Oracle® TimesTen In-Memory

Database
Cache Guide

Release 22.1
F35392-15
November 2024

ORACLE"

Oracle TimesTen In-Memory Database Cache Guide, Release 22.1
F35392-15
Copyright © 2012, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

What's New
New features in Release 22.1.1.18.0 Xi
New features in Release 22.1.1.17.0 Xii
New features in Release 22.1.1.1.0 Xii
1 Paths to Explore Cache in TimesTen
2 Cache Concepts
Overview of Cache Groups 2-1
Cache Instance 2-3
Cache Group Types 2-3
Transmitting Changes Between the TimesTen and Oracle Databases 2-5
Using Oracle GoldenGate as an Alternative Cache Refresh Mechanism 2-7
High Availability Caching Solution 2-7
3 Setting Up a Caching Infrastructure
Configuring the Oracle Database to Cache Data 3-1
Create the Oracle Database Users and Default Tablespace 3-1
Grant Privileges to the Oracle Cache Administration User 3-3
Create Oracle Database Objects Used to Manage Data Caching 3-4
The grantCacheAdminPrivileges.sql Script 3-4
The initCacheAdminSchema.sql Script 3-5
The checkAdminPrivileges.sql Script 3-6
Configuring a TimesTen Database to Cache Oracle Database Data 3-7
Specify Database Connection Definition for Cache 3-7
Set the Net Service Name for the Oracle Database in the tnsnames.ora File 3-7
Define a DSN for the TimesTen Classic Database 3-9
Define Database Definition and Connectable in TimesTen Scaleout 3-11
Create the TimesTen Users 3-11
Grant Privileges to the TimesTen Users 3-12
Providing Cache Administration User Credentials 3-13

ORACLE"

Providing Cache Administration User Credentials When Connecting 3-14

Registering the Cache Administration User Name and Password 3-15
Registering the Cache Administration User Name and Password in TimesTen

Classic 3-16
Registering the Cache Administration User Name and Password in TimesTen

Scaleout 3-17

Cache Group Requirements for Credentials 3-17

Testing the Connectivity Between the TimesTen and Oracle Databases 3-17

Managing the Cache Agent 3-18

Starting the Cache Agent 3-18

Stopping the Cache Agent 3-19

Set a Cache Agent Start Policy in TimesTen Classic 3-19

4 Defining Cache Groups

Cache Groups and Cache Tables 4-1
Single-Table Cache Group 4-3
Multiple-Table Cache Group 4-4

Creating a Cache Group 4-7

Read-Only Cache Group 4-8
Restrictions with Read-Only Cache Groups 4-11

Asynchronous WriteThrough (AWT) Cache Group 4-12
Starting and Stopping the Replication Agent 4-14
Setting a Replication Agent Start Policy 4-15
Monitoring Propagation of Transactions to the Oracle Database 4-16
Disabling Propagation of Committed Changes 4-16
Configuring Parallel Propagation to the Oracle Database 4-16
What an AWT Cache Group Does and Does Not Guarantee 4-16
Restrictions with AWT Cache Groups 4-17
Reporting Oracle Database Permanent Errors for AWT Cache Groups 4-18

Synchronous WriteThrough (SWT) Cache Group 4-20
Restrictions with SWT Cache Groups 4-22

Hybrid Cache Group 4-23
Creating a Hybrid Cache Group 4-24
Specifying the Dynamic Load for a Hybrid Cache Group 4-25
Automatic Passthrough for Hybrid Cache Groups 4-28
Restrictions for a Dynamic Hybrid Read-Only Cache Group 4-28

User Managed Cache Group 4-28
READONLY Cache Table Attribute 4-29
PROPAGATE Cache Table Attribute 4-30
Examples of User Managed Cache Groups 4-32

Using a WHERE Clause 4-35
Proper Placement of WHERE Clause in a CREATE CACHE GROUP Statement 4-36

ORACLE

Referencing Oracle Database PL/SQL Functions in a WHERE Clause 4-38

Specifying Automatic Refresh with the AUTOREFRESH Cache Group Attribute 4-38
Creating a Dynamic Cache Group with the DYNAMIC Keyword 4-38
Creating a Hash Index on the Primary Key Columns of the Cache Table 4-39
ON DELETE CASCADE Cache Table Attribute 4-39
Caching Oracle Database Synonyms 4-40
Caching Oracle Database LOB Data 4-40
Restrictions on Caching Oracle Database LOB Data 4-41
Implementing Aging in a Cache Group for TimesTen Classic 4-42
LRU Aging in TimesTen Classic 4-42
Time-Based Aging in TimesTen Classic 4-43
Manually Scheduling an Aging Process in TimesTen Classic 4-45
Configuring a Sliding Window in TimesTen Classic 4-46
Replicating Cache Tables in TimesTen Classic 4-47
Create and Configure the Active Database 4-47
Create and Configure the Standby Database 4-49
Create and Configure the Read-Only Subscriber Database 4-50
5 Methods for Transmitting Changes Between TimesTen and Oracle
Databases
Manually Loading and Refreshing a Cache Group 5-2
Loading and Refreshing a Cache Group Using a WITH ID Clause 5-3
Loading and Refreshing a Multiple-Table Cache Group 5-4
Improving the Performance of Loading or Refreshing a Large Number of Cache
Instances 5-4
Example of Manually Loading and Refreshing a Static Cache Group 5-5
Example of Manually Loading and Refreshing a Dynamic Cache Group 5-6
Flushing a User Managed Cache Group 5-8
Unloading a Cache Group 5-9
Automatically Refreshing a Cache Group 5-9
AUTOREFRESH Cache Group Attribute Overview 5-10
Autorefresh Mode Attribute Settings 5-10
Autorefresh Interval and State Settings 5-11
Restrictions for Autorefresh 5-12
Altering a Cache Group to Change the AUTOREFRESH Mode, Interval or State 5-13
Manually Creating Oracle Database Objects for Cache Groups with Autorefresh 5-14
Initiating an Immediate Autorefresh in TimesTen Classic 5-15
Disabling Full Autorefresh for Cache Groups 5-16
Loading and Refreshing a Static Cache Group with Autorefresh 5-17
Loading and Refreshing a Dynamic Cache Group with Autorefresh 5-18
Manually or Dynamically Loading Cache Groups 5-18
ORACLE

Dynamic Cache Groups 5-19
Enabling or Disabling Dynamic Load 5-21
Guidelines for Dynamic Load 5-22
Examples of Dynamic Load of a Single Cache Instance 5-23
Dynamically Loading Multiple Cache Instances 5-26

Dynamically Loading Multiple Cache Instances with Multiple Primary Keys 5-26
Dynamically Loading Multiple Cache Instances Without Multiple Primary Keys 5-28
Returning Errors for Dynamic Load 5-29

Determining the Number of Cache Instances Affected by an Operation 5-30

Setting a Passthrough Level 5-30
PassThrough=0 5-31
PassThrough=1 5-32
PassThrough=2 5-33
PassThrough=3 5-34
Considerations for Using Passthrough 5-35
Changing the Passthrough Level for a Connection or Transaction 5-36
Automatic Passthrough of Dynamic Load to the Oracle Database 5-36

6 Managing a Caching Environment

Checking the Status of Cache and Replication Agents 6-1
Checking the Status of the Cache Agents in TimesTen Scaleout 6-1
Checking the Status of the Cache and Replication Agents in TimesTen Classic 6-2

Cache Agent and Replication Connection Recovery 6-3

Managing a Cache Environment with Oracle Database Objects 6-4

Monitoring Cache Groups 6-6
Using the ttlsql Utility cachegroups Command 6-6
Monitoring Autorefresh Operations on Cache Groups 6-7
Monitoring AWT Cache Groups 6-7
Configuring a Transaction Log File Threshold for AWT Cache Groups 6-8
Tracking DDL Statements Issued on Cached Oracle Database Tables 6-8

Changing Cache User Names and Passwords 6-10

Dropping Oracle Database Objects Used by Cache Groups with Autorefresh 6-12

Impact on Cache Groups When Modifying the Oracle Database Schema 6-13

Impact of Failed Autorefresh Operations on TimesTen Databases 6-14

Managing the Cache Administration User's Tablespace 6-17
Defragmenting Change Log Tables in the Tablespace 6-17

Manually Defragmenting the Change Log Tables for Cache Groups with Autorefresh 6-19
Receiving Notification on Tablespace Usage 6-20
Recovering from a Full Tablespace 6-21

Backing Up and Restoring a TimesTen Classic Database with Cache Groups 6-22

Backing Up and Restoring Using the ttBackup and ttRestore Utilities 6-22

ORACLE

Vi

Backing Up and Restoring TimesTen Classic Database with the ttMigrate Utility 6-24
Migrating the Oracle Database Requires Cleaning Up Cache Objects 6-27
7 Cache Performance
Dynamic Load Performance 7-1
Managing a Cache Connection Pool to the Oracle Database for Dynamic Load Requests 7-2
Enable the Cache Connection Pool 7-3
Size the Cache Connection Pool 7-5
Use the ChildServer Connection Attribute to Identify a Child Server Process 7-6
Dynamically Applying Cache Connection Pool Sizing Modifications 7-6
Example Demonstrating Management of the Cache Connection Pool 7-7
Limiting the Number of Connections to the Oracle Database 7-8
Restrictions for the Cache Connection Pool 7-9
Improving AWT Throughput 7-9
Improving AWT Throughput with Parallel Propagation to the Oracle Database 7-9
Table Constraint Restrictions When Using Parallel Propagation for AWT Cache
Groups 7-12
Manually Initiate Check for Missing Constraints for an AWT Cache Group 7-14
Configuring Batch Size for Parallel Propagation for AWT Cache Groups 7-15
Improving AWT Throughput with SQL Array Processing 7-16
Improving Performance for Autorefresh Operations 7-17
Minimizing Delay for Cached Data with Continuous Autorefresh 7-17
Reducing Contention for Dynamic Read-Only Cache Groups with Incremental
Autorefresh 7-17
Requirements for Setting DynamicLoadReduceContention 7-18
Reducing Lock Contention for Read-Only Cache Groups with Autorefresh and Dynamic
Load 7-19
Options for Reducing Contention Between Autorefresh and Dynamic Load Operations 7-20
Improving Performance When Reclaiming Memory During Autorefresh Operations 7-20
Running Large Transactions with Incremental Autorefresh Read-Only Cache Groups 7-21
Using ttCacheAutorefreshXactLimit 7-22
Example of Potential Transactional Inconsistency 7-23
Retrieving Statistics to Evaluate Performance When a Transaction Limit is Set 7-26
Configuring a Select Limit for Incremental Autorefresh for Read-Only Cache Groups 7-27
How to Determine Which Intervals Have a Particular Select Limit 7-28
Retrieving Statistics to Evaluate Performance When Using a Select Limit 7-28
Retrieving Statistics on Autorefresh Transactions 7-29
Caching the Same Oracle Table on Two or More TimesTen Databases 7-29
8 Cleaning Up the Caching Environment
Stopping the Replication Agent 8-1

ORACLE

Vii

Dropping a Cache Group 8-1

Stopping the Cache Agent 8-2
Destroying the TimesTen Databases 8-3
Dropping Oracle Database Users and Objects 8-3
Scheduling a Shutdown of Active Standby Pair with AWT Cache Groups 8-4
o Using Cache in an Oracle RAC Environment
How Cache Works in an Oracle RAC Environment 9-1
Restrictions on Using Cache in an Oracle RAC Environment 9-4
Setting Up Cache in an Oracle RAC Environment 9-4

10 Using Cache with Data Guard

Components of MAA for Cache 10-1
Cache in TimesTen Works with Asynchronous Active Data Guard 10-1
Configuring the Primary and Standby Oracle Databases 10-2
Configuring Oracle Database Services Through Role Based Services 10-3
Configuring Oracle Database Services Through System Triggers 10-4
Configuring the Active Standby Pair with Read-Only Cache Groups 10-6
Recovery After Failure When Using Asynchronous Active Data Guard 10-8
Failure of the Standby Oracle Database 10-8

Failure of the Primary Oracle Database 10-9

Failure of the Primary Site 10-9

Cache in TimesTen Works with Synchronous Data Guard 10-12
Configuring the Oracle Databases for TimesTen and Synchronous Data Guard 10-12
Configuring the TimesTen Database to Work with Synchronous Data Guard 10-14

11 Using GoldenGate as an Alternative to Native Read-Only Cache Groups

Supporting TimesTen and GoldenGate for Cache Refresh 11-1
Considering Factors Using GoldenGate as the Cache Refresh Mechanism 11-2
Configuring GoldenGate to Provide Cache Refresh Functionality for TimesTen Workflow 11-3
Choosing On-Box or Off-Box for Deployment of a GoldenGate Replicat Process 11-4
Installing and Configuring Target TimesTen Database 11-5
Creating TimesTen Database Users and Tables 11-6
Installing and Configuring a TimesTen Client Instance (for Off-Box Deployments Only) 11-7
Configuring GoldenGate Data Apply 11-8
Performing an Initial Load 11-9
Starting GoldenGate Continuous Real-Time Replication 11-10
Caching Using GoldenGate Example 11-10
Preparing TimesTen Users and Tables 11-12
ORACLE

viii

Preparing Oracle Database to Run Extract Process

Preparing the TimesTen Database for GoldenGate Replication
Performing the Initial Data Load

Starting Real-Time Replication

Verifying That GoldenGate Replication is Working

11-13
11-14
11-14
11-15
11-15

A Required Privileges for Cache Administration User for Cache Operations

B SQL*Plus Scripts for Cache

Installed SQL*Plus Scripts B-1
C Compatibility Between TimesTen and Oracle Databases

Summary of Compatibility Issues C-1
Transaction Semantics C-1
API Compatibility C-2
JDBC API Compatibility C-2
java.sgl.Connection C-2
java.sgl.Statement C-3
java.sgl.ResultSet C-3
java.sql.PreparedStatement C-3
java.sgl.CallableStatement C-4
java.sgl.ResultSetMetaData C-4

Stream Support C-14

ODBC API Compatibility C-5
SQL Compatibility C-5
Schema Objects C-6
Caching Oracle Database Partitioned Tables C-6
Non-Schema Objects C-7
Differences Between Oracle Database and TimesTen Tables C-7
Data Type Support C-7
SQL Operators C-8
SELECT Statements C-8
SQL Subqueries C-9
SQL Functions C-9
SQL Expressions C-11
INSERT/DELETE/UPDATE/MERGE Statements c-11
TimesTen-Only SQL and Built-In Procedures C-12
PL/SQL Constructs C-13

ORACLE"

Mappings Between Oracle Database and TimesTen Data Types C-13

ORACLE"

About This Content

ORACLE

This document covers TimesTen support for cache operations.

Audience

This guide is for anyone developing or supporting applications to cache data from an Oracle
database in a TimesTen database. Cache operations enable the caching of subsets of an
Oracle database into cache tables within a TimesTen database for improved response time in
the application tier. Cache tables can be read-only or updatable. Applications read and update
the cache tables using standard Structured Query Language (SQL) while data synchronization
between the TimesTen database and the Oracle database is performed automatically.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

11

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

What's New

What's New

This section summarizes new features and functionality of TimesTen Release 22.1 that are
documented in this guide, providing links into the guide for more information.

New features in Release 22.1.1.18.0

The checkAdminPrivileges.sql script checks that the cache administration user has been
granted the required privileges to automatically create Oracle Database objects used to
manage the caching of Oracle Database data when particular cache group operations are
performed. This script checks that the privileges granted are those that are granted with
the grantCacheAdminPrivileges.sql script.

See The checkAdminPrivileges.sql Script.

New features in Release 22.1.1.17.0

Previously, you could only provide cache administration user credentials by providing the
cache administration user name and both of its passwords to the TimesTen and Oracle
databases individually in a client DSN or using connection attributes. Now, you can specify
cache administration user credentials within an Oracle Wallet where the wallet location is
provided when opening a connection. The preferred method of specifying the cache
administration user name and both passwords is by storing them in an Oracle Wallet.

See Providing Cache Administration User Credentials.

You must register the Oracle database cache administration user name and password
internally in the TimesTen database before any cache group operation can be issued.
Before you register the Oracle cache administration user and password internally within
the TimesTen database, you must decide if you want to save these credentials in an
Oracle Wallet (recommended) or within memory (the default). To save the credentials
within an Oracle Wallet, ensure that the CacheAdminWallet connection attribute is set to 1
(likely in your DSN). This directs that the registration of the Oracle cache administration
user name and password is stored in an Oracle Wallet.

See Registering the Cache Administration User Name and Password.

New features in Release 22.1.1.1.0

ORACLE

You can use cache operations in both TimesTen Classic and TimesTen Scaleout.
TimesTen Scaleout supports static read-only cache groups with incremental autorefresh.
See Using Cache Groups in TimesTen Scaleout.

A hybrid cache group is a dynamic read-only cache group where the root table is created
in the TimesTen database and does not exist in the Oracle database. See Hybrid Cache
Group.

Xli

ORACLE

What's New

You can set the TT DynamicPassthrough optimizer hint to notify TimesTen Classic to pass
through qualified SELECT statements to the Oracle database. See Automatic Passthrough
of Dynamic Load to the Oracle Database.

You can dynamically load multiple cache instances, see Dynamically Loading Multiple
Cache Instances.

You may prefer to use Oracle GoldenGate to refresh data from the backend Oracle
database to a TimesTen cache instead of using the built-in native cache refresh
mechanism of TimesTen. See Using Oracle GoldenGate as an Alternative Cache Refresh
Mechanism.

There are now two LRU aging policies for TimesTen Classic:

— LRU aging based on set thresholds for the amount of permanent memory in use.

— LRU aging based on row thresholds for a specified root tables of your cache groups.
See LRU Aging in TimesTen Classic.

As a result of changes in the Oracle Database, the privileges required for cache operations
have been updated. See Required Privileges for Cache Administration User for Cache
Operations.

An additional table and trigger were added for cache operations. The

TT version CACHED COLUMNS table stores list of columns that are cached. And instead of a
single trigger, there are now two triggers to handle different aspects of autorefresh
operations. See Managing a Cache Environment with Oracle Database Objects.

Xiii

Paths to Explore Cache in TimesTen

ORACLE

TimesTen cache is a robust feature with many concepts and options for caching data between
a TimesTen database and an Oracle database. When you are starting to learn about caching
within TimesTen, there are three learning paths:

Accelerate your Applications - Achieve Blazing Fast SQL With an Oracle TimesTen Cache.
LiveLab: This LiveLab will help you to become familiar with setting up and using a
TimesTen cache. The lab focuses briefly on concepts and heavily on the tasks for how to
quickly configure, create, and use a TimesTen cache.

Oracle TimesTen In-Memory Database Getting Started with Cache Guide: After going
through the LiveLab, use this getting started guide for an overview of the basics of cache
provided by TimesTen. This guide covers the most popular options and uses the default
options when showing you how to create the three most popular cache group types. Start
with Overview of Cache.

Oracle TimesTen In-Memory Database Cache Guide: After you are familiar with the basics
of caching, you can see a full explanation of concepts and details of the TimesTen cache
feature. This is the advanced guide for cache. Start with Overview of Cache Groups.

1-1

https://apexapps.oracle.com/pls/apex/dbpm/r/livelabs/view-workshop?wid=3282

Cache Concepts

Use caching to improve the performance for your applications access to data. You can cache
Oracle Database data and reduce the workload on the Oracle database.

The TimesTen mechanism that enables read and write caching for Oracle database tables is
called a cache group. A cache group can represent one or more related tables on an Oracle
database. Each Oracle table is represented in the cache group with a cache table. You can
read from or write to the cache tables. TimesTen connects to the backend Oracle database to
load or update data as appropriate.

You can use cache in both TimesTen Classic and TimesTen Scaleout.

« TimesTen Classic supports all cache group types.

« TimesTen Scaleout supports static read-only cache groups.

See Cache Group Types.

This chapter includes the following topics:

e Overview of Cache Groups

* Cache Instance

e Cache Group Types

e Transmitting Changes Between the TimesTen and Oracle Databases

* Using Oracle GoldenGate as an Alternative Cache Refresh Mechanism

* High Availability Caching Solution

Overview of Cache Groups

ORACLE

Cache groups define the Oracle database data to be cached in a TimesTen database. A cache
group can be defined to cache all or part of a single Oracle database table or a set of related
Oracle database tables.

Figure 2-1 shows the target customers cache group that caches a subset of a single Oracle
Database table customer.

2-1

ORACLE

Chapter 2
Overview of Cache Groups

Figure 2-1 Single Table Cache Group

TimesTen

Cache group target_customers

customer
cust_num* | region name
122 West Jim Johnston

663 MidWest Pat Reed ~

1

|

1

I

|

1

I

Oracle |

database ;

1

|

customer I

122 West Jim John
[342 ” West ”Jane Stone]E]
[663 |[midwest | [PatReed][]

[942][East ”Terry Boond E]

You can cache multiple Oracle database tables in the same cache group by defining a root
table and one or more child tables. A cache group can contain only one root table.

The root table does not reference any table with a foreign key constraint. In a cache group with
multiple tables, each child table must reference the root table or another child table in the same
cache group using a foreign key constraint. Cache tables in a multiple-table cache group must

be related to each other in the TimesTen database through foreign key constraints.

See Multiple-Table Cache Group.

While you may have multiple TimesTen databases that synchronize with the same Oracle
database, they each operate independently. Thus, any data cached in separate TimesTen
databases each synchronize with the Oracle database independently.

An Oracle database table cannot be cached in separate cache groups within the same
TimesTen database. However, the table can be cached in separate cache groups within
different TimesTen databases. If the table is cached in separate cache groups and the same
cache instance is changed simultaneously on multiple TimesTen databases, there is no
guarantee as to the order in which the changes are propagated to the cached Oracle database
table. The contents of such cache groups in different TimesTen databases may not be
consistent at a given point in time.

2-2

Chapter 2
Cache Instance

Cache Instance

Data is loaded from an Oracle database into a cache group within a TimesTen database in
units called cache instances.

A cache instance is defined as a single row in the cache group's root table together with the set
of related rows in the child tables.

Figure 2-2 shows three tables in the customer orders cache group. The root table is
customer. orders and order item are child tables. The cache instance identified by the row
with the value 122 in the cust_num primary key column of the customer table includes:

* The two rows with the value 122 in the cust_num column of the orders table (whose value
in the ord num primary key column is 44325 or 65432), and

* The three rows with the value 44325 or 65432 in the ord num column of the order item
table

Figure 2-2 Multiple-Table Cache Group

TimesTen
Cache group customer_orders
| customer (Roottable) | _____ a
cust_num region name address :
122 West Jim Johnston | 1231 Main, Needles, CA 92363 :
342 West Jane Stone 43 Cope, Palo Alto, CA 94302 E
663 Midwest Mary J.Warren 673 State, Madison, Wl 53787 :
4 E
(_| orders |) ' Oracle
ord_num cust_num when_placed when_shipped : : database
44325 122 10/7/16 10/7/16 E E_ ______ customer
65432 122 8/24/16 8/27/16 :
Child 76543 663 4/2/16 4/8/16 '
Tables ! Data for all customers
1 : — L
[orderitem | "Toooooooommmes | TTTTTETTTT orders
ord_num prod_num quantity i_ _________________ S
44325 SD07 1
44325 TR3A 5
65432 FT094 1
L 76543 SDO7 2

Cache Group Types

ORACLE

There are several cache group types from which you can choose depending on the application
needs.

The most commonly used types of cache groups are:

e Read-only cache group

2-3

Chapter 2
Cache Group Types

A read-only cache group enforces a caching behavior in which committed changes on
cached tables in the Oracle database are automatically refreshed to the cache tables in the
TimesTen database. Using a read-only cache group is suitable for reference data that is
heavily accessed by applications.

TimesTen Classic supports all types of read-only cache groups. TimesTen Scaleout only
supports static read-only cache groups with incremental autorefresh.

See Read-Only Cache Group in this book and Using Cache Groups in TimesTen Scaleout
in the Oracle TimesTen In-Memory Database Scaleout User's Guide.

e Asynchronous WriteThrough (AWT) cache group

An AWT cache group enforces a caching behavior in which committed changes on cache
tables in the TimesTen database are automatically propagated to the cached tables in the
Oracle database in asynchronous fashion. Using an AWT cache group is suitable for high
speed data capture and online transaction processing.

Only TimesTen Classic supports AWT cache groups.
See Asynchronous WriteThrough (AWT) Cache Group.

Other types of cache groups include:

e Synchronous writethrough (SWT) cache group

An SWT cache group enforces a caching behavior in which committed changes on cache
tables in the TimesTen database are automatically propagated to the cached tables in the
Oracle database in synchronous fashion.

Only TimesTen Classic supports SWT cache groups.
See Synchronous WriteThrough (SWT) Cache Group.
e User managed cache group
A user managed cache group defines customized caching behavior.

For example, you can define a cache group that does not use automatic refresh or
automatic propagation where committed changes on the cache tables are manually
propagated or flushed to the cached Oracle Database tables.

You can also define a cache group that uses both automatic propagation in synchronous
fashion on every table and automatic refresh.

Only TimesTen Classic supports user managed cache groups.
See User Managed Cache Group.
e Hybrid cache group

All other cache groups require multiple table cache groups to have strict parent-child
relationships for all tables on a TimesTen database as well as the Oracle database. With
hybrid cache groups, the cache tables on a Oracle database must be related, but the root
(parent) table must only exist on the TimesTen database. That is, you can dynamically load
from cache tables that do not have a root table on the Oracle database. A hybrid cache
group is a dynamic read-only cache group where the root table is created in the TimesTen
database and does not exist in the Oracle database.

See Hybrid Cache Group.

ORACLE 4

Chapter 2
Transmitting Changes Between the TimesTen and Oracle Databases

Transmitting Changes Between the TimesTen and Oracle

Databases

Transmitting committed changes between the TimesTen cache tables and the cached Oracle
Database tables keeps these tables in the two databases synchronized.

You can transmit changes between TimesTen and Oracle databases manually or automatically.

ORACLE

Manually load cache groups: You can manually load cache instances that are not in the
TimesTen cache tables from the Oracle database tables using LOAD CACHE GROUP
statement. This statement only loads committed inserts on the cached Oracle database
tables into the TimesTen cache tables. New cache instances are loaded into the cache
tables, but cache instances that already exist in the cache tables are not updated or
deleted even if the corresponding rows in the cached Oracle database tables have been
updated or deleted. A load operation is primarily used to initially populate a cache group.

Manually refresh cache groups: You can manually refresh cache instances into the
TimesTen cache tables from the Oracle database tables using the REFRESH CACHE GROUP
statement. This statement replaces cache instances in the TimesTen cache tables with the
most current data from the cached Oracle database tables including cache instances that
are already exist in the cache tables. A refresh operation is primarily used to update the
contents of a cache group with committed changes on the cached Oracle database tables
after the cache group has been initially populated.

Manually propagate committed changes: Use a FLUSH CACHE GROUP statement to manually
propagate committed changes on the TimesTen cache tables to the cached Oracle
database tables.

Dynamically load cache groups: A dynamic cache group is one that is created with the
DYNAMIC keyword. Data is dynamically loaded on demand into the TimesTen cache tables
from the cached Oracle database tables for dynamic cache groups when a qualifying
SELECT, INSERT, UPDATE, Of DELETE statement is issued on one of the cache tables. A cache
instance is automatically loaded from the cached Oracle database tables when a qualified
statement does not find the data in the cache table, but the data exists in the cached
Oracle database table. Typically, data automatically ages out from dynamically loaded
cache tables when it is no longer being used. This action is similar to a LOAD CACHE GROUP
statement, but dynamically issued. Dynamic cache groups are only supported in TimesTen
Classic.

< Note:

A static cache group is one that is created without the DYNAMIC keyword.

Automatically refresh cache groups: Autorefresh operations automatically replace cache
instances in the TimesTen cache tables with the most current data from the cached Oracle
database tables including cache instances that already exist in the cache tables.
Autorefresh operations update the contents of a cache group with committed changes on
the cached Oracle database tables after the cache group has been initially populated. This
action is similar to a REFRESH CACHE GROUP statement, but automatically performed. Cache
instances are automatically refreshed when the cache group is created with the
AUTOREFRESH cache table attribute. The AUTOREFRESH cache group attribute can be used in
a read-only or a user managed cache group to automatically refresh committed changes

2-5

ORACLE

Chapter 2
Transmitting Changes Between the TimesTen and Oracle Databases

on cached Oracle Database tables into the TimesTen cache tables. The AUTOREFRESH
cache group attribute can be defined on static or dynamic cache groups.

Automatic propagation of changes to the Oracle database: When you specify the
PROPAGATE cache table attribute when creating AWT, SWT, or user managed cache groups,
then committed changes on cache tables in the TimesTen database are automatically
propagated to the cached Oracle Database tables. This action is similar to a FLUSH CACHE
GROUP statement, but automatically performed.

Load, refresh, dynamic load and autorefresh are operations that transmit committed changes
on cached tables in the Oracle database to the cache tables in the TimesTen database. Load
and refresh are manual operations; dynamic load and autorefresh are automatic operations.
Propagate and flush are operations that transmit committed changes on cache tables in the
TimesTen database to the cached tables in the Oracle database. Flush is a manual operation
and propagate is an automatic operation.

Figure 2-3 Transmitting Committed Changes Between the TimesTen and Oracle
Databases

Propagate

TimesTen
database

cache group

Flush Load

Refresh
Dynamic load
Autorefresh

Oracle
database

| | |

The pyNaMIC keyword designates whether the cache group is a static or dynamic cache group:

Static cache group: Defined when the DyNaMIC keyword is not supplied when creating the
cache group. In a static cache group, cache instances are loaded manually into the
TimesTen cache tables from an Oracle database. Within a static cache group, data is
initially loaded into the cache tables from the cached Oracle database tables using a LOAD
CACHE GROUP statement. After which, you can refresh the data with a REFRESH CACHE GROUP
statement or automatically refresh the data if defined to use autorefresh. Once the cache
tables are loaded, the user can run queries. A static cache group is appropriate when the
set of data to cache is static and can be predetermined before applications begin
performing operations on the cache tables. By default, cache groups are static.

2-6

Chapter 2
Using Oracle GoldenGate as an Alternative Cache Refresh Mechanism

» Dynamic cache group: Defined when the cache group is created with the DYNAMIC
keyword. Within a dynamic cache group, data can be loaded into the cache group from an
Oracle database either dynamically on demand or manually with LOAD CACHE GROUP or
REFRESH CACHE GROUP statements. A manual refresh or an autorefresh operation on a
dynamic cache group can result in existing cache instances being updated or deleted, but
committed changes on Oracle database data that are not being cached do not result in
new cache instances being loaded into its cache tables. A dynamic cache group is
appropriate when the set of data you need to cache is small compared to the full size of
the data that exists in the tables in the Oracle database.

The data should be preloaded from the Oracle database before applications perform
operations on the cache tables.

Choose static or dynamic load when deciding how much data you want to cache. Ideally, a
manual load is faster. Use dynamic load to automate loading new data or to specify how much
data to load into memory.

Any cache group type (read-only, AWT, SWT, user managed) can be defined as a static cache
group. All cache group types except a user managed cache group that uses both the
AUTOREFRESH cache group attribute and the PROPAGATE cache table attribute can be defined as
a dynamic cache group.

See Methods for Transmitting Changes Between TimesTen and Oracle Databases.

See Asynchronous WriteThrough (AWT) Cache Group and Synchronous WriteThrough (SWT)
Cache Group.

Using Oracle GoldenGate as an Alternative Cache Refresh
Mechanism

You may prefer to use Oracle GoldenGate to refresh data from the backend Oracle database
to TimesTen instead of using the built-in native cache refresh mechanism of TimesTen.

You can use GoldenGate instead of the native cache refresh mechanism of TimesTen to
provide the equivalent of static read-only cache groups. All other types of cache functionality
must use the TimesTen native cache mechanism.

The following are the advantages when using GoldenGate as your cache refresh mechanism:

e GoldenGate provides a lighter weight change data capture pipeline on the Oracle
database, especially if you have multiple TimesTen databases caching data from the same
Oracle database.

e The triggers and tracking tables that are required by TimesTen for cache operations in an
Oracle Database are not required.

* You can cache data from multiple Oracle databases into a single TimesTen database.

* You can cache data from a backend database that is not an Oracle database if the
database supported by GoldenGate.

See Using GoldenGate as an Alternative to Native Read-Only Cache Groups.

High Availability Caching Solution

You can configure cache to achieve high availability of cache tables, and facilitate failover and
recovery while maintaining connectivity to the Oracle database.

ORACLE -

ORACLE

Chapter 2
High Availability Caching Solution

A TimesTen database that is a participant in an active standby pair replication scheme can
provide high availability for cache tables in a read-only or an AWT cache group.

An active standby pair provides for fault tolerance of a TimesTen database. Oracle Real
Application Clusters (Oracle RAC) and Data Guard provides for high availability of an Oracle
database.

See Replicating Cache Tables in TimesTen Classic, Using Cache in an Oracle RAC
Environment, and Using Cache with Data Guard.

2-8

Setting Up a Caching Infrastructure

Before you can start caching Oracle database data in a TimesTen database, you must first
install TimesTen.

Follow the instructions provided in Overview of the Installation Process in TimesTen Classic in
the Oracle TimesTen In-Memory Database Installation, Migration, and Upgrade Guide. After
which, perform these tasks for setting up the TimesTen and Oracle database systems:

* Configuring the Oracle Database to Cache Data
* Configuring a TimesTen Database to Cache Oracle Database Data
» Testing the Connectivity Between the TimesTen and Oracle Databases

e Managing the Cache Agent

Configuring the Oracle Database to Cache Data

The following sections describe the tasks that must be performed on the Oracle database by
the sys user:

e Create the Oracle Database Users and Default Tablespace

e Grant Privileges to the Oracle Cache Administration User

e Create Oracle Database Objects Used to Manage Data Caching

Create the Oracle Database Users and Default Tablespace

ORACLE

Create a default tablespace to store meta information about cache operations. Create a cache
administration user that creates, owns, and maintains Oracle database objects that store
information used to manage the cache environment for a TimesTen database and enforce
predefined behaviors of particular cache group types.

Perform the following on the Oracle database:

< Note:

If you are using Oracle Autonomous Database Serverless or Oracle Autonomous
Database on Dedicated Exadata Infrastructure for the Transaction Processing
workload type, use the preconfigured databases services LOW or TP. In addition, if
you are using a multitenant container database (CDB) or pluggable database (PDB),
note the specific instructions below on how to create the cache administration user
and grant this user privileges in a CDB or PDB.

1. Create a default tablespace that stores information about cache operations.

This tablespace is used for storing cache management objects that should not be shared
with other applications. While you may also store Oracle database tables that are cached

3-1

ORACLE

Chapter 3
Configuring the Oracle Database to Cache Data

in a TimesTen database, we strongly recommend that this tablespace be used solely by
the TimesTen database for cache management.

See Managing a Cache Environment with Oracle Database Objects for a list of Oracle
database tables used by the cache administration user.

In the following SQL*Plus example, the default tablespace is cachetblsp and defines a 5
GB data file named tt_cache.f. Choose a size that is appropriate for your particular
needs. Provide the SEGMENT SPACE MANAGEMENT AUTO clause so that the Oracle database
automatically manages the free space of all segments in the tablespace (useful for
monitoring autorefresh).

¢ Note:

The use of the sys@tnsservicename as sysdba user in this example is
applicable only for a test environment.

% cd timesten home/install/oraclescripts
% sqlplus sys@tnsservicename as sysdba
Enter password: password

This example uses the sys@tnsservicename as sysdba user since the
sys@tnsservicename user is able to grant the required privileges. For the Transaction
Processing workload type, use the admin user instead. You can use any Oracle database
user that has the appropriate privileges. See Required Privileges for Cache Administration
User for Cache Operations.

For the non-autonomous Oracle Database, use SQL*Plus to create a default tablespace.
In the following example, the name of the default tablespace is cachetblsp:

SQL> CREATE TABLESPACE cachetblsp DATAFILE 'tt cache.f' SIZE 5G
SEGMENT SPACE MANAGEMENT AUTO;

Tablespace created.

Skip this step for the AutonomousTransaction Processing. Autonomous Transaction
Processing automatically configures default data and temporary tablespaces for the
database. Adding, removing, or modifying tablespaces is not allowed. Autonomous
Transaction Processing creates one or multiple tablespaces automatically depending on
the storage size.

Create an Oracle cache administration user that creates, owns, and maintains Oracle
database objects that store information used to manage the cache environment for a
TimesTen database and enforce predefined behaviors of particular cache group types.

If you are using a multitenant container database (CDB) or pluggable database (PDB), the
Oracle cache administrator user can be one of the following:

* Local user: A local user is a database user that can operate only within a single PDB.
You must assign cache privileges only within the PDB in which this user exists.

e Common user: A common user is a database user known in every container and has
the same identity in the CBD root and in every existing and future PDB in the CDB.
You must assign cache privileges within each PDB in the CDB in which you want to
use cache.

3-2

Chapter 3
Configuring the Oracle Database to Cache Data

Note:

Each TimesTen database can be managed by only a single cache administration
user on the Oracle database. However, a single cache administration user can
manage multiple TimesTen databases. You can specify one or more cache
administration users where each manages one or more TimesTen databases.

See Caching the Same Oracle Table on Two or More TimesTen Databases.

Designate the tablespace as the default tablespace for the Oracle cache administration
user. This user creates tables in this tablespace that are used to store information about
the cache environment and its cache groups. Other Oracle database objects (such change
log tables, replication metadata tables, and triggers) are used to enforce the predefined
behaviors of cache groups with autorefresh and AWT cache groups are created in the
same tablespace. To create and manage these objects, the Oracle cache administration
user must have a high level of privileges. A cache group with autorefresh refers to a read-
only cache group or a user managed cache group that uses the AUTOREFRESH MODE
INCREMENTAL cache group attribute.

See Managing a Cache Environment with Oracle Database Objects for a list of Oracle
Database tables and triggers owned by the cache administration user.

< Note:

If you create multiple cache administration users, each may use the same or
different tablespace as their default tablespace.

As the sys user, use SQL*Plus to create the Oracle database cache administration user
cacheadmin. In the example below, the default tablespace for the cacheadmin user is
cachetblsp.

For the non-autonomous Oracle Database, the following SQL*Plus example creates the
cache administration user:

SQL> CREATE USER cacheadmin IDENTIFIED BY orapwd
DEFAULT TABLESPACE cachetblsp QUOTA UNLIMITED ON cachetblsp;

For Autonomous Transaction Processing, the following SQL*Plus example creates the
cache administration user:

SQL> CREATE USER cacheadmin IDENTIFYED BY orapwd
QUOTA UNLIMITED ON DATA;

Identify one or more existing schemas (or create a new schema) with schema owners that
own Oracle database tables that are to be cached in a TimesTen database. The tables to
be cached may or may not already exist.

Grant Privileges to the Oracle Cache Administration User

ORACLE

The cache administration user must be granted a high level of privileges depending on the
cache group types created and the operations performed on these cache groups.

The main privileges required for the Oracle cache administration user can be granted in bulk
by running the SQL*Plus script timesten home/install/oraclescripts/

3-3

Chapter 3
Configuring the Oracle Database to Cache Data

grantCacheAdminPrivileges.sql as the sys user. This script grants the cache administration
user the minimum set of privileges required to perform cache operations.

If you are using a multitenant container database (CDB) or pluggable database (PDB), run the
SQL*Plus script timesten home/install/oraclescripts/grantCacheAdminPrivileges.sql to
assign cache privileges as follows:

« If the cache administrator user is a local user: You must assign cache privileges only within
the PDB in which this user exists. This is the preferred method.

e If the cache administrator user is a common user: You must assign cache privileges within
each PDB in the CDB in which you want to use cache. Do not run the SQL*Plus script to
grant privileges to the common user in the CBD root.

See Create Oracle Database Objects Used to Manage Data Caching.

You also need to grant the Oracle cache administration user privileges based on the type of
cache operation. The entire list of privileges required for this user for each cache operation are
listed in Required Privileges for Cache Administration User for Cache Operations.

Create Oracle Database Objects Used to Manage Data Caching

You request TimesTen to create Oracle database objects owned by the cache administration
user, such as cache and replication metadata tables, change log tables, and triggers when
particular cache environment and cache group operations are performed.

Some of these objects are used to enforce the predefined behaviors of cache groups with
autorefresh and AWT cache groups.

These Oracle database objects are automatically created if the cache administration user has
been granted the required privileges with one of the following SQL*Plus scripts:

e The grantCacheAdminPrivileges.sql Script: Run this script to grant all required privileges to
the cache administration user that are required to create Oracle database objects used to
manage the caching of Oracle database data when particular cache group operations are
performed. The cache administration user then automatically creates Oracle database
objects used to manage caching Oracle database data in a TimesTen database.

e The initCacheAdminSchema.sql Script: Run this script to grant all required privileges
except for the CREATE CLUSTER, CREATE INDEXTYPE, CREATE OPERATOR, CREATE PROCEDURE,
CREATE SEQUENCE, CREATE TABLE, and EXECUTE ON SYS.DBMS LOB package privileges. For
security reasons, you may not want to grant these privileges. The cache administration
user then automatically creates all Oracle database objects used to manage caching
Oracle database data in a TimesTen database, except for cache groups that use
autorefresh.

If you want to check if the Oracle cache administration user has all of the necessary privileges
that are required for cache operations, you can run the The checkAdminPrivileges.sql Script.

The grantCacheAdminPrivileges.sql Script

ORACLE

The grantCacheAdminPrivileges.sqgl Script grants privileges to the cache administration user
that are required to automatically create Oracle Database objects used to manage the caching
of Oracle Database data when particular cache group operations are performed.

See Required Privileges for Cache Administration User for Cache Operations for a complete
list of privileges that need to be granted to the cache administration user in order to perform
particular cache group and cache table operations.

3-4

Chapter 3
Configuring the Oracle Database to Cache Data

Run the timesten home/install/oraclescripts/grantCacheAdminPrivileges.sql as the
sys user. The cache administration user name is passed as an argument to the
grantCacheAdminPrivileges.sql script.

¢ Note:

Alternatively, you can create these objects as described in The
initCacheAdminSchema.sql Script before performing any cache group operations if,
for security purposes, you do not want to grant certain privileges to the cache
administration user required to automatically create objects necessary for managing
autorefresh.

In addition to the privileges granted to the cache administration user by running the
grantCacheAdminPrivileges.sqgl script, this user may also need to be granted privileges such
as SELECT or INSERT on the cached Oracle Database tables depending on the types of cache
groups you create, and the operations that you perform on the cache groups and their cache
tables.

As the sys user, use SQL*PIlus to run the grantCacheAdminPrivileges.sql script to grant
privileges to the cache administration user. The cache administration user then automatically
creates Oracle Database objects used to manage caching Oracle Database data in a
TimesTen database.

The grantCacheAdminPrivileges.sql script requires the Oracle database cache
administration user name as input, which is cacheadmin in this example.

SQL> @grantCacheAdminPrivileges cacheadmin
SQL> exit

For example, with cache groups with autorefresh, the Oracle database objects used to enforce
the predefined behaviors of these cache group types are automatically created if the objects do
not already exist and one of the following occurs:

e The cache group is created with its autorefresh state set to PAUSED or ON.

* The cache group is created with its autorefresh state set to OFF and then altered to either
PAUSED Or ON.

The initCacheAdminSchema.sql Script

ORACLE

The Oracle database cache administration user requires certain privileges to automatically
create the Oracle database objects.

The cache administration user requires privileges used to:

e Store information about TimesTen databases that are associated with a particular cache
environment.

» Enforce the predefined behaviors of cache groups with autorefresh. In this case, the cache
administration user requires certain privileges to automatically create these Oracle
database objects.

» Enforce the predefined behavior for AWT cache groups.

For security purposes, if you do not want to grant the CREATE CLUSTER, CREATE INDEXTYPE,
CREATE OPERATOR, CREATE PROCEDURE, CREATE SEQUENCE, CREATE TABLE, and EXECUTE ON
SYS.DBMS LOB package privileges to the cache administration user required to automatically

3-5

Chapter 3
Configuring the Oracle Database to Cache Data

create the Oracle Database objects, you can use the initCacheAdminSchema.sgl script. See
Required Privileges for Cache Administration User for Cache Operations for a full list of
privileges granted by this script.

To create the Oracle Database tables and triggers used to enforce the predefined behaviors of
particular cache group types, run the SQL*Plus script timesten home/install/
oraclescripts/initCacheAdminSchema.sql as the sys user. These objects must be created
before you can create cache groups with autorefresh and AWT cache groups. The
initCacheAdminSchema.sgl script requires the cache administration user name as input.

In addition to the privileges granted to the cache administration user by running the
initCacheAdminSchema.sql script, you may need to grant the user privileges such as SELECT
or INSERT on the cached Oracle Database tables depending on the types of cache groups you
create and the operations that you perform on the cache groups and their cache tables.

As the sys user, use SQL*Plus to run the initCacheAdminSchema.sqgl Script to create Oracle
Database objects, which are used to manage caching data. These Oracle Database objects
enforce the predefined behaviors of a cache group with autorefresh and AWT cache groups,
and grant a limited set of privileges to the cache administration user. In the following example,
the Oracle database cache administration user name is cacheadmin.

SQL> @initCacheAdminSchema "cacheadmin"
SQL> exit

Other Oracle database objects associated with Oracle database tables that are cached in a
cache group with autorefresh are needed to enforce the predefined behaviors of these cache
group types. See Manually Creating Oracle Database Objects for Cache Groups with
Autorefresh for details about how to create these additional objects as part of the steps for
creating a cache group with autorefresh.

To view a list of the Oracle database objects created and used by TimesTen to manage the
caching of Oracle database data, run the following query in SQL*Plus as the sys user:

SQL> SELECT owner, object name, object type FROM all objects WHERE object name
2 LIKE 'TT\ %' ESCAPE '\';

The query returns a list of tables, indexes, and triggers owned by the cache administration
user.

The checkAdminPrivileges.sql Script

ORACLE

The checkAdminPrivileges.sql script checks that the cache administration user has been
granted the required privileges to automatically create Oracle Database objects used to
manage the caching of Oracle Database data when particular cache group operations are
performed. This script checks that the user running the script has all of the privileges granted in
the grantCacheAdminPrivileges.sql script.

See Required Privileges for Cache Administration User for Cache Operations for a complete
list of privileges that need to be granted to the cache administration user in order to perform
particular cache group and cache table operations.

Run the timesten home/install/oraclescripts/checkAdminPrivileges.sql as the cache
administration user.

Use SQL*Plus on the Oracle Database system from an operating system shell or command
prompt, and connect to the Oracle database instance as the cache administration user that you
want checked for privileges. The following example shows that the user has all of the required
privileges.

3-6

Chapter 3
Configuring a TimesTen Database to Cache Oracle Database Data

SQL> @checkAdminPrivileges.sql
x%* Checking privileges for cache administrator user *
x% User has all privileges for a cache administrator user **

The following example shows the output if you have missing privileges needed as a cache
administration user on an Oracle database:

SQL> @checkAdminPrivileges.sql

%% Checking privileges for cache administrator user **
Missing CREATE OPERATOR

Missing CREATE INDEXTYPE

Missing CREATE CLUSTER

Missing EXECUTE ON SYS.DBMS LOCK

Missing EXECUTE ON SYS.DBMS DDL

Missing EXECUTE ON SYS.DBMS FLASHBACK

Missing EXECUTE ON SYS.DBMS LOB

Missing SELECT on SYS.GV$LOCK

Missing SELECT on SYS.GVSSESSION

Missing SELECT on SYS.DBA DATA FILES

Missing SELECT on SYS.VS$DATABASE

Missing SELECT on GVS$SPROCESS

Missing UNLIMITED TABLESPACE

Missing SELECT ANY TRANSACTION

Missing table ARDL CG_COUNTER

%% User missing privileges. Missing privilege count: 15 **

Configuring a TimesTen Database to Cache Oracle Database
Data

Certain operations must be performed on the TimesTen database by the instance administrator
or the TimesTen cache administration user.

* Specify Database Connection Definition for Cache

* Create the TimesTen Users

e Grant Privileges to the TimesTen Users

e Providing Cache Administration User Credentials

* Registering the Cache Administration User Name and Password

e Cache Group Requirements for Credentials

Specify Database Connection Definition for Cache

You can modify certain cache-related connection attributes to define connection attributes.
* Set the Net Service Name for the Oracle Database in the tnsnames.ora File
» Define a DSN for the TimesTen Classic Database

» Define Database Definition and Connectable in TimesTen Scaleout

Set the Net Service Name for the Oracle Database in the thsnames.ora File

For cache in TimesTen Classic, set the TNS ADMIN environment variable to indicate the full path
to the directory where the tnsnames.ora file is located. This is for access to Oracle Database
data.

ORACLE .

ORACLE

Chapter 3
Configuring a TimesTen Database to Cache Oracle Database Data

For Autonomous Transaction Processing, use the preconfigured databases services LOW or
TP:

* databasename tp

. databasename low

1. Ensure that the main daemon is stopped before you modify the tnsnames.ora file.
ttDaemonAdmin -stop

2. Setthe TNS ADMIN location for the cache agent with the ttInstanceModify -tnsadmin
option to set the path to the tnsnames.ora file. Specify the full path to the directory where
the file is located.

ttInstanceModify -tnsadmin /TimesTen/conf

3. For cache in TimesTen Classic, set the TNS ADMIN environment variable to indicate the full
path to the directory where the tnsnames.ora file is located. Set this variable in the user's
profile script so that it will persist.

export TNS ADMIN=/TimesTen/conf
4. Restart the main daemon to capture this setting.
ttDaemonAdmin -start

Add the net service name for the non-autonomous Oracle Database into the tnsnames.ora file.
The following is an example of defining orcl in a tnsnames.ora file:

orcl =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP) (HOST = myhost)
(PORT = 1521))

(CONNECT DATA =
(SERVICE NAME = myhost.example.com)))

For Autonomous Transaction Processing, the following is an example of defining the orcl low
in a tnsnames.ora file:

orcl low =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP) (HOST = adb.us-phoenix-1.oraclecloud.com)
(PORT = 1521))

(CONNECT_DATA =
(SERVICE NAME = orcl low.adb.oraclecloud.com)))

Note:

TimesTen supports both TCP and mTLS-based connections for Oracle Autonomous
Database on Dedicated Exadata Infrastructure and only mTLS-based connections for
Oracle Autonomous Database Serverless.

For TimesTen Scaleout, use ttGridAdmin commands to import or export tnsnames.ora oOf
sqlnet.ora configuration for connecting to an Oracle database. See Add the Oracle Database
Net Service Name to the tnsnames.ora File in the Oracle TimesTen In-Memory Database
Scaleout User's Guide.

3-8

Chapter 3
Configuring a TimesTen Database to Cache Oracle Database Data

Define a DSN for the TimesTen Classic Database

ORACLE

A TimesTen database that caches data from an Oracle database can be referenced by either a
system DSN or a user DSN. A TimesTen database is implicitly created the first time the
instance administrator user connects to it using a DSN. When creating a DSN for a TimesTen
database that caches data from an Oracle database, pay special attention to the settings of the
connection attributes.

See Managing TimesTen Databases in Oracle TimesTen In-Memory Database Operations
Guide.

On UNIX or Linux, the system DSN is located in the timesten home/conf/sys.odbc.ini file.
As described in Connecting to a TimesTen Database, the sys.odbc. ini file contains the DSN
definitions.

This example defines cachel and cachelcs ODBC Data Source Names (DSNSs).

Note:

ODBC is TimesTen’s native API, though TimesTen also provides, or supports, many
other commonly used database APIs such as JDBC, Oracle Call Interface, ODP.NET,
cx_Oracle (for Python) and node-oracledb (for Node.js).

« Direct connection: The cachel DSN is a direct mode, or server DSN. It uses the TimesTen
22.1 Driver. It defines the parameters and connectivity for a database hosted by this
TimesTen instance. Tools, utilities, and applications running on this host (myhost) can
connect through this DSN using TimesTen'’s low latency ‘direct mode’ connectivity
mechanism.

* Client-server connection: This database is also accessible remotely using TimesTen’s
client-server connectivity. The cachelcs DSN is a client DSN and uses the TimesTen 22.1
Client Driver. It defines connectivity parameters for a server DSN that tools, utilities, and
applications can connect to using TimesTen'’s client-server connectivity mechanism. In this
example, the DSN defines client-server access for the local cachel server DSN.

All of these connection attributes can be set in a direct DSN or a connection string, unless
otherwise stated.

* DataStore specifies the fully qualified directory path name of the database and the file
name prefix. This name is not a file name. In this example, DataStore is setto /diskl/
databases/databasel.

e PermSize specifies the allocated size of the database's permanent region in MB. The
PermSize value must be smaller than the physical RAM on the machine. Set this to a value
that enables you to store all of your data. The PermSize value could be from a few GB to
several TB. This example sets the permanent region to 1024 MB.

* TempSize indicates the total amount of memory in MB allocated to the temporary region for
the database. This example sets the temporary region to 256 MB.

* LogBufMB specifies the size of the internal transaction log buffer for the database. This
example sets the transaction log buffer to 256 MB.

° LogFileSize specifies the maximum size of transaction log files in megabytes. This
example sets the maximum size of transaction log files to 256 MB.

3-9

ORACLE

Chapter 3
Configuring a TimesTen Database to Cache Oracle Database Data

DatabaseCharacterSet must match the Oracle database character set. In this example,
the database character set is AL32UTFS8.

Note:

You can determine the Oracle database character set by running the following
query in SQL*Plus as any user:

SQL> SELECT value FROM nls database parameters
WHERE parameter='NLS CHARACTERSET';

ConnectionCharacterSet specifies the character encoding for the connection. Generally,
you should choose a connection character set that matches your terminal settings or data
source. In this example, the connection character set is AL32UTFS8.

OracleNetServiceName must be set to the net service name of the Oracle database
instance. This example sets this to orcl. This is the same name that was set in the
tnsnames.ora file.

For Microsoft Windows systems, the net service name of the Oracle database instance
must be specified in the Oracle Net Service Name field of the TimesTen Cache tab within
the TimesTen ODBC Setup dialog box.

CacheAdminWallet=1 specifies that credentials for the Oracle cache administration user
that are registered with the ttCacheUidPwdSet built-in procedure are stored in an Oracle
Wallet, rather than in memory.

UID specifies the name of the TimesTen cache administration user. The UID connection
attribute can be specified in a direct DSN, a client DSN, or a connection string.

Pwditallet specifies the wallet in which credentials are stored for users. You can provide
the TimesTen user name and password within a wallet. You can also provide the cache
administrator users and respective passwords in a wallet. The cache administration user
credentials are necessary when performing cache operations and connecting to the Oracle
database.

If you are not using pwdWallet to specify a wallet, then use pWD to specify the password of
the TimesTen cache administration user specified in the UID connection attribute. The pwD
connection attribute can be specified in a Direct DSN, a Client DSN, or a connection string.

If you are not using pwditallet to specify a wallet, then use OraclePWD to specify the
password of the Oracle Database cache administration user that has the same name as
the TimesTen cache administration user specified in the UID connection attribute.

Note:

See Create the TimesTen Users.

PassThrough can be set to control whether statements are to be run in the TimesTen
database or passed through to be processed in the Oracle database. See Setting a
Passthrough Level.

LockLevel must be set to its default of O (row-level locking) because cache does not
support database-level locking.

3-10

Chapter 3
Configuring a TimesTen Database to Cache Oracle Database Data

° ReplicationApplyOrdering and CacheAWTParallelism control parallel propagation of
changes to TimesTen cache tables in an AWT cache group to the corresponding Oracle
Database tables. See Improving AWT Throughput with Parallel Propagation to the Oracle
Database.

Then, there is an entry for the client DSN. The client DSN specifies the location of the
TimesTen database with the following attributes:

* The TTC Server DSN attribute specifies the server DSN of the intended database.

* The TTC_ Server attribute specifies the server (and the port number if you do not want to
use the default port number) for the database.

In the sys.odbc.ini file, create a TimesTen DSN cachel and set the following connection
attributes. The cachel DSN specifies a TimesTen database that caches data from an Oracle
database.

[ODBC Data Sources]
cachel=TimesTen 22.1 Driver
cachelcs=TimesTen 22.1 Client Driver

[cachel]
DataStore=/diskl/databases/databasel
PermSize=1024

TempSize=256

LogBufMB=256

LogFileSize=256
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8
OracleNetServiceName=orcl
CacheAdminWallet=1

[cachelcs]

TTC_SERVER DSN=CACHE1
TTC_SERVER=myhost/6625
ConnectionCharacterSet=AL32UTF8

Define Database Definition and Connectable in TimesTen Scaleout

In TimesTen Scaleout, a database definition contains the description of a database. It defines
the database name, as well as the attributes of the database. A database definition can be
used to create a database.

Each database has one or more connectables associated with it. Connectables specify how
applications connect to the database. A connectable defines a name that applications can use
to connect to a database.

See Create a Database Definition for the TimesTen Database and Create a Connectable for
the TimesTen Database in the Oracle TimesTen In-Memory Database Scaleout User's Guide
for connection attributes that relate to cache.

Create the TimesTen Users

ORACLE

First, you must create a user who performs cache group operations on the TimesTen database.
We refer to this user as the TimesTen database cache administration user.

The TimesTen cache administration user must have the same name as the Oracle cache
administration user that accesses the cached Oracle Database tables. The password of the
TimesTen database cache administration user can be different than the password of the Oracle
cache administration user.

3-11

Chapter 3
Configuring a TimesTen Database to Cache Oracle Database Data

Note:

You can create multiple cache administration users on a TimesTen database, such as
one for each TimesTen DBA. However, you can only define a single cache
administration user on the Oracle database for this particular TimesTen database.
(You can use the same Oracle cache administration user for all TimesTen databases
that connect to the Oracle database or define a separate cache administration user
for each TimesTen database.) If you create multiple TimesTen cache administration
users, one or more of these users can use the same Oracle cache administration
user.

The TimesTen cache administration user must be assigned privileges to perform cache
operations. The TimesTen cache administration user creates the cache groups. It may perform
operations such as loading or refreshing a cache group (although these operations can be
performed by any TimesTen user that has sufficient privileges). The TimesTen cache
administration user can also monitor various aspects of the caching environment, such as
asynchronous operations that are performed on cache groups such as autorefresh.

The second user that you must create is a cache table user that owns the cache tables on
TimesTen and has the same name as the Oracle Database schema owner who owns Oracle
Database tables to be cached in the TimesTen database. We refer to these users as cache
table users, because the TimesTen cache tables are to be owned by these users. Therefore,
the owner and name of a TimesTen cache table is the same as the schema owner and name of
the corresponding cached Oracle Database table. The password of a cache table user can be
different than the password of the Oracle Database schema owner with the same name.

The following example creates the TimesTen users. It uses the ttIsql utility to connect to the
cachel DSN as the instance administrator. One of the most frequently used TimesTen utilities
is the ttIsqgl utility. This is an interactive SQL utility that serves the same purpose for
TimesTen as SQL*Plus does for Oracle Database.

* Creates the TimesTen database cache administration user cacheadmin whose name (in
this example) is the same as the Oracle cache administration user.

e Creates a cache table user sales whose name is the same as the Oracle Database
schema owner of the Oracle Database tables to be cached in the TimesTen database.

% ttIsqgl cachel
Command> CREATE USER cacheadmin IDENTIFIED BY ttpwd;
Command> CREATE USER sales IDENTIFIED BY ttpwd;

Grant Privileges to the TimesTen Users

ORACLE

The privileges that the TimesTen users require depend on the types of cache groups you
create and the operations that you perform on the cache groups.

All of the privileges required for the TimesTen cache administration user for each cache
operation are listed in Required Privileges for Cache Administration User for Cache
Operations.

You must grant required privileges to the cache administration user. This example grants the
TimesTen cache administration user cacheadmin the following required privileges to perform
the noted operations:

* Set the cache administration user and password (CACHE MANAGER).

3-12

Chapter 3
Configuring a TimesTen Database to Cache Oracle Database Data

» Start or stop the cache agent and replication agent processes on the TimesTen database
(CACHE MANAGER).

* Set a cache agent start policy (CACHE MANAGER).
e Set a replication agent start policy (ADMIN)

e Create cache groups to be owned by the TimesTen cache administration user (CREATE
[ANY] CACHE GROUP, inherited by the CACHE MANAGER privilege; CREATE [ANY] TABLE to
create the underlying cache tables which are to be owned by the cache table user).

* Alter, load, refresh, flush, unload or drop a cache group requires the appropriate privilege:
— ALTER ANY CACHE GROUP
— LOAD {ANY CACHE GROUP | ON cache group name
— REFRESH {ANY CACHE GROUP | ON cache group name
— FLUSH {ANY CACHE GROUP | ON cache group name
— UNLOAD {ANY CACHE GROUP | ON cache group name
— DROP ANY CACHE GROUP and DROP ANY TABLE

* Required privileges for other cache operations, such as for read-only cache groups,
dynamic load operations, incremental autorefresh, full autorefresh and asynchronous
writethrough, are listed in Required Privileges for Cache Administration User for Cache
Operations.

As the instance administrator, use the ttIsqgl utility to grant the cacheadmin cache
administration user the required privileges:

Command> GRANT CREATE SESSION, CACHE MANAGER, CREATE ANY TABLE TO cacheadmin;
Command> exit

Providing Cache Administration User Credentials

ORACLE

If you are running a request that does not require access to the Oracle database, you can
proceed without needing to provide credentials for the Oracle database. That is, you can
connect with only the user name and password for connecting to the TimesTen database.
However, when you want to perform cache operations that require connecting to the Oracle
database, then you must provide the appropriate credentials to be able to connect to both the
TimesTen and Oracle databases.

Once the cache administration users are created with their respective passwords, these
credentials need to be provided in two places for cache operations to proceed.

* Provided on the connection string: When you are connecting to the TimesTen database
and are planning on performing cache operations that require TimesTen to connect to the
Oracle database, the cache administration users and respective passwords are required.
You can provide these either with the cache administration user and passwords saved in
an Oracle Wallet (preferred) pointed to by the Pwdiallet connection attribute or specified
distinctly within the UID, PWD, PWDCrypt, and OraclePWD connection attributes. Providing
credentials in a wallet is more secure than supplying a password on the connect string with
the PWD or PWDCrypt connection attributes.

See Providing Cache Administration User Credentials When Connecting.

* Registered internally within TimesTen: There are cache operations that TimesTen performs
for you. In order for TimesTen to connect to the Oracle database successfully to perform
these cache operations, TimesTen needs to have the Oracle cache administration user
and password credentials registered internally. In TimesTen Classic, the internal

3-13

Chapter 3
Configuring a TimesTen Database to Cache Oracle Database Data

registration is accomplished when you run the ttCacheUidPwdSet built-in procedure. You
can specify that the results of the ttCacheUidPwdSet built in procedure are saved in an
Oracle Wallet (preferred) or in memory. The credentials are saved within an Oracle Wallet
when you set the CacheAdminWallet=1 in the DSN as a first connection attribute (which is
best set in the DSN).

See Registering the Cache Administration User Name and Password.

Providing Cache Administration User Credentials When Connecting

When you are connecting to the TimesTen database with the intent on performing cache
operations that require TimesTen to connect to the Oracle database, then the cache
administration users and their respective passwords are required.

Supply the cache administration user credentials in the connection string either by:

* You can provide the Oracle and TimesTen cache administration users credentials within an
Oracle Wallet. This method requires you to first save the cache administration user
credentials in an identifiable Oracle Wallet with the ttUser utility. After creating the wallet,
the particular wallet is identified by UID and PwdWallet connection attributes on the
connection string. This is the preferred method as it is more secure. See Connect Using an
Oracle Wallet with Credentials.

Note:

Most sections in this book provide security credentials for both cache
administration users with an Oracle Wallet.

* You can provide the cache administration user name and passwords on the connection
string. Specify the cache administration user name in the UID connection attribute. Specify
the TimesTen cache administration user password in the PWD or PWDCrypt connection
attribute and the Oracle cache administration user password in the OraclePWD connection
attribute. See Connect Using Connection Attributes for Credentials.

Connect Using an Oracle Wallet with Credentials

You can provide credentials for cache administration users by saving them in an Oracle Wallet,
which then can be used for connecting to both the TimesTen and Oracle databases.

Use the ttUser -setPwd command to store the TimesTen cache administration user and
password in a wallet. Use the ttUser -setOraclePwd command to store the Oracle cache
administration user and password in a wallet.

This section describes the process to add cache administration user passwords to an Oracle
Wallet.

The following example shows how to use the ttUser utility to add both cache administration
users to an Oracle Wallet in the /wallets/cacheadminwallet directory.

1. If it does not already exist, make a directory for your wallet. This example users /wallets
as the directory for the wallet.

$ mkdir /wallets

ORACLE 314

Chapter 3
Configuring a TimesTen Database to Cache Oracle Database Data

2. Runthe ttUser -setPwd command to store the TimesTen cache administration user
credentials. The ttUser utility requires that you provide a subdirectory name that identifies
the wallet (since you cannot change the name of an Oracle Wallet). This example provides
cacheadminwallet as the subdirectory name for the wallet. If cacheadminwallet directory
does not exist, then the ttUser utility creates the cacheadminwallet subdirectory and then
creates the Oracle Wallet in the /wallets/cacheadminwallet directory. The ttUser utility
prompts for the password for the TimesTen cache administration user cacheadmin, which is
added to the wallet.
$ ttUser -setPwd -wallet /wallets/cacheadminwallet -uid cacheadmin

Enter password:

3. Runthe ttUser -setOraclePwd command to store the Oracle cache administration user
credentials. The ttUser utility prompts for the password for the Oracle cache
administration user cacheadmin, which is added to the wallet in /wallets/
cacheadminwallet.

% ttUser -setOraclePwd -wallet /wallets/cacheadminwallet -uid cacheadmin

Enter password:

After the credentials are stored within an Oracle Wallet, provide the user name and location of
the wallet on the connection string. The PwdiWallet connection attribute identifies the wallet.
The UID connection attribute identifies which credentials to locate within the wallet.

connect “dsn=cachel;uid=cacheadmin;PwdWallet=/wallets/cacheadminwallet”;

For client/server connections, the wallet must exist on the client.

See Providing the Cache Administration User Names and Passwords in an Oracle Wallet in the
Oracle TimesTen In-Memory Database Security Guide for full details on how to store
credentials in an Oracle Wallet. See PwdWallet and ttUser in the Oracle TimesTen In-Memory
Database Reference.

Connect Using Connection Attributes for Credentials

You can provide credentials for cache administration users using connection attributes when
connecting to the Oracle database.

In the connection string, specify the cache administration user name in the UID connection
attribute. Specify the cache administration user credentials that are saved in the Oracle Wallet
identified in the PwdiWwallet connection attribute.

% ttIsgl "DSN=cachel;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"

°

See Providing Both Cache Administration Users and Passwords in the Oracle TimesTen In-
Memory Database Security Guide for more information on providing cache credentials.

Registering the Cache Administration User Name and Password

You must register the Oracle database cache administration user name and password
internally in the TimesTen database before any cache group operation can be issued.

ORACLE 15

Chapter 3
Configuring a TimesTen Database to Cache Oracle Database Data

The TimesTen database and some TimesTen utilities and built-in procedures perform cache
operations on your behalf. In order to connect to the Oracle database, TimesTen must have the
credentials of the Oracle cache administraiton user and password registered internally.

The cache agent connects to the Oracle database as the Oracle cache administration user to
create and maintain Oracle Database objects that store information used to enforce predefined
behaviors of particular cache group types. In addition, both the cache and replication agents
connect to the Oracle database with the internally registered Oracle cache administration user
credentials to manage Oracle database operations.

The Oracle database cache administration user name and password need to be registered
only once in each TimesTen database that caches Oracle Database data unless the cache
administration user name or its password is changed. For example, if you modify the password
of the cache administration user, if the TimesTen database is destroyed and re-created, or if
the Oracle cache administration user name is dropped and re-created in the Oracle database,
the Oracle cache administration user name and password must be registered again.

The Oracle cache administration user name cannot be changed if there are cache groups in
the database. The cache groups must be dropped before you can drop and recreate the cache
administration user. See Changing Cache User Names and Passwords.

The following sections detail the different tools provided in TimesTen Classic and TimesTen
Scaleout:

e Registering the Cache Administration User Name and Password in TimesTen Classic

e Registering the Cache Administration User Name and Password in TimesTen Scaleout

Registering the Cache Administration User Name and Password in TimesTen Classic

ORACLE

In TimesTen Classic, you can register the Oracle cache administration user name and
password by calling the ttCacheUidPwdSet built-in procedure after connecting as the Timesten
cache administration user.

Before you register the Oracle cache administration user and password internally within the
TimesTen database, you must decide if you want to save these credentials in an Oracle Wallet
(recommended) or within memory (the default). To save the Oracle cache administration user
credentials within an Oracle Wallet, ensure that the CacheAdminWallet connection attribute is
set to 1 (best set in your DSN).

This example connects as the cacheadmin cache administration user providing credentials in a
wallet. After connection, the example calls ttCacheUidPwdSet providing the Oracle cache
administration user name and password, which registers the Oracle cache administration user
name and password within TimesTen.

% ttIsgl "DSN=cachel;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"
Command> call ttCacheUidPwdSet ('cacheadmin', 'orapwd') ;

The credentials can also be registered from a command line by running a ttAdmin -
cacheUidPwdSet utility command as a TimesTen external user with the CACHE MANAGER
privilege. The ttAdmin utility prompts for the password.

% ttAdmin -cacheUidPwdSet -cacheUid cacheadmin orapwd cachel
Enter password:

See ttCacheUidPwdSet and ttAdmin in Oracle TimesTen In-Memory Database Reference.

3-16

Chapter 3
Testing the Connectivity Between the TimesTen and Oracle Databases

Registering the Cache Administration User Name and Password in TimesTen

Scaleout

Before you register the Oracle cache administration user and password internally within the
TimesTen database, you must decide if you want to save these credentials in an Oracle Wallet
(recommended) or within memory (the default). To store the Oracle cache administration user
credentials within an Oracle Wallet, ensure that the CacheAdminWallet connection attribute is
setto 1 in your DSN.

In TimesTen Scaleout, use the ttGridAdmin dbCacheCredentialSet command to register the
Oracle cache administration user name and password.

% ttGridAdmin dbCacheCredentialSet databasel

Enter your Oracle user id: cacheadmin

Enter Oracle password:

Password accepted

Configuring CaChe . ottt ettt ittt e e OK

See Register the Cache Administration User Name and Password in the TimesTen Database
in the Oracle TimesTen In-Memory Database Scaleout User's Guide.

Cache Group Requirements for Credentials

Because of the synchronous or asynchronous nature of some cache groups, TimesTen uses
credentials set as follows:

e When you connect to the TimesTen database to work with AWT or read-only cache groups,
TimesTen Classic uses the credentials that are registered with the ttCacheUidPwdSet built-
in procedure when connecting to the Oracle database on behalf of these cache groups.

e When you connect to the TimesTen database to work with SWT or user managed cache
groups or passthrough operations, TimesTen Classic connects to the Oracle database
using the current user's credentials provided in the connection string. This can be either
the credentials stored in a wallet designated by the UID and Pwdilallet connection
attributes or the UID, PWD, and OraclePwd connection attributes.

* When you are using dynamic load, the credentials used depend on if you are using
connection pooling or not.

— When UseCacheConnPool= 0 (the default), connection pooling is disabled. In this case,
TimesTen Classic connects to the Oracle database using the current user's credentials
provided in the connection string when performing a dynamic load request.

— When UseCacheConnPool= 2, connection pooling is enabled. In this case, TimesTen
Classic connects to the Oracle database using the credentials that have been
registered with the ttCacheUidPwdSet built-in procedure when performing a dynamic
load request.

Testing the Connectivity Between the TimesTen and Oracle
Databases

ORACLE

If connectivity has been successfully established, the query returns the version of the Oracle
database.

3-17

Chapter 3
Managing the Cache Agent

To test the connectivity between the TimesTen and Oracle databases, set the passthrough
level to 3 and run the following query, to be processed on the Oracle database, as the
TimesTen cache administration user:

Command> passthrough 3;
Command> SELECT * FROM VSVERSION;
Command> passthrough 0;

If it does not, check the following for correctness:

¢ The Oracle net service name set in the OracleNetServiceName connection attribute and
the state of the Oracle database server

* The settings of the shared library search path environment variable such as
LD LIBRARY PATH Or SHLIB PATH

* The setting of the cache administration user name in the TimesTen database

You can retrieve the Oracle cache administration user name setting by calling the
ttCacheUidGet built-in procedure as the TimesTen cache administration user:

Command> call ttCacheUidGet;

In TimesTen Classic, the Oracle cache administration user name can also be returned from a
command line by running a ttAdmin -cacheUidGet utility command as a TimesTen external
user with the CACHE MANAGER privilege:

% ttAdmin -cacheUidGet cachel

Managing the Cache Agent

The cache agent process performs cache operations (such as autorefresh and loading a cache
group), as well as manages Oracle Database objects used to enforce the predefined behaviors
of particular cache group types.

You can check the status of the cache agent. See Checking the Status of Cache and
Replication Agents.

e Starting the Cache Agent
e Stopping the Cache Agent

* Set a Cache Agent Start Policy in TimesTen Classic

Starting the Cache Agent

ORACLE

The cache agent is a TimesTen daemon process that manages many of the cache-related
functions for a TimesTen database. You can manually start the cache agent.

Start the cache agent with the following:

e In TimesTen Scaleout, use the ttGridAdmin dbCacheStart command to start the cache
agent on all instances in the grid. See Start a Cache Agent for TimesTen Scaleout in the
Oracle TimesTen In-Memory Database Scaleout User's Guide.

e In TimesTen Classic, call the ttCacheStart built-in procedure as the TimesTen cache
administration user:

Command> call ttCacheStart;

3-18

Chapter 3
Managing the Cache Agent

You can also start the cache agent from a command line by running a ttAdmin -
cacheStart utility command as a TimesTen external user with the CACHE MANAGER privilege:

% ttAdmin -cacheStart cachel

Stopping the Cache Agent

You can manually stop the cache agent.

Stop the cache agent by performing the following:

In TimesTen Scaleout, use ttGridAdmin dbCacheStop command to stop the cache agent
on all instances within the grid. See Stopping the Cache Agents for TimesTen Scaleout in
the Oracle TimesTen In-Memory Database Scaleout User's Guide.

In TimesTen Classic, call the ttCacheStop built-in procedure as the TimesTen cache
administration user:

Command> call ttCacheStop;

You can also stop the cache agent from a command line by running a ttAdmin -cacheStop
utility command as a TimesTen external user with the CACHE MANAGER privilege:

% ttAdmin -cacheStop cachel

Do not stop the cache agent immediately after you have dropped or altered a cache group
with autorefresh. Instead, wait for at least two minutes to allow the cache agent to clean up
Oracle Database objects such as change log tables and triggers that were created and
used to manage the cache group.

The ttCacheStop built-in procedure has an optional parameter and the ttAdmin -
cacheStop utility command has an option -stopTimeout that specifies how long the
TimesTen main daemon process waits for the cache agent to stop. If the cache agent does
not stop within the specified timeout period, the TimesTen daemon stops the cache agent.
The default cache agent stop timeout is 100 seconds. A value of 0 specifies to wait
indefinitely.

Note:

The TimesTen X/Open XA and Java Transaction API (JTA) implementations do not
work with cache. The start of any XA or JTA transaction fails if the cache agent is
running.

Set a Cache Agent Start Policy in TimesTen Classic

A cache agent start policy determines how and when the cache agent process starts on a
TimesTen Classic database.

Note:

In TimesTen Scaleout, the grid manages the cache agent start policy.

The cache agent start policy can be set to:

ORACLE

3-19

ORACLE

Chapter 3
Managing the Cache Agent

. manual
. always
. norestart

The default start policy is manual, which means the cache agent must be started manually by
calling the ttCacheStart built-in procedure or running a ttAdmin -cacheStart utility
command. To manually stop a running cache agent process, call the ttCacheStop built-in
procedure or run a ttAdmin -cacheStop utility command.

When the start policy is set to always, the cache agent starts automatically when the TimesTen
main daemon process starts. With the always start policy, the cache agent cannot be stopped
when the main daemon is running unless the start policy is first changed to either manual or
norestart. Then issue a manual stop by calling the ttCacheStop built-in procedure or running
a ttAdmin -cacheStop utility command.

With the manual and always start policies, the cache agent automatically restarts when the
database recovers after a failure such as a database invalidation.

Setting the cache agent start policy to norestart means the cache agent must be started
manually by calling the ttCacheStart built-in procedure or running a ttAdmin -cacheStart
utility command, and stopped manually by calling the ttCacheStop built-in procedure or
running a ttAdmin -cacheStop utility command.

With the norestart start policy, the cache agent does not automatically restart when the
database recovers after a failure such as a database invalidation. You must restart the cache
agent manually by calling the ttCacheStart built-in procedure or running a ttAdmin -
cacheStart utility command.

Note:

See ttAdmin, ttCachePolicySet, ttCacheStart and ttCacheStop in the Oracle
TimesTen In-Memory Database Reference.

You can set the cache agent start policy in TimesTen Classic by calling the ttCachePolicySet
built-in procedure as the TimesTen cache administration user:

Command> call ttCachePolicySet ('always');

It can also be set from a command line by running a ttAdmin -cachePolicy utility command
as a TimesTen external user with the CACHE MANAGER privilege:

o

% ttAdmin -cachePolicy norestart cachel

3-20

Defining Cache Groups

There are several different types of cache groups. There are reasons for when to use each
type of cache group for different purposes, performance and availability needs. In addition,
there are different features that you can add to provide certain functionality to a specific cache

group type.

e Cache Groups and Cache Tables

e Creating a Cache Group

¢ Read-Only Cache Group

e Asynchronous WriteThrough (AWT) Cache Group

e Synchronous WriteThrough (SWT) Cache Group

e Hybrid Cache Group

e User Managed Cache Group

e Using a WHERE Clause

e Specifying Automatic Refresh with the AUTOREFRESH Cache Group Attribute
e Creating a Dynamic Cache Group with the DYNAMIC Keyword

e Creating a Hash Index on the Primary Key Columns of the Cache Table
e ON DELETE CASCADE Cache Table Attribute

e Caching Oracle Database Synonyms

e Caching Oracle Database LOB Data

e Implementing Aging in a Cache Group for TimesTen Classic

e Replicating Cache Tables in TimesTen Classic

Cache Groups and Cache Tables

ORACLE

A cache group defines the Oracle Database data to cache in the TimesTen database. When
you create a cache group, cache tables are created in the TimesTen database that correspond
to the Oracle Database tables being cached.

A separate table definition must be specified in the cache group definition for each Oracle
Database table that is being cached. The owner, table name, and cached column names of a
TimesTen cache table must match the schema owner, table name, and column names of the
corresponding cached Oracle Database table. The cache table can contain all or a subset of
the columns and rows of the cached Oracle Database table. Each TimesTen cache table must
have a primary key.

An Oracle Database table cannot be cached in more than one cache group within the same
TimesTen database. However, the table can be cached in separate cache groups in different
TimesTen databases.

If a table is cached in separate AWT cache groups and the same cache instance is updated
simultaneously on multiple TimesTen databases, there is no guarantee as to the order in which

4-1

ORACLE

Chapter 4
Cache Groups and Cache Tables

the updates are propagated to the cached Oracle Database table. In this case, the contents of
the updated cache table may be inconsistent between the TimesTen databases.

Before you define the cache group table, create the Oracle Database tables that are to be
cached. Each table should be either:

* An Oracle Database table with a primary key on non-nullable columns. The TimesTen
cache table primary key must be defined on the full Oracle Database table primary key. For
example, if the cached Oracle Database table has a composite primary key on columns c1,
c2 and c3, the TimesTen cache table must also have a composite primary key on columns
cl, c2 and c3.

The following example shows how to create a cache group from an Oracle Database table
with a composite primary key. The following job_history table was created with a
composite key on the Oracle database:

CREATE TABLE jobihistory

(employeeiid NUMBER (6) NOT NULL,

start date DATE NOT NULL,

end date DATE NOT NULL,

jobiid VARCHAR2 (10) NOT NULL,

department id NUMBER(4),

PRIMARY KEY (employee id, start date));
Table created.

Create the cache group on the TimesTen database with all columns of the composite
primary key:

CREATE WRITETHROUGH CACHE GROUP job hist cg
FROM sales.job history
(employee id NUMBER(6) NOT NULL,
start date DATE NOT NULL,
end date DATE NOT NULL,
job_id VARCHAR2 (10) NOT NULL,
department id NUMBER(4),
PRIMARY KEY (employee id, start date));

e An Oracle Database table with non-nullable columns upon which a unique index is defined
on one or more of the non-nullable columns in the table. The TimesTen cache table
primary key must be defined on all of the columns in the unique index. For example, if the
unigue index for the Oracle Database table is made up of multiple columns c1, c2, and c3,
the TimesTen cache table must have a composite primary key on columns c1, c2, and c3.

The following examples show how Oracle Database unique indexes were defined on
tables with non-nullable columns.

SQL> CREATE TABLE regions (
region id NUMBER NOT NULL,
region name VARCHAR2 (25));

Table created.

SQL> CREATE UNIQUE INDEX region_idx
ON regions(region id);

Index created.

SQL> CREATE TABLE products (
prod_id INT NOT NULL,
Cust_id INT NOT NULL,
quantity sold INT NOT NULL,
time_id DATE NOT NULL) ;
Table created.
SQL> CREATE UNIQUE INDEX products index ON products (prod id, cust id);
Index created.

4-2

Chapter 4
Cache Groups and Cache Tables

Based on these Oracle Database tables and unique indexes, you can create cache groups
on a TimesTen database for these tables using the unique index columns as the primary
key definition as shown below:

Command> CREATE WRITETHROUGH CACHE GROUP region cg
FROM sales.regions
(region_id NUMBER NOT NULL PRIMARY KEY,
region name VARCHARZ2 (25));

Command> CREATE WRITETHROUGH CACHE GROUP products cg
FROM sales.products
(prod id INT NOT NULL, cust id INT NOT NULL,
quantity sold INT NOT NULL, time id DATE NOT NULL,
PRIMARY KEY (prod id, cust id));

A TimesTen database can contain multiple cache groups. A cache group can contain one or
more cache tables.

Creating indexes on a cache table in TimesTen can help speed up particular queries issued on
the table in the same fashion as on a TimesTen regular table. You can create non-unique
indexes on a TimesTen cache table. Do not create unique indexes on a cache table that do not
match any unique index on the cached Oracle Database table. Otherwise, it can cause unique
constraint failures in the cache table that do not occur in the cached Oracle Database table,
and result in these tables in the two databases being no longer synchronized with each other
when autorefresh operations are performed.

Single-Table Cache Group

ORACLE

The simplest cache group is one that caches a single Oracle Database table. In a single-table
cache group, there is a root table but no child tables.

Figure 4-1 shows a single-table cache group target customers that caches the customer
table.

4-3

Chapter 4
Cache Groups and Cache Tables

Figure 4-1 Cache Group with a Single Table

TimesTen

Cache group target_customers

customer
cust_num* | region name
122 West Jim Johnston

663 MidWest Pat Reed ~

1

|

1

I

|

1

I

Oracle |

database ;

1

|

customer I

122 West Jim John
[342 ” West ”Jane Stone]E]
[663 |[midwest | [PatReed][]

[942][East ”Terry Boond E]

Multiple-Table Cache Group

ORACLE

A multiple-table cache group is one that defines a root table and one or more child tables.

A cache group can only contain one root table. The root table does not reference any table
with a foreign key constraint.

In a cache group with multiple cache tables on TimesTen, each child table must reference the
primary key or a unique index of the root table or of another child table in the same cache
group using a foreign key constraint. Cache tables defined in a multiple-table cache group
must be related to each other in TimesTen through foreign key constraints. However, the
corresponding tables in the Oracle database do not necessarily need to be related to each
other. The tables on the Oracle database can be related:

e Related through a foreign key constraint.

« Related without a foreign key constraint. You may have tables on the Oracle database that
are not related through a foreign key constraint. However, you want to cache the data
within these separate tables on TimesTen. The user application could maintain a
relationship between tables that is not enforced by foreign key constraints on the Oracle
database.

Figure 4-2 shows a multiple-table cache group customer orders that caches the customer,

orders and order item tables. Each parent table in the customer orders cache group has a
primary key that is referenced by a child table through a foreign key constraint. The customer
table is the root table of the cache group because it does not reference any table in the cache

4-4

ORACLE

Chapter 4
Cache Groups and Cache Tables

group with a foreign key constraint. The primary key of the root table is considered the primary
key of the cache group. The orders table is a child table of the customer root table. The

order item table is a child table of the orders child table.

Figure 4-2 Cache Group with Multiple Tables

Oracle
database

customer

Data for FII custO]-n

orders

ers

order_item

TimesTen
Cache group customer_orders
I customer (Roottable) | _____ 1
cust_num region name address :
122 West Jim Johnston | |231 Main, Needles, CA 92363 :
342 West Jane Stone 43 Cope, Palo Alto, CA 94302 E
663 Midwest Mary J.Warren| 673 State, Madison, W1 53787 :
1
0 |
(—| oders o _______- .
ord_num cust_num when_placed when_shipped : :
44325 122 10/7/16 10/7/16 E E
65432 122 8/24/16 8/27/16 : _______
Child e s 4/2/16 4/8/16 X
Tables |
1
1 :
I order_item | TTTTTT---o----- | TTTTTTTTT T
ord_num prod_num quantity i_
44325 SDO7 rmm L
44325 TR3A 5
65432 FT094 1
L 76543 SDO7 2

The table hierarchy in a multiple-table cache group can designate child tables to be parents of
other child tables. A child table cannot reference more than one parent table. However, a

parent table can be referenced by more than one child table.

Figure 4-3 shows an improper cache table hierarchy. Neither the customer nor the product
table references a table in the cache group with a foreign key constraint. This results in the

cache group having two root tables which is invalid.

4-5

Chapter 4
Cache Groups and Cache Tables

Figure 4-3 Problem: Cache Group Contains Two Root Tables

TimesTen
Cache group customer_orders

[customer(Roottable] Cannot Define

Casnmcaen e e Two Root Tabes

| 122 | | West | |Jim Johnston | |231 Main, Needles, CA 92363 |

| 663 || Midwest ||MaryJ.Warren| [673 state, Madison,wi 53787 |
e e e | p— | [o7][7brad || s4s0 || 2lbs I brad |
| 7esas || ees || 4216 || 4/8/16 | L e | Earwasher | [S276_]| s f = |

| 65432 I FT094

il

inventory

customer

product [t - - - - -~

__________________ orders

R

________________________________ order_item

To resolve this problem and cache all the tables, create a cache group which contains the
customer, orders, and order item tables, and a second cache group which contains the
product and the inventory tables as shown in Figure 4-4.

ORACLE"

Chapter 4
Creating a Cache Group

Figure 4-4 Solution: Create Two Cache Groups

------------------ orders
CTTTTTTTTTmmmmTommoTmmmmmmmmees

TimesTen
Cache group customer_orders Cache group product_inventory
customer (Root table) | | product
cust_num region name address prod_name name price ship_weight description
122 West Jim Johnston | 231 Main, Needles, CA 92363 SDo7 1"brad $4.50 2 lbs brad
342 West Jane Stone 43 Cope, Palo Alto, CA 94302 TR3A .3"washer $1.94 5.4 Ibs washer
663 Midwest | | Mary J.Warren| 673 State, Madison, Wl 53787 FT094 4" washer $2.76 7.5 Ibs washer
T . FT133 5" washer $1.50 251bs washer
1 1
1 T 1
orders ' |
0 | inventory | B 1
ord_num cust_num when_placed when_shipped ! | 1
: prod_num warehouse quantity | 1
44325 122 10/7/16 10/7/16 ; pr e 2000 . |
1 1
65432 122 8/24/16 8/27/16 \ [\
I TR3A London 10000 1
76543 663 42116 4/8/16 | ! '
1 ! FT094 London 30000 1 0
1 0 1
|) FT133 London 5000 | '
1
1
| order_item [, 0 '
ord_num prod_num quantity : : : :
44325 D07 1 ' . 1 1
\ \ 1 1
44325 TR3A 5 ! 1 1 1
' 1 1 1
65432 FT094 1 . ' 1 1
1
1 | I
76543 5207 2 ! h | :
1 1 . 1 :
1 1 ! ! 1
' ' | Oracle ' !
H 1
' 1
h \ ! database ! .
1 1 : 1
. ! ' inventory |
' . o ____ customer |
1 1 1
' ' 1
1 1 I
1 | product || _ _ |- - - _ =
! I
! 1
! 1
: 1
1
1
1

Creating a Cache Group

You create cache groups by using a CREATE CACHE GROUP SQL statement or by using Oracle
SQL Developer, a graphical tool.

For more information about SQL Developer, see Oracle TimesTen In-Memory Database SQL
Developer Support User's Guide.

Cache groups must be created by and are owned by the TimesTen cache administration user.
You cannot cache Oracle Database data in a temporary database.

Cache groups are identified as either system managed or user managed. System managed
cache groups enforce specific behaviors, while the behavior of a user managed cache group
can be customized.

System managed cache groups include:

e Read-Only Cache Group: Committed updates on the cached Oracle Database tables are
automatically refreshed to the cache tables on TimesTen. The TimesTen cache tables
cannot be updated directly.

ORACLE 4.7

Chapter 4
Read-Only Cache Group

e Asynchronous WriteThrough (AWT) Cache Group: Committed updates on the TimesTen
cache tables are automatically and asynchronously propagated to the cached Oracle
Database tables.

e Synchronous WriteThrough (SWT) Cache Group: Committed updates on the TimesTen
cache tables are automatically and synchronously propagated to the cached Oracle
Database tables.

e Hybrid Cache Group: Dynamically load committed updates from cache tables that do not
have a root table on the Oracle database.

User Managed Cache Group: Customize caching behavior. If the system managed cache
groups do not satisfy your application's requirements, you can create a user-managed cache
group that defines customized caching behavior with cache table attributes.

You can define how data is loaded:

« Static cache group: Cache instances are loaded manually into the TimesTen cache tables.

* Dynamic cache group: Cache instances are loaded into the TimesTen cache tables on
demand from an Oracle database using a dynamic load operation or manually using a load
operation.

See Transmitting Changes Between the TimesTen and Oracle Databases.
The following topics also apply to creating a cache group:

e Creating a Dynamic Cache Group with the DYNAMIC Keyword that enables dynamic load
of new cache instances updated on cached Oracle database tables into TimesTen cache
groups.

* Automatically Refreshing a Cache Group: The AUTOREFRESH cache table attribute specifies
that committed changes on cached Oracle Database tables are automatically refreshed to
read-only TimesTen cache tables.

e Using a WHERE Clause: You can restrict the rows to cache in the TimesTen database for
particular cache group types.

e ON DELETE CASCADE Cache Table Attribute: Specifies that when rows containing
referenced key values are deleted from a parent table, rows in child tables with dependent
foreign keys are also deleted.

e Creating a Hash Index on the Primary Key Columns of the Cache Table: Specifies that a
hash index rather than a range index is created on the primary key columns of the cache
table.

Read-Only Cache Group

A read-only cache group enforces a caching behavior where the TimesTen cache tables
cannot be updated directly, and committed changes on the cached Oracle Database tables are
automatically refreshed to the cache tables.

See Figure 4-5.

ORACLE e

ORACLE

Chapter 4
Read-Only Cache Group

Figure 4-5 Read-Only Cache Group

TimesTen
Application
database

— TimesTen cache

Readonly
cache group

Passthrough SQL* Autorefresh
from Oracle

Oracle
database

I | | [

* Depending on the PassThrough attribute setting

If the TimesTen database is unavailable for whatever reason, you can still update the Oracle
Database tables that are cached in a read-only cache group. When the TimesTen database
returns to operation, updates that were committed on the cached Oracle Database tables while
the TimesTen database was unavailable are automatically refreshed to the TimesTen cache
tables.

Both TimesTen Classic and TimesTen Scaleout support read-only cache groups. TimesTen
Classic supports all read-only cache groups. TimesTen Scaleout only supports static read-only
cache groups with incremental autorefresh. See Using Cache Groups in TimesTen Scaleout in
the Oracle TimesTen In-Memory Database Scaleout User's Guide.

Note:

When TimesTen manages operations for read only cache groups, it connects to the
Oracle database using the Oracle cache administration user name and password.
For more details, see Registering the Cache Administration User Name and
Password.

On the Oracle Database:

The following is an example of a definition of the Oracle Database tables that are to be cached
in read-only cache groups. The Oracle Database tables are owned by the schema user sales.

4-9

ORACLE

Chapter 4
Read-Only Cache Group

CREATE TABLE customer

(cust num NUMBER (6) NOT NULL PRIMARY KEY,
region VARCHARZ (10),

name VARCHAR?2 (50),

address VARCHAR2 (100));

CREATE TABLE orders

(ord num NUMBER (10) NOT NULL PRIMARY KEY,
cust num NUMBER (6) NOT NULL,

when placed DATE NOT NULL,

when shipped DATE NOT NULL);

For cached tables that are going to be included in read-only cache groups, the Oracle cache
administration user must be granted the SELECT privilege on these cached tables. In this
example, these tables are sales.customer and sales.orders tables.

See Required Privileges for Cache Administration User for Cache Operations for all required
privileges for different activities.

On the Oracle database, connect as an administrator and grant the following privileges:

SQL> GRANT SELECT ON sales.customer TO cacheadmin;
SQL> GRANT SELECT ON sales.orders TO cacheadmin;

On the TimesTen database:

Connect as the TimesTen cache administration user. Use the CREATE READONLY CACHE GROUP
statement to create a read-only cache group.

The following statement creates a read-only cache group customer orders that caches the
tables sales.customer (root table) and sales.orders (child table):

CREATE READONLY CACHE GROUP customer orders
FROM sales.customer

(cust num NUMBER(6) NOT NULL,

region VARCHAR2 (10),

name VARCHAR2 (50),

address VARCHARZ (100),

PRIMARY KEY (cust num)),
sales.orders

(ord num NUMBER (10) NOT NULL,

cust num NUMBER (6) NOT NULL,

when placed DATE NOT NULL,

when shipped DATE NOT NULL,

PRIMARY KEY (ord num),

FOREIGN KEY (cust num) REFERENCES sales.customer (cust num));

By default, all read-only cache groups are defined with incremental autorefresh paused with
the default interval value. Perform a LOAD CACHE GROUP statement for the first load of the read-
only cache group since the cache tables are empty. The autorefresh state changes from
PAUSED to ON after the LOAD CACHE GROUP statement completes.

The cache tables in a read-only cache group cannot be updated directly. However, you can set
the passthrough level to 2 to allow committed update operations issued on a TimesTen cache
table to be passed through and processed on the cached Oracle Database table, and then
have the updates be automatically refreshed into the cache table. See Setting a Passthrough
Level.

The effects of a passed through statement on cache tables in a read-only cache group do not
occur in the transaction in which the update operation was issued. Instead, they are seen after
the passed through update operation has been committed on the Oracle database and the

4-10

Chapter 4
Read-Only Cache Group

next automatic refresh of the cache group has occurred. The Oracle cache administration user
must be granted the INSERT, UPDATE and DELETE privileges on the Oracle database tables that

are cached in the read-only cache group in order for the passed through update operations to

be processed on the cached Oracle database tables.

If you manually created the Oracle database objects used to enforce the predefined behaviors
of a cache group with autorefresh as described in The initCacheAdminSchema.sql Script, you
need to set the autorefresh state to OFF when creating the cache group.

Then you need to run the ttIsqgl utility's cachesglget command to generate a SQL*Plus script
used to create a log table and a trigger in the Oracle database for each Oracle Database table
that is cached in the read-only cache group. See Manually Creating Oracle Database Objects
for Cache Groups with Autorefresh for how to create these objects.

Restrictions with Read-Only Cache Groups

ORACLE

Certain restrictions apply to read-only cache groups.
The following restrictions apply when using a read-only cache group:

e The cache tables on TimesTen cannot be updated directly.

* Only the ON DELETE CASCADE and UNIQUE HASH ON cache table attributes can be used in
the cache table definitions.

See ON DELETE CASCADE Cache Table Attribute.

See Creating a Hash Index on the Primary Key Columns of the Cache Table.
e A FLUSH CACHE GROUP statement cannot be issued on the cache group.

See Flushing a User Managed Cache Group.

e A TRUNCATE TABLE statement issued on a cached Oracle Database table is not
automatically refreshed to the TimesTen cache table.

< A LOAD CACHE GROUP statement can only be issued on the cache group if the cache tables
are empty, unless the cache group is dynamic.

See Manually Loading and Refreshing a Cache Group.
See Creating a Dynamic Cache Group with the DYNAMIC Keyword.

e The autorefresh state must be PAUSED before you can issue a LOAD CACHE GROUP statement
on the cache group, unless the cache group is dynamic, in which case the autorefresh
state must be PAUSED or ON. The LOAD CACHE GROUP statement cannot contain a WHERE
clause, unless the cache group is dynamic, in which case the WHERE clause must be
followed by a COMMIT EVERY n ROWS clause.

See Automatically Refreshing a Cache Group.
See Using a WHERE Clause.

e The autorefresh state must be PAUSED before you can issue a REFRESH CACHE GROUP
statement on the cache group. The REFRESH CACHE GROUP statement cannot contain a
WHERE clause.

See Manually Loading and Refreshing a Cache Group.

« All tables and columns referenced in WHERE clauses when creating, loading or unloading
the cache group must be fully qualified. For example:

owner.table name and owner.table name.column name

4-11

Chapter 4
Asynchronous WriteThrough (AWT) Cache Group

» Least recently used (LRU) aging cannot be specified on the cache group, unless the cache
group is dynamic where LRU aging is defined by default.

See LRU Aging in TimesTen Classic.

» Read-only cache groups cannot cache Oracle Database views or materialized views.

Asynchronous WriteThrough (AWT) Cache Group

An Asynchronous WriteThrough (AWT) cache group enforces a caching behavior where
committed changes on the TimesTen cache tables are automatically and asynchronously
propagated to the cached Oracle Database tables.

See Figure 4-6.

Only TimesTen Classic supports AWT cache groups.

Note:

You should avoid running DML statements on Oracle Database tables cached in an
AWT cache group. This can result in an error condition. See Restrictions with AWT
Cache Groups.

Figure 4-6 AWT Cache Group

TimesTen
Application database

— TimesTen cache

AWT
cache group

A

Automatically 1
propagate 1 Load u

pon

updates : request
1
1
1
1

Oracle
database

The transaction commit on a TimesTen database occurs asynchronously from the commit on
an Oracle database. This enables an application to continue issuing transactions on a

ORACLE 415

ORACLE

Chapter 4
Asynchronous WriteThrough (AWT) Cache Group

TimesTen database without waiting for the Oracle Database transaction to complete. However,
your application cannot ensure when the transactions are completed on an Oracle database.

You can update cache tables in an AWT cache group even if the Oracle database is
unavailable. When the Oracle database returns to operation, updates that were committed on
the cache tables while the Oracle database was unavailable are automatically propagated to
the cached Oracle Database tables.

Note:

When TimesTen manages operations for AWT cache groups, it connects to the
Oracle database using the Oracle cache administration user name and password set
with the ttCacheUidPwdSet built-in procedure. For more details on
ttCacheUidPwdSet, see Registering the Cache Administration User Name and
Password.

Since an AWT cache group propagates data from the TimesTen database to the Oracle
database, any data modified by the user in the cached tables on the Oracle database is not
automatically uploaded from the Oracle database to the TimesTen database. In this case, you
must manually run a REFRESH CACHE GROUP SQL statement to have any changes done to the
Oracle database transmitted to the TimesTen database.

Processing of any REFRESH CACHE GROUP Or UNLOAD CACHE GROUP statement for an AWT cache
group waits until updates on any of the rows modified on the TimesTen database have been
propagated to the Oracle database.

On the Oracle Database:

The following is an example of a definition of the Oracle database table that is to be cached in
an AWT cache group. The Oracle database table is owned by the schema user sales.

CREATE TABLE customer

(custinum NUMBER (6) NOT NULL PRIMARY KEY,
region VARCHAR2 (10),

name VARCHAR2 (50),

address VARCHAR2 (100));

When the cached tables are a part of an AWT cache group, then the Oracle cache
administration user must be granted the SELECT, INSERT, UPDATE, and DELETE privileges on any
cached tables. In this example, the table is the sales.customer table.

See Required Privileges for Cache Administration User for Cache Operations for all required
privileges for different activities.

On the Oracle database as an administrator, grant the following privileges:
SQL> GRANT SELECT, INSERT, UPDATE, DELETE ON sales.customer TO cacheadmin;
On the TimesTen database:

Connect as the TimesTen cache administraiton user. Use the CREATE ASYNCHRONOUS
WRITETHROUGH CACHE GROUP statement to create an AWT cache group.

The following statement creates an AWT cache group new customers that caches the
sales.customer table:

4-13

Chapter 4
Asynchronous WriteThrough (AWT) Cache Group

CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP new customers
FROM sales.customer

(cust num NUMBER (6) NOT NULL,

region VARCHAR2 (10),

name VARCHAR2 (50),

address VARCHARZ2 (100),

PRIMARY KEY (cust num));

The following sections describe configuration, behavior, and management for AWT cache
groups:

e Starting and Stopping the Replication Agent

e Setting a Replication Agent Start Policy

e Monitoring Propagation of Transactions to the Oracle Database

e Disabling Propagation of Committed Changes

e Configuring Parallel Propagation to the Oracle Database

e What an AWT Cache Group Does and Does Not Guarantee

e Restrictions with AWT Cache Groups

e Reporting Oracle Database Permanent Errors for AWT Cache Groups

Starting and Stopping the Replication Agent

ORACLE

Performing asynchronous writethrough operations requires that the replication agent be
running on the TimesTen database that contains AWT cache groups.

Running a CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP statement creates a replication
scheme that enables committed changes on the TimesTen cache tables to be asynchronously
propagated to the cached Oracle Database tables.

After you have created AWT cache groups, start the replication agent on the TimesTen
database by calling the ttRepstart built-in procedure as the cache administration user. This
connects using an Oracle Wallet that contains the passwords for both cache administration
users.

Connect as the TimesTen cache administration user and provide credentials in the Oracle
Wallet.

% ttIsgl "DSN=cachel;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"
Command> call ttRepStart;

It can also be started from a command line by running a ttAdmin -repStart utility command
as a TimesTen external user with the CACHE MANAGER privilege:

o

% ttAdmin -repStart cachel

The replication agent does not start unless there is at least one AWT cache group or
replication scheme in the TimesTen database.

If the replication agent is running, it must be stopped before you can issue another CREATE
ASYNCHRONOUS WRITETHROUGH CACHE GROUP statement or a DROP CACHE GROUP statement on an
AWT cache group.

You can stop the replication agent by calling the ttRepStop built-in procedure as the cache
administration user:

Command> call ttRepStop;

4-14

Chapter 4
Asynchronous WriteThrough (AWT) Cache Group

You can also stop the replication agent from a command line with the ttAdmin -repStop utility
command as a TimesTen external user with the CACHE MANAGER privilege:

% ttAdmin -repStop cachel

Setting a Replication Agent Start Policy

Performing asynchronous writethrough operations requires that the replication agent be
running on the TimesTen database that contains AWT cache groups. You can set a replication
agent start policy to determine how and when the replication agent process starts on a
TimesTen database.

The default start policy is manual which means the replication agent must be started manually
by calling the ttRepStart built-in procedure or running a ttAdmin -repStart utility command.
To manually stop a running replication agent process, call the ttRepStop built-in procedure or
run a ttAdmin -repStop utility command.

The start policy can be set to always so that the replication agent starts automatically when the
TimesTen main daemon process starts. With the always start policy, the replication agent
cannot be stopped when the main daemon is running unless the start policy is changed to
either manual or norestart and then a manual stop is issued by calling the ttRepStop built-in
procedure or running a ttAdmin -repStop utility command.

With the manual and always start policies, the replication agent automatically restarts after a
failure such as a database invalidation.

The start policy can be set to norestart which means the replication agent must be started
manually by calling the ttRepStart built-in procedure or running a ttAdmin -repStart utility
command, and stopped manually by calling the ttRepStop built-in procedure or running a
ttAdmin -repStop utility command.

With the norestart start policy, the replication agent does not automatically restart after a
failure such as a database invalidation. You must restart the replication agent manually by
calling the ttRepStart built-in procedure or running a ttAdmin -repStart utility command.

Perform the following to set the replication agent start policy:

1. Before you set a replication agent start policy, grant the ADMIN privilege to the TimesTen
cache administration user as the instance administrator.

% ttIsqgl cachel
Command> GRANT ADMIN TO cacheadmin;
Command> exit

2. Set the replication agent start policy by calling the ttRepPolicySet built-in procedure as
the TimesTen cache administration user:

% ttIsql "DSN=cachel;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"
Command> call ttRepPolicySet ('manual');
Command> exit

Alternately, set the replication agent start policy from a command line by running a ttAdmin
-repPolicy utility command as a TimesTen external user with the ADMIN privilege:

% ttAdmin -repPolicy always cachel

ORACLE o

Chapter 4
Asynchronous WriteThrough (AWT) Cache Group

Monitoring Propagation of Transactions to the Oracle Database

Since the AWT cache group uses the replication agent to asynchronously propagate
transactions to the Oracle database, these transactions remain in the transaction log buffer
and transaction log files until the replication agent confirms they have been fully processed by
the Oracle database.

You can monitor the propagation for these transactions with the ttLogholds built-in procedure.

When you call the ttLogHolds built-in procedure, the description field contains ORACLE to
identify the transaction log hold for the AWT cache group propagation.

Command> call ttLogHolds();

< 0, 18958336, Checkpoint , cachel.ds0 >
< 0, 19048448, Checkpoint , cachel.dsl >
< 0, 19050904, Replication , ADC6160529: ORACLE >

3 rows found.

See the Show Replicated Log Records section in the Oracle TimesTen In-Memory Database
Replication Guide.

You can also improve performance by configuring parallel propagation to the Oracle Database.
See Improving AWT Throughput with Parallel Propagation to the Oracle Database.

Disabling Propagation of Committed Changes

If there are updates from DML statements that you do not want propagated to the Oracle
database, then you can disable propagation of committed changes (as a result of running DML
statements) within the current transaction to the Oracle database by setting the flag in the
ttCachePropagateFlagSet built-in procedure to zero.

After the flag is set to zero, the effects of running any DML statements are never propagated to
the back-end Oracle database. Thus, these updates exist only on the TimesTen database. You
can then re-enable propagation by resetting the flag to one with the ttCachePropagateFlagSet
built-in procedure. After the flag is set back to one, propagation of all committed changes to the
Oracle database resumes. The propagation flag automatically resets to one after the
transaction is committed or rolled back. See ttCachePropagateFlagSet in the Oracle TimesTen
In-Memory Database Reference.

Configuring Parallel Propagation to the Oracle Database

To improve throughput for an AWT cache group, you can configure multiple threads that act in
parallel to propagate and apply transactional changes to the Oracle database.

Parallel propagation enforces transactional dependencies and applies changes in AWT cache
tables to Oracle Database tables in commit order. See Improving AWT Throughput with
Parallel Propagation to the Oracle Database.

What an AWT Cache Group Does and Does Not Guarantee

An AWT cache group comes with some guarantees.
An AWT cache group can guarantee that:

* No transactions are lost because of communication failures between the TimesTen and
Oracle databases.

ORACLE 416

Chapter 4
Asynchronous WriteThrough (AWT) Cache Group

If the replication agent is not running or loses its connection to the Oracle database,
automatic propagation of committed changes on the TimesTen cache tables to the cached
Oracle Database tables resumes after the agent restarts or reconnects to the Oracle
database.

Transactions are committed in the Oracle database in the same order they were committed
in the TimesTen database.

An AWT cache group cannot guarantee that:

All transactions committed successfully in the TimesTen database are successfully
propagated to and committed in the Oracle database. Execution errors on the Oracle
database cause the transaction in the Oracle database to be rolled back. For example, an
update on the Oracle database may fail because of a unique constraint violation.
Transactions that contain execution errors are not retried.

Execution errors are considered permanent errors and are reported to the
TimesTenDatabaseFileName.awterrs file that resides in the same directory as the
TimesTen database's checkpoint files. See Reporting Oracle Database Permanent Errors
for AWT Cache Groups.

The absolute order of Oracle Database updates is preserved because TimesTen does not
resolve update conflicts. The following are some examples:

— In two separate TimesTen databases (DB1 and DB2), different AWT cache groups cache
the same Oracle Database table. An update is committed on the cache table in DB1. An
update is then committed on the cache table in DB2. The two cache tables reside in
different TimesTen databases and cache the same Oracle Database table. Because
the writethrough operations are asynchronous, the update from DB2 may get
propagated to the Oracle database before the update from DB1, resulting in the update
from DB1 overwriting the update from DB2.

— An update is committed on a cache table in an AWT cache group. The same update is
committed on the cached Oracle Database table using a passthrough operation. The
cache table update, which is automatically and asynchronously propagated to the
Oracle database, may overwrite the passed through update that was processed
directly on the cached Oracle Database table depending on when the propagated
update and the passed through update is processed on the Oracle database. For this
and other potential error conditions, TimesTen recommends that you do not run DML
statements directly against Oracle Database tables cached in an AWT cache group.
For more information, see Restrictions with AWT Cache Groups.

Restrictions with AWT Cache Groups

Certain restrictions apply when using an AWT cache group.

ORACLE

The following restrictions apply when using an AWT cache group:

Only the ON DELETE CASCADE and UNIQUE HASH ON cache table attributes can be used in
the cache table definitions.

See ON DELETE CASCADE Cache Table Attribute.

See Creating a Hash Index on the Primary Key Columns of the Cache Table.
A FLUSH CACHE GROUP statement cannot be issued on the cache group.

See Flushing a User Managed Cache Group.

The cache table definitions cannot contain a WHERE clause.

See Using a WHERE Clause.

4-17

Chapter 4
Asynchronous WriteThrough (AWT) Cache Group

A TRUNCATE TABLE statement cannot be issued on the cache tables.

AWT cache groups cannot cache Oracle Database views or materialized views.

The replication agent must be stopped before creating or dropping an AWT cache group.
See Starting and Stopping the Replication Agent.

Committed changes on the TimesTen cache tables are not propagated to the cached
Oracle Database tables unless the replication agent is running.

To create an AWT cache group, the length of the absolute path name of the TimesTen
database cannot exceed 248 characters.

You should avoid running DML statements on Oracle Database tables cached in an AWT
cache group. This could result in an error condition. Any insert, update, or delete operation
on the cached Oracle Database table can negatively affect the operations performed on
TimesTen for the affected rows. TimesTen does not detect or resolve update conflicts that
occur on the Oracle database. Committed changes made directly on a cached Oracle
Database table may be overwritten by a committed update made on the TimesTen cache
table when the cache table update is propagated to the Oracle database. In addition,
deleting rows on the cached Oracle Database table could cause an empty update if
TimesTen tries to update a row that no longer exists.

To ensure that not all data is restricted from DML statements on Oracle Database, you can
partition the data on Oracle Database to separate the data that is to be included in the
AWT cache group from the data to be excluded from the AWT cache group.

TimesTen performs deferred checking when determining whether a single SQL statement
causes a constraint violation with a unique index.

For example, suppose there is a unique index on a cached Oracle Database table's NUMBER
column, and a unigue index on the same NUMBER column on the TimesTen cache table.
There are five rows in the cached Oracle Database table and the same five rows in the
cache table. The values in the NUMBER column range from 1 to 5.

An UPDATE statement is issued on the cache table to increment the value in the NUMBER
column by 1 for all rows. The operation succeeds on the cache table but fails when it is
propagated to the cached Oracle Database table.

This occurs because TimesTen performs the unique index constraint check at the end of
the statement's processing after all the rows have been updated. The Oracle database,
however, performs the constraint check each time after a row has been updated.

Therefore, when the row in the cache table with value 1 in the NUMBER column is changed
to 2 and the update is propagated to the Oracle database, it causes a unique constraint
violation with the row that has the value 2 in the NUMBER column of the cached Oracle
Database table.

Reporting Oracle Database Permanent Errors for AWT Cache Groups

ORACLE

If transactions are not successfully propagated to and committed in the Oracle database, then
the permanent errors cause the transaction in the Oracle database to be rolled back.

For example, an update on the Oracle database may fail because of a unique constraint
violation. Transactions that contain permanent errors are not retried.

Permanent errors are always reported to the TimesTenDatabaseFileName.awterrs text file that
resides in the same directory as the TimesTen database checkpoint files. See Oracle Database
Errors Reported by TimesTen for AWT in the Oracle TimesTen In-Memory Database Monitoring
and Troubleshooting Guide for information about the contents of this file.

4-18

Chapter 4
Asynchronous WriteThrough (AWT) Cache Group

You can configure TimesTen to report these errors in both ASCII and XML formats with the
ttCacheConfig built-in procedure.

Note:

Do not pass in any values to the tbl0Owner and tblName parameters for
ttCacheConfig as they are not applicable to setting the format for the errors file.

« To configure TimesTen to report permanent errors to only the
TimesTenDatabaseFileName.awterrs text file, call the ttCacheConfig built-in procedure
with the ASCII parameter. This is the default.

Command> call ttCacheConfig('AwtErrorXmlOutput',,, 'ASCII');

* To configure TimesTen to report permanent errors to both the
TimesTenDatabaseFileName.awterrs text file as well as to an XML file named
TimesTenDatabaseFileName.awterrs.xml, call the ttCacheConfig built-in procedure with
the XML parameter.

Command> call ttCacheConfig('AwtErrorXmlOutput',,,'XML");

Note:

Before calling ttCacheConfig to direct permanent errors to the XML file, you must
first stop the replication agent. Then, restart the replication agent after the built-in
procedure completes.

See ttCacheConfig in the Oracle TimesTen In-Memory Database Reference.

When you configure error reporting to be reported in XML format, the following two files are
generated when Oracle Database permanent errors occur:

° TimesTenDatabaseFileName.awterrs.xml contains the Oracle Database permanent error
messages in XML format.

e TimesTenDatabaseFileName.awterrs.dtd is the file that contains the XML Document Type
Definition (DTD), which is used when parsing the
TimesTenDatabaseFileName.awterrs.xml file,

The XML DTD, which is based on the XML 1.0 specification, is a set of markup
declarations that describes the elements and structure of a valid XML file containing a log
of errors. The XML file is encoded using UTF-8. The following are the elements for the
XML format.

Note:

For more information on reading and understanding XML Document Type
Definitions, see http://www.w3.0rg/TR/REC-xml/.

<!ELEMENT ttawterrorreport (awterrentry*) >
<!ELEMENT awterrentry(header, (failedop)?, failedtxn) >

ORACLE 419

http://www.w3.org/TR/REC-xml/

<!ELEMENT
(ctn) ?,
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

Chapter 4
Synchronous WriteThrough (SWT) Cache Group

header (time, datastore, oracleid, transmittingagent, errorstr,

(batchid)?, (depbatchid)?) >

failedop (sql) >

failedtxn ((sqgl)+) >

time (hour, min, sec, year, month, day) >
hour (#PCDATA) >

min (#PCDATA) >

sec (#PCDATA) >

year (#PCDATA) >

month (#PCDATA) >

day (#PCDATA) >

datastore (#PCDATA) >
oracleid (#PCDATA) >
transmittingagent (transmitingname, pid, threadid) >
pid (#PCDATA) >

threadid (#PCDATA) >
transmittingname (#PCDATA) >
errorstr (#PCDATA) >

ctn (timestamp, seqnum) >
timestamp (#PCDATA) >

seqnum (#PCDATA) >

batchid (#PCDATA) >
depbatchid (#PCDATA) >

sql (#PCDATA) >

Synchronous WriteThrough (SWT) Cache Group

A synchronous writethrough (SWT) cache group enforces a caching behavior where committed
changes on the TimesTen cache tables are automatically and synchronously propagated to the
cached Oracle Database tables.

ORACLE

See Figure 4-7.

Only TimesTen Classic supports SWT cache groups.

< Note:

You should avoid running DML statements on Oracle Database tables cached in an
SWT cache group. This can result in an error condition. See Restrictions with SWT
Cache Groups.

4-20

ORACLE

Chapter 4
Synchronous WriteThrough (SWT) Cache Group

Figure 4-7 Synchronous WriteThrough Cache Group

TimesTen
Application database
— TimesTen cache
Synchronous
writethrough
cache group
Automatically !
propagate + Load upon
updates : creatl%n
]
1
1
]
Oracle
database

| | |

The transaction commit on the TimesTen database occurs synchronously with the commit on
the Oracle database. When an application commits a transaction in the TimesTen database,
the transaction is processed in the Oracle database before it is processed in TimesTen. The
application is blocked until the transaction has completed in both the Oracle and TimesTen
databases.

If the transaction fails to commit in the Oracle database, the application must roll back the
transaction in TimesTen. If the Oracle Database transaction commits successfully but the
TimesTen transaction fails to commit, the cache tables in the SWT cache group are no longer
synchronized with the cached Oracle Database tables.

Note:

The behavior and error conditions for how commit occurs on both the TimesTen and
Oracle databases when committing propagated updates is the same commit process
on a user managed cache group with the PROPAGATE cache attribute that is described
in PROPAGATE Cache Table Attribute.

To manually resynchronize the cache tables with the cached Oracle Database tables, call the
ttCachePropagateFlagSet built-in procedure to disable update propagation, and then reissue
the transaction in the TimesTen database after correcting the problem that caused the
transaction commit to fail in TimesTen. Then, call the ttCachePropagateFlagSet built-in
procedure to re-enable update propagation. You can also resynchronize the cache tables with
the cached Oracle Database tables by reloading the accompanying cache groups.

4-21

Chapter 4
Synchronous WriteThrough (SWT) Cache Group

The following is an example definition of the Oracle Database table that is to be cached in an
example SWT cache group. The Oracle Database table is owned by the schema user sales.

CREATE TABLE product

(prodinum VARCHAR2 (6) NOT NULL PRIMARY KEY,
name VARCHAR2 (30),

price NUMBER (8, 2),

ship weight NUMBER(4,1));

The Oracle cache administration user, cacheadmin, must be granted certain privileges when
creating a cache group. For SWT cache groups, the required privileges are SELECT, INSERT,
UPDATE, and DELETE privileges on any cached tables. In this example, the table is the
sales.product table.

See Required Privileges for Cache Administration User for Cache Operations for all required
privileges for different activities.

On the Oracle database as an administrator, grant the following privileges:

SQL> GRANT SELECT, INSERT, UPDATE, DELETE ON sales.product TO cacheadmin;

On the TimesTen database:

Connect as the TimesTen cache administration user. Use the CREATE SYNCHRONOUS
WRITETHROUGH CACHE GROUP statement to create an SWT cache group.

The following statement creates a synchronous writethrough cache group top products that
caches the sales.product table:

CREATE SYNCHRONOUS WRITETHROUGH CACHE GROUP top products
FROM sales.product

(prod num VARCHAR2 (6) NOT NULL,

name VARCHAR2Z (30),

price NUMBER (8,2) ,

ship weight NUMBER(4,1),

PRIMARY KEY (prod num)) ;

When TimesTen manages operations for SWT cache groups, it connects to the Oracle
database using the current user's credentials provided on the connection string. The current
user's credentials can be provided with an Oracle Wallet pointed to by the Pwdiallet
connection attribute or with the UID, PWD, and OraclePwd connection attributes. TimesTen does
not connect to the Oracle database with the Oracle cache administration user name and
password registered with the ttCacheUidPwdSet built-in procedure when managing SWT cache
group operations. See Providing Cache Administration User Credentials When Connecting and
Registering the Cache Administration User Name and Password.

Restrictions with SWT Cache Groups

ORACLE

There are certain restrictions when using an SWT cache group.
The following restrictions apply when using an SWT cache group:

* Only the ON DELETE CASCADE and UNIQUE HASH ON cache table attributes can be used in
the cache table definitions.

See ON DELETE CASCADE Cache Table Attribute for more information about the oN
DELETE CASCADE cache table attribute.

See Creating a Hash Index on the Primary Key Columns of the Cache Table for more
information about the UNIQUE HASH ON cache table attribute.

4-22

Chapter 4
Hybrid Cache Group

e A FLUSH CACHE GROUP statement cannot be issued on the cache group.

See Flushing a User Managed Cache Group for more information about the FLUSH CACHE
GROUP statement

* The cache table definitions cannot contain a WHERE clause.

See Using a WHERE Clause for more information about WHERE clauses in cache group
definitions and operations.

A TRUNCATE TABLE statement cannot be issued on the cache tables.
* SWT cache groups cannot cache Oracle Database views or materialized views.

* You should avoid running DML statements directly on Oracle Database tables cached in
an SWT cache group. This could result in an error condition. Any insert, update, or delete
operation on the cached Oracle Database table can negatively affect the operations
performed on TimesTen for the affected rows. TimesTen does not detect or resolve update
conflicts that occur on the Oracle database. Committed changes made directly on a
cached Oracle Database table may be overwritten by a committed update made on the
TimesTen cache table when the cache table update is propagated to the Oracle database.
In addition, deleting rows on the cached Oracle Database table could cause an empty
update if TimesTen tries to update a row that no longer exists.

To ensure that not all data is restricted from DML statements on Oracle Database, you can
partition the data on Oracle Database to separate the data that is to be included in the
SWT cache group from the data to be excluded from the SWT cache group.

Hybrid Cache Group

ORACLE

A hybrid cache group is a dynamic read-only cache group where the root table is created in the
TimesTen database and does not exist in the Oracle database.

A cache group is a set of tables related through foreign keys that cache data from tables in an
Oracle database. Each cache group includes one root table that does not reference any of the
other tables. Foreign keys on all other cache tables in the cache group reference exactly one
other table in the cache group. In other words, the foreign key relationships form a tree. For
multiple table cache groups, you determined the relationship between the tables by defining
which table is the root table, which tables are direct child tables of the root table, and which
tables are the child tables of other child tables. Historically, all tables within the cache group
exist in the Oracle database.

With a hybrid cache group, you can dynamically load from cache tables that do not have a root
table on the Oracle database. A hybrid cache group is a dynamic read-only cache group where
the root table is created in the TimesTen database and does not exist in the Oracle database.

* TimesTen creates the root table on the TimesTen database from the definition of the hybrid
cache group. Note that you should not create this table on the Oracle database.

e The only columns allowed in the root table definition are the columns defining the primary
key.

* All other cache tables must exist in the Oracle database.

e The root table must be referenced by at least one child table through a foreign key
relationship.

The following sections describe how to use a hybrid cache group:

e Creating a Hybrid Cache Group
e Specifying the Dynamic Load for a Hybrid Cache Group

4-23

Chapter 4
Hybrid Cache Group

e Automatic Passthrough for Hybrid Cache Groups
» Restrictions for a Dynamic Hybrid Read-Only Cache Group

Creating a Hybrid Cache Group

ORACLE

You can use the CREATE DYNAMIC HYBRID READONLY CACHE GROUP statement to create a
dynamic hybrid read-only cache group where the root table exists only on TimesTen.

The following are the definitions of the tables that are to be cached in the customer orders
dynamic hybrid read-only cache group.

1. The customer root table exists only on the TimesTen database and contains only a primary
key. You do not create the root table in the Oracle database as it is created by TimesTen
when you specify the root table in the CREATE DYNAMIC HYBRID READONLY CACHE GROUP
statement.

2. Customers can have more than one order and each order can go to a different location. To
track the order status for each customer location, the locations and orders tables are
created on the Oracle database and are children of the customer table.

With the customer id as part of the composite key for both the locations and orders
tables, you can print out the status of all orders for each customer location. In addition, the
invoices table (as a child of the orders table) can be queried to determine if the order has
been paid.

CREATE TABLE locations

(customer id NUMBER(6),

location id NUMBER(6),

name VARCHARZ2 (255) NOT NULL,
street CHAR(30) NOT NULL,

city CHAR(20) NOT NULL,

state CHAR(2) NOT NULL,

zipcode CHAR(10) NOT NULL,

PRIMARY KEY (customer id, location id));

CREATE TABLE orders
(order id NUMBER,
location id NUMBER(6),
customer id NUMBER(6),
when placed DATE NOT NULL,
status NUMBER (2) NOT NULL,
PRIMARY KEY (order id, location id, customer id));

CREATE TABLE invoices
(invoice id NUMBER PRIMARY KEY,
order id NUMBER,
total NUMBER,
paid NUMBER) ;

3. The Oracle cache administration user must be granted the SELECT privilege on the cached
tables. In this example, these tables are sales.locations, sales.orders and
sales.invoices tables.

See Required Privileges for Cache Administration User for Cache Operations for all
required privileges for different activities.

On the Oracle database as an administrator, grant the following privileges:

SQL> GRANT SELECT ON sales.locations TO cacheadmin;
SQL> GRANT SELECT ON sales.orders TO cacheadmin;
SQL> GRANT SELECT ON sales.invoices TO cacheadmin;

4-24

Chapter 4
Hybrid Cache Group

On the TimesTen database, connect as the TimesTen cache administration user to create
the cache group. Use the CREATE DYNAMIC HYBRID READONLY CACHE GROUP statement to
create the customer root table on TimesTen and a dynamic hybrid read-only cache group
called customer orders, which caches the Oracle database tables: locations, orders,
and invoices (child tables). Note that the 1ocations and orders cache tables reference
the primary key of the customer root table that exists on the TimesTen database.

Note:

See CREATE CACHE GROUP in the Oracle TimesTen In-Memory Database
SQL Reference.

CREATE DYNAMIC HYBRID READONLY CACHE GROUP customer orders
FROM customer

(customer id NUMBER(6) NOT NULL,

PRIMARY KEY (customer id)),

locations
(customer id NUMBER(6),
location id NUMBER(6),
name VARCHARZ2 (255) NOT NULL,
street CHAR(30) NOT NULL,
city CHAR(20) NOT NULL,
state CHAR(2) NOT NULL,
zipcode CHAR(10) NOT NULL,
PRIMARY KEY (customer id, location id),
FOREIGN KEY (customer id) REFERENCES customer (customer id)),

orders
(order id NUMBER,
location id NUMBER(6),
customer id NUMBER(6),
when placed DATE NOT NULL,
status NUMBER (2) NOT NULL,
PRIMARY KEY (order id, location id, customer id),
FOREIGN KEY (customer id) REFERENCES customer (customer id)),

invoices
(invoice id NUMBER,
order id NUMBER,
total NUMBER,
paid NUMBER,
PRIMARY KEY (invoice id),
FOREIGN KEY (order id) REFERENCES order (order id));

Specifying the Dynamic Load for a Hybrid Cache Group

ORACLE

For hybrid cache groups, you can specify a derived table within the FROM clause of the SELECT
statement or include more than one table of the same hybrid cache group in the same query.

Dynamic load occurs after evaluating the rules specified in Guidelines for Dynamic Load.

Using a Derived Table

For hybrid cache groups, you can specify a derived table within the FROM clause of the SELECT
statement. If the query specifies multiple tables including the derived table, then the

4-25

ORACLE

Chapter 4
Hybrid Cache Group

materialized result of the derived table with the dynamic load condition is treated as a parent
table (but only if the derived table specifies a single first child table of the hybrid cache group).

See DerivedTable in the Oracle TimesTen In-Memory Database SQL Reference.
Example 4-1 Using a Derived Table

The following query uses a derived table within the FrROM clause of the SELECT statement. The
materialized result of the derived table is treated as the parent table orders when determining if
the query qualifies for a dynamic load. The following query uses a derived table within the FrROM
clause of the SELECT statement. The materialized result of the derived table is treated as the
parent table orders when determining if the query qualifies for a dynamic load.

SELECT * FROM
(SELECT customer id FROM orders WHERE customer id=? AND ROWNUM <= 5);

Including Multiple Tables
More than one table of the same hybrid cache group can be included in the same query.

e One or more first level child tables of the same hybrid cache group can be included in a
query (including the option of a derived table that includes a first level child table):

— Specifies the same foreign key as the other first child tables or derived table.

— Includes a join condition that equates its foreign key with the foreign key of other first
child tables or derived table.

e Any included grandchild table of the same hybrid cache group must:

— Include a foreign key join condition with either the derived table or a first level child
table of the same hybrid cache group.

— Not be included in an outer table join with its parent table.

The following examples demonstrate the conditions that do and do not trigger a dynamic load
for a hybrid cache group. All of these examples are based on the customer orders hybrid
cache group example defined in Creating a Hybrid Cache Group.

Example 4-2 Dynamic Load Condition Using Multiple First Level Child Tables

The following query triggers a dynamic load since two first level child tables (orders and
locations) specify the same dynamic load condition.

SELECT * FROM orders, locations
WHERE orders.customer id=:id and locations.customer id=:id;

And the following query triggers a dynamic load since the locations table equates its foreign
key with the orders table foreign key.

SELECT * FROM orders, locations
WHERE orders.customer id=:id and locations.customer id=:id;

Example 4-3 Dynamic Load Condition Using a First Level Child Table and a Derived
Table

The following query triggers a dynamic load since two first level child tables (orders and
locations) specify the same dynamic load condition. The locations table equates its foreign
key with the dynamically loaded foreign key from the orders table.

The derived table is temporarily named cust as that name is provided directly after the derived
table specification.

4-26

Chapter 4
Hybrid Cache Group

SELECT * FROM
(SELECT customer id,order id FROM orders
WHERE customer id=:id and ROWNUM <= 5) cust, invoices, locations
WHERE
invoices.order id = cust.order id and locations.customer id=cust.customer id;

Example 4-4 Dynamic Load Condition Using a First Level Child Table and Grandchild
Table

The following query example triggers a dynamic load since the dynamic load condition is on a
derived table that includes the orders table (a first level child table of the customer orders
hybrid cache group). It also includes the grandchild table invoices that is included in a foreign
key join condition with the derived table cust.

Temporarily, the derived table name is orders and is treated as a parent table.

SELECT * FROM
(SELECT customer id,order id FROM orders
WHERE customer id=? and ROWNUM <= 5) cust, invoices
WHERE invoices.order id = cust.order id;

Example 4-5 Dynamic Load Using Grandchild Table Joined with Derived Table

The following query triggers a dynamic load because the invoices table (as a grandchild table)
is joined with the derived table cust through a foreign key join:

SELECT * FROM
(SELECT customer id,order id FROM orders
WHERE customer id=? and ROWNUM <= 5) cust, invoices
WHERE invoices.order id = cust.order id;

Example 4-6 No Dynamic Load Example with First Level Child Table

The following query does not trigger a dynamic load because the first level child 1ocations
table specifies a different dynamic load condition than the derived table (cust) load condition:

SELECT * FROM
(SELECT customer id,order id FROM orders
WHERE customer id=:id and ROWNUM <= 5) cust, invoices, locations
WHERE invoices.order id = cust.order id and locations.customer id=:id2;

Example 4-7 No Dynamic Load Example Using Grandchild Table

The following query does not trigger a dynamic load because the invoices grandchild table is
not joined through a foreign key join with its parent, the orders table.

SELECT * FROM
(SELECT customer id,order id FROM orders
WHERE customer id=? and ROWNUM <= 5) cust, invoices
WHERE invoices.invoice id=?;

Example 4-8 No Dynamic Load Second Example Using Grandchild Table

The following query does not trigger a dynamic load because the invoices grandchild table is
included in an outer table of a join with its parent, the orders table.

SELECT * FROM invoices LEFT JOIN
(SELECT customer id,order id FROM orders
WHERE customer id=? and ROWNUM <= 5) cust
ON invoices.order id = cust.order id;

ORACLE 4-27

Chapter 4
User Managed Cache Group

Automatic Passthrough for Hybrid Cache Groups

Set the TT DynamicPassthrough optimizer hint to notify TimesTen to pass through qualified
SELECT statements to the Oracle database for cache groups created without a WHERE clause.

For cache groups without a WHERE clause, you can set the TT DynamicPassthrough(N) optimizer
hint that notifies TimesTen to pass through any SELECT statement to the Oracle database if it
results in a dynamic load of a cache instance with >= N number of rows. See Automatic
Passthrough of Dynamic Load to the Oracle Database.

Restrictions for a Dynamic Hybrid Read-Only Cache Group

Restrictions for using a dynamic hybrid read-only cache group.
The following are restrictions for a dynamic hybrid read-only cache group:

* You can execute a SELECT statement on the root table, as this may help in diagnosing
problems. However, a dynamic load is not triggered if you execute a SELECT on the root
table in TimesTen.

« Hybrid cache groups do not support manually loading the cache group with the LOAD CACHE
GROUP statement.

e LRU aging is on by default for dynamic cache groups, including hybrid cache groups.
Currently, time-based aging is not supported for hybrid cache groups.

e Currently, the WHERE clause is not supported in CREATE CACHE GROUP for hybrid cache
groups.

e Currently, the WITH ID clause is not supported in UNLOAD CACHE GROUP for hybrid cache
groups.

User Managed Cache Group

ORACLE

If the system managed cache groups (read-only, AWT, SWT) do not satisfy your application’s
requirements, you can create a user managed cache group that defines customized caching
behavior.

Create a user managed cache group with customized caching behavior with one or more of the
following cache table attributes:

Only TimesTen Classic supports user-managed cache groups.

Note:

When TimesTen manages operations for user managed cache groups, it connects to
the Oracle database using the current user's credentials provided on the connection
string. The current user's credentials can be provided with an Oracle Wallet pointed
to by the PwdWallet connection attribute or with the UID, PWD, and OraclePwd
connection attributes. TimesTen does not connect to the Oracle database with the
Oracle cache administration user name and password registered with the
ttCacheUidPwdSet built-in procedure when managing SWT cache group operations.
See Providing Cache Administration User Credentials When Connecting and
Registering the Cache Administration User Name and Password..

4-28

Chapter 4
User Managed Cache Group

You can specify the READONLY Cache Table Attribute on individual cache tables in a user
managed cache group to define read-only behavior where the data is refreshed on
TimesTen from the Oracle database at the table level.

You can specify the PROPAGATE cache table attribute on individual cache tables in a user
managed cache group to define synchronous writethrough behavior at the table level. The
PROPAGATE Cache Table Attribute specifies that committed changes on the cache table
are automatically and synchronously propagated to the cached Oracle Database table.

You can define a user managed cache group to automatically refresh and propagate
committed changes between the Oracle and TimesTen databases by using the
AUTOREFRESH cache group attribute and the PROPAGATE cache table attribute. Using both
attributes enables bidirectional transmit, so that committed changes on the TimesTen
cache tables or the cached Oracle Database tables are propagated or refreshed to each
other.

See Automatically Refreshing a Cache Group for more information about defining an
autorefresh mode, interval, and state.

You can use the LOAD CACHE GROUP, REFRESH CACHE GROUP, and FLUSH CACHE GROUP
statements to manually control the transmit of committed changes between the Oracle and
TimesTen databases.

See Manually Loading and Refreshing a Cache Group for more information about the LOAD
CACHE GROUP and REFRESH CACHE GROUP statements. See Flushing a User Managed Cache
Group for more information about the FLUSH CACHE GROUP statement.

You can cache Oracle Database materialized views in a user managed cache group that
does not use either the PROPAGATE or AUTOREFRESH cache group attributes. The cache
group must be manually loaded and flushed. You cannot cache Oracle Database views.

The following sections provide more information about user managed cache groups:

READONLY Cache Table Attribute
PROPAGATE Cache Table Attribute

Examples of User Managed Cache Groups

READONLY Cache Table Attribute

The READONLY cache table attribute can be specified only for cache tables in a user managed
cache group.

ORACLE

READONLY specifies that the cache table cannot be updated directly. By default, a cache table in
a user managed cache group is updatable.

Unlike a read-only cache group where all of its cache tables are read-only, in a user managed
cache group individual cache tables can be specified as read-only using the READONLY cache
table attribute.

The following restrictions apply when using the READONLY cache table attribute:

If the cache group uses the AUTOREFRESH cache group attribute, the READONLY cache table
attribute must be specified on all or none of its cache tables.

See Automatically Refreshing a Cache Group for more information about using the
AUTOREFRESH cache group attribute.

You cannot use both the READONLY and PROPAGATE cache table attributes on the same
cache table.

4-29

Chapter 4
User Managed Cache Group

See PROPAGATE Cache Table Attribute for more information about using the PROPAGATE
cache table attribute.

e A FLUSH CACHE GROUP statement cannot be issued on the cache group unless one or more
of its cache tables use neither the READONLY nor the PROPAGATE cache table attribute.

See Flushing a User Managed Cache Group for more information about the FLUSH CACHE
GROUP statement.

» After the READONLY cache table attribute has been specified on a cache table, you cannot
change this attribute unless you drop the cache group and re-create it.

PROPAGATE Cache Table Attribute

ORACLE

The PROPAGATE cache table attribute can be specified only for cache tables in a user managed
cache group.

PROPAGATE specifies that committed changes on the TimesTen cache table as part of a
TimesTen transaction are automatically and synchronously propagated to the cached Oracle
Database table. If the PROPAGATE cache table attribute is not specified, then the default setting
for a cache table in a user managed cache group is the NOT PROPAGATE cache table attribute
(which does not propagate committed changes on the cache table to the cached Oracle table).

All SQL statements run by an application on cached tables are applied to the cached tables
immediately. All of these operations are buffered until the transaction commits or reaches a
memory upper limit. At this time, all operations are propagated to the tables in the Oracle
database.

Note:

If the TimesTen database or its daemon fails unexpectedly, the results of the
transaction on either the TimesTen or Oracle databases are not guaranteed.

Since the operations in the transaction are applied to tables in both the TimesTen and Oracle
databases, the process for committing is as follows:

1. After the operations are propagated to the Oracle database, the commit is first attempted
in the Oracle database.

« If an error occurs when applying the operations on the tables in the Oracle database,
then all operations are rolled back on the tables on the Oracle database. If the commit
fails in the Oracle database, the commit is not attempted in the TimesTen database
and the application must roll back the TimesTen transaction. If the user tries to run
another statement, an error displays informing them of the need for a roll back. As a
result, the Oracle database never misses updates committed in TimesTen.

2. If the commit succeeds in the Oracle database, the commit is attempted in the TimesTen
database.

* If the transaction successfully commits on the Oracle database, the user's transaction
is committed on TimesTen (indicated by the commit log record in the transaction log)
and notifies the application. If the application ends abruptly before TimesTen informs it
of the success of the local commit, TimesTen is still able to finalize the transaction
commit on TimesTen based on what is saved in the transaction log.

4-30

ORACLE

Chapter 4
User Managed Cache Group

« If the transaction successfully commits on the Oracle database and a failure occurs
before returning the status of the commit on TimesTen, then no record of the
successful commit is written into the transaction log and the transaction is rolled back.

e If the commit fails in TimesTen, an error message is returned from TimesTen indicating
the cause of the failure. You then need to manually resynchronize the cache tables
with the Oracle Database tables.

Note:

See Synchronous WriteThrough (SWT) Cache Group for information on how
to re-synchronize the cache tables with the Oracle Database tables.

You can disable propagation of committed changes on the TimesTen cached tables to the
Oracle database with the ttCachePropagateFlagSet built-in procedure. This built-in procedure
can enable or disable automatic propagation so that committed changes on a cache table on
TimesTen for the current transaction are never propagated to the cached Oracle Database
table. You can then re-enable propagation for DML statements by resetting the flag to one with
the ttCachePropagateFlagSet built-in procedure. After the flag is set back to one, propagation
of committed changes to the Oracle database resumes. The propagation flag automatically
resets to one after the transaction is committed or rolled back. See ttCachePropagateFlagSet
in the Oracle TimesTen In-Memory Database Reference.

The following restrictions apply when using the PROPAGATE cache table attribute:

e If the cache group uses the AUTOREFRESH cache group attribute, the PROPAGATE cache table
attribute must be specified on all or none of its cache tables.

See Automatically Refreshing a Cache Group for more information about using the
AUTOREFRESH cache group attribute.

» If the cache group uses the AUTOREFRESH cache group attribute, the NOT PROPAGATE cache
table attribute cannot be explicitly specified on any of its cache tables.

* You cannot use both the PROPAGATE and READONLY cache table attributes on the same
cache table.

See READONLY Cache Table Attribute for more information about using the READONLY
cache table attribute.

e AFLUSH CACHE GROUP statement cannot be issued on the cache group unless one or more
of its cache tables use neither the PROPAGATE nor the READONLY cache table attribute.

See Flushing a User Managed Cache Group for more information about the FLUSH CACHE
GROUP statement.

» After the PROPAGATE cache table attribute has been specified on a cache table, you cannot
change this attribute unless you drop the cache group and re-create it.

e The PROPAGATE cache table attribute cannot be used when caching Oracle Database
materialized views.

e TimesTen does not perform a conflict check to prevent a propagate operation from
overwriting data that was updated directly on a cached Oracle Database table. Therefore,
updates should only be performed directly on the TimesTen cache tables or the cached
Oracle Database tables, but not both.

4-31

Chapter 4
User Managed Cache Group

Examples of User Managed Cache Groups

Examples are provided for the definition of the Oracle Database tables that are to be cached in
the user managed cache groups.

On the Oracle Database:
These Oracle database tables are owned by the schema user sales.

CREATE TABLE active customer
(custid NUMBER(6) NOT NULL PRIMARY KEY,
name VARCHAR?Z2 (50
addr VARCHAR2 (10)
zip VARCHAR?2 (12
region VARCHARZ (12) DEFAULT 'Unknown') ;
CREATE TABLE ordertab
(orderid NUMBER (10) NOT NULL PRIMARY KEY,
custid NUMBER(6) NOT NULL);

CREATE TABLE cust interests
(custid = NUMBER(6) NOT NULL,
interest VARCHAR2 (10) NOT NULL,
PRIMARY KEY (custid, interest));

CREATE TABLE orderdetails
(orderid NUMBER(10) NOT NULL,
itemid NUMBER (8) NOT NULL,
quantity NUMBER (4) NOT NULL,
PRIMARY KEY (orderid, itemid));

The Oracle cache administration user must be granted the SELECT privilege on any cached
tables. In this example, the table is the sales.active customer table.

On the Oracle database as an administrator, grant the following privileges:

SQL> GRANT SELECT ON sales.active customer TO cacheadmin;

On the TimesTen database:

Connect as the TimesTen cache administration user. Use the CREATE USERMANAGED CACHE
GROUP statement to create a user managed cache group.

The following statement creates a user managed cache group update anywhere customers
that caches the sales.active customer table as shown in Figure 4-8:

CREATE USERMANAGED CACHE GROUP update anywhere customers

AUTOREFRESH MODE INCREMENTAL INTERVAL 30 SECONDS

FROM sales.active_customer
(custid NUMBER (6) NOT NULL,
name VARCHAR?2 (50),
addr VARCHAR2 (100),
zip VARCHAR? (12),
PRIMARY KEY (custid),
PROPAGATE) ;

ORACLE 430

ORACLE

Chapter 4
User Managed Cache Group

Figure 4-8 Single-Table User Managed Cache Group

TimesTen
User managed cache group update_anywhere_customers

| active_customer

custid name address zip

Updates on TimesTen Updates on cached
cache tables are propagated Oracle table are autorefreshed
to Oracle to TimesTen cache group

Oracle
database

active_customer

In this example, all columns except region from the sales.active customer table are cached
in TimesTen. Since this is defined with the PROPAGATE cache table attribute, updates committed
on the sales.active customer cache table on TimesTen are transmitted to the

sales.active customer cached Oracle Database table. Since the user managed cache table
is also defined with the AUTOREFRESH cache attribute, any committed changes on the
sales.active customer Oracle Database table are transmitted to the

update anywhere customers cached table.

In this example, the AUTOREFRESH cache group attribute specifies that committed changes on
the sales.active customer cached Oracle Database table are automatically refreshed to the
TimesTen sales.active customer cache table every 30 seconds.

If you manually created the Oracle Database objects used to enforce the predefined behaviors
of a user managed cache group that uses the AUTOREFRESH MODE INCREMENTAL cache group
attribute as described in The initCacheAdminSchema.sql Script, you need to set the
autorefresh state to OFF when creating the cache group.

Then you need to run the ttIsqgl utility's cachesglget command to generate a SQL*Plus script
used to create a log table and a trigger in the Oracle database for each Oracle Database table
that is cached in the user managed cache group.

See Manually Creating Oracle Database Objects for Cache Groups with Autorefresh.

4-33

ORACLE

Chapter 4
User Managed Cache Group

The following statement creates a multiple-table user managed cache group
western customers that caches the sales.active customer, sales.ordertab,
sales.cust interests, and sales.orderdetails tables as shown in Figure 4-9:

CREATE USERMANAGED CACHE GROUP western customers
FROM sales.active_customer
(custid NUMBER(6) NOT NULL,
name VARCHARZ (50
addr VARCHAR2 (10)
zip VARCHAR2 (12),
region VARCHAR2 (12),
PRIMARY KEY (custid),
PROPAGATE)
WHERE (sales.active customer.region = 'West'),
sales.ordertab
(orderid NUMBER (10) NOT NULL,
custid NUMBER(6) NOT NULL,
PRIMARY KEY (orderid),
FOREIGN KEY (custid) REFERENCES sales.active customer (custid),
PROPAGATE) ,
sales.cust_interests
(custid NUMBER (6) NOT NULL,
interest VARCHAR2 (10) NOT NULL,
PRIMARY KEY (custid, interest),
FOREIGN KEY (custid) REFERENCES sales.active customer (custid),
READONLY) ,
sales.orderdetails
(orderid NUMBER(10) NOT NULL,
itemid NUMBER (8) NOT NULL,
quantity NUMBER(4) NOT NULL,
PRIMARY KEY (orderid, itemid),
FOREIGN KEY (orderid) REFERENCES sales.ordertab (orderid))
WHERE (sales.orderdetails.quantity >= 5);

4-34

Chapter 4
Using a WHERE Clause

Figure 4-9 Multiple-Table User Managed Cache Group

TimesTen

User managed cache group western_customers
| active_customer (Root table)

custid name address zip region
| ordertab | cust_interests
orderid custid custid interests
orderdetails
orderid itemid quantity
Oracle
database
active_customer

L p(cust_interests|

EE—
Data for |TII customers

> ordertab

> order_details

Only customers in the West region who ordered at least 5 of the same item are cached.

Each cache table in the western customers cache group contains a primary key. Each child
table references a parent table with a foreign key constraint. The sales.active customer root
table and the sales.orderdetails child table each contain a WHERE clause to restrict the rows
to be cached. The sales.active customer root table and the sales.ordertab child table both
use the PROPAGATE Cache Table Attribute so that committed changes on these cache tables
are automatically propagated to the cached Oracle Database tables. The

sales.cust interests child table uses the READONLY Cache Table Attribute so that it cannot
be updated directly.

Using a WHERE Clause

A cache table definition in a CREATE CACHE GROUP statement can contain a WHERE clause to
restrict the rows to cache in the TimesTen database for particular cache group types.

ORACLE 435

Chapter 4
Using a WHERE Clause

You can also specify a WHERE clause in a LOAD CACHE GROUP, UNLOAD CACHE GROUP, REFRESH
CACHE GROUP Or FLUSH CACHE GROUP statement for particular cache group types. Some
statements, such as LOAD CACHE GROUP and REFRESH CACHE GROUP, may result in concatenated
WHERE clauses in which the WHERE clause for the cache table definition is evaluated before the
WHERE clause in the LOAD CACHE GROUP Or REFRESH CACHE GROUP Statement.

The following restrictions apply to WHERE clauses used in cache table definitions and cache
group operations:

* WHERE clauses can only be specified in the cache table definitions of a CREATE CACHE
GROUP statement for read-only and user managed cache groups.

° A WHERE clause can be specified in a LOAD CACHE GROUP Statement except on a static
cache group with autorefresh.

See Manually Loading and Refreshing a Cache Group for more information about the LOAD
CACHE GROUP.

e A WHERE clause can be specified in a REFRESH CACHE GROUP statement except on a cache
group with autorefresh.

See Manually Loading and Refreshing a Cache Group for more information about the
REFRESH CACHE GROUP Statement.

* A WHERE clause can be specified in a FLUSH CACHE GROUP statement on a user managed
cache group that allows committed changes on the TimesTen cache tables to be flushed to
the cached Oracle Database tables.

See Flushing a User Managed Cache Group for more information about the FLUSH CACHE
GROUP statement.

e WHERE clauses in a CREATE CACHE GROUP statement cannot contain a subquery. Therefore,
each WHERE clause cannot reference any table other than the one in its cache table
definition. However, a WHERE clause in a LOAD CACHE GROUP, UNLOAD CACHE GROUP, REFRESH
CACHE GROUP or FLUSH CACHE GROUP statement may contain a subquery.

e A WHERE clause in a LOAD CACHE GROUP, REFRESH CACHE GROUP Or FLUSH CACHE GROUP
statement can reference only the root table of the cache group, unless the WHERE clause
contains a subquery.

« All tables and columns referenced in WHERE clauses when creating, loading, refreshing,
unloading or flushing the cache group must be fully qualified. For example:

owner.table name and owner.table name.column name

Proper Placement of WHERE Clause in a CREATE CACHE GROUP

Statement

ORACLE

In a multiple-table cache group, a WHERE clause in a particular table definition should not
reference any table in the cache group other than the table itself. For example, the following
CREATE CACHE GROUP statements are valid:

CREATE READONLY CACHE GROUP customer orders
FROM sales.customer

(cust num NUMBER (6) NOT NULL,

region VARCHARZ (10),

name VARCHARZ (50),

address VARCHAR2 (100),

PRIMARY KEY (cust num))

WHERE (sales.customer.cust num < 100),

4-36

ORACLE

Chapter 4
Using a WHERE Clause

sales.orders
(ord num NUMBER (10) NOT NULL,
cust num NUMBER (6) NOT NULL,
when placed DATE NOT NULL,
when shipped DATE NOT NULL,
PRIMARY KEY (ord num),
FOREIGN KEY (cust num) REFERENCES sales.customer (cust num));

CREATE READONLY CACHE GROUP customer orders
FROM sales.customer

(cust num NUMBER(6) NOT NULL,

region VARCHAR2 (10),

name VARCHAR2 (50),

address VARCHARZ2 (100),

PRIMARY KEY (cust num))
sales.orders

(ord num NUMBER (10) NOT NULL,

cust num NUMBER (6) NOT NULL,

when placed DATE NOT NULL,

when shipped DATE NOT NULL,

PRIMARY KEY (ord num),

FOREIGN KEY (cust num) REFERENCES sales.customer (cust num))

WHERE (sales.orders.cust num < 100);

7

The following statement is not valid because the WHERE clause in the child table's definition
references its parent table:

CREATE READONLY CACHE GROUP customer orders
FROM sales.customer

(cust num NUMBER (6) NOT NULL,

region VARCHARZ (10),

name VARCHARZ (50),

address VARCHARZ (100),

PRIMARY KEY (cust num))
sales.orders

(ord num NUMBER (10) NOT NULL,

cust num NUMBER (6) NOT NULL,

when placed DATE NOT NULL,

when shipped DATE NOT NULL,

PRIMARY KEY (ord num),

FOREIGN KEY (cust num) REFERENCES sales.customer (cust num))

WHERE (sales.customer.cust num < 100);

’

Similarly, the following statement is not valid because the WHERE clause in the parent table's
definition references its child table:

CREATE READONLY CACHE GROUP customer orders
FROM sales.customer

(cust num NUMBER(6) NOT NULL,

region VARCHAR2 (10),

name VARCHAR2 (50),

address VARCHARZ (100),

PRIMARY KEY (cust num))

WHERE (sales.orders.cust num < 100),
sales.orders

(ord num NUMBER (10) NOT NULL,

cust num NUMBER (6) NOT NULL,

when placed DATE NOT NULL,

when shipped DATE NOT NULL,

PRIMARY KEY (ord num),

FOREIGN KEY (cust num) REFERENCES sales.customer (cust num));

4-37

Chapter 4
Specifying Automatic Refresh with the AUTOREFRESH Cache Group Attribute

Referencing Oracle Database PL/SQL Functions in a WHERE Clause

A user-defined PL/SQL function in the Oracle database can be invoked indirectly in a WHERE
clause within a CREATE CACHE GROUP, LOAD CACHE GROUP, Or REFRESH CACHE GROUP (for
dynamic cache groups only) statement.

After creating the function, create a public synonym for the function. Then grant the EXECUTE
privilege on the function to PUBLIC.

For example, in the Oracle database:

CREATE OR REPLACE FUNCTION get customer name

(c num sales.customer.cust num%TYPE) RETURN VARCHARZ IS

c name sales.customer.name3TYPE;

BEGIN
SELECT name INTO C_name FROM sales.customer WHERE cust _num = c_num;
RETURN c name;

END get customer name;

CREATE PUBLIC SYNONYM retname FOR get customer name;
GRANT EXECUTE ON get customer name TO PUBLIC;

Then in the TimesTen database, for example, you can create a cache group with a WHERE
clause that references the Oracle Database public synonym that was created for the function:

CREATE READONLY CACHE GROUP top customer
FROM sales.customer

(cust num NUMBER (6) NOT NULL,

region VARCHAR2 (10),

name VARCHAR2 (50),

address VARCHARZ2 (100),

PRIMARY KEY (cust num))
WHERE sales.customer.name = retname (100);

For cache group types that allow a WHERE clause on a LOAD CACHE GROUP Of REFRESH CACHE
GROUP statement, you can invoke the function indirectly by referencing the public synonym that
was created for the function. For example, you can use the following LOAD CACHE GROUP
statement to load the AWT cache group new customers:

LOAD CACHE GROUP new customers WHERE name = retname (101) COMMIT EVERY 0 ROWS;

Specifying Automatic Refresh with the AUTOREFRESH Cache
Group Attribute

The AUTOREFRESH cache group attribute can be specified when creating a read-only cache
group or a user managed cache group using a CREATE CACHE GROUP statement.

AUTOREFRESH specifies that committed changes on cached Oracle Database tables are
automatically refreshed to the cache tables on TimesTen. Autorefresh is defined by default on
read-only cache groups. See Automatically Refreshing a Cache Group.

Creating a Dynamic Cache Group with the DYNAMIC Keyword

You define whether your cache group is dynamically loaded during cache group definition with
the DYNAMIC keyword.

ORACLE 438

Chapter 4
Creating a Hash Index on the Primary Key Columns of the Cache Table

Note:

Only TimesTen Classic supports the DYNAMIC keyword in its cache groups.

See Dynamic Cache Groups.

Creating a Hash Index on the Primary Key Columns of the Cache

Table

The UNIQUE HASH ON cache table attribute can be specified for cache tables in any cache
group type. Hash indexes give faster full key equality lookups but can be used for inequality (<,
<-, >, >=) or range lookups.

UNIQUE HASH ON specifies that a hash index rather than a range index is created on the primary
key columns of the cache table. The columns specified in the hash index must be identical to
the columns in the primary key. The UNIQUE HASH ON cache table attribute is also used to
specify the size of the hash index.

The following example demonstrates how to use the UNIQUE HASH ON cache table attribute on
the cache table's definition.

CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP new customers
FROM sales.customer

(cust num NUMBER (6) NOT NULL,

region VARCHARZ (10),

name VARCHARZ (50),

address VARCHARZ (100),

PRIMARY KEY (cust num))

UNIQUE HASH ON (cust num) PAGES = 100;

See CREATE CACHE GROUP in the Oracle TimesTen In-Memory Database SQL Reference.

ON DELETE CASCADE Cache Table Attribute

ORACLE

The ON DELETE CASCADE cache table attribute can be specified for cache tables in any cache
group type.

ON DELETE CASCADE specifies that when rows containing referenced key values are deleted
from a parent table, rows in child tables with dependent foreign keys are also deleted.

The following example demonstrates how to use the ON DELETE CASCADE cache table attribute
on the child table's foreign key definition:

CREATE READONLY CACHE GROUP customer orders
FROM sales.customer

(cust num NUMBER(6) NOT NULL,

region VARCHAR2 (10),

name VARCHAR2 (50),

address VARCHARZ (100),

PRIMARY KEY (cust num)),
sales.orders

(ord num NUMBER (10) NOT NULL,

cust num NUMBER (6) NOT NULL,

when placed DATE NOT NULL,

when shipped DATE NOT NULL,

4-39

Chapter 4
Caching Oracle Database Synonyms

PRIMARY KEY (ord num),
FOREIGN KEY (cust num) REFERENCES sales.customer (cust num) ON DELETE CASCADE);

All paths from a parent table to a child table must be either "delete" paths or "do not delete"
paths. There cannot be some "delete" paths and some "do not delete" paths from a parent
table to a child table. Specify the ON DELETE CASCADE cache table attribute for child tables on a
"delete" path.

The following restrictions apply when using the ON DELETE CASCADE cache table attribute:

e For AWT and SWT cache groups, and for TimesTen cache tables in user managed cache
groups that use the PROPAGATE cache table attribute, foreign keys in cache tables that use
the ON DELETE CASCADE cache table attribute must be a proper subset of the foreign keys
in the cached Oracle Database tables that use the ON DELETE CASCADE attribute. ON
DELETE CASCADE actions on the cached Oracle Database tables are applied to the cache
tables on TimesTen as individual deletes. ON DELETE CASCADE actions on the cache tables
are applied to the cached Oracle Database tables as a cascaded operation.

* Matching of foreign keys between the cache tables on TimesTen and the cached Oracle
Database tables is enforced only when the cache group is being created. A cascade delete
operation may not work if the foreign keys on the cached Oracle Database tables are
altered after the cache group is created.

See CREATE CACHE GROUP in the Oracle TimesTen In-Memory Database SQL Reference.

Caching Oracle Database Synonyms

You can cache a private synonym in an AWT, SWT or user managed cache group that does
not use the AUTOREFRESH cache group attribute.

The private synonym can reference a public or private synonym, but it must eventually
reference a table because it is the table that is actually being cached.

The table that is directly or indirectly referenced by the cached synonym can be owned by a
user other than the Oracle Database user with the same name as the owner of the cache
group that caches the synonym. The table must reside in the same Oracle database as the
synonym. The cached synonym itself must be owned by the Oracle Database user with the
same name as the owner of the cache group that caches the synonym.

Caching Oracle Database LOB Data

ORACLE

You can cache Oracle Database large object (LOB) data in cache groups in TimesTen.
TimesTen caches the data as follows:

* Oracle Database CLOB data is cached as TimesTen VARCHAR? data.

* Oracle Database BLOB data is cached as TimesTen VARBINARY data.

* Oracle Database NCLOB data is cached as TimesTen NVARCHAR? data.

The following example shows how to cache Oracle Database LOB data

1. Create a table in the Oracle database that has LOB fields.

CREATE TABLE t (
i INT NOT NULL PRIMARY KEY
, ¢ CLOB
, b BLOB
, nc NCLOB);

4-40

Chapter 4
Caching Oracle Database LOB Data

Insert values into the Oracle Database table. The values are implicitly converted to
TimesTen VARCHAR2, VARBINARY, OR NVARCHAR?2 data types.

INSERT INTO t VALUES (1
, RPAD('abcdefg8', 2048, 'abcdefg8')
, HEXTORAW (RPAD('123456789ABCDEF8', 4000, '123456789ABCDEF8'))
, RPAD('abcdefg8', 2048, 'abcdefg8')

)

1 row inserted.

Create a dynamic AWT cache group and start the replication agent.

CREATE DYNAMIC ASYNCHRONOUS WRITETHROUGH CACHE GROUP cgl
FROM t
(i INT NOT NULL PRIMARY KEY
, C VARCHAR2 (4194303)
, b VARBINARY (4194303)
, nc NVARCHAR2 (2097152));

CALL ttrepstart;
Load the data dynamically into the TimesTen cache group.

SELECT * FROM t WHERE 1 = 1;

I: 1
: abcdefg8abcdefg8abedefg8. ..
B: 123456789ABCDEF8123456789. ..

NC: abcdefg8abcdefg8abedefg8. ..

1 row found.

Restrictions on Caching Oracle Database LOB Data

There are restrictions when caching Oracle Database LOB data into TimesTen.

ORACLE

These restrictions apply to caching Oracle Database LOB data in TimesTen cache groups:

Column size is enforced when a cache group is created. VARBINARY, VARCHAR2 and
NVARCHAR? data types have a size limit of 4 megabytes. Values that exceed the user-
defined column size are truncated at run time without notification.

Empty values in fields with cL.OB and BLOB data types are initialized but not populated with
data. Empty cLoB and BLOB fields are treated as follows:

— Empty LOB fields in the Oracle database are returned as NULL values.

— Empty VARCHAR2 and VARBINARY fields in TimesTen are propagated as NULL values.

In addition, cache groups that are configured for autorefresh operations have these restrictions
on caching LOB data:

When LOB data is updated in the Oracle database by OCI functions or the DBMS LOB
PL/SQL package, the data is not automatically refreshed in the cache group in TimesTen.
This occurs because TimesTen caching operations depend on Oracle Database triggers,
and Oracle Database triggers are not processed when these types of updates occur.
TimesTen does not notify the user that updates have occurred without being refreshed in
TimesTen. When the LOB data is updated in the Oracle database through a SQL
statement, a trigger is fired and autorefresh brings in the change.

Since autorefresh operations always refresh entire rows, LOB data in the cache is updated
when any other column in the same row is updated.

4-41

Chapter 4
Implementing Aging in a Cache Group for TimesTen Classic

Implementing Aging in a Cache Group for TimesTen Classic

LRU Aging i

ORACLE

You can define an aging policy for a cache group in TimesTen Classic that specifies the aging
type, the aging attributes, and the aging state. TimesTen Classic supports two aging types,
least recently used (LRU) aging and time-based aging.

LRU aging deletes the least recently used or referenced data based on a specified database
usage range. Time-based aging deletes data based on a specified data lifetime and frequency
of the aging process. You can use both LRU and time-based aging in the same TimesTen
database, but you can define only one aging policy for a particular cache group.

An aging policy is specified in the cache table definition of the root table in a CREATE CACHE
GROUP statement and applies to all cache tables in the cache group because aging is performed
at the cache instance level. When rows are deleted from the cache tables by aging out, the
rows in the cached Oracle Database table are not deleted.

You can add an aging policy to a cache group by using an ALTER TABLE statement on the root
table. You can change the aging policy of a cache group by using ALTER TABLE statements on
the root table to drop the existing aging policy and then add a new aging policy.

This section describes cache group definitions that contain an aging policy.

* LRU Aging in TimesTen Classic
e Time-Based Aging in TimesTen Classic
e Manually Scheduling an Aging Process in TimesTen Classic

e Configuring a Sliding Window in TimesTen Classic

n TimesTen Classic

LRU aging enables you to maintain the amount of memory used in a TimesTen database within
a specified threshold by deleting the least recently used data. LRU aging can be defined for all
cache group types except static cache groups with autorefresh enabled. LRU aging is defined
by default on dynamic cache groups.

Define an LRU aging policy for a cache group by using the AGING LRU clause in the cache table
definition of the CREATE CACHE GROUP statement. Aging occurs automatically if the aging state
is set to its default of ON.

The following example defines an LRU aging policy on the AWT cache group new_customers:

CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP new customers
FROM sales.customer

(cust num NUMBER (6) NOT NULL,

region VARCHAR2 (10),

name VARCHAR2 (50),

address VARCHARZ (100),

PRIMARY KEY (cust num))
AGING LRU ONj;

There are two LRU aging policies:

* LRU aging based on set thresholds for the amount of permanent memory in use. This is
the default. Once you create (or alter) a table to use LRU aging, the LRU aging policy
defaults to using the default thresholds for permanent memory in use. See Defining LRU
Aging Based on Thresholds for Permanent Memory in Use in the Oracle TimesTen In-
Memory Database Operations Guide.

4-42

Chapter 4
Implementing Aging in a Cache Group for TimesTen Classic

* LRU aging based on row thresholds for a specified root tables of your cache groups. See
Defining LRU Aging Based on Row Thresholds for Tables in the Oracle TimesTen In-
Memory Database Operations Guide.

Both types of LRU aging can co-exist. Row threshold based aging takes precedence over
permanent memory in use based aging.

If a row has been accessed or referenced since the last aging cycle, it is not eligible for LRU
aging in the current aging cycle. A row is considered to be accessed or referenced if at least
one of the following is true:

« The row is used to build the result set of a SELECT or an INSERT ... SELECT statement.

e The row has been marked to be updated or deleted in a pending transaction.

In a multiple-table cache group, if a row in a child table has been accessed or referenced since
the last aging cycle, then neither the related row in the parent table nor the row in the child
table is eligible for LRU aging in the current aging cycle.

The ALTER TABLE statement can be used to perform the following tasks associated with
changing or defining an LRU aging policy on a cache group:

e Change the aging state of a cache group by specifying the root table and using the SET
AGING clause.

* Add an LRU aging policy to a cache group that has no aging policy defined by specifying
the root table and using the ADD AGING LRU clause.

« Drop the LRU aging policy on a cache group by specifying the root table and using the
DROP AGING clause.

To change the aging policy of a cache group from LRU to time-based, use an ALTER TABLE
statement on the root table with the DROP AGING clause to drop the LRU aging policy. Then use
an ALTER TABLE statement on the root table with the ADD AGING USE clause to add a time-
based aging policy.

You must stop the cache agent before you add, alter or drop an aging policy on a cache group
with autorefresh.

Time-Based Aging in TimesTen Classic

ORACLE

Time-based aging deletes data from a cache group based on the aging policy's specified data
lifetime and frequency. Time-based aging can be defined for all cache group types in TimesTen
Classic.

The data lifetime defines the minimum age of data within the table. The comparison of the time
is based on the timestamp, so data may not become a candidate for aging until longer than the
specified lifetime (but never less that the specified lifetime).

Define a time-based aging policy for a cache group by using the AGING USE clause in the cache
table definition of the CREATE CACHE GROUP statement. Aging occurs automatically if the aging
state is set to its default of ON.

On the Oracle Database:

The following example are the definitions of the Oracle Database tables that are to be cached
in the AWT cache group. The Oracle Database tables are owned by the schema user sales.

CREATE TABLE orders

(ord_num NUMBER (10) NOT NULL PRIMARY KEY,
cust_num NUMBER (6) NOT NULL,

when placed DATE NOT NULL,

4-43

ORACLE

Chapter 4
Implementing Aging in a Cache Group for TimesTen Classic

when shipped DATE NOT NULL);

CREATE TABLE order item
(Orditem_id NUMBER (12) NOT NULL PRIMARY KEY,
ord num NUMBER (10) ,
prod num VARCHAR2 (6),
quantity NUMBER (3)) ;

The Oracle cache administration user must be granted the SELECT, INSERT, UPDATE, and
DELETE privileges on any cached tables. In this example, the table is the sales.orders and
sales.order item tables.

See Required Privileges for Cache Administration User for Cache Operations for all required
privileges for different activities.

On the Oracle database as an administrator, grant the following privileges:

SQL> GRANT SELECT, INSERT, UPDATE, DELETE ON sales.orders TO cacheadmin;
SQL> GRANT SELECT, INSERT, UPDATE, DELETE ON sales.orderiitem TO cacheadmin;

On the TimesTen database:

The following example defines a time-based aging policy on the AWT cache group
ordered items:

CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP ordered items
FROM sales.orders
(ord num NUMBER (10) NOT NULL,
cust num NUMBER (6) NOT NULL,
when placed DATE NOT NULL,
when shipped DATE NOT NULL,
PRIMARY KEY (ord num))
AGING USE when placed LIFETIME 45 DAYS CYCLE 60 MINUTES ON,
sales.order item
(orditem id NUMBER (12)
ord num NUMBER (10)
prod num VARCHAR?Z (6
quantity NUMBER (3),
PRIMARY KEY (orditem id),
FOREIGN KEY (ord num) REFERENCES sales.orders(ord num));

NOT NULL,

)y

Cache instances that are greater than 45 days old based on the difference between the current
system timestamp and the timestamp in the when placed column of the sales.orders table
are candidates for aging. The aging process checks every 60 minutes to see if there are cache
instances that can be automatically aged out or deleted from the cache tables.

The AGING USE clause requires the name of a non-nullable TIMESTAMP or DATE column used for
time-based aging. We refer to this column as the timestamp column.

For each row, the value in the timestamp column stores the date and time when the row was
most recently inserted or updated. The values in the timestamp column is maintained by your
application. If the value of this column is unknown for particular rows and you do not want
those rows to be aged out of the table, define the timestamp column with a large default value.

You can create an index on the timestamp column to optimize performance of the aging
process.

You cannot add a column to an existing table and then use that column as the timestamp
column because added columns cannot be defined as non-nullable. You cannot drop the
timestamp column from a table that has a time-based aging policy defined.

4-44

Chapter 4
Implementing Aging in a Cache Group for TimesTen Classic

Specify the lifetime in days, hours, minutes or seconds after the LIFETIME keyword in the AGING
USE clause.

The value in the timestamp column is subtracted from the current system timestamp. The
result is then truncated to the specified lifetime unit (day, hour, minute, second) and compared
with the specified lifetime value. If the result is greater than the lifetime value, the row is a
candidate for aging.

After the cYcLE keyword, specify the frequency in which aging occurs in days, hours, minutes
or seconds. The default aging cycle is 5 minutes. If you specify an aging cycle of 0, aging is
continuous.

The ALTER TABLE statement can be used to perform the following tasks associated with
changing or defining a time-based aging policy on a cache group:

» Change the aging state of a cache group by specifying the root table and using the SET
AGING clause.

e Change the lifetime by specifying the root table and using the SET AGING LIFETIME clause.

e Change the aging cycle by specifying the root table and using the SET AGING CYCLE
clause.

e Add a time-based aging policy to a cache group that has no aging policy defined by
specifying the root table and using the ADD AGING USE clause.

* Drop the time-based aging policy on a cache group by specifying the root table and using
the DROP AGING clause.

To change the aging policy of a cache group from time-based to LRU, use an ALTER TABLE
statement on the root table with the DROP AGING clause to drop the time-based aging policy.
Then use an ALTER TABLE statement on the root table with the ADD AGING LRU clause to add an
LRU aging policy.

You must stop the cache agent before you add, alter or drop an aging policy on a cache group
with autorefresh.

Manually Scheduling an Aging Process in TimesTen Classic

ORACLE

Use the ttAgingScheduleNow built-in procedure to manually start a one-time aging process on
a specified table or on all tables that have an aging policy defined.

The aging process starts as soon as you call the built-in procedure unless there is already an
aging process in progress. Otherwise the manually started aging process begins when the
aging process that is in progress has completed. After the manually started aging process has
completed, the start of the table's next aging cycle is set to the time when ttAgingScheduleNow
was called if the table's aging state is ON.

The following example shows how the ttAgingScheduleNow built-in procedure starts a one-
time aging process on the sales.orders table based on the time ttAgingScheduleNow is
called:

Command> CALL ttAgingScheduleNow ('sales.orders');

Rows in the sales.orders root table that are candidates for aging are deleted as well as
related rows in the sales.order item child table.

When you call the ttAagingScheduleNow built-in procedure, the aging process starts regardless
of whether the table's aging state is ON or OFF. If you want to start an aging process on a
particular cache group, specify the name of the cache group's root table when you call the

4-45

Chapter 4
Implementing Aging in a Cache Group for TimesTen Classic

built-in procedure. If the ttAgingScheduleNow built-in procedure is called with no parameters, it
starts an aging process and then resets the start of the next aging cycle on all tables in the
TimesTen database that have an aging policy defined.

Calling the ttAgingScheduleNow built-in procedure does not change the aging state of any
table. If a table's aging state is OFF when you call the built-in procedure, the aging process
starts, but it is not scheduled to run again after the process has completed. To continue aging a
table whose aging state is OFF, you must call ttAgingScheduleNow again or change the table's
aging state to ON.

To manually control aging on a cache group, disable aging on the root table by using an ALTER
TABLE statement with the SET AGING OFF clause. Then call ttAgingScheduleNow to Start an
aging process on the cache group.

Configuring a Sliding Window in TimesTen Classic

ORACLE

You can use time-based aging to implement a sliding window for a cache group.

In a sliding window configuration, new rows are inserted into and old rows are deleted from the
cache tables on a regular schedule so that the tables contain only the data that satisfies a
specific time interval.

You can configure a sliding window for a cache group by using incremental autorefresh mode
and defining a time-based aging policy. The autorefresh operation checks the timestamp of the
rows in the cached Oracle Database tables to determine whether new data should be
refreshed into the TimesTen cache tables. The system time and the time zone must be
identical on the Oracle Database and TimesTen systems.

If the cache group does not use incremental autorefresh mode, you can configure a sliding
window by using a LOAD CACHE GROUP, REFRESH CACHE GROUP, or INSERT statement, or a
dynamic load operation to bring new data into the cache tables.

The following example configures a sliding window on the read-only cache group
recent shipped orders:

CREATE READONLY CACHE GROUP recent shipped orders
AUTOREFRESH MODE INCREMENTAL INTERVAL 1440 MINUTES STATE ON
FROM sales.orders

(ord num NUMBER (10) NOT NULL,

cust num NUMBER (6) NOT NULL,

when placed DATE NOT NULL,

when shipped DATE NOT NULL,

PRIMARY KEY (ord num))
AGING USE when_shipped LIFETIME 30 DAYS CYCLE 24 HOURS ON;

New data in the sales.orders cached Oracle Database table are automatically refreshed into
the sales.orders TimesTen cache table every 1440 minutes. Cache instances that are greater
than 30 days old based on the difference between the current system timestamp and the
timestamp in the when shipped column are candidates for aging. The aging process checks
every 24 hours to see if there are cache instances that can be aged out of the cache tables.
Therefore, this cache group stores orders that have been shipped within the last 30 days.

The autorefresh interval and the lifetime used for aging determine the duration that particular
rows remain in the cache tables. It is possible for data to be aged out of the cache tables
before it has been in the cache tables for its lifetime. For example, for a read-only cache group
if the autorefresh interval is 3 days and the lifetime is 30 days, data that is already 3 days old
when it is refreshed into the cache tables is deleted after 27 days because aging is based on
the timestamp stored in the rows of the cached Oracle Database tables that gets loaded into
the TimesTen cache tables, not when the data is refreshed into the cache tables.

4-46

Chapter 4
Replicating Cache Tables in TimesTen Classic

Replicating Cache Tables in TimesTen Classic

To achieve high availability in TimesTen Classic, configure an active standby pair replication
scheme for cache tables in a read-only cache group or an AWT cache group.

An active standby pair that replicates cache tables from one of these cache group types can
automatically change the role of a TimesTen Classic database as part of failover and recovery
with minimal chance of data loss. Cache groups themselves provide resilience from Oracle
database outages, further strengthening system availability. An active standby pair replication
scheme provides for high availability of a TimesTen Classic database.

Note:

This section describes one scenario in including cache groups within an active
standby pair replication scheme. See Administering an Active Standby Pair With
Cache Groups in Oracle TimesTen In-Memory Database Replication Guide for more
scenarios for including AWT and read-only cache groups in an active standby pair
replication scheme.

Oracle Real Application Clusters (Oracle RAC) provides for high availability of an Oracle
database. See Using Cache in an Oracle RAC Environment.

Perform the following tasks to configure an active standby pair for TimesTen Classic databases
that cache Oracle Database tables:

« Create and Configure the Active Database
e Create and Configure the Standby Database

e Create and Configure the Read-Only Subscriber Database

Create and Configure the Active Database

ORACLE

This example shows how to create and configure the active database in an active standby pair
replication scheme.

The following is the definition of the cacheactive DSN for the active database of the active
standby pair:

[cacheactive]
DataStore=/users/OracleCache/cacheact
PermSize=64

OracleNetServiceName=orcl
DatabaseCharacterSet=WE8IS08859P1
CacheAdminWallet=1

Note:

If you set the CacheAdminWallet as a first connection attribute (normally set in the
DSN), then when you register the cache administration user credentials with the
ttCacheUidPwdSet built-in procedure, they are stored in an Oracle Wallet rather than
in memory.

4-47

ORACLE

Chapter 4
Replicating Cache Tables in TimesTen Classic

Start the ttIsql utility and connect to the cacheactive DSN as the instance administrator to
create the database. Then create the TimesTen cache administration user cacheadmin whose
name is the same as the Oracle cache administration user.

Then, create a cache table user sales whose name is the same as the Oracle Database
schema user who owns the Oracle Database tables to be cached in the TimesTen Classic
database.

o)

$ ttIsgl cacheactive
Command> CREATE USER cacheadmin IDENTIFIED BY timesten;
Command> CREATE USER sales IDENTIFIED BY timesten;

As the instance administrator, use the ttIsql utility to grant the TimesTen cache administration
user cacheadmin the privileges required as well as create an active standby pair replication
scheme which requires the ADMIN privilege:

Command> GRANT CREATE SESSION, CACHE MANAGER,
CREATE ANY TABLE, ADMIN TO cacheadmin;
Command> exit

Start the ttIsqgl utility and connect to the cacheactive DSN as the TimesTen cache
administration user. Set the Oracle cache administration user name and password by calling
the ttCacheUidPwdSet built-in procedure.

% ttIsql "DSN=cacheactive;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"
Command> CALL ttCacheUidPwdSet ('cacheadmin', 'orapwd') ;

If desired, you can test the connectivity between the active database and the Oracle database
using the instructions stated in Testing the Connectivity Between the TimesTen and Oracle
Databases.

Start the cache agent on the active database by calling the ttCacheStart built-in procedure as
the TimesTen cache administration user:

Command> CALL ttCacheStart;

The following statement is the definition of the Oracle Database table that is to be cached in a
dynamic AWT cache group. The Oracle Database table is owned by the schema user sales.

CREATE TABLE subscriber

(subscriberid NUMBER (10) NOT NULL PRIMARY KEY,
name VARCHAR2 (100) NOT NULL,

minutes balance NUMBER (5) NOT NULL,

last call duration NUMBER(4) NOT NULL);

The Oracle cache administration user must be granted the SELECT privilege on the
sales.subscriber table so that the TimesTen cache administration user can create an AWT
cache group that caches this table. The Oracle cache administration user must be granted the
INSERT, UPDATE and DELETE Oracle Database privileges for the sales.subscriber table for
asynchronous writethrough operations to be applied to the Oracle Database.

Then, create cache groups in the TimesTen Classic database with the CREATE DYNAMIC
ASYNCHRONOUS WRITETHROUGH CACHE GROUP statement as the TimesTen cache administration
user. For example, the following statement creates a dynamic AWT cache group
subscriber accounts that caches the sales.subscriber table:

CREATE DYNAMIC ASYNCHRONOUS WRITETHROUGH CACHE GROUP subscriber accounts
FROM sales.subscriber

(subscriberid NUMBER (10) NOT NULL PRIMARY KEY,

name VARCHARZ2 (100) NOT NULL,

4-48

Create and

ORACLE

Chapter 4
Replicating Cache Tables in TimesTen Classic

minutes_balance NUMBER (5) NOT NULL,
last_call_duration NUMBER (4) NOT NULL) ;

As the TimesTen cache administration user, create an active standby pair replication scheme in
the active database using a CREATE ACTIVE STANDBY PAIR Statement.

In the following example, cacheact, cachestand and subscr are the file name prefixes of the
checkpoint and transaction log files of the active database, standby database and read-only
subscriber database. sys3, sys4 and sys5 are the host names of the TimesTen systems where
the active database, standby database and read-only subscriber database reside, respectively.

Command> CREATE ACTIVE STANDBY PAIR cacheact ON "sys3", cachestand ON "sys4"
SUBSCRIBER subscr ON "sysb";

As the TimesTen cache administration user, start the replication agent on the active database
by calling the ttRepstart built-in procedure. Then declare the database as the active by
calling the ttRepStateSet built-in procedure.

Command> CALL ttRepStart;
Command> CALL ttRepStateSet('active');

Configure the Standby Database

This example shows how to create and configure a standby database in an active standby pair
replication scheme.

The following is the definition of the cachestandby DSN for the standby database of the active
standby pair:

[cachestandby]
DataStore=/users/OracleCache/cachestand
PermSize=64

OracleNetServiceName=orcl
DatabaseCharacterSet=WE8IS08859P1
CacheAdminWallet=1

Note:

If you set the CacheAdminWallet as a first connection attribute (normally set in the
DSN), then when you register the cache administration user credentials with the
ttCacheUidPwdSet built-in procedure, they are stored in an Oracle Wallet rather than
in memory.

As the instance administrator, create the standby database as a duplicate of the active
database by running a ttRepAdmin -duplicate utility command from the standby database
system. The instance administrator user name of the active database's and standby
database's instances must be identical.

Use the -keepCG option so that cache tables in the active database are duplicated as cache
tables in the standby database, because the standby database is connected with the Oracle
database.

In the following example:

e The -from option specifies the file name prefix of the active database's checkpoint and
transaction log files.

4-49

Create and

ORACLE

Chapter 4
Replicating Cache Tables in TimesTen Classic

* The -host option specifies the host name of the TimesTen system where the active
database resides.

e The -uid and -pwd options specify a user name and password of a TimesTen internal user
defined in the active database that has been granted the ADMIN privilege.

e The -cacheuid and -cachepwd options specify the Oracle cache administration user name
and password.

* cachestandby is the DSN of the standby database.

* The -keepCG option specifies that the standby database keeps the cache groups defined
on the active database.

o

% ttRepAdmin -duplicate -from cacheact -host "sys3" -uid cacheadmin -pwd timesten
-cacheuid cacheadmin -cachepwd orapwd -keepCG cachestandby

Start the ttIsql utility and connect to the cachestandby DSN as the cache administration user.
Set the Oracle cache administration user name and password by calling the ttCacheUidPwdSet
built-in procedure.

% ttIsgl "DSN=cachestandby;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"
Command> CALL ttCacheUidPwdSet ('cacheadmin', 'orapwd') ;

If desired, you can test the connectivity between the standby database and the Oracle
database using the instructions stated in Testing the Connectivity Between the TimesTen and
Oracle Databases.

Start the cache agent on the standby database by calling the ttCacheStart built-in procedure
as the TimesTen cache administration user:

Command> CALL ttCacheStart;

As the TimesTen cache administration user, start the replication agent on the standby database
by calling the ttRepStart built-in procedure.

Command> CALL ttRepStart;

Configure the Read-Only Subscriber Database

This example demonstrates how to create and configure a read-only subscriber within an
active standby pair replication scheme.

The following is the definition of the rosubscriber DSN for the read-only subscriber database
of the active standby pair:

[rosubscriber]
DataStore=/users/OracleCache/subscr
PermSize=64
DatabaseCharacterSet=WE8IS08859P1

As the instance administrator, create the read-only subscriber database as a duplicate of the
standby database by running a ttRepAdmin -duplicate utility command from the read-only
subscriber database system. The instance administrator user name of the standby database
and read-only subscriber database must be identical.

Use the -noKeepCG option so that cache tables in the standby database are duplicated as
regular tables in the read-only subscriber database because the read-only subscriber database
is not connected with the Oracle database.

In the following example:

4-50

ORACLE

Chapter 4
Replicating Cache Tables in TimesTen Classic

* The -from option specifies the file name prefix of the standby database's checkpoint and
transaction log files.

* The -host option specifies the host name of the TimesTen system where the standby
database resides.

e The -uid and -pwd options specify a user name and password of a TimesTen internal user
defined in the standby database that has been granted the ADMIN privilege.

* rosubscriber is the DSN of the read-only subscriber database.

o

3 ttRepAdmin -duplicate -from cachestand -host "sys4" -uid cacheadmin -pwd timesten
-noKeepCG rosubscriber

As the TimesTen cache administration user, start the replication agent on the read-only
subscriber database by calling the ttRepStart built-in procedure.

% ttIsgl "DSN=rosubscriber;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"

Command> CALL ttRepStart;
Command> exit

4-51

Methods for Transmitting Changes Between
TimesTen and Oracle Databases

You can transmit changes between TimesTen and Oracle databases manually or automatically.

e Manually load cache groups: You can manually load or refresh cache instances into the
TimesTen cache tables from the Oracle database tables using LOAD CACHE GROUP Or
REFRESH CACHE GROUP statements.

* Manually propagate committed changes: Use a FLUSH CACHE GROUP statement to
propagate committed changes on the TimesTen cache tables to the cached Oracle
Database tables.

« Automatically refresh cache groups: You can cause the cache instances to be
automatically refreshed with the AUTOREFRESH cache table attribute. Automatic refresh can
be defined on cache groups that are either explicitly or dynamically loaded.

« Dynamically load data on demand: When you define a cache group with the DYNAMIC
keyword, then the data in a cache group is dynamically loaded on demand.

e Automatic propagation of changes to the Oracle database: When you configure the
PROPAGATE cache table attribute on the TimesTen cache tables, then committed changes
are automatically propagated to the cached Oracle Database tables.

See Transmitting Changes Between the TimesTen and Oracle Databases for an overview of
each of these methods.

Note:

You can use SQL statements or SQL Developer to perform most of the operations in
this chapter. For more information about SQL Developer, see Oracle TimesTen In-
Memory Database SQL Developer Support User's Guide.

The following sections describe these operations:

e Manually Loading and Refreshing a Cache Group

e Flushing a User Managed Cache Group

e Unloading a Cache Group

e Automatically Refreshing a Cache Group

e Manually or Dynamically Loading Cache Groups

e Dynamic Cache Groups

* Determining the Number of Cache Instances Affected by an Operation

e Setting a Passthrough Level

ORACLE -

Chapter 5
Manually Loading and Refreshing a Cache Group

Manually Loading and Refreshing a Cache Group

ORACLE

You can manually insert or update cache instances into the TimesTen cache tables from the
cached Oracle Database tables using either a LOAD CACHE GROUP Of REFRESH CACHE GROUP
statement.

The differences between loading and refreshing a cache group are:

¢ The LOAD CACHE GROUP statement only loads committed inserts on the cached Oracle
Database tables into the TimesTen cache tables. New cache instances are loaded into the
cache tables, but cache instances that already exist in the cache tables are not updated or
deleted even if the corresponding rows in the cached Oracle Database tables have been
updated or deleted. A load operation is primarily used to initially populate a cache group.

e The REFRESH CACHE GROUP statement replaces cache instances in the TimesTen cache
tables with the most current data from the cached Oracle Database tables including cache
instances that are already exist in the cache tables. A refresh operation is primarily used to
update the contents of a cache group with committed changes on the cached Oracle
Database tables after the cache group has been initially populated.

For a static cache group, a refresh operation is equivalent to issuing an UNLOAD CACHE
GROUP statement followed by a LOAD CACHE GROUP statement on the cache group. In effect,
all committed inserts, updates and deletes on the cached Oracle Database tables are
refreshed into the cache tables. New cache instances may be loaded into the cache tables.
Cache instances that already exist in the cache tables are updated or deleted if the
corresponding rows in the cached Oracle Database tables have been updated or deleted.
See Unloading a Cache Group for more information about the UNLOAD CACHE GROUP
statement.

For a dynamic cache group, a refresh operation only refreshes committed updates and
deletes on the cached Oracle Database tables into the cache tables because only existing
cache instances in the cache tables are refreshed. New cache instances are not loaded
into the cache tables so after the refresh operation completes, the cache tables contain
either the same or fewer number of cache instances. To load new cache instances into the
cache tables of a dynamic cache group, use a LOAD CACHE GROUP statement or perform a
dynamic load operation. See Dynamic Cache Groups for more information about a
dynamic load operation.

For most cache group types, you can use a WHERE clause in a LOAD CACHE GROUP Or REFRESH
CACHE GROUP statement to restrict the rows to be loaded or refreshed into the cache tables.

If the cache table definitions use a WHERE clause, only rows that satisfy the WHERE clause are
loaded or refreshed into the cache tables even if the LOAD CACHE GROUP or REFRESH CACHE
GROUP statement does not use a WHERE clause.

If the cache group has a time-based aging policy defined, only cache instances where the
timestamp in the root table's row is within the aging policy's lifetime are loaded or refreshed
into the cache tables.

To prevent a load or refresh operation from processing a large number of cache instances
within a single transaction, which can greatly reduce concurrency and throughput, use the
COMMIT EVERY n ROWS clause to specify a commit frequency unless you are using the WITH ID
clause. If you specify COMMIT EVERY 0 ROWS, the load or refresh operation is processed in a
single transaction.

In addition, if the load operation is for a large amount of data, use parallelism to increase
throughput by specifying the number of threads with the PARALLEL clause.

5-2

Chapter 5
Manually Loading and Refreshing a Cache Group

A LOAD CACHE GROUP Or REFRESH CACHE GROUP statement that uses the COMMIT EVERY n ROWS
clause must be performed in its own transaction without any other operations within the same
transaction.

The following example loads new cache instances into the TimesTen cache tables in the
customer orders cache group from the cached Oracle Database tables:

LOAD CACHE GROUP customer orders COMMIT EVERY 256 ROWS PARALLEL 2;

The following example loads into the TimesTen cache tables using a WHERE clause in the
new_customers cache group from the cached Oracle Database tables. The WHERE clause

specifies new cache instances for customers whose customer number is greater than or equal
to 5000:

LOAD CACHE GROUP new customers WHERE (sales.customer.cust num >= 5000)
COMMIT EVERY 256 ROWS;

The following example refreshes cache instances in the TimesTen cache tables within the
top_products cache group from the cached Oracle Database tables:

REFRESH CACHE GROUP top products COMMIT EVERY 256 ROWS;

The following example refreshes in the TimesTen cache tables within the

update anywhere customers cache group from the cached Oracle Database tables. The WHERE
clause specifies cache instances of customers located in zip code 60610:

REFRESH CACHE GROUP update anywhere customers
WHERE (sales.customer.zip = '60610') COMMIT EVERY 256 ROWS;

See LOAD CACHE GROUP and REFRESH CACHE GROUP in Oracle TimesTen In-Memory
Database SQL Reference.

The rest of this section includes these topics:

* Loading and Refreshing a Cache Group Using a WITH ID Clause

e Loading and Refreshing a Multiple-Table Cache Group

* Improving the Performance of Loading or Refreshing a Large Number of Cache Instances
* Example of Manually Loading and Refreshing a Static Cache Group

e Example of Manually Loading and Refreshing a Dynamic Cache Group

Loading and Refreshing a Cache Group Using a WITH ID Clause

The WITH 1D clause of the LOAD CACHE GROUP Of REFRESH CACHE GROUP statement enables you
to load or refresh a cache group based on values of the primary key columns without having to
use a WHERE clause.

The WITH 1D clause is more convenient than the equivalent WHERE clause if the primary key
contains more than one column. Using the WITH 1D clause allows you to load one cache
instance at a time. It also enables you to roll back the transaction containing the load or refresh
operation, if necessary, unlike the equivalent statement that uses a WHERE clause because
using a WHERE clause also requires specifying a COMMIT EVERY n ROWS clause.

The following example loads a cache group using a WITH ID clause. A cache group
recent_orders contains a single cache table sales.orderdetails with a primary key of
(orderid, itemid). If a customer calls about an item within a particular order, the information
can be obtained by loading the cache instance for the specified order number and item
number.

ORACLE -

Chapter 5
Manually Loading and Refreshing a Cache Group

Load the sales.orderdetails cache table in the recent orders cache group with the row
whose value in the orderid column of the sales.orderdetails cached Oracle Database table
is 1756 and its value in the itemid column is 573:

LOAD CACHE GROUP recent orders WITH ID (1756,573);

The following is an equivalent LOAD CACHE GROUP statement that uses a WHERE clause:

LOAD CACHE GROUP recent orders WHERE orderid = 1756 and itemid = 573
COMMIT EVERY 256 ROWS;

A LOAD CACHE GROUP Or REFRESH CACHE GROUP statement issued on a cache group with
autorefresh cannot contain a WITH ID clause unless the cache group is dynamic.

You cannot use the COMMIT EVERY n ROWS clause with the WITH ID clause.

Loading and Refreshing a Multiple-Table Cache Group

If you are loading or refreshing a multiple-table cache group while the cached Oracle Database
tables are concurrently being updated, set the isolation level in the TimesTen database to
serializable before issuing the LOAD CACHE GROUP Or REFRESH CACHE GROUP statement.

This causes TimesTen to query the cached Oracle Database tables in a serializable fashion
during the load or refresh operation so that the loaded or refreshed cache instances in the
cache tables are guaranteed to be transactionally consistent with the corresponding rows in
the cached Oracle Database tables. After you have loaded or refreshed the cache group, set
the isolation level back to read committed for better concurrency when accessing elements in
the TimesTen database.

Improving the Performance of Loading or Refreshing a Large Number of
Cache Instances

You can improve the performance of loading or refreshing a large number of cache instances
into a cache group by specifying the operation to be multithreaded with the PARALLEL clause of
the LOAD CACHE GROUP Or REFRESH CACHE GROUP statement.

If you do not specify the PARALLEL clause, the load or refresh operation will be single-threaded.
Specifying the PARALLEL clause to create multithreaded processes for a load or refresh
provides a performance benefit if you have large data sets to be loaded or if the round trip time
to Oracle is large. For example, if the data in the Oracle database is large, then an initial full
load of the cache group can prove to be time consuming. Specifying multiple threads for the
initial load can improve performance for that operation. However, note that multithreaded
processes require more time to initiate than a single-threaded process and multithreaded
processes use more system resources.

Specify the number of threads to use when processing the load or refresh operation. You can
specify 2 to 10 threads. Do not specify more threads than the number of CPUs available on
your system or you may encounter decreased performance than if you had not used the
PARALLEL clause.

ORACLE -

Chapter 5
Manually Loading and Refreshing a Cache Group

Note:
There is no default for the PARALLEL clause.

You cannot use the WITH ID clause with the PARALLEL clause. You can use the
COMMIT EVERY n ROWS clause with the PARALLEL clause as long as n is greater than 0.
In addition, you cannot use the PARALLEL clause for dynamic read-only cache groups
or when database level locking is enabled. See REFRESH CACHE GROUP in the
Oracle TimesTen In-Memory Database SQL Reference.

The following example refreshes cache instances in the TimesTen cache tables using a
PARALLEL clause. This example refreshes the western customers cache group from the
cached Oracle Database tables using one thread to fetch rows from the cached Oracle

Database tables and one thread to insert the rows into the cache tables:

LOAD CACHE GROUP western customers COMMIT EVERY 256 ROWS PARALLEL 2;

The number of threads that you specify with the PARALLEL clause are assigned to readers and
inserters. TimesTen recommends to have the number of readers >= number of inserters,
because readers are slower than inserters. By default, only one thread is assigned to a reader
to fetch rows from the cached Oracle Database tables. Since there is only one reader by
default, then TimesTen assigns only one of the other threads as an inserter to insert the rows
into the TimesTen cache tables. Using more inserters for a single reader offers no benefit.

If you want to specify more than 2 threads, use both the PARALLEL clause with the READERS
clause to specify the number of readers to assign. The number of inserters assigned is the
number of parallel threads minus the number of readers.

LOAD CACHE GROUP western customers COMMIT EVERY 256 ROWS
PARALLEL 6 READERS 4;

This specifies 6 threads with 4 of the threads assigned to readers and 2 threads assigned to
inserters.

Example of Manually Loading and Refreshing a Static Cache Group

ORACLE

This example shows the definition of an Oracle Database table that is to be cached in a static
AWT cache group.

On the Oracle database:
The Oracle Database table is owned by the schema user sales.

CREATE TABLE customer

(cust num NUMBER (6) NOT NULL PRIMARY KEY,
region VARCHAR2 (10),

name VARCHAR2 (50),

address VARCHAR2 (100));

The following is the data in the sales.customer cached Oracle Database table.

CUST_NUM REGION NAME ADDRESS
1 West Frank Edwards 100 Pine St. Portland OR
2 East Angela Wilkins 356 Olive St. Boston MA

3 Midwest Stephen Johnson 7638 Walker Dr. Chicago IL

5-5

Chapter 5
Manually Loading and Refreshing a Cache Group

On the TimesTen database, connect as the TimesTen cache administration user. The following
statement creates a static AWT cache group new customers that caches the sales.customer
table:

CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP new customers
FROM sales.customer
(cust num NUMBER (6) NOT NULL,
region VARCHARZ (10),
name VARCHARZ (50),
address VARCHARZ (100),
PRIMARY KEY (cust num))

’

The sales.customer TimesTen cache table is initially empty.

Command> SELECT * FROM sales.customer;
0 rows found.

The following LOAD CACHE GROUP statement loads the three cache instances from the cached
Oracle Database table into the TimesTen cache table:

Command> LOAD CACHE GROUP new customers COMMIT EVERY 256 ROWS;
3 cache instances affected.

Command> SELECT * FROM sales.customer;

< 1, West, Frank Edwards, 100 Pine St. Portland OR >

< 2, East, Angela Wilkins, 356 Olive St. Boston MA >

< 3, Midwest, Stephen Johnson, 7638 Walker Dr. Chicago IL >

On the Oracle database, modify the cached Oracle Database table by inserting a new row,
updating an existing row, and deleting an existing row:

SQL> INSERT INTO customer

2 VALUES (4, 'East', 'Roberta Simon', '3667 Park Ave. New York NY');
SQL> UPDATE customer SET name = 'Angela Peterson' WHERE cust num = 2;
SQL> DELETE FROM customer WHERE cust num = 3;

SQL> COMMIT;
SQL> SELECT * FROM customer;
CUST_NUM REGION NAME ADDRESS
1 West Frank Edwards 100 Pine St. Portland OR
2 East Angela Peterson 356 Olive St. Boston MA
4 East Roberta Simon 3667 Park Ave. New York NY

Back on the TimesTen database as the TimesTen cache administration, run a REFRESH CACHE
GROUP statement on a static cache group, which is processed by unloading and then reloading
the cache group. As a result, the cache instances in the cache table matches the rows in the
cached Oracle Database table.

Command> REFRESH CACHE GROUP new customers COMMIT EVERY 256 ROWS;
3 cache instance affected.

Command> SELECT * FROM sales.customer;

< 1, West, Frank Edwards, 100 Pine St. Portland OR >

< 2, East, Angela Peterson, 356 Olive St. Boston MA >

< 4, East, Roberta Simon, 3667 Park Ave. New York NY >

Example of Manually Loading and Refreshing a Dynamic Cache Group

This example shows the definition of an Oracle Database table that is to be cached in a
dynamic AWT cache group.

On the Oracle database, connect as the schema owner, sales.

ORACLE -

ORACLE

Chapter 5
Manually Loading and Refreshing a Cache Group

The Oracle Database table is owned by the schema user sales.

CREATE TABLE customer

(cust num NUMBER (6) NOT NULL PRIMARY KEY,

region VARCHAR2 (10) ,
name VARCHAR2 (50),
address VARCHAR2 (100));

The following is the data in the sales.customer cached Oracle Database table.

CUST NUM REGION NAME
1 West Frank Edwards
2 East Angela Wilkins
3 Midwest Stephen Johnson

ADDRESS

100 Pine St. Portland OR
356 Olive St. Boston MA
7638 Walker Dr. Chicago IL

On the TimesTen database, connect as the TimesTen cache administration user. The following
statement creates a dynamic AWT cache group new customers that caches the
sales.customer table:

CREATE DYNAMIC ASYNCHRONOUS WRITETHROUGH CACHE GROUP new_customers
FROM sales.customer
(cust num NUMBER(6) NOT NULL,

region VARCHARZ (10),
name VARCHARZ (50),
address

VARCHAR2 (100),
PRIMARY KEY (cust num))

’

The sales.customer TimesTen cache table is initially empty:

Command> SELECT * FROM sales.customer;
0 rows found.

The following LOAD CACHE GROUP statement loads the three cache instances from the cached
Oracle Database table into the TimesTen cache table:

Command> LOAD CACHE GROUP new customers COMMIT EVERY 256 ROWS;
3 cache instances affected.

Command> SELECT * FROM sales.customer;

< 1, West, Frank Edwards, 100 Pine St. Portland OR >

< 2, East, Angela Wilkins, 356 Olive St. Boston MA >

< 3, Midwest, Stephen Johnson, 7638 Walker Dr. Chicago IL >

Back on the Oracle database, connect as the sales schema user and modify the cached
Oracle Database table by inserting a new row, updating an existing row, and deleting an
existing row:

SQL> INSERT INTO customer

2 VALUES (4, 'East', 'Roberta Simon', '3667 Park Ave. New York NY');
SQL> UPDATE customer SET name = 'Angela Peterson' WHERE cust num = 2;
SQL> DELETE FROM customer WHERE cust num = 3;
SQL> COMMIT;
SQL> SELECT * FROM customer;

CUST NUM REGION NAME
1 West Frank Edwards
2 East Angela Peterson
4 East Roberta Simon

ADDRESS

100 Pine St. Portland OR
356 Olive St. Boston MA
3667 Park Ave. New York NY

On the TimesTen database, a REFRESH CACHE GROUP statement issued on a dynamic cache
group only refreshes committed updates and deletes on the cached Oracle Database tables
into the cache tables. New cache instances are not loaded into the cache tables. Therefore,

5-7

Chapter 5
Flushing a User Managed Cache Group

only existing cache instances are refreshed. As a result, the number of cache instances in the
cache tables are either fewer than or the same as the number of rows in the cached Oracle
Database tables.

Command> REFRESH CACHE GROUP new customers COMMIT EVERY 256 ROWS;
2 cache instances affected.

Command> SELECT * FROM sales.customer;

< 1, West, Frank Edwards, 100 Pine St. Portland OR >

< 2, East, Angela Peterson, 356 Olive St. Boston MA >

A subsequent LOAD CACHE GROUP statement loads one cache instance from the cached Oracle
Database table into the TimesTen cache table because only committed inserts are loaded into
the cache table. Therefore, only new cache instances are loaded. Cache instances that
already exist in the cache tables are not changed because of a LOAD CACHE GROUP statement,
even if the corresponding rows in the cached Oracle Database tables were updated or deleted.

Command> LOAD CACHE GROUP new customers COMMIT EVERY 256 ROWS;
1 cache instance affected.

Command> SELECT * FROM sales.customer;

< 1, West, Frank Edwards, 100 Pine St. Portland OR >

< 2, East, Angela Peterson, 356 Olive St. Boston MA >

< 4, East, Roberta Simon, 3667 Park Ave. New York NY >

Flushing a User Managed Cache Group

ORACLE

The FLUSH CACHE GROUP statement manually propagates committed inserts and updates on
TimesTen cache tables in a user managed cache group to the cached Oracle Database tables.

A flush operation can manually propagate multiple committed transactions on cache tables to
the cached Oracle Database tables. This statement is available only for user managed cache
groups. Delete operations are not flushed or manually propagated.

Automatic propagation is initiated when you use the PROPAGATE cache table attribute when
defining your cache group. TimesTen then automatically propagates committed inserts,
updates and deletes at commit time to the Oracle database in the order that they are
committed in TimesTen.

You cannot flush a user managed cache group with the FLUSH CACHE GROUP statement that
uses the AUTOREFRESH cache group attribute.

You can flush a user managed cache group with the FLUSH CACHE GROUP statement if at least
one of its cache tables uses neither the PROPAGATE nor the READONLY cache table attribute.

You can use a WHERE clause or WITH ID clause in a FLUSH CACHE GROUP statement to restrict
the rows to be flushed to the cached Oracle Database tables.

The following example flushes a cache group with the FLUSH CACHE GROUP statement. It
manually propagates committed insert and update operations on the TimesTen cache tables in
the western customers cache group to the cached Oracle Database tables:

FLUSH CACHE GROUP western customers;

See FLUSH CACHE GROUP in Oracle TimesTen In-Memory Database SQL Reference.

The following example creates a user managed cache group with the PROPAGATE cache table
attribute:

CREATE USERMANAGED CACHE GROUP updateanywherecustomers
AUTOREFRESH
MODE INCREMENTAL

5-8

Chapter 5
Unloading a Cache Group

INTERVAL 30 SECONDS
STATE ON

FROM

customer (custid INT NOT NULL,
name CHAR(100) NOT NULL,
addr CHAR(100),
zip INT,
PRIMARY KEY (custid),
PROPAGATE) ;

See PROPAGATE Cache Table Attribute in this book and CREATE CACHE GROUP in the
Oracle TimesTen In-Memory Database SQL Reference.

Unloading a Cache Group

You can delete some or all cache instances from the cache tables in a cache group with the
UNLOAD CACHE GROUP statement.

Unlike the DROP CACHE GROUP statement, the cache tables themselves are not dropped when a
cache group is unloaded.

To prevent an unload operation from processing a large number of cache instances within a
single transaction, which could reduce concurrency and throughput, use the COMMIT EVERY n
ROWS clause to specify a commit frequency.

Use caution when using the UNLOAD CACHE GROUP statement with cache groups with
autorefresh. An unloaded row can reappear in the cache table as the result of an autorefresh
operation if the row, or its related parent or child rows, are updated in the cached Oracle
Database table.

Processing of the UNLOAD CACHE GROUP statement for an AWT cache group waits until updates
on the rows have been propagated to the Oracle database.

The following example unloads all cache instances from all cache tables in the
customer orders cache group. A commit frequency is specified, so the operations is
performed over several transactions by committing every 256 rows:

UNLOAD CACHE GROUP customer orders COMMIT EVERY 256 ROWS;

The following statement unloads all cache instances from all cache tables in the
customer orders cache group in a single transaction. A single transaction should only be used
if the data within customer orders is small:

UNLOAD CACHE GROUP customer orders;

The following equivalent statements delete the cache instance for customer number 227 from
the cache tables in the new customers cache group:

UNLOAD CACHE GROUP new customers WITH ID (227) ;
UNLOAD CACHE GROUP new customers WHERE (sales.customer.cust num = 227);

See UNLOAD CACHE GROUP in the Oracle TimesTen In-Memory Database SQL Reference.

Automatically Refreshing a Cache Group

You can configure automatic refresh with the AUTOREFRESH cache group attribute.

* AUTOREFRESH Cache Group Attribute Overview

ORACLE -

Chapter 5
Automatically Refreshing a Cache Group

e Altering a Cache Group to Change the AUTOREFRESH Mode, Interval or State
* Manually Creating Oracle Database Objects for Cache Groups with Autorefresh
e Initiating an Immediate Autorefresh in TimesTen Classic

» Disabling Full Autorefresh for Cache Groups

* Loading and Refreshing a Static Cache Group with Autorefresh

* Loading and Refreshing a Dynamic Cache Group with Autorefresh

AUTOREFRESH Cache Group Attribute Overview

The AUTOREFRESH cache group attribute can be specified when creating a read-only cache
group or a user managed cache group using a CREATE CACHE GROUP statement.

AUTOREFRESH specifies that committed changes on cached Oracle Database tables are
automatically refreshed to the TimesTen cache tables. Autorefresh is defined by default on
read-only cache groups.

The following are the default settings of the autorefresh attributes:

* The autorefresh mode is incremental.
e The autorefresh interval is 5 minutes.
e The autorefresh state is PAUSED.

If you create a unique index on a cache group with the AUTOREFRESH cache group attribute, the
index is changed to a non-unique index to avoid a constraint violation. A constraint violation
could occur with a unique index because conflicting updates could occur in the same
statement processing on the Oracle Database table, while each row update is processed
separately in TimesTen. If the unique index exists on the Oracle Database table that is being
cached, then uniqueness is enforced on the Oracle Database table and does not need to be
verified again in TimesTen.

The following sections describe each of the autorefresh attributes:

e Autorefresh Mode Attribute Settings
e Autorefresh Interval and State Settings

» Restrictions for Autorefresh

Autorefresh Mode Attribute Settings

ORACLE

You can set the autorefresh mode to designate how the automatic refresh is to perform.
TimesTen supports two autorefresh mode settings:

e FULL: All cache tables are automatically refreshed, based on the cache group's autorefresh
interval, by unloading all their rows and then reloading from the cached Oracle Database
tables.

There is no overhead when using full autorefresh mode, but there may be performance
implications.

e INCREMENTAL: Committed changes on cached Oracle Database tables are automatically
refreshed to the TimesTen cache tables based on the cache group's autorefresh interval.

There is overhead when using incremental autorefresh mode, but the performance is
better than when using full autorefresh.

5-10

Chapter 5
Automatically Refreshing a Cache Group

Some applications choose incremental autorefresh instead of full autorefresh mode for
performance reasons. A full autorefresh can affect performance because:

e More rows are refreshed with a full autorefresh.
e Afull autorefresh runs within a single transaction with no parallelism.

Even if you use incremental autorefresh on your cache group, the first load is a full refresh. In
addition, TimesTen may perform a full autorefresh for recovery for certain error scenarios.

Note:

You can disallow full autorefresh with the DisableFullAutorefresh cache
configuration parameter. See Disabling Full Autorefresh for Cache Groups.

When using incremental autorefresh mode, committed changes on cached Oracle Database
tables are tracked in change log tables in the Oracle database. Because incremental
autorefresh tracks committed changes on the Oracle database, incremental autorefresh mode
incurs some overhead to refresh the cache group for each committed update on the cached
Oracle Database tables. Under certain circumstances, it is possible for some change log
records to be deleted (truncated) from the change log table before they are automatically
refreshed to the TimesTen cache tables. If this occurs, TimesTen initiates a full automatic
refresh on the cache group.

See Managing the Cache Administration User's Tablespace for information on how to configure
an action to take when the tablespace that the change log tables reside in becomes full.

See Managing a Cache Environment with Oracle Database Objects for information on the
change log tables in the Oracle Database.

The change log table on the Oracle database does not have column-level resolution because
of performance reasons. Thus, the autorefresh operation updates all of the columns in a row.
XLA reports that all of the columns in the row have changed even if the data did not actually
change in each column. See XLA and TimesTen Event Management in the Oracle TimesTen
In-Memory Database C Developer's Guide or Using JMS/XLA for Event Management in the
Oracle TimesTen In-Memory Database Java Developer's Guide.

If you have a dynamic read-only cache group with autorefresh, you can reduce contention and
improve performance. See Reducing Contention for Dynamic Read-Only Cache Groups with
Incremental Autorefresh and Reducing Lock Contention for Read-Only Cache Groups with
Autorefresh and Dynamic Load and Options for Reducing Contention Between Autorefresh
and Dynamic Load Operations.

Autorefresh Interval and State Settings

ORACLE

The autorefresh interval determines how often autorefresh operations occur in minutes,
seconds or milliseconds.

Cache groups with the same autorefresh interval are refreshed within the same transaction.
You can specify continuous autorefresh with an autorefresh interval of O milliseconds. With
continuous autorefresh, the next autorefresh cycle is scheduled as soon as possible after the
last autorefresh cycle has ended.

In TimesTen Classic, you can manually initiate an immediate autorefresh operation with the
ttCacheAutorefresh built-in procedure. See ttCacheAutorefresh in Oracle TimesTen In-
Memory Database Reference.

5-11

Chapter 5
Automatically Refreshing a Cache Group

The autorefresh state can be set to ON, OFF, or PAUSED.

ON: Autorefresh operations are scheduled by TimesTen when the cache group's
autorefresh state is ON.

OFF: When the cache group's autorefresh state is OFF, committed changes on the cached
Oracle Database tables are not tracked. When you change the state from OFF to oN, a full
autorefresh is performed.

PAUSED: When the cache group's autorefresh state is PAUSED, committed changes on the
cached Oracle Database tables are tracked in the Oracle database, but are not
automatically refreshed to the TimesTen cache tables until the state is changed to ON.

By default, a cache group is created with autorefresh state set to PAUSED. This provides you a
choice of how and when the initial full load is performed.

If the data in the Oracle database is large, then an initial full load of the cache group can
prove to be time consuming. The recommended option is to run a manual load with
parallelism with the LOAD CACHE GROUP... PARALLEL statement. The autorefresh state
automatically changes to on after the initial load completes.

If the data on the Oracle database is small, change the state to oN with an ALTER CACHE
GROUP. Changing the state to ON when an initial load has not yet been performed causes
the initial load to be performed and autorefresh operations to start.

After the initial load is completed, you can change the state to PAUSED at any time. When you
change the state to ON, then incremental autorefresh resumes for static cache groups that were
created with incremental autorefresh.

If the data on the Oracle database is too large to perform an initial full load, you can disable all
full load operations. See Disabling Full Autorefresh for Cache Groups.

Restrictions for Autorefresh

ORACLE

There are restrictions when using the AUTOREFRESH cache group attribute.

TimesTen Scaleout only supports static read-only cache groups with incremental
autorefresh. See Using Cache Groups in TimesTen Scaleout in the Oracle TimesTen In-
Memory Database Scaleout User's Guide.

A FLUSH CACHE GROUP statement cannot be issued on the cache group.
See Flushing a User Managed Cache Group.

A TRUNCATE TABLE statement issued on a cached Oracle Database table is not
automatically refreshed to the TimesTen cache table. Before issuing a TRUNCATE TABLE
statement on a cached Oracle Database table, use an ALTER CACHE GROUP Sstatement to
change the autorefresh state of the cache group that contains the cache table to PAUSED.

See Altering a Cache Group to Change the AUTOREFRESH Mode, Interval or State.

After issuing the TRUNCATE TABLE statement on the cached Oracle Database table, use a
REFRESH CACHE GROUP statement to manually refresh the cache group.

A LOAD CACHE GROUP statement can only be issued if the cache tables are empty, unless
the cache group is dynamic.

See Manually Loading and Refreshing a Cache Group and Creating a Dynamic Cache
Group with the DYNAMIC Keyword.

5-12

Chapter 5
Automatically Refreshing a Cache Group

e The autorefresh state must be PAUSED before you can issue a LOAD CACHE GROUP statement
on the cache group, unless the cache group is dynamic. If the cache group is dynamic, the
autorefresh state must be PAUSED or ON.

e The LOAD CACHE GROUP statement cannot contain a WHERE clause, unless the cache group
is dynamic. If the cache group is dynamic, the WHERE clause must be followed by a coMMIT
EVERY n ROWS clause.

See Using a WHERE Clause.

* The autorefresh state must be PAUSED before you can issue a REFRESH CACHE GROUP
statement on the cache group. The REFRESH CACHE GROUP statement cannot contain a
WHERE clause.

e All tables and columns referenced in WHERE clauses when creating, loading or unloading
the cache group must be fully qualified. For example:

owner.table name and owner.table name.column name

* To use the AUTOREFRESH cache group attribute in a user managed cache group, all of the
cache tables must be specified with the PROPAGATE cache table attribute or all of the cache
tables must be specified the READONLY cache table attribute.

* You cannot specify the AUTOREFRESH cache group attribute in a user managed cache group
that contains cache tables that explicitly use the NOT PROPAGATE cache table attribute.

e The AUTOREFRESH cache table attribute cannot be used when caching Oracle Database
materialized views in a user managed cache group.

* LRU aging cannot be specified on the cache group, unless the cache group is dynamic
where LRU aging is defined by default.

See LRU Aging in TimesTen Classic.

* If you want to use replication with a static cache group with autorefresh on TimesTen
Classic, you can only use an active standby pair replication scheme. Any other type of
replication scheme is not allowed with a static cache group with autorefresh on TimesTen
Classic.

Altering a Cache Group to Change the AUTOREFRESH Mode, Interval or

State

ORACLE

After creating a cache group with autorefresh, you can use ALTER CACHE GROUP statement to
change autorefresh mode, interval or state.

e In TimesTen Classic, you can change the cache group's autorefresh mode, interval or
state.

* In TimesTen Scaleout, you can only change the cache group's autorefresh state.

You cannot use ALTER CACHE GROUP to instantiate automatic refresh for a cache group that was
originally created without autorefresh defined.

If you change a cache group's autorefresh state to OFF or drop a cache group that has an
autorefresh operation in progress:

e The autorefresh operation stops if the setting of the LockWait connection attribute is
greater than 0. The ALTER CACHE GROUP Or DROP CACHE GROUP statement preempts the
autorefresh operation.

5-13

Chapter 5
Automatically Refreshing a Cache Group

* The autorefresh operation continues if the LockWait connection attribute is set to 0. The
ALTER CACHE GROUP Or DROP CACHE GROUP statement is blocked until the autorefresh
operation completes or the statement fails with a lock timeout error.

The following example alters the autorefresh attributes of a cache group in TimesTen Classic.
These statements change the autorefresh mode, interval and state of the customer orders
cache group:

ALTER CACHE GROUP customer orders SET AUTOREFRESH MODE FULL;
ALTER CACHE GROUP customer orders SET AUTOREFRESH INTERVAL 30 SECONDS;
ALTER CACHE GROUP customer orders SET AUTOREFRESH STATE ON;

TimesTen returns asynchronously after executing the ALTER CACHE GROUP statement. However,

there may be a delay for the cache agent to implement the change for the new state, mode or
interval.

Manually Creating Oracle Database Objects for Cache Groups with

Autorefresh

ORACLE

There are certain procedures you need to do if you created the Oracle Database objects used
to enforce the predefined behaviors of a cache group with autorefresh with the
initCacheAdminSchema.sql script.

See The initCacheAdminSchema.sql Script.

1. Set the autorefresh state to OFF when creating the cache group.

2. Runthe ttIsql utility's cachesglget command with the INCREMENTAL AUTOREFRESH option
and the INSTALL flag as the TimesTen cache administration user. This command generates
a SQL*Plus script used to create a cache log table and a trigger in the Oracle database for
each Oracle Database table that is cached in the autorefresh cache group. These Oracle
Database objects track updates on the cached Oracle Database tables so that the updates
can be automatically refreshed to the cache tables.

Note:

The ttCacheSQLGet built-in procedure provides the same functionality as the
ttIsqgl cachesglget command.

3. Use SQL*Plus to run the script generated by the ttIsql utility's cachesqlget command as
the sys user.

4. Runan ALTER CACHE GROUP statement to change the autorefresh state of the cache group
to PAUSED.

The following examples shows how to create a read-only cache group when Oracle Database
objects are created with the initCacheAdminSchema.sgl Script.

The first statement creates a read-only cache group customer orders with the autorefresh
state set to OFF. The SQL*Plus script generated by the ttIsql utility's cachesqlget command
is saved to the /tmp/ob7.sql file. The last statement changes the autorefresh state of the
cache group to PAUSED.

CREATE READONLY CACHE GROUP customer orders
AUTOREFRESH STATE OFF
FROM sales.customer

5-14

Chapter 5
Automatically Refreshing a Cache Group

(cust num NUMBER(6) NOT NULL,

region VARCHAR2 (10),

name VARCHAR2 (50),

address VARCHARZ2 (100),

PRIMARY KEY (cust num))
sales.orders

(ord num NUMBER (10) NOT NULL,

cust num NUMBER (6) NOT NULL,

when placed DATE NOT NULL,

when shipped DATE NOT NULL,

PRIMARY KEY (ord num),

FOREIGN KEY (cust num) REFERENCES sales.customer (cust num));

7

% ttIsqgl "DSN=cachel;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"
Command> cachesqlget INCREMENTAL AUTOREFRESH customer orders INSTALL /tmp/obj.sql;
Command> exit

o)

% sglplus sys as sysdba
Enter password: password
SQL> @/tmp/ob]

SQL> exit

ALTER CACHE GROUP customer orders SET AUTOREFRESH STATE PAUSED;

See ttlsgl and ttCacheSqlGet in Oracle TimesTen In-Memory Database Reference.

Initiating an Immediate Autorefresh in TimesTen Classic

In TimesTen Classic, if the Oracle Database tables have been updated with data that needs to
be applied to cache tables without waiting for the next autorefresh operation, you can call the
ttCacheAutorefresh built-in procedure.

The ttCacheAutorefresh built-in procedure initiates an immediate refresh operation and resets
the autorefresh cycle to start at the moment you invoke ttCacheAutorefresh.

The refresh operation is full or incremental depending on how the cache group is configured.
The autorefresh state must be oN when ttCacheAutorefresh is called.

The autorefresh operation typically refreshes all cache groups sharing the same refresh
interval in one transaction in order to preserve transactional consistency across these cache
groups. Therefore, although you specify a specific cache group when you call
ttCacheAutorefresh, the autorefresh operation occurs in one transaction for all cache groups
that share the autorefresh interval with the specified cache group. If there is an existing
transaction with table locks on objects that belong to the affected cache groups,
ttCacheAutofresh returns an error without taking any action.

You can choose to run ttCacheAutorefresh asynchronously (the default) or synchronously. In
synchronous mode, ttCacheAutorefresh returns an error if the refresh operation fails.

After calling ttCacheAutorefresh, you must commit or roll back the transaction before
subsequent work can be performed.

This example calls ttCacheAutorefresh for the ttuser.western customers cache group,
using asynchronous mode.

Command> call ttCacheAutorefresh('ttuser', 'western customers');

ORACLE e

Chapter 5
Automatically Refreshing a Cache Group

Disabling Full Autorefresh for Cache Groups

ORACLE

If performance is a concern, you can set the DisableFullAutorefresh cache configuration
parameter to 1 to disallow full autorefresh requests for all cache groups defined with
incremental autorefresh.

If you do disallow full autorefresh, then the initial load for each cache group requires a manual
load since the initial load requires a full refresh.

You can disable full autorefresh using the DisableFullAutorefresh cache configuration
parameter in both TimesTen Classic and TimesTen Scaleout.

Note:

The default value is 0 for the DisableFullAutorefresh cache configuration
parameter, which specifies full autorefresh behavior. Full autorefresh is only
supported on TimesTen Classic.

call ttCacheConfig('DisableFullAutorefresh',,,'l");

You can query the current value of the DisableFullAutorefresh parameter.

call ttCacheConfig('DisableFullAutorefresh');

If a full autorefresh is triggered for a cache group, TimesTen changes the cache group status to
disabled. After which, all autorefresh operations cease on the cache group. You are notified of
this action with a message logged in both the daemon and user log files. See Error, Warning,
and Informational Messages in the Oracle TimesTen In-Memory Database Operations Guide.

The TimesTen database status is set to recovering when at least one of its cache groups have
an autorefresh status of disabled or recovering. You can check the state of a database and
cache group with the ttCacheDbCgStatus built-in procedure. The following example shows
that:

* Recovering: Some or all the cache groups with the AUTOREFRESH attribute in the database
are being resynchronized with the Oracle database server. The status of at least one
cache group is recovering.

e Disabled: The cgl cache group is disabled.

Command> call ttCacheDbCgStatus('ttuser','cgl');
< recovering, disabled >
1 row found.

When you set the DisableFullAutorefresh cache configuration parameter to 1, then the
DeadDbRecovery cache configuration parameter automatically changes to Manual. TimesTen
restores the original setting for the DeadDbRecovery cache configuration parameter if you
change the DisableFullAutorefresh cache configuration parameter to O.

If the autorefresh status of a cache group is either disabled or dead, its cache tables are no
longer being automatically refreshed when updates are committed on the cached Oracle
Database tables. The cache group must be recovered in order to resynchronize the cache
tables with the cached Oracle Database tables.

5-16

Chapter 5
Automatically Refreshing a Cache Group

« For each cache group whose autorefresh status is disabled, a REFRESH CACHE GROUP
statement must be issued in order to resume autorefresh operations for these cache
groups.

e For each dynamic cache group whose autorefresh status is disabled, an UNLOAD CACHE
GROUP statement must be issued in order to resume autorefresh operations for these cache
groups.

e See Impact of Failed Autorefresh Operations on TimesTen Databases for details on how to
specify recovery when the autorefresh status of a cache group is dead.

The following example shows the steps to manually refresh a disabled cache group.

1. Pause autorefresh for the cache group and return the cache group status to oK with the
ALTER CACHE GROUP SET AUTOREFRESH STATE PAUSED statement.

2. Manually request a full refresh with the REFRESH CACHE GROUP statement (optionally, with
parallelism).

ALTER CACHE GROUP cg static SET AUTOREFRESH STATE PAUSED;
REFRESH CACHE GROUP cg static COMMIT EVERY 500 ROWS PARALLEL 2;

Perform the following to reload a dynamic cache group:

1. To return the cache group status to OK, pause autorefresh for the cache group with the
ALTER CACHE GROUP SET AUTOREFRESH STATE PAUSED statement.

2. Unload the disabled dynamic cache group with the UNLOAD CACHE GROUP Statement.

3. Optionally, you can load the cache group with the LOAD CACHE GROUP statement (optionally,
with parallelism) or initiate a dynamic load. See Dynamic Cache Groups.

The following example reloads the cg dynamic cache group:

ALTER CACHE GROUP cg dynamic SET AUTOREFRESH STATE PAUSED;
UNLOAD CACHE GROUP cg dynamic COMMIT EVERY 500 ROWS;
LOAD CACHE GROUP cg dynamic COMMIT EVERY 500 ROWS PARALLEL 2;

Loading and Refreshing a Static Cache Group with Autorefresh

ORACLE

If the autorefresh state of a static cache group is PAUSED, the autorefresh state is changed to oN
after a LOAD CACHE GROUP Or REFRESH CACHE GROUP statement issued on the cache group
completes.

The following restrictions apply when manually loading or refreshing a static cache group with
autorefresh:

e A LOAD CACHE GROUP statement can only be issued if the cache tables are empty.

e The autorefresh state must be PAUSED before you can issue a LOAD CACHE GROUP
statement.

e The autorefresh state must be PAUSED before you can issue a REFRESH CACHE GROUP
statement.

e A LOAD CACHE GROUP statement cannot contain a WHERE clause.
e A LOAD CACHE GROUP or REFRESH CACHE GROUP statement cannot contain a WITH ID clause.
e AREFRESH CACHE GROUP Statement cannot contain a WHERE clause.

* All tables and columns referenced in a WHERE clause when loading the cache group must
be fully qualified. For example:

5-17

Chapter 5
Manually or Dynamically Loading Cache Groups

owner.table name and owner. table name.column name

When an autorefresh operation occurs on a static cache group, all committed inserts, updates
and deletes on the cached Oracle Database tables since the last autorefresh cycle are
refreshed into the cache tables. New cache instances may be loaded into the cache tables.
Cache instances that already exist in the cache tables are updated or deleted if the
corresponding rows in the cached Oracle Database tables have been updated or deleted.

Loading and Refreshing a Dynamic Cache Group with Autorefresh

If the autorefresh state of a dynamic cache group is PAUSED, the autorefresh state is changed
to oN automatically after specific events occur.

* lts cache tables are initially empty, and then a dynamic load, a LOAD CACHE GROUP or an
unconditional REFRESH CACHE GROUP statement issued on the cache group completes.

e Its cache tables are not empty, and then an unconditional REFRESH CACHE GROUP statement
issued on the cache group completes.

If the autorefresh state of a dynamic cache group is PAUSED, the autorefresh state remains at
PAUSED after any of the following events occur:

e Its cache tables are initially empty, and then a REFRESH CACHE GROUP ... WITH ID
statement issued on the cache group completes.

* |ts cache tables are not empty, and then a dynamic load, a REFRESH CACHE GROUP ...
WITH ID, Oor a LOAD CACHE GROUP statementissued on the cache group completes.

For a dynamic cache group, an autorefresh operation is similar to a REFRESH CACHE GROUP
statement that only refreshes committed updates and deletes on the cached Oracle Database
tables since the last autorefresh cycle into the cache tables because only existing cache
instances in the cache tables are refreshed. New cache instances are not loaded into the
cache tables. To load new cache instances into the cache tables of a dynamic cache group,
use a LOAD CACHE GROUP statement or perform a dynamic load operation. See Dynamic Cache
Groups.

The following restrictions apply when manually loading or refreshing a dynamic cache group
with automatic refresh:

e The autorefresh state must be PAUSED or ON before you can issue a LOAD CACHE GROUP
statement.

e The autorefresh state must be PAUSED before you can issue a REFRESH CACHE GROUP
statement.

e A LOAD CACHE GROUP statement that contains a WHERE clause must include a COMMIT EVERY
n ROWS clause after the WHERE clause.

e A REFRESH CACHE GROUP statement cannot contain a WHERE clause.

« All tables and columns referenced in a WHERE clause when loading the cache group must
be fully qualified. For example:

owner.table name and owner.table name.column name

Manually or Dynamically Loading Cache Groups

You define whether your cache group is manually or dynamically loaded during cache group
definition.

ORACLE - 18

Chapter 5
Dynamic Cache Groups

Note:

A static cache group is one that is created without the DYNAMIC keyword. Static cache
groups are supported in both TimesTen Classic and TimesTen Scaleout. See Using
Cache Groups in TimesTen Scaleout in the Oracle TimesTen In-Memory Database
Scaleout User's Guide.

A dynamic cache group is created with the Dynamic keyword. Dynamic cache groups
are only supported in TimesTen Classic.

e Manually loaded: You can manually load data into either a static cache group or a dynamic
cache group. You will always manually load data into a static cache group. Perform the
initial load of data into either static or dynamic cache groups from cached Oracle Database
tables using a LOAD CACHE GROUP statement.

e Dynamically loaded on demand: For dynamic cache groups only, TimesTen can
dynamically load data on demand. Data is automatically loaded into the TimesTen cache
tables from the cached Oracle Database tables when a qualifying SELECT, INSERT, UPDATE,
or DELETE statement is issued on one of the cache tables and the data does not exist in the
cache table but does exist in the cached Oracle Database table.

With both static and dynamic cache groups, a LOAD CACHE GROUP statement manually loads
into the designated cache tables qualified data that exists in the cached Oracle Database
tables but not in the cache tables in TimesTen. However, if a row exists in a cache table but a
newer version exists in the cached Oracle Database table, a LOAD CACHE GROUP statement
does not load that row into the cache table even if it satisfies the predicate of the statement.

By contrast, a REFRESH CACHE GROUP statement manually reloads qualifying rows that exists in
the cache tables, effectively refreshing the content of the cache. For a static cache group, the
rows that are refreshed are all the rows that satisfy the predicate of the REFRESH CACHE GROUP
statement. However, for a dynamic cache group, the rows that are refreshed are the ones that
satisfy the predicate and already exist in the cache tables. In other words, rows that end up
being refreshed are the ones that have been updated or deleted in the cached Oracle
Database table, but not the ones that have been inserted. Therefore, a refresh operation
processes only the rows that are already in the cache tables. No new rows are loaded into the
cache tables of a dynamic cache group as a result of a refresh.

The data in the cache instance of a dynamic read-only cache group is consistent with the data
in the corresponding rows of the Oracle Database tables. At any instant in time, the data in a
cache instance of a static cache group is consistent with the data in the corresponding rows of
the Oracle Database tables, taking into consideration the state and the interval settings for
autorefresh.

Dynamic Cache Groups

ORACLE

You define whether your cache group is dynamically loaded by specifying the byNAMIC keyword
during cache group definition.

When a qualifying SQL statement queries rows that do not exist in the TimesTen database,
then TimesTen automatically loads the relevant cache instances from the Oracle database
tables into dynamic cache groups. A dynamic load of a cache instance is similar to a LOAD
CACHE GROUP statement in that it retrieves and automatically loads a qualified cache instance
on demand from the Oracle database to the TimesTen database. A cache instance consists of
row from the root table of any cache group (that is uniquely identified by either a primary key or
a unique index on the root table) and all related rows in the child tables associated by foreign

5-19

ORACLE

Chapter 5
Dynamic Cache Groups

key relationships. Dynamic load operations do not update or delete cache instances that
already exist in the cache tables even if the corresponding rows in the cached Oracle
Database tables have been updated or deleted. Dynamic load operations are used to
dynamically provide data for the application. Often, dynamic load operations are combined with
aging, so that data can be aged out when not needed and dynamically loaded when needed.

Note:

The REFRESH CACHE GROUP statement and autorefresh are used to update or delete
cache instances that already exist in the TimesTen database. You can use
autorefresh to automatically populate changes made to cache instances in the Oracle
Database.

For example, a call center application may not want to preload all of its customers' information
into TimesTen as it may be very large. Instead, you can define the cache group with the
DYNAMIC keyword. After which, the cache group can use dynamic load on demand so that a
specific customer's information is loaded only when needed such as when the customer calls
or logs onto the system.

This following example creates a dynamic read-only cache group online customers that
caches the sales.customer table:

CREATE DYNAMIC READONLY CACHE GROUP Onlineicustomers
FROM sales.customer

(cust _num NUMBER(6) NOT NULL,

region VARCHAR2 (10),

name VARCHAR2 (50),

address VARCHAR2 (100),

PRIMARY KEY (cust num));

Any system managed cache group type (read-only, AWT, SWT or hybrid) can be defined with
the pyNaMIC keyword. A user managed cache group can be defined with the byNaMIC keyword
unless it uses both the AUTOREFRESH and the PROPAGATE cache table attributes.

< Note:

If you have a dynamic read-only cache group with incremental autorefresh, you can
reduce contention and improve performance with either of the methods described in
Options for Reducing Contention Between Autorefresh and Dynamic Load
Operations.

When a cache group is enabled for dynamic load, a cache instance is uniquely identified either
by a primary key, a unigue index on any table, or a foreign key of a child table. If a row in the
cached Oracle Database table satisfies the WHERE clause and the row is not in the TimesTen
database, then the entire associated cache instance is loaded in order to maintain the defined
relationships between primary keys and foreign keys of the parent and child tables. When a
cache group is enabled for dynamic load, the dynamic load operation typically loads only one
cache instance into the root table of any cache group, unless you specifically request to load
multiple cache instances (as described in Dynamically Loading Multiple Cache Instances).

The WHERE clause must specify one of the following for a dynamic load to occur:

5-20

Chapter 5
Dynamic Cache Groups

e An equality condition with constants and/or parameters on all columns of a primary key or
a foreign key of any table of the cache group. If more than one table of a cache group is
referenced, each must be connected by an equality condition on the primary or foreign key
relationship.

* A mixture of equality or IS NULL conditions on all columns of a unique index, provided that
you use at least one equality condition. That is, you can perform a dynamic load where
some columns of the unique index are NULL. The unique index must be created on the root
table of the cache group.

Note:

Dynamic loading based on a primary key search of the root table performs faster than
primary key searches on a child table or foreign key searches on a child table.

The dynamic load runs in a different transaction than the user transaction that triggers the
dynamic load. The dynamic load transaction is committed before the SQL statement that
triggers the dynamic load has finished processing. Thus, if the user transaction is rolled back,
the dynamically loaded data remains in the cache group.

Note:

If the Oracle database is down, the following error is returned:

5219: Temporary Oracle connection failure error in OCISessionBegin():
ORA-01034: ORACLE not available

The following sections describes dynamic load for cache groups:

« Enabling or Disabling Dynamic Load

e Guidelines for Dynamic Load

* Examples of Dynamic Load of a Single Cache Instance
e Dynamically Loading Multiple Cache Instances

e Returning Errors for Dynamic Load

Enabling or Disabling Dynamic Load

ORACLE

You can enable or disable dynamic load with the DynamicLoadEnable connection attribute.

e 0 - Disables dynamic load of Oracle Database data to a single dynamic cache group for
the current connection.

e 1 (default) - Enables dynamic load of Oracle Database data to a single dynamic cache
group per statement for the current connection.

You can set the DynamicLoadEnable optimizer hint to temporarily enable or disable dynamic
loading of a single cache instance for a particular transaction. You can set the
DynamicLoadEnable optimizer hint with one of the following methods:

e Usethe ttIsql utility set dynamicloadenable command.

5-21

Chapter 5
Dynamic Cache Groups

Call the ttoptSetFlag built-in procedure with the DynamicLoadEnable flag set to the
desired value. The following example sets dynamic loading to 1.

call ttOptSetFlag('DynamicLoadEnable', 1)

Note:

See DynamicLoadEnable, ttisgl or ttOptSetFlag in the Oracle TimesTen In-Memory
Database Reference.

You can also set connection attributes with the SQL.SetConnectOption ODBC function
(ODBC 2.5) or the sQLsetConnectAttr function (ODBC 3.5). See the Option Support
for ODBC 2.5 SQLSetConnectOption and SQLGetConnectOption and Attribute
Support for ODBC 3.5 SQLSetConnectAttr and SQLGetConnectAttr sections in the
Oracle TimesTen In-Memory Database C Developer's Guide.

Guidelines for Dynamic Load

This section details the guidelines for a dynamic load to occur of cache instances for each
cache group referenced in the main query.

ORACLE

Note:

Examples for these guidelines are provided in Examples of Dynamic Load of a Single
Cache Instance.

Dynamic load of a cache instance is available only for the following types of statements issued
on a cache table in a dynamic cache group:

When an INSERT statement inserts values into any of the child tables of a cache instance
that does not currently exist in the TimesTen tables, the cache instance to which the new
row belongs dynamically loads. The insert operation for the new child row is propagated to
the cached Oracle Database table.

SELECT, UPDATE, or DELETE statements require that the WHERE clause have the conditions as
stated in Dynamic Cache Groups.

The SELECT, UPDATE, or DELETE statements for which dynamic load is available must satisfy the
following conditions:

If the statement contains a subquery, only the cache group with tables referenced in the
main query are considered for a dynamic load.

If the statement references multiple tables of the cache group, the statement must include
an equality join condition between the primary keys and foreign keys for all parent and
child relationships.

The statement cannot contain the UNION, INTERSECT, or MINUS set operators.
The statement can reference non-cache tables.

The statement can reference cache tables from only one dynamic cache group.

Dynamic load of a cache instance occurs when you set DynamicLoadEnable=1 and the request
passes the following rules:

5-22

Chapter 5
Dynamic Cache Groups

Dynamic load of a cache instance does not occur for a cache group if any table of the
cache group is specified more than once in any FROM clause.

Only the conditions specified in the query are considered for dynamic load, which excludes
any derived conditions.

If any cache group is referenced only in a subquery, it is not considered for a dynamic load.

When using an active standby pair replication scheme, dynamic load cannot occur in any
subscriber.

The following considerations can affect dynamic load:

If tables within multiple cache groups or non-cache group tables are specified in the main
query, the join order influences if the cache instance is loaded. If during the processing of
the query, a dynamic load is possible and necessary to produce the query results, the
dynamic load occurs. However, if no rows are returned, then some or all of the cache
instances are not dynamically loaded.

If a statement specifies more than the dynamic load condition on tables of a cache group,
the cache instance may be dynamically loaded even though the additional conditions are
not qualified for the statement.

You can use aging with a dynamic cache group. TimesTen supports two aging types, least
recently used (LRU) aging and time-based aging. By default, the data in a dynamic cache
group is subject to LRU aging. Time-based aging on a dynamic cache group overrides LRU
aging. If the cache group has a time-based aging policy defined, the timestamp in the root
table's row must be within the aging policy's lifetime in order for the cache instance to be
loaded.

Rows in a dynamic AWT cache group must be propagated to the Oracle database before they
become candidates for aging.

You can use the ttAgingLRUConfig built-in procedure to override the default or current LRU
aging attribute settings for the aging cycle and TimesTen database space usage thresholds.
See Implementing Aging in a Cache Group for TimesTen Classic.

Examples of Dynamic Load of a Single Cache Instance

Provides an example that defines Oracle database tables, which are then cached into a
dynamic AWT cache group.

ORACLE

The following is the definition of the Oracle Database tables that are to be cached in a dynamic
AWT cache group. The Oracle Database table is owned by the schema user sales.

CREATE TABLE customer

(cust num NUMBER (6) NOT NULL PRIMARY KEY,
region VARCHARZ (10),

name VARCHARZ2 (50),

address VARCHAR2 (100));

CREATE TABLE orders

(ord num NUMBER (10) NOT NULL PRIMARY KEY,
cust num NUMBER (6) NOT NULL,

when placed DATE NOT NULL,

when shipped DATE NOT NULL);

CREATE TABLE orderdetails
(orderid NUMBER(10) NOT NULL,
itemid NUMBER (8) NOT NULL,
quantity NUMBER (4) NOT NULL,
PRIMARY KEY (orderid, itemid));

5-23

Chapter 5
Dynamic Cache Groups

For example, the following data is in the sales.customer cached Oracle Database table.

CUST NUM REGION NAME ADDRESS
1 West Frank Edwards 100 Pine St., Portland OR
2 East Angela Wilkins 356 Olive St., Boston MA

3 Midwest Stephen Johnson 7638 Walker Dr., Chicago IL

On the TimesTen database, connect as the TimesTen cache administration user. Then, run the
following statement to create a dynamic AWT cache group new customers that caches the
sales.customer, sales.orders, and sales.orderdetails tables:

CREATE DYNAMIC ASYNCHRONOUS WRITETHROUGH CACHE GROUP new customers
FROM sales.customer

(cust num NUMBER(6) NOT NULL,

region VARCHAR2 (10),

name VARCHAR2 (50),

address VARCHARZ2 (100),

PRIMARY KEY (cust num)),
sales.orders

(ord num NUMBER (10) NOT NULL,

cust num NUMBER (6) NOT NULL,

when placed DATE NOT NULL,

when shipped DATE NOT NULL,

PRIMARY KEY (ord num),

FOREIGN KEY (cust num) REFERENCES sales.customer (cust num)),
sales.orderdetails

(orderid NUMBER(10) NOT NULL,

itemid NUMBER (8) NOT NULL,

quantity NUMBER (4) NOT NULL,

PRIMARY KEY (orderid, itemid),

FOREIGN KEY (orderid) REFERENCES sales.orders (order num));

The following examples show the default behavior as DynamiclLoadEnable defaults to 1:

The sales.customer TimesTen cache table is initially empty:

Command> SELECT * FROM sales.customer;
0 rows found.

The following SELECT statement with an equality condition on the primary key for the
sales.customer table results in a dynamic load of a single cache instance:

Command> SELECT * FROM sales.customer WHERE cust num = 1;
< 1, West, Frank Edwards, 100 Pine St., Portland OR >

If you do not use an equality condition on the primary key and you do not configure for dynamic
load of multiple cache instances, then no dynamic load occurs for this example, since it would
result in multiple cache instances. See Dynamically Loading Multiple Cache Instances for
details on how to configure for this scenario.

Command> SELECT * FROM sales.customer WHERE cust num IN (1,2);

The following example contains equality expressions on all of the primary key columns for a
primary key composite. The orderdetails table has a composite primary key of orderid and
itemid.

UPDATE sales.orderdetails SET quantity = 5 WHERE orderid=2280 AND itemid=663;

ORACLE = os

Chapter 5
Dynamic Cache Groups

The following example shows an INSERT into the orders child table, which initiates a dynamic
load. However, if you tried to insert into the customer table, which is the parent, no dynamic
load occurs.

INSERT INTO orders VALUES (1,1, DATE '2012-01-25', DATE '2012-01-30');

The following UPDATE statement dynamically loads one cache instance from the cached Oracle
Database table into the TimesTen cache table, updates the instance in the cache table, and
then automatically propagates the update to the cached Oracle Database table:

Command> UPDATE sales.customer SET name = 'Angela Peterson' WHERE cust num = 2;
Command> SELECT * FROM sales.customer;

< 1, West, Frank Edwards, 100 Pine St., Portland OR >

< 2, East, Angela Peterson, 356 Olive St., Boston MA >

The following is the updated data in the sales.customer cached Oracle Database table:

CUST NUM REGION NAME ADDRESS
1 West Frank Edwards 100 Pine St., Portland OR
2 East Angela Peterson 356 Olive St., Boston MA

3 Midwest Stephen Johnson 7638 Walker Dr., Chicago IL

The following DELETE statement dynamically loads one cache instance from the cached Oracle
Database table into the TimesTen cache table, deletes the instance from the cache table, and
then automatically propagates the delete to the cached Oracle Database table:

Command> DELETE FROM sales.customer WHERE cust num = 3;
Command> SELECT * FROM sales.customer;

< 1, West, Frank Edwards, 100 Pine St., Portland OR >
< 2, East, Angela Peterson, 356 Olive St., Boston MA >

The following is the updated data in the sales.customer cached Oracle Database table.

CUST NUM REGION NAME ADDRESS
1 West Frank Edwards 100 Pine St., Portland OR
2 East Angela Peterson 356 Olive St., Boston MA

The following is an example of a dynamic load performed using all columns of a unique index
on the root table. The departments table is defined in a dynamic AWT cache group. A unique
index is created on this cache group consisting of the manager id and location id.

The following creates the departments table on the Oracle database.

Command> CREATE TABLE departments (
departmentiid INT NOT NULL PRIMARY KEY,
department name VARCHAR(10) NOT NULL,
technical lead INT NOT NULL,
manager id INT,
location id INT NOT NULL);

The following creates the dynamic AWT cache group and a unique index on the dept cg root
table:

Command> CREATE DYNAMIC ASYNCHRONOUS WRITETHROUGH CACHE GROUP dept cg
FROM departments
(department id INT NOT NULL PRIMARY KEY,
department name VARCHAR (10) NOT NULL,
technical lead INT NOT NULL,
manager id INT, location id INT NOT NULL);

ORACLE .

Chapter 5
Dynamic Cache Groups

Command> CREATE UNIQUE INDEX dept idx
ON departments
(manager id,
location id);

The following inserts three records into the departments table on the Oracle database:

Command> INSERT INTO departments
VALUES (1, 'acct', 1, 1, 100);

1 row inserted.
Command> INSERT INTO departments

VALUES (2, 'hr', 2, 2, 200);
1 row inserted.
Command> INSERT INTO departments

VALUES (3, 'owner', 3, NULL, 300);
1 row inserted.
Command> commit;

On TimesTen, dynamically load a cache instance based on the unique index:

Command> SELECT * FROM departments;
0 rows found.
Command> SELECT * FROM departments
WHERE manager id IS NULL AND location 1d=300;
< 3, owner, 3, <NULL>, 300 >
1 row found.
Command> SELECT * FROM departments;
< 3, owner, 3, <NULL>, 300 >
1 row found.
Command> SELECT * FROM departments
WHERE manager id=2 AND location id=200;
< 2, legal, 2, 2, 200 >
1 row found.
Command> SELECT * FROM departments;
< 2, legal, 2, 2, 200 >
< 3, owner, 3, <NULL>, 300 >
2 rows found.

Dynamically Loading Multiple Cache Instances

If configured, TimesTen can dynamically load multiple cache instances for dynamic cache
groups that contain only a single table.

TimesTen Classic dynamically loads cache instances associated with a primary key that do not
already exist in the cache group. Any cache instances associated with a primary key that
already exist in the cache group are not reloaded. As a result, your query may return partial
results. If a cache instance already exists on TimesTen, these cache instances can only be
updated with either an autorefresh operation or a REFRESH CACHE GROUP statement.

The following sections describe methods for dynamically loading multiple cache instances:

* Dynamically Loading Multiple Cache Instances with Multiple Primary Keys

* Dynamically Loading Multiple Cache Instances Without Multiple Primary Keys

Dynamically Loading Multiple Cache Instances with Multiple Primary Keys

TimesTen Classic can dynamically load multiple cache instances for a SELECT statement that
includes more than one primary key referenced in the WHERE clause on a single table cache

group.

ORACLE -

ORACLE

Chapter 5
Dynamic Cache Groups

You can dynamically load multiple cache instances by specifying multiple primary key values in
the WHERE clause.

e Only supported with SELECT statements.
* Only supported on a single table cache group.

e For a multiple column primary key, all columns of the primary key must be specified in the
WHERE clause.

« Each primary key in the WHERE clause must use conditions with either an IN operator and/or
a single value from an equality condition.

By default, the DynamicLoadMultiplePKs or TT DynamicLoadMultiplePKs Statement,
transaction or connection level hint is set to 1. This must be enabled for dynamic load for
multiple cache instances using more than one primary key.

e Statement level hint:

/*+TT DynamicLoadMultiplePKs (1) */
e Transaction level hint:

Call ttOptSetFlag(DynamicLoadMultiplePKs, 1)
e Connection level hint:

OptimizerHint = TT DynamicLoadMultiplePKs (1)

Note:

See Use Optimizer Hints to Modify the Execution Plan in the Oracle TimesTen In-
Memory Database Operations Guide, ttOptSetFlag in the Oracle TimesTen In-
Memory Database Reference and Optimizer Hints in the Oracle TimesTen In-Memory
Database SQL Reference.

The following examples use a cache group of products_cg that caches the Oracle database
products table.

CREATE DYNAMIC READONLY CACHE GROUP products cg FROM
products (prod type INT NOT NULL, prod id BIGINT NOT NULL, prod name VARCHARZ (100),
prod weight NUMBER, PRIMARY KEY (prod type, prod id)):;

The following examples demonstrate SELECT statements with a WHERE clause with multiple
primary keys that use conditions with either an IN operator and/or a single value from an
equality condition to return the name and weight of multiple products.

If the primary key of a root table is composed of two columns, x and y, the following SELECT
queries do result in a dynamic load:

* Both columns of the primary key use a condition with an 1IN operator.

(x.y) IN ((1,2),(3,4))

SELECT p.prod name, p.prod weight
FROM products p
WHERE (((prod type, p.prod id) IN ((1,2), (10,20) , (100, 200))));

e Both columns of the primary key use conditions with an 1IN operator.

(x IN (1,3)) AND (y IN (2,4))

5-27

Chapter 5
Dynamic Cache Groups

SELECT p.prod name, p.prod weight
FROM products p WHERE ((p.prod type IN (1, 10, 100)) AND (p.prod id IN (2, 20,
200)))

* Both columns of the primary key use conditions with an equality condition resulting in a
single value.

(x=1 OR x=3) AND (y=2 OR y=4)

SELECT p.prod name, p.prod weight
FROM products p WHERE ((p.prod type = 10 OR p.prod type=100) AND
(p.prod id = 20 OR p.prod id = 200));

Dynamically Loading Multiple Cache Instances Without Multiple Primary Keys

ORACLE

TimesTen Classic can dynamically load multiple cache instances without using multiple primary
keys referenced in a WHERE clause on a single table cache group.

If the query tries to load cache instances that both exist and do not exist in the database, then
the entire dynamic load operation does not execute. The dynamic load only executes if none of
the cache instances requested already exist in the TimesTen database.

By default, TimesTen Classic does not dynamically load multiple cache instances for a single
table cache group when the SELECT statement has an arbitrary WHERE clause, unless you set
one of the following statement, transaction or connection level hints to 1.

e Statement level hint:

/*+TT DynamicLoadRootTbl (1)*/
e Transaction level hint:

Call ttOptSetFlag(DynamicLoadRootTbl , 1)
e Connection level hint:

OptimizerHint = TT DynamicLoadRootTbl (1)

Note:

See Use Optimizer Hints to Modify the Execution Plan in the Oracle TimesTen In-
Memory Database Operations Guide, ttOptSetFlag in the Oracle TimesTen In-
Memory Database Reference and Optimizer Hints in the Oracle TimesTen In-Memory
Database SQL Reference.

Restrictions for dynamic load of multiple cache instances with arbitrary WHERE clause

In order for a dynamic load of multiple cache instances for a single table cache group, the
SELECT statement query must comply with the following:

e The results of the WHERE clause do not include any cache instances that currently exist in
the TimesTen database.

e The WHERE clause must be supported by the Oracle Database SQL syntax.
* Does not qualify for any other dynamic load condition.
» Does not use aggregation.

* No other table is referenced within the query. That is, the SELECT statement does not
specify any JOIN clauses or any subqueries embedded within the WHERE clause.

5-28

Chapter 5
Dynamic Cache Groups

* Does not use the SELECT...FOR UPDATE clause or the INSERT ... FOR SELECT clause.

Examples

These examples use the following cache group definition on the TimesTen database:

CREATE DYNAMIC READONLY CACHE GROUP cust_orders FROM
customers (cust id BIGINT NOT NULL PRIMARY KEY, cust name VARCHARZ(100),
cust street VARCHARZ2(200), cust state VARCHAR2(2), cust zip VARCHARZ2 (10))
WHERE (customers.cust state = 'CA'");

Data is inserted into the Oracle database.

INSERT INTO customers(cust id, cust name, cust street, cust state, cust zip)
VALUES (100, 'Tom Hanks', '100 Rodeo Dr', 'CA', '90210'");

INSERT INTO customers(cust id, cust name, cust street, cust state, cust zip)
VALUES (200, 'Fred Rogers', 'l Make-Believe Ave', 'CA', '90210');

None of the requested customers are in the cache group on the TimesTen database; thus, all
of the requested customers (and their orders) are dynamically loaded and their names are
returned by the query.

SELECT c.cust name
FROM customers c
WHERE (c.cust zip like '90210%'");
<'Tom Hanks'>
<'Fred Rogers'>

Another customer and full data is inserted into the Oracle database:

INSERT INTO customers(cust id, cust name, cust street, cust state, cust zip)
VALUES (300, 'Matthew Rhys', '2 Moscow Cir', 'CA', '90210");

On the TimesTen database, the following query is executed. Since the cache group already
has at least 1 row that satisfies the query, the dynamic load is not triggered. Thus, only data
that currently exists in the cache group are returned for the query.

SELECT c.cust name

FROM customers c

WHERE (c.cust zip like '90210%'");
<'Tom Hanks'>
<'Fred Rogers'>

Returning Errors for Dynamic Load

ORACLE

You can configure TimesTen to return an error if a SELECT, UPDATE or DELETE Statement does
not meet the requirements.

See Guidelines for Dynamic Load for requirements of a dynamic load.

The DynamicLoadErrorMode connection attribute controls what happens when an application
runs a SQL operation against a dynamic cache group and the SQL operation cannot use
dynamic load in a particular connection.

e When DynamicLoadErrorMode is set to a value of 0, dynamic load happens to any cache
group referenced in the query that is qualified for dynamic load. Cache groups that do not
qualify are not dynamically loaded and no errors are returned. When
DynamicLoadEnable=1, no dynamic load occurs if the query references more than one
cache group.

5-29

Chapter 5
Determining the Number of Cache Instances Affected by an Operation

* When DynamicLoadErrorMode is set to a value of 1, a query fails with an error if any
dynamic cache group referenced in the query is not qualified for dynamic load. The error
indicates the reason why the dynamic load cannot occur.

To set the connection attribute solely for a particular transaction, use one of the following:
e Use the ttIsql utility set dynamicloaderrormode 1 command.

e Callthe ttoptSetFlag built-in procedure with the DynamicLoadErrorMode flag and the
optimizer value set to 1.

call ttOptSetFlag('DynamicLoadErrorMode', 1)
Call the ttoptSetFlag built-in procedure with the DynamicLoadErrorMode flag and the

optimizer value set to 0 to suppress error reporting when a statement does not comply with
dynamic load requirements.

Determining the Number of Cache Instances Affected by an

Operation

You can use mechanisms to determine how many cache instances were loaded by a LoAD
CACHE GROUP statement, refreshed by a REFRESH CACHE GROUP statement, flushed by a FLUSH
CACHE GROUP statement, or unloaded by an UNLOAD CACHE GROUP statement.

e Call the sQLRowCount () ODBC function.
e Invoke the Statement.getUpdateCount () JDBC method.

* Callthe ocIAttrGet () OCI function with the OCI_ATTR ROW_COUNT option.

Setting a Passthrough Level

ORACLE

When an application issues SQL statements on a TimesTen connection, the SQL statement
can be performed in the TimesTen database or passed through to the Oracle database to be
performed. Whether the SQL statement is performed in the TimesTen or Oracle database
depends on the composition of the statement and the setting of the PassThrough connection
attribute.

You can set the PassThrough connection attribute to define which statements are to be
performed locally in TimesTen and which are to be redirected to the Oracle database for
processing.

The passthrough level can be set at any time and takes effect immediately. The value can be
set to 0 through 3. When appropriate within passthrough levels 1 through 3, TimesTen
connects to the Oracle database using the current user's credentials. You can use either an
Oracle Wallet set up with the cache administration user credentials pointed to by the
PWDWallet connection attribute or provide the cache administration user name in the UID
connection attribute and the 0raclePwd connection attribute as the Oracle password. See
Providing Both Cache Administration Users and Passwords in the Oracle TimesTen In-Memory
Database Security Guide.

Passing through update operations to the Oracle database for processing is not recommended
when issued on cache tables in an AWT or SWT cache group. See Considerations for Using
Passthrough.

5-30

Chapter 5
Setting a Passthrough Level

Note:

A transaction that contains operations that are replicated with RETURN TWOSAFE
cannot have a PassThrough setting greater than 0. If PassThrough is greater than 0,
an error is returned and the transaction must be rolled back.

When PassThrough is setto 0, 1, or 2, the following behavior occurs when a dynamic
load condition exists:

e Adynamic load can occur for a SELECT operation on cache tables in any dynamic
cache group type.

e A dynamic load for an INSERT, UPDATE, Or DELETE operation can only occur on
cached tables with dynamic AWT or SWT cache groups.

See Dynamic Cache Groups.

The following sections describe the different passthrough options:

PassThrough=0

PassThrough=1

PassThrough=2

PassThrough=3

Considerations for Using Passthrough

Changing the Passthrough Level for a Connection or Transaction

Automatic Passthrough of Dynamic Load to the Oracle Database

PassThrough=0

PassThrough=0 is the default setting and specifies that all SQL statements are to be performed
in the TimesTen database.

ORACLE

Figure 5-1 shows that Table A is updated on the TimesTen database. Table F cannot be
updated because it does not exist in TimesTen.

5-31

Chapter 5
Setting a Passthrough Level

Figure 5-1 PassThrough=0

Application
Update Table A
Update Table F

PassThrough =0

Update Table A -1 Update Table F

Fails because
table F does not

|
A | exist in the
Ti T TimesTen
Imesien | database
database | B T~
D | Updatable
cache group
Oracle
database
B
A
E F G

PassThrough=1

PassThrough=1 specifies that all DDL are run on TimesTen and most SQL statements are run
on TimesTen unless the tables referenced only exist on the Oracle database or the SQL
statement can only be parsed or understood on the Oracle database.

ORACLE

Set PassThrough=1 to specify that:

DDL statements are always executed on TimesTen.

INSERT, UPDATE and DELETE statements are run on TimesTen unless they reference one or
more tables that do not exist in TimesTen. If they reference one or more tables that do not
exist in TimesTen, then these statements are passed through to run on the Oracle
database.

If SQL statements generate a syntax error in TimesTen, include keywords that do not exist
in TimesTen SQL, or if one or more tables referenced within the statement do not exist in
TimesTen, then these statements are passed through to run on the Oracle database.

If TimesTen cannot parse INSERT, UPDATE or DELETE statements, TimesTen returns an error
and the statement is not passed through to the Oracle database.

Figure 5-2 shows that Table A is updated in the TimesTen database, while Table G is updated
in the Oracle database because Table G does not exist in the TimesTen database.

5-32

Chapter 5
Setting a Passthrough Level

Figure 5-2 PassThrough=1

Application
Update Table A
Update Table G

PassThrough =1

Update Table A Update Table G
A
TimesTen
B /\ C Statement passed
database through to Oracle
DI for execution
Updatable because table G
cache group does not exist in

TimesTen database

Oracle
database

A

E G

PassThrough=2

PassThrough=2 specifies that INSERT, UPDATE and DELETE statements performed on tables in
read-only cache groups or user managed cache groups with the READONLY cache table attribute
are passed through to the Oracle database.

Passthrough=1 behavior applies for all other operations and cache group types.

Note:

You are responsible in preventing conflicts that may occur if you update the same
row in a cache table in TimesTen as another user updates the cached Oracle
Database table concurrently.

Figure 5-3 shows that updates to Table A and Table G in a read-only cache group are passed
through to the Oracle database.

ORACLE - 33

Chapter 5
Setting a Passthrough Level

Figure 5-3 PassThrough=2

Application
Update Table A
Update Table G

PassThrough =2

Update Table A Update Table G
TimesTen database
A
B~ >~ INSERT, UPDATE and DELETE statements
DI Read-only are passed through to the Oracle
cache group database for read-only cache groups and
read-only cache tables. SELECT statements

are executed in TimesTen unless they
Oracle contain invalid TimesTen syntax or

reference tables that do not exist in TimesTen.
database

A —

E G

PassThrough=3

PassThrough=3 specifies that all statements are passed through to the Oracle database for
processing.

Figure 5-4 shows that Table A is updated on the Oracle database for a read-only or updatable
cache group. A SELECT statement that references Table G is also passed through to the Oracle

database.

ORACLE _—

Chapter 5
Setting a Passthrough Level

Figure 5-4 PassThrough=3

Application
Update Table A
Select from Table G

PassThrough =3

Update Table A Select from Table G

TimesTen database
A

B~ >~ ¢ Statements are passed
DI odatable o Readeont through to the Oracle database
P aggcheezrms; Ry for read-only and updatable cache
groups.
Oracle
database
B
A —
E e

Considerations for Using Passthrough

ORACLE

Passing through update operations to the Oracle database for processing is nhot recommended
when issued on cache tables in an AWT or SWT cache group.

« Committed changes on cache tables in an AWT cache group are automatically propagated
to the cached Oracle Database tables in asynchronous fashion. However, passing through
an update operation to the Oracle database for processing within the same transaction as
the update on the cache table in the AWT cache group renders the propagate of the cache
table update synchronous, which may have undesired results.

* Committed changes on cache tables in an SWT cache group can result in self-deadlocks
if, within the same transaction, updates on the same tables are passed through to the
Oracle database for processing.

A PL/SQL block cannot be passed through to the Oracle database for processing. Also, you
cannot pass through to Oracle Database for processing a reference to a stored procedure or
function that is defined in the Oracle database but not in the TimesTen database.

For more information about how the PassThrough connection attribute setting determines
which statements are performed in the TimesTen database and which are passed through to
the Oracle database for processing and under what circumstances, see PassThrough in
Oracle TimesTen In-Memory Database Reference.

5-35

Chapter 5
Setting a Passthrough Level

Note:

The passthrough feature uses OCI to communicate with the Oracle database. The
OCI diagnostic framework installs signal handlers that may impact signal handling
that you use in your application. You can disable OCI signal handling by setting
DIAG SIGHANDLER ENABLED=FALSE in the sqlnet.ora file. Refer to Fault
Diagnosability in OCI in Oracle Call Interface Programmer's Guide.

Changing the Passthrough Level for a Connection or Transaction

You can override the current passthrough level using the ttIsqgl utility's set passthrough
command which applies to the current transaction.

You can also override the setting for a specific transaction by calling the ttOptSetFlag built-in
procedure with the PassThrough flag. The following procedure call sets the passthrough level
to 3:

CALL ttOptSetFlag('PassThrough', 3);

The passThrough flag setting takes effect when a statement is prepared and it is the setting
that is used when the statement is performed even if the setting has changed from the time the
statement was prepared to when the statement is performed. After the transaction has been
committed or rolled back, the original connection setting takes effect for all subsequently
prepared statements.

Automatic Passthrough of Dynamic Load to the Oracle Database

ORACLE

Set the TT DynamicPassthrough optimizer hint to notify TimesTen Classic to pass through
qualified SELECT statements to the Oracle database for cache groups created without a WHERE
clause.

When an application issues statements on a TimesTen connection, the statement can be
executed in the TimesTen database or passed through to the Oracle database for resolution. If
passed through to the Oracle database, the results are returned but the cache instance is not
loaded. Whether the statement is executed on the TimesTen or Oracle databases depends on
the composition of the statement and the setting of the PassThrough connection attribute.

In TimesTen Classic, for cache groups that are created without a WHERE clause, you can limit
the number of rows that are dynamically loaded from the Oracle database into the cache
instance. You can set the TT DynamicPassthrough(n) optimizer hint, where N is the limit to the
number of rows allowed to load into the cache instance. If any SELECT statement to the Oracle
database would return a result with > ¥ number of rows, then the statement is passed through
to the Oracle database and the results are not loaded into the cache instance.

By default, the SELECT statement for a dynamic load of a cache group that qualifies for dynamic
load is executed on the TimesTen Classic database and all rows of the cache instances are
loaded. In addition, if you provide the optimizer hint and set n=0, then all rows are loaded into
the cache instance on the TimesTen Classic database.

This optimizer hint is supported as connection and statement level hints.

Statement level hint:

/*+TT_DynamicPassThrough (1)*/

5-36

ORACLE

Chapter 5
Setting a Passthrough Level

Connection level hint:

OptimizerHint = TT DynamicPassThrough (1)

The following example is a statement level optimizer hint requesting a dynamic passthrough of
a SELECT statement to the Oracle database if a dynamic load returns 1000 rows or more for the
SELECT statement.

SELECT /*+ TT DynamicPassThrough(1000)*/ ...

See Setting a Passthrough Level.

See Optimizer Hints in the Oracle TimesTen In-Memory Database SQL Reference and Use
Optimizer Hints to Modify the Execution Plan in the Oracle TimesTen In-Memory Database
Operations Guide.

5-37

Managing a Caching Environment

You can manage and monitor various aspects of a caching system such as cache groups and
the cache agent process.

Checking the Status of Cache and Replication Agents

Cache Agent and Replication Connection Recovery

Managing a Cache Environment with Oracle Database Objects

Monitoring Cache Groups

Changing Cache User Names and Passwords

Dropping Oracle Database Objects Used by Cache Groups with Autorefresh
Impact on Cache Groups When Modifying the Oracle Database Schema
Impact of Failed Autorefresh Operations on TimesTen Databases

Managing the Cache Administration User's Tablespace

Backing Up and Restoring a TimesTen Classic Database with Cache Groups

Migrating the Oracle Database Requires Cleaning Up Cache Objects

Checking the Status of Cache and Replication Agents

You can check the status of cache and replication agents.

Checking the Status of the Cache Agents in TimesTen Scaleout

Checking the Status of the Cache and Replication Agents in TimesTen Classic

Checking the Status of the Cache Agents in TimesTen Scaleout

ORACLE

In TimesTen Scaleout, you can use the ttGridAdmin dbStatus -all command to check

whether the TimesTen cache agent processes are running.

See Monitoring the Status of the Cache Agent Processes in the Oracle TimesTen In-Memory
Database Scaleout User's Guide.

The following example shows that the cache agent processes are stopped with the CA Status
column.

o
o

ttGridAdmin dbStatus -all

Database databasel summary status as of Mon Dec 7 09:36:43 PST 2020

created, loaded-complete, open

Completely created elements: 6 (of 6)
Completely loaded elements: 6 (of 6)
Completely created replica sets: 3 (of 3)
Completely loaded replica sets: 3 (of 3)

Open elements: 6 (of 6)

Database databasel element level status as of Mon Dec 7 09:36:43 PST 2020

6-1

Chapter 6
Checking the Status of Cache and Replication Agents

Host Instance Elem Status CA Status Date/Time of Event Message
host3 instancel 1 opened stopped 2020-11-23 08:37:35
host4 instancel 2 opened stopped 2020-11-23 08:37:35
host5 instancel 3 opened stopped 2020-11-23 08:37:35
host6 instancel 4 opened stopped 2020-11-23 08:37:35
host7 instancel 5 opened stopped 2020-11-23 08:37:35
host8 instancel 6 opened stopped 2020-11-23 08:37:35

Database databasel Replica Set status as of Mon Dec 7 09:36:43 PST 2020

RS DS Elem Host 1Instance Status Date/Time of Event Message
1 host3 instancel opened 2020-11-23 08:37:35
2 host4 instancel opened 2020-11-23 08:37:35
3 host5 instancel opened 2020-11-23 08:37:35
4 host6 instancel opened 2020-11-23 08:37:35
5 host7 instancel opened 2020-11-23 08:37:35
6 host8 instancel opened 2020-11-23 08:37:35

Database databasel Data Space Group status as of Mon Dec 7 09:36:43 PST 2020

DS RS Elem Host Instance Status Date/Time of Event Message
1 host3 instancel opened 2020-11-23 08:37:35
3 host5 instancel opened 2020-11-23 08:37:35
5 host7 instancel opened 2020-11-23 08:37:35
2 host4 instancel opened 2020-11-23 08:37:35
4 host6 instancel opened 2020-11-23 08:37:35
6 host8 instancel opened 2020-11-23 08:37:35

Checking the Status of the Cache and Replication Agents in TimesTen

Classic

ORACLE

In TimesTen Classic, you can use either the ttAdmin or ttStatus utility to check whether the
cache agent and replication agent processes are running as well as determine each agent's
start policy.

You can use a ttAdmin -query command to determine the status of the cache and replication
agents, as well as the cache and replication agent start policies for a TimesTen database:

o)

% ttAdmin -query cachel

RAM Residence Policy : inUse
Replication Agent Policy : manual
Replication Manually Started : True
Cache Agent Policy : always
Cache Agent Manually Started : True

See ttAdmin in Oracle TimesTen In-Memory Database Reference.

Using the ttStatus utility without any commands shows all status information for cache and
replication for all TimesTen instances:

% ttStatus
TimesTen status report as of Thu May 7 13:42:01 2009

Daemon pid 9818 port 4173 instance myinst
TimesTen server pid 9826 started on port 4175

6-2

Chapter 6

Cache Agent and Replication Connection Reco

Data store /diskl/databases/databasel

There are 38 connections to the data store

Shared Memory KEY 0x02011c82 ID 895844354

PL/SQL Memory KEY 0x03011c82 ID 895877123 Address 0x10000000

Type PID Context Connection Name ConnID
Cache Agent 1019 0x0828£840 Handler 2
Cache Agent 1019 0x083a3d40 Timer 3
Cache Agent 1019 0x0842d820 Aging 4
Cache Agent 1019 0x08664£fd8 Garbage Collector(-1580741728) 5
Cache Agent 1019 0x084doef8 Marker (-1580213344) 6
Cache Agent 1019 0xa5bb8058 DeadDsMonitor (-1579684960) 7
Replication 18051 0x08c3d900 RECEIVER 8
Replication 18051 0x08b53298 REPHOLD 9
Replication 18051 0x08af8138 REPLISTENER 10
Replication 18051 0x08a82£f20 LOGFORCE 11
Replication 18051 0x08bce660 TRANSMITTER 12
Subdaemon 9822 0x080a2180 Manager 2032
Subdaemon 9822 0x080££260 Rollback 2033
Subdaemon 9822 0x08548c38 Flusher 2034
Subdaemon 9822 0x085e3b00 Monitor 2035
Subdaemon 9822 0x0828fcl0 Deadlock Detector 2036
Subdaemon 9822 0x082ead70 Checkpoint 2037
Subdaemon 9822 0x08345ed0 Aging 2038
Subdaemon 9822 0x083a1030 Log Marker 2039
Subdaemon 9822 0x083£c190 AsyncMV 2040
Subdaemon 9822 0x084572f0 HistGC 2041
Replication policy : Manual

Replication agent is running.

Cache Agent policy : Always

TimesTen's Cache agent is running for this data store
PL/SQL enabled.

The information displayed by the ttStatus utility include the following that pertains to
TimesTen for each TimesTen instance:

e The names of the cache agent process threads that are connected to the TimesTen
database

e The names of the replication agent process threads that are connected to the TimesTen
database

e Status on whether the cache agent is running

e Status on whether the replication agent is running
e The cache agent start policy

e The replication agent start policy

See ttStatus in Oracle TimesTen In-Memory Database Reference.

Cache Agent and Replication Connection Recovery

ORACLE

When a connection from the cache agent to the Oracle database fails, the cache agent
attempts to connect every 10 seconds. If the cache agent cannot connect to the Oracle
database, the cache agent restarts after 10 minutes. This behavior repeats forever.

When a connection from the replication agent to the Oracle database fails, the replication

very

agent attempts to reconnect to the Oracle database after 120 seconds. If it cannot reconnect

after 120 seconds, the replication agent stops and does not restart.

6-3

Chapter 6

Managing a Cache Environment with Oracle Database Objects

If Fast Application Notification (FAN) is enabled on the Oracle database, the cache agent and
the replication agent receive immediate notification of connection failures. If FAN is not
enabled, the agents may wait until a TCP timeout occurs before becoming aware that the

connection has failed.

If the Oracle Real Application Clusters (Oracle RAC) is enable on the Oracle database, along
with FAN and Transparent Application Failover (TAF), then TAF manages the connection to a
new Oracle Database instance. See Using Cache in an Oracle RAC Environment.

Managing a Cache Environment with Oracle Database Objects

For a cache group with autorefresh, TimesTen creates a change log table and two triggers in
the Oracle database for each cache table in the cache group. One trigger is fired for each
INSERT statement and another trigger is fired for each UPDATE or DELETE statement on the

cached Oracle Database table.

These triggers record the primary key of the changed rows in the change log table.

The cache agent periodically scans the change log table for modified keys and then joins this
table with the cached Oracle Database table to get a snapshot of the latest changes.

Note:

Databases.

If you cache the same Oracle database table in a cache group on two different
TimesTen databases, we recommend that you use the same cache administration
user name on both TimesTen databases as the owner of the cache table on each
TimesTen database. See Caching the Same Oracle Table on Two or More TimesTen

For each cache administration user, TimesTen creates the following Oracle Database tables,
where version is an internal TimesTen version number and object-IDis the ID of the cached

Oracle Database table:

Table Name

Description

TT_version_AGENT_STATUS

TT version AR PARAMS

TT version ARDL CG COUNTER

TT version CACHE STATS

ORACLE

Created when the first cache group is created.
Stores information about each Oracle Database
table cached in a cache group with autorefresh.

Created when the cache administration user name
and password is set. Stores the action to take when
the cache administration user's tablespace is full.

Created when you execute either the
grantCacheAdminPrivileges.sqgl or the
initCacheAdminSchema.sql scripts or when the
cache administration user and password are set.
Contains information used for reducing contention
for dynamic read-only cache groups with
incremental autorefresh. See Reducing Contention
for Dynamic Read-Only Cache Groups with
Incremental Autorefresh.

Created when the cache administration user name
and password is set.

6-4

ORACLE

Chapter 6

Managing a Cache Environment with Oracle Database Objects

Table Name

Description

TT version CACHED COLUMNS

TT version DATABASES

TT version DB PARAMS

TT version DBSPECIFIC_ PARAMS
TT version DDL L

TT version DDL_TRACKING

TT version LOG_SPACE STATS

TT version REPACTIVESTANDBY

TT version REPPEERS

TT version SYNC OBJS
TT version USER COUNT

TT version object-ID L

Stores list of columns that are cached. Created
when you run the initCacheAdminSchema.sqgl
script or when you set the cache administration
user and password.

Created when the cache administration user name
and password is set. Stores the autorefresh status
for all TimesTen databases that cache data from
the Oracle database.

Created when the cache administration user name
and password is set. Stores the cache agent
timeout, recovery method for dead cache groups,
and the cache administration user's tablespace
usage threshold.

Internal use.

Created when the cache administration user name
and password is set. Tracks DDL statements
issued on cached Oracle Database tables.

Created when the cache administration user name
and password is set. Stores a flag indicating
whether tracking of DDL statements on cached
Oracle Database tables is enabled or disabled.

Created when the cache administration user and
password are set. Contains statistics used to
monitor the cache administration user table space.
See Managing the Cache Administration User's
Tablespace.

Created when the first AWT cache group is
created. Tracks the state and roles of TimesTen
databases containing cache tables in an AWT
cache group that are replicated in an active
standby pair replication scheme.

Created when the first AWT cache group is
created. Tracks the time and commit sequence
number of the last update on the cache tables that
was asynchronously propagated to the cached
Oracle Database tables.

Created when the first cache group is created.

Created when the first cache group is created.
Stores information about each cached Oracle
Database table.

One change log table is created per Oracle
Database table cached in a cache group with
autorefresh when the cache group is created.
Tracks updates on the cached Oracle Database
table.

For each cache administration user, TimesTen creates the following Oracle Database triggers,
where version is an internal TimesTen version number, object-IDis the ID of the cached
Oracle Database table, and schema-1D is the ID of user who owns the cached Oracle Database

table:

6-5

Chapter 6
Monitoring Cache Groups

Trigger Name

Description

TT version REPACTIVESTANDBY T

TT version object-ID T

TT version object-ID TI

TT version schema-ID DDL T

Created when the first AWT cache group is
created. When fired, inserts rows into the
TT_Version_REPACTIVESTANDBYtaMe.

This trigger is created for each Oracle Database
table cached in a cache group with autorefresh
when the cache group is created. Fires for each
update or delete operation issued on the cached
Oracle Database table to track operations in the
TT version object-ID L change log table.

This trigger is created for all autorefreshed cached
tables, except for autorefreshed cached tables that
are exclusively cached as root tables in dynamic
read-only cache groups. Fires for each insert
operation issued on the cached Oracle Database
table to track operations in the

TT version object-ID L change log table.

One trigger for each user who owns cached Oracle
Database tables. Created when a cache group is
created after tracking of DDL statements has been
enabled. Fired for each DDL statement issued on a
cached Oracle Database table to track operations
inthe TT version DDL L table.

Monitoring Cache Groups

You can obtain information on cache groups and monitor the status of cache group operations.

* Using the ttlsgl Utility cachegroups Command

* Monitoring Autorefresh Operations on Cache Groups

* Monitoring AWT Cache Groups

* Configuring a Transaction Log File Threshold for AWT Cache Groups

* Tracking DDL Statements Issued on Cached Oracle Database Tables

Using the ttlsgl Utility cachegroups Command

You can obtain information about cache groups in a TimesTen database using the ttIsqgl utility

ORACLE

cachegroups command.

% ttIsgl "DSN=cachel;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"

Command> cachegroups;
Cache Group CACHEADMIN.RECENT SHIPPED ORDERS:

Cache Group Type: Read Only
Autorefresh: Yes

Autorefresh Mode: Incremental
Autorefresh State: On
Autorefresh Interval:
Autorefresh Status: ok

1440 Minutes

Aging: Timestamp based uses column WHEN SHIPPED lifetime 30 days cycle 24 hours on

Root Table: SALES.ORDERS

6-6

Chapter 6
Monitoring Cache Groups

Table Type: Read Only

Cache Group CACHEADMIN.SUBSCRIBER ACCOUNTS:

Cache Group Type: Asynchronous Writethrough (Dynamic)
Autorefresh: No
Aging: LRU on

Root Table: SALES.SUBSCRIBER
Table Type: Propagate

Cache Group CACHEADMIN.WESTERN CUSTOMERS:

Cache Group Type: User Managed
Autorefresh: No
Aging: No aging defined

Root Table: SALES.ACTIVE CUSTOMER
Where Clause: (sales.active_customer.region = "West')
Table Type: Propagate

Child Table: SALES.ORDERTAB
Table Type: Propagate

Child Table: SALES.ORDERDETAILS
Where Clause: (sales.orderdetails.quantity >= 5)
Table Type: Not Propagate

Child Table: SALES.CUST INTERESTS
Table Type: Read Only

3 cache groups found.

The information displayed by the ttIsql utility's cachegroups command include:

Cache group type, including whether the cache group is dynamic
Autorefresh attributes (mode, state, interval) and status, if applicable
Aging policy, if applicable

Name of root table and, if applicable, name of child tables

Cache table WHERE clause, if applicable

Cache table attributes (read-only, propagate, not propagate)

See ttlsqgl in Oracle TimesTen In-Memory Database Reference.

Monitoring Autorefresh Operations on Cache Groups

TimesTen offers several mechanisms to obtain information and statistics about autorefresh
operations on cache groups.

See Monitoring Cache Groups with Autorefresh in Oracle TimesTen In-Memory Database
Monitoring and Troubleshooting Guide.

Monitoring AWT Cache Groups

TimesTen Classic offers several mechanisms to obtain information and statistics about
operations in AWT cache groups.

ORACLE

6-7

Chapter 6
Monitoring Cache Groups

See AWT Performance Monitoring in Oracle TimesTen In-Memory Database Monitoring and
Troubleshooting Guide.

Configuring a Transaction Log File Threshold for AWT Cache Groups

In TimesTen Classic, the replication agent uses the transaction log to determine which updates
on cache tables in AWT cache groups have been propagated to the cached Oracle Database
tables and which updates have not. If updates are not being automatically propagated to the
Oracle database because of a failure, transaction log files accumulate on the file system.
Examples of a failure that prevents propagation are that the replication agent is not running or
the Oracle database server is unavailable. See Monitoring Accumulation of Transaction Log
Files in Oracle TimesTen In-Memory Database Operations Guide.

You can call the ttCacheAWTThresholdSet built-in procedure as the TimesTen cache
administration user to set a threshold for the number of transaction log files that can
accumulate before TimesTen Classic stops tracking updates on cache tables in AWT cache
groups. The default threshold is 0. This built-in procedure can only be called if the TimesTen
database contains AWT cache groups.

After the threshold has been exceeded, you need to manually synchronize the cache tables
with the cached Oracle Database tables using an UNLOAD CACHE GROUP statement followed by
a LOAD CACHE GROUP statement. TimesTen may purge transaction log files even if they contain
updates that have not been propagated to the cached Oracle Database tables.

The following example sets a transaction log file threshold for AWT cache groups. In this
example, if the number of transaction log files that contain updates on cache tables in AWT
cache groups exceeds 5, TimesTen stops tracking updates and can then purge transaction log
files that may contain unpropagated updates:

% ttIsqgl "DSN=cachel;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"
Command> CALL ttCacheAWTThresholdSet (5);

You can call the ttCacheAWTThresholdGet built-in procedure to determine the current
transaction log file threshold setting:

Command> CALL ttCacheAWTThresholdGet;
< 5>
Command> exit

Tracking DDL Statements Issued on Cached Oracle Database Tables

ORACLE

When a DDL statement is issued on a cached Oracle Database table, this statement can be
tracked in the Oracle Database TT version DDL L table when the Oracle Database

TT version schema-ID DDL T trigger is fired to insert a row into the table. The versionis an
internal TimesTen version number and schema-ID is the ID of user that owns the cached
Oracle Database table.

A trigger is created for each Oracle Database user that owns cached Oracle Database tables.
One DDL tracking table is created to store DDL statements issued on any cached Oracle
Database table. The Oracle cache administration user owns the TT version DDL L table and
the TT version_schema-ID DDL T trigger.

By default, DDL statements are not tracked. On TimesTen, you can enable tracking of DDL
statements issued on cached Oracle Database tables, call the ttCacheDDLTrackingConfig
built-in procedure as the TimesTen cache administration user. The following example enables
tracking of DDL statements issued on cached Oracle Database tables:

% ttIsql "DSN=cachel;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"
Command> CALL ttCacheDDLTrackingConfig('enable');

6-8

ORACLE

Chapter 6
Monitoring Cache Groups

The TT version DDL L table and TT version_schema-ID DDL T trigger are automatically
created if the Oracle cache administration user has been granted the set of required privileges
including CREATE TRIGGER, CREATE SEQUENCE, CREATE TYPE, CREATE PROCEDURE, CREATE TABLE
and CREATE ANY TRIGGER. These Oracle Database objects are created when you create a
cache group after tracking of DDL statements has been enabled.

On TimesTen Classic, if you manually created the Oracle Database objects used to manage
the caching of Oracle Database data, you need to run the ttIsql utility cachesqlget command
with the ORACLE DDL_TRACKING option and the INSTALL flag as the TimesTen cache
administration user. This command should be run for each Oracle Database user that owns
cached Oracle Database tables that you want to track DDL statements on. Running this
command generates a SQL*Plus script used to create the TT version DDL L table and

TT version_schema-ID DDL T trigger in the Oracle database.

After generating the script, use SQL*Plus to run the script as the sys user.

The following example creates DDL tracking table and trigger when Oracle Database objects
are manually created. In this example, the SQL*Plus script generated by the ttIsql utility
cachesglget command is saved to the /tmp/trackddl.sql file. The owner of the cached
Oracle Database table sales is passed as an argument to the command.

% ttIsqgl "DSN=cachel;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"
Command> cachesqlget ORACLE DDL TRACKING sales INSTALL /tmp/trackddl.sql;
Command> exit

o)

% sglplus sys as sysdba
Enter password: password
SQL> @/tmp/trackddl

SQL> exit

You can run the ttCacheInfo utility or the timesten home/install/oraclescripts/
cacheInfo.sql SQL*Plus script as the Oracle cache administration user to display information
about the Oracle Database objects used to track DDL statements issued on cached Oracle
Database tables. The following example runs the cacheInfo.sql SQL*Plus script.

oe

cd timesten home/install/oraclescripts

% sqlplus cacheadmin/orapwd

SQL> @cacheInfo.sqgl

kkkkkkhkkhkkhkkkkkhkkkk Database Information kkkkkhkhkkhkkhkkhkkkhkkkhkhkhkhkhkkhkxk
Database name: DATABASEL

Unique database name: databasel

Primary database name:

Database Role: PRIMARY

Database Open Mode: READ WRITE

Database Protection Mode: MAXIMUM PERFORMANCE

Database Protection Level: UNPROTECTED

Database Flashback On: NO

Database Current SCN: 21512609
kkkkkhkhkhkhkhkhkhkhhkkhhhhhkhhhhhhkhhkhhhhhhhhkhkhhhkhhkhhkhkhkhhkhkhkhkhkrxkhkhkkhrhkhhkhx*k
FRxkxxkxkkxkxhutorefresh Objects Information — Fx*x*ktkskxkkkdkx
Grid name: gridl (7D03C680-BD93-4233-A4CF-BOEDBO064F3F)
Timesten database name: databasel

Cache table name: SALES.CUSTOMERS

Change log table name: tt 07 96977 L

Number of rows in change log table: 4

Maximum logseq on the change log table: 1

Timesten has autorefreshed updates upto logseq: 1

Number of updates waiting to be autorefreshed: 0

Number of updates that has not been marked with a valid logseq: 0
*************DDL Tracking Object Information kkkkkhkkkkkkkxkhkkk*x

6-9

Chapter 6
Changing Cache User Names and Passwords

Common DDL Log Table Name: TT 07 DDL L

DDL Trigger Name: TT 07 315 DDL T

Schema for which DDL Trigger is tracking: SALES
Number of cache groups using the DDL Trigger: 10

Khkkkhk kA Ak Ak kkhkhkhkhkhkhk Ak kkkkkkkk
PL/SQL procedure successfully completed.

The information returned for each Oracle Database user that owns cached Oracle Database
tables includes the name of the DDL tracking table, the name of its corresponding DDL trigger,
the name of the user that the DDL trigger is associated with, and the number of cache groups
that cache a table owned by the user associated with the DDL trigger.

If a cache group contains more than one cache table, each cache table owned by the user
associated with the DDL trigger contributes to the cache group count.

See SQL*Plus Scripts for Cache in this book and ttCacheDDLTrackingConfig and ttCachelnfo
in Oracle TimesTen In-Memory Database Reference.

Changing Cache User Names and Passwords

ORACLE

You can change any of the user names or passwords for the TimesTen cache administration
user or its companion Oracle cache administration user.

1. If you want to modify the TimesTen cache administration user or password, perform the
following:

Note:

Passwords for both the TimesTen cache administration user and its companion
Oracle cache administration user can be changed at any time.

The name for the TimesTen cache administration user must be the same as its
companion Oracle cache administration user; however, the passwords may be
different. See Create the TimesTen Users.

a. On the TimesTen database, if you want to modify the password of the TimesTen cache
administration user, then use the ALTER USER statement on the active master.

Command> ALTER USER cacheadmin IDENTIFIED BY newpwd;

b. On the back-end Oracle database, you can modify the companion Oracle cache
administration user password with the ALTER USER statement. If you are working on
TimesTen, you can use Passthrough 3 to run this directly on the Oracle database.

Command> passthrough 3;
Command> ALTER USER cacheadmin IDENTIFIED BY newpwd;

Note:

If you have modified the password for the companion Oracle cache
administration user, reconnect to the TimesTen database as the TimesTen
cache administration user providing passwords for the TimesTen cache
administration user and its companion Oracle cache administration user.

6-10

Chapter 6
Changing Cache User Names and Passwords

c. If you want to change the TimesTen cache administration user, you must first drop all
cache groups that the TimesTen cache administration user owns before dropping the
existing user and creating a new user. The Oracle cache administration user name can
only be changed when there are no cache groups on the TimesTen database.

Note:

Alternatively, if you want to use a different user as the TimesTen cache
administration user, ensure that it has the correct privileges and a companion
Oracle cache administration user with the correct privileges.

In addition, since the TimesTen cache administration user must have a companion
Oracle cache administration user with the same name, you must either:

* Drop all tables owned by the current companion Oracle cache administration user,
drop the user, and then re-create it with the same name as the new TimesTen
cache administration user.

* Choose another Oracle user that has the same name as the TimesTen cache
administration user and provides the same functionality.

See Create the TimesTen Users.

d. On TimesTen Classic, if the TimesTen cache administration user name or password
are defined in the sys.odbc.ini (or odbc.ini) file, update the new TimesTen cache
administration user name or password in the sys.odbc.ini (or odbc.ini) file on both
the active and standby masters.

2. If you want to modify the Oracle cache administration user or its password, perform the
following:

a. On the back-end Oracle database, you can modify the Oracle cache administration
password with the ALTER USER statement. The password of the Oracle cache
administration user can be changed at any time.

If you are working on TimesTen, you can use Passthrough 3 to run this directly on the
Oracle database.

Command> passthrough 3;
Command> ALTER USER cacheadmin IDENTIFIED BY newpwd;

b. If you want to change the Oracle cache administration user, you must first drop all
cache groups on the TimesTen database that the Oracle cache administration user
manages before you can drop the Oracle cache administration user on the Oracle
database and create a new user. Dropping the cache groups on TimesTen removes all
metadata associated with those cache groups.

When you create a new Oracle cache administration user on the Oracle database, you
must follow the same instructions for creating a Oracle cache administration user that
are provided in the Create the Oracle Database Users and Default Tablespace.

c. Set the new user name or password for the Oracle cache administration user.

e On TimesTen Classic, run the ttCacheUidPwdSet built-in procedure on the active
master database.

ORACLE 611

Chapter 6
Dropping Oracle Database Objects Used by Cache Groups with Autorefresh

Note:

See Registering the Cache Administration User Name and Password.

Command> call ttCacheUidPwdSet ('cacheadmin', 'newpwd') ;

 On TimesTen Scaleout, run the ttGridAdmin dbCacheCredentialSet command.

Note:

See Performance in the Oracle TimesTen In-Memory Database Cache
Guide.

% ttGridAdmin dbCacheCredentialSet databasel
Provide Oracle user id: cacheadmin
Provide Oracle password: oracle

Dropping Oracle Database Objects Used by Cache Groups with
Autorefresh

ORACLE

A TimesTen database is unavailable, for example, when the TimesTen system is taken offline
or the database has been destroyed without dropping its cache groups with autorefresh.

Oracle database objects used to implement autorefresh operations also continue to exist in the
Oracle database when a TimesTen database is no longer being used but still contains cache
groups with autorefresh. Rows continue to accumulate in the change log tables. This impacts
autorefresh performance on other TimesTen databases. Therefore, it is desirable to clean up
these Oracle database objects associated with the unavailable or abandoned TimesTen
database.

* When using TimesTen Classic, run the timesten home/install/oraclescripts/
cacheCleanUp.sql SQL*Plus script as the Oracle cache administration user to clean up
the Oracle database objects used to implement autorefresh operations. The host name of
the TimesTen Classic system and the TimesTen database (including its path) are passed
as arguments to the cacheCleanUp.sql Script.

You can run the ttCachelInfo utility or the cacheInfo.sqgl script as the Oracle cache
administration user to determine the host and database names.

* InTimesTen Scaleout, run the timesten home/install/oraclescripts/
scaleoutCacheCleanUp.sql SQL*Plus script as the Oracle cache administration user to
clean up the Oracle Database objects used to implement autorefresh operations. The grid
name and the TimesTen database name are passed as arguments to the
scaleoutCacheCleanUp.sgl script.

You can run the cacheInfo.sqgl script as the Oracle cache administration user to
determine the grid and database names.

The cachelInfo.sql script or the ttCachelInfo utility can be used to determine whether any
objects used to implement autorefresh operations exist in the Oracle database.

The following example demonstrates how to drop Oracle database objects for cache groups
with autorefresh. This example uses the cacheCleanUp.sql script for a TimesTen Classic

6-12

Chapter 6
Impact on Cache Groups When Modifying the Oracle Database Schema

system. It drops the change log tables and triggers associated with the customers and orders
cache tables. The scaleoutCacheCleanup.sgl Script runs in the same manner for TimesTen
Scaleout, except that it requires the grid name and database name as input parameters.

% cd timesten home/install/oraclescripts
% sqlplus cacheadmin/orapwd
SQL> @cacheCleanUp "sysl" "/diskl/databases/databasel"

KAKKKK KK KKK KKK KAXK KK KA KK KK XQUTPUTFF A * A XKk h kA XKk ko kX Kk kkhkxxkkhhkxkkkhkx

Performing cleanup for object id: 69959 which belongs to table : CUSTOMERS
Executing: delete from tt 07 agent status where host = sysl and datastore =
/diskl/databases/databasel and object id = 69959

Executing: drop table tt 07 69959 L

Executing: drop trigger tt 07 69959 T

Executing: delete from tt 07 user count where object id = object idl
Performing cleanup for object id: 69966 which belongs to table : ORDERS
Executing: delete from tt 07 agent status where host = sysl and datastore =
/diskl/databases/databasel and object id = 69966

Executing: drop table tt 07 69966 L

Executing: drop trigger tt 07 69966 T

Executing: delete from tt 07 user count where object id = object idl
dhkhkhkhkhkkhkhhhhhhkhkhhkrhkhkhkhhkhkhkhkhkhhkhkhkhkhkhhkkhkhhkhkrkhkhkhkhkhhkhkhkhhkrrkkhkhhkhkhkhkhkhhkkxkkkkhkkk

See SQL*Plus Scripts for Cache in this guide and ttCachelnfo in Oracle TimesTen In-Memory
Database Reference.

Impact on Cache Groups When Modifying the Oracle Database

Schema

ORACLE

When you need to issue DDL statements such as CREATE, DROP or ALTER on cached Oracle
Database tables in order to make changes to the Oracle Database schema, drop the affected
cache groups before you modify the Oracle Database schema. Otherwise operations such as
autorefresh may fail.

You do not need to drop cache groups if you are altering the Oracle Database table to add a
column.

To issue other DDL statements for Oracle Database tables, first perform the following tasks:

1. Use DROP CACHE GROUP statements to drop all cache groups that cache the affected Oracle
Database tables. If you are dropping an AWT cache group, use the ttRepSubscriberWait
built-in procedure to make sure that all committed changes on the cache tables have been
propagated to the cached Oracle Database tables before the cache group is dropped.

% ttIsgl "DSN=cachel;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"
Command> CALL ttRepSubscriberWait (' AWTREPSCHEME', 'TTREP',' ORACLE','sysl',-1);

2. Stop the cache agent.
3. Make the desired changes to the Oracle Database schema.
4. Use CREATE CACHE GROUP statements to re-create the cache groups, if feasible.

If you want to truncate an Oracle Database table that is cached in a cache group with
autorefresh, perform the following tasks:

1. Use an ALTER CACHE GROUP statement to set the cache group's autorefresh state to
PAUSED.

2. Truncate the Oracle Database table.

6-13

Chapter 6
Impact of Failed Autorefresh Operations on TimesTen Databases

3. Manually refresh the cache group using a REFRESH CACHE GROUP statement without a WHERE
or WITH ID clause.

Autorefresh operations resume after you refresh the cache group.

Impact of Failed Autorefresh Operations on TimesTen Databases

ORACLE

TimesTen does not delete rows in the change log tables when the cache agent is not running
on a TimesTen database. In this case, you can set a cache agent timeout to prevent rows from
accumulating in the change log tables.

A change log table is created in the Oracle cache administration user's tablespace for each
Oracle Database table that is cached in a cache group with autorefresh. For each update
operation issued on these cached Oracle Database tables, a row is inserted into their change
log table to keep track of updates that need to be applied to the TimesTen cache tables upon
the next incremental autorefresh cycle. TimesTen periodically deletes rows in the change log
tables that have been applied to the cache tables.

An Oracle Database table cannot be cached in more than one cache group within a TimesTen
database. However, an Oracle Database table can be cached in more than one TimesTen
database. This results in an Oracle Database table corresponding to multiple TimesTen cache
tables. If updates on cached Oracle Database tables are not being automatically refreshed into
all of their corresponding cache tables because the cache agent is not running on one or more
of the TimesTen databases that the Oracle Database tables are cached in, rows in their
change log tables are not deleted by default. The cache agent may not be running on a
particular TimesTen database because the agent was either stopped or never started, the
database was destroyed, or the TimesTen instance is down. As a result, rows accumulate in
the change log tables and degrade the performance of autorefresh operations on cache tables
in TimesTen databases where the cache agent is running. This can also cause the Oracle
cache administration user's tablespace to fill up.

For example, if a single Oracle Database table is cached by two or more TimesTen databases
where one of the TimesTen databases is unable to connect to the Oracle database, then
autorefresh for the disconnected TimesTen database is not performed. Instead, the records in
the change log table accumulate (so that the disconnected TimesTen database can catch up
once a connection to the Oracle database is established). If the AgentTimeout parameter is set
to 0 (the default), then all change log records are kept indefinitely until they have been applied
to all its cache tables. The change log records of the other TimesTen databases are not purged
even though the transaction logs are already applied to the local TimesTen database.
Alternatively, you can set the AgentTimeout parameter to define a specific timeout to wait
before purging the saved change log records and stop the accumulation of these change log
records.

The following criteria must be met in order for TimesTen to delete rows in the change log tables
when the cache agent is not running on a TimesTen database and a cache agent timeout is
set:

e Oracle Database tables are cached in cache groups with autorefresh enabled within more
than one TimesTen database.

e The cache agent is running on at least one of the TimesTen databases but is not running
on at least another database.

« Rows in the change log tables have been applied to the cache tables on all TimesTen
databases where the cache agent is running.

* For those databases where the cache agent is not running, the agent process has been
down for a period of time that exceeds the cache agent timeout.

6-14

ORACLE

Chapter 6
Impact of Failed Autorefresh Operations on TimesTen Databases

To set the cache agent timeout and prevent rows from accumulating in the change log tables,
set the AgentTimeout parameter with the ttCacheConfig built-in procedure as the TimesTen
cache administration user from any of the TimesTen databases that cache data from the
Oracle database. Pass the AgentTimeout string to the Param parameter and the timeout setting
as a numeric string to the value parameter. Do not pass in any values to the tbIlowner and
tblName parameters as they are not applicable to setting a cache agent timeout.

In the following example, the cache agent timeout is set to 900 seconds (15 minutes):

% ttIsgl "DSN=cachel;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"
Command> CALL ttCacheConfig('AgentTimeout',,,'900");

To determine the current cache agent timeout setting, call ttCacheConfig passing only the
AgentTimeout string to the raram parameter:;

Command> CALL ttCacheConfig('AgentTimeout');
< AgentTimeout, <NULL>, <NULL>, 900 >

The default cache agent timeout setting is 0, which means that all change log records are kept
indefinitely until they have been applied to all its cache tables. If you set the cache agent
timeout to a value between 1 and 600 seconds, the timeout is set to 600 seconds. The cache
agent timeout applies to all TimesTen databases that cache data from the same Oracle
database and have the same Oracle cache administration user name setting.

When determining a proper cache agent timeout setting, consider the time it takes to load the
TimesTen database into memory, the time to start the cache agent process, potential duration
of network outages, and anticipated duration of planned maintenance activities.

Each TimesTen database, and all of its cache groups have an autorefresh status to determine
whether any deleted rows from the change log tables were not applied to the cache tables in
the cache groups. If rows were deleted from the change log tables and not applied to some
cache tables because the cache agent on the database was down for a period of time that
exceeded the cache agent timeout, those cache tables are no longer synchronized with the
cached Oracle Database tables. Subsequent updates on the cached Oracle Database tables
are not automatically refreshed into the cache tables until the accompanying cache group is
recovered.

The following are the possible statuses for a cache group with autorefresh:

« ok: All of the deleted rows from the change log tables were applied to its cache tables.
Incremental autorefresh operations continue to occur on the cache group.

e disabled or dead: Some of the deleted rows from the change log tables were not applied
to its cache tables so the cache tables are not synchronized with the cached Oracle
Database tables. Autorefresh operations have ceased on the cache group and do not
resume until the cache group has been recovered.

e recovering: The cache group is being recovered. Once recovery completes, the cache
tables are synchronized with the cached Oracle Database tables, the cache group's
autorefresh status is set to ok, and incremental autorefresh operations resume on the
cache group.

The following are the possible autorefresh statuses for a TimesTen database:
* alive: All of its cache groups with autorefresh have an autorefresh status of OK.
e dead: All of its cache groups with autorefresh have an autorefresh status of dead.

e recovering: At least one of its cache groups with autorefresh have an autorefresh status
of recovering.

6-15

ORACLE

Chapter 6
Impact of Failed Autorefresh Operations on TimesTen Databases

If the cache agent on a TimesTen database is down for a period of time that exceeds the cache
agent timeout, the autorefresh status of the database is set to dead. Also, the autorefresh
status of all cache groups with autorefresh within that database are set to dead.

Call the ttCacheDbCgStatus built-in procedure as the TimesTen cache administration user to
determine the autorefresh status of a cache group and its accompanying TimesTen database.
Pass the owner of the cache group to the cgowner parameter and the name of the cache group
to the cgName parameter.

In the following example, the autorefresh status of the database is alive and the autorefresh
status of the cacheadmin.customer orders read-only cache group is ok:

% ttIsqgl "DSN=cachel;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"
Command> CALL ttCacheDngStatus('cacheadmin’,'customer_orders');
< alive, ok >

To view only the autorefresh status of the database and not of a particular cache group, call
ttCacheDbCgStatus without any parameters:

Command> CALL ttCacheDbCgStatus;
< dead, <NULL> >

If the autorefresh status of a cache group is ok, its cache tables are being automatically
refreshed based on its autorefresh interval. If the autorefresh status of a database is alive, the
autorefresh status of all its cache groups with autorefresh are ok.

If the autorefresh status of a cache group is disabled or dead, its cache tables are no longer
being automatically refreshed when updates are committed on the cached Oracle Database
tables. The cache group must be recovered in order to resynchronize the cache tables with the
cached Oracle Database tables. See Disabling Full Autorefresh for Cache Groups.

You can configure a recovery method for cache groups whose autorefresh status is dead.

Call the ttCacheConfig built-in procedure as the TimesTen cache administration user from any
of the TimesTen databases that cache data from the Oracle database. Pass the
DeadDbRecovery String to the Param parameter and the recovery method as a string to the
Value parameter. Do not pass in any values to the tblOwner and tblName parameters as they
are not applicable to setting a recovery method for dead cache groups.

The following are the valid recovery methods:

e Normal: When the cache agent starts, a full autorefresh operation is performed on cache
groups whose autorefresh status is dead in order to recover those cache groups. This is
the default recovery method. However, if you set the DisableFullAutorefresh cache
configuration parameter to 1, then the DeadDbRecovery cache configuration parameter
automatically changes to Manual.

e Manual: For each static cache group whose autorefresh status is dead, @ REFRESH CACHE
GROUP statement must be issued in order to recover these cache groups after the cache
agent starts.

For each dynamic cache group whose autorefresh status is dead, a REFRESH CACHE GROUP
or UNLOAD CACHE GROUP statement must be issued in order to recover these cache groups
after the cache agent starts.

* None: Cache groups whose autorefresh status is dead must be dropped and then re-
created after the cache agent starts in order to recover them.

In the following example, the recovery method is set to Manual for cache groups whose
autorefresh status is dead:

6-16

Chapter 6
Managing the Cache Administration User's Tablespace

% ttIsqgl "DSN=cachel;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"
Command> CALL ttCacheConfig('DeadDbRecovery',,, 'Manual');

To determine the current recovery method for dead cache groups, call ttCacheConfig passing
only the DeadDbRecovery string to the rParam parameter:

Command> CALL ttCacheConfig ('DeadDbRecovery');
< DeadDbRecovery, <NULL>, <NULL>, manual >

The recovery method applies to all cache groups with autorefresh in all TimesTen databases
that cache data from the same Oracle database and have the same Oracle cache
administration user name setting.

When a cache group begins the recovery process, its autorefresh status is changed from dead
to recovering, and the status of the accompanying TimesTen database is changed to
recovering, if it is currently dead.

After the cache group has been recovered, its autorefresh status is changed from recovering
to ok. Once all cache groups have been recovered and their autorefresh statuses are ok, the
status of the accompanying TimesTen database is changed from recovering to alive.

A full autorefresh operation requires more system resources to process than an incremental
autorefresh operation when there is a small volume of updates to refresh and a large number
of rows in the cache tables. If you need to bring a TimesTen database down for maintenance
activities and the volume of updates anticipated during the downtime on the Oracle Database
tables that are cached in cache groups with autorefresh is small, you can consider temporarily
setting the cache agent timeout to 0. When the database is brought back up and the cache
agent restarted, incremental autorefresh operations resumes on cache tables in cache groups
with autorefresh. Full autorefresh operations are avoided because the autorefresh status on
the accompanying cache groups were not changed from ok to dead so those cache groups do
not need to go through the recovery process. Make sure to set the cache agent timeout back to
its original value once the database is back up and the cache agent has been started.

See ttCacheConfig in the Oracle TimesTen In-Memory Database Reference.

Managing the Cache Administration User's Tablespace

You can manage the cache administration user's tablespace.
« Defragmenting Change Log Tables in the Tablespace
« Receiving Notification on Tablespace Usage

e Recovering from a Full Tablespace

Defragmenting Change Log Tables in the Tablespace

ORACLE

Prolonged use or a heavy workload of the change log tables for cache groups with autorefresh
can result in fragmentation of the tablespace.

In order to prevent degradation of the tablespace from fragmentation of the change log tables,
TimesTen calculates the percentage of fragmentation for the change log tables as a ratio of
used space to the total size of the space. If this ratio falls below a defined threshold, TimesTen
alerts you of the necessity for defragmentation of the change log tables by logging a message.
By default, this threshold is set to 40%.

You can configure what the fragmentation threshold should be with the ttCacheConfig built-in
procedure.

6-17

Chapter 6
Managing the Cache Administration User's Tablespace

Note:

Messages are logged to the user and support error logs. For details, see Error,
Warning, and Informational Messages in the Oracle TimesTen In-Memory Database
Operations Guide.

To set the fragmentation threshold, call the ttCacheConfig built-in procedure as the TimesTen
cache administration user from any of the TimesTen databases that cache data from the
Oracle database. Pass the AutoRefreshLogFragmentationWarningPCT string to the Param
parameter and the threshold setting as a numeric string to the Value parameter.

To set the time interval for how often to calculate the fragmentation percentage, call the
ttCacheConfig built-in procedure as the TimesTen cache administration user from any of the
TimesTen databases that cache data from the Oracle database. Pass the
AutorefreshLogMonitorInterval string to the Param parameter and the time interval (in
seconds) as a numeric string to the Value parameter.

Note:

Do not pass in any values to the tblowner and tblName parameters as they are not
applicable to setting the fragmentation threshold or the time interval for the threshold
calculation.

In the following example, the fragmentation threshold is set to 50% and the time interval for
calculating the fragmentation threshold is set to 3600 seconds:

% ttIsgl "DSN=cachel;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"
Command> CALL ttCacheConfig('AutoRefreshLogFragmentationWarningPCT',,,'50");
< AutoRefreshLogFragmentationWarningPCT, <NULL>, <NULL>, 50 >

1 row found.

Command> CALL ttCacheConfig('AutorefreshLogMonitorInterval',,, '3600");

< AutorefreshLogMonitorInterval, <NULL>, <NULL>, 3600 >

1 row found.

To determine the current fragmentation threshold setting, call ttCacheConfig passing the
AutoRefreshLogFragmentationWarningPCT string to the Param parameter:

Command> CALL ttCacheConfig('AutoRefreshLogFragmentationWarningPCT');
< AutoRefreshLogFragmentationWarningPCT, <NULL>, <NULL>, 50 >

You can either manually initiate defragmentation or configure TimesTen to automatically
defragment. To configure what action is taken when the ratio falls below the fragmentation
threshold, call the ttCacheConfig built-in procedure with the
AutoRefreshLogDeFragmentAction string to the param parameter and the desired action as the
Value parameter as follows:

< Note:

Do not pass in any values to the tbl0Owner and tblName parameters as they are not
applicable to setting the defragmentation action.

ORACLE 618

Chapter 6
Managing the Cache Administration User's Tablespace

* Manual. This is the default. No action is taken to defragment the change log tables. Any
defragmentation must be performed manually by running the
ttCacheAutoRefreshLogDeFrag built-in procedure. See Manually Defragmenting the
Change Log Tables for Cache Groups with Autorefresh.

e Compact: TimesTen defragments the change log tables.

e CompactAndReclaim: TimesTen defragments the change log tables and reclaims the space.

Note:

When reclaiming space, the change log table is briefly locked, which temporarily
suspends writing into the base table.

In the following example, the action is set to CompactAndReclaim SO that when the
fragmentation ratio falls below the threshold, TimesTen defragments the change log tables and
reclaims the space:

% ttIsql "DSN=cachel;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"

Command> CALL ttCacheConfig('AutoRefreshLogDeFragmentAction',,, 'CompactAndReclaim');
< AutoRefreshLogDeFragmentAction, <NULL>, <NULL>, compactandreclaim >

1 row found.

To determine the current fragmentation threshold setting, call ttCacheConfig passing the
AutoRefreshLogDeFragmentAction string to the Param parameter:

Command> CALL ttCacheConfig('AutoRefreshLogDeFragmentAction');
< AutoRefreshLogDeFragmentAction , <NULL>, <NULL>, compactandreclaim >

You can discover the fragmentation percentage of the tablespace and when the last
defragmentation operation was performed with the following returned columns from the
ttCacheAutorefreshStatsGet built-in procedure:

° AutoRefreshlogFragmentationPCT: The current fragmentation percentage for the
tablespace.

° AutoRefreshlogFragmentationTS: The timestamp of when the last fragmentation
percentage was calculated.

* autoreflLogDeFragCnt: The count for how many times the tables in this particular cache
group have been defragmented.

See ttCacheConfig and ttCacheAutorefreshStatsGet in the Oracle TimesTen In-Memory
Database Reference.

Manually Defragmenting the Change Log Tables for Cache Groups with Autorefresh

ORACLE

To manually initiate a defragmentation of the change log tables, call the
ttCacheAutorefreshLogDeFrag built-in procedure as the TimesTen cache administration user
from any of the TimesTen databases that cache data from the Oracle database.

Pass in one of the following strings as the parameter:

* Compact: Defragment the change log tables.

° CompactAndReclaim: Defragment the change log tables and reclaim the space.

6-19

Chapter 6
Managing the Cache Administration User's Tablespace

Note:

When reclaiming space, the change log table is briefly locked, which temporarily
suspends writing into the base table.

The following example manually defragments the change log tables with the
ttCacheAutoRefreshLogDeFrag built-in procedure providing the CompactAndReclaim option:

% ttIsql "DSN=cachel;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"
Command> CALL ttCacheAutoRefreshLogDeFrag ('CompactAndReclaim');

See ttCacheAutorefreshLogDefrag in the Oracle TimesTen In-Memory Database Reference.

Receiving Notification on Tablespace Usage

ORACLE

In order to avoid the tablespace becoming full, you can configure TimesTen to return a warning
to the application when an update operation (such as an UPDATE, INSERT or DELETE statement)
is issued on cached Oracle Database tables and causes the usage of the Oracle cache
administration user's tablespace to exceed a specified threshold.

Call the ttCacheConfig built-in procedure as the TimesTen cache administration user from any
of the TimesTen databases that cache tables from the Oracle database. Pass the
AutoRefreshLogThlSpaceUsagePCT string to the pParam parameter and the threshold as a
numeric string to the value parameter. The threshold value represents the percentage of space
used in the Oracle cache administration user's tablespace upon which a warning is returned to
the application when an update operation is issued on a cached Oracle Database table. Do not
pass in any values to the tblowner and tblName parameters as they are not applicable to
setting a warning threshold for the usage of the Oracle cache administration user's tablespace.

The Oracle cache administration user must be granted the SELECT privilege on the Oracle
Database Sys.DBA DATA FILES table in order for the TimesTen cache administration user to set
a warning threshold on the Oracle cache administration user's tablespace usage, and for the
Oracle cache administration user to monitor its tablespace to determine if the configured
threshold has been exceeded.

The following example configures a warning to be returned to the application that issues an
update operation on a cached Oracle Database table if it results in the usage of the Oracle
cache administration user's tablespace to exceed 80 percent:

% ttIsgl "DSN=cachel;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"
Command> CALL ttCacheConfig('AutoRefreshLogTblSpaceUsagePCT',,,'80");

To determine the current Oracle cache administration user's tablespace usage warning
threshold, call ttCacheConfig passing only the AutoRefreshLogTblSpaceUsagePCT string to the
Param parameter:

Command> CALL ttCacheConfig('AutoRefreshLogTblSpaceUsagePCT');
< AutoRefreshLogTblSpaceUsagePCT, <NULL>, <NULL>, 80 >

The default Oracle cache administration user's tablespace usage warning threshold is 0
percent which means that no warning is returned to the application regardless of the
tablespace usage. The Oracle cache administration user's tablespace usage warning threshold
applies to all TimesTen databases that cache tables from the same Oracle database and have
the same Oracle cache administration user name setting.

See ttCacheConfig in the Oracle TimesTen In-Memory Database Reference.

6-20

Chapter 6
Managing the Cache Administration User's Tablespace

Recovering from a Full Tablespace

By default, when the Oracle cache administration user's tablespace is full, an error is returned
to the application when it attempts a DML operation, such as an UPDATE, INSERT Of DELETE
statement, on a particular cached Oracle Database table.

Rather than TimesTen returning an error to the Oracle Database application when the Oracle
cache administration user's tablespace is full, you can configure TimesTen to delete existing
rows from the change log tables to make space for new rows when an update operation is
issued on a particular cached Oracle Database table. If some of the deleted change log table
rows have not been applied to the cache tables, a full autorefresh operation is performed on
those cache tables in each TimesTen database that contains the tables upon the next
autorefresh cycle.

Call the ttCacheConfig built-in procedure as the TimesTen cache administration user from any
of the TimesTen databases that cache tables from the Oracle database. Pass the
TblSpaceFullRecovery String to the param parameter, the owner and name of the cached
Oracle Database table to the tblowner and tbiName parameters, respectively, on which you
want to configure an action to take if the Oracle cache administration user's tablespace
becomes full, and the action itself as a string to the value parameter.

The following are the valid actions:

* None: Return an Oracle Database error to the application when an update operation is
issued on the cached Oracle Database table. This is the default action.

e Reload: Delete rows from the change log table and perform a full autorefresh operation on
the cache table upon the next autorefresh cycle when an update operation is issued on the
cached Oracle Database table.

The following example configures an action when the Oracle cache administration user's
tablespace becomes full. In this example, rows are deleted from the change log table and a full
autorefresh operation is performed on the cache table upon the next autorefresh cycle when
an update operation is issued on the sales.customer cached Oracle Database table while the
Oracle cache administration user's tablespace is full:

% ttIsqgl "DSN=cachel;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"
Command> CALL ttCacheConfig('TblSpaceFullRecovery', 'sales', 'customer','Reload');

To determine the current action to take when an update operation is issued on a particular
cached Oracle Database table if the Oracle cache administration user's tablespace is full, call
ttCacheConfig passing only the TblSpaceFullRecovery string to the Param parameter, and the
owner and name of the cached Oracle Database table to the tbl0Owner and tblName
parameters, respectively:

Command> CALL ttCacheConfig('TblSpaceFullRecovery', 'sales', 'customer');
< TblSpaceFullRecovery, SALES, CUSTOMER, reload >

The action to take when update operations are issued on a cached Oracle Database table
while the Oracle cache administration user's tablespace is full applies to all TimesTen
databases that cache tables from the same Oracle database and have the same Oracle cache
administration user name setting.

See ttCacheConfig in the Oracle TimesTen In-Memory Database Reference.

ORACLE 601

Chapter 6
Backing Up and Restoring a TimesTen Classic Database with Cache Groups

Backing Up and Restoring a TimesTen Classic Database with
Cache Groups

TimesTen Classic databases containing cache groups can be backed up and restored with
either the ttBackup Or ttMigrate utilities.

» If the restored database connects to the same backend Oracle database, then use the
ttBackup and ttRestore utilities, then drop and recreate all cache groups in the restored
TimesTen database. If they are static cache groups, you may be required to reload them.
For dynamic cache groups, the reload is optional as data is pulled in from the Oracle
database as it is referenced.

Note:

If another TimesTen database is used to connect to the original backend Oracle
database (and now no longer connects) and if all cache groups in the TimesTen
database were not cleanly dropped, then run the cacheCleanUp.sql SQL*Plus
script against the original Oracle database to remove all leftover objects. Specify
the host and path for the original TimesTen database.

See SQL*Plus Scripts for Cache.

« |f the restored database connects to a different backend Oracle database than what it had
originally connected with, then perform one of the following:

— Backing Up and Restoring Using the ttBackup and ttRestore Utilities
— Backing Up and Restoring TimesTen Classic Database with the ttMigrate Utility

Backing Up and Restoring Using the ttBackup and ttRestore Utilities

ORACLE

When you use the ttBackup utility, it backs up the TimesTen database with all of its data at a
particular time.

Thus, if you want to use these cache groups again, restoring this backup requires additional
action as the restored data within the cache groups are out of date and out of sync with the
data in the backend Oracle database. See Back Up, Restore, and Migrate Data in TimesTen
Classic in the Oracle TimesTen In-Memory Database Installation, Migration, and Upgrade
Guide.

< Note:

See ttBackup and ttRestore in the Oracle TimesTen In-Memory Database Reference.

If the restored database connects to a different backend Oracle database than what it had
originally connected with and you want to use the ttBackup and ttRestore utilities to backup

and restore your database, then perform the following:

6-22

ORACLE

Chapter 6
Backing Up and Restoring a TimesTen Classic Database with Cache Groups

Run the ttBackup utility command to backup the database and its objects into a binary file.
For example, to backup the cachel database using the /tmp/dump directory for temporary
storage:

o)

% ttBackup -dir /tmp/dump -connstr "DSN=cachel"
Stop the cache agent.

% ttIsgl -connstr "DSN=cachel;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"
Command> call ttCacheStop;

(Optional) Drop all cache groups from the TimesTen database. Since the database still
exists with its cache groups, TimesTen recommends that you drop the cache groups.

Command> DROP CACHE GROUP readcache;
Command> exit;

Disconnecting...

Done.

Destroy the database before restoring in the same or another location.

o)

% ttDestroy cachel

Clean up objects on the Oracle database. Run the timesten_home/install/
oraclescripts/cacheCleanUp.sql SQL*Plus script from the current database install as
the Oracle cache administration user to drop the Oracle Database objects used to
implement autorefresh operations. The host name of the TimesTen Classic system and the
TimesTen database (including its path) are passed as arguments to the cacheCleanUp.sql
script.

You can run the ttCachelInfo utility or the cacheInfo.sqgl script as the Oracle cache
administration user to determine the host and database names.

cd timesten home/install/oraclescripts
sqlplus cacheadmin/orapwd
SQL> @cacheCleanUp "sysl" "/users/OracleCache/cachel"

o
o
o
o

*****************************OUTPUT**************************************

Performing cleanup for object id: 69959 which belongs to table : CUSTOMER
Executing: delete from tt 07 agent status where host = sysl and datastore =
/users/OracleCache/cachel and object id = 69959

Executing: drop table tt 07 69959 L

Executing: drop trigger tt 07 69959 T

Executing: delete from tt 07 user count where object id = object idl
Performing cleanup for object id: 69966 which belongs to table : ORDERS
Executing: delete from tt 07 agent status where host = sysl and datastore =
/users/OracleCache/cachel and object id = 69966

Executing: drop table tt 07 69966 L

Executing: drop trigger tt 07 69966 T

Executing: delete from tt 07 user count where object id = object idl
KAKKAAI kAR kA Ak kA Ak kA h kA hk kA hk kA Ak k kA hkk kA hkhk kA hkhk kA hkkhk Ak kkhkhkhkdkxhkhkdkdkhkkkdxkk*x

Restore the database with the ttRestore utility and then delete the temporary directory.

% ttRestore -dir /tmp/dump -connstr "DSN=cachel"
Restore started ...
Restore complete

o)

% rm -r /tmp/dump

In order to re-synchronize the data within the cache groups, you must drop and recreate
the cache groups:

a. Connect to the TimesTen database providing the cache administration user
credentials.

6-23

Chapter 6
Backing Up and Restoring a TimesTen Classic Database with Cache Groups

b. Drop the cache groups that were restored with the ttRestore utility. Because the data
is out of sync, you may see errors.

c. Register the Oracle cache administration user name and password with the
ttCacheUidPwdSet built-in procedure.

d. Start the cache agent.
e. Recreate and, if required, reload the cache groups.

% ttIsgl -connstr "DSN=cachel;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"

Command> DROP CACHE GROUP readcache;
Command> call ttCacheUidPwdSet ('cacheadmin', 'orapwd') ;
Command> call ttCacheStart;
Command> CREATE READONLY CACHE GROUP readcache
AUTOREFRESH INTERVAL 5 SECONDS
FROM sales.readtab
(keyval NUMBER NOT NULL PRIMARY KEY, str VARCHAR2(32));
Command> LOAD CACHE GROUP readcache COMMIT EVERY 256 ROWS;
2 cache instances affected.

Note:

If the restored TimesTen database is not able to connect to any backend Oracle
database, then TimesTen cannot autorefresh the data for the read-only cache
groups.

Backing Up and Restoring TimesTen Classic Database with the ttMigrate

Utility

ORACLE

The ttMigrate utility saves tables and indexes from a TimesTen Classic database into a binary
file.

When a cache group is migrated and included in the binary file, it includes the cache group
definition and schema; however, the data of the cache group is not migrated.

Note:

See Back Up, Restore, and Migrate Data in TimesTen Classic in the Oracle
TimesTen In-Memory Database Installation, Migration, and Upgrade Guide and
ttMigrate in the Oracle TimesTen In-Memory Database Reference.

If the restored database connects to a different backend Oracle database than what it had
originally connected with and you want to use the ttMigrate utility for backing up and restoring
the database, then perform the following:

1.

Stop the cache agent.

% ttIsgl -connstr "DSN=cachel;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"
Command> call ttCacheStop;

Command> exit

Disconnecting...

Done.

6-24

ORACLE

Chapter 6
Backing Up and Restoring a TimesTen Classic Database with Cache Groups

Run the ttMigrate -c utility command to save the database and its objects into a binary
file.

$ ttMigrate -c "DSN=cachel" cachel.ttm

Saving user CACHEADMIN
User successfully saved.

Saving user sales
User successfully saved.

Saving table CACHEADMIN.READTAB
Saving rows...
2/2 rows saved.

Table successfully saved.

Saving cache group CACHEADMIN.READCACHE
Saving cached table SALES.READTAB
Cache group successfully saved.

(Optional) Drop all cache groups from the TimesTen database. Since the database still
exists with its cache groups, TimesTen recommends that you drop the cache groups.
When you drop all cache groups before destroying the TimesTen database, all metadata
on the Oracle Database for these cache groups is deleted. However, if you use the
cacheCleanup.sgl script in a future step, this script deletes the metadata on the Oracle
Database.

You may see errors reported, which can be ignored.

Command> DROP CACHE GROUP readcache;
Command> exit

Disconnecting...

Done.

Destroy the TimesTen database.

o)

% ttDestroy cachel

Clean up objects on the Oracle database: If you did not drop that cache groups in an
earlier step, you can run the timesten_home/install/oraclescripts/cacheCleanUp.sql
SQL*Plus script as the Oracle cache administration user to drop the Oracle Database
objects used to implement autorefresh operations. The host name of the TimesTen Classic
system and the TimesTen database (including its path) are passed as arguments to the
cacheCleanUp.sql script.

You can run the ttCacheInfo utility or the cacheInfo.sql script as the Oracle cache
administration user to determine the host and database names.

cd timesten home/install/oraclescripts
sqlplus cacheadmin/orapwd
SQL> @cacheCleanUp "sysl" "/users/OracleCache/cachel"

o
o
o
o

‘k**‘k**‘k**‘k**‘k****************OUTPUT*********‘k***‘k**‘k**‘k**‘k******‘k**‘k**‘k**

Performing cleanup for object id: 69959 which belongs to table : CUSTOMER
Executing: delete from tt 05 agent status where host = sysl and datastore =
/users/OracleCache/cachel and object id = 69959

Executing: drop table tt 05 69959 L

Executing: drop trigger tt 05 69959 T

Executing: delete from tt 05 user count where object id = object idl
Performing cleanup for object id: 69966 which belongs to table : ORDERS
Executing: delete from tt 05 agent status where host = sysl and datastore =
/users/OracleCache/cachel and object id = 69966

Executing: drop table tt 05 69966 L

6-25

Chapter 6
Backing Up and Restoring a TimesTen Classic Database with Cache Groups

Executing: drop trigger tt 05 69966 T

Executing: delete from tt 05 user count where object id = object idl
KAKKAAI R A ARk A Ak kA Ak kA h kA hk kA hk kA Ak k kA hk ok kA hk kA hkhk kA hkhkk Ak kkdkhkhkdkxhkhkkdkhkkkxxkk*x

6. Create and restore the database:
a. Create the TimesTen database with a first connection request.

b. Create the cache table user and the TimesTen cache administration user. Grant
appropriate privileges to these users.

Note:

Depending on which TimesTen Classic release you are migrating from, the
users and privileges may or may not be migrated. See ttMigrate in the Oracle
TimesTen In-Memory Database Reference.

% ttIsgl cachel
Command> CREATE USER cacheadmin IDENTIFIED BY timesten;
User created.

Command> GRANT CREATE SESSION, CACHE_MANAGER, CREATE ANY TABLE TO cacheadmin;
Command> CREATE USER sales IDENTIFIED BY timesten;
User created.

Command> exit
Disconnecting...
Done.

c. Register the Oracle cache administrator user name and password with the
ttCacheUidPwdSet built-in procedure.

% ttIsql -connstr "DSN=cachel;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"
Command> call ttCacheUidPwdSet ('cacheadmin', 'orapwd') ;

Command> exit

Disconnecting...

Done.

7. Restore the database from the saved binary file with the ttMigrate -r utility command.

o)

$ ttMigrate -r -relaxedUpgrade -cacheuid cacheadmin -cachepwd orapwd
-connstr "DSN=cachel;UID=cacheadmin;PwdWWallet=/wallets/cacheadminwallet"
cachel.ttm

Restoring table CACHEADMIN.READTAB
Restoring rows...
2/2 rows restored.

Table successfully restored.

Restoring cache group CACHEADMIN.READCACHE
Restoring cached table SALES.READTAB
1/1 cached table restored.

Cache group successfully restored.

8. Connect to the restored database and reset the cache autorefresh state:
a. Connect to the TimesTen database with ttlsql.
b. Start the cache agent.

c. Alter the cache groups to set autorefresh state to ON.

ORACLE 606

Chapter 6
Migrating the Oracle Database Requires Cleaning Up Cache Objects

% ttIsql -connstr "DSN=cachel;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"
Command> call ttCacheStart;
Command> ALTER CACHE GROUP readcache SET AUTOREFRESH STATE ON;

Note:

If the restored TimesTen database is not able to connect to any backend Oracle
database, then TimesTen cannot autorefresh the data for the read-only cache
groups.

Migrating the Oracle Database Requires Cleaning Up Cache

Objects

ORACLE

When you set up cache, cache objects and metadata are installed on both the TimesTen and
Oracle databases. When you migrate the Oracle database, the cache metadata on the back-
end Oarcle database is no longer correct. Thus, before you migrate your Oracle database, you
must clean up cache objects and metadata from both the TimesTen and Oracle databases.

1. Drop all cache groups with the DROP CACHE GROUP statement.

The following example connects as the TimesTen cache administration user to the cachel
database and drops the customer orders cache group.

% ttIsql "DSN=cachel;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"
Command> DROP CACHE GROUP customer orders;

See Dropping a Cache Group.

2. Clean up cache on both TimesTen and Oracle databases. If you do not clean up cache on
both TimesTen and Oracle databases, you will encounter cache errors.

* When using TimesTen Classic, run the timesten home/install/oraclescripts/
cacheCleanUp.sql SQL*Plus script as the Oracle cache administration user to clean
up the Oracle database cache objects and metadata used for cache operations. The
host name of the TimesTen Classic system and the TimesTen database (including its
path) are passed as arguments to the cacheCleanUp.sqgl script.

* InTimesTen Scaleout, run the timesten home/install/oraclescripts/
scaleoutCacheCleanUp.sql SQL*Plus script as the Oracle cache administration user
to clean up the Oracle Database cache objects and metadata used for cache
operations. The grid name and the TimesTen database name are passed as
arguments to the scaleoutCacheCleanUp.sgl Script.

The following example shows the TimesTen database contains one read-only cache
group customer orders with cache tables sales.customers and sales.orders. This
example uses the cacheCleanUp.sql script for a TimesTen Classic system. It drops the
change log tables and triggers associated with the two cache tables. The
scaleoutCacheCleanup.sql script runs in the same manner for TimesTen Scaleout,
except that it requires the grid name and database name as input parameters.

% cd timesten home/install/oraclescripts
% sqlplus cacheadmin/orapwd
SQL> @cacheCleanUp "sysl" "/diskl/databases/databasel"

KAKKXKK KK KKK K KK KAXK KK KA KK KA XQUTPUTFF A * A XKk Kk kX Kk ko kX Kk k ok hhxxkokhhkxkkkhkx

Performing cleanup for object id: 69959 which belongs to table : CUSTOMERS

6-27

Chapter 6
Migrating the Oracle Database Requires Cleaning Up Cache Objects

Executing: delete from tt 07 agent status where host = sysl and datastore =
/diskl/databases/databasel and object id = 69959

Executing: drop table tt 07 69959 L

Executing: drop trigger tt 07 69959 T

Executing: delete from tt 07 user count where object id = object idl
Performing cleanup for object id: 69966 which belongs to table : ORDERS
Executing: delete from tt 07 agent status where host = sysl and datastore =
/diskl/databases/databasel and object id = 69966

Executing: drop table tt 07 69966 L

Executing: drop trigger tt 07 69966 T

Executing: delete from tt 07 user count where object id = object idl
KAKKAAI kA ARk A Ak kA Ak kA h kA ko kA hk kA Ak k kA hk ok kA hkhkkxhkhkhk Ak kk Ak kkdkhkhkdkxhkhkdkdkhkkkkxk k%

3. Perform the Oracle database migration.

4. If the Oracle migration eliminated the Oracle cache administration user and its tablespace,
then set up cache again on the Oracle database. Check the TimesTen database to ensure
that the TimesTen cache administration user and the schema user still exists. See Setting
Up a Caching Infrastructure.

5. Recreate the cache groups. See Defining Cache Groups.

ORACLE 608

Cache Performance

The following sections contain information about cache performance.

Note:

See Monitoring Cache Groups with Autorefresh and Poor Autorefresh Performance in
the Oracle TimesTen In-Memory Database Monitoring and Troubleshooting Guide for
extensive information about monitoring autorefresh operations and improving
autorefresh performance.

See AWT Performance Monitoring and Possible Causes of Poor AWT Performance
in the Oracle TimesTen In-Memory Database Monitoring and Troubleshooting Guide.

e Dynamic Load Performance

e Improving AWT Throughput

* Improving Performance for Autorefresh Operations
* Retrieving Statistics on Autorefresh Transactions

e Caching the Same Oracle Table on Two or More TimesTen Databases

Dynamic Load Performance

ORACLE

Dynamic loading of a single cache instance based on a primary key search of the root table
has faster performance than primary key searches on a child table or foreign key searches on
a child table.

See Dynamic Cache Groups.

Dynamic loading of multiple cache instances may have faster performance than loading single
cache instances. See Dynamically Loading Multiple Cache Instances.

If you combine dynamic load operations with autorefresh operations, you may experience
some contention. See Improving Performance for Autorefresh Operations for details on how to
improve your performance in this situation.

There can be a performance cost when opening a new connection for a dynamic load
operation. You can reduce the cost of opening new connections by creating a cache
connection pool. You may want to use a cache connection pool if your application requires
frequent dynamic load operations that would create too many open connections to the Oracle
database. See Managing a Cache Connection Pool to the Oracle Database for Dynamic Load
Requests.

7-1

Chapter 7
Dynamic Load Performance

Managing a Cache Connection Pool to the Oracle Database for Dynamic
Load Requests

ORACLE

When a qualifying SELECT statement is issued on any dynamic read-only cache table and the
data does not exist in the cache table (but does exist in the base Oracle database table), this
results in a cache miss. After which, Timesten performs a dynamic load to retrieve the data
from the Oracle database (either over an existing or a new connection to the Oracle database)
and inserts the rows into the cache group.

There can be a performance cost when opening a new connection for the dynamic load. You
can reduce the cost of opening new client connections by creating a cache connection pool.

By default, a client connection to the Oracle database remains open until the application's
connection to TimesTen is closed. When the application initiates a dynamic load, each client
connection is associated with a connection to the Oracle database (when using cache). If you
use several client connections, TimesTen's requests for new client connections to the Oracle
database could exceed the maximum number of client connections allowed to the Oracle
database.

Applications can have multiple dynamic load requests spread across multiple client
connections to the Oracle database, which could result in too many open client connections to
the back-end Oracle database. Alternately, there could be applications across multiple
TimesTen databases performing dynamic loads against the same Oracle database. For client/
server applications with multiple client connections per server, you can configure TimesTen to
use the cache connection pool for all client connections that are used for dynamic load
operations from the Oracle database. The cache connection pool can only be utilized by an
application using a client connection as the pooled connections are shared across all client
connections.

Dynamic load requests will use an existing client connection to the Oracle database from the
cache connection pool (rather than creating a new one) to reduce the total number of open
client connections. Once the dynamic load request completes, the connection is returned to the
cache connection pool.

Using an existing connection from the cache connection pool optimizes your application
performance by:

* Reducing the cost of starting a dedicated Oracle server process (or thread) for each newly
requested connection.

* Reducing the total number of Oracle server processes (threads) by sharing them amongst
client connections rather than having each process (thread) dedicated to a single
connection. However, if there are no available client connections in the cache connection
pool, the dynamic load operation waits until a connection is added to the pool.

* Enabling the sharing of session level server resources, such as memory, between client
connections.

Once the connection is returned to the cache connection pool, the application logically sees
the client connection as disconnected. Thus, if an application contains passthrough statements
(DDL or DML statements performed in the Oracle database), any passthrough statement must
be committed or rolled back before the dynamic load is requested or an error is thrown. You
can set autocommit to oN or run the commit or rollback within the transaction before the
dynamic load.

7-2

Chapter 7
Dynamic Load Performance

Note:

If an application runs a higher than expected number of dynamic load requests and
performance is critical, then you might consider either:

e Removing or minimizing passthrough statements with DDL or DML statements
(which can slow down performance) from any application using the cache
connection pool.

e Maintaining a completely separate client connection directly to the Oracle
Database to run its SQL directly against the Oracle database, rather than using
passthrough statements to run SQL indirectly through TimesTen.

To decide whether to use the cache connection pool, evaluate if any applications request a
high number of dynamic load operations from the Oracle database (resulting in too many open
client connections to the Oracle database).

The following sections describe how to use the cache connection pool for your dynamic read-
only cache groups:

* Enable the Cache Connection Pool

e Size the Cache Connection Pool

e Use the ChildServer Connection Attribute to Identify a Child Server Process
» Dynamically Applying Cache Connection Pool Sizing Modifications

* Example Demonstrating Management of the Cache Connection Pool

e Limiting the Number of Connections to the Oracle Database

* Restrictions for the Cache Connection Pool

Enable the Cache Connection Pool

ORACLE

You can specify that TimesTen creates a cache connection pool on the TimesTen server when
it starts up.

If a cache connection pool is created, then a dynamic load request from a client/server
connection acquires a connection from the cache connection pool, performs the dynamic load,
and returns the connection to the cache connection pool after the dynamic load request
completes. The cache connection pool is destroyed when the TimesTen server shuts down.

Note:

The cache connection pool can only be initiated from client-server applications (using
multithreaded mode) and is used only for dynamic loads initiated for dynamic read-
only cache groups.

To enable client/server connection requests to use the cache connection pool, an application
must specify the following connection attributes when connecting.

* MaxConnsPerServer connection attribute: This connection attribute sets the maximum
number of client/server connections that can be created for each child server process.
When the value is set to > 1, each TimesTen child server can handle multiple client

7-3

ORACLE

Chapter 7
Dynamic Load Performance

connections where each client/server connection is multithreaded. You can only use the
cache connection pool with a multithreaded client/server connection.

When MaxConnsPerServer connection attribute is set to 1, TimesTen creates one single-
threaded client/server connection for each child server process.

e ServersPerDSN connection attribute: Value designates the number of child server
processes to spawn for the TimesTen server. Default is 1.

Each new incoming connection spawns a new child server process up to the value
specified by the ServersPerDSN connection attribute. When the maximum number of child
server processes is reached, the existing child server processes handle multiple
connections (up to the number specified in MaxConnsPerServer) in a round-robin method.
That is, if you specify ServersPerDSN = 2 and MaxConnsPerServer = 3, then the first two
connections would spawn two child server processes. The third through the sixth
connections would be handled by these child server processes, where each child server
process would service every other connection.

Once all of the child server processes have the maximum allowed number of connections,
the next incoming connection starts a new set of child server processes.

The ServersPerDSN and MaxConnsPerServer connection attributes are used to designate
how to distribute connections across multiple child server processes.

* UseCacheConnPool connection attribute: Must be enabled (set to 2) to use the cache
connection pool. When the UseCacheConnPool connection attribute is enabled, the cache
connection pool is created and used for dynamic load operations initiated by multithreaded
client/server connections. If the UseCacheConnPool connection attribute is disabled (set to
0), then the cache connection pool is not created and the dynamic load operations perform
using the existing behavior. See UseCacheConnPool in the Oracle TimesTen In-Memory
Database Reference.

Note:

You may also want to limit the number of connections to the Oracle database. See
Limiting the Number of Connections to the Oracle Database.

The following example specifies connection attributes for the cache connection pool in the
DSN definition:

The cachel DSN definition in the sys.odbc. ini file specifies UseCacheConnPool=2,
ServersPerDSN=2 and MaxConnsPerServer=3.

[cachel]
DataStore=/users/OracleCache/databasel
PermSize=64
OracleNetServiceName=oracledb
DatabaseCharacterSet=AL32UTF8
UseCacheConnPool=2
ServersPerDSN=2
MaxConnsPerServer=3

Alternatively, you can specify both of the connection attributes on the command line when
connecting from the application.

ttIsql
"DSN=cachel;OracleNetServiceName=oracledb;UseCacheConnPool=2; ServersPerDSN=2;MaxConnsPerS
erver=3"

7-4

Chapter 7
Dynamic Load Performance

Note:

See the MaxConnsPerServer, ServersPerDSN, and UseCacheConnPool sections in
the Oracle TimesTen In-Memory Database Reference.

Size the Cache Connection Pool

ORACLE

You can appropriately size the cache connection pool to avoid contention for connections with
the ttCacheConnPoolSet built-in procedure.

The ttCacheConnPoolSet built-in procedure saves the values of these parameters in the
Oracle database, which are then used as the default values when restarting the TimesTen
server. Once applied to each TimesTen server, the values specified are used for the cache
connection pool across all client/server applications for a TimesTen database.

If you want to modify these values after the TimesTen server starts, you can change the cache
connection pool sizing parameters on the Oracle database using the ttCacheConnPoolSet
built-in procedure. After which, you can re-initialize the TimesTen server by either:

e Restarting the TimesTen server to re-initialize the server (and all child server processes)
with the new sizing parameters.

e Dynamically re-initializing each TimesTen server with the cache connection pool
parameters saved on the Oracle database with the ttCacheConnPoolApply built-in
procedure. See Dynamically Applying Cache Connection Pool Sizing Modifications.

You can run the ttCacheConnPoolSet built-in procedure from a direct connection, a single-
threaded client/server connection or a multithreaded client/server connection.

< Note:

See the ttCacheConnPoolSet in the Oracle TimesTen In-Memory Database
Reference.

For example, the following initiates the minimum and maximum number of pooled connections
to be between 10 and 32 connections and the increment is 1. The maximum idle time by the
client is set to 10 seconds. And all dynamic load operations will wait for an available
connection from the cache connection pool.

Command> call ttCacheConnPoolSet (10, 32, 1, 10, 0);

Set the minimum and maximum size of the cache connection pool to levels where connections
are available when needed. If no connections are available in the pool, dynamic load
operations stall until a connection from the pool is available (unless you set ConnNoWait=1). If a
connection to the Oracle database times out, you receive an error denoting a loss of the
connection, sometimes requiring a rollback on TimesTen.

You can query what the cache connection pool parameters are with the ttCacheConnPoolGet
built-in procedure.

See Example Demonstrating Management of the Cache Connection Pool.

7-5

Chapter 7
Dynamic Load Performance

Use the ChildServer Connection Attribute to Identify a Child Server Process

In a client/server environment, TimesTen can create multiple TimesTen child server processes
to handle incoming requests from clients. You can use the ChildServer connection attribute to
identify a specific child server process when performing certain cache connection pool
administrative functions, such as the ttCacheConnPoolGet ('current') or
ttCacheConnPoolApply built-in procedures.

The target child server process is identified by a value specified using the ChildServer=n
connection attribute, where n is a number ranging from 1 to the number of running child server
processes. When you specify the ChildServer connection attribute, then the client process
connects using the identified child server process. If the attribute is not specified, then the
client process connects using a randomly selected child server process.

See ttCacheConnPoolApply and ttCacheConnPoolGet in the Oracle TimesTen In-Memory
Database Reference. See Example Demonstrating Management of the Cache Connection
Pool.

Dynamically Applying Cache Connection Pool Sizing Modifications

ORACLE

The cache connection pool parameters are saved in the Oracle database, which are used to
initialize the cache connection pool for the TimesTen database every time that the TimesTen
server restarts. The sizing is set on the Oracle database with the ttCacheConnPoolSet built-in
procedure. This sizing applies to each TimesTen server and child server processes when
started.

However, you can dynamically resize the cache connection pool parameters for each child
server process (while the database is running) with the ttCacheConnPoolaApply built-in
procedure.

* Execute the ttCacheConnPoolSet built-in procedure to set a new set of parameters that are
stored on the Oracle database.

* Connect to the child server process.

* Dynamically associate the new set of cache connection pool parameters for this particular
child server process with the ttCacheConnPoolApply built-in procedure.

For example, the following connects to the child server process identified as 1 and applies the
new cache connection pool configuration to this child server process. It does the same process
for child server process 2 (given that ServersPerDSN=2).

Command> connect "DSN=cachel;ChildServer=1;";
Command> call ttCacheConnPoolApply;
Command> disconnect;

Command> connect "DSN=cachel;ChildServer=2;";

Command> call ttCacheConnPoolApply;
Command> disconnect;

You can run the ttCacheConnPoolApply built-in procedure only from a multithreaded client/
server connection.

If the cache connection pool fails, you can recreate the pool by running the
ttCacheConnPoolApply built-in procedure from any child server process.

See Example Demonstrating Management of the Cache Connection Pool.

7-6

Chapter 7
Dynamic Load Performance

Example Demonstrating Management of the Cache Connection Pool

ORACLE

This example shows how to set new values for the cache connection pool and apply them to
two separate child server processes.

This example uses the cachel DSN as shown in Enable the Cache Connection Pool that
enables the cache connection pool. It also assumes that you have set the cache administrator
and password as described in Registering the Cache Administration User Name and
Password.

/* Since ServerPerDSN is set to two and MaxConnsPerServer is set to 3, the first
and second connections spawn off both child server processes. And then you can
create four more connections to reach the MaxConnsPerServer maximum, which are
routed by the TimesTen server to the appropriate child server process (using a
round robin method) .*/

Command> connect "DSN=cachel;" as connl;

Command> connect "DSN=cachel;" as conn2;

Command> connect "DSN=cachel;" as conn3;

Command> connect "DSN=cachel;" as conn4;

Command> connect "DSN=cachel;" as conn5;

Command> connect "DSN=cachel;" as conné6;

Command> use connl;

/* Query the values for the cache connection pool that are saved on the Oracle database*/
Command> call ttCacheConnPoolGet ('saved');
<1, 10, 1, 10, 0, -1, -1, -1>

/* Change the configuration of the cache connection pool */
Command> call ttCacheConnPoolSet (1, 20, 1, 10, 0);

/* Query existing values for cache connection pool saved on the Oracle data base.
Since these are the saved values, this returns -1 for OpenCount, BusyCount
and LastOraErr. */
Command> call ttCacheConnPoolGet ('saved');
<1, 20, 1, 10, 0, -1, -1, -1 >

/* Query existing values for the current cache connection pool on this TimesTen database
*/

Command> call ttCacheConnPoolGet ('current');

<1, 10, 1, 10, 0, 1, O, O >

/* Connect to the child server process 1 using the ChildServer=1 connection
attribute. Apply the saved values as the current values to the cache connection
pool for child server process identified as ChildServer 1. */

Command> connect "DSN=cachel;ChildServer=1;";

Command> call ttCacheConnPoolApply;

Command> disconnect;

/* Connect to the child server process 1 using the ChildServer=1 connection
attribute. Apply the saved values as the current values to the cache connection
pool for child server process identified as ChildServer 2. */

Command> connect "DSN=cachel;ChildServer=2;";

Command> call ttCacheConnPoolApply;

Command> disconnect;

/* Query values for the cache connection pool in ChildServer 1 */
Command> use connl;

Command> call ttCacheConnPoolGet ('current');

<1, 20, 1, 10, 0O, 1, O, O >

7-7

Chapter 7
Dynamic Load Performance

/* Query values for the cache connection pool in ChildServer 2 */
Command> use conn?2;

Command> call ttCacheConnPoolGet ('current');

<1, 20, 1, 10, 0O, 1, O, 0 >

Limiting the Number of Connections to the Oracle Database

ORACLE

You can optimize performance while ensuring a limit to the number of connections to the
Oracle database.

Tuning the total number of connections depends on the following:

Note:

These calculations assume that all connections to the Oracle database are client/
server connections using a multithreaded server. The connections referred to in the
rest of this section are only those used for dynamic load operations. There can be
other connections from TimesTen to the Oracle database that are not accounted for
in these calculations.

* N: The number of connections to the Oracle database.

« P: The limit on the number of connections for each cache connection pool, where each
TimesTen child server process has a cache connection pool. You can set this with the
MaxSize cache connection pool parameter using the ttCacheConnPoolSet built-in
procedure.

e S: The maximum number of child server processes that can be spawned for new
connections. Currently, there is no direct way to limit the number of child server processes.
Indirectly, you can influence the number of child server processes by setting the
MaxConnsPerServer and Connections connection attributes. You should measure S on
your system when your system is in a steady state that represents the typical operating
conditions.

e M: The maximum number of connections for each child server process, which you can set
with the MaxConnsPerServer connection attribute.

¢ D: The maximum number of connections to a DSN, which is set with the Connections
connection attribute.

The number of connections (N) to the Oracle database is equal to the maximum number of
TimesTen child server processes (S) times the maximum number of connections for each
cache connection pool (P).

N=S*P
The maximum number of connections (D) to the DSN is equal to the maximum number of

connections for each child server process (M) times the maximum number of TimesTen child
server processes (S).

D=M*S

With the above calculation, you can also state:

S=D/M

Since there is no hard limit that we can configure for the number of TimesTen child server
processes, we substitute for S to get the following equation:

7-8

Chapter 7
Improving AWT Throughput

N=(D*P) /M

Assuming that all connections to the Oracle database are client/server connections, then the
maximum number of connections to the Oracle database arising from cache connection pools
is equal to the maximum number of connections to the DSN (set by the Connections
connection attribute) times the number of connections for each cache connection pool (set by
the MaxSize cache connection pool parameter), which is then divided by the maximum number
of connections for each child server process (set by the MaxConnsPerServer connection
attribute).

¢ Note:

For TimesTen Scaleout, you may also want to limit the connections to the Oracle
database through limiting the number of cache agents. See Limiting Cache Agent
Connections to the Oracle Database in the Oracle TimesTen In-Memory Database
Scaleout User's Guide.

Restrictions for the Cache Connection Pool

There are restrictions when using the cache connection pool.

* You cannot use the cache connection pool in conjunction with the Oracle Database
Resident Connection Pooling feature.

* The cache connection pool is only supported for multithreaded client/server connections,
where the MaxConnsPerServer connection attribute must be greater than 1.

e The cache connection pool is only used for dynamic load operations for dynamic read-only
cache groups.

Improving AWT Throughput

There are best practice methods to improve throughput for AWT cache groups.

e Improving AWT Throughput with Parallel Propagation to the Oracle Database
e Improving AWT Throughput with SQL Array Processing

Improving AWT Throughput with Parallel Propagation to the Oracle

Database

ORACLE

To improve throughput for an AWT cache group, you can configure multiple threads that act in
parallel to propagate and apply transactional changes to the Oracle database. Parallel
propagation enforces transactional dependencies and applies changes in AWT cache tables to
Oracle Database tables in commit order.

Parallel propagation is supported for AWT cache groups with the following configurations:

e AWT cache groups involved in an active standby pair replication scheme

* AWT cache groups in a single TimesTen database (without a replication scheme
configuration)

e AWT cache groups configured with any aging policy

7-9

Chapter 7
Improving AWT Throughput

The following data store attributes enable parallel propagation and control the number of
threads that operate in parallel to propagate changes from AWT cache tables to the
corresponding Oracle Database tables:

e ReplicationApplyOrdering enables parallel propagation by default.

e ReplicationParallelism defines the number of transmitter threads on the source
database and the number of receiver threads on the target database for parallel replication
in a replication scheme. This value can be between 2 and 32 when used solely for parallel
replication. The default is 1. In addition, the value of ReplicationParellelism cannot
exceed half the value of LogBufParallelism.

° CacheAWTParallelism, when set, determines the number of threads used in parallel
propagation of changes from AWT cache tables to the Oracle Database tables. Set this
attribute to a number from 2 to 31. The default is 1.

Parallel propagation for an AWT cache group is configured with one of the following scenarios:
e ReplicationApplyOrdering is setto O and ReplicationParallelism is greater than 1.

If you do not set CacheAWTParallelism, the number of threads that apply changes to
Oracle Database is 2 times the setting for ReplicationParallelism. For example, if
ReplicationParallelism=3, the number of threads that apply changes to Oracle
Database tables is 6. In this case, ReplicationParallelism can only be set from 2 to 16;
otherwise, twice the value would exceed the maximum number of 31 threads for parallel
propagation. If the value is set to 16, the maximum number of threads defaults to 31.

e ReplicationApplyOrdering is setto 0, ReplicationParallelism is equal to or greater
than 1, and CacheAWTParallelism is greater than 1. The value for CacheAWTParallelism
must be greater than or equal to the value set for ReplicationParallelism and less than
or equal to 31.

If CacheAWTParallelism is not specified, then ReplicationParallelismis used to
determine the number of threads that are used for parallel propagation to Oracle
Database. However, since this value is doubled for parallel propagation threads, you can
only set ReplicationParallelism to @ number from 2 to 16. If the value is set to 16, the
maximum number of threads defaults to 31.

If both ReplicationParallelism and CacheAWTParallelism attributes are set, the value
set in CacheAWTParallelism configures the number of threads used for parallel
propagation. The setting for CacheAWTParallelism determines the number of apply
threads for parallel propagation and the setting for ReplicationParallelism determines
the number of threads for parallel replication. Thus, if ReplicationParallelism is set to 4
and CacheAWTParallelism is setto 6, then the number of threads that apply changes to
Oracle Database tables is 6. This enables the number of threads used to be different for
parallel replication and parallel propagation to Oracle Database tables.

Note:

See Configuring Parallel Replication in the Oracle TimesTen In-Memory Database
Replication Guide. See ReplicationApplyOrdering, ReplicationParallelism, and
CacheAWTParallelism in the Oracle TimesTen In-Memory Database Reference.

These data store attributes are interrelated. Table 7-1 shows the result with the combination of
the various possible attribute values.

ORACLE 7-10

Chapter 7
Improving AWT Throughput

Table 7-1 Results of Parallel Propagation Data Store Attribute Relationships

ReplicationApply ReplicationParallelism

CacheAWTParallelism Number of Parallel Propagation

Ordering Threads

Set to 0, which Set to > 1 for multiple Not specified. Set to twice the value of

enables parallel tracks and <= 16. ReplicationParallelism.

propagation

Set to 0, which Setto > 16 and <= 32 for Not specified. Error is thrown. If

enables parallel multiple tracks. CacheAWTParallelismis not set,

propagation then 2 times the value set in
ReplicationParallelism specifies
the number of threads. Thus, in this
case, ReplicationParallelism
cannot be greater than 16.

Set to 0, which Setto > 1 and <= 32 for Setto >=to Set to number specified by

enables parallel
propagation

multiple tracks. ReplicationParallelism. CacheAWTParallelism.

Set to 0, which
enables parallel
propagation

Setto > 1 and <= 32 for
multiple tracks.

Error is thrown at database creation.
The CacheAWTParallelism must be
set to a value greater than or equal to
ReplicationParallelism.

Setto <
ReplicationParallelism.

Set to 0, which Setto 1 or not specified. Setto>1 Set to number specified by

enables parallel Single track. CacheAWTParallelism.
propagation

Set to 1, which N/A Setto>1 Error is thrown at database creation,

disables parallel

since parallelism is turned off, but

propagation. CacheAWTParallelismis setto a
value, expecting parallel propagation to
be enabled.

Foreign keys in Oracle Database tables that are to be cached must have indexes created on
the foreign keys. Consider these Oracle Database tables:
CREATE TABLE parent (cl NUMBER PRIMARY KEY NOT NULL);
CREATE TABLE child (cl NUMBER PRIMARY KEY NOT NULL,
c2 NUMBER REFERENCES parent(cl));

CREATE TABLE grchild (cl NUMBER PRIMARY KEY NOT NULL,

c2 NUMBER REFERENCES parent(cl),

c3 NUMBER REFERENCES parent(cl));
These indexes must be created:
CREATE INDEX idx 1 ON child(c2);
CREATE INDEX idx 2 ON grchild(c2);
CREATE INDEX idx 3 ON grchild(c3);
The following sections describe restrictions, configuration and checks for parallel propagation:
e Table Constraint Restrictions When Using Parallel Propagation for AWT Cache Groups
e Manually Initiate Check for Missing Constraints for an AWT Cache Group
e Configuring Batch Size for Parallel Propagation for AWT Cache Groups

ORACLE

7-11

Chapter 7
Improving AWT Throughput

Table Constraint Restrictions When Using Parallel Propagation for AWT Cache

Groups

ORACLE

When you use parallel propagation for AWT cache groups, you must manually enforce data
consistency.

Any unique index, unique constraint, or foreign key constraint that exists on columns in the
Oracle Database tables that are to be cached should also be created on the AWT cache tables
within TimesTen. If you cannot create these constraints on the AWT cache tables and you have
configured for parallel propagation, then TimesTen serializes any transactions with DML
operations to any table with missing constraints. For example, if a unique index created on a
table in the Oracle database cannot be created on the corresponding cached table in
TimesTen, all transactions for this table are serialized.

TimesTen automatically checks for missing constraints on the Oracle database that are not
cached on TimesTen when you issue any of the following SQL statements:

* When you create an AWT cache group with the CREATE ASYNCHRONOUS CACHE GROUP
statement

* When you create a unigue index on an AWT cache table with the CREATE UNIQUE INDEX
statement

e When you drop a unique index on an AWT cache table with the DROP INDEX statement

< Note:

You can manually initiate a check for missing constraints with the ttCacheCheck built-
in procedure. For example, TimesTen does not automatically check for missing
constraints after a schema change on cached Oracle Database tables. After any
schema change on the Oracle database, you should perform an manual check for
missing constraints by running ttCacheCheck on the TimesTen database.

See Manually Initiate Check for Missing Constraints for an AWT Cache Group for
other conditions where you should manually check for missing constraints.

If the check notes missing constraints on the cached tables, TimesTen issues warnings about
each missing constraint.

For the following scenarios, the cached table is marked so that transactions that include DML
operations are serialized when propagated to the Oracle database.

* Transactions that apply DML operations to AWT cache tables that are missing unique
indexes or unigue constraints.

* Missing foreign key constraints for tables within a single AWT cache group.

— If both the referencing table and the referenced table for the foreign key relationship
are in the same AWT cache group and the foreign key relationship is not defined, both
tables are marked for transaction serialization.

— If the referencing table is in an AWT cache group and the referenced table is not in an
AWT cache group, the table inside the cache group is not marked for transaction
serialization. Only a warning is issued to notify the user of the missing constraint.

7-12

ORACLE

Chapter 7
Improving AWT Throughput

— If the referenced table is in an AWT cache group and the referencing table is not in an
AWT cache group, the table inside the cache group is not marked for transaction
serialization. Only a warning is issued to notify the user of the missing constraint.

* Missing foreign key constraints between cache groups. When you have tables defined in
separate AWT cache groups that are missing a foreign key constraint, both tables are
marked for serialized transactions.

* If a missing foreign key constraint causes a chain of foreign key constraints to be broken
between two AWT cache groups, transactions for all tables within both AWT cache groups
are serialized.

Note:

An Oracle Database trigger may introduce an operational dependency of which
TimesTen may not be aware. In this case, you should either disable parallel
propagation for the AWT cache group or do not cache the table in an AWT cache
group on which the trigger is created.

The following is an example of missing constraints when creating an AWT cache group. This
example creates two tables in the sales schema in the Oracle database. There is a foreign key
relationship between active customer and the ordertab tables. Because the examples use
these tables for parallel propagation, an index is created on the foreign key in the ordertab
table.

SQL> CREATE TABLE active_customer
(custid NUMBER(6) NOT NULL PRIMARY KEY,
name VARCHAR2 (50),
addr VARCHAR2 (100),
zip VARCHARZ2 (12),
region VARCHARZ2 (12) DEFAULT 'Unknown');
Table created.

SQL> CREATE TABLE ordertab
(orderid NUMBER(10) NOT NULL PRIMARY KEY,
custid NUMBER(6) NOT NULL);

Table created.

SQL> ALTER TABLE ordertab
ADD CONSTRAINT Cust_fk
FOREIGN KEY (custid) REFERENCES active customer (custid);
Table altered.

SQL> CREATE INDEX order idx on ordertab (custid);

TimesTen automatically checks for missing constraints when each CREATE CACHE GROUP is
issued. In the following example, a single cache group is created that includes the

active customer table. Only a warning is issued since the active customer is the referenced
table and the referencing table, ordertab, is not in any AWT cache group. The

active customer table is not marked for serialized transactions.

CREATE WRITETHROUGH CACHE GROUP update cust
FROM sales.active customer

(custid NUMBER(6) NOT NULL PRIMARY KEY,
name VARCHAR2 (50),

addr VARCHARZ2 (100),

zip VARCHAR2 (12));

7-13

Chapter 7
Improving AWT Throughput

Warning 5297: The following Oracle foreign key constraints on AWT cache table
SALES.ACTIVE CUSTOMER contain cached columns that do not have corresponding
foreign key constraints on TimesTen: SALES.CUST FK [Outside of CG]J.

The following example creates two AWT cache groups on TimesTen, one that includes the
active customer table and the other includes the ordertab table. There is a missing foreign
key constraint between the cache groups. Thus, a warning is issued for both tables, but only
the ordertab table is marked for serial transactions since it is the referencing table that should
contain the foreign key.

CREATE WRITETHROUGH CACHE GROUP update cust

FROM sales.active customer

(custid NUMBER(6) NOT NULL PRIMARY KEY,

name VARCHAR2 (50),

addr VARCHAR2 (100),

zip VARCHAR2 (12);
Warning 5297: The following Oracle foreign key constraints on AWT cache table
sales.update customer contain cached columns that do not have corresponding
foreign key constraints on TimesTen: ordertab.cust fk [Outside of CG].

CREATE WRITETHROUGH CACHE GROUP update orders

FROM sales.ordertab

(orderid NUMBER(10) NOT NULL PRIMARY KEY,

custid NUMBER(6) NOT NULL);
Warning 5295: Propagation will be serialized on AWT cache table
SALES.ORDERTAB because the following Oracle foreign key constraints on this
table contain cached columns that do not have corresponding foreign key
constraints on TimesTen: ORDERTAB.CUST FK [Across AWT cache groups].

Manually Initiate Check for Missing Constraints for an AWT Cache Group

ORACLE

The ttCacheCheck built-in procedure performs the same check for missing constraints for
cached tables on the Oracle database as performed automatically by TimesTen.

The ttCacheCheck provides appropriate messages about missing constraints and the tables
marked for serialized propagation. With the ttCacheCheck built-in procedure, you can check for
missing constraints for a given cache group or for all cache groups in TimesTen to ensure that
all cache groups are not missing constraints.

< Note:

Since ttCacheCheck updates system tables to indicate if DML performed against a
table should or should not be serialized, you must commit or roll back after the
ttCacheCheck built-in completes.

See ttCacheCheck in the Oracle TimesTen In-Memory Database Reference.

You may need to manually call the ttCacheCheck built-in procedure to update the known
dependencies after any of the following scenarios:

* After dropping a series of AWT cache groups on TimesTen with the DROP CACHE GROUP
statement.

« After adding or dropping a unique index, unique constraint, or foreign key on an Oracle
Database table that is cached in an AWT cache group. If you do not call the ttCacheCheck
built-in procedure after adding a constraint, you may receive a run time error on the AWT
cache group. After dropping a constraint, TimesTen may serialize transactions even if it is

7-14

Chapter 7
Improving AWT Throughput

not necessary. Calling the ttCacheCheck built-in procedure verifies whether serialization is
necessary.

* You can use this built-in procedure to determine why some transactions are being
serialized.

Note:

The ttCacheCheck built-in procedure cannot be called while the replication agent is
running.

If a DDL statement is being performed on an AWT cache group when ttCacheCheck
is called, then ttCacheCheck waits for the statement to complete or until the timeout
period is reached.

If you have not defined the CacheAwtParallelism data store attribute to greater than
one or the specified cache group is not an AWT cache group, then the ttCacheCheck
built-in procedure returns an empty result set.

The following example shows the user manually running the ttCacheCheck built-in procedure
to determine if there are any missing constraints for an AWT cache group update orders that
is owned by cacheadmin. A result set is returned that includes the error message. The
ordertab table in the update orders cache group is marked for serially propagated
transactions.

Command> call ttCacheCheck (NULL, 'cacheadmin', 'update orders');

< CACHEADMIN, UPDATE ORDERS, CACHEADMIN, ORDERTAB, Foreign Key, CACHEADMIN,
CUST FK, 1, Transactions updating this table will be serialized to Oracle
because: The missing foreign key connects two AWT cache groups.,

table CACHEADMIN.ORDERTAB constraint CACHEADMIN.CUST FK foreign key (CUSTID)
references CACHEADMIN.ACTIVE CUSTOMER (CUSTID) >

1 row found.

Whenever the cache group schema changes in either the TimesTen or Oracle databases, you
can call ttCacheCheck against all AWT cache groups to verify all constraints. The following
example shows the user manually running the ttCacheCheck built-in procedure to determine if
there are any missing constraints for any AWT cache group in the entire TimesTen database by
providing a NULL value for all input parameters. A result set is returned that includes any error
messages.

Command> call ttCacheCheck (NULL, NULL, NULL);

< CACHEADMIN, UPDATE ORDERS, CACHEADMIN, ORDERTAB, Foreign Key, CACHEADMIN,
CUST FK, 1, Transactions updating this table will be serialized to Oracle
because: The missing foreign key connects two AWT cache groups.,

table CACHEADMIN.ORDERTAB constraint CACHEADMIN.CUST FK foreign key(CUSTID)
references CACHEADMIN.ACTIVE CUSTOMER (CUSTID) >

1 row found.

Configuring Batch Size for Parallel Propagation for AWT Cache Groups

ORACLE

When using AWT cache groups, TimesTen batches together one or more transactions that are
to be applied in parallel to the back-end Oracle database. The CacheParAwtBatchSize
parameter configures a threshold value for the number of rows included in a single batch.
Once the maximum number of rows is reached, TimesTen includes the rest of the rows in the

7-15

Chapter 7
Improving AWT Throughput

transaction (TimesTen does not break up any transactions), but does not add any more
transactions to the batch.

For example, a user sets the CacheParAwtBatchSize to 200. For the next AWT propagation,
there are three transactions, each with 120 rows, that need to be propagated and applied to
the Oracle database. TimesTen includes the first two transactions in the first batch for a total of
240 rows. The third transaction is included in a second batch.

The default value for the CacheParAwtBatchSize parameter is 125 rows. The minimum value is
1. See ttDBConfig in the Oracle TimesTen In-Memory Database Reference.

You can retrieve the current value of CacheParAwtBatchSize as follows:

call ttDBConfig('CacheParAwtBatchSize');
< CACHEPARAWTBATCHSIZE, 125 >
1 row found.

You can set the CacheParAwtBatchSize parameter to 200 as follows:

call ttDBConfig('CacheParAwtBatchSize','200");
< CACHEPARAWTBATCHSIZE, 200 >
1 row found

Set the CacheParAwtBatchSize parameter only when advised by Oracle Support, who analyzes
the workload and any dependencies in the workload to determine if a different value for
CacheParAwtBatchSize could improve performance. Dependencies exist when transactions
concurrently change the same data. Oracle Support may advise you to reduce this value if
there are too many dependencies in the workload.

Improving AWT Throughput with SQL Array Processing

The CacheAWTMethod connection attribute setting determines whether to use the PL/SQL
processing method or SQL array processing method for asynchronous writethrough
propagation when applying changes to the Oracle database.

e PL/SQL processing method: AWT bundles all pending operations into a single PL/SQL
collection that is sent to the Oracle database server to be performed. This processing
method is appropriate when there are mixed transactions and network latency between
TimesTen and the Oracle database server. It is efficient for most use cases when the
workload consists of mixed INSERT, UPDATE, and DELETE statements to the same or
different tables. By default, TimesTen uses the PL/SQL processing method
(CacheAWTMethod=1).

e SQL array processing method: Consider changing CacheAWTMethod to O when the changes
consist of mostly repeated sequences of the same operation (INSERT, UPDATE, Or DELETE)
against the same table. For example, SQL array processing is very efficient when a user
does an update that affects several rows of a table. Updates are grouped together and
sent to the Oracle database in a single batch.

The PL/SQL processing method transparently falls back to SQL array processing mode
temporarily when it encounters one of the following:

* A statement that is over 32761 bytes in length.

* A statement that references a column of type BINARY FLOAT, BINARY DOUBLE and VARCHAR/
VARBINARY of length greater than 4000 bytes.

ORACLE 7-16

Chapter 7
Improving Performance for Autorefresh Operations

Note:

You can also set this value with the ttDBConfig built-in procedure with the
CacheAwtMethod parameter. See ttDBConfig in the Oracle TimesTen In-Memory
Database Reference.

See CacheAWTMethod in Oracle TimesTen In-Memory Database Reference.

Improving Performance for Autorefresh Operations

There are best practice recommendations to improve performance for autorefresh operations.

e Minimizing Delay for Cached Data with Continuous Autorefresh
e Reducing Contention for Dynamic Read-Only Cache Groups with Incremental Autorefresh

e Reducing Lock Contention for Read-Only Cache Groups with Autorefresh and Dynamic
Load

e Options for Reducing Contention Between Autorefresh and Dynamic Load Operations
e Improving Performance When Reclaiming Memory During Autorefresh Operations
e Running Large Transactions with Incremental Autorefresh Read-Only Cache Groups

e Configuring a Select Limit for Incremental Autorefresh for Read-Only Cache Groups

Minimizing Delay for Cached Data with Continuous Autorefresh

You can specify continuous autorefresh with an autorefresh interval of 0 milliseconds. With
continuous autorefresh, the next autorefresh cycle is scheduled as soon as possible after the
last autorefresh cycle has ended.

Continuous autorefresh could result in a higher resource usage when there is a low workload
rate on the Oracle database, since the cache agent could be performing unnecessary round-
trips to the Oracle database.

See CREATE CACHE GROUP and ALTER CACHE GROUP in the Oracle TimesTen In-
Memory Database SQL Reference.

Reducing Contention for Dynamic Read-Only Cache Groups with
Incremental Autorefresh

ORACLE

Most autorefresh and dynamic load operations coordinate their access to the Oracle database
for correctness. The default TimesTen coordination behavior could result in contention between
autorefresh and dynamic load operations (in extreme cases).

If you have dynamic read-only cache groups with incremental autorefresh, then:

* Multiple dynamic load operations could be blocked by autorefresh operations.

* Autorefresh operations are frequently delayed while waiting for dynamic load operations to
complete.

Enabling the DynamicLoadReduceContention database system parameter is useful for dynamic
cache groups by changing the way that autorefresh and dynamic load operations coordinate,
which results in reduced contention between autorefresh and dynamic load operations.

7-17

Chapter 7
Improving Performance for Autorefresh Operations

* Dynamic load operations are never blocked by autorefresh operations (due to additional
synchronization).

« Autorefresh operations are not completely delayed by dynamic load operations. Instead,
autorefresh operations will wait a short while for concurrently executing dynamic load
operations to be notified that a new autorefresh operation is starting. This enables dynamic
load operations to synchronize in tandem with concurrently executing autorefresh
operations.

Note:

You cannot change the value of the DynamicLoadReduceContention database system
parameter if there are any dynamic read-only cache groups or if the cache or
replication agents are running. In order to change the value of this parameter, you
must unload and drop (and later recreate) any existing dynamic read only cache
groups, then stop the cache and replication agents.

The following example sets DynamicLoadReduceContention=1:

call ttDbConfig('DynamicLoadReduceContention','1");

You can query the current value of the DynamicLoadReduceContention parameter.

call ttDbConfig('DynamicLoadReduceContention');

Note:

See ttDBConfig in the Oracle TimesTen In-Memory Database Reference.

Requirements for Setting DynamicLoadReduceContention

ORACLE

There are requirements when using the DynamicLoadReduceContention database system
parameter.

The DynamicLoadReduceContention database system parameter requires the following to be
enabled:

e Required Oracle Database privileges: You must grant two additional Oracle Database
privileges to the cache administration user:

— EXECUTE ON SYS.DBMS FLASHBACK
— SELECT ANY TRANSACTION

These are granted to the cache administration user when you execute the
grantCacheAdminPrivileges.sqgl and initCacheAdminSchema.sqgl Scripts.

» Support for Oracle Database: This feature requires the use of the Oracle Database
Flashback Transaction Queries.With Oracle Database 12.2.0.1 with Multitenant option,
Flashback Transaction Queries only supports Local Undo. You cannot use this feature with
Oracle Database 12.2.0.1 Multitenant option with Shared Undo.

* Required settings for active standby pair replication scheme:

7-18

Chapter 7
Improving Performance for Autorefresh Operations

— Both active and standby masters must be installed. If you are replicating between
active and standby masters where each is installed with different TimesTen versions,
then this parameter cannot be enabled if one of the TimesTen versions does not
support this feature.

— The DynamicLoadReduceContention database system parameter must be set to the
same value on both the active and standby masters.

Otherwise, an error is written to the daemon log. Replication will not progress until the
settings and TimesTen versions conform on both the active and standby masters.

Reducing Lock Contention for Read-Only Cache Groups with Autorefresh
and Dynamic Load

ORACLE

Your application can time out because of a lock contention between autorefresh and dynamic
load requests.

An autorefresh operation automatically loads committed changes on cached Oracle Database
tables into the cache tables in TimesTen. A dynamic load operation requests data from the
Oracle database (originating from a SELECT statement) and inserts the rows into the cache
group. Both the autorefresh and dynamic load operations require access to the cache
metadata, which could cause a lock contention.

At the end of an autorefresh operation, TimesTen updates the metadata to track the
autorefresh progress. If you have requested guaranteed durability by setting the
DurableCommits connection attribute to 1, then the autorefresh updates to the metadata are
always durably committed. If you have requested delayed durability by setting the
DurableCommits connection attribute to O (the default), then TimesTen must ensure that the
autorefresh updates to the metadata are durably committed before the garbage collector can
clean up the autorefresh tracking tables stored in the Oracle database.

When a durable commit is initiated for the metadata, any previous non-durable committed
transactions in the transaction log buffer that have not been flushed to the file system are also
a part of the durable commit. On hosts with busy or slow file systems, the durable commit
could be slow enough to lock out dynamic load requests for an undesirable amount of time.

If you notice that your application is timing out because of a lock contention between
autorefresh and dynamic load requests, you can set the CacheCommitDurable cache
configuration parameter to O with the ttCacheConfig built-in procedure. This reduces the
occurrence of lock contention between autorefresh and dynamic load requests in the same
application by:

¢ Running a non-durable commit of the autorefresh changes made to the metadata.

e Using a separate thread in the cache agent to durably commit the autorefresh changes
before the garbage collector cleans up the autorefresh tracking tables stored in the Oracle
database. This results in a slight performance cost as garbage collection is delayed until
after the durable commit completes.

The lock is removed after the non-durable commit of the autorefresh changes to the metadata.
After which, there is no longer a lock held on the metadata and any dynamic load requests for
the recently refreshed tables can continue processing without waiting. However, if there is an
error and database recovery starts, autorefresh may need to reapply any committed
transactions that did not flush to disk before a failure.

The following example sets CacheCommitDurable=0:

call ttCacheConfig('CacheCommitDurable',,,'0");

7-19

Chapter 7
Improving Performance for Autorefresh Operations

You can query the current value of the CacheCommitDurable parameter.

call ttCacheConfig('CacheCommitDurable');

See ttCacheConfig in the Oracle TimesTen In-Memory Database Reference.

Options for Reducing Contention Between Autorefresh and Dynamic Load

Operations

There are two methods to reduce contention between autorefresh and dynamic load
operations.

You can enable each or both if:

* If you see error messages indicating lock contention between autorefresh and dynamic
load operations, then enable the DynamicLoadReduceContention database system
parameter by setting the value to 1 with the ttDbConfig built-in procedure. See Reducing
Contention for Dynamic Read-Only Cache Groups with Incremental Autorefresh.

< If you notice that commit operations for autorefresh are taking an unusually long time, then
look for a TT47087 informational message in the support log. Locate the
ttlstXactCommitTime and tt2ndXactCommitTime entries within this message. If the time
indicated for either of both of these entries unusually high or is a major portion of the time
indicated in the Duration entry, this may indicate that the durable commit of transaction
logs is slow. In this case, you have the option to set the CacheCommitDurable cache
configuration parameter to O with the ttCacheConfig built-in procedure. For more details
on the CacheCommitDurable cache configuration parameter, see Reducing Lock Contention
for Read-Only Cache Groups with Autorefresh and Dynamic Load.

Enable both options if there is a small autorefresh interval in conjunction with a high number of
dynamic load requests.

Improving Performance When Reclaiming Memory During Autorefresh

Operations

ORACLE

As described Transaction Reclaim Operations in the Oracle TimesTen In-Memory Database
Operations Guide, TimesTen resource cleanup occurs during the reclaim phase of a
transaction commit.

To improve performance, a number of transaction log records are cached in memory to reduce
the need to access the transaction log file in the commit buffer. However, TimesTen must
access the transaction log if the transaction is larger than the reclaim buffer.

When you are using autorefresh for your cache groups, the cache agent has its own reclaim
buffer to manage the transactions that are committed within autorefresh operations. If the
cache agent reclaim buffer is too small, the commit operations during autorefresh can take
longer than expected as it must access the transaction log file. To avoid any performance
issues, you can configure a larger reclaim buffer for the cache agent so that the cache agent
can handle larger transactions in memory at reclaim time.

When using an active standby pair replication scheme to replicate autorefresh operations, the
replication agent applies the same autorefresh operations as part of the replication. Thus, the
replication agents on both the active and standby nodes have their own reclaim buffers that
should be configured to be the same size or greater than the cache agent reclaim buffer.

7-20

Chapter 7
Improving Performance for Autorefresh Operations

The ttDbConfig built-in procedure provides the following parameters for setting the maximum
size for the reclaim buffers for both the cache agent and the replication agent. (The memory for
the reclaim buffers are allocated out of temporary memory.)

e CacheAgentCommitBufSize sets the maximum size for the reclaim buffer for the cache
agent.

° RepAgentCommitBufSize sets the maximum size for the reclaim buffer for the replication
agent. You should configure the maximum size for the reclaim buffer on both the active and
standby nodes. It is recommended that you set the size for the reclaim buffers to the same
value on both nodes, but not required.

Note:

For more details, see ttDBConfig in the Oracle TimesTen In-Memory Database
Reference.

To determine if you should increment the size for the cache agent reclaim buffer, evaluate the
CommitBufMaxReached and CommitBufNumOverflows Statistics provided by the
ttCacheAutorefIntervalStatsGet built-in procedure. See Retrieving Statistics on Autorefresh
Transactions.

Running Large Transactions with Incremental Autorefresh Read-Only Cache

Groups

ORACLE

At certain times, you may run large transactions, such as for the end of the month, the end of a
quarter, or the end of the year transactions. You may also have situations where you modify or
add a large amount of data in the Oracle database over a short period of time.

For read-only cache groups with incremental autorefresh, TimesTen could run out of
permanent space when an autorefresh operation applies either of these cases. Therefore, for
these situations, you can configure an autorefresh transaction limit, where the large amount of
data is broken up, applied, and committed over several smaller transactions.

¢ Note:

The autorefresh transaction limit can only be set for static read-only cache groups.

The ttCacheAutorefreshXactLimit built-in procedure enables you to direct autorefresh to
commit after running a specific number of operations. This option applies to all incremental
autorefresh read-only cache groups that are configured with the same autorefresh interval.

Since the single transaction is broken up into several smaller transactions, transactional
consistency cannot be maintained while autorefresh is in progress. Once the autorefresh cycle
completes, the data is transactionally consistent. To protect instance consistency, we
recommend that you set the autorefresh transaction limit only on cache groups with only a
single table, since instance consistency between the parent and child tables is not guaranteed.
When the autorefresh transaction limit is turned on, TimesTen does not enforce the foreign key
relationship that protects instance consistency. Once you turn off the autorefresh transaction
limit for incremental autorefresh read-only cache groups, both instance and transactional
consistency are maintained again.

7-21

Chapter 7
Improving Performance for Autorefresh Operations

Note:

If you are using an active standby pair, you must call the
ttCacheAutorefreshXactLimit built-in procedure for the same values on both the
active and standby masters.

The following sections describe how to configure an autorefresh transaction limit.
» Using ttCacheAutorefreshXactLimit

» Example of Potential Transactional Inconsistency

* Retrieving Statistics to Evaluate Performance When a Transaction Limit is Set

Using ttCacheAutorefreshXactLimit

ORACLE

Note:

See ttCacheAutorefreshXactLimit in the Oracle TimesTen In-Memory Database
Reference.

For the month end processing, there can be a large number updates in a single transaction for
the Oracle tables that are cached in cache groups with autorefresh. In order to ensure that the
large transaction does not fill up permanent memory, you can enable autorefresh to commit
after every 256 (or any other user specified number) operations with the
ttCacheAutorefreshXactLimit built-in procedure.

Turn on an autorefresh transaction limit for incremental autorefresh read-only cache groups
before a large transaction with the ttCacheAutorefreshXactLimit built-in procedure where the
value is set to ON or to a specific number of operations. Then, when autorefresh finishes
updating the cached tables in TimesTen, turn off the autorefresh transaction limit for
incremental autorefresh read-only cache groups with the ttCacheAutorefreshXactLimit built-
in procedure.

The following example sets up the transaction limit to commit after every 256 operations for all
incremental autorefresh read-only cache groups that are defined with an interval value of 10
seconds.

call ttCacheAutorefreshXactLimit ('10000', 'ON');

After the month end process has completed and the incremental autorefresh read-only cache
groups are refreshed, disable the transaction limit for incremental autorefresh read-only cache
groups that are defined with the interval value of 10 seconds.

call ttCacheAutorefreshXactLimit ('10000', 'OFF');

To enable the transaction limit for incremental autorefresh read-only cache groups to commit
after every 1024 operations, provide 1024 as the value as follows:

call ttCacheAutorefreshXactLimit ('10000', '1024");

7-22

Chapter 7
Improving Performance for Autorefresh Operations

Example of Potential Transactional Inconsistency

This example shows how to create two incremental autorefresh read-only cache groups.

The following example uses the employee and departments table, where the department id of
the department table is a foreign key that points to the department id of the employee table.

The following example creates two incremental autorefresh read-only cache groups, where
each is in its own cache group. The autorefresh transaction limit is enabled with
ttCacheAutorefreshXactLimit before a large transaction and is disabled after it completes.

1. Before you initiate the large transaction, invoke ttCacheAutorefreshXactLimit to set the
interval value and the number of operations after which to automatically commit. The
following sets the number of operations to three (which is intentionally low to show a brief
example) for all incremental autorefresh read-only cache groups with a two second
interval.

CALL ttCacheAutorefreshXactLimit ('2000', '3'");
< 2000, 3 >
1 row found.

2. Create the incremental autorefresh read-only cache groups with interval of two seconds.
This example creates two static (non-dynamic) read-only cache groups, where each
contains a single table.

CREATE READONLY CACHE GROUP cgDepts AUTOREFRESH MODE INCREMENTAL
INTERVAL 2 SECONDS
FROM departments
(department id NUMBER (4) PRIMARY KEY
, department name VARCHAR2 (30) NOT NULL
, manager id NUMBER (6)
, location id NUMBER (4)
)i

CREATE READONLY CACHE GROUP cgEmpls AUTOREFRESH MODE INCREMENTAL
INTERVAL 2 SECONDS
FROM employees
(employee id NUMBER (6) PRIMARY KEY

, first name VARCHARZ (20)

, last name VARCHAR?2 (25) NOT NULL

, email VARCHARZ2 (25) NOT NULL UNIQUE
, phone number VARCHARZ2 (20)

, hireidate DATE NOT NULL

, jobiid VARCHAR2 (10) NOT NULL

, salary NUMBER (8, 2)

, commission pct NUMBER(2,2)

, manager id NUMBER (6

, department id NUMBER(4)

3. RunaLOAD CACHE GROUP statement for both cache groups with autorefresh.

LOAD CACHE GROUP cgDepts COMMIT EVERY 256 ROWS;
27 cache instances affected.

LOAD CACHE GROUP cgEmpls COMMIT EVERY 256 ROWS;
107 cache instances affected.

You can have inconsistency within the table during an autorefresh as shown with the
employees table.

1. On TimesTen, select the minimum and maximum salary of all employees.

ORACLE 7-23

ORACLE

Chapter 7
Improving Performance for Autorefresh Operations

SELECT MIN (salary), MAX(salary) FROM employees;
< 2100, 24000 >
1 row found.

2. On the Oracle database, add 100,000 to everyone's salary.

UPDATE employees SET salary = salary + 100000;
107 rows updated.

3. On TimesTen, when you run the SELECT again (while the autorefresh transactions are
commmitted after every 3 records), it shows that while the maximum salary has updated,
the minimum salary is still the old value.

SELECT MIN(salary), MAX(salary) FROM employees;
< 2100, 124000 >
1 row found.

4. However, once the autorefresh completes, transactional consistency is maintained. For this
example, once the autorefresh process completes, all salaries have increased by 100,000.

SELECT MIN(salary), MAX(salary) FROM employees;
< 102100, 124000 >
1 row found.

5. The large transaction is complete, so disable the transaction limit for cache groups with a 2
second interval autorefresh.

call ttCacheAutorefreshXactLimit ('2000', 'OFF');

You can have transactional inconsistency between cache groups if you run a SQL statement
while the autorefresh process is progressing. The following SELECT statement example runs
against the employees and department table in the cgbepts autorefresh cache group. With this
example, since the foreign key is not enforced on TimesTen and the autorefresh process
applies several transactions, the employee table updates may be inserted before the
department updates.

In addition, all of the updates for both tables in the cache group are not applied until the
autorefresh cycle has completed. In the following example, the SELECT statement is performed
before the autorefresh process is complete. Thus, the results do not show all of the expected
data, such as the department name and several employees (some of the lawyers in the legal
department 1000) are missing.

SELECT e.departmentiid, d.DEPARTMENT NAME, e.FIRST NAME, e.LAST NAME
FROM employees e, departments d
WHERE e.DEPARTMENT ID = d.DEPARTMENT ID (+)
AND e.department id >= 1000 ORDER BY 1,2,3,4;

1000, Legal, Alec, Dunkle >

1000, Legal, Barry, Strong >

1000, Legal, Leigh, Harrison >

rows found.

w A A A

However, after the autorefresh process completes, transactional consistency is maintained.
The following shows the same SELECT statement performed after the autorefresh is complete.
All expected data, the department information and all of the new lawyers, are updated.

SELECT e.department_id, d.DEPARTMENT_NAME, e.FIRST NAME, e.LAST NAME
FROM employees e, departments d
WHERE e.DEPARTMENT ID = d.DEPARTMENT_ID (+)
AND e.department id >= 1000 ORDER BY 1,2,3,4;

1000, Legal, Alec, Dunkle >

1000, Legal, Barry, Strong >

1000, Legal, Leigh, Harrison >

1000, Legal, John, Crust >

1000, Legal, Robert, Wright >

AN AN AN ANA

7-24

ORACLE

Chapter 7
Improving Performance for Autorefresh Operations

< 1000, Legal, Robert, Smith >
6 rows found.

For cache groups with autorefresh that have more than one table, you can also experience
transactional inconsistency if you run SQL statements while the autorefresh process is in
progress.

1.

Initiate the transaction limit for incremental cache groups with autorefresh of 2 seconds
with the ttCacheAutorefreshXactLimit built-in procedure and create a single autorefresh
cache group with two tables: the employees and departments tables.

CALL ttCacheAutorefreshXactLimit ('2000',
< 2000, 3 >
1 row found.

'30);

CREATE READONLY CACHE GROUP cgDeptEmpls AUTOREFRESH MODE INCREMENTAL
INTERVAL 2 SECONDS
FROM departments
(department id
, department name

NUMBER (4) PRIMARY KEY
VARCHAR2 (30) NOT NULL

, manager id NUMBER (6
, location id NUMBER (4)
)
, employees
(employee id NUMBER (6) PRIMARY KEY
, first name VARCHARZ (20)
, lastiname VARCHARZ (25) NOT NULL
, email VARCHARZ (25) NOT NULL UNIQUE
, phone number VARCHARZ (20)

DATE NOT NULL
, job_id VARCHAR? (10)

, salary NUMBER (8, 2)

, commission pct NUMBER(2,2)

, manager id NUMBER (6)

, department id NUMBER (4)

, foreign key(department id) references departments(department id)

, hire date
NOT NULL

Manually load the cache group.

LOAD CACHE GROUP cgDeptEmpls COMMIT EVERY 256 ROWS;
27 cache instances affected.

Run a SELECT statement on TimesTen that uploads all of the legal department data.

SELECT e.department id, d.department name, count (*)
FROM employees e, departments d
WHERE e.department id = d.department id (+)
GROUP BY e.department id, d.department name
ORDER BY 1 desc;

< 110, Accounting, 2 >

< 100, Finance, 6 >

< 90, Executive, 3 >

< 80, Sales, 34 >

< 70, Public Relations, 1 >

< 60, IT, 5 >

< 50, Shipping, 45 >

< 40, Human Resources, 1 >

< 30, Purchasing, 6 >

< 20, Marketing, 2 >

< 10, Administration, 1 >

11 rows found.

7-25

Chapter 7
Improving Performance for Autorefresh Operations

4. On Oracle, insert a new legal department, numbered 1000, with 6 new lawyers in both the
employee and department tables.

5. When performing a SELECT statement on TimesTen during the autorefresh process, only
data on two of the lawyers in department 1000 have been uploaded into TimesTen.

SELECT e.department id, d.department name, count (*)
FROM employees e, departments d
WHERE e.department id = d.department id (+)
GROUP BY e.department id, d.department name
ORDER BY 1 desc;

< 1000, Legal, 2 >

< 110, Accounting, 2 >

< 100, Finance, 6 >

< 90, Executive, 3 >

< 80, Sales, 34 >

< 70, Public Relations, 1 >

< 60, IT, 5 >

< 50, Shipping, 45 >

< 40, Human Resources, 1 >

< 30, Purchasing, 6 >

< 20, Marketing, 2 >

< 10, Administration, 1 >

12 rows found.

6. However, after the autorefresh process completes, all 6 employees (lawyers) in the legal
department have been uploaded to TimesTen. Now, it is transactionally consistent.

SELECT e.department id, d.department name, COUNT (*)
FROM employees e, departments d
WHERE e.department id = d.department id (+)
GROUP BY e.department id, d.department name
ORDER BY 1 desc;

< 1000, Legal, 6 >

< 110, Accounting, 2 >

< 100, Finance, 6 >

< 90, Executive, 3 >

< 80, Sales, 34 >

< 70, Public Relations, 1 >

< 60, IT, 5 >

< 50, Shipping, 45 >

< 40, Human Resources, 1 >

< 30, Purchasing, 6 >

< 20, Marketing, 2 >

< 10, Administration, 1 >

12 rows found.

7. The large transaction is complete, so disable the transaction limit for cache groups with a 2
second autorefresh interval.

call ttCacheAutorefreshXactLimit ('2000', 'OFF');

Retrieving Statistics to Evaluate Performance When a Transaction Limit is Set

To see how a autorefresh transaction limit for a particular autorefresh interval is performing,
you can retrieve statistics for the last 10 incremental autorefresh transactions for this
autorefresh interval with the ttCacheAutorefIntervalStatsGet built-in procedure.

See Retrieving Statistics on Autorefresh Transactions.

ORACLE 7-26

Chapter 7
Improving Performance for Autorefresh Operations

Configuring a Select Limit for Incremental Autorefresh for Read-Only Cache

Groups

ORACLE

To facilitate incremental autorefresh for read-only cache groups, TimesTen runs a table join
guery on both the Oracle database base table and its corresponding change log table to
retrieve the incremental changes. However, if both tables are very large, the join query can be
slow. In addition, if the Oracle database base table is continuously updated while the join-query
is processing, you may receive the 0ORA-01555 “Snapshot too old" error from a long-running
autorefresh query.

To avoid this situation, you can configure incremental autorefresh with a select limit for static
read-only cache groups, which joins the Oracle database base table with a limited number of
rows from the autorefresh change log table. You can configure a select limit with the
ttCacheAutorefreshSelectLimit built-in procedure.

Note:

The select limit can only be set for static read-only cache groups. To protect instance
consistency, we recommend that you set the select limit only on cache groups with
only a single table.

Autorefresh continues to apply changes to the cached table incrementally until all the rows in
the autorefresh change log table have been applied. When there are no rows left to apply, the
autorefresh thread sleeps for the rest of the interval period.

Note:

See ttCacheAutorefreshSelectLimit in the Oracle TimesTen In-Memory Database
Reference.

For example, before a large transaction, you can call the ttCacheAutorefreshSelectLimit
built-in procedure to set a select limit to 1000 rows for cache groups with incremental
autorefresh where the interval value is 10 seconds. The following example sets the value to
ON.

Command> call ttCacheAutorefreshSelectLimit ('10000', 'ON');
< 10000, ON >
1 row found.

The following example set a select limit to 2000 rows for cache groups with incremental
autorefresh where the interval value is 7 seconds.

Command> call ttCacheAutorefreshSelectLimit ('7000', '2000");
< 7000, 2000 >
1 row found.

You can disable any select limit for cache groups with incremental autorefresh where the
interval value is 10 seconds by setting the value to OFF.

7-27

Chapter 7
Improving Performance for Autorefresh Operations

Command> call ttCacheAutorefreshSelectLimit ('10000', 'OFF');
< 10000, OFF >
1 row found.

The following sections describe details when configuring a select limit for static read-only
cache groups with incremental autorefresh.

* See How to Determine Which Intervals Have a Particular Select Limit to determine which
intervals have a select limit.

e See Retrieving Statistics on Autorefresh Transactions to retrieve statistics for incremental
autorefresh transactions for this autorefresh interval. This determines how a select limit for
a particular autorefresh interval is performing.

How to Determine Which Intervals Have a Particular Select Limit

To determine the interval for a cache group, use ttIsgl and run the cachegroups command.

> cachegroups cgowner.cgname;

This returns all attributes for the cgowner. cgname cache group including the interval.

To determine which intervals have a select limit, you can run the following query on the Oracle
database where <cacheAdminUser> is the cache administrator, <hostName> is the host name of
the machine where the TimesTen database is located, <databaseFileName> is the database
path taken from the DataStore attribute, and substitute the version number (such as 07) for the
XX.

SELECT * FROM <cacheAdminUser>.tt xx arinterval params
WHERE param='AutorefreshSelectEveryN'

AND host='<hostName>'

AND database like '%$<databaseFileName>%'
ORDER BY arinterval;

For example, if the cache administrator user name is pat, the host name is myhost, the
database file name is myTtDb, and 07 is substituted for xx that is the TimesTen minor release
number then:

SELECT * FROM pat.tt 07 arinterval params
WHERE param='AutorefreshSelectEveryN'
AND host='myhost'
AND database like '%myTtDb%'
ORDER BY arinterval;

The interval is stored in milliseconds.

Retrieving Statistics to Evaluate Performance When Using a Select Limit

To see how a select limit for a particular autorefresh interval is performing, you can retrieve
statistics for incremental autorefresh transactions for this autorefresh interval with the
ttCacheAutorefIntervalStatsGet built-in procedure.

See Retrieving Statistics on Autorefresh Transactions.

ORACLE 7-28

Chapter 7
Retrieving Statistics on Autorefresh Transactions

Retrieving Statistics on Autorefresh Transactions

Call the ttCacheAutorefIntervalStatsGet built-in procedure for statistical information about
the last 10 autorefresh cycles for a particular autorefresh interval defined for an incremental
autorefresh read-only cache group.

Note:

Reference.

See ttCacheAutorefintervalStatsGet in the Oracle TimesTen In-Memory Database

This built-in procedure is useful if you have set an transaction limit or a select limit for
incremental, autorefresh read-only cache groups. See Running Large Transactions
with Incremental Autorefresh Read-Only Cache Groups and Configuring a Select
Limit for Incremental Autorefresh for Read-Only Cache Groups.

The following example shows how to call the ttCacheAutorefIntervalStatsGet built-in
procedure to retrieve statistics for incremental autorefresh read-only cache groups that have
been defined as static and have the interval of 2 seconds:

Command> call ttCacheAutorefIntervalStatsGet (2000,

< 2000, 1, 21,
1280, 0, 58825,
< 2000, 1, 20,
0, 55064, 60064,
< 2000, 1, 19,
1280, 0, 54979,
< 2000, 1, 18,
1280, 0, 51936,
< 2000, 1, 17,
1280, 0, 51592,
< 2000, 1, 1e,
1280, 0, 49766,
< 2000, 1, 15,
1280, 0, 49711,
< 2000, 1, 14,
1280, 0, 46810,
< 2000, 1, 13,
1280, 0, 46755,
< 2000, 1, 12,
1280, 0, 40911,

63825,

12768,

59979,

56936,

56592,

54766,

54711,

51810,

51755,

45911,

10 rows found.

2013-04-

2013-04-

2013-04-

2013-04-

2013-04-

2013-04-

2013-04-

2013-04-

2013-04-

2013-04-

30 06:05:38.000000, 100,
135%0, 0, 0, O, O, 0 >

30 06:05:37.000000, 100,
0, 0, 0, 0, 0>

30 06:05:32.000000,
12750, 0, 0, 0, O,
30 06:05:30.000000,
12084, 0, 0, 0, O,
30 06:05:28.000000,
12010, 0, 0, 0O, O,
30 06:05:26.000000,
11628, 0, 0, 0, O,
30 06:05:22.000000,
11616, 0, 0, 0, O,
30 06:05:21.000000,
10982, 0, 0, 0, O,
30 06:05:10.000000,
10970, 0, 0, 0, 0, 0 >

30 06:05:08.000000, 100,
9707, 0, 0, 0, 0, 0 >

100,
0>
100,
0>
100,
0>
100,
0>
100,
0>
100,
0>
100,

1);

3761, 3761, 822, 1048576,

85, 85, 18, 1048576, 1280,

3043, 3043, 666, 1048576,

344, 344, 74, 1048576,

1826, 1826, 382, 1048576,

55, 55, 12, 104857¢,

2901, 2901, 634, 1048576,

55, 55, 12, 104857¢,

5844, 5844, 1263, 1048576,

607, 607, 132, 1048576,

Caching the Same Oracle Table on Two or More TimesTen
Databases

For each cache administration user, TimesTen creates a change log table and trigger (as part
of what is created to manage caching) in the Oracle database for each cache table in the
cache group. A trigger is fired for each committed insert, update, or delete operation on the
cached Oracle Database table; the action is logged in the change log table.

ORACLE

7-29

ORACLE

Chapter 7
Caching the Same Oracle Table on Two or More TimesTen Databases

If you cache the same Oracle database table in a cache group on two different TimesTen
databases, we recommend that you use the same cache administration user name on both
TimesTen databases as the owner of the cache table on each TimesTen database.

When you use the same cache administration user, only one trigger and change log table are
created to manage the changes to the base table. Thus, it is efficient and does not slow down
the application.

If you create separate cache administration users on each TimesTen database to own the
cache group that caches the same Oracle table, then separate triggers and change log tables
exist on the Oracle database for the same table: one for each cache administration user. For
example, if you have two separate TimesTen databases, each with their own cache
administration user, two triggers fire for each DML operation on the base table, each of which
are stored in a separate change log table. Firing two triggers and managing the separate
change log tables can slow down the application.

The only reason to create separate cache administration users is if one of the TimesTen
databases that caches the same table has a slow autorefresh rate or a slow connection to the
Oracle database. In this case, having a single cache administration user on both TimesTen
databases slows down the application on the faster connection, as it waits for the updates to
be propagated to the slower database.

7-30

Cleaning Up the Caching Environment

There are specific tasks that need to be performed in the TimesTen and Oracle databases to
drop cache groups. You should shut down all components when using AWT cache groups.

e Stopping the Replication Agent

e Dropping a Cache Group

e Stopping the Cache Agent

e Destroying the TimesTen Databases

e Dropping Oracle Database Users and Objects

e Scheduling a Shutdown of Active Standby Pair with AWT Cache Groups

Stopping the Replication Agent

If you are using AWT cache groups that use an active standby pair replication scheme, call the
ttRepStop built-in procedure to stop the replication agent.

This must be done on each TimesTen database of the active standby pair including any read-
only subscriber databases, and any standalone TimesTen databases that contain AWT cache
groups.

From the cachel, cache?2, cacheactive, cachestandby and rosubscriber databases, call the
ttRepStop built-in procedure as the TimesTen cache administration user to stop the replication
agent on the database:

Command> CALL ttRepStop;

Dropping a Cache Group

ORACLE

Use the DROP CACHE GROUP statement to drop a cache group and its cache tables.

Oracle Database objects used to manage the caching of Oracle Database data are
automatically dropped when you use the DROP CACHE GROUP statement to drop a cache group.

If you issue a DROP CACHE GROUP statement on a cache group that has an autorefresh
operation in progress:

e The autorefresh operation stops if the LockWait connection attribute setting is greater than
0. The DROP CACHE GROUP statement preempts the autorefresh operation.

* The autorefresh operation continues if the LockWait connection attribute setting is 0. The
DROP CACHE GROUP statement is blocked until the autorefresh operation completes or the
statement fails with a lock timeout error.

If you have created an AWT cache group, a replication scheme is created to enable committed
changes on its cache tables to be asynchronously propagated to the cached Oracle tables.
This replication scheme is automatically dropped when you drop the AWT cache group. Thus,
perform the following before dropping an AWT cache group:

8-1

Chapter 8
Stopping the Cache Agent

Use the ttRepSubscriberWait built-in procedure to make sure that all committed changes
on its cache tables have been propagated to the cached Oracle Database tables before
dropping the AWT cache group.

% ttIsgl "DSN=cachel;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"
Command> CALL ttRepSubscriberWait (' AWTREPSCHEME', 'TTREP',' ORACLE','sysl',-1);

The cache tables in an AWT cache group are replicated in an active standby pair. If the
cache tables are the only tables that are being replicated, drop the active standby pair
using a DROP ACTIVE STANDBY PAIR statement before dropping the AWT cache groups.

Run the following statement as the TimesTen cache administration user on the
cacheactive, cachestandby and rosubscriber databases to drop the active standby pair
replication scheme:

Command> DROP ACTIVE STANDBY PAIR;
Command> exit

Perform the following when dropping a cache group:

1.

Run an ALTER CACHE GROUP statement to set the autorefresh state to OFF for cache groups
with autorefresh.

Before you can drop a cache group, you must grant the DROP ANY TABLE privilege to the
TimesTen cache administration user. Run the following statement as the instance
administrator on the cachel, cache2, cacheactive and cachestandby databases to grant
the DROP ANY TABLE privilege to the TimesTen cache administration user. The following
example shows the SQL statement issued from the cachel database:

% ttIsgl cachel
Command> GRANT DROP ANY TABLE TO cacheadmin;
Command> exit

Use a DROP CACHE GROUP statement to drop the cache groups from the standalone
TimesTen databases and, if using an AWT cache group, the active and standby databases.

Run the following statement as the TimesTen cache administration user on the cachel,
cache2, cacheactive and cachestandby databases to drop the subscriber accounts
cache group. The following example shows the SQL statement issued from the cachel
database:

% ttIsgl "DSN=cachel;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"

Command> DROP CACHE GROUP subscriber accounts;

The DROP CACHE GROUP statement updates the metadata on the Oracle database. The
objects are dropped if no other TimseTen databases are caching the same tables.

Stopping the Cache Agent

TimesTen provides commands to stop a cache agent.

ORACLE

In TimesTen Scaleout, use ttGridAdmin dbCacheStop command to stop the cache agent
on all instances within the grid. See Stopping the Cache Agents for TimesTen Scaleout in
the Oracle TimesTen In-Memory Database Scaleout User's Guide.

In TimesTen Classic, call the ttCacheStop built-in procedure to stop the cache agent. This
must be done on all standalone TimesTen databases and, if used, the active and standby
databases of the active standby pair.

From the cachel, cache2, cacheactive and cachestandby databases, issue the following
built-in procedure call to stop the cache agent on the database:

8-2

Chapter 8
Destroying the TimesTen Databases

Command> CALL ttCacheStop;
Command> exit

Destroying the TimesTen Databases

TimesTen provides commands to destroy a TimesTen database.

1. Ensure you backup all your data, since it will be discarded in the destruction process.

2. Make sure that you drop all cache groups before you attempt to destroy a database. If you
cannot drop the cache groups, then use the -force option on the destroy operation in the
next step. See Dropping a Cache Group.

3. Perform the destroy operation:

e In TimesTen Scaleout, if the TimesTen database is no longer needed, you can use the
ttGridAdmin dbDestroy command to destroy the databases. See Destroying a
Database in the Oracle TimesTen In-Memory Database Scaleout User's Guide.

* In TimesTen Classic, if the TimesTen databases are no longer needed, you can use
the ttDestroy utility to destroy the databases.

Note:

In TimesTen Classic, if the RAM policy designates that the database stays in
memory, then this may prevent you from destroying the database. For
example, if the RAM policy is set to always, then you must change the RAM
policy to manual and run the ttAdmin -ramunload command to unload the
database before destroying the database. See Specifying a RAM Policy
section in the Oracle TimesTen In-Memory Database Operations Guide.

The following example shows the ttDestroy utility connecting to and then destroying
the cachel database:

% ttDestroy cachel

4. If you used the -force option on the destroy operation, run the following script to cleanup
the metadata and Oracle database objects.

e For TimesTen Scaleout, run the scaleoutCacheCleanup.sql Script.
* For TimesTen Classic, run the cacheCleanup.sql Script.

See Installed SQL*Plus Scripts.

Dropping Oracle Database Users and Objects

ORACLE

Use SQL*Plus as the sys user to drop the Oracle cache administration user cacheadmin and all
objects such as tables and triggers owned by the cache administration user.

Then drop the TT CACHE ADMIN ROLE role, and the default tablespace cachetblsp used by the
Oracle cache administration user including the contents of the tablespace and its data file.

o)

% sqglplus sys as sysdba

Enter password: password

SQL> DROP USER cacheadmin CASCADE;
SQL> DROP ROLE TT CACHE ADMIN ROLE;

8-3

Chapter 8
Scheduling a Shutdown of Active Standby Pair with AWT Cache Groups

SQL> DROP TABLESPACE cachetblsp INCLUDING CONTENTS AND DATAFILES;
SQL> exit

Also, you can run TimesTen SQL*Plus scripts to drop the Oracle Database objects used to
implement autorefresh operations. See Managing a Cache Environment with Oracle Database
Objects.

Scheduling a Shutdown of Active Standby Pair with AWT Cache

Groups

ORACLE

When you are using active standby pairs with AWT cache groups, the environment includes
both an active and a standby master, potentially one or more subscribers, and at least one
Oracle Database.

The following is the recommended method when you initiate a scheduled shutdown of
outstanding transactions in this environment. This order of events provides the time needed to
finish applying outstanding transactions before shut down and minimizes the time needed to
restart all components.

1. Shut down all applications.

2. Ensure that all transactions have propagated to the Oracle database.
3. Shut down TimesTen.

4. Shut down the Oracle Database.

Then, when you are ready to restart all components:

1. Restart the Oracle Database.
2. Restart TimesTen.
3. Restart any applications.

You can shut down all of these products in any order without error. The order matters only to
maximize performance and reduce the need for preserving unapplied transactions. For
example, when you are using AWT cache groups within the active standby pair and if you shut
down the Oracle database before TimesTen, then all unapplied transactions accumulate in the
TimesTen transaction logs. Thus, when you restart TimesTen and Oracle, you could potentially
have a lower throughput while pending transactions are applied to the Oracle database. Thus,
shutting down TimesTen before the Oracle database provides the most efficient method for
your scheduled shutdown and startup. In addition, shutting down the applications before
TimesTen stops any additional requests from being sent to an unavailable TimesTen database.

8-4

Using Cache in an Oracle RAC Environment

The following sections describe how to use cache in an Oracle Real Application Clusters
(Oracle RAC) environment:

¢ How Cache Works in an Oracle RAC Environment
e Restrictions on Using Cache in an Oracle RAC Environment

e Setting Up Cache in an Oracle RAC Environment

How Cache Works in an Oracle RAC Environment

ORACLE

Oracle RAC enables multiple Oracle Database instances to access one Oracle database with
shared resources, including all data files, control files, PFILEs and redo log files that reside on
cluster-aware shared file systems. Oracle RAC handles read/write consistency and load
balancing while providing high availability.

Fast Application Notification (FAN) is an Oracle RAC feature that is integrated with Oracle Call
Interface (OCI) in Oracle Database. FAN publishes information about changes in the cluster to
applications that subscribe to FAN events. FAN prevents unnecessary operations such as the
following:

e Attempts to connect when services are down
e Attempts to finish processing a transaction when the server is down
e Waiting for TCP/IP timeouts

See Oracle Real Application Clusters Real Application Clusters Administration and
Deployment Guide for more information about Oracle RAC and FAN.

To facilitate cache operations, TimesTen uses OCI integrated with FAN to receive natification of
Oracle Database events. With FAN, TimesTen detects connection failures within a minute.
Without FAN, it can take several minutes for TimesTen to receive notification of an Oracle
Database failure. Without FAN, TimesTen detects a connection failure the next time the
connection is used or when a TCP/IP timeout occurs. TimesTen can recover quickly from
Oracle Database failures without user intervention.

TimesTen also uses Transparent Application Failover (TAF), which is a feature of Oracle Net
Services that enables you to specify how you want applications to reconnect after a failure.

See Oracle Database Net Services Administrator's Guide for more information about TAF. TAF
attempts to reconnect to the Oracle database for four minutes. If this is not successful, the
cache agent restarts and attempts to reconnect with the Oracle database every minute.

Note:

You can configure how long TAF retries when establishing a connection with the
AgentFailoverTimeout parameter. For details, see Setting Up Cache in an Oracle
RAC Environment.

9-1

Chapter 9
How Cache Works in an Oracle RAC Environment

OCI applications can use one of the following types of Oracle Net failover functionality:

e None: No failover functionality is used. This can also be specified to prevent failover from
happening. This is the default failover functionality.

e Session: If an application's connection is lost, a new connection is automatically created
for the application. This type of failover does not attempt to recover selects.

* Select: This type of failover enables applications that began fetching rows from a cursor
before failover to continue fetching rows after failover.

The behavior of cache operations depend on the actions of TAF and how TAF is configured. By
default, TAF and FAN callbacks are installed if you are using cache in an Oracle RAC
environment. If you do not want TAF and FAN capabilities, set the RACCallback connection
attribute to 0.

Table 9-1 shows the behaviors of cache operations in an Oracle RAC environment with
different TAF failover types.

Table 9-1 Behavior of Cache Operations in an Oracle RAC Environment
]

Operation TAF Failover Type Behavior After a Failed Connection on the Oracle
Database
Autorefresh None The cache agent automatically stops, restarts and

waits until a connection can be established on the
Oracle database. This behavior is the same as in a
non-Oracle RAC environment.

No user intervention is needed.

Autorefresh Session One of the following occurs:

« All failed connections are recovered. Autorefresh
operations that were in progress are rolled back
and retried.

. If TAF times out or cannot recover the
connection, the cache agent automatically stops,
restarts and waits until a connection can be
established on the Oracle database.

* Inall cases, no user intervention is needed.

Autorefresh Select One of the following occurs:

* Autorefresh operations resume from the point of
connection failure.

* Autorefresh operations that were in progress are
rolled back and retried.

. If TAF times out or cannot recover the
connection, the cache agent automatically stops,
restarts and waits until a connection can be
established on the Oracle database.

* Inall cases, no user intervention is needed.

AWT None The receiver thread of the replication agent for the
AWT cache group exits. A new thread is spawned
and tries to connect to the Oracle database.

No user intervention is needed.

ORACLE 9.0

Chapter 9
How Cache Works in an Oracle RAC Environment

Table 9-1 (Cont.) Behavior of Cache Operations in an Oracle RAC Environment

Operation

TAF Failover Type

Behavior After a Failed Connection on the Oracle
Database

AWT

Session, Select

One of the following occurs:

* If the connection is recovered and there are
uncommitted DML operations in the transaction,
the transaction is rolled back and then reissued.

» If the connection is recovered and there are no
uncommitted DML operations, new operations
can be issued without rolling back.

In all cases, no user intervention is needed.

SWT, propagate, flush,
and passthrough

None

The application is notified of the connection loss. The
cache agent disconnects from the Oracle database
and the current transaction is rolled back. All modified
session attributes are lost.

During the next passthrough operation, the cache
agent tries to reconnect to the Oracle database. This
behavior is the same as in a non-Oracle RAC
environment.

No user intervention is needed.

SWT, propagate, flush
and passthrough

SWT, propagate and
flush

Session

Select

One of the following occurs:

e The connection to the Oracle database is
recovered. If there were open cursors, DML or
lock operations on the lost connection, an error is
returned and the user must roll back the
transaction before continuing. Otherwise, the
user can continue without rolling back.

e If TAF times out or cannot recover the
connection, the application is notified of the
connection loss. The cache agent disconnects
from the Oracle database and the current
transaction is rolled back. All modified session
attributes are lost.

During the next passthrough operation, the
cache agent tries to reconnect to the Oracle
database.

In this case, no user intervention is needed.

Passthrough

Select

The connection to the Oracle database is recovered.
If there were DML or lock operations on the lost
connection, an error is returned and the user must
roll back the transaction before continuing. Otherwise,
the user can continue without rolling back.

Load and refresh

None

The application receives a loss of connection error.

Load and refresh

Session

One of the following occurs:

e The load or refresh operation succeeds.
e An error is returned stating that a fetch operation
on Oracle Database cannot be processed.

ORACLE

9-3

Chapter 9
Restrictions on Using Cache in an Oracle RAC Environment

Table 9-1 (Cont.) Behavior of Cache Operations in an Oracle RAC Environment

Operation TAF Failover Type Behavior After a Failed Connection on the Oracle
Database
Load and refresh Select One of the following occurs:

e If the Oracle Database cursor is open and the
cursor is recovered, or if the Oracle Database
cursor is not open, then the load or refresh
operation succeeds.

e Anerror is returned if TAF was unable to recover
either the session or open Oracle Database
cursors.

Note: An error is less likely to be returned than if the

TAF failover type is Session.

Restrictions on Using Cache in an Oracle RAC Environment

There are some restrictions for cache support of Oracle RAC.

The restrictions for cache support of Oracle RAC are:

Cache operations are limited to Oracle RAC, FAN and TAF capabilities. For example, if all
nodes for a service fail, the service is not restarted. TimesTen waits for the user to restart
the service.

TAF does not recover ALTER SESSION operations. The user is responsible for restoring
changed session attributes after a failover.

For cache operations, TimesTen uses OCI integrated with FAN. This interface
automatically spawns a thread to wait for an Oracle Database event. This is the only
TimesTen feature that spawns a thread in a TimesTen application with the direct driver.
Adapt your application to account for this thread creation. If you do not want the extra
thread, set the RACCallback connection attribute to O so that TAF and FAN are not used.

Setting Up Cache in an Oracle RAC Environment

You can set up a cache in a TimesTen database to cache data within an Oracle RAC
environment.

ORACLE

After you install Oracle RAC and cache, perform the following to set up a cache for an Oracle
RAC environment:

1.

On TimesTen, set the TAF timeout, in minutes, with the ttCacheConfig
AgentFailoverTimeout parameter. The AgentFailoverTimeout parameter configures how
long TAF retries when establishing a connection. TAF attempts to reconnect to the Oracle
database for the duration of this timeout. The default is four minutes. If this is not
successful, the cache agent restarts and attempts to reconnect with the Oracle database
every minute; the replication agent restarts any threads that cannot connect to the Oracle
database.

If you are using TimesTen Scaleout, you must run the ttCacheConfig built-in procedure on
every data instance in the database. See ttCacheConfig in the Oracle TimesTen In-
Memory Database Reference.

Make sure that the TimesTen daemon, the cache agent, and the following Oracle
Database components are started:

9-4

ORACLE

Chapter 9
Setting Up Cache in an Oracle RAC Environment

e Oracle Database instances
e Oracle Database listeners
* Oracle Database service that is used for cache operations

Verify that the TimesTen RACCallback connection attribute is set to 1 (default). See
RACCallback in the Oracle TimesTen In-Memory Database Reference.

Use the DBMS SERVICE.MODIFY SERVICE function or Oracle Enterprise Manager to enable
publishing of FAN events. This changes the value in the 20 HA NOTIFICATIONS column of
the Oracle Database ALL SERVICES view to YES.

See Oracle Database PL/SQL Packages and Types Reference for more information about
the DBMS SERVICE Oracle Database PL/SQL package.

Enable TAF on the Oracle Database service used for cache operations on TimesTen with
one of the following methods:

* Create a service for TimesTen in the Oracle Database tnsnames.ora file with the
following settings:

— LOAD BALANCE=ON (optional)
— FAILOVER MODE= (TYPE=SELECT) Or FAILOVER MODE=(TYPE=SESSION)
* Use the DBMS SERVICE.MODIFY SERVICE function to set the TAF failover type.

See Oracle Database Net Services Administrator's Guide for more information about
enabling TAF.

If you have a TimesTen application that uses the direct driver, link it with a thread library so
that it receives FAN notifications. FAN spawns a thread to monitor for failures.

9-5

Using Cache with Data Guard

You need to configure cache when you want cache to work with either synchronous or
asynchronous Data Guard. Data Guard support is only included within TimesTen Classic.

e Components of MAA for Cache
e Cache in TimesTen Works with Asynchronous Active Data Guard

e Cache in TimesTen Works with Synchronous Data Guard

Components of MAA for Cache

Oracle Maximum Availability Architecture (MAA) is Oracle Database's best practices blueprint
based on proven Oracle Database high availability (HA) technologies and recommendations.
The goal of MAA is to achieve the optimal high availability architecture at the lowest cost and
complexity.

To be compliant with MAA, cache must support Oracle Real Application Clusters (Oracle RAC)
and Oracle Data Guard, as well as have its own HA capability.

Cache provides its own HA capability through active standby pair replication of cache tables in
read-only and AWT cache groups. See Using Cache in an Oracle RAC Environment.

Oracle Data Guard provides the management, monitoring, and automation software
infrastructure to create and maintain one or more synchronized standby Oracle databases to
protect data from failures, disasters, errors, and corruptions. If the primary Oracle database
becomes unavailable because of a planned or an unplanned outage, Data Guard can switch
any standby Oracle database to the primary role, thus minimizing downtime and preventing
any data loss. See Oracle Data Guard Concepts and Administration.

The MAA framework supports cache tables in static read-only and AWT cache groups. For
cache tables in dynamic cache groups of any cache group type, SWT cache groups, and user
managed cache groups that use the AUTOREFRESH cache group attribute, TimesTen cannot
access the Oracle database during a failover and switchover because cache applications wait
until the failover and switchover completes.

In general, however, all cache groups types are supported with synchronous Data Guard or
Data Guard during planned maintenance.

Cache in TimesTen Works with Asynchronous Active Data Guard

You can cache tables from an Oracle Active Data Guard with the asynchronous redo transport
mode into read-only cache groups.

When using cache with Active Data Guard, you can only use read-only cache groups that are
replicated within an active standby pair replication scheme.

The Active Data Guard configuration includes a primary Oracle database that communicates
over an asynchronous transport to a single physical standby Oracle database. As shown in
Figure 10-1, the primary Oracle database is located on the primary site, while the standby
Oracle database is located on a disaster recovery site.

ORACLE 104

Chapter 10
Cache in TimesTen Works with Asynchronous Active Data Guard

Figure 10-1 Recommended Configuration for Asynchronous Active Data Guard

Primary Site application Disaster Recovery Site

updates

' | ADG enabled
Active Standby | read-only
master replicated master replicated | subscriber

Z_updates o updates »
| gl

cache tables cache tables 5 I ~cache tables
[[(R [N (N [[[[
(]] I [N [I [[I

I

I

I

autorefresh |
updates primary standby

Oracle Active Data Guard | - Oracle

Database | ”__Database

I

I

I

I

|

On TimesTen, the read-only cache groups on the primary site are autorefreshed from the
primary Oracle database; however, the only transactions that are autorefreshed are those
whose changes have been successfully replicated to the standby Oracle database. Once
refreshed to the active master, all changes are then propagated to the TimesTen standby
master and a read-only subscriber using standard TimesTen replication processes.

For the best failover and recovery action, you should locate the read-only subscriber on the
same disaster recovery site as the standby Oracle database. Create this read-only subscriber
with the ttRepAdmin -duplicate -activeDataGuard utility option, which replicates the read-
only cache groups directly to the subscriber as it would to a standby master database. That is,
instead of the cache groups being converted to tables when replicated to a subscriber, the
cache groups themselves are replicated to the read-only subscriber. This is to provide a
recovery and failover option if the primary site fails. See Recovery After Failure When Using
Asynchronous Active Data Guard.

The following sections provide more details on the environment for asynchronous Active Data
Guard when using replicated read-only cache groups:

* Configuring the Primary and Standby Oracle Databases
* Configuring the Active Standby Pair with Read-Only Cache Groups

¢ Recovery After Failure When Using Asynchronous Active Data Guard

Configuring the Primary and Standby Oracle Databases

When you create and configure Active Data Guard with primary and standby Oracle
databases, ensure that the configuration includes specific configuration that supports the
TimesTen cache environment.

ORACLE 100

Chapter 10
Cache in TimesTen Works with Asynchronous Active Data Guard

1. Configure both the primary and standby Oracle databases to use Flashback queries. See
Configuring Recovery Settings in the Oracle Database 2 Day DBA guide.

2. The Data Guard configuration must be managed by the Data Guard Broker so that the
TimesTen daemon processes and application clients respond faster to failover and
switchover events. See the Data Guard Broker guide.

3. Create two supporting database services on both the primary and standby Oracle
databases in the Oracle Cluster. One database service points to the primary Oracle
Database and the other points to the physical standby Oracle Database. You can create
these either through role based services or through system triggers.

See the following sections for details.
» Configuring Oracle Database Services Through Role Based Services

* Configuring Oracle Database Services Through System Triggers

Configuring Oracle Database Services Through Role Based Services

ORACLE

You can automatically control the startup of Oracle database services on both the primary and
standby Oracle databases by assigning a database role to each service.

An Oracle database service automatically starts when the Oracle database starts if the Oracle
database policy is set to AUTOMATIC and if the service role matches the current role of the
database. In this case, the role for the Oracle database is either in the primary or standby role
as part of the Active Data Guard configuration.

Configure services with the srvctl utility identically on all Oracle databases in the Data Guard
configuration. The following example shows two services created identically on both the
primary and the standby Oracle databases. See srvctl add service in the Oracle Database
Administrator's Guide.

The following steps add the primaryrole and standbyrole database services to both the
primary and standby Oracle databases when the primary Oracle database is located in Austin
and the standby Oracle database is located in Houston.

1. On the primary Oracle database, add the primaryrole database service. While this Oracle
database acts as the primary, this service is started.

srvctl add service -d Austin -s primaryrole -r ssal,ssa2,ssa3,
ssa4 -1 PRIMARY -g TRUE -e SESSION -m BASIC -w 10 -z 150

2. On the primary Oracle database, add the standbyrole database service. This service
starts only if this Oracle database switches to the standby role and then provides real-time
reporting on the standby Oracle database.

srvctl add service -d Austin -s standbyrole -r ssal,ssa2,ssa3,
ssa4 -1 PHYSICAL STANDBY -g TRUE -e SESSION -m BASIC -w 10 -z 150

3. On the standby Oracle database, add the primaryrole database service. This service
starts only if this Oracle database switches to the primary role.

srvctl add service -d Houston -s primaryrole -r ssbl,ssb2,ssb3,
ssb4 -1 PRIMARY -g TRUE -e SESSION -m BASIC -w 10 -z 150

4. On the standby Oracle database, add the standbyrole database service. While this Oracle
database acts as the standby, this service is started and then provides real-time reporting
on the standby Oracle database.

srvctl add service -d Houston -s standbyrole -r ssbl,ssb2,ssb3,
ssbd -1 PHYSICAL STANDBY -g TRUE -e SESSION -m BASIC -w 10 -z 150

10-3

Chapter 10
Cache in TimesTen Works with Asynchronous Active Data Guard

Run the following SQL statement on the primary Oracle database so that the service
definitions are transmitted and applied to the physical standby Oracle database.

EXECUTE DBMS SERVICE.CREATE SERVICE ('standbyrole', 'standbyrole', NULL,
NULL, TRUE, 'BASIC', 'SESSION', 150, 10, NULL);

Add connection aliases in the appropriate tnsnames.ora files to identify the primary and
standby Oracle databases and specify the database service names for each.

primaryinstance=
(DESCRIPTION LIST=
(LOAD BALANCE=0ff)
(FAILOVER=0n)
(DESCRIPTION=(ADDRESS LIST=(LOAD BALANCE=on)
(ADDRESS= (PROTOCOL=TCP) (HOST=myhostl) (PORT=1521)))
(CONNECT DATA= (SERVER=DEDICATED) (SERVICE NAME=primaryrole)))

(DESCRIPTION=(ADDRESS LIST=(LOAD BALANCE=on)
(ADDRESS= (PROTOCOL=TCP) (HOST=myhost2) (PORT=1521)))
(CONNECT DATA= (SERVER=DEDICATED) (SERVICE NAME=primaryrole))))

standbyinstance=
(DESCRIPTION LIST=
(LOAD BALANCE=o0ff)
(FAILOVER=0n)
(DESCRIPTION= (ADDRESS LIST=(LOAD BALANCE=on)
(ADDRESS= (PROTOCOL=TCP) (HOST=myhostl) (PORT=1521)))
(CONNECT DATA=(SERVER=DEDICATED) (SERVICE NAME=standbyrole)))

(DESCRIPTION= (ADDRESS LIST=(LOAD BALANCE=on)
(ADDRESS= (PROTOCOL=TCP) (HOST=myhost2) (PORT=1521)))
(CONNECT DATA= (SERVER=DEDICATED) (SERVICE NAME=standbyrole))))

On the primary Oracle database, start the primaryrole database service.
srvctl start service -d Austin -s primaryrole
On the standby Oracle database, start the standbyrole database service.

srvctl start service -d Houston -s standbyrole

Configuring Oracle Database Services Through System Triggers

ORACLE

You can perform certain steps to create the primaryrole and standbyrole database services
on the primary Oracle database using triggers. After creation, these are replicated to the
standby Oracle database.

1.

Create the primaryrole and standbyrole database services in the primary Oracle
database.

exec DBMS SERVICE.CREATE SERVICE (

service name => 'primaryrole',

network name => 'primaryrole',

aq_ha notifications => true, failover method => 'BASIC',

failover type => 'SELECT', failover retries => 180, failover delay => 1);

exec DBMS SERVICE.CREATE SERVICE (

service name => 'standbyrole',

network name => 'standbyrole',

aq_ha notifications => true, failover method => 'BASIC',

failover type => 'SELECT', failover retries => 180, failover delay => 1);

Create the primaryrole and standbyrole triggers in the primary Oracle database for when
the database starts.

10-4

Chapter 10
Cache in TimesTen Works with Asynchronous Active Data Guard

CREATE OR REPLACE TRIGGER manage OCIService
after startup on database
DECLARE
role VARCHAR (30);
BEGIN
SELECT DATABASE ROLE INTO role FROM VSDATABASE;
IF role = 'PRIMARY' THEN
BEGIN
DBMS SERVICE.START SERVICE ('primaryrole');
EXCEPTION
WHEN OTHERS THEN
NULL;
END;
BEGIN
DBMS SERVICE.STOP SERVICE ('standbyrole');
EXCEPTION
WHEN OTHERS THEN
NULL;
END;
ELSE
BEGIN
DBMS SERVICE.STOP SERVICE ('primaryrole');
EXCEPTION
WHEN OTHERS THEN
NULL;
END;
BEGIN
DBMS SERVICE.START SERVICE ('standbyrole');
EXCEPTION
WHEN OTHERS THEN
NULL;
END;
END IF;
END;

3. Create the following trigger on the primary Oracle database to run when the database
changes roles:

CREATE OR REPLACE TRIGGER manage_OCIServiceZ
AFTER DB_ROLE CHANGE ON DATABASE
DECLARE
role VARCHAR (30);
BEGIN
SELECT DATABASE ROLE INTO role FROM VSDATABASE;
IF role = 'PRIMARY' THEN
BEGIN
DBMS_SERVICE.START_SERVICE(’primaryrole');
EXCEPTION
WHEN OTHERS THEN
NULL;
END;
BEGIN
DBMS SERVICE.STOP SERVICE ('standbyrole');
EXCEPTION
WHEN OTHERS THEN
NULL;
END;
ELSE
BEGIN
DBMS_SERVICE.STOP_SERVICE('primaryrole');
EXCEPTION
WHEN OTHERS THEN
NULL;

ORACLE

10-5

Chapter 10
Cache in TimesTen Works with Asynchronous Active Data Guard

END;
BEGIN
DBMS SERVICE.START SERVICE ('standbyrole');
EXCEPTION
WHEN OTHERS THEN
NULL;
END;
END IF;
END;

Add connection aliases in the appropriate tnsnames.ora files to identify the primary and
standby Oracle databases and specify the database service names for each.

primaryinstance=
(DESCRIPTION LIST=
(LOAD BALANCE=0ff)
(FAILOVER=0n)
(DESCRIPTION=(ADDRESS LIST=(LOAD BALANCE=on)
(ADDRESS= (PROTOCOL=TCP) (HOST=myhostl) (PORT=1521)))
(CONNECT DATA= (SERVER=DEDICATED) (SERVICE NAME=primaryrole)))

(DESCRIPTION=(ADDRESS LIST=(LOAD BALANCE=on)
(ADDRESS= (PROTOCOL=TCP) (HOST=myhost2) (PORT=1521)))
(CONNECT DATA= (SERVER=DEDICATED) (SERVICE NAME=primaryrole))))

standbyinstance=
(DESCRIPTION LIST=
(LOAD BALANCE=o0ff)
(FAILOVER=0n)
(DESCRIPTION= (ADDRESS LIST=(LOAD BALANCE=on)
(ADDRESS= (PROTOCOL=TCP) (HOST=myhostl) (PORT=1521)))
(CONNECT DATA=(SERVER=DEDICATED) (SERVICE NAME=standbyrole)))

(DESCRIPTION= (ADDRESS LIST=(LOAD BALANCE=on)
(ADDRESS= (PROTOCOL=TCP) (HOST=myhost2) (PORT=1521)))
(CONNECT DATA=(SERVER=DEDICATED) (SERVICE NAME=standbyrole))))

Restart both of the Oracle databases to enable the trigger to start and stop the correct
database services. Alternatively, if you do not want to restart both Oracle databases, you
can start and stop the appropriate database services on each Oracle database as follows:

On the primary Oracle database:

exec DBMS SERVICE.START SERVICE ('primaryrole');
exec DBMS SERVICE.STOP SERVICE ('standbyrole');

On the standby Oracle database:

exec DBMS SERVICE.STOP SERVICE ('primaryrole');
exec DBMS SERVICE.START SERVICE ('standbyrole');

Configuring the Active Standby Pair with Read-Only Cache Groups

ORACLE

The Active Data Guard with asynchronous redo transport mode supports an active standby
pair replication scheme that only contains replicated read-only cache groups.

All replicated read-only cache groups must be created before you create the active standby
pair. You cannot exclude a replicated read-only cache group when you are creating the active
standby pair and you cannot add another replicated read-only cache group to the active
standby pair after creation.

When you create and configure an active standby pair to support replicated read-only cache
groups, perform the following to support asynchronous Active Data Guard:

10-6

ORACLE

Chapter 10
Cache in TimesTen Works with Asynchronous Active Data Guard

When you create the active standby pair, we recommend that you keep both the active and
standby masters within the same physical site. They can be on different hosts within the
same site.

If you want a read-only subscriber for disaster recovery, you can add a read-only
subscriber on the same disaster recovery site as the standby Oracle database and enable
the subscriber for cache groups. The subscriber that you should create when using Active
Data Guard is created with a duplicate operation with the ttRepAdmin -duplicate -
activeDataGuard options.

The -activeDataGuard option, which is solely for the Active Data Guard environment,
enables the subscriber to keep replicated read-only cache groups intact as it would for a
standby master. Since the subscriber retains these cache groups, you must provide the
Oracle cache administration user name and password on the ttRepAdmin utility command
line.

< Note:

Alternatively, you can use the ttRepDuplicateEx C function setting the
TT REPDUP ADG flag in ttRepDuplicateExArg.flags.

The following example creates a read-only subscriber on the disaster recovery site
duplicating from the standby master providing the -activeDataGuard option, the cache
administration user name and passwords.

ttRepAdmin -duplicate -from master2 -host nodel
-uid cacheadmin -pwd timesten -cacheuid cacheadmin -cachepwd orapwd
-activeDataGuard adgsubscriber

Create the cache environment on the primary Oracle database. You do not need to
perform any of these steps on the standby Oracle database.

On the primary Oracle database, grant the Oracle cache administration user the EXECUTE
privilege for the SYS.DBMS FLASHBACK package. This privilege is granted as part of the
initCacheAdminSchema.sql and grantCacheAdminPrivileges.sql scripts.

Configure the same connection attributes that you would for a TimesTen database that
caches data from an Oracle database. In addition, since we are also monitoring
transactions from the standby Oracle database, configure the standbyNetServiceName
connection attribute with the net service name of the standby Oracle database instance.

On Microsoft Windows systems, the net service name of the Oracle database instance is
specified in the Oracle Net Service Name field of the TimesTen Cache tab within the
TimesTen ODBC Setup dialog box. The standby Oracle database instance is specified in
the Standby Oracle Net Service Name field on the same page.

Configure the StandbyNetServiceName ODBC.INI attribute on the active master to configure
the net service name of the physical standby Oracle database:

[cachedb]

DataStore=/myDb/cachedb

PermSize=256

TempSize=256
DatabaseCharacterSet=WE8DEC
OracleNetServiceName=primaryinstance
StandbyNetServiceName=standbyinstance

10-7

Chapter 10
Cache in TimesTen Works with Asynchronous Active Data Guard

Recovery After Failure When Using Asynchronous Active Data Guard

There are recommended recovery procedures if the primary Oracle database fails, the standby
Oracle database fails, or the entire primary site fails taking down the primary Oracle database
as well as the active and standby masters.

e Failure of the Standby Oracle Database
e Failure of the Primary Oracle Database

e Failure of the Primary Site

Failure of the Standby Oracle Database

ORACLE

When the standby Oracle database in an Active Data Guard configuration fails, the cache
agent retries the connection to the standby Oracle database.

Note:

You can notify the cache agent of whether the standby Oracle database is active or
has failed by calling the ttCacheADGStandbyStateSet built-in procedure with either
the ON or the FAILED arguments.

« If atimeout is set, then the cache agent waits for the amount of time specified with the
ttCacheADGStandbyTimeoutSet built-in procedure. If the standby Oracle database has not
recovered after this period, then the cache agent sets the state of the standby Oracle
database by calling the ttCacheADGStandbyStateSet built-in procedure with the FATLED
argument and then facilitates autorefresh using only the primary Oracle database.

e If no timeout has been set with the ttCacheADGStandbyTimeoutSet built-in procedure
(default value is 0), then the cache agent continues to wait on the standby Oracle
database, unless you inform the cache agent that the standby Oracle database is not
recovering by calling the ttCacheADGStandbyStateSet built-in procedure with the FAILED
argument.

Once the state of the standby Oracle database is set to FAILED, the cache agent resumes
autorefresh with only the primary Oracle database until you reset the state of the standby
Oracle database by calling the ttCacheADGStandbyStateSet built-in procedure with the oN
argument. Even if the standby Oracle database eventually does recover, the cache agent does
not recognize that the standby Oracle database is active until you reset its state to ON.

Once the state of the standby Oracle database is set to 0N, the cache agent pauses to wait for
the standby Oracle database to catch up to the primary Oracle database. After which, the
cache agent resumes autorefresh from the primary Oracle database for those transactions that
have successfully replicated to the standby Oracle database.

You can restore the original Active Data Guard configuration by dropping the active standby
pair and then loading the cache groups.

See ttCacheADGStandbyTimeoutSet and ttCacheADGStandbyStateSet in the Oracle
TimesTen In-Memory Database Reference.

10-8

Chapter 10
Cache in TimesTen Works with Asynchronous Active Data Guard

Failure of the Primary Oracle Database

If the primary Oracle database fails, then Data Guard switches over to the standby Oracle
database and the TimesTen cache agent switches autorefresh over to the new primary Oracle
database.

Figure 10-2 Failure of the Primary Oracle Database

I ADG enabled
Active Standby | read-on]y
master replicated master replicated | subscriber
updates 3 updates -~ e
| qal
[//,
cache tables cache tables | cache tables
] [[[[e | [
[[[[I
I
autorefresh |
primary Oracle updates | standby Oracle
database database

Disaster
Primary Site ~ Recovery T
Site application
updates

Failure of the Primary Site

If the entire site where the primary Oracle database as well as the active and standby master
databases are located fails, then the standby Oracle database becomes the primary Oracle
database.

After which, you may want the disaster recovery site to become the primary TimesTen
database. Thus, on the disaster recovery site, the standby Oracle database is now a sole
Oracle database and the read-only subscriber becomes a single TimesTen database that
caches data in the Oracle database.

Transform the subscriber into a single TimesTen database with cached tables by:

1. Drop the active standby pair on the TimesTen database on the disaster recovery site.

2. Alter the existing read-only cache groups on the disaster recovery site to set the
autorefresh state to on.

After which, the cache tables on the TimesTen database in the disaster recovery site receive
updates from the new primary Oracle database.

ORACLE 0.0

Chapter 10

Cache in TimesTen Works with Asynchronous Active Data Guard

Figure 10-3 Recovery After Failure of Primary Site

Standby
master

TimesTen
database

| cached read-only tabl

es

|5

[[[
(] [[.
Disaster replicated
Primary Site Recgvery updates
Fails! Site
FAILED | :
primary primary
Oracle I Oracle
Database | Database
I
I
I
| application
| updates

The following is the process to recover a failed primary site and rebuild your environment to the
original state:

1.
2.

ORACLE

Create a new active standby pair on the disaster recovery site.

Alter the existing read-only cache groups on the disaster recovery site to set the
autorefresh state to off to stop any future updates from the primary Oracle database.

Create the ADG enabled read-only subscriber on the recovered primary site.

Drop the active standby pair on the ADG enabled read-only subscriber on the primary site,
if it still exists after recovering the primary site.

Switch over the Oracle databases in the Active Data Guard. Currently, the applications are
updating the primary Oracle database on the disaster recovery site. However, once you
recover the Oracle database on the primary site, we want it to take over again as the
primary and to make the Oracle database on the disaster recovery site as the secondary.

The TimesTen database starts to receive updates from the Oracle database on the primary
site.

10-10

cache tables I N [N R

Chapter 10
Cache in TimesTen Works with Asynchronous Active Data Guard

ADG enabled !
rezd—ogly I Standby Active
subscriber
I master master
A T | D E—
()
I
| rﬁache telalbles - | cache tables cache table
[[= [(N e
L | ---I I
3. Create a new ADG enabled 1. (;rgate anew active standby
read-only subscriber on the primary site. pair in the disaster recovery site.
4. Drop the active | 2. Set auto[)efre?oh to off for the
- existing subscriber.
staIndby pairon the standby Oracle | primary Oracle
primary site.
database < . Active Data Guard database
5. Swap the primary I
and standby Oracle |
databases so that |
the updates come
from the disaster |
recovery site to the | Disaster
primary site. Primary Site | Recovery Site application
updates

6. Create a new active standby pair on the primary site.

7. Create a new ADG enabled read-only subscriber on the disaster recovery site.

! ADG-enabled

Active Standby | Read-only

master master | subscriber

-
> | > / \I
cache tables cache tables I \ée tables

[[[[

— [[I) I | S . —

| 7.Create a new
ADG enabled read-only
subscriber on the

| disaster recovery site.

6. Create a new active
standby pair on the
primary site.

primary Oracle I standby Oracle
database Active Data Guard | database

>
I
I
I

application Primary Site | Disaster Recovery Site

updates

ORACLE 10-11

Chapter 10
Cache in TimesTen Works with Synchronous Data Guard

Cache in TimesTen Works with Synchronous Data Guard

Cache in TimesTen works with synchronous physical standby failover and switchover and
logical standby switchover as long as the object IDs for cached Oracle Database tables remain
the same on the primary and standby Oracle databases.

Object IDs can change if the table is dropped and re-created, altered, or a truncated flashback
operation or online segment shrink is performed.

During a transient upgrade, a physical standby Oracle database is transformed into a logical
standby Oracle database. For the time that the standby Oracle database is logical, the user
must ensure that the object IDs of the cached Oracle Database tables do not change.
Specifically, tables that are cached should not be dropped and re-created, truncated, altered,
flashed back or have an online segment shrunk.

The following sections describe how to configure the Oracle and TimesTen databases.

e Configuring the Oracle Databases for TimesTen and Synchronous Data Guard

e Configuring the TimesTen Database to Work with Synchronous Data Guard

Configuring the Oracle Databases for TimesTen and Synchronous Data

Guard

ORACLE

You can configure TimesTen to fail over and switch over when using synchronous Data Guard.

In order for TimesTen to fail over and switch over properly, configure the primary and standby
Oracle databases using the following steps:

1. The Data Guard configuration must be managed by the Data Guard Broker so that the
TimesTen daemon processes and application clients respond faster to failover and
switchover events.

2. If you are configuring an Oracle RAC database, use the Oracle Enterprise Manager
Cluster Managed Database Services Page to create Oracle database services that
TimesTen and its client applications use to connect to the Oracle primary database. See
Workload Management with Dynamic Database Services in Oracle Real Application
Clusters Administration and Deployment Guide.

3. If you created the Oracle database service in step 2, use the MODIFY SERVICE function of

the DBMS SERVICE PL/SQL package to modify the service to enable high availability
notification to be sent through Advanced Queuing (AQ) by setting the

aq_ha notifications attribute to TRUE. To configure server side TAF settings, set the
failover attributes, as shown in the following example:

BEGIN

DBMS SERVICE.MODIFY SERVICE
(service name => 'DBSERV',
goal => DBMS SERVICE.GOAL NONE,
dtp => false,

aq ha notifications => true,
failover method => 'BASIC',
failover type => 'SELECT',
failover retries => 180,
failover delay => 1);

END;

10-12

ORACLE

Chapter 10
Cache in TimesTen Works with Synchronous Data Guard

If you did not create the database service in step 2, use the CREATE SERVICE function of the
DBMS_ SERVICE PL/SQL package to create the database service, enable high availability
notification, and configure server side TAF settings:

BEGIN
DBMS SERVICE.CREATE SERVICE
(service name => 'DBSERV',
network name => 'DBSERV',
goal => DBMS SERVICE.GOAL NONE,
dtp => false,
aq_ha notifications => true,
failover method => 'BASIC',
failover type => 'SELECT',
failover retries => 180,
failover delay => 1);
END;

Create two triggers to relocate the database service to a Data Guard standby database
(Oracle RAC or non-Oracle RAC) after it has switched to the primary role. The first trigger
fires on the system start event and starts up the DBSERV service:

CREATE OR REPLACE TRIGGER manage service
AFTER STARTUP ON DATABASE
DECLARE
role VARCHAR(30);
BEGIN
SELECT database role INTO role FROM vSdatabase;
IF role = 'PRIMARY' THEN
dbms_service.start service('DBSERV');
END IF;
END;

The second trigger fires when the standby database remains open during a failover and
switchover upon a database role change. It relocates the DBSERV service from the old
primary to the new primary database and disconnects any connections to that service on
the old primary database so that TimesTen and its client applications can reconnect to the
new primary database:

CREATE OR REPLACE TRIGGER relocate service
AFTER DB_ROLE_CHANGE ON DATABASE
DECLARE
role VARCHAR(30);
BEGIN
SELECT database role INTO role FROM vS$database;
IF role = 'PRIMARY' THEN
dbms service.start service ('DBSERV');
ELSE
dbms service.stop service('DBSERV');
dbms lock.sleep(2);
FOR x IN (SELECT s.sid, s.serial#
FROM v$session s, vSprocess p
WHERE s.service name='DBSERV' AND s.paddr=p.addr)
LOOP
BEGIN
EXECUTE IMMEDIATE
'ALTER SYSTEM DISCONNECT SESSION

"YU x.sid || ', '|| x.serial# || ''' IMMEDIATE';
EXCEPTION WHEN OTHERS THEN
BEGIN
DBMS OUTPUT.PUT LINE (DBMS UTILITY.FORMAT ERROR STACK);
END;
END;

10-13

Chapter 10
Cache in TimesTen Works with Synchronous Data Guard

END LOOP;
END IF;
END;

6. As an option, to reduce the performance impact to TimesTen applications and minimize the

downtime during a physical or logical standby database switchover, run the following
procedure right before initiating the Data Guard switchover to a physical or logical standby
database:

DECLARE
role varchar (30);
BEGIN
SELECT database role INTO role FROM vSdatabase;
IF role = 'PRIMARY' THEN
dbms_service.stop service ('DBSERV');
dbms_lock.sleep(2);
FOR x IN (SELECT s.sid, s.serial#
FROM v$session s, vSprocess p
WHERE s.service name='DBSERV' AND s.paddr=p.addr)
LOOP
BEGIN
EXECUTE IMMEDIATE
'ALTER SYSTEM DISCONNECT SESSION

"Y1 x.sid || '," || x.serial# || ''' IMMEDIATE';
EXCEPTION WHEN OTHERS THEN
BEGIN
DBMS OUTPUT.PUT LINE (DBMS UTILITY.FORMAT ERROR STACK) ;
END;
END;
END LOOP;
ELSE
dbms_service.start service ('DBSERV');
END IF;
END;

This procedure should be performed first on the physical or logical standby database, and
then on the primary database, right before the switchover process. Before running the
procedure for a physical standby database switchover, Active Data Guard must be enabled
on the physical standby database.

Before performing a switchover to a logical standby database, stop the Oracle Database
service for TimesTen on the primary database and disconnect all sessions connected to that
service. Then start the service on the standby database.

At this point, cache applications try to reconnect to the standby database. If a switchover
occurs, there is no wait required to migrate the connections from the primary database to the
standby database. This eliminates the performance impact on TimesTen and its applications.

Configuring the TimesTen Database to Work with Synchronous Data Guard

ORACLE

Configure TimesTen to receive notification of FAN HA events and to avoid reconnecting to a
failed Oracle Database instance. Use the Oracle client shipped with TimesTen.

1. Create an Oracle Net service name that includes all primary and standby hosts in
ADDRESS_LIST. For example:

DBSERV =

(DESCRIPTION =
(ADDRESS LIST =
(ADDRESS = (PROTOCOL = TCP) (HOST = PRIMARYDB) (PORT = 1521))
(ADDRESS = (PROTOCOL = TCP) (HOST = STANDBYDB) (PORT = 1521))

10-14

Chapter 10
Cache in TimesTen Works with Synchronous Data Guard

(LOAD BALANCE = yes)

)
(CONNECT DATA= (SERVICE NAME=DBSERV))

)

2. Inthe client's sqlnet.ora file, set the SQLNET.OUTBOUND CONNECT TIMEOUT parameter to
enable clients to quickly traverse an address list in the event of a failure. For example, if a
client attempts to connect to a host that is unavailable, the connection attempt is bounded
to the time specified by the SQLNET.OUTBOUND CONNECT TIMEOUT parameter, after which the
client attempts to connect to the next host in the address list. Connection attempts
continue for each host in the address list until a connection is made.

Setting the SQLNET.OUTBOUND CONNECT TIMEOUT parameter to a value of 3 seconds suffices
in most environments. For example, add the following entry to the sqlnet.ora file:

SQLNET.OUTBOUND CONNECT TIMEOUT=3

ORACLE 1015

Using GoldenGate as an Alternative to Native
Read-Only Cache Groups

Oracle GoldenGate is Oracle's primary data replication and data exchange technology.
GoldenGate supports a multitude of databases as sources for data capture as well as targets
for data delivery.

TimesTen can be deployed in several ways, including as an in-memory cache for data that
resides in an Oracle database. TimesTen provides functionality to enable it to act as a cache
for Oracle database. This technology supports both read-only and read-write caching.

If your caching use case is to provide read-only caching, then (in some cases) you may prefer
to use GoldenGate to refresh data from the back-end database to the TimesTen cache, instead
of using the TimesTen native cache functionality.

Note:

While this chapter refers to using GoldenGate for cache refresh, the operation is
more accurately identified as unidirectional real-time replication.

¢ Note:

The Oracle GoldenGate Documentation is the definitive source for information on
GoldenGate installation, configuration, and operation. See Using Oracle GoldenGate
for Oracle TimesTen in the Using Oracle GoldenGate for Heterogeneous Databases
guide for a description of features supported and guidelines for preparing the system
to support cache refresh using Oracle GoldenGate. This chapter does not duplicate
significant information from the GoldenGate documentation, except where it is
pertinent to do so.

The following sections describe when and how to use GoldenGate as the cache refresh
mechanism for TimesTen:

e Supporting TimesTen and GoldenGate for Cache Refresh
» Considering Factors Using GoldenGate as the Cache Refresh Mechanism
e Configuring GoldenGate to Provide Cache Refresh Functionality for TimesTen Workflow

» Caching Using GoldenGate Example

Supporting TimesTen and GoldenGate for Cache Refresh

The GoldenGate delivery is supported with both TimesTen Classic and TimesTen Scaleout.

The supported versions of TimesTen and GoldenGate are:

ORACLE 111

Chapter 11
Considering Factors Using GoldenGate as the Cache Refresh Mechanism

The installed TimesTen version is 18.1.4.9.0 or higher and the installed GoldenGate
version is 19.1 or higher.

The GoldenGate parallel Replicat process, which can improve replication throughput in
some use cases, is supported with GoldenGate 21.3 and higher. Use GoldenGate release
21.3 or later for the best experience.

Considering Factors Using GoldenGate as the Cache Refresh

Mechanism

Instead of using the TimesTen provided cache refresh mechanism, there are a couple of
reasons when to use GoldenGate as the cache refresh mechanism for read-only cache
groups.

If you are planning to use GoldenGate as the cache refresh mechanism, consider that:

ORACLE

GoldenGate cache refresh supports functionality similar to TimesTen static read-only cache
groups. All other types of cache groups (dynamic, Asynchronous WriteThrough,
Synchronous WriteThrough, User Managed, and so on) are not currently supported to use
GoldenGate as the cache refresh mechanism. These types of cache groups must use the
TimesTen native caching mechanisms.

GoldenGate for Oracle TimesTen supports delivery of data to user tables, instead of cache
groups. Since GoldenGate uses regular tables instead of cache groups, create your cache
tables in TimesTen as regular tables (using the CREATE TABLE statement) and not as cache
groups (using the CREATE READONLY CACHE GROUP statement).

When using GoldenGate as the cache refresh mechanism, any read-only cached tables in
TimesTen are not truly read-only. Applications are not automatically prevented from
modifying data in the tables; however, any modifications can be overwritten if GoldenGate
refreshes newly modified data into the table from the back-end database. You can mitigate
this by having the tables owned by a dedicated user separate from the application users
and assigning database privileges to ensure that application users only have read access
to the cache tables.

A best practice is to use a dedicated TimesTen database user for the GoldenGate apply
process. Cached tables should be owned by this user and application users should be
granted only read (SELECT) privileges on the cached tables.

Golden Gate only refreshes cache tables in TimesTen with modified data. You must
perform an initial load of data from the source database into TimesTen. The initial table
data load is used to establish data synchronization when instantiating GoldenGate
replication.

You must set the DatabaseCharacterSet TimesTen database parameter to the same value
as the Oracle Database database character set.

All GoldenGate connections to the TimesTen database must use a connection that
explicitly sets ConnectionCharacterSet to the same value as DatabaseCharacterSet.

GoldenGate is a separately licensed product, and you must have suitable licenses to cover
your usage. You must have license coverage for both GoldenGate capture for the source
database and GoldenGate apply for TimesTen.

11-2

ORACLE

Chapter 11

Configuring GoldenGate to Provide Cache Refresh Functionality for TimesTen Workflow

Configuring GoldenGate to Provide Cache Refresh Functionality
for TimesTen Workflow

You can set up a caching environment between GoldenGate and TimesTen.

The following versions are used in this procedure and the examples:

e The source database is an Oracle database running a recent release (18c or later).

e The target database is TimesTen release 22.1.1.1.0 or later.

e The GoldenGate release is 21.3 or later. The GoldenGate parallel Replicat process, which
can improve replication throughput in some use cases, is supported with GoldenGate 21.3
and higher. You install GoldenGate on the same machine as the source database.

The tasks for setting up a GoldenGate caching environment with TimesTen are as follows:

Task

Description

More Information

Installing Oracle database

Install, configure, and prepare the
source database. In most
scenarios, the source database
already exists and contains the
tables that you desire to cache.

Installing Oracle Database

Installing GoldenGate at the
source database

Install and prepare the source
database for use with
GoldenGate.

Installing Oracle GoldenGate
Classic Architecture

Configuring GoldenGate data
capture

Configure GoldenGate data
capture for the source database
tables that you wish to cache in
TimesTen.

Configuring Oracle GoldenGate

Choosing on-box or off-box
deployment

Decide if you will run the
GoldenGate apply processes on
the same host as the target
TimesTen database (an on-box
deployment) or on a different host
to the target TimesTen database
(an off-box deployment).

Choosing On-Box or Off-Box for
Deployment of a GoldenGate
Replicat Process

Installing and configuring target
TimesTen database

In general, deploy the cache on a
different host from the source
database, which is the host
where the application processes
run.

Installing and Configuring Target
TimesTen Database

Creating database users and
tables in TimesTen

Create the TimesTen users and
tables that you wish to cache
from the source database. Grant
the necessary privileges.

Creating TimesTen Database
Users and Tables

Installing and configuring
TimesTen client instance

If you have chosen an off-box
deployment, install a TimesTen
client instance on the
GoldenGate apply host and
configure it to connect to the
TimesTen database.

Installing and Configuring a
TimesTen Client Instance (for Off-
Box Deployments Only)

11-3

https://docs.oracle.com/en/database/oracle/oracle-database/21/install-and-upgrade.html
https://docs.oracle.com/en/middleware/goldengate/core/21.3/installing/installing-classic-architecture.html#GUID-26B1503F-39A3-4020-8B1B-38846764DD64
https://docs.oracle.com/en/middleware/goldengate/core/21.3/installing/installing-classic-architecture.html#GUID-26B1503F-39A3-4020-8B1B-38846764DD64
https://docs.oracle.com/en/middleware/goldengate/core/21.3/gghdb/preparing-system-oracle-goldengate-tt.html#GUID-BAAC5FB1-83B0-4ECA-9A51-2E291010A333

Chapter 11

Configuring GoldenGate to Provide Cache Refresh Functionality for TimesTen Workflow

Task

Description

More Information

Configuring GoldenGate data
apply

Configure the GoldenGate apply

Configuring GoldenGate Data

mechanism (Replicat process) for Apply

the TimesTen database tables
that correspond to the source
database tables

Performing an initial data load

Perform an initial data load to
populate the TimesTen cache
tables from the corresponding
source database tables. This
process usually involves some
GoldenGate specific actions as
well as the actual data loading.

Performing an Initial Load

Starting GoldenGate real-time
replication

Activate GoldenGate continuous
real-time replication to provide

Starting GoldenGate Continuous
Real-Time Replication

ongoing data change
synchronization from the source
database to TimesTen.

Choosing On-Box or Off-Box for Deployment of a GoldenGate Replicat

Process

ORACLE

When you deploy GoldenGate for TimesTen, you ultimately instantiate a set of processes that
are responsible for receiving all replicated data from the GoldenGate source, storing it in a
(local) trail file, reading the replicated data from the trail file and applying it to the target

TimesTen database.

On-Box

Off-Box

If you deploy GoldenGate for TimesTen in the same
host, VM, container, or pod as the target TimesTen
database, then you can use either direct mode or
client-server connectivity. This is known as an on-
box deployment in GoldenGate terms. Generally,
direct mode connectivity is preferred and
recommended for this scenario

If you deploy GoldenGate for TimesTen in a
different host, VM, container, or pod to the target
TimesTen database, then you have to use client-
server connectivity. In GoldenGate terms this is an
off-box deployment.

TimesTen direct mode is a local only connectivity
method that enables applications to interact with a
local (same host) TimesTen database.

TimesTen client-server mode provides regular
client-server connectivity through TCP/IP
connections.

Direct mode connections use a highly efficient

mechanism that eliminates inter-process

communication, context switches and other

overheads. Direct mode delivers the lowest

possible data access latency together with high

throughput. Use of direct mode is limited to

application processes that are executing in one of

the following environments:

e Inthe same bare metal host as the TimesTen
database.

¢ In the same virtual machine as the TimesTen
database.

¢ Inthe same container as the TimesTen
database or, for Kubernetes environments, in a
container in the same pod as the TimesTen
database container.

In client-server mode, the applications can run
anywhere that has suitable network connectivity to
the host where TimesTen is running.

11-4

Chapter 11
Configuring GoldenGate to Provide Cache Refresh Functionality for TimesTen Workflow

On-Box Off-Box

Direct mode connections offer better performance Client-server mode potentially offers more flexibility
with less overhead. Using direct mode connections than direct mode, but this flexibility comes at the
will significantly increase the complexity if you want cost of increased overhead and lower performance
high availability when using a combination of due to network latency, additional processing, and
TimesTen and GoldenGate configurations. For SO on.

example, when you combine GoldenGate with

either a TimesTen active-standby pair or TimesTen

Scaleout, automated failover and recovery for

GoldenGate is significantly more complex

compared to an off-box configuration using client-

server connections.

Host resources (CPU, memory, storage) must be

sufficient to accommodate the TimesTen database

instance, the TimesTen database, all GoldenGate

processes, all associated processing plus any

other local processing (such as applications).

Installing and Configuring Target TimesTen Database

ORACLE

You can install and configure target TimesTen database for both on-box and off-box
deployments.

Note:

If you already have a suitable TimesTen instance and database that is configured for
connectivity to the source Oracle database, then you can skip this step.

1. Prepare an Oracle Database Net Services tnsnames.ora file with a suitable TNS entry to
enable connectivity from the TimesTen host system to the source Oracle database. Save
this file in a suitable directory.

The following example creates a TNS entry called myoradb:

MYORADB =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP) (HOST = oradb.example.net) (PORT = 1521))
(CONNECT DATA =
(SERVER = DEDICATED)
(SERVICE NAME = myoradb)
)
)

2. Setthe TNS ADMIN location for the cache agent with the ttInstanceModify -tnsadmin
option to set the path to the tnsnames.ora file. Specify the full path to the directory where
the file is located.

ttInstanceModify -tnsadmin /TimesTen/conf

3. For cache in TimesTen Classic, set the TNS_ADMIN environment variable to indicate the full
path to the directory where the tnsnames.ora file is located. Set this variable in the user's
profile script so that it persists.

export TNS ADMIN=/TimesTen/tnsadmin

4. Restart the main daemon to capture this setting.

11-5

Chapter 11
Configuring GoldenGate to Provide Cache Refresh Functionality for TimesTen Workflow

ttDaemonAdmin -stop
ttDaemonAdmin -start

Prepare the host where the target TimesTen database resides. Install TimesTen and create
a TimesTen instance. When creating the instance, enable the instance to use the
TNS_ADMIN value that it can detect from the environment. See Installation of TimesTen
Classic on Linux or UNIX in the Oracle TimesTen In-Memory Database Installation,
Migration, and Upgrade Guide.

Once you have a functional TimesTen instance, define a Data Source Name (DSN) in the
instance sys.odbc.ini file. The DSN defines all of the parameters for the target database.

The following example shows a DSN, cachel, for the TimesTen database. This type of
DSN is known as a Server DSN as it defines all of the attributes for the database and
defines an endpoint for direct mode connections. The value for the OracleNetServiceName
attribute should be the name of the TNS entry (myoradb in this example) that was
configured previously. The values specified for DatabaseCharacterSet and
ConnectionCharacterSet must match the source Oracle Database character set.

[ODBC Data Sources]
cachel=TimesTen 22.1 Driver

[cachel]
DataStore=/diskl/db/ckpt/myappdb
LogDir=/disk2/db/log
PermSize=8192
TempSize=512
LogBufMB=1024
LogFileSize=1024
MemoryLock=4
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8
OracleNetServiceName=myoradb

While logged in as the TimesTen instance administration user, set the environment for the
TimesTen instance. Connect to the DSN using the ttIsql utility, which creates the target
database.

Creating TimesTen Database Users and Tables

Perform steps to create the TimesTen database users and tables.

ORACLE

1.

While connected to the TimesTen database as the TimesTen instance administrator user,
create a dedicated GoldenGate apply database user for the GoldenGate apply processes.
This user owns all of the cached tables in TimesTen. Make sure that the dedicated
GoldenGate apply database user has all necessary privileges on the cached tables.

This example creates a dedicated GoldenGate apply database user called cacheadmin.

CREATE USER cacheadmin IDENTIFIED BY ttpwd;
GRANT CREATE SESSION, CACHE MANAGER, CREATE ANY TABLE TO cacheadmin;

Applications should connect to the database as different users from the GoldenGate apply
database user. As always, application users should be granted the minimum set of
privileges consistent with the operations needed to perform. This example creates two
application users named orattl and oratt2:

CREATE USER orattl IDENTIFIED BY ttpwd;
GRANT CREATE SESSION, CREATE ANY TABLE TO orattl;
CREATE USER oratt2 IDENTIFIED BY ttpwd;
GRANT CREATE SESSION, CREATE ANY TABLE TO oratt2;

11-6

Chapter 11
Configuring GoldenGate to Provide Cache Refresh Functionality for TimesTen Workflow

3. GoldenGate for Oracle TimesTen supports delivery of data to user tables, instead of cache
groups. Since GoldenGate uses regular tables instead of cache groups, create your cache
tables in TimesTen as regular tables (using the CREATE TABLE statement) and not as cache
groups (using the CREATE READONLY CACHE GROUP statement).

This step creates the required cache tables in TimesTen. Make sure that the table
definitions are compatible with the corresponding tables in the source database. You
should create the tables owned by the oratt database user (you need to be connected
either as cacheadmin or as some other user with ADMIN privileges):

CREATE TABLE orattl.cachetabl (..);
CREATE TABLE oratt2.cachetab2 (..);

4. When using GoldenGate as the cache refresh mechanism, any read-only cached tables in
TimesTen are not truly read-only. Applications are not prevented from modifying data in the
tables (provided that they have suitable access privileges on the tables). However, any
such modifications can be overwritten if GoldenGate refreshes newly modified data to the
table from the back-end database. You can mitigate this by ensuring that application users
only have read access to the cache tables. These tables must be owned by a user other
than the application users, such as the dedicated GoldenGate apply database user to
ensure that the GoldenGate apply process to write to these same tables.

Grant SELECT (read) privileges on the cache tables to the application users:

GRANT SELECT ON orattl.cachetabl TO cacheadminl, cacheadmin2, ..;
GRANT SELECT ON oratt2.cachetab2 TO cacheadminl, cacheadmin2, ..;

Installing and Configuring a TimesTen Client Instance (for Off-Box
Deployments Only)

ORACLE

When using an off-box deployment, you need to prepare the host where GoldenGate for
TimesTen will be installed.

Create a TimesTen installation and from that a TimesTen client instance. See Installation of
TimesTen Classic on Linux or UNIX in the Oracle TimesTen In-Memory Database Installation,
Migration, and Upgrade Guide.

Add a suitable client DSN to the client instance sys.odbc. ini file to enable connections to the
target TimesTen database that was configured in the Installing and Configuring Target
TimesTen Database section.

In this example, the client DSN is named cachel and the host name where the TimesTen
database is running is myttserver.example.com. The TimesTen server is listening on port
6625 (the default). This hosthname must be resolvable on the client system through DNS

or /etc/hosts and regular TCP connectivity must be functional between the client and server
systems. Port 6625 on the server must not be blocked by a firewall. Note the setting for
ConnectionCharacterSet.

[ODBC Data Sources]
cachel=TimesTen 22.1 Client Driver

[cachel]
TTC_SERVER=myttserver.example.com/6625
TTC_SERVER DSN=cachel
ConnectionCharacterSet=AL32UTF8

11-7

Chapter 11
Configuring GoldenGate to Provide Cache Refresh Functionality for TimesTen Workflow

Configuring GoldenGate Data Apply

ORACLE

Ensure that your environment is set for your local TimesTen instance (server or client) and
change your directory to the GoldenGate installation directory.

1. Start the GGSCI utility and use it to perform the following steps:
./ggsci

2. Start the manager process:
START MANAGER

3. Login to your TimesTen database using the DBLOGIN command. If you are using off-box
deployment, use the client DSN; otherwise, use the server DSN. The following example
uses the server DSN of cachel.

DBLOGIN SOURCEDB cachel, USERID cacheadmin, PASSWORD ttpwd

4. Create the GoldenGate checkpoint table. This is required for using a GoldenGate Replicat
process with TimesTen. Choose a table name so that it does not conflict with your
application tables:

ADD CHECKPOINTTABLE cacheadmin.gg ckpt table

5. Create a parallel Replicat group, which maximizes throughput. In this example, this group
is called rep:

ADD REPLICAT rep, EXTTRAIL trail name, PARALLEL, CHECKPOINTTABLE
cacheadmin.gg ckpt table

The trail name is the name of the remote trail that you specified for either the data pump
or Extract process on the source server.

6. Create a parameter file for the Replicat group. In our example, this file should be gg home/
dirprm/REP.prm:

REPLICAT rep
TARGETDB cachel, USERID cacheadmin, PASSWORD ttpwd
MAP oratt.*, TARGET oratt.*;

Here oratt.* is the table owner and name on the source database, and oratt.* is the
table owner and name in the TimesTen database. The table name should be same in both
the source and the target databases. You can specify multiple MAP directives or use
wildcards for multiple tables.

For off-box deployment, use the client DSN instead of the server DSN. You can also use a
GoldenGate credential store and USERIDALIAS for password encryption. For more
information, see Using Oracle GoldenGate with Oracle Database.

If you are using a parallel Replicat process include the following line before the MaAP
statements:

APPLY PARALLELISM 4

You can experiment with the number of apply threads to see which value provides the
most optimal throughput in your environment.

Add any other parameters in this file that apply to your database environment.

11-8

Chapter 11
Configuring GoldenGate to Provide Cache Refresh Functionality for TimesTen Workflow

Note:

When using TimesTen native caching, one option you have is to cache a subset of a
table (specific columns and/or rows). This is also possible with GoldenGate, but
these details are not covered in this document.

Performing an Initial Load

ORACLE

GoldenGate only refreshes cache tables in TimesTen with modified data. Thus, before starting
a GoldenGate Replicat process for continuous replication, you need to perform an initial load of
data to populate the cached tables in the TimesTen database with the rows from the source
database tables.

The initial table data load is used to establish data synchronization when instantiating
GoldenGate replication. In general, there may be a workload running against the source
database tables while you do this.

To perform the initial load (and the switch for continuous replication), perform the following:

1. Make sure that you have started the GoldenGate Extract process on the source Oracle
database. It is vital that GoldenGate has started change data capture and propagation on
the source database before proceeding to the next step.

2. On the source Oracle database, determine the current SCN value. For example, run the
following SQL query through SQL*Plus:

Command>SELECT CURRENT SCN FROM VSDATABASE;

In this example, the SCN value returned by this query is 12345678.

3. Connect to the TimesTen database as a suitable database user using the TimesTen
ttIsql utility. This user must meet the following criteria:

a. The user must exist in both the target TimesTen database and the source Oracle
database.

b. You must know the password for that user for both TimesTen and Oracle databases.
The passwords may differ on each of the databases.

c. In TimesTen, the user must have a minimum of the CREATE SESSION and INSERT
privileges on all tables to be loaded.

d. Inthe Oracle database, the user must have sufficient privileges to execute the load
query.

The following example connects to the TimesTen database with the cacheadmin user that
was created earlier:

$ ttIsql -connStr "DSN=cachel;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"

4. The initial table data load is used to establish data synchronization when instantiating
GoldenGate replication. To achieve the best performance for the initial table data load:

e Use the TimesTen ttLoadFromOracle built-in procedure for the initial table data load if
the backend database is an Oracle database. See ttLoadFromOracle in the Oracle
TimesTen In-Memory Database Reference.

* Use the TimesTen ttBulkCp utility for the initial table data load if the backend database
is a non-Oracle database. Export the table data in CSV format and then load it into

11-9

Chapter 11
Caching Using GoldenGate Example

TimesTen using the ttBulkCP utility. See ttBulkCp in the Oracle TimesTen In-Memory
Database Reference.

Load the data for each of the GoldenGate target tables using the TimesTen
ttLoadFromOracle built-in procedure, specifying a flashback query targeting the SCN
value determined in step (2) above. For example:

Command>call ttLoadFromOracle ('cacheadmin', 'cachetabl', 'SELECT * FROM
oratt.cachetabl AS OF SCN 12345678'");
Command>call ttLoadFromOracle ('cacheadmin', 'cachetab2', 'SELECT * FROM

oratt.cachetab2 AS OF SCN 12345678'");

Note:

If there are no dependencies (such as foreign key constraints) between tables, then
you can load them in parallel using separate ttIsql sessions. Provided that
resources are not a constraint, this can reduce the time required for the initial data
load.

You have now populated the TimesTen cache tables with data from the source Oracle
database. For more information, see Loading Data from an Oracle Database into a TimesTen
Table Without Cache in the Oracle TimesTen In-Memory Database Operations Guide.

Starting GoldenGate Continuous Real-Time Replication

Start the GoldenGate Replicat process rep using GGSCI, specifying the SCN value from which
to start.

GGSCI>START REPLICAT rep, AFTERCSN 12345678

Note:

GoldenGate refers to this value as a CSN (Commit Sequence Number) rather than
an SCN, hence the parameter name AFTERCSN.

You can see the changes are replicated from source database to TimesTen. You can also
check the status of a Replicat process using the following GGSCI command.

GGSCI>INFO REPLICAT rep

You now have a working setup that uses GoldenGate to replicate data changes from your
source Oracle database to your TimesTen cache database.

Caching Using GoldenGate Example

ORACLE

A complete end to end example is useful in demonstrating how to create a read-only cache
using GoldenGate.

In this example, the FQDN of the system hosting the TimesTen database is
tthostl.example.com.

11-10

Chapter 11
Caching Using GoldenGate Example

The DSN for the TimesTen database is cachel.

The GoldenGate deployment mode for TimesTen is on-box using direct mode connectivity.

Prerequisites

e A functioning Oracle database is a recent version.

* Arecent version of GoldenGate is installed on the Oracle database host.

e A functioning TimesTen instance is running at least TimesTen 22.1.1.1.0.

* GoldenGate 21.3 is installed on the TimesTen host.

e The TimesTen cache database has been configured and created.

e DatabaseCharacterSet and ConnectionCharacterSet correctly set in the TimesTen
database.

Oracle User and Source Tables
The Oracle application schema owner is oratt with password ttpwd.

There is Oracle cache administration user cacheadmin with password ttpwd, which has SELECT
privileges on the tables that are to be cached. The passwords for the application schema user
and the cache administration user can be different.

The oratt user owns three tables that will be cached in TimesTen:

CREATE TABLE customer
(

custid VARCHAR2 (10) NOT NULL,
firstname VARCHAR2 (20) NOT NULL,
lastname VARCHAR2 (20) NOT NULL,
address VARCHAR2 (128) NOT NULL,
phone VARCHAR2 (16) NOT NULL,

PRIMARY KEY (custid)
)
Table created.
CREATE TABLE orders
(
orderid NUMBER (10,0) NOT NULL,
custid VARCHAR2 (10) NOT NULL,
orderdate DATE NOT NULL,
priority CHAR (1),
amount NUMBER (12,2) NOT NULL,
PRIMARY KEY (orderid),
FOREIGN KEY (custid) REFERENCES customer (custid)
)i
Table created.
CREATE TABLE item
(
itemno NUMBER (4,0) NOT NULL,
orderid NUMBER (10,0) NOT NULL,
itemcode VARCHAR2 (10) NOT NULL,
quantity NUMBER (4,0) NOT NULL,
price NUMBER (6,2) NOT NULL,
totalvalue NUMBER(10,2) NOT NULL,
PRIMARY KEY (orderid,itemno),
FOREIGN KEY (orderid) REFERENCES order (orderid)
)
Table created.
INSERT INTO customer VALUES('C000000001', 'Fred', 'Bloggs', 'Nice Villas,
Pleasant Town', '+16072321234'");

ORACLE 11

Chapter 11
Caching Using GoldenGate Example

1 row inserted.

INSERT INTO orders VALUES (123456, 'C000000001', '21/10/2021', 'N', 430.46);
1 row inserted.

INSERT INTO item VALUES (1, 123456, '1000001725', 2, 15.25, 30.50);

1 row inserted.

INSERT INTO item VALUES (2, 123456, '1000207351', 4, 99.99, 399.9¢);

1 row inserted.

COMMIT;

This example performs the following steps:

Preparing TimesTen Users and Tables

Preparing Oracle Database to Run Extract Process

Preparing the TimesTen Database for GoldenGate Replication
Performing the Initial Data Load

Starting Real-Time Replication

o a & 0w N PR

Verifying That GoldenGate Replication is Working

Preparing TimesTen Users and Tables

ORACLE

Perform procedures to create users and the target tables on the TimesTen that support
GoldenGate replication.

1. Create the TimesTen database cache administration user cacheadmin whose name will be
same as the Oracle database cache administration user and it will also be a GoldenGate
user.

To create these users in your TimesTen database, connect, using the ttIsql utility, to the
TimesTen database as the instance administrator user and execute:

Command>CREATE USER cacheadmin IDENTIFIED BY ttpwd;
User created.

2. To create a cache table user oratt whose name is same as the Oracle database schema
user of the tables to be cached in the TimesTen database:

Command>CREATE USER oratt IDENTIFIED BY ttpwd;
User created.

3. Grant privileges to the TimesTen users:

Command>GRANT CREATE SESSION, CACHEiMANAGER, CREATE ANY TABLE TO
cacheadmin;
Command>GRANT CREATE SESSION, CREATE ANY TABLE TO oratt;

4. Create the target tables in the TimesTen database. Make the tables owned by the user
cacheadmin. Connect to the database, using ttlsql, as the user cacheadmin:

$ ttIsgl -connStr "DSN=cachel;UID=cacheadmin; PWD=ttpwd"

5. Execute the following SQL statements to create the tables on both TimesTen and Oracle
databases:

Command>CREATE TABLE customer

(
custid VARCHAR2 (10) NOT NULL,
firstname VARCHAR2 (20) NOT NULL,
lastname VARCHAR2 (20) NOT NULL,

11-12

Chapter 11
Caching Using GoldenGate Example

address
phone
PRIMARY KEY

VARCHAR?2 (128) NOT NULL,

VARCHAR?2 (16) NOT NULL,
(custid)

)

Table created.

Command>CREATE TABLE orders

(

orderid NUMBER (10,0) NOT NULL,

custid VARCHAR2 (10) NOT NULL,

orderdate DATE NOT NULL,

priority CHAR (1),

amount NUMBER (12,2) NOT NULL,

PRIMARY KEY (orderid),

FOREIGN KEY (custid) REFERENCES customer (custid)

)
Table created.
Command>CREATE TABLE item

(

itemno NUMBER (4, 0) NOT NULL,
orderid NUMBER (10, 0) NOT NULL,
itemcode VARCHAR2 (10) NOT NULL,
quantity NUMBER(4,0) NOT NULL,
price NUMBER (6,2) NOT NULL,

totalvalue NUMBER(10,2) NOT NULL,

PRIMARY KEY (orderid,itemno),

FOREIGN KEY (orderid) REFERENCES order (orderid)
)
Table created.
quit;

Preparing Oracle Database to Run Extract Process

Perform a few procedures to prepare the Oracle database to use GoldenGate replication.

ORACLE

1.

On the Oracle Database system, prepare the parameter file for the GoldenGate Extract
process. Using a text editor, create the file gg_home/dirprm/tt.prm with the following
contents:

EXTRACT tt

USERID cacheadmin, PASSWORD ttpwd

RMTHOST tthostl.example.com, MGRPORT 7809
RMTTRAIL dirdat/tr

TABLE oratt.customer;

TABLE oratt.orders;

TABLE oratt.item;

Start the GGSCI utility. Assuming that the GoldenGate home directory is in the $GG_HOME
directory:

cd $GG_HOME
./ggsci

From here on all commands use GGSCI.
Start the GoldenGate Manager:

GGSCI>start manager
Manager started.

Run these commands in GGSCI to start the extract process.
Configure Oracle for GoldenGate:

11-13

Chapter 11
Caching Using GoldenGate Example

GGSCI>DBLOGIN USERID cacheadmin, PASSWORD ttpwd
GGSCI>ADD SCHEMATRANDATA oratt

GGSCI>ADD EXTRACT tt, INTEGRATED TRANLOG, BEGIN NOW
GGSCI>REGISTER EXTRACT tt, DATABASE

GGSCI>ADD RMTTRAIL dirdat/tr, EXTRACT dirdat/tr

5. Start the GoldenGate Extract process using the file you configured above:
GGSCI>start tt

For information on the GoldenGate Extract group, see ADD EXTRACT.

Preparing the TimesTen Database for GoldenGate Replication

There are a few procedures to perform when preparing the TimesTen database to receive
GoldenGate replication.

1. Onthe TimesTen host, use a text editor to create the Replicat parameter file gg_home/
dirprm/REP.prm with the following contents:

REPLICAT rep
TARGETDB cachel, USERID cacheadmin, PASSWORD ttpwd
MAP oratt.*, TARGET oratt.*;

2. Start the GGSCI utility. Assuming that the GoldenGate home directory is in the $GG_HOME
directory:

cd $GG_HOME
./ggsci

From here on all commands use GGSCI.
3. Start the GoldenGate Manager:

GGSCI>start manager
Manager started.

4. Login to the TimesTen database, create the GoldenGate checkpoint table and configure a
Replicat group:

GGSCI>DBLOGIN SOURCEDB cachel, USERID cacheadmin, PASSWORD ttpwd

INFO 0GG-30087 TimesTen Driver Manager connection type is Direct mode.

For best performance, use Direct mode when connecting to a local TimesTen instance
and Client/Server mode for a remote instance. Refer to TimesTen Driver Manager user
guides to configure a Direct or ClientServer connection.

INFO 0GG-03036 Database character set identified as we8iso08859pl. Locale:.
INFO 0GG-03037 Session character set identified as we8iso08859pl.
logged into database.

GGSCI>ADD CHECKPOINTTABLE cacheadmin.gg ckpt table
Created checkpoint table cacheadmin.gg ckpt table.

GGSCI>ADD REPLICAT rep, EXTTRAIL dirdat/tr, PARALLEL, CHECKPOINTTABLE
cacheadmin.gg ckpt table
Replicat added.

Performing the Initial Data Load

The first procedure to starting the cache operations is to perform an initial data load of what is
currently in the tables that are to be cached.

1. On the host with the Oracle database, determine the current SCN value (using SQL*Plus):

ORACLE 1114

https://docs.oracle.com/en/middleware/goldengate/core/21.3/gclir/add-extract.html#GCLIR-GUID-D9611110-A8D6-4118-837E-BF1900262666

Chapter 11
Caching Using GoldenGate Example

Command>SELECT CURRENT SCN FROM VSDATABASE;

CURRENT_SCN

2791297

2. Onthe host with the TimesTen database, connect to the TimesTen database as the
cacheadmin user specifying both the TimesTen and Oracle database passwords for this
user:

$ ttIsgl -connStr "DSN=cachel;UID=cacheadmin;PWD=ttpwd;OraclePWD=ttpwd"

3. Load the data for each of the tables based on the Oracle database SCN value determined
above:

Command>call ttLoadFromOracle('oratt', 'customer',
'SELECT * FROM oratt.customer AS OF scn 2791297'");

Command>call ttLoadFromOracle('oratt', 'orders', 'SELECT * FROM oratt.orders
AS OF SCN 2791297");

Command>call ttLoadFromOracle('oratt', 'item', 'SELECT * FROM oratt.item
AS OF SCN 2791297");

4. Update the optimizer statistics for the tables that you just loaded to ensure optimal query
plans in TimesTen:

statsupdate customer;
statsupdate orders;
statsupdate item;
quit;

Starting Real-Time Replication

Using GGSCI, start a Replicat process beginning with the SCN value used for the data load.
For details on the Replicat process, see replicat.
Assuming that the GoldenGate home directory is in the $GG_HOME directory.

cd $GG_HOME

./ggsci

GGSCI>START REPLICAT rep, AFTERCSN 2791297
Sending START request to Manager ...
Replicat group REP starting.

Verifying That GoldenGate Replication is Working

Once you have replication set up, verify that replication is working.

Update data in the replicated tables by inserting, updating, and/or deleting rows in the Oracle
database.

On the TimesTen database, select from the replicated tables and verify that the changes are
being propagated from the Oracle database.

You can also check the status of a Replicat process using the GGSCI command:

GGSCI>INFO REPLICAT rep

ORACLE R

https://docs.oracle.com/en/middleware/goldengate/core/19.1/reference/replicat1.html

Required Privileges for Cache Administration
User for Cache Operations

The privileges that the cache administration users require depends on the types of cache
groups you create and the operations that you perform on the cache groups.

The privileges required for the Oracle cache administration user are listed in the first column
and the privileges required for the TimesTen cache administration user for each cache
operation are listed in the second column in Table A-1.

Note that the CACHE MANAGER privilege confers these privileges:

° CREATE ANY CACHE GROUP
e ALTER ANY CACHE GROUP
e DROP ANY CACHE GROUP

e FLUSH ANY CACHE GROUP
e LOAD ANY CACHE GROUP

e UNLOAD ANY CACHE GROUP
e REFRESH ANY CACHE GROUP
e FLUSH (object)

e LOAD (object)

* UNLOAD (object)

° REFRESH (Object)

The CACHE MANAGER privilege also includes the ability to start and stop the cache agent and the
replication agent.

See Privilege Hierarchy in the Oracle TimesTen In-Memory Database SQL Reference.

Table A-1 Oracle Database and TimesTen User Privileges Required for Cache Operations

Cache Operation Privileges Required for Oracle Database Privileges Required for TimesTen
Cache Administration User! Cache Administration User?
Minimum privileges required At minimum, the Oracle cache At minimum, the TimesTen cache
administration user must have the CREATE administration user must have the
TYPE privilege CREATE SESSION privilege.
ORACLE

A-1

Appendix A

Table A-1 (Cont.) Oracle Database and TimesTen User Privileges Required for Cache Operations

- __|]
Privileges Required for Oracle Database Privileges Required for TimesTen

Cache Operation

Cache A

dministration User! Cache Administration User?

Initialize the Oracle cache
administration user with the
grantCacheAdminPrivileges.sql
script, which grants these privileges.

CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
EXECUTE
EXECUTE
package
EXECUTE
EXECUTE
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
TT CACH
UNLIMIT

ANY TRIGGER3# None
PROCEDURE#
SEQUENCE
SESSION
TABLE
TYPE
ON SYS.DBMS DDL package
ON SYS.DBMS FLASHBACK

ON SYS.DBMS LOB package
ON SYS.DBMS LOCK package
ANY TRANSACTION
ON SYS.ALL OBJECTS
ON SYS.ALL SYNONYMS
ON SYS.DBA DATA FILES
ON SYS.GV_S$SLOCK
ON SYS.GV_$SESSION
ON SYS.USER FREE SPACE
ON SYS.USER_SYS PRIVS
ON SYS.USER TS QUOTAS
ON SYS.USER USERS
ON SYS.V_$DATABASE
ON SYS.V_SPROCESS
ON SYS.V_SSESSION
E_ADMIN ROLE
ED TABLESPACE

ORACLE

Appendix A

Table A-1 (Cont.) Oracle Database and TimesTen User Privileges Required for Cache Operations

Cache Operation

Privileges Required for Oracle Database Privileges Required for TimesTen
Cache Administration User! Cache Administration User?

Initialize the Oracle cache
administration user with the
initCacheAdminSchema.sql script,
which grants these privileges.

CREATE ANY TRIGGER None
CREATE SESSION

CREATE TYPE

EXECUTE ON SYS.DBMS_DDLpaCkage
EXECUTE ON SYS.DBMS FLASHBACK
package

EXECUTE ON SYS.DBMS LOCK package
SELECT ANY TRANSACTION

SELECT ON SYS.ALL OBJECTS
SELECT ON SYS.ALL SYNONYMS
SELECT ON SYS.DBA DATA FILES
SELECT ON SYS.GV_SLOCK

SELECT ON SYS.GV_SSESSION
SELECT ON SYS.USER FREE SPACE
SELECT ON SYS.USER SYS PRIVS
SELECT ON SYS.USER TS QUOTAS
SELECT ON SYS.USER USERS
SELECT ON SYS.V_ $DATABASE
SELECT ON SYS.V_ $PROCESS
SELECT ON SYS.V $SESSION

TT CACHE ADMIN ROLE

UNLIMITED TABLESPACE

Set the Oracle cache administration
user or TimesTen cache administration
user name and password:

. In TimesTen Classic, you can call
the ttCacheUidPwdSet built-in
procedure.

. In TimesTen Classic, you can run
the ttAdmin -cacheUidPwdSet
utility command.

e In TimesTen Scaleout, run the

CREATE PROCEDURE# CACHE MANAGER

CREATE SEQUENCE Requires access to the default

CREATE SESSION tablespace on the Oracle database.
See Create the Oracle Database

CREATE TABLE Users and Default Tablespace.

CREATE TRIGGER
CREATE TYPE

Requires access to the default tablespace
on the Oracle database. See Create the
Oracle Database Users and Default

ttGridAdmin Tablespace.
dbCacheCredentialSet
command.
Get the Oracle cache administration None CACHE MANAGER

user or TimesTen cache administration

user name with either:

o Call the ttCacheUidGet built-in
procedure.

. In TimesTen Classic, you can run
the ttAdmin -cacheUidGet utility
command.

ORACLE

Appendix A

Table A-1 (Cont.) Oracle Database and TimesTen User Privileges Required for Cache Operations

Cache Operation Privileges Required for Oracle Database
Cache Administration User?

Privileges Required for TimesTen
Cache Administration User?

Start the cache agent with either: CREATE SESSION

e In TimesTen Classic, you can call
the ttCacheStart built-in
procedure.

¢ In TimesTen Classic, you can run
the ttAdmin -cacheStart utility
command.

. In TimesTen Scaleout, run the
ttGridAdmin dbCacheStart
command.

CACHE MANAGER

Stop the cache agent None
. In TimesTen Classic, you can call
the ttCacheStop built-in
procedure
e In TimesTen Classic, you can run
the ttAdmin -cacheStop utility
command
¢ In TimesTen Scaleout, run the
ttGridAdmin dbCacheStop
command.

CACHE MANAGER

In TimesTen Classic, set a cache agent CREATE SESSION4

start policy with either:

e Callthe ttCachePolicySet built-
in procedure.

¢ Runthe ttAdmin -cachePolicy
utility command.

CACHE MANAGER

In TimesTen Classic, return the cache CREATE SESSION

agent start policy setting:
e Callthe ttCachePolicyGet built-
in procedure.

None

In TimesTen Classic, start the None
replication agent with either:
e Call the ttRepStart built-in
procedure.
¢ Runthe ttAdmin -repStart
utility command.

CACHE MANAGER

In TimesTen Classic, stop the replication None
agent with either:
e Call the ttRepStop built-in
procedure.
e Runthe ttAdmin -repStop utility
command.

CACHE MANAGER

In TimesTen Classic, set a replication None
agent start policy
e Callthe ttRepPolicySet built-in
procedure
e Runthe ttAdmin -repPolicy
utility command

ADMIN

ORACLE

Appendix A

Table A-1 (Cont.) Oracle Database and TimesTen User Privileges Required for Cache Operations

Cache Operation

Privileges Required for Oracle Database
Cache Administration User?

Privileges Required for TimesTen
Cache Administration User?

In TimesTen Classic, CREATE ACTIVE

STANDBY PAIR with INCLUDE CACHE
GROUP

when the cache group created is an
AWT cache group

CREATE TRIGGER

Creating a cache group requires access to
the default tablespace on the Oracle
database. See Create the Oracle Database
Users and Default Tablespace.

Creating a cache group requires
access to the default tablespace on
the Oracle database. See Create
the Oracle Database Users and
Default Tablespace.

In TimesTen Classic, duplicate the
database with ttRepAdmin -

duplicate when using an AWT cache

group within an active standby pair
replication scheme

CREATE TRIGGER

None

CREATE [DYNAMIC]
GROUP with AUTOREFRESH MODE
INCREMENTAL

READONLY CACHE

CREATE PROCEDURE*
CREATE SEQUENCE
CREATE SESSION
CREATE TABLE

CREATE TYPE

SELECT ON table name®
CREATE ANY TRIGGER*

Creating a cache group requires access to
the default tablespace on the Oracle
database. See Create the Oracle Database
Users and Default Tablespace.

CREATE [ANY] CACHE GROUPS
CREATE [ANY] TABLE’

Creating a cache group requires
access to the default tablespace on
the Oracle database. See Create
the Oracle Database Users and
Default Tablespace.

In TimesTen Classic, CREATE
[DYNAMIC]
with AUTOREFRESH MODE FULL

READONLY CACHE GROUP

CREATE SESSION
SELECT ON table name®

Creating a cache group requires access to
the default tablespace on the Oracle
database. See Create the Oracle Database
Users and Default Tablespace.

CREATE [ANY] CACHE GROUPS
CREATE [ANY] TABLE’

Creating a cache group requires
access to the default tablespace on
the Oracle database. See Create
the Oracle Database Users and
Default Tablespace.

In TimesTen Classic, CREATE
[DYNAMIC] ASYNCHRONOUS
WRITETHROUGH CACHE GROUP

CREATE PROCEDURE#
CREATE SEQUENCE
CREATE SESSION
CREATE TABLE

CREATE TRIGGER
CREATE TYPE

SELECT ON table_name5

Creating a cache group requires access to
the default tablespace on the Oracle
database. See Create the Oracle Database
Users and Default Tablespace.

CREATE [ANY] CACHE GROUPS
CREATE [ANY] TABLE’

Creating a cache group requires
access to the default tablespace on
the Oracle database. See Create
the Oracle Database Users and
Default Tablespace.

In TimesTen Classic, CREATE
[DYNAMIC] SYNCHRONOUS
WRITETHROUGH CACHE GROUP

CREATE SESSION
SELECT ON table name®

Creating a cache group requires access to
the default tablespace on the Oracle
database. See Create the Oracle Database
Users and Default Tablespace.

CREATE [ANY] CACHE GROUPS
CREATE [ANY] TABLE’

Creating a cache group requires
access to the default tablespace on
the Oracle database. See Create
the Oracle Database Users and
Default Tablespace.

ORACLE

Appendix A

Table A-1 (Cont.) Oracle Database and TimesTen User Privileges Required for Cache Operations

Cache Operation

Privileges Required for Oracle Database
Cache Administration User?

Privileges Required for TimesTen
Cache Administration User?

In TimesTen Classic, CREATE
[DYNAMIC] USERMANAGED CACHE
GROUP

(see variants in following rows)

CREATE SESSION
SELECT ON table name®

Creating a cache group requires access to
the default tablespace on the Oracle
database. See Create the Oracle Database
Users and Default Tablespace.

CREATE [ANY] CACHE GROUPS
CREATE [ANY] TABLE’

Creating a cache group requires
access to the default tablespace on
the Oracle database. See Create
the Oracle Database Users and
Default Tablespace.

In TimesTen Classic, CREATE
[DYNAMIC] USERMANAGED CACHE
GROUP with AUTOREFRESH MODE
INCREMENTAL

CREATE PROCEDURE*
CREATE SEQUENCE
CREATE SESSION
CREATE TABLE

CREATE TYPE

SELECT ON table name®
CREATE ANY TRIGGER*

Creating a cache group requires access to
the default tablespace on the Oracle
database. See Create the Oracle Database
Users and Default Tablespace.

CREATE [ANY] CACHE GROUPS
CREATE [ANY] TABLE’

Creating a cache group requires
access to the default tablespace on
the Oracle database. See Create
the Oracle Database Users and
Default Tablespace.

In TimesTen Classic, CREATE
[DYNAMIC] USERMANAGED CACHE

GROUP with AUTOREFRESH MODE FULL

CREATE SESSION
SELECT ON table name®

Creating a cache group requires access to
the default tablespace on the Oracle
database. See Create the Oracle Database
Users and Default Tablespace.

CREATE [ANY] CACHE GROUPS
CREATE [ANY] TABLE’

Creating a cache group requires
access to the default tablespace on
the Oracle database. See Create
the Oracle Database Users and
Default Tablespace.

In TimesTen Classic, CREATE
[DYNAMIC] USERMANAGED CACHE
GROUP with READONLY

CREATE SESSION
SELECT ON table name®

Creating a cache group requires access to
the default tablespace on the Oracle
database. See Create the Oracle Database
Users and Default Tablespace.

CREATE [ANY] CACHE GROUP®
CREATE [ANY] TABLE’

Creating a cache group requires
access to the default tablespace on
the Oracle database. See Create
the Oracle Database Users and
Default Tablespace.

In TimesTen Classic, CREATE
[DYNAMIC] USERMANAGED CACHE
GROUP with PROPAGATE

CREATE SESSION
SELECT ON table name®

Creating a cache group requires access to
the default tablespace on the Oracle
database. See Create the Oracle Database
Users and Default Tablespace.

CREATE [ANY] CACHE GROUP®
CREATE [ANY] TABLE’

Creating a cache group requires
access to the default tablespace on
the Oracle database. See Create
the Oracle Database Users and
Default Tablespace.

ORACLE

Appendix A

Table A-1 (Cont.) Oracle Database and TimesTen User Privileges Required for Cache Operations

Cache Operation

Privileges Required for Oracle Database
Cache Administration User?

Privileges Required for TimesTen
Cache Administration User?

ALTER CACHE GROUP SET CREATE PROCEDURE* ALTER ANY CACHE GROUP®
AUTOREFRESH STATE PAUSED CREATE SEQUENCE

CREATE SESSION

CREATE TABLE

CREATE TRIGGER

CREATE TYPE

SELECT ON table name®8

CREATE ANY TRIGGER*8
ALTER CACHE GROUP SET CREATE PROCEDURE* ALTER ANY CACHE GROUP®
AUTOREFRESH STATE ON CREATE SEQUENCE

CREATE SESSION

CREATE TABLE

CREATE TYPE

SELECT ON table name® 8

CREATE ANY TRIGGER* 8
ALTER CACHE GROUP SET CREATE SESSION ALTER ANY CACHE GROUP?
AUTOREFRESH STATE OFF
In TimesTen Classic, ALTER CACHE CREATE SESSION ALTER ANY CACHE GROUP®
GROUP SET AUTOREFRESH MODE FULL
In TimesTen Classic, ALTER CACHE CREATE PROCEDURE* ALTER ANY CACHE GROUP®
GROUP SET AUTOREFRESH MODE CREATE SEQUENCE
LNCREHENTAL CREATE SESSION

CREATE TABLE

CREATE TYPE

SELECT ON table name®

CREATE ANY TRIGGER*
ALTER CACHE GROUP SET CREATE SESSION ALTER ANY CACHE GROUP®
AUTOREFRESH INTERVAL SELECT ON table names 10
LOAD CACHE GROUP CREATE SESSION LOAD {ANY CACHE GROUP | ON

SELECT ON table name® cache_group_name}®

For TimesTen Scaleout:
SELECT ON table name®
INSERT ON table name®

EXECUTE ON
SYS.DBMS FLASHBACK package on
the Oracle Database

ORACLE

Appendix A

Table A-1 (Cont.) Oracle Database and TimesTen User Privileges Required for Cache Operations

Privileges Required for TimesTen
Cache Administration User?

Cache Operation

Privileges Required for Oracle Database
Cache Administration User?

REFRESH CACHE GROUP CREATE SESSION REFRESH {ANY CACHE GROUP |
SELECT ON table named ON cache_group_name}’
For TimesTen Scaleout:
SELECT ON table name®
INSERT ON table name®
EXECUTE ON
SYS.DBMS FLASHBACK package on
the Oracle Database
FLUSH CACHE GROUP SELECT ON table name® SELECT ON table name®
CREATE SESSION FLUSH {ANY CACHE GROUP | ON
9
UPDATE ON table name® cache_group_name}
INSERT ON table name®
UNLOAD CACHE GROUP None UNLOAD {ANY CACHE GROUP | ON
cache group name}®
DROP CACHE GROUP CREATE SESSION DROP ANY CACHE GROUP®
DROP ANY TABLE
In TimesTen Classic, synchronous CREATE SESSION INSERT ON table nameld
writethrough or propagate INSERT ON table name5 12 UPDATE ON table nameld
UPDATE ON table nameS *? DELETE ON table namel3
DELETE ON table nameS ‘?
In TimesTen Classic, asynchronous CREATE SESSION INSERT ON table name!d
writethrough INSERT ON table name’ UPDATE ON table namel3
UPDATE ON table name® DELETE ON table name'3
DELETE ON table name®
In TimesTen Classic, asynchronous CREATE PROCEDURE None
writethrough when the b Note: This privilege is an addition to the
-CaCheAWTMethOd connection attribute pl’ivi|eges needed for any asynchronous
issettol writethrough cache group.
In TimesTen Classic, asynchronous EXECUTE privilege on the Oracle Database None
writethrough cache for Oracle Database DBMS LOB PL/SQL package
CLOE, BLOB and NCLOB fmlgls Whe.r;)the Note: This privilege is an addition to the
-CaCheAWTMethOd connection attribute privi|eges needed for any asynchronous
issettol writethrough cache group.
Incremental autorefresh SELECT ON table name® None
Full autorefresh SELECT ON table name® None
In TimesTen Classic, dynamic load CREATE SESSION SELECT ON table name'3
SELECT ON table name® UPDATE ON table name!®
DELETE ON table name'3
INSERT ON table nameld
In TimesTen Classic, aging None DELETE {ANY TABLE | ON

table name}'3

ORACLE

Appendix A

Table A-1 (Cont.) Oracle Database and TimesTen User Privileges Required for Cache Operations

Privileges Required for TimesTen
Cache Administration User?

Cache Operation

Privileges Required for Oracle Database
Cache Administration User?

In TimesTen Classic, set the LRU aging

attributes

e Callthe ttAgingLRUConfig built-

in procedure

e Callthe ttAgingTableLRUConfig
built-in procedure

None

ADMIN

Generate Oracle Database SQL

statements to manually install or

uninstall Oracle Database objects

* Runthe ttIsqgl utility's
cachesglget command

e Call the ttCacheSQLGet built-in

procedure

CREATE SESSION

CACHE MANAGER

In TimesTen Classic, disable or enable
propagation of committed cache table
updates to the Oracle database

. Call the

ttCachePropagateFlagSet built-

in procedure

None

CACHE MANAGER

Configure cache agent timeout and
recovery method for cache groups with

autorefresh

e Callthe ttCacheConfig built-in

procedure

CREATE SESSION

CACHE MANAGER

In TimesTen Classic, set the AWT
transaction log file threshold

e Callthe

ttCacheAWTThresholdSet built-in

procedure

None

CACHE MANAGER

In TimesTen Classic, enable or disable
monitoring of AWT cache groups

e Callthe

ttCacheAWTMonitorConfig built-

in procedure

None

CACHE MANAGER

Enable or disable tracking of DDL
statements issued on cached Oracle

Database tables
. Call the

ttCacheDDLTrackingConfig
built-in procedure

CREATE SESSION

CACHE MANAGER

1 At minimum, the Oracle cache administration user must have the CREATE TYPE privilege.

2 At minimum, the TimesTen cache administration user must have the CREATE SESSION privilege.
3 If the Oracle cache administration user will not create cache groups with autorefresh, then you can grant the CREATE TRIGGER privilege
instead of the CREATE ANY TRIGGER privilege.

4 Required if the cache agent start policy is being setto always or norestart.

5 Required on all Oracle Database tables cached in the TimesTen cache group except for tables owned by the Oracle cache administration

user.

6 The CACHE MANAGER privilege includes the CREATE [ANY] CACHE GROUP privilege. ANY is required if the TimesTen cache

administration user creates cache groups owned by a user other than itself.

ORACLE

Appendix A

7 ANY is required if any of the cache tables are owned by a user other than the TimesTen cache administration user.

Required if the cache group's autorefresh mode is incremental and initial autorefresh state is OFF, and the Oracle Database objects used
to manage the caching of Oracle Database data are automatically created.

for]

9 Required if the TimesTen user accessing the cache group does not own the cache group.

1 Required if the cache group's autorefresh mode is incremental.

0

1 Required if the TimesTen user accessing the cache group does not own all its cache tables.

1

1 The privilege must be granted to the Oracle Database user with the same name as the TimesTen cache administration user if the Oracle
2 Database user is not the Oracle cache administration user.

1 Required if the TimesTen user accessing the cache table does not own the table.

3

ORACLE

A-10

SQL*Plus Scripts for Cache

ORACLE

TimesTen is installed with SQL*Plus scripts that are used to perform various cache
configuration, administrative and monitoring tasks, and provide links to more information
including examples.

All scripts are installed in the timesten home/install/oraclescripts directory.

Installed SQL*Plus Scripts

There are SQL*Plus scripts that are installed with TimesTen.

cacheCleanUp.sqgl: This script drops Oracle Database objects such as change log tables
and triggers used to implement autorefresh operations for TimesTen Classic. This script is
used when a TimesTen Classic database containing cache groups with autorefresh is
unavailable because the TimesTen Classic system is offline, or the database was
destroyed without dropping its cache groups with autorefresh. Run this script as the cache
administration user. Provide the host name of the TimesTen Classic system and the
TimesTen database (including its path) as arguments. See Dropping Oracle Database
Objects Used by Cache Groups with Autorefresh.

This example uses the cacheCleanUp.sqgl script for a TimesTen Classic system. The
scaleoutCacheCleanup.sql script runs in the same manner for TimesTen Scaleout, except
that it requires the grid name and database name as input parameters.

% cd timesten home/install/oraclescripts
% sqlplus cacheadmin/orapwd
SQL> @cacheCleanUp "sysl" "/diskl/databases/databasel"

*‘k**‘k******‘k**‘k**‘k***********OUTPUT*‘k**‘k***‘k**‘k**************************
Performing cleanup for object id: 69959 which belongs to table : CUSTOMER
Executing: delete from tt 07 agent status where host = sysl and datastore =
/diskl/databases/databasel and object id = 69959

Executing: drop table tt 07 69959 L

Executing: drop trigger tt 07 69959 T

Executing: delete from tt 07 user count where object id = object idl
Performing cleanup for object id: 69966 which belongs to table : ORDERS
Executing: delete from tt 07 agent status where host = sysl and datastore =
/diskl/databases/databasel and object id = 69966

Executing: drop table tt 07 69966 L

Executing: drop trigger tt 07 69966 T

Executing: delete from tt 07 user count where object id = object idl
KKK AR KRR AR R A A AR A A A A A A A A R A A A A A A A A A A A A A A AR A AR A A AR A A A AR A A AR ARk Ak A A A A AR A ARk Kk

cacheInfo.sql: This script returns change log table information for all Oracle Database
tables cached in a cache group with autorefresh, and information about Oracle Database
objects used to track DDL statements issued on cached Oracle Database tables. This
script is used to monitor autorefresh operations on cache groups and DDL statements
issued on cached Oracle Database tables. Run this script as the cache administration
user. You can alternatively use the ttCacheInfo utility.

The following example runs the cacheInfo.sql SQL*Plus script.

B-1

ORACLE

Appendix B
Installed SQL*Plus Scripts

cd timesten home/install/oraclescripts

sqlplus cacheadmin/orapwd

SQL> @cacheInfo.sql

kkkkkhkkhkkkkhkkkkkhkkkkx Database Information kkkkkhkhkhkhkhkhkkkhkkkhkhkhkkkkhxk
Database name: DATABASE]

Unique database name: databasel

Primary database name:

Database Role: PRIMARY

Database Open Mode: READ WRITE

Database Protection Mode: MAXIMUM PERFORMANCE

Database Protection Level: UNPROTECTED

Database Flashback On: NO

Database Current SCN: 21512609
kkkhkkkhkhkhkhkhkhkhkhkhkhhhkhkhkhhkhkhkhhkhhkhkhhkhhhhhkhhhkhkhhkhhkhhkhhkhkhkhhkrhkhkhkrhkhkhkhkxk
*************Autorefresh Objects Information kkkhkkkhkkkkkkkkkk*x
Grid name: gridl (7D03C680-BD93-4233-A4CF-BOEDBO064F3F)
Timesten database name: databasel

Cache table name: SALES.CUSTOMERS

Change log table name: tt 07 96977 L

Number of rows in change log table: 4

Maximum logseq on the change log table: 1

Timesten has autorefreshed updates upto logseq: 1

Number of updates waiting to be autorefreshed: 0

Number of updates that has not been marked with a valid logseq: 0
*************DDL Tracking Object Information kkkhkkkhkkkkkkkxkkk*x
Common DDL Log Table Name: TT 07 DDL L

DDL Trigger Name: TT 07 315 DDL T

Schema for which DDL Trigger is tracking: SALES

Number of cache groups using the DDL Trigger: 10

Khkkkhkhkkk Ak khkhhkhkhkhk kA kkkkkkkkk

o
o
o
o

PL/SQL procedure successfully completed.

See Monitoring Autorefresh Operations on Cache Groups and Tracking DDL Statements
Issued on Cached Oracle Database Tables in this guide and ttCachelnfo in Oracle
TimesTen In-Memory Database Reference.

grantCacheAdminPrivileges.sqgl: This script grants privileges to the cache administration
user that are required to automatically create Oracle Database objects used to manage the
caching of Oracle Database data when particular cache group operations are performed.
This includes the TT CACHE ADMIN ROLE role that defines privileges on Oracle Database
tables. Run this script as the sys user. See Create Oracle Database Objects Used to
Manage Data Caching.

The following example for a non-autonomous Oracle Database grants the required SQL
privileges to the cacheadmin user for cache operations in the Oracle database:

@grantCacheAdminPrivileges.sql cacheadmin

Please enter the administrator user id
The value chosen for administrator user id is cacheadmin

kkhkkkkkkkkkhkkkkkkk*k Creation Of TT CACHE ADMIN ROLE Starts kkhkkkkhkkkkkhkkkkhkkhkxkkkk
0. Creating TT CACHE ADMIN ROLE role

** Creation of TT CACHE ADMIN ROLE done successfully **

kkhkkkkkkkkkhkkkkkkk*k Initialization for CaChe admin begins kkhkkkkkkkkhkkhkkkkkrkkk%x
0. Granting the CREATE SESSION privilege to CACHEADMIN

1. Granting the TT CACHE ADMIN ROLE to CACHEADMIN

2. Granting the DBMS LOCK package privilege to CACHEADMIN

B-2

ORACLE

Appendix B
Installed SQL*Plus Scripts

Granting the DBMS DDL package privilege to CACHEADMIN
Granting the DBMS FLASHBACK package privilege to CACHEADMIN
Granting the CREATE SEQUENCE privilege to CACHEADMIN
Granting the CREATE CLUSTER privilege to CACHEADMIN
Granting the CREATE OPERATOR privilege to CACHEADMIN
Granting the CREATE INDEXTYPE privilege to CACHEADMIN
9. Granting the CREATE TABLE privilege to CACHEADMIN
10. Granting the CREATE PROCEDURE privilege to CACHEADMIN
11. Granting the CREATE ANY TRIGGER privilege to CACHEADMIN
12. Granting the GRANT UNLIMITED TABLESPACE privilege to CACHEADMIN
13. Granting the DBMS LOB package privilege to CACHEADMIN
14. Granting the SELECT on SYS.ALL OBJECTS privilege to CACHEADMIN
15. Granting the SELECT on SYS.ALL SYNONYMS privilege to CACHEADMIN
16. Checking if the cache administrator user has permissions on the default
tablespace
Permission exists
18. Granting the CREATE TYPE privilege to CACHEADMIN
19. Granting the SELECT on SYS.GVSLOCK privilege to CACHEADMIN
20. Granting the SELECT on SYS.GVS$SESSION privilege to CACHEADMIN
21. Granting the SELECT on SYS.DBA DATA FILES privilege to CACHEADMIN
22. Granting the SELECT on SYS.USER USERS privilege to CACHEADMIN
23. Granting the SELECT on SYS.USER FREE SPACE privilege to CACHEADMIN
24. Granting the SELECT on SYS.USER TS QUOTAS privilege to CACHEADMIN
25. Granting the SELECT on SYS.USER SYS PRIVS privilege to CACHEADMIN
26. Granting the SELECT on SYS.VS$DATABASE privilege to CACHEADMIN
(optional)
27. Granting the SELECT on SYS.GVSPROCESS privilege to CACHEADMIN
(optional)
28. Granting the SELECT ANY TRANSACTION privilege to CACHEADMIN
29. Creating the TTCACHEADM.TT 07 ARDL CG COUNTER table
30. Granting SELECT privilege on TTCACHEADM.TT 07 ARDL CG COUNTER table to
PUBLIC
xxxxk*x%%* Initialization for cache admin user done successfully ***xxx%%x*

0 J o U1 b W

For Autonomous Transaction Processing, Step 16 output is as follows:

16. Checking if the cache administrator user has permissions on the default
tablespace

No existing permission.

Autonomous Transaction Processing automatically configures tablespaces. Therefore, this
permission is not necessary.

checkAdminPrivileges.sqgl: This script checks that the cache administration user has all
of the necessary privileges (those that are provided when you run the
grantCacheAdminPrivileges.sql script) that are required for cache operations. Run this
script as the user that you want checked. If privileges are missing, you can either have the
sys user grant the missing privileges or run the grantCacheAdminPrivileges.sql script for
this user. See The checkAdminPrivileges.sql Script.

Use SQL*Plus on the Oracle Database system from an operating system shell or
command prompt, and connect to the Oracle database instance as the user (in most
cases, the cache administration user) that you want checked for privileges. The following
example shows that the user has all of the required privileges.

SQL> @checkAdminPrivileges.sql
x% Checking privileges for cache administrator user *
x* User has all privileges for a cache administrator user **

B-3

ORACLE

Appendix B
Installed SQL*Plus Scripts

The following example shows the output if you have missing privileges needed on an
Oracle database:

SQL> @checkAdminPrivileges.sql

x%* Checking privileges for cache administrator user *
Missing CREATE OPERATOR

Missing CREATE INDEXTYPE

Missing CREATE CLUSTER

Missing EXECUTE ON SYS.DBMS LOCK

Missing EXECUTE ON SYS.DBMS DDL

Missing EXECUTE ON SYS.DBMS FLASHBACK

Missing EXECUTE ON SYS.DBMS LOB

Missing SELECT on SYS.GVSLOCK

Missing SELECT on SYS.GVSSESSION

Missing SELECT on SYS.DBA DATA FILES

Missing SELECT on SYS.V$SDATABASE

Missing SELECT on GVS$SPROCESS

Missing UNLIMITED TABLESPACE

Missing SELECT ANY TRANSACTION

Missing table ARDL CG COUNTER

**** User missing privileges. Missing privilege count: 15 ****

initCacheAdminSchema.sql: This script grants a minimal set of privileges to the cache
administration user and manually creates Oracle Database objects used to manage the
caching of Oracle Database data. This includes the TT CACHE ADMIN ROLE role that defines
privileges on Oracle Database tables. Run this script as the sys user. See The
initCacheAdminSchema.sql Script.

In the following example, the Oracle database cache administration user name is
cacheadmin.

@initCacheAdminSchema cacheadmin

scaleoutCacheCleanUp.sql: This script drops Oracle Database objects such as change
log tables and triggers used to implement autorefresh operations for TimesTen Scaleout.
This script is used when a TimesTen Scaleout database containing cache groups with
autorefresh is unavailable because the TimesTen Scaleout system is offline, or the
database was destroyed without dropping its cache groups with autorefresh. Run this
script as the cache administration user. Provide the grid name and the TimesTen database
name as arguments.

The scaleoutCacheCleanup.sql script runs in the same manner for TimesTen Scaleout as
the cacheCleanUp.sql script does for TimesTen Classic.

See Dropping Oracle Database Objects Used by Cache Groups with Autorefresh.

B-4

Compatibility Between TimesTen and Oracle
Databases

The following sections list compatibility issues between TimesTen and Oracle Databases. The
list is not complete, but it indicates areas that require special attention.

e Summary of Compatibility Issues
+ Transaction Semantics

e API Compatibility

e SQL Compatibility

e Mappings Between Oracle Database and TimesTen Data Types

Summary of Compatibility Issues

There are a few compatibility issues between the TimesTen and Oracle databases.
Consider the following differences between TimesTen and Oracle databases:

« TimesTen and Oracle database metadata are stored differently. See APl Compatibility.

* TimesTen and Oracle databases have different transaction isolation models. See
Transaction Semantics.

« TimesTen and Oracle databases have different connection and statement properties. For
example, TimesTen does not support catalog names, scrollable cursors or updateable
cursors.

e Sequences are not cached and synchronized between the TimesTen database and the
corresponding Oracle database. See SQL Expressions.

« Side effects of Oracle Database triggers and stored procedures are not reflected in the
TimesTen database until after an automatic or manual refresh operation.

Transaction Semantics

TimesTen and Oracle Database transaction semantics differ in a few ways.

* Oracle Database serializable transactions can fail at commit time because the transaction
cannot be serialized. TimesTen uses locking to enforce serializability.

e Oracle Database can provide both statement-level and transaction-level consistency by
using a multi-version consistency model. TimesTen does not provide statement-level
consistency. TimesTen provides transaction-level consistency by using serializable
isolation.

e Oracle Database users can lock tables manually through SQL. This locking feature is not
supported in TimesTen.

e Oracle Database supports savepoints while TimesTen does not.

ORACLE o1

Appendix C
API Compatibility

e In Oracle Database, a transaction can be set to be read-only or read/write. This is not
supported in TimesTen.

See Transaction Management in Oracle TimesTen In-Memory Database Operations Guide.

API Compatibility

There are methods from the JDBC and ODBC APIs that have a compatibility issue with cache.

The following sections list methods from the JDBC and ODBC APIs that have a compatibility
issue with cache.

* JDBC APl Compatibility
e ODBC API Compatibility

JDBC API Compatibility

There are compatibility issues that apply to the JDBC API.
Compatibility issues that apply to JDBC include the following:

- JDBC database metadata functions return TimesTen metadata. If you want Oracle
metadata, connect to the Oracle Database directly.

e The set/get connection and statement attributes are performed on TimesTen.

e All Oracle java.sql.ResultSet metadata (length, type, label) is returned in TimesTen data
type lengths. The column labels that are returned are TimesTen column labels.

e Oracle extensions (oracle.sql and oracle.jdbc packages) are not supported.

e Java stored procedures are not supported in TimesTen.

java.sgl.Connection

ORACLE

The following Connection methods have no compatibility issues:

close()

commit ()
createStatement ()
prepareCall ()
prepareStatement ()
rollback()
setAutoCommit ()

The following methods are run locally in TimesTen:

getCatalog()

getMetaData
get/setTransactionIsolation ()
isReadOnly ()

isClosed()

nativeSQL ()

setCatalog()

setReadOnly ()

C-2

Appendix C
API Compatibility

Note:

See Transaction Semantics for restrictions for the get/setTransactionIsolation ()
methods.

The isClosed () method returns only the TimesTen connection status.

java.sgl.Statement

The following Statement methods have no compatibility issues:

addBatch ()
clearBatch ()
close()
execute ()
executeBatch ()
executeQuery ()
executeUpdate ()
getResultSet ()
getUpdateCount ()
getWarnings ()

The following methods run locally in TimesTen:

cancel ()
get/setMaxFieldSize ()
get/setMaxRows ()
get/setQueryTimeout ()
getMoreResults ()
setEscapeProcessing()
setCursorName ()

java.sgl.ResultSet

The following ResultSet methods have no compatibility issues:

close()

findColumn (int) and findColumn (string)
getXXX (number) and getXXX(name)
getXXXStream(int) and getXXXStream(string)
getMetaData ()

java.sql.PreparedStatement

ORACLE

The following PreparedStatement methods have no compatibility issues:

addBatch ()
close ()
execute ()
executeUpdate ()
executeQuery ()
getResultSet ()
getUpdateCount ()
setXXX ()
setXXXStream ()

The following methods run locally in TimesTen:

C-3

Appendix C
API Compatibility

cancel ()
get/setMaxFieldSize ()
get/setMaxRows ()
get/setQueryTimeout ()
getMoreResults ()
setEscapeProccessing ()
setCursorName ()

java.sqgl.CallableStatement

The same restrictions as shown for the java.sgl.Statement and
java.sql.PreparedStatement interfaces apply to CallableStatement.

* In a WRITETHROUGH cache group, if PassThrough=1, indirect DML operations that are hidden
in stored procedures or induced by triggers may be passed through without being detected
by Cache Connect to Oracle.

» Stored procedures that update, insert, or delete from READONLY cache group tables will be
autorefreshed within another transaction in an asynchronous fashion. Thus, the changes
do not appear within the same transaction that the stored procedure was processed within
and there may be some time lapse before the changes are autorefreshed into the cache
table.

java.sgl.ResultSetMetaData

The following ResultSetMetaData methods have no compatibility issues:

getColumnCount ()
getColumnType ()
getColumnLabel ()
getColumnName ()
getTableName ()
isNullable ()

The following methods run locally in TimesTen:

getSchemaName ()
getCatalogName ()
getColumnDisplaySize ()
getColumnType ()
getColumnTypeName ()
getPrecision ()
getScale()
isAutoIncrement ()
isCaseSensitive ()
isCurrency ()
isDefinitelyWritable ()
isReadOnly ()
isSearchable ()
isSigned()
isWritable ()

Stream Support

There are compatibility issues related to streams.

The compatibility issues related to streams are:

ORACLE o

Appendix C
SQL Compatibility

The JDBC driver fully fetches the data into an in-memory buffer during a call to the
executeQuery () Or next () methods. The getXxXStream () entry points return a stream that
reads data from this buffer.

Oracle supports up to 2 GB of long or long raw data. When cached, TimesTen converts
LONG data into VARCHAR? data. TimesTen converts LONG RAW data into VARBINARY data. Both
VARCHAR?2 and VARBINARY data types can store up to a maximum 4,194,304 (222) bytes).

Oracle always streams LONG/LONG RAW data even if the application does not call
getXXXStream().

TimesTen does not support the mark (), markSupported (), and reset () methods.

ODBC API Compatibility

Cache in TimesTen is compatible with a subset of ODBC functions.

Table C-1 describes the compatibility of ODBC functions.

Table C-1 ODBC Function Compatibility With Cache in TimesTen
|

Function Name Compatibility

SQLBindParameter Default TimesTen behavior matches Oracle Database behavior. See

Parameter Binding and Statement Execution in Oracle TimesTen In-
Memory Database C Developer's Guide.

SQLBrowseConnect, Not supported.
SQLColumnPrivileges,

SQLExtendedFetch,

SQLMoreResults, SQLSetPos,
SQLSetScrollOptions,
SQLTablePrivileges

SQLCancel There are some restrictions. In particular, SQLCancel cannot cancel

TimesTen administrative operations. See the SQLCancel entry in
ODBC 2.5 Function Support in the Oracle TimesTen In-Memory
Database C Developer's Guide.

SQLGetCursorName There are some restrictions. See the SQLGetCursorName entry in

ODBC 2.5 Function Support in the Oracle TimesTen In-Memory
Database C Developer's Guide.

SQL Compatibility

This section compares TimesTen's SQL implementation with Oracle Database SQL.

ORACLE

The purpose is to provide users with a list of Oracle Database SQL features not supported in
TimesTen or supported with different semantics.

Schema Objects

Non-Schema Objects

Differences Between Oracle Database and TimesTen Tables
Data Type Support

SQL Operators

SELECT Statements

C-5

Appendix C
SQL Compatibility

e SQL Subqueries

e SQL Functions

e SQL Expressions
 INSERT/DELETE/UPDATE/MERGE Statements
e TimesTen-Only SQL and Built-In Procedures

e PL/SQL Constructs

Schema Objects

TimesTen does not recognize some of the schema objects that are supported in Oracle
Database.

TimesTen returns a syntax error when a statement manipulates or uses these objects.
TimesTen passes the statement to Oracle Database. The unsupported objects are:

Clusters

Objects created by the CREATE DATABASE statement
Objects created by the CREATE JAVA statement
Database links

Database triggers

Dimensions

Extended features

External procedure libraries

Index-organized tables

Mining models

Partitions

Object tables, types and views

Operators

TimesTen supports views and materialized views, but it cannot cache an Oracle Database
view. TimesTen can cache an Oracle Database materialized view in a user-managed cache
group without the AUTOREFRESH cache group attribute and PROPAGATE cache table attribute. The
cache group must be manually loaded and flushed.

Caching Oracle Database Partitioned Tables

TimesTen can cache Oracle Database partitioned tables at the table level, but individual
partitions cannot be cached.

The following describes how operations on partitioned tables affect cache groups:

- DDL operations on a table that has partitions do not affect the cache group unless there is
data loss. For example, if a partition with data is truncated, an AUTOREFRESH operation does
not delete the data from the corresponding cached table.

° WHERE clauses in any cache group operations cannot reference individual partitions or sub-
partitions. Any attempt to define a single partition of a table returns an error.

ORACLE co

Appendix C
SQL Compatibility

Non-Schema Objects

TimesTen does not recognize some of the schema objects that are supported in Oracle
Database.

TimesTen returns a syntax error when a statement manipulates or uses these objects.
TimesTen passes the statement to Oracle Database. The unsupported objects are:

Contexts
Directories
Editions

Restore points
Roles

Rollback segments
Tablespaces

Differences Between Oracle Database and TimesTen Tables

TimesTen supports a subset of the Oracle Database features.
The Oracle Database table features that TimesTen does not support are:
° ON DELETE SET NULL

e Check constraints

* Foreign keys that reference the table on which they are defined

Data Type Support

ORACLE

Certain Oracle Database data types are not supported by TimesTen.

TIMESTAMP WITH TIME ZONE
TIMESTAMP WITH LOCAL TIME ZONE
INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND

UROWID

BFILE

Oracle Database-supplied types
User-defined types

The following TimesTen data types are not supported by Oracle Database:

TT CHAR

TT VARCHAR
TT NCHAR

TT NVARCHAR
TT BINARY

TT VARBINARY
TINYINT and TT TINYINT
TT SMALLINT
TT INTEGER
TT BIGINT

TT DECIMAL

C-7

Appendix C
SQL Compatibility

TT DATE
TIME and TT TIME
TT TIMESTAMP

< Note:

TimesTen NCHAR and NVARCHAR? data types are encoded as UTF-16. Oracle
Database NCHAR and NVARCHAR? data types are encoded as either UTF-16 or UTF-8.

To cache an Oracle Database NCHAR or NVARCHAR?2 column, the Oracle Database
NLS NCHAR CHARACTERSET encoding must be AL16UTF16, not AL32UTES.

SQL Operators

TimesTen supports a subset of operators and predicates that are supported by the Oracle
Database:

unary -
+, -, %,/

=, <, >, <=, >=, <>, 1=

|

IS NULL, IS NOT NULL

LIKE (Oracle Database LIKE operator ignores trailing spaces, but TimesTen does not)
BETWEEN

IN

NOT 1IN (list)

AND

OR

+ (outer join)

ANY, SOME

ALL (list)

EXISTS

UNION

MINUS

INTERSECT

To run a bitwise AND operation of two bit vector expressions, TimesTen uses the ampersand
character (&) between the expressions while Oracle Database uses the BITAND function with
the expressions as arguments.

SELECT Statements

TimesTen supports a subset of clauses of a SELECT statement that are supported by the Oracle
Database:

e FOR UPDATE
e ORDER BY, including NULLS FIRST and NULLS LAST

* GROUP BY, including ROLLUP, GROUPING SETS and grouping expression lists

ORACLE cg

Appendix C
SQL Compatibility

e Table alias
e Column alias
e Subquery factoring clause with constructor

Oracle Database supports flashback queries, which are queries against a database that is in
some previous state (for example, a query on a table as of yesterday). TimesTen does not
support flashback queries.

TimesTen does not support the CONNECT BY clause.

SQL Subqueries

TimesTen supports a subset of subqueries that are supported by the Oracle Database.

IN (subquery)

>,<,= ANY (subquery)

>,=,< SOME (subquery)

EXISTS (subquery)

>,=,< (scalar subquery)

Subqueries in WHERE clause of DELETE/UPDATE
Subqueries in FROM clause

Subquery factoring clause (WITH constructor)

Note:

A nonverifiable scalar subquery is a scalar subquery whose 'single-row-result-set'
property cannot be determined until runtime. TimesTen allows at most one
nonverifiable scalar subquery in the entire query and the subquery cannot be
specified in an OR expression.

SQL Functions

ORACLE

TimesTen supports a subset of functions that are supported by the Oracle Database.

ABS

ADD MONTHS
ASCIISTR
AVG

CAST

CEIL
COALESCE
CONCAT
COUNT

CHR

DECODE
DENSE RANK
EMPTY BLOB
EMPTY CLOB
EXTRACT
FIRST VALUE

C-9

ORACLE

FLOOR
GREATEST
GROUP_ID
GROUPING
GROUPING ID
INSTR

LAST VALUE
LEAST
LENGTH
LOWER

LPAD

LTRIM

MAX

MIN

MOD
MONTHS_BETWEEN
NCHR
NLS_CHARSET
NLS_CHARSET NAME
NLSSORT
NULLIF
NUMTOYMINTERVAL
NUMTODSINTERVAL
NVL

POWER

RANK
REPLACE
ROUND
ROW_NUMBER
RPAD

RTRIM

SIGN

SQRT

SUBSTR

SUM

SYS CONTEXT
SYSDATE

TO BLOB
TO_CLOB

TO CHAR

TO DATE

TO LOB

TO NCLOB

TO NUMBER
TRIM

TRUNC

UID

UNISTR
UPPER

USER

Appendix C
SQL Compatibility

C-10

Appendix C
SQL Compatibility

These TimesTen functions are not supported by Oracle Database:

CURRENT USER
GETDATE
ORA_SYSDATE
SESSION USER
SYSTEM USER
TIMESTAMPADD
TIMESTAMPDIFF
TT HASH

TT SYSDATE

TimesTen and the Oracle Database interpret the literal N' \UNNNN' differently. In TimesTen,
N'"\unnnn' (where nnnn is a number) is interpreted as the national character set character with
the code nnnn. In the Oracle Database, N'\unnnn' is interpreted as 6 literal characters. The \u
is not treated as an escape. This difference causes unexpected behavior. For example, loading
a cache group with a WHERE clause that contains a literal can fail. This can also affects dynamic
loading. Applications should use the UNISTR SQL function instead of literals.

SQL Expressions

TimesTen supports a subset of expressions that are supported by the Oracle Database.

Column Reference

Sequence
NULL

()

Binding parameters
CASE expression
ROWID pseudocolumn
ROWNUM pseudocolumn

TimesTen and Oracle Database treat literals differently. See the description of
HexadecimalLiteral in Constants in Oracle TimesTen In-Memory Database SQL Reference.

INSERT/DELETE/UPDATE/MERGE Statements

ORACLE

TimesTen supports certain DML statements that are also supported by the Oracle Database.
e INSERT INTO ... VALUES

e INSERT INTO ... SELECT

° UPDATE WHERE expression (expression may contain a subquery)

e DELETE WHERE expression (expression may contain a subquery)

TimesTen does not support updating of primary key values except when the new value is the
same as the old value.

C-11

Appendix C
SQL Compatibility

TimesTen-Only SQL and Built-In Procedures

There are TimesTen SQL statements and functions and built-in procedures that are not
supported by the Oracle Database.

With PassThrough=3, these statements are passed to Oracle Database for processing and an
error is generated.

ORACLE

All TimesTen cache group DDL and DML statements, including CREATE CACHE GROUP, DROP
CACHE GROUP, ALTER CACHE GROUP, LOAD CACHE GROUP, UNLOAD CACHE GROUP, REFRESH
CACHE GROUP and FLUSH CACHE GROUP.

All TimesTen replication management DDL statements, including CREATE REPLICATION,
DROP REPLICATION, ALTER REPLICATION, CREATE ACTIVE STANDBY PAIR, ALTER ACTIVE
STANDBY PAIR and DROP ACTIVE STANDBY PAIR.

FIRST n clause.
ROWS m TO n clause.

All TimesTen built-in procedures. See Built-In Procedures in Oracle TimesTen In-Memory
Database Reference.

TimesTen specific syntax for character and unicode strings are not always converted to the
Oracle Database syntax when using PassThrough=3.

Note:

For more details on TimesTen support for unicode strings, see Character and
Unicode Strings in the Oracle TimesTen In-Memory Database Reference.

— Supplying \046 converts to the &« symbol on TimesTen, but is not converted to this
symbol when passed through to an Oracle database. The \xyz notation is not
supported by the Oracle database. To send a character through to an Oracle
database, pass it as an argument within the CHR () function with the decimal value of
the character.

— TimesTen enables depicting a unicode value (a four-digit hexadecimal number) within
a character string with the \uxyzw syntax (for NCHAR and NVARCHAR2 only) where you
substitute the unicode value for xyzw, as in\ufe4a.

The \uxyzw notation is not supported by the Oracle database. Thus, any unicode
strings in NCHAR or NVARCHAR2 columns passed through to an Oracle database must be
passed as an argument within the UNISTR () function without the u character.

The following example inserts the unicode values '0063' and '0064", which are the a
and b characters respectively. Since we are using PassThrough=3, this statement is
performed on the Oracle database; thus, we do not provide the u character as we
would if this was performed on TimesTen.

Command> INSERT INTO my_tab VALUES (UNISTR(n'\0063\0064"));
1 row inserted.

C-12

Appendix C
Mappings Between Oracle Database and TimesTen Data Types

PL/SQL Constructs

TimesTen supports a subset of stored procedure constructs, functions, data types, packages
and package bodies that are supported by Oracle Database.

See Overview of PL/SQL Features in the Oracle TimesTen In-Memory Database PL/SQL
Developer's Guide.

Mappings Between Oracle Database and TimesTen Data Types

When you choose data types for columns in the TimesTen cache tables, consider the data
types of the columns in the Oracle Database tables and choose an equivalent or compatible
data type for the columns in the cache tables.

¢ Note:

TimeTen cache, including passthrough, does not support the Oracle Database ROWID
data type. However, you can cast a ROWID data type to a CHAR (18) when provided on
the SELECT list in a SQL query.

The following example demonstrates the error that is returned when you do not cast
the ROWID data type. Then, the example shows the correct casting of a ROWID data
type to CHAR (18):

Command> SET PASSTHROUGH 3;

Passthrough command has set autocommit off.
Command> SELECT ROWID FROM dual;

5115: Unsupported type mapping for column ROWID
The command failed.
Command> SELECT CAST (ROWID AS CHAR(18)) FROM DUAL;
< AAAABOAABAAAAEORAA >

1 row found.

Primary and foreign key columns are distinguished from non-key columns. The data type
mappings allowed for key columns in a cache table are shown in Table C-2.

Table C-2 Data Type Mappings Allowed for Key Columns

|
Oracle Database Data Type TimesTen Data Type

NUMBER (p, s) NUMBER (p,)

Note: DECIMAL (p,s) or NUMERIC (p,s) can also be used. They are
aliases for NUMBER (p, s) .

NUMBER (p,0) TT TINYINT

INTEGER TT SMALLINT
TT INTEGER
TT BIGINT
NUMBER (p,0)

ORACLE c13

Appendix C
Mappings Between Oracle Database and TimesTen Data Types

Table C-2 (Cont.) Data Type Mappings Allowed for Key Columns

__|
Oracle Database Data Type TimesTen Data Type

NUMBER TT TINYINT
TT SMALLINT
TT INTEGER
TT BIGINT
NUMBER
CHAR (n) CHAR (n)
VARCHAR? (n) VARCHAR? (n)
RAW (n) VARBINARY (n)
DATE DATE
TIMESTAMP (n) TIMESTAMP (n)
NCHAR (n) NCHAR (n)
NVARCHAR2 (n) NVARCHAR?2 (n)

Table C-3 shows the data type mappings allowed for non-key columns in a cache table.

Table C-3 Data Type Mappings Allowed for Non-Key Columns

___|
Oracle Database Data Type TimesTen Data Type

NUMBER (p,s) NUMBER (p,s)
REAL
FLOAT
BINARY FLOAT
DOUBLE
BINARY DOUBLE

NUMBER (p,0) TT TINYINT
INTEGER TT SMALLINT
TT INTEGER
TT BIGINT
NUMBER (p,0)
FLOAT
BINARY FLOAT
DOUBLE
BINARY DOUBLE

ORACLE c1a

ORACLE

Appendix C

Mappings Between Oracle Database and TimesTen Data Types

Table C-3 (Cont.) Data Type Mappings Allowed for Non-Key Columns

Oracle Database Data Type

TimesTen Data Type

NUMBER

TT TINYINT

TT SMALLINT
TT INTEGER

TT BIGINT
NUMBER

REAL

FLOAT

BINARY FLOAT
DOUBLE

BINARY DOUBLE

CHAR (n)

CHAR (n)

VARCHAR? (n)

VARCHAR? (n)

RAW (n)

VARBINARY (n)

LONG

VARCHAR? (n)

Where n can be any valid value within the range
defined for the VARCHAR? data type.

LONG RAW

VARBINARY (n)

Where n can be any valid value within the range
defined for the VARBINARY data type.

DATE

DATE
TIMESTAMP (0)

TIMESTAMP (n)

TIMESTAMP (n)

FLOAT (n)

Note: Includes DOUBLE and FLOAT, which are
equivalent to FLOAT (126) . Also includes REAL,
which is equivalent to FLOAT (63).

FLOAT (n)
BINARY DOUBLE

Note: FLOAT (126) can be declared as DOUBLE.
FLOAT (63) can be declared as REAL.

BINARY FLOAT

BINARY FLOAT

BINARY DOUBLE

BINARY DOUBLE

NCHAR (n)

NCHAR (n)

NVARCHAR2 (n)

NVARCHAR2Z (n)

CLOB VARCHAR? (n)

Where 1 <= n <=4 MB.
BLOB VARBINARY (n)

Where 1 <= n <=4 MB.
NCLOB NVARCHAR2Z (n)

Where 1 <= n<=2 MB.

C-15

	Contents
	About This Content
	What's New
	New features in Release 22.1.1.18.0
	New features in Release 22.1.1.17.0
	New features in Release 22.1.1.1.0

	1 Paths to Explore Cache in TimesTen
	2 Cache Concepts
	Overview of Cache Groups
	Cache Instance
	Cache Group Types
	Transmitting Changes Between the TimesTen and Oracle Databases
	Using Oracle GoldenGate as an Alternative Cache Refresh Mechanism
	High Availability Caching Solution

	3 Setting Up a Caching Infrastructure
	Configuring the Oracle Database to Cache Data
	Create the Oracle Database Users and Default Tablespace
	Grant Privileges to the Oracle Cache Administration User
	Create Oracle Database Objects Used to Manage Data Caching
	The grantCacheAdminPrivileges.sql Script
	The initCacheAdminSchema.sql Script
	The checkAdminPrivileges.sql Script

	Configuring a TimesTen Database to Cache Oracle Database Data
	Specify Database Connection Definition for Cache
	Set the Net Service Name for the Oracle Database in the tnsnames.ora File
	Define a DSN for the TimesTen Classic Database
	Define Database Definition and Connectable in TimesTen Scaleout

	Create the TimesTen Users
	Grant Privileges to the TimesTen Users
	Providing Cache Administration User Credentials
	Providing Cache Administration User Credentials When Connecting
	Connect Using an Oracle Wallet with Credentials
	Connect Using Connection Attributes for Credentials

	Registering the Cache Administration User Name and Password
	Registering the Cache Administration User Name and Password in TimesTen Classic
	Registering the Cache Administration User Name and Password in TimesTen Scaleout

	Cache Group Requirements for Credentials

	Testing the Connectivity Between the TimesTen and Oracle Databases
	Managing the Cache Agent
	Starting the Cache Agent
	Stopping the Cache Agent
	Set a Cache Agent Start Policy in TimesTen Classic

	4 Defining Cache Groups
	Cache Groups and Cache Tables
	Single-Table Cache Group
	Multiple-Table Cache Group

	Creating a Cache Group
	Read-Only Cache Group
	Restrictions with Read-Only Cache Groups

	Asynchronous WriteThrough (AWT) Cache Group
	Starting and Stopping the Replication Agent
	Setting a Replication Agent Start Policy
	Monitoring Propagation of Transactions to the Oracle Database
	Disabling Propagation of Committed Changes
	Configuring Parallel Propagation to the Oracle Database
	What an AWT Cache Group Does and Does Not Guarantee
	Restrictions with AWT Cache Groups
	Reporting Oracle Database Permanent Errors for AWT Cache Groups

	Synchronous WriteThrough (SWT) Cache Group
	Restrictions with SWT Cache Groups

	Hybrid Cache Group
	Creating a Hybrid Cache Group
	Specifying the Dynamic Load for a Hybrid Cache Group
	Automatic Passthrough for Hybrid Cache Groups
	Restrictions for a Dynamic Hybrid Read-Only Cache Group

	User Managed Cache Group
	READONLY Cache Table Attribute
	PROPAGATE Cache Table Attribute
	Examples of User Managed Cache Groups

	Using a WHERE Clause
	Proper Placement of WHERE Clause in a CREATE CACHE GROUP Statement
	Referencing Oracle Database PL/SQL Functions in a WHERE Clause

	Specifying Automatic Refresh with the AUTOREFRESH Cache Group Attribute
	Creating a Dynamic Cache Group with the DYNAMIC Keyword
	Creating a Hash Index on the Primary Key Columns of the Cache Table
	ON DELETE CASCADE Cache Table Attribute
	Caching Oracle Database Synonyms
	Caching Oracle Database LOB Data
	Restrictions on Caching Oracle Database LOB Data

	Implementing Aging in a Cache Group for TimesTen Classic
	LRU Aging in TimesTen Classic
	Time-Based Aging in TimesTen Classic
	Manually Scheduling an Aging Process in TimesTen Classic
	Configuring a Sliding Window in TimesTen Classic

	Replicating Cache Tables in TimesTen Classic
	Create and Configure the Active Database
	Create and Configure the Standby Database
	Create and Configure the Read-Only Subscriber Database

	5 Methods for Transmitting Changes Between TimesTen and Oracle Databases
	Manually Loading and Refreshing a Cache Group
	Loading and Refreshing a Cache Group Using a WITH ID Clause
	Loading and Refreshing a Multiple-Table Cache Group
	Improving the Performance of Loading or Refreshing a Large Number of Cache Instances
	Example of Manually Loading and Refreshing a Static Cache Group
	Example of Manually Loading and Refreshing a Dynamic Cache Group

	Flushing a User Managed Cache Group
	Unloading a Cache Group
	Automatically Refreshing a Cache Group
	AUTOREFRESH Cache Group Attribute Overview
	Autorefresh Mode Attribute Settings
	Autorefresh Interval and State Settings
	Restrictions for Autorefresh

	Altering a Cache Group to Change the AUTOREFRESH Mode, Interval or State
	Manually Creating Oracle Database Objects for Cache Groups with Autorefresh
	Initiating an Immediate Autorefresh in TimesTen Classic
	Disabling Full Autorefresh for Cache Groups
	Loading and Refreshing a Static Cache Group with Autorefresh
	Loading and Refreshing a Dynamic Cache Group with Autorefresh

	Manually or Dynamically Loading Cache Groups
	Dynamic Cache Groups
	Enabling or Disabling Dynamic Load
	Guidelines for Dynamic Load
	Examples of Dynamic Load of a Single Cache Instance
	Dynamically Loading Multiple Cache Instances
	Dynamically Loading Multiple Cache Instances with Multiple Primary Keys
	Dynamically Loading Multiple Cache Instances Without Multiple Primary Keys

	Returning Errors for Dynamic Load

	Determining the Number of Cache Instances Affected by an Operation
	Setting a Passthrough Level
	PassThrough=0
	PassThrough=1
	PassThrough=2
	PassThrough=3
	Considerations for Using Passthrough
	Changing the Passthrough Level for a Connection or Transaction
	Automatic Passthrough of Dynamic Load to the Oracle Database

	6 Managing a Caching Environment
	Checking the Status of Cache and Replication Agents
	Checking the Status of the Cache Agents in TimesTen Scaleout
	Checking the Status of the Cache and Replication Agents in TimesTen Classic

	Cache Agent and Replication Connection Recovery
	Managing a Cache Environment with Oracle Database Objects
	Monitoring Cache Groups
	Using the ttIsql Utility cachegroups Command
	Monitoring Autorefresh Operations on Cache Groups
	Monitoring AWT Cache Groups
	Configuring a Transaction Log File Threshold for AWT Cache Groups
	Tracking DDL Statements Issued on Cached Oracle Database Tables

	Changing Cache User Names and Passwords
	Dropping Oracle Database Objects Used by Cache Groups with Autorefresh
	Impact on Cache Groups When Modifying the Oracle Database Schema
	Impact of Failed Autorefresh Operations on TimesTen Databases
	Managing the Cache Administration User's Tablespace
	Defragmenting Change Log Tables in the Tablespace
	Manually Defragmenting the Change Log Tables for Cache Groups with Autorefresh

	Receiving Notification on Tablespace Usage
	Recovering from a Full Tablespace

	Backing Up and Restoring a TimesTen Classic Database with Cache Groups
	Backing Up and Restoring Using the ttBackup and ttRestore Utilities
	Backing Up and Restoring TimesTen Classic Database with the ttMigrate Utility

	Migrating the Oracle Database Requires Cleaning Up Cache Objects

	7 Cache Performance
	Dynamic Load Performance
	Managing a Cache Connection Pool to the Oracle Database for Dynamic Load Requests
	Enable the Cache Connection Pool
	Size the Cache Connection Pool
	Use the ChildServer Connection Attribute to Identify a Child Server Process
	Dynamically Applying Cache Connection Pool Sizing Modifications
	Example Demonstrating Management of the Cache Connection Pool
	Limiting the Number of Connections to the Oracle Database
	Restrictions for the Cache Connection Pool

	Improving AWT Throughput
	Improving AWT Throughput with Parallel Propagation to the Oracle Database
	Table Constraint Restrictions When Using Parallel Propagation for AWT Cache Groups
	Manually Initiate Check for Missing Constraints for an AWT Cache Group
	Configuring Batch Size for Parallel Propagation for AWT Cache Groups

	Improving AWT Throughput with SQL Array Processing

	Improving Performance for Autorefresh Operations
	Minimizing Delay for Cached Data with Continuous Autorefresh
	Reducing Contention for Dynamic Read-Only Cache Groups with Incremental Autorefresh
	Requirements for Setting DynamicLoadReduceContention

	Reducing Lock Contention for Read-Only Cache Groups with Autorefresh and Dynamic Load
	Options for Reducing Contention Between Autorefresh and Dynamic Load Operations
	Improving Performance When Reclaiming Memory During Autorefresh Operations
	Running Large Transactions with Incremental Autorefresh Read-Only Cache Groups
	Using ttCacheAutorefreshXactLimit
	Example of Potential Transactional Inconsistency
	Retrieving Statistics to Evaluate Performance When a Transaction Limit is Set

	Configuring a Select Limit for Incremental Autorefresh for Read-Only Cache Groups
	How to Determine Which Intervals Have a Particular Select Limit
	Retrieving Statistics to Evaluate Performance When Using a Select Limit

	Retrieving Statistics on Autorefresh Transactions
	Caching the Same Oracle Table on Two or More TimesTen Databases

	8 Cleaning Up the Caching Environment
	Stopping the Replication Agent
	Dropping a Cache Group
	Stopping the Cache Agent
	Destroying the TimesTen Databases
	Dropping Oracle Database Users and Objects
	Scheduling a Shutdown of Active Standby Pair with AWT Cache Groups

	9 Using Cache in an Oracle RAC Environment
	How Cache Works in an Oracle RAC Environment
	Restrictions on Using Cache in an Oracle RAC Environment
	Setting Up Cache in an Oracle RAC Environment

	10 Using Cache with Data Guard
	Components of MAA for Cache
	Cache in TimesTen Works with Asynchronous Active Data Guard
	Configuring the Primary and Standby Oracle Databases
	Configuring Oracle Database Services Through Role Based Services
	Configuring Oracle Database Services Through System Triggers

	Configuring the Active Standby Pair with Read-Only Cache Groups
	Recovery After Failure When Using Asynchronous Active Data Guard
	Failure of the Standby Oracle Database
	Failure of the Primary Oracle Database
	Failure of the Primary Site

	Cache in TimesTen Works with Synchronous Data Guard
	Configuring the Oracle Databases for TimesTen and Synchronous Data Guard
	Configuring the TimesTen Database to Work with Synchronous Data Guard

	11 Using GoldenGate as an Alternative to Native Read-Only Cache Groups
	Supporting TimesTen and GoldenGate for Cache Refresh
	Considering Factors Using GoldenGate as the Cache Refresh Mechanism
	Configuring GoldenGate to Provide Cache Refresh Functionality for TimesTen Workflow
	Choosing On-Box or Off-Box for Deployment of a GoldenGate Replicat Process
	Installing and Configuring Target TimesTen Database
	Creating TimesTen Database Users and Tables
	Installing and Configuring a TimesTen Client Instance (for Off-Box Deployments Only)
	Configuring GoldenGate Data Apply
	Performing an Initial Load
	Starting GoldenGate Continuous Real-Time Replication

	Caching Using GoldenGate Example
	Preparing TimesTen Users and Tables
	Preparing Oracle Database to Run Extract Process
	Preparing the TimesTen Database for GoldenGate Replication
	Performing the Initial Data Load
	Starting Real-Time Replication
	Verifying That GoldenGate Replication is Working

	A Required Privileges for Cache Administration User for Cache Operations
	B SQL*Plus Scripts for Cache
	Installed SQL*Plus Scripts

	C Compatibility Between TimesTen and Oracle Databases
	Summary of Compatibility Issues
	Transaction Semantics
	API Compatibility
	JDBC API Compatibility
	java.sql.Connection
	java.sql.Statement
	java.sql.ResultSet
	java.sql.PreparedStatement
	java.sql.CallableStatement
	java.sql.ResultSetMetaData
	Stream Support

	ODBC API Compatibility

	SQL Compatibility
	Schema Objects
	Caching Oracle Database Partitioned Tables

	Non-Schema Objects
	Differences Between Oracle Database and TimesTen Tables
	Data Type Support
	SQL Operators
	SELECT Statements
	SQL Subqueries
	SQL Functions
	SQL Expressions
	INSERT/DELETE/UPDATE/MERGE Statements
	TimesTen-Only SQL and Built-In Procedures
	PL/SQL Constructs

	Mappings Between Oracle Database and TimesTen Data Types

