
Oracle® TimesTen In-Memory
Database
C Developer's Guide

Release 22.1
F35396-05
February 2023

Oracle TimesTen In-Memory Database C Developer's Guide, Release 22.1

F35396-05

Copyright © 1996, 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 What's New

New features in Release 22.1.1.1.0 xv

1 C Development Environment

TimesTen Environment Variable Settings 1-1

Introduction to the TimesTen Driver Manager 1-1

Linking Options 1-2

Considerations for Linking Without an ODBC Driver Manager 1-2

Considerations for Linking With a Generic ODBC Driver Manager 1-3

Considerations for Linking With the TimesTen Driver Manager 1-3

Compiling and Linking Applications 1-4

Compiling and Linking Applications on Windows 1-4

Compiling and Linking Applications Directly With the TimesTen Drivers on Linux or
UNIX 1-6

Compiling and Linking Applications With the TimesTen Driver Manager on Linux or
UNIX 1-7

About TimesTen Quick Start and Sample Applications 1-8

2 Working With TimesTen Databases in ODBC

Management of TimesTen Database Connections 2-1

Overview of TimesTen Connections 2-2

SQLConnect, SQLDriverConnect, SQLAllocConnect, SQLDisconnect Functions 2-2

Use of the Default DSN 2-3

Connecting To and Disconnecting From a Database 2-4

Setting Connection Attributes Programmatically 2-7

Database Operations in ODBC 2-8

ODBC Functions to Execute SQL Statements 2-8

Steps to Prepare and Execute Queries and Work With Cursors in ODBC 2-9

Creating a Table in ODBC 2-9

Preparing and Executing a Query in ODBC 2-10

Committing Changes to the Database in ODBC 2-11

iii

TimesTen Features and Operations in Your Application 2-12

TimesTen Include Files 2-13

TimesTen Deferred Prepare 2-14

Prefetching Multiple Rows of Data 2-15

Optimizing Query Performance 2-15

Parameter Binding and Statement Execution 2-16

SQLBindParameter Function 2-17

Parameter Type Assignments and Type Conversions 2-18

ODBC SQL to TimesTen SQL or PL/SQL Type Mappings 2-19

Binding Input Parameters 2-21

Binding Output Parameters 2-21

Binding Input/Output Parameters 2-22

Binding of Duplicate Parameters in SQL Statements 2-23

Binding of Duplicate Parameters in PL/SQL Statements 2-24

Considerations for Floating Point Data 2-25

Using SQL_WCHAR and SQL_WVARCHAR With a Driver Manager 2-25

Working With REF CURSORs 2-25

Working With DML Returning (RETURNING INTO Clause) 2-27

Working With rowids 2-29

Large Objects (LOBs) 2-29

About LOBs 2-30

Differences Between TimesTen LOBs and Oracle Database LOBs 2-30

LOB Programmatic Approaches and Programming Interfaces 2-30

Using the LOB Simple Data Interface in ODBC 2-31

Using the LOB Piecewise Data Interface in ODBC 2-31

Passthrough LOBs in ODBC 2-32

Using CALL to Execute Procedures and Functions 2-32

Timeouts and Thresholds for Executing SQL Statements 2-33

Setting a Timeout Duration for SQL Statements 2-34

Setting a Threshold Duration for SQL Statements 2-34

Configuring the Result Set Buffer Size in Client/Server Using ODBC 2-35

Features for Cache 2-36

Setting Temporary Passthrough Level With the ttOptSetFlag Built-In Procedure 2-36

Determining Passthrough Status 2-36

Retrieving Information About Cache Groups 2-37

Error Handling 2-37

Checking for Errors 2-37

Error and Warning Levels 2-38

Fatal Errors 2-38

Non-Fatal Errors 2-39

Warnings 2-39

iv

Recovery After Fatal Errors 2-39

Transient Errors (ODBC) 2-40

ODBC Support for Automatic Client Failover 2-40

About Automatic Client Failover 2-41

Features and Functionality of ODBC Support for Automatic Client Failover 2-42

Configuration of Automatic Client Failover 2-43

Implementing and Registering an ODBC Failover Callback Function 2-44

ODBC Application Action in the Event of Failover 2-48

Application Steps for Failover 2-48

Implementing Failover Delay and Retry Settings 2-48

Client Routing API for TimesTen Scaleout 2-54

Functionality of the Client Routing API 2-54

Creating a Grid Map and Distribution 2-54

Functions for the Grid Map and Distribution 2-55

How to Create the Grid Map and Distribution 2-56

Distribution Key Values 2-56

Function for Distribution Key Values 2-57

Setting Distribution Key Values 2-57

Getting the Element Location Given a Set of Key Values 2-57

Function for Element IDs 2-57

Getting the Element IDs 2-58

Function for Replica Set ID 2-59

Getting the Replica Set ID 2-59

Client Routing API With Functions in Use 2-59

Supported Data Types 2-60

Restrictions 2-61

Failure Modes 2-61

3 TimesTen Support for OCI

Overview of TimesTen OCI Support 3-1

Overview of OCI 3-1

TimesTen OCI Basics 3-2

OCI in the TimesTen Architecture 3-2

Globalization Support in TimesTen OCI 3-3

About TimesTen Support for Character Sets 3-3

Specifying a Character Set 3-3

Additional Globalization Features 3-4

TimesTen Restrictions and Limitations 3-5

Oracle Database Features Not Supported by TimesTen 3-5

TimesTen OCI Limitations 3-5

v

Getting Started With TimesTen OCI 3-6

Environment Variables for TimesTen OCI 3-6

About Compiling and Linking OCI Applications 3-8

Connecting to a TimesTen Database From OCI 3-8

About Configuring OCI Connections in TimesTen Scaleout 3-9

Using the tnsnames Naming Method to Connect 3-9

Using an Easy Connect String to Connect 3-10

Configuring Whether to Use tnsnames.ora or Easy Connect 3-11

OCI Error Handling 3-12

OCI Error Reporting 3-12

Transient Errors (OCI) 3-12

Signal Handling and Diagnostic Framework Considerations 3-13

TimesTen Features With OCI 3-13

TimesTen Deferred Prepare 3-14

Parameter Binding Features in TimesTen OCI 3-14

Binding Duplicate Parameters in TimesTen OCI 3-14

Binding Associative Arrays in TimesTen OCI 3-15

Using Cache Operations With TimesTen OCI 3-19

Specifying the Oracle Database Password in OCI for Cache 3-19

Determining the Number of Cache Instances Affected by an Action 3-20

LOBs in TimesTen OCI 3-20

LOB Locators in OCI 3-21

Temporary LOBs in OCI 3-22

Differences Between TimesTen LOBs and Oracle Database LOBs in OCI 3-22

Using the LOB Simple Data Interface in OCI 3-22

About Using the LOB Locator Interface in OCI 3-24

Creating a Temporary LOB in OCI 3-24

Accessing the Locator of a Persistent LOB in OCI 3-25

Reading and Writing LOB Data Using the OCI LOB Locator Interface 3-27

OCI Client-Side Buffering 3-28

LOB Prefetching in OCI 3-28

Passthrough LOBs in OCI 3-29

Configuring the Result Set Buffer Size in Client/Server Using OCI 3-31

Use of PL/SQL in OCI to Call a TimesTen Built-In Procedure 3-31

TimesTen OCI Support Reference 3-32

Supported OCI Calls 3-32

Supported Handles and Attributes 3-37

Supported Descriptors 3-39

Supported OCI-Defined Constants 3-39

Supported Parameter Attributes 3-41

vi

4 TimesTen Support for Pro*C/C++

Overview of TimesTen Support for Pro*C/C++ 4-1

Overview of the Oracle Pro*C/C++ Precompiler 4-1

TimesTen OCI Support With Respect to Pro*C/C++ 4-2

Restrictions in TimesTen Support for Pro*C/C++ 4-2

Embedded SQL Support and Restrictions 4-2

Semantic Checking Restrictions 4-2

Embedded PL/SQL Restrictions 4-3

Transaction Restrictions 4-3

Connection Restrictions 4-3

Summary of Unsupported or Restricted Executable Commands and Clauses 4-4

Getting Started With TimesTen Pro*C/C++ 4-5

Environment and Configuration for TimesTen Pro*C/C++ 4-5

Building a Pro*C/C++ Application 4-5

Connecting to a TimesTen Database From Pro*C/C++ 4-6

Connection Syntax and Parameters 4-6

Using tnsnames or Easy Connect 4-7

Specifying the Oracle Database Password in Pro*C/C++ for Cache 4-7

Error Reporting and Handling 4-8

TimesTen Features With Pro*C/C++ 4-9

Associative Array Bindings in TimesTen Pro*C/C++ 4-9

LOBs in TimesTen Pro*C/C++ 4-9

Using the LOB Simple Data Interface in Pro*C/C++ 4-10

Using the LOB Locator Interface in Pro*C/C++ 4-11

TimesTen Pro*C/C++ Precompiler Options 4-14

Precompiler Option Support 4-14

Setting Precompiler Options 4-16

5 XLA and TimesTen Event Management

Overview of TimesTen XLA 5-1

XLA Basics 5-2

How XLA Reads Records From the Transaction Log 5-2

About XLA and Materialized Views 5-3

About XLA Bookmarks 5-4

XLA Log Record Identifiers 5-4

Creating or Reusing a Bookmark 5-4

How Bookmarks Work 5-5

Replicated Bookmarks 5-6

XLA Bookmarks and Transaction Log Holds 5-7

XLA Data Types 5-7

vii

XLA System Privilege 5-9

XLA Limitations 5-9

About the XLA Sample Application 5-10

Writing an XLA Event-Handler Application 5-10

Obtaining a Database Connection Handle 5-11

Initializing XLA and Obtaining an XLA Handle 5-12

Specifying Which Tables to Monitor for Updates 5-12

Retrieving Update Records From the Transaction Log 5-14

Inspecting Record Headers and Locating Row Addresses 5-17

Inspecting Column Data 5-19

Data Returned in an Update Record 5-19

Obtaining Column Descriptions 5-20

Reading Fixed-Length Column Data 5-21

Reading NOT INLINE Variable-Length Column Data 5-22

Null-Terminating Returned Strings 5-24

Converting Complex Data Types 5-25

Detecting Null Values 5-26

XLA Data Type Conversion Functions 5-26

Putting It All Together With a PrintColValues() Function 5-27

XLA Error Handling 5-31

XLA Errors and Codes 5-31

How to Handle XLA Errors 5-31

Dropping a Table That Has an XLA Bookmark 5-33

Deleting Bookmarks 5-33

Terminating an XLA Application 5-34

Using XLA as a Replication Mechanism 5-36

About XLA as a Replication Mechanism 5-37

Checking Table Compatibility Between Databases 5-37

Checking Table and Column Descriptions 5-38

Checking Table and Column Versions 5-38

Replicating Updates Between Databases 5-39

Handling Timeout and Deadlock Errors 5-40

Checking for Update Conflicts 5-41

Replicating Updates to a Non-TimesTen Database 5-41

Other XLA Features 5-42

Changing the Location of a Bookmark 5-42

Passing Application Context 5-42

6 Distributed Transaction Processing: XA

Overview of XA 6-1

viii

X/Open DTP Model 6-1

Two-Phase Commit 6-2

XA in TimesTen 6-3

Introduction to the TimesTen XA Implementation and Limitations 6-3

TimesTen Database Requirements for XA 6-3

Global Transaction Recovery in TimesTen 6-4

Considerations in Using Standard XA Functions With TimesTen 6-4

xa_open() Function 6-4

xa_close() Function 6-5

Transaction Id (XID) Parameter 6-5

TimesTen tt_xa_context Function to Obtain ODBC Handle From XA Connection 6-5

tt_xa_context Syntax and Parameter Descriptions 6-5

Using tt_xa_context 6-6

Considerations in Calling ODBC Functions Over XA Connections in TimesTen 6-7

Autocommit 6-7

Local Transaction COMMIT and ROLLBACK 6-7

Close Open Cursors 6-7

XA Resource Manager Switch 6-7

About the Resource Manager Switch 6-8

XA Switch xa_switch_t 6-8

TimesTen Switch tt_xa_switch 6-9

XA Error Handling in TimesTen 6-9

XA Support Through the Windows ODBC Driver Manager 6-9

Issues to Consider With the Driver Manager 6-9

Linking to the TimesTen ODBC XA Driver Manager Extension Library 6-10

Configuring Tuxedo to Use TimesTen XA 6-10

Introductory Notes and Cautions 6-10

Update the $TUXDIR/udataobj/RM File 6-11

Build the Tuxedo Transaction Manager Server 6-11

Update the GROUPS Section in the UBBCONFIG File 6-11

Compile the Servers 6-12

7 ODBC Application Tuning

Avoid Generic Driver Managers If Possible 7-1

Use Arrays of Parameters for Batch Execution 7-1

Avoid Excessive Binds 7-2

Avoid SQLGetData 7-2

Avoid Data Type Conversions 7-3

Bulk Fetch Rows of TimesTen Data 7-3

ix

Optimize Queries 7-3

8 TimesTen Utility API

Overview of the TimesTen Utility Library 8-1

About the Utility Library 8-1

Requirements for the Utility Library 8-1

Utility Function Return Codes 8-1

ttBackup 8-2

ttDestroyDataStore 8-5

ttDestroyDataStoreForce 8-7

ttRamGrace 8-8

ttRamLoad 8-9

ttRamPolicy 8-10

ttRamUnload 8-11

ttRepDuplicateEx 8-12

ttRestore 8-16

ttUtilAllocEnv 8-18

ttUtilFreeEnv 8-19

ttUtilGetError 8-20

ttUtilGetErrorCount 8-22

ttXactIdRollback 8-24

9 XLA Reference

Overview of XLA Functions 9-1

XLA Function Return Codes 9-1

XLA Function Parameter Types (Input, Output, Input/Output) 9-2

Results Output by XLA Functions 9-2

XLA Function Required Privileges 9-2

Summary of XLA Functions by Category 9-2

XLA Core Functions 9-3

XLA Data Type Conversion Functions 9-4

XLA Replication Functions 9-4

XLA Function Reference 9-5

ttXlaAcknowledge 9-5

ttXlaClose 9-6

ttXlaConvertCharType 9-7

ttXlaDateToODBCCType 9-8

ttXlaDecimalToCString 9-8

ttXlaDeleteBookmark 9-9

x

ttXlaError 9-10

ttXlaErrorRestart 9-12

ttXlaGetColumnInfo 9-12

ttXlaGetLSN 9-14

ttXlaGetTableInfo 9-15

ttXlaGetVersion 9-16

ttXlaNextUpdate 9-17

ttXlaNextUpdateWait 9-18

ttXlaNumberToBigInt 9-19

ttXlaNumberToCString 9-20

ttXlaNumberToDouble 9-20

ttXlaNumberToInt 9-21

ttXlaNumberToSmallInt 9-22

ttXlaNumberToTinyInt 9-22

ttXlaNumberToUInt 9-23

ttXlaOraDateToODBCTimeStamp 9-23

ttXlaOraTimeStampToODBCTimeStamp 9-24

ttXlaPersistOpen 9-25

ttXlaRowidToCString 9-27

ttXlaSetLSN 9-27

ttXlaSetVersion 9-28

ttXlaTableByName 9-29

ttXlaTableStatus 9-30

ttXlaTableVersionVerify 9-32

ttXlaTimeToODBCCType 9-33

ttXlaTimeStampToODBCCType 9-34

ttXlaVersionColumnInfo 9-35

ttXlaVersionCompare 9-36

ttXlaVersionTableInfo 9-37

XLA Replication Function Reference 9-38

ttXlaApply 9-38

ttXlaCommit 9-40

ttXlaGenerateSQL 9-41

ttXlaLookup 9-42

ttXlaRollback 9-43

ttXlaTableCheck 9-44

C Data Structures Used by XLA 9-45

ttXlaNodeHdr_t 9-46

ttXlaUpdateDesc_t 9-46

Special Update Data Formats 9-50

Locating the Row Data Following a ttXlaUpdateDesc_t Header 9-54

xi

ttXlaVersion_t 9-55

ttXlaTblDesc_t 9-55

ttXlaTblVerDesc_t 9-56

ttXlaColDesc_t 9-56

tt_LSN_t 9-59

tt_XlaLsn_t 9-59

10

TimesTen ODBC Support

TimesTen ODBC 3.5 Support 10-1

Using ODBC 3.5 With TimesTen 10-2

Client/Server Cross-Release Restrictions With ODBC 3.5 10-2

ODBC 3.5 New and Replacement Function Support 10-3

ODBC 3.5 Data Type Support Notes 10-4

Environment Attribute Support for ODBC 3.5 10-5

Attribute Support for ODBC 3.5 SQLSetConnectAttr and SQLGetConnectAttr 10-5

Attribute Support for ODBC 3.5 SQLSetStmtAttr and SQLGetStmtAttr 10-7

Attribute Support for ODBC 3.5 SQLGetEnvAttr 10-9

TimesTen Field Identifiers for ODBC 3.5 SQLColAttribute 10-10

Information Type Support for ODBC 3.5 SQLGetInfo 10-11

TimesTen SQL Keywords for ODBC 3.5 10-17

TimesTen ODBC 2.5 Support 10-17

Using ODBC 2.5 With TimesTen 10-17

ODBC 2.5 Function Support 10-18

Option Support for ODBC 2.5 SQLSetConnectOption and SQLGetConnectOption 10-21

Option Support for ODBC 2.5 SQLSetStmtOption and SQLGetStmtOption 10-22

Column Descriptor Support for ODBC 2.5 SQLColAttributes 10-23

Information Type Support for ODBC 2.5 SQLGetInfo 10-24

TimesTen SQL Keywords for ODBC 2.5 10-30

ODBC API Incompatibilities With Previous Versions of TimesTen 10-31

Overview of ODBC API Incompatibilities 10-31

ODBC 3.5 Function Signatures That Have Changed 10-32

ODBC 2.5 Function Signatures That Have Changed 10-37

ODBC Data Types That Have Changed 10-38

xii

About This Content

This document covers TimesTen support for ODBC, OCI, and Pro*C/C++.

Audience

This guide is for anyone developing or supporting applications that use TimesTen through
ODBC, OCI, or Pro*C/C++.

In addition to familiarity with the particular programming interface you use, you should be
familiar with TimesTen, SQL (Structured Query Language), and database operations.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Resources

Oracle Database documentation is available on the Oracle documentation website. This may
be especially useful for Oracle Database features that TimesTen supports but does not
attempt to fully document. In particular, the following Oracle Database guides may be of
interest.

• Oracle Call Interface Programmer's Guide

• Pro*C/C++ Programmer's Guide

• Oracle Database Globalization Support Guide

• Oracle Database Net Services Administrator's Guide

• Oracle Database SQL Language Reference

This document frequently refers to ODBC API reference documentation for further
information. This is available from Microsoft or a variety of third parties. For example:

https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/odbc-api-reference
See TimesTen ODBC Support for details of TimesTen ODBC support.

Conventions

The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

13

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/odbc-api-reference

Convention Meaning

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

14

What's New

This section summarizes new features and functionality of TimesTen Release 22.1, providing
links into the guide for more information where applicable.

New features in Release 22.1.1.1.0
• For data returned from a SELECT statement in Client/Server, the buffer size for the data

returned to the client is programmatically configurable to allow adjustments for better
performance. See "Configuring the Result Set Buffer Size in Client/Server Using ODBC"
and "Configuring the Result Set Buffer Size in Client/Server Using OCI".

• Multiple output REF CURSORs are supported. See "Working With REF CURSORs".

• The TimesTen driver manager is included in this release. See "Introduction to the
TimesTen Driver Manager".

xv

1
C Development Environment

This chapter provides information about the C development environment and related
considerations for compiling and linking TimesTen applications, including discussion of the
TimesTen driver manager.

These topics are covered:

• TimesTen Environment Variable Settings

• Introduction to the TimesTen Driver Manager

• Linking Options

• Compiling and Linking Applications

• About TimesTen Quick Start and Sample Applications

TimesTen Environment Variable Settings
There are environment variables that must be set appropriately for proper operation of
TimesTen. Scripts to set these environment variables are in the timesten_home/bin directory:
ttenv.sh and ttenv.csh for Linux and UNIX platforms (depending on your shell) and
ttenv.bat for Windows platforms.

Environment variable settings for TimesTen are discussed in Environment Variables in the
Oracle TimesTen In-Memory Database Installation, Migration, and Upgrade Guide.

Note:

• The ttenv scripts also configure access to the Oracle Instant Client, required
for OCI programming.

• To ensure proper execution of OCI and Pro*C/C++ programs to be run on
TimesTen, do not set ORACLE_HOME for OCI and Pro*C/C++ compilations (or
unset it if it was set previously).

Introduction to the TimesTen Driver Manager
This section discusses the basic concepts and features of the TimesTen driver manager
(TTDM).

TTDM is a lightweight ODBC driver manager that is designed and optimized for use with the
TimesTen database. It provides access to TimesTen-specific features, extensions, and ODBC
API support, offering 100% equivalent functionality to using the TimesTen direct driver or
client/server driver directly.

1-1

An application links directly to the TTDM library, and TTDM dynamically loads the
relevant ODBC driver libraries and passes ODBC calls from the application as needed.
TTDM allows an application to use both direct and client/server connections at the
same time.

TTDM offers these advantages over other driver managers:

• Its performance overhead is negligible.

• No source code changes or configuration changes are necessary in the
application.

TTDM fully supports the TimesTen routing API and, for direct connections, TimesTen
XLA and the TimesTen utility API. TTDM does not support XA.

To summarize:

• If you use only direct connections and have no need to use both direct and client/
server connections from the same application process, then link directly with the
TimesTen direct driver for maximum performance.

• If you need an application process to be able to use both direct and client/server
connections, then link with TTDM for maximum performance and functionality with
no application code changes.

• If you currently use a generic ODBC driver manager to enable use of both direct
and client/server connections from the same process, consider using TTDM for
improved performance and full availability of TimesTen features.

Refer to the following for information:

• Considerations for Linking With the TimesTen Driver Manager

• Compiling and Linking Applications With the TimesTen Driver Manager on Linux or
UNIX

• Attribute Support for ODBC 3.5 SQLSetConnectAttr and SQLGetConnectAttr (for
new attributes to support TTDM)

• Attribute Support for ODBC 3.5 SQLGetEnvAttr (for new attributes to support
TTDM)

Linking Options
A TimesTen application can link directly with the TimesTen ODBC direct driver or
ODBC client driver, link with a generic driver manager, or link with the TimesTen driver
manager.

• Considerations for Linking Without an ODBC Driver Manager

• Considerations for Linking With a Generic ODBC Driver Manager

• Considerations for Linking With the TimesTen Driver Manager

Considerations for Linking Without an ODBC Driver Manager
Applications to be used solely with TimesTen can link directly with either the TimesTen
ODBC direct driver or ODBC client driver, without a driver manager (or link with the
TimesTen driver manager).

Chapter 1
Linking Options

1-2

Linking without a generic driver manager avoids performance overhead and is a simple way
to access TimesTen. However, developers of applications linked without a driver manager
should be aware of the following issues.

• The application can connect only to a DSN (data source name) that uses the driver with
which it is linked. It cannot connect to a database of any other vendor, nor can it connect
to a TimesTen DSN of a different TimesTen driver. (A DSN is a logical name that identifies
a TimesTen database and the set of connection attributes used for connecting to the
database.)

• Windows ODBC tracing is not available.

• The ODBC cursor library is not available.

• Applications cannot use ODBC functions that are usually implemented by a driver
manager, such as SQLDataSources and SQLDrivers.

• Applications that use SQLCancel to close a cursor instead of SQLFreeStmt(...,
SQL_CLOSE) receive a return code of SQL_SUCCESS_WITH_INFO and a SQL state of 01S05.
This warning is intended to be used by the driver manager to manage its internal state.
Applications should treat this warning as success.

Considerations for Linking With a Generic ODBC Driver Manager
Applications that link with an ODBC driver manager can connect to any DSN that references
an ODBC driver and can even connect simultaneously to multiple DSNs that use different
ODBC drivers.

Note, however, that driver managers are not available by default on most non-Windows
platforms. In addition, using a generic driver manager may add significant synchronization
overhead to every ODBC function call and has the following limitations:

• The TimesTen option TT_PREFETCH_COUNT cannot be used with applications that link with
a driver manager. For more information on using TT_PREFETCH_COUNT, see Prefetching
Multiple Rows of Data.

• Applications cannot set or reset the TimesTen-specific TT_PREFETCH_CLOSE connection
option. See Optimizing Query Performance.

• Transaction Log API (XLA) calls cannot be used when applications are linked with a
generic driver manager.

• The ODBC C types SQL_C_BIGINT, SQL_C_TINYINT, and SQL_C_WCHAR are not supported
for an application linked with a generic driver manager when used with TimesTen. You
cannot call methods that have any of these types in their signatures.

Considerations for Linking With the TimesTen Driver Manager
This section discusses behaviors for a developer to consider when you link an application
with the TimesTen driver manager.

Limitations for ODBC driver managers noted in the preceding section, Considerations for
Linking With a Generic ODBC Driver Manager, do not apply to TTDM.

Be aware of these behaviors when you link with TTDM:

• An ODBC 3 application is required to declare the ODBC version it is using by calling
SQLSetEnvAttr to set SQL_ATTR_ODBC_VERSION to the value SQL_OV_ODBC3. TTDM detects
the ODBC version (taken to be ODBC 2.5 if there is no SQL_OV_ODBC3 setting) and

Chapter 1
Linking Options

1-3

adapts some aspects of its behavior accordingly. It also passes the SQLSetEnvAttr
call through to the underlying driver or drivers.

• The connection type (direct or client) is determined by TTDM at connection time
based on the DSN or connection string used for the connection.

• When an application makes its first call to a function in TTDM, TTDM will attempt
to dynamically load the direct driver library (libtten.so), the client library
(libttclient.so), and the utility library (libttutil.so). Loading some of these
libraries may fail depending on the TimesTen installation. For example, in a client-
only instance there is no direct mode library or utility library. TTDM marks those
features as unavailable, and if the application calls an unavailable function it will
receive an error code indicating that.

• When an application calls an ODBC function or a TimesTen API function, it initially
executes a TTDM-exported version of that function. In most cases, this TTDM stub
function performs some minimal validation checks then calls the actual TimesTen
function from the relevant TimesTen driver, passing the same parameters.
Whatever the driver function returns is passed back to the calling application.

Tip:

Be aware of the following:

• There are extensions for TTDM that can also be used by an application
to programmatically determine if it is using TTDM or if it is linked directly
with one of the TimesTen driver libraries. When any extension
documented in Attribute Support for ODBC 3.5 SQLSetConnectAttr and
SQLGetConnectAttr and Attribute Support for ODBC 3.5 SQLGetEnvAttr
is called, a return value of SQL_ERROR indicates that the application is not
using TTDM.

• TTDM does not support the driver manager functions SQLDrivers and
SQLDataSources.

Compiling and Linking Applications
There are methods for compiling and linking C applications on Windows and on Linux
or UNIX.

• Compiling and Linking Applications on Windows

• Compiling and Linking Applications Directly With the TimesTen Drivers on Linux or
UNIX

• Compiling and Linking Applications With the TimesTen Driver Manager on Linux or
UNIX

Compiling and Linking Applications on Windows
There are methods for how to compile TimesTen applications on Windows. You are not
required to specify the location of the ODBC include files. These files are included with
Microsoft Visual C++. However, to use TimesTen features you must indicate the
location of the TimesTen include files in the /I compiler option setting.
See TimesTen Include Files.

Chapter 1
Compiling and Linking Applications

1-4

Link the appropriate libraries, as follows:

• Link directly to the native Windows driver manager, odbc32.lib
• Or link directly to one of the TimesTen drivers:

– For direct mode: tten221.lib and ttdv221.lib
– For client/server mode: ttclient221.lib

Link TimesTen libraries before any other libraries.

In addition, applications must do the following:

• Include timesten.h, the TimesTen include file. This automatically includes standard
ODBC files as well. See TimesTen Include Files.

• Include TimesTen files before any other include files.

The Makefile in this example shows how to build a TimesTen application on Windows
systems. This example assumes that timesten_home\install\lib has already been added
to the LIB environment variable (which is accomplished when you execute ttenv.bat).

CFLAGS = "/Itimesten_home\install\include"
LIBSDM = ODBC32.LIB
LIBS = tten221.lib ttdv221.lib
LIBSDEBUG = tten221d.lib ttdv221d.lib
LIBSCS = ttclient221.lib

Link with the ODBC driver manager
appldm.exe:appl.obj
 $(CC) /Feappldm.exe appl.obj $(LIBSDM)

Link directly with the TimesTen
ODBC production driver
appl.exe:appl.obj
 $(CC) /Feappl.exe appl.obj\
 $(LIBS)

Link directly with the TimesTen
ODBC debug driver
appldebug.exe:appl.obj
 $(CC) /Feappldebug.exe appl.obj\
 $(LIBSDEBUG)

Link directly with the TimesTen
ODBC client driver
applcs.exe:appl.obj
 $(CC) /Feapplcs.exe appl.obj\
 $(LIBSCS)

Chapter 1
Compiling and Linking Applications

1-5

Note:

• TimesTen defaults to ODBC 3.5. To use ODBC 2.5 definitions and types,
use the compiler setting -DODBCVER=0x0250.

• On Windows, there is only one TimesTen instance per installation, and
timesten_home refers to installation_dir\instance.

• The timesten_home\install directory is a symbolic link to
installation_dir.

Compiling and Linking Applications Directly With the TimesTen Drivers
on Linux or UNIX

There are methods on how to compile TimesTen applications directly with the
TimesTen drivers on Linux or UNIX platforms.

• Compile TimesTen applications using the TimesTen header files in the include
directory of the TimesTen installation.

• Link with the TimesTen direct driver or the TimesTen client driver, each of which is
provided as a shared library.

• Link TimesTen libraries before any other libraries.

In addition, applications must do the following:

• Include timesten.h, the TimesTen include file. This automatically includes
standard ODBC files as well. See TimesTen Include Files.

• Include TimesTen files before any other include files.

To use the TimesTen include files if you are using TimesTen features, add the following
to the C compiler command.

-Itimesten_home/install/include

To link with the TimesTen ODBC direct driver, add the following to the link command
for the libtten.so library:

-Ltimesten_home/install/lib -ltten

The -L option tells the linker to search the TimesTen lib directory for library files. The
-ltten option links in the TimesTen ODBC direct driver.

To link with the TimesTen ODBC client driver, add the following to the link command for
the libttclient.so library:

-Ltimesten_home/install/lib -lttclient

On AIX, when linking applications with the TimesTen ODBC client driver, the C++
runtime library must be included in the link command (because the client driver is
written in C++ and AIX does not link it automatically) and must follow the client driver:

-Ltimesten_home/install/lib -lttclient -lC_r

Chapter 1
Compiling and Linking Applications

1-6

You do not have to include this library if you are linking with the TimesTen driver manager,
discussed in Compiling and Linking Applications With the TimesTen Driver Manager on Linux
or UNIX.

You can use Makefiles in subdirectories under the Quick Start sample_code directory (see
About TimesTen Quick Start and Sample Applications), or you can use this example to guide
you in creating your own Makefile.

CFLAGS = -Itimesten_home/install/include
LIBS = -Ltimesten_home/install/lib -ltten
LIBSDEBUG = -Ltimesten_home/install/lib -lttenD
LIBSCS = -Ltimesten_home/install/lib -lttclient

Link directly with the TimesTen
ODBC production driver
appl:appl.o
 $(CC) -o appl appl.o $(LIBS)

Link directly with the TimesTen ODBC debug driver
appldebug:appl.o
 $(CC) -o appldebug appl.o $(LIBSDEBUG)

Link directly with the TimesTen client driver
applcs:appl.o
 $(CC) -o applcs appl.o $(LIBSCS)

Note:

• TimesTen compiles against ODBC 3.5 by default. To compile an ODBC 2.5
application, use the compilation option setting -DODBCVER=0x0250.

• To directly link your application to the debug TimesTen ODBC driver, substitute
-lttenD for -ltten on the link line.

Compiling and Linking Applications With the TimesTen Driver Manager on
Linux or UNIX

This section discusses and shows commands for linking applications with the TimesTen
driver manager (which is not supported on Windows).

With a few exceptions for specific discussion of the TimesTen direct and client/server drivers,
discussion in the preceding section, Compiling and Linking Applications Directly With the
TimesTen Drivers on Linux or UNIX, applies when you use TTDM, but note the following:

• Include timesten.h as you would normally. In addition, include any other TimesTen
header files that you would normally. If your application uses XLA, include tt_xla.h. If
your application uses the TimesTen utility API, include tt_utillib.h and ttutil.h.

• Link with the TTDM library, libttdrvmgr.so, instead of the ODBC direct driver or client/
server driver. Do not link with any other TimesTen library.

• Do not link with any third-party driver manager library.

For example:

-Ltimesten_home/install/lib -lttdrvmgr

Chapter 1
Compiling and Linking Applications

1-7

In a Makefile:

CFLAGS = -Itimesten_home/install/include
LIBTTDM = -Ltimesten_home/install/lib -lttdrvmgr
Link with TTDM
applcs:appl.o
 $(CC) -o applcs appl.o $(LIBTTDM)

About TimesTen Quick Start and Sample Applications
The TimesTen Classic Quick Start and TimesTen Scaleout sample applications exhibit
a variety of TimesTen features.

The sample applications are available from the TimesTen GitHub location. For the
TimesTen Classic Quick Start, there is a complete set of tutorials, how-to instructions,
and sample applications. For TimesTen Scaleout, there are ODBC and JDBC sample
applications.

After you have configured your environment, you can confirm that everything is set up
correctly by compiling and running the sample applications. For TimesTen Classic,
applications are located under the Quick Start sample_code directory. For instructions
on compiling and running them, see the instructions in the subdirectories. For
TimesTen Scaleout, clone the oracle-timesten-examples GitHub repository and
follow the instructions in the README files.

For TimesTen Classic, the following are included:

• Schema and setup: The build_sampledb script (.sh on Linux or UNIX or .bat on
Windows) creates a sample database and schema. Run this script before using
the sample applications.

• Environment and setup: The ttquickstartenv script (.sh or .csh on Linux or
UNIX, .bat on Windows, or as applicable for your system), a superset of the
ttenv script typically used for TimesTen setup, sets up the environment. Run this
script each time you enter a session where you want to compile or run any of the
sample applications.

• Sample applications and setup: The Quick Start provides sample applications and
their source code for ODBC, OCI, and Pro*C/C++.

Chapter 1
About TimesTen Quick Start and Sample Applications

1-8

2
Working With TimesTen Databases in ODBC

This chapter covers TimesTen programming features and describes how to use ODBC to
connect to and use the TimesTen database.

It includes the following topics:

• Management of TimesTen Database Connections

• Database Operations in ODBC

• TimesTen Features and Operations in Your Application

• Error Handling

• ODBC Support for Automatic Client Failover

• Client Routing API for TimesTen Scaleout

Note:

• For using OCI to access TimesTen from a C application, see TimesTen Support
for OCI.

• For using Pro*C/C++ to access TimesTen from a C application, see TimesTen
Support for Pro*C/C++.

• For accessing TimesTen from a C++ application, see Understanding and Using
TTClasses in the Oracle TimesTen In-Memory Database TTClasses Guide.

• For accessing TimesTen from a C# application, see Getting started with
ODP.NET in the Oracle Data Provider for .NET Oracle TimesTen In-Memory
Database Support User's Guide.

TimesTen supports:

• ODBC 2.5, Extension Level 1, as well as Extension Level 2 features that are documented
in TimesTen ODBC Support

• ODBC 3.51 core interface conformance

Management of TimesTen Database Connections
There are methods to manage TimesTen database connections.

• Overview of TimesTen Connections

• SQLConnect, SQLDriverConnect, SQLAllocConnect, SQLDisconnect Functions

• Use of the Default DSN

• Connecting To and Disconnecting From a Database

2-1

• Setting Connection Attributes Programmatically

Overview of TimesTen Connections
ODBC applications can connect to a database by referencing either its attributes (host,
port number, and so on) or its data source name (DSN). In TimesTen Classic, users
can create DSNs directly. In TimesTen Scaleout, a DSN is created for each
connectable you define in the grid.

This section covers some basics regarding TimesTen connections and provides
references for details.

For TimesTen Scaleout, refer to Oracle TimesTen In-Memory Database Scaleout
User's Guide for information about creating a database and connecting to a database,
using either a direct connection or a client/server connection. See Creating a
Database and Connecting to a Database.

For TimesTen Classic, Oracle TimesTen In-Memory Database Operations Guide
contains information about creating a DSN for the database. The type of DSN you
create depends on whether your application connects directly to the database or
connects through a client:

• If you intend to connect directly to the database, refer to Managing TimesTen
Databases in Oracle TimesTen In-Memory Database Operations Guide. There are
sections on creating a DSN for a direct connection from Linux or UNIX or from
Windows.

• If you intend to create a client connection to the database, refer to Working With
the TimesTen Client and Server in Oracle TimesTen In-Memory Database
Operations Guide. There are sections on creating a DSN for a client/server
connection from Linux or UNIX or from Windows.

Note:

• In TimesTen, the user name and password must be for a valid user who
has been granted CREATE SESSION privilege to connect to the database.

• A TimesTen connection cannot be inherited from a parent process. If a
process opens a database connection before creating (forking) a child
process, the child must not use the connection.

SQLConnect, SQLDriverConnect, SQLAllocConnect, SQLDisconnect
Functions

There are ODBC functions that are available for connecting to a database, allocating
memory for the connection, and disconnecting from the database.

• SQLConnect: Loads a driver and connects to the database. The connection handle
points to where information about the connection is stored, including status,
transaction state, results, and error information.

Here is the SQLConnect calling sequence:

Chapter 2
Management of TimesTen Database Connections

2-2

SQLRETURN SQLConnect(
 SQLHDBC ConnectionHandle,
 SQLCHAR * ServerName,
 SQLSMALLINT NameLength1,
 SQLCHAR * UserName,
 SQLSMALLINT NameLength2,
 SQLCHAR * Authentication,
 SQLSMALLINT NameLength3);

• SQLDriverConnect: This is an alternative to SQLConnect when more information is
required than what is supported by SQLConnect, which is just data source (the database),
user name, and password.

Here is the SQLDriverConnect calling sequence:

SQLRETURN SQLDriverConnect(
 SQLHDBC ConnectionHandle,
 SQLHWND WindowHandle,
 SQLCHAR * InConnectionString,
 SQLSMALLINT StringLength1,
 SQLCHAR * OutConnectionString,
 SQLSMALLINT BufferLength,
 SQLSMALLINT * StringLength2Ptr,
 SQLUSMALLINT DriverCompletion);

• SQLAllocConnect: Allocates memory for a connection handle within the specified
environment.

Here is the SQLAllocConnect calling sequence:

SQLRETURN SQLAllocConnect(
 SQLHENV EnvironmentHandle,
 SQLHDBC PointerToConnectionHandle);

• SQLDisconnect: Disconnect from the database. Takes the existing connection handle as
its only argument.

Here is the SQLDisconnect calling sequence:

SQLRETURN SQLDisconnect(
 SQLHDBC ConnectionHandle);

Refer to ODBC API reference documentation for additional details about these functions.

Use of the Default DSN
This lists circumstances when a default DSN is used.

In TimesTen Classic, a default DSN, simply named default, can be defined in the odbc.ini
or sys.odbc.ini file. See Setting Up a Default DSN in TimesTen Classic in Oracle TimesTen
In-Memory Database Operations Guide.

For SQLConnect, if a default DSN has been defined, it is used in these circumstances:

• If ServerName specifies a data source that cannot be found.

• If ServerName is a null pointer.

• If default is specified as the server name. The user name and authentication values are
used as is.

For SQLDriverConnect, if a default DSN has been defined, it is used in these circumstances:

Chapter 2
Management of TimesTen Database Connections

2-3

• If the connection string does not include the DSN keyword.

• If the data source cannot be found.

• If default is specified as the DSN keyword. The user name and password are
used as is.

Be aware of the following usage notes when in direct mode versus client/server mode
with a generic driver manager:

• When you are not using a generic driver manager, TimesTen manages this
functionality. The default DSN must be a TimesTen database.

• When you are using a generic driver manager, the driver manager manages this
functionality. The default DSN need not be a TimesTen database.

Connecting To and Disconnecting From a Database
There are methods for connecting to and disconnecting from a database.

This code fragment invokes SQLConnect and SQLDisconnect to connect to and
disconnect from the database named FixedDs. The first invocation of SQLConnect by
any application causes the creation of the FixedDs database. Subsequent invocations
of SQLConnect would connect to the existing database.

#include <timesten.h>
SQLRETURN retcode;
SQLHDBC hdbc;

...
retcode = SQLConnect(hdbc,
 (SQLCHAR*)"FixedDs", SQL_NTS,
 (SQLCHAR*)"johndoe", SQL_NTS,
 (SQLCHAR*)"opensesame", SQL_NTS);
...
retcode = SQLDisconnect(hdbc);
...

The following is a complete program that creates, connects to, and disconnects from a
database. The example uses SQLDriverConnect instead of SQLConnect to set up the
connection, and uses SQLAllocConnect to allocate memory. It also shows how to get
error messages. (In addition, you can refer to Error Handling.)

#include <timesten.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

static void chkReturnCode(SQLRETURN rc, SQLHENV henv,
 SQLHDBC hdbc, SQLHSTMT hstmt,
 char* msg, char* filename,
 int lineno, BOOL err_is_fatal);
#define DEFAULT_CONNSTR "DSN=sampledb;PermSize=32"

int
main(int ac, char** av)
{
 SQLRETURN rc = SQL_SUCCESS;
 /* General return code for the API */
 SQLHENV henv = SQL_NULL_HENV;

Chapter 2
Management of TimesTen Database Connections

2-4

 /* Environment handle */
 SQLHDBC hdbc = SQL_NULL_HDBC;
 /* Connection handle */
 SQLHSTMT hstmt = SQL_NULL_HSTMT;
 /* Statement handle */
 SQLCHAR connOut[255];
 /* Buffer for completed connection string */
 SQLSMALLINT connOutLen;
 /* Number of bytes returned in ConnOut */
 SQLCHAR *connStr = (SQLCHAR*)DEFAULT_CONNSTR;
 /* Connection string */
 rc = SQLAllocEnv(&henv);
 if (rc != SQL_SUCCESS) {
 fprintf(stderr, "Unable to allocate an "
 "environment handle\n");
 exit(1);
 }
 rc = SQLAllocConnect(henv, &hdbc);
 chkReturnCode(rc, henv, SQL_NULL_HDBC,
 SQL_NULL_HSTMT,
 "Unable to allocate a "
 "connection handle\n",
 __FILE__, __LINE__, 1);

 rc = SQLDriverConnect(hdbc, NULL,
 connStr, SQL_NTS,
 connOut, sizeof(connOut),
 &connOutLen,
 SQL_DRIVER_NOPROMPT);
 chkReturnCode(rc, henv, hdbc, SQL_NULL_HSTMT,
 "Error in connecting to the"
 " database\n",
 __FILE__, __LINE__, 1);
 rc = SQLAllocStmt(hdbc, &hstmt);
 chkReturnCode(rc, henv, hdbc, SQL_NULL_HSTMT,
 "Unable to allocate a "
 "statement handle\n",
 __FILE__, __LINE__, 1);

 /* Your application code here */

 if (hstmt != SQL_NULL_HSTMT) {
 rc = SQLFreeStmt(hstmt, SQL_DROP);
 chkReturnCode(rc, henv, hdbc, hstmt,
 "Unable to free the "
 "statement handle\n",
 __FILE__, __LINE__, 0);
 }

 rc = SQLDisconnect(hdbc);
 chkReturnCode(rc, henv, hdbc,
 SQL_NULL_HSTMT,
 "Unable to close the "
 "connection\n",
 __FILE__, __LINE__, 0);

 rc = SQLFreeConnect(hdbc);
 chkReturnCode(rc, henv, hdbc,
 SQL_NULL_HSTMT,
 "Unable to free the "
 "connection handle\n",

Chapter 2
Management of TimesTen Database Connections

2-5

 __FILE__, __LINE__, 0);

 rc = SQLFreeEnv(henv);
 chkReturnCode(rc, henv, SQL_NULL_HDBC,
 SQL_NULL_HSTMT,
 "Unable to free the "
 "environment handle\n",
 __FILE__, __LINE__, 0);
 return 0;
 }
}

static void
chkReturnCode(SQLRETURN rc, SQLHENV henv,
 SQLHDBC hdbc, SQLHSTMT hstmt,
 char* msg, char* filename,
 int lineno, BOOL err_is_fatal)
{
 #define MSG_LNG 512
 SQLCHAR sqlState[MSG_LNG];
 /* SQL state string */
 SQLINTEGER nativeErr;
 /* Native error code */
 SQLCHAR errMsg[MSG_LNG];
 /* Error msg text buffer pointer */
 SQLSMALLINT errMsgLen;
 /* Error msg text Available bytes */
 SQLRETURN ret = SQL_SUCCESS;
 if (rc != SQL_SUCCESS &&
 rc != SQL_NO_DATA_FOUND) {
 if (rc != SQL_SUCCESS_WITH_INFO) {
 /*
 * It's not just a warning
 */
 fprintf(stderr, "*** ERROR in %s, line %d:"
 " %s\n",
 filename, lineno, msg);
 }
 /*
 * Now see why the error/warning occurred
 */
 while (ret == SQL_SUCCESS ||
 ret == SQL_SUCCESS_WITH_INFO) {
 ret = SQLError(henv, hdbc, hstmt,
 sqlState, &nativeErr,
 errMsg, MSG_LNG,
 &errMsgLen);
 switch (ret) {
 case SQL_SUCCESS:
 fprintf(stderr, "*** %s\n"
 "*** ODBC Error/Warning = %s, "
 "TimesTen Error/Warning "
 " = %d\n",
 errMsg, sqlState,
 nativeErr);
 break;
 case SQL_SUCCESS_WITH_INFO:
 fprintf(stderr, "*** Call to SQLError"
 " failed with return code of "
 "SQL_SUCCESS_WITH_INFO.\n "
 "*** Need to increase size of"

Chapter 2
Management of TimesTen Database Connections

2-6

 " message buffer.\n");
 break;
 case SQL_INVALID_HANDLE:
 fprintf(stderr, "*** Call to SQLError"
 " failed with return code of "
 "SQL_INVALID_HANDLE.\n");
 break;
 case SQL_ERROR:
 fprintf(stderr, "*** Call to SQLError"
 " failed with return code of "
 "SQL_ERROR.\n");
 break;
 case SQL_NO_DATA_FOUND:
 break;
 } /* switch */
 } /* while */
 if (rc != SQL_SUCCESS_WITH_INFO && err_is_fatal) {
 fprintf(stderr, "Exiting.\n");
 exit(-1);
 }
}

Setting Connection Attributes Programmatically
This shows how to set or override connection attributes programmatically by specifying a
connection string when you connect to a database.

This code fragment connects to a database named mydsn and indicates in the
SQLDriverConnect call that the application should use a passthrough setting of 3. Note that
PassThrough is a general connection attribute.

SQLHDBC hdbc;
SQLCHAR ConnStrOut[512];
SQLSMALLINT cbConnStrOut;
SQLRETURN rc;

rc = SQLDriverConnect(hdbc, NULL,
 "DSN=mydsn;PassThrough=3", SQL_NTS,
 ConnStrOut, sizeof (ConnStrOut),
 &cbConnStrOut, SQL_DRIVER_NOPROMPT);

Chapter 2
Management of TimesTen Database Connections

2-7

Note:

• Each direct connection to a database opens several files. An application
with many threads, each with a separate connection, has several files
open for each thread. Such an application can exceed the maximum
allowed (or configured maximum) number of file descriptors that may be
simultaneously open on the operating system. In this case, configure
your system to allow a larger number of open files. See Limits on
Number of Open Files in Oracle TimesTen In-Memory Database
Reference.

• Refer to Managing TimesTen Databases in Oracle TimesTen In-Memory
Database Operations Guide for general information about connection
attributes. General connection attributes require no special privilege.
First connection attributes are set when the database is first loaded, and
persist for all connections. Only the instance administrator can load a
database with changes to first connection attribute settings. Refer to
Connection Attributes in Oracle TimesTen In-Memory Database
Reference.

Database Operations in ODBC
There are basic methods for using ODBC in TimesTen.

• ODBC Functions to Execute SQL Statements

• Steps to Prepare and Execute Queries and Work With Cursors in ODBC

• Creating a Table in ODBC

• Preparing and Executing a Query in ODBC

• Committing Changes to the Database in ODBC

ODBC Functions to Execute SQL Statements
The SQLExecute and SQLExecDirect ODBC functions are used to execute SQL
statements.

• SQLExecute: Executes a statement that has been prepared with SQLPrepare. After
the application is done with the results, they can be discarded and SQLExecute can
be run again using different parameter values.

This is typically used for DML statements with bind parameters, or statements that
are being executed more than once.

• SQLExecDirect: Prepares and executes a statement.

This is typically used for DDL statements or for DML statements that would
execute only a few times and without bind parameters.

Refer to ODBC API reference documentation for details about these functions.

Chapter 2
Database Operations in ODBC

2-8

Steps to Prepare and Execute Queries and Work With Cursors in ODBC
There are ODBC functions used to prepare and execute queries and work with cursors.

Note:

In TimesTen, any operation that ends your transaction, such as a commit or
rollback, closes all cursors associated with the connection.

In ODBC, a cursor is always associated with a result set. This association is made by the
ODBC driver. The application can control cursor characteristics, such as the number of rows
to fetch at one time, using SQLSetStmtAttr attributes documented in Attribute Support for
ODBC 3.5 SQLSetStmtAttr and SQLGetStmtAttr. The steps involved in executing a query
typically include the following.

1. Use SQLPrepare to prepare the SELECT statement for execution.

2. Use SQLBindParameter, if the statement has parameters, to bind each parameter to an
application address. See SQLBindParameter Function.

3. Call SQLBindCol to assign the storage and data type for a column of results, binding
column results to local variable storage in your application.

4. Call SQLExecute to execute the SELECT statement. See ODBC Functions to Execute SQL
Statements.

5. Call SQLFetch to fetch the results. Specify the statement handle.

6. Call SQLFreeStmt to free the statement handle. Specify the statement handle and either
SQL_CLOSE, SQL_DROP, SQL_UNBIND, or SQL_RESET_PARAMS.

Refer to ODBC API reference documentation for details on these ODBC functions. Examples
are shown throughout this chapter and in the TimesTen sample applications. See About
TimesTen Quick Start and Sample Applications.

Note:

By default (when connection attribute PrivateCommands=0), TimesTen shares
prepared statements between connections, so subsequent prepares of the same
statement on different connections execute very quickly.

Creating a Table in ODBC
You can create a table in ODBC.

This example creates a table, NameID, with two columns: CustID and CustName. The table
maps character names to integer identifiers.

#include <timesten.h>
SQLRETURN rc;
SQLHSTMT hstmt;
...

Chapter 2
Database Operations in ODBC

2-9

rc = SQLExecDirect(hstmt, (SQLCHAR*)
 "CREATE TABLE NameID (CustID INTEGER, CustName VARCHAR(50))",
 SQL_NTS);
if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)
 ... /* handle error */

Preparing and Executing a Query in ODBC
This example prepares and executes a query.

Error checking has been omitted to simplify the example. In addition to ODBC
functions mentioned previously, this example uses SQLNumResultCols to return the
number of columns in the result set, SQLDescribeCol to return a description of one
column of the result set (column name, type, precision, scale, and nullability), and
SQLBindCol to assign the storage and data type for a column in the result set. These
are all described in detail in ODBC API reference documentation.

#include <timesten.h>

SQLHSTMT hstmt;
SQLRETURN rc;
int i;
SQLSMALLINT numCols;
SQLCHAR colname[32];
SQLSMALLINT colnamelen, coltype, scale, nullable;
SQLULEN collen [MAXCOLS];
SQLLEN outlen [MAXCOLS];
SQLCHAR* data [MAXCOLS];

/* other declarations and program set-up here */

/* Prepare the SELECT statement */
rc = SQLPrepare(hstmt,
(SQLCHAR*) "SELECT * FROM EMP WHERE AGE>20",
SQL_NTS);
/* ... */

/* Determine number of columns in result rows */
rc = SQLNumResultCols(hstmt, &numCols);

/* ... */

/* Describe and bind the columns */
for (i = 0; i < numCols; i++) {
 rc = SQLDescribeCol(hstmt,
 (SQLSMALLINT) (i + 1),
 colname,(SQLSMALLINT)sizeof(colname), &colnamelen, &coltype, &collen[i],
 &scale, &nullable);

 /* ... */

 data[i] = (SQLCHAR*) malloc (collen[i] +1); //Allocate space for column data.
 rc = SQLBindCol(hstmt, (SQLSMALLINT) (i + 1),
 SQL_C_CHAR, data[i],
 COL_LEN_MAX, &outlen[i]);

 /* ... */

}
/* Execute the SELECT statement */

Chapter 2
Database Operations in ODBC

2-10

rc = SQLExecute(hstmt);

/* ... */

/* Fetch the rows */
if (numCols > 0) {
 while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS ||
 rc == SQL_SUCCESS_WITH_INFO) {
 /* ... "Process" the result row */
 } /* end of for-loop */
 if (rc != SQL_NO_DATA_FOUND)
 fprintf(stderr,
 "Unable to fetch the next row\n");

/* Close the cursor associated with the SELECT statement */
 rc = SQLFreeStmt(hstmt, SQL_CLOSE);
}

Committing Changes to the Database in ODBC
You can either autocommit or manually commit changes to the database. You can also
disable autocommit and manually commit.

Autocommit is enabled by default (according to the ODBC specification), so that any DML
change you make, such as an update, insert, or delete, is committed automatically. It is
recommended, however, that you disable this feature and commit (or roll back) your changes
explicitly. Use the SQL_AUTOCOMMIT option in a SQLSetConnectOption call to accomplish this:

rc = SQLSetConnectOption(hdbc, SQL_AUTOCOMMIT, SQL_AUTOCOMMIT_OFF);

With autocommit disabled, you can commit or roll back a transaction using the SQLTransact
ODBC function, such as in the following example to commit:

rc = SQLTransact(henv, hdbc, SQL_COMMIT);

Refer to ODBC API reference documentation for details about these functions. Refer to
Transaction Overview in Oracle TimesTen In-Memory Database Operations Guide.

Note:

• Autocommit mode applies only to the top-level statement executed by
SQLExecute or SQLExecDirect. There is no awareness of what occurs inside the
statement, and therefore no capability for intermediate autocommits of nested
operations.

• All open cursors on the connection are closed upon transaction commit or
rollback in TimesTen.

• The SQLRowCount function can be used to return information about SQL
operations. For UPDATE, INSERT, and DELETE statements, the output argument
returns the number of rows affected. See Retrieving Information About Cache
Groups. Refer to ODBC API reference documentation for general information
about SQLRowCount and its arguments.

Chapter 2
Database Operations in ODBC

2-11

This example prepares and executes a statement to give raises to selected
employees, then manually commits the changes. Assume autocommit has been
previously disabled.

update_example(SQLHDBC hdbc)
{
 SQLCHAR* stmt_text;
 SQLHSTMT hstmt;
 SQLINTEGER raise_pct;
 char hiredate_str[30];
 SQLLEN hiredate_len;
 SQLLEN numrows;

 /* allocate a statement handle */
 SQLAllocStmt(hdbc, &hstmt);

 /* prepare an update statement to give raises to employees hired before a
 * given date */
 stmt_text = (SQLCHAR*)
 "update employees "
 "set salary = salary * ((100 + :raise_pct) / 100.0) "
 "where hire_date < :hiredate";
 SQLPrepare(hstmt, stmt_text, SQL_NTS);

 /* bind parameter 1 (:raise_pct) to variable raise_pct */
 SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,
 SQL_DECIMAL, 0, 0, (SQLPOINTER)&raise_pct, 0, 0);

 /* bind parameter 2 (:hiredate) to variable hiredate_str */
 SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,
 SQL_TIMESTAMP, 0, 0, (SQLPOINTER)hiredate_str,
 sizeof(hiredate_str), &hiredate_len);

 /* set parameter values to give a 10% raise to employees hired before
 * January 1, 1996. */
 raise_pct = 10;
 strcpy(hiredate_str, "1996-01-01");
 hiredate_len = SQL_NTS;

 /* execute the update statement */
 SQLExecute(hstmt);

 /* print the number of employees who got raises */
 SQLRowCount(hstmt, &numrows);
 printf("Gave raises to %d employees.\n", numrows);

 /* drop the statement handle */
 SQLFreeStmt(hstmt, SQL_DROP);

 /* commit the changes */
 SQLTransact(henv, hdbc, SQL_COMMIT);

}

TimesTen Features and Operations in Your Application
This section provides information about how an application works with data in a
TimesTen database.

Chapter 2
TimesTen Features and Operations in Your Application

2-12

It includes the following topics. (See Working With Data in a TimesTen Database in Oracle
TimesTen In-Memory Database Operations Guide.)

• TimesTen Include Files

• TimesTen Deferred Prepare

• Prefetching Multiple Rows of Data

• Optimizing Query Performance

• Parameter Binding and Statement Execution

• Working With REF CURSORs

• Working With DML Returning (RETURNING INTO Clause)

• Working With rowids

• Large Objects (LOBs)

• Using CALL to Execute Procedures and Functions

• Timeouts and Thresholds for Executing SQL Statements

• Configuring the Result Set Buffer Size in Client/Server Using ODBC

• Features for Cache

TimesTen Include Files
This section lists files you must include from your code in order to use TimesTen features.
They are located in the include directory of the TimesTen installation.

Set the include path appropriately to access any files that are to be included. See Compiling
and Linking Applications.

Include File Description

timesten.h TimesTen ODBC features

This file includes the appropriate version of sql.h: the TimesTen
version on Linux or UNIX systems or the system version on
Windows systems.

This file also includes sqltypes.h, sqlext.h, and sqlucode.h.
On Windows systems, it also includes windows.h.

tt_errCode.h TimesTen error codes (optional—see notes)

This file maps TimesTen error codes to defined constants.

Chapter 2
TimesTen Features and Operations in Your Application

2-13

Note:

• If you include sql.h directly (instead of through timesten.h), on
Windows you must include the system version of sql.h, not the
TimesTen version.

• Type definitions previously in sqlunix.h are now in sqltypes.h;
however, sqlunix.h still exists (as an empty file) for backward
compatibility.

• There are alternatives to including tt_errCode.h. One is to move any
desired constant definitions to timesten.h. Another is to reference the
corresponding integer values directly in your code.

TimesTen Deferred Prepare
TimesTen has a deferred prepare feature to reduce round trips to the database.

In standard ODBC, a SQLPrepare call compiles a SQL statement so that information
about the statement, such as column descriptions for the result set, is available to the
application and accessible through calls such as SQLDescribeCol. To accomplish this,
the SQLPrepare call must communicate with the server for processing.

This is in contrast, for example, to expected behavior under Oracle Call Interface
(OCI), where a prepare call is expected to be a lightweight operation performed on the
client to simply extract names and positions of parameters.

To avoid unwanted round trips between client and server, and also to make the
behavior consistent with OCI expectations, the TimesTen client library implementation
of SQLPrepare performs what is referred to as a "deferred prepare", where the request
is not sent to the server until required. Examples of when the round trip would be
required:

• When there is a SQLExecute call. Note that if there is a deferred prepare call that
has not yet been sent to the server, a SQLExecute call on the client is converted to
a SQLExecDirect call.

• When there is a request for information about the query that can only be supplied
by the SQL engine, such as when there is a SQLDescribeCol call, for example.
Many such calls in standard ODBC can access information previously returned by
a SQLPrepare call, but with the deferred prepare functionality the SQLPrepare call
is sent to the server and the information is returned to the application only as
needed.

Note:

Deferred prepare functionality is not implemented (and not necessary) with
the TimesTen direct driver.

The deferred prepare implementation requires no changes at the application or user
level; however, be aware that calling any of the following functions may result in a

Chapter 2
TimesTen Features and Operations in Your Application

2-14

round trip to the server if the required information from a previously prepared statement has
not yet been retrieved:

• SQLColAttributes
• SQLDescribeCol
• SQLDescribeParam
• SQLNumResultCols
• SQLNumParams
• SQLGetStmtOption (for options that depend on the statement having been compiled by

the SQL engine)

Also be aware that when calling any of these functions, any error from an earlier SQLPrepare
call may be deferred until one of these calls is executed. In addition, these calls may return
errors specific to SQLPrepare as well as errors specific to themselves.

Prefetching Multiple Rows of Data
A TimesTen extension to ODBC enables applications to prefetch multiple rows of data into
the ODBC driver buffer. This can improve performance of client/server applications.

The TT_PREFETCH_COUNT ODBC statement option determines how many rows a SQLFetch call
prefetches. Note that this option provides no benefit for an application using a direct
connection to TimesTen.

You can set TT_PREFETCH_COUNT in a call to either SQLSetStmtOption or
SQLSetConnectOption (which sets the option default value for all statements associated with
the connection). The value can be any integer from 0 to 128, inclusive. Following is an
example.

rc = SQLSetConnectOption(hdbc, TT_PREFETCH_COUNT, 100);

With this setting, the first SQLFetch call on the connection prefetches 100 rows. Subsequent
SQLFetch calls fetch from the ODBC buffer instead of from the database, until the buffer is
depleted. After it is depleted, the next SQLFetch call fetches another 100 rows into the buffer,
and so on.

To disable prefetch, set TT_PREFETCH_COUNT to 1.

When you set the prefetch count to 0, TimesTen uses a default prefetch count according to
the isolation level you have set for the database, and sets TT_PREFETCH_COUNT to that value.
With Read Committed isolation level, the default prefetch value is 5. With Serializable
isolation level, the default is 128. The default prefetch value is a good setting for most
applications. Generally, a higher value may result in better performance for larger result sets,
at the expense of slightly higher resource use.

You can also see Attribute Support for ODBC 3.5 SQLSetStmtAttr and SQLGetStmtAttr.

Optimizing Query Performance
A TimesTen extension to ODBC enables applications to optimize read-only query
performance in client/server applications by using the TT_PREFETCH_CLOSE ODBC connection
option.

Set TT_PREFETCH_CLOSE to TT_PREFETCH_CLOSE_ON using SQLSetConnectOption.

Chapter 2
TimesTen Features and Operations in Your Application

2-15

All transactions should be committed when executed, including read-only transactions.
When TT_PREFETCH_CLOSE is set to TT_PREFETCH_CLOSE_ON, the server automatically
closes the cursor and commits the transaction after the server has prefetched all rows
of the result set for a read-only query. This enhances performance by reducing the
number of network round-trips between client and server.

The client should still free the statement with SQLFreeStmt(SQL_CLOSE) and commit
the transaction with SQLTransact(SQL_COMMIT), but those calls are executed in the
client and do not require a network round trip between the client and server.

Note:

• Do not use multiple statement handles for the same connection when
TT_PREFETCH_CLOSE is set to TT_PREFETCH_CLOSE_ON. The server may
fetch all of the result set, commit the transaction, and close the
statement handle before the client is finished, resulting in the closing of
all statement handles.

• This option is ignored for TimesTen direct connections and for SELECT
FOR UPDATE statements.

The following example shows how to use the TT_PREFETCH_CLOSE option.

SQLSetConnectOption (hdbc, TT_PREFETCH_CLOSE, TT_PREFETCH_CLOSE_ON);
SQLExecDirect (hstmt, "SELECT * FROM T", SQL_NTS);
while (SQLFetch (hstmt) != SQL_NO_DATA_FOUND)
{
// do the processing and error checking
}
SQLFreeStmt (hstmt, SQL_CLOSE);
SQLTransact(SQL_COMMIT);

Parameter Binding and Statement Execution
There are methods for how to bind input or output parameters for SQL statements.

The following topics are covered.

• SQLBindParameter Function

• Parameter Type Assignments and Type Conversions

• ODBC SQL to TimesTen SQL or PL/SQL Type Mappings

• Binding Input Parameters

• Binding Output Parameters

• Binding Input/Output Parameters

• Binding of Duplicate Parameters in SQL Statements

• Binding of Duplicate Parameters in PL/SQL Statements

• Considerations for Floating Point Data

• Using SQL_WCHAR and SQL_WVARCHAR With a Driver Manager

Chapter 2
TimesTen Features and Operations in Your Application

2-16

Note:

The term "bind parameter" as used in TimesTen developer guides (in keeping with
ODBC terminology) is equivalent to the term "bind variable" as used in TimesTen
PL/SQL documents (in keeping with Oracle Database PL/SQL terminology).

SQLBindParameter Function
The ODBC SQLBindParameter function is used to bind parameters for SQL statements. This
could include input, output, or input/output parameters.

To bind an input parameter through ODBC, use the SQLBindParameter function with a setting
of SQL_PARAM_INPUT for the fParamType argument. Refer to ODBC API reference
documentation for details about the SQLBindParameter function. Table 2-1 provides a brief
summary of its arguments.

To bind an output or input/output parameter through ODBC, use the SQLBindParameter
function with a setting of SQL_PARAM_OUTPUT or SQL_PARAM_INPUT_OUTPUT, respectively, for the
fParamType argument. As with input parameters, use the fSqlType, cbColDef, and ibScale
arguments (as applicable) to specify data types.

Table 2-1 SQLBindParameter Arguments

Argument Type Description

hstmt SQLHSTMT Statement handle

ipar SQLUSMALLINT Parameter number, sequentially from left to right, starting with 1

fParamType SQLSMALLINT Indicating input or output: SQL_PARAM_INPUT,
SQL_PARAM_OUTPUT, or SQL_PARAM_INPUT_OUTPUT

fCType SQLSMALLINT C data type of the parameter

fSqlType SQLSMALLINT SQL data type of the parameter

cbColDef SQLULEN The precision of the parameter, such as the maximum number
of bytes for binary data, the maximum number of digits for a
number, or the maximum number of characters for character
data

ibScale SQLSMALLINT The scale of the parameter, referring to the maximum number
of digits to the right of the decimal point, where applicable

rgbValue SQLPOINTER Pointer to a buffer for the data of the parameter

cbValueMax SQLLEN Maximum length of the rgbValue buffer, in bytes

pcbValue SQLLEN* Pointer to a buffer for the length of the parameter

Note:

Refer to Data Types in Oracle TimesTen In-Memory Database SQL Reference.

Chapter 2
TimesTen Features and Operations in Your Application

2-17

Parameter Type Assignments and Type Conversions
Bind parameter type assignments are decided by different entities depending on where
they are executed. Type conversions are performed by the ODBC driver.

This section discusses bind parameter type assignments, which are determined as
follows:

• Parameter type assignments for statements that execute in TimesTen are
determined by TimesTen. Specifically:

– For SQL statements that execute within TimesTen, the TimesTen query
optimizer determines data types of SQL parameters.

• Parameter type assignments for statements that execute in Oracle Database, or
according to Oracle Database functionality, are determined by the application as
follows.

– For SQL statements that execute within Oracle Database—that is,
passthrough statements from cache—the application must specify data types
through its calls to the ODBC SQLBindParameter function, according to the
fSqlType, cbColDef, and ibScale arguments of that function, as applicable.

– For PL/SQL blocks or procedures that execute within TimesTen, where the
PL/SQL execution engine has the same basic functionality as in Oracle
Database, the application must specify data types through its calls to
SQLBindParameter (the same as for SQL statements that execute within
Oracle Database).

So regarding host binds for PL/SQL (the variables, or parameters, that are
preceded by a colon within a PL/SQL block), note that the type of a host bind
is effectively declared by the call to SQLBindParameter, according to fSqlType
and the other arguments as applicable, and is not declared within the PL/SQL
block.

The ODBC driver performs any necessary type conversions between C values and
SQL or PL/SQL types. For any C-to-SQL or C-to-PL/SQL combination that is not
supported, an error occurs. These conversions can be from a C type to a SQL or
PL/SQL type (input parameter), from a SQL or PL/SQL type to a C type (output
parameter), or both (input/output parameter).

See the next section for information about type mappings between ODBC and
TimesTen.

Chapter 2
TimesTen Features and Operations in Your Application

2-18

Note:

The TimesTen binding mechanism (early binding) differs from that of Oracle
Database (late binding). TimesTen requires the data types before preparing queries.
As a result, there will be an error if the data type of each bind parameter is not
specified or cannot be inferred from the SQL statement. This would apply, for
example, to the following statement:

SELECT 'x' FROM DUAL WHERE ? = ?;

You could address the issue as follows, for example:

SELECT 'x' from DUAL WHERE CAST(? as VARCHAR2(10)) =
 CAST(? as VARCHAR2(10));

ODBC SQL to TimesTen SQL or PL/SQL Type Mappings
There are mappings from ODBC SQL to TimesTen SQL or PL/SQL.

Table 2-2 documents the mapping between ODBC types and SQL or PL/SQL types.

Table 2-2 ODBC SQL to TimesTen SQL or PL/SQL Type Mappings

ODBC Type (fSqlType) SQL or PL/SQL Type TimesTen Support Notes

SQL_BIGINT NUMBER No notes

SQL_BINARY RAW(p) No notes

SQL_BIT PLS_INTEGER No notes

SQL_CHAR CHAR(p) No notes

SQL_DATE DATE No notes

SQL_DECIMAL NUMBER No notes

SQL_DOUBLE NUMBER No notes

SQL_FLOAT BINARY_DOUBLE No notes

SQL_INTEGER PLS_INTEGER No notes

SQL_INTERVAL_DAY N/A See notes after this table.

SQL_INTERVAL_DAY_TO_HOUR N/A See notes after this table.

SQL_INTERVAL_DAY_TO_MINUTE N/A See notes after this table.

SQL_INTERVAL_DAY_TO_SECOND N/A See notes after this table.

SQL_INTERVAL_HOUR N/A See notes after this table.

SQL_INTERVAL_HOUR_TO_MINUTE N/A See notes after this table.

SQL_INTERVAL_HOUR_TO_SECOND N/A See notes after this table.

SQL_INTERVAL_MINUTE N/A See notes after this table.

SQL_INTERVAL_MINUTE_TO_SECON
D

N/A See notes after this table.

SQL_INTERVAL_MONTH N/A See notes after this table.

Chapter 2
TimesTen Features and Operations in Your Application

2-19

Table 2-2 (Cont.) ODBC SQL to TimesTen SQL or PL/SQL Type Mappings

ODBC Type (fSqlType) SQL or PL/SQL Type TimesTen Support Notes

SQL_INTERVAL_YEAR N/A See notes after this table.

SQL_INTERVAL_YEAR_TO_MONTH N/A See notes after this table.

SQL_INTERVAL_SECOND N/A See notes after this table.

SQL_NUMERIC NUMBER No notes

SQL_REAL BINARY_FLOAT No notes

SQL_REFCURSOR REF CURSOR No notes

SQL_ROWID ROWID No notes

SQL_SMALLINT PLS_INTEGER No notes

SQL_TIME TIME TimesTen does not support TIMEZONE.
TIME data type values are stored
without making any adjustment for time
difference. Applications must assume
one time zone and convert TIME
values to that time zone before
sending the values to the database.

SQL_TIMESTAMP TIMESTAMP(s) Same consideration as for TIME.

SQL_TINYINT PLS_INTEGER No notes

SQL_VARBINARY RAW(p) No notes

SQL_VARCHAR VARCHAR2(p) No notes

SQL_WCHAR NCHAR(p) No notes

SQL_WVARCHAR NVARCHAR2(p) No notes

Note:

• The notation (p) indicates precision is according to the
SQLBindParameter argument cbColDef.

• The notation (s) indicates scale is according to the SQLBindParameter
argument ibScale.

• The SQL_INTERVAL_xxxx types are supported only for computing values,
such as in SQL expressions, not as database column types.

• Most applications should use SQL_VARCHAR rather than SQL_CHAR for
binding character data. Use of SQL_CHAR may result in unwanted space
padding to the full precision of the parameter type.

• Regarding TIME and TIMESTAMP, for example, an application can assume
its time zone to be Pacific Standard Time. If the application is using TIME
and TIMESTAMP values from Pacific Daylight Time or Eastern Standard
Time, for example, the application must convert TIME and TIMESTAMP to
Pacific Standard Time.

Chapter 2
TimesTen Features and Operations in Your Application

2-20

Binding Input Parameters
To bind input parameters to PL/SQL in TimesTen, use the fSqlType, cbColDef, and ibScale
arguments (as applicable) of the ODBC SQLBindParameter function to specify data types.

This is in contrast to how SQL input parameters are supported, as noted in Parameter Type
Assignments and Type Conversions.

In addition, use the rgbValue, cbValueMax, and pcbValue arguments of SQLBindParameter as
follows for input parameters:

• rgbValue: Before statement execution, points to the buffer where the application places
the parameter value to be passed to the application.

• cbValueMax: For character and binary data, indicates the maximum length of the
incoming value that rgbValue points to, in bytes. For all other data types, cbValueMax is
ignored, and the length of the value that rgbValue points to is determined by the length of
the C data type specified in the fCType argument of SQLBindParameter.

• pcbValue: Points to a buffer that contains one of the following before statement
execution:

– The actual length of the value that rgbValue points to

Note: For input parameters, this would be valid only for character or binary data.

– SQL_NTS for a null-terminated string

– SQL_NULL_DATA for a null value

Binding Output Parameters
To bind output parameters from PL/SQL in TimesTen, as noted for input parameters
previously, use the fSqlType, cbColDef, and ibScale arguments (as applicable) of the ODBC
SQLBindParameter function to specify data types.

In addition, use the rgbValue, cbValueMax, and pcbValue arguments of SQLBindParameter as
follows for output parameters:

• rgbValue: During statement execution, points to the buffer where the value returned from
the statement should be placed.

• cbValueMax: For character and binary data, indicates the maximum length of the outgoing
value that rgbValue points to, in bytes. For all other data types, cbValueMax is ignored,
and the length of the value that rgbValue points to is determined by the length of the C
data type specified in the fCType argument of SQLBindParameter.

Note that ODBC null-terminates all character data, even if the data is truncated.
Therefore, when an output parameter has character data, cbValueMax must be large
enough to accept the maximum data value plus a null terminator (one additional byte for
CHAR and VARCHAR parameters, or two additional bytes for NCHAR and NVARCHAR
parameters).

• pcbValue: Points to a buffer that contains one of the following after statement execution:

– The actual length of the value that rgbValue points to (for all C types, not just
character and binary data)

Chapter 2
TimesTen Features and Operations in Your Application

2-21

Note: This is the length of the full parameter value, regardless of whether the
value can fit in the buffer that rgbValue points to.

– SQL_NULL_DATA for a null value

The following example shows how to prepare, bind, and execute a PL/SQL
anonymous block.

• The anonymous block assigns bind parameter a the value 'abcde' and bind
parameter b the value 123.

• SQLPrepare prepares the anonymous block.

• SQLBindParameter binds the first parameter (a) as an output parameter of type
SQL_VARCHAR and binds the second parameter (b) as an output parameter of type
SQL_INTEGER.

• SQLExecute executes the anonymous block.

{
 SQLHSTMT hstmt;
 char aval[11];
 SQLLEN aval_len;
 SQLINTEGER bval;
 SQLLEN bval_len;

 SQLAllocStmt(hdbc, &hstmt);

 SQLPrepare(hstmt,
 (SQLCHAR*)"begin :a := 'abcde'; :b := 123; end;",
 SQL_NTS);

 SQLBindParameter(hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_CHAR, SQL_VARCHAR,
 10, 0, (SQLPOINTER)aval, sizeof(aval), &aval_len);

 SQLBindParameter(hstmt, 2, SQL_PARAM_OUTPUT, SQL_C_SLONG, SQL_INTEGER,
 0, 0, (SQLPOINTER)&bval, sizeof(bval), &bval_len);

 SQLExecute(hstmt);
 printf("aval = [%s] (length = %d), bval = %d\n", aval, (int)aval_len, bval);
}

Binding Input/Output Parameters
To bind input/output parameters to and from PL/SQL in TimesTen, as noted for input
and output parameters previously, use the fSqlType, cbColDef, and ibScale
arguments (as applicable) of the ODBC SQLBindParameter function to specify data
types.

In addition, use the rgbValue, cbValueMax, and pcbValue arguments of
SQLBindParameter as follows for input/output parameters:

• rgbValue: This is first used before statement execution as described in Binding
Input Parameters. Then it is used during statement execution as described in the
preceding section, Binding Output Parameters. Note that for an input/output
parameter, the outgoing value from a statement execution is the incoming value to
the statement execution that immediately follows, unless that is overridden by the
application. Also, for input/output values bound when you are using data-at-
execution, the value of rgbValue serves as both the token that would be returned

Chapter 2
TimesTen Features and Operations in Your Application

2-22

by the ODBC SQLParamData function and as the pointer to the buffer where the outgoing
value is placed.

• cbValueMax: For character and binary data, this is first used as described in Binding Input
Parameters. Then it is used as described in the preceding section, Binding Output
Parameters. For all other data types, cbValueMax is ignored, and the length of the value
that rgbValue points to is determined by the length of the C data type specified in the
fCType argument of SQLBindParameter.

Note that ODBC null-terminates all character data, even if the data is truncated.
Therefore, when an input/output parameter has character data, cbValueMax must be
large enough to accept the maximum data value plus a null terminator (one additional
byte for CHAR and VARCHAR parameters, or two additional bytes for NCHAR and NVARCHAR
parameters).

• pcbValue: This is first used before statement execution as described in Binding Input
Parameters. Then it is used after statement execution as described in the preceding
section, Binding Output Parameters.

Tip:

For character and binary data, carefully consider the value you use for cbValueMax.
A value that is smaller than the actual buffer size may result in spurious truncation
warnings. A value that is greater than the actual buffer size may cause the ODBC
driver to overwrite the rgbValue buffer, resulting in memory corruption.

Binding of Duplicate Parameters in SQL Statements
TimesTen handles duplicate parameters in SQL. In TimesTen, multiple occurrences of the
same parameter name in a SQL statement are considered to be distinct parameters. (This is
consistent with Oracle Database support for binding duplicate parameters.)

Note:

• This discussion applies only to SQL statements issued directly from ODBC, not
through PL/SQL, for example. (Regarding PL/SQL statements, see the next
section Binding of Duplicate Parameters in PL/SQL Statements.)

• "TimesTen mode" for binding duplicate parameters, and the DuplicateBindMode
connection attribute, are deprecated.

• The use of "?" for parameters, not supported in Oracle Database, is supported
by TimesTen.

Consider this query:

SELECT * FROM employees
 WHERE employee_id < :a AND manager_id > :a AND salary < :b;

When parameter position numbers are assigned, a number is given to each parameter
occurrence without regard to name duplication. The application must, at a minimum, bind a

Chapter 2
TimesTen Features and Operations in Your Application

2-23

value for the first occurrence of each parameter name. For any subsequent
occurrence of a given parameter name, the application has the following choices.

• It can bind a different value for the occurrence.

• It can leave the parameter occurrence unbound, in which case it takes the same
value as the first occurrence.

In either case, each occurrence has a distinct parameter position number.

To use a different value for the second occurrence of a in the SQL statement above:

SQLBindParameter(..., 1, ...); /* first occurrence of :a */
SQLBindParameter(..., 2, ...); /* second occurrence of :a */
SQLBindParameter(..., 3, ...); /* occurrence of :b */

To use the same value for both occurrences of a:

SQLBindParameter(..., 1, ...); /* both occurrences of :a */
SQLBindParameter(..., 3, ...); /* occurrence of :b */

Parameter b is considered to be in position 3 regardless.

The SQLNumParams ODBC function returns 3 for the number of parameters in the
example.

Binding of Duplicate Parameters in PL/SQL Statements
TimesTen handles duplicate parameters in PL/SQL. In PL/SQL, you bind a value for
each unique parameter name. An application executing the following block, for
example, would bind only one parameter, corresponding to :a.

Discussion in the preceding section, Binding of Duplicate Parameters in SQL
Statements, does not apply to PL/SQL, which has its own semantics.

DECLARE
 x NUMBER;
 y NUMBER;
BEGIN
 x:=:a;
 y:=:a;
END;

An application executing the following block would also bind only one parameter:

BEGIN
 INSERT INTO tab1 VALUES(:a, :a);
END

And the same for the following CALL statement:

...CALL proc(:a, :a)...

An application executing the following block would bind two parameters, with :a as the
first parameter and :b as the second parameter. The second parameter in each
INSERT statement would take the same value as the first parameter in the first INSERT
statement:

BEGIN
 INSERT INTO tab1 VALUES(:a, :a);

Chapter 2
TimesTen Features and Operations in Your Application

2-24

 INSERT INTO tab1 VALUES(:b, :a);
END

Considerations for Floating Point Data
There are considerations for floating point data.

The BINARY_DOUBLE and BINARY_FLOAT data types store and retrieve the IEEE floating point
values Inf, -Inf, and NaN. If an application uses a C language facility such as printf, scanf,
or strtod that requires conversion to character data, the floating point values are returned as
"INF", "-INF", and "NAN". These character strings cannot be converted back to floating point
values.

Using SQL_WCHAR and SQL_WVARCHAR With a Driver Manager
This section discusses how to avoid possible error conditions when using SQL_WCHAR or
SQL_WVARCHAR with a driver manager.

Applications using the Windows driver manager may encounter errors from
SQLBindParameter with SQL state S1004 (SQL data type out of range) when passing an
fSqlType value of SQL_WCHAR or SQL_WVARCHAR. This problem can be avoided by passing one
of the following values for fSqlType instead.

• SQL_WCHAR_DM_SQLBINDPARAMETER_BYPASS instead of SQL_WCHAR
• SQL_WVARCHAR_DM_SQLBINDPARAMETER_BYPASS instead of SQL_WVARCHAR
These type codes are semantically identical to SQL_WCHAR and SQL_WVARCHAR but avoid the
error from the Windows driver manager. They can be used in applications that link with the
driver manager or link directly with the TimesTen ODBC direct driver or ODBC client driver.

See SQLBindParameter Function.

Working With REF CURSORs
REF CURSOR is a PL/SQL concept, a handle to a cursor over a SQL result set that can be
passed between PL/SQL and an application. In TimesTen, the cursor can be opened in
PL/SQL then the REF CURSOR can be passed to the application. The results can be
processed in the application using ODBC calls.
This is an OUT REF CURSOR (an OUT parameter with respect to PL/SQL). The REF CURSOR
is attached to a statement handle, enabling applications to describe and fetch result sets
using the same APIs as for any result set.

Take the following steps to use a REF CURSOR. Assume a PL/SQL statement that returns a
cursor through a REF CURSOR OUT parameter. Note that REF CURSORs use the same
basic steps of prepare, bind, execute, and fetch as in the cursor example in Steps to Prepare
and Execute Queries and Work With Cursors in ODBC.

1. Prepare the PL/SQL statement, using SQLPrepare, to be associated with the first
statement handle.

2. Bind each parameter of the statement, using SQLBindParameter. When binding the REF
CURSOR output parameter, use an allocated second statement handle as rgbValue, the
pointer to the data buffer.

The pcbValue, ibScale, cbValueMax, and pcbValue arguments are ignored for REF
CURSORs.

Chapter 2
TimesTen Features and Operations in Your Application

2-25

See SQLBindParameter Function and Binding Output Parameters.

3. Call SQLBindCol to bind result columns to local variable storage.

4. Call SQLExecute to execute the statement.

5. Call SQLFetch to fetch the results. After a REF CURSOR is passed from PL/SQL
to an application, the application can describe and fetch the results as it would for
any result set.

6. Use SQLFreeStmt to free the statement handle.

These steps are demonstrated in the example that follows. Refer to ODBC API
reference documentation for details on these functions. See PL/SQL REF CURSORs
in Oracle TimesTen In-Memory Database PL/SQL Developer's Guide.

Note:

For passing REF CURSORs between PL/SQL and an application, TimesTen
supports only OUT REF CURSORs, from PL/SQL to the application.

This example, using a REF CURSOR in a loop, demonstrates the basic steps of
preparing a query, binding parameters, executing the query, binding results to local
variable storage, and fetching the results. Error handling is omitted for simplicity. In
addition to the ODBC functions summarized earlier, this example uses SQLAllocStmt
to allocate memory for a statement handle.

refcursor_example(SQLHDBC hdbc)
{
 SQLCHAR* stmt_text;
 SQLHSTMT plsql_hstmt;
 SQLHSTMT refcursor_hstmt;
 SQLINTEGER deptid;
 SQLINTEGER depts[3] = {10,30,40};
 SQLINTEGER empid;
 SQLCHAR lastname[30];
 SQLINTEGER i;

 /* allocate 2 statement handles: one for the plsql statement and
 * one for the ref cursor */
 SQLAllocStmt(hdbc, &plsql_hstmt);
 SQLAllocStmt(hdbc, &refcursor_hstmt);

 /* prepare the plsql statement */
 stmt_text = (SQLCHAR*)
 "begin "
 "open :refc for "
 "select employee_id, last_name "
 "from employees "
 "where department_id = :dept; "
 "end;";
 SQLPrepare(plsql_hstmt, stmt_text, SQL_NTS);

 /* bind parameter 1 (:refc) to refcursor_hstmt */
 SQLBindParameter(plsql_hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_REFCURSOR,
 SQL_REFCURSOR, 0, 0, refcursor_hstmt, 0, 0);

 /* bind parameter 2 (:deptid) to local variable deptid */

Chapter 2
TimesTen Features and Operations in Your Application

2-26

 SQLBindParameter(plsql_hstmt, 2, SQL_PARAM_INPUT, SQL_C_SLONG,
 SQL_INTEGER, 0, 0, &deptid, 0, 0);

 /* loop through values for :deptid */
 for (i=0; i<3; i++)
 {
 deptid = depts[i];

 /* execute the plsql statement */
 SQLExecute(plsql_hstmt);
 /*
 * The result set is now attached to refcursor_hstmt.
 * Bind the result columns and fetch the result set.
 */

 /* bind result column 1 to local variable empid */
 SQLBindCol(refcursor_hstmt, 1, SQL_C_SLONG,
 (SQLPOINTER)&empid, 0, 0);

 /* bind result column 2 to local variable lastname */
 SQLBindCol(refcursor_hstmt, 2, SQL_C_CHAR,
 (SQLPOINTER)lastname, sizeof(lastname), 0);

 /* fetch the result set */
 while(SQLFetch(refcursor_hstmt) != SQL_NO_DATA_FOUND){
 printf("%d, %s\n", empid, lastname);
 }

 /* close the ref cursor statement handle */
 SQLFreeStmt(refcursor_hstmt, SQL_CLOSE);
 }

 /* drop both handles */
 SQLFreeStmt(plsql_hstmt, SQL_DROP);
 SQLFreeStmt(refcursor_hstmt, SQL_DROP);
}

Working With DML Returning (RETURNING INTO Clause)
You can use a RETURNING INTO clause, referred to as DML returning, with an INSERT, UPDATE,
or DELETE statement to return specified items from a row that was affected by the action.

This eliminates the need for a subsequent SELECT statement and separate round trip in case,
for example, you want to confirm what was affected by the action.

With ODBC, DML returning is limited to returning items from a single-row operation. The
clause returns the items into a list of output parameters. Bind the output parameters as
discussed in Parameter Binding and Statement Execution.

SQL syntax and restrictions for the RETURNING INTO clause in TimesTen are documented as
part of INSERT, UPDATE, and DELETE in Oracle TimesTen In-Memory Database SQL
Reference.

Refer to RETURNING INTO Clause in Oracle Database PL/SQL Language Reference for
details about DML returning.

This example is adapted from the example in Committing Changes to the Database in ODBC,
with bold text highlighting key portions.

Chapter 2
TimesTen Features and Operations in Your Application

2-27

void
update_example(SQLHDBC hdbc)
{
 SQLCHAR* stmt_text;
 SQLHSTMT hstmt;
 SQLINTEGER raise_pct;
 char hiredate_str[30];
 char last_name[30];
 SQLLEN hiredate_len;
 SQLLEN numrows;

 /* allocate a statement handle */
 SQLAllocStmt(hdbc, &hstmt);

 /* prepare an update statement to give a raise to one employee hired
 before a given date and return that employee's last name */
 stmt_text = (SQLCHAR*)
 "update employees "
 "set salary = salary * ((100 + :raise_pct) / 100.0) "
 "where hire_date < :hiredate and rownum = 1 returning last_name into "
 ":last_name";
 SQLPrepare(hstmt, stmt_text, SQL_NTS);

 /* bind parameter 1 (:raise_pct) to variable raise_pct */
 SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,
 SQL_DECIMAL, 0, 0, (SQLPOINTER)&raise_pct, 0, 0);

 /* bind parameter 2 (:hiredate) to variable hiredate_str */
 SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,
 SQL_TIMESTAMP, 0, 0, (SQLPOINTER)hiredate_str,
 sizeof(hiredate_str), &hiredate_len);
 /* bind parameter 3 (:last_name) to variable last_name */
 SQLBindParameter(hstmt, 3, SQL_PARAM_OUTPUT, SQL_C_CHAR,
 SQL_VARCHAR, 30, 0, (SQLPOINTER)last_name,
 sizeof(last_name), NULL);
 /* set parameter values to give a 10% raise to an employee hired before
 * January 1, 1996. */
 raise_pct = 10;
 strcpy(hiredate_str, "1996-01-01");
 hiredate_len = SQL_NTS;

 /* execute the update statement */
 SQLExecute(hstmt);

 /* tell us who the lucky person is */
 printf("Gave raise to %s.\n", last_name);

 /* drop the statement handle */
 SQLFreeStmt(hstmt, SQL_DROP);

 /* commit the changes */
 SQLTransact(henv, hdbc, SQL_COMMIT);

}

This returns "King" as the recipient of the raise.

Chapter 2
TimesTen Features and Operations in Your Application

2-28

Working With rowids
Each row in a database table has a unique identifier known as its rowid. An application can
retrieve the rowid of a row from the ROWID pseudocolumn. Rowids can be represented in
either binary or character format.

An application can specify literal rowid values in SQL statements, such as in WHERE clauses,
as CHAR constants enclosed in single quotes.

As noted in Table 2-2, the ODBC SQL type SQL_ROWID corresponds to the SQL type ROWID.

For parameters and result set columns, rowids are convertible to and from the C types
SQL_C_BINARY, SQL_C_WCHAR, and SQL_C_CHAR. SQL_C_CHAR is the default C type for rowids.
The size of a rowid would be 12 bytes as SQL_C_BINARY, 18 bytes as SQL_C_CHAR, and 36
bytes as SQL_C_WCHAR.

Refer to ROWID Data Type and ROWID Pseudocolumn in Oracle TimesTen In-Memory
Database SQL Reference.

Note:

TimesTen does not support the PL/SQL type UROWID.

Large Objects (LOBs)
TimesTen Classic supports LOBs (large objects). This includes CLOBs (character LOBs),
NCLOBs (national character LOBs), and BLOBs (binary LOBs).

These sections provide an overview of LOBs and discuss their use in ODBC, covering these
topics:

• About LOBs

• Differences Between TimesTen LOBs and Oracle Database LOBs

• LOB Programmatic Approaches and Programming Interfaces

• Using the LOB Simple Data Interface in ODBC

• Using the LOB Piecewise Data Interface in ODBC

• Passthrough LOBs in ODBC

You can also refer to the following:

• LOBs in TimesTen OCI and LOBs in TimesTen Pro*C/C++ for information specific to
those APIs

• LOB Data Types in Oracle TimesTen In-Memory Database SQL Reference for additional
information about LOBs in TimesTen

• Oracle Database SecureFiles and Large Objects Developer's Guide for general
information about programming with LOBs (but not specific to TimesTen functionality)

Chapter 2
TimesTen Features and Operations in Your Application

2-29

About LOBs
A LOB is a large binary object (BLOB) or character object (CLOB or NCLOB). In
TimesTen, a BLOB can be up to 16 MB and a CLOB or NCLOB up to 4 MB. LOBs in
TimesTen have essentially the same functionality as in Oracle Database, except as
noted otherwise.

See Differences Between TimesTen LOBs and Oracle Database LOBs.

LOBs may be either persistent or temporary. A persistent LOB exists in a LOB column
in the database. A temporary LOB exists only within an application. There are
circumstances where a temporary LOB is created implicitly. For example, if a SELECT
statement selects a LOB concatenated with an additional string of characters,
TimesTen creates a temporary LOB to contain the concatenated data. In TimesTen
ODBC, any temporary LOBs are managed implicitly.

Temporary LOBs are stored in the TimesTen temporary data region.

Differences Between TimesTen LOBs and Oracle Database LOBs
There are key differences between TimesTen and Oracle Database LOB functionality.

• In TimesTen, a LOB used in an application does not remain valid past the end of
the transaction. All such LOBs are invalidated after a commit or rollback, whether
explicit or implicit. This includes after any DDL statement.

• TimesTen does not support BFILEs, SecureFiles, array reads and writes for LOBs,
or callback functions for LOBs.

• TimesTen does not support binding arrays of LOBs.

• TimesTen does not support batch processing of LOBs.

• Relevant to BLOBs, there are differences in the usage of hexadecimal literals in
TimesTen. see the description of HexadecimalLiteral in Constants in Oracle
TimesTen In-Memory Database SQL Reference.

LOB Programmatic Approaches and Programming Interfaces
There are three programmatic approaches for accessing LOBs from TimesTen in a C
or C++ program.

• Simple data interface (ODBC, OCI, Pro*C/C++, TTClasses): Use binds and
defines, as with other scalar types, to transfer LOB data in a single chunk.

• Piecewise data interface (ODBC): Use advanced forms of binds and defines to
transfer LOB data in multiple pieces. This is sometimes referred to as streaming or
using data-at-exec (at program execution time). TimesTen supports the piecewise
data interface through polling loops to go piece-by-piece through the LOB data.
(Another piecewise approach, using callback functions, is supported by Oracle
Database but not by TimesTen.)

The piecewise interface enables applications to access LOB data in portions,
piece by piece. An application binds parameters or defines results similarly to how
those actions are performed for the simple data interface, but indicates that the
data is to be provided or retrieved at program execution time ("at exec"). In
TimesTen, you can implement the piecewise data interface through a polling loop
that is repeated until all the LOB data has been read or written.

Chapter 2
TimesTen Features and Operations in Your Application

2-30

• LOB locator interface (OCI, Pro*C/C++): Select LOB locators using SQL then access
LOB data through APIs that are similar conceptually to those used in accessing a file
system. Using the LOB locator interface, you can work with LOB data in pieces or in
single chunks. See LOBs in TimesTen OCI and LOBs in TimesTen Pro*C/C++.

The LOB locator interface offers the most utility if it is feasible for you to use it.

Using the LOB Simple Data Interface in ODBC
For the simple data interface in ODBC, use SQLBindParameter to bind parameters and
SQLBindCol to define result columns.

The application can bind or define using a SQL type that is compatible with the corresponding
variable type, as follows.

• For BLOB data, use SQL type SQL_LONGVARBINARY and C type SQL_C_BINARY.

• For CLOB data, use SQL type SQL_LONGVARCHAR and C type SQL_C_CHAR.

• For NCLOB data, use SQL type SQL_WLONGVARCHAR and C type SQL_C_WCHAR.

SQLBindParameter and SQLBindCol calls for LOB data would be very similar to such calls for
other data types, discussed earlier in this chapter.

Note:

Binding a CLOB or NCLOB with a C type of SQL_C_BINARY is prohibited.

Using the LOB Piecewise Data Interface in ODBC
For the piecewise data interface in ODBC, use SQLParamData with SQLPutData in a polling
loop to bind parameters and SQLGetData in a polling loop to retrieve results.

See the preceding section, Using the LOB Simple Data Interface in ODBC, for information
about supported SQL and C data types for BLOBs, CLOBs, and NCLOBs.

Note:

Similar piecewise data access has already been supported for the various APIs in
previous releases of TimesTen, for var data types.

This program excerpt uses SQLPutData with SQLParamData in a polling loop to insert LOB data
piece-by-piece into the database. The CLOB column contains the value "123ABC" when the
code is executed.

...
 /* create a table */
 create_stmt = "create table clobtable (c clob)";
 rc = SQLExecDirect(hstmt, (SQLCHAR *)create_stmt, SQL_NTS);
 if(rc != SQL_SUCCESS){/* ...error handling... */}

 /* initialize an insert statement */
 insert_stmt = "insert into clobtable values(?)";

Chapter 2
TimesTen Features and Operations in Your Application

2-31

 rc = SQLPrepare(hstmt, (SQLCHAR *)insert_stmt, SQL_NTS);
 if(rc != SQL_SUCCESS){/* ...error handling... */}

 /* bind the parameter and specify that we will be using
 * SQLParamData/SQLPutData */
 rc = SQLBindParameter(
 hstmt, /* statement handle */
 1, /* colnum number */
 SQL_PARAM_INPUT, /* param type */
 SQL_C_CHAR, /* C type */
 SQL_LONGVARCHAR, /* SQL type (ignored) */
 2, /* precision (ignored) */
 0, /* scale (ignored) */
 0, /* putdata token */
 0, /* ignored */
 &pcbvalue); /* indicates use of SQLPutData */
 if(rc != SQL_SUCCESS){/* ...error handling... */}

 pcbvalue = SQL_DATA_AT_EXEC;

 /* execute the statement -- this should return SQL_NEED_DATA */
 rc = SQLExecute(hstmt);
 if(rc != SQL_NEED_DATA){/* ...error handling... */}

 /* while we still have parameters that need data... */
 while((rc = SQLParamData(hstmt, &unused)) == SQL_NEED_DATA){

 memcpy(char_buf, "123", 3);
 rc = SQLPutData(hstmt, char_buf, 3);
 if(rc != SQL_SUCCESS){/* ...error handling... */}

 memcpy(char_buf, "ABC", 3);
 rc = SQLPutData(hstmt, char_buf, 3);
 if(rc != SQL_SUCCESS){/* ...error handling... */}

 }
...

Passthrough LOBs in ODBC
Passthrough LOBs, which are LOBs in Oracle Database accessed through TimesTen,
are exposed as TimesTen LOBs and are supported by TimesTen in much the same
way that any TimesTen LOB is supported.

Note the following:

• TimesTen LOB size limitations do not apply to storage of LOBs in the Oracle
database through passthrough.

• As with TimesTen local LOBs, a passthrough LOB used in an application does not
remain valid past the end of the transaction.

Using CALL to Execute Procedures and Functions
TimesTen Classic supports each of these syntax formats from any of its programming
interfaces to call PL/SQL procedures (procname) or PL/SQL functions (funcname) that
are standalone or part of a package, or to call TimesTen built-in procedures
(procname).

Chapter 2
TimesTen Features and Operations in Your Application

2-32

CALL procname[(argumentlist)]

CALL funcname[(argumentlist)] INTO :returnparam

CALL funcname[(argumentlist)] INTO ?

TimesTen ODBC also supports each of the following syntax formats:

{ CALL procname[(argumentlist)] }

{ ? = [CALL] funcname[(argumentlist)] }

{ :returnparam = [CALL] funcname[(argumentlist)] }

The following ODBC example calls the TimesTen ttCkpt built-in procedure.

rc = SQLExecDirect (hstmt, (SQLCHAR*) "call ttCkpt",SQL_NTS);

These examples call a PL/SQL procedure myproc with two parameters:

rc = SQLExecDirect(hstmt, (SQLCHAR*) "{ call myproc(:param1, :param2) }",SQL_NTS);

rc = SQLExecDirect(hstmt, (SQLCHAR*) "{ call myproc(?, ?) }",SQL_NTS);

The following shows several ways to call a PL/SQL function myfunc:

rc = SQLExecDirect (hstmt, (SQLCHAR*) "CALL myfunc() INTO :retparam",SQL_NTS);

rc = SQLExecDirect (hstmt, (SQLCHAR*) "CALL myfunc() INTO ?",SQL_NTS);

rc = SQLExecDirect (hstmt, (SQLCHAR*) "{ :retparam = myfunc() }",SQL_NTS);

rc = SQLExecDirect (hstmt, (SQLCHAR*) "{ ? = myfunc() }",SQL_NTS);

See CALL in Oracle TimesTen In-Memory Database SQL Reference.

Note:

• A user's own procedure takes precedence over a TimesTen built-in procedure
with the same name, but it is best to avoid such naming conflicts.

• TimesTen does not support using SQL_DEFAULT_PARAM with SQLBindParameter
for a CALL statement.

Timeouts and Thresholds for Executing SQL Statements
TimesTen offers two ways to limit the time for SQL statements or procedure calls to execute,
by either setting a timeout duration or setting a threshold duration. This applies to any
SQLExecute, SQLExecDirect, or SQLFetch call.

This section covers these topics:

• Setting a Timeout Duration for SQL Statements

• Setting a Threshold Duration for SQL Statements

Chapter 2
TimesTen Features and Operations in Your Application

2-33

Setting a Timeout Duration for SQL Statements
To control how long SQL statements should execute before timing out, you can set the
SQL_QUERY_TIMEOUT option using a SQLSetStmtOption or SQLSetConnectOption call to
specify a timeout value, in seconds. A value of 0 indicates no timeout. If a timeout
duration is reached, the statement stops executing and an error is thrown.

Note:

Despite the name, this timeout value applies to any executable SQL
statement, not just queries.

In TimesTen, you can specify this timeout value for a connection, and therefore any
statement on the connection, by using either the SQLQueryTimeout general connection
attribute (in seconds) or the SQLQueryTimeoutMsec general connection attribute (in
milliseconds). The default value of each is 0, for no timeout. (Also see
SQLQueryTimeout and SQLQueryTimeoutMsec in Oracle TimesTen In-Memory
Database Reference.)

Despite the names, these timeout values apply to any executable SQL statement, not
just queries.

A call to SQLSetConnectOption with the SQL_QUERY_TIMEOUT option overrides any
previous query timeout setting. A call to SQLSetStmtOption with the
SQL_QUERY_TIMEOUT option overrides the connection setting for the particular
statement.

The query timeout limit has effect only when a SQL statement is actively executing. A
timeout does not occur during commit or rollback. For transactions that update, insert,
or delete a large number of rows, the commit or rollback phases may take a long time
to complete. During that time the timeout value is ignored.

See Choose SQL and PL/SQL Timeout Values in Oracle TimesTen In-Memory
Database Operations Guide.

Note:

If both a lock timeout value and a SQL query timeout value are specified, the
lesser of the two values causes a timeout first. Regarding lock timeouts, you
can refer to ttLockWait (built-in procedure) or LockWait (general connection
attribute) in Oracle TimesTen In-Memory Database Reference, or to Check
for Deadlocks and Timeouts in Oracle TimesTen In-Memory Database
Monitoring and Troubleshooting Guide.

Setting a Threshold Duration for SQL Statements
You can configure TimesTen to write a warning to the support log when the execution
of a SQL statement exceeds a specified time duration, in seconds. Execution
continues and is not affected by the threshold.

Chapter 2
TimesTen Features and Operations in Your Application

2-34

By default, the application obtains the threshold from the QueryThreshold general connection
attribute setting (refer to QueryThreshold in Oracle TimesTen In-Memory Database
Reference). The default value is 0, for no warnings. Setting the TT_QUERY_THRESHOLD option in
a SQLSetConnectOption call overrides the connection attribute setting for the current
connection. Despite the name, the threshold applies to any executable SQL statement.

To set the threshold with SQLSetConnectOption:

RETCODE SQLSetConnectOption(hdbc, TT_QUERY_THRESHOLD, seconds);

Setting the TT_QUERY_THRESHOLD option in a SQLSetStmtOption call overrides the connection
attribute setting, and any setting through SQLSetConnectOption, for the statement. It applies
to SQL statements executed using the ODBC statement handle.

To set the threshold with SQLSetStmtOption:

RETCODE SQLSetStmtOption(hstmt, TT_QUERY_THRESHOLD, seconds);

You can retrieve the current value of TT_QUERY_THRESHOLD by using the SQLGetConnectOption
or SQLGetStmtOption ODBC function:

RETCODE SQLGetConnectOption(hdbc, TT_QUERY_THRESHOLD, paramvalue);

RETCODE SQLGetStmtOption(hstmt, TT_QUERY_THRESHOLD, paramvalue);

Configuring the Result Set Buffer Size in Client/Server Using ODBC
For data returned from a SELECT statement in client/server, the buffer size for the data
returned to the client is configurable to allow adjustments for better performance. (In earlier
releases, the buffer size could not be changed.)

The buffer size can be set in terms of either rows of data or bytes of data. The lower limit
takes precedence. It is suggested to use one limit and set the other to a value high enough to
ensure that it is not reached first.

TimesTen provides these ODBC statement attributes:

• TT_NET_MSG_MAX_ROWS: Buffer size in rows (default 8192)

• TT_NET_MSG_MAX_BYTES: Buffer size in bytes (default 2097152, or 2 MB)

These can also be set at the connection level. When you set them on a connection handle,
the new values will apply to any future statement handles created on the connection and also
to any existing statement handles on the connection. It is recommended, though, to set them
at statement level (or at connection level only to serve as initial values for statement handles
to be created).

The attributes are supported either as ODBC 3.5 attributes, using SQLSetStmtAttr() or
SQLSetConnectAttr(), or as ODBC 2.5 options, using SQLSetStmtOption() or
SQLSetConnectOption(). You can retrieve the values with ODBC “get” functions only on
statement handles, using SQLGetStmtAttr() in ODBC 3.5 or SQLGetStmtOption() in ODBC
2.5.

Here is an example:

SQLRETURN rc = SQL_SUCCESS;
/* Double the default number of rows */
UDWORD maxRows = 16384;

Chapter 2
TimesTen Features and Operations in Your Application

2-35

....
rc = SQLSetConnectAttr(hdbc, TT_NET_MSG_MAX_ROWS, (SQLPOINTER)
maxRows, SQL_IS_INTEGER);

Note:

• These attributes correspond to TimesTen connection attributes
TT_NetMsgMaxRows and TT_NetMsgMaxBytes, which you can set in a
TimesTen connection string or DSN, to serve as initial values for any
statements created on the connection.

• The minimum value of each attribute is 1 and at least one row is always
returned. Setting either to a value of 0 results in the default value being
used. There are no maximum settings other than the maximum value of
the data type (32-bit unsigned integer).

• If a client version that supports these attributes connects to a server
version that does not, any settings are ignored.

Features for Cache
There are features related to the use of cache in TimesTen Classic.

• Setting Temporary Passthrough Level With the ttOptSetFlag Built-In Procedure

• Determining Passthrough Status

• Retrieving Information About Cache Groups

See Oracle TimesTen In-Memory Database Cache Guide for information about cache.

See PassThrough and Setting a Passthrough Level in Oracle TimesTen In-Memory
Database Cache Guide.

Setting Temporary Passthrough Level With the ttOptSetFlag Built-In Procedure
TimesTen provides the ttOptSetFlag built-in procedure for setting various flags,
including the PassThrough flag to temporarily set the passthrough level.

You can use ttOptSetFlag to set PassThrough in a C application as in the following
example that sets the passthrough level to 1. The setting affects all statements that are
prepared until the end of the transaction.

rc = SQLExecDirect (hstmt, "call ttOptSetFlag ('PassThrough', 1)",SQL_NTS);

See ttOptSetFlag in Oracle TimesTen In-Memory Database Reference.

Determining Passthrough Status
You can call the SQLGetStmtOption ODBC function with the
TT_STMT_PASSTHROUGH_TYPE statement option to determine whether a SQL statement
is to be executed in the TimesTen database or passed through to the Oracle database
for execution.

This is shown in the following example.

Chapter 2
TimesTen Features and Operations in Your Application

2-36

rc = SQLGetStmtOption(hStmt, TT_STMT_PASSTHROUGH_TYPE, &passThroughType);

You can make this call after preparing the SQL statement. It is useful with PassThrough
settings of 1 or 2, where the determination of whether a statement is actually passed through
is not made until compilation time. If TT_STMT_PASSTHROUGH_NONE is returned, the statement is
to be executed in TimesTen. If TT_STMT_PASSTHROUGH_ORACLE is returned, the statement is to
be passed through to Oracle Database for execution.

See Setting a Passthrough Level in Oracle TimesTen In-Memory Database Cache Guide.

Note:

TT_STMT_PASSTHROUGH_TYPE is supported with SQLGetStmtOption only, not with
SQLSetStmtOption.

Retrieving Information About Cache Groups

When using cache, following the execution of a FLUSH CACHE GROUP, LOAD CACHE GROUP,
REFRESH CACHE GROUP, or UNLOAD CACHE GROUP statement, the ODBC function SQLRowCount
returns the number of cache instances that were flushed, loaded, refreshed, or unloaded.

For related information, see Determining the Number of Cache Instances Affected by an
Operation in Oracle TimesTen In-Memory Database Cache Guide.

Refer to ODBC API reference documentation for general information about SQLRowCount.

Error Handling
There are methods to check and handle different types of errors.

This section includes the following topics:

• Checking for Errors

• Error and Warning Levels

• Recovery After Fatal Errors

• Transient Errors (ODBC)

Checking for Errors
An application should check for errors and warnings on every call. This saves considerable
time and effort during development and debugging. The sample applications provided with
TimesTen show examples of error checking.

See About TimesTen Quick Start and Sample Applications.

Errors can be checked using either the TimesTen error code (error number) or error string, as
defined in the installation_dir/include/tt_errCode.h file. Entries are in the following
format:

#define tt_ErrMemoryLock 712

Chapter 2
Error Handling

2-37

See List of Errors and Warnings in Oracle TimesTen In-Memory Database Error
Messages and SNMP Traps.

After calling an ODBC function, check the return code. If the return code is not
SQL_SUCCESS, use an error-handling routine that calls the ODBC function SQLError to
retrieve the errors on the relevant ODBC handle. A single ODBC call may return
multiple errors. The application should be written to return all errors by repeatedly
calling the SQLError function until all errors are read from the error stack. Continue
calling SQLError until the return code is SQL_NO_DATA_FOUND. (SQL_NO_DATA_FOUND is
defined in sqlext.h, which is included by timesten.h.)

The following example shows that after a call to SQLAllocConnect, you can check for
an error condition. If one is found, an error message is displayed and program
execution is terminated.

rc = SQLAllocConnect(henv, &hdbc);

if (rc != SQL_SUCCESS) {
 handleError(rc, henv, hdbc, hstmt, err_buf, &native_error);
 fprintf(stderr,
 "Unable to allocate a connection handle:\n%s\n",
 err_buf);
 exit(-1);
}

Refer to ODBC API reference documentation for details about the SQLError function
and its arguments.

See Retrieving Errors and Warnings in Oracle TimesTen In-Memory Database Error
Messages and SNMP Traps.

Error and Warning Levels
When operations are not completely successful, TimesTen can return certain types of
errors.

• Fatal Errors

• Non-Fatal Errors

• Warnings

Note:

In some cases of an unusual termination, such as process failure, no error is
returned, but TimesTen automatically rolls back the transactions of the failed
process.

Fatal Errors
Fatal errors are those that make the database inaccessible until after error recovery.

When a fatal error occurs, all database connections are required to disconnect. No
further operations may complete. Fatal errors are indicated by TimesTen error codes
846 and 994. Error handling for these errors should be different from standard error

Chapter 2
Error Handling

2-38

handling. In particular, the application error-handling code should roll back the current
transaction and disconnect from the database.

Also see Recovery After Fatal Errors.

Non-Fatal Errors
Non-fatal errors include errors such as an INSERT statement that violates unique constraints.
This category also includes some classes of application and process failures.

TimesTen returns non-fatal errors through the standard error-handling process. Applications
should check for errors and appropriately handle them.

When a database is affected by a non-fatal error, an error may be returned and the
application should take appropriate action.

An application can handle non-fatal errors by modifying its actions or, in some cases, rolling
back one or more offending transactions.

Warnings
TimesTen returns warnings when something unexpected occurs that you may want to know
about.

Here are some events that cause TimesTen to issue a warning:

• Checkpoint failure

• Use of a deprecated feature

• Truncation of some data

• Execution of a recovery process upon connect

• Replication return receipt timeout

Application developers should have code that checks for warnings, as they can indicate
application problems.

Recovery After Fatal Errors
When fatal errors occur, TimesTen performs a full cleanup and recovery procedure.

• Every connection to the database is invalidated. To avoid out-of-memory conditions in the
server, applications are required to disconnect from the invalidated database. Shared
memory from the old TimesTen instance is not freed until all active connections at the
time of the error have disconnected. Inactive applications still connected to the old
TimesTen instance may have to be manually terminated.

• The database is recovered from the checkpoint and transaction log files upon the first
subsequent initial connection.

• The recovered database reflects the state of all durably committed transactions and
possibly some transactions that were committed non-durably.

• No uncommitted or rolled back transactions are reflected.

Chapter 2
Error Handling

2-39

Transient Errors (ODBC)
TimesTen automatically resolves most transient errors (which is particularly important
for TimesTen Scaleout), but if your application detects the following SQLSTATE value, it
is suggested to retry the current transaction.

• TT005: Transient transaction failure due to unavailability of resource. Roll back the
transaction and try it again.

Note:

• Search the entire error stack for errors returning these SQL states before
deciding whether it is appropriate to retry.

• The example in Implementing Failover Delay and Retry Settings also
shows how to retry for transient errors.

In ODBC 3.5, SQLSTATE is returned by the SQLGetDiagRec function or indicated in the
SQL_DIAG_SQLSTATE field of the SQLGetDiagField function. In ODBC 2.5, SQLSTATE is
returned by the SQLError function. This SQLSTATE may be encountered by any of the
following functions. Unless indicated otherwise, these functions apply to either ODBC
2.5 or ODBC 3.5.

• Catalog functions (such as SQLTables and SQLColumns)

• SQLCancel
• SQLCloseCursor (ODBC 3.5)

• SQLDisconnect
• SQLExecDirect
• SQLExecute
• SQLFetch
• SQLFetchScroll (ODBC 3.5)

• SQLFreeStmt (ODBC 2.5)

• SQLGetData
• SQLGetInfo
• SQLPrepare
• SQLPutData
• SQLEndTran (ODBC 3.5)

• SQLTransact (ODBC 2.5)

ODBC Support for Automatic Client Failover
There is ODBC support of the TimesTen implementation of automatic client failover, as
it applies to application developers.

Chapter 2
ODBC Support for Automatic Client Failover

2-40

• About Automatic Client Failover

• Features and Functionality of ODBC Support for Automatic Client Failover

• Configuration of Automatic Client Failover

• Implementing and Registering an ODBC Failover Callback Function

• ODBC Application Action in the Event of Failover

For TimesTen Scaleout, see Client Connection Failover in Oracle TimesTen In-Memory
Database Scaleout User's Guide. For TimesTen Classic, see Using Automatic Client Failover
in Oracle TimesTen In-Memory Database Operations Guide.

About Automatic Client Failover
Automatic client failover is for use in high availability scenarios, for either TimesTen Scaleout
or TimesTen Classic. There are two scenarios for TimesTen Classic, one with active standby
pair replication and one referred to as generic automatic client failover.

If there is a failure of the database or database element to which the client is connected, then
failover (connection transfer) to an alternate database or database element occurs:

• For TimesTen Scaleout, failover is to an element from a list returned by TimesTen of
available elements in the grid.

• For TimesTen Classic with active standby replication, failover is to the new active (original
standby) database.

• For TimesTen Classic using generic automatic client failover, where you can ensure that
the schema and data are consistent on both databases, failover is to a database from a
list that is configured in the client odbc.ini file.

A typical use case for generic automatic failover is a set of databases using read-only
caching, where each database has the same set of cached data. For example, if you
have several read-only cache groups, then you would create the same read-only cache
groups on all TimesTen Classic databases included in the list of failover servers. When
the client connection fails over to an alternate TimesTen database, the cached data is
consistent because cache operations automatically refresh the data (as needed) from the
Oracle database.

Applications are automatically reconnected to the new database or database element.
TimesTen provides features that enable applications to be alerted when this happens, so they
can take any appropriate action.

Note:

• Automatic client failover applies only to client/server connections. The
functionality described here does not apply to direct connections.

• Automatic client failover is complementary to Oracle Clusterware in situations
where Oracle Clusterware is used, though the two features are not dependent
on each other. Refer to Using Oracle Clusterware to Manage Active Standby
Pairs in Oracle TimesTen In-Memory Database Replication Guide.

Chapter 2
ODBC Support for Automatic Client Failover

2-41

Features and Functionality of ODBC Support for Automatic Client
Failover

If a database or database element to which a client is connected fails, failover to an
alternate database or database element occurs.

When failover occurs, be aware of the following:

• The client has a new connection but using the same ODBC connection handle. No
state from the original connection is preserved, however, other than the handle
itself. The application must open new ODBC statement handles and descriptor
handles.

• If you register a failover callback function (see Implementing and Registering an
ODBC Failover Callback Function.), a failover listener thread will be created within
the client process to listen for failover event and invoke the callback function.

All client statement handles from the original connection are marked as invalid. API
calls on these statement handles generally return SQL_ERROR with distinctive failover
error codes defined in tt_errCode.h:

• Native error 30105 with SQL state 08006

• Native error 47137

The exception to this is for SQLError, SQLFreeStmt, SQLGetDiagRec, and
SQLGetDiagField calls (depending on your version of ODBC), which behave typically.

In addition, note the following:

• The socket to the original database or database element is closed. There is no
need to call SQLDisconnect. TimesTen performs the equivalent, cleaning up the
connection handle and confirming resources are freed.

• In connecting to the new TimesTen database or database element, the same
connection string and DSN definition from the original connection request are
used, with the appropriate server name.

• It is up to the application to open new statement handles and reexecute necessary
SQLPrepare calls.

• If a failover has already occurred and the client is already connected to the new
database or database element:

– For TimesTen Scaleout, the next failover request results in an attempt to
connect to the next element in the list that was returned by TimesTen at the
time of the original connection.

– For TimesTen Classic with active standby replication, the next failover request
results in an attempt to reconnect to the original active database. If that fails,
alternating attempts are made to connect to the two servers until there is a
timeout, and the connection is blocked during this period.

– For TimesTen Classic using generic automatic client failover, the next failover
request results in an attempt to connect to the next database in the list that is
configured in the client odbc.ini file. This could be the next database
sequentially or one chosen at random from the list, according to the setting of
the TTC_Random_Selection connection attribute, which is described in
Configuration of Automatic Client Failover.

Chapter 2
ODBC Support for Automatic Client Failover

2-42

The timeout value is according to the TimesTen client connection attribute TTC_Timeout
(default 60 seconds). (Refer to TTC_Timeout in Oracle TimesTen In-Memory Database
Reference for information about that attribute.)

• Failover connections are created only as needed, not in advance.

During failover, TimesTen can optionally make callbacks to a user-defined function that you
register. This function takes care of any custom actions you want to occur in a failover
situation. (See Implementing and Registering an ODBC Failover Callback Function.)

The following public connection options are propagated to the new connection. The
corresponding general connection attribute is shown in parentheses where applicable. The
TT_REGISTER_FAILOVER_CALLBACK option is used to register your callback function.

SQL_ACCESS_MODE
SQL_AUTOCOMMIT
SQL_TXN_ISOLATION (Isolation)
SQL_OPT_TRACE
SQL_QUIET_MODE
TT_PREFETCH_CLOSE
TT_CLIENT_TIMEOUT (TTC_TIMEOUT)
TT_REGISTER_FAILOVER_CALLBACK

The following options are propagated to the new connection if they were set through
connection attributes or SQLSetConnectOption calls, but not if set through TimesTen built-in
procedures or ALTER SESSION.

TT_NLS_SORT (NLS_SORT)
TT_NLS_LENGTH_SEMANTICS (NLS_LENGTH_SEMANTICS)
TT_NLS_NCHAR_CONV_EXCP (NLS_NCHAR_CONV_EXCP)
TT_DYNAMIC_LOAD_ENABLE (DynamicLoadEnable)
TT_DYNAMIC_LOAD_ERROR_MODE (DynamicLoadErrorMode)
TT_NO_RECONNECT_ON_FAILOVER (TTC_NoReconnectOnFailover)

The following options are propagated to the new connection if they were set on the
connection handle.

SQL_QUERY_TIMEOUT
TT_PREFETCH_COUNT

See Connection Attributes in Oracle TimesTen In-Memory Database Reference.

Note:

If you issue an ALTER SESSION statement anytime after the initial database
connection, you must re-issue the statement after a failover.

Configuration of Automatic Client Failover
In TimesTen Classic, failover DSNs must be specifically configured through TTC_Server2 and
TTC_Servern connection attributes.

Setting any of TTC_Server2, TTC_Server_DSN2, TTC_Servern, or TCP_Port2 implies that you
intend to use automatic client failover. For the active standby pair scenario, it also means a
new thread is created for your application to support the failover mechanism.

Chapter 2
ODBC Support for Automatic Client Failover

2-43

Refer to Configuring Automatic Client Failover for TimesTen Classic in Oracle
TimesTen In-Memory Database Operations Guide or Client Connection Failover in the
Oracle TimesTen In-Memory Database Scaleout User's Guide.

Be aware of these TimesTen connection attributes:

• TTC_NoReconnectOnFailover: If this is set to 1 (enabled), TimesTen is instructed to
do all the usual client failover processing except for the automatic reconnect. (For
example, statement and connection handles are marked as invalid.) This is useful
if the application does its own connection pooling or manages its own
reconnection to the database after failover. The default value is 0 (reconnect). Also
see TTC_NoReconnectOnFailover in Oracle TimesTen In-Memory Database
Reference.

• TTC_REDIRECT: If this is set to 0 and the initial connection attempt to the desired
database or database element fails, then an error is returned and there are no
further connection attempts. This does not affect subsequent failovers on that
connection. Also see "TTC_REDIRECT" in Oracle TimesTen In-Memory Database
Reference.

• TTC_Random_Selection: For TimesTen Classic using generic automatic client
failover, the default setting of 1 (enabled) specifies that when failover occurs, the
client randomly selects an alternative server from the list provided in TTC_Servern
attribute settings. If the client cannot connect to the selected server, it keeps
redirecting until it successfully connects to one of the listed servers. With a setting
of 0, TimesTen goes through the list of TTC_Servern servers sequentially. Also see
TTC_Random_Selection in Oracle TimesTen In-Memory Database Reference.

Note:

If you set any of these in odbc.ini or the connection string, the settings are
applied to the failover connection. They cannot be set as ODBC connection
options or ALTER SESSION attributes.

Implementing and Registering an ODBC Failover Callback Function
If there are custom actions you would like to have occur when there is a failover, you
can have TimesTen make a callback to a user-defined function for such actions.

This function is called when the attempt to connect to the new database or database
element begins, and again after the attempt to connect is complete. This function
could be used, for example, to cleanly restore statement handles.

The function API is defined as follows.

typedef SQLRETURN (*ttFailoverCallbackFcn_t)
 (SQLHDBC, /* hdbc */
 SQLPOINTER, /* foCtx */
 SQLUINTEGER, /* foType */
 SQLUINTEGER); /* foEvent */

Where:

• hdbc is the ODBC connection handle for the connection that failed.

Chapter 2
ODBC Support for Automatic Client Failover

2-44

• foCtx is a pointer to an application-defined data structure, for use as needed.

• foType is the type of failover. In TimesTen, the only supported value for this is
TT_FO_SESSION, which results in the session being reestablished. This does not result in
statements being re-prepared.

• foEvent indicates the event that has occurred, with the following supported values:

– TT_FO_BEGIN: Beginning failover.

– TT_FO_ABORT: Failover failed. Retries were attempted for the interval specified by
TTC_Timeout (minimum value 60 seconds for active standby failover) without
success.

– TT_FO_END: Successful end of failover.

– TT_FO_ERROR: A failover connection failed but will be retried.

Note that TT_FO_REAUTH is not supported by TimesTen client failover.

Use a SQLSetConnectOption call to set the TimesTen TT_REGISTER_FAILOVER_CALLBACK
option to register the callback function, specifying an option value that is a pointer to a
structure of C type ttFailoverCallback_t that is defined as follows in the timesten.h file
and refers to the callback function.

typedef struct{
 SQLHDBC appHdbc;
 ttFailoverCallbackFcn_t callbackFcn;
 SQLPOINTER foCtx;
} ttFailoverCallback_t;

Where:

• appHdbc is the ODBC connection handle, and should have the same value as hdbc in the
SQLSetConnectOption calling sequence. (It is required in the data structure due to driver
manager implementation details, in case you are using a driver manager.)

• callbackFcn specifies the callback function. (You can set this to NULL to cancel callbacks
for the given connection. The failover would still happen, but the application would not be
notified.)

• foCtx is a pointer to an application-defined data structure, as in the function description
earlier.

Set TT_REGISTER_FAILOVER_CALLBACK for each connection for which a callback is desired.
The values in the ttFailoverCallback_t structure are copied when the
SQLSetConnectOption call is made. The structure need not be kept by the application. If
TT_REGISTER_FAILOVER_CALLBACK is set multiple times for a connection, the last setting takes
precedence.

Chapter 2
ODBC Support for Automatic Client Failover

2-45

Note:

• Because the callback function executes asynchronously to the main
thread of your application, it should generally perform only simple tasks,
such as setting flags that are polled by the application. However, there is
no such restriction if the application is designed for multithreading. In that
case, the function could even make ODBC calls, for example, but it is
only safe to do so if the foEvent value TT_FO_END has been received.

• It is up to the application to manage the data pointed to by the foCtx
setting.

This example shows the following features.

• A globally defined user structure type, FOINFO, and the structure variable foStatus
of type FOINFO

• A callback function, FailoverCallback(), that updates the foStatus structure
whenever there is a failover

• A registration function, RegisterCallback(), that does the following:

– Declares a structure, failoverCallback, of type ttFailoverCallback_t.

– Initializes foStatus values.

– Sets the failoverCallback data values, consisting of the connection handle,
a pointer to foStatus, and the callback function (FailoverCallback).

– Registers the callback function with a SQLSetConnectOption call that sets
TT_REGISTER_FAILOVER_CALLBACK as a pointer to failoverCallback.

/* user defined structure */
struct FOINFO
{
 int callCount;
 SQLUINTEGER lastFoEvent;
};
/* global variable passed into the callback function */
struct FOINFO foStatus;

/* the callback function */
SQLRETURN FailoverCallback (SQLHDBC hdbc,
 SQLPOINTER pCtx,
 SQLUINTEGER FOType,
 SQLUINTEGER FOEvent)
{
 struct FOINFO* pFoInfo = (struct FOINFO*) pCtx;

 /* update the user defined data */
 if (pFoInfo != NULL)
 {
 pFoInfo->callCount ++;
 pFoInfo->lastFoEvent = FOEvent;

 printf ("Failover Call #%d\n", pFoInfo->callCount);
 }

Chapter 2
ODBC Support for Automatic Client Failover

2-46

 /* the ODBC connection handle */
 printf ("Failover HDBC : %p\n", hdbc);

 /* pointer to user data */
 printf ("Failover Data : %p\n", pCtx);

 /* the type */
 switch (FOType)
 {
 case TT_FO_SESSION:
 printf ("Failover Type : TT_FO_SESSION\n");
 break;

 default:
 printf ("Failover Type : (unknown)\n");
 }

 /* the event */
 switch (FOEvent)
 {
 case TT_FO_BEGIN:
 printf ("Failover Event: TT_FO_BEGIN\n");
 break;

 case TT_FO_END:
 printf ("Failover Event: TT_FO_END\n");
 break;

 case TT_FO_ABORT:
 printf ("Failover Event: TT_FO_ABORT\n");
 break;

 case TT_FO_REAUTH:
 printf ("Failover Event: TT_FO_REAUTH\n");
 break;

 case TT_FO_ERROR:
 printf ("Failover Event: TT_FO_ERROR\n");
 break;

 default:
 printf ("Failover Event: (unknown)\n");
 }

 return SQL_SUCCESS;
}

/* function to register the callback with the failover connection */
SQLRETURN RegisterCallback (SQLHDBC hdbc)
{
 SQLRETURN rc;
 ttFailoverCallback_t failoverCallback;

 /* initialize the global user defined structure */
 foStatus.callCount = 0;
 foStatus.lastFoEvent = -1;

 /* register the connection handle, callback and the user defined structure */
 failoverCallback.appHdbc = hdbc;
 failoverCallback.foCtx = &foStatus;
 failoverCallback.callbackFcn = FailoverCallback;

Chapter 2
ODBC Support for Automatic Client Failover

2-47

 rc = SQLSetConnectOption (hdbc, TT_REGISTER_FAILOVER_CALLBACK,
 (SQLULEN)&failoverCallback);

 return rc;
}

When a failover occurs, the callback function would produce output such as the
following:

Failover Call #1
Failover HDBC : 0x8198f50
Failover Data : 0x818f8ac
Failover Type : TT_FO_SESSION
Failover Event: TT_FO_BEGIN

ODBC Application Action in the Event of Failover
There are actions to perform in the event of a failover.

This section discusses these topics:

• Application Steps for Failover

• Implementing Failover Delay and Retry Settings

Application Steps for Failover
If you receive any error conditions in response to an operation in your application, then
application failover is in progress.

See Features and Functionality of ODBC Support for Automatic Client Failover for a
list of error conditions.

Perform these recovery actions:

1. Issue a rollback on the connection. Until you do this, no further processing is
possible on the connection.

2. Clean up all objects from the previous connection. None of the state or objects
associated with the previous connection are preserved, but proper cleanup
through the relevant API calls is still strongly recommended.

3. Assuming TTC_NoReconnectOnFailover=0 (the default), sleep briefly, as discussed
in the next section, Implementing Failover Delay and Retry Settings. If
TTC_NoReconnectOnFailover=1, then you must instead manually reconnect the
application to an alternate database or database element.

4. Recreate and reprepare all objects related to your connection.

5. Restart any in-progress transactions from the beginning.

Implementing Failover Delay and Retry Settings
The reconnection to another database or database element during automatic client
failover may take some time. Therefore, your application should place all recovery
actions within a loop with a short delay before each subsequent attempt, where the
total number of attempts is limited.

Note the following:

Chapter 2
ODBC Support for Automatic Client Failover

2-48

• If your application attempts recovery actions before TimesTen has completed its client
failover process, you may receive another failover error condition as listed in Features
and Functionality of ODBC Support for Automatic Client Failover.

• If you do not limit the number of attempts, the application may appear to freeze if the
client failover process does not complete successfully. For example, your recovery loop
could use a retry delay of 100 milliseconds with a maximum number of retries limited to
100 attempts. The ideal values depend on your particular application and configuration.

This example illustrates some of these points (as well as retrying transient errors, discussed
in Transient Errors (ODBC)).

/*
 * The following code snippet is a simple illustration of how you might handle
 * the retrying of transient and connection failover errors in a C/ODBC
 * application. In the interests of simplicity code that is not directly
 * relevant to the example has been omitted (...). A real application
 * would of course be more complex.
 *
 * This example uses the ODBC 3.5 API.
 */

// define maximum retry counts and failover retry delay
#define MAX_TE_RETRIES 30
#define MAX_FO_RETRIES 100
#define FO_RETRY_DELAY 100 // milliseconds

// function return values
#define SUCCESS 0
#define FAILURE (-1)

// constants for categorising errors
#define ERR_OTHER 1
#define ERR_TRANSIENT 2
#define ERR_FAILOVER 3

// SQLSTATES and native errors
#define SQLSTATE_TRANSIENT "TT005"
#define SQLSTATE_FAILOVER "08006"
#define NATIVE_FAILOVER1 47137
#define NATIVE_FAILOVER2 30105

// SQL statements
SQLCHAR * sqlQuery = (SQLCHAR *)"SELECT ...";
SQLCHAR * sqlUpdate = (SQLCHAR *)"UPDATE ...";

// Database connection handle
SQLHDBC dbConn = SQL_NULL_HDBC;

// Statement handles
SQLHSTMT stmtQuery = SQL_NULL_HSTMT;
SQLHSTMT stmtUpdate = SQL_NULL_HSTMT;

// ODBC return code
SQLRETURN rc;

// Retry counters
int teRetries; // transient errors
int foRetries; // failover errors
int foDelay = FO_RETRY_DELAY; // failover retry delay in ms

Chapter 2
ODBC Support for Automatic Client Failover

2-49

// Function to sleep for a specified number of milliseconds
void
sleepMs(unsigned int ms)
{
 struct timespec rqtm, rmtm;

 rqtm.tv_sec = (time_t)(ms / 1000);
 rqtm.tv_nsec = (long)(ms % 1000000);

 while (nanosleep(&rqtm, &rmtm))
 rqtm = rmtm;
} // sleepMs

// Function to check error stack for transient or failover errors.
// In a real application lots of other kinds of checking would also
// go in here to identify other errors of interest. We'd probably also
// log the errors to an error log.
int
errorCategory(SQLHANDLE handle, SQLSMALLINT handleType)
{
 SQLRETURN rc;
 SQLSMALLINT i = 1;
 SQLINTEGER native_error;
 SQLCHAR sqlstate[LEN_SQLSTATE+1];
 SQLCHAR msgbuff[1024];
 SQLSMALLINT msglen;

 native_error = 0;
 sqlstate[0] = '\0';
 rc = SQLGetDiagRec(handleType, handle, i, sqlstate, &native_error,
 msgbuff, sizeof(msgbuff), &msglen);
 while (rc == SQL_SUCCESS)
 {
 if (strcmp(sqlstate, SQLSTATE_TRANSIENT) == 0)
 return ERR_TRANSIENT;
 else
 if (native_error == NATIVE_FAILOVER1)
 return ERR_FAILOVER;
 else
 if ((strcmp(sqlstate, SQLSTATE_FAILOVER) == 0) &&
 (native_error == NATIVE_FAILOVER2))
 return ERR_FAILOVER;
 rc = SQLGetDiagRec(handleType, handle, ++i, sqlstate,
 &native_error, msgbuff, sizeof(msgbuff),
 &msglen);
 }

 return ERR_OTHER;
} // errorCategory

// Function to perform a rollback
void
rollBack(SQLHDBC hDbc)
{
 SQLRETURN rc;

 rc = SQLEndTran(SQL_HANDLE_DBC, hDbc, SQL_ROLLBACK);
 // Report/log errors (a rollback failure is very, very bad).
 ...
} // rollBack

Chapter 2
ODBC Support for Automatic Client Failover

2-50

// Function to prepare all statements, bind parameters and bind
// columns.
int
prepareAll(void)
{
 SQLRETURN rc;

 // Prepare the SQL statements and check for errors.
 rc = SQLPrepare(stmtQuery, sqlQuery, SQL_NTS);
 if (rc != SQL_SUCCESS)
 {
 rollBack(dbConn);
 return errorCategory(stmtQuery, SQL_HANDLE_STMT);
 }
 rc = SQLPrepare(stmtUpdate, sqlUpdate, SQL_NTS);
...
 // Bind parameters and colums
...

 return SUCCESS; // indicate success
} // prepareAll

// Function to execute a specific application transaction handling
// retries.
int
txnSomeTransaction(...)
{
 SQLRETURN rc;
 SQLLEN rowcount = 0;
 int needReprepare = 0;
 int result;

 // Initialize retry counters
 teRetries = MAX_TE_RETRIES;
 foRetries = MAX_FO_RETRIES;

 // main retry loop
 while ((teRetries > 0) && (foRetries > 0))
 {

 // Do we need to re-prepare?
 while (needReprepare && (foRetries > 0))
 {
 msSleep(retryDelay); // delay before proceeding
 result = prepareAll();
 if (result == SUCCESS)
 needReprepare = 0;
 else
 if (result != ERR_FAILOVER)
 goto err;
 else
 foRetries--;
 }

 // First execute the query

 // Set input values for query
 ...

 // Execute query
 rc = SQLExecute(stmtQuery);

Chapter 2
ODBC Support for Automatic Client Failover

2-51

 if (rc != SQL_SUCCESS)
 {
 result = errorCategory(stmtQuery, SQL_HANDLE_STMT);
 rollBack(dbConn);
 switch (result)
 {
 case ERR_OTHER:
 goto err;
 break;
 case ERR_TRANSIENT:
 teRetries--;
 continue; // retry loop
 break;
 case ERR_FAILOVER:
 foRetries--;
 needReprepare = 1;
 continue; // retry loop
 break;
 }
 }

 // Process results
 while ((rc = SQLFetch(stmtQuery)) == SQL_SUCCESS)
 {
 // process next row
 ...
 }
 if ((rc != SQL_SUCCESS) && (rc != SQL_NO_DATA))
 {
 result = errorCategory(stmtQuery, SQL_HANDLE_STMT);
 rollBack(dbConn);
 switch (result)
 {
 case ERR_OTHER:
 goto err;
 break;
 case ERR_TRANSIENT:
 teRetries--;
 continue; // retry loop
 break;
 case ERR_FAILOVER:
 foRetries--;
 needReprepare = 1;
 continue; // retry loop
 break;
 }
 }

 // Now execute the update

 // Set input values for update
 ...

 // Execute update
 rc = SQLExecute(stmtUpdate);
 if (rc != SQL_SUCCESS)
 {
 ...
 }

 // Check number of rows affected

Chapter 2
ODBC Support for Automatic Client Failover

2-52

 rc = SQLRowCount(stmtUpdate, &rowcount);
 if (rc != SQL_SUCCESS)
 {
 ...
 }
 // Check rowcount and handle unexpected cases
 if (rowcount != 1)
 {
 ...
 }

 // Finally, commit
 rc = SQLEndTran(SQL_HANDLE_DBC, dbConn, SQL_COMMIT);
 if (rc != SQL_SUCCESS)
 {
 ...
 }

 return SUCCESS; // all good
 } // retry loop

err:
 // if we get here, we ran out of retries or had some other non-retryable
 // error. Report/log it etc. then return failure
 ...

 return FAILURE;
} // txnSomeTransaction

// Main code
int
main (int argc, char * argv[])
{
 int status = 0; // final exit code

 // Open the connection to the database and allocate statement handles
 ...

 // Disable auto-commit (this is essential)
 rc = SQLSetConnectAttr(dbConn,
 SQL_ATTR_AUTOCOMMIT,
 SQL_AUTOCOMMIT_OFF,
 0);
 ...

 // Prepare all statements, bind etc.
 if (prepareAll() != SUCCESS)
 {
 ...
 }

 // Do stuff until we are finished
 while (...)
 {
 ...
 if (txnSomeTransaction(...) != SUCCESS)
 {
 ...
 goto fini;

Chapter 2
ODBC Support for Automatic Client Failover

2-53

 }
 ...
 }

fini: // cleanup etc.
 // Release all resources (ODBC and non-ODBC)
 ...
 // Disconnect from database
 ...

 // Return final exit code
 return status;
} //main

Client Routing API for TimesTen Scaleout
These sections describe the client routing API for TimesTen Scaleout.

• Functionality of the Client Routing API

• Creating a Grid Map and Distribution

• Distribution Key Values

• Getting the Element Location Given a Set of Key Values

• Client Routing API With Functions in Use

• Supported Data Types

• Restrictions

• Failure Modes

Functionality of the Client Routing API
To increase performance, TimesTen Scaleout enables your client application to route
connections to an element based on the key value for a hash distribution key.

You provide a key value and TimesTen Scaleout returns an array of element IDs (or
the replica set ID) where the database allocated that value. This enables the client
application to connect to the element that stores the row with the specified key value,
avoiding unnecessary communication between the element storing the row and the
one connected to your application.

Note:

This feature is not supported with generic driver managers but is supported
with the TimesTen driver manager.

Creating a Grid Map and Distribution
These sections show how to create a grid map and distribution for client routing.

• Functions for the Grid Map and Distribution

• How to Create the Grid Map and Distribution

Chapter 2
Client Routing API for TimesTen Scaleout

2-54

Functions for the Grid Map and Distribution
There are functions you can use for a grid map and distribution for client routing.

TimesTen Scaleout includes two new objects for a grid map and a grid distribution in the
timesten.h file:

• TTGRIDMAP: A grid map is a lookup table that maps the topology of a grid. You create a
grid map by calling the ttGridMapCreate function with a valid ODBC connection. The
function returns a handle to a TTGRIDMAP object.

Use the ttGridMapFree function to free a grid map.

Note:

– A TTGRIDMAP object is not strongly associated with the HDBC connection.
Freeing either object does not free the other.

– A grid map can be shared among many grid distributions and across
application threads. Only one grid map is required per application process
per database.

• TTGRIDDIST: A grid distribution is an ordered set of types and values that represent the
distribution key columns of a table or tables. For distribution keys composed of multiple
columns, the order of the types and values must be the same as for the distribution key
columns of the table.

You create a grid distribution by calling the ttGridDistCreate function with the C type,
SQL type, length, scale, and precision of the distribution key columns of a table. The
function returns a handle to a TTGRIDDIST object. See Table 2-3.

Use the ttGridDistFree function to free a grid distribution.

Note:

– A TTGRIDDIST object is not associated with a given table. You can use the
same TTGRIDDIST object for any table that uses the same types and values
in their distribution key columns.

– A grid distribution cannot be shared across threads. However, multiple grid
distributions in different threads can be created using the same grid map.

Table 2-3 ttGridDistCreate Arguments

Argument Type Description

hdbc SQLHDBC Connection handle

map TTGRIDMAP Grid map handle

cTypes[] SQLSMALLINT Array of C bind types in the same order as the distribution
key columns

Chapter 2
Client Routing API for TimesTen Scaleout

2-55

Table 2-3 (Cont.) ttGridDistCreate Arguments

Argument Type Description

sqlTypes[] SQLSMALLINT Array of SQL bind types in the same order as the distribution
key columns

precisions[] SQLULEN Array of precision values in the same order as the
distribution key columns

scales[] SQLSMALLINT Array of scale values in the same order as the distribution
key columns

maxSizes[] SQLLEN Array of maximum column size values in the same order as
the distribution key columns

nCols SQLUSMALLINT Number of columns in the distribution key

*dist TTGRIDDIST Grid distribution handle (OUT)

Note:

The parameters for ttGridDistCreate are similar to those used in a
subsequent SQLBindParameter ODBC call.

How to Create the Grid Map and Distribution
This example shows how to work with the grid map and distribution.

1. Create TTGRIDMAP and TTGRIDDIST objects.

2. Call the ttGridMapCreate function to create a grid map using an existing ODBC
connection.

3. Call the ttGridDistCreate function to create a grid distribution based on a
distribution key composed of two columns.

4. Free the grid distribution and map with the ttGridDistFree and ttGridMapFree
functions, respectively.

TTGRIDMAP map;
TTGRIDDIST dist;

ttGridMapCreate(hdbc, &map);

SQLSMALLINT cTypes[] = { SQL_C_LONG, SQL_C_CHAR };
SQLSMALLINT sqlTypes[] = { SQL_INTEGER, SQL_CHAR };
SQLLEN maxSizes[] = { 4, 20 };

ttGridDistCreate(hdbc, map, cTypes, sqlTypes, NULL, NULL, maxSizes, 2, &dist);

...

ttGridDistFree(hdbc, dist);
ttGridMapFree(hdbc, map);

Distribution Key Values
There are methods to set the grid distribution key values for client routing.

Chapter 2
Client Routing API for TimesTen Scaleout

2-56

• Function for Distribution Key Values

• Setting Distribution Key Values

Function for Distribution Key Values
Use the ttGridDistValueSet function to set the grid distribution key values for client routing.

With the grid map and distribution defined, you set the key values in order to determine the
elements in which they are allocated. Call the ttGridDistValueSet function to set the key
value for one of the columns in the distribution key. For distribution keys composed of multiple
columns, call this function once for every column in the distribution key. Table 2-4 provides a
brief summary of the arguments of the ttGridDistValueSet function.

Table 2-4 ttGridDistValueSet Arguments

Argument Type Description

hdbc SQLHDBC Connection handle

dist TTGRIDDIST Grid distribution handle

position SQLSMALLINT Position of the column in the distribution key

value SQLPOINTER Key value pointer

valueLen SQLLEN Length of the key value

Setting Distribution Key Values
This example first calls the ttGridDistClear function to clear any previously defined key
values for the distribution key columns. Then, the example calls the ttGridDistValueSet
function for every column in the distribution key and sets the key value for each column.

ttGridDistClear(hdbc, dist);

ttGridDistValueSet(hdbc, dist, 1, empId, sizeof(empId));
ttGridDistValueSet(hdbc, dist, 2, "SALES", SQL_NTS);

Getting the Element Location Given a Set of Key Values
Once you set the distribution key values, this section shows that you can call for the location
of the key values either by element IDs or replica set ID.

These topics are covered:

• Function for Element IDs

• Getting the Element IDs

• Function for Replica Set ID

• Getting the Replica Set ID

Function for Element IDs
Call the ttGridDistElementGet function to obtain the corresponding element IDs that
represent the location of the provided key values. The function returns an array of element

Chapter 2
Client Routing API for TimesTen Scaleout

2-57

IDs. The application is responsible for allocating the return array. The length of the
array is based on the value of K-safety of the grid.

For example, in a grid with K-safety set to 2, there must be at least two elements in the
array. Table 2-5 provides a brief summary of the arguments of the
ttGridDistElementGet function.

Table 2-5 ttGridDistElementGet Arguments

Argument Type Description

hdbc SQLHDBC Connection handle

dist TTGRIDDIST Grid distribution handle

elemIds[] SQLSMALLINT Array of element IDs where the key values are allocated
(IN/OUT)

elemIdSize SQLSMALLINT Value of K-safety

Getting the Element IDs
These examples show how to get the element IDs and how to associate an element ID
with a connection string.

This example gets the array of element IDs associated with the current key values (set
by the ttGridDistValueSet function) by calling the ttGridDistElementGet function.

SQLSMALLINT elementIds[2];

ttGridDistElementGet(hdbc, dist, elementIds, 2);

Note:

The elementIds array must be of a length equal or greater than the value of
K-safety of the grid.

With the location of the set of key values available, your application can use the
element IDs to select a connection to one of the elements, prepare a statement, bind
values, and execute the statement.

Note:

The connection attempt can be subject to a failover event and the application
may not connect to the expected element.

The example that follows shows a query that may help you associate an element ID
with a connection string. It assembles a connection string for each element of the
database by querying the SYS.V$DISTRIBUTION_CURRENT system view. The connection
string includes the TTC_REDIRECT=0 attribute to ensure a connection to the specified
element or its replica. If the connection to all replicas fails, then a connection error is
returned.

Chapter 2
Client Routing API for TimesTen Scaleout

2-58

select 'TTC_REDIRECT=0;
TTC_SERVER='||hostexternaladdress||'/'||serverport,mappedelementid
 from SYS.V$DISTRIBUTION_CURRENT;
< TTC_REDIRECT=0;TTC_SERVER=ext-host3.example.com/6625, 1 >
< TTC_REDIRECT=0;TTC_SERVER=ext-host4.example.com/6625, 2 >
< TTC_REDIRECT=0;TTC_SERVER=ext-host5.example.com/6625, 3 >
< TTC_REDIRECT=0;TTC_SERVER=ext-host6.example.com/6625, 4 >
< TTC_REDIRECT=0;TTC_SERVER=ext-host7.example.com/6625, 5 >
< TTC_REDIRECT=0;TTC_SERVER=ext-host8.example.com/6625, 6 >
6 rows found.

Function for Replica Set ID
Call the ttGridDistReplicaGet function to obtain the corresponding replica set ID that
represents the location of the provided key values.

Table 2-6 provides a brief summary of the arguments of the ttGridDistReplicaGet function.

Table 2-6 ttGridDistReplicaGet Arguments

Argument Type Description

hdbc SQLHDBC Connection handle

dist TTGRIDDIST Grid distribution handle

*replicaSetId SQLSMALLINT Replica set ID where the key values are allocated (OUT)

Getting the Replica Set ID
This example gets the replica set ID associated with the current key values (set by the
ttGridDistValueSet function) by calling the ttGridDistReplicaGet function.

SQLSMALLINT replicaSetId;

ttGridDistReplicaGet(hdbc, dist, replicaSetId);

You can use the replica set ID with the SYS.V$DISTRIBUTION_CURRENT system view to look up
the communication parameters of the elements in that replica set.

Client Routing API With Functions in Use
This partial example shows the client routing API with most of its objects and functions in use.

#include <timesten.h>

...

TTGRIDMAP map;
TTGRIDDIST dist;

/* Create a grid map using any existing connection. */
ttGridMapCreate(hdbc, &map);

/* The distribution key has two columns: one with TT_INTEGER as data type and
 * one with CHAR(20), in that order. Precision and scale are not necessary. */
SQLSMALLINT cTypes[] = { SQL_C_LONG, SQL_C_CHAR };
SQLSMALLINT sqlTypes[] = { SQL_INTEGER, SQL_CHAR };

Chapter 2
Client Routing API for TimesTen Scaleout

2-59

SQLLEN maxSizes[] = { 4, 20 };

/* Create grid distribution from the grip map and the specified distribution
 * key column paremeters. */
ttGridDistCreate(hdbc, map, cTypes, sqlTypes, NULL, NULL, maxSizes, 2, &dist);

/* Execution loop. */
while (...)
{
 SQLSMALLINT elementIds[2];

 /* Clear the existing key values from the distribution map */
 ttGridDistClear(hdbc, dist);

 /* Set the key values for the grid distribution. */
 ttGridDistValueSet(hdbc, dist, 1, key1, sizeof(key1));
 ttGridDistValueSet(hdbc, dist, 2, key2, SQL_NTS);

 /* Get the corresponding element IDs for current key values*/
 ttGridDistElementGet(hdbc, dist, elementIds, 2);

 /* The application uses the element IDs to select a connection to
 * one of the elements, prepare a statement, bind values, and execute
 * the statement. */
 ...
}

/* Free the grid distribuion and map. */
ttGridDistFree(hdbc, dist);
ttGridMapFree(hdbc, map);

Supported Data Types
The TTGRIDDIST object is created using the C types and SQL types available from
ODBC.

Table 2-7 shows the supported C types and SQL types with their corresponding
Database SQL types.

Table 2-7 List of Supported Types

C Types ODBC SQL Types Database SQL Types

SQL_C_TINYINT SQL_TINYINT TT_TINYINT
SQL_C_SMALLINT SQL_SMALLINT TT_SMALLINT
SQL_C_LONG SQL_INTEGER TT_INTEGER
SQL_C_BIGINT SQL_BIGINT TT_BIGINT
SQL_C_CHAR SQL_CHAR CHAR
SQL_C_CHAR SQL_VARCHAR VARCHAR, VARCHAR2
SQL_C_WCHAR SQL_WCHAR NCHAR
SQL_C_WCHAR SQL_WVARCHAR NVARCHAR
SQL_C_SQLT_NUM SQL_DOUBLE NUMBER
SQL_C_SQLT_NUM SQL_DECIMAL NUMBER(p,s)

Chapter 2
Client Routing API for TimesTen Scaleout

2-60

Table 2-7 (Cont.) List of Supported Types

C Types ODBC SQL Types Database SQL Types

SQL_C_SQLT_VNU SQL_DOUBLE NUMBER
SQL_C_SQLT_VNU SQL_DECIMAL NUMBER(p,s)

The TTGRIDDIST object supports all signed and unsigned data type variants. For example, it
supports both SQL_C_SLONG and SQL_C_ULONG.

You can set NULL values by specifying SQL_NULL_DATA for the valueLen parameter of the
ttGridDistValueSet function. The NULL value will always map to the same replica set or
element IDs.

Restrictions
Client routing has certain restrictions.

• It does not have implicit connection or statement management.

• It does not support date, time, or timestamp data types.

• It does not support explicit type conversion. Applications must specify key values in
canonical byte format.

• It does not support character set conversion. It ignores the connection character set.

• Changes in the topology of the grid require that applications free and recreate the grid
map.

Failure Modes
The client routing API may return certain errors.

• Incorrect types and values to describe the distribution key columns of the table. In this
case, the API will still compute an array of element IDs, but these may not correspond to
the real location of the desired key values.

• Unrecognized type codes. If you call the ttGridDistCreate function with unrecognized
type codes, the function returns an error.

• Not enough values set for the grid distribution. If you do not provide enough values for
the distribution key through the ttGridDistValueSet function, then the
ttGridDistElementGet or ttGridDistReplicaGet function would return an error.

• Invalid size of the element IDs array. If you do not provide an array of at least the size of
the value of K-safety, the ttGridDistElementGet function would return an error.

Chapter 2
Client Routing API for TimesTen Scaleout

2-61

3
TimesTen Support for OCI

TimesTen supports the Oracle Call Interface (OCI) for C or C++ programs.

This chapter provides an overview and TimesTen-specific information regarding OCI,
especially emphasizing differences between using OCI with TimesTen versus with Oracle
Database. For complete information about OCI, you can refer to Oracle Call Interface
Programmer's Guide in the Oracle Database library.

Also note that Working With TimesTen Databases in ODBC contains information that may be
of general interest regarding TimesTen features.

The following topics are covered:

• Overview of TimesTen OCI Support

• Getting Started With TimesTen OCI

• TimesTen Features With OCI

• TimesTen OCI Support Reference

Overview of TimesTen OCI Support
You can use OCI with TimesTen. For supported features, TimesTen OCI syntax and usage
are the same as in Oracle Database.

These topics are covered:

• Overview of OCI

• TimesTen OCI Basics

• OCI in the TimesTen Architecture

• Globalization Support in TimesTen OCI

• TimesTen Restrictions and Limitations

Overview of OCI
OCI is an API that provides functions you can use to access the database and control SQL
execution. OCI supports the data types, calling conventions, syntax, and semantics of the C
and C++ programming languages.

You compile and link an OCI program much as you would any C or C++ program. There is no
preprocessing or precompilation step.

The OCI library of database access and retrieval functions is in the form of a dynamic runtime
library that can be linked into an application at runtime. The OCI library includes the following
functional areas:

• SQL access functions

• Data type mapping and manipulation functions

3-1

The following are among the many useful features that OCI provides or supports:

• Statement caching

• Dynamic SQL

• Facilities to treat transaction control, session control, and system control
statements like DML statements

• Description functionality to expose layers of server metadata

• Ability to associate commit requests with statement executions to reduce round
trips

• Optimization of queries using transparent prefetch buffers to reduce round trips

• Thread safety that eliminates the need for mutual exclusive locks on OCI handles

For general information about OCI, you can refer to Oracle Call Interface
Programmer's Guide, included with the Oracle Database documentation set.

TimesTen OCI Basics
TimesTen OCI support enables you to run many existing OCI applications with
TimesTen direct connections or client/server connections. It also enables you to use
other features, such as Pro*C/C++ and ODP.NET, that use OCI as a database
interface. (You can also call PL/SQL from OCI, Pro*C/C++, and ODP.NET
applications.)

TimesTen provides Oracle Instant Client as the OCI client library. This is configured
through the appropriate ttenv script, discussed in Environment Variables in Oracle
TimesTen In-Memory Database Installation, Migration, and Upgrade Guide.

TimesTen Release 22.1 OCI is based on Oracle Database release 19c OCI and
supports the contemporary OCI 8 style APIs.

OCI in the TimesTen Architecture
OCI support is positioned in the TimesTen architecture.

Figure 3-1 shows where OCI support is positioned in the TimesTen architecture.

Chapter 3
Overview of TimesTen OCI Support

3-2

Figure 3-1 OCI in the TimesTen Architecture

JDBC TTClasses (C++) OCI

ODBC driver

Application

SQL engine PL/SQL engine

TimesTen database engine

Pro*C/C++ ODP.NET ODPI-C

Node.js

Python

Globalization Support in TimesTen OCI
TimesTen OCI supports globalization.

• About TimesTen Support for Character Sets

• Specifying a Character Set

• Additional Globalization Features

About TimesTen Support for Character Sets
TimesTen character sets are compatible with Oracle Database.

The TimesTen default character set is AMERICAN_AMERICA.US7ASCII (but AL32UTF8 is
recommended as an alternative). Refer to Supported Character Sets in Oracle TimesTen In-
Memory Database Reference.

Specifying a Character Set
To specify a character set for the connection, OCI programs can set the NLS_LANG
environment variable or call OCIEnvNlsCreate().

The ConnectionCharacterSet setting in the sys.odbc.ini or user odbc.ini file is used by
default if not overridden by NLS_LANG or OCIEnvNlsCreate(). Setting the character set
explicitly is recommended. The default is typically AMERICAN_AMERICA.US7ASCII, but AL32UTF8
is recommended as an alternative.

Note that because TimesTen OCI does not support language or locale (territory) settings, the
language and territory components of NLS_LANG, such as AMERICAN_AMERICA above, are
ignored. Even when not specifying the language and locale, however, you must still have the

Chapter 3
Overview of TimesTen OCI Support

3-3

period in front of the character set when setting NLS_LANG. For example, either of the
following would work, although AMERICAN_AMERICA is ignored:

NLS_LANG=AMERICAN_AMERICA.WE8ISO8859P1

Or:

NLS_LANG=.WE8ISO8859P1

Note:

• An NLS_LANG environment setting overrides the TimesTen default
character set.

• On Windows, the NLS_LANG setting is searched for in the registry if it is
not in the environment. If your OCI or Pro*C/C++ program has trouble
connecting to TimesTen, verify that the NLS_LANG setting under
HKEY_LOCAL_MACHINE\Software\ORACLE\, if that key exists, is valid and
indicates a character set supported by TimesTen.

• Refer to Choosing a Locale With the NLS_LANG Environment Variable
in Oracle Database Globalization Support Guide.

• Refer to OCIEnvNlsCreate() in Oracle Call Interface Programmer's
Guide.

Additional Globalization Features
TimesTen OCI also supports the globalization features referenced here. These can be
set as environment variables, TimesTen general connection attributes, or TimesTen
ODBC connection options.

For the connection options, the names here are prepended by "TT_". An environment
variable setting takes precedence over a corresponding connection attribute or
connection option setting. A connection option setting takes precedence over a
corresponding connection attribute setting.

• NLS_LENGTH_SEMANTICS: By default, the lengths of character data types CHAR and
VARCHAR2 are specified in bytes, not characters. For single-byte character
encoding this works well. For multibyte character encoding, you can use
NLS_LENGTH_SEMANTICS to create CHAR and VARCHAR2 columns using character-
length semantics instead. Supported settings are BYTE (default) and CHAR. (NCHAR
and NVARCHAR2 columns are always character-based. Existing columns are not
affected.)

• NLS_SORT: This specifies the type of sort for character data. It overrides the default
value from NLS_LANG. Valid values are BINARY or any linguistic sort name
supported by TimesTen. For example, to specify the German linguistic sort
sequence, set NLS_SORT=German.

• NLS_NCHAR_CONV_EXCP: This determines whether an error is reported when there is
data loss during an implicit or explicit character type conversion between NCHAR or
NVARCHAR data and CHAR or VARCHAR2 data. Valid settings are TRUE and FALSE. The
default value is FALSE, resulting in no error being reported.

Chapter 3
Overview of TimesTen OCI Support

3-4

Refer to Globalization Support in Oracle TimesTen In-Memory Database Operations Guide,
Setting Up a Globalization Support Environment in Oracle Database Globalization Support
Guide and Attribute Support for ODBC 3.5 SQLSetConnectAttr and SQLGetConnectAttr.

TimesTen Restrictions and Limitations
This section discusses the following areas of restrictions for OCI in TimesTen compared to in
Oracle Database:

• Oracle Database Features Not Supported by TimesTen

• TimesTen OCI Limitations

Oracle Database Features Not Supported by TimesTen
TimesTen does not support OCI calls that are related to functionality that does not exist in
TimesTen, which do not support these Oracle Database features:

• Advanced Queuing

• Any Data

• Object support

• Collections

• Cartridge Services

• Direct path loading

• Date/time intervals

• Iterators

• BFILEs

• Cryptographic Toolkit

• XML DB support

• Spatial Services

• Event handling

• Session switching

• Scrollable cursors

TimesTen OCI Limitations
There are certain restrictions in TimesTen OCI.

• Asynchronous calls are not supported.

• Connection pooling and session pooling are not supported.

• Describing objects with OCIDescribeAny() is supported only by name. Describing
PL/SQL objects is not supported. (Also see the entry for this function under Supported
OCI Calls.)

• TimesTen client/server automatic client failover is not supported.

• The TNSPING utility does not recognize connections to TimesTen.

Chapter 3
Overview of TimesTen OCI Support

3-5

• Retrieving implicit ROWID values from INSERT, UPDATE, and DELETE statements is
not supported. (This is supported for SELECT FOR UPDATE statements, however.)

• TimesTen built-in procedures that return result sets are not supported directly. You
can, however, use PL/SQL for this purpose, as shown in Use of PL/SQL in OCI to
Call a TimesTen Built-In Procedure.

• Only a single REF CURSOR can be returned from a PL/SQL block, procedure call,
or function call.

• Binding and defining of structures through OCIBindArrayOfStruct() and
OCIDefineArrayOfStruct() is supported for SQL statements but not for PL/SQL.
(Also see the entries for these functions under Supported OCI Calls.)

• Oracle Database utilities such as SQL*Plus and SQL*Loader are not supported.
(In TimesTen, you can use ttIsql instead of SQL*Plus and ttBulkCp instead of
SQL*Loader. See Utilities in Oracle TimesTen In-Memory Database Reference.)

• Array binding, the ability to bind arrays into PL/SQL statements, is supported for
associative arrays (index-by tables or PL/SQL tables) but is not supported for
varrays (variable size arrays) or nested tables. (See Binding Associative Arrays in
TimesTen OCI.)

• Both TimesTen and Oracle Database support XA, but TimesTen does not support
XA through OCI.

• With OCI, TimesTen automatically disables autocommit for DML statements.
Transactions should be explicitly committed or rolled back when finished.

Getting Started With TimesTen OCI
Use these methods for getting started with a TimesTen OCI application.

• Environment Variables for TimesTen OCI

• About Compiling and Linking OCI Applications

• Connecting to a TimesTen Database From OCI

• OCI Error Handling

• Signal Handling and Diagnostic Framework Considerations

Environment Variables for TimesTen OCI
You set certain environment variables for executing a TimesTen OCI application.

Settings apply to both direct connections and client/server connections except as
noted.

See Table 3-1.

Chapter 3
Getting Started With TimesTen OCI

3-6

Note:

• After creating an instance, you can set your environment as appropriate
through the timesten_home/bin/ttenv script applicable to your operating
system. See Environment Variables in the Oracle TimesTen In-Memory
Database Installation, Migration, and Upgrade Guide for information about
ttenv scripts.

• To ensure proper generation of OCI programs to be run on TimesTen,
ORACLE_HOME cannot be set for OCI compilations.

Table 3-1 Environment Variables for TimesTen OCI

Variable Required or Optional Settings

LD_LIBRARY_PATH (Linux or UNIX)

PATH (Windows)

Required Must be set so that the TimesTen
Instant Client directory precedes
the Oracle Database libraries in the
path. The path is set properly if you
use the following script under
timesten_home:

bin/ttenv

TNS_ADMIN Required if you use the
tnsnames naming
method

Specifies the directory where the
tnsnames.ora file is located. This
is also where TimesTen looks for a
sqlnet.ora file.

See Connecting to a TimesTen
Database From OCI.

TWO_TASK (Linux or UNIX)

LOCAL (Windows)

Optional You can use this, whichever is
appropriate for your platform,
instead of specifying the dbname
argument in your OCI logon call.
The setting consists of a valid TNS
name or easy connect string.

See Connecting to a TimesTen
Database From OCI.

NLS_LANG Optional See Specifying a Character Set.
Only the character set component
is honored and it must indicate a
character set supported by
TimesTen. The language and
territory values are ignored.

This environment variable overrides
the TimesTen default character set.

NLS_SORT Optional See Additional Globalization
Features. The sort order must be a
value supported by TimesTen.

This overrides the TimesTen
NLS_SORT general connection
attribute.

Chapter 3
Getting Started With TimesTen OCI

3-7

Table 3-1 (Cont.) Environment Variables for TimesTen OCI

Variable Required or Optional Settings

NLS_LENGTH_SEMANTICS Optional See Additional Globalization
Features.

This overrides the TimesTen
NLS_LENGTH_SEMANTICS general
connection attribute.

NLS_NCHAR_CONV_EXCP Optional See Additional Globalization
Features.

This overrides the TimesTen
NLS_NCHAR_CONV_EXCP general
connection attribute.

Note:

Refer to NLS General Connection Attributes in Oracle TimesTen In-Memory
Database Reference.

About Compiling and Linking OCI Applications
No changes are required between Oracle Database and TimesTen for the steps to
compile and link an OCI application.

OCI programs that use the Oracle Client library shipped with TimesTen do not have to
be recompiled or relinked to be executed with TimesTen unless there has been a
major upgrade to the Oracle version provided with TimesTen.

Connecting to a TimesTen Database From OCI
TimesTen OCI uses the Oracle Instant Client to connect to the TimesTen database.
You can connect to the database through either the tnsnames or the easy connect
naming method, similarly to how you would connect to an Oracle database through
those methods.

This section covers the following topics. All but the first apply to only TimesTen
Classic:

• About Configuring OCI Connections in TimesTen Scaleout

• Using the tnsnames Naming Method to Connect

• Using an Easy Connect String to Connect

• Configuring Whether to Use tnsnames.ora or Easy Connect

Refer to Configuring Naming Methods in Oracle Database Net Services
Administrator's Guide for additional information about tnsnames, easy connect, and the
tnsnames.ora file.

Chapter 3
Getting Started With TimesTen OCI

3-8

Note:

Although the sqlnet mechanism is used for a TimesTen OCI connection, the
connection goes through the TimesTen ODBC driver, not the Oracle Database
sqlnet driver.

About Configuring OCI Connections in TimesTen Scaleout
In TimesTen Scaleout, TimesTen will automatically populate the tnsnames.ora file and
sqlnet.ora file, as applicable, on all instances with entries for all TimesTen connectables you
have defined.

See Connectable Operations in Oracle TimesTen In-Memory Database Reference.

The instructions here are not relevant, as the user is not allowed to manually configure those
entries. The tnsnames, sqlnet, and related information for additional entries, such as for
Oracle database connections (as applicable), is brought in and distributed through the
ttGridAdmin TNSNamesImport and SQLNetImport commands. See Oracle Database
Operations in Oracle TimesTen In-Memory Database Reference.

Using the tnsnames Naming Method to Connect
TimesTen supports tnsnames syntax. You can use a TimesTen tnsnames.ora entry the same
way you would use an Oracle Database tnsnames.ora entry.

The syntax of a TimesTen entry in tnsnames.ora is as follows:

tns_entry = (DESCRIPTION =
 (CONNECT_DATA =
 (SERVICE_NAME = dsn)
 (SERVER = timesten_direct | timesten_client)))

Where tns_entry is the arbitrary TNS name you assign to the entry. You can use this as the
dbname argument in OCILogon(), OCILogon2(), and OCIServerAttach() calls.

DESCRIPTION and CONNECT_DATA are required as shown.

For SERVICE_NAME, dsn must be a TimesTen DSN that is configured in the sys.odbc.ini or
user odbc.ini file that is visible to a user running the OCI application. On Windows, the DSN
can be specified by using the ODBC Data Source Administrator. See Managing TimesTen
Databases in Oracle TimesTen In-Memory Database Operations Guide.

For SERVER, timesten_direct specifies a direct connection to TimesTen or timesten_client
specifies a client/server connection. If you choose timesten_client, the DSN must be
configured as a client/server database.

As always, the host and port of the TimesTen server are determined from entries in the
sys.ttconnect.ini file, according to the DSN. See Working With the TimesTen Client and
Server in Oracle TimesTen In-Memory Database Operations Guide.

Here is a sample tnsnames.ora entry for a direct connection:

my_tnsname = (DESCRIPTION =
 (CONNECT_DATA =

Chapter 3
Getting Started With TimesTen OCI

3-9

 (SERVICE_NAME = my_dsn)
 (SERVER = timesten_direct)))

You can use the TNS name, my_tnsname, in either of the following ways:

• Specify "my_tnsname" for the dbname argument in your OCI logon call.

• Specify an empty string for dbname and set TWO_TASK or LOCAL to "my_tnsname".

For example:

OCILogon2(envhp, errhp, &svchp,
 (text *)"user1", (ub4)strlen("user1"),
 (text *)"pwd1", (ub4)strlen("pwd1"),
 (text *)"my_tnsname", (ub4)strlen((char*)"my_tnsname"), OCI_DEFAULT));

Refer to Connect, Authorize, and Initialize Functions in Oracle Call Interface
Programmer's Guide for details about OCI logon calling sequences.

Or on a UNIX system, for example, you can set TWO_TASK to "my_tnsname" and use an
OCI logon call with an empty string for dbname:

OCILogon2(envhp, errhp, &svchp,
 (text *)"user1", (ub4)strlen("user1"),
 (text *)"pwd1", (ub4)strlen("pwd1"),
 (text *)"", (ub4)0, OCI_DEFAULT));

Note:

For TimesTen Classic, you can use the ttInstanceCreate -tnsadmin option
or the ttInstanceModify -tns_admin option (in addition to the TNS_ADMIN
environment variable) to set the tnsnames location. See ttInstanceCreate and
ttInstanceModify in Oracle TimesTen In-Memory Database Reference.

Using an Easy Connect String to Connect
TimesTen supports easy connect syntax, which enhances the Instant Client package
by enabling connections to be made without configuring tnsnames.ora.

An easy connect string has syntax similar to a URL, in the following format:

[//]host[:port]/service_name:server[/instance]

The initial double-slash is optional. A host name must be specified to satisfy easy
connect syntax, but is otherwise ignored by TimesTen. The name "localhost" is
typically used by convention. Any value specified for the port is also ignored. For
client/server connections, the host and port of the TimesTen server are determined
from entries in the sys.ttconnect.ini file, according to the TimesTen DSN.

Specify the DSN for service_name. Specify timesten_client or timesten_direct, as
appropriate, for server.

TimesTen ignores the instance field and does not require that it be specified.

For example, the following easy connect string connects to a TimesTen server using
the client/server libraries. Assume a DSN ttclient in the sys.odbc.ini file is

Chapter 3
Getting Started With TimesTen OCI

3-10

resolved as a client/server data source and connects to the corresponding host and port
specified in the sys.ttconnect.ini file:

"localhost/ttclient:timesten_client"

The following easy connect string is for a direct connection to TimesTen. Assume the DSN
ttdirect is defined in sys.odbc.ini:

"localhost/ttdirect:timesten_direct"

You can use an easy connect string in either of the following ways:

• Specify it for the dbname argument in your OCI logon call.

• Specify an empty string for dbname and set TWO_TASK or LOCAL to the easy connect string,
in quotes.

For example:

OCILogon2(envhp, errhp, &svchp,
 (text *)"user1", (ub4)strlen("user1"),
 (text *)"pwd1", (ub4)strlen("pwd1"),
 (text *)"localhost/ttclient:timesten_client",
 (ub4)strlen((char*)"localhost/ttclient:timesten_client"), OCI_DEFAULT));

Refer to Connect, Authorize, and Initialize Functions in Oracle Call Interface Programmer's
Guide for details about OCI logon calling sequences.

Or on a UNIX system, for example, you can set TWO_TASK to "localhost/
ttclient:timesten_client" and use an OCI logon call with an empty string for dbname, as
follows.

OCILogon2(envhp, errhp, &svchp,
 (text *)"user1", (ub4)strlen("user1"),
 (text *)"pwd1", (ub4)strlen("pwd1"),
 (text *)"", (ub4)0, OCI_DEFAULT));

Configuring Whether to Use tnsnames.ora or Easy Connect
If a sqlnet.ora file is present, it specifies the naming methods that are tried and the order in
which they are tried.

The Instant Client looks for a sqlnet.ora file at the TNS_ADMIN location, if applicable. If
TNS_ADMIN has not been set but ORACLE_HOME has been (such as if you had a previous Instant
Client installation), the default sqlnet.ora location is in ORACLE_HOME/network/admin as
noted in Parameters for the sqlnet.ora File in Oracle Database Net Services Reference.

If sqlnet.ora is found and does not indicate a particular naming method, you cannot use that
method. If sqlnet.ora is not found, you can use either method.

In TimesTen, you can access sample copies of tnsnames.ora and sqlnet.ora in the
timesten_home/install/network/admin/samples directory. Here is the sqlnet.ora file that
TimesTen provides, which supports both tnsnames and easy connect ("EZCONNECT"):

To use ezconnect syntax or tnsnames, the following entries must be
included in the sqlnet.ora configuration.
#
NAMES.DIRECTORY_PATH= (TNSNAMES, EZCONNECT)

Chapter 3
Getting Started With TimesTen OCI

3-11

With this file, TimesTen first looks for tnsnames syntax in your OCI logon calls. If it
cannot find tnsnames syntax, it looks for easy connect syntax.

OCI Error Handling
OCI error handling includes error reporting and transient errors.

This section discusses these topics:

• OCI Error Reporting

• Transient Errors (OCI)

OCI Error Reporting
Errors under TimesTen OCI applications return Oracle Database error codes.

TimesTen attempts to report the same error code as Oracle Database would under
similar conditions. The error messages may come from either the TimesTen error
catalog or the Oracle Database error catalog. Some error messages may indicate the
accompanying TimesTen error code if appropriate.

Fatal errors are those that make the database inaccessible until after error recovery.
When a fatal error occurs, all database connections are required to disconnect in order
to avoid out-of-memory conditions. No further operations may complete. Shared
memory from the old TimesTen instance is not freed until all active connections at the
time of the error have disconnected.

Fatal errors in OCI are indicated by the Oracle Database error code ORA-03135 or
ORA-00600. Error handling for these errors should be different from standard error
handling. In particular, the application error-handling code should have a disconnect
from the database.

Transient Errors (OCI)
TimesTen automatically resolves most transient errors (which is particularly important
for TimesTen Scaleout), but if your application detects the following error, it is
suggested to retry the current transaction.

• ORA-57005: Transient transaction failure due to unavailability of resource. Roll back
the transaction and try it again.

Note:

Search the entire error stack for errors returning these error types before
deciding whether it is appropriate to retry.

This is returned in the errcodep parameter in OCIErrorGet() and may be encountered
by any of the following OCI calls:

• OCIBindArrayOfStruct()
• OCIBindByName()
• OCIBindByPos()

Chapter 3
Getting Started With TimesTen OCI

3-12

• OCIDefineArrayOfStruct()
• OCIDefineByPos()
• OCIDescribeAny()
• OCILogoff()
• OCILogon()
• OCILogon2()
• OCIPing()
• OCISessionBegin()
• OCISessionEnd()
• OCISessionGet()
• OCISessionRelease()
• OCIStmtExecute()
• OCIStmtFetch()
• OCIStmtFetch2()
• OCIStmtGetBindInfo()
• OCIStmtPrepare()
• OCIStmtPrepare2()
• OCIStmtRelease()
• OCITransCommit()
• OCITransRollback()

Signal Handling and Diagnostic Framework Considerations
The OCI diagnostic framework installs signal handlers that may impact any signal handling
that you use in your application. You can disable OCI signal handling by setting
DIAG_SIGHANDLER_ENABLED=FALSE in the sqlnet.ora file.

Refer to Controlling ADR Creation and Disabling Fault Diagnosability Using sqlnet.ora in
Oracle Call Interface Programmer's Guide.

TimesTen Features With OCI
This section covers the following topics for developers using TimesTen OCI.

• TimesTen Deferred Prepare

• Parameter Binding Features in TimesTen OCI

• Using Cache Operations With TimesTen OCI

• LOBs in TimesTen OCI

• Configuring the Result Set Buffer Size in Client/Server Using OCI

• Use of PL/SQL in OCI to Call a TimesTen Built-In Procedure

Chapter 3
TimesTen Features With OCI

3-13

TimesTen Deferred Prepare
In OCI, a prepare call is expected to be a lightweight operation performed on the
client.

To enable TimesTen to be consistent with this expectation, and to avoid unwanted
round trips between client and server, the TimesTen client library implementation of
SQLPrepare performs what is referred to as a deferred prepare, where the request is
not sent to the server until required. See TimesTen Deferred Prepare.

Parameter Binding Features in TimesTen OCI
There are features relating to binding parameters into SQL or PL/SQL from an OCI
application.

• Binding Duplicate Parameters in TimesTen OCI

• Binding Associative Arrays in TimesTen OCI

Binding Duplicate Parameters in TimesTen OCI
In TimesTen OCI, as in ODBC, multiple occurrences of the same parameter name are
considered to be distinct parameters. However, OCI allows multiple occurrences to be
bound with a single call to OCIBindByPos().

See Binding of Duplicate Parameters in SQL Statements.

Consider this query:

SELECT * FROM employees
 WHERE employee_id < :a AND manager_id > :a AND salary < :b;

The two occurrences of parameter a are considered to be separate parameters, but
you have the option of binding both occurrences with a single call to OCIBindByPos():

OCIBindByPos(..., 1, ...); /* both occurrences of :a */
OCIBindByPos(..., 3, ...); /* occurrence of :b */

Or you can bind the two occurrences of a separately:

OCIBindByPos(..., 1, ...); /* first occurrence of :a */
OCIBindByPos(..., 2, ...); /* second occurrence of :a */
OCIBindByPos(..., 3, ...); /* occurrence of :b */

Note that in both cases, parameter b is considered to be in position 3.

Note:

OCI also allows parameters to be bound by name, rather than by position,
using OCIBindByName(). In this case, the same value is used for any
parameters that have the same name.

Chapter 3
TimesTen Features With OCI

3-14

Binding Associative Arrays in TimesTen OCI
Associative arrays, formerly known as index-by tables or PL/SQL tables, are supported as IN,
OUT, or IN OUT bind parameters in TimesTen PL/SQL, such as from an OCI application. This
enables arrays of data to be passed efficiently between an application and the database.

An associative array is a set of key-value pairs. In TimesTen, for associative array binding
(but not for use of associative arrays only within PL/SQL), the keys, or indexes, must be
integers—BINARY_INTEGER or PLS_INTEGER. The values must be simple scalar values of the
same data type. For example, there could be an array of department managers indexed by
department numbers. Indexes are stored in sort order, not creation order.

You can declare an associative array type and then an associative array from PL/SQL as in
the following example (note the INDEX BY):

declare
 TYPE VARCHARARRTYP IS TABLE OF VARCHAR2(30) INDEX BY BINARY_INTEGER;
 x VARCHARARRTYP;
 ...

For Pro*C/C++, see Associative Array Bindings in TimesTen Pro*C/C++.

For related information, see Using Associative Arrays From Applications in Oracle TimesTen
In-Memory Database PL/SQL Developer's Guide.

Note:

Be aware of the following restrictions in TimesTen:

• The following types are not supported in binding associative arrays: LOBs, REF
CURSORs, TIMESTAMP, ROWID.

• Associative array binding is not allowed in passthrough statements.

• General bulk binding of arrays is not supported in TimesTen OCI. Varrays and
nested tables are not supported as bind parameters.

TimesTen supports associative array binds in OCI by supporting the maxarr_len and
*curelep parameters of the OCIBindByName() and OCIBindByPos() functions. These
parameters are used to indicate that the binding is for an associative array.

The complete calling sequences for those functions are as follows:

sword OCIBindByName (OCIStmt *stmtp,
 OCIBind **bindpp,
 OCIError *errhp,
 const OraText *placeholder,
 sb4 placeh_len,
 void *valuep,
 sb4 value_sz,
 ub2 dty,
 void *indp,
 ub2 *alenp,
 ub2 *rcodep,
 ub4 maxarr_len,
 ub4 *curelep,

Chapter 3
TimesTen Features With OCI

3-15

 ub4 mode);

sword OCIBindByPos (OCIStmt *stmtp,
 OCIBind **bindpp,
 OCIError *errhp,
 ub4 position,
 void *valuep,
 sb4 value_sz,
 ub2 dty,
 void *indp,
 ub2 *alenp,
 ub2 *rcodep,
 ub4 maxarr_len,
 ub4 *curelep,
 ub4 mode);

The maxarr_len and *curelep parameters are used as follows when you bind an
associative array. (They should be set to 0 if you are not binding an associative array.)

• maxarr_len: This is an input parameter indicating the maximum array length. This
is the maximum number of elements that the associative array can accommodate.

• *curelep: This is an input/output parameter indicating the current array length. It is
a pointer to the actual number of elements in the associative array before and after
statement execution.

See OCIBindByName() and OCIBindByPos() in Oracle Call Interface Programmer's
Guide.

In the following example, an OCI application binds an integer array and a character
array to corresponding OUT associative arrays in a PL/SQL procedure.

Assume this SQL setup:

DROP TABLE FOO;

CREATE TABLE FOO (CNUM INTEGER,
 CVC2 VARCHAR2(20));

INSERT INTO FOO VALUES (null,
 'VARCHAR 1');
INSERT INTO FOO VALUES (-102,
 null);
INSERT INTO FOO VALUES (103,
 'VARCHAR 3');
INSERT INTO FOO VALUES (-104,
 'VARCHAR 4');
INSERT INTO FOO VALUES (105,
 'VARCHAR 5');
INSERT INTO FOO VALUES (106,
 'VARCHAR 6');
INSERT INTO FOO VALUES (107,
 'VARCHAR 7');
INSERT INTO FOO VALUES (108,
 'VARCHAR 8');

COMMIT;

Assume this PL/SQL package definition. This has the INTEGER associative array type
NUMARRTYP and the VARCHAR2 associative array type VCHARRTYP, used for output
associative arrays c1 and c2, respectively, in the definition of procedure P1.

Chapter 3
TimesTen Features With OCI

3-16

CREATE OR REPLACE PACKAGE PKG1 AS
 TYPE NUMARRTYP IS TABLE OF INTEGER INDEX BY BINARY_INTEGER;
 TYPE VCHARRTYP IS TABLE OF VARCHAR2(20) INDEX BY BINARY_INTEGER;

 PROCEDURE P1(c1 OUT NUMARRTYP,c2 OUT VCHARRTYP);

END PKG1;
/

CREATE OR REPLACE PACKAGE BODY PKG1 AS

 CURSOR CUR1 IS SELECT CNUM, CVC2 FROM FOO;

 PROCEDURE P1(c1 OUT NUMARRTYP,c2 OUT VCHARRTYP) IS
 BEGIN
 IF NOT CUR1%ISOPEN THEN
 OPEN CUR1;
 END IF;
 FOR i IN 1..8 LOOP
 FETCH CUR1 INTO c1(i), c2(i);
 IF CUR1%NOTFOUND THEN
 CLOSE CUR1;
 EXIT;
 END IF;
 END LOOP;
 END P1;

END PKG1;

The following OCI program calls PKG1.P1, binds arrays to the P1 output associative arrays,
and prints the contents of those associative arrays. Note in particular the OCIBindByName()
function calls to do the binding.

static OCIEnv *envhp;
static OCIServer *srvhp;
static OCISvcCtx *svchp;
static OCIError *errhp;
static OCISession *authp;
static OCIStmt *stmthp;
static OCIBind *bndhp[MAXCOLS];
static OCIBind *dfnhp[MAXCOLS];

STATICF VOID outbnd_1()
{
 int i;
 int num[MAXROWS];
 char* vch[MAXROWS][20];

 unsigned int numcnt = 5;
 unsigned int vchcnt = 5;

 unsigned short alen_num[MAXROWS];
 unsigned short alen_vch[MAXROWS];
 unsigned short rc_num[MAXROWS];
 unsigned short rc_vch[MAXROWS];

 short indp_num[MAXROWS];
 short indp_vch[MAXROWS];

/* Assume the process is connected and srvhp, svchp, errhp, authp, and stmthp
 are all allocated/initialized/etc. */

Chapter 3
TimesTen Features With OCI

3-17

 char *sqlstmt = (char *)"BEGIN PKG1.P1(:c1, :c2); END; ";

 for (i = 0; i < MAXROWS; i++)
 {
 alen_num[i] = 0;
 alen_vch[i] = 0;
 rc_num[i] = 0;
 rc_vch[i] = 0;
 indp_num[i] = 0;
 indp_vch[i] = 0;
 }

 DISCARD printf("Running outbnd_1.\n");
 DISCARD printf("\n----> %s\n", sqlstmt);
 checkerr(errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (unsigned int)strlen((char *)sqlstmt),
 (unsigned int) OCI_NTV_SYNTAX, (unsigned int) OCI_DEFAULT));

 bndhp[0] = 0;
 bndhp[1] = 0;

 checkerr(errhp, OCIBindByName(stmthp, &bndhp[0], errhp,
 (char *) ":c1", (sb4) strlen((char *) ":c1"),
 (dvoid *) &num[0], (sb4) sizeof(num[0]), SQLT_INT,
 (dvoid *) &indp_num[0], (unsigned short *) &alen_num[0],
 (unsigned short *) &rc_num[0],
 (unsigned int) MAXROWS, (unsigned int *) &numcnt,
 (unsigned int) OCI_DEFAULT));

 checkerr(errhp, OCIBindByName(stmthp, &bndhp[1], errhp,
 (char *) ":c2", (sb4) strlen((char *) ":c2"),
 (dvoid *) vch[0], (sb4) sizeof(vch[0]), SQLT_CHR,
 (dvoid *) &indp_vch[0], (unsigned short *) &alen_vch[0],
 (unsigned short *) &rc_vch[0],
 (unsigned int) MAXROWS, (unsigned int *) &vchcnt,
 (unsigned int) OCI_DEFAULT));

 DISCARD printf("\nTo execute the PL/SQL statement.\n");

 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (unsigned int) 1,
 (unsigned int) 0, (const OCISnapshot*) 0,
 (OCISnapshot*) 0, (unsigned int) OCI_DEFAULT));

 DISCARD printf("\nHere are the results:\n\n");

 DISCARD printf("Column 1, INTEGER: \n");
 for (i = 0; i < numcnt; i++)
 {
 if (indp_num[i] == -1)
 DISCARD printf("-NULL- ");
 else
 DISCARD printf("%5d, ", num[i]);
 DISCARD printf("ind = %d, len = %d, rc = %d\n",
 indp_num[i], alen_num[i], rc_num[i]);
 }

 DISCARD printf("\nColumn 2, VARCHAR2(20): \n");
 for (i = 0; i < vchcnt; i++)
 {
 if (indp_vch[i] == -1)

Chapter 3
TimesTen Features With OCI

3-18

 DISCARD printf("-NULL- ");
 else
 DISCARD printf("%.*s, ", alen_vch[i], vch[i]);
 DISCARD printf("ind = %d, len = %d, rc = %d\n",
 indp_vch[i], alen_vch[i], rc_vch[i]);
 }

 DISCARD printf("\nDone\n");
 return;
}

Note:

The alen_* arrays are arrays of lengths; the rc_* arrays are arrays of return codes;
the indp_* arrays are arrays of indicators.

Using Cache Operations With TimesTen OCI
This section discusses TimesTen OCI features related to using cache operations in TimesTen
Classic:

• Specifying the Oracle Database Password in OCI for Cache

• Determining the Number of Cache Instances Affected by an Action

Specifying the Oracle Database Password in OCI for Cache

To use cache, there must be a cache administration user in the TimesTen database with the
same name as an Oracle Database cache administration user who can select from and
update the cached Oracle Database tables. This Oracle Database cache administration user
could alternatively be a schema user. The password of the TimesTen cache administration
user can be different from the password of the Oracle Database cache administration user.
See Setting Up a Caching Infrastructure in Oracle TimesTen In-Memory Database Cache
Guide.

For use of OCI with cache operations, TimesTen enables you to pass the Oracle Database
cache administration user's password through OCI by appending it to the password field in an
OCILogon() or OCILogon2() call when you log in to TimesTen. Use the attribute OraclePWD in
the connect string, such as in the following example:

text *cacheadmin = (text *)"cacheadmin1";
text *cachepwds = (text *)"ttpassword;OraclePWD=oraclepassword";
text *ttdbname = (text *)"tt_tnsname";
....
OCILogon2(envhp, errhp, &svchp,
 (text *)cacheadmin, (ub4)strlen(cacheadmin),
 (text *)cachepwds, (ub4)strlen(cachepwds),
 (text *)ttdbname, (ub4)strlen(ttdbname), OCI_DEFAULT));

You must always specify OraclePWD, even if the Oracle Database cache administration user's
password is the same as the TimesTen cache administration user's password.

Note the following for the example:

Chapter 3
TimesTen Features With OCI

3-19

• The name of the TimesTen cache administration user, as well as the name of the
Oracle Database cache administration user who can access the cached Oracle
Database tables, is cacheadmin1.

• The password of the TimesTen cache administration user is ttpassword.

• The password of the Oracle Database cache administration user is
oraclepassword.

• The TNS name of the TimesTen database being connected to is tt_tnsname.

The Oracle database is specified through the TimesTen OracleNetServiceName
general connection attribute in the sys.odbc.ini or user odbc.ini file.

Alternatively, instead of using a TNS name, you could use easy connect syntax or the
TWO_TASK or LOCAL environment variable, as discussed in preceding sections.

Determining the Number of Cache Instances Affected by an Action
In TimesTen OCI, following the execution of a FLUSH CACHE GROUP, LOAD CACHE GROUP,
REFRESH CACHE GROUP, or UNLOAD CACHE GROUP statement, the OCI function
OCIAttrGet() with the OCI_ATTR_ROW_COUNT argument returns the number of cache
instances that were flushed, loaded, refreshed, or unloaded.

See Determining the Number of Cache Instances Affected by an Operation in the
Oracle TimesTen In-Memory Database Cache Guide.

LOBs in TimesTen OCI
TimesTen Classic supports LOBs (large objects). This includes CLOBs (character
LOBs), NCLOBs (national character LOBs), and BLOBs (binary LOBs). This section
focuses on LOB locators, temporary LOBs, and OCI LOB APIs and features.

The following topics are covered here for OCI:

• LOB Locators in OCI

• Temporary LOBs in OCI

• Differences Between TimesTen LOBs and Oracle Database LOBs in OCI

• Using the LOB Simple Data Interface in OCI

• About Using the LOB Locator Interface in OCI

• Creating a Temporary LOB in OCI

• Accessing the Locator of a Persistent LOB in OCI

• Reading and Writing LOB Data Using the OCI LOB Locator Interface

• OCI Client-Side Buffering

• LOB Prefetching in OCI

• Passthrough LOBs in OCI

See the following for additional information:

• Large Objects (LOBs), which is ODBC-oriented but also provides general overview
of LOBs, differences between TimesTen and Oracle Database LOBs, and LOB
programming interfaces

Chapter 3
TimesTen Features With OCI

3-20

• LOB Data Types in Oracle TimesTen In-Memory Database SQL Reference for additional
information about LOBs in TimesTen

• LOB and BFILE Operations in Oracle Call Interface Programmer's Guide for complete
information about LOBs and how to use them in OCI, keeping in mind that TimesTen
does not support BFILEs, SecureFiles, array reads and writes for LOBs, or callback
functions for LOBs

Note:

The LOB piecewise data interface is not applicable to OCI applications. (You can,
however, manipulate LOB data in pieces through features of the LOB locator
interface.)

LOB Locators in OCI
OCI provides the LOB locator interface, where a LOB consists of a LOB locator and a LOB
value. The locator acts as a handle to the value. When an application selects a LOB from the
database, it receives a locator. When it updates the LOB, it does so through the locator. And
when it passes a LOB as a parameter, it is passing the locator, not the actual value.
See About Using the LOB Locator Interface in OCI. (Note that in OCI it is also possible to use
the simple data interface, which does not involve a locator. See Using the LOB Simple Data
Interface in OCI.)

To update a LOB, your transaction must have an exclusive lock on the row containing the
LOB. You can accomplish this by selecting the LOB with a SELECT ... FOR UPDATE
statement. This results in a writable locator. With a simple SELECT statement, the locator is
read-only. Read-only and writable locators behave as follows:

• A read-only locator is read consistent, meaning that throughout its lifetime, it sees only
the contents of the LOB as of the time it was selected. Note that this would include any
uncommitted updates made to the LOB within the same transaction before the LOB was
selected.

• A writable locator is updated with the latest data from the database each time a write is
made through the locator. So each write is made to the most current data of the LOB,
including updates that have been made through other locators.

The following example details behavior for two writable locators for the same LOB:

1. The LOB column contains "XY".

2. Select locator L1 for update.

3. Select locator L2 for update.

4. Write "Z" through L1 at offset 1.

5. Read through locator L1. This would return "ZY".

6. Read through locator L2. This would return "XY", because L2 remains read-consistent
until it is used for a write.

7. Write "W" through L2 at offset 2.

8. Read through locator L2. This would return "ZW". Prior to the write in the preceding step,
the locator was updated with the latest data ("ZY").

Chapter 3
TimesTen Features With OCI

3-21

Temporary LOBs in OCI
A temporary LOB exists only within an application, and in TimesTen OCI has a lifetime
no longer than the transaction in which it was created (as is the case with the lifetime
of any LOB locator in TimesTen). You can think of a temporary LOB as a scratch area
for LOB data.

An OCI application can instantiate a temporary LOB explicitly, for use within the
application, through the appropriate API. (See About Using the LOB Locator Interface
in OCI.) A temporary LOB may also be created implicitly by TimesTen. For example, if
a SELECT statement selects a LOB concatenated with an additional string of
characters, TimesTen implicitly creates a temporary LOB to contain the concatenated
data and an OCI application would receive a locator for the temporary LOB.

Temporary LOBs are stored in the TimesTen temporary data region.

Differences Between TimesTen LOBs and Oracle Database LOBs in OCI
A key difference between the LOB implementation for TimesTen versus Oracle
Database is that in TimesTen, LOB locators do not remain valid past the end of the
transaction. All LOB locators are invalidated after a commit or rollback, whether explicit
or implicit. This includes after any DDL statement.

Also see Differences Between TimesTen LOBs and Oracle Database LOBs.

Using the LOB Simple Data Interface in OCI
The simple data interface enables applications to access LOB data by binding and
defining, as with other scalar data types. The application can use a LOB type that is
compatible with the corresponding variable type.

Use OCIStmtPrepare() to prepare a statement. For binding parameters, use
OCIBindByName() or OCIBindByPos(). For defining result columns, use
OCIDefineByPos().

For example, an OCI application can bind a CLOB parameter by calling
OCIBindByName() with a data type of SQLT_CHR. Use OCIStmtExecute() to execute the
statement. For an NCLOB parameter, use data type SQLT_CHR and set the OCI csform
attribute (OCI_ATTR_CHARSET_FORM) to SQLCS_NCHAR. For a BLOB parameter, you can
use data type SQLT_BIN.

Use of the simple data interface through OCI is shown in the following examples.

Note:

The simple data interface, through OCIBindByName(), OCIBindByPos(), or
OCIDefineByPos(), limits bind sizes to 64 KB.

For examples that follow, assume the table and variables shown here.

person(ssn number, resume clob)

OCIEnv *envhp;

Chapter 3
TimesTen Features With OCI

3-22

OCIServer *srvhp;
OCISvcCtx *svchp;
OCIError *errhp;
OCISession *authp;
OCIStmt *stmthp;

/* Bind Handles */
OCIBind *bndp1 = (OCIBind *) NULL;
OCIBind *bndp2 = (OCIBind *) NULL;

/* Define Handles */
OCIDefine *defnp1 = (OCIDefine *) NULL;
OCIDefine *defnp2 = (OCIDefine *) NULL;

#define DATA_SIZE 50
#define PIECE_SIZE 10
#define NPIECE (DATA_SIZE/PIECE_SIZE)

char col2[DATA_SIZE];
char col2Res[DATA_SIZE];
ub2 col2len = DATA_SIZE;
sb4 ssn = 123456;
...

text *ins_stmt = (text *)"INSERT INTO PERSON VALUES (:1, :2)";
text *sel_stmt = (text *)"SELECT * FROM PERSON_1 ORDER BY SSN";
...

The following example executes an INSERT statement using the simple data interface in OCI.

for (i=0;i<DATA_SIZE;i++)
 col2[i] = 'A';

/* prepare SQL insert statement */
OCIStmtPrepare (stmthp, errhp, ins_stmt, strlen(ins_stmt), OCI_NTV_SYNTAX,
 OCI_DEFAULT);

/* bind parameters 1 and 2 using OCI_DEFAULT (not data-at-exec) */
OCIBindByPos (stmthp, &bndp1, errhp, 1, (dvoid *) &ssn, sizeof(ssn),
 SQLT_INT, 0, 0, 0, 0, 0, OCI_DEFAULT);
OCIBindByPos (stmthp, &bndp2, errhp, 2, (dvoid *) col2, col2len,
 SQLT_CHR, 0, 0, 0, 0, 0, OCI_DEFAULT);

/* execute insert statement */
OCIStmtExecute (svchp, stmthp, errhp, 1, 0, 0, 0, OCI_DEFAULT);

This next example executes a SELECT statement using the simple data interface in OCI. It
uses the SELECT statement through the variable sel_stmt defined above.

/* prepare select statement */
OCIStmtPrepare (stmthp, errhp, sel_stmt, strlen(sel_stmt), OCI_NTV_SYNTAX,
 OCI_DEFAULT);

/* define result columns 1 and 2 using OCI_DEFAULT (not data-at-exec) */
OCIDefineByPos (stmthp, &defnp1, errhp, 1, (dvoid*) &ssn, sizeof(ssn),
 SQLT_INT, 0, 0, 0, OCI_DEFAULT);
OCIDefineByPos (stmthp, &defnp2, errhp, 2, (dvoid *) col2Res, sizeof(col2),
 SQLT_CHR, 0, &col2len, 0, OCI_DEFAULT);

/* execute select statement */
OCIStmtExecute (svchp, stmthp, errhp, (ub4)1, (ub4)0, (OCISnapshot *) NULL,

Chapter 3
TimesTen Features With OCI

3-23

 (OCISnapshot *) NULL, OCI_DEFAULT));

/* col2Res should now have a DATA_SIZE sized string of 'A's. */

About Using the LOB Locator Interface in OCI
You can use the OCI LOB locator interface to work with either a LOB from the
database or a temporary LOB, either piece-by-piece or in whole chunks.

In order to use the LOB locator interface, the application must have a valid LOB
locator. For a temporary LOB, this may be obtained explicitly through an
OCILobCreateTemporary() call, or implicitly through a SQL statement that results in
creation of a temporary LOB (such as SELECT c1 || c2 FROM myclob). For a
persistent LOB, use a SQL statement to obtain the LOB locator from the database.
(There are examples later in this section.)

Bind types are SQLT_CLOB for CLOBs and SQLT_BLOB for BLOBs. For NCLOBs, use
SQLT_CLOB and also set the OCI csform attribute (OCI_ATTR_CHARSET_FORM) to
SQLCS_NCHAR.

Sections that follow discuss using LOB locators in various scenarios.

Refer to LOB Functions in Oracle Call Interface Programmer's Guide for detailed
information and additional examples for OCI LOB functions, noting that TimesTen does
not support features specifically intended for BFILEs, SecureFiles, array reads and
writes for LOBs, or callback functions for LOBs.

Tip:

LOB manipulations through APIs that use LOB locators result in usage of
TimesTen temporary space. Any significant number of such manipulations
may necessitate a size increase for the TimesTen temporary data region.
See TempSize in Oracle TimesTen In-Memory Database Reference.

Note:

• If an invalid LOB locator is assigned to another LOB locator using
OCILobLocatorAssign(), the target of the assignment is also freed and
marked as invalid.

• OCILobLocatorAssign() can be used on a temporary LOB, but
OCILobAssign() cannot.

Creating a Temporary LOB in OCI
An OCI application can create a temporary LOB by using the
OCILobCreateTemporary() function, which has an input/output parameter for the LOB
locator, after first calling OCIDescriptorAlloc() to allocate the locator. When you are
finished, use OCIDescriptorFree() to free the allocation for the locator and use
OCILobFreeTemporary() to free the temporary LOB itself.

Chapter 3
TimesTen Features With OCI

3-24

Tip:

In TimesTen, creation of a temporary LOB results in creation of a database
transaction if one is not already in progress. To avoid error conditions, you must
execute a commit or rollback to close the transaction.

In TimesTen, any duration supported by Oracle Database (OCI_DURATION_SESSION,
OCI_DURATION_TRANSACTION, or OCI_DURATION_CALL) is permissible in the
OCILobCreateTemporary() call; however, in TimesTen the lifetime of the temporary LOB itself
is no longer than the lifetime of the transaction.

Note that the lifetime of a temporary LOB can be shorter than the lifetime of the transaction in
the following scenarios:

• If OCI_DURATION_CALL is specified

• If the application calls OCILobFreeTemporary() on the locator before the end of the
transaction

• If the application calls OCIDurationBegin() to start a user-specified duration for the
temporary LOB, then calls OCIDurationEnd() before the end of the transaction

Following are examples of some of the OCI LOB functions mentioned above. See Temporary
LOB Support in Oracle Call Interface Programmer's Guide.

if (OCIDescriptorAlloc((void*)envhp, (void **)&tblob,(ub4)OCI_DTYPE_LOB,
 (size_t)0, (void**)0))
{
 printf("failed in OCIDescriptor Alloc in select_and_createtemp \n");
 return OCI_ERROR;
}

...

if (OCILobCreateTemporary(svchp, errhp, tblob, (ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_BLOB, OCI_ATTR_NOCACHE, OCI_DURATION_TRANSACTION))
{
 (void) printf("FAILED: OCILobCreateTemporary() \n");
 return OCI_ERROR;
}

...

if(OCILobFreeTemporary(svchp,errhp,tblob))
{
 printf ("FAILED: OCILobFreeTemporary() call \n");
 return OCI_ERROR;
}

Accessing the Locator of a Persistent LOB in OCI
An application typically accesses a LOB from the database by using a SQL statement to
obtain or access a LOB locator, then passing the locator to an appropriate API function.

A LOB that has been created using the EMPTY_CLOB() or EMPTY_BLOB() SQL function has a
valid locator, which an application can then use to insert data into the LOB by selecting it.

Chapter 3
TimesTen Features With OCI

3-25

Assume the following table definition:

CREATE TABLE clobtable (x NUMBER, y DATE, z VARCHAR2(30), lobcol CLOB);

1. Prepare an INSERT statement. For example:

INSERT INTO clobtable (x, y, z, lobcol)
 VALUES (81, sysdate, 'giants', EMPTY_CLOB())
 RETURNING lobcol INTO :a;

Or, to initialize the LOB with some data:

INSERT INTO clobtable (x, y, z, lobcol)
 VALUES (81, sysdate, 'giants', 'The Giants finally won a World Series')
 RETURNING lobcol INTO :a;

2. Bind the LOB locator to :a as shown.

3. Execute the statement. After execution, the locator refers to the newly created
LOB.

Then the application can use the LOB locator interface to read or write LOB data
through the locator.

Alternatively, an application can use a SELECT statement to access the locator of an
existing LOB.

The example that follows uses this table:

person(ssn number, resume clob)

It selects the locator for the LOB column in the PERSON table.

text *ins_stmt = (text *)"INSERT INTO PERSON VALUES (:1, :2)";
text *sel_stmt = (text *)"SELECT * FROM PERSON WHERE SSN = 123456";
text *ins_empty = (text *)"INSERT INTO PERSON VALUES (1, EMPTY_CLOB())";

OCILobLocator *lobp;

ub4 amtp = DATA_SIZE;
ub4 remainder = DATA_SIZE;
ub4 nbytes = PIECE_SIZE;

/* Allocate lob locator */
OCIDescriptorAlloc (envhp, &lobp, OCI_DTYPE_LOB, 0, 0);

/* Insert an empty locator */
OCIStmtPrepare (stmhp, errhp, ins_empty, strlen(ins_empty), OCI_NTV_SYNTAX,
 OCI_DEFAULT);
OCIStmtExecute (svchp, stmhp, errhp, 1, 0, 0, 0, OCI_DEFAULT);

/* Now select the locator */

OCIStmtPrepare (stmhp, errhp, sel_stmt, strlen(sel_stmt), OCI_NTV_SYNTAX,
 OCI_DEFAULT);

/* Call define for the lob column */
OCIDefineByPos (stmthp, &defnp2, errhp, 1, &lobp, 0 , SQLT_CLOB, 0, 0, 0,
 OCI_DEFAULT);

OCIStmtExecute (svchp, stmhp, errhp, 1, 0, 0, 0, OCI_DEFAULT);

Chapter 3
TimesTen Features With OCI

3-26

Reading and Writing LOB Data Using the OCI LOB Locator Interface
An OCI application can use OCILobOpen() and OCILobClose() to open and close a LOB. If
you do not explicitly open and close a LOB, it is opened implicitly before a read or write and
closed implicitly at the end of the transaction.

An application can use OCILobRead() or OCILobRead2() to read LOB data, OCILobWrite() or
OCILobWrite2() to write LOB data, OCILobWriteAppend() or OCILobWriteAppend2() to
append LOB data, OCILobErase() or OCILobErase2() to erase LOB data, and various other
OCI functions to perform a variety of other actions.

For example, consider a CLOB with the content "Hello World!" You can overwrite and append
data by calling OCILobWrite() with an offset of 7 to write "I am a new string". This would
result in CLOB content being updated to "Hello I am a new string". Or, to erase data from the
original "Hello World!" CLOB, you can call OCILobErase() with an offset of 7 and an amount
(number of characters) of 5, for example, to update the CLOB to "Hello !" (six spaces).

All the OCI LOB locator interface functions are covered in detail in LOB Functions in Oracle
Call Interface Programmer's Guide.

Note:

• Oracle Database emphasizes use of the "2" versions of the OCI read and write
functions for LOBs (the non-"2" versions were deprecated in the Oracle
Database 11.2 release); however, currently in TimesTen there is no technical
advantage in using OCILobRead2(), OCILobWrite2(), and
OCILobWriteAppend2(), which are intended for LOBs larger than what
TimesTen supports.

• In using any of the LOB read or write functions, be aware that the callback
function parameter must be set to NULL or 0, because TimesTen does not
support callback functions for LOB manipulation.

• Because TimesTen does not support binding arrays of LOBs, the
OCILobArrayRead() and OCILobArrayWrite() functions are not supported.

The following example shows how to write LOB data using the OCI LOB function
OCILobWrite() and how to read data using OCILobRead(). It uses the table and variables
from the example in the preceding section.

for (i=0;i<DATA_SIZE;i++)
 col2[i] = 'A';

/*************** Writing to the LOB *****************/

amt = DATA_SIZE;
offset = 1;

/* Write contents of col2 buffer into the LOB in a single chunk via locator lobp */
OCILobWrite (svchp, errhp, lobp, &amt, offset, col2, DATA_SIZE, OCI_ONE_PIECE,
 0, 0, 0, SQLCS_IMPLICIT);

/*************** Reading from the LOB *****************/

Chapter 3
TimesTen Features With OCI

3-27

/* Get the length of the LOB */
OCILobGetLength (svchp, errhp, lobp, &len);
amt = len;

/* Read the LOB data in col2Res in a single chunk */
OCILobRead (svchp, errhp, lobp, &amt, offset, col2Res, DATA_SIZE, 0, 0, 0,
 SQLCS_IMPLICIT);

OCI Client-Side Buffering
OCI provides a facility for client-side buffering on a per-LOB basis. It is enabled for a
LOB by a call to OCILobEnableBuffering() and disabled by a call to
OCILobDisableBuffering().

Enabling buffering for a LOB locator creates a 512 KB write buffer. This size is not
configurable. Data written by the application through the LOB locator is buffered. When
possible, the client library satisfies LOB read requests from the buffer as well. An
application can flush the buffer by a call to OCILobFlushBuffer(). Note that buffers are
not flushed automatically when they become full, and an attempt to write to the LOB
through the locator when the buffer is full results in an error.

The following restrictions apply when you use client-side buffering:

• Buffering is incompatible with the following functions: OCILobAppend(),
OCILobCopy(), OCILobCopy2(), OCILobErase(), OCILobGetLength(),
OCILobTrim(), OCILobWriteAppend(), and OCILobWriteAppend2().

• An application can use OCILobWrite() or OCILobWrite2() only to append to the
end of a LOB.

• LOB data becomes visible to SQL and PL/SQL (server-side) operations only after
the application has flushed the buffer.

• When a LOB is selected while there are unflushed client-side writes in its buffer,
the unflushed data is not included in the select.

LOB Prefetching in OCI
To reduce round trips to the server in client/server connections, LOB data can be
prefetched from the database and cached on the client side during fetch operations.
LOB prefetching in OCI has the same functionality in TimesTen as in Oracle Database.

Configure LOB prefetching through the following OCI attributes. Note that size refers
to bytes for BLOBs and to characters for CLOBs or NCLOBs.

• OCI_ATTR_DEFAULT_LOBPREFETCH_SIZE: Use this to enable prefetching and specify
the default prefetch size. A value of 0 (default) disables prefetching.

• OCI_ATTR_LOBPREFETCH_SIZE: Set this attribute for a column define handle to
specify the prefetch size for the particular LOB column.

• OCI_ATTR_LOBPREFETCH_LENGTH: This attribute can be set TRUE or FALSE (default) to
prefetch LOB metadata such as LOB length and chunk size.

The OCI_ATTR_DEFAULT_LOBPREFETCH_SIZE and OCI_ATTR_LOBPREFETCH_LENGTH
settings are independent of each other. You can use LOB data prefetching
independently of LOB metadata prefetching.

Refer to Prefetching of LOB Data, Length, and Chunk Size in Oracle Call Interface
Programmer's Guide.

Chapter 3
TimesTen Features With OCI

3-28

Note:

The above attribute settings are ignored for direct connections to the database.

Passthrough LOBs in OCI
Passthrough LOBs (LOBs in Oracle Database accessed through TimesTen) are exposed as
TimesTen LOBs and are supported by TimesTen in much the same way that any TimesTen
LOB is supported.

Note the following:

• You cannot use OCILobCreateTemporary() to create a passthrough LOB.

• In addition to copying from one TimesTen LOB to another TimesTen LOB—such as
through OCILobCopy(), OCILobCopy2(), or OCILobAppend()—you can copy from a
TimesTen LOB to a passthrough LOB, from a passthrough LOB to a TimesTen LOB, or
from one passthrough LOB to another passthrough LOB. Any of these copies the LOB
value to the target destination. For example, copying a passthrough LOB to a TimesTen
LOB copies the LOB value into the TimesTen database.

An attempt to copy a passthrough LOB to a TimesTen LOB when the passthrough LOB is
larger than the TimesTen LOB size limit results in an error.

• TimesTen LOB size limitations do not apply to storage of LOBs in the Oracle database
through passthrough. If a passthrough LOB is copied to a TimesTen LOB, the size limit
applies to the copy.

• As with TimesTen local LOBs, a locator for a passthrough LOB does not remain valid past
the end of the transaction.

The examples that follow highlight key functionality in copying between TimesTen LOBs and
passthrough LOBs on Oracle Database. After the table and data setup, the first example
uses OCILobAppend() to copy LOB data from Oracle Database to TimesTen and the second
example uses OCILobCopy() to copy LOB data from TimesTen to Oracle Database. (Either
call could be used in either case.) Then, for contrast, the third example uses an UPDATE
statement to copy LOB data from Oracle Database to TimesTen and the fourth example uses
an INSERT statement to copy LOB data from TimesTen to Oracle Database.

 /* Table and data setup */
 call ttoptsetflag(''passthrough'', 3)';
 DROP TABLE oratab';
 CREATE TABLE oratab (i INT, c CLOB)';
 INSERT INTO oratab VALUES (1, ''Copy from Oracle to TimesTen'')';
 INSERT INTO oratab VALUES (2, EMPTY_CLOB())';
 COMMIT;

 call ttoptsetflag(''passthrough'', 0)';
 DROP TABLE tttab';
 CREATE TABLE tttab (i INT, c CLOB)';
 INSERT INTO tttab VALUES (1, ''Copy from TimesTen to Oracle'')';
 INSERT INTO tttab VALUES (2, EMPTY_CLOB())';
 INSERT INTO tttab VALUES (3, NULL)';
 COMMIT;
 /* Table and data setup end */

 /*

Chapter 3
TimesTen Features With OCI

3-29

 * Below are four OCI pseudocode examples, for copying LOBs between
 * TimesTen and Oracle using OCI API and INSERT/UPDATE statements.
 */

 /* Init OCI Env */

 /* Set the passthrough level to 1 */
 OCIStmtPrepare (..., "call ttoptsetflag(''passthrough'', 1)'", ...);
 OCIStmtExecute (...);

 /*
 * 1. Copy a passthrough LOB on Oracle to a TimesTen LOB */

 /* Select a passthrough locator on Oracle */
 OCIStmtPrepare (..., "SELECT c FROM oratab WHERE i = 1", ...);
 OCIDefineByPos (..., (dvoid *)&ora_loc_1, 0 , SQLT_CLOB, ...);
 OCIStmtExecute (...);

 /* Select a locator on TimesTen for update */
 OCIStmtPrepare (..., "SELECT c FROM tttab WHERE i = 2 FOR UPDATE", ...);
 OCIDefineByPos (..., (dvoid *)&tt_loc_2, 0 , SQLT_CLOB, ...);
 OCIStmtExecute (...);

 /* Copy a passthrough LOB on Oracle to a TimesTen LOB */
 OCILobAppend(..., tt_loc_2, ora_loc_1);

 /*
 * 2. Copy a TimesTen LOB to a passthrough LOB on Oracle */

 /* Select a passthrough locator on Oracle for update */
 OCIStmtPrepare (..., "SELECT c FROM oratab WHERE i = 2 FOR UPDATE", ...);
 OCIDefineByPos (..., (dvoid *)&ora_loc_2, 0 , SQLT_CLOB, ...);
 OCIStmtExecute (...);

 /* Select a locator on TimesTen */
 OCIStmtPrepare (..., "SELECT c FROM tttab WHERE i = 1", ...);
 OCIDefineByPos (..., (dvoid *)&tt_loc_1, 0 , SQLT_CLOB, ...);
 OCIStmtExecute (...);

 /* Copy a passthrough LOB on Oracle to a TimesTen LOB */
 OCILobCopy(..., ora_loc_2, tt_loc_1, 28, 1, 1);

 /*
 * 3. UPDATE a TimesTen LOB with a passthrough LOB on Oracle */

 /* A passthrough LOB, (selected above in case 1) is bound to an UPDATE
statement
 * on TimesTen table */
 OCIStmtPrepare (..., "UPDATE tttab SET c = :1 WHERE i = 3", ...);
 OCIBindByPos (..., (dvoid *)&ora_loc_1, 0 , SQLT_CLOB, ...);
 OCIStmtExecute (...);

 /*
 * 4. INSERT a passthrough table on Oracle with a TimesTen LOB */

 /* A TimesTen LOB, (selected above in case 2) is bound to an INSERT statement
 * on a passthough table on Oracle */
 OCIStmtPrepare (..., "INSERT INTO oratab VALUES (3, :1)", ...);
 OCIBindByPos (..., (dvoid *)&tt_loc_1, 0 , SQLT_CLOB, ...);
 OCIStmtExecute (...);

Chapter 3
TimesTen Features With OCI

3-30

 OCITransCommit (...);

 /* Cleanup OCI Env */

Configuring the Result Set Buffer Size in Client/Server Using OCI
For data returned from a SELECT statement in client/server, the buffer size for the data
returned to the client is configurable to allow adjustments for better performance. (In earlier
releases, the buffer size could not be changed.)

The buffer size can be set in terms of either rows of data or bytes of data. The lower limit
takes precedence. It is suggested to use one limit and set the other to a value high enough to
ensure that it is not reached first.

Use these OCI statement attributes:

• OCI_ATTR_PREFETCH_ROWS: Buffer size in rows (default 8192)

• OCI_ATTR_PREFETCH_MEMORY: Buffer size in bytes (default 2097152, or 2 MB)

You can set these attributes but not get them.

Here is an example:

/* Double the row limit. */
ub4 rowsvalue = 16384;
...
OCIAttrSet(stmthp, handle_type, (dvoid *)&rowsvalue,
 sizeof(ub4), OCI_ATTR_PREFETCH_ROWS, errhp);

Note:

• These attributes correspond to TimesTen connection attributes
TT_NetMsgMaxRows and TT_NetMsgMaxBytes, which you can set in a TimesTen
connection string or DSN, to serve as initial values for any statements created
on the connection.

• The minimum value of each attribute is 1 and at least one row is always
returned. Setting either to a value of 0 results in the default value being used.
There are no maximum settings other than the maximum value of the datatype
(32-bit unsigned integer).

• If a client version that supports these attributes connects to a server version
that does not, any settings are ignored.

Use of PL/SQL in OCI to Call a TimesTen Built-In Procedure
TimesTen built-in procedures that return result sets are not supported directly through OCI.

This example shows how to use PL/SQL for this purpose.

plsql_resultset_example(OCIEnv *envhp, OCIError *errhp, OCISvcCtx *svchp)
{
 OCIStmt *stmhp;

Chapter 3
TimesTen Features With OCI

3-31

 OCIBind *bindp;

 sb4 passThruValue = -1;
 char v_name[255];
 text *stmt_text;

 /* prepare the plsql statement */
 stmt_text = (text *)
 "declare v_name varchar2(255); "
 "begin execute immediate "
 "'call ttOptGetFlag(''passthrough'')' into v_name, :rc1; "
 "end;";
 OCIStmtPrepare2(svchp, &stmhp, errhp, (text *)stmt_text,
 (ub4)strlen((char *)stmt_text),
 (text *)0, (ub4)0,
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT);

 /* bind parameter 1 (:v_name) to varchar2 out-parameter */
 OCIBindByPos(stmhp, &bindp, errhp, 1,
 (dvoid*)&v_name, sizeof(v_name), SQLT_CHR,
 (dvoid*)0, (ub2*)0, (ub2*)0, (ub4)0, (ub4*)0,
 OCI_DEFAULT);

 /* execute the plsql statement */
 OCIStmtExecute(svchp, stmhp, errhp, (ub4)1, (ub4)0,
 (OCISnapshot *)0, (OCISnapshot *)0, (ub4)OCI_DEFAULT);

 /* convert the passthrough string value to an integer */
 passThruValue = (sb4)atoi((const char *)v_name);
 printf("Value of the passthrough flag is %d\n", passThruValue);

 /* drop the statement handle */
 OCIStmtRelease(stmhp, errhp, (text *)0, (ub4)0, (ub4)OCI_DEFAULT);
}

TimesTen OCI Support Reference
This is a reference section for TimesTen support of OCI features.

• Supported OCI Calls

• Supported Handles and Attributes

• Supported Descriptors

• Supported OCI-Defined Constants

• Supported Parameter Attributes

Supported OCI Calls
There is TimesTen support for OCI calls.

Table 3-2 lists TimesTen support for OCI calls that are documented for Oracle
Database 19c releases.

Some groups of calls are represented with an asterisk in the name. For example, the
calls related to Advanced Queuing, which TimesTen does not support, have names
that start with OCIAQ and are represented in the table as OCIAQ*(). OCI date functions,
which TimesTen does support, are designated by OCIDate*().

Chapter 3
TimesTen OCI Support Reference

3-32

Note:

TimesTen does not support the following features or related calls: Advanced
Queueing, Any Data, collections, Data Cartridge, Direct Path Loading, user-defined
objects, XML DB.

Table 3-2 TimesTen OCI Supported Calls

OCI Call Notes

OCIAppCtxClearAll() No notes

OCIAppCtxSet() No notes

OCIArrayDescriptorAlloc() No notes

OCIArrayDescriptorFree() No notes

OCIAttrGet() See Supported Handles and Attributes.

TimesTen support includes special usage with
cache groups. See Using Cache Operations With
TimesTen OCI.

OCIAttrSet() See Supported Handles and Attributes.

OCIBindArrayOfStruct() This is supported for SQL statements but not PL/
SQL.

OCIBindByName() The following is an unsupported value for the mode
parameter:

• OCI_IOV
OCIBindByPos() The following is an unsupported value for the mode

parameter:

• OCI_IOV
OCIBindDynamic() No notes

OCICharSetConversionIsReplacementUsed() No notes

OCICharSetToUnicode() No notes

OCIClientVersion() No notes

OCIDate*() See Table 3-4.

OCIDefineArrayOfStruct() This is supported for SQL statements but not PL/
SQL.

OCIDefineByPos() The following is an unsupported value for the mode
parameter:

• OCI_IOV
OCIDefineDynamic() No notes

Chapter 3
TimesTen OCI Support Reference

3-33

Table 3-2 (Cont.) TimesTen OCI Supported Calls

OCI Call Notes

OCIDescribeAny() PL/SQL objects are not supported.

Describing objects is supported only by name.

See Supported Parameter Attributes.

The following are unsupported values for the
objptr_typ parameter:

• OCI_OTYPE_REF
• OCI_OTYPE_PTR
The following are unsupported values for the
objtyp parameter:

• OCI_PTYPE_PKG
• OCI_PTYPE_FUNC
• OCI_PTYPE_PROC
• OCI_PTYPE_SYN
• OCI_PTYPE_TYPE
When you use the setting OCI_PTYPE_DATABASE
for the objtyp parameter, use the predetermined
name TT_DB_NAME as the database name for
the *objptr parameter.

OCIDescriptorAlloc() No notes

OCIDescriptorFree() No notes

OCIDurationBegin() Supported for LOBs. Regardless of the duration
setting, the duration cannot exceed the lifetime of
the transaction.

OCIDurationEnd() Supported for LOBs. Regardless of the duration
setting, the duration cannot exceed the lifetime of
the transaction.

OCIEnvCreate() The following are unsupported values for the mode
parameter:

• OCI_EVENTS
• OCI_NEW_LENGTH_SEMANTICS
• OCI_NCHAR_LITERAL_REPLACE_ON
• OCI_NCHAR_LITERAL_REPLACE_OFF
• OCI_NO_MUTEX (Instead use

OCI_ENV_NO_MUTEX.)

OCIEnvInit() The following are unsupported values for the mode
parameter:

• OCI_NO_MUTEX
• OCI_ENV_NO_MUTEX
Note: Use OCIEnvCreate() instead of
OCIEnvInit(). OCIEnvInit() is supported for
backward compatibility.

Chapter 3
TimesTen OCI Support Reference

3-34

Table 3-2 (Cont.) TimesTen OCI Supported Calls

OCI Call Notes

OCIEnvNlsCreate() The following are unsupported values for the mode
parameter:

• OCI_EVENTS
• OCI_NCHAR_LITERAL_REPLACE_ON
• OCI_NCHAR_LITERAL_REPLACE_OFF
• OCI_NO_MUTEX (Instead use

OCI_ENV_NO_MUTEX.)

OCIErrorGet() No notes

OCIHandleAlloc() No notes

OCIHandleFree() No notes

OCIInitialize() The following are unsupported values for the mode
parameter:

• OCI_NO_MUTEX
• OCI_ENV_NO_MUTEX
Note: Use OCIEnvCreate() instead of
OCIInitialize(). OCIInitialize() is
supported for backward compatibility.

OCIInterval*() See Table 3-4.

OCILob*() TimesTen supports OCILob*() functions other
than the following:

• Functions specifically intended for array reads
and writes

• Functions specifically intended for BFILEs
• Functions specifically intended for

SecureFiles
Notes:
• Regardless of the duration setting in an

OCILobCreateTemporary() call, the LOB
lifetime is no longer than the lifetime of the
transaction.

• See Reading and Writing LOB Data Using the
OCI LOB Locator Interface regarding
OCILobRead2(), OCILobWrite2(), and
OCILobWriteAppend2().

OCILogoff() No notes

OCILogon() No notes

OCILogon2() OCI_DEFAULT is the only supported value for the
mode parameter.

OCIMultiByte*() No notes

OCINls*() No notes

OCINumber*() No notes

OCIParamGet() No notes

OCIParamSet() No notes

Chapter 3
TimesTen OCI Support Reference

3-35

Table 3-2 (Cont.) TimesTen OCI Supported Calls

OCI Call Notes

OCIPing() No notes

OCIRaw*() No notes

OCIRowidToChar() No notes

OCIServer*() OCI_DEFAULT is the only supported value for the
mode parameter of OCIServerAttach.

OCISessionBegin() OCI_CRED_RDBMS is the only supported value for
the credt parameter.

OCI_DEFAULT is the only supported value for the
mode parameter.

OCISessionEnd() No notes

OCISessionGet() TimesTen does not support switching between
sessions.

OCISessionRelease() No notes

OCIStmtExecute() The following are unsupported values for the mode
parameter:

• OCI_BATCH_ERRORS
• OCI_STMT_SCROLLABLE_READONLY
Note: Using OCI_COMMIT_ON_SUCCESS results in
improved performance, avoiding an extra round
trip to the server to commit a transaction.

OCIStmtFetch() No notes

OCIStmtFetch2() The only supported values for the orientation
parameter are OCI_DEFAULT and
OCI_FETCH_NEXT.

OCIStmtGetBindInfo() No notes

OCIStmtPrepare() The only supported value for the language
parameter is OCI_NTV_SYNTAX.

OCIStmtPrepare2() The only supported value for the mode parameter
is OCI_DEFAULT.

For statement caching, TimesTen supports the
key argument to tag a statement for future calls to
OCIStmtPrepare2() or OCIStmtRelease().

OCIStmtRelease() The only supported value for the mode parameter
is OCI_DEFAULT.

For statement caching, TimesTen supports the
key argument to tag a statement. This can be the
key from OCIStmtPrepare2().

OCIString*() No notes

OCIThread*() No notes

OCITransCommit() The only supported value for the mode parameter
is OCI_DEFAULT.

OCITransRollback() No notes

Chapter 3
TimesTen OCI Support Reference

3-36

Table 3-2 (Cont.) TimesTen OCI Supported Calls

OCI Call Notes

OCIUnicodeToCharSet() No notes

OCIUserCallbackGet() No notes

OCIUserCallbackRegister() No notes

OCIWideChar*() No notes

Supported Handles and Attributes
There are handles and attributes that TimesTen OCI supports for OCIAttrGet() and
OCIAttrSet() calls.

Table 3-3 lists the handles and attributes that TimesTen OCI supports for OCIAttrGet() and
OCIAttrSet() calls.

See Handle and Descriptor Attributes in Oracle Call Interface Programmer's Guide.

Table 3-3 TimesTen OCI Supported Handles and Attributes

Handle C Object Supported Attributes

Environment OCIEnv OCI_ATTR_ENV_CHARSET_ID
OCI_ATTR_ENV_NCHARSET_ID
OCI_ATTR_ENV_UTF16
OCI_ATTR_OBJECT

Error OCIError OCI_ATTR_DML_ROW_OFFSET
Service context OCISvcCtx OCI_ATTR_ENV

OCI_ATTR_IN_V8_MODE
OCI_ATTR_SERVER
OCI_ATTR_SESSION
OCI_ATTR_TRANS

Chapter 3
TimesTen OCI Support Reference

3-37

Table 3-3 (Cont.) TimesTen OCI Supported Handles and Attributes

Handle C Object Supported Attributes

Statement OCIStmt OCI_ATTR_BIND_COUNT
OCI_ATTR_CURRENT_POSITION
OCI_ATTR_ENV
OCI_ATTR_FETCH_ROWID
OCI_ATTR_NUM_DML_ERRORS
OCI_ATTR_PARAM_COUNT
OCI_ATTR_PREFETCH_MEMORY (Refer to
Configuring the Result Set Buffer Size in Client/
Server Using OCI)

OCI_ATTR_PREFETCH_ROWS (Refer to
Configuring the Result Set Buffer Size in Client/
Server Using OCI)

OCI_ATTR_ROW_COUNT
OCI_ATTR_ROWID
OCI_ATTR_ROWS_FETCHED
OCI_ATTR_SQLFNCODE
OCI_ATTR_STATEMENT
OCI_ATTR_STMT_TYPE

Bind OCIBind OCI_ATTR_CHARSET_FORM
OCI_ATTR_CHARSET_ID
OCI_ATTR_MAXCHAR_SIZE
OCI_ATTR_MAXDATA_SIZE

Define OCIDefine OCI_ATTR_CHARSET_FORM
OCI_ATTR_CHARSET_ID
OCI_ATTR_MAXCHAR_SIZE

Describe OCIDescribe OCI_ATTR_PARAM
OCI_ATTR_PARAM_COUNT

Server OCIServer OCI_ATTR_ENV
OCI_ATTR_IN_V8_MODE
OCI_ATTR_SERVER_GROUP
OCI_ATTR_SERVER_STATUS

User session OCISession OCI_ATTR_ACTION
OCI_ATTR_CLIENT_IDENTIFIER
OCI_ATTR_CLIENT_INFO
OCI_ATTR_CURRENT_SCHEMA
OCI_ATTR_DRIVER_NAME
OCI_ATTR_INITIAL_CLIENT_ROLES
OCI_ATTR_MODULE
OCI_ATTR_PROXY_CREDENTIALS
OCI_ATTR_USERNAME

Authentication OCIAuthInfo Same as for user session handle

Chapter 3
TimesTen OCI Support Reference

3-38

Table 3-3 (Cont.) TimesTen OCI Supported Handles and Attributes

Handle C Object Supported Attributes

Transaction OCITrans OCI_ATTR_TRANS_NAME
OCI_ATTR_TRANS_TIMEOUT

Thread OCIThreadHandle N/A

Supported Descriptors
There are descriptors that TimesTen OCI supports.

Table 3-4 lists the descriptors that TimesTen OCI supports.

Table 3-4 TimesTen OCI Supported Descriptors

Descriptor C Object

Parameter (read-only) OCIParam
ROWID OCIRowid
ANSI DATE OCIDateTime
TIMESTAMP OCIDateTime
TIMESTAMP WITH TIME ZONE OCIDateTime
TIMESTAMP WITH LOCAL TIME ZONE OCIDateTime
INTERVAL YEAR TO MONTH OCIInterval
INTERVAL DAY TO SECOND OCIInterval
User callback OCIUcb

Supported OCI-Defined Constants
There are OCI-defined constants that TimesTen OCI supports as well as mappings to
TimesTen SQL types.

Table 3-5 lists the OCI-defined constants that TimesTen OCI supports and the mappings to
TimesTen SQL types.

Table 3-5 TimesTen OCI Supported OCI-Defined Constants

OCI-defined Constant TimesTen SQL Type Notes

SQLT_AFC CHAR No notes

SQLT_AVC CHAR No notes

SQLT_BDOUBLE BINARY_DOUBLE No notes

SQLT_BFLOAT BINARY_FLOAT No notes

SQLT_BIN VARBINARY No notes

SQLT_BLOB BLOB No notes

Chapter 3
TimesTen OCI Support Reference

3-39

Table 3-5 (Cont.) TimesTen OCI Supported OCI-Defined Constants

OCI-defined Constant TimesTen SQL Type Notes

SQLT_CHR VARCHAR2 No notes

SQLT_CLOB CLOB To write to or read from an NCLOB, set
the character set form (csfrm) parameter
to SQLCS_NCHAR for applicable function
calls.

SQLT_DAT DATE No notes

SQLT_DATE DATE No notes

SQLT_FLT NUMBER, BINARY_FLOAT No notes

SQLT_IBDOUBLE BINARY_DOUBLE No notes

SQLT_IBFLOAT BINARY_FLOAT No notes

SQLT_INT NUMBER, TT_INTEGER,
TT_BIGINT,
TT_SMALLINT,
TT_TINYINT

No notes

SQLT_INTERVAL_DS N/A Not stored in TimesTen.

SQLT_INTERVAL_YM N/A Not stored in TimesTen.

SQLT_LBI VARBINARY No notes

SQLT_LNG VARCHAR2 No notes

SQLT_LVB VARBINARY Truncated at 4 MB when stored in
TimesTen.

SQLT_LVC VARCHAR2 Truncated at 4 MB when stored in
TimesTen.

SQLT_NUM NUMBER No notes

SQLT_ODT DATE No notes

SQLT_RDD ROWID Rowids are returned in Oracle Database
format.

SQLT_RSET N/A Only one result set parameter is allowed
for each statement.

Not stored in TimesTen

SQLT_STR VARCHAR2 Null-terminated.

SQLT_TIMESTAMP TIMESTAMP No notes

SQLT_TIMESTAMP_LTZ TIMESTAMP Time zone ignored when stored in
TimesTen.

SQLT_TIMESTAMP_TZ TIMESTAMP Time zone ignored when stored in
TimesTen.

SQLT_UIN NUMBER, TT_INTEGER,
TT_BIGINT,
TT_SMALLINT,
TT_TINYINT

No notes

SQLT_VBI VARBINARY No notes

SQLT_VCS VARCHAR2 No notes

Chapter 3
TimesTen OCI Support Reference

3-40

Table 3-5 (Cont.) TimesTen OCI Supported OCI-Defined Constants

OCI-defined Constant TimesTen SQL Type Notes

SQLT_VNU NUMBER First byte indicates length of number
(length of succeeding bytes).

SQLT_VST CHAR, VARCHAR2 No notes

Supported Parameter Attributes
There are supported parameter attributes for OCIDescribeAny() calls.

Table 3-6 that follows lists supported parameter attributes for OCIDescribeAny() calls.

See Describing Schema Metadata in Oracle Call Interface Programmer's Guide for
information about supported attributes.

Table 3-6 TimesTen OCI Supported Parameter Attributes

Parameter Supported Attributes

All parameters OCI_ATTR_NUM_PARAMS
OCI_ATTR_OBJ_NAME
OCI_ATTR_OBJ_SCHEMA
OCI_ATTR_PTYPE

Table and view parameters OCI_ATTR_NUM_COLS
OCI_ATTR_LIST_COLUMNS

PL/SQL procedure and function
parameters

OCI_ATTR_LIST_ARGUMENTS

PL/SQL package subprogram parameters OCI_ATTR_LIST_ARGUMENTS
OCI_ATTR_NAME

PL/SQL package parameters OCI_ATTR_LIST_SUBPROGRAMS
Sequence parameters OCI_ATTR_OBJID

OCI_ATTR_MIN
OCI_ATTR_MAX
OCI_ATTR_INCR
OCI_ATTR_CACHE
OCI_ATTR_ORDER
OCI_ATTR_HW_MARK

Chapter 3
TimesTen OCI Support Reference

3-41

Table 3-6 (Cont.) TimesTen OCI Supported Parameter Attributes

Parameter Supported Attributes

Column parameters OCI_ATTR_CHAR_USED
OCI_ATTR_CHAR_SIZE
OCI_ATTR_DATA_SIZE
OCI_ATTR_DATA_TYPE
OCI_ATTR_NAME
OCI_ATTR_PRECISION
OCI_ATTR_SCALE
OCI_ATTR_IS_NULL
OCI_ATTR_TYPE_NAME
OCI_ATTR_SCHEMA_NAME
OCI_ATTR_CHARSET_ID
OCI_ATTR_CHARSET_FORM

Argument and result parameters OCI_ATTR_NAME
OCI_ATTR_POSITION
OCI_ATTR_DATA_TYPE
OCI_ATTR_DATA_SIZE
OCI_ATTR_PRECISION
OCI_ATTR_SCALE
OCI_ATTR_LEVEL
OCI_ATTR_IS_NULL
OCI_ATTR_CHARSET_ID
OCI_ATTR_CHARSET_FORM

List parameters OCI_LTYPE_COLUMN
OCI_LTYPE_SCH_OBJ
OCI_LTYPE_DB_SCH

Database parameters OCI_ATTR_VERSION
OCI_ATTR_CHARSET_ID
OCI_ATTR_NCHARSET_ID
OCI_ATTR_LIST_SCHEMAS
OCI_ATTR_MAX_PROC_LEN
OCI_ATTR_MAX_COLUMN_LEN
OCI_ATTR_CURSOR_COMMIT_BEHAVIOR
OCI_ATTR_MAX_CATALOG_NAMELEN
OCI_ATTR_CATALOG_LOCATION
OCI_ATTR_SAVEPOINT_SUPPORT
OCI_ATTR_NOWAIT_SUPPORT
OCI_ATTR_AUTOCOMMIT_DDL
OCI_ATTR_LOCKING_MODE

Chapter 3
TimesTen OCI Support Reference

3-42

4
TimesTen Support for Pro*C/C++

TimesTen supports the Oracle Pro*C/C++ Precompiler for C and C++ applications. You can
use the precompiler with embedded SQL and PL/SQL applications that access a TimesTen
database.

This chapter provides an overview and TimesTen-specific information regarding Pro*C/C++,
especially emphasizing differences between using Pro*C/C++ with TimesTen versus with
Oracle Database. For complete information about Pro*C/C++, you can refer to Pro*C/C++
Programmer's Guide in the Oracle Database library.

Also note that Working With TimesTen Databases in ODBC contains information that may be
of general interest regarding TimesTen features.

This chapter includes the following topics:

• Overview of TimesTen Support for Pro*C/C++

• Getting Started With TimesTen Pro*C/C++

• TimesTen Features With Pro*C/C++

• TimesTen Pro*C/C++ Precompiler Options

Overview of TimesTen Support for Pro*C/C++
TimesTen support for the Oracle Pro*C/C++ Precompiler depends on TimesTen OCI.
TimesTen OCI depends on the Oracle client library and the TimesTen ODBC libraries.

See Figure 3-1 to see where OCI and Pro*C/C++ fit in the TimesTen architecture.

This chapter contains information specific to using the Oracle Pro*C/C++ Precompiler with
TimesTen. The syntax and usage of the Oracle Pro*C/C++ Precompiler with TimesTen is
essentially the same as with Oracle Database.

The rest of this section includes the following topics.

• Overview of the Oracle Pro*C/C++ Precompiler

• TimesTen OCI Support With Respect to Pro*C/C++

• Restrictions in TimesTen Support for Pro*C/C++

Overview of the Oracle Pro*C/C++ Precompiler
The Oracle Pro*C/C++ Precompiler enables you to embed SQL statements or PL/SQL blocks
directly into C or C++ code. Further, you can use your C or C++ program host variables in
your embedded SQL or PL/SQL.

You use a precompilation step to convert the Pro*C/C++ source file into a C or C++ source
file. The precompiler accepts the Pro*C/C++ file as input, translates embedded SQL
statements into standard Oracle Database runtime library calls, and generates a modified
source code file that you can then compile and link. Pro*C/C++ code is linked against the

4-1

Oracle Database precompiler SQLLIB library, which is included in the TimesTen
distribution as part of the Oracle Instant Client.

TimesTen OCI Support With Respect to Pro*C/C++
TimesTen support of the Oracle Pro*C/C++ Precompiler depends on TimesTen OCI
support. Because of this, restrictions for TimesTen OCI apply to Pro*C/C++
applications.

In addition, TimesTen does not support OCI calls that are related to functionality that
does not exist in TimesTen.

See TimesTen Support for OCI. Much of the information there applies to Pro*C/C++
applications as well.

Restrictions in TimesTen Support for Pro*C/C++
There are restrictions when using TimesTen support for Pro*C/C++.

• Embedded SQL Support and Restrictions

• Semantic Checking Restrictions

• Embedded PL/SQL Restrictions

• Transaction Restrictions

• Connection Restrictions

• Summary of Unsupported or Restricted Executable Commands and Clauses

Embedded SQL Support and Restrictions
The TimesTen Pro*C/C++ Precompiler does not support embedded SQL for
functionality that TimesTen does not support.

See TimesTen Restrictions and Limitations.

TimesTen provides the following support for SQLLIB functions:

• SQLErrorGetText (sqlglmt) is supported.

• SQLRowidGet() is supported following only SELECT FOR UPDATE statements.

In addition, TimesTen support for the Oracle Pro*C/C++ Precompiler has the following
restrictions:

• REGISTER CONNECT is not supported.

• Stored Java subprograms are not supported.

Semantic Checking Restrictions
TimesTen support for the Oracle Pro*C/C++ Precompiler does not provide semantic
checking during precompilation. A SQLCHECK precompiler option setting that specifies
semantic checking is permissible but has no effect.

It is important to be aware, however, that a setting of SEMANTICS results in a database
connection even though precompilation semantic checking is not performed.
Therefore, a setting of SEMANTICS requires the following during precompilation:

Chapter 4
Overview of TimesTen Support for Pro*C/C++

4-2

• The database must be running.

• The USERID precompiler option must be set, either on the command line or in the
pcscfg.cfg configuration file. You must provide the user name and password for an
existing TimesTen user, and a TNS name that points to the database. In the following
example, you are prompted for the password:

USERID=user1@my_tnsname

Alternatively, you can enter USERID=user1/password@my_tnsname, but for security
reasons it is not advisable to specify a password on a command line or in a configuration
file.

See Connecting to a TimesTen Database From Pro*C/C++ for information about usage and
syntax for TNS names.

See the next section, Embedded PL/SQL Restrictions, for related information about Pro*C/C+
+ programs that use PL/SQL.

Embedded PL/SQL Restrictions
In TimesTen, if a Pro*C/C++ application contains PL/SQL blocks, then Pro*C/C++ acts as
though the SQLCHECK setting is SEMANTICS. It is important to be aware that this results in a
database connection even though precompilation semantic checking is not performed.

Therefore, using PL/SQL in a Pro*C/C++ application requires the following during
precompilation:

• The database must be running.

• The USERID precompiler option must be set, specifying an existing TimesTen user. See
the preceding section, Semantic Checking Restrictions.

Transaction Restrictions
Regarding transactions, TimesTen support for the Oracle Pro*C/C++ Precompiler has some
restrictions.

The following is not supported:

• SAVEPOINT SQL statement

• SET TRANSACTION SQL statement

You can still have transactions with commit and rollback, just not the SET TRANSACTION
SQL statement.

• Fetch across commits

• Distributed transactions

Connection Restrictions
Regarding connections, TimesTen support for the Oracle Pro*C/C++ Precompiler does not
provide certain features.

• ALTER AUTHORIZATION clause

• Automatic connections to the database

Chapter 4
Overview of TimesTen Support for Pro*C/C++

4-3

• Making connections to the database with SYSDBA or SYSOPER privilege, given that
these privileges do not exist in TimesTen

• Implicit connections (dblinks) to a TimesTen or Oracle Database

For information about supported connection syntax, see Connecting to a TimesTen
Database From Pro*C/C++.

Summary of Unsupported or Restricted Executable Commands and Clauses
Given TimesTen restrictions, including those noted in the preceding sections, this
section summarizes the Pro*C/C++ EXEC SQL executable commands, categories of
commands, and command clauses that TimesTen does not support or supports only
partially.

• ALTER AUTHORIZATION
• CACHE FREE ALL
• CALL

This is supported only for calling PL/SQL. To call TimesTen built-in procedures,
use dynamic SQL statements.

• Any "COLLECTION..." command

• COMMIT FORCE 'some text'

• COMMIT WORK COMMENT 'some text' RELEASE
The COMMENT clause is not supported.

• CONNECT BY
• CONTEXT OBJECT OPTION GET
• CONTEXT OBJECT OPTION SET
• DECLARE CURSOR

The WITH HOLD clause is not supported.

• DECLARE TABLE
Only Oracle Database data types are supported.

• DECLARE TYPE
• EXPLAIN PLAN
• IN SYSDBA MODE
• IN SYSOPER MODE
• LOCK TABLE
• Any "OBJECT..." command

• PARTITION
• REGISTER CONNECT
• RETURN
• RETURNING
• SAVEPOINT

Chapter 4
Overview of TimesTen Support for Pro*C/C++

4-4

• SET DESCRIPTOR
You cannot set CHARACTER_SET_NAME.

• SET TRANSACTION
• START WITH
• TO SAVEPOINT

Getting Started With TimesTen Pro*C/C++
There are methods to get started with a Pro*C/C++ application for TimesTen.

• Environment and Configuration for TimesTen Pro*C/C++

• Building a Pro*C/C++ Application

• Connecting to a TimesTen Database From Pro*C/C++

• Error Reporting and Handling

Environment and Configuration for TimesTen Pro*C/C++
The Pro*C/C++ system configuration file pcscfg.cfg contains the precompiler options for
precompilation of your Pro*C/C++ source code. In TimesTen, you must use the version of this
file that TimesTen provides. This typically happens automatically if you ensure appropriate
configuration for TimesTen through the timesten_home/bin/ttenv script.

Before building a Pro*C/C++ application, you must set up your environment. You can use the
TimesTen Classic Quick Start OCI and Pro*C/C++ Makefiles to implement appropriate
environment settings. See About TimesTen Quick Start and Sample Applications.

Then confirm LD_LIBRARY_PATH or PATH is set so that the Oracle Instant Client directory
precedes the Oracle Database libraries in the path. The path is set properly if you use the
ttenv script.

See Environment Variables in the Oracle TimesTen In-Memory Database Installation,
Migration, and Upgrade Guide for information about ttenv.

Note:

To ensure proper generation of OCI and Pro*C/C++ programs to be run on
TimesTen, do not set ORACLE_HOME for OCI and Pro*C/C++ compilations (or unset it
if it was set previously).

Building a Pro*C/C++ Application
Once you have set up the environment, use steps to build a Pro*C/C++ application.

The steps shown here present a basic example for a UNIX system and assume the program
has no other includes (#include) or links to other libraries. The designation instantclient
represents the directory where Oracle Instant Client is installed.

Chapter 4
Getting Started With TimesTen Pro*C/C++

4-5

1. Precompile the Pro*C/C++ source file by using the proc command from your
system prompt. For example:

% proc iname=sample.pc

The proc utility takes a .pc source file as input and produces a .c file.

2. Compile the resulting C code file. On Linux platforms, enter a command similar to
the following:

% gcc -c sample.c -I(instantclient)/sdk/include
3. Link the resulting object modules with modules in SQLLIB. For example:

% gcc -o sample sample.o -L(instantclient) -lclntsh

Connecting to a TimesTen Database From Pro*C/C++
There are methods for connecting to a TimesTen database from a Pro*C/C++
application. TimesTen Pro*C/C++ and TimesTen OCI use the Oracle Instant Client to
connect to the database.

Refer to Connecting to a TimesTen Database From OCI for additional configuration
steps to use the tnsnames naming method or easy connect naming method to connect
to the database.

The following topics are covered here for TimesTen Classic:

• Connection Syntax and Parameters

• Using tnsnames or Easy Connect

• Specifying the Oracle Database Password in Pro*C/C++ for Cache

Note:

• Be aware that in TimesTen Scaleout, TimesTen will automatically
populate the tnsnames.ora file and sqlnet.ora file, as applicable, on all
instances with entries for all TimesTen connectables you have defined.
See Connecting to a TimesTen Database From OCI.

• A TimesTen connection cannot be inherited from a parent process. If a
process opens a database connection before creating (forking) a child
process, the child must not use the connection. In Pro*C/C++, to avoid
having a child process inadvertently inherit a connection from its parent,
use EXEC SQL COMMIT RELEASE in the parent before creating the child.

Connection Syntax and Parameters
TimesTen requires a connection syntax.

EXEC SQL CONNECT{:user IDENTIFIED BY :pwd | :user_string}
 [[AT{dbname |:host_variable}]USING :connect_string];

The parameters are described in Table 4-1.

Chapter 4
Getting Started With TimesTen Pro*C/C++

4-6

Table 4-1 Connection Parameters

Parameter Description

user User name

pwd Password

user_string Alternative to separate user and pwd entries

This is a user name and password separated by a slash, such as user1/
password. After an "@" sign, you can also have a database identifier, instead
of using dbname, or a TNS name or easy connect string, instead of using
connect_string. See examples in the next section, Using tnsnames or
Easy Connect.

dbname Database identifier declared in a previous DECLARE DATABASE statement

host_variable Variable whose value is a database identifier

connect_string Valid TNS name or easy connect string for a TimesTen database

Using tnsnames or Easy Connect
To connect to a TimesTen database from a Pro*C/C++ application, you must configure a TNS
name or easy connect string for the database.

Perform the tnsnames or easy connect steps described under Connecting to a TimesTen
Database From OCI.

From Pro*C/C++, you can use a host variable to specify the user name, password, and a
TNS name. For example:

EXEC SQL CONNECT :dbstring

Where dbstring is set to "user1/password@my_tnsname".

Alternatively, the host variable could specify the user name, password, and an easy connect
string. For example, dbstring could be set to "user1/password@localhost/
ttclient:timesten_client".

Or, if the TWO_TASK or LOCAL environment variable, as applicable for your operating system, is
set to "my_tnsname" or "localhost/ttclient:timesten_client", you could connect as in the
following example:

EXEC SQL CONNECT :user1 IDENTIFIED BY :pwd1

Specifying the Oracle Database Password in Pro*C/C++ for Cache
For use of Pro*C/C++ with cache operations, TimesTen enables you to pass the Oracle
Database cache administration user's password through Pro*C/C++ by appending it to the
password field in an EXEC SQL CONNECT call when you log in to TimesTen.

To use cache operations, there must be a cache administration user in the TimesTen Classic
database with the same name as an Oracle Database cache administration user who can
select from and update the cached Oracle Database tables. This Oracle Database cache
administration user could also be a schema user. The password of the TimesTen cache
administration user can be different from the password of the Oracle Database cache

Chapter 4
Getting Started With TimesTen Pro*C/C++

4-7

administration user. See Setting Up a Caching Infrastructure in Oracle TimesTen In-
Memory Database Cache Guide.

Use the attribute OraclePWD in the connect string, such as in the following example:

text *cacheadmin = (text *)"cacheadmin1";
text *cachepwds = (text *)"ttpassword;OraclePWD=oraclepassword";
text *dbname = (text *)"tt_tnsname";
....
EXEC SQL CONNECT :cacheadmin IDENTIFIED BY :cachepassword AT :dbname

You must always specify OraclePWD, even if the Oracle Database cache administration
user's password is the same as the TimesTen cache administration user's password.
Furthermore, in the circumstance of specifying an Oracle Database password for
cache operations, you must use a form of EXEC SQL CONNECT that specifies the
password as a separate host variable. In this example, cacheadmin1 is the name of the
TimesTen cache administration user as well as the name of the Oracle Database
cache administration user who can access the cached Oracle Database tables,
ttpassword is the password of the TimesTen cache administration user,
oraclepassword is the password of the Oracle Database cache administration user,
and tt_tnsname is the TNS name of the TimesTen database being connected to. The
Oracle database is specified through the TimesTen OracleNetServiceName general
connection attribute in the sys.odbc.ini or user odbc.ini file.

Alternatively, instead of using the AT clause with a TNS name, you could use the
TWO_TASK or LOCAL environment variable, as discussed in Connecting to a TimesTen
Database From OCI.

Error Reporting and Handling
Be aware of restrictions regarding certain error conditions and error reporting.

• Errors under TimesTen Pro*C/C++ applications return Oracle Database error
codes. TimesTen attempts to report the same error code as Oracle Database
would under similar conditions. The error messages may come from either the
TimesTen catalog or the Oracle Database catalog. Some error messages may
indicate the accompanying TimesTen error code if appropriate. Pro*C/C++
applications that rely on parsing error codes should be checked.

• TimesTen automatically resolves most transient errors (which is particularly
important for TimesTen Scaleout), but if your application detects an ORA-57005 or
ORA-57007 error, it is suggested to retry the current transaction or most recent API
call, as applicable. See Transient Errors (OCI).

• TimesTen supports the WHENEVER SQLERROR directive, to go to an error handler if an
error occurs, and the WHENEVER NOT FOUND directive, to go to a handling section if
a "no data found" condition occurs. TimesTen does not support the WHENEVER
SQLWARNING directive.

Examples:

EXEC SQL WHENEVER NOT FOUND GOTO close_cursor;
...
EXEC SQL WHENEVER SQLERROR GOTO error_handler;

Chapter 4
Getting Started With TimesTen Pro*C/C++

4-8

TimesTen Features With Pro*C/C++
This section covers additional features you can use with Pro*C/C++ in TimesTen.

• Associative Array Bindings in TimesTen Pro*C/C++

• LOBs in TimesTen Pro*C/C++

Associative Array Bindings in TimesTen Pro*C/C++
You can pass associative arrays between PL/SQL blocks and Pro*C/C++ applications as well
as OCI applications. They can be indexed by a PL/SQL variable of type BINARY_INTEGER or
PLS_INTEGER.

As discussed in Binding Associative Arrays in TimesTen OCI, associative arrays, formerly
known as index-by tables or PL/SQL tables, are supported as IN, OUT, or IN OUT bind
parameters in TimesTen PL/SQL. See that section for additional information and limitations.

Typically, the entire host array is passed to PL/SQL, but you can use the Pro*C/C++
ARRAYLEN statement to specify a smaller array dimension.

See PL/SQL Tables, Host Arrays, and ARRAYLEN Statement in Embedded PL/SQL in
Pro*C/C++ Programmer's Guide.

The following code excerpt shows the array salary[] being bound from Pro*C/C++ into the
associative array num_tab in PL/SQL.

...
float salary[100];
/* populate the host array */
EXEC SQL EXECUTE
 DECLARE
 TYPE NumTabTyp IS TABLE OF REAL
 INDEX BY BINARY_INTEGER;
 median_salary REAL;
 n BINARY_INTEGER;
...
 FUNCTION median (num_tab NumTabTyp, n INTEGER)
 RETURN REAL IS
 BEGIN
 -- compute median
 END;
 BEGIN
 n := 100;
 median_salary := median(:salary, n);
 ...
 END;
END-EXEC;
...

LOBs in TimesTen Pro*C/C++
TimesTen Classic supports LOBs (large objects). This includes CLOBs (character LOBs),
NCLOBs (national character LOBs), and BLOBs (binary LOBs).

This section focuses on key Pro*C/C++ LOB features and TimesTen-specific support and
restrictions.

Chapter 4
TimesTen Features With Pro*C/C++

4-9

These topics are covered:

• Using the LOB Simple Data Interface in Pro*C/C++

• Using the LOB Locator Interface in Pro*C/C++

See the following for additional information:

• Large Objects (LOBs). That section is ODBC-oriented but also provides a general
overview of LOBs, differences between TimesTen and Oracle Database LOBs,
and LOB programming interfaces.

• LOBs in TimesTen OCI for information about LOB locators, temporary LOBs, using
the simple data interface or LOB locator interface in OCI, and additional OCI LOB
features.

• LOB Data Types in Oracle TimesTen In-Memory Database SQL Reference for
additional information about LOBs in TimesTen.

• LOBs in Pro*C/C++ Programmer's Guide for complete information about LOBs
and how to use them in Pro*C/C++, keeping in mind that TimesTen does not
support BFILEs, SecureFiles, array reads and writes for LOBs, or callback
functions for LOBs. In particular, see "How to Use LOBs in Your Program" within
that chapter.

Note:

• As indicated in the OCI chapter, in TimesTen a LOB used in an
application does not remain valid past the end of the transaction.

• The LOB piecewise data interface is not applicable to OCI or Pro*C/C++
applications in TimesTen. (You can, however, manipulate LOB data in
pieces through features of the LOB locator interface.)

Using the LOB Simple Data Interface in Pro*C/C++
The simple data interface enables applications to manipulate LOB data similarly to
how they would manipulate other types of scalar data, such as by using EXEC SQL
INSERT and EXEC SQL SELECT. The application can use a LOB type that is compatible
with the corresponding variable type.

An application can use the EMPTY_BLOB() or EMPTY_CLOB() function, as appropriate, to
initialize a persistent LOB. This is similar to using ALLOCATE in the LOB locator
interface, discussed next. Consider the following tables:

EXEC SQL CREATE TABLE lob_table (a_blob BLOB, a_clob CLOB);
...
EXEC SQL INSERT INTO lob_table (a_blob, a_clob)
 VALUES (EMPTY_BLOB(), EMPTY_CLOB());
...
EXEC SQL CREATE TABLE data_table
 (name VARCHAR2(30), length NUMBER(10), bincol BLOB, charcol CLOB);

The following selects LOB data from data_table into myblob and myclob, then inserts
the LOB data into lob_table.

Chapter 4
TimesTen Features With Pro*C/C++

4-10

...
OCIBlobLocator *myblob;
OCIClobLocator *myclob;
...
EXEC SQL SELECT bincol, charcol INTO :myblob, :myclob FROM data_table
 WHERE name = :key;
...
// Put data into lob_table.
...
EXEC SQL INSERT INTO lob_table (a_blob, a_clob) VALUES (:myblob, :myclob);

To use an NCLOB, declare the variable as follows:

OCIClobLocator CHARACTER SET IS NCHAR_CS *mynclob;

Note:

The simple data interface, through OCI or Pro*C/C++, limits bind sizes to 64 KB.

Using the LOB Locator Interface in Pro*C/C++
You can use the Pro*C/C++ LOB locator interface to work with either LOBs from the database
or temporary LOBs, either piece-by-piece or in whole chunks.

Refer to LOB Statements in Pro*C/C++ Programmer's Guide for detailed information about
Pro*C/C++ statements for LOBs, noting that TimesTen does not support features specifically
intended for BFILEs, SecureFiles, array reads and writes for LOBs, or callback functions for
LOBs.

See lobdemo1.pc in Pro*C/C++ Programmer's Guide for an end-to-end example.

Also see About Using the LOB Locator Interface in OCI.

Tip:

If Pro*C/C++ syntax does not provide enough functionality to fully specify what you
want to accomplish for any operation, you can use the corresponding OCI function
as an alternative.

In Pro*C/C++, an application can create a temporary LOB by using the CREATE TEMPORARY
embedded SQL feature, after first using the ALLOCATE feature to allocate the locator. Use FREE
to free the allocation for the locator and FREE TEMPORARY to free the temporary LOB itself.
This is shown immediately below.

Also see Creating a Temporary LOB in OCI.

Chapter 4
TimesTen Features With Pro*C/C++

4-11

Tip:

In TimesTen, creation of a temporary LOB results in creation of a database
transaction if one is not already in progress. To avoid error conditions,
execute a commit or rollback to close the transaction.

OCIClobLocator *tempclob;
EXEC SQL ALLOCATE :tempclob;
EXEC SQL LOB CREATE TEMPORARY :tempclob;
...
// (Manipulate LOB as desired.)
...
EXEC SQL FREE TEMPORARY :tempclob;
EXEC SQL FREE :tempclob;

Alternatively, to specify the LOB character set (here NCHAR), you can use the
corresponding OCI function:

status = OCILobCreateTemporary(svc, err, tempclob, OCI_DEFAULT, SQLCS_NCHAR,
 OCI_TEMP_CLOB, TRUE, OCI_DURATION_TRANSACTION);

To access the locator of a persistent LOB in Pro*C/C++, an application typically
accesses the LOB from the database by using a SQL statement to obtain the locator,
then passing the locator to an appropriate API function.

The following excerpts are from the previously mentioned example in lobdemo1.pc in
Pro*C/C++ Programmer's Guide. The example uses a CLOB license_txt and table
license_table whose columns are social security number, name, and text
summarizing driving offenses (a CLOB column). Also see Accessing the Locator of a
Persistent LOB in OCI.

OCIClobLocator *license_txt;
...
EXEC SQL ALLOCATE :license_txt;
...
EXEC SQL SELECT name, txt_summary INTO :name, :license_txt FROM license_table
 WHERE sss = :sss;

To read and write LOB data using the LOB locator interface, a Pro*C/C++ application
can use LOB OPEN and LOB CLOSE to open and close a LOB, LOB READ to read LOB
data, LOB WRITE or LOB WRITE APPEND to write or append LOB data, LOB DESCRIBE to
obtain information about a LOB, and various other Pro*C/C++ features to perform a
variety of other actions. All the Pro*C/C++ LOB locator interface features are covered
in detail in LOBs in Pro*C/C++ Programmer's Guide. Also see Reading and Writing
LOB Data Using the OCI LOB Locator Interface in this document.

To write data, use LOB WRITE ONE to write the data in a single chunk. TimesTen does
not support LOB WRITE FIRST, LOB WRITE NEXT, or LOB WRITE LAST (features of the
piecewise data interface).

Here is an example of an EXEC SQL LOB READ statement:

EXEC SQL LOB READ :amt FROM :blob INTO :buffer;

Refer to READ a BLOB, Write a File Example in Pro*C/C++ Programmer's Guide for
additional information.

Chapter 4
TimesTen Features With Pro*C/C++

4-12

Here is an example of an EXEC SQL LOB WRITE statement (writing the LOB data in one
chunk):

EXEC SQL LOB WRITE ONE :amt FROM :buffer INTO :blob;

Refer to Read a File, WRITE a BLOB Example in Pro*C/C++ Programmer's Guide.

Here is an example of an EXEC SQL LOB WRITE APPEND statement:

EXEC SQL LOB WRITE APPEND :amt FROM :writebuf INTO :blob;

Note:

Opening a LOB is similar conceptually, but not technically, to opening a file.
Opening a LOB is more like a hint regarding resources to be required.

Be aware that a LOB being accessed by OCILobRead(), OCILobWrite(), or
equivalent functionality is opened automatically as necessary.

The following excerpt is from the previously mentioned example in lobdemo1.pc in Pro*C/C+
+ Programmer's Guide.

...
OCIClobLocator *a_clob;
char *charbuf;
ub4 ClobLen, WriteAmt;
int CharLen = strlen(charbuf);
int NewCharbufLen = CharLen + DATELENGTH + 4;
varchar *NewCharbuf;
NewCharbuf = (varchar *)malloc(2 + NewCharbufLen);
NewCharbuf->arr[0] = '\n';
NewCharbuf->arr[1] = '\0';
strcat((char *)NewCharbuf->arr, charbuf);
NewCharbuf->arr[CharLen + 1] = '\0';
strcat((char *)NewCharbuf->arr, curdate);
NewCharbuf->len = NewCharbufLen;
EXEC SQL LOB DESCRIBE :a_clob GET LENGTH INTO :ClobLen;
WriteAmt = NewCharbufLen;
EXEC SQL LOB WRITE ONE :WriteAmt FROM :NewCharbuf WITH LENGTH :NewCharbufLen
 INTO :a_clob;
...

The next example, like the preceding one, uses LOB WRITE ONE. Then it also uses LOB WRITE
APPEND to append additional data. It writes or appends to the BLOB in 1 K chunks up to
MAX_CHUNKS.

...
 EXEC SQL select b into :blob from t where pk = 1 for update;
 EXEC SQL LOB OPEN :blob READ WRITE;

 // Write/append to the BLOB
 for (i = 0; i < MAX_CHUNKS; i++) {
 if (i==0) { // FIRST CHUNK
 /*
 Write the first piece
 */
 EXEC SQL LOB WRITE ONE :amt FROM :writebuf INTO :blob;

Chapter 4
TimesTen Features With Pro*C/C++

4-13

 }
 else { // All Other Chunks
 /*
 At this point, APPEND all the next pieces
 */
 EXEC SQL LOB WRITE APPEND :amt FROM :writebuf INTO :blob ;
 }
 ...
 }
...

TimesTen Pro*C/C++ Precompiler Options
This section discusses the use of Pro*C/C++ Precompiler options in TimesTen.

• Precompiler Option Support

• Setting Precompiler Options

Precompiler Option Support
There are supported precompiler options in TimesTen.

SeeTable 4-2.

Note:

TimesTen does not support the following features or related options:
Advanced Queueing, database optimization, user-defined objects. Also,
TimesTen supports only CPOOL=NO and does not support related options.

Table 4-2 TimesTen Pro*C/C++ Precompiler Option Support

Option Notes

AUTO_CONNECT Supported value: NO (default)

CHAR_MAP No notes

CLOSE_ON_COMMIT Supported value: YES
The Oracle Database default value of NO is overridden by
TimesTen.

CODE No notes

COMP_CHARSET No notes

CONFIG No notes

CPOOL Supported value: NO (default)

CPP_SUFFIX No notes

DB2_ARRAY No notes

DBMS Supported value: NATIVE (default)

DEF_SQLCODE No notes

Chapter 4
TimesTen Pro*C/C++ Precompiler Options

4-14

Table 4-2 (Cont.) TimesTen Pro*C/C++ Precompiler Option Support

Option Notes

DEFINE No notes

DYNAMIC No notes

ERRORS No notes

FIPS No notes

HEADER No notes

HOLD_CURSOR No notes

IMPLICIT_SVPT Supported value: NO (default)

INAME No notes

INCLUDE No notes

INTYPE No notes

LINES No notes

LNAME No notes

LTYPE No notes

MAX_ROW_INSERT No notes

MAXLITERAL No notes

MAXOPENCURSORS No notes

MODE No notes

NATIVE_TYPES No notes

NLS_CHAR No notes

NLS_LOCAL Supported value: NO (default)

ONAME No notes

ORACA No notes

PAGELEN No notes

PARSE No notes

PREFETCH No notes

RELEASE_CURSOR No notes

SELECT_ERROR No notes

SQLCHECK Not applicable

Any of the SQLCHECK settings is allowed, but TimesTen does not
support semantic checking during precompilation.

Whenever a Pro*C/C++ application uses PL/SQL, Pro*C/C++
acts as though the SQLCHECK setting is SEMANTICS.

Important: A setting of SEMANTICS (or FULL, which is
synonymous) always results in a connection to the database,
even though precompilation semantic checking is not performed.

See Semantic Checking Restrictions.

STMT_CACHE No notes

Chapter 4
TimesTen Pro*C/C++ Precompiler Options

4-15

Table 4-2 (Cont.) TimesTen Pro*C/C++ Precompiler Option Support

Option Notes

SYS_INCLUDE No notes

THREADS No notes

TYPE_CODE No notes

UNSAFE_NULL No notes

USERID No notes

UTF16_CHARSET Supported value: NCHAR_CHARSET
VARCHAR No notes

Note:

TimesTen does not support the default value for CLOSE_ON_COMMIT. TimesTen
supports only CLOSE_ON_COMMIT=YES.

Setting Precompiler Options
You can set precompiler options in one of several ways.

• At compile time, either in the configuration file pcscfg.cfg or on the Pro*C/C++
command line

A command line setting takes precedence over a setting in the configuration file.

• At runtime through the EXEC ORACLE OPTION command

A runtime setting takes precedence over a compile-time setting.

For example, the following shows portions of the configuration file that ships with
TimesTen.

ltype=short
parse=full
close_on_commit=yes
...

The following command line would override the ltype=short setting from the
configuration file:

% proc ltype=long ... iname=sample.pc

The following runtime command would override the ltype=long setting from the
command line:

EXEC ORACLE OPTION LTYPE=NONE;

Chapter 4
TimesTen Pro*C/C++ Precompiler Options

4-16

5
XLA and TimesTen Event Management

The TimesTen Transaction Log API (XLA), supported by TimesTen Classic, is a set of C
language functions that enable you to implement applications.

You can perform the following:

• Monitor TimesTen for changes to specified tables in a local database.

• Receive real-time notification of these changes.

The primary purpose of XLA is as a high-performance, asynchronous alternative to triggers.

Note:

In the unlikely event that TimesTen replication solutions described in Overview of
TimesTen Replication in the Oracle TimesTen In-Memory Database Replication
Guide do not meet your needs, it is possible to use XLA functions to build a custom
data replication solution.

This chapter includes the following topics:

• Overview of TimesTen XLA

• Writing an XLA Event-Handler Application

• Using XLA as a Replication Mechanism

• Other XLA Features

See XLA Reference.

Overview of TimesTen XLA
There are ways to use XLA in TimesTen Classic.

• XLA Basics

• How XLA Reads Records From the Transaction Log

• About XLA and Materialized Views

• About XLA Bookmarks

• XLA Data Types

• XLA System Privilege

• XLA Limitations

• About the XLA Sample Application

XLA functions mentioned here are documented in XLA Reference.

5-1

XLA Basics
TimesTen XLA obtains update records directly from the transaction log buffer or
transaction log files, so the records are available for as long as they are needed. The
logging model also enables multiple readers to simultaneously read transaction log
updates.

The ttXlaPersistOpen XLA function opens a connection to the database.

When initially created, TimesTen configures a transaction log handle for the same
version as the TimesTen release to which the application is linked.

How XLA Reads Records From the Transaction Log
As applications modify a database, TimesTen generates transaction log records that
describe the changes made to the data and other events such as transaction commits.
New transaction log records are always written to the end of the log buffer as they are
generated.

Transaction log records are periodically flushed in batches from the log buffer in
memory to transaction log files on the file system. When XLA is initialized, the XLA
application does not have to be concerned with which portions of the transaction log
are on the file system or in memory. Therefore, the term "transaction log" as used in
this chapter refers to the "virtual" source of transaction update records, regardless of
whether those records are physically located in memory or on the file system.

Applications can use XLA to monitor the transaction log for changes to the database.
XLA reads through the transaction log, filters the log records, and delivers to XLA
applications a list of transaction records that contain the changes to the tables and
columns of interest.

XLA sorts the records into discrete transactions. If multiple applications are updating
the database simultaneously, transaction log records from the different applications are
interleaved in the transaction log.

XLA transparently extracts all transaction log records associated with a particular
transaction and delivers them in a contiguous list to the application.

Only the records for committed transactions are returned. They are returned in the
order in which their final commit record appears in the transaction log. XLA filters out
records associated with changes to the database that have not yet been committed.

If a change is made but then rolled back, XLA does not deliver the records for the
canceled transaction to the application.

Most of these basic XLA concepts are demonstrated in the example that follows and
summarized in the bulleted list following the example.

Consider the example transaction log illustrated in Figure 5-1.

Chapter 5
Overview of TimesTen XLA

5-2

Figure 5-1 Records Extracted From the Transaction Log

Transaction Log

Oldest Newest

XLA Application

CT3

BT
3

BT
2

CT
1
CT

2
CT

3

... CT2 AT1 AT3BT1 BT2 BT3CT1 AT2

In this example, the transaction log contains the following records:

CT1 - Application C updates row 1 of table W with value 7.7.
BT1 - Application B updates row 3 of table X with value 2.
CT2 - Application C updates row 9 of table W with value 5.6.
BT2 - Application B updates row 2 of table Y with value "XYZ".
AT1 - Application A updates row 1 of table Z with value 3.
AT2 - Application A updates row 3 of table Z with value 4.
BT3 - Application B commits its transaction.
AT3 - Application A rolls back its transaction.
CT3 - Application C commits its transaction.

An XLA application that is set up to detect changes to tables W, Y, and Z would see the
following:

BT2 and BT3 - Update row 2 of table Y with value "XYZ" and commit.
CT1 - Update row 1 of table W with value 7.7.
CT2 and CT3 - Update row 9 of table W with value 5.6 and commit.

This example demonstrates the following:

• Transaction records of applications B and C all appear together.

• Although the records for application C begin to appear in the transaction log before those
for application B, the commit for application B (BT3) appears in the transaction log before
the commit for application C (CT3). As a result, the records for application B are returned
to the XLA application ahead of those for application C.

• The application B update to table X (BT1) is not presented because XLA is not set up to
detect changes to table X.

• The application A updates to table Z (AT1 and AT2) are never presented because it did not
commit and was rolled back (AT3).

About XLA and Materialized Views
You can use XLA to track changes to both tables and materialized views.

A materialized view provides a single source from which you can track changes to selected
rows and columns in multiple detail tables. Without a materialized view, the XLA application
would have to monitor and filter the update records from all of the detail tables, including
records reflecting updates to rows and columns of no interest to the application.

Chapter 5
Overview of TimesTen XLA

5-3

In general, there are no operational differences between the XLA mechanisms used to
track changes to a table or a materialized view.

For more information about materialized views, see the following:

• CREATE MATERIALIZED VIEW in Oracle TimesTen In-Memory Database SQL
Reference

• Understanding Materialized Views in Oracle TimesTen In-Memory Database
Operations Guide

About XLA Bookmarks
Each XLA reader uses XLA bookmarks to maintain its position in the log update
stream.

These topics are covered:

• XLA Log Record Identifiers

• Creating or Reusing a Bookmark

• How Bookmarks Work

• Replicated Bookmarks

• XLA Bookmarks and Transaction Log Holds

XLA Log Record Identifiers
Each bookmark consists of two pointers that track update records in the transaction
log by using log record identifiers.

• An Initial Read log record identifier points to the most recently acknowledged
transaction log record. Initial Read log record identifiers are stored in the
database, so they are persistent across database connections, shutdowns, and
failures.

• A Current Read log record identifier points to the record currently being read from
the transaction log.

Creating or Reusing a Bookmark
When you call the ttXlaPersistOpen function to initialize an XLA handle, you have a
tag parameter to identify either a new bookmark or one that exists in the system, and
an options parameter to specify whether it is a new non-replicated bookmark, a new
replicated bookmark, or an existing (reused) bookmark.

See ttXlaPersistOpen and Initializing XLA and Obtaining an XLA Handle.

At this point, the Initial Read log record identifier associated with the bookmark is read
from the database and cached in the XLA handle (ttXlaHandle_h). It designates the
start position of the reader in the transaction log.

See ttLogHolds in Oracle TimesTen In-Memory Database Reference. That TimesTen
built-in procedure returns information about transaction log holds.

Chapter 5
Overview of TimesTen XLA

5-4

How Bookmarks Work
When an application first initializes XLA and obtains an XLA handle, its Current Read log
record identifier and Initial Read log record identifier both point to the last record written to the
database.

Figure 5-2 Log Record Indicator Positions Upon Initializing an XLA Handle

As described in Retrieving Update Records From the Transaction Log, use the ttXlaNextUpdate
or ttXlaNextUpdateWait function to return a batch of records for committed transactions from the
transaction log in the order in which they were committed. Each call to ttXlaNextUpdate
resets the Current Read log record identifier of the bookmark to the last record read, as
shown in Figure 5-3. The Current Read log record identifier marks the start position for the
next call to ttXlaNextUpdate.

Figure 5-3 Records Retrieved by ttXlaNextUpdate

Transaction Log

Oldest Newest

Initial Read log record identifier Current Read log record identifier

AT1 AT2 AT3 AT4BT1 BT2 BT3CT1 CT2 CT3DT1 CT4 CT5DT2 DT3ZT4 ZT5XT2

BT
1
BT

2
AT

1
BT

3
AT

2
AT

3
AT

4

Reader
Records retrieved from the

log by ttXlaNextUpdate()

You can use the ttXlaGetLSN and ttXlaSetLSN functions to reread records, as described in
Changing the Location of a Bookmark. However, calling the ttXlaAcknowledge function
permanently resets the Initial Read log record identifier of the bookmark to its Current Read
log record identifier, as shown in Figure 5-4. After you have called the ttXlaAcknowledge
function to reset the Initial Read log record identifier, all previously read transaction records
are flagged for purging by TimesTen. Once the Initial Read log record identifier is reset, you
cannot use ttXlaSetLSN to go back and reread any of the previously read transactions.

Chapter 5
Overview of TimesTen XLA

5-5

Figure 5-4 ttXlaAcknowledge Resets Bookmark

Initial Read log record identifier
Current Read log record identifier

BT
1
BT

2
AT

1
BT

3
AT

2
AT

3
AT

4

Reader

Transaction Log

Oldest NewestAT1 AT2 AT3 AT4BT1 BT2 BT3CT1 CT2 CT3DT1 CT4 CT5DT2 DT3...

Records flagged for purging}
ttXlaAcknowledge()

Note:

A ttXlaAcknowledge call resets the bookmark even if there are no relevant
update records to acknowledge. This may be useful in managing transaction
log space, but should be balanced against the expense of the operation. Be
aware that XLA purges transaction logs a file at a time. Refer to
ttXlaAcknowledge for details on how the operation works.

The number of bookmarks created in a database is limited to 64. Each bookmark can
be associated with only one active connection at a time. However, a bookmark over its
lifetime may be associated with many connections. An application can open a
connection, create a new bookmark, associate the bookmark with the connection, read
a few records using the bookmark, disconnect from the database, reconnect to the
database, create a new connection, associate this new connection with the bookmark,
and continue reading transaction log records from where the old connection stopped.

Replicated Bookmarks
If you are using an active standby pair replication scheme, you have the option of
using replicated bookmarks according to the options settings in your
ttXlaPersistOpen calls.

See ttXlaPersistOpen.

For a replicated bookmark, operations on the bookmark are replicated to the standby
database as appropriate. This results in more efficient recovery of your bookmark
positions in the event of failover. Reading resumes from the stream of XLA records
close to the point at which they left off before the switchover to the new active store.
Without replicated bookmarks, reading must go through numerous duplicate records
that were returned on the old active store.

To use replicated bookmarks, complete steps in this order:

1. Create the active standby pair replication scheme. (This is accomplished by the
create active standby pair operation, or by the ttCWAdmin -create command
in a Clusterware-managed environment.)

2. Create the bookmarks.

3. Subscribe the bookmarks.

Chapter 5
Overview of TimesTen XLA

5-6

4. Start the active standby pair, at which time duplication to the standby occurs and
replication begins. (This is accomplished by the ttRepAdmin -duplicate command, or by
the ttCWAdmin -start command in a Clusterware-managed environment.)

Be aware of the following usage notes:

• The position of the bookmark in the standby database is very close to that of the
bookmark in the active database; however, because the replication of acknowledge
operations is asynchronous, you may see a small window of duplicate updates in the
event of a failover, depending on how often acknowledge operations are performed.

• You should close and reopen all bookmarks on a database after it changes from standby
to active status, using the ttXlaClose and ttXlaPersistOpen functions. The state of a
replicated bookmark on a standby database does change during XLA processing, as the
replication agent automatically repositions bookmarks as appropriate on standby
databases. If you attempt to use a bookmark that was open before the database changed
to active status, you receive an error indicating that the state of the bookmark was reset
and that it has been repositioned. While it is permissible to continue reading from the
repositioned bookmark in this scenario, you can avoid the error by closing and reopening
bookmarks.

• It is permissible to drop the active standby pair scheme while replicated bookmarks exist.
The bookmarks of course cease to be replicated at that point, but are not deleted. If you
subsequently re-enable the active standby pair scheme, these bookmarks are
automatically added to the scheme.

• You cannot delete replicated bookmarks as long as the replication agent is running.

• You can only read and acknowledge a replicated bookmark in the active database. Each
time you acknowledge a replicated bookmark, the acknowledge operation is
asynchronously replicated to the standby database.

XLA Bookmarks and Transaction Log Holds
When XLA is in use, there is a hold on TimesTen transaction log files until the XLA bookmark
advances.

The hold prevents transaction log files from being purged until XLA can confirm it no longer
needs them. If a bookmark becomes stuck, which can occur if an XLA application terminates
unexpectedly or disconnects without first deleting its bookmark or disabling change tracking,
the log hold persists and there may be an excessive accumulation of transaction log files.
This accumulation may result in file system space being filled.

See Monitoring Accumulation of Transaction Log Files in Oracle TimesTen In-Memory
Database Operations Guide.

XLA Data Types
There is a data type mapping between internal SQL data types and XLA data types before
release 7.0 and since release 7.0.

See Data Types in Oracle TimesTen In-Memory Database SQL Reference.

Table 5-1 XLA Data Type Mapping

Internal SQL Data Type XLA Data Type

TT_CHAR TTXLA_CHAR_TT

Chapter 5
Overview of TimesTen XLA

5-7

Table 5-1 (Cont.) XLA Data Type Mapping

Internal SQL Data Type XLA Data Type

TT_VARCHAR TTXLA_VARCHAR_TT
TT_NCHAR TTXLA_NCHAR_TT
TT_NVARCHAR TTXLA_NVARCHAR_TT
CHAR TTXLA_CHAR
NCHAR TTXLA_NCHAR
VARCHAR2 TTXLA_VARCHAR
NVARCHAR2 TTXLA_NVARCHAR
TT_TINYINT TTXLA_TINYINT
TT_SMALLINT TTXLA_SMALLINT
TT_INTEGER TTXLA_INTEGER
TT_BIGINT TTXLA_BIGINT
BINARY_FLOAT TTXLA_BINARY_FLOAT
BINARY_DOUBLE TTXLA_BINARY_DOUBLE
NUMBER TTXLA_NUMBER
NUMBER(p,s) TTXLA_NUMBER
FLOAT TTXLA_NUMBER
TT_TIME TTXLA_TIME
TT_DATE TTXLA_DATE_TT
TT_TIMESTAMP TTXLA_TIMESTAMP_TT
DATE TTXLA_DATE
TIMESTAMP TTXLA_TIMESTAMP
TT_BINARY TTXLA_BINARY
TT_VARBINARY TTXLA_VARBINARY
ROWID TTXLA_ROWID
BLOB TTXLA_BLOB
CLOB TTXLA_CLOB
NCLOB TTXLA_NCLOB

XLA offers functions to convert between internal SQL data types and external
programmatic data types. For example, you can use ttXlaNumberToCString to convert
NUMBER columns to character strings. TimesTen provides the following XLA data type
conversion functions:

• ttXlaDateToODBCCType

• ttXlaDecimalToCString

• ttXlaNumberToCString

• ttXlaNumberToDouble

Chapter 5
Overview of TimesTen XLA

5-8

• ttXlaNumberToBigInt

• ttXlaNumberToInt

• ttXlaNumberToSmallInt

• ttXlaNumberToTinyInt

• ttXlaNumberToUInt

• ttXlaOraDateToODBCTimeStamp

• ttXlaOraTimeStampToODBCTimeStamp

• ttXlaRowidToCString

• ttXlaTimeToODBCCType

• ttXlaTimeStampToODBCCType

XLA System Privilege
An XLA user must have the XLA system privilege.

• Any XLA functionality, such as the following, requires the system privilege XLA:

– Connecting to TimesTen (which also requires the CREATE SESSION privilege) as an
XLA reader, such as by the ttXlaPersistOpen C function

– Executing any other XLA-related TimesTen C functions, documented in XLA
Reference

– Executing any XLA-related TimesTen built-in procedures

The procedures ttXlaBookmarkCreate, ttXlaBookmarkDelete, ttXlaSubscribe, and
ttXlaUnsubscribe are documented in Built-In Procedures in Oracle TimesTen In-
Memory Database Reference.

• A user with the XLA privilege has capabilities equivalent to the SELECT ANY TABLE, SELECT
ANY VIEW, and SELECT ANY SEQUENCE system privileges, and can capture DDL statement
records that occur in the database. Note that as a result, the user can obtain information
about database objects that the user has not otherwise been granted access to.

XLA Limitations
This section lists TimesTen XLA limitations.

• XLA is available on all platforms supported by TimesTen. However, XLA does not support
data transfer between different platforms.

• XLA support for LOBs is limited. See Specifying Which Tables to Monitor for Updates.

• XLA does not support applications linked with a generic driver manager library or linked
directly with the client/server library. (XLA supports applications linked directly with the
direct driver library or linked with the TimesTen driver manager for direct connections.)

• An XLA reader cannot subscribe to a table that uses in-memory column-based
compression.

• For autorefresh cache groups, the change-tracking trigger on Oracle Database does not
have column-level resolution. (To have that would be very expensive.) Therefore, the
autorefresh feature updates all the columns in the row, and XLA can only report that all
the columns have changed, even if data did not actually change in all columns.

Chapter 5
Overview of TimesTen XLA

5-9

About the XLA Sample Application
The TimesTen Classic Quick Start provides the xlaSimple sample application showing
how to use many of the XLA functions described in this chapter.

See About TimesTen Quick Start and Sample Applications.

Most of this chapter, including the sample code shown in Writing an XLA Event-
Handler Application starting immediately below, is based on the xlaSimple application.
For this application, a table MYDATA is created in the APPUSER schema. While you are
logged in as APPUSER, you make updates to the table. While you are logged in as
XLAUSER, the xlaSimple application reports on the updates.

To run the application, execute xlaSimple at one command prompt. You are prompted
for the password of XLAUSER (determined when the sample database is created). Start
ttIsql at a separate command prompt, connecting to the TimesTen sample database
as APPUSER. You are prompted for the password of APPUSER (also determined when the
sample database is created).

At the ttIsql command prompt you can enter DML statements to alter the table. Then
you can view the XLA output in the xlaSimple window.

Writing an XLA Event-Handler Application
There are general procedures for writing an XLA application that detects and reports
changes to selected tables in a database.

This section describes these general procedures with the possible exception of
Inspecting Column Data, the procedures described in this section are applicable to
most XLA applications.

The following procedures are described:

• Obtaining a Database Connection Handle

• Initializing XLA and Obtaining an XLA Handle

• Specifying Which Tables to Monitor for Updates

• Retrieving Update Records From the Transaction Log

• Inspecting Record Headers and Locating Row Addresses

• Inspecting Column Data

• XLA Error Handling

• Dropping a Table That Has an XLA Bookmark

• Deleting Bookmarks

• Terminating an XLA Application

The example code in this section is based on the xlaSimple sample application.

XLA functions mentioned here are documented in XLA Reference.

Chapter 5
Writing an XLA Event-Handler Application

5-10

Tip:

In addition to files noted in TimesTen Include Files, an XLA application must include
tt_xla.h.

Note:

To simplify the code examples, routine error checking code for each function call
has been omitted. See XLA Error Handling.

Obtaining a Database Connection Handle
As with every ODBC application, an XLA application must initialize ODBC, obtain an
environment handle (henv), and obtain a connection handle (hdbc) to communicate with the
specific database.

This section shows how to obtain a connection handle.

Initialize the environment and connection handles:

SQLHENV henv = SQL_NULL_HENV;
SQLHDBC hdbc = SQL_NULL_HDBC;

Pass the address of henv to the SQLAllocEnv ODBC function to allocate an environment
handle:

rc = SQLAllocEnv(&henv);

Pass the address of hdbc to the SQLAllocConnect ODBC function to allocate a connection
handle for the database:

rc = SQLAllocConnect(henv, &hdbc);

Call the SQLDriverConnect ODBC function to connect to the database specified by the
connection string (connStr), which in this example is passed from the command line:

static char connstr[CONN_STR_LEN];
...
rc = SQLDriverConnect(hdbc, NULL, (SQLCHAR*)connstr, SQL_NTS, NULL, 0,
 NULL, SQL_DRIVER_COMPLETE);

Note:

After an ODBC connection handle is opened for use by an XLA application, the
ODBC handle cannot be used for ODBC operations until the corresponding XLA
handle is closed by calling ttXlaClose.

Call the SQLSetConnectOption ODBC function to turn autocommit off:

rc = SQLSetConnectOption(hdbc, SQL_AUTOCOMMIT, SQL_AUTOCOMMIT_OFF);

Chapter 5
Writing an XLA Event-Handler Application

5-11

Initializing XLA and Obtaining an XLA Handle
After initializing ODBC and obtaining an environment and connection handle, you can
initialize XLA and obtain an XLA handle to access the transaction log.

See Obtaining a Database Connection Handle.

Create only one XLA handle per ODBC connection. If your application uses multiple
XLA reader threads (each connected to its own XLA bookmark), create a separate
XLA handle and ODBC connection for each thread.

This section describes how to initialize XLA. Before initializing XLA, initialize a
bookmark. Then initialize an XLA handle as type ttXlaHandle_h:

unsigned char bookmarkName [32];
...
strcpy((char*)bookmarkName, "xlaSimple");
...
ttXlaHandle_h xla_handle = NULL;

Pass bookmarkName and the address of xla_handle to the ttXlaPersistOpen function to
obtain an XLA handle:

rc = ttXlaPersistOpen(hdbc, bookmarkName, XLACREAT, &xla_handle);

The XLACREAT option is used to create a new non-replicated bookmark. Alternatively,
use the XLAREPL option to create a replicated bookmark. In either case, the operation
fails if the bookmark already exists.

To use a bookmark that already exists, call ttXlaPersistOpen with the XLAREUSE
option, as shown in the following example.

#include <tt_errCode.h> /* TimesTen Native Error codes */
...
 if (native_error == 907) { /* tt_ErrKeyExists */
 rc = ttXlaPersistOpen(hdbc, bookmarkName, XLAREUSE, &xla_handle);
 ...
 }

If ttXlaPersistOpen is given invalid parameters, or the application was unable to
allocate memory for the handle, the return code is SQL_INVALID_HANDLE. In this
situation, ttXlaError cannot be used to detect this or any further errors.

If ttXlaPersistOpen fails but still creates a handle, the handle must be closed to
prevent memory leaks.

Specifying Which Tables to Monitor for Updates
After initializing XLA and obtaining an XLA handle, you can specify which tables or
materialized views you want to monitor for update events.

See Initializing XLA and Obtaining an XLA Handle.

You can determine which tables a bookmark is subscribed to by querying the
SYS.XLASUBSCRIPTIONS table. You can also use SYS.XLASUBSCRIPTIONS to determine
which bookmarks have subscribed to a specific table.

Chapter 5
Writing an XLA Event-Handler Application

5-12

The ttXlaNextUpdate and ttXlaNextUpdateWait functions retrieve XLA records associated with
DDL events. DDL XLA records are available to any XLA bookmark. DDL events include
CREATAB, DROPTAB, CREAIND, DROPIND, CREATVIEW, DROPVIEW, CREATSEQ, DROPSEQ, CREATSYN,
DROPSYN, ADDCOLS, DRPCOLS, and TRUNCATE transactions. See ttXlaUpdateDesc_t.

The ttXlaTableStatus function subscribes the current bookmark to updates to the specified
table. Or it determines whether the current bookmark is already monitoring DML records
associated with the table.

Call the ttXlaTableByName function to obtain both the system and user identifiers for a named
table or materialized view. Then call the ttXlaTableStatus function to enable XLA to monitor
changes to the table or materialized view.

Note:

LOB support in XLA is limited, as follows:

• You can subscribe to tables containing LOB columns, but information about the
LOB value itself is unavailable.

• ttXlaGetColumnInfo returns information about LOB columns.

• Columns containing LOBs are reported as empty (zero length) or null (if the
value is actually NULL). In this way, you can tell the difference between a null
column and a non-null column.

This example tracks changes to the MYDATA table.

#define TABLE_OWNER "APPUSER"
#define TABLE_NAME "MYDATA"
...
SQLUBIGINT SYSTEM_TABLE_ID = 0;
...
SQLUBIGINT userID;

rc = ttXlaTableByName(xla_handle, TABLE_OWNER, TABLE_NAME,
 &SYSTEM_TABLE_ID, &userID);

When you have the table identifiers, you can use the ttXlaTableStatus function to enable
XLA update tracking to detect changes to the MYDATA table. Setting the newstatus parameter
to a nonzero value results in XLA tracking changes made to the specified table.

SQLINTEGER oldstatus;
SQLINTEGER newstatus = 1;
...
rc = ttXlaTableStatus(xla_handle, SYSTEM_TABLE_ID, 0,
 &oldstatus, &newstatus);

The oldstatus parameter is output to indicate the status of the table at the time of the call.

At any time, you can use ttXlaTableStatus to return the current XLA status of a table by
leaving newstatus null and returning only oldstatus. For example:

rc = ttXlaTableStatus(xla_handle, SYSTEM_TABLE_ID, 0,
 &oldstatus, NULL);
...
if (oldstatus != 0)

Chapter 5
Writing an XLA Event-Handler Application

5-13

 printf("XLA is currently tracking changes to table %s.%s\n",
 TABLE_OWNER, TABLE_NAME);
else
 printf("XLA is not tracking changes to table %s.%s\n",
 TABLE_OWNER, TABLE_NAME);

Retrieving Update Records From the Transaction Log
Once you have specified which tables to monitor for updates, you can call the
ttXlaNextUpdate or ttXlaNextUpdateWait function to return a batch of records from
the transaction log.

See ttXlaNextUpdate and ttXlaNextUpdateWait.

Only records for committed transactions are returned. They are returned in the order in
which they were committed. You must periodically call the ttXlaAcknowledge function to
acknowledge receipt of the transactions so that XLA can determine which records are
no longer needed and can be purged from the transaction log. These functions impact
the position of the application bookmark in the transaction log, as described in How
Bookmarks Work. Also see ttLogHolds in Oracle TimesTen In-Memory Database
Reference. That TimesTen built-in procedure returns information about transaction log
holds.

Note:

The ttXlaAcknowledge function is an expensive operation and should be
used only as necessary.

Each update record in a transaction returned by ttXlaNextUpdate begins with an
update header described by the ttXlaUpdateDesc_t structure. This update header
contains a flag indicating if the record is the first in the transaction (TT_UPDFIRST) or
the last commit record (TT_UPDCOMMIT). The update header also identifies the table
affected by the update. Following the update header are zero to two rows of data that
describe the update made to that table in the database.

Figure 5-5 that follows shows a call to ttXlaNextUpdate that returns a transaction
consisting of four update records from the transaction log. Receipt of the returned
transaction is acknowledged by calling ttXlaAcknowledge, which resets the bookmark.

Note:

This example is simplified for clarity. An actual XLA application would likely
read records for multiple transactions before calling ttXlaAcknowledge.

Chapter 5
Writing an XLA Event-Handler Application

5-14

Figure 5-5 Update Records

Transaction Log

ttXlaNextUpdate ttXlaAcknowledge

Update records for a transaction

Update

Header

Data

Update

Header

Data

Update

Header

Data

Update

Header

Data

TT_UPDCOMMITTT_UPDFIRST

In this example, the xlaSimple application continues to monitor our table for updates until
stopped by the user.

Before calling ttXlaNextUpdateWait, the example initializes a pointer to the buffer to hold the
returned ttXlaUpdateDesc_t records (arry) and a variable to hold the actual number of
returned records (records). Because the example calls ttXlaNextUpdateWait, it also
specifies the number of seconds to wait (FETCH_WAIT_SECS) if no records are found in the
transaction log buffer.

Next, call ttXlaNextUpdateWait, passing these values to obtain a batch of
ttXlaUpdateDesc_t records in arry. Then process each record in arry by passing it to the
HandleChange() function described in the example in Inspecting Record Headers and
Locating Row Addresses. After all records are processed, call ttXlaAcknowledge to reset the
bookmark position.

#define FETCH_WAIT_SECS 5
...
SQLINTEGER records;
ttXlaUpdateDesc_t** arry;
int j;

while (!StopRequested()) {

 /* Get a batch of update records */
 rc = ttXlaNextUpdateWait(xla_handle, &arry, 100,
 &records, FETCH_WAIT_SECS);
 if (rc != SQL_SUCCESS {
 /* See XLA Error Handling */
 }

 /* Process the records */
 for(j=0; j < records; j++){
 ttXlaUpdateDesc_t* p;
 p = arry[j];
 HandleChange(p); /* Described in the next section */
 }

 /* After each batch, Acknowledge updates to reset bookmark.*/
 rc = ttXlaAcknowledge(xla_handle);
 if (rc != SQL_SUCCESS {
 /* See XLA Error Handling */

Chapter 5
Writing an XLA Event-Handler Application

5-15

 }
} /* end while !StopRequested() */

The actual number of records returned by ttXlaNextUpdate or ttXlaNextUpdateWait,
as indicated by the nreturned output parameter of those functions, may be less than
the value of the maxrecords parameter. Figure 5-6 shows an example where
maxrecords is 10, the transaction log contains transaction AT that is made up of seven
records, and transaction BT that is made up of three records. In this case, both
transactions are returned in the same batch and both maxrecords and nreturned
values are 10. However, the next three transactions in the log are CT with 11 records,
DT with two records, and ET with two records. Because the commit record for the DT
transaction appears before the CT commit record, the next call to ttXlaNextUpdate
returns the two records for the DT transaction and the value of nreturned is 2. In the
next call to ttXlaNextUpdate, XLA detects that the total records for the CT transaction
exceeds maxrecords, so it returns the records for this transaction in two batches. The
first batch contains the first 10 records for CT (nreturned = 10). The second batch
contains the last CT record and the two records for the ET transaction, assuming no
commit record for a transaction following ET is detected within the next seven records.

See ttXlaNextUpdate and ttXlaNextUpdateWait.

Figure 5-6 Records Retrieved When maxrecords=10

‘nret ur ned ’ = 1 0

‘m axreco rds’ reco rds = 1 0

‘n ret ur ned ’ = 2

Second call t o ttXlaNext Upd ate()
returns DT transaction

First call t o
tt Xl aNextUpdate() returns
both AT and BT transact ions

Third call t o ttXlaNext Up date()
ret urns first 10 records of the
CT t ransacti on

Fourth call to t tXlaNextUpdate()
ret urns t he l ast record of the
CT t ransacti on and the
ET trans action

Transaction Log

Initial Read log

record identifier

Current Read log

record identifier

AT
1

AT
2

AT
3

AT
4

B T
1

B T
2

B T
3

AT
5

AT
6

AT
7

CT
1

CT
3

CT
4

C T
5

DT
1

CT
2

DT
2

CT
6

CT
7

CT
8

CT
9

CT
10

CT
11

ET
1

ET
2

BT
1
BT

2
AT

1
BT

3
AT

2
AT

3
AT

4
AT

6
AT

7
AT

5}
DT

1
DT

2}

CT
1
CT

2
CT

4
CT

3
CT

5
CT

6
CT

7
CT

9
CT

10
CT

8}

‘nret ur ned ’ = 1 0

Current Read log

record identifier

CT
11

ET
1

ET
2

Current Read log

record identifier

Current Read log

record identifier

‘n ret ur ned ’ = 3

}

Chapter 5
Writing an XLA Event-Handler Application

5-16

XLA reads records from either a memory buffer or transaction log files on the file system, as
described in How XLA Reads Records From the Transaction Log. To minimize latency,
records from the memory buffer are returned as soon as they are available, while records not
in the buffer are returned only if the buffer is empty. This design enables XLA applications to
see changes as soon as the changes are made and with minimal latency. The trade-off is that
there may be times when fewer changes are returned than the number requested by the
ttXlaNextUpdate or ttXlaNextUpdateWait maxrecords parameter.

Note:

For optimal throughput, XLA applications should make the "fetch" and "process
record" procedures asynchronous. For example, you can create one thread to fetch
and store the records and one or more other threads to process the stored records.

Inspecting Record Headers and Locating Row Addresses
Now that there is an array of update records where the type of operation each record
represents is known, the returned row data can be inspected.

Each record returned by the ttXlaNextUpdate or ttXlaNextUpdateWait function begins with an
ttXlaUpdateDesc_t header that describes the following:

• The table on which the operation was performed

• Whether the record is the first or last (commit) record in the transaction

• The type of operation it represents

• The length of the returned row data, if any

• Which columns in the row were updated, if any

Figure 5-7 shows one of the update records in the transaction log.

Figure 5-7 Address of Row Data Returned in an XLA Update Record

Address of 'tuple1' row

Address of 'tuple2' row (UPDATETTUP only)

Row Data

Update Header

(ttXlaUpdateDesc_t)

Tuple2

Tuple1

First Transaction

Update Record

Transaction

Commit Record

Transaction Log

Chapter 5
Writing an XLA Event-Handler Application

5-17

The ttXlaUpdateDesc_t header has a fixed length and, depending on the type of
operation, is followed by zero to two rows (or tuples) from the database. You can
locate the address of the first returned row by obtaining the address of the
ttXlaUpdateDesc_t header and adding it to sizeof(ttXlaUpdateDesc_t):

tup1 = (void*) ((char*) ttXlaUpdateDesc_t + sizeof(ttXlaUpdateDesc_t));

This is shown in the example below.

The ttXlaUpdateDesc_t ->type field describes the type of SQL operation that
generated the update. Transaction records of type UPDATETTUP describe UPDATE
operations, so they return two rows to report the row data before and after the update.
You can locate the address of the second returned row that holds the value after the
update by adding the address of the first row in the record to its length:

if (ttXlaUpdateDesc_t->type == UPDATETUP) {
 tup2 = (void*) ((char*) tup1 + ttXlaUpdateDesc_t->tuple1);
}

This is also shown in the following example, which passes each record returned by the
ttXlaNextUpdateWait function to a HandleChange() function, which determines
whether the record is related to an INSERT, UPDATE, or CREATE VIEW operation. In this
example, all other operations are ignored.

The HandleChange() function handles each type of SQL operation differently before
calling the PrintColValues() function described in the example in Putting It All
Together With a PrintColValues() Function.

void HandleChange(ttXlaUpdateDesc_t* xlaP)
{
 void* tup1;
 void* tup2;

 /* First confirm that the XLA update is for the table we care about. */
 if (xlaP->sysTableID != SYSTEM_TABLE_ID)
 return ;

 /* OK, it is for the table we are monitoring. */

 /* The last record in the ttXlaUpdateDesc_t record is the "tuple2"
 * field. Immediately following this field is the first XLA record "row". */

 tup1 = (void*) ((char*) xlaP + sizeof(ttXlaUpdateDesc_t));

 switch(xlaP->type) {

 case INSERTTUP:
 printf("Inserted new row:\n");
 PrintColValues(tup1);
 break;

 case UPDATETUP:

 /* If this is an update ttXlaUpdateDesc_t, then following that is
 * the second XLA record "row".
 */

 tup2 = (void*) ((char*) tup1 + xlaP->tuple1);
 printf("Updated row:\n");
 PrintColValues(tup1);

Chapter 5
Writing an XLA Event-Handler Application

5-18

 printf("To:\n");
 PrintColValues(tup2);
 break;

 case DELETETUP:
 printf("Deleted row:\n");
 PrintColValues(tup1);
 break;

 default:
 /* Ignore any XLA records that are not for inserts/update/delete SQL ops. */
 break;

 } /* switch (xlaP->type) */
}

Inspecting Column Data
There are methods for inspecting column data.

• Data Returned in an Update Record

• Obtaining Column Descriptions

• Reading Fixed-Length Column Data

• Reading NOT INLINE Variable-Length Column Data

• Null-Terminating Returned Strings

• Converting Complex Data Types

• Detecting Null Values

• Putting It All Together With a PrintColValues() Function

Data Returned in an Update Record
Zero to two rows of data may be returned in an update record after the ttXlaUpdateDesc_t
structure.

See ttXlaUpdateDesc_t and Inspecting Record Headers and Locating Row Addresses.

For each row, the first portion of the data is the fixed-length data, which is followed by any
variable-length data, as shown in Figure 5-8.

Chapter 5
Writing an XLA Event-Handler Application

5-19

Figure 5-8 Column Offsets in a Row Returned in an XLA Update Record

Column Offsets

 (ttXlaColDesc_t->offset + rowAddress)

Address used to locate

variable-length data

Row Data

Update Header

(ttXlaUpdateDesc_t)

Tuple

First Transaction

Update Record

Transaction

Commit Record

Transaction Log

Fixed Length Data Variable Length Data

Obtaining Column Descriptions
To read the column values from the returned row, you must first know the offset of
each column in that row.

The column offsets and other column metadata can be obtained for a particular table
by calling the ttXlaGetColumnInfo function, which returns a separate ttXlaColDesc_t
structure for each column in the table. You should call the ttXlaGetColumnInfo
function as part of your initialization procedure. This call was omitted from the
discussion in Initializing XLA and Obtaining an XLA Handle for simplicity.

When calling ttXlaGetColumnInfo, specify a colinfo parameter to create a pointer to
a buffer to hold the list of returned ttXlaColDesc_t structures. Use the maxcols
parameter to define the size of the buffer.

The sample code from the xlaSimple application below guesses the maximum
number of returned columns (MAX_XLA_COLUMNS), which sets the size of the buffer
xla_column_defs to hold the returned ttXlaColDesc_t structures. An alternative and
more precise way to set the maxcols parameter would be to call the ttXlaGetTableInfo
function and use the value returned in ttXlaColDesc_t ->columns.

#define MAX_XLA_COLUMNS 128
...
SQLINTEGER ncols;
...
ttXlaColDesc_t xla_column_defs[MAX_XLA_COLUMNS];
...
rc = ttXlaGetColumnInfo(xla_handle, SYSTEM_TABLE_ID, userID,
 xla_column_defs, MAX_XLA_COLUMNS, &ncols);
 if (rc != SQL_SUCCESS {
 /* See "XLA Error Handling" */
}

As shown in Figure 5-9, the ttXlaGetColumnInfo function produces the following
output:

Chapter 5
Writing an XLA Event-Handler Application

5-20

• A list, xla_column_defs, of ttXlaColDesc_t structures into the buffer pointed to by the
ttXlaGetColumnInfo colinfo parameter

• An nreturned value, ncols, that holds the actual number of columns returned in the
xla_column_defs buffer

Figure 5-9 ttXlaColDesc_t structures Returned by ttXlaGetColumnInfo

ttXlaGetColumnInfo (....colinfo) buffer

Name Address CustNo Service TStamp Price

MYDATA Table

colName: 'Name'

sysColNum: 1

dataType: CHAR

offset:

etc...

colName: 'ADDRESS'

sysColNum: 2

dataType:VARCHAR2

offset:

etc...

colName: 'CUSTNO'

sysColNum: 3

dataType: NUMBER

offset:

etc...

colName: 'SERVICE'

sysColNum: 4

dataType: NCHAR

offset:

etc...

colName: 'TSTAMP'

sysColNum: 5

dataType:

TIMESTAMP

offset:

etc...

colName: 'PRICE'

sysColNum: 6

dataType: NUMBER

offset:

etc...

ttXlaColDesc_t[0] ttXlaColDesc_t[1] ttXlaColDesc_t[2] ttXlaColDesc_t[3] ttXlaColDesc_t[4] ttXlaColDesc_t[5]

Each ttXlaColDesc_t structure returned by ttXlaGetColumnInfo has an offset value that
describes the offset location of that column. How you use this offset value to read the column
data depends on whether the column contains fixed-length data (such as CHAR, NCHAR,
INTEGER, BINARY, DOUBLE, FLOAT, DATE, TIME, TIMESTAMP, and so on) or variable-length data
(such as VARCHAR, NVARCHAR, or VARBINARY).

Reading Fixed-Length Column Data
For fixed-length column data, the address of a column is the offset value in the
ttXlaColDesc_t structure, plus the address of the row.

See ttXlaColDesc_t.

Figure 5-10 Locating Fixed-Length Data in a Row

CHAR Data
Column1 = (void*) ((unsigned char*)

 tup1 + ttXlaColDesc_t[0].offset);

tup1 Fixed Length Data Variable Length Data

See the example in Putting It All Together With a PrintColValues() Function for a complete
working example of computations such as those shown here.

The first column in the MYDATA table is of type CHAR. If you use the address of the tup1 row
obtained earlier in the HandleChange() function (in the example in Inspecting Record
Headers and Locating Row Addresses) and the offset from the first ttXlaColDesc_t structure

Chapter 5
Writing an XLA Event-Handler Application

5-21

returned by the ttXlaGetColumnInfo function (in the example in Obtaining Column
Descriptions), you can obtain the value of the first column with computations such as
the following:

char* Column1;

Column1 = ((unsigned char*) tup1 + xla_column_defs[0].offset);

The third column in the MYDATA table is of type INTEGER, so you can use the offset from
the third ttXlaColDesc_t structure to locate the value and recast it as an integer using
computations such as the following. The data is guaranteed to be aligned properly.

int Column3;

Column3 = *((int*) ((unsigned char*) tup +
 xla_column_defs[2].offset));

The fourth column in the MYDATA table is of type NCHAR, so you can use the offset from
the fourth ttXlaColDesc_t structure to locate the value and recast it as a SQLWCHAR
type, with computations such as the following:

SQLWCHAR* Column4;

Column4 = (SQLWCHAR*) ((unsigned char*) tup +
 xla_column_defs[3].offset);

Unlike the column values obtained in the above examples, Column4 points to an array
of two-byte Unicode characters. You must iterate through each element in this array to
obtain the string, as shown for the SQL_WCHAR case in the example in Putting It All
Together With a PrintColValues() Function.

Other fixed-length data types can be cast to their corresponding C types. Complex
fixed-length data types, such as DATE, TIME, and DECIMAL values, are stored in an
internal TimesTen format, but can be converted by applications to their corresponding
ODBC C value using the XLA conversion functions, as described in Converting
Complex Data Types.

Note:

Strings returned by XLA are not null-terminated. See Null-Terminating
Returned Strings.

Reading NOT INLINE Variable-Length Column Data
For NOT INLINE variable-length data (VARCHAR, NVARCHAR, and VARBINARY), the data
located at ttXlaColDesc_t ->offset is a four-byte offset value that points to the
location of the data in the variable-length portion of the returned row.

By adding the offset address to the offset value, you can obtain the address of the
column data in the variable-length portion of the row. The first eight bytes at this
location is the length of the data, followed by the actual data. For variable-length data,
the ttXlaColDesc_t ->size value is the maximum allowable column size. Figure 5-11
shows how to locate NOT INLINE variable-length data in a row.

Chapter 5
Writing an XLA Event-Handler Application

5-22

Figure 5-11 Locating NOT INLINE Variable-Length Data in a Row

Variable Length Data

Data
Length VARCHAR Data

DataLength = (int*)((char*)VarOffset + *((int*)VarOffset))

tup1

VarOffset = (void*) ((unsigned char*)

 tup1+ ttXlaColDesc_t[1].offset);

Column2 = (char*)(DataLength + 1);

Fixed Length Data

See the example in Putting It All Together With a PrintColValues() Function for a complete
working example of computations such as those shown here.

Continuing with our example, the second column in the returned row (tup1) is of type
VARCHAR. To locate the variable-length data in the row, first locate the value at the column's
ttXlaColDesc_t ->offset in the fixed-length portion of the row, as shown in Figure 5-11
above. The value at this address is the four-byte offset of the data in the variable-length
portion of the row (VarOffset). Next, obtain a pointer to the beginning of the variable-length
column data (DataLength) by adding the VarOffset offset value to the address of VarOffset.
The first eight bytes at the DataLength location is the length of the data. The next byte after
DataLength is the beginning of the actual data (Column2).

void* VarOffset; /* offset of data */
long* DataLength; /* length of data */
char* Column2; /* pointer to data */

VarOffset = (void*) ((unsigned char*) tup1 +
 xla_column_defs[1].offset);
/*
 * If column is out-of-line, pColVal points to an offset
 * else column is inline so pColVal points directly to the string length.
 */

if (xla_column_defs[1].flags & TT_COLOUTOFLINE)
 DataLength = (long*)((char*)VarOffset + *((int*)VarOffset));
else
 DataLength = (long*)VarOffset;
Column2 = (char*)(DataLength+1);

VARBINARY types are handled in a manner similar to VARCHAR types. If Column2 were an
NVARCHAR type, you could initialize it as a SQLWCHAR, get the value as shown in the above
VARCHAR case, then iterate through the Column2 array, as shown for the NCHAR value, CharBuf,
in Putting It All Together With a PrintColValues() Function.

Note:

In the example, DataLength is type long, which is a 64-bit (eight-byte) type on
UNIX-based 64-bit systems. On Windows 64-bit systems, where long is a four-byte
type, the eight-byte type __int64 would be used instead.

Chapter 5
Writing an XLA Event-Handler Application

5-23

Null-Terminating Returned Strings
Strings returned from record row data are not terminated with a null character. You can
null-terminate a string by copying it into a buffer and adding a null character, '\0', after
the last character in the string.

The procedures for null-terminating fixed-length and variable-length strings are slightly
different. The examples that follow show the processes for null-terminating fixed-length
strings, null-terminating variable-length strings of a known size, and null-terminating
variable-length strings of an unknown size.

See the example inPutting It All Together With a PrintColValues() Function for a
complete working example of computations such as those shown here.

To null-terminate the fixed-length CHAR(10) Column1 string returned in the example in
"Reading Fixed-Length Column Data", establish a buffer large enough to hold the
string plus null character. Next, obtain the size of the string from ttXlaColDesc_t -
>size, copy the string into the buffer, and null-terminate the end of the string, using
computations such as the following. You can now use the contents of the buffer. In this
example, the string is printed:

char buffer[10+1];
int size;

size = xla_column_defs[0].size;
memcpy(buffer, Column1, size);
buffer[size] = '\0';

printf(" Row %s is %s\n", ((unsigned char*) xla_column_defs[0].colName), buffer);

Null-terminating a variable-length string is similar to the procedure for fixed-length
strings, only the size of the string is the value located at the beginning of the variable-
length data offset, as described in Reading NOT INLINE Variable-Length Column
Data.

If the Column2 string obtained in the example in Reading NOT INLINE Variable-Length
Column Data is a VARCHAR(32), establish a buffer large enough to hold the string plus
null character. Use the value located at the DataLength offset to determine the size of
the string, using computations such as the following:

char buffer[32+1];

memcpy(buffer, Column2, *DataLength);
buffer[*DataLength] = '\0';

printf(" Row %s is %s\n", ((unsigned char*) xla_column_defs[1].colName), buffer);

If you are writing general purpose code to read all data types, you cannot make any
assumptions about the size of a returned string. For strings of an unknown size,
statically allocate a buffer large enough to hold the majority of returned strings. If a
returned string is larger than the buffer, dynamically allocate the correct size buffer, as
shown in the example immediately below.

If the Column2 string obtained in the example in Reading NOT INLINE Variable-Length
Column Data is of an unknown size, you might statically allocate a buffer large enough
to hold a string of up to 10,000 characters. Then check that the DataLength value
obtained at the beginning of the variable-length data offset is less than the size of the

Chapter 5
Writing an XLA Event-Handler Application

5-24

buffer. If the string is larger than the buffer, use malloc() to dynamically allocate the buffer to
the correct size.

#define STACKBUFSIZE 10000
char VarStackBuf[STACKBUFSIZE];
char* buffer;

buffer = (*DataLength+1 <= STACKBUFSIZE) ? VarStackBuf :
 malloc(*DataLength+1);

memcpy(buffer,Column2,*DataLength);
buffer[*DataLength] = '\0';

printf(" Row %s is %s\n", ((unsigned char*) xla_column_defs[1].colName), buffer);
if (buffer != VarStackBuf) /* buffer was allocated */
 free(buffer);

Converting Complex Data Types
There are methods to convert complex data types.

See the example in Putting It All Together With a PrintColValues() Function for a complete
working example of computations such as those shown here.

Values for complex data types such as TT_DATE and TT_TIME are stored in an internal
TimesTen format that can be converted into corresponding ODBC C types using XLA type
conversion functions described in XLA Data Type Conversion Functions.

If you use the address of the tup1 row obtained earlier in the HandleChange() function (see
the example in Inspecting Record Headers and Locating Row Addresses) and the offset from
the fifth ttXlaColDesc_t structure returned by the ttXlaGetColumnInfo function (see the example in
Obtaining Column Descriptions), you can locate a column value of type TIMESTAMP. Use the
ttXlaTimeStampToODBCCType function to convert the column data from TimesTen format and
store the converted time value in an ODBC TIMESTAMP_STRUCT. You could use code such as
the following to print the values:

void* Column5;
TIMESTAMP_STRUCT timestamp;

Column5 = (void*) ((unsigned char*) tup1 +
 xla_column_defs[4].offset);

rc = ttXlaTimeStampToODBCCType(Column5, ×tamp);
if (rc != SQL_SUCCESS) {
 /* See XLA Error Handling */
}
printf(" %s: %04d-%02d-%02d %02d:%02d:%02d.%06d\n",
 ((unsigned char*) xla_column_defs[i].colName),
 timestamp.year,timestamp.month, timestamp.day,
 timestamp.hour,timestamp.minute,timestamp.second,
 timestamp.fraction);

If you use the address of the tup1 row obtained earlier in the HandleChange() function and
the offset from the sixth ttXlaColDesc_t structure returned by the ttXlaGetColumnInfo
function, you can locate a column value of type DECIMAL. Use the ttXlaDecimalToCString function
to convert the column data from TimesTen decimal format to a string. You could use code
such as the following to print the values.

Chapter 5
Writing an XLA Event-Handler Application

5-25

char decimalData[50];

Column6 = (float*) ((unsigned char*) tup +
 xla_column_defs[5].offset);
precision = (short) (xla_column_defs[5].precision);
scale = (short) (xla_column_defs[5].scale);

rc = ttXlaDecimalToCString(Column6, (char*)&decimalData,
 precision, scale);
if (rc != SQL_SUCCESS) {
 /* See XLA Error Handling */
}

printf(" %s: %s\n", ((unsigned char*) xla_column_defs[5].colName), decimalData);

Detecting Null Values
For nullable table columns, ttXlaColDesc_t ->nullOffset points to the column's null
byte in the record. This field is 0 (zero) if the column is not nullable, or greater than 0 if
the column can be null.

For nullable columns (ttXlaColDesc_t ->nullOffset > 0), to determine if the column
is null, add the null offset to the address of ttXlaUpdate_t* and check the (unsigned
char) byte there to see if it is 1 (NULL) or 0 (NOT NULL).

Check whether Column6 is null as follows:

if (xla_column_defs[5].nullOffset != 0) {
 if (*((unsigned char*) tup +
 xla_column_defs[5].nullOffset) == 1) {
 printf("Column6 is NULL\n");
 }
}

XLA Data Type Conversion Functions
This section lists XLA data type conversion functions that convert from internal
TimesTen formats to ODBC C types.

These conversion functions can be used on row data in the ttXlaUpdateDesc_t types:
UPDATETUP, INSERTTUP and DELETETUP.

Table 5-2 XLA Data Type Conversion Functions

Function Converts

ttXlaDateToODBCCType Internal TT_DATE value to an ODBC C value

ttXlaTimeToODBCCType Internal TT_TIME value to an ODBC C value

ttXlaTimeStampToODBCCType Internal TT_TIMESTAMP value to an ODBC C
value

ttXlaDecimalToCString Internal TTXLA_DECIMAL_TT value to a string
value

ttXlaDateToODBCCType Internal TTXLA_DATE_TT value to an ODBC C
value

Chapter 5
Writing an XLA Event-Handler Application

5-26

Table 5-2 (Cont.) XLA Data Type Conversion Functions

Function Converts

ttXlaDecimalToCString Internal TTXLA_DECIMAL_TT value to a
character string

ttXlaNumberToBigInt Internal TTXLA_NUMBER value to a TT_BIGINT
value

ttXlaNumberToCString Internal TTXLA_NUMBER value to a character
string

ttXlaNumberToDouble Internal TTXLA_NUMBER value to a long
floating point number value

ttXlaNumberToInt Internal TTXLA_NUMBER value to an integer

ttXlaNumberToSmallInt Internal TTXLA_NUMBER value to a
TT_SMALLINT value

ttXlaNumberToTinyInt Internal TTXLA_NUMBER value to a
TT_TINYINT value

ttXlaNumberToUInt Internal TTXLA_NUMBER value to an unsigned
integer

ttXlaOraDateToODBCTimeStamp Internal TTXLA_DATE value to an ODBC
timestamp

ttXlaOraTimeStampToODBCTimeStamp Internal TTXLA_TIMESTAMP value to an ODBC
timestamp

ttXlaTimeToODBCCType Internal TTXLA_TIME value to an ODBC C
value

ttXlaTimeStampToODBCCType Internal TTXLA_TIMESTAMP_TT value to an
ODBC C value

Putting It All Together With a PrintColValues() Function
There is a function that checks the ttXlaColDesc_t ->dataType of each column to locate
columns with a data type of CHAR, NCHAR, INTEGER, TIMESTAMP, DECIMAL, and VARCHAR, then
prints the values.

This is just one possible approach. Another option, for example, would be to check the
ttXlaColDesc_t ->ColName values to locate specific columns by name.

The PrintColValues() function handles CHAR and VARCHAR strings up to 50 bytes in length.
NCHAR characters must belong to the ASCII character set.

The function in this example first checks ttXlaColDesc_t ->nullOffset to see if the column
is null. Next it checks the ttXlaColDesc_t ->dataType field to determine the data type for the
column. For simple fixed-length data (CHAR, NCHAR, and INTEGER), it casts the value located at
ttXlaColDesc_t ->offset to the appropriate C type. The complex data types, TIMESTAMP
and DECIMAL, are converted from their TimesTen formats to ODBC C values using the
ttXlaTimeStampToODBCCType and ttXlaDecimalToCString functions.

For variable-length data (VARCHAR), the function locates the data in the variable-length portion
of the row, as described in XLA Error Handling.

Chapter 5
Writing an XLA Event-Handler Application

5-27

void PrintColValues(void* tup)
{

 SQLRETURN rc ;
 SQLINTEGER native_error;

 void* pColVal;
 char buffer[50+1]; /* No strings over 50 bytes */
 int i;

 for (i = 0; i < ncols; i++)
 {

 if (xla_column_defs[i].nullOffset != 0) { /* See if column is NULL */
 /* this means col could be NULL */
 if (*((unsigned char*) tup + xla_column_defs[i].nullOffset) == 1) {
 /* this means that value is SQL NULL */
 printf(" %s: NULL\n",
 ((unsigned char*) xla_column_defs[i].colName));
 continue; /* Skip rest and re-loop */
 }
 }

 /* Fixed-length data types: */
 /* For INTEGER, recast as int */

 if (xla_column_defs[i].dataType == TTXLA_INTEGER) {

 printf(" %s: %d\n",
 ((unsigned char*) xla_column_defs[i].colName),
 ((int) ((unsigned char*) tup + xla_column_defs[i].offset)));
 }

 /* For CHAR, just get value and null-terminate string */

 else if (xla_column_defs[i].dataType == TTXLA_CHAR_TT
 || xla_column_defs[i].dataType == TTXLA_CHAR) {

 pColVal = (void*) ((unsigned char*) tup + xla_column_defs[i].offset);

 memcpy(buffer, pColVal, xla_column_defs[i].size);
 buffer[xla_column_defs[i].size] = '\0';

 printf(" %s: %s\n", ((unsigned char*) xla_column_defs[i].colName),
buffer);
 }

 /* For NCHAR, recast as SQLWCHAR.
 NCHAR strings must be parsed one character at a time */

 else if (xla_column_defs[i].dataType == TTXLA_NCHAR_TT
 || xla_column_defs[i].dataType == TTXLA_NCHAR) {
 SQLUINTEGER j;
 SQLWCHAR* CharBuf;

 CharBuf = (SQLWCHAR*) ((unsigned char*) tup + xla_column_defs[i].offset);

 printf(" %s: ", ((unsigned char*) xla_column_defs[i].colName));

 for (j = 0; j < xla_column_defs[i].size / 2; j++)
 {

Chapter 5
Writing an XLA Event-Handler Application

5-28

 printf("%c", CharBuf[j]);
 }
 printf("\n");
 }
 /* Variable-length data types:
 For VARCHAR, locate value at its variable-length offset and null-terminate.
 VARBINARY types are handled in a similar manner.
 For NVARCHARs, initialize 'var_data' as a SQLWCHAR, get the value as shown
 below, then iterate through 'var_len' as shown for NCHAR above */

 else if (xla_column_defs[i].dataType == TTXLA_VARCHAR
 || xla_column_defs[i].dataType == TTXLA_VARCHAR_TT) {

 long* var_len;
 char* var_data;
 pColVal = (void*) ((unsigned char*) tup + xla_column_defs[i].offset);
 /*
 * If column is out-of-line, pColVal points to an offset
 * else column is inline so pColVal points directly to the string length.
 */
 if (xla_column_defs[i].flags & TT_COLOUTOFLINE)
 var_len = (long*)((char*)pColVal + *((int*)pColVal));
 else
 var_len = (long*)pColVal;

 var_data = (char*)(var_len+1);

 memcpy(buffer,var_data,*var_len);
 buffer[*var_len] = '\0';

 printf(" %s: %s\n", ((unsigned char*) xla_column_defs[i].colName), buffer);
 }
 /* Complex data types require conversion by the XLA conversion methods
 Read and convert a TimesTen TIMESTAMP value.
 DATE and TIME types are handled in a similar manner */

 else if (xla_column_defs[i].dataType == TTXLA_TIMESTAMP
 || xla_column_defs[i].dataType == TTXLA_TIMESTAMP_TT) {

 TIMESTAMP_STRUCT timestamp;
 char* convFunc;

 pColVal = (void*) ((unsigned char*) tup + xla_column_defs[i].offset);

 if (xla_column_defs[i].dataType == TTXLA_TIMESTAMP_TT) {
 rc = ttXlaTimeStampToODBCCType(pColVal, ×tamp);
 convFunc="ttXlaTimeStampToODBCCType";
 }
 else {
 rc = ttXlaOraTimeStampToODBCTimeStamp(pColVal, ×tamp);
 convFunc="ttXlaOraTimeStampToODBCTimeStamp";
 }

 if (rc != SQL_SUCCESS) {
 handleXLAerror (rc, xla_handle, err_buf, &native_error);
 fprintf(stderr, "%s() returns an error <%d>: %s",
 convFunc, rc, err_buf);
 TerminateGracefully(1);
 }

 printf(" %s: %04d-%02d-%02d %02d:%02d:%02d.%06d\n",

Chapter 5
Writing an XLA Event-Handler Application

5-29

 ((unsigned char*) xla_column_defs[i].colName),
 timestamp.year,timestamp.month, timestamp.day,
 timestamp.hour,timestamp.minute,timestamp.second,
 timestamp.fraction);
 }

 /* Read and convert a TimesTen DECIMAL value to a string. */

 else if (xla_column_defs[i].dataType == TTXLA_DECIMAL_TT) {

 char decimalData[50];
 short precision, scale;
 pColVal = (float*) ((unsigned char*) tup + xla_column_defs[i].offset);
 precision = (short) (xla_column_defs[i].precision);
 scale = (short) (xla_column_defs[i].scale);

 rc = ttXlaDecimalToCString(pColVal, (char*)&decimalData, precision, scale);
 if (rc != SQL_SUCCESS) {
 handleXLAerror (rc, xla_handle, err_buf, &native_error);
 fprintf(stderr, "ttXlaDecimalToCString() returns an error <%d>: %s",
 rc, err_buf);
 TerminateGracefully(1);
 }

 printf(" %s: %s\n", ((unsigned char*) xla_column_defs[i].colName),
 decimalData);
 }
 else if (xla_column_defs[i].dataType == TTXLA_NUMBER) {
 char numbuf[32];
 pColVal = (void*) ((unsigned char*) tup + xla_column_defs[i].offset);

 rc=ttXlaNumberToCString(xla_handle, pColVal, numbuf, sizeof(numbuf));
 if (rc != SQL_SUCCESS) {
 handleXLAerror (rc, xla_handle, err_buf, &native_error);
 fprintf(stderr, "ttXlaNumberToDouble() returns an error <%d>: %s",
 rc, err_buf);
 TerminateGracefully(1);
 }
 printf(" %s: %s\n", ((unsigned char*) xla_column_defs[i].colName),
numbuf);
 }

 } /* End FOR loop */
}

Note:

• In the example, var_len is type long, which is a 64-bit (eight-byte) type
on UNIX-based 64-bit systems. On Windows 64-bit systems, where long
is a four-byte type, __int64 would be used instead.

• See Terminating an XLA Application for a sample
TerminateGracefully() method.

Chapter 5
Writing an XLA Event-Handler Application

5-30

XLA Error Handling
This section discusses XLA error handling.

• XLA Errors and Codes

• How to Handle XLA Errors

XLA Errors and Codes
This section documents XLA errors and their error codes.

Table 5-3 XLA Errors and Codes

Error Code

tt_ErrDbAllocFailed 802 (transient)

tt_ErrCondLockConflict 6001 (transient)

tt_ErrDeadlockVictim 6002 (transient)

tt_ErrTimeoutVictim 6003 (transient)

tt_ErrPermSpaceExhausted 6220 (transient)

tt_ErrTempSpaceExhausted 6221 (transient)

tt_ErrBadXlaRecord 8024

tt_ErrXlaBookmarkUsed 8029

tt_ErrXlaLsnBad 8031

tt_ErrXlaNoSQL 8034

tt_ErrXlaNoLogging 8035

tt_ErrXlaParameter 8036

tt_ErrXlaTableDiff 8037

tt_ErrXlaTableSystem 8038

tt_ErrXlaTupleMismatch 8046

tt_ErrXlaDedicatedConnection 8047

How to Handle XLA Errors
Each time you call an ODBC or XLA function, you must check the return code for any errors.
If the error is fatal, terminate the program.

See Terminating an XLA Application.

Depending on your application, you may be required to act on specific XLA errors, including
those shown in Table 5-3 in the preceding section.

You can check an error using either its error code (error number) or tt_Err string. For the
complete list of TimesTen error codes and error strings, see the timesten_home/install/
include/tt_errCode.h file. For a description of each message, see List of Errors and
Warnings in Oracle TimesTen In-Memory Database Error Messages and SNMP Traps.

Chapter 5
Writing an XLA Event-Handler Application

5-31

If the return code from an XLA function is not SQL_SUCCESS, use the ttXlaError function
to retrieve XLA-specific errors on the XLA handle.

Also see Checking for Errors.

The following example, after calling the XLA function ttXlaTableByName, checks to see if
the return code is SQL_SUCCESS. If not, it calls an XLA error-handling function followed
by a function to terminate the application. See Terminating an XLA Application.

rc = ttXlaTableByName(xla_handle, TABLE_OWNER, TABLE_NAME,
 &SYSTEM_TABLE_ID, &userID);
if (rc != SQL_SUCCESS) {
 handleXLAerror (rc, xla_handle, err_buf, &native_error);
 fprintf(stderr,
 "ttXlaTableByName() returns an error <%d>: %s", rc, err_buf);
 TerminateGracefully(1);
}

Your XLA error-handling function should repeatedly call ttXlaError until all XLA errors
are read from the error stack, proceeding until the return code from ttXlaError is
SQL_NO_DATA_FOUND. If you must reread the errors, you can call the ttXlaErrorRestart
function to reset the error stack pointer to the first error. (SQL_NO_DATA_FOUND is defined
in sqlext.h, which is included by timesten.h.)

The error stack is cleared after a call to any XLA function other than ttXlaError or
ttXlaErrorRestart.

Note:

In cases where ttXlaPersistOpen cannot create an XLA handle, it returns the
error code SQL_INVALID_HANDLE. Because no XLA handle has been created,
ttXlaError cannot be used to detect this error. SQL_INVALID_HANDLE is
returned only in cases where no memory can be allocated or the parameters
provided are invalid.

The following example shows handleXLAerror(), the error function for the xlaSimple
application program.

void handleXLAerror(SQLRETURN rc, ttXlaHandle_h xlaHandle,
 SQLCHAR* err_msg, SQLINTEGER* native_error)
{
 SQLINTEGER retLen;
 SQLINTEGER code;
 char* err_msg_ptr;

 /* initialize return codes */
 rc = SQL_ERROR;
 *native_error = -1;
 err_msg[0] = '\0';

 err_msg_ptr = (char*)err_msg;

 while (1)
 {
 int rc = ttXlaError(xlaHandle, &code, err_msg_ptr,
 ERR_BUF_LEN - (err_msg_ptr - (char*)err_msg), &retLen);

Chapter 5
Writing an XLA Event-Handler Application

5-32

 if (rc == SQL_NO_DATA_FOUND)
 {
 break;
 }
 if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO) {
 sprintf(err_msg_ptr,
 "*** Error fetching error message via ttXlaError(); rc=<%d>.",rc) ;
 break;
 }
 rc = SQL_ERROR;
 *native_error = code ;
 /* append any other error messages */
 err_msg_ptr += retLen;
 }
}

Dropping a Table That Has an XLA Bookmark
Before you can drop a table that is subscribed to by an XLA bookmark, you must unsubscribe
the table from the bookmark. There are several ways to unsubscribe a table from a
bookmark, depending on whether the application is connected to the bookmark.

If XLA applications are connected and using bookmarks that are tracking the table to be
dropped, then perform the following tasks.

1. Each XLA application must call the ttXlaTableStatus function and set the newstatus
parameter to 0. This unsubscribes the table from the XLA bookmark in use by the
application.

2. Drop the table.

If XLA applications are not connected and using bookmarks associated with the table to be
dropped, then perform the following tasks:

1. Query the SYS.XLASUBSCRIPTIONS system table to see which bookmarks have subscribed
to the table you want to drop.

2. Use the ttXlaUnsubscribe built-in procedure to unsubscribe the table from each XLA
bookmark with a subscription to the table.

3. Drop the table.

Deleting bookmarks also unsubscribes the table from the XLA bookmarks. See Deleting
Bookmarks.

Deleting Bookmarks
You may want to delete bookmarks when you terminate an application or drop a table.

Use the ttXlaDeleteBookmark function to delete XLA bookmarks if the application is connected
and using the bookmarks.

As described in About XLA Bookmarks, a bookmark may be reused by a new connection
after its previous connection has closed. The new connection can resume reading from the
transaction log from where the previous connection stopped. Note the following:

• If you delete the bookmark, subsequent checkpoint operations such as the ttCkpt or
ttCkptBlocking built-in procedure free the file system space associated with any unread
update records in the transaction log.

Chapter 5
Writing an XLA Event-Handler Application

5-33

• If you do not delete the bookmark, when an XLA application connects and reuses
the bookmark, all unread update records that have accumulated since the program
terminated are read by the application. This is because the update records are
persistent in the TimesTen transaction log. However, the danger is that these
unread records can build up in the transaction log files and consume a lot of file
system space.

Note:

• You cannot delete replicated bookmarks while the replication agent is
running.

• When you reuse a bookmark, you start with the Initial Read log record
identifier in the transaction log file. To ensure that a connection that
reuses a bookmark begins reading where the prior connection left off, the
prior connection should call ttXlaAcknowledge to reset the bookmark
position to the currently accessed record before disconnecting.

• See ttLogHolds in Oracle TimesTen In-Memory Database Reference.
That TimesTen built-in procedure returns information about transaction
log holds.

• Be aware that ttCkpt and ttCkptBlocking require ADMIN privilege.
TimesTen built-in procedures and any required privileges are
documented in Built-In Procedures in Oracle TimesTen In-Memory
Database Reference.

The InitHandler() function in the xlaSimple application deletes the XLA bookmark
upon exit, as shown in the following example.

if (deleteBookmark) {
 ttXlaDeleteBookmark(xla_handle);
 if (rc != SQL_SUCCESS) {
 /* See XLA Error Handling */
 }
 xla_handle = NULL; /* Deleting the bookmark has the */
 /* effect of disconnecting from XLA. */
}
/* Close the XLA connection as described in the next section,
Terminating an XLA Application. */

If the application is not connected and using the XLA bookmark, you can delete the
bookmark either of the following ways:

• Close the bookmark and call the ttXlaBookmarkDelete built-in procedure.

• Close the bookmark and use the ttIsql command xladeletebookmark.

Terminating an XLA Application
When your XLA application has finished reading from the transaction log, gracefully
exit by rolling back uncommitted transactions and freeing all handles.

There are two approaches to this:

Chapter 5
Writing an XLA Event-Handler Application

5-34

• Unsubscribe from all tables and materialized views, delete the XLA bookmark, and
disconnect from the database.

Or:

• Disconnect from the database but keep the XLA bookmark in place. When you reconnect
at a later time, you can resume reading records from the bookmark.

For the first approach, complete the following steps.

1. Call ttXlaTableStatus to unsubscribe from each table and materialized view, setting the
newstatus parameter to 0.

2. Call ttXlaDeleteBookmark to delete the bookmark. See Deleting Bookmarks.

3. Call ttXlaClose to disconnect the XLA handle.

4. Call the ODBC function SQLTransact with the SQL_ROLLBACK setting to roll back any
uncommitted transaction.

5. Call the ODBC function SQLDisconnect to disconnect from the TimesTen database.

6. Call the ODBC function SQLFreeConnect to free memory allocated for the ODBC
connection handle.

7. Call the ODBC function SQLFreeEnv to free the ODBC environment handle.

For the second approach, maintaining the bookmark, skip the first two steps but complete the
remaining steps.

Be aware that resources should be freed in reverse order of allocation. For example, the
ODBC environment handle is allocated before the ODBC connection handle, so for cleanup
free the connection handle before the environment handle.

This example shows TerminateGracefully(), the termination function in the xlaSimple
application.

void TerminateGracefully(int status)
{

 SQLRETURN rc;
 SQLINTEGER native_error ;
 SQLINTEGER oldstatus;
 SQLINTEGER newstatus = 0;

 /* If the table has been subscribed to through XLA, unsubscribe it. */

 if (SYSTEM_TABLE_ID != 0) {
 rc = ttXlaTableStatus(xla_handle, SYSTEM_TABLE_ID, 0,
 &oldstatus, &newstatus);
 if (rc != SQL_SUCCESS) {
 handleXLAerror (rc, xla_handle, err_buf, &native_error);
 fprintf(stderr, "Error when unsubscribing from "TABLE_OWNER"."TABLE_NAME
 " table <%d>: %s", rc, err_buf);
 }
 SYSTEM_TABLE_ID = 0;
 }

 /* Close the XLA connection. */

 if (xla_handle != NULL) {
 rc = ttXlaClose(xla_handle);
 if (rc != SQL_SUCCESS) {

Chapter 5
Writing an XLA Event-Handler Application

5-35

 fprintf(stderr, "Error when disconnecting from XLA:<%d>", rc);
 }
 xla_handle = NULL;
 }

 if (hstmt != SQL_NULL_HSTMT) {
 rc = SQLFreeStmt(hstmt, SQL_DROP);
 if (rc != SQL_SUCCESS) {
 handleError(rc, henv, hdbc, hstmt, err_buf, &native_error);
 fprintf(stderr, "Error when freeing statement handle:\n%s\n", err_buf);
 }
 hstmt = SQL_NULL_HSTMT;
 }

 /* Disconnect from TimesTen entirely. */

 if (hdbc != SQL_NULL_HDBC) {
 rc = SQLTransact(henv, hdbc, SQL_ROLLBACK);
 if (rc != SQL_SUCCESS) {
 handleError(rc, henv, hdbc, hstmt, err_buf, &native_error);
 fprintf(stderr, "Error when rolling back transaction:\n%s\n", err_buf);
 }

 rc = SQLDisconnect(hdbc);
 if (rc != SQL_SUCCESS) {
 handleError(rc, henv, hdbc, hstmt, err_buf, &native_error);
 fprintf(stderr, "Error when disconnecting from TimesTen:\n%s\n", err_buf);
 }

 rc = SQLFreeConnect(hdbc);
 if (rc != SQL_SUCCESS) {
 handleError(rc, henv, hdbc, hstmt, err_buf, &native_error);
 fprintf(stderr, "Error when freeing connection handle:\n%s\n", err_buf);
 }
 hdbc = SQL_NULL_HDBC;
 }

 if (henv != SQL_NULL_HENV) {
 rc = SQLFreeEnv(henv);
 if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO) {
 handleError(rc, henv, hdbc, hstmt, err_buf, &native_error);
 fprintf(stderr, "Error when freeing environment handle:\n%s\n", err_buf);
 }
 henv = SQL_NULL_HENV;
 }
 exit(status);
}

Using XLA as a Replication Mechanism
This section discusses using XLA as a substitute for TimesTen replication.

• About XLA as a Replication Mechanism

• Checking Table Compatibility Between Databases

• Replicating Updates Between Databases

• Handling Timeout and Deadlock Errors

• Checking for Update Conflicts

Chapter 5
Using XLA as a Replication Mechanism

5-36

• Replicating Updates to a Non-TimesTen Database

XLA functions mentioned here are documented in XLA Reference.

About XLA as a Replication Mechanism
TimesTen replication is sufficient for most customer needs; however, it is also possible to use
XLA functions to replicate updates from one database to another. Implementing your own
replication scheme on top of XLA in this way is fairly complicated, but can be considered if
TimesTen replication is not feasible for some reason. See Overview of TimesTen Replication
in the Oracle TimesTen In-Memory Database Replication Guide

Note:

You cannot use XLA to replicate updates between different platforms.

To use XLA to replicate changes between databases, first use the ttXlaPersistOpen function to
initialize the XLA handles, as described in Initializing XLA and Obtaining an XLA Handle.

After the XLA handles have been initialized for the databases, the sections that follow
describe these parts of the process:

• Check table compatibility between databases.

• Replicate updates between databases.

• Handle timeout and deadlock errors.

• Check for update conflicts.

Throughout the discussion, the sending database is referred to as the master and the
receiving database as the subscriber.

Checking Table Compatibility Between Databases
Before transferring update records from one database to the other, verify that the tables in the
master and subscriber databases are compatible with one another.

• You can check the descriptions of a table and its columns by using the ttXlaTableByName,
ttXlaGetTableInfo, and ttXlaGetColumnInfo functions.

• You can check the table and column versions of a specific XLA record by using the
ttXlaVersionTableInfo and ttXlaVersionColumnInfo functions.

These approaches are described in the sections that follow:

• Checking Table and Column Descriptions

• Checking Table and Column Versions

Chapter 5
Using XLA as a Replication Mechanism

5-37

Checking Table and Column Descriptions
Use the ttXlaTableByName, ttXlaGetTableInfo, and ttXlaGetColumnInfo functions
to return ttXlaTblDesc_t and ttXlaColDesc_t descriptions for each table you want to
replicate.

See ttXlaTblDesc_t, ttXlaColDesc_t, Specifying Which Tables to Monitor for Updates
and Obtaining Column Descriptions.

You can then pass these descriptions to the ttXlaTableCheck function. The output
parameter, compat, specifies whether the tables are compatible. A value of 1 indicates
compatibility and 0 indicates non-compatibility. The following example demonstrates
this.

SQLINTEGER compat;
ttXlaTblDesc_t table;
ttXlaColDesc_t columns[20];

rc = ttXlaTableCheck(xla_handle, &table, columns, &compat);
if (compat) {
 /* Go ahead and start replicating */
}
else {
 /* Not compatible or some other error occurred */
}

Checking Table and Column Versions
Use the ttXlaVersionTableInfo and ttXlaVersionColumnInfo functions to retrieve
the table structure information of an update record at the time the record was
generated.

See ttXlaVersionTableInfo and ttXlaVersionColumnInfo.

The following example verifies that the table associated with the pXlaRecord update
record from the pCmd source is compatible with the hXlaTarget target.

BOOL CUTLCheckXlaTable (SCOMMAND* pCmd,
 ttXlaHandle_h hXlaTarget,
 const ttXlaUpdateDesc_t* pXlaRecord)
{
 /* locals */
 ttXlaTblVerDesc_t tblVerDescSource;
 ttXlaColDesc_t colDescSource [255];
 SQLINTEGER iColsReturned = 0;
 SQLINTEGER iCompatible = 0;
 SQLRETURN rc;

 /* only certain update record types should be checked */
 if (pXlaRecord->type == INSERTTUP ||
 pXlaRecord->type == UPDATETUP ||
 pXlaRecord->type == DELETETUP)
 {
 /* Get source table description associated with this record */
 /* from the time it was generated. */
 rc = ttXlaVersionTableInfo (pCmd->pCtx->con->hXla,
 (ttXlaUpdateDesc_t*) pXlaRecord, &tblVerDescSource);

Chapter 5
Using XLA as a Replication Mechanism

5-38

 if (rc == SQL_SUCCESS)
 {
 /* Get the source column descriptors for this table */
 /* at the time the record was generated. */
 rc = ttXlaVersionColumnInfo (pCmd->pCtx->con->hXla,
 (ttXlaUpdateDesc_t*) pXlaRecord,
 colDescSource, 255, &iColsReturned);

 if (rc == SQL_SUCCESS)
 {
 /* Check compatibility. */
 rc = ttXlaTableCheck (hXlaTarget,
 &tblVerDescSource.tblDesc, colDescSource,
 &iCompatible);
 }
 }
 }
}

Replicating Updates Between Databases
When you are ready to begin replication, use the ttXlaNextUpdate or ttXlaNextUpdateWait
function to obtain batches of update records from the master database and ttXlaApply to
write the records to the subscriber database.

See ttXlaNextUpdate, ttXlaNextUpdateWait, and ttXlaApply.

The following example shows this.

int j;
ttXlaHandle_h h;
SQLINTEGER records;
ttXlaUpdateDesc_t** arry;

 do {
 /* get up to 15 updates */
 rc = ttXlaNextUpdate(h,&arry,15,&records);
 if (rc != SQL_SUCCESS) {
 /* See XLA Error Handling */
 }

 /* print number of updates returned */
 printf("Records returned by ttXlaNextUpdate : %d\n",records);

 /* apply the received updates */
 for (j=0;j < records;j++) {
 ttXlaUpdateDesc_t* p;

 p = arry[j];
 rc = ttXlaApply(h, p, 0);
 if (rc != SQL_SUCCESS){
 /* See XLA Error Handling and */
 /* Handling Timeout and Deadlock Errors below */
 }
 }

 /* print number of updates applied */
 printf("Records applied successfully : %d\n",records);

 } while (records != 0);

Chapter 5
Using XLA as a Replication Mechanism

5-39

Tip:

• To ensure that you are sending XLA updates between databases that
have compatible versions of XLA records, use the ttXlaGetVersion and
ttXlaVersionCompare functions on all databases.

• If you are packaging data to be replicated across a network, or anywhere
between processes not using the same memory space, you must ensure
that the ttXlaUpdateDesc_t data structure is shipped in its entirely. Its
length is indicated by ttXlaUpdateDesc_t ->header.length, where the
header element is a ttXlaNodeHdr_t structure that in turn has a length
element. Also see ttXlaUpdateDesc_t and ttXlaNodeHdr_t.

Handling Timeout and Deadlock Errors
The return code from ttXlaApply indicates whether the update was successful.

See ttXlaApply.

If the return code is not SQL_SUCCESS, then the update may have encountered a
transient problem, such as a deadlock or timeout, or a persistent problem. You can use
ttXlaError to check for errors, such as tt_ErrDeadlockVictim or tt_ErrTimeoutVictim.
Recovery from transient errors is possible by rolling back the replicated transaction
and reexecuting it. Other errors may be persistent, such as those for duplicate key
violations or key not found. Such errors are likely to repeat if the transaction is
reexecuted.

If ttXlaApply returns a timeout or deadlock error before applying the commit record
(ttXlaUpdateDesc_t ->flags = TT_UPDCOMMIT) for a transaction to the subscriber
database, you can do either of the following:

• Use ttXlaRollback to roll back the transaction.

• Use ttXlaCommit to commit the changes in the records that have been applied to the
subscriber database.

To enable recovery from transient errors, you should keep track of transaction
boundaries on the master database and store the records associated with the
transaction currently being applied to the subscriber in a user buffer, so you can
reapply them if necessary. The transaction boundaries can be found by checking the
flags member of the ttXlaUpdateDesc_t structure. Consider the following example. If this
condition is true, then the record was committed:

(pXlaRecords [iRecordIndex]->flags & TT_UPDCOMMIT)

If you encounter an error that requires you to roll back a transaction, call
ttXlaRollback to roll back the records applied to the subscriber database. Then call
ttXlaApply to reapply all the rolled back records stored in your buffer.

Chapter 5
Using XLA as a Replication Mechanism

5-40

Note:

An alternative to buffering the transaction records in a user buffer is to call
ttXlaGetLSN to get the transaction log record identifier of each commit record in the
transaction log, as described in Changing the Location of a Bookmark. If you
encounter an error that requires you to roll back a transaction, you can call
ttXlaSetLSN to reset the bookmark to the beginning of the transaction in the
transaction log and reapply the records. However, the extra overhead associated
with the ttXlaGetLSN function may make this a less efficient option.

Checking for Update Conflicts
If you have applications making simultaneous updates to both your master and subscriber
databases, you may encounter update conflicts.

Update conflicts are described in detail in Resolving Replication Conflicts in Oracle TimesTen
In-Memory Database Replication Guide.

To check for update conflicts in XLA, you can set the ttXlaApply test parameter to compare
the old row value (ttXlaUpdateDesc_t ->tuple1) in each record of type UPDATETUP with the
existing row in the subscriber database. If the old row value in the update description does
not match the corresponding row in the subscriber database, an update conflict is probably
the reason. In this case, ttXlaApply does not apply the update to the subscriber and returns
an sb_ErrXlaTupleMismatch error.

Replicating Updates to a Non-TimesTen Database
If you are replicating changes to a non-TimesTen database, you can use the
ttXlaGenerateSQL function to convert the record data into a SQL statement that can be read
by the non-TimesTen subscriber. For update and delete records, ttXlaGenerateSQL requires
a primary key or a unique index on a non-nullable column to generate the correct SQL.
See ttXlaGenerateSQL.

The ttXlaGenerateSQL function accepts a ttXlaUpdateDesc_t record as a parameter and
outputs its SQL equivalent into a buffer.

Note:

The SQL returned by ttXlaGenerateSQL uses TimesTen SQL syntax. The SQL
statement may fail on a non-TimesTen subscriber if there are SQL syntax
incompatibilities between the two systems. In addition, the SQL statement is
encoded in the connection character set associated with the XLA handle.

This example translates a record (record) and stores the resulting SQL output in a 200-
character buffer (buffer). The actual size of the buffer is returned in the actualLength
parameter.

ttXlaUpdateDesc_t record;
char buffer[200];
SQLINTEGER actualLength;

Chapter 5
Using XLA as a Replication Mechanism

5-41

rc = ttXlaGenerateSQL(xla_handle, &record, buffer, 200, &actualLength);

if (rc != SQL_SUCCESS) {
 handleXLAerror (rc, xla_handle, err_buf, &native_error);
 if (native_error == 8034) { // tt_ErrXlaNoSQL
 printf("Unable to translate to SQL\n");
 }
}

Other XLA Features
Changing the location of a bookmark and passing the application context are
additional XLA features.

• Changing the Location of a Bookmark

• Passing Application Context

Changing the Location of a Bookmark
At any point during a connection, you can call the ttXlaGetLSN function to query the
system for the Current Read log record identifier.

See ttXlaGetLSN.

If you must replay a set of updates, you can use the ttXlaSetLSN function to reset the
Current Read log record identifier to any valid value larger than the Initial Read log
record identifier set by the last ttXlaAcknowledge call. In this context, "larger" only applies
if the log record identifiers being compared are from records in the same transaction. If
that is not the case, then any log record identifier from a transaction that committed
before another transaction is the "smaller" log record identifier, even if the numeric
value of the log record identifier is larger. The only way to enable the Initial Read log
record identifier to move forward to the Current Read log record identifier is by calling
the ttXlaAcknowledge function, which indicates that you have received and processed
all transaction log records up to the Current Read log record identifier. Once you have
called ttXlaAcknowledge on a particular bookmark, you can no longer access
transaction log records with a log record identifier smaller than the Current Read log
record identifier.

Passing Application Context
Although it is not an XLA function, writers to the transaction log can call the
ttApplicationContext built-in procedure to pass binary data associated with an
application to XLA readers.

The ttApplicationContext built-in procedure specifies a single VARBINARY value that
is returned in the next update record produced by the current transaction. XLA readers
can obtain a pointer to this value as described in Reading NOT INLINE Variable-
Length Column Data.

Chapter 5
Other XLA Features

5-42

Note:

A context value is applied to only one update record. After it has been applied it is
reset. If the same context value should be applied to multiple updates, then it must
be reestablished before each update.

To set the context:

1. Declare two program variables for invoking the ttApplicationContext procedure. The
variable contextBuffer is a CHAR array that is declared to be large enough to
accommodate the longest application context that you use. The variable
contextBufferLen is of type INTEGER and is used to convey the actual length of the
context on each call to ttApplicationContext.

2. Initialize a statement handle with a compiled invocation of the ttApplicationContext
built-in procedure:

rc = SQLPrepare(hstmt, "call ttApplicationContext(?)", SQL_NTS);
rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
 SQL_VARBINARY, 0, 0, &contextBuffer,
 sizeof contextBuffer, &contextBufferLen);

3. When the application context must be set later, copy the context value into
contextBuffer, assign the length of the context to contextBufferLen, and invoke
ttApplicationContext with the call:

rc = SQLExecute(hstmt);

The transaction is then committed with the usual call on SQLTransact:

rc = SQLTransact(NULL, hdbc, SQL_COMMIT);

Note:

If a SQL operation fails after a call to ttApplicationContext, the context may
not be stored in the next SQL operation and therefore may be lost. If this
happens, the application can call ttApplicationContext again before the next
SQL operation.

Chapter 5
Other XLA Features

5-43

6
Distributed Transaction Processing: XA

TimesTen Classic implementats the X/Open XA standard.

• Overview of XA

• XA in TimesTen

• XA Support Through the Windows ODBC Driver Manager

• Configuring Tuxedo to Use TimesTen XA

Also refer to the following documents:

• X/Open CAE Specification, Distributed Transaction Processing: The XA Specification,
published by the The Open Group (http://www.opengroup.org)

• Tuxedo documentation, available at this location:

https://www.oracle.com/middleware/technologies/tuxedo.html
• WebLogic documentation, available at this location:

https://www.oracle.com/middleware/technologies/weblogic.html

Overview of XA
This section provides a brief overview of XA concepts.

• X/Open DTP Model

• Two-Phase Commit

X/Open DTP Model
Applications use the TX interface to communicate with a transaction manager. In the DTP
model, the transaction manager breaks each global transaction down into multiple branches
and distributes them to separate resource managers for service. It uses the XA interface to
coordinate each transaction branch with the appropriate resource manager.

Figure 6-1 that follows illustrates the interfaces defined by the X/Open DTP model and shows
an application communicating global transactions to the transaction manager.

6-1

http://www.opengroup.org
https://www.oracle.com/middleware/technologies/tuxedo.html
https://www.oracle.com/middleware/technologies/weblogic.html

Figure 6-1 Distributed Transaction Processing Model

Transaction

 Log Buffer

Transaction Manager (TM)Resource Managers (RMs)

XA or JTA Interface

Transaction

Branches

Application

Program (AP)

TX or proprietary

transaction interface

Native interface

(ODBC or JDBC)

Global

transactions

Global transaction control provided by the TX and XA interfaces is distinct from local
transaction control provided by the native ODBC interface. It is generally best to
maintain separate connections for local and global transactions. Applications can
obtain a connection handle to a TimesTen resource manager in order to initiate both
local and global transactions over the same connection. See TimesTen tt_xa_context
Function to Obtain ODBC Handle From XA Connection.

Two-Phase Commit
In an XA implementation, the transaction manager commits the distributed branches of
a global transaction by using a two-phase commit protocol.

1. In phase one, the transaction manager directs each resource manager to prepare
to commit, which is to verify and guarantee it can commit its respective branch of
the global transaction. If a resource manager cannot commit its branch, the
transaction manager rolls back the entire transaction in phase two.

2. In phase two, the transaction manager either directs each resource manager to
commit its branch or, if a resource manager reported it was unable to commit in
phase one, rolls back the global transaction.

Note the following optimizations:

• If a global transaction is determined by the transaction manager to have involved
only one branch, it skips phase one and commits the transaction in phase two.

• If a global transaction branch is read-only, where it does not generate any
transaction log records, the transaction manager commits the branch in phase one
and skips phase two for that branch.

Chapter 6
Overview of XA

6-2

Note:

The transaction manager considers the global transaction committed if and only if
all branches successfully commit.

XA in TimesTen
The implementation of XA for TimesTen Classic provides an API that is consistent with the
API specified in Distributed Transaction Processing: The XA Specification.

This section describes what you should know when using the TimesTen implementation of
XA, covering the following topics:

• Introduction to the TimesTen XA Implementation and Limitations

• TimesTen Database Requirements for XA

• Global Transaction Recovery in TimesTen

• Considerations in Using Standard XA Functions With TimesTen

• TimesTen tt_xa_context Function to Obtain ODBC Handle From XA Connection

• Considerations in Calling ODBC Functions Over XA Connections in TimesTen

• XA Resource Manager Switch

• XA Error Handling in TimesTen

Introduction to the TimesTen XA Implementation and Limitations
The TimesTen implementation of the XA interfaces is intended for use by transaction
managers in distributed transaction processing (DTP) environments. You can use these
interfaces to write a new transaction manager or to adapt an existing transaction manager,
such as Oracle Tuxedo, to operate with TimesTen resource managers.

In the context of TimesTen XA, the resource managers can be a collection of TimesTen
databases, or databases in combination with other commercial databases that support XA.

Note these important limitations:

• The TimesTen XA implementation does not work with cache. The start of any XA
transaction fails if the cache agent is running.

• You cannot execute an XA transaction if TimesTen replication is enabled.

• The TimesTen driver manager does not support XA.

• Do not execute DDL statements within an XA transaction.

TimesTen Database Requirements for XA
To guarantee global transaction consistency, TimesTen XA transaction branches must be
durable.

The TimesTen implementation of the xa_prepare(), xa_rollback(), and xa_commit()
functions log their actions to the file system, regardless of the value set in the
DurableCommits general connection attribute or by the ttDurableCommit built-in procedure.

Chapter 6
XA in TimesTen

6-3

(The behavior is equivalent to what occurs with a setting of DurableCommits=1. See
DurableCommits in Oracle TimesTen In-Memory Database Reference.) If you must
recover from a failure, both the resource manager and the TimesTen transaction
manager have a consistent view of which transaction branches were active in a
prepared state at the time of failure.

Global Transaction Recovery in TimesTen
When a database is loaded from the file system to recover after a failure or
unexpected termination, any global transactions that were prepared but not committed
are left pending, or in doubt. Regular processing is not enabled until the disposition of
all in-doubt transactions has been resolved.

After connection and recovery are complete, TimesTen checks for in-doubt
transactions. If there are no in-doubt transactions, operation proceeds as expected. If
there are in-doubt transactions, other connections may be created, but virtually all
operations are prohibited on those connections until the in-doubt transactions are
resolved. Any other ODBC or JDBC calls result in the following error:

Error 11035 - "In-doubt transactions awaiting resolution in recovery must be
resolved first"

The list of in-doubt transactions can be retrieved through the XA implementation of
xa_recover(), then dealt with through the XA call xa_commit(), xa_rollback(), or
xa_forget(), as appropriate. After all of the in-doubt transactions are cleared,
operation proceeds as expected.

This scheme should be adequate for systems that operate strictly under control of the
transaction manager, since the first thing the transaction manager should do after
connect is to call xa_recover().

If the transaction manager is unavailable or cannot resolve an in-doubt transaction,
you can use the ttXactAdmin utility -HCommit or -HAbort option to independently
commit or roll back the individual transaction branches. Be aware, however, that these
ttXactAdmin options require ADMIN privilege. See ttXactAdmin in Oracle TimesTen In-
Memory Database Reference.

Considerations in Using Standard XA Functions With TimesTen
There are some issues concerning the use of standard XA functions in TimesTen, for
those creating your own transaction manager.

Discussion covers the following:

• xa_open() Function

• xa_close() Function

• Transaction Id (XID) Parameter

xa_open() Function
The xa_info string used by xa_open() should be a connection string identical to that
supplied to SQLDriverConnect.

"DSN=DataStoreResource;UID=MyName"

Chapter 6
XA in TimesTen

6-4

XA limits the length of the string to 256 characters. See MAXINFOSIZE in the xa.h header file.

The xa_open() function automatically turns off autocommit when it opens an XA connection.

A connection opened with xa_open() must be closed with a call to xa_close().

xa_close() Function
The xa_info string used by xa_close() should be empty.

Transaction Id (XID) Parameter
XA uniquely identifies global transactions by using a transaction ID, referred to as an XID.
The XID is a required parameter for XA functions that manipulate a transaction. Internally,
TimesTen maps XIDs to its own transaction identifiers.

The XID defined by the XA standard has some of its members (such as formatID,
gtrid_length, and bqual_length) defined as type long. Historically, this could cause
problems when a 32-bit client application connected to a 64-bit server, or a 64-bit client
application connected to a 32-bit server, because long is a 32-bit integer on 32-bit platforms
and a 64-bit integer on 64-bit platforms (other than 64-bit Windows). Because of this,
TimesTen internally uses only the 32 least significant bits of those XID members regardless of
the platform type of client or server. TimesTen does not support any value in those XID
members that does not fit in a 32-bit integer.

TimesTen tt_xa_context Function to Obtain ODBC Handle From XA
Connection

The TimesTen function tt_xa_context() enables you to acquire the ODBC connection
handle associated with an XA connection opened by xa_open().

• tt_xa_context Syntax and Parameter Descriptions

• Using tt_xa_context

tt_xa_context Syntax and Parameter Descriptions
Syntax for the tt_xa_context function is as follows:

#include <tt_xa.h>
int tt_xa_context(int* rmid, SQLHENV* henv, SQLHDBC* hdbc);

This table describes the parameters:

Chapter 6
XA in TimesTen

6-5

Parameter Type Description

rmid int The specified resource manager ID

If this is non-null, the function returns the handles
associated with the rmid value.

If the specified rmid is null, the function returns the
handles associated with the first connection on this thread.
For example, specify a null value if the connection has
been opened outside the scope of the user-written code,
where rmid is unknown. This establishes context in the
application environment.

henv out SQLHENV The environment handle associated with the current
xa_open() context

hdbc out SQLHDBC The connection handle associated with the current
xa_open() context

The function returns these values:

0: Success

1: rmid not found

-1: Invalid parameter

Using tt_xa_context
This section shows how to use tt_xa_context.

In the following example, assume Tuxedo has used xa_open() and xa_start() to
open a connection to the database and start a transaction. To do further ODBC
processing on the connection, use the tt_xa_context() function to locate the SQLHENV
and SQLHDBC handles allocated by xa_open().

do_insert()
{

 SQLHENV henv;
 SQLHDBC hdbc;
 SQLHSTMT hstmt;

 /* retrieve the handles for the current connection */
 tt_xa_context(NULL, &henv, &hdbc);

 /* now we can do our ODBC programming as usual */
 SQLAllocStmt(hdbc, &hstmt);

 SQLExecDirect(hstmt, "insert into t1 values (1)", SQL_NTS);

 SQLFreeStmt(hstmt, SQL_DROP);
}

Chapter 6
XA in TimesTen

6-6

Considerations in Calling ODBC Functions Over XA Connections in
TimesTen

There are factors to consider when calling ODBC functions using an ODBC handle
associated with an XA connection opened by xa_open().

These are discussed in the following sections:

• Autocommit

• Local Transaction COMMIT and ROLLBACK

• Close Open Cursors

Autocommit
To simplify operation and prevent possible contradictions, xa_open() automatically turns off
autocommit when it opens an XA connection.

Autocommit may subsequently be turned on or off during local transaction work, but must be
turned off before xa_start() is called to begin work on a global transaction branch. If
autocommit is on, a call to xa_start() returns the following error:

Error 11030 - "Autocommit must be turned off when working on global (XA) transactions"

Once xa_start() has been called to begin work on a global transaction branch, autocommit
may not be turned on until such work has been completed through a call to xa_end(). Any
attempt to turn on autocommit in this case results in the same error as above.

Local Transaction COMMIT and ROLLBACK
Once work on a global transaction branch has commenced through a call to xa_start(),
attempts to perform a local commit or rollback using SQLTransact results in an error.

Error 11031 - "Invalid combination of local transaction and global (XA) transaction"

Close Open Cursors
Any open statement cursors must be closed using SQLFreeStmt with a value of SQL_CLOSE
before calling xa_end() to end work on a global transaction branch.

Otherwise, the following error is returned:

Error 11032 - "XA request failed due to open cursors"

XA Resource Manager Switch
This section discusses the XA resource manager switch.

• About the Resource Manager Switch

• XA Switch xa_switch_t

• TimesTen Switch tt_xa_switch

Chapter 6
XA in TimesTen

6-7

About the Resource Manager Switch
Each resource manager defines a switch in its xa.h header file that provides the
transaction manager with access to the XA functions in the resource managers.

The transaction manager never directly calls an XA interface function. Instead, it calls
the function in the switch table that, in turn, points to the appropriate function in the
resource manager. Then resource managers can be added and removed without the
requirement to recompile the applications.

In the TimesTen implementation of XA, the functions in the XA switch, xa_switch_t,
point to their respective functions defined in a TimesTen switch, tt_xa_switch.

XA Switch xa_switch_t
The xa_switch_t structure is defined by the XA specification.

/* XA Switch Data Structure */
#define RMNAMESZ 32 /* length of resource manager name, */
 /* including the null terminator */
#define MAXINFOSIZE 256 /* maximum size in bytes of xa_info strings, */
 /* including the null terminator */

struct xa_switch_t
{

 char name[RMNAMESZ]; /* name of resource manager */
 long flags; /* resource manager specific options */
 long version; /* must be 0 */

int (*xa_open_entry)(char*, int, long); /* xa_open function pointer */
int (*xa_close_entry)(char*, int, long); /* xa_close function pointer*/
int (*xa_start_entry)(XID*, int, long); /* xa_start function pointer */
int (*xa_end_entry)(XID*, int, long); /* xa_end function pointer */
int (*xa_rollback_entry)(XID*, int, long); /* xa_rollback function pointer */
int (*xa_prepare_entry)(XID*, int, long); /* xa_prepare function pointer */
int (*xa_commit_entry)(XID*, int, long); /* xa_commit function pointer */
int (*xa_recover_entry)(XID*, long, int, long); /* xa_recover function pointer*/
int (*xa_forget_entry)(XID*, int, long); /* xa_forget function pointer */
int (*xa_complete_entry)(int*, int*, int, long);/* xa_complete function pointer
*/
};

typedef struct xa_switch_t xa_switch_t;
/*
 * Flag definitions for the RM switch
 */
#define TMNOFLAGS 0x00000000L /* no resource manager features selected */
#define TMREGISTER 0x00000001L /* resource manager dynamically registers */
#define TMNOMIGRATE 0x00000002L /* RM does not support association migration */
#define TMUSEASYNC 0x00000004L /* RM supports asynchronous operations */

Chapter 6
XA in TimesTen

6-8

TimesTen Switch tt_xa_switch
The tt_xa_switch names the actual functions implemented by a TimesTen resource
manager. It also indicates explicitly that association migration is not supported. In addition,
dynamic registration and asynchronous operations are not supported.

struct xa_switch_t
tt_xa_switch =
{
 "TimesTen", /* name of resource manager */
 TMNOMIGRATE, /* RM does not support association migration */
 0,
 tt_xa_open,
 tt_xa_close,
 tt_xa_start,
 tt_xa_end,
 tt_xa_rollback,
 tt_xa_prepare,
 tt_xa_commit,
 tt_xa_recover,
 tt_xa_forget,
 tt_xa_complete
};

XA Error Handling in TimesTen
The XA specification has a limited and strictly defined set of errors that can be returned from
XA interface calls. The ODBC SQLError function returns XA-defined errors along with any
additional information.

The TimesTen XA-related errors begin at number 11000. Errors 11002 through 11020
correspond to the errors defined by the XA standard.

See Errors and Warnings in Oracle TimesTen In-Memory Database Error Messages and
SNMP Traps.

XA Support Through the Windows ODBC Driver Manager
There are issues and procedures for using XA with the Windows ODBC driver manager.
Linux or UNIX ODBC driver managers are not considered.

• Issues to Consider With the Driver Manager

• Linking to the TimesTen ODBC XA Driver Manager Extension Library

Issues to Consider With the Driver Manager
XA support through the ODBC driver manager requires special handling.

There are two fundamental issues:

• The XA interface is not part of the defined ODBC interface. If the XA symbols are directly
referenced in an application, it is not possible to link with only the driver manager library
to resolve all the external references.

• By design, the driver manager determines which driver .dll file to load at connect time,
when you call SQLConnect or SQLDriverConnect. XA dictates that the connection should

Chapter 6
XA Support Through the Windows ODBC Driver Manager

6-9

be opened through xa_open(). But the correct xa_open() entry point cannot be
located until the .dll is loaded during the connect operation itself.

Note that the driver manager objective of database portability is generally not
applicable here, since each XA implementation is essentially proprietary. The primary
benefit of driver manager support for XA-enabled applications is to enable TimesTen-
specific applications to run transparently with either the TimesTen direct driver or the
TimesTen client/server driver.

Linking to the TimesTen ODBC XA Driver Manager Extension Library
On Windows installations, TimesTen provides a driver manager extension library,
ttxadm221.dll, for XA functions. Applications can make XA calls directly, but must link
in the extension library.

To link with the ttxadm221.dll library, applications must include ttxadm221.lib before
odbc32.lib in their link line. For example:

Link with the ODBC driver manager
appldm.exe:appl.obj
 $(CC) /Feappldm.exe appl.obj ttxadm221.lib odbc32.lib

Configuring Tuxedo to Use TimesTen XA
There are tasks to configure Tuxedo to use the TimesTen resource managers.

• Introductory Notes and Cautions

• Update the $TUXDIR/udataobj/RM File

• Build the Tuxedo Transaction Manager Server

• Update the GROUPS Section in the UBBCONFIG File

• Compile the Servers

Introductory Notes and Cautions
The examples in the sections that follow use the direct driver. You can also use the
client/server library or driver manager library with the XA extension library.

Information on configuring TimesTen for object-relational mapping frameworks and
application servers, including Oracle WebLogic Application Server, is available in the
TimesTen Classic Quick Start. See About TimesTen Quick Start and Sample
Applications.

Note:

Though TimesTen XA has been demonstrated to work with the Oracle
Tuxedo transaction manager, TimesTen cannot guarantee the operation of
DTP software beyond the TimesTen implementation of XA.

Chapter 6
Configuring Tuxedo to Use TimesTen XA

6-10

Update the $TUXDIR/udataobj/RM File
To integrate the TimesTen XA resource manager into the Oracle Tuxedo system, update
the $TUXDIR/udataobj/RM file to identify the TimesTen resource manager, the name of the
TimesTen resource manager switch (tt_xa_switch), and the name of the library for the
resource manager.

On Linux or UNIX platforms, add:

TimesTen:tt_xa_switch:-Ltimesten_home/install/lib -ltten

On Windows platforms, add:

TimesTen;tt_xa_switch;timesten_home\install\lib\ttdv221.lib

Note:

• The timesten_home/install directory is a symbolic link to installation_dir,
the path to the TimesTen installation directory.

• On Windows, there is only one TimesTen instance, and timesten_home refers to
installation_dir\instance.

Build the Tuxedo Transaction Manager Server
Use the buildtms command to build a transaction manager server for the TimesTen resource
manager. Then copy the TMS_TT file created by buildtms to the $TUXDIR/bin directory.

On Linux or UNIX platforms, the commands are the following:

buildtms -o TMS_TT -r TimesTen -v
cp TMS_TT $TUXDIR/bin

On Windows platforms, the commands are the following:

buildtms -o TMS_TT -r TimesTen -v
copy TMS_TT.exe %TUXDIR%\bin

Update the GROUPS Section in the UBBCONFIG File
For TMSNAME, specify the TMS_TT file created by the buildtms command.

TMSNAME=TMS_TT

Enter a line for each TimesTen resource manager that specifies a group name, followed by
the LMID, GRPNO, and OPENINFO parameters. Your OPENINFO string should look like this:

OPENINFO="TimesTen:DSN=DSNname"

Where DSNname is the name of the database.

Note that on Windows, Tuxedo servers run as user SYSTEM. Add the UID general connection
attribute to the OPENINFO string to specify a user other than SYSTEM:

Chapter 6
Configuring Tuxedo to Use TimesTen XA

6-11

OPENINFO="TimesTen:DSN=DSNname;UID=user"

Do not specify a CLOSEINFO parameter for any TimesTen resource manager.

The following example shows the portions of a UBBCONFIG file used to configure two
TimesTen resource managers, GROUP1 and GROUP2.

*RESOURCES
...
*MACHINES
...
ENGSERV LMID=simple
*GROUPS
DEFAULT: TMSNAME=TMS_TT TMSCOUNT=2
GROUP1
 LMID=simple GRPNO=1 OPENINFO="TimesTen:DSN=MyDSN1;UID=MyName"
GROUP2
 LMID=simple GRPNO=2 OPENINFO="TimesTen:DSN=MyDSN2;UID=MyName"
*SERVERS
DEFAULT:
 CLOPT="-A"
simpserv1 SRVGRP=GROUP1 SRVID=1
simpserv2 SRVGRP=GROUP2 SRVID=2

*SERVICES
TOUPPER
TOLOWER

Compile the Servers
Set the CFLAGS environment variable to include the timesten_home/install/include
directory that contains the TimesTen include files. Then use the buildserver
command to construct an Oracle Tuxedo ATMI server load module.

On Linux or UNIX platforms, enter the following.

export CFLAGS=-Itimesten_home/install
buildserver -o server -f server.c -r TimesTen -s SERVICE

On Windows platforms, enter the following.

set CFLAGS=-Itimesten_home\install
buildserver -o server -f server.c -r TimesTen -s SERVICE

Note:

• The timesten_home/install directory is a symbolic link to
installation_dir, the path to the TimesTen installation directory.

• On Windows, there is only one TimesTen instance, and timesten_home
refers to installation_dir\instance.

The following example shows how to use the buildclient command to construct the
client module (simpcl) and the buildserver command to construct the two server
modules described in the UBBCONFIG file in the example in the preceding section,
Update the GROUPS Section in the UBBCONFIG File.

Chapter 6
Configuring Tuxedo to Use TimesTen XA

6-12

set CFLAGS=-Itimesten_home\install
buildclient -o simpcl -f simpcl.c
buildserver -v -t -o simpserv1 -f simpserv1.c -r TimesTen -s TOUPPER
buildserver -v -t -o simpserv2 -f simpserv2.c -r TimesTen -s TOLOWER

Chapter 6
Configuring Tuxedo to Use TimesTen XA

6-13

7
ODBC Application Tuning

You can tune an ODBC application to run optimally on a TimesTen database.

See TimesTen Database Performance Tuning in Oracle TimesTen In-Memory Database
Operations Guide for more general tuning tips.

This chapter includes the following topics:

• Avoid Generic Driver Managers If Possible

• Use Arrays of Parameters for Batch Execution

• Avoid Excessive Binds

• Avoid SQLGetData

• Avoid Data Type Conversions

• Bulk Fetch Rows of TimesTen Data

• Optimize Queries

Avoid Generic Driver Managers If Possible
Applications that do not need ODBC access to database systems other than TimesTen
should not use a generic driver manager as it adds unnecessary overhead.

Applications that need to use TimesTen direct and client/server connections concurrently
must link with the TimesTen driver manager. The performance improvement is significant
compared to generic driver managers. Otherwise, applications can be linked directly with the
TimesTen direct or client/server driver, as described in Linking Options. The performance
improvement is significant.

Use Arrays of Parameters for Batch Execution
You can improve performance by using groups, referred to as batches, of statement
executions in your application.

The SQLParamOptions ODBC function enables an application to specify multiple values for
the set of parameters assigned by SQLBindParameter. This is useful for processing the same
SQL statement multiple times with various parameter values. For example, your application
can specify multiple sets of values for the set of parameters associated with an INSERT
statement, and then execute the INSERT statement once to perform all the insert operations.

TimesTen supports the use of SQLParamOptions with INSERT, UPDATE, DELETE, and MERGE
statements, but not with SELECT statements. (TimesTen Scaleout does not support MERGE
statements.)

The ideal batch size for any of these database operations varies according to details of the
user environment and requires testing and experimentation to determine.

7-1

Tip:

In TimesTen Classic, it is important to use a batch size that is an exact
multiple of 256 for inserts, in order to optimize the insert mechanism.

Table 7-1 provides a summary of SQLParamOptions arguments. Refer to ODBC API
reference documentation for details.

Table 7-1 SQLParamOptions Arguments

Argument Type Description

hstmt SQLHSTMT Statement handle

crow SQLULEN Number of values for each parameter

pirow SQLULEN Pointer to storage for the current row number

Assuming the crow value is greater than 1, the rgbValue argument of
SQLBindParameter points to an array of parameter values and the pcbValue argument
points to an array of lengths. (Also see SQLBindParameter Function.)

In the TimesTen Classic Quick Start, refer to source file bulkinsert.c for a complete
working example of batching. (Also, for programming in C++ with TTClasses, see
bulktest.cpp.) See About TimesTen Quick Start and Sample Applications.

Note:

When using SQLParamOptions with the TimesTen client/server driver, data-at-
execution parameters are not supported. (An application can pass the value
for a parameter either in the SQLBindParameter rgbValue buffer or with one
or more calls to SQLPutData. Parameters whose data is passed with
SQLPutData are known as data-at-execution parameters. These are
commonly used to send data for SQL_LONGVARBINARY and SQL_LONGVARCHAR
parameters and can be mixed with other parameters.)

Avoid Excessive Binds
The purpose of a SQLBindCol or SQLBindParameter call is to associate a type
conversion and program buffer with a data column or parameter.

For a given SQL statement, if the type conversion or memory buffer for a given data
column or parameter is not going to change over repeated executions of the
statement, it is better not to make repeated calls to SQLBindCol or SQLBindParameter.
Simply prepare once and bind once to execute many times.

Avoid SQLGetData
SQLGetData can be used for fetching data without binding columns.

Chapter 7
Avoid Excessive Binds

7-2

This can sometimes have a negative impact on performance because applications have to
issue a SQLGetData ODBC call for every column of every row that is fetched. In contrast,
using bound columns requires only one ODBC call for each fetched column. Further, the
TimesTen ODBC driver is more highly optimized for the bound columns method of fetching
data.

SQLGetData can be very useful, though, for doing piecewise fetches of data from long
character or binary columns. (This is discussed for LOBs in Using the LOB Piecewise Data
Interface in ODBC.)

Avoid Data Type Conversions
TimesTen instruction paths are so short that even small delays due to data conversion can
cause a relatively large percentage increase in transaction time.

To avoid data type conversions:

• Match input argument types to expression types.

• Match the types of output buffers to the types of the fetched values.

• Match the connection character set to the database character set.

Bulk Fetch Rows of TimesTen Data
TimesTen provides the TT_PREFETCH_COUNT ODBC statement option to enable an application
to fetch multiple rows of data.

This feature is available for applications that use the Read Committed isolation level. For
applications that retrieve large amounts of TimesTen data, fetching multiple rows can
increase performance greatly. However, locks are held on all rows being retrieved until the
application has received all the data, decreasing concurrency. See Prefetching Multiple Rows
of Data.

Optimize Queries
TimesTen provides the TT_PREFETCH_CLOSE ODBC connection option to optimize query
performance.

See Optimizing Query Performance.

Chapter 7
Avoid Data Type Conversions

7-3

8
TimesTen Utility API

This chapter provides reference information for TimesTen C language functions, referred to
as utility functions or the utility library, beginning with some overview.

Overview of the TimesTen Utility Library
This section provides some overview for the TimesTen utility library.

• About the Utility Library

• Requirements for the Utility Library

• Utility Function Return Codes

About the Utility Library
The TimesTen utility library C language functions provide programmatic interfaces to some of
the command line utilities.

See "Utilities" in Oracle TimesTen In-Memory Database Reference.

These functions are supported for TimesTen ODBC applications using the direct driver or
using the TimesTen driver manager for direct connections.

Requirements for the Utility Library
Applications that use this set of C language functions must include ttutillib.h and
ttutil.h and link with the libttutil.so TimesTen utility library.

Refer to Compiling and Linking Applications Directly With the TimesTen Drivers on Linux or
UNIX, Compiling and Linking Applications on Windows, and Compiling and Linking
Applications With the TimesTen Driver Manager on Linux or UNIX.

Tip:

Applications must call the ttUtilAllocEnv C function before calling any other TimesTen
utility library function. In addition, applications must call the ttUtilFreeEnv C function
when done using the TimesTen utility library interface.

Utility Function Return Codes
Unless otherwise indicated, the utility functions return these codes as defined in
ttutillib.h.

The application must call the ttUtilGetError C function to retrieve all actual error or warning
information.

8-1

Code Description

TTUTIL_SUCCESS Indicates success.

TTUTIL_ERROR Indicates an error occurs.

TTUTIL_WARNING Upon success, indicates a warning has been
generated.

TTUTIL_INVALID_HANDLE Indicates an invalid utility library handle is
specified.

ttBackup
Description

Creates either a full or an incremental backup copy of the database specified by
connStr. You can back up a database either to a set of files or to a stream. You can
restore the database at a later time using either the ttRestore function or the ttRestore
utility.

Also see ttBackup in Oracle TimesTen In-Memory Database Reference.

Required Privilege

ADMIN

Syntax

ttBackup (ttUtilHandle handle, const char* connStr,
 ttBackUpType type, ttBooleanType atomic,
 const char* backupDir, const char* baseName,
 ttUtFileHandle stream)

Parameters

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library
environment handle allocated using
ttUtilAllocEnv.

connStr const char* This is a null-terminated string specifying a
connection string that describes the database to
be backed up.

Chapter 8
ttBackup

8-2

Parameter Type Description

type ttBackupType Specifies the type of backup to be performed.
Valid values are as follows:

• TT_BACKUP_FILE_FULL: Performs a full file
backup to the backup path specified by the
backupDir and baseName parameters.
The resulting backup is not enabled for
incremental backup.

• TT_BACKUP_FILE_FULL_ENABLE: Performs
a full file backup to the backup path
specified by the backupDir and baseName
parameters. The resulting backup is
enabled for incremental backup.

• TT_BACKUP_FILE_INCREMENTAL: Performs
an incremental file backup to the backup
path specified by the backupDir and
baseName parameters, if that backup path
contains an incremental-enabled backup of
the database. Otherwise, an error is
returned.

• TT_BACKUP_FILE_INCR_OR_FULL:
Performs an incremental file backup to the
backup path specified by the backupDir
and baseName parameters of that backup
path contains an incremental-enabled
backup of the database. Otherwise, it
performs a full file backup of the database
and marks it incremental enabled.

• TT_BACKUP_STREAM_FULL: Performs a
stream backup to the stream specified by
the stream parameter.

• TT_BACKUP__INCREMENTAL_STOP: Does
not perform a backup. Disables incremental
backups for the backup path specified by
the backupDir and baseName parameters.
This prevents transaction log files from
accumulating for an incremental backup.

Chapter 8
ttBackup

8-3

Parameter Type Description

atomic ttBooleanType Specifies the disposition of an existing backup
with the same baseName and backupDir while
the new backup is being created.

This parameter has an effect only on full file
backups when there is an existing backup with
the same baseName and backupDir. It is
ignored for incremental backups because they
augment, rather than replace, an existing
backup. It is ignored for stream backups
because they write to the given stream, ignoring
the baseName and backupDir parameters.

The following are valid values:

• TT_FALSE: The existing backup is
destroyed before the new backup begins. If
the new backup fails to complete, neither
the new, incomplete, backup nor the
existing backup can be used to restore the
database. This option should be used only
when the database is being backed up for
the first time, when there is another backup
of the database that uses a different
baseName or backupDir, or when the
application can tolerate a window of time
(typically tens of minutes long for large
databases) during which no backup of the
database exists.

• TT_TRUE: The existing backup is destroyed
only after the new backup has completed
successfully. If the new backup fails to
complete, the old backup is retained and
can be used to restore the database. If
there is an existing backup with the same
baseName and backupDir, the use of this
option ensures that there is no window of
time during which neither the existing
backup nor the new backup is available for
restoring the database, and it ensures that
the existing backup is destroyed only if it
has been successfully superseded by the
new backup. However, it does require
enough file system space for both the
existing and new backups to reside in the
backupDir at the same time.

backupDir const char* Specifies the backup directory for file backups. It
is ignored for stream backups. Otherwise it must
be non-null.

For TT_BACKUP_INCREMENTAL_STOP, it
specifies the directory portion of the backup
path that is to be disabled.

For TT_BACKUP_INCREMENTAL_STOP or a file
backup, an error is returned if NULL is specified.

Chapter 8
ttBackup

8-4

Parameter Type Description

baseName const char* Specifies the file prefix for the backup files in the
backup directory specified by the backupDir
parameter for file backups.

It is ignored for stream backups.

If NULL is specified for this parameter, the file
prefix for the backup files is the file name portion
of the DataStore attribute in the ODBC
definition of the database.

For TT_BACKUP_INCREMENTAL_STOP, this
parameter specifies the base name portion of
the backup path that is to be disabled.

stream ttUtFileHandle For stream backups, this parameter specifies
the stream to which the backup is to be written.

On Linux or UNIX, it is an integer file descriptor
that can be written to by using write(2). Pass
1 to write the backup to stdout.

On Windows, it is a handle that can be written to
using WriteFile. Pass the result of
GetStdHandle(STD_OUTPUT_HANDLE) to write
the backup to the standard output.

This parameter is ignored for file backups.

The application can pass
TTUTIL_INVALID_FILE_HANDLE for this
parameter.

Example

This example backs up the database for the payroll DSN into C:\backup.

ttUtilHandle utilHandle;
int rc;
rc = ttBackup (utilHandle, "DSN=payroll", TT_BACKUP_FILE_FULL,
 TT_TRUE, "c:\\backup", NULL, TTUTIL_INVALID_FILE_HANDLE);

Upon successful backup, all files are created in the C:\backup directory.

Note

Each database supports only eight incremental-enabled backups.

See Also

ttRestore
ttBackup and ttRestore utilities in Oracle TimesTen In-Memory Database Reference

ttDestroyDataStore
Description

Destroys a database, including all checkpoint files, transaction logs and daemon catalog
entries corresponding to the database specified by the connection string. It does not delete

Chapter 8
ttDestroyDataStore

8-5

the DSN itself defined in the sys.odbc.ini or user odbc.ini file on Linux or UNIX
platforms or in the Windows registry on Windows platforms.

Required Privilege

Instance administrator

Syntax

ttDestroyDataStore (ttUtilHandle handle, const char* connStr,
 unsigned int timeout)

Parameters

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library environment
handle allocated using ttUtilAllocEnv.

connStr const char* This is a null-terminated string specifying the
connection string that describes the database to
be destroyed. All attributes in this connection
string, except the DSN and the DataStore
attribute, are ignored.

timeout unsigned int Specifies the number of times to retry before
returning to the caller. ttDestroyDataStore
continually retries the destroy operation every
second until it is successful or the timeout is
reached. This is useful in those situations where
the destroy fails due to some temporary condition,
such as when the database is in use.

No retry is performed if this parameter value is 0.

Example

This example destroys a database defined by the payroll DSN, consisting of files
C:\dsns\payroll.ds0, C:\dsns\payroll.ds1, and several transaction log files
C:\dsns\payroll.logn.

char errBuff [256];
int rc;
unsigned int retCode;
ttUtilErrType retType;
ttUtilHandle utilHandle;
...
...
rc = ttDestroyDataStore (utilHandle, "DSN=payroll", 30);
if (rc == TTUTIL_SUCCESS)
 printf ("Datastore payroll successfully destroyed.\n");
else if (rc == TTUTIL_INVALID_HANDLE)
 printf ("TimesTen utility library handle is invalid.\n");
else
 while ((rc = ttUtilGetError (utilHandle, 0, &retCode,
 &retType, errBuff, sizeof (errBuff), NULL)) !=
 TTUTIL_NODATA)
 {

Chapter 8
ttDestroyDataStore

8-6

 ...
 ...
}

ttDestroyDataStoreForce
Description

Destroys a database, including all checkpoint files, transaction logs and daemon catalog
entries corresponding to the database specified by the connection string. It does not delete
the DSN itself defined in the sys.odbc.ini or user odbc.ini file on Linux or UNIX platforms
or in the Windows registry on Windows platforms.

Required Privilege

Instance administrator

Syntax

ttDestroyDataStoreForce (ttUtilHandle handle, const char* connstr,
 unsigned int timeout)

Parameters

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library environment
handle allocated using ttUtilAllocEnv.

connStr const char* This is a null-terminated string specifying the
connection string that describes the database to be
destroyed. All attributes in this connection string,
except the DSN and the DataStore attribute, are
ignored.

timeout unsigned int Specifies the number of seconds to retry before
returning to the caller. The
ttDestroyDataStoreForce utility continually retries
the destroy operation every second until it is
successful or the timeout is reached. This is useful
when the destroy fails due to some temporary
condition, such as when the database is in use.

No retry is performed if this parameter value is 0.

Example

This example destroys a database defined by the payroll DSN, consisting of files
C:\dsns\payroll.ds0, C:\dsns\payroll.ds1, and several transaction log files
C:\dsns\payroll.logn.

char errBuff [256];
int rc;
unsigned int retCode;
ttUtilErrType retType;
ttUtilHandle utilHandle;

Chapter 8
ttDestroyDataStoreForce

8-7

...

...
rc = ttDestroyDataStoreForce (utilHandle, "DSN=payroll", 30);
if (rc == TTUTIL_SUCCESS)
 printf ("Datastore payroll successfully destroyed.\n");
else if (rc == TTUTIL_INVALID_HANDLE)
 printf ("TimesTen utility library handle is invalid.\n");
else
 while ((rc = ttUtilGetError (utilHandle, 0, &retCode,
 &retType, errBuff, sizeof (errBuff),
NULL)) !=
 TTUTIL_NODATA)
 {
 ...
 ...
}

ttRamGrace
Description

Specifies the number of seconds the database specified by the connection string is
kept in RAM by TimesTen after the last application disconnects from the database.
TimesTen then unloads the database. This grace period can be set or reset at any time
but is only in effect if the RAM policy is TT_RAMPOL_INUSE.

Required Privilege

Instance administrator

Syntax

ttRamGrace (ttUtilHandle handle, const char* connStr, unsigned int
seconds)

Parameters

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library
environment handle allocated using
ttUtilAllocEnv.

connStr const char* This is a null-terminated string specifying a
connection string that describes the database
for which the RAM grace period is set.

seconds unsigned int Specifies the number of seconds TimesTen
keeps the database in RAM after the last
application disconnects from the database.
TimesTen then unloads the database.

Example

This example sets the RAM grace period of 10 seconds for the payroll DSN.

Chapter 8
ttRamGrace

8-8

ttUtilHandle utilHandle;
int rc;
rc = ttRamGrace (utilHandle, "DSN=payroll", 10);

See Also

ttRamLoad
ttRamPolicy
ttRamUnload

ttRamLoad
Description

Causes TimesTen to load the database specified by the connection string into the system
RAM. A call to ttRamLoad is valid only when RamPolicy is set to TT_RAMPOL_MANUAL.

Refer to ttRamPolicySet in Oracle TimesTen In-Memory Database Reference or to
ttRamPolicy.

Required privilege

Instance administrator

Syntax

ttRamLoad (ttUtilHandle handle, const char* connStr)

Parameters

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library environment
handle allocated using ttUtilAllocEnv.

connStr const char* This is a null-terminated string specifying a
connection string that describes the database to be
loaded into RAM.

Example

This example loads the database for the payroll DSN.

ttUtilHandle utilHandle;
int rc;
rc = ttRamLoad (utilHandle, "DSN=payroll");

See Also

ttRamGrace
ttRamPolicy
ttRamUnload

Chapter 8
ttRamLoad

8-9

ttRamPolicy
Description

Defines the policy used to determine when TimesTen loads the database specified by
the connection string into the system RAM.

Required Privilege

Instance administrator

Syntax

ttRamPolicy (ttUtilHandle handle, const char* connStr,
 ttRamPolicyType policy)

Parameters

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library
environment handle allocated using
ttUtilAllocEnv.

connStr const char* This is a null-terminated string specifying a
connection string that describes the database
for which the RAM policy is to be set.

policy ttRamPolicyType Specifies the policy used to determine when
TimesTen loads the specified database into
system RAM. Valid values are the following:

• TT_RAMPOL_ALWAYS: Specifies that the
database should always remain in RAM.

• TT_RAMPOL_MANUAL: Specifies that the
database can be loaded into RAM explicitly
using either the ttRamLoad C function or the
ttAdmin -ramLoad command. Similarly,
the database can be unloaded from RAM
explicitly by using ttRamUnload C function
or using ttAdmin -ramUnload command.

• TT_RAMPOL_INUSE: Specifies that the
database is to be loaded into RAM when an
application wants to connect to the
database. This RAM policy may be further
modified using the ttRamGrace C function
or using the ttAdmin -ramGrace
command.

If you do not explicitly set the RAM policy for the
specified database, the default RAM policy is
TT_RAMPOL_INUSE.

Note: TT_RAMPOL_INUSE is not supported by
TimesTen Scaleout.

Chapter 8
ttRamPolicy

8-10

Example

This example sets the RAM policy to manual for the payroll DSN.

ttUtilHandle utilHandle;
int rc;
rc = ttRamPolicy (utilHandle, "DSN=payroll", TT_RAMPOL_MANUAL);

See Also

ttRamGrace
ttRamLoad
ttRamUnload

ttRamUnload
Description

Causes TimesTen to unload the database specified by the connection string from the system
RAM if the TimesTen RAM policy is set to manual. This call is valid only when RAM policy is
set to TT_RAMPOL_MANUAL.

Refer to ttRamPolicySet in Oracle TimesTen In-Memory Database Reference or to
ttRamPolicy.

Required Privilege

Instance administrator

Syntax

ttRamUnload (ttUtilHandle handle, const char* connStr)

Parameters

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library environment
handle allocated using ttUtilAllocEnv.

connStr const char* This is a null-terminated string specifying a
connection string for the database to be unloaded
from RAM.

Example

This example unloads the database from RAM for the payroll DSN.

ttUtilHandle utilHandle;
int rc;
rc = ttRamUnload (utilHandle, "DSN=payroll");

See Also

ttRamGrace
ttRamLoad

Chapter 8
ttRamUnload

8-11

ttRamPolicy

ttRepDuplicateEx
Description

Creates a replica of a remote database on the local system. The process is initiated
from the receiving local system. From there, a connection is made to the remote
source database to perform the duplicate operation.

Note:

• This utility has features to recover from a site failure by creating a
disaster recovery (DR) read-only subscriber as part of the active standby
pair replication scheme. See Using a Disaster Recovery Subscriber in an
Active Standby Pair in Oracle TimesTen In-Memory Database
Replication Guide.

• If the database does not use cache groups, the following items
discussed below are not relevant: cacheuid and cachepwd data structure
elements; TT_REPDUP_NOKEEPCG, TT_REPDUP_RECOVERINGNODE,
TT_REPDUP_INITCACHEDR, and TT_REPDUP_DEFERCACHEUPDATE flag values.

• There are elements in the ttRepDuplicateExArg structure that is a
parameter of this utility, localIP and remoteIP, that enable you to
optionally specify which local network interface to use, which remote
network interface to use, or both.

Required Privilege

Requires an instance administrator on the receiving local database (where
ttRepDuplicateEx is called) and a user with ADMIN privilege on the remote source
database. Create the internal user on the remote source store as necessary.

In addition, be aware of the following requirements to execute ttRepDuplicateEx:

• The operating system user name of the instance administrator on the receiving
local database must be the same as the operating system user name of the
instance administrator on the remote source database.

• When ttRepDuplicateEx is called, the uid and pwd data structure elements must
specify the user name and password of the user with ADMIN privilege on the
remote source database. This user name is used to connect to the remote source
database to perform the duplicate operation.

Syntax

ttRepDuplicateEx (ttUtilHandle handle,
 const char* destConnStr,
 const char* srcDatabase,
 const char* remoteHost,
 ttRepDuplicateExArg* arg
)

Chapter 8
ttRepDuplicateEx

8-12

typedef struct
{
 unsigned int size; /*set to size of(ttRepDuplicateExArg) */
 unsigned int flags;
 const char* uid;
 const char* pwd;
 const char* pwdcrypt;
 const char* cacheuid;
 const char* cachepwd;
 const char* localHost;
 int truncListLen;
 const char** truncList;
 int dropListLen;
 const char** dropList;
 int maxkbytesPerSec;
 int remoteDaemonPort;
 int nThreads4initDR;
 const char* localIP
 const char* remoteIP
 int crsManaged;
} ttRepDuplicateExArg

Parameters

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library environment
handle allocated using ttUtilAllocEnv.

destConnStr const char* This is a null-terminated string specifying the
connection string for a local database into which
the replica of the remote database is created.

srcDatabase const char* This is a null-terminated string specifying the
remote source database name. This name is the
last component of the database path name.

remoteHost const char* This is a null-terminated string specifying the
TCP/IP host name of the system where the remote
source database is located.

arg ttRepDuplicateExArg* This is the address of the structure containing the
desired ttRepDuplicateEx arguments. If NULL is
passed in for arg or if the value of arg ->size is
invalid, TimesTen returns error 12230, "Invalid
argument value", and TTUTIL_ERROR.

Struct Elements

The ttRepDuplicateExArg structure contains these elements:

Element Type Description

size unsigned int Size

This must be set up to sizeof
(ttRepDuplicateExArg).

Chapter 8
ttRepDuplicateEx

8-13

Element Type Description

flags unsigned int Bit-wise union of values chosen from the list in the
table of flag values

uid const char* User name of a user on the remote source database
with ADMIN privileges

This user name is used to connect to the remote
source database to perform the duplicate operation.

pwd const char* Password associated with the user ID

pwdcrypt const char* Encrypted password associated with the user ID

cacheuid const char* TimesTen cache administration user ID

cachepwd const char* TimesTen cache administration user password

localHost const char* Null-terminated string specifying the TCP/IP host
name of the local system

This element is ignored if remoteRepStart is
TT_FALSE. This explicitly identifies the local host.
This parameter can be null, which is useful if the
local host uses a nonstandard name such as an IP
address.

truncListLen int Number of elements in the truncList

truncList const char** List of non-replicated tables to truncate after
duplicate

dropListLen int Number of elements in dropList

dropList const char** List of non-replicated tables to drop after the
duplicate operation

maxkbytesPerSec int Maximum kilobytes per second

Setting this to a nonzero value specifies that the
duplicate operation should not put more than
maxkbytesPerSec kilobytes of data per second
onto the network. Setting it to 0 or a negative
number indicates that the duplicate operation should
not attempt to limit its bandwidth.

remoteDaemonPort int Remote daemon port

Setting this to 0 results in the daemon port number
for the target database being set to the port number
used for the daemon on the source database.

This option cannot be used in duplicate operations
for databases with automatic port configuration.

nThreads4initDR int Number of threads for initialization

For the disaster recovery subscriber, this
determines the number of threads used to initialize
the Oracle database on the disaster recovery site.

After the TimesTen database is copied to the
disaster recovery system, the Oracle database
tables are truncated and the data from the
TimesTen Classic cache groups is copied to the
Oracle database on the disaster recovery system.

Also see the TT_REPDUP_INITCACHEDR flag below.

Chapter 8
ttRepDuplicateEx

8-14

Element Type Description

localIP const char* A null-terminated string specifying the alias or IP
address (IPv4 or IPv6) of the local network interface
to use for the duplicate operation. Set this to NULL if
you do not want to specify the local network
interface, in which case any compatible interface
may be used.

remoteIP const char* A null-terminated string specifying the alias or IP
address (IPv4 or IPv6) of the remote network
interface to use for the duplicate operation. Set this
to NULL if you do not want to specify the remote
network interface, in which case any compatible
interface may be used.

Note: You can specify both localIP and
remoteIP, or either one by itself, or neither.

crsManaged int For internal use

This should be set to 0 (default).

The ttRepDuplicateExArg flags element is constructed from these values:

Value Description

TT_REPDUP_NOFLAGS Indicates no flags.

TT_REPDUP_COMPRESS Enables compression of the data transmitted over
the network for the duplicate operation.

TT_REPDUP_REPSTART Directs ttRepDuplicateEx to set the replication
state (with respect to the local database) in the
remote database to the start state before the
remote database is copied across the network.
This ensures that all updates made after the
duplicate operation are replicated from the remote
database to the newly created or restored local
database.

TT_REPDUP_RAMLOAD Keeps the database in memory upon completion
of the duplicate operation. It changes the RAM
policy for the database to manual.

TT_REPDUP_DELXLA Directs ttRepDuplicateEx to remove all the XLA
bookmarks as part of the duplicate operation.

TT_REPDUP_NOKEEPCG Do not preserve the cache group definitions;
ttRepDuplicateEx converts all cache group
tables into regular tables.

By default, cache group definitions are preserved.

Chapter 8
ttRepDuplicateEx

8-15

Value Description

TT_REPDUP_RECOVERINGNODE Specifies that ttRepDuplicateEx is being used
to recover a failed node for a replication scheme
that has an AWT or autorefresh cache group. Do
not specify TT_REPDUP_RECOVERINGNODE when
rolling out a new or modified replication scheme to
a node. If ttRepDuplicateEx cannot update
metadata stored on the Oracle database and all
incremental autorefresh cache groups are
replicated, then updates to the metadata are
automatically deferred until the cache and
replication agents are started.

TT_REPDUP_DEFERCACHEUPDATE Forces the deferral of changes to metadata stored
on the Oracle database until the cache and
replication agents are started and the agents can
connect to the Oracle database. Using this option
can cause a full autorefresh if some incremental
cache groups are not replicated or if
ttRepDuplicateEx is being used for rolling out a
new or modified replication scheme to a node.

TT_REPDUP_INITCACHEDR Initializes disaster recovery. You must also specify
cacheuid and cachepwd in the data structure.
Also see nThreads4initDR in the data structure.

See Also

ttRepAdmin -duplicate in Oracle TimesTen In-Memory Database Reference

The following built-in procedures are described in Built-In Procedures in Oracle
TimesTen In-Memory Database Reference.

ttReplicationStatus
ttRepPolicySet
ttRepStop
ttRepSubscriberStateSet
ttRepSyncGet
ttRepSyncSet

ttRestore
Description

Restores a database specified by the connection string from a backup that has been
created using the ttBackup C function or ttBackup utility. If the database already exists,
ttRestore does not overwrite it.

Also see ttRestore in Oracle TimesTen In-Memory Database Reference.

Required Privilege

Instance administrator

Chapter 8
ttRestore

8-16

Syntax

ttRestore (ttUtilHandle handle, const char* connStr,
 ttRestoreType type, const char* backupDir,
 const char* baseName, ttUtFileHandle stream,
 unsigned intflags)

Parameters

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library environment
handle allocated using ttUtilAllocEnv.

connStr const char* This is a null-terminated string specifying a
connection string that describes the database to be
restored.

type ttRestoreType Indicates whether the database is to be restored
from a file or a stream backup. Valid values are the
following:

• TT_RESTORE_FILE: The database is to be
restored from a file backup located at the
backup path specified by the backupDir and
baseName parameters.

• TT_RESTORE_STREAM: The database is to be
restored from a stream backup read from the
given stream.

backupDir const char* For TT_RESTORE_FILE, specifies the directory
where the backup files are stored.

For TT_RESTORE_STREAM, this parameter is
ignored.

baseName const char* For TT_RESTORE_FILE, specifies the file prefix for
the backup files in the backup directory specified by
the backupDir parameter.

If NULL is specified, the file prefix for the backup files
is the file name portion of the DataStore attribute
of the database ODBC definition.

For TT_RESTORE_STREAM, this parameter is
ignored.

stream ttUtFileHandle For TT_RESTORE_STREAM, specifies the stream
from which the backup is to be read.

On Linux or UNIX, it is an integer file descriptor that
can be read from using read(2). Pass 0 to read the
backup from stdin.

On Windows, it is a handle that can be read from
using ReadFile. Pass the result of
GetStdHandle(STD_INPUT_HANDLE) to read from
the standard input.

For TT_RESTORE_FILE, this parameter is ignored.
The application can pass
TTUTIL_INVALID_FILE_HANDLE for this
parameter.

Chapter 8
ttRestore

8-17

Parameter Type Description

flags unsigned int This is reserved for future use. Set it to 0.

See Also

ttBackup
ttBackup and ttRestore utilities in Oracle TimesTen In-Memory Database Reference

ttUtilAllocEnv
Description

Allocates memory for a TimesTen utility library environment handle and initializes the
TimesTen utility library interface for use by an application. An application must call
ttUtilAllocEnv before calling any other TimesTen utility library function. In addition,
an application should call ttUtilFreeEnv when it is done using the TimesTen utility library
interface.

Required Privilege

None

Syntax

ttUtilAllocEnv (ttUtilHandle* handle_ptr, char* errBuff,
 unsigned int buffLen, unsigned int* errLen)

Parameters

Parameter Type Description

handle_ptr ttUtilHandle* Specifies a pointer to storage where the
TimesTen utility library environment handle is
returned.

errBuff char* This is a user allocated buffer where error
messages (if any) are returned. The returned
error message is a null-terminated string. If the
length of the error message exceeds
buffLen-1, it is truncated to buffLen-1. If this
parameter is null, buffLen is ignored and
TimesTen does not return error messages to the
calling application.

buffLen unsigned int Specifies the size of the buffer errBuff. If this
parameter is 0, TimesTen does not return error
messages to the calling application.

errLen unsigned int* This is a pointer to an unsigned integer where
the actual length of the error message is
returned. If it is NULL, this parameter is ignored.

Return Codes

This utility returns the following code as defined in ttutillib.h.

Chapter 8
ttUtilAllocEnv

8-18

Code Description

TTUTIL_SUCCESS Returned upon success.

Otherwise, it returns a TimesTen-specific error message as defined in tt_errCode.h and a
corresponding error message in the buffer provided by the caller.

Example

This example allocates and initializes a TimesTen utility library environment handle with the
name utilHandle.

char errBuff [256];
int rc;
ttUtilHandle utilHandle;

rc = ttUtilAllocEnv (&utilHandle, errBuff, sizeof(errBuff), NULL);

See Also

ttUtilFreeEnv
ttUtilGetError
ttUtilGetErrorCount

ttUtilFreeEnv
Description

Frees memory associated with the TimesTen utility library handle.

An application must call ttUtilAllocEnv before calling any other TimesTen utility library function.
In addition, an application should call ttUtilFreeEnv when it is done using the TimesTen
utility library interface.

Required Privilege

None

Syntax

ttUtilFreeEnv (ttUtilHandle handle, char* errBuff,
 unsigned int buffLen, unsigned int* errLen)

Parameters

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library environment
handle allocated using ttUtilAllocEnv.

Chapter 8
ttUtilFreeEnv

8-19

Parameter Type Description

errBuff char* This is a user-allocated buffer where error
messages are to be returned. The returned error
message is a null-terminated string. If the length of
the error message exceeds buffLen-1, it is
truncated to buffLen-1. If this parameter is NULL,
buffLen is ignored and TimesTen does not return
error messages to the calling application.

buffLen unsigned int Specifies the size of the buffer errBuff. If this
parameter is 0, TimesTen does not return error
messages to the calling application.

errLen unsigned int* This is a pointer to an unsigned integer where the
actual length of the error message is returned. If it is
NULL, this parameter is ignored.

Return Codes

This utility returns the following codes as defined in ttutillib.h.

Code Description

TTUTIL_SUCCESS Returned upon success.

TTUTIL_INVALID_HANDLE Returned if an invalid utility library handle is specified.

Otherwise, it returns a TimesTen-specific error message as defined in tt_errCode.h
and a corresponding error message in the buffer provided by the caller.

Example

This example frees a TimesTen utility library environment handle named utilHandle.

char errBuff [256];
int rc;
ttUtilHandle utilHandle;

rc = ttUtilFreeEnv (utilHandle, errBuff, sizeof(errBuff), NULL);

See Also

ttUtilAllocEnv
ttUtilGetError
ttUtilGetErrorCount

ttUtilGetError
Description

Retrieves the errors and warnings generated by the last call to the TimesTen C utility
library functions excluding ttUtilAllocEnv and ttUtilFreeEnv.

Required Privilege

None

Chapter 8
ttUtilGetError

8-20

Syntax

ttUtilGetError (ttUtilHandle handle, unsigned int errIndex,
 unsigned int* retCode, ttUtilErrType* retType,
 char* errbuff, unsigned int buffLen,
 unsigned int* errLen)

Parameters

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library environment
handle allocated using ttUtilAllocEnv.

errIndex unsigned int Indicates error or warning record to be retrieved
from the TimesTen utility library error array. Valid
values are as follows:

• 0: Retrieve the next record from the utility
library error array.

• 1...n: Retrieve the specified record from the
utility library error array, where n is the error
count returned by the ttUtilGetErrorCount call.

retCode unsigned int* Returns the TimesTen-specific error or warning
codes as defined in tt_errCode.h.

retType ttUtilErrType* Indicates whether the returned message is an error
or warning. The following are valid return values:

• TTUTIL_ERROR
• TTUTIL_WARNING

errBuff char* This is a user allocated buffer where error
messages (if any) are to be returned. The returned
error message is a null-terminated string. If the
length of the error message exceeds buffLen-1, it
is truncated to buffLen-1. If this parameter is NULL,
buffLen is ignored and TimesTen does not return
error messages to the calling application.

buffLen unsigned int Specifies the size of the buffer errBuff. If this
parameter is 0, TimesTen does not return error
messages to the calling application.

errLen unsigned int* A pointer to an unsigned integer where the actual
length of the error message is returned. If it is NULL,
TimesTen ignores this parameter.

Return Codes

This utility returns the following codes as defined in ttutillib.h.

Code Description

TTUTIL_SUCCESS Returned upon success.

TTUTIL_INVALID_HANDLE Returned if an invalid utility library handle is specified.

TTUTIL_NODATA Returned if no error or warming information is retrieved.

Chapter 8
ttUtilGetError

8-21

Example

This example retrieves all error or warning information after calling ttDestroyDataStore for
the DSN named payroll.

char errBuff[256];
int rc;
unsigned int retCode;
ttUtilErrType retType;
ttUtilHandle utilHandle;

rc = ttDestroyDataStore (utilHandle, "DSN=PAYROLL", 30);
if ((rc == TTUTIL_SUCCESS)
 printf ("Datastore payroll successfully destroyed.\n");
else if (rc == TTUTIL_INVALID_HANDLE)
 printf ("TimesTen utility library handle is invalid.\n");
else
 while ((rc = ttUtilGetError (utilHandle, 0,
 &retCode, &retType, errBuff, sizeof (errBuff),
 NULL)) != TTUTIL_NODATA)
 {
...
...
}

Notes

Each of the TimesTen C functions can potentially generate multiple errors and
warnings for a single call from an application. To retrieve all of these errors and
warnings, the application must make repeated calls to ttUtilGetError until it returns
TTUTIL_NODATA.

See Also

ttUtilAllocEnv
ttUtilFreeEnv
ttUtilGetErrorCount

ttUtilGetErrorCount
Description

Retrieves the number of errors and warnings generated by the last call to the
TimesTen C utility library functions, excluding ttUtilAllocEnv and ttUtilFreeEnv. Each of
these functions can potentially generate multiple errors and warnings for a single call
from an application. To retrieve all of these errors and warnings, the application must
make repeated calls to ttUtilGetError until it returns TTUTIL_NODATA.

Required Privilege

None

Chapter 8
ttUtilGetErrorCount

8-22

Syntax

ttUtilGetErrorCount (ttUtilHandle handle,
 unsigned int* errCount)

Parameters

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library environment
handle allocated using ttUtilAllocEnv.

errCount unsigned int* Indicates the number of errors and warnings
generated by the last call, excluding
ttUtilAllocEnv and ttUtilFreeEnv, to the
TimesTen utility library.

Return Codes

The utility returns the following codes as defined in ttutillib.h.

Code Description

TTUTIL_SUCCESS Returned upon success.

TTUTIL_INVALID_HANDLE Returned if an invalid utility library handle is specified.

Example

This example retrieves the error and warning count information after calling ttDestroyDataStore
for the DSN named payroll.

int rc;
unsigned int errCount;
ttUtilHandle utilHandle;

rc = ttDestroyDataStore (utilHandle, "DSN=payroll", 30);
if (rc == TTUTIL_SUCCESS)
 printf ("Datastore payroll successfully destroyed.\n")

else if (rc == TTUTIL_INVALID_HANDLE)
 printf ("TimesTen utility library handle is invalid.\n");
else
{
rc = ttUtilGetErrorCount(utilHandle, &errCount);
 ...
 ...
}

Notes

Each of the TimesTen utility library functions can potentially generate multiple errors and
warnings for a single call from an application. To retrieve all of these errors and warnings, the
application must make repeated calls to ttUtilGetError until it returns TTUTIL_NODATA.

Chapter 8
ttUtilGetErrorCount

8-23

See Also

ttUtilAllocEnv
ttUtilFreeEnv
ttUtilGetError

ttXactIdRollback
Description

Rolls back the transaction indicated by the transaction ID that is specified. The
intended user of ttXactIdRollback is the ttXactAdmin utility. However, programs that
want to have a thread with the power to roll back the work of other threads must
ensure that those threads call the ttXactIdGet built-in procedure before beginning
work and put the results into a location known to the thread that wishes to roll back the
transaction. (Refer to ttXactIdGet in Oracle TimesTen In-Memory Database
Reference.)

Required Privilege

ADMIN

Syntax

ttXactIdRollback (ttUtilHandle handle, const char* connStr,
 const char* xactId)

Parameters

Parameter Type Description

handle ttUtilHandle Specifies the TimesTen utility library
environment handle allocated using
ttUtilAllocEnv.

connStr const char** Specifies the connection string of the database,
which contains the transaction to be rolled back.

xactId const char* Indicates the transaction ID for the transaction to
be rolled back.

Example

This example rolls back a transaction with the ID 3.4567 in the database named
payroll.

char errBuff [256];
int rc;
unsigned int retCode;
ttUtilErrType retType;
ttUtilHandle utilHandle;
...
rc = ttXactIdRollback (utilHandle, "DSN=payroll", "3.4567");
if (rc == TTUTIL_SUCCESS)

Chapter 8
ttXactIdRollback

8-24

 printf ("Transaction ID successfully rolled back.\n");
else if (rc == TTUTIL_INVALID_HANDLE)
 printf ("TimesTen utility library handle is invalid.\n");
else
 while ((rc = ttUtilGetError (utilHandle, 0, &retCode,
 &retType, errBuff, sizeof (errBuff), NULL)) != TTUTIL_NODATA)
 {
 ...
}

Chapter 8
ttXactIdRollback

8-25

9
XLA Reference

This chapter provides reference information for the Transaction Log API (XLA).

See XLA and TimesTen Event Management.

It includes the following topics:

• Overview of XLA Functions

• Summary of XLA Functions by Category

• XLA Function Reference

• XLA Replication Function Reference

• C Data Structures Used by XLA

Overview of XLA Functions
This section provides general information about XLA functions for TimesTen Classic.

• XLA Function Return Codes

• XLA Function Parameter Types (Input, Output, Input/Output)

• Results Output by XLA Functions

• XLA Function Required Privileges

XLA Function Return Codes
All of the XLA API functions described in this chapter return a value of type SQLRETURN.

SQLRETURN is defined by ODBC to have one of the following values:

• SQL_SUCCESS
• SQL_SUCCESS_WITH_INFO
• SQL_NO_DATA_FOUND
• SQL_ERROR
See XLA Error Handling.

Note:

SQL_NO_DATA_FOUND is defined in sqlext.h, which is included by timesten.h.

9-1

XLA Function Parameter Types (Input, Output, Input/Output)
There are three XLA function parameter types.

In the function descriptions:

• All parameters are input-only unless otherwise indicated.

• Output parameters are prefixed with OUT.

• Input/output parameters are prefixed with IN OUT.

Results Output by XLA Functions
Most routines in this API copy results to application buffers. Those few routines that
produce pointers to buffers containing results are guaranteed as valid only until the
next call with the same XLA handle.

Exceptions to this rule include the following.

• Buffers remain valid across calls to the ttXlaError function that supplies diagnostic
information.

• Results returned by ttXlaNextUpdate remain valid until the next call to
ttXlaNextUpdate.

• For ttXlaAcknowledge, if the application must retain access to the buffers for a longer
time, it must copy the information from the buffer returned by XLA to an
application-owned buffer.

Character string values in XLA are null-terminated, except for actual column values.
Fixed-length CHAR columns are space-padded to their full length. VARCHAR columns
have an explicit length encoded.

XLA uses the same data structures for 64-bit platforms as it has for 32-bit platforms.
The types SQLUINTEGER and SQLUBIGINT refer to 64-bit and 32-bit integers
unambiguously. Issues of alignment and padding are addressed by filling the type
definition so that each SQLUINTEGER value is on a four-byte boundary and each
SQLUBIGINT value is on an eight-byte boundary. For a description of storage
requirements for other TimesTen data types, see Understanding Rows in Oracle
TimesTen In-Memory Database Operations Guide.

XLA Function Required Privileges
Any XLA functionality requires the system privilege XLA.

XLA System Privilege introduces the effects of TimesTen access control features on
XLA functionality.

Summary of XLA Functions by Category
TimesTen XLA can be used to detect updates on a TimesTen Classic database or as a
toolkit to build your own replication solution.

See XLA and TimesTen Event Management.

Chapter 9
Summary of XLA Functions by Category

9-2

This section categorizes the XLA functions based on their use and provides a brief
description of each function. It includes the following categories:

• XLA Core Functions

• XLA Data Type Conversion Functions

• XLA Replication Functions

XLA Core Functions
The following table lists all the XLA functions used in typical XLA operations, aside from data
conversion functions which are listed separately below.

See Writing an XLA Event-Handler Application for a discussion on how to use most of these
functions.

Function Description

ttXlaAcknowledge Acknowledges receipt of one or more transaction update records
from the transaction log.

ttXlaClose Closes the XLA handle opened by ttXlaPersistOpen.

ttXlaConvertCharType Converts column data into the connection character set.

ttXlaDeleteBookmark Deletes a transaction log bookmark.

ttXlaError Retrieves error information.

ttXlaErrorRestart Resets error stack information.

ttXlaGetColumnInfo Retrieves information about all the columns in the table.

ttXlaGetLSN Retrieves the log record identifier of the current bookmark for a
database.

ttXlaGetTableInfo Retrieves information about a table.

ttXlaGetVersion Retrieves the current version of XLA.

ttXlaNextUpdate Retrieves a batch of updates from TimesTen.

ttXlaNextUpdateWait Retrieves a batch of updates from TimesTen. Waits for a specified
time if no updates are available in the transaction log.

ttXlaPersistOpen Initializes a handle to a database to access the transaction log.

ttXlaSetLSN Sets the log record identifier of the current bookmark for a
database.

ttXlaSetVersion Sets the XLA version to be used.

ttXlaTableByName Finds the system and user table identifiers for a table given the
table owner and name.

ttXlaTableStatus Sets and retrieves XLA status for a table.

ttXlaTableVersionVerify Checks whether the cached table definitions are compatible with
the XLA record being processed.

ttXlaVersionColumnInfo Retrieves information about the columns in a table for which a
change update record must be processed.

ttXlaVersionCompare Compares two XLA versions.

Chapter 9
Summary of XLA Functions by Category

9-3

XLA Data Type Conversion Functions
The following table lists data type conversion functions.

See XLA Data Types.

Function Description

ttXlaDateToODBCCType Converts a TTXLA_DATE_TT value to an ODBC C
value usable by applications.

ttXlaDecimalToCString Converts a TTXLA_DECIMAL_TT value to a
character string usable by applications.

ttXlaNumberToBigInt Converts a TTXLA_NUMBER value to a SQLBIGINT
C value usable by applications.

ttXlaNumberToCString Converts a TTXLA_NUMBER value to a character
string usable by applications.

ttXlaNumberToDouble Converts a TTXLA_NUMBER value to a long floating
point number value usable by applications.

ttXlaNumberToInt Converts a TTXLA_NUMBER value to an integer
usable by applications.

ttXlaNumberToSmallInt Converts a TTXLA_NUMBER value to a
SQLSMALLINT C value usable by applications.

ttXlaNumberToTinyInt Converts a TTXLA_NUMBER value to a SQLCHAR C
value usable by applications.

ttXlaNumberToUInt Converts a TTXLA_NUMBER value to an unsigned
integer usable by applications.

ttXlaOraDateToODBCTimeStamp Converts a TTXLA_DATE value to an ODBC
timestamp usable by applications.

ttXlaOraTimeStampToODBCTimeStamp Converts a TTXLA_TIMESTAMP value to an ODBC
timestamp usable by applications.

ttXlaRowidToCString Converts a ROWID value to a character string value
usable by applications.

ttXlaTimeToODBCCType Converts a TTXLA_TIME value to an ODBC C
value usable by applications.

ttXlaTimeStampToODBCCType Converts a TTXLA_TIMESTAMP_TT value to an
ODBC C value usable by applications.

XLA Replication Functions
TimesTen replication as described in Overview of TimesTen Replication in the Oracle
TimesTen In-Memory Database Replication Guide is sufficient for most TimesTen
customer needs. However, it is also possible to use XLA functions to replicate updates
from one database to another. Implementing your own replication scheme on top of
XLA in this way is fairly complicated, but can be considered if TimesTen replication is
not feasible for some reason.
The following table lists functions used exclusively for XLA as a replication
mechanism. (Reference information for these functions is in a separate section from
other XLA functions, XLA Replication Function Reference.)

Chapter 9
Summary of XLA Functions by Category

9-4

Function Description

ttXlaApply Applies the update to the database associated with the XLA handle.

ttXlaCommit Commits a transaction.

ttXlaGenerateSQL Generates a SQL statement that expresses the effect of an update record.

ttXlaLookup Looks for an update record for a table with a specific key value.

ttXlaRollback Rolls back a transaction.

ttXlaTableCheck Verifies that the named table in the table description received from the
sending database is compatible with the receiving database.

See Using XLA as a Replication Mechanism for a discussion on how to use these functions.

XLA Function Reference
This section provides reference information for XLA core functions and XLA data type
conversion functions.

The functions are listed in alphabetical order.

Note:

Functions used exclusively for XLA as a replication mechanism are documented in
a separate section, XLA Replication Function Reference.

ttXlaAcknowledge
Description

This function is used to acknowledge that one or more records have been read from the
transaction log by the ttXlaNextUpdate or ttXlaNextUpdateWait function.

After you make this call, the bookmark is reset so that you cannot reread any of the
previously returned records. Call ttXlaAcknowledge only when messages have been
completely processed.

Note:

• The bookmark is only reset for the specified handle. Other handles in the
system may still be able to access those earlier transactions.

• The bookmark is reset even if there are no relevant update records to
acknowledge.

Note that ttXlaAcknowledge is an expensive operation that should be used only as
necessary. Calling ttXlaAcknowledge more than once per reading of the transaction log file
does not reduce the volume of the transaction log since XLA only purges transaction logs a

Chapter 9
XLA Function Reference

9-5

file at a time. To detect when a new transaction log file is generated, you can find out
which log file a bookmark is in by examining the purgeLSN (represented by the
PURGELSNHIGH and PURGELSNLOW values) for the bookmark in the system table
SYS.TRANSACTION_LOG_API. You can then call ttXlaAcknowledge to purge the old
transaction log files. (Note that you must have ADMIN or SELECT ANY TABLE privilege to
view this table.)

The second purpose of ttXlaAcknowledge is to ensure that the XLA application does
not see the acknowledged records if it were to connect to a previously used bookmark
by calling the ttXlaPersistOpen function with the XLAREUSE option. If you intend to reuse a
bookmark, call ttXlaAcknowledge to reset the bookmark position to the current record
before calling ttXlaClose.

See Retrieving Update Records From the Transaction Log.

Required Privilege

XLA

Syntax

SQLRETURN ttXlaAcknowledge(ttXlaHandle_h handle)

Parameters

Parameter Type Description

handle ttXlaHandle_h Transaction log handle

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example

rc = ttXlaAcknowledge(xlahandle);

See Also

ttXlaNextUpdate
ttXlaNextUpdateWait

ttXlaClose
Description

Closes an XLA handle that was opened by ttXlaPersistOpen. See Terminating an XLA
Application.

Required Privilege

XLA

Chapter 9
XLA Function Reference

9-6

Syntax

SQLRETURN ttXlaClose(ttXlaHandle_h handle)

Parameters

Parameter Type Description

handle ttXlaHandle_h ODBC handle for the database

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

To close the XLA handle opened in the previous example, use the following call:

rc = ttXlaClose(xlahandle);

See Also

ttXlaPersistOpen

ttXlaConvertCharType
Description

Converts the column data indicated by the colinfo and tup parameters into the connection
character set associated with the transaction log handle and places the result in a buffer.

Required Privilege

XLA

Syntax

SQLRETURN ttXlaConvertCharType (ttXlaHandle_h handle,
 ttXlaColDesc_t* colinfo,
 void* tup,
 void* buf,
 size_t buflen)

Parameters

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

colinfo ttXlaColDesc_t* Pointer to the buffer that holds the column
descriptions

tup void* Data to be converted

buf void* Location where the converted data is placed

buflen size_t Size of the buffer where the converted data is
placed

Chapter 9
XLA Function Reference

9-7

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

ttXlaDateToODBCCType
Description

Converts a TTXLA_DATE_TT value to an ODBC C value usable by applications. See
Converting Complex Data Types.

Call this function only on a column of data type TTXLA_DATE_TT. The data type can be
obtained from the ttXlaColDesc_t structure returned by the ttXlaGetColumnInfo function.

Required Privilege

XLA

Syntax

SQLRETURN ttXlaDateToODBCCType(void* fromData,
 out DATE_STRUCT* returnData)

Parameters

Parameter Type Description

fromData void* Pointer to the date value returned from the
transaction log

returnData DATE_STRUCT* Pointer to storage allocated to hold the
converted date

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

ttXlaDecimalToCString
Converts a TTXLA_DECIMAL_TT value to a string usable by applications.

Description

The scale and precision values can be obtained from the ttXlaColDesc_t structure
returned by the ttXlaGetColumnInfo function. The scale parameter specifies the
maximum number of digits after the decimal point. If the decimal value is larger than 1,
the precision parameter should specify the maximum number of digits before and
after the decimal point. If the decimal value is less than 1, precision equals scale.

Call this function only for a column of type TTXLA_DECIMAL_TT. The data type can be
obtained from the ttXlaColDesc_t structure returned by the ttXlaGetColumnInfo
function.

See Converting Complex Data Types.

Chapter 9
XLA Function Reference

9-8

Required Privilege

XLA

Syntax

SQLRETURN ttXlaDecimalToCString(void* fromData,
 out char* returnData,
 SQLSMALLINT precision,
 SQLSMALLINT scale)

Parameters

Parameter Type Description

fromData void* Pointer to the decimal value returned from the
transaction log

returnData char* Pointer to storage allocated to hold the converted
string

precision SQLSMALLINT If fromData is greater than 1, the maximum number
of digits before and after the decimal point

If fromData is less than 1, same as scale

scale SQLSMALLINT Maximum number of digits after the decimal point

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example

This example assumes you have obtained the offset, precision, and scale values from a
ttXlaColDesc_t structure and used the offset to obtain a decimal value, pColVal, in a row
returned in a transaction log record.

char decimalData[50];
static ttXlaColDesc_t colDesc[255];

rc = ttXlaDecimalToCString(pColVal, (char*)&decimalData,
 colDesc->precision,
 colDesc->scale);

ttXlaDeleteBookmark
Description

Deletes the bookmark associated with the specified transaction log handle. After the
bookmark has been deleted, it is no longer accessible and its identifier may be reused for
another bookmark. The deleted bookmark is no longer associated with the database handle
and the effect is the same as having opened the connection with the XLANONE option.

If the bookmark is in use, it cannot be deleted until it is no longer in use.

See Deleting Bookmarks.

Chapter 9
XLA Function Reference

9-9

Note:

• Do not confuse this with the TimesTen built-in procedure
ttXlaBookmarkDelete, documented in ttXlaBookmarkDelete in Oracle
TimesTen In-Memory Database Reference.

• You cannot delete replicated bookmarks while the replication agent is
running.

Required Privilege

XLA

Syntax

SQLRETURN ttXlaDeleteBookmark(ttXlaHandle_h handle)

Parameters

Parameter Type Description

handle ttXlaHandle_h Transaction log handle

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example

Delete the bookmark for xlahandle:

rc = ttXlaDeleteBookmark(xlahandle);

See Also

ttXlaPersistOpen
ttXlaGetLSN
ttXlaSetLSN

ttXlaError
Description

Reports details of any errors encountered from the previous call on the given
transaction log handle. Multiple errors may be returned through subsequent calls to
ttXlaError. The error stack is cleared following each call to a function other than
ttXlaError itself and ttXlaErrorRestart.

See "XLA Error Handling" for a discussion about using this function.

Required Privilege

XLA

Chapter 9
XLA Function Reference

9-10

Syntax

SQLRETURN ttXlaError(ttXlaHandle_h handle,
 out SQLINTEGER* errCode,
 out char* errMessage,
 SQLINTEGER maxLen,
 out SQLINTEGER* retLen)

Parameters

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

errCode SQLINTEGER* Code of the error message to be copied into the
errMessage buffer

errMessage char* Buffer to hold the error text

maxLen SQLINTEGER Maximum length of the errMessage buffer

retLen SQLINTEGER* Actual size of the error message

Returns

Returns SQL_SUCCESS if error information is returned, or SQL_NO_DATA_FOUND if no more errors
are found in the error stack. If the errMessage buffer is not large enough, ttXlaError returns
SQL_SUCCESS_WITH_INFO.

Note:

SQL_NO_DATA_FOUND is defined in sqlext.h, which is included by timesten.h.

Example

There can be multiple errors on the error stack. This example shows how to read them all.

char message[100];
SQLINTEGER code;

for (;;) {
 rc = ttXlaError(xlahandle, &code, message, sizeof (message), &retLen);
 if (rc == SQL_NO_DATA_FOUND)
 break;
 if (rc == SQL_ERROR) {
 printf("Error in fetching error message\n");
 break;
 }
 else {
 printf("Error code %d: %s\n", code, message);
 }
}

Chapter 9
XLA Function Reference

9-11

Note

If you use multiple threads to access a TimesTen transaction log over a single XLA
connection, TimesTen creates a latch to control concurrent access. If for some reason
the latch cannot be acquired by a thread, the XLA function returns
SQL_INVALID_HANDLE.

See Also

ttXlaErrorRestart

ttXlaErrorRestart
Description

Resets the error stack so that an application can reread the errors. See XLA Error
Handling.

Required Privilege

XLA

Syntax

SQLRETURN ttXlaErrorRestart(ttXlaHandle_h handle)

Parameters

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example

rc = ttXlaErrorRestart(xlahandle);

See Also

ttXlaError

ttXlaGetColumnInfo
Description

Retrieves information about all the columns in the table. The output parameter for
number of columns returned, nreturned, is set to the number of columns returned in
colinfo. The systemTableID or userTableID parameter describes the desired table.
This call is serialized with respect to changes in the table definition.

See Obtaining Column Descriptions.

Chapter 9
XLA Function Reference

9-12

Required Privilege

XLA

Syntax

SQLRETURN ttXlaGetColumnInfo(ttXlaHandle_h handle,
 SQLUBIGINT systemTableID,
 SQLUBIGINT userTableID,
 out ttXlaColDesc_t* colinfo,
 SQLINTEGER maxcols,
 out SQLINTEGER* nreturned)

Parameters

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

systemTableID SQLUBIGINT System ID of table

userTableID SQLUBIGINT User ID of table

colinfo ttXlaColDesc_t* Pointer to the buffer large enough to hold a
separate description for maxcols columns

maxcols SQLINTEGER Maximum number of columns that can be stored in
the colInfo buffer

If the table contains more than maxcols columns,
an error is returned.

nreturned SQLINTEGER* Number of columns returned

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example

For this example, assume the following definitions:

ttXlaColDesc_t colinfo[20];
SQLUBIGINT systemTableID, userTableID;
SQLINTEGER ncols;

To get the description of up to 20 columns using the system table identifier, issue the
following call.

rc = ttXlaGetColumnInfo(xlahandle, systemTableID, 0, colinfo, 20, &ncols);

Likewise, the user table identifier can be used:

rc = ttXlaGetColumnInfo(xlahandle, 0, userTableID, colinfo, 20, &ncols);

See ttXlaColDesc_t for details and an example on how to access the column data in a
returned row.

Chapter 9
XLA Function Reference

9-13

See Also

ttXlaGetTableInfo
ttXlaDecimalToCString
ttXlaDateToODBCCType
ttXlaTimeToODBCCType
ttXlaTimeStampToODBCCType

ttXlaGetLSN
Description

Returns the Current Read log record identifier for the connection specified by the
transaction log handle. See How Bookmarks Work.

Required Privilege

XLA

Syntax

SQLRETURN ttXlaGetLSN(ttXlaHandle_h handle,
 out tt_XlaLsn_t* LSN)

Parameters

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

LSN tt_XlaLsn_t* Current Read log record identifier for the handle

Note:

Be aware that tt_XlaLsn_t, particularly the logFile and logOffset fields, is
used differently than in earlier releases, referring to log record identifiers
rather than sequentially increasing LSNs. See the note in tt_XlaLsn_t.

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example

This example returns the Current Read log record identifier, CurLSN.

tt_XlaLsn_t CurLSN;

rc = ttXlaGetLSN(xlahandle, &CurLSN);

Chapter 9
XLA Function Reference

9-14

See Also

ttXlaSetLSN

ttXlaGetTableInfo
Description

Retrieves information about the rows in the table (refer to the description of the ttXlaTblDesc_t
data type.) If the userTableID parameter is nonzero, then it is used to locate the desired
table. Otherwise, the systemTableID value is used to locate the table. If both are zero, an
error is returned. The description is stored in the output parameter tblinfo. This call is
serialized with respect to changes in the table definition.

Required Privilege

XLA

Syntax

SQLRETURN ttXlaGetTableInfo(ttXlaHandle_h handle,
 SQLUBIGINT systemTableID,
 SQLUBIGINT userTableID,
 out ttXlaTblDesc_t* tblinfo)

Parameters

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

systemTableID SQLUBIGINT System table ID

userTableID SQLUBIGINT User table ID

tblinfo ttXlaTblDesc_t* Row information

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example

For this example, assume the following definitions:

ttXlaTblDesc_t tabinfo;
SQLUBIGINT systemTableID, userTableID;

To get table information using a system identifier, find the system table identifier using
ttXlaTableByName or other means and issue the following call:

rc = ttXlaGetTableInfo(xlahandle, systemTableID, 0, &tabinfo);

Alternatively, the table information can be retrieved using a user table identifier:

rc = ttXlaGetTableInfo(xlahandle, 0, userTableID, &tabinfo);

Chapter 9
XLA Function Reference

9-15

See Also

ttXlaGetColumnInfo

ttXlaGetVersion
Description

This function is used in combination with ttXlaSetVersion to ensure XLA applications
written for older versions of XLA operate on a new version. The configured version is
typically the older version, while the actual version is the newer one.

The function retrieves the currently configured XLA version and stores it into
configuredVersion parameter. The actual version of the underlying XLA is stored in
actualVersion. Due to calls on ttXlaSetVersion, the results in configuredVersion
may vary from one call to the next, but the results in actualVersion remain the same.

Required Privilege

XLA

Syntax

SQLRETURN ttXlaGetVersion(ttXlaHandle_h handle,
 out ttXlaVersion_t* configuredVersion,
 out ttXlaVersion_t* actualVersion)

Parameters

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

configuredVersion ttXlaVersion_t* Configured version of XLA

actualVersion ttXlaVersion_t* Actual version of XLA

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example

Assume the following directions for this example:

ttXlaVersion_t configured, actual;

To determine the current version configuration, use the following call:

rc = ttXlaGetVersion(xlahandle, &configured, &actual);

See Also

ttXlaVersionCompare
ttXlaSetVersion

Chapter 9
XLA Function Reference

9-16

ttXlaNextUpdate
Description

This function fetches up to a specified maximum number of update records from the
transaction log and returns the records associated with committed transactions to a specified
buffer. The actual number of returned records is reported in the nreturned output parameter.
This function requires a bookmark to be present in the database and to be associated with
the connection used by the function.

Each call to ttXlaNextUpdate resets the bookmark to the last record read to enable the next
call to ttXlaNextUpdate to return the next list of records.

See Retrieving Update Records From the Transaction Log.

Required Privilege

XLA

Syntax

SQLRETURN ttXlaNextUpdate(ttXlaHandle_h handle,
 out ttXlaUpdateDesc_t*** records,
 SQLINTEGER maxrecords,
 out SQLINTEGER* nreturned)

Parameters

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

records ttXlaUpdateDesc_t*** Buffer to hold the completed transaction
records

maxrecords SQLINTEGER Maximum number of records to be fetched

nreturned SQLINTEGER* Actual number of returned records, where 0 is
returned if no update data is available

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example

This example retrieves up to 100 records and describes a loop in which each record can be
processed:

ttXlaUpdateDesc_t** records;
SQLINTEGER nreturned;
SQLINTEGER i;

rc = ttXlaNextUpdate(xlahandle, &records, 100, &nreturned);
/* Check for errors; if none, process the records */
for (i = 0; i < nreturned; i++) {
 process(records[i]);
}

Chapter 9
XLA Function Reference

9-17

Notes

Updates are generated for all data definition statements, regardless of tracking status.
Updates are generated for data update operations for all tracked tables associated
with the bookmark.

In addition, updates are generated for certain special operations, including assigning
application-level identifiers for tables and columns and changing the tracking status of
a table.

See Also

ttXlaNextUpdateWait
ttXlaAcknowledge

ttXlaNextUpdateWait
Description

This is similar to the ttXlaNextUpdate function, with the addition of a seconds parameter
that specifies the number of seconds to wait if no records are available in the
transaction log. The actual number of seconds of wait time can be up to two seconds
more than the specified seconds value.

Also see Retrieving Update Records From the Transaction Log.

Required Privilege

XLA

Syntax

SQLRETURN ttXlaNextUpdateWait(ttXlaHandle_h handle,
 out ttXlaUpdateDesc_t*** records,
 SQLINTEGER maxrecords,
 out SQLINTEGER* nreturned,
 SQLINTEGER seconds)

Parameters

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

records ttXlaUpdateDesc_t*** Buffer to hold completed transaction records

maxrecords SQLINTEGER Maximum number of records to be fetched

Note: The largest effective value is 1000
records.

nreturned SQLINTEGER* Actual number of records returned, where 0 is
returned if no update data is available within the
seconds wait period

seconds SQLINTEGER Number of seconds to wait if the log is empty

Chapter 9
XLA Function Reference

9-18

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example

This example retrieves up to 100 records and waits for up to 60 seconds if there are no
records available in the transaction log.

ttXlaUpdateDesc_t** records;
SQLINTEGER nreturned;
SQLINTEGER i;

rc = ttXlaNextUpdateWait(xlahandle, &records, 100, &nreturned, 60);
/* Check for errors; if none, process the records */
for (i = 0; i < nreturned; i++) {
 process(records[i]);
}

See Also

ttXlaNextUpdate
ttXlaAcknowledge

ttXlaNumberToBigInt
Description

Converts a TTXLA_NUMBER value to a SQLBIGINT value usable by an application.

Call this function only for a column of type TTXLA_NUMBER. The data type can be obtained from
the ttXlaColDesc_t structure returned by the ttXlaGetColumnInfo function.

Required Privilege

XLA

Syntax

SQLRETURN ttXlaNumberToBigInt(void* fromData,
 SQLBIGINT* bint)

Parameters

Parameter Type Description

fromData void* Pointer to the number value returned from the
transaction log

bint SQLBIGINT* The SQLBIGINT value converted from the XLA
number value

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Chapter 9
XLA Function Reference

9-19

ttXlaNumberToCString
Description

Converts a TTXLA_NUMBER value to a character string usable by an application.

Call this function only for a column of type TTXLA_NUMBER. The data type can be
obtained from the ttXlaColDesc_t structure returned by the ttXlaGetColumnInfo function.

Required Privilege

XLA

Syntax

SQLRETURN ttXlaNumberToCString(ttXlaHandle_h handle,
 void* fromData,
 char* buf,
 int buflen
 int* reslen)

Parameters

Parameter Type Description

fromData void* Pointer to the number value returned from the
transaction log

buf char* Location where the converted data is placed

buflen int Size of the buffer where the converted data is
placed

reslen int* Number of bytes that were written, assuming
buflen is large enough (otherwise, the number
of bytes that would have been written)

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

ttXlaNumberToDouble
Description

Converts a TTXLA_NUMBER value to a long floating point number value usable by
applications.

Call this function only for a column of type TTXLA_NUMBER. The data type can be
obtained from the ttXlaColDesc_t structure returned by the ttXlaGetColumnInfo function.

Required Privilege

XLA

Chapter 9
XLA Function Reference

9-20

Syntax

SQLRETURN ttXlaNumberToDouble(void* fromData,
 double* dbl)

Parameters

Parameter Type Description

fromData void* Pointer to the number value returned from the
transaction log

dbl double* The long floating point number value converted from
the XLA number value

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

ttXlaNumberToInt
Description

Converts a TTXLA_NUMBER value to a SQLINTEGER value usable by an application.

Call this function only for a column of type TTXLA_NUMBER. The data type can be obtained from
the ttXlaColDesc_t structure returned by the ttXlaGetColumnInfo function.

Required Privilege

XLA

Syntax

SQLRETURN ttXlaNumberToInt(void* fromData,
 SQLINTEGER* ival)

Parameters

Parameter Type Description

fromData void* Pointer to the number value returned from the
transaction log

ival SQLINTEGER* The SQLINTEGER value converted from the XLA
number value

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Chapter 9
XLA Function Reference

9-21

ttXlaNumberToSmallInt
Description

Converts a TTXLA_NUMBER value to a SQLSMALLINT value usable by an application.

Call this function only for a column of type TTXLA_NUMBER. The data type can be
obtained from the ttXlaColDesc_t structure returned by the ttXlaGetColumnInfo function.

Required Privilege

XLA

Syntax

SQLRETURN ttXlaNumberToSmallInt(void* fromData,
 SQLSMALLINT* smint)

Parameters

Parameter Type Description

fromData void* Pointer to the number value returned from the
transaction log

smint SQLSMALLINT* The SQLSMALLINT value converted from the
XLA number value

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

ttXlaNumberToTinyInt
Description

Converts a TTXLA_NUMBER value to a tiny integer value usable by an application.

Call this function only for a column of type TTXLA_NUMBER. The data type can be
obtained from the ttXlaColDesc_t structure returned by the ttXlaGetColumnInfo function.

Required Privilege

XLA

Syntax

SQLRETURN ttXlaNumberToTinyInt(void* fromData,
 SQLCHAR* tiny)

Chapter 9
XLA Function Reference

9-22

Parameters

Parameter Type Description

fromData void* Pointer to the number value returned from the
transaction log

tiny SQLCHAR* The tiny integer value converted from the XLA
number value

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

ttXlaNumberToUInt
Description

Converts a TTXLA_NUMBER value to an unsigned integer value usable by an application.

Call this function only for a column of type TTXLA_NUMBER. The data type can be obtained from
the ttXlaColDesc_t structure returned by the ttXlaGetColumnInfo function.

Required Privilege

XLA

Syntax

SQLRETURN ttXlaNumberToInt(void* fromData,
 SQLUINTEGER* ival)

Parameters

Parameter Type Description

fromData void* Pointer to the number value returned from the
transaction log

ival SQLUINTEGER* The integer value converted from the XLA number
value

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

ttXlaOraDateToODBCTimeStamp
Description

Converts a TTXLA_DATE value to an ODBC timestamp.

Call this function only for a column of type TTXLA_DATE. The data type can be obtained from
the ttXlaColDesc_t structure returned by the ttXlaGetColumnInfo function.

Chapter 9
XLA Function Reference

9-23

Required Privilege

XLA

Syntax

SQLRETURN ttXlaOraDateToODBCTimeStamp(void* fromData,
 TIMESTAMP_STRUCT* returnData)

Parameters

Parameter Type Description

fromData void* Pointer to the number value returned from the
transaction log

returnData TIMESTAMP_STRUCT* ODBC timestamp value converted from the
XLA Oracle Database DATE value

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

ttXlaOraTimeStampToODBCTimeStamp
Description

Converts a TTXLA_TIMESTAMP value to an ODBC timestamp.

Call this function only for a column of type TTXLA_TIMESTAMP. The data type can be
obtained from the ttXlaColDesc_t structure returned by the ttXlaGetColumnInfo function.

Syntax

SQLRETURN ttXlaOraTimeStampToODBCTimeStamp(void* fromData,
 TIMESTAMP_STRUCT*
returnData)

Required Privilege

XLA

Parameters

Parameter Type Description

fromData void* Pointer to the number value returned from
the transaction log

returnData TIMESTAMP_STRUCT* ODBC timestamp value converted from the
XLA Oracle Database TIMESTAMP value

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Chapter 9
XLA Function Reference

9-24

ttXlaPersistOpen
Description

Initializes a transaction log handle to a database to enable access to the transaction log. The
hdbc parameter is an ODBC connection handle to a database. Create only one XLA handle
for each ODBC connection. After you have created an XLA handle on an ODBC connection,
do not issue any other ODBC calls over the ODBC connection until it is closed by ttXlaClose.

The tag is a string that identifies the XLA bookmark (see About XLA Bookmarks). The tag
can identify a new bookmark, either non-replicated or replicated, or one that exists in the
system, as specified by the options parameter. The handle parameter is initialized by this
call and must be provided on each subsequent call to XLA.

Some actions can be done without a bookmark. When performing these types of actions, you
can use the XLANONE option to access the transaction log without a bookmark. Actions that
cannot be done without a bookmark are the following:

• ttXlaAcknowledge

• ttXlaGetLSN

• ttXlaSetLSN

• ttXlaNextUpdate

• ttXlaNextUpdateWait

Multiple applications can concurrently read from the transaction log. See Initializing XLA and
Obtaining an XLA Handle.

When this function is successful, XLA sets the autocommit mode to off.

If this function fails but still creates a handle, the handle must be closed to prevent memory
leaks.

Note:

Space is allocated by this call. Call ttXlaClose to free space when you are finished.

Required Privilege

XLA

Syntax

SQLRETURN ttXlaPersistOpen(SQLHDBC hdbc,
 SQLCHAR* tag,
 SQLUINTEGER options,
 out ttXlaHandle_h* handle)

Chapter 9
XLA Function Reference

9-25

Parameters

Parameter Type Description

hdbc SQLHDBC ODBC handle for the database

tag SQLCHAR* Identifier for the XLA bookmark

This can be null, in which case options should
be set to XLANONE. Maximum allowed length is
31.

options SQLUINTEGER Bookmark options:

• XLANONE: Connect without a bookmark.
The tag field is ignored.

• XLACREAT: Create a new non-replicated
bookmark. Fails if a bookmark already
exists.

• XLAREPL: Create a new replicated
bookmark. Fails if a bookmark already
exists.

• XLAREUSE: Associate with an existing
bookmark (non-replicated or replicated).
Fails if the bookmark does not exist.

handle ttXlaHandle_h* Transaction log handle returned by this call

Returns

Returns SQL_SUCCESS or SQL_SUCCESS_WITH_INFO if call is successful. Otherwise, call
SQLError on the HDBC connection handle that was passed in as an argument.

Example

This example opens a transaction log, returns a handle named xlahandle, and creates
a new non-replicated bookmark named mybookmark:

SQLHDBC hdbc;
ttXlaHandle_h xlahandle;

rc = ttXlaPersistOpen(hdbc, (SQLCHAR*)mybookmark,
 XLACREAT, &xlahandle);

Alternatively, create a new replicated bookmark as follows:

SQLHDBC hdbc;
ttXlaHandle_h xlahandle;

rc = ttXlaPersistOpen(hdbc, (SQLCHAR*)mybookmark,
 XLAREPL, &xlahandle);

Note

Multithreaded applications should create a separate XLA handle for each thread. If
multiple threads must use the same XLA handle, use a mutex to serialize thread
access to that XLA handle so that only one thread can execute an XLA operation at a
time.

Chapter 9
XLA Function Reference

9-26

See Also

ttXlaClose
ttXlaDeleteBookmark
ttXlaGetLSN
ttXlaSetLSN

ttXlaRowidToCString
Description

Converts a ROWID value to a string value usable by applications.

Required Privilege

XLA

Syntax

SQLRETURN ttXlaRowidToCString(void* fromData, char* buf, int buflen)

Parameters

Parameter Type Description

fromData void* Pointer to the ROWID value returned from the
transaction log

buf char* Pointer to storage allocated to hold the converted
string

buflen int Length of the converted string

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example

char charbuf[18];
void* rowiddata;
/* ... */
rc = ttXlaRowidToCString(rowiddata, charbuf, sizeof(charbuf));

ttXlaSetLSN
Description

Sets the Current Read log record identifier for the database specified by the transaction
handle. The specified LSN value should be returned from ttXlaGetLSN. It cannot be a user-
created value and cannot be earlier than the current bookmark Initial Read log record
identifier.

See "About XLA Bookmarks" for a discussion about using this function.

Chapter 9
XLA Function Reference

9-27

Required Privilege

XLA

Syntax

SQLRETURN ttXlaSetLSN(ttXlaHandle_h handle,
 tt_XlaLsn_t* LSN)

Parameters

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

LSN tt_XlaLsn_t* New log record identifier for the handle

Note:

Be aware that tt_XlaLsn_t, particularly the logFile and logOffset fields, is
used differently than in earlier releases, referring to log record identifiers
rather than sequentially increasing LSNs. See the note in tt_XlaLsn_t.

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example

This example sets the Current Read log record identifier to CurLSN.

tt_XlaLsn_t CurLSN;

rc = ttXlaSetLSN(xlahandle, &CurLSN);

See Also

ttXlaGetLSN

ttXlaSetVersion
Description

Sets the version of XLA to be used by the application. This version must be either the
same as the version received from ttXlaGetVersion or from an earlier version.

Required Privilege

XLA

Chapter 9
XLA Function Reference

9-28

Syntax

SQLRETURN ttXlaSetVersion(ttXlaHandle_h handle,
 ttXlaVersion_t* version)

Parameters

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

version ttXlaVersion_t* Desired version of XLA

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example

To set the configured version to the value specified in requestedVersion, issue the following
call:

rc = ttXlaSetVersion(xlahandle, &requestedVersion);

See Also

ttXlaVersionCompare
ttXlaGetVersion

ttXlaTableByName
Description

Finds the system and user table identifiers for a table or materialized view by providing the
owner and name of the table or view. See Specifying Which Tables to Monitor for Updates.

Required Privilege

XLA

Syntax

SQLRETURN ttXlaTableByName(ttXlaHandle_h handle,
 char* owner,
 char* name,
 out SQLUBIGINT* sysTableID,
 out SQLUBIGINT* userTableID)

Parameters

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

Chapter 9
XLA Function Reference

9-29

Parameter Type Description

owner char* Owner for the table or view as a string

name char* Name of the table or view

sysTableID SQLUBIGINT* System table ID

userTableID SQLUBIGINT* User table ID

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example

To get the system and user table IDs associated with the table PURCHASING.INVOICES,
use the following call:

SQLUBIGINT sysTableID;
SQLUBIGINT userTableID;

rc = ttXlaTableByName(xlahandle, "PURCHASING", "INVOICES",
 &sysTableID, &userTableID);

See Also

ttXlaTableStatus

ttXlaTableStatus
Description

Returns the update status for a table. Identify the table by specifying either a user ID
(userTableID) or a system ID (systemTableID). If userTableID is nonzero, it is used to
locate the table. Otherwise systemTableID is used. If both are zero, an error is
returned.

Specifying a value for newstatus sets the update status to *newstatus. A nonzero
status means the table specified by systemTableID is available through XLA. Zero
means the table is not tracked. Changes to table update status are effective
immediately.

Updates to a table are tracked only if update tracking was enabled for the table at the
time the update was performed. This call is serialized with respect to updates to the
underlying table. Therefore, transactions that update the table run either completely
before or completely after the change to table status.

To use ttXlaTableStatus, the user must be connected to a bookmark. The function
reports inserts, updates, and deletes only to the bookmark that has subscribed to the
table. It reports DDL events to all bookmarks. DDL events include CREATAB, DROPTAB,
CREAIND, DROPIND, CREATVIEW, DROPVIEW, CREATSEQ, DROPSEQ, CREATSYN, DROPSYN,
ADDCOLS, DRPCOLS, TRUNCATE, SETTBL1, and SETCOL1 transactions. See
ttXlaUpdateDesc_t.

See "Specifying Which Tables to Monitor for Updates" for a discussion about using this
function.

Chapter 9
XLA Function Reference

9-30

Note:

DML updates to a table being tracked through XLA do not prevent
ttXlaTableStatus from running. However, DDL updates to the table being tracked,
which take a lock on SYS.TABLES, do delay ttXlaTableStatus from running in
serializable isolation against SYS.TABLES.

Required Privilege

XLA

Syntax

SQLRETURN ttXlaTableStatus(ttXlaHandle_h handle,
 SQLUBIGINT systemTableID,
 SQLUBIGINT userTableID,
 out SQLINTEGER* oldstatus,
 SQLINTEGER* newstatus)

Parameters

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

systemTableID SQLUBIGINT System ID of table

userTableID SQLUBIGINT User ID of table

oldstatus SQLINTEGER* XLA old status:

• 1: On
• 0: Off

newstatus SQLINTEGER* XLA new status:

• 1: On
• 0: Off

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example

The following examples assume that the system or user table identifiers are found using
ttXlaTableByName or some other means.

Assume these declarations for the example:

SQLUBIGINT systemTableID;
SQLUBIGINT userTableID;
SQLINTEGER currentStatus, requestedStatus;

To find the status of a table given its system table identifier, use the following call:

/* Get system table identifier into systemTableID, then ... */
rc = ttXlaTableStatus(xlahandle, systemTableID, 0,
 ¤tStatus, NULL);

Chapter 9
XLA Function Reference

9-31

The currentStatus value is nonzero if update tracking for the table is enabled, or zero
otherwise.

To enable update tracking for a table given a system table identifier, set the requested
status to 1 as follows:

requestedStatus = 1;

rc = ttXlaTableStatus(xlahandle, systemTableID, 0,
 NULL, &requestedStatus);

You can set a new update tracking status and retrieve the current status in a single
call, as in the following example:

requestedStatus = 1;

rc = ttXlaTableStatus(xlahandle, systemTableID, 0,
 ¤tStatus, &requestedStatus);

The above call enables update tracking for a table by system table identifier and
retrieves the prior update tracking status in the variable currentStatus.

All of these examples can be done using user table identifiers as well. To retrieve the
update tracking status of a table through its user table identifier, use the following call:

/* Get system table identifier into userTableID, then ... */

rc = ttXlaTableStatus(xlahandle, 0, userTableID,
 ¤tStatus, NULL);

See Also

ttXlaTableByName

ttXlaTableVersionVerify
Description

Verifies that the cached table definitions are compatible with the XLA record being
processed. Table definitions change only when the ALTER TABLE statement is used to
add or remove columns.

You can monitor the XLA stream for XLA records of transaction type ADDCOLS and
DRPCOLS to avoid the overhead of using this function. When an XLA record of
transaction type ADDCOLS or DROPCOLS is encountered, refresh the table and column
definitions. See Inspecting Record Headers and Locating Row Addresses for
information about monitoring XLA records for transaction type.

Required Privilege

XLA

Syntax

SQLRETURN ttXlaTableVersionVerify(ttXlaHandle_h handle
 ttXlaTblVerDesc_t* table,
 ttXlaUpdateDesc_t* record
 out SQLINTEGER* compat)

Chapter 9
XLA Function Reference

9-32

Parameters

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

table ttXlaTblVerDesc_t* A cached table description

record ttXlaUpdateDesc_t* XLA record to be processed

compat SQLINTEGER* Compatibility information:

• 1: Tables are compatible.
• 0: Tables are not compatible.

Returns

Returns SQL_SUCCESS if cached table definition is compatible with the XLA record being
processed. Otherwise, use ttXlaError to report the error.

Example

This example checks the compatibility of a table.

SQLINTEGER compat;
ttXlaTbVerDesc_t table;
ttXlaUpdateDesc_t* record;
/*
 * Get the desired table definitions into the variable "table"
 */
rc = ttXlaTableVersionVerify(xlahandle, &table, record, &compat);
if (compat) {
/*
 * Compatible
 */
}
else {
/*
 * Not compatible or some other error occurred
 * If not compatible, issue a call to ttXlaVersionTableInfo and
 * ttXlaVersionColumnInfo to get the new definition.
 */
}

See Also

ttXlaVersionColumnInfo
ttXlaVersionTableInfo

ttXlaTimeToODBCCType
Description

Converts a TTXLA_TIME value to an ODBC C value usable by applications. See Converting
Complex Data Types for a discussion about using this function.

Call this function only for a column of type TTXLA_TIME. The data type can be obtained from
the ttXlaColDesc_t structure returned by the ttXlaGetColumnInfo function.

Chapter 9
XLA Function Reference

9-33

Required Privilege

XLA

Syntax

SQLRETURN ttXlaTimeToODBCCType (void* fromData,
 out TIME_STRUCT* returnData)

Parameters

Parameter Type Description

fromData void* Pointer to the time value returned from the
transaction log

returnData TIME_STRUCT* Pointer to storage allocated to hold the
converted time

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example

This example assumes you have used the offset value returned in a ttXlaColDesc_t
structure to obtain a time value, pColVal, from a row returned in a transaction log
record.

TIME_STRUCT time;

rc = ttXlaTimeToODBCCType(pColVal, &time);

ttXlaTimeStampToODBCCType
Description

Converts a TTXLA_TIMSTAMP_TT value to an ODBC C value usable by applications. See
Converting Complex Data Types for a discussion about using this function.

Call this function only for a column of type TTXLA_TIMSTAMP_TT. The data type can be
obtained from the ttXlaColDesc_t structure returned by the ttXlaGetColumnInfo function.

Required Privilege

XLA

Syntax

SQLRETURN ttXlaTimeStampToODBCCType(void* fromData,
 out TIMESTAMP_STRUCT* returnData)

Chapter 9
XLA Function Reference

9-34

Parameters

Parameter Type Description

fromData void* Pointer to the timestamp value returned from the
transaction log

returnData TIMESTAMP_STRUCT* Pointer to storage allocated to hold the
converted timestamp

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example

This example assumes you have used the offset value returned in a ttXlaColDesc_t structure
to obtain a timestamp value, pColVal, from a row returned in a transaction log record.

TIMESTAMP_STRUCT timestamp;

rc = ttXlaTimeStampToODBCCType(pColVal, ×tamp);

ttXlaVersionColumnInfo
Description

Retrieves information about the columns in a table for which a change update XLA record
must be processed.

Required privilege

XLA

Syntax

SQLRETURN ttXlaVersionColumnInfo(ttXlaHandle_h handle,
 ttXlaUpdateDesc_t* record,
 out ttXlaColDesc_t* colinfo,
 SQLINTEGER maxcols,
 out SQLINTEGER* nreturned)

Parameters

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

record ttXlaUpdateDesc_t* XLA record to be processed

colinfo ttXlaColDesc_t* A pointer to the buffer large enough to hold a
description for maxcols columns

maxcols SQLINTEGER Maximum number of columns the table can have

Note: If the table contains more than maxcols
columns, an error is returned.

Chapter 9
XLA Function Reference

9-35

Parameter Type Description

nreturned SQLINTEGER* Number of columns returned

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example

For this example, assume the following definitions:

ttXlaHandle_h xlahandle
ttXlaUpdateDesc_t* record;
ttXlaColDesc_t colinfo[20];
SQLINTEGER ncols;

The following call retrieves the description of up to 20 columns:

rc = ttXlaVersionColumnInfo(xlahandle, record, colinfo, 20, &ncols);

ttXlaVersionCompare
Description

Compares two XLA versions and returns a result indicating either that the versions are
the same, or which version is earlier.

Required Privilege

XLA

Syntax

SQLRETURN ttXlaVersionCompare(ttXlaHandle_h handle,
 ttXlaVersion_t* version1,
 ttXlaVersion_t* version2,
 out SQLINTEGER* comparison)

Parameters

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

version1 ttXlaVersion_t* Version of XLA to compare with version2

version2 ttXlaVersion_t* Version of XLA to compare with version1

comparison SQLINTEGER* Comparison result:

• 0: Indicates version1 and version2
match.

• -1: Indicates version1 is earlier than
version2.

• +1: Indicates version1 is later than
version2.

Chapter 9
XLA Function Reference

9-36

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example

To compare the configured version against the actual version of XLA, issue the following
call:

ttXlaVersion_t configured, actual;
SQLINTEGER comparision;

rc = ttXlaGetVersion (xlahandle, &configured, &actual);
rc = ttXlaVersionCompare (xlahandle, &configured, &actual,
 &comparison);

Notes

When connecting two systems with XLA-based replication, use the following protocol.

1. At the primary site, retrieve the XLA version using ttXlaGetVersion. Send this version
information to the standby site.

2. At the standby site, retrieve the XLA version using ttXlaGetVersion. Use
ttXlaVersionCompare to determine which version is earlier. The earlier version number
must be used to ensure proper operation between the two sites. Use ttXlaSetVersion to
specify the version of the interface to use at the standby site. Send the earlier version
number back to the primary site.

3. When the chosen version is received at the primary site, use ttXlaSetVersion to specify
the version of XLA to use.

See Also

ttXlaGetVersion
ttXlaSetVersion

ttXlaVersionTableInfo
Description

Retrieves the table definition for the change update record that must be processed. The table
description is stored in the tableinfo output parameter.

Required Privilege

XLA

Syntax

SQLRETURN ttXlaVersionTableInfo(ttXlaHandle_h handle,
 ttXlaUpdateDesc_t* record,
 out ttXlaTblVerDesc_t* tblinfo)

Chapter 9
XLA Function Reference

9-37

Parameters

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

record ttXlaUpdateDesc_t* XLA record to be processed

tableinfo ttXlaTblVerDesc_t* Information about table definition

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example

For this example, assume the following definitions:

ttXlaHandle_h xlahandle;
ttXlaUpdateDesc_t* record;
ttXlaTblVerDesc_t tabinfo;

The following call retrieves a table definition:

rc = ttXlaVersionTableInfo(xlahandle, record, &tabinfo);

XLA Replication Function Reference
TimesTen replication as described in Overview of TimesTen Replication in Oracle
TimesTen In-Memory Database Replication Guide is sufficient for most customer
needs. However, it is also possible to use XLA functions to replicate updates from one
database to another. Implementing your own replication scheme on top of XLA in this
way is fairly complicated, but can be considered if TimesTen replication is not feasible
for some reason.
This section documents the functions that are exclusive to using XLA as a replication
mechanism. Functions are listed in alphabetical order.

ttXlaApply
This function is part of XLA replication functionality and is not appropriate for use in a
typical XLA application.

Description

Applies an update to the database associated with the transaction log handle. The
return value indicates whether the update was successful. The return also shows if the
update encountered a persistent problem. (To see whether the update encountered a
transient problem such as a deadlock or timeout, you must call ttXlaError and check the
error code.)

If the ttXlaUpdateDesc_t record is a transaction commit, the underlying database
transaction is committed. No other transaction commits are performed by ttXlaApply.
If the parameter test (see syntax below) is true, the "old values" in the update
description are compared against the current contents of the database for record
updates and deletions. If the old value in the update description does not match the

Chapter 9
XLA Replication Function Reference

9-38

corresponding row in the database, this function rejects the update and returns an
sb_ErrXlaTupleMismatch error.

See Using XLA as a Replication Mechanism.

Note:

ttXlaApply cannot be used if the table definition was updated since it was originally
written to the transaction log. Unique key and foreign key constraints are checked at
the row level rather than at the statement level.

Required Privilege

ADMIN
Additional privileges may be required on the target database for the ttXlaApply operation.
For example, to apply a CREATETAB (create table) record to the target database, you must
have CREATE TABLE or CREATE ANY TABLE privilege, as appropriate.

Syntax

SQLRETURN ttXlaApply(ttXlaHandle_h handle,
 ttXlaUpdateDesc_t* record,
 SQLINTEGER test)

Parameters

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

record ttXlaUpdateDesc_t* Transaction to generate SQL statement

test SQLINTEGER Test for old values:

• 1: Test on
• 0: Test off

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

If test is 1 and ttXlaApply detects an update conflict, an sb_ErrXlaTupleMismatch error is
returned.

Example

This example applies an update to a database without testing for the previous value of the
existing record:

ttXlaUpdateDesc_t record;
rc = ttXlaApply(xlahandle, &record, 0);

Chapter 9
XLA Replication Function Reference

9-39

Note

When calling ttXlaApply, it is possible for the update to timeout or deadlock with
concurrent transactions. In such cases, it is the application's responsibility to roll the
transaction back and reapply the updates.

See Also

ttXlaCommit
ttXlaRollback
ttXlaLookup
ttXlaTableCheck
ttXlaGenerateSQL

ttXlaCommit
This function is part of XLA replication functionality and is not appropriate for use in a
typical XLA application.

Description

Commits the current transaction being applied on the transaction log handle. This
routine commits the transaction regardless of whether the transaction has completed.
You can call this routine to respond to transient errors (timeout or deadlock) reported
by ttXlaApply, which applies the current transaction if it does not encounter an error.

See Handling Timeout and Deadlock Errors.

Required Privilege

XLA

Syntax

SQLRETURN ttXlaCommit(ttXlaHandle_h handle)

Parameters

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example

rc = ttXlaCommit(xlahandle);

See Also

ttXlaApply
ttXlaRollback

Chapter 9
XLA Replication Function Reference

9-40

ttXlaLookup
ttXlaTableCheck
ttXlaGenerateSQL

ttXlaGenerateSQL
This function is part of XLA replication functionality and is not appropriate for use in a typical
XLA application.

Note:

This function does not currently work with LOB locators.

Description

Generates a SQL DML or DDL statement that expresses the effect of the update record. The
generated statement is not applied to any database. Instead, the statement is returned in the
given buffer, whose maximum size is specified by the maxLen parameter. The actual size of
the buffer is returned in actualLen. For update and delete records, ttXlaGenerateSQL
requires a primary key or a unique index on a non-nullable column to generate the correct
SQL.

The generated SQL statement is encoded in the connection character set that is associated
with the ODBC connection of the XLA handle.

Also see Replicating Updates to a Non-TimesTen Database.

Required Privilege

XLA

Syntax

SQLRETURN ttXlaGenerateSQL(ttXlaHandle_h handle,
 ttXlaUpdateDesc_t* record,
 out char* buffer,
 SQLINTEGER maxLen,
 out SQLINTEGER* actualLen)

Parameters

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

record ttXlaUpdateDesc_t* Record to be translated into SQL

buffer char* Location of the translated SQL statement

maxLen SQLINTEGER Maximum length of the buffer, in bytes

actualLen SQLINTEGER* Actual length of the buffer, in bytes

Chapter 9
XLA Replication Function Reference

9-41

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example

This example generates the text of a SQL statement that is equivalent to the UPDATE
expressed by an update record:

ttXlaUpdateDesc_t record;
char buffer[200];
/*
 * Get the desired update record into the varable record.
 */

SQLINTEGER actualLength;

rc = ttXlaGenerateSQL(xlahandle, &record, buffer, 200,
 &actualLength);

Note

The ttXlaGenerateSQL function cannot generate SQL statements for update records
associated with a table that has been dropped or altered since the record was
generated.

See Also

ttXlaApply
ttXlaCommit
ttXlaRollback
ttXlaLookup
ttXlaTableCheck

ttXlaLookup
This function is part of XLA replication functionality and is not appropriate for use in a
typical XLA application.

Description

This function looks for a record in the given table with key values according to the keys
parameter. The formats of the keys and result records are the same as for ordinary
rows. This function requires a primary key on the underlying table.

Required Privilege

XLA

Syntax

SQLRETURN ttXlaLookup(ttXlaHandle_h handle,
 ttXlaTableDesc_t* table,
 void* keys,
 out void* result,

Chapter 9
XLA Replication Function Reference

9-42

 SQLINTEGER maxsize,
 out SQLINTEGER* retsize)

Parameters

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

table ttXlaTblDesc_t* Table to search

keys void* A record in the defined structure for the table

Only those columns of the keys record that are part
of the primary key for the table are examined.

result void* Where the located record is copied

If no record exists with the matching key columns,
an error is returned.

maxsize SQLINTEGER Size of the largest record that can fit into the result
buffer

retsize SQLINTEGER* Actual size of the record

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example

This example looks up a record given a pair of integer key values. Before this call, table
should describe the desired table and keybuffer contains a record with the key columns set.

char keybuffer[100];
char recbuffer[2000];
ttXlaTableDesc_t table;
SQLINTEGER recordSize;

rc = ttXlaLookup(xlahandle, &table, keybuffer, recbuffer,
 sizeof (recbuffer), &recordSize);

See Also

ttXlaApply
ttXlaCommit
ttXlaRollback
ttXlaTableCheck
ttXlaGenerateSQL

ttXlaRollback
This function is part of XLA replication functionality and is not appropriate for use in a typical
XLA application.

Description

Rolls back the current transaction being applied on the transaction log handle. You can call
this routine to respond to transient errors (timeout or deadlock) reported by ttXlaApply.

Chapter 9
XLA Replication Function Reference

9-43

See Handling Timeout and Deadlock Errors.

Required Privilege

XLA

Syntax

SQLRETURN ttXlaRollback(ttXlaHandle_h handle)

Parameters

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example

rc = ttXlaRollback(xlahandle);

See Also

ttXlaApply
ttXlaCommit
ttXlaLookup
ttXlaTableCheck
ttXlaGenerateSQL

ttXlaTableCheck
This function is part of XLA replication functionality and is not appropriate for use in a
typical XLA application.

Description

When using XLA as a replication mechanism, this function verifies that the named
table in the ttXlaTblDesc_t structure received from a master database is compatible with
a subscriber database or database associated with the transaction log handle. The
compat parameter indicates whether the tables are compatible.

See Checking Table Compatibility Between Databases.

Required Privilege

XLA

Syntax

SQLRETURN ttXlaTableCheck(ttXlaHandle_h handle,
 ttXlaTblDesc_t* table,

Chapter 9
XLA Replication Function Reference

9-44

 ttXlaColDesc_t* columns,
 out SQLINTEGER* compat)

Parameters

Parameter Type Description

handle ttXlaHandle_h Transaction log handle for the database

table ttXlaTblDesc_t* Table description

columns ttXlaColDesc_t* Column description for the table

compat SQLINTEGER* Compatibility information:

• 1: Tables are compatible.
• 0: Tables are not compatible.

Returns

Returns SQL_SUCCESS if call is successful. Otherwise, use ttXlaError to report the error.

Example

This example checks the compatibility of a table:

SQLINTEGER compat;
ttXlaTblDesc_t table;
ttXlaColDesc_t columns[20];
/*
 * Get the desired table and column definitions into
 * the variables "table" and "columns"
 */
rc = ttXlaTableCheck(xlahandle, &table, columns, &compat);
if (compat) {
 /* Compatible */
}
else {
 /*
 * Not compatible or some other error occurred
 */
}

See Also

ttXlaApply
ttXlaCommit
ttXlaRollback
ttXlaLookup
ttXlaGenerateSQL

C Data Structures Used by XLA
This section describes the C data structures used by the XLA functions described in this
chapter.

These structures are defined in the following file:

installation_dir/include/tt_xla.h

Chapter 9
C Data Structures Used by XLA

9-45

You must include this file when building your XLA application.

Table 9-1 Summary of C Data Structures

C Data Structure Description

ttXlaNodeHdr_t Describes the record type. Used at the beginning of records returned
by XLA.

ttXlaUpdateDesc_t Describes an update record.

ttXlaVersion_t Describes XLA version information returned by ttXlaGetVersion.

ttXlaTblDesc_t Describes table information returned by ttXlaGetTableInfo.

ttXlaTblVerDesc_t Describes table version returned by ttXlaVersionTableInfo.

ttXlaColDesc_t Describes table column information returned by ttXlaGetColumnInfo.

tt_LSN_t Describes a log record identifier used by bookmarks. This structure is
used by the ttXlaUpdateDesc_t structure.

tt_XlaLsn_t Describes a log record identifier used by an XLA bookmark.

ttXlaNodeHdr_t
Most C data structures begin with a standard header that describes the data record
type and length. The standard header has the type ttXlaNodeHdr_t.

This header has the following fields.

Field Type Description

nodeType char The type of record:

• TTXLANHVERSION: Version

• TTXLANHUPDATE: Update

• TTXLANHTABLEDESC: Table description

• TTXLANHCOLDESC: Column description

• TTXLANHSTATUS: Status

• TTXLANHINVALID: Invalid

byteOrder char Byte order of the record:

• "1": Big-endian
• "2": Little-endian

length SQLUINTEGER Total length of record, including all attachments

ttXlaUpdateDesc_t
This structure describes an update operation to a single row (or tuple) in the database.

Each update record returned by a ttXlaNextUpdate or ttXlaNextUpdateWait function begins
with a fixed length ttXlaUpdateDesc_t header followed by zero to two rows from the
database. The row data differs depending on the record type reported in the
ttXlaUpdateDesc_t header:

• No rows are present in a COMMITONLY record.

• One row is present in INSERTTUP or DELETETUP.

Chapter 9
C Data Structures Used by XLA

9-46

• Two rows are present in an UPDATETUP record to report the row data before and after the
update, respectively.

• Special format rows are present in CREATAB, DROPTAB, CREAIND, DROPIND, CREATVIEW,
DROPVIEW, CREATSEQ, DROPSEQ, CREATSYN, DROPSYN, ADDCOLS, and DRPCOLS records, which
are described in Special Update Data Formats.

The flags field is a bit-map of special options for the record update.

The connID field identifies the ODBC connection handle that initiated the update. This value
can be used to determine if updates came from the same connection.

A separate commit XLA record is generated when a call to the ttApplicationContext
procedure is not followed by an operation that generates an XLA record. See Passing
Application Context for a description of the ttApplicationContext procedure.

Note

XLA cannot receive notification of the following:

• CREATE VIEW or DROP VIEW for a non-materialized view

• CREATE GLOBAL TEMPORARY TABLE or DROP TABLE for a temporary table

The only XLA records that can be generated from an ALTER TABLE operation are of the
following types:

• ADDCOLS or DRPCOLS when columns are added or dropped

• CREAIND or DROPIND when a unique attribute of a column is modified

While sequence creates (CREATESEQ) and drops (DROPSEQ) are visible through XLA, sequence
increments are not.

All deletes resulting from cascading deletes and aging are visible through XLA. The flags
value (discussed in the following table) indicates when deletes are due to cascading or aging.

The fields of the update header defined by ttXlaUpdateDesc_t are as follows.

Field Type Description

header ttXlaNodeHdr_t Standard data header

Chapter 9
C Data Structures Used by XLA

9-47

Field Type Description

type SQLUSMALLINT Record type:

• CREATAB: Create table.

• DROPTAB: Drop table.

• CREAIND: Create index.

• DROPIND: Drop index.

• CREATVIEW: Create view.

• DROPVIEW: Drop view.

• CREATSEQ: Create sequence.

• DROPSEQ: Drop sequence.

• CREATSYN: Create synonym.

• DROPSYN: Drop synonym.

• ADDCOLS: Add columns.

• DRPCOLS: Drop columns.

• TRUNCATE: Truncate table.

• INSERTTUP: Insert.

• UPDATETUP: Update.

• DELETETUP: Delete.

• COMMITONLY: Commit.

Chapter 9
C Data Structures Used by XLA

9-48

Field Type Description

flags SQLUSMALLINT Special options on record update:

• TT_UPDCOMMIT: Indicates that the update record is
the last record for the transaction. (Implied commit.)

• TT_UPDFIRST: Indicates that the update record is the
first record for the transaction.

• TT_UPDREPL: Indicates that this update was the result
of a non-XLA TimesTen replicated update from
another database.

• TT_UPDCOLS: Indicates the presence of a list
following the last returned row that specifies which
columns in the row were updated. The list consists of
an array of SQLUSMALLINT values, the first of which is
the number of columns that were updated, followed
by the column numbers of the updated columns. For
example, if the first and third columns are updated,
the array is (2, 1, 3) or (2, 3, 1), depending on the
UPDATE statement used. This array is in all
UPDATETUP records.

• TT_UPDDEFAULT: Indicates that the update record
(either a CREATAB or ADDCOLS) contains default
column values. If set, the default columns are
presented as an array of SQLUSMALLINT values
followed by a string with all the default values
concatenated. The number of SQLUSMALLINT values
in the array equals the number of columns in the
CREATAB or ADDCOLS record.

• TT_CASCDEL: Indicates that the XLA update was
generated as part of a cascade delete operation.

• TT_AGING: Indicates that the XLA update was
generated as part of an aging operation.

If the value of a specific column is 0, it indicates that
column does not have a default value. The defaults for all
nonzero values are concatenated in a string and are
presented in order, with the array value indicating the
length of the default value. For example, three columns
with defaults 1 of type INTEGER, no default, and "apple" of
type VARCHAR2(10) is (1,0,5)"1apple".

Decimal values for each of these flags bits is as follows.
(Note that some flag values are for internal use only.)

TT_UPDCOMMIT 1
TT_UPDFIRST 2
TT_UPDREPL 4
TT_UPDCOLS 8
TT_UPDDEFAULT 64
TT_CASCDEL 256
TT_AGING 512

contextOffset SQLUINTEGER Offset to application-provided context value

This value is 0 if there is no context. A nonzero value
indicates the location of the context relative to the
beginning of the XLA record.

connID SQLUBIGINT Connection ID owning the transaction

Chapter 9
C Data Structures Used by XLA

9-49

Field Type Description

sysTableID SQLUBIGINT System-provided identifier of the affected table

userTableID SQLUBIGINT Application-defined table ID of the affected table

tranID SQLUBIGINT Read-only, system-provided transaction identifier

LSN tt_LSN_t Transaction log record identifier of this operation, used for
diagnostics

tuple1 SQLUINTEGER Length of first row (tuple), or zero

tuple2 SQLUINTEGER Length of second row (tuple), or zero

Note:

Be aware that tt_LSN_t, particularly the logFile and logOffset fields, is
used differently than in earlier releases, referring to log record identifiers
rather than sequentially increasing LSNs. See the note in "tt_LSN_t".

Special Update Data Formats
The data contained in an update record follows the ttXlaTblDesc_t header.

This section describes the data formats for the special update records related to
specific SQL operations. See ttXlaTblDesc_t.

CREATE TABLE
For a CREATE TABLE operation, the special row value consists of the ttXlaTblDesc_t
record describing the new table, followed by the ttXlaColDesc_t records that describe
each column.

See ttXlaColDesc_t.

ALTER TABLE
For an ALTER TABLE operation, the special row value consists of a
ttXlaDropTableTup_t or ttXlaAddColumnTup_t value, followed by a ttXlaColDesc_t
record that describes the column.

ttXlaDropTableTup_t
For a DROP TABLE operation, the row value is as follows.

Field Type Description

tblName char(31) Name of the dropped table

tblOwner char(31) Owner of the dropped table

Chapter 9
C Data Structures Used by XLA

9-50

ttXlaTruncateTableTup_t
For a TRUNCATE TABLE operation, the row value is as follows.

Field Type Description

tblName char(31) Name of the truncated table

tblOwner char(31) Owner of the truncated table

ttXlaCreateIndexTup_t
For a CREATE INDEX operation, the row value is as follows.

Field Type Description

tblName char(31) Name of the table on which the index is defined

tblOwner char(31) Owner of the table on which the index is defined

ixName char(31) Name of the new index

flag char(31) Index flag:

• "P": Primary key
• "F": Foreign key
• "R": Regular

nixcols SQLUINTEGER Number of indexed columns

ixColsSys SQLUINTEGER(16) Indexed column numbers using system numbers

ixColsUser SQLUINTEGER(16) Indexed column numbers using user-defined column
IDs

ixType char Type of index:

• "T": Range
• "H": Hash
• "B": Bit map

ixUnique char Uniqueness of index:

• "U": Unique
• "N": Non-unique

pages SQLUINTEGER Number of pages for hash indexes

ttXlaDropIndexTup_t
For a DROP INDEX operation, the row value is as follows.

Field Type Description

tblName char(31) Name of the table on which the index was dropped

tblOwner char(31) Owner of the table on which the index was dropped

ixName char(31) Name of the dropped index

ttXlaAddColumnTup_t
For an ADD COLUMN operation, the row value is as follows.

Chapter 9
C Data Structures Used by XLA

9-51

Field Type Description

ncols SQLUINTEGER Number of additional columns

Following this special row are the ttXlaColDesc_t records describing the new
columns.

ttXlaDropColumnTup_t
For a DROP COLUMN operation, the row value is as follows.

Field Type Description

ncols SQLUINTEGER Number of dropped columns

Following this special row is an array of ttXlaColDesc_t records describing the
columns that were dropped.

ttXlaCreateSeqTup_t
For a CREATE SEQUENCE operation, the row value is as follows.

Field Type Description

sqName char(31) Name of sequence

sqOwner char(31) Owner of sequence

cycle char Cycle flag

Indicates whether the sequence number
generator continues to generate numbers after it
reaches the maximum or minimum value:

• "1": Yes
• "0": No

minval SQLBIGINT Minimum value of sequence

maxval SQLBIGINT Maximum value of sequence

incr SQLBIGINT Increment between sequence numbers

Positive numbers indicate an ascending
sequence and negative numbers indicate a
descending sequence. In a descending
sequence, the range goes from maxval to
minval. In an ascending sequence, the range
goes from minval to maxval.

ttXlaDropSeqTup_t
For a DROP SEQUENCE operation, the row value is as follows.

Field Type Description

sqName char(31) Name of sequence

sqOwner char(31) Owner of sequence

Chapter 9
C Data Structures Used by XLA

9-52

ttXlaViewDesc_t
For a CREATE VIEW operation, the row value is as follows.

Note:

This applies to either materialized or non-materialized views.

Field Type Description

vwName char(31) Name of view

vwOwner char(31) Owner of view

sysTableID SQLUBIGINT System table ID stored in SYS.TABLES

ttXlaDropViewTup_t
For a DROP VIEW operation, the row value is as follows.

Note:

This applies to either materialized or non-materialized views.

Field Type Description

vwName char(31) Name of view

vwOwner char(31) Owner of view

ttXlaCreateSynTup_t
For a CREATE SYNONYM operation, the row value is as follows.

Field Type Description

synName char(31) Name of synonym

synOwner char(31) Owner of synonym

objName char(31) Name of object the synonym points to

objOwner char(31) Owner of object the synonym points to

isPublic char Indicates whether the synonym is public:

• "1": True
• "0": False

isReplace char Indicates whether the synonym was created using
CREATE OR REPLACE:

• "1": True
• "0": False

Chapter 9
C Data Structures Used by XLA

9-53

ttXlaDropSynTup_t
For a DROP SYNONYM operation, the row value is as follows.

Field Type Description

synName char(31) Name of synonym

synOwner char(31) Owner of synonym

isPublic char Indicates whether the synonym is public:

• "1": True
• "0": False

ttXlaSetTableTup_t
The description of the SET TABLE ID operation uses the previously assigned
application table identifier in the main part of the update record and provides the new
value of the application table identifier in the following special row.

Field Type Description

newID SQLUBIGINT New user-defined table ID

ttXlaSetColumnTup_t
The description of the SET COLUMN ID operation provides the following special row:

Field Type Description

oldUserColID SQLUINTEGER Previous user-defined column ID value

newUserColID SQLUINTEGER New user-defined column ID value

sysColID SQLUINTEGER System column ID

ttXlaSetStatusTup_t
A change in a table's replication status provides the following special row:

Field Type Description

oldStatus SQLUINTEGER Previous replication status

newStatus SQLUINTEGER New replication status

Locating the Row Data Following a ttXlaUpdateDesc_t Header
The update header is immediately followed by the row data. The row data is stored in
an internal format with the offsets given in the ttXlaColDesc_t structure returned by
ttXlaGetColumnInfo.
See Retrieving Update Records From the Transaction Log and Inspecting Record
Headers and Locating Row Addresses for a detailed discussion on obtaining update
records and inspecting the contents of ttXlaUpdateDesc_t headers. Below is a summary
of these procedures.

Chapter 9
C Data Structures Used by XLA

9-54

See ttXlaGetColumnInfo.

You can locate the address of the row data by adding the address of the update header to its
size.

For example:

char* Row = (char*)&ttXlaUpdateDesc_t +
 sizeof(ttXlaUpdateDesc_t);

For UPDATETUP records, there are two rows of data following the ttXlaUpdateDesc_t header.
The first row contains the data before the update, and the second row the data after the
update.

Since the new row is right after the old row, you can calculate its address by adding the
address of the old row to its length (tuple1).

For example:

char* oldRow = (char*)&ttXlaUpdateDesc_t +
 sizeof(ttXlaUpdateDesc_t);
char* newRow = oldRow + ttXlaUpdateDesc_t.tuple1;

See ttXlaColDesc_t for details on how to access the column data in a returned row.

ttXlaVersion_t
To permit future extensions to XLA, a version structure ttXlaVersion_t describes the current
XLA version and structure byte order.

This structure is returned by the ttXlaGetVersion function.

This structure has the following fields:

Field Type Description

header ttXlaNodeHdr_t Standard data header

hardware char(16) Name of hardware platform

wordSize SQLUINTEGER Native word size (32 or 64 bits)

TTMajor SQLUINTEGER TimesTen major version

TTMinor SQLUINTEGER TimesTen minor version

TTPatch SQLUINTEGER TimesTen point release number

OS char(16) Name of operating system

OSMajor SQLUINTEGER Operating system major version

OSMinor SQLUINTEGER Operating system minor version

ttXlaTblDesc_t
Table information is portrayed through the ttXlaTblDesc_t structure.

This structure is returned by the ttXlaGetTableInfo function.

This structure has the following fields:

Chapter 9
C Data Structures Used by XLA

9-55

Field Type Description

header ttXlaNodeHdr_t Standard data header

tblName char(31) Name of the table, null-terminated

tblOwner char(31) Owner of the table, null-terminated

sysTableID SQLUBIGINT Unique system-defined table identifier

userTableId SQLUBIGINT User-defined table identifier

columns SQLUINTEGER Number of columns

width SQLUINTEGER Inline row size

nPrimCols SQLUINTEGER Number of primary columns

primColsSys SQLUINTEGER(16) System primary key column numbers

primColsUser SQLUINTEGER(16) User-defined primary key column numbers

The inline row size includes space for all fixed-width columns, null column flags, and
pointer information for variable-length columns. Each varying-length column occupies
four bytes of inline row space.

Note the following if the table has a declared primary key:

• The nPrimCols value is greater than 0.

• The primColsSys array contains the column numbers of the primary key, in the
same order in which they were originally declared with the CREATE TABLE
statement.

• The primColsUser array contains the corresponding application-specified column
identifiers.

ttXlaTblVerDesc_t
This data structure contains the table version number and ttXlaTblDesc_t.

It is returned by ttXlaVersionTableInfo. This structure has the following fields:

Field Type Description

tblDesc ttXlaTblDesc_t Table description

tblVer SQLBIGINT System-generated table version number

ttXlaColDesc_t
Column information is given through this structure, which is returned by the
ttXlaGetColumnInfo function.

The structure has the following fields:

Field Type Description

header ttXlaNodeHdr_t Standard data header

colName [tt_NameLenMax] char Name of the column

Chapter 9
C Data Structures Used by XLA

9-56

Field Type Description

pad0 SQLUINTEGER Pad to four-byte boundary

sysColNum SQLUINTEGER Ordinal number of the column as
determined when the table is created or
subsequently altered

This is the same as the corresponding
COLNUM value in SYS.COLUMNS. (See
SYS.COLUMNS in Oracle TimesTen In-
Memory Database System Tables and
Views Reference.)

userColNum SQLUINTEGER Ordinal number of the column if
optionally specified by the user

This is zero or a column number
specified through the
ttSetUserColumnID TimesTen built-in
procedure. (See ttSetUserColumnID in
Oracle TimesTen In-Memory Database
Reference.)

dataType SQLUINTEGER Structure in ODBC TTXLA_* code

See XLA Data Types.

size SQLUINTEGER Maximum or basic size of column

offset SQLUINTEGER Offset to fixed-length part of column

nullOffset SQLUINTEGER Offset to null byte, or zero if not nullable

precision SQLSMALLINT Numeric precision for decimal types

scale SQLSMALLINT Numeric scale for decimal types

flags SQLUINTEGER Column flag:

• TT_COLPRIMKEY: Column is primary
key.

• TT_COLVARYING: Column is stored
out of line.

• TT_COLNULLABLE: Column is
nullable.

• TT_COLUNIQUE: Column has a
unique attribute defined on it.

The procedures for obtaining a ttXlaColDesc_t structure and inspecting its contents are
described in Inspecting Column Data. Below is a summary of these procedures.

The ttXlaColDesc_t structure is returned by the ttXlaGetColumnInfo function. This structure
contains the metadata needed to access column information in a particular table. For
example, you can use the offset field to locate specific column data in the row or rows
returned in an update record after the ttXlaColDesc_t structure. By adding the offset to the
address of a returned row, you can locate the address to the column value. You can then cast
this value to the corresponding C types according to the dataType field, or pass it to one of
the conversion routines described in Converting Complex Data Types.

TimesTen row data consists of fixed-length data followed by any variable-length data.

• For fixed length column data, ttXlaColDesc_t returns the offset and size of the column
data. The offset is relative to the beginning of the fixed part of the record. See the
example below.

Chapter 9
C Data Structures Used by XLA

9-57

• For variable-length column data (VARCHAR2, NVARCHAR2, and VARBINARY), offset is
an address that points to a four-byte offset value. By adding the offset address to
the offset value, you can obtain the address of the column data in the variable-
length portion of the row. The first eight bytes at this location is the length of the
data, followed by the actual data. For variable-length data, the returned size value
is the maximum allowable column size. See the example below.

For columns that can have null values, nullOffset points to a null byte in the record.
This value is 1 if the column is null, or 0 if it is not null. See Detecting Null Values.

The flags bits define whether the column is nullable, part of a primary key, or stored
out of line.

The sysColNum value is the system column number to assign to the column. This value
begins with 1 for the first column.

Note:

LOB support in XLA is limited, as follows:

• You can subscribe to tables containing LOB columns, but information
about the LOB value itself is unavailable.

• ttXlaGetColumnInfo returns information about LOB columns.

• Columns containing LOBs are reported as empty (zero length) or null (if
the value is actually NULL). In this way, you can tell the difference
between a null column and a non-null column.

For fixed-length column data, the address of a column is the offset value in the
ttXlaColDesc_t structure, plus the address of the row as follows:

ttXlaColDesc_t colDesc;

void* pColVal = colDesc->offset + row;

The value of the column can be obtained by dereferencing this pointer using a type
pointer that corresponds to the data type. For example, for SQL_INTEGER, the ODBC
type is SQLINTEGER and the value of the column can be obtained by the following:

((SQLINTEGER) pColVal))

In the case of variable-length column data, the pColVal calculated above is the
address of a four-byte offset value. Adding this offset value to the address of pColVal
provides a pointer to the beginning of the variable-length column data. The first eight
bytes at this location is the length of this data (var_len), followed by the actual data
(var_data).

In this example, a VARCHAR string is copied and printed.

tt_ptrint* var_len = (tt_ptrint*)((char*)pColVal +
 ((int)pColVal));
char* var_data = (char*)(var_len+1);
char* buffer = malloc(*var_len+1);
memcpy(buffer,var_data,*var_len);
buffer[*var_len] = (char)NULL; /* NULL terminate the string */

Chapter 9
C Data Structures Used by XLA

9-58

printf("%s\n",buffer);
free(buffer);

tt_LSN_t
Description of log record identifier used by bookmarks.

This structure is used by the ttXlaUpdateDesc_t structure.

Field Type Description

logFile SQLUBIGINT Higher order portion of log record identifier

logOffset SQLUBIGINT Lower order portion of log record identifier

Note:

The logFile and logOffset field names are retained for backward compatibility,
although their usage has changed. In previous releases the values referred to
LSNs, which increased sequentially, and the values had very specific meanings,
indicating the log file number plus byte offset. Now they refer to log record
identifiers, which are more abstract and do not have a direct relationship to the log
file number and byte offset. All you can assume about a sequence of log record
identifiers is that a log record identifier B read at a later time than a log record
identifier A has a higher value.

tt_XlaLsn_t
Description of a log record identifier used by bookmarks.

This structure is returned by the ttXlaGetLSN function and used by the ttXlaSetLSN function.

The checksum is specific to an XLA handle to ensure that every log record identifier is related
to a known XLA connection.

Field Type Description

checksum SQLUINTEGER Checksum used to ensure that it is a valid log record
identifier handle

xid SQLUSMALLINT Transaction ID

logFile SQLUBIGINT Higher order portion of log record identifier

logOffset SQLUBIGINT Lower order portion of log record identifier

Chapter 9
C Data Structures Used by XLA

9-59

Note:

The logFile and logOffset field names are retained for backward
compatibility, although their usage has changed. In previous releases the
values referred to LSNs, which increased sequentially, and the values had
very specific meanings, indicating the log file number plus byte offset. Now
they refer to log record identifiers, which are more abstract and do not have a
direct relationship to the log file number and byte offset. All you can assume
about a sequence of log record identifiers is that a log record identifier B read
at a later time than a log record identifier A has a higher value.

Chapter 9
C Data Structures Used by XLA

9-60

10
TimesTen ODBC Support

TimesTen provides an ODBC 3.51 driver that also supports ODBC 2.5.

• For ODBC 3.5, TimesTen supports ODBC 3.51 core interface conformance.

• For ODBC 2.5, TimesTen supports Extension Level 1, as well as Extension Level 2
features that are documented in this chapter.

This chapter covers the details of TimesTen ODBC support, discussing the following topics:

• TimesTen ODBC 3.5 Support

• TimesTen ODBC 2.5 Support

• ODBC API Incompatibilities With Previous Versions of TimesTen

You can also refer to the following additional resources.

• Backward compatibility and standards compliance:

https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/backward-
compatibility-and-standards-compliance

• Summary of differences between ODBC 2.5 and ODBC 3.5:

https://docs.microsoft.com/en-us/sql/odbc/reference/appendixes/behavioral-
changes-and-odbc-3-x-drivers

• Additional behavioral changes:

https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/behavioral-
changes

• Writing ODBC 3.x applications:

https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/writing-
odbc-3-x-applications

• ODBC API reference documentation:

https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/odbc-api-
reference

Also see TimesTen Include Files, for information about #include files for TimesTen
extensions.

TimesTen ODBC 3.5 Support
This section covers theses topics for TimesTen ODBC 3.5 support.

• Using ODBC 3.5 With TimesTen

• Client/Server Cross-Release Restrictions With ODBC 3.5

• ODBC 3.5 New and Replacement Function Support

• ODBC 3.5 Data Type Support Notes

10-1

https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/backward-compatibility-and-standards-compliance
https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/backward-compatibility-and-standards-compliance
https://docs.microsoft.com/en-us/sql/odbc/reference/appendixes/behavioral-changes-and-odbc-3-x-drivers
https://docs.microsoft.com/en-us/sql/odbc/reference/appendixes/behavioral-changes-and-odbc-3-x-drivers
https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/behavioral-changes
https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/behavioral-changes
https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/writing-odbc-3-x-applications
https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/writing-odbc-3-x-applications
https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/odbc-api-reference
https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/odbc-api-reference

• Environment Attribute Support for ODBC 3.5

• Attribute Support for ODBC 3.5 SQLSetConnectAttr and SQLGetConnectAttr

• Attribute Support for ODBC 3.5 SQLSetStmtAttr and SQLGetStmtAttr

• Attribute Support for ODBC 3.5 SQLGetEnvAttr

• TimesTen Field Identifiers for ODBC 3.5 SQLColAttribute

• Information Type Support for ODBC 3.5 SQLGetInfo

• TimesTen SQL Keywords for ODBC 3.5

Using ODBC 3.5 With TimesTen
In accordance with the ODBC 3.5 specification, an ODBC 3.5 application calls
SQLSetEnvAttr to set SQL_ATTR_ODBC_VERSION to SQL_OV_ODBC3 directly after calling
SQLAllocHandle.

For example:

RetCode = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &hEnv);
...
RetCode = SQLSetEnvAttr(hEnv, SQL_ATTR_ODBC_VERSION, (SQLPOINTER)SQL_OV_ODBC3,
0);
...
RetCode = SQLAllocHandle(SQL_HANDLE_DBC, hEnv, &hDbc);
...
RetCode = SQLDriverConnect(hDbc, winHandle, connStr, SQL_NTS,
 outConnStr, outConnStrBufferLen,
 &outConnStrLen, SQL_DRIVER_NOPROMPT);
...

Tip:

Because TimesTen Release 22.1 is a major release, you should recompile
and relink existing ODBC applications. Also see ODBC API Incompatibilities
With Previous Versions of TimesTen.

It is also advisable to link your applications dynamically rather than statically.

Client/Server Cross-Release Restrictions With ODBC 3.5
Previous TimesTen releases support cross-release client/server connections, where
the client version could be either newer or older than the server version (such as a
22.1 client connecting to an 18.1 server, or an 18.1 client connecting to a 22.1 server).

Due to changes in ODBC 3.5 functionality, TimesTen clients of Release 18.1 or later
cannot connect to an older TimesTen server when the client declares itself to be
ODBC 3.x compliant by specifying SQL_ODBC_OV3 in a SQLSetEnvAttr call (such as
shown in the preceding section).

Chapter 10
TimesTen ODBC 3.5 Support

10-2

Note:

This limitation does not impact ODBC 2.5 applications.

ODBC 3.5 New and Replacement Function Support
There are new and replacement ODBC 3.5 functions supported by TimesTen.

Note:

TimesTen supports wide-character (W) function versions for applications not using a
generic driver manager, as indicated in Table 10-1 and Table 10-11.

Table 10-1 Supported ODBC 3.5 New and Replacement Functions

Function Notes

SQLAllocHandle With applicable settings for HandleType, replaces ODBC 2.5
functions SQLAllocEnv, SQLAllocConnect, and
SQLAllocStmt.

SQLBulkOperations Call returns "Driver not capable."

SQLCloseCursor Replaces the ODBC 2.5 function SQLFreeStmt when that
function is used with the SQL_CLOSE option.

SQLColAttribute and
SQLColAttributeW

Replaces the ODBC 2.5 function SQLColAttributes.

See TimesTen Field Identifiers for ODBC 3.5 SQLColAttribute.

SQLCopyDesc No notes

SQLEndTran Replaces the ODBC 2.5 function SQLTransact.

SQLFetchScroll TimesTen supports only the SQL_FETCH_NEXT option (forward
scroll).

SQLFreeHandle With applicable settings for HandleType, replaces ODBC 2.5
functions SQLFreeEnv, SQLFreeConnect, and SQLFreeStmt.

SQLGetConnectAttr and
SQLGetConnectAttrW

Replaces the ODBC 2.5 function SQLGetConnectOption.

Support is added for the TimesTen driver manager (TTDM).

See Attribute Support for ODBC 3.5 SQLSetConnectAttr and
SQLGetConnectAttr.

SQLGetDescField and
SQLGetDescFieldW

No notes

SQLGetDescRec and
SQLGetDescRecW

No notes

Chapter 10
TimesTen ODBC 3.5 Support

10-3

Table 10-1 (Cont.) Supported ODBC 3.5 New and Replacement Functions

Function Notes

SQLGetDiagField and
SQLGetDiagFieldW

Replaces the ODBC 2.5 function SQLError.

Native error codes are TimesTen errors. You may receive
generic errors such as, "Execution at Oracle failed. Oracle
error code nnn."

When using SQLGetDiagField or SQLGetDiagFieldW:

• Use TT_MAX_MESSAGE_LENGTH instead of
SQL_MAX_MESSAGE_LENGTH (which is a limit of 512
bytes).

• Handle a possible return of SQL_SUCCESS_WITH_INFO
(for example, in case the message length exceeded the
input buffer size).

SQLGetDiagRec and
SQLGetDiagRecW

Replaces the ODBC 2.5 function SQLError.

Native error codes are TimesTen errors. You may receive
generic errors such as, "Execution at Oracle failed. Oracle
error code nnn."

When using SQLGetDiagRec or SQLGetDiagRecW:

• Use TT_MAX_MESSAGE_LENGTH instead of
SQL_MAX_MESSAGE_LENGTH (which is a limit of 512
bytes).

• Handle a possible return of SQL_SUCCESS_WITH_INFO
(for example, in case the message length exceeded the
input buffer size).

SQLGetEnvAttr Support is added for the TimesTen driver manager (TTDM).

See Attribute Support for ODBC 3.5 SQLGetEnvAttr.

SQLGetInfo See Information Type Support for ODBC 3.5 SQLGetInfo.

SQLGetStmtAttr and
SQLGetStmtAttrW

Replaces the ODBC 2.5 function SQLGetStmtOption.

See Attribute Support for ODBC 3.5 SQLSetStmtAttr and
SQLGetStmtAttr.

SQLSetConnectAttr and
SQLSetConnectAttrW

Replaces the ODBC 2.5 function SQLSetConnectOption.

See Attribute Support for ODBC 3.5 SQLSetConnectAttr and
SQLGetConnectAttr.

SQLSetDescField No notes

SQLSetDescRec No notes

SQLSetEnvAttr Required for ODBC applications to set
SQL_ATTR_ODBC_VERSION to SQL_OV_ODBC3.

SQLSetStmtAttr and
SQLSetStmtAttrW

Replaces the ODBC 2.5 function SQLSetStmtOption.

See Attribute Support for ODBC 3.5 SQLSetStmtAttr and
SQLGetStmtAttr.

ODBC 3.5 Data Type Support Notes
TimesTen supports new ODBC 3.5 data types.

• SQL_C_NUMERIC
• SQL_C_TYPE_DATE

Chapter 10
TimesTen ODBC 3.5 Support

10-4

• SQL_C_TYPE_TIME
• SQL_C_TYPE_TIMESTAMP
TimesTen does not support these data types or has limited support:

• SQL_GUID: TimesTen does not support conversion of this type to a C type.

• SQL_INTERVAL_xxxx: TimesTen does not support conversion of interval types to C types.

• SQL_WCHAR: TimesTen does not support conversion of this type to C numeric types.

Environment Attribute Support for ODBC 3.5
There are standard environment attributes supported by TimesTen in ODBC 3.5.

Table 10-2 Standard Environment Attributes (ODBC 3.5)

Attribute Notes

SQL_ATTR_ODBC_VERSION Supported values SQL_OV_ODBC3 and SQL_OV_ODBC2.

SQL_ATTR_OUTPUT_NTS Supported value SQL_TRUE.

Attribute Support for ODBC 3.5 SQLSetConnectAttr and
SQLGetConnectAttr

There are support of standard attributes by TimesTen for the ODBC 3.5 SQLSetConnectAttr
and SQLGetConnectAttr functions. Also, there are TimesTen-specific connection attributes,
which are supported in both ODBC 3.5 and ODBC 2.5.

Table 10-3 lists support of standard attributes by TimesTen for the ODBC 3.5
SQLSetConnectAttr and SQLGetConnectAttr functions. Table 10-4 lists TimesTen-specific
connection attributes, which are supported in both ODBC 3.5 and ODBC 2.5. These functions
enable you to set connection attributes after the initial connection or retrieve those settings.

Also see Attribute Support for ODBC 3.5 SQLSetStmtAttr and SQLGetStmtAttr. Those
attributes can also be set using SQLSetConnectAttr, in which case the value serves as a
default for all statements on the connection.

Note:

• An attribute setting through SQLSetConnectAttr or SQLSetStmtAttr overrides
the setting of the corresponding connection attribute (as applicable).

• The documentation here also applies to SQLSetConnectAttrW and
SQLGetConnectAttrW.

• The TimesTen driver manager (TTDM) is supported through the
TT_TTDM_CONNECTION_TYPE attribute, as described in Table 10-4.

Chapter 10
TimesTen ODBC 3.5 Support

10-5

Table 10-3 Standard Connection Attributes (ODBC 3.5)

Attribute Notes

SQL_ATTR_ASYNC_ENABLE Supported setting SQL_ASYNC_ENABLE_OFF.

SQL_ATTR_AUTO_IPD Read-only (get); value is always SQL_TRUE.

SQL_ATTR_CONNECTION_DEAD Read-only (get).

SQL_ATTR_CONNECTION_TIMEOUT Supported setting 0; any other setting reverts to 0.

SQL_ATTR_ENLIST_IN_DTC Driver not capable.

SQL_ATTR_METADATA_ID Supported setting SQL_FALSE.

Table 10-4 TimesTen Connection Attributes

Attribute Notes

TT_CLIENT_TIMEOUT This is for client/server only and has the same
functionality as the TTC_Timeout TimesTen client
connection attribute.

Also see Choose SQL and PL/SQL Timeout Values
in Oracle TimesTen In-Memory Database Operations
Guide.

TT_DYNAMIC_LOAD_ENABLE See Enabling or Disabling Dynamic Load in Oracle
TimesTen In-Memory Database Cache Guide. This
has the same functionality as the
DynamicLoadEnable cache general connection
attribute.

TT_DYNAMIC_LOAD_ERROR_MODE See Returning Errors for Dynamic Load in Oracle
TimesTen In-Memory Database Cache Guide. This
has the same functionality as the
DynamicLoadErrorMode cache connection
attribute.

TT_GRID_ENABLED_DATABASE Read-only (get). This indicates whether the database
is from a TimesTen instance enabled for TimesTen
Scaleout.

TT_NLS_LENGTH_SEMANTICS This has the same functionality as the
NLS_LENGTH_SEMANTICS general connection
attribute. See Additional Globalization Features.

TT_NLS_NCHAR_CONV_EXCP This has the same functionality as the
NLS_NCHAR_CONV_EXCP general connection
attribute. See Additional Globalization Features.

TT_NLS_SORT This has the same functionality as the NLS_SORT
general connection attribute. There is related
information about the functionality in Additional
Globalization Features.

TT_NO_RECONNECT_ON_FAILOVER Read-only (get). See Configuration of Automatic
Client Failover. This indicates the setting of the
TimesTen connection attribute
TTC_NoReconnectOnFailover (for client
connections only).

Chapter 10
TimesTen ODBC 3.5 Support

10-6

Table 10-4 (Cont.) TimesTen Connection Attributes

Attribute Notes

TT_PREFETCH_CLOSE Set to TT_PREFETCH_CLOSE_ON to optimize query
performance. The default setting is
TT_PREFETCH_CLOSE_OFF. Refer to Optimizing
Query Performance.

TT_REGISTER_FAILOVER_CALLBACK See ODBC Support for Automatic Client Failover.
This attribute is client-only. If you attempt to use it in
TimesTen direct mode, SQL_SUCCESS is returned but
no action is taken.

TT_REPLICATION_TRACK For ODBC applications that use parallel replication
and specify replication tracks, this has the same
functionality as the ReplicationTrack general
connection attribute, to specify a track number for the
connection.

TT_TTDM_CONNECTION_TYPE For ODBC applications using TTDM, specifying this
as the attribute returns a value indicating the type of
connection represented by the HDBC object, one of
the following:

• TT_TTDM_CONN_NONE: The HDBC is not
connected.

• TT_TTDM_CONN_DIRECT: The HDBC is
connected in direct mode.

• TT_TTDM_CONN_CLIENT: The HDBC is
connected in client/server mode.

See the example below.

This example shows the use of SQLGetConnectAttr with the attribute
TT_TTDM_CONNECTION_TYPE for an application using TTDM. The connection type, as
documented in the table immediately above, is returned in connType.

SQLINTEGER connType = 0;
rc = SQLGetConnectAttr(hdbc, TT_TTDM_CONNECTION_TYPE, &connType, SQL_IS_INTEGER, NULL);

Attribute Support for ODBC 3.5 SQLSetStmtAttr and SQLGetStmtAttr
There are standard attributes supported by TimesTen for the ODBC 3.5 SQLSetStmtAttr and
SQLGetStmtAttr functions. Also, there are TimesTen-specific statement attributes, which are
supported in both ODBC 3.5 and ODBC 2.5.

Table 10-5 lists standard attributes supported by TimesTen for the ODBC 3.5 SQLSetStmtAttr
and SQLGetStmtAttr functions. Table 10-6 lists TimesTen-specific statement attributes, which
are supported in both ODBC 3.5 and ODBC 2.5. These functions enable you to set or retrieve
statement attribute settings.

To set an attribute default value for all statements associated with a connection, use
SQLSetConnectAttr.

Chapter 10
TimesTen ODBC 3.5 Support

10-7

Note:

• An attribute setting through SQLSetConnectAttr or SQLSetStmtAttr
overrides the setting of the corresponding connection attribute (as
applicable).

• TimesTen also supports the options listed in Option Support for ODBC
2.5 SQLSetStmtOption and SQLGetStmtOption.

Table 10-5 Standard Statement Attributes (ODBC 3.5)

Attribute Notes

SQL_ATTR_APP_PARAM_DESC No notes

SQL_ATTR_APP_ROW_DESC No notes

SQL_ATTR_CURSOR_SCROLLABLE Supported setting SQL_NONSCROLLABLE.

SQL_ATTR_CURSOR_SENSITIVITY Supported setting SQL_INSENSITIVE.

SQL_ATTR_ENABLE_AUTO_IPD No notes

SQL_ATTR_IMP_PARAM_DESC Read-only (get).

SQL_ATTR_IMP_ROW_DESC Read-only (get).

SQL_ATTR_METADATA_ID Supported setting SQL_FALSE.

SQL_ATTR_PARAM_BIND_OFFSET_P
TR

No notes

SQL_ATTR_PARAM_BIND_TYPE No notes

SQL_ATTR_PARAM_OPERATION_PTR No notes

SQL_ATTR_PARAM_STATUS_PTR No notes

SQL_ATTR_PARAMS_PROCESSED_PT
R

No notes

SQL_ATTR_PARAMSET_SIZE No notes

SQL_ATTR_ROW_ARRAY_SIZE No notes

SQL_ATTR_ROW_BIND_OFFSET_PTR No notes

SQL_ATTR_ROW_STATUS_PTR No notes

SQL_ATTR_ROWS_FETCHED_PTR No notes

Table 10-6 TimesTen Statement Attributes

Attribute Notes

TT_NET_MSG_MAX_BYTES In client/server, determines the maximum number of bytes in
the result set buffer. See Configuring the Result Set Buffer Size
in Client/Server Using ODBC.

TT_NET_MSG_MAX_ROWS In client/server, determines the maximum number of rows in
the result set buffer. See Configuring the Result Set Buffer Size
in Client/Server Using ODBC.

Chapter 10
TimesTen ODBC 3.5 Support

10-8

Table 10-6 (Cont.) TimesTen Statement Attributes

Attribute Notes

TT_PREFETCH_COUNT See Prefetching Multiple Rows of Data.

TT_QUERY_THRESHOLD See Setting a Threshold Duration for SQL Statements. This is
to specify a time threshold for SQL statements, in seconds,
after which TimesTen writes a warning to the support log.

TT_PRIVATE_COMMANDS Commands are not shared with any other connection. See
PrivateCommands in Oracle TimesTen In-Memory Database
Reference.

TT_STMT_PASSTHROUGH_TYP
E

Determines whether a specific prepared statement is passed
through to Oracle Database by the cache passthrough feature.
The value returned by SQLGetStmtOption can be either
TT_STMT_PASSTHROUGH_NONE or
TT_STMT_PASSTHROUGH_ORACLE.

Note: In TimesTen, this option is supported only with
SQLGetStmtOption.

See Determining Passthrough Status. Also see Setting a
Passthrough Level in Oracle TimesTen In-Memory Database
Cache Guide.

Attribute Support for ODBC 3.5 SQLGetEnvAttr
This section describes TimesTen environmental attributes for SQLGetEnvAttr.

Table 10-7 lists TimesTen-specific environment attributes, which are supported in both ODBC
3.5 and ODBC 2.5. These attributes support the TimesTen driver manager (TTDM).

Table 10-7 TimesTen Environment Attributes

Attribute Notes

TT_TTDM_CAPABILITIES For ODBC applications using TTDM, if you specify
this as the attribute and pass a pointer to a
SQLINTEGER for the ValuePtr parameter, then a
value is returned indicating the capabilities that
are currently available through TTDM. The value is
expressed as a bit-wise OR of these constants:

• TT_TTDM_CLIENT: Client/server driver
capabilities are available.

• TT_TTDM_DIRECT: Direct driver capabilities
are available.

• TT_TTDM_XLA: XLA capabilities are available.

• TT_TTDM_ROUTING: Routing API capabilities
are available.

• TT_TTDM_UTILITY: C utility API functions are
available.

See the example below.

Note: The available capabilities depend on what is
available in the TimesTen environment where the
TTDM-based application is executing.

Chapter 10
TimesTen ODBC 3.5 Support

10-9

Table 10-7 (Cont.) TimesTen Environment Attributes

Attribute Notes

TT_TTDM_VERSION For ODBC applications using TTDM, if you specify
this as the attribute and pass a pointer to a
SQLINTEGER for the ValuePtr parameter, then
the value returned indicates the TimesTen release
(specifically, of the TTDM library) that the
application is using, such as 18.1.4.9.0 or
22.1.1.1.0.

See the example below.

This example shows the use of SQLGetEnvAttr with the attribute TT_TTDM_VERSION for
an application using TTDM.

SQLCHAR ttdmver[21];
rc = SQLGetEnvAttr(henv, TT_TTDM_VERSION, (SQLPOINTER)ttdmver, sizeof(ttdmver),
NULL);

The value returned in ttdmver indicates the TimesTen release of the TTDM library that
the application is using.

The next example shows the use of SQLGetEnvAttr with the attribute
TT_TTDM_CAPABILITIES for an application using TTDM.

SQLINTEGER ttdmcap = 0;
rc = SQLGetEnvAttr(henv, TT_TTDM_CAPABILITIES, (SQLPOINTER)&ttdmcap, 0, NULL);

The value returned in ttdmcap is a bitwise OR of the constants documented in the table
above, indicating what capabilities are currently available through TTDM. Then check
what capabilities are supported:

...
if (ttdmcap & TT_TTDM_CLIENT)
 printf("TTDM: Client driver functions are available\n");
if (ttdmcap & TT_TTDM_DIRECT)
 printf("TTDM: Direct driver functions are available\n");
if (ttdmcap & TT_TTDM_XLA)
 printf("TTDM: XLA functions are available\n");
if (ttdmcap & TT_TTDM_ROUTING)
 printf("TTDM: Routing API functions are available\n");
if (ttdmcap & TT_TTDM_UTILITY)
 printf("TTDM: Utility functions are available\n");
...

TimesTen Field Identifiers for ODBC 3.5 SQLColAttribute
The SQLColAttribute function returns descriptor information for a column in a result
set.

Refer to ODBC API reference documentation for complete information about this
function and standard column descriptors.

Chapter 10
TimesTen ODBC 3.5 Support

10-10

Note:

This replaces SQLColAttributes (plural) in ODBC 2.5.

See Table 10-8.

Table 10-8 TimesTen Field Identifiers: SQLColAttribute (ODBC 3.5)

Descriptor Comment/Description

TT_COLUMN_INLINE Returns TRUE for columns with inline data, or FALSE otherwise.
This is returned in the SQLColAttribute
CharacterAttributePtr parameter.

TT_COLUMN_LENGTH_SEMANTICS For character-type columns, this returns "BYTE" for columns
with byte length semantics and "CHAR" for columns with
character length semantics. For non-character columns, it
returns "". The information is returned in the
SQLColAttribute CharacterAttributePtr parameter.

This information refers to whether data length is measured in
bytes or characters. Length semantics in TimesTen are the
same as in Oracle Database. See Length Semantics in Oracle
Database Globalization Support Guide.

Information Type Support for ODBC 3.5 SQLGetInfo
There is support in the TimesTen ODBC 3.5 implementation for standard and TimesTen-
specific information types for the ODBC function SQLGetInfo.

Table 10-9 documents TimesTen support for standard information types that were introduced
or renamed in ODBC 3.0, noting the TimesTen-specific correct value or values returned.

Refer to the following location for standard information:

https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqlgetinfo-function
Also see Information Type Support for ODBC 2.5 SQLGetInfo. Those information types are
still supported by the TimesTen ODBC 3.5 driver (with some renamed, as noted).

Table 10-9 TimesTen Support for Standard Information Types: SQLGetInfo (ODBC
3.5)

Information Type Notes and Correct Values Returned by TimesTen

SQL_ACTIVE_ENVIRONMENTS 0: Environment objects are allocated from heap.

SQL_AGGREGATE_FUNCTIONS SQL_AF_ALL, SQL_AF_AVG, SQL_AF_COUNT,
SQL_AF_DISTINCT, SQL_AF_MAX, SQL_AF_MIN,
SQL_AF_SUM

SQL_ALTER_DOMAIN 0: ALTER DOMAIN statement not supported.

Chapter 10
TimesTen ODBC 3.5 Support

10-11

https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqlgetinfo-function

Table 10-9 (Cont.) TimesTen Support for Standard Information Types: SQLGetInfo
(ODBC 3.5)

Information Type Notes and Correct Values Returned by TimesTen

SQL_ALTER_TABLE SQL_AT_ADD_COLUMN_DEFAULT: ADD COLUMN clause
is supported, with facility to specify column defaults
(FIPS transitional level).

SQL_AT_ADD_COLUMN_SINGLE: ADD COLUMN clause
is supported (FIPS transitional level).

SQL_AT_ADD_CONSTRAINT: ADD COLUMN clause is
supported, with facility to specify column constraints
(FIPS transitional level).

SQL_AT_ADD_TABLE_CONSTRAINT: ADD TABLE
CONSTRAINT clause is supported (FIPS transitional
level).

SQL_AT_DROP_COLUMN_CASCADE: DROP
COLUMN ... CASCADE clause is supported (FIPS
transitional level).

SQL_AT_DROP_COLUMN_DEFAULT: ALTER
COLUMN ... DROP COLUMN DEFAULT clause is
supported (Intermediate level).

SQL_ASYNC_MODE SQL_AM_NONE: Asynchronous mode not supported.

SQL_BATCH_ROW_COUNT 0: Batches of SQL statements not supported.

SQL_BATCH_SUPPORT 0: Batches of SQL statements not supported.

SQL_CATALOG_LOCATION 0: Catalog names as qualifiers not supported.

SQL_QUALIFIER_LOCATION in ODBC 2.5.

SQL_CATALOG_NAME "N": Catalog names as qualifiers not supported.

SQL_CATALOG_NAME_SEPARATOR NULL: Not supported.

SQL_QUALIFIER_NAME_SEPARATOR in ODBC 2.5.

SQL_CATALOG_TERM "data store"

SQL_QUALIFIER_TERM in ODBC 2.5.

SQL_CATALOG_USAGE 0: Catalogs not supported.

SQL_QUALIFIER_USAGE in ODBC 2.5.

SQL_COLLATION_SEQ Current value of the NLS_SORT database parameter.

Note: Because TimesTen does not have a default
character set, default collation for the default
character is set is not applicable. NLS_SORT is the
collation for the current character set.

SQL_CONVERT_GUID 0: CONVERT function not supported.

SQL_CONVERT_INTERVAL_DAY_TIME 0: CONVERT function not supported.

SQL_CONVERT_INTERVAL_YEAR_MONTH 0: CONVERT function not supported.

SQL_CONVERT_WCHAR 0: CONVERT function not supported.

SQL_CONVERT_WLONGVARCHAR 0: CONVERT function not supported.

SQL_CONVERT_WVARCHAR 0: CONVERT function not supported.

SQL_CREATE_ASSERTION 0: CREATE ASSERTION statement not supported.

Chapter 10
TimesTen ODBC 3.5 Support

10-12

Table 10-9 (Cont.) TimesTen Support for Standard Information Types: SQLGetInfo
(ODBC 3.5)

Information Type Notes and Correct Values Returned by TimesTen

SQL_CREATE_CHARACTER_SET 0: CREATE CHARACTER SET statement not
supported.

SQL_CREATE_COLLATION 0: CREATE COLLATION statement not supported.

SQL_CREATE_DOMAIN 0: CREATE DOMAIN statement not supported.

SQL_CREATE_SCHEMA 0: CREATE SCHEMA statement not supported.

SQL_CREATE_TABLE To determine which clauses are supported:

SQL_CT_CREATE_TABLE: CREATE TABLE statement
is supported (entry level).

SQL_CT_TABLE_CONSTRAINT: Specifying table
constraints is supported (FIPS transitional level).

SQL_CT_CONSTRAINT_NAME_DEFINITION:
<constraint name definition> clause is
supported for naming column and table constraints
(intermediate level).

To specify the ability to create temporary tables:

SQL_CT_COMMIT_PRESERVE: Deleted rows are
preserved on commit (full level).

SQL_CT_COMMIT_DELETE: Deleted rows are deleted
on commit (full level).

SQL_CT_GLOBAL_TEMPORARY: Global temporary
tables can be created (full level).

To specify the ability to create column constraints:

SQL_CT_COLUMN_CONSTRAINT: Specifying column
constraints is supported (FIPS transitional level).

SQL_CT_COLUMN_DEFAULT: Specifying column
defaults is supported (FIPS transitional level).

SQL_CREATE_TRANSLATION 0: CREATE TRANSLATION statement not supported.

SQL_CREATE_VIEW SQL_CV_CREATE_VIEWS
SQL_CURSOR_SENSITIVITY SQL_SENSITIVE: Cursors are sensitive to changes

made by other cursors within the same transaction.

SQL_DATETIME_LITERALS SQL_DL_SQL92_DATE, SQL_DL_SQL92_TIME,
SQL_DL_SQL92_TIMESTAMP

SQL_DDL_INDEX SQL_DI_CREATE_INDEX, SQL_DI_DROP_INDEX
SQL_DESCRIBE_PARAMETER "Y": Parameters can be described.

SQL_DM_VER ERROR IM001: Driver does not support this function.
Applies to driver manager only.

SQL_DRIVER_HDESC Pointer to driver descriptor handle.

SQL_DROP_ASSERTION 0: DROP ASSERTION statement not supported.

SQL_DROP_CHARACTER_SET 0: DROP_CHARACTER_SET statement not supported.

SQL_DROP_COLLATION 0: DROP_COLLATION statement not supported.

SQL_DROP_DOMAIN 0: DROP_DOMAIN statement not supported.

Chapter 10
TimesTen ODBC 3.5 Support

10-13

Table 10-9 (Cont.) TimesTen Support for Standard Information Types: SQLGetInfo
(ODBC 3.5)

Information Type Notes and Correct Values Returned by TimesTen

SQL_DROP_SCHEMA 0: DROP_SCHEMA statement not supported.

SQL_DROP_TABLE SQL_DT_DROP_TABLE
SQL_DROP_TRANSLATION 0: DROP_TRANSLATION statement not supported.

SQL_DROP_VIEW SQL_DV_DROP_VIEW
SQL_DYNAMIC_CURSOR_ATTRIBUTES1 None: Dynamic cursors not supported.

SQL_DYNAMIC_CURSOR_ATTRIBUTES2 None: Dynamic cursors not supported.

SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1 SQL_CA1_NEXT, SQL_CA1_SELECT_FOR_UPDATE
SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES2 SQL_CA2_READ_ONLY_CONCURRENCY,

SQL_CA2_MAX_ROWS_SELECT
SQL_INDEX_KEYWORDS SQL_IK_ALL: All keywords supported.

SQL_INFO_SCHEMA_VIEWS None: Views in the INFORMATION_SCHEMA not
supported.

SQL_INSERT_STATEMENT SQL_IS_INSERT_LITERALS,
SQL_IS_INSERT_SEARCHED,
SQL_IS_SELECT_INTO

SQL_INTEGRITY "N"

SQL_ODBC_SQL_OPT_IEF in ODBC 2.5.

SQL_KEYSET_CURSOR_ATTRIBUTES1 None: Keyset cursors not supported.

SQL_KEYSET_CURSOR_ATTRIBUTES2 None: Keyset cursors not supported.

SQL_KEYWORDS TT_SQL_KEYWORDS: A character string that contains a
comma-separated list of TimesTen-specific SQL
keywords.

See TimesTen SQL Keywords for ODBC 3.5.

SQL_MAX_ASYNC_CONCURRENT_STATEMENTS 0: No specific limit to number of active concurrent
statements in asynchronous mode.

SQL_MAX_CATALOG_NAME_LEN
Alias SQL_MAXIMUM_CATALOG_NAME_LENGTH

0: No specific maximum length.

SQL_MAX_QUALIFIER_NAME_LEN in ODBC 2.5.

SQL_MAX_CONCURRENT_ACTIVITIES
Alias
SQL_MAXIMUM_CONCURRENT_ACTIVITIES

0: Allocated from heap, no limit on concurrency.

SQL_ACTIVE_STATEMENTS in ODBC 2.5.

SQL_MAX_DRIVER_CONNECTIONS
Alias SQL_MAXIMUM_DRIVER_CONNECTIONS

sb_DbConnMaxUser: Daemon connections limited to
this value.

SQL_ACTIVE_CONNECTIONS in ODBC 2.5.

SQL_MAX_IDENTIFIER_LEN
Alias SQL_MAXIMUM_IDENTIFIER_LENGTH

sb_ObjNameLenMax

SQL_MAX_ROW_SIZE_INCLUDES_LONG "N"

SQL_MAX_SCHEMA_NAME_LEN
Alias SQL_MAXIMUM_SCHEMA_NAME_LENGTH

sb_ObjNameLenMax
SQL_MAX_OWNER_NAME_LEN in ODBC 2.5.

Chapter 10
TimesTen ODBC 3.5 Support

10-14

Table 10-9 (Cont.) TimesTen Support for Standard Information Types: SQLGetInfo
(ODBC 3.5)

Information Type Notes and Correct Values Returned by TimesTen

SQL_ODBC_INTERFACE_CONFORMANCE SQL_OIC_CORE: Minimum level, including basic
interface elements such as connection functions,
functions for preparing and executing an SQL
statement, basic result set metadata functions, and
basic catalog functions.

SQL_PARAM_ARRAY_ROW_COUNTS SQL_PARC_NO_BATCH
SQL_PARAM_ARRAY_SELECTS SQL_PAS_NO_SELECT
SQL_SCHEMA_TERM "owner"

SQL_OWNER_TERM in ODBC 2.5.

SQL_SCHEMA_USAGE SQL_OU_DML_STATEMENTS: Schemas supported in all
DML statements.

SQL_OU_PROCEDURE_INVOCATION: Schemas
supported in the ODBC procedure invocation
statement.

SQL_OU_TABLE_DEFINITION: Schemas supported in
CREATE TABLE, CREATE VIEW, ALTER TABLE, DROP
TABLE, and DROP VIEW statements.

SQL_OU_INDEX_DEFINITION: Schemas supported in
CREATE INDEX and DROP INDEX statements.

SQL_OU_PRIVILEGE_DEFINITION: Schemas are
supported in GRANT and REVOKE statements.

SQL_OWNER_USAGE in ODBC 2.5.

SQL_SQL_CONFORMANCE SQL_SC_SQL92_ENTRY: Entry level SQL-92
compliant.

SQL_SQL92_DATETIME_FUNCTIONS None: Datetime scalar functions not supported.

SQL_SQL92_FOREIGN_KEY_DELETE_RULE SQL_SFKD_CASCADE
SQL_SQL92_FOREIGN_KEY_UPDATE_RULE SQL_SFKU_SET_DEFAULT, SQL_SFKU_SET_NULL
SQL_SQL92_GRANT SQL_SG_DELETE_TABLE, SQL_SG_INSERT_TABLE,

SQL_SG_REFERENCES_TABLE,
SQL_SG_SELECT_TABLE, SQL_SG_UPDATE_TABLE
(all entry level)

SQL_SQL92_NUMERIC_VALUE_FUNCTIONS SQL_SNVF_EXTRACT
SQL_SQL92_PREDICATES SQL_SP_BETWEEN, SQL_SP_COMPARISON,

SQL_SP_EXISTS, SQL_SP_IN,
SQL_SP_ISNOTNULL, SQL_SP_ISNULL,
SQL_SP_LIKE (all entry level)

SQL_SQL92_RELATIONAL_JOIN_OPERATORS SQL_SRJO_CROSS_JOIN (full level),
SQL_SRJO_INNER_JOIN (FIPS transitional level),
SQL_SRJO_LEFT_OUTER_JOIN (FIPS transitional
level), SQL_SRJO_RIGHT_OUTER_JOIN (FIPS
transitional level)

Chapter 10
TimesTen ODBC 3.5 Support

10-15

Table 10-9 (Cont.) TimesTen Support for Standard Information Types: SQLGetInfo
(ODBC 3.5)

Information Type Notes and Correct Values Returned by TimesTen

SQL_SQL92_REVOKE SQL_SR_DELETE_TABLE, SQL_SR_INSERT_TABLE,
SQL_SR_REFERENCES_TABLE,
SQL_SR_SELECT_TABLE, SQL_SR_UPDATE_TABLE
(all entry level)

SQL_SQL92_ROW_VALUE_CONSTRUCTOR None: Row value constructor expressions not
supported.

SQL_SQL92_STRING_FUNCTIONS None: String scalar functions not supported.

SQL_SQL92_VALUE_EXPRESSIONS SQL_SVE_CASE (intermediate level), SQL_SVE_CAST
(FIPS transitional level), SQL_SVE_NULLIF
(intermediate level)

SQL_STANDARD_CLI_CONFORMANCE None: Driver does not conform to CLI standards.

SQL_STATIC_CURSOR_ATTRIBUTES1 SQL_CA1_NEXT, SQL_CA1_SELECT_FOR_UPDATE
SQL_STATIC_CURSOR_ATTRIBUTES2 SQL_CA2_READ_ONLY_CONCURRENCY,

SQL_CA2_MAX_ROWS_SELECT
SQL_TIMEDATE_FUNCTIONS SQL_FN_TD_EXTRACT, SQL_FN_TD_NOW,

SQL_FN_TD_TIMESTAMPADD,
SQL_FN_TD_TIMESTAMPDIFF

SQL_UNION_STATEMENT SQL_U_UNION: Data source supports UNION clause.

SQL_U_UNION_ALL: Data source supports ALL
keyword in the UNION clause. (SQLGetInfo returns
both SQL_U_UNION and SQL_U_UNION_ALL in this
case.)

SQL_UNION in ODBC 2.5.

SQL_XOPEN_CLI_YEAR ERROR IM001: Driver does not support this function.
Applies to driver manager only.

Table 10-10 describes TimesTen-specific information types.

Table 10-10 TimesTen Information Types: SQLGetInfo

Information Type Data Type Description

TT_DATA_STORE_INVALID SQLINTEGER Returns 1 if the database is in invalid
state, such as due to a system or
application failure, or 0 if not.

Note: Fatal errors, such as error 846
or 994, invalidate a TimesTen
database, causing this item to be set
to 1.

TT_DATABASE_CHARACTER_SET SQLCHAR Returns the name of the database
character set.

TT_DATABASE_CHARACTER_SET_SIZE SQLINTEGER Returns the maximum size of a
character in the database character
set, in bytes.

Chapter 10
TimesTen ODBC 3.5 Support

10-16

Table 10-10 (Cont.) TimesTen Information Types: SQLGetInfo

Information Type Data Type Description

TT_PLATFORM_INFO Bit mask Returns a bit mask indicating platform
information. Bit 0 has the value 1 for a
64-bit platform. Bit 1 has the value 1
for big-endian, or the value 0 for little-
endian.

TT_REPLICATION_INVALID SQLINTEGER Returns 1 if replication is in a failed
state, or 0 if not.

See Subscriber Failures in Oracle
TimesTen In-Memory Database
Replication Guide.

TimesTen SQL Keywords for ODBC 3.5
The list of TimesTen SQL keywords returned for SQL_KEYWORDS in a SQLGetInfo call is the
same in TimesTen ODBC 3.5 support as in ODBC 2.5 support.

See TimesTen SQL Keywords for ODBC 2.5.

This is different from the list of TimesTen reserved words. See Reserved Words in Oracle
TimesTen In-Memory Database SQL Reference.

TimesTen ODBC 2.5 Support
This section covers these topics for TimesTen 2.5 support.

• Using ODBC 2.5 With TimesTen

• ODBC 2.5 Function Support

• Option Support for ODBC 2.5 SQLSetConnectOption and SQLGetConnectOption

• Option Support for ODBC 2.5 SQLSetStmtOption and SQLGetStmtOption

• Column Descriptor Support for ODBC 2.5 SQLColAttributes

• Information Type Support for ODBC 2.5 SQLGetInfo

• TimesTen SQL Keywords for ODBC 2.5

Using ODBC 2.5 With TimesTen
An ODBC 2.5 application not using a driver manager will continue to work with the TimesTen
ODBC driver through its call to SQLAllocEnv.

Chapter 10
TimesTen ODBC 2.5 Support

10-17

Tip:

Because TimesTen Release 22.1 is a major release, you should recompile
and relink existing ODBC applications. Also see ODBC API Incompatibilities
With Previous Versions of TimesTen.

It is also advisable to link your applications dynamically rather than statically.

ODBC 2.5 Function Support
TimesTen supports certain ODBC 2.5 functions.

Note:

• The TimesTen ODBC driver supports wide-character (W) function
versions for applications not using a generic driver manager, as indicated
in Table 10-11.

• In ODBC 2.5, TimesTen supports some ODBC 3.0 handle types (such as
SQLHDBC and SQLHENV) as well as ODBC 2.0 handle types (such as HDBC
and HENV). TimesTen recommends using ODBC 3.0 handle types. The
FAR modifier that is mentioned in ODBC 2.0 documentation is not
required.

Table 10-11 Supported ODBC 2.5 Functions

Function Notes

SQLAllocConnect No notes

SQLAllocEnv No notes

SQLAllocStmt No notes

SQLBindCol No notes

SQLBindParameter See SQLBindParameter Function.

SQLCancel SQLCancel can cancel the following:

• An operation running on an hstmt on another thread

• An operation running on an hstmt that needs data

SQLCancel cannot cancel the following:

• Cache administrative operations
Do not call SQLCancel directly from a signal handler. Such
code may not be portable.

SQLColAttributes and
SQLColAttributesW

See Column Descriptor Support for ODBC 2.5
SQLColAttributes.

Also see ODBC 2.5 Function Signatures That Have Changed.

SQLColumnPrivileges Call returns "driver not capable".

Chapter 10
TimesTen ODBC 2.5 Support

10-18

Table 10-11 (Cont.) Supported ODBC 2.5 Functions

Function Notes

SQLColumns and
SQLColumnsW

For catalog functions, TimesTen supports only an empty
string or NULL as the qualifier.

SQLConnect and
ttSQLConnectW

Note the TimesTen name for the "W" function.

SQLDataSources and
SQLDataSourcesW

Available only to programs using a driver manager.

SQLDescribeCol and
SQLDescribeColW

No notes

SQLDescribeParam No notes

SQLDisconnect No notes

SQLDriverConnect and
SQLDriverConnectW

No notes

SQLDrivers and
SQLDriversW

Available only to programs using a driver manager.

SQLError and SQLErrorW Native error codes are TimesTen errors. You may receive
generic errors such as, "Execution at Oracle failed. Oracle
error code nnn."

When using SQLError or SQLErrorW:

• Use TT_MAX_MESSAGE_LENGTH (which is a higher limit)
instead of SQL_MAX_MESSAGE_LENGTH (which is a limit of
512 bytes).

• Handle a possible return of SQL_SUCCESS_WITH_INFO
(for example, in case the message length exceeded the
input buffer size).

SQLExecDirect See SQLExecute.

SQLExecute TimesTen does not support asynchronous statement
execution. (TimesTen does not support the
SQL_ASYNC_ENABLE statement option, as noted later in this
chapter.)

SQLFetch The return code is defined as SQL_NO_DATA_FOUND when no
more rows are returned.

SQL_NO_DATA_FOUND is defined in sqlext.h, which is
included by timesten.h.

SQLForeignKeys and
SQLForeignKeysW

For catalog functions, TimesTen supports only an empty
string or NULL as the qualifier.

SQLFreeConnect No notes

SQLFreeEnv No notes

SQLFreeStmt No notes

Chapter 10
TimesTen ODBC 2.5 Support

10-19

Table 10-11 (Cont.) Supported ODBC 2.5 Functions

Function Notes

SQLGetConnectOption and
SQLGetConnectOptionW

See Option Support for ODBC 2.5 SQLSetConnectOption and
SQLGetConnectOption.

Also see ODBC 2.5 Function Signatures That Have Changed.

Support is added for the TimesTen driver manager (TTDM).
This is documented in Attribute Support for ODBC 3.5
SQLSetConnectAttr and SQLGetConnectAttr.

SQLGetCursorName and
SQLGetCursorNameW

You can set or get a cursor name but not reference it, such as
in a WHERE CURRENT OF clause for a positioned update or
delete. TimesTen does not support positioned update or
delete statements.

SQLGetData See Avoid SQLGetData.

SQLGetFunctions No notes

SQLGetInfo and
SQLGetInfoW

See Information Type Support for ODBC 2.5 SQLGetInfo.

Also see ODBC 2.5 Function Signatures That Have Changed.

SQLGetStmtOption See Option Support for ODBC 2.5 SQLSetStmtOption and
SQLGetStmtOption.

Also see ODBC 2.5 Function Signatures That Have Changed.

SQLGetTypeInfo and
SQLGetTypeInfoW

For catalog functions, TimesTen supports only an empty
string or NULL as the qualifier.

SQLNativeSql and
SQLNativeSqlW

No notes

SQLNumParams No notes

SQLNumResultCols No notes

SQLParamData No notes

SQLParamOptions See ODBC 2.5 Function Signatures That Have Changed.

SQLPrepare and
SQLPrepareW

No notes

SQLPrimaryKeys and
SQLPrimaryKeysW

For catalog functions, TimesTen supports only an empty
string or NULL as the qualifier.

SQLProcedureColumns and
SQLProcedureColumnsW

For catalog functions, TimesTen supports only an empty
string or NULL as the qualifier.

SQLProcedures and
SQLProceduresW

For catalog functions, TimesTen supports only an empty
string or NULL as the qualifier.

SQLPutData No notes

SQLRowCount In addition to its standard functionality, this is used with
TimesTen cache groups. See Retrieving Information About
Cache Groups.

SQLSetConnectOption and
SQLSetConnectOptionW

See Option Support for ODBC 2.5 SQLSetConnectOption and
SQLGetConnectOption under the next section.

Also see ODBC 2.5 Function Signatures That Have Changed.

Chapter 10
TimesTen ODBC 2.5 Support

10-20

Table 10-11 (Cont.) Supported ODBC 2.5 Functions

Function Notes

SQLSetCursorName and
SQLSetCursorNameW

You can set or get a cursor name but not reference it, such as
in a WHERE CURRENT OF clause for a positioned update or
delete.

SQLSetParam This is an ODBC 1.0 function, replaced by
SQLBindParameter in ODBC 2.0. Retained for backward
compatibility.

SQLSetPos Call returns "driver not capable".

SQLSetStmtOption See Option Support for ODBC 2.5 SQLSetStmtOption and
SQLGetStmtOption.

Also see ODBC 2.5 Function Signatures That Have Changed.

SQLSpecialColumns and
SQLSpecialColumnsW

TimesTen supports only the SQL_BEST_ROWID option.

For catalog functions, TimesTen supports only an empty
string or NULL as the qualifier.

SQLStatistics and
SQLStatisticsW

For catalog functions, TimesTen supports only an empty
string or NULL as the qualifier.

SQLTablePrivileges Call returns "driver not capable".

SQLTables and SQLTablesW For catalog functions, TimesTen supports only an empty
string or NULL as the qualifier.

SQLTransact No notes

Option Support for ODBC 2.5 SQLSetConnectOption and
SQLGetConnectOption

The ODBC 2.5 SQLSetConnectOption and SQLGetConnectOption functions enable you to set
connection options after the initial connection or retrieve those settings. Some of these
correspond to connection attributes you can set during the connection process.

Table 10-12 lists standard options supported by TimesTen for The ODBC 2.5
SQLSetConnectOption and SQLGetConnectOption functions.

For TimesTen-specific connection options, see Table 10-4. These options are supported for
both ODBC 2.5 and ODBC 3.5.

Also see Option Support for ODBC 2.5 SQLSetStmtOption and SQLGetStmtOption. Those
options can also be set using SQLSetConnectOption, in which case the value serves as a
default for all statements on the connection.

Chapter 10
TimesTen ODBC 2.5 Support

10-21

Note:

• An option setting through SQLSetConnectOption or SQLSetStmtOption
overrides the setting of the corresponding connection attribute (as
applicable).

• The documentation here also applies to SQLSetConnectOptionW and
SQLGetConnectOptionW.

• Where TimesTen connection attributes are mentioned as being
equivalent to ODBC connection options, see Connection Attributes in
Oracle TimesTen In-Memory Database Reference.

Table 10-12 Standard connection options (ODBC 2.5)

Option Notes

SQL_AUTOCOMMIT No notes

SQL_MAX_ROWS See ODBC 2.5 Function Signatures That Have Changed (refer to
SQLGetStmtOption or SQLSetStmtOption there).

SQL_NOSCAN No notes

SQL_ODBC_CURSORS Supported for programs using a driver manager

SQL_OPT_TRACE Supported for programs using a driver manager

SQL_OPT_TRACEFILE Supported for programs using a driver manager

SQL_TXN_ISOLATION Supported for vParam is SQL_TXN_READ_COMMITTED or
SQL_TXN_SERIALIZABLE
See Prefetching Multiple Rows of Data for information about the
relationship between prefetching and isolation level. Also see
Concurrency Control Through Isolation and Locking in Oracle
TimesTen In-Memory Database Operations Guide and Isolation in
Oracle TimesTen In-Memory Database Reference.

Option Support for ODBC 2.5 SQLSetStmtOption and
SQLGetStmtOption

The ODBC 2.5 SQLSetStmtOption and SQLGetStmtOption functions enable you to set
or retrieve statement option settings.

Table 10-13 lists standard options supported by TimesTen for the ODBC 2.5
SQLSetStmtOption and SQLGetStmtOption functions, with notes about the support.

For TimesTen-specific statement options, see Table 10-6. These options are supported
for both ODBC 2.5 and ODBC 3.5.

To set an option default value for all statements associated with a connection, use
SQLSetConnectOption.

Chapter 10
TimesTen ODBC 2.5 Support

10-22

Note:

An option setting through SQLSetConnectOption or SQLSetStmtOption overrides the
setting of the corresponding connection attribute (as applicable).

Table 10-13 Standard Statement Options (ODBC 2.5)

Option Notes

SQL_MAX_ROWS See ODBC 2.5 Function Signatures That Have Changed.

SQL_NOSCAN No notes

SQL_QUERY_TIMEOUT See Setting a Timeout Duration for SQL Statements.

Note:

The SQL_MAX_LENGTH option can be set, but any specified value is overridden with 0
(return all available data).

Column Descriptor Support for ODBC 2.5 SQLColAttributes
The SQLColAttributes function returns descriptor information for a column in a result set.

Refer to ODBC API reference documentation for complete information about this function and
standard column descriptors.

Table 10-14 describes TimesTen-specific column descriptors.

Table 10-14 TimesTen Column Descriptors: SQLColAttributes

Descriptor Comment/Description

TT_COLUMN_INLINE Returns TRUE for columns with inline data, or FALSE otherwise.
This is returned in the SQLColAttributes pfDesc
parameter.

TT_COLUMN_LENGTH_SEMANTICS For character-type columns, this returns "BYTE" for columns
with byte length semantics and "CHAR" for columns with
character length semantics. For non-character columns, it
returns "". The information is returned in the
SQLColAttributes rgbDesc parameter.

This information refers to whether data length is measured in
bytes or characters. Length semantics in TimesTen are the
same as in Oracle Database. See Length Semantics in Oracle
Database Globalization Support Guide.

Chapter 10
TimesTen ODBC 2.5 Support

10-23

Information Type Support for ODBC 2.5 SQLGetInfo
There is support in the TimesTen ODBC 2.5 implementation for information types for
the ODBC function SQLGetInfo.

Table 10-15 documents TimesTen support for standard information types introduced in
ODBC 1.0 and 2.0, as well as ODBC 3.0 information types supported by the TimesTen
ODBC 2.5 implementation (as indicated), noting the TimesTen-specific correct value or
values returned.

See Information Type Support for ODBC 3.5 SQLGetInfo for TimesTen-specific
information types, which are supported for both ODBC 3.5 and ODBC 2.5.

Table 10-15 TimesTen Support for Standard Information Types: SQLGetInfo
(ODBC 2.5)

Information Type Notes and Correct Values Returned by
TimesTen

SQL_ACCESSIBLE_PROCEDURES "Y"

SQL_ACCESSIBLE_TABLES "Y"

SQL_ACTIVE_CONNECTIONS sb_DbConnMaxUser: Daemon connections
limited to this value.

SQL_ACTIVE_STATEMENTS 0: Allocated from heap, no limit on concurrency.

SQL_AGGREGATE_FUNCTIONS ODBC 3.0 information type supported by
TimesTen ODBC 2.5 implementation. See
Information Type Support for ODBC 3.5
SQLGetInfo.

SQL_ALTER_TABLE SQL_AT_ADD_COLUMN, SQL_AT_DROP_COLUMN
SQL_BOOKMARK_PERSISTENCE 0: Bookmarks persist through none of the

operations.

SQL_COLUMN_ALIAS "Y"

SQL_CONCAT_NULL_BEHAVIOR SQL_CB_NON_NULL: Result is concatenation of
column or columns with non-null values.

SQL_CONVERT_FUNCTIONS SQL_FN_CVT_CAST
SQL_CONVERT_xxxx 0: CONVERT function not supported.

SQL_CONVERT_WCHAR ODBC 3.0 information type supported by
TimesTen ODBC 2.5 implementation. See
Information Type Support for ODBC 3.5
SQLGetInfo.

SQL_CONVERT_WLONGVARCHAR ODBC 3.0 information type supported by
TimesTen ODBC 2.5 implementation. See
Information Type Support for ODBC 3.5
SQLGetInfo.

SQL_CONVERT_WVARCHAR ODBC 3.0 information type supported by
TimesTen ODBC 2.5 implementation. See
Information Type Support for ODBC 3.5
SQLGetInfo.

SQL_CORRELATION_NAME SQL_CN_ANY: Correlation names are supported
and can be any valid user-defined name.

Chapter 10
TimesTen ODBC 2.5 Support

10-24

Table 10-15 (Cont.) TimesTen Support for Standard Information Types:
SQLGetInfo (ODBC 2.5)

Information Type Notes and Correct Values Returned by
TimesTen

SQL_CREATE_VIEW ODBC 3.0 information type supported by
TimesTen ODBC 2.5 implementation. See
Information Type Support for ODBC 3.5
SQLGetInfo.

SQL_CURSOR_COMMIT_BEHAVIOR SQL_CB_CLOSE: Close cursors. For prepared
statements, the application can call SQLExecute
on the statement without calling SQLPrepare
again.

SQL_CURSOR_ROLLBACK_BEHAVIOR SQL_CB_CLOSE: Close cursors. For prepared
statements, the application can call SQLExecute
on the statement without calling SQLPrepare
again.

SQL_DATA_SOURCE_NAME "": Empty string.

SQL_DATA_SOURCE_READ_ONLY "N"

SQL_DATETIME_LITERALS ODBC 3.0 information type supported by
TimesTen ODBC 2.5 implementation. See
Information Type Support for ODBC 3.5
SQLGetInfo.

SQL_DEFAULT_TXN_ISOLATION SQL_TXN_READ_COMMITTED: Dirty reads are not
possible. Non-repeatable reads and phantoms are
possible.

SQL_TXN_SERIALIZABLE: Transactions are
serializable. Dirty reads, non-repeatable reads, or
phantoms are now allowed.

SQL_DRIVER_HDBC Pointer to driver connection handle.

SQL_DRIVER_HENV Pointer to driver environment handle.

SQL_DRIVER_HLIB NULL
Note: If you use a driver manager, this returns the
pointer to the TimesTen library.

SQL_DRIVER_HSTMT Pointer to driver statement handle.

SQL_DRIVER_NAME The file name of the TimesTen ODBC driver
library for your platform.

SQL_DRIVER_ODBC_VER "3.51" for ODBC 3.5; "2.50" for ODBC 2.5.

SQL_DRIVER_VER A string indicating the TimesTen version. For
example, "22.01.0001.0001 Oracle TimesTen
version 22.1.1.1.0".

SQL_DROP_VIEW. ODBC 3.0 information type supported by
TimesTen ODBC 2.5 implementation. See
Information Type Support for ODBC 3.5
SQLGetInfo.

SQL_EXPRESSIONS_IN_ORDERBY "Y"

SQL_FETCH_DIRECTION SQL_FD_FETCH_NEXT

Chapter 10
TimesTen ODBC 2.5 Support

10-25

Table 10-15 (Cont.) TimesTen Support for Standard Information Types:
SQLGetInfo (ODBC 2.5)

Information Type Notes and Correct Values Returned by
TimesTen

SQL_FILE_USAGE SQL_FILE_NOT_SUPPORTED: Driver is not a
single-tier driver.

SQL_GETDATA_EXTENSIONS SQL_GD_ANY_COLUMN: SQLGetData can be
called for any unbound column, including those
before the last bound column. The columns must
be called in order of ascending column number
unless SQL_GD_ANY_ORDER is also returned.

SQL_GD_ANY_ORDER: SQLGetData can be called
for unbound columns in any order. Note that
SQLGetData can be called only for columns after
the last bound column unless
SQL_GD_ANY_COLUMN is also returned.

SQL_GD_BOUND: SQLGetData can be called for
bound columns in addition to unbound columns. A
driver cannot return this value unless it also
returns SQL_GD_ANY_COLUMN.

SQL_GROUP_BY SQL_GB_GROUP_BY_CONTAINS_SELECT: GROUP
BY clause must contain all nonaggregated
columns in the select list, but can also contain
columns that are not in the select list. For
example:

SELECT dept, MAX(salary) FROM employee
GROUP BY dept, age;

SQL_IDENTIFIER_CASE SQL_IC_UPPER: SQL identifiers are not case-
sensitive and are stored in uppercase in system
catalog.

SQL_IDENTIFIER_QUOTE_CHAR """: A string with one quote mark, which is the
quote character.

SQL_KEYWORDS TT_SQL_KEYWORDS: A character string that
contains a comma-separated list of TimesTen-
specific SQL keywords.

See TimesTen SQL Keywords for ODBC 2.5.

SQL_LIKE_ESCAPE_CLAUSE "Y"

SQL_MAX_BINARY_LITERAL_LEN 16384

SQL_MAX_CHAR_LITERAL_LEN YY_BUF_SIZE
SQL_MAX_COLUMN_NAME_LEN
Alias
SQL_MAXIMUM_COLUMN_NAME_LENGTH

sb_ObjNameLenMax

SQL_MAX_COLUMNS_IN_GROUP_BY
Alias
SQL_MAXIMUM_COLUMNS_IN_GROUP_BY

MAX_COLUMNS_IN_GB

SQL_MAX_COLUMNS_IN_INDEX MAX_COLUMNS_IN_IDX

Chapter 10
TimesTen ODBC 2.5 Support

10-26

Table 10-15 (Cont.) TimesTen Support for Standard Information Types:
SQLGetInfo (ODBC 2.5)

Information Type Notes and Correct Values Returned by
TimesTen

SQL_MAX_COLUMNS_IN_ORDER_BY
Alias
SQL_MAXIMUM_COLUMNS_IN_ORDER_BY

MAX_COLUMNS_IN_OB

SQL_MAX_COLUMNS_IN_SELECT
Alias SQL_MAXIMUM_COLUMNS_IN_SELECT

MAX_COLUMNS_IN_SELECT

SQL_MAX_COLUMNS_IN_TABLE
Alias SQL_MAXIMUM_COLUMNS_IN_TABLE

MAX_COLUMNS_IN_TBL

SQL_MAX_CURSOR_NAME_LEN
Alias
SQL_MAXIMUM_CURSOR_NAME_LENGTH

18

SQL_MAX_INDEX_SIZE 4194304

SQL_MAX_OWNER_NAME_LEN sb_ObjNameLenMax
SQL_MAX_PROCEDURE_NAME_LEN sb_NameLenMax - 1
SQL_MAX_QUALIFIER_NAME_LEN 0: No specific maximum length.

SQL_MAX_ROW_SIZE 4194304

SQL_MAX_STATEMENT_LEN
Alias SQL_MAXIMUM_STATEMENT_LENGTH

sb_SqlStringLenMax

SQL_MAX_TABLE_NAME_LEN
Alias SQL_MAXIMUM_TABLE_NAME_LENGTH

sb_ObjNameLenMax

SQL_MAX_TABLES_IN_SELECT
Alias SQL_MAXIMUM_TABLES_IN_SELECT

sb_SqlCorrMax

SQL_MAX_USER_NAME_LEN
Alias SQL_MAXIMUM_USER_NAME_LENGTH

sb_ObjNameLenMax

SQL_MULT_RESULT_SETS "N"

SQL_MULTIPLE_ACTIVE_TXN "Y"

SQL_NEED_LONG_DATA_LEN "N"

SQL_NON_NULLABLE_COLUMNS SQL_NNC_NON_NULL: Columns cannot be
nullable. (The data source supports the NOT NULL
column constraint in CREATE TABLE statements.)

SQL_NULL_COLLATION SQL_NC_HIGH: Null values are sorted at the high
end of the result set, depending on the ASC or
DESC keyword.

SQL_NUMERIC_FUNCTIONS SQL_FN_NUM_ABS, SQL_FN_NUM_CEILING,
SQL_FN_NUM_FLOOR, SQL_FN_NUM_MOD,
SQL_FN_NUM_POWER, SQL_FN_NUM_ROUND,
SQL_FN_NUM_SIGN, SQL_FN_NUM_SQRT

SQL_ODBC_SQL_OPT_IEF "N"

SQL_ODBC_VER N/A, implemented by the driver manager.

Chapter 10
TimesTen ODBC 2.5 Support

10-27

Table 10-15 (Cont.) TimesTen Support for Standard Information Types:
SQLGetInfo (ODBC 2.5)

Information Type Notes and Correct Values Returned by
TimesTen

SQL_OJ_CAPABILITIES
Alias SQL_OUTER_JOIN_CAPABILITIES

SQL_OJ_LEFT: Left outer joins supported.

SQL_OJ_RIGHT: Right outer joins supported.

SQL_OJ_NOT_ORDERED: Column names in the ON
clause of the outer join do not have to be in the
same order as their respective table names in the
OUTER JOIN clause.

SQL_OJ_INNER: Inner table (right table in a left
outer join or left table in a right outer join) can also
be used in an inner join. This does not apply to
full outer joins, which do not have an inner table.

SQL_OJ_ALL_COMPARISON_OPS: Comparison
operator in the ON clause can be any of the ODBC
comparison operators. If this bit is not set, only
the equals (=) comparison operator can be used
in outer joins.

SQL_ORDER_BY_COLUMNS_IN_SELECT "Y"

SQL_OUTER_JOINS "Y"

SQL_OWNER_TERM "owner"

SQL_OWNER_USAGE SQL_OU_DML_STATEMENTS: Schemas supported
in all DML statements.

SQL_OU_PROCEDURE_INVOCATION: Schemas
supported in the ODBC procedure invocation
statement.

SQL_OU_TABLE_DEFINITION: Schemas
supported in CREATE TABLE, CREATE VIEW,
ALTER TABLE, DROP TABLE, and DROP VIEW
statements.

SQL_OU_INDEX_DEFINITION: Schemas
supported in CREATE INDEX and DROP INDEX
statements.

SQL_OU_PRIVILEGE_DEFINITION: Schemas are
supported in GRANT and REVOKE statements.

SQL_PARAM_ARRAY_ROW_COUNTS ODBC 3.0 information type supported by
TimesTen ODBC 2.5 implementation. See
Information Type Support for ODBC 3.5
SQLGetInfo.

SQL_PARAM_ARRAY_SELECTS ODBC 3.0 information type supported by
TimesTen ODBC 2.5 implementation. See
Information Type Support for ODBC 3.5
SQLGetInfo.

SQL_POS_OPERATIONS 0: Scrollable cursors not supported.

SQL_PROCEDURE_TERM "procedure"

SQL_PROCEDURES "Y"

SQL_QUALIFIER_LOCATION 0: Catalog names as qualifiers not supported.

Chapter 10
TimesTen ODBC 2.5 Support

10-28

Table 10-15 (Cont.) TimesTen Support for Standard Information Types:
SQLGetInfo (ODBC 2.5)

Information Type Notes and Correct Values Returned by
TimesTen

SQL_QUALIFIER_NAME_SEPARATOR NULL: Not supported.

SQL_QUALIFIER_TERM "data store"

SQL_QUALIFIER_USAGE 0: Catalogs not supported.

SQL_QUOTED_IDENTIFIER_CASE SQL_IC_SENSITIVE: Quoted identifiers in SQL
are case-sensitive and stored in mixed-case in the
system catalog.

SQL_ROW_UPDATES "N"

SQL_SCROLL_OPTIONS SQL_SO_FORWARD_ONLY: Cursors can scroll only
forward.

SQL_SEARCH_PATTERN_ESCAPE "\\"

SQL_SERVER_NAME "": Empty string.

SQL_SPECIAL_CHARACTERS "@#$": A string indicating the special characters.

SQL_SQL92_RELATIONAL_JOIN_OPERATO
RS

ODBC 3.0 information type supported by
TimesTen ODBC 2.5 implementation. See
Information Type Support for ODBC 3.5
SQLGetInfo.

SQL_SQL92_VALUE_EXPRESSIONS ODBC 3.0 information type supported by
TimesTen ODBC 2.5 implementation. See
Information Type Support for ODBC 3.5
SQLGetInfo.

SQL_STRING_FUNCTIONS SQL_FN_STR_CHAR, SQL_FN_STR_CONCAT,
SQL_FN_STR_LCASE, SQL_FN_STR_LEFT,
SQL_FN_STR_LENGTH, SQL_FN_STR_LOCATE,
SQL_FN_STR_LOCATE_2, SQL_FN_STR_LTRIM,
SQL_FN_STR_REPLACE, SQL_FN_STR_RIGHT,
SQL_FN_STR_RTRIM, SQL_FN_STR_SOUNDEX,
SQL_FN_STR_SPACE,
SQL_FN_STR_SUBSTRING, SQL_FN_STR_UCASE

SQL_SUBQUERIES SQL_SQ_CORRELATED_SUBQUERIES,
SQL_SQ_COMPARISON, SQL_SQ_EXISTS,
SQL_SQ_IN, SQL_SQ_INSQL_SQ_QUANTIFIED

SQL_SYSTEM_FUNCTIONS SQL_FN_SYS_IFNULL, SQL_FN_SYS_USERNAME
SQL_TABLE_TERM "table"

SQL_TIMEDATE_ADD_INTERVALS SQL_FN_TSI_FRAC_SECOND,
SQL_FN_TSI_SECOND, SQL_FN_TSI_MINUTE,
SQL_FN_TSI_HOUR, SQL_FN_TSI_DAY,
SQL_FN_TSI_WEEK, SQL_FN_TSI_MONTH,
SQL_FN_TSI_QUARTER, SQL_FN_TSI_YEAR

SQL_TIMEDATE_DIFF_INTERVALS SQL_FN_TSI_FRAC_SECOND,
SQL_FN_TSI_SECOND, SQL_FN_TSI_MINUTE,
SQL_FN_TSI_HOUR, SQL_FN_TSI_DAY,
SQL_FN_TSI_WEEK, SQL_FN_TSI_MONTH,
SQL_FN_TSI_QUARTER, SQL_FN_TSI_YEAR

Chapter 10
TimesTen ODBC 2.5 Support

10-29

Table 10-15 (Cont.) TimesTen Support for Standard Information Types:
SQLGetInfo (ODBC 2.5)

Information Type Notes and Correct Values Returned by
TimesTen

SQL_TIMEDATE_FUNCTIONS SQL_FN_TD_TIMESTAMPADD, SQL_FN_TD_NOW,
SQL_FN_TD_TIMESTAMPDIFF

SQL_TXN_CAPABLE
Alias SQL_TRANSACTION_CAPABLE

SQL_TC_DDL_COMMIT: According to the ODBC
2.0 standard, this indicates that transactions can
contain only DML statements, and that DDL
statements encountered in a transaction cause
the transaction to be committed. TimesTen
implements Oracle Database semantics, which
allow both DML and DDL in a transaction, but a
DDL statement causes the transaction to commit.

SQL_TXN_ISOLATION_OPTION
Alias
SQL_TRANSACTION_ISOLATION_OPTION

SQL_TXN_READ_COMMITTED,
SQL_TXN_SERIALIZABLE

SQL_UNION SQL_U_UNION: Data source supports UNION
clause.

SQL_U_UNION_ALL: Data source supports ALL
keyword in the UNION clause. (SQLGetInfo
returns both SQL_U_UNION and
SQL_U_UNION_ALL in this case.)

SQL_USER_NAME At runtime, returns a string containing the user
name.

Note:

If you use InfoType value SQL_DRIVER_HDBC, SQL_DRIVER_HENV, or
SQL_DRIVER_HSTMT, refer to ODBC 2.5 Function Signatures That Have
Changed.

TimesTen SQL Keywords for ODBC 2.5
This section lists the TimesTen SQL keywords returned for SQL_KEYWORDS in a
SQLGetInfo call.

This is different from the list of TimesTen reserved words. See Reserved Words in
Oracle TimesTen In-Memory Database SQL Reference.

ABS, ACCOUNT, ACTIVE, ADDMONTHS, ADMIN, AFFINITY, AGENT, AGING, ALLOW,
ASCIISTR, ASYNCHRONOUS, AUTHID, AUTOREFRESH, AWT, BATCH, BIG, BIGINT,
BINARY, BINARY_DOUBLE, BINARY_DOUBLE_INFINITY, BINARY_DOUBLE_NAN,
BINARY_FLOAT, BINARY_FLOAT_INFINITY, BINARY_FLOAT_NAN, BITAND, BITMAP,
BITNOT, BITOR, BITXOR, BLOB, BODY, BYTE, BYTES, CACHE, CACHEONLY,
CACHE_MANAGER, CALL, CHECKING, CHR, CLOB, COLUMNAR, COMMITTED, COMPILE,
COMPLETE, COMPRESS, CONCAT, CONFLICT, CONFLICTS, CS, CUBE, CURRENT_SCHEMA,
CURRVAL, CYCLE, DATASTORE, DATASTORE_OWNER, DAYS, DEBUG, DECODE, DEFINED,

Chapter 10
TimesTen ODBC 2.5 Support

10-30

DEFINER, DEFINITION, DELETE_FT, DESTROY, DICTIONARY, DIRECTORY, DISABLE,
DISTRIBUTE, DUPLICATE, DURABLE, DURATION, DYNAMIC, ELEMENT, ENABLE, ENCRYPTED,
ENDSEQ, EVERY, EXACT, EXCLUDE, EXIT, EXPIRE, EXTERNALLY, FACTOR, FAILTHRESHOLD,
FAST, FIRST_VALUE, FLUSH, FOLLOWING, FORCE, FORMAT, FUNCTION, GETDATE, GRID,
GROUPING, GROUPING_ID, GROUP_ID, HASH, HEARTBEAT, HIERARCHY, HOURS, ID,
IDENTIFIED, IGNORE, INCREMENT, INCREMENTAL, INFINITE, INLINE, INSERTONLY,
INSTANCE, INSTR, INSTR4, INSTRB, LAST_VALUE, LATENCY, LENGTH, LENGTH4, LENGTHB,
LIBRARY, LIFETIME, LIMIT, LIMIT_FT, LOAD, LOAD_FT, LOCK, LOG, LONG, LRU, MASTER,
MASTERIP, MATCHED, MATERIALIZED, MAXVALUE, MAXVALUES, MERGE, MIGRATORY,
MILLISECOND, MILLISECONDS, MINUS, MINUTES, MINVALUE, MOD, MODE, MODIFY, MULTI,
NAME, NAN, NCHAR_CS, NCHR, NCLOB, NEXTVAL, NLSSORT, NOBATCH, NOCACHE, NOCYCLE,
NOMAXVALUE, NOMINVALUE, NONDURABLE, NOORDER, NOWAIT, NULLS, NUMBER,
NUMTODSINTERVAL, NUMTOYMINTERVAL, NVARCHAR, NVARCHAR2, NVL, OFF, OPTIMIZED,
ORACLE, ORA_CHAR, ORA_DATE, ORA_FLOAT, ORA_NCHAR, ORA_NVARCHAR2, ORA_SYSDATE,
ORA_TIMESTAMP, ORA_VARCHAR2, OUT, OVER, PACKAGE, PAGES, PAIR, PARALLEL,
PARTITION, PASSWORD, PAUSED, PLSQL_WARNINGS, PORT, PRECEDING, PRIORITY, PRIVATE,
PROPAGATE, PROPAGATOR, PUBLICREAD, PUBLICROW, QUIT, RANGE, RC, READERS,
READONLY, RECEIPT, REFERENCE, REFRESH, REFRESH_FT, RELAXED, RELEASE, RENAME,
REPLACE, REPLICATION, REPORT, REPORTING, REQUEST, RESUME, RETURN, RETURNING,
REUSE, RLE, ROLLUP, ROUTE, ROW, ROWID, ROWIDONLY, ROWNUM, RR, RTRIM, RU,
SECONDS, SELF, SEQBATCH, SEQCACHE, SEQUENCE, SERVICES, SETS, SETTINGS,
SPECIFICATION, SQL_TSI_DAY, SQL_TSI_FRAC_SECOND, SQL_TSI_HOUR, SQL_TSI_MINUTE,
SQL_TSI_MONTH, SQL_TSI_QUARTER, SQL_TSI_SECOND, SQL_TSI_WEEK, SQL_TSI_YEAR,
STANDARD, STANDBY, START, STARTSEQ, STATE, STATIC, STOPPED, STORE, SUBSCRIBER,
SUBSCRIBERIP, SUBSTR, SUBSTR4, SUBSTRB, SUSPEND, SYNCHRONOUS, SYNONYM, SYSDATE,
SYSDBA, SYSTEM, TAG, TIMEOUT, TIMESTAMPADD, TIMESTAMPDIFF, TINYINT, TO_BLOB,
TO_CHAR, TO_CLOB, TO_DATE, TO_LOB, TO_NCLOB, TO_NUMBER, TO_TIMESTAMP, TRAFFIC,
TRANSMIT, TREE, TRUNC, TRUNCATE, TRUSTED, TT_BIGINT, TT_BINARY, TT_CHAR,
TT_DATE, TT_DECIMAL, TT_HASH, TT_INT, TT_INTEGER, TT_INTERVAL, TT_NCHAR,
TT_NVARCHAR, TT_SMALLINT, TT_SYSDATE, TT_TIME, TT_TIMESTAMP, TT_TINYINT,
TT_VARBINARY, TT_VARCHAR, TWOSAFE, UID, UNBOUNDED, UNISTR, UNLOAD, UNLOCK, USE,
USERMANAGED, VARBINARY, VARCHAR2, WAIT, WRAPPED, WRITETHROUGH, XLA, XML, XYZZY

ODBC API Incompatibilities With Previous Versions of TimesTen
There are changes introduced in the TimesTen 18.1 release that impact ODBC applications
used with previous versions of TimesTen.

These topics are covered:

• Overview of ODBC API Incompatibilities

• ODBC 3.5 Function Signatures That Have Changed

• ODBC 2.5 Function Signatures That Have Changed

• ODBC Data Types That Have Changed

Overview of ODBC API Incompatibilities
The TimesTen driver is ODBC-compliant; however, beginning in Release 18.1, more recent
ODBC header files are provided in the include directory of the TimesTen installation on Linux
and UNIX platforms.

Changes were also made to update some ODBC types and functions to make them 64-bit
compatible.

Chapter 10
ODBC API Incompatibilities With Previous Versions of TimesTen

10-31

These and other changes may necessitate code changes on any platform. ODBC
changes requiring code updates for ODBC applications fall into the following
categories:

• ODBC function changes

– Function signature changes: A number of function signatures have changed
for 64-bit programming.

– Changes to the size of option or attribute values: This refers to values of
connection options, statement options, column attributes, or driver and data
source information, either passed or returned. These are now 64-bit values in
the circumstances indicated below.

• ODBC data type changes

Tip:

Even if none of the required code changes applies to your applications, you
should recompile and relink existing ODBC applications the first time you use
a TimesTen 22.1 release.

If your existing TimesTen ODBC application uses features described in the sections
that follow, you must update the application as necessary:

ODBC 3.5 Function Signatures That Have Changed
There are ODBC 3.5 functions with changes requiring code updates.

In previous releases, TimesTen provided partial support for ODBC 3.5 functionality,
including:

• Handle allocation methods

• Diagnostic records

• Wide character functions

• Attribute set and get functions for handles

• SQLColAttribute
• Miscellaneous functions that map directly to 2.5 functionality such as

SQLCloseCursor and SQLEndTran
The functions listed in Table 10-16 have changes to the signature or changes to the
size of attribute values, requiring code updates for ODBC 3.5 applications, as
indicated. Sizes of attribute values apply to values of connection and statement
attributes, either passed or returned.

Chapter 10
ODBC API Incompatibilities With Previous Versions of TimesTen

10-32

Note:

• Signature changes apply to either 64-bit or 32-bit environments. Size changes
in option and attribute values apply only to 64-bit environments.

• TimesTen ODBC does not return values for options or attributes related to
features that TimesTen does not support. For example:
SQL_ATTR_ASYNC_ENABLE, SQL_ATTR_ENLIST_IN_DTC,
SQL_ATTR_CURSOR_SCROLLABLE, SQL_ATTR_CURSOR_SENSITIVITY,
SQL_ATTR_FETCH_BOOKMARK_PTR, SQL_ATTR_METADATA_ID,
SQL_ATTR_RETRIEVE_DATA, SQL_ATTR_SIMULATE_CURSOR,
SQL_ATTR_USE_BOOKMARKS.

Table 10-16 Changes in ODBC 3.5 Functions

Function Signature Changes Size Changes in Option and
Attribute Values

SQLColAttribute
SQLColAttributeW

N/A On UNIX platforms: For the following
FieldIdentifier values, a 64-bit
value is returned in
*NumericAttributePtr:

SQL_DESC_AUTO_UNIQUE_VALUE
SQL_DESC_CASE_SENSITIVE
SQL_DESC_CONCISE_TYPE
SQL_DESC_COUNT
SQL_DESC_DISPLAY_SIZE
SQL_DESC_FIXED_PREC_SCALE
SQL_DESC_LENGTH
SQL_DESC_NULLABLE
SQL_DESC_NUM_PREC_RADIX
SQL_DESC_OCTET_LENGTH
SQL_DESC_PRECISION
SQL_DESC_SCALE
SQL_DESC_SEARCHABLE
SQL_DESC_TYPE
SQL_DESC_UNNAMED
SQL_DESC_UNSIGNED
SQL_DESC_UPDATABLE

SQLGetConnectAttr
SQLGetConnectAttrW

*ValuePtr must be
SQLUINTEGER or SQLULEN,
depending on the attribute you
are getting.

Note: TimesTen-specific
attributes (prefixed with TT_)
remain the same data types.

On UNIX platforms: For the following
attributes, a 64-bit value is returned in
*ValuePtr:

SQL_ATTR_ASYNC_ENABLE
SQL_ATTR_ENLIST_IN_DTC
SQL_ATTR_ODBC_CURSORS
SQL_ATTR_QUIET_MODE

Chapter 10
ODBC API Incompatibilities With Previous Versions of TimesTen

10-33

Table 10-16 (Cont.) Changes in ODBC 3.5 Functions

Function Signature Changes Size Changes in Option and
Attribute Values

SQLGetStmtAttr
SQLGetStmtAttrW

*ValuePtr must be SQLUINTEGER
or SQLULEN, depending on the
attribute you are getting.

Note: TimesTen-specific
attributes (prefixed with TT_)
remain the same data types.

On UNIX platforms: For the following
attributes, a 64-bit value is returned in
*ValuePtr:

SQL_ATTR_APP_PARAM_DESC
SQL_ATTR_APP_ROW_DESC
SQL_ATTR_ASYNC_ENABLE
SQL_ATTR_CONCURRENCY
SQL_ATTR_CURSOR_SCROLLABLE
SQL_ATTR_CURSOR_SENSITIVITY
SQL_ATTR_CURSOR_TYPE
SQL_ATTR_ENABLE_AUTO_IPD
SQL_ATTR_FETCH_BOOKMARK_PTR
SQL_ATTR_ROWS_FETCHED_PTR
SQL_ATTR_IMP_PARAM_DESC
SQL_ATTR_IMP_ROW_DESC
SQL_ATTR_KEYSET_SIZE
SQL_ATTR_MAX_LENGTH
SQL_ATTR_MAX_ROWS
SQL_ATTR_METADATA_ID
SQL_ATTR_NOSCAN
SQL_ATTR_PARAM_BIND_OFFSET_
PTR
SQL_ATTR_PARAM_BIND_TYPE
SQL_ATTR_PARAM_OPERATION_PT
R
SQL_ATTR_PARAM_STATUS_PTR
SQL_ATTR_PARAMS_PROCESSED_P
TR
SQL_ATTR_PARAMSET_SIZE
SQL_ATTR_QUERY_TIMEOUT
SQL_ATTR_RETRIEVE_DATA
SQL_ATTR_ROW_ARRAY_SIZE
SQL_ATTR_ROW_BIND_OFFSET_PT
R
SQL_ATTR_ROW_NUMBER
SQL_ATTR_ROW_OPERATION_PTR
SQL_ATTR_ROW_STATUS_PTR
SQL_ATTR_SIMULATE_CURSOR
SQL_ATTR_USE_BOOKMARKS

Chapter 10
ODBC API Incompatibilities With Previous Versions of TimesTen

10-34

Table 10-16 (Cont.) Changes in ODBC 3.5 Functions

Function Signature Changes Size Changes in Option and
Attribute Values

SQLSetConnectAttr
SQLSetConnectAttrW

*ValuePtr must be
SQLUINTEGER or SQLULEN,
depending on the attribute you
are setting.

Note: TimesTen-specific
attributes (prefixed with TT_)
remain the same data types.

On UNIX platforms: For the following
attributes, a 64-bit value is passed in
*ValuePtr:

SQL_ATTR_ASYNC_ENABLE
SQL_ATTR_ENLIST_IN_DTC
SQL_ATTR_ODBC_CURSORS
SQL_ATTR_QUIET_MODE

Chapter 10
ODBC API Incompatibilities With Previous Versions of TimesTen

10-35

Table 10-16 (Cont.) Changes in ODBC 3.5 Functions

Function Signature Changes Size Changes in Option and
Attribute Values

SQLSetStmtAttr
SQLSetStmtAttrW

*ValuePtr must be
SQLUINTEGER or SQLULEN,
depending on the attribute you
are setting.

Note: TimesTen-specific
attributes (prefixed with TT_)
remain the same data types.

On UNIX platforms: For the following
attributes, a 64-bit value is passed in
*ValuePtr:

SQL_ATTR_APP_PARAM_DESC
SQL_ATTR_APP_ROW_DESC
SQL_ATTR_ASYNC_ENABLE
SQL_ATTR_CONCURRENCY
SQL_ATTR_CURSOR_SCROLLABLE
SQL_ATTR_CURSOR_SENSITIVITY
SQL_ATTR_CURSOR_TYPE
SQL_ATTR_ENABLE_AUTO_IPD
SQL_ATTR_FETCH_BOOKMARK_PTR
SQL_ATTR_IMP_PARAM_DESC
SQL_ATTR_IMP_ROW_DESC
SQL_ATTR_KEYSET_SIZE
SQL_ATTR_MAX_LENGTH
SQL_ATTR_MAX_ROWS
SQL_ATTR_METADATA_ID
SQL_ATTR_NOSCAN
SQL_ATTR_PARAM_BIND_OFFSET_
PTR
SQL_ATTR_PARAM_BIND_TYPE
SQL_ATTR_PARAM_OPERATION_PT
R
SQL_ATTR_PARAM_STATUS_PTR
SQL_ATTR_PARAMS_PROCESSED_P
TR
SQL_ATTR_PARAMSET_SIZE
SQL_ATTR_QUERY_TIMEOUT
SQL_ATTR_RETRIEVE_DATA
SQL_ATTR_ROW_ARRAY_SIZE
SQL_ATTR_ROW_BIND_OFFSET_PT
R
SQL_ATTR_ROW_NUMBER
SQL_ATTR_ROW_OPERATION_PTR
SQL_ATTR_ROW_STATUS_PTR
SQL_ATTR_ROWS_FETCHED_PTR
SQL_ATTR_SIMULATE_CURSOR
SQL_ATTR_USE_BOOKMARKS

Chapter 10
ODBC API Incompatibilities With Previous Versions of TimesTen

10-36

ODBC 2.5 Function Signatures That Have Changed
There are ODBC 2.5 functions with changes requiring code updates.

The functions listed in Table 10-17 have changes to the signature or changes to the size of
option or attribute values, requiring code updates for ODBC 2.5 applications, as indicated.
Sizes of option or attribute values apply to values of connection options, statement options,
column attributes, or driver and data source information, either passed or returned.

Table 10-17 Changes in ODBC 2.5 Functions

Function Signature Changes Size Changes in Option and
Attribute Values

SQLColAttributes
SQLColAttributesW

N/A On Linux and UNIX platforms: For the
following fDescType values, a
SQLLEN value is returned in *pfDesc:

SQL_COLUMN_COUNT
SQL_COLUMN_DISPLAY_SIZE
SQL_COLUMN_LENGTH
SQL_DESC_AUTO_UNIQUE_VALUE
SQL_DESC_CASE_SENSITIVE
SQL_DESC_CONCISE_TYPE
SQL_DESC_FIXED_PREC_SCALE
SQL_DESC_SEARCHABLE
SQL_DESC_UNSIGNED
SQL_DESC_UPDATABLE

SQLGetConnectOption
SQLGetConnectOptionW

The Value parameter must be
SQLUINTEGER or SQLULEN,
depending on the option you are
getting.

Note: TimesTen-specific options
(prefixed with TT_) remain the
same data types.

On Linux and UNIX platforms: For the
option SQL_ATTR_QUIET_MODE, an
HWND value (void * pointer to a
window) is returned in Value.

SQLGetInfo
SQLGetInfoW

N/A On Linux and UNIX platforms: For the
following InfoType values, a
SQLPOINTER value is returned in
*InfoValuePtr:

SQL_DRIVER_HDBC
SQL_DRIVER_HENV
SQL_DRIVER_HSTMT

SQLGetStmtOption The Value parameter must be
SQLUINTEGER or SQLULEN,
depending on the option you are
getting.

Note: TimesTen-specific options
(prefixed with TT_) remain the
same data types.

On Linux and UNIX platforms: For the
following options, a SQLPOINTER value
is returned in Value:

SQL_KEYSET_SIZE
SQL_MAX_LENGTH
SQL_MAX_ROWS
SQL_ROWSET_SIZE

Chapter 10
ODBC API Incompatibilities With Previous Versions of TimesTen

10-37

Table 10-17 (Cont.) Changes in ODBC 2.5 Functions

Function Signature Changes Size Changes in Option and
Attribute Values

SQLParamOptions On Linux and UNIX platforms:
The crow and pirow parameters
are now declared as SQLULEN.

N/A

SQLSetConnectOption
SQLSetConnectOptionW

The Value parameter must be
SQLUINTEGER or SQLULEN,
depending on the option you are
setting.

Note: TimesTen-specific options
(prefixed with TT_) remain the
same data types.

On Linux and UNIX platforms: For the
option SQL_ATTR_QUIET_MODE, an
HWND value (void * pointer to a
window) is passed in Value.

SQLSetPos TimesTen does not support
scrollable cursors. This function
returns a "Driver not capable"
error (S1C00).

Note: The ODBC definition of
SQLSETPOSIROW, the data type
for the irow parameter, has
changed. (See the next section,
ODBC Data Types That Have
Changed.)

N/A

SQLSetStmtOption The Value parameter must be
SQLUINTEGER or SQLULEN,
depending on the option you are
setting.

Note: TimesTen-specific options
(prefixed with TT_) remain the
same data types.

On Linux and UNIX platforms: For the
following options, a SQLPOINTER value
is passed in Value:

SQL_KEYSET_SIZE
SQL_MAX_LENGTH
SQL_MAX_ROWS
SQL_ROWSET_SIZE

ODBC Data Types That Have Changed
There are changes to data types that require code updates for ODBC applications.

Table 10-18 ODBC 2.5 Data Types That Have Changed

Data Types Explanation

HANDLE
HINSTANCE

On Linux and UNIX platforms: These data types have been
redefined as (void *).

SQLROWCOUNT
SQLROWSETSIZE
SQLTRANSID

These data types have been deprecated. Use SQLULEN instead.

SQLROWOFFSET This data type has been deprecated. Use SQLLEN instead.

SQLSETPOSIROW On Linux and UNIX platforms: This data type has been redefined
as SQLULEN. It is advisable to use SQLULEN directly instead.

Chapter 10
ODBC API Incompatibilities With Previous Versions of TimesTen

10-38

	Contents
	About This Content
	What's New
	New features in Release 22.1.1.1.0

	1 C Development Environment
	TimesTen Environment Variable Settings
	Introduction to the TimesTen Driver Manager
	Linking Options
	Considerations for Linking Without an ODBC Driver Manager
	Considerations for Linking With a Generic ODBC Driver Manager
	Considerations for Linking With the TimesTen Driver Manager

	Compiling and Linking Applications
	Compiling and Linking Applications on Windows
	Compiling and Linking Applications Directly With the TimesTen Drivers on Linux or UNIX
	Compiling and Linking Applications With the TimesTen Driver Manager on Linux or UNIX

	About TimesTen Quick Start and Sample Applications

	2 Working With TimesTen Databases in ODBC
	Management of TimesTen Database Connections
	Overview of TimesTen Connections
	SQLConnect, SQLDriverConnect, SQLAllocConnect, SQLDisconnect Functions
	Use of the Default DSN
	Connecting To and Disconnecting From a Database
	Setting Connection Attributes Programmatically

	Database Operations in ODBC
	ODBC Functions to Execute SQL Statements
	Steps to Prepare and Execute Queries and Work With Cursors in ODBC
	Creating a Table in ODBC
	Preparing and Executing a Query in ODBC
	Committing Changes to the Database in ODBC

	TimesTen Features and Operations in Your Application
	TimesTen Include Files
	TimesTen Deferred Prepare
	Prefetching Multiple Rows of Data
	Optimizing Query Performance
	Parameter Binding and Statement Execution
	SQLBindParameter Function
	Parameter Type Assignments and Type Conversions
	ODBC SQL to TimesTen SQL or PL/SQL Type Mappings
	Binding Input Parameters
	Binding Output Parameters
	Binding Input/Output Parameters
	Binding of Duplicate Parameters in SQL Statements
	Binding of Duplicate Parameters in PL/SQL Statements
	Considerations for Floating Point Data
	Using SQL_WCHAR and SQL_WVARCHAR With a Driver Manager

	Working With REF CURSORs
	Working With DML Returning (RETURNING INTO Clause)
	Working With rowids
	Large Objects (LOBs)
	About LOBs
	Differences Between TimesTen LOBs and Oracle Database LOBs
	LOB Programmatic Approaches and Programming Interfaces
	Using the LOB Simple Data Interface in ODBC
	Using the LOB Piecewise Data Interface in ODBC
	Passthrough LOBs in ODBC

	Using CALL to Execute Procedures and Functions
	Timeouts and Thresholds for Executing SQL Statements
	Setting a Timeout Duration for SQL Statements
	Setting a Threshold Duration for SQL Statements

	Configuring the Result Set Buffer Size in Client/Server Using ODBC
	Features for Cache
	Setting Temporary Passthrough Level With the ttOptSetFlag Built-In Procedure
	Determining Passthrough Status
	Retrieving Information About Cache Groups

	Error Handling
	Checking for Errors
	Error and Warning Levels
	Fatal Errors
	Non-Fatal Errors
	Warnings

	Recovery After Fatal Errors
	Transient Errors (ODBC)

	ODBC Support for Automatic Client Failover
	About Automatic Client Failover
	Features and Functionality of ODBC Support for Automatic Client Failover
	Configuration of Automatic Client Failover
	Implementing and Registering an ODBC Failover Callback Function
	ODBC Application Action in the Event of Failover
	Application Steps for Failover
	Implementing Failover Delay and Retry Settings

	Client Routing API for TimesTen Scaleout
	Functionality of the Client Routing API
	Creating a Grid Map and Distribution
	Functions for the Grid Map and Distribution
	How to Create the Grid Map and Distribution

	Distribution Key Values
	Function for Distribution Key Values
	Setting Distribution Key Values

	Getting the Element Location Given a Set of Key Values
	Function for Element IDs
	Getting the Element IDs
	Function for Replica Set ID
	Getting the Replica Set ID

	Client Routing API With Functions in Use
	Supported Data Types
	Restrictions
	Failure Modes

	3 TimesTen Support for OCI
	Overview of TimesTen OCI Support
	Overview of OCI
	TimesTen OCI Basics
	OCI in the TimesTen Architecture
	Globalization Support in TimesTen OCI
	About TimesTen Support for Character Sets
	Specifying a Character Set
	Additional Globalization Features

	TimesTen Restrictions and Limitations
	Oracle Database Features Not Supported by TimesTen
	TimesTen OCI Limitations

	Getting Started With TimesTen OCI
	Environment Variables for TimesTen OCI
	About Compiling and Linking OCI Applications
	Connecting to a TimesTen Database From OCI
	About Configuring OCI Connections in TimesTen Scaleout
	Using the tnsnames Naming Method to Connect
	Using an Easy Connect String to Connect
	Configuring Whether to Use tnsnames.ora or Easy Connect

	OCI Error Handling
	OCI Error Reporting
	Transient Errors (OCI)

	Signal Handling and Diagnostic Framework Considerations

	TimesTen Features With OCI
	TimesTen Deferred Prepare
	Parameter Binding Features in TimesTen OCI
	Binding Duplicate Parameters in TimesTen OCI
	Binding Associative Arrays in TimesTen OCI

	Using Cache Operations With TimesTen OCI
	Specifying the Oracle Database Password in OCI for Cache
	Determining the Number of Cache Instances Affected by an Action

	LOBs in TimesTen OCI
	LOB Locators in OCI
	Temporary LOBs in OCI
	Differences Between TimesTen LOBs and Oracle Database LOBs in OCI
	Using the LOB Simple Data Interface in OCI
	About Using the LOB Locator Interface in OCI
	Creating a Temporary LOB in OCI
	Accessing the Locator of a Persistent LOB in OCI
	Reading and Writing LOB Data Using the OCI LOB Locator Interface
	OCI Client-Side Buffering
	LOB Prefetching in OCI
	Passthrough LOBs in OCI

	Configuring the Result Set Buffer Size in Client/Server Using OCI
	Use of PL/SQL in OCI to Call a TimesTen Built-In Procedure

	TimesTen OCI Support Reference
	Supported OCI Calls
	Supported Handles and Attributes
	Supported Descriptors
	Supported OCI-Defined Constants
	Supported Parameter Attributes

	4 TimesTen Support for Pro*C/C++
	Overview of TimesTen Support for Pro*C/C++
	Overview of the Oracle Pro*C/C++ Precompiler
	TimesTen OCI Support With Respect to Pro*C/C++
	Restrictions in TimesTen Support for Pro*C/C++
	Embedded SQL Support and Restrictions
	Semantic Checking Restrictions
	Embedded PL/SQL Restrictions
	Transaction Restrictions
	Connection Restrictions
	Summary of Unsupported or Restricted Executable Commands and Clauses

	Getting Started With TimesTen Pro*C/C++
	Environment and Configuration for TimesTen Pro*C/C++
	Building a Pro*C/C++ Application
	Connecting to a TimesTen Database From Pro*C/C++
	Connection Syntax and Parameters
	Using tnsnames or Easy Connect
	Specifying the Oracle Database Password in Pro*C/C++ for Cache

	Error Reporting and Handling

	TimesTen Features With Pro*C/C++
	Associative Array Bindings in TimesTen Pro*C/C++
	LOBs in TimesTen Pro*C/C++
	Using the LOB Simple Data Interface in Pro*C/C++
	Using the LOB Locator Interface in Pro*C/C++

	TimesTen Pro*C/C++ Precompiler Options
	Precompiler Option Support
	Setting Precompiler Options

	5 XLA and TimesTen Event Management
	Overview of TimesTen XLA
	XLA Basics
	How XLA Reads Records From the Transaction Log
	About XLA and Materialized Views
	About XLA Bookmarks
	XLA Log Record Identifiers
	Creating or Reusing a Bookmark
	How Bookmarks Work
	Replicated Bookmarks
	XLA Bookmarks and Transaction Log Holds

	XLA Data Types
	XLA System Privilege
	XLA Limitations
	About the XLA Sample Application

	Writing an XLA Event-Handler Application
	Obtaining a Database Connection Handle
	Initializing XLA and Obtaining an XLA Handle
	Specifying Which Tables to Monitor for Updates
	Retrieving Update Records From the Transaction Log
	Inspecting Record Headers and Locating Row Addresses
	Inspecting Column Data
	Data Returned in an Update Record
	Obtaining Column Descriptions
	Reading Fixed-Length Column Data
	Reading NOT INLINE Variable-Length Column Data
	Null-Terminating Returned Strings
	Converting Complex Data Types
	Detecting Null Values
	XLA Data Type Conversion Functions
	Putting It All Together With a PrintColValues() Function

	XLA Error Handling
	XLA Errors and Codes
	How to Handle XLA Errors

	Dropping a Table That Has an XLA Bookmark
	Deleting Bookmarks
	Terminating an XLA Application

	Using XLA as a Replication Mechanism
	About XLA as a Replication Mechanism
	Checking Table Compatibility Between Databases
	Checking Table and Column Descriptions
	Checking Table and Column Versions

	Replicating Updates Between Databases
	Handling Timeout and Deadlock Errors
	Checking for Update Conflicts
	Replicating Updates to a Non-TimesTen Database

	Other XLA Features
	Changing the Location of a Bookmark
	Passing Application Context

	6 Distributed Transaction Processing: XA
	Overview of XA
	X/Open DTP Model
	Two-Phase Commit

	XA in TimesTen
	Introduction to the TimesTen XA Implementation and Limitations
	TimesTen Database Requirements for XA
	Global Transaction Recovery in TimesTen
	Considerations in Using Standard XA Functions With TimesTen
	xa_open() Function
	xa_close() Function
	Transaction Id (XID) Parameter

	TimesTen tt_xa_context Function to Obtain ODBC Handle From XA Connection
	tt_xa_context Syntax and Parameter Descriptions
	Using tt_xa_context

	Considerations in Calling ODBC Functions Over XA Connections in TimesTen
	Autocommit
	Local Transaction COMMIT and ROLLBACK
	Close Open Cursors

	XA Resource Manager Switch
	About the Resource Manager Switch
	XA Switch xa_switch_t
	TimesTen Switch tt_xa_switch

	XA Error Handling in TimesTen

	XA Support Through the Windows ODBC Driver Manager
	Issues to Consider With the Driver Manager
	Linking to the TimesTen ODBC XA Driver Manager Extension Library

	Configuring Tuxedo to Use TimesTen XA
	Introductory Notes and Cautions
	Update the ⁠$TUXDIR/udataobj/RM File
	Build the Tuxedo Transaction Manager Server
	Update the GROUPS Section in the UBBCONFIG File
	Compile the Servers

	7 ODBC Application Tuning
	Avoid Generic Driver Managers If Possible
	Use Arrays of Parameters for Batch Execution
	Avoid Excessive Binds
	Avoid SQLGetData
	Avoid Data Type Conversions
	Bulk Fetch Rows of TimesTen Data
	Optimize Queries

	8 TimesTen Utility API
	Overview of the TimesTen Utility Library
	About the Utility Library
	Requirements for the Utility Library
	Utility Function Return Codes

	ttBackup
	ttDestroyDataStore
	ttDestroyDataStoreForce
	ttRamGrace
	ttRamLoad
	ttRamPolicy
	ttRamUnload
	ttRepDuplicateEx
	ttRestore
	ttUtilAllocEnv
	ttUtilFreeEnv
	ttUtilGetError
	ttUtilGetErrorCount
	ttXactIdRollback

	9 XLA Reference
	Overview of XLA Functions
	XLA Function Return Codes
	XLA Function Parameter Types (Input, Output, Input/Output)
	Results Output by XLA Functions
	XLA Function Required Privileges

	Summary of XLA Functions by Category
	XLA Core Functions
	XLA Data Type Conversion Functions
	XLA Replication Functions

	XLA Function Reference
	ttXlaAcknowledge
	ttXlaClose
	ttXlaConvertCharType
	ttXlaDateToODBCCType
	ttXlaDecimalToCString
	ttXlaDeleteBookmark
	ttXlaError
	ttXlaErrorRestart
	ttXlaGetColumnInfo
	ttXlaGetLSN
	ttXlaGetTableInfo
	ttXlaGetVersion
	ttXlaNextUpdate
	ttXlaNextUpdateWait
	ttXlaNumberToBigInt
	ttXlaNumberToCString
	ttXlaNumberToDouble
	ttXlaNumberToInt
	ttXlaNumberToSmallInt
	ttXlaNumberToTinyInt
	ttXlaNumberToUInt
	ttXlaOraDateToODBCTimeStamp
	ttXlaOraTimeStampToODBCTimeStamp
	ttXlaPersistOpen
	ttXlaRowidToCString
	ttXlaSetLSN
	ttXlaSetVersion
	ttXlaTableByName
	ttXlaTableStatus
	ttXlaTableVersionVerify
	ttXlaTimeToODBCCType
	ttXlaTimeStampToODBCCType
	ttXlaVersionColumnInfo
	ttXlaVersionCompare
	ttXlaVersionTableInfo

	XLA Replication Function Reference
	ttXlaApply
	ttXlaCommit
	ttXlaGenerateSQL
	ttXlaLookup
	ttXlaRollback
	ttXlaTableCheck

	C Data Structures Used by XLA
	ttXlaNodeHdr_t
	ttXlaUpdateDesc_t
	Special Update Data Formats
	CREATE TABLE
	ALTER TABLE
	ttXlaDropTableTup_t
	ttXlaTruncateTableTup_t
	ttXlaCreateIndexTup_t
	ttXlaDropIndexTup_t
	ttXlaAddColumnTup_t
	ttXlaDropColumnTup_t
	ttXlaCreateSeqTup_t
	ttXlaDropSeqTup_t
	ttXlaViewDesc_t
	ttXlaDropViewTup_t
	ttXlaCreateSynTup_t
	ttXlaDropSynTup_t
	ttXlaSetTableTup_t
	ttXlaSetColumnTup_t
	ttXlaSetStatusTup_t

	Locating the Row Data Following a ttXlaUpdateDesc_t Header

	ttXlaVersion_t
	ttXlaTblDesc_t
	ttXlaTblVerDesc_t
	ttXlaColDesc_t
	tt_LSN_t
	tt_XlaLsn_t

	10 TimesTen ODBC Support
	TimesTen ODBC 3.5 Support
	Using ODBC 3.5 With TimesTen
	Client/Server Cross-Release Restrictions With ODBC 3.5
	ODBC 3.5 New and Replacement Function Support
	ODBC 3.5 Data Type Support Notes
	Environment Attribute Support for ODBC 3.5
	Attribute Support for ODBC 3.5 SQLSetConnectAttr and SQLGetConnectAttr
	Attribute Support for ODBC 3.5 SQLSetStmtAttr and SQLGetStmtAttr
	Attribute Support for ODBC 3.5 SQLGetEnvAttr
	TimesTen Field Identifiers for ODBC 3.5 SQLColAttribute
	Information Type Support for ODBC 3.5 SQLGetInfo
	TimesTen SQL Keywords for ODBC 3.5

	TimesTen ODBC 2.5 Support
	Using ODBC 2.5 With TimesTen
	ODBC 2.5 Function Support
	Option Support for ODBC 2.5 SQLSetConnectOption and SQLGetConnectOption
	Option Support for ODBC 2.5 SQLSetStmtOption and SQLGetStmtOption
	Column Descriptor Support for ODBC 2.5 SQLColAttributes
	Information Type Support for ODBC 2.5 SQLGetInfo
	TimesTen SQL Keywords for ODBC 2.5

	ODBC API Incompatibilities With Previous Versions of TimesTen
	Overview of ODBC API Incompatibilities
	ODBC 3.5 Function Signatures That Have Changed
	ODBC 2.5 Function Signatures That Have Changed
	ODBC Data Types That Have Changed

