purposes we will use multiple clauses. Our first PUT creates the addr ess element, which uses
a map as a value. Our second PUT adds elements to the addr ess map:

sql -> UPDATE JSONPersons |

PUT j.person {"address" : {"street" : "479 South Way Dr"}},
PUT j.person.address {"city" : "St. Petershurg",
“state" : "FL"}
WHERE j.id = 6
RETURNI NG *;
Fom e e e e e e e e e mameaaaa +
| id] person |
Fom e e e e e e e e e mameaaaa +
6	address	
	city	St. Petersburg
	state	FL

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 14 of 23

ORACLE

| | street | 479 South Way Dr |
| | age | 43 |
| | connections

	2
	3
	expenses
	books

| | food | 1100

| | travel | 50

| | firstname | Wéndy |
| | incone | 80000

| | lastLogin | 2017-06-29T16: 12: 35. 0285

| | lastname | Purvis

o m e e e e +

1 row returned
sql ->

Chapter 9

Modifying Table Rows using UPDATE Statements

Finally, we provide phone numbers for this person. These are specified as an array of maps:

sql -> UPDATE JSONPersons |
PUT j.person. address {"phones"

[{"type":"work", "areacode":727, "number": 8284321},
{"type":"home", "areacode":727, "number":5710076},

{"type":"mobile", "areacode": 727, "nunber": 8913080}

]

}

WHERE j.id = 6

RETURNI NG *;
o m e e e e e e e e eceeeceeaoas +
| id | person
o m e e e e e e e e eceeeceeaoas +
| 6| address
| | city | St. Petersburg
| | phones
| | areacode | 727
| | nunber | 8284321
| | type | work
| |
| | areacode | 727
| | nunber | 5710076
| | type | hone
| |
| | areacode | 727
| | nunber | 8913080
| | type | nobile
| | state | FL
| | street | 479 South Way Dr
| | age | 43
| | connections
| | 2
| | 3
| | expenses
| | books | 210
| | f ood | 1100

SQL Beginner's Guide
E85380-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 15 of 23

ORACLE Chapter 9
Modifying Table Rows using UPDATE Statements

| | travel | 50

| | firstname | Veéndy

| | incone | 80000

| | lastLogin | 2017-06-29T16: 12: 35. 0285

| | |astnane | Purvis |
I +

1 row returned
sql ->

Updating Existing Map Elements

To update an existing element in a map, you can use the PUT clause in exactly the same way
as you add a new element to map. For example, to update the lastLogin time:

sgl -> UPDATE JSONPersons |
PUT j.person {"lastLogin" : "2017-06-29T20: 36: 04. 9661"}
WHERE j.id = 6

RETURNI NG *;
o m e e e e e e e e e e e ma oo +
| id| person
o m e e e e e e e e e e e ma oo +
6	address	
	city	St. Petersburg
	phones	
	areacode	727
	nunber	8284321
: I type	work	
	areacode	727
	nunber	5710076
: I type	hone	
	areacode	727
	nunber	8913080
	type	nobile
	state	FL
	street	479 South \Way Dr
	age	43
	connections	
	2	
	3	
	expenses	
	books	210
	food	1100
	travel	50
	firstname	Wéndy
	incone	80000
	lastLogin	2017-06-29T20: 36: 04. 9661
	Iastname	Purvis
o m e e e e e e e e e e e ma oo +

1 row returned
sql ->

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 16 of 23

ORACLE Chapter 9
Modifying Table Rows using UPDATE Statements

Alternatively, use a SET clause:

sql -> UPDATE JSONPersons |
SET j.person.lastlLogin = "2017-06-29T20: 38: 56. 2751"
WHERE j.id = 6

RETURNI NG *;
o m e e e e e e eceeeceeaoas +
| id| person
o m e e e e e e eceeeceeaoas +
6	address	
	city	St. Petersburg
	phones	
	areacode	727
	nunber	8284321
l { type	work	
	areacode	727
	nunber	5710076
l { type	hone	
	areacode	727
	nunber	8913080
	type	nobile
	state	FL
	street	479 South Way Dr
	age	43
	connections	
	2	
	3	
	expenses	
	books	210
	food	1100
	travel	50
	firstname	Wendy
	incone	80000
	lastLogin	2017-06-29T20: 38: 56. 2751
	Iastname	Purvis
o m e e e e e e eceeeceeaoas +

1 row returned
sql ->

If you want to set the timestamp to the current time, use the current tinme() built-in function.

sql -> UPDATE JSONPersons |
SET j.person.lastlLogin = cast(current _time() AS String)
WHERE j.id = 6

RETURNI NG *;
o m e e e e eeeeeeciaaoan +
| id| person
o m e e e e eeeeeeciaaoan +
| 6| address
| | city | St. Petersburg
| | phones |
| | |

areacode | 727

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 17 of 23

ORACLE

nunber
type

ar eacode
nunber

type

|

|

|

|

|

|

|

| ar eacode
| nunber
| type
| state

| street

| age

| connections
|

|

|

|

|

|

|

|

|

|

+

expenses
books
f ood
travel

firstnane

i ncome

| ast Login

| ast nane

1 row returned
sql ->

Chapter 9

Modifying Table Rows using UPDATE Statements

8284321
wor Kk

727
5710076
hore

|
|
|
|
|
|
|
727
8913080 |
mobi | e
FL |
479 South Way Dr |
43
|
2 |
3 |
|
|
|
|
|
|
|
|

210

1100

50

endy

80000

2017- 06-29T04: 40: 15. 917
Purvi s

If an element in the map is an array, you can modify it in the same way as you would any array.

For example:

sql -> UPDATE JSONPersons |
ADD | . person.connections seq_concat (1, 4)

WHERE j.id = 6
RETURNI NG *;

+

|

+

|

|

| phones

| ar eacode
| nunber

{ type

| ar eacode
| nunber

|

|

|

|

|

|

|

type

ar eacode
nunber
type
state
street

SQL Beginner's Guide
E85380-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

St. Petersburg

727
8284321
wor k

727
5710076
hore

727

8913080

nmobi | e

FL

479 South Way Dr

October 12, 2025
Page 18 of 23

ORACLE

| | age | 43 |
| | connections

	2
	3
	1
	4
	expenses
	books

| | food | 1100

| | travel | 50

| | firstname | Veéndy

| | incone | 80000

| | lastLogin | 2017-06-29T04: 40: 15. 917

| | |astnane | Purvis |
o m e e e e e emeeeeeeaoa +

1 row returned

Chapter 9

Modifying Table Rows using UPDATE Statements

If you are unsure of an element being an array or a map, you can use both ADD and PUT
within the same UPDATE statement. For example:

sql -> UPDATE JSONPersons |

SQL Beginner's Guide
E85380-34

ADD | . person. connections seq_concat (5, 7),
PUT j. person. connections seq_concat (5, 7)

WHERE j.id = 6
RETURNI NG *;

phones
areacode
nunber |

type |

+

|

+

|

|

|

|

|

|

|

| ar eacode

| nunber |
{ type |
| ar eacode

| nunber |
| type |
| state |
| street |
| age |
| connections
|

|

|

|

|

|

|

|

expenses
books |

Copyright © 2011, 2025, Oracle and/or its affiliates.

St. Petersburg

727
8284321
wor k

727
5710076
hore

727

8913080

nobi | e

FL

479 South Wy Dr
43

~NOoO bR~ PEFP WN

210

October 12, 2025
Page 19 of 23

ORACLE Chapter 9
Modifying Table Rows using UPDATE Statements

	food	1100	
	travel	50	
	firstname	Veéndy	
	incone	80000	
	lastLogin	2017-06-29T04: 40: 15.917	
		astnane	Purvis
o m e e e e e emeeeeeeaoa +

1 row returned

If the element is an array, the ADD gets applied and the PUT is a noop. If it is a map, then the
PUT gets applied and ADD is a noop. In this example, since the element is an array, the ADD
gets applied.

Managing Time to Live Values

Time to Live (TTL) values indicate how long data can exist in a table before it expires. Expired
data can no longer be returned as part of a query.

Default TTL values can be set on either a table-level or a row level when the table is first
defined. Using UPDATE statements, you can change the TTL value for a single row.

You can see a row's TTL value using the r emai ni ng_hours(), remai ni ng_days() or

expi ration_tinme() built-in functions. These TTL functions require a row as input. We
accomplish this by using the $ as part of the table alias. This causes the table alias to function
as a row variable.

sql -> SELECT remai ni ng_days($j) AS Expires
FROM JSONPer sons $j WHERE id = 6;

L +
| Expires |
L +
| -1
L +

1 row returned
sql ->

The previous query returns - 1. This means that the row has no expiration time. We can specify
an expiration time for the row by using an UPDATE statement with a set TTL clause. This
clause computes a new TTL by specifying an offset from the current expiration time. If the row
never expires, then the current expiration time is 1970- 01- 01T00: 00: 00. 000. The value you
provide to set TTL must specify units of either HOURS or DAYS.

sql - > UPDATE JSONPersons $j
SET TTL 1 DAYS

WHERE id = 6
RETURNI NG r emai ni ng_days($j) AS Expires;
e, +
| Expires |
e, +
I 1]
e, +

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 20 of 23

ORACLE

Chapter 9
Modifying Table Rows using UPDATE Statements

1 row returned
sql ->

To see the new expiration time, we can use the built-in expi ration_tinme() function. Because
we specified an expiration time based on a day boundary, the row expires at midnight of the
following day (expiration rounds up):

sql -> SELECT current _tinme() AS Now,
expiration_tinme($j) AS Expires
FROM JSONPersons $j WHERE id = 6;

Hee e eeeeeeaaaas S +
| Now | Expires |
Hee e eeeeeeaaaas S +
| 2017-07-03T21:56:47.778 | 2017-07-05T00: 00: 00. 000 |
Hee e eeeeeeaaaas S +

1 row returned
sql ->

To turn off the TTL so that the row will never expire, specify a negative value, using either
HCOURS or DAYS as the unit:

sql -> UPDATE JSONPersons $j
SET TTL -1 DAYS

WHERE id = 6
RETURNI NG r emai ni ng_days($j) AS Expires;
Fommme o +
| Expires |
Fommme o +
I 0 |
Fommme o +

1 row returned
sql ->

Notice that the RETURNING clause provides a value of 0 days. This indicates that the row will
never expire. Further, if we look at the remaining_days() using a SELECT statement, we will
once again see a negative value, indicating that the row never expires:

sql -> SELECT remai ni ng_days($j) AS Expires
FROM JSONPer sons $j WHERE id = 6;

R +
| Expires |
R +
| -1
R +

1 row returned
sql ->

SQL Beginner's Guide

E85380-34

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 21 of 23

ORACLE

Chapter 9

Modifying Table Rows using UPDATE Statements

Avoiding the Read-Modify-Write Cycle

An important aspect of UPDATE Statements is that you do not have to read a value in order to
update it. Instead, you can blindly modify a value directly in the store without ever retrieving
(reading) it. To do this, you refer to the value you want to modify using the $ variable.

For example, we have a row in JSONPersons that looks like this:

sql -> SELECT * FROM JSONPer sons WHERE i d=6;

e e e e eemeeeeeaaoan +
| id| person

e e e e eemeeeeeaaoan +
| 6| address

| | city | St. Petersburg

| | phones |
| | areacode | 727

| | nunber | 8284321

I I type | work I
| | areacode | 727

| | nunber | 5710076

I I type | hone

| | areacode | 727

| | nunber | 8913080

| | type | nobile |
| | state | FL

| | street | 479 South Way Dr |
| | age | 43 |
| | connections

	2
	3
	1
	4
	expenses

| | books | 210

| | food | 1100

| | travel | 50

| | firstname | Wendy

| | incone | 80000

| | lastLogin | 2017-07-25T22: 50: 06. 482

| | |astnane | Purvis

e e e e eemeeeeeaaoan +

1 row returned

We can blindly update the value of the per son. expenses. books field by referencing $. In the
following statement, no read is performed on the store. Instead, the write operation is

performed directly at the store.

sql -> UPDATE JSONPersons |

-> SET | . person. expenses. books = $ + 100

-> WHERE id = 6;

SQL Beginner's Guide
E85380-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 22 of 23

ORACLE

| NunmRowsUpdat ed

1 row returned

Chapter 9

Modifying Table Rows using UPDATE Statements

To see that the books expenses value has indeed been incremented by 100, we perform a

second SELECT statement.

sql -> SELECT * FROM JSONPer sons WHERE i d=6;

o m e e e e e e eeeeeaaoa +
| id]| person

o m e e e e e e eeeeeaaoa +
| 6| address

| | city | St. Petersburg

| | phones |
| | areacode | 727

| | nunber | 8284321

I I type | work

| | areacode | 727

| | nunber | 5710076

I I type | hone I
| | areacode | 727

| | nunber | 8913080

| | type | nobile

| | state | FL

| | street | 479 South Vay Dr |
| | age | 43 |
| | connections

	2
	3
	1
	4
	expenses
	books

| | food | 1100

| | travel | 50

| | firstname | Wendy

| | incone | 80000

| | lastLogin | 2017-07-25T22: 50: 06. 482

| | Iastname | Purvis

o m e e e e e e eeeeeaaoa +

1 row returned

SQL Beginner's Guide
E85380-34
Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Page 23 of 23

Working with Multi-Region Setup

This chapter provides examples on how to create regions, Multi-Region tables, and use
MR_COUNTERSs in Multi-Region tables.

A Multi-Region architecture helps you create tables in multiple data stores. Each data store in
a Multi-Region Oracle NoSQL Database setup is called a Region. In a Multi-Region setup,
Oracle NoSQL Database automatically replicates data across the regions.

Managing Regions

Learn to use the SQL statements to register regions with your local Oracle NoSQL Database
and view them.

In a Multi-Region Oracle NoSQL Database setup, you must register all regions, local and
remote regions with your local Oracle NoSQL Database. You use the CREATE REGION
statement to register a region.

Use the following command to set your local region:

SET LOCAL REQ ON ny_l ocal _region;

The following CREATE REGION statements register remote regions named LON and FRA.

CREATE REG ON LON,

CREATE REG ON FRA,

You can use the SHOW REGIONS statement to view the list of regions present in Oracle
NoSQL Database. The following statement fetches all the existing regions in a JSON format.
The output shows the local and remote regions. The st at e field indicates if a region is active.

SHOW AS JSON REG ONS;

Output:

{"regions" : [{"name" : "ny_local region", "type" : "local", "state" :
"active"},{"nane" : "LON', "type" : "renpte", "state" : "active"},{"nane" :
"FRA", "type" : "renote", "state" : "active"}]}

You can use the DROP REGION statement to remove the registration of a specified remote
region from your local Oracle NoSQL Database. The following statement removes the FRA
region. The output shows the st at e as dr opped.

DROP REG ON FRA;

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Page 1 of 6

ORACLE

Chapter 10
Using MR_COUNTERs

Output:
{"regions" : [{"name" : "ny_local region", "type" : "local", "state" :
"active"},{"nane" : "LON', "type" : "renote", "state" : "active"},{"nane" :

"FRA", "type" : "renote", "state" : "dropped'}]}

Using MR_COUNTERSs

Learn to use SQL statements to create and manage MR_COUNTERSs in Multi-Region tables.

The MR_COUNTER data type is a Conflict-free Replicated Data Type (CRDT) counter. CRDTs
provide a way for concurrent modifications to be merged across regions without user
intervention.

In a Multi-Region setup of an Oracle NoSQL Database, copies of the same data must be
stored in multiple regions and data may be concurrently modified in different regions. The
MR_COUNTER data type ensures that though data modifications happen simultaneously on
different regions, data always gets automatically merged into a consistent state.

Currently, Oracle NoSQL Database supports only Positive-Negative (PN) MR_COUNTER data
type. The PN counters are suitable for increment and decrement operations. For example, you
can use these counters to count the number of viewers live streaming a football match from a
website at any point. When the viewers go offline, you need to decrement the counter.

You can only define MR_COUNTERS while creating a table or while modifying a table.

Create table using MR_COUNTER data type

You can declare a table column of the MR_COUNTER data type in a CREATE TABLE
statement. MR_COUNTER is a subtype of one of the following data types: INTEGER, LONG,
NUMBER.

CREATE TABLE Users (
idinteger,
firstname string,
| ast name string,
age integer,
i ncone integer,
count integer AS MR _COUNTER
prinmary key (id)
) I N REG ONS FRA, LON;

You can use the MR_COUNTER data type for a Multi-Region table only. You can't use it in
regular tables. In the statement above, you create a Multi-Region table in FRA and LON
regions with count as an INTEGER MR_COUNTER data type. You can define multiple
columns as MR_COUNTER data type in a Multi-Region table.

You can also declare a field in a JSON document as MR_COUNTER.

CREATE TABLE | F NOT EXI STS JSONPersons (
idinteger,
person JSON (counter as | NTEGER MR COUNTER,
books. count as LONG MR_COUNTER),
primry key (id)
) I N REG ONS FRA, LON;

SQL Beginner's Guide

E85380-34

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 2 of 6

ORACLE

SQL Beginner's Guide

E85380-34

Chapter 10
Using MR_COUNTERs

In the statement above, you are identifying two of the fields in the JSON document per son as
MR_COUNTERSs. The first field count er is an INTEGER MR_COUNTER data type. The
second field count is within a nested JSON document books. The count field is of LONG
MR_COUNTER data type.

Insert rows into a Multi-Region table

You can use the INSERT statement to insert data into a Multi-Region table with the
MR_COUNTER column. You can add rows using one of the following options. Both the options
insert a default value of zero to the MR_COUNTER column.

Option 1: Supply the keyword DEFAULT to the MR_COUNTER column.

| NSERT | NTO Users VALUES (10, "David", "Morrison", 25, 100000,
DEFAULT) ;

In the statement above, you supply a value DEFAULT to the count MR_COUNTER.

SELECT * FROM Users;

Output:

{"id":10,"firstnane":"David", "l astnane":"Mrrison", "age": 25, "i ncone": 100000
, "count": 0}

Option 2: Skip the MR_COUNTER column value by including only the required column
values in the INSERT statement.

I NSERT INTO Users(id, firstname, |astname) VALUES (20, "John", "Anderson");

In the statement above, you supply values to specific columns. The SQL engine inserts the
values to the corresponding columns, a default value zero to the MR_COUNTER, and a
null value to all the other columns.

SELECT * FROM Users WHERE id = 20;

Output:

{"id":20,"firstnane":"John","| astname": " Anderson", "age": nul |, "incone": nul |,
"count": 0}

If an MR_COUNTER is a part of the JSON document, you must supply a zero value explicitly
to the MR_COUNTER.

® Note
* You can't supply the keyword DEFAULT while inserting a JSON MR_COUNTER.

* The system will return an error if you try to insert data into an MR table without
supplying a value to the declared JSON MR_COUNTER field or using the keyword
DEFAULT.

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 3 of 6

ORACLE

Chapter 10
Using MR_COUNTERs

In the sample below, you insert a row into JSONPer sons table. As it includes JSON
MR_COUNTERSs count er and count in the peopl e document, you supply a zero value
explicitly to these MR_COUNTERS.

| NSERT | NTO JSONPer sons VALUES (

1,
{
"firstnanme": " David",
"l astnane":"Mrrison",
"age": 25,
"i ncome": 100000,
“counter": 0,
"books" : {
"Titlel" : "Gone with the w nd",
"Title2" : "Aiver Twist",
“count" : 0
1
1

):

The SELECT statement displays the following result:

{"id":1,"person":{"age": 25, "books": {"Titlel":"Gone with the
wind", "Title2":"Aiver

Twist","count": 0}, "counter”:0,"firstname":"David","incone": 100000, "I ast name":
Morrison"}};

Update MR_COUNTER

You can use the SET clause of the UPDATE statement to update MR_COUNTER in a Multi-
Region table. You must only use the standard arithmetic computations to increment or
decrement the value of MR_COUNTER. You can't use the UPDATE clauses to explicitly supply
a value to MR_COUNTER or remove one from the table.

UPDATE Users SET count = count + 10 WHERE id = 10 RETURNI NG *;

In the statement above, you increment the count value in the User s table by 10. The
RETURNING clause fetches the following output:

{"id":10,"firstnane":"David", "l astnane":"Morrison", "age": 25, "i ncone": 100000, "¢
ount": 10}

Similarly, you can update MR_COUNTER in a JSON document by incrementing or
decrementing its value. You can access MR_COUNTER using its path expression as follows:

UPDATE JSONPersons p SET p. person. books. count = p. person. books. count + 1
WHERE id = 1 RETURNING *;

In the statement above, you increment the MR_COUNTER count in the nested books
document by one.

{"id":1,"person":{"age": 25, "books": {"Titlel":"CGone with the
wind", "Title2":"Aiver

SQL Beginner's Guide

E85380-34

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 4 of 6

ORACLE

Chapter 10
Using MR_COUNTERs

Twist","count": 1}, "counter":0,"firstname":"David","income": 100000, "I ast name": "
Morrison"}}

How system uses MR_COUNTER to handle concurrent modifications

When you create a Multi-Region table in different regions, it has the same definition. This
implies, if you define any MR_COUNTER data type, it exists in both the remote and local
regions. Every region can update the MR_COUNTER concurrently at its end. As all the Multi-
Region tables in the participating regions are synchronized, the system automatically performs
a merge on these concurrent modifications to reflect the latest updates of the MR_COUNTER
without any user intervention.

Modify table to add or remove MR_COUNTER

You can use an ALTER TABLE statement to add or remove MR_COUNTER.
Adding MR_COUNTER

To add MR_COUNTER, use the ADD clause in the ALTER TABLE statement.

ALTER TABLE Users (ADD count Two | NTEGER AS MR_COUNTER) ;

The statement above adds count Two field as MR_COUNTER with a default value zero to the
Users table.

The SELECT statement displays the following result:
{"id":10,"firstnane":"David", "l astname":"Mrrison", "age": 25, "i ncome": 100000, "¢
ount ": 10, "count Two": 0}

{"id":20,"firstnane":"John", "l astname": " Anderson", "age": null,"incone":null,"co
unt": 0, "count Two": 0}

You can add MR_COUNTER to a JSON column as follows:

ALTER TABLE JSONPersons (ADD JsonTwo JSON(counter Two AS NUMBER MR_COUNTER)) ;

The statement above adds a JsonTwo nested JSON document to the JSONPer sons table and
includes count er Two field as MR_COUNTER with zero value:

{
"id" o1,
"person" : {
"age" : 25,
"books" : {
"Titlel" : "Gone with the wind",
"Title2" : "Aiver Twist",
"count" : 1
b
“counter" : O,
"firstnane" : "David",
"income" : 100000,
"l astnane" : "Morrison"
b
"JsonTwo" : {

"counterTwo" : O

SQL Beginner's Guide

E85380-34

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 5 of 6

ORACLE

Chapter 10
Using MR_COUNTERs

Removing MR_COUNTER
To remove MR_COUNTER, use the DROP clause in the ALTER TABLE statement.

ALTER TABLE Users (DRCP count Two);
The statement above removes count Two MR_COUNTER from the User s table.
The SELECT statement displays the following result:

{"id":10,"firstnane":"David", "l astname":"Mrrison", "age": 25, "i ncome": 100000, "c

ount": 10}
{"id":20,"firstnane":"John", "l ast name": " Ander son", "age":null,"incone":null,"co
unt": 0}

You can remove a JSON document and its MR_COUNTER as follows:

ALTER TABLE JSONPersons (DROP JsonTwo);

The statement above removes the JSONTwo nested JSON document from the JSONPer sons
table.

{
"id"o:o1,
"person" : {
"age" : 25,
"books" : {
"Titlel" : "Gone with the wind",
"Title2" : "Aiver Twist",
“count" : 1
b
“counter" : 0,
"firstnane" : "David",
"income" : 100000,
"l'astnane" : "Morrison"
}
}

SQL Beginner's Guide

E85380-34

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Page 6 of 6

Introduction to the SQL for Oracle NoSQL
Database Shell

This appendix describes how to configure, start and use the SQL for Oracle NoSQL Database
shell to execute SQL statements. This section also describes the available shell commands.

You can directly execute DDL, DML, user management, security, and informational statements
using the SQL shell.

Running the SQL Shell

You can run the SQL shell interactively or use it to run single commands. Here is the general
usage to start the shell:

java -jar KVHOW |ib/sql.jar

- hel per - hosts <host:port[, host:port]*> -store <storeNane>
[-username <user>] [-security <security-file-path>]
[-tinmeout <timeout ms>]
[-consistency <NONE_REQUI RED(default) |

ABSOLUTE | NONE_REQUI RED_NO MASTER>]
[-durability <COW T_SYNC(default) |

COMM T_NO_SYNC | COMWM T_WRI TE_NO_SYNC>]
[singl e command and argunent s]

The following are the mandatory parameters:

- hel per - host s: Specifies a comma-separated list of hosts and ports.

- st or e: Specifies the name of the store.

-security: Specifies the path to the security file in a secure deployment of the store.
For example: $KVROOT/ security/ user.security

The store supports the following optional parameters:

- consi st ency: Configures the read consistency used for this session. The read operations are
serviced either on a master or a replica node depending on the configured value. For more
details on consistency, see Consistency Guarantees. The following policies are supported.
They are defined in the Consi st ency class of Java APIs.

If you do not specify this value, the default value ABSOLUTE is applied for this session.

e« ABSOLUTE - The read operation is serviced on a master node. With ABSOLUTE
consistency, you are guaranteed to obtain the latest updated data.

« NONE-REQUIRED - The read operation can be serviced on a replica node. This implies,
that if the data is read from the replica node, it may not match what is on the master.
However, eventually, it will be consistent with the master.

For more details on the policies, see Consistency in the Java Direct Driver APl Reference
Guide.

SQL Beginner's Guide

E85380-34

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix A-1 of A-17

ORACLE

Appendix A
Configuring the shell

-durabi li ty: Configures the write durability setting used in this session. This value defines the
durability policies to be applied for achieving master commit synchronization, that is, the
actions performed by the master node to return with a normal status from the write operations.
For more details on durability, see Durability Guarantees.

If you do not specify this value, the default value COMMIT_SYNC is applied for this session.

¢ COMMIT_NO_SYNC - The data is written to the host's in-memory cache, but the master
node does not wait for the data to be written to the file system's data buffers or subsequent
physical storage.

¢ COMMIT_SYNC - The data is written to the in-memory cache, transferred to the file
system's data buffers, and then synchronized to a stable storage before the write operation
completes normally.

¢ COMMIT_WRITE_NO_SYNC - The data is written to the in-memory cache, and
transferred to the file system's data buffers, but not necessarily into physical storage.

For more details on the policies, see Durability in the Java Direct Driver APl Reference Guide.
-ti meout : Configures the request timeout used for this session. The default value is 5000ms.
- user nane: Specifies the username to log in as.

For example, you can start the shell like this:

java -jar KVHOWE |ib/sql.jar

- hel per-hosts node01: 5000 -store kvstore
sql ->

This command assumes that a store kvst or e is running at port 5000. After the SQL starts
successfully, you execute queries. In the next part of this document, you will find an
introduction to SQL for Oracl e NoSQL Dat abase and how to create query statements.

If you want to import records from a file in either JSON or CSV format, you can use the import
command. For more information see import.

If you want to run a script, use the | oad command. For more information see |load.

sql -> conmand [ar gument s]

-singl e command and ar gurent s: Specifies the utility commands that can be accessed from
the SQL shell. You can use them with the syntax shown above.

n

For a complete list of utility commands accessed through "j ava -j ar
<command> see Shell Utility Commands.

<kvhome>/1ib/sql .jar

Configuring the shell

You can also set the shell start-up arguments by modifying the configuration file . kvclirc
found in your home directory.

Arguments can be configured in the . kvcl i r ¢ file using the name=val ue format. This file is
shared by all shells, each having its named section. [sql] is used for the Query shell, while
[kvcli] is used for the Admin Command Line Interface (CLI).

SQL Beginner's Guide

E85380-34

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix A-2 of A-17

ORACLE

Appendix A

Shell Utility Commands

For example, the . kvcl i r ¢ file would then contain content like this:

[sql]

hel per - host s=node01: 5000
st ore=kvstore

ti meout =10000

consi st ency=NONE_REQUI RED
dur abi | i t y=COM T_NO_SYNC
user name=r oot
security=/tnp/login_root

[kvcli]

host =node01

port =5000

store=kvstore

adm n- host =node01

admi n- port =5001

user name=user 1
security=/tnp/login_user
admi n- user name=r oot

admi n-security=/tnp/login_root
t i meout =10000

consi st ency=NONE_REQUI RED
durability=COM T_NO _SYNC

Shell Utility Commands

The following sections describe the utility commands accessed through "j ava -j ar
<kvhome>/1ib/sql .jar <command>".

The interactive prompt for the shell is:

sql ->

The shell comprises a number of commands. All commands accept the following flags:

e -help

Displays online help for the command.

e 7
Synonymous with -help. Displays online help for the command.

The shell commands have the following general format:

1. All commands are structured like this:
sql -> conmand [ar gunment s]

2. All arguments are specified using flags that start with "-"

3. Commands and subcommands are case-insensitive and match on partial strings(prefixes)

if possible. The arguments, however, are case-sensitive.

SQL Beginner's Guide

E85380-34

Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025

Appendix A-3 of A-17

ORACLE’

connect

consistency

describe

Appendix A
Shell Utility Commands

connect -host <hostnanme> -port <port> -name <storeName>
[-tinmeout <tineout ms>]
[- consi stency <NONE_REQUI RED(default) |

ABSOLUTE | NONE_REQUI RED_NO MASTER>]
[-durability <COMW T_SYNC(default) |

COW T_NO SYNC | COW T_WRI TE_NO_SYNC>]
[-username <user>] [-security <security-file-path>]

Connects to a KVStore to perform data access functions. If the instance is secured, you may
need to provide login credentials.

consi stency [[NONE_REQUI RED | NONE_REQUI RED NO MASTER |
ABSOLUTE] [-time -pernmissible-lag <time_ns> -tineout <time_nms>]]

Configures the read consistency used for this session.

describe | desc [as json]
{table table nane [field nane[,...]] |
i ndex index_nane on tabl e name

}

Describes information about a table or index, optionally in JSON format.

Specify a fully-qualified t abl e_nane as follows:

Entry specification Description

t abl e_name Required. Specifies the full table name. Without further
qualification, this entry indicates a table created in the
default namespace (sysdefault), which you do not have to

specify.

parent-table.child-table Specifies a child table of a parent. Specify the parent
table followed by a period (.) before the child name. For
example, if the parent table is User s, specify the child
table named Mai | i ngAddr ess as
Users. Mai | i ngAddr ess.

namespace- name: t abl e- nane Specifies a table created in the non-default namespace.
Use the namespace followed by a colon (:). For example,
to reference table User s, created in the Sal es
namespace, enter table_name as Sal es: Users.

SQL Beginner's Guide

E85380-34

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix A-4 of A-17

ORACLE’

Appendix A
Shell Utility Commands

Following is the output of descri be for table ns1:t 1:

sql -> describe table nsl:t1;

=== |nformation ===

oo a ommo- R Homeen- R oo Hommmao e
oo S +

| nanespace | nanme | ttl | owner | sysTable | r2conpat | parent | children
i ndexes | description

oo a ommo- R Homeen- R oo Hommmao e
oo S +

| ns1 | t1 | | | N | N

| | |

oo a ommo- R Homeen- R oo Hommmao e
oo S +

=== Fields ===

oo - R oo - oo e
SR +

| id]| name | type | nullable | default | shardKey | primaryKey
identity

oo - R oo - oo e
SR +

| 1] id | Integer | N | NullValue | Y | Y

| |

oo - R oo - oo e
SR +

| 2] name | String | Y | NullVal ue

| |

oo - R oo - oo e
SR +
sql ->

This example shows using descri be as j son for the same table:

sql -> describe as json table nsl:t1

{
"json_version" @ 1,
"type" : "table",
“pane" @ "t1"
"namespace" : "nsl",
"shardKey" : ["id"],
"primaryKey" : ["id"],
"fields" : [{
"name" : "id",
"type" : "INTEGER',
"nullable" : false
"default" : nul
b A
"name" : "name"
"type" : "STRING',
"null able" : true,
"default" : nul
]
}

SQL Beginner's Guide

E85380-34

Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix A-5 of A-17

ORACLE Appendix A
Shell Utility Commands

durability

durability [[COMM T_WRI TE_NO SYNC | COWMM T_SYNC |

COW T_NO SYNC] | [-master-sync <sync-policy> -replica-sync <sync-policy>
-replica-ask <ack-policy>]] <sync-policy> SYNC, NO SYNC, WRI TE_NO SYNC
<ack-policy> ALL, NONE, SIMPLE_MAJORITY

Configures the write durability used for this session.
exit

exit | quit

Exits the interactive command shell.

help

hel p [command)]

Displays help message for all shell commands and sql command.

history

history [-last <n>] [-from<n>] [-to <n>]

Displays command history. By default all history is displayed. Optional flags are used to choose
ranges for display.

import
inport -table table_nane -file file_name [JSON | CSV]

Imports records from the specified file into table t abl e_nare.

Specify a fully-qualified t abl e_name as follows:

Entry specification Description

t abl e_name Required. Specifies the full table name. Without further
qualification, this entry indicates a table created in the
default namespace (sysdefault), which you do not have to
specify.

parent-table.child-table Specifies a child table of a parent. Specify the parent
table followed by a period (.) before the child name. For
example, if the parent table is User s, specify the child
table named Mai | i ngAddr ess as
Users. Mai | i ngAddr ess.

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix A-6 of A-17

ORACLE

load

Appendix A
Shell Utility Commands

Entry specification Description

namespace- name: t abl e- nane Specifies a table created in the non-default namespace.
Use the namespace followed by a colon (:). For example,
to reference table User s, created in the Sal es
namespace, enter table_name as Sal es: Users.

Use -t abl e to specify the name of a table into which the records are loaded. The alternative
way to specify the table is to add the table specification "Table: t abl e_name" before its records
in the file.

For example, this file contains the records to insert into two tables, users and emi | :

Tabl e: users
<records of users>

Table: emuils
<record of enmil s>

The imported records can be either in JSON or CSV format. If you do not specify the format,
JSON is assumed.

load -file <path to file>

Load the named file and interpret its contents as a script of commands to be executed. If any
command in the script fails execution will end.

For example, suppose the following commands are collected in the script file t est . sql :

Begin Script

load -file test.ddl

inport -table users -file users.json
End Script

Where the file t est . ddl would contain content like this:

DROP TABLE | F EXI STS users;
CREATE TABLE users(id INTEGER, firstnane STRING |astnane STRI NG
age I NTECER, primry key (id));

And the file users. j son would contain content like this:

{"id":1,"firstname": "Dean","| ast nane":"Morrison", "age": 51}

{"id":2,"firstname": "l dona", "l ast name": " Roman", "age": 36}
{"id":3,"firstname": "Bruno", "l ast name": "Nunez", "age": 49}

SQL Beginner's Guide

E85380-34

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix A-7 of A-17

ORACLE

mode

Then, the script can be run by using the | oad command in the shell:

> java -jar KVHOWE lib/sql.jar -helper-hosts node01: 5000 \
-store kvstore

sql-> load -file ./test.sql

Statenent conpl eted successful ly.

Statenent conpl eted successful ly.

Loaded 3 rows to users.

mode [COLUWMN | LINE | JSON [-pretty] | CSV]

Sets the output mode of query results. The default value is JSON.

For example, a table shown in COLUMN mode:

sql -> mode col um;
sql -> SELECT * from users;

P e e P +
| id | firstname | lastname | age |
P e e P +
8	Len	Aguirre	42
10	Montana	Maldonado	40
24	Chandler	Oneal	25
30	Pascale	Mdonald	35
34	Xanthus	Jensen	55
35] Usula	Dudl ey	32	
39] Alan	Chang	40	
6	Lionel	Church	30
25	Alyssa	Guerrero	43
33	Gannon	Bray	24
48	Rampna	Bass	43
76	Maxwell	Ml eod	26
82	Regina	Tillmn	58
96	lola	Herring	31
100	Keane	Sherman	23
P e e P +

100 rows returned

Empty strings are displayed as an empty cell.

sql -> nmode col um;
sql -> SELECT * fromtabl where id = 1;

R Fome e +
| id| sl | s2| s3 |
R Fome e +
| 1] NULL | | NULL |
R Fome e +

1 row returned

SQL Beginner's Guide

E85380-34

Copyright © 2011, 2025, Oracle and/or its affiliates.

Appendix A
Shell Utility Commands

October 12, 2025
Appendix A-8 of A-17

ORACLE

Appendix A

Shell Utility Commands

For nested tables, identation is used to indicate the nesting under column mode:

sql -> SELECT * from nested

Fomme oo U +
| id | nane | details |
Fomme oo U +
| 1| one | address |
| | | city | Waitakere |
| | | country | French Guiana

| | | zi pcode | 7229 |
| | | attributes |
| | | col or | blue

| | | price | expensive

| | | si ze | large |
| | | phone | [(08)2435-0742, (09)8083-8862, (08)0742-2526]
Fomme oo U +
3	three	address	
		city	Viddal ba
		country	Bhutan
		zi pcode	280071
		attributes	
		col or	blue

| | | price | cheap

| | | si ze | small

| | | phone | [(08)5361-2051, (03)5502-9721, (09)7962-8693]
Fomme oo U +

For example, a table shown in LINE mode, where the result is displayed vertically and one
value is shown per line:

sgl-> nmode lin
sql -> SELECT *

|
|
| Iastnane
|

+ —— — — +

N
%)
—_
>
QD
3
+ —— — — +

S +
| id |
| firstnane |
| Iastnane

SQL Beginner's Guide

E85380-34

e
from users;

Len

42

10 |
Montana |
Mal donado |
40 |

24 |
Chandl er |
Oneal |

Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix A-9 of A-17

ORACLE

100 rows returned

Just as in COLUMN mode, empty strings are displayed as an empty cell:

sql -> node |ine;
sql -> SELECT * fromtabl where id = 1,

> Row 1

S - S - +
id	1
s1	NULL
s2	
s3	NULL
S - S - +

1 row returned

For example, a table shown in JSON mode:

sgl -> node json

sql -> SELECT * from users
{"id":8,"firstname":"Len", "l astname": "Aguirre", "age": 42}
{"id":10,"firstnane": "Mntana", "l ast name": " Mal donado", "age": 40}
{"id":24,"firstnane": " Chandl er","| ast nane": " Oneal ", "age": 25}
{"id":30,"firstnane":"Pascal e", "l ast name": "Mdonal d", "age": 35}
{"id":34,"firstnane":" Xant hus", "l ast name": " Jensen", "age": 55}
{"id":35"firstnane":"Ursul a", "l astnane": "Dudl ey", "age": 32}
{"id":39,"firstnane":"Al an","| ast name": " Chang", "age": 40}
{"id":6,"firstname": "Lionel", "l astname":" Church", "age": 30}
{"id":25"firstnane": " Al yssa", "l astname": " Querrero", "age": 43}
{"id":33,"firstnane":"Gnnon", "l astnane": "Bray", "age": 24}
{"id":48,"firstnane":"Ranona", "l ast nane": "Bass", "age": 43}
{"id":76,"firstnanme":"Maxwel | ", "l ast name": "Ml eod", "age": 26}
{"id":82,"firstnane":"Regina","lastnane": "Ti || man", "age": 58}
{"id":96,"firstnane":"lola","lastname": "Herring", "age": 31}
{"id":100,"firstname":"Keane", "l ast nane": " Sher man", "age": 23}
{"id":3,"firstname": "Bruno", "l ast name": "Nunez", "age": 49}
{"id":14,"firstnane": " Thomas", "l ast nane": "Wl | ace", "age": 48}
{"id":41,"firstname":"Vivien", "l astnane": "Hahn", "age": 47}

100 rows returned

Empty strings are displayed as ™.

sql -> node j son;

sql -> SELECT * fromtabl where id = 1,
Ili dll : 1’ "Sl" : nul | , n 52" : n Il7 n 53" : n NULL!I}

1 row returned

SQL Beginner's Guide

E85380-34

Copyright © 2011, 2025, Oracle and/or its affiliates.

Appendix A
Shell Utility Commands

October 12, 2025
Appendix A-10 of A-17

ORACLE

output

page

Finally, a table shown in CSV mode:

sql -> node csv;

sql -> SELECT * from users;
8,Len, Aguirre, 42

10, Mont ana, Mal donado, 40
24, Chandl er, Oneal , 25
30, Pascal e, Mcdonal d, 35
34, Xant hus, Jensen, 55
35, Ursul a, Dudl ey, 32

39, Al an, Chang, 40

6, Li onel , Church, 30

25, Al yssa, Querrero, 43
33, Gannon, Bray, 24

48, Ranona, Bass, 43

76, Maxwel |, Ml eod, 26
82, Regi na, Ti | | man, 58
96,10l a, Herring, 31

100, Keane, Sher man, 23

3, Bruno, Nunez, 49

14, Thonas, Wl | ace, 48
41, Vivi en, Hahn, 47

100 rows returned

Like in JSON mode, empty strings are displayed as

sgl -> node csv;

sql -> SELECT * fromtabl where id = 1;

1, NULL, "", " NULL"

1 row returned

@® Note

Appendix A
Shell Utility Commands

Only rows that contain simple type values can be displayed in CSV format. Nested

values are not supported.

output [stdout | file]

Enables or disables output of query results to a file. If no argument is specified, it shows the

current output.

page [on | <n> | off]

SQL Beginner's Guide

E85380-34

Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix A-11 of A-17

ORACLE

show faults

show ddl

Appendix A
Shell Utility Commands

Turns query output paging on or off. If specified, n is used as the page height.

If nis O, or "on" is specified, the default page height is used. Setting n to "off" turns paging off.

show faults [-last] [-comand <index>]

Encapsulates commands that display the state of the store and its components.

show ddl <t abl e>

The show ddl query retrieves the DDL statement for a specified table. If the table has indexes,
the statement returns the DDLs for the table and the indexes.

Example : Fetch the DDL for a specified table.

The following statement fetches the DDL for the Baggagel nf o table.

show ddl Baggagel nf o;

Output:

CREATE TABLE | F NOT EXI STS Baggagel nfo (ticketNo LONG full Name STRI NG
gender STRI NG
contact Phone STRING confNo STRING baglnfo JSON, PRI MARY
KEY(SHARD(t i cket No)))

In the following example, the fi xedschenma_cont act index exists in the Baggagel nf o table. The
statement retrieves the DDLs for the Baggagel nf o table and fi xedschenma_cont act index on
the table.

show ddl Baggagel nfo;

Output:

CREATE TABLE | F NOT EXI STS Baggagelnfo (ticketNo LONG fullName STRING
gender STRI NG
contact Phone STRING confNo STRING baglnfo JSON, PRI MARY
KEY(SHARD(ti cket No))) CREATE | NDEX | F NOT EXI STS fi xedschema_contact ON
Baggagel nf o(cont act Phone)

show indexes

show i ndexes_statement ::= SHOW[AS JSON] | NDEXES ON tabl e _nane

SQL Beginner's Guide

E85380-34

October 12, 2025

Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix A-12 of A-17

ORACLE Appendix A
Shell Utility Commands

The show i ndexes statement provides the list of indexes present on a specified table. The
parameter AS JSONis optional and can be specified if you want the output to be in JISON
format.

Example 1: List indexes on the specified table

The following statement lists the indexes present on the user s2 table.

SHOW | NDEXES ON user s2;
i ndexes
i dx1

Example 2: List indexes on the specified table in JSON format

The following statement lists the indexes present on the user s2 table in JSON format.

SHOW AS JSON | NDEXES ON users2;
{"indexes" :

["idx1"]
}

show namespaces

show [AS JSON] nanespaces

Shows a list of all namespaces in the system.

For example:

sgl -> show nanespaces
nanespaces
nsl
sysdef aul t
sgl -> show as j son namespaces
{"namespaces" : ["nsl","sysdefault"]}

show query

show query <stat enent >

Displays the query plan for a query.

For example:

sql -> show query SELECT * from Users;
RECV([6], O, 1, 2, 3, 4)
[
DistributionKind : ALL_PARTI TI ONS,
Nunber of Registers :7,
Number of Iterators :12,
SFW[6], 0, 1, 2, 3, 4)

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix A-13 of A-17

ORACLE

Shell Utility Commands

FROM
BASE TABLE([5], 0, 1, 2, 3, 4)
[Users via primary index] as $$Users

SELECT:

*

show regions

show roles

show tables

show regi ons_statement ::= SHOW[AS JSON] REG ONS

The show regi ons statement provides the list of regions present in a multi-region Oracle

NoSQL Database setup. The parameter AS JSONis optional and can be specified if you want

the output to be in JSON format.

Example 1: Fetching all regions in a multi-region database setup

SHOW REG ONS,
regi ons
nmy_regionl (renote, active)
nmy_region2 (renote, active)

Example 2: Fetching all regions in a multi-region database setup in JSON format

SHOW AS JSON REG ONS;

{"regions" : |
{"name" : "ny_regionl", "type" : "renote", "state
{"name" : "ny_region2", "type" : "renote", "state

"active"},
"active"}

1}

show [as json] roles | role <role_nane>

Shows either all the roles currently defined for the store, or the named role.

show [as json] {tables | table table_name}

Shows either all tables in the data store, or one specific table, table_name.

Specify a fully-qualified t abl e_name as follows:

SQL Beginner's Guide

E85380-34

Copyright © 2011, 2025, Oracle and/or its affiliates.

October 12, 2025
Appendix A-14 of A-17

ORACLE Appendix A
Shell Utility Commands

Entry specification Description

t abl e_name Required. Specifies the full table name. Without further
qualification, this entry indicates a table created in the
default namespace (sysdefault), which you do not have to
specify.

parent-table.child-table Specifies a child table of a parent. Specify the parent
table followed by a period (.) before the child name. For
example, if the parent table is User s, specify the child
table named Mai | i ngAddr ess as
Users. Mai | i ngAddr ess.

namespace- name: t abl e- nane Specifies a table created in the non-default namespace.
Use the namespace followed by a colon (:). For example,
to reference table User s, created in the Sal es
namespace, enter table_name as Sal es: Users.

The following example indicates how to list all tables, or just one table. The empty
t abl eHi erar chy field indicates that table t 1 was created in the default namespace:

sql -> show tabl es

tabl es
SYS$I ndexSt at sLease
SYS$PartitionSt at sLease
SYS$SGAt t ri but esTabl e
SYS$Tabl eSt at sl ndex
SYS$Tabl eSt at sPartition
ns10:t 10
par ent
parent.child
sgl
tl

sql-> show table t1
t abl eHi erar chy
tl

To show a table created in a namespace, as shown in the list of all tables, fully-qualify
t abl e_nane as follows. In this case, t abl eH er ar chy field lists namespace ns1 in which table
t 1 was created. The example also shows how the table is presented as json:

sgl -> show tabl es;

tabl es
SYS$I ndexSt at sLease
SYS$PartitionSt at sLease
SYS$SGAt t ri but esTabl e
SYS$Tabl eSt at sl ndex
SYS$Tabl eSt at sPartition
nsl: foo
nsl:tl

sql -> show table nsl:t1;
t abl eH erar chy(nanespace nsl)
tl
sql -> show as json table nsl:t1;

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix A-15 of A-17

ORACLE Appendix A
Shell Utility Commands

{"namespace": "nsl"
"tabl eHi erarchy" : ["t1"]}

show users

show [as json] users | user <user_nane>

Shows either all the users currently existing in the store, or the named user.

timeout
ti meout [<tineout ms>]

The ti meout command configures or displays the request timeout for this session in
milliseconds(ms).

The request timeout is the amount of time that the client will wait to get a response to a request
that it has sent.

If the optional ti neout _ns attribute is specified, then the request timeout is set to the specified
value.

If the optional ti neout _ns attribute is not specified, then the current value of request timeout is
displayed.

Example A-1 timeout

The following example gets the current value of the request timeout.
sgl -> timeout

Request timeout used: 5,000ns

Example A-2 timeout

The following example set the request timeout value to 20000 milliseconds (20 seconds).

sql -> tineout 20000
Request timeout used: 20, 000ns

@® Note

A shell command may require multiple requests to a server or servers. The timeout
applies to each such individual request. A shell command sends out multiple requests
and has to wait for each of them to return before the command is finished. As a result,
a shell command may have to wait for longer time than the specified timeout and this
total wait could be greater than the wait time of the individual request.

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix A-16 of A-17

ORACLE Appendix A
Shell Utility Commands

timer
timer [on | off]
Turns the measurement and display of execution time for commands on or off. If not specified,
it shows the current state of ti mer . For example:
sgl-> tinmer on
sql -> SELECT * fromusers where id <= 10 ;
oo R +oemm +
| id | firstname | lastname | age |
oo R +oemm +
8] Len	Aguirre	42	
10	Montana	Maldonado	40
6	Lionel	Church	30
3] Bruno	Nunez	49	
2] ldona	Roman	36	
4	Cooper	Morgan	39
7	Hanae	Chapman	50
9 Julie	Taylor	38	
1] Dean	Morrison	51	
5	Troy	Stuart	30
oo R +oemm +
10 rows returned
Time: Osec 98ns
verbose
verbose [on | off]
Toggles or sets the global verbosity setting. This property can also be set on a per-command
basis using the - ver bose flag.
Version

version

Display client version information.

SQL Beginner's Guide
E85380-34 October 12, 2025
Copyright © 2011, 2025, Oracle and/or its affiliates. Appendix A-17 of A-17

	Contents
	Preface
	Conventions Used in This Book

	1 Introduction to SQL for Oracle NoSQL Database
	2 Working with Namesapce
	Managing Namespace
	Namespace Resolution
	Namespace Privileges and Authorization

	3 Simple SELECT Queries
	SQLBasicExamples Script
	Starting the SQL Shell
	Choosing column data
	Substituting column names for a query
	Computing values for new columns
	Identifying tables and their columns
	Filtering Results
	Grouping Results
	Ordering Results
	Limiting and Offsetting Results
	Using External Variables

	4 Working with complex data
	SQLAdvancedExamples Script
	Working with Timestamps
	Working With Arrays
	Working with Records
	Using ORDER BY to Sort Results
	Working With Maps
	Using the size() Function

	5 Working with JSON
	SQLJSONExamples Script
	Basic Queries
	Using WHERE EXISTS with JSON
	Seeking NULLS in Arrays
	Examining Data Types JSON Columns
	Using Map Steps with JSON Data
	Casting Datatypes
	Using Searched Case

	6 Working with Expressions
	Primary Expressions

	7 Working With GeoJSON Data
	Geodetic Coordinates
	GeoJSON Data Definitions
	Searching GeoJSON Data

	8 Working With Indexes
	Basic Indexing
	Using Index Hints
	Complex Indexes
	Multi-Key Indexes
	Indexing JSON Data

	9 Working with Table Rows
	Adding Table Rows using INSERT and UPSERT
	Modifying Table Rows using UPDATE Statements
	Example Data
	Changing Field Values
	Modifying Array Values
	Adding Elements to an Array
	Changing an Existing Element in an Array
	Removing Elements from Arrays

	Modifying Map Values
	Removing Elements from a Map
	Adding Elements to a Map
	Updating Existing Map Elements

	Managing Time to Live Values
	Avoiding the Read-Modify-Write Cycle

	10 Working with Multi-Region Setup
	Managing Regions
	Using MR_COUNTERs

	A Introduction to the SQL for Oracle NoSQL Database Shell
	Running the SQL Shell
	Configuring the shell
	Shell Utility Commands
	connect
	consistency
	describe
	durability
	exit
	help
	history
	import
	load
	mode
	output
	page
	show faults
	show ddl
	show indexes
	show namespaces
	show query
	show regions
	show roles
	show tables
	show users
	timeout
	timer
	verbose
	version

