Oracle® TimesTen In-Memory

Database
Java Developer's Guide

Release 22.1
F35397-03
January 2024

ORACLE"

Oracle TimesTen In-Memory Database Java Developer's Guide, Release 22.1
F35397-03
Copyright © 1996, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation,” or “limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

What's New

New Features in Release 22.1.1.20.0 X

New Features in Release 22.1.1.1.0 X

1 Java Development Environment

Installing TimesTen and Supported Java Components 1-1

Setting the Environment for Java Development 1-1

Setting the Classpath for Java Development 1-2

About TimesTen Quick Start and Sample Applications 1-3

2 Working with TimesTen Databases in JDBC

Prerequisites for Java Development with TimesTen 2-1

Key JDBC Classes and Interfaces 2-1
Package Imports 2-2
Support for Interfaces in the java.sqgl Package 2-3
Support for Classes in the java.sgl Package 2-5
Support Notes for Classes in the java.io Package 2-5
Support for Interfaces and Classes in the javax.sql Package 2-5
TimesTen JDBC Extensions 2-6
Additional TimesTen Classes and Interfaces 2-8

Management of TimesTen Database Connections 2-9
About TimesTen DSNs 2-9
Using Java Wrapper Functionality for Connections 2-9
Creating a Connection URL for the Database and Specifying Connection Attributes 2-10
Connecting to the Database 2-10
Disconnecting from the Database 2-11
Opening and Closing a Direct Connection 2-11
Checking Database Validity 2-12

Database Operations in JDBC 2-12
Executing Basic SQL Statements 2-13
Committing or Rolling Back Changes to the Database 2-14

ORACLE

Setting Autocommit 2-14

Manually Committing or Rolling Back Changes 2-15
Using COMMIT and ROLLBACK SQL Statements 2-15
Managing Multiple Threads 2-15
Java Escape Syntax and SQL Functions 2-16
TimesTen Features and Operations in Your Application 2-16
Using Java Wrapper Functionality for Statements 2-16
Working with TimesTen Result Sets: Hints and Restrictions 2-17
Fetching Multiple Rows of Data 2-17
Optimizing Query Performance 2-18
Parameter Binding and Statement Execution 2-19
Preparing SQL Statements and Setting Input Parameters 2-20
Working with Output and Input/Output Parameters 2-23
Binding Duplicate Parameters in SQL Statements 2-25
Binding Duplicate Parameters in PL/SQL 2-26
Working with Associative Arrays 2-27
Overview of Associative Arrays 2-27
TimesTen Methods for Associative Arrays 2-28
Type Mapping for Associative Arrays 2-30
Binding Associative Arrays 2-30
Working with REF CURSORs 2-31
Working with DML Returning (RETURNING INTO Clause) 2-33
Working with Rowids 2-35
Large Objects (LOBs) 2-36
About LOBs 2-36
LOB Objects in JIDBC 2-36
Differences Between TimesTen LOBs and Oracle Database LOBs 2-37
LOB Factory Methods 2-38
LOB Getter and Setter Methods 2-38
TimesTen LOB Interface Methods 2-39
LOB Prefetching 2-40
Passthrough LOBs 2-40
Using CALL to Execute Procedures and Functions 2-41
Setting a Timeout or Threshold for Executing SQL Statements 2-43
Setting a Timeout Duration for SQL Statements 2-43
Setting a Threshold Duration for SQL Statements 2-44
Configuring the Result Set Buffer Size in Client/Server Using JDBC 2-44
Features for Use with Cache 2-45
Setting the Oracle Database Password 2-46
Setting Temporary Passthrough Level with the ttOptSetFlag Built-In Procedure 2-46
Determining Passthrough Status 2-46

ORACLE iv

Managing Cache Groups 2-47
Features for Use with Replication 2-47
Error Handling 2-47
Error and Warning Levels 2-48
Fatal Errors 2-48
Non-Fatal Errors 2-48
Warnings 2-49
Abnormal Termination 2-49
Reporting Errors and Warnings 2-49
Catching and Responding to Specific Errors 2-50
Rolling Back Failed Transactions 2-51
Retrying After Transient Errors (JDBC) 2-52
JDBC Support for Automatic Client Failover 2-54
About Automatic Client Failover 2-55
Features and Functionality of JDBC Support for Automatic Client Failover 2-56
General Client Failover Features 2-56

Client Failover Features for Pooled Connections 2-57
Configuration of Automatic Client Failover 2-57
Synchronous Detection of Automatic Client Failover in JDBC 2-58
Asynchronous Detection of Automatic Client Failover in JDBC 2-58
Implement a Client Failover Event Listener 2-59
Register the Client Failover Listener Instance 2-60
Remove the Client Failover Listener Instance 2-61

JDBC Application Action in the Event of Failover 2-61
Application Steps for Failover 2-61
Failover Delay and Retry Settings 2-61

Client Routing API for TimesTen Scaleout 2-64
Functionality of the Client Routing API 2-64
Building a Distribution Key 2-64
Getting the Element Location Given a Set of Key Values 2-65
Connecting to an Element Based on a Distribution Key 2-66
Supported Data Types 2-68
Restrictions 2-68

3 Using JMS/XLA for Event Management

JMS/XLA Concepts and Features 3-1
JMS/XLA Concepts 3-1
How XLA Reads Records from the Transaction Log 3-2
XLA and Materialized Views 3-4
XLA Bookmarks 3-4

ORACLE

How Bookmarks Work 3-4

Replicated Bookmarks 3-5
XLA Bookmarks and Transaction Log Holds 3-6
JMS/XLA Configuration File and Topics 3-6
XLA Updates 3-7
XLA Update Acknowledgments 3-8
XLA Acknowledgment Mechanism 3-8
XLA Acknowledgment Modes 3-8
Prefetching Updates 3-9
Acknowledging Updates 3-9
XLA System Privilege 3-9
XLA Limitations 3-10
JMS/XLA and Oracle GDK Dependency 3-10
JMS/XLA Usage and Functionality 3-10
Connecting to XLA 3-11
Monitoring Tables for Updates 3-12
Receiving and Processing Updates 3-13
Terminating a JIMS/XLA Application 3-16
Close the Connection 3-16
Delete Bookmarks 3-16
Unsubscribe from a Table 3-17
JMS/XLA as a Replication Mechanism 3-17
About Using JMS/XLA as a Replication Mechanism 3-17
Applying IMS/XLA Messages to a Target Database 3-18
TargetDataStore Error Recovery 3-19

4 Distributed Transaction Processing: JTA

Overview of JTA 4-1
About TimesTen JTA 4-1
X/Open DTP Model 4-2
Two-Phase Commit 4-2

JTA Functionality in TimesTen 4-3
TimesTen Database Requirements for XA 4-3
Global Transaction Recovery in TimesTen 4-3
XA Error Handling in TimesTen 4-4

Using the JTA API 4-4
Registering a TimesTen DSN with WebLogic 4-4
Importing Required Packages 4-5
Creating a TimesTen XAConnection Object 4-5

ORACLE vi

Creating XAResource and Connection Objects 4-7
5 Java Application Tuning
Tuning JDBC Applications 5-1
Use Prepared Statement Pooling 5-1
Use Arrays of Parameters for Batch Execution 5-2
Bulk Fetch Rows of TimesTen Data 5-4
Use the ResultSet Method getString() Sparingly 5-4
Avoid Data Type Conversions 5-4
Close Connections, Statements and Result Sets 5-4
Optimize Queries 5-5
Tuning JMS/XLA Applications 5-5
Considerations in Tuning JMS/XLA Applications 5-5
Configure xlaPrefetch Parameter 5-6
Reduce Frequency of Update Acknowledgments 5-6
Handling High Event Rates 5-6
6 JMS/XLA Reference
JMS/XLA MapMessage Contents 6-1
XLA Update Types 6-1
XLA Flags 6-3
DML Event Data Formats 6-4
Table Data 6-5
Row Data 6-5
Context Information 6-5
DDL Event Data Formats 6-5
CREATE_TABLE 6-5
DROP_TABLE 6-6
CREATE_INDEX 6-7
DROP_INDEX 6-7
ADD_COLUMNS 6-8
DROP_COLUMNS 6-9
CREATE_VIEW 6-9
DROP_VIEW 6-10
CREATE_SEQ 6-10
DROP_SEQ 6-11
CREATE_SYNONYM 6-11
DROP_SYNONYM 6-11
TRUNCATE 6-12
ORACLE Vii

Data Type Support
Data Type Mapping
Data Types Character Set
JMS Interfaces for Event Handling
JMS/XLA Replication API
TargetDataStore Interface
TargetDataStorelmpl Class
JMS Message Header Fields

ORACLE

viii

6-12
6-12
6-14
6-15
6-15
6-16
6-16
6-16

About This Content

ORACLE

This document covers TimesTen support for JDBC.

Audience

This guide is for anyone developing or supporting applications that use TimesTen through
JDBC.

In addition to familiarity with the particular programming interface you use, you should be
familiar with TimesTen, SQL (Structured Query Language), and database operations.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Resources

For reference information on standard JDBC, see the following for information about the
java.sql and javax.sqgl packages:

https://docs.oracle.com/javase/8/docs/api/java/sql/package-summary.html
https://docs.oracle.com/javase/8/docs/api/javax/sql/package-summary.html

Javadoc for standard Java EE classes and interfaces is available at this location:

https://javaee.github.io/javaee-spec/javadocs/

Oracle Database documentation is also available on the Oracle documentation website. This
may be especially useful for Oracle Database features that TimesTen supports but does not

attempt to fully document. In particular, the following Oracle Database documents may be of
interest.

e Oracle Database SQL Language Reference
e Oracle Database JDBC Developer's Guide
Conventions

The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/javase/8/docs/api/java/sql/package-summary.html
https://docs.oracle.com/javase/8/docs/api/javax/sql/package-summary.html
https://javaee.github.io/javaee-spec/javadocs/

What's New

What's New

This section summarizes new features and functionality of TimesTen Release 22.1 that
are documented in this guide, providing links into the guide for more information.

New Features in Release 22.1.1.20.0

The TimesTen JMS/XLA provider previously only supported Java Message Service
API version 1.1, which uses the underlying XLA mechanism and can be used by
adding timestenjmlsxla.jar to the CLASSPATH. With this release, the IMS/XLA
provider also supports the Jakarta Messaging API version 1.1, which introduces the
jakarta.* namespace. Most javax.* classes have been renamed to jakarta.*. This
includes the javax.jms package, which is renamed to jakarta.jms. You can choose
to use either Jakarta JMS or JavaxX JMS.

To learn more about Jakarta JMS for TimesTen, see:

* Installing TimesTen and Supported Java Components
» Setting the Classpath for Java Development

e Connecting to XLA

* JMS/XLA MapMessage Contents

* JMS Interfaces for Event Handling

e Oracle TimesTen In-Memory Database Jakarta IMS/XLA Java API Reference

Because both JavaX JMS and Jakarta JMS share much in common, references to
JMS in this guide can be taken as referring to both. Any differences are highlighted as
necessary.

New Features in Release 22.1.1.1.0

ORACLE

» For data returned from a SELECT statement in Client/Server, the buffer size for the
data returned to the client is programmatically configurable to allow adjustments
for better performance. See "Configuring the Result Set Buffer Size in Client/
Server Using JDBC" .

e Multiple output REF CURSORSs are supported. See "Working with REF
CURSORs".

Java Development Environment

This chapter provides information about getting started with Java and TimesTen.

Installing TimesTen and Supported Java Components
Setting the Environment for Java Development
Setting the Classpath for Java Development

About TimesTen Quick Start and Sample Applications

Installing TimesTen and Supported Java Components

Install and configure TimesTen for your environment.

1.

See Overview of the Installation Process in TimesTen Classic in the Oracle TimesTen In-

Memory Database Installation, Migration, and Upgrade Guide for TimesTen Classic or
Prerequisites and Installation of TimesTen Scaleout in Oracle TimesTen In-Memory
Database Scaleout User's Guide for TimesTen Scaleout.

Install the Java JDK as described in your Java installation documentation.

¢ Note:

The TimesTen JDBC driver implements the JDBC 4.2 API (Java 8) and is
certified to work with Java Runtime Environment (JRE) 8, 11, 17, and 21.

If you plan to use the Jakarta Messaging API version 1.1 (Jakarta JMS), download the
Jakarta JMS JAR file:

e If you are using Java SE 11 or higher, from https://repol.maven.org/maven2/
jakarta/jms/jakarta.jms-api/3.1.0/, download jakarta.jms-api-3.1.0.jar.

* If you are using Java SE 8 or higher, from https://repol.maven.org/maven2/
jakarta/jms/jakarta.jms-api/3.0.0/, download jakarta.jms-api-3.0.0.jar.

These two JARs use version 1.1 of the Jakarta Messaging API. Older versions of the
JAR file aren't certified to work.

You will need to add the path to the JAR file to your classpath. See Setting the Classpath

for Java Development.

Setting the Environment for Java Development

Before you begin developing Java applications for TimesTen, you must set your environment
appropriately. This includes setting environment variables.

ORACLE

Environment variables and runtime access to the Instant Client are configured through the
appropriate ttenv script in the timesten home/bin directory, where timesten home is the

1-1

https://repo1.maven.org/maven2/jakarta/jms/jakarta.jms-api/3.1.0/
https://repo1.maven.org/maven2/jakarta/jms/jakarta.jms-api/3.1.0/
https://repo1.maven.org/maven2/jakarta/jms/jakarta.jms-api/3.0.0/
https://repo1.maven.org/maven2/jakarta/jms/jakarta.jms-api/3.0.0/

Chapter 1
Setting the Classpath for Java Development

TimesTen instance home directory: ttenv.sh and ttenv.csh for Linux and UNIX
platforms (where which you use depends on your shell) and ttenv.bat for Windows
platforms.

See Environment Variables and Java Environment Variables in Oracle TimesTen In-
Memory Database Installation, Migration, and Upgrade Guide for information about
environment variables, including how to set them using ttenv and discussion of the
PATH and CLASSPATH environment variables.

¢ Note:

TimesTen includes Oracle Instant Client, which is required for certain JDBC
features and operations.

Setting the Classpath for Java Development

ORACLE

Compiling any Java application requires the appropriate JARs to be in your classpath.
JDK 8

In TimesTen, the following is for JDK 8:

timesten home/install/lib/ttjdbc8.jar

Java Environment Variables in Oracle TimesTen In-Memory Database Installation,
Migration, and Upgrade Guide discusses the CLASSPATH setting for compiling Java
applications in TimesTen.

JMSIXLA Applications

Compiling any JMS/XLA application requires the following to be in your classpath:

JMS Type Classpath Entries

Jakarta
timesten home/install/lib/timestenjmsxla.jar
timesten home/install/lib/orail8n.jar

In Installing TimesTen and Supported Java Components, you
downloaded the Jakarta JMS JAR. You need to add the
location of the JAR to your classpath:

download-directory/jakarta.jms-api-3.1.0.jar

Or:

download-directory/jakarta.jms-api-3.0.0.jar

1-2

Chapter 1
About TimesTen Quick Start and Sample Applications

JMS Type Classpath Entries

Javax
timesten home/install/lib/timestenjmsxla.jar
timesten home/install/lib/orail8n.jar
timesten home/install/3rdparty/jmsl.1/1ib/
jms.jar

timestenjmsxla.jar is for use with both Jakarta JMS and JavaX JMS, but note download-
directory/jakarta.jms-api-3.1.0.jar or download-directory/jakarta.jms-
api-3.0.0.jar in the classpath determines Jakarta JMS and download-directory/install/
3rdparty/jmsl.1/1ib/jms.jar in the classpath determines JavaX JMS. If both JARs are in
the classpath, TimesTen defaults to Jakarta JMS.

Classpath Entry for ttenv

Use the appropriate ttenv script to set your environment, as discussed in Setting the
Environment for Java Development.

¢ Note:

» For each TimesTen instance, the timesten home/install path is a symbolic
link to installation dir, where TimesTen is installed.

e On Windows, there is only one TimesTen instance per installation, and
timesten home refers to installation dir\instance.

About TimesTen Quick Start and Sample Applications

ORACLE

The TimesTen Classic Quick Start and TimesTen Scaleout sample applications are available
from the TimesTen GitHub location. For the TimesTen Classic Quick Start, there is a complete
set of tutorials, how-to instructions, and sample applications. For TimesTen Scaleout, there
are ODBC and JDBC sample applications.

After you have configured your environment, you can confirm that everything is set up
correctly by compiling and running the sample applications. For TimesTen Classic,
applications are located under the Quick Start sample code directory. For instructions on
compiling and running them, see the instructions in the subdirectories. For TimesTen
Scaleout, clone the oracle-timesten-examples GitHub repository and follow the instructions
in the README files.

For TimesTen Classic, the following are included:

* Schema and setup: The build sampledb script (.sh on Linux or UNIX or .bat on
Windows) creates a sample database and schema. Run this script before using the
sample applications.

* Environment and setup: The ttquickstartenv script (.sh or .csh on Linux or UNIX, .bat
on Windows, or as applicable for your system), a superset of the ttenv script typically
used for TimesTen setup, sets up the environment. Run this script each time you enter a
session where you want to compile or run any of the sample applications.

1-3

Chapter 1
About TimesTen Quick Start and Sample Applications

» Sample applications and setup: The Quick Start provides sample applications and
their source code for JDBC.

ORACLE 1-4

Working with TimesTen Databases in JDBC

This chapter describes the basic procedures for writing a Java application to access a

TimesTen database.

The following topics are covered:

* Prerequisites for Java Development with TimesTen

* Key JDBC Classes and Interfaces

* Management of TimesTen Database Connections

» Database Operations in JDBC

* TimesTen Features and Operations in Your Application

e Error Handling

* JDBC Support for Automatic Client Failover

* Client Routing API for TimesTen Scaleout

Prerequisites for Java Development with TimesTen

Before attempting to write a TimesTen Java application, you need to complete certain

prerequisite tasks.

Prerequisite task

What you do

Create a database.

Configure the Java environment.

Compile and execute the TimesTen Java sample
applications.

For TimesTen Classic, follow the procedures
described in Managing TimesTen Databases in
Oracle TimesTen In-Memory Database Operations
Guide.

For TimesTen Scaleout, refer to Creating a
Database in Oracle TimesTen In-Memory Database
Scaleout User's Guide.

Follow the procedures described in Setting the
Environment for Java Development.

Refer to About TimesTen Quick Start and Sample
Applications.

After you have successfully executed the TimesTen Java sample applications, your
development environment is set up correctly and ready for you to create applications that

access a database.

Key JDBC Classes and Interfaces

There is support for standard and TimesTen-specific JDBC packages, classes, and

ORACLE

interfaces.

The following topics are covered:

2-1

Chapter 2
Key JDBC Classes and Interfaces

» Package Imports

* Support for Interfaces in the java.sql Package

* Support for Classes in the java.sgl Package

» Support Notes for Classes in the java.io Package

» Support for Interfaces and Classes in the javax.sql Package
* TimesTen JDBC Extensions

» Additional TimesTen Classes and Interfaces

For reference information on standard JDBC, see the following for information about
the java.sql and javax.sql packages:

https://docs.oracle.com/javase/8/docs/api/java/sql/package-summary.html
https://docs.oracle.com/javase/8/docs/api/javax/sql/package-summary.html

For reference information on TimesTen JDBC extensions, refer to Oracle TimesTen In-
Memory Database JDBC Extensions Java API Reference.

¢ Note:
TimesTen supports Java 8 APIs (JDBC 4.2).

Package Imports

You will need to import some JDBC packages for your application.

Import the standard JDBC package in any Java program that uses JDBC:

import java.sqgl.*;

If you are going to use data sources or pooled connections, also import the standard
extended JDBC package:

import javax.sqgl.*;

Import the TimesTen JDBC package:

import com.timesten.jdbc.*;

To use XA data sources for JTA, also import this TimesTen package:

import com.timesten.jdbc.xa.*;

ORACLE 2-2

https://docs.oracle.com/javase/8/docs/api/java/sql/package-summary.html
https://docs.oracle.com/javase/8/docs/api/javax/sql/package-summary.html

Chapter 2
Key JDBC Classes and Interfaces

Support for Interfaces in the java.sql Package

TimesTen supports the java.sql interfaces.

The supported interfaces are indicated in Table 2-1, with TimesTen-specific support and

restrictions noted.

Also see TimesTen JDBC Extensions.

Table 2-1 Supported java.sql Interfaces

|
Remarks on TimesTen Support

Interface in java.sql

Blob

The position () method, which returns the position where a specified
byte pattern or BLOB pattern begins, is not supported.

CallableStatement

You must pass parameters to CallableStatement by position, not by
name.

You cannot use SQL escape syntax.

There is no support for Array, Struct, or Ref.

There is no support for Calendar for setDate (), getDate (),
setTime (), or getTime ().

Clob

The position () method, which returns the position where a specified
character pattern or CLOB pattern begins, is not supported.

Connection

There is no support for savepoints.
TimesTen supports Read Committed and Serializable isolation levels:

setTransactionIsolation
(TRANSACTION_READ_COMMITTED);

setTransactionIsolation
(TRANSACTION_SERIALIZABLE);

See Fetching Multiple Rows of Data for information about the
relationship between prefetching and isolation level. Also see
Concurrency Control Through Isolation and Locking in Oracle
TimesTen In-Memory Database Operations Guide and Isolation in
Oracle TimesTen In-Memory Database Reference.

DatabaseMetaData

There are no restrictions.

The supportsRefCursors () method returns TRUE.

The getMaxLogicalLobSize () method returns the maximum number
of bytes that TimesTen allows for the logical size of a LOB.

Driver

TimesTen does not use java.util.logging, so the
getParentLogger () method returns
SQLFeatureNotSupportedException. (The TimesTen driver
preceded java.util.logging functionality and uses its own logging
mechanism.)

NClob

The position () method, which returns the position where a specified
character pattern or NCLOB pattern begins, is not supported.

ORACLE

2-3

Chapter 2
Key JDBC Classes and Interfaces

Table 2-1 (Cont.) Supported java.sql Interfaces

___|
Interface in java.sql Remarks on TimesTen Support

ParameterMetaData e The JDBC driver cannot determine whether a column is nullable and
always returns parameterNullableUnknown from calls to
isNullable().

* The getScale () method returns 1 for VARCHAR, NVARCHAR, and
VARBINARY data types if they are INLINE. (Scale is of no significance
to these data types.)

PreparedStatement * There is no support for getMetaData () in PreparedStatement.
e There is no support for Array, Struct, or Ref.
e Settings using setObject (java.util.Calendar) and
setDate (java.util.Date) are mapped to TIMESTAMP. There is no
support for the Calendar type in setDate (), getDate (),
setTime (), or getTime ().

ResultSet e There is support for getMetaData () in ResultSet.

* You cannot have multiple open ResultSet objects per statement.

* You cannot specify the holdability of a result set, so a cursor cannot
remain open after it has been committed.

* There is no support for scrollable or updatable result sets.

e Thereis no support for Array, Struct, or Ref.

e There is no support for the Calendar type in setDate (), getDate (),
setTime (), or getTime ().

. In the TimesTen implementation, setFetchSize () and
getFetchSize () allow you to set or get the maximum number of rows

of data in a client/server result set buffer. See Configuring the Result
Set Buffer Size in Client/Server Using JDBC

* See Working with TimesTen Result Sets: Hints and Restrictions.

ResultSetMetaData e The getPrecision () method returns O for undefined precision.
e The getScale () method returns -127 for undefined scale.

RowId * The ROWID data type can be accessed using the RowId interface.
e Output and input/output rowids can be registered as Types.ROWID.
* Metadata methods return Types.ROWID and RowId as applicable.

Statement » TimesTen does not support auto-generated keys.

. In TimesTen, the cancel () method delegates to the ODBC function
SQLCancel. For details about the TimesTen implementation of this
function, see ODBC 2.5 Function Support in Oracle TimesTen In-
Memory Database C Developer's Guide. The function is also supported
for ODBC 3.5.

* See Managing Cache Groups for special TimesTen functionality of the
getUpdateCount () method with cache groups.

. In the TimesTen implementation, setFetchSize () and
getFetchSize () allow you to set or get the maximum number of rows

of data in a client/server result set buffer. See Configuring the Result
Set Buffer Size in Client/Server Using JDBC

Wrapper * TimesTen exposes TimesTenConnection,
TimesTenCallableStatement, TimesTenPreparedStatement, and
TimesTenStatement through Wrapper.

ORACLE 2.4

Chapter 2
Key JDBC Classes and Interfaces

Support for Classes in the java.sql Package

TimesTen supports certain java.sgl classes (and some additional subclasses of
SQLException).

Table 2-2 Supported java.sql Classes

Interface in java.sql Remarks on TimesTen Support

DataTruncation No remarks

Date No remarks

DriverManager No remarks

DriverPropertyInfo No remarks

Time Because TimesTen does not support TIMEZONE in the TIME

data type, Java client/server applications should run in the
same time zone as the server.

Timestamp Same consideration for TIMESTAMP as for TIME.
Types No remarks
SQLException No remarks

SQLFeatureNotSupportedException No remarks

SQLWarning No remarks

Support Notes for Classes in the java.io Package

There are special notes for TimesTen support of classes in the java.io package.

e An InputStream object returned by TimesTen does not support mark or reset operations
(specifically, the mark (), markSupported (), and reset () methods).

* The read() method of an InputStream Or Reader object returns O (zero) if the length of
the buffer used in the method call is 0, regardless of the amount of data in the
InputStream Or Reader object. Therefore, usage such as the following is problematic if
the CLOB length may be 0, such as if it were populated using the SQL EMPTY CLOB ()
function:

java.io.Reader r = myclob.getCharacterStream();
char[] buf = new char[myclob.length()]; //buf for r.read() call

Typically, when you call read (), -1 is returned if the end of the stream is reached. But in
the preceding case, -1 is never returned. Be aware of this when you use streams
returned by the BLOB getBinaryStream() method, which returns InputStream, the
CLOB getAsciiStream() method, which returns InputStream, or the CLOB
getCharacterStream() method, which returns Reader.

Support for Interfaces and Classes in the javax.sql Package

TimesTen supports certain javax.sql interfaces.

ORACLE 2-5

Chapter 2
Key JDBC Classes and Interfaces

* CommonDataSource and DataSource are implemented by TimesTenDataSource.

TimesTen does not use java.util.logging, SO the getParentLogger () method,
specified in CommonDataSource, returns sQLFeatureNotSupportedException. (The
TimesTen driver preceded java.util.logging functionality and uses its own
logging mechanism.)

e PooledConnection is implemented by ObservableConnection.
* ConnectionPoolDataSource iS implemented by ObservableConnectionDs.

° XADataSource is implemented by TimesTenXADataSource (in package
com.timesten.jdbc.xa).

" Note:

The TimesTen JDBC driver itself does not implement a database connection
pool. The ObservableConnection and ObservableConnectionDS classes
simply implement standard Java EE interfaces, facilitating the creation and
management of database connection pools according to the Java EE
standard.

TimesTen supports this javax.sql event listener:

* When using a PooledConnection instance, you can register a
ConnectionEventListener instance to listen for ConnectionEvent occurrences.

" Note:

You can register a StatementEventListener instance in TimesTen; however,
StatementEvent instances are not supported.

TimesTen JDBC Extensions

ORACLE

For most scenarios, you can use standard JDBC functionality as supported by
TimesTen, but TimesTen also provides extensions in the com. timesten.jdbc package
for TimesTen-specific features.

This is shown in Table 2-3.

2-6

Table 2-3 TimesTen JDBC Extensions
|

Interface

Extends

Chapter 2
Key JDBC Classes and Interfaces

Remarks

TimesTenBlob

Blob

You can cast Blob instances to
TimesTenBlob. This includes
features to indicate whether a LOB
is an Oracle Database passthrough
LOB, free LOB resources, and get a
binary stream with position and
length specifications.

See Large Objects (LOBs).

TimesTenCallableStatement

CallableStatement

Exposed through
java.sql.Wrapper.

Supports PL/SQL REF CURSORs.
See Working with REF CURSORSs.

Supports associative array binds
with methods to set input
parameters and to register and get
output parameters. See Working
with Associative Arrays.

TimesTenClob

Clob

You can cast C1lob instances to
TimesTenClob. This includes
features to indicate whether a LOB
is an Oracle Database passthrough
LOB, free LOB resources, and get a
character stream with position and
length specifications.

See Large Objects (LOBs).

TimesTenConnection

Connection

Exposed through
java.sql.Wrapper.

Provides capabilities such as
prefetching rows to improve
performance, optimizing query
performance, listening to events for
automatic client failover, setting the
track number for parallel replication
schemes where you specify
replication tracks, checking
database validity, and setting the
maximum number of rows or bytes
for the client/server result set buffer.

See Fetching Multiple Rows of
Data, Optimizing Query
Performance, General Client
Failover Features, Features for Use
with Replication, Checking
Database Validity and Configuring
the Result Set Buffer Size in Client/
Server Using JDBC.

ORACLE

2-7

Chapter 2
Key JDBC Classes and Interfaces

Table 2-3 (Cont.) TimesTen JDBC Extensions

|
Interface Extends Remarks

TimesTenNClob NClob You can cast NClob instances to
TimesTenNClob. This includes
features to indicate whether a LOB
is an Oracle Database passthrough
LOB.

See Large Objects (LOBs).

TimesTenPreparedStatement PreparedStatement Exposed through
java.sql.Wrapper.

Supports DML returning. See
Working with DML Returning
(RETURNING INTO Clause).

Supports associative array binds
with a method to set input
parameters. See Working with
Associative Arrays.

TimesTenStatement Statement Exposed through
java.sql.Wrapper.

Provides capabilities for specifying a
query threshold or setting or getting
the maximum number of rows or
bytes for the client/server result set
buffer. See Setting a Threshold
Duration for SQL Statements and
Configuring the Result Set Buffer
Size in Client/Server Using JDBC.

Additional TimesTen Classes and Interfaces

In addition to implementations discussed previously, TimesTen provides interfaces and
classes in the com.timesten. jdbc package.

Features supported by these interfaces and classes are discussed later in this chapter.

* Use interface TimesTenTypes for TimesTen type extensions (such as for TimesTen
REF CURSORS).

* Useinterface ClientFailoverEventListener (and also the ClientFailoverEvent
class below) for automatic client failover features. See JDBC Support for
Automatic Client Failover.

* Use interface TimesTenVendorCode for vendor codes used in SQL exceptions.

e Use interface TimesTenDistributionKey and TimesTenDistributionKeyBuilder
for client routing in TimesTen Scaleout. See Client Routing API for TimesTen
Scaleout.

e Use interface TimesTenConnectionBuilder to connect to an optimal element
based on a distribution key, element ID, or replica set ID. See Connecting to an
Element Based on a Distribution Key.

* Useclass ClientFailoverEvent (and also the ClientFailoverEventListener
interface above) for automatic client failover features.

ORACLE 2-8

Chapter 2
Management of TimesTen Database Connections

Management of TimesTen Database Connections

You can manage database connections with TimesTen.

* About TimesTen DSNs

» Using Java Wrapper Functionality for Connections

e Creating a Connection URL for the Database and Specifying Connection Attributes
e Connecting to the Database

» Disconnecting from the Database

* Opening and Closing a Direct Connection

* Checking Database Validity

Operations described in this section are based on the 1evell sample application. Refer to
About TimesTen Quick Start and Sample Applications.

About TimesTen DSNs

A DSN (data source name) is a logical name that identifies a TimesTen database and the set
of connection attributes user for connecting to the database. The type of DSN you create
depends on whether your application connects directly to the database or connects from a
client.

For TimesTen Scaleout, DSNs are automatically available for all connectables defined in the
grid. Refer to Overview of TimesTen Scaleout in the Oracle TimesTen In-Memory Database
Scaleout User's Guide for information about creating a database and connecting to a
database, using either a direct connection or a client/server connection. See Creating a
Database and Connecting to a Database.

For TimesTen Classic, refer to Oracle TimesTen In-Memory Database Operations Guide. To
connect directly to the database, create a DSN as described in Creating a DSN on Linux and
UNIX for TimesTen Classic. To create a client connection to the database, create a DSN as
described in Creating and Configuring Client DSNs on Windows or Creating and Configuring
Client DSNs on Linux and UNIX.

After you have created a DSN, your application can connect to the database. The sections
that follow describe how to create a JDBC connection to a database using either the JDBC
direct driver or the JDBC client driver.

Using Java Wrapper Functionality for Connections

ORACLE

TimesTen exposes TimesTen-specific implementations through standard java.sql.Wrapper
functionality.

You can use Wrapper to retrieve connection objects that implement the TimesTenConnection
interface and provide access to TimesTen-specific features. The following example returns a
TimesTenConnection object then calls its TimesTen extension setReplicationTrack ()
method.

String databaseUrl = null;

Connection conn = DriverManager.getConnection (databaseUrl);

2-9

Chapter 2
Management of TimesTen Database Connections

If (conn.isWrapperFor (TimesTenConnection.class)) {
TimesTenConnection tconn = conn.unwrap (TimesTenConnection.class);
tconn.setReplicationTrack (4);

}

Creating a Connection URL for the Database and Specifying
Connection Attributes

To create a JDBC connection, specify a TimesTen connection URL for the database.
The format of a TimesTen connection URL is:

jdbc:timesten: {direct|client}:dsn=DSNname; [DSNattributes;]

The default is direct.

For example, the following creates a direct connection to the sample database:

String URL = "jdbc:timesten:direct:dsn=sampledb";

You can programmatically set or override the connection attributes in the DSN
description by specifying attributes in the connection URL.

Refer to Connection Attributes for Data Manager DSNs or Server DSNs in Oracle
TimesTen In-Memory Database Operations Guide.

General connection attributes require no special privilege. First connection attributes
are set when the database is first loaded, and persist for all connections. Only the
instance administrator can load a database with changes to first connection attribute
settings. Refer to Connection Attributes in Oracle TimesTen In-Memory Database
Reference.

For example, to set the LockLevel general connection attribute to 1, create a URL as
follows:

String URL = "jdbc:timesten:direct:dsn=sampledb;LockLevel=1";

Connecting to the Database

After you have defined a URL, you can use the getConnection () method of either
DriverManager Of TimesTenDataSource t0 connect to the database.

If you use the DriverManager.getConnection () method, specify the driver URL to
connect to the database.

import java.sqgl.*;

Connection conn = DriverManager.getConnection (URL);

ORACLE 2-10

Chapter 2
Management of TimesTen Database Connections

To use the TimesTenDataSource method getConnection (), first create a data source. Then
use the TimesTenDataSource method setUrl () to set the URL and getConnection () to
connect:

import com.timesten.jdbc.TimesTenDataSource;
import java.sqgl.*;

TimesTenDataSource ds = new TimesTenDataSource();
ds.setUrl ("jdbc:timesten:direct:<dsn>");
Connection conn = ds.getConnection();

The TimesTen user name and password can be set in the DSN within the URL in the
setUrl () call, but there are also TimesTenDataSource methods to set them separately, as
well as to set the Oracle Database password (as applicable):

TimesTenDataSource ds = new TimesTenDataSource();

ds.setUser (myttusername) ; // User name to log in to
TimesTen

ds.setPassword (ttpassword) ; // Password to log in to
TimesTen

ds.setUrl ("jdbc:timesten:direct:<dsn>");
ds.setOraclePassword(oraclepassword) ; // Password to log in to Oracle
DB

Connection conn = ds.getConnection();

Either the DriverManager.getConnection () method or the ds.getConnection () method
returns a Connection object (conn in this example) that you can use as a handle to the
database. See the levell sample application for an example on how to use the
DriverManager method getConnection (), and the level2 and level3 sample applications
for examples of using the TimesTenDataSource method getConnection (). Refer to About
TimesTen Quick Start and Sample Applications.

Disconnecting from the Database

When you are finished accessing the database, typically call the Connection method close ()
to close the connection to the database.

TimesTen connections also support the standard abort () method, as well as standard try-
with-resource functionality using java.lang.AutoCloseable.

If an error has occurred, you may want to roll back the transaction before disconnecting from
the database. See Non-Fatal Errors and Rolling Back Failed Transactions.

Opening and Closing a Direct Connection

This example shows the general framework for an application that uses the DriverManager
class to create a direct connection to the sample database, execute some SQL, and then
close the connection.

ORACLE 2-11

Chapter 2
Database Operations in JDBC

See the levell sample application for a working example. (See About TimesTen
Quick Start and Sample Applications regarding the sample applications.)

String URL = "jdbc:timesten:dsn=sampledb";
Connection conn = null;

try {
Class.forName ("com.timesten.jdbc.TimesTenDriver") ;
} catch (ClassNotFoundException ex) {
// See Error Handling
}

try {
// Open a connection to TimesTen
conn = DriverManager.getConnection (URL);

// Report any SQLWarnings on the connection
// See Reporting Errors and Warnings

// Do SQL operations
// See TimesTen Features and Operations in Your Application below

// Close the connection to TimesTen
conn.close();

// Handle any errors

} catch (SQLException ex) {
// See Error Handling

}

Checking Database Validity

Applications can call this TimesTenConnection method to detect whether the database
is valid.

boolean isDataStoreValid() throws java.sqgl.SQLException

It returns true if the database is valid, or false if the database is in an invalid state,
such as due to system or application failure.

Database Operations in JDBC

ORACLE

There are some general aspects of database operations in JDBC.
e Executing Basic SQL Statements

e Committing or Rolling Back Changes to the Database

e Managing Multiple Threads

e Java Escape Syntax and SQL Functions

2-12

Chapter 2
Database Operations in JDBC

Executing Basic SQL Statements

ORACLE

You can use the createStatement () method of a Connection instance, and the
executeUpdate () Or executeQuery () method of a Statement instance, to execute a SQL
statement within a Java application.

See Working with Data in a TimesTen Database in Oracle TimesTen In-Memory Database
Operations Guide.

Unless statements are prepared in advance, use the execution methods of a Statement
object, such as execute (), executeUpdate () Or executeQuery (), depending on the nature of
the SQL statement and any returned result set.

For SQL statements that are prepared in advance, use the same execution methods of a
PreparedStatement object.

The execute () method returns true if there is a result set (for example, on a SELECT) or
false if there is no result set (for example, on an INSERT, UPDATE, of DELETE). The
executeUpdate () method returns the number of rows affected. For example, when executing
an INSERT statement, the executeUpdate () method returns the number of rows inserted. The
executeQuery () method returns a result set, so it should only be called when a result set is
expected (for example, when executing a SELECT Statement).

Note:

e Typically, use the Statement, PreparedStatement, Or CallableStatement
method close () to close a statement you have finished using. TimesTen
statements also support standard try-with-resource functionality using
java.lang.AutoCloseable.

e See Working with TimesTen Result Sets: Hints and Restrictions.

This example uses the executeUpdate () method on the Statement object to execute an
INSERT statement to insert data into the customer table in the current schema. The
connection must have been opened, which is not shown.

Connection conn = null;
Statement stmt = null;

// [Code to open connection. See Connecting to the Database. . .]
try {
stmt = conn.createStatement();
int numRows = stmt.executeUpdate ("insert into customer values"
+ " (40, 'West', 'Big Dish', '123 Signal St.")");
}
catch (SQLException ex) {

}

2-13

Chapter 2
Database Operations in JDBC

The following example uses an executeQuery () call on the Statement object to
execute a SELECT statement on the customer table in the current schema and display
the returned java.sgl.ResultSet instance:

Statement stmt = null;
try {
ResultSet rs = stmt.executeQuery("select cust num, region, " +

"name, address from customer");
System.out.println("Fetching result set...");
while (rs.next()) {

System.out.println("\n Customer number: " + rs.getInt(1l));
System.out.println(" Region: " + rs.getString(2));
System.out.println(" Name: " + rs.getString(3));

(

System.out.println
}

" Address: " + rs.getString(4));

}
catch (SQLException ex) {
ex.printStackTrace () ;

}

Committing or Rolling Back Changes to the Database

This section discusses autocommit and manual commits or rollbacks, assuming a
JDBC Connection object myconn and Statement object mystmt. The following topics
are covered:

e Setting Autocommit
e Manually Committing or Rolling Back Changes
e Using COMMIT and ROLLBACK SQL Statements

Note:

All open cursors on the connection are closed upon transaction commit or
rollback in TimesTen.

Refer to Transaction Overview in Oracle TimesTen In-Memory Database Operations
Guide.

Setting Autocommit

ORACLE

A TimesTen connection has autocommit enabled by default, but for performance
reasons it is recommended that you disable it. You can use the Connection method
setAutoCommit () to enable or disable autocommit.

Disable autocommit as follows:
myconn.setAutoCommit (false);

// Report any SQLWarnings on the connection.
// See Reporting Errors and Warnings.

2-14

Chapter 2
Database Operations in JDBC

< Note:

A setAutoCommit () call results in a commit only when the call actually changes the
autocommit setting.

Manually Committing or Rolling Back Changes

If autocommit is disabled, you must use the Connection method commit () to manually
commit transactions, or the rollback () method to roll back changes. Consider the following
example.

myconn.commit () ;

Or:

myconn.rollback();

Using COMMIT and ROLLBACK SQL Statements

You can prepare and execute COMMIT and ROLLBACK SQL statements the same way as other
SQL statements. Using COMMIT and ROLLBACK statements has the same effect as using the
Connection methods commit () and rollback().

For example:

mystmt.execute ("COMMIT") ;

Managing Multiple Threads

ORACLE

When your application has a direct connection to the database, TimesTen functions share
stack space with your application. In multithreaded environments it is important to avoid
overrunning the stack allocated to each thread, as this can cause a program to fail in
unpredictable ways that are difficult to debug. The amount of stack space consumed by
TimesTen calls varies depending on the SQL functionality used. Most applications should set
thread stack space between 34 KB and 72 KB.

The amount of stack space allocated for each thread is specified by the operating system
when threads are created. On Windows, you can use the TimesTen debug driver and link
your application against the Visual C++ debug C library to enable stack probes that raise an
identifiable exception if a thread attempts to grow its stack beyond the amount allocated.

< Note:

In multithreaded applications, a thread that issues requests on different connection
handles to the same database may encounter lock conflicts with itself. TimesTen
returns lock timeout and deadlock errors in this situation.

2-15

Chapter 2
TimesTen Features and Operations in Your Application

The level4 sample application demonstrates the use of multiple threads. Refer to
About TimesTen Quick Start and Sample Applications.

Java Escape Syntax and SQL Functions

When using SQL in JDBC, pay special attention to Java escape syntax. SQL functions
such as UNISTR use the backslash (\) character. You should escape the backslash
character.

For example, using the following SQL syntax in a Java application may not produce
the intended results:

INSERT INTO tablel SELECT UNISTR('\OOE4') FROM dual;

Escape the backslash character as follows:

INSERT INTO tablel SELECT UNISTR('\\OOE4') FROM dual;

TimesTen Features and Operations in Your Application

This section provides detailed information on working with data in a TimesTen
database.

These topics are discussed here:

» Using Java Wrapper Functionality for Statements

* Working with TimesTen Result Sets: Hints and Restrictions

* Fetching Multiple Rows of Data

e Optimizing Query Performance

e Parameter Binding and Statement Execution

* Working with Associative Arrays

* Working with REF CURSORs

* Working with DML Returning (RETURNING INTO Clause)

* Working with Rowids

» Large Objects (LOBs)

* Using CALL to Execute Procedures and Functions

e Setting a Timeout or Threshold for Executing SQL Statements
» Configuring the Result Set Buffer Size in Client/Server Using JDBC
* Features for Use with Cache

* Features for Use with Replication

Using Java Wrapper Functionality for Statements

TimesTen exposes TimesTen-specific implementations through standard
java.sql.Wrapper functionality.

ORACLE 2-16

Chapter 2
TimesTen Features and Operations in Your Application

You can use Wrapper to retrieve statement objects that implement the TimesTenStatement,
TimesTenPreparedStatement, and TimesTenCallableStatement interfaces and provide
access to TimesTen-specific features. See Management of TimesTen Database Connections
for similar discussion and an example regarding connection objects.

Working with TimesTen Result Sets: Hints and Restrictions

This section points out what you should know when using ResultSet objects from TimesTen.

Use ResultSet objects to process query results. In addition, some methods and built-in
procedures return TimesTen data in the form of a ResultSet object.

" Note:

In TimesTen, any operation that ends your transaction, such as a commit or
rollback, closes all cursors associated with the connection.

» TimesTen does not support multiple open ResultSet objects per statement. TimesTen
cannot return multiple ResultSet objects from a single statement object without first
closing the current result set.

e TimesTen does not support holdable cursors. You cannot specify the holdability of a
result set, essentially whether a cursor can remain open after it has been committed.

* ResultSet objects are not scrollable or updatable, so you cannot specify
ResultSet.TYPE SCROLL SENSITIVE Of ResultSet.CONCUR UPDATABLE.

* Typically, use the ResultSet method close () to close a result set as soon as you are
done with it. For performance reasons, this is especially important for result sets used for
both read and update operations and for result sets used in pooled connections.

TimesTen result sets also support standard try-with-resource functionality using
java.lang.AutoCloseable.

* Calling the ResultSet method getString () is more costly in terms of performance if the
underlying data type is not a string. Because Java strings are immutable, getString()
must allocate space for a new string each time it is called. Do not use getString() to
retrieve primitive numeric types, like byte or int, unless it is absolutely necessary. For
example, it is much faster to call getInt () on an integer column. Also see Use the
ResultSet Method getString() Sparingly.

In addition, for dates and timestamps, the ResultSet native methods getDate () and
getTimestamp () have better performance than getString().

» Application performance is affected by the choice of getxxx() calls and by any required
data transformations after invocation.

« JDBC ignores the setting for the ConnectionCharacterSet attribute. It returns data in
UTF-16 encoding.

Fetching Multiple Rows of Data

Fetching multiple rows of data can increase the performance of a client/server application
that connects to a database set with Read Committed isolation level.

ORACLE 2-17

Chapter 2
TimesTen Features and Operations in Your Application

This section describes the connection-level prefetch implemented in TimesTen.

You can specify the number of rows to be prefetched by calling the
TimesTenConnection method setTtPrefetchCount (). This enables a TimesTen
extension that establishes prefetch at the connection level so that all of the statements
on the connection use the same prefetch setting..

Note:

The TimesTen prefetch count extension provides no benefit for an application
using a direct connection to the database.

When you set the prefetch count to 0, TimesTen uses a default prefetch count
according to the isolation level you have set for the database, and sets the prefetch
count to that value. With Read Committed isolation level, the default prefetch value is
5. With Serializable isolation level, the default is 128. The default prefetch value is a
good setting for most applications. Generally, a higher value may result in better
performance for larger result sets, at the expense of slightly higher resource use.

To disable prefetch, set the prefetch count to 1.

Call the TimesTenConnection method getTtPrefetchCount () to check the current
prefetch value.

See the Connection interface entry in Support for Interfaces in the java.sqgl Package.
Refer to Oracle TimesTen In-Memory Database JDBC Extensions Java APl
Reference.

The following example uses a setTtPrefetchCount () call to set the prefetch count to
10, then uses a getTtPrefetchCount () call to return the prefetch count in the count
variable.

TimesTenConnection conn =
(TimesTenConnection) DriverManager.getConnection (url);

// set prefetch count to 10 for this connection
conn.setTtPrefetchCount (10) ;

// Return the prefetch count to the 'count' variable.
int count = conn.getTtPrefetchCount();

Optimizing Query Performance

ORACLE

A TimesTen extension enables applications to optimize read-only query performance
in client/server applications by calling the TimesTenConnection method
setTtPrefetchClose () with a setting of true.

All transactions should be committed when executed, including read-only transactions.
With a setTtPrefetchClose (true) call, the server automatically closes the cursor and
commits the transaction after the server has prefetched all rows of the result set for a
read-only query. This enhances performance by reducing the number of network
round-trips between client and server.

2-18

Chapter 2
TimesTen Features and Operations in Your Application

The client should still close the result set and commit the transaction, but those calls are
executed in the client and do not require a network round trip between the client and server.

Note:

« Do not use multiple statement handles for the same connection with a
setTtPrefetchClose (true) call. The server may fetch all rows from the result
set, commit the transaction, and close the statement handle before the client is
finished, resulting in the closing of all statement handles.

* A true setting is ignored for TimesTen direct connections and for SELECT FOR
UPDATE statements.

e Use getTtPrefetchClose () to get the current setting (true or false).

The following example shows usage of setTtPrefetchClose (true).

import com.timesten.sql;

con = DriverManager.getConnection ("jdbc:timesten:client:" + DSN);
stmt = con.createStatement();

con.setTtPrefetchClose (true);
rs = stmt.executeQuery("select * from t");
while(rs.next())

{
// do the processing

}
rs.close();
con.commit () ;

Parameter Binding and Statement Execution

This discusses how to bind input or output parameters for SQL statements.
The following topics are covered.

* Preparing SQL Statements and Setting Input Parameters

* Working with Output and Input/Output Parameters

* Binding Duplicate Parameters in SQL Statements

* Binding Duplicate Parameters in PL/SQL

Note:

The term "bind parameter" as used in TimesTen developer guides (in keeping with
ODBC terminology) is equivalent to the term "bind variable" as used in TimesTen
PL/SQL documents (in keeping with Oracle Database PL/SQL terminology).

ORACLE 2-19

Chapter 2
TimesTen Features and Operations in Your Application

Preparing SQL Statements and Setting Input Parameters

ORACLE

SQL statements that are to be executed more than once should be prepared in
advance by calling the Connection method prepareStatement (). For maximum
performance, prepare parameterized statements.

Be aware of the following:

The TimesTen binding mechanism (early binding) differs from that of Oracle
Database (late binding). TimesTen requires the data types before preparing
gueries. As a result, there will be an error if the data type of each bind parameter
is not specified or cannot be inferred from the SQL statement. This would apply,
for example, to the following statement:

SELECT 'x' FROM DUAL WHERE ? = ?;

You could address the issue as follows, for example.

SELECT 'x' from DUAL WHERE CAST(? as VARCHARZ2 (10)) = CAST(? as
VARCHARZ (10)) ;

By default (when connection attribute PrivateCommands=0), TimesTen shares
prepared statements between connections, so subsequent prepares of the same
statement on different connections execute very quickly.

Application performance is influenced by the choice of setxxx() calls and by any
required data transformations before invocation. For example, for time, dates, and
timestamps, the PreparedStatement native methods setTime (), setDate () and
setTimestamp () have better performance than setString().

For TT TINYINT columns, use setShort () or setInt () instead of setByte () to
use the full range of TT TINYINT (0-255).

Settings using setObject (java.util.Calendar) and setDate (java.util.Date)
are mapped to TIMESTAMP.

The following example shows the basics of an executeQuery () call on a
PreparedStatement object. It executes a prepared SELECT statement and displays the
returned result set.

PreparedStatement pSel = conn.prepareStatement ("select cust num, " +

"region, name, address " +
"from customer" +
"where region = ?");

pSel.setInt(1,1);

try {

ResultSet rs = pSel.executeQuery();

while (rs.next()) {

System.out.println("\n Customer number: " + rs.getInt(1l));
System.out.println(" Region: " + rs.getString(2));
System.out.println(" Name: " + rs.getString(3));

(

System.out.println(" Address: " + rs.getString(4));

2-20

ORACLE

Chapter 2
TimesTen Features and Operations in Your Application

}
catch (SQLException ex) {
ex.printStackTrace () ;

}

This next example shows how a single parameterized statement can be substituted for four
separate statements.

Rather than execute a similar INSERT statement with different values:

Statement.execute ("insert into tl values
Statement.execute ("insert into tl values
Statement.execute ("insert into tl values
Statement.execute ("insert into tl values

It is more efficient to prepare a single parameterized INSERT statement and use
PreparedStatement methods setxxX() to set the row values before each execute.

PreparedStatement pIns = conn.PreparedStatement ("insert into tl values

(2,2)") 3

pIns.setInt(1l, 1);
pIns.setInt(2, 2);
pIns.executeUpdate();

pIns.setInt (1, 3);
pIns.setInt (2, 4);
pIns.executeUpdate();

pIns.setInt (1, 5);
pIns.setInt(2, 6);
pIns.executeUpdate();

plIns.setInt (1, 7);
pIns.setInt (2, 8);
pIns.executeUpdate();

conn.commit () ;
pIns.close();

TimesTen shares prepared statements automatically after they have been committed. For
example, if two or more separate connections to the database each prepare the same
statement, then the second, third, ... , nth prepared statements return very quickly because
TimesTen remembers the first prepared statement.

The following example prepares INSERT and SELECT statements, executes the INSERT twice,
executes the SELECT, and prints the returned result set. For a working example, see the
levell sample application. (Refer to About TimesTen Quick Start and Sample Applications
regarding the sample applications.)

Connection conn = null;

// [Code to open connection. See Connecting to the Database. . .]

2-21

ORACLE

Chapter 2
TimesTen Features and Operations in Your Application

// Disable auto-commit
conn.setAutoCommit (false);

// Report any SQLWarnings on the connection
// See Reporting Errors and Warnings

// Prepare a parameterized INSERT and a SELECT Statement
PreparedStatement plIns =

conn.prepareStatement ("insert into customer values
(2,2, 2,2)")

PreparedStatement pSel = conn.prepareStatement
("select cust num, region, name, " +
"address from customer");

// Data for first INSERT statement
pIns.setInt (1, 100);
pIns.setString(2, "N");
pIns.setString (3, "Fiberifics");
pIns.setString (4, "123 any street");

// Execute the INSERT statement
plIns.executeUpdate();

// Data for second INSERT statement
pIns.setInt(1l, 101);

pIns.setString(2, "N");
pIns.setString (3, "Natural Foods Co.");
pIns.setString (4, "5150 Johnson Rd4");

// Execute the INSERT statement
plIns.executeUpdate();

// Commit the inserts
conn.commit () ;

// Done with INSERTs, so close the prepared statement
pIns.close();

// Report any SQLWarnings on the connection.
reportSQLWarnings (conn.getWarnings()) ;

// Execute the prepared SELECT statement
ResultSet rs = pSel.executeQuery();

System.out.println("Fetching result set...");
while (rs.next()) {
System.out.println("\n Customer number: " + rs.getInt(l));
System.out.println(" Region: " + rs.getString(2));
System.out.println(" Name: " + rs.getString(3));
(

System.out.println(" Address: " + rs.getString(4));

2-22

Chapter 2
TimesTen Features and Operations in Your Application

// Close the result set.
rs.close();

// Commit the select - yes selects must be committed too
conn.commit () ;

// Close the select statement - we are done with it
pSel.close();

The next example prepares three identical parameterized INSERT statements for three
separate connections. The first prepared INSERT for connection connl is shared (inside the
TimesTen internal prepared statement cache) with the conn2 and conn3 connections,
speeding up the prepare operations for pIns2 and pIns3:

Connection connl null;
Connection conn2 = null;
Connection conn3 null;

PreparedStatement pInsl = connl.prepareStatement
("insert into tl values (?,?)");

PreparedStatement pIns2 = conn2Z.prepareStatement
("insert into tl values (?,?)");

PreparedStatement pIns3 = conn3.prepareStatement
("insert into tl values (?,?)");

Note:

All optimizer hints, such as join ordering, indexes and locks, must match for the
statement to be shared in the internal TimesTen prepared statement cache. Also, if
the prepared statement references a temp table, it is only shared within a single
connection.

Working with Output and Input/Output Parameters

ORACLE

You can prepare a statement and set input parameters using PreparedStatement methods.

See Preparing SQL Statements and Setting Input Parameters. TimesTen also supports
output and input/output parameters, for which you use java.sgl.CallableStatement instead
of PreparedStatement, as follows.

1. Use the method registerOutParameter () to register an output or input/output parameter,
specifying the parameter position (position in the statement) and data type.

This is the standard method as specified in the CallableStatement interface:

void registerOutParameter (int parameterIndex, int sqlType, int scale)

2-23

ORACLE

Chapter 2
TimesTen Features and Operations in Your Application

Be aware, however, that if you use this standard version for CHAR, VARCHAR, NCHAR,
NVARCHAR, BINARY, Or VARBINARY data, TimesTen allocates memory to hold the
largest possible value. In many cases this is wasteful.

Instead, you can use the TimesTen extended interface
TimesTenCallableStatement, which has a registerOutParameter () signature
that enables you to specify the maximum data length. For CHAR, VARCHAR, NCHAR,
and NVARCHAR, the unit of length is number of characters. For BINARY and
VARBINARY, it is bytes.

void registerOutParameter (int paramIndex,

int sqlType,

int ignore, //This parameter is ignored
by TimesTen.

int maxLength)

2. Use the appropriate CallableStatement method setXxX(), where xxXx indicates
the data type, to set the input value of an input/output parameter. Specify the
parameter position and data value.

3. Use the appropriate CallableStatement method getXxX() to get the output value
of an output or input/output parameter, specifying the parameter position.

¢ Note:

e Check for SQL warnings before processing output parameters. In the
event of a warning, output parameters are undefined. See Error
Handling.

e You cannot pass parameters to a CallableStatement object by name.
You must set parameters by position. You cannot use the SQL escape
syntax.

e The registerOutParameter () signatures specifying the parameter by
name are not supported. You must specify the parameter by position.

e SQL structured types are not supported.

This example shows how to use a callable statement with an output parameter. In the
TimesTenCallableStatement instance, a PL/SQL block calls a function RAISE SALARY
that calculates a new salary and returns it as an integer. Assume a Connection
instance conn. (Refer to Overview of PL/SQL features in the Oracle TimesTen In-
Memory Database PL/SQL Developer's Guide.)

import java.sqgl.CallableStatement;

import java.sqgl.Connection;

import java.sqgl.Types;

import com.timesten.jdbc.TimesTenCallableStatement;

// Prepare to call a PL/SQL stored procedure RAISE SALARY
CallableStatement cstmt = conn.prepareCall

("BEGIN :newSalary :=
RAISE SALARY (:name, :inc); end;");

2-24

Chapter 2
TimesTen Features and Operations in Your Application

// Declare that the first param (newSalary) is a return (output) value of
type int
cstmt.registerOutParameter (1, Types.INTEGER);

// Raise Leslie's salary by $2000 (who wanted $3000 but we held firm)
cstmt.setString (2, "LESLIE"); // name argument (type String) is the second
param

cstmt.setInt (3, 2000); // raise argument (type int) is the third param

// Do the raise
cstmt.execute () ;

// Check warnings. If there are warnings, output parameter values are
undefined.
SQLWarning wn;
boolean warningFlag = false;
if ((wn = cstmt.getWarnings()) != null) {
do {
warningFlag = true;
System.out.println (wn);
wn = wn.getNextWarning();
} while(wn != null);

// Get the new salary back

if (!warningFlag) ({
int new salary = cstmt.getInt(l);
System.out.println("The new salary is: " + new salary);

// Close the statement and connection
cstmt.close();
conn.close();

Binding Duplicate Parameters in SQL Statements

In TimesTen, multiple occurrences of the same parameter name in a SQL statement are
considered to be distinct parameters. (This is consistent with Oracle Database support for
binding duplicate parameters.)

" Note:

e This discussion applies only to SQL statements issued directly from ODBC, not
through PL/SQL, for example.

* "TimesTen mode" for binding duplicate parameters, and the DuplicateBindMode
connection attribute, are deprecated.

ORACLE 2-25

Chapter 2
TimesTen Features and Operations in Your Application

Consider this query:

SELECT * FROM employees
WHERE employee id < :a AND manager id > :a AND salary < :Db;

When parameter position numbers are assigned, a number is given to each parameter
occurrence without regard to name duplication. The application must, at a minimum,
bind a value for the first occurrence of each parameter name. For any subsequent
occurrence of a given parameter name, the application has the following choices.

* |t can bind a different value for the occurrence.

e It can leave the parameter occurrence unbound, in which case it takes the same
value as the first occurrence.

In either case, each occurrence still has a distinct parameter position number.

To use a different value for the second occurrence of a in the SQL statement above:

pstmt.setXXX(1, ...); /* first occurrence of :a */
pstmt.setXXX(2, ...); /* second occurrence of :a */
pstmt.setXXX(3, ...); /* occurrence of :b */

To use the same value for both occurrences of a:

pstmt.setXXX(1l, ...); /* both occurrences of :a */
pstmt.setXXX(3, ...); /* occurrence of :b */

Parameter b is considered to be in position 3 regardless.

Binding Duplicate Parameters in PL/SQL

ORACLE

The preceding discussion does not apply to PL/SQL, which has its own semantics. In
PL/SQL, you bind a value for each unique parameter name.

An application executing the following block, for example, would bind only one
parameter, corresponding to :a.

DECLARE
x NUMBER;
y NUMBER;
BEGIN
Xi=iay
yi=:iay
END;

An application executing the following block would also bind only one parameter:
BEGIN

INSERT INTO tabl VALUES (:a, :a);
END

2-26

Chapter 2
TimesTen Features and Operations in Your Application

And the same for the following CALL statement:

...CALL proc(:a, :a)...

An application executing the following block would bind two parameters, with :a as parameter
#1 and :b as parameter #2. The second parameter in each INSERT statement would take the
same value as the first parameter in the first INSERT Statement, as follows.

BEGIN
INSERT INTO tabl VALUES (:a, :a);
INSERT INTO tabl VALUES (:b, :a);
END

Working with Associative Arrays

This section shows how to bind and use associative arrays in TimesTen.

e Overview of Associative Arrays
* TimesTen Methods for Associative Arrays
* Type Mapping for Associative Arrays

* Binding Associative Arrays

Overview of Associative Arrays

TimesTen JDBC supports associative arrays, formerly known as index-by tables or PL/SQL
tables, as IN, OUT, or IN OUT bind parameters to TimesTen PL/SQL. Associative arrays
enable arrays of data to be passed efficiently between a JDBC application and the database.

An associative array is a set of key-value pairs. In TimesTen, for associative array binding
(but not for use of associative arrays only within PL/SQL), the keys, or indexes, must be
integers (BINARY INTEGER or PLS INTEGER). The values must be scalar values of the same
data type. For example, there could be an array of department managers indexed by
department numbers. Indexes are stored in sort order, not creation order.

You can declare an associative array type and then an associative array from PL/SQL as in
the following example (note the INDEX BY):

declare
TYPE VARCHARARRTYP IS TABLE OF VARCHAR2 (30) INDEX BY BINARY INTEGER;
x VARCHARARRTYP;

Also see Using Associative Arrays from Applications in Oracle TimesTen In-Memory
Database PL/SQL Developer's Guide.

ORACLE 2-27

Chapter 2
TimesTen Features and Operations in Your Application

< Note:

e The following types are not supported in binding associative arrays:
LOBs, REF CURSORS, TIMESTAMP, ROWID.

e Associative array binding is not allowed in passthrough statements.

e General bulk binding of arrays is not supported in TimesTen JDBC.
Varrays and nested tables are not supported as bind parameters.

e Associative array parameters are not supported with JDBC batch
execution. (See Use Arrays of Parameters for Batch Execution.)

TimesTen Methods for Associative Arrays

ORACLE

TimesTen provides extensions through the interfaces TimesTenPreparedStatement
and TimesTenCallableStatement to support associative array binds.

Refer to Oracle TimesTen In-Memory Database JDBC Extensions Java API Reference
for additional information about methods described here.

For an associative array that is a PL/SQL IN or IN OUT parameter, TimesTen provides
the setPlsglIndexTable () method in the TimesTenPreparedStatement interface (for
an IN parameter) and in the TimesTenCallableStatement interface (for an IN OUT
parameter) to set the input associative array.

void setPlsglIndexTable (int paramIndex, java.lang.Object arrayData,
int maxLen, int curLen, int elemSqlType, int elemMaxLen)

Specify the following:
— paramIndex: Parameter position within the PL/SQL statement (starting with 1)

— arrayData: Array of values to be bound (which can be an array of primitive
types such as int[] or an array of object types such as BigDecimal[])

— maxLen: Maximum number of elements in the associative array (in TimesTen
must be same as curLen)

— curLen: Actual current number of elements in the associative array (in
TimesTen must be same as maxLen)

— elemSqlType: Type of the associative array elements according to
java.sql.Types (such as Types.DOUBLE)

— elemMaxILen: FOr CHAR, VARCHAR, BINARY, Or VARBINARY associative arrays, the
maximum length of each element (in characters for CHAR or VARCHAR
associative arrays, or in bytes for BINARY or VARBINARY associative arrays)

For example (assuming a TimesTenPreparedStatement instance pstmt):

int maxLen = 3;

int curlen = 3;

// Numeric field can be set with int, float, double types.
// elemMaxLen is set to 0 for numeric types and is ignored.
// elemMaxLen is specified for VARCHAR types.
pstmt.setPlsglIndexTable

2-28

ORACLE

Chapter 2
TimesTen Features and Operations in Your Application

(1, new int[]{4, 5, 6}, maxLen, curlen, Types.NUMERIC, O0);
pstmt.setPlsglIndexTable
(2, new String[]{"Batchl1234567890", "2", "3"}, maxLen, curlen,
Types.VARCHAR, 15);
pstmt.execute() ;

" Note:

e The elemMaxLen parameter is ignored for types other than CHAR, VARCHAR,
BINARY, Or VARBINARY. For any of those types, you can use a value of O to
instruct the driver to set the maximum length of each element based on the
actual length of data that is bound. If elemMaxLen is set to a positive value, then
wherever the actual data length is greater than elemMaxLen, the data is
truncated to a length of elemMaxLen.

e If curLen is smaller than the actual number of elements in the associative array,
only curLen elements are bound.

For an associative array that is a PL/SQL OUT or IN OUT parameter, TimesTen provides two
methods in the TimesTenCallableStatement interface: registerIndexTableOutParameter ()
to register an output associative array, and getP1sqlIndexTable () to retrieve an output
associative array. There are two signatures for getP1sqlIndexTable (), one to use the JDBC
default Java object type given the associative array element SQL type, and one to specify the
type.

void registerIndexTableOutParameter (int paramIndex, int maxLen, int
elemSqlType, int elemMaxLen)

Specify the following:
— paramIndex: Parameter position within the PL/SQL statement (starting with 1)
— maxLen: Maximum possible number of elements in the associative array

— elemSqlType: Type of the associative array elements according to java.sql.Types
(such as Types.DOUBLE)

— elemMaxLen: For CHAR, VARCHAR, BINARY, Or VARBINARY associative arrays, the
maximum length of each element (in characters for CHAR or VARCHAR associative
arrays, or in bytes for BINARY or VARBINARY associative arrays)

Note:

If elemMaxLen has a value of O or less, the maximum length for the data type is
used.

java.lang.Object getPlsglIndexTable (int paramIndex)

With this method signature, the type of the returned associative array is the JDBC default
mapping for the SQL type of the data retrieved. Specify the parameter position within the
PL/SQL statement (starting with 1). See Table 2-4.

2-29

Chapter 2
TimesTen Features and Operations in Your Application

* java.lang.Object getPlsglIndexTable(int paramIndex, java.lang.Class
primitiveType)

With this method signature, in addition to specifying the parameter position,
specify the desired type of the returned associative array according to
java.sql.Types (such as Types.DOUBLE). It must be a primitive type.

Type Mapping for Associative Arrays

When you bind an associative array in Java, match the Java type as closely as
possible with the array type for optimal performance. TimesTen does, however,
support certain input conversions.

e Strings can be converted to integers or floating point numbers.

e Strings can be converted to DATE data if the strings are in TimesTen DATE format
(YYYY-MM-DD HH:MI:SS).

Table 2-4 documents JDBC default mappings for associative array elements.

Table 2-4 JDBC Default Mappings for Associative Array Elements

Return type SQL type

Integer(] TINYINT, SMALLINT, TT INTEGER
Long[] BIGINT

BigDecimall] NUMBER

Float[] BINARY FLOAT

Double[] BINARY DOUBLE

String[] CHAR, VARCHAR, NCHAR, NVARCHAR
Timestamp[] DATE

Binding Associative Arrays

The following code fragment illustrates how to set, register, and retrieve the contents
of an IN OUT parameter (assuming a connection conn and
TimesTenCallableStatement instance cstmt):

int maxLen = 3;
int curlen = 3;
anonBlock = "begin AssocArrayEx inoutproc(:ol); end;";
cstmt = (TimesTenCallableStatement) conn.prepareCall (anonBlock);
cstmt.setPlsqlIndexTable

(1, new Integer[] {1,2,3}, maxLen, curlen, Types.NUMERIC, O0);
cstmt.registerIndexTableOutParameter (1, maxLen, Types.NUMERIC, O0);
cstmt.execute () ;

int[] ret = (int [])cstmt.getPlsglIndexTable(l, Integer.TYPE);
cstmt.execute () ;

ORACLE 2-30

Chapter 2
TimesTen Features and Operations in Your Application

The next example is more complete, showing the mechanism for binding an associative

array.

TimesTenCallableStatement cstmt = null;
try {

// Prepare procedure with associative array in parameter
cstmt = (TimesTenCallableStatement)
conn.prepareCall ("begin AssociativeArray proc(:name, :inc);

end;");

// Set up input array and length

String[] name = {"George", "John", "Thomas", "James", "Bill"};
Integer[] salaryInc = {10000, null, 5000, 8000, 9007};

int currentLen = name.length;

int maxLen = currentlen;

// Use elemMaxLen for variable length data types such as
// Types.VARCHAR, Types.CHAR.
int elemMaxLen = 32;

// set input parameter, name as a VARCHAR
cstmt.setPlsglIndexTable

(1, name, maxLen, currentLen, Types.VARCHAR, elemMaxLen);
// set input parameter, salaryInc as a number
cstmt.setPlsglIndexTable

(2, salaryInc, maxLen, currentLen, Types.NUMERIC, O0);

Working with REF CURSORs

REF CURSOR is a PL/SQL concept, a handle to a cursor over a SQL result set that can be
passed between PL/SQL and an application. In TimesTen, the cursor can be opened in PL/
SQL, then the REF CURSOR can be passed to the application for processing of the result

ORACLE

set.

TimesTen supports standard JDBC REF CURSORs as well as TimesTen REF CURSORs.

An application can receive a REF CURSOR 0UT parameter as follows:

1

Using the CallableStatement method registerOutParameter (), register the REF
CURSOR 0uT parameter as type java.sql.Types.REF CURSOR (for standard REF
CURSORS) or as type TimesTenTypes.CURSOR (for TimesTen REF CURSORS). In the
registerOutParameter () call, specify the parameter position of the REF CURSOR
(position in the statement).

Retrieve the REF CURSOR using the CallableStatement method getObject () (for
standard REF CURSORS) or the TimesTenCallableStatement method getCursor () (for
TimesTen REF CURSORS), casting the return as ResultSet. Specify the parameter
position of the REF CURSOR.

Refer to Oracle TimesTen In-Memory Database JDBC Extensions Java API Reference for

additional information about TimesTen JDBC APIs. See PL/SQL REF CURSORs in Oracle
TimesTen In-Memory Database PL/SQL Developer's Guide for additional information about
REF CURSORs.

2-31

ORACLE

Chapter 2
TimesTen Features and Operations in Your Application

< Note:

For passing REF CURSORs between PL/SQL and an application, TimesTen
supports only ouT REF CURSORSs, from PL/SQL to the application.

The following examples show how to use a callable statement with a TimesTen REF
CURSOR then a standard REF CURSOR.

TimesTen REF CURSOR:

import java.sgl.CallableStatement;

import java.sqgl.Connection;

import java.sqgl.ResultSet;

import com.timesten.jdbc.TimesTenCallableStatement;
import com.timesten.jdbc.TimesTenTypes;

Connection conn = null;
CallableStatement cstmt = null;
ResultSet cursor;

// Use a PL/SQL block to open the cursor.
cstmt = conn.prepareCall
(" begin open :x for select tblname,tblowner from tables;
end; ") ;
cstmt.registerOutParameter (1, TimesTenTypes.CURSOR);
cstmt.execute () ;
cursor = ((TimesTenCallableStatement)cstmt).getCursor(1l);

// Use the cursor as you would any other ResultSet object.
while (cursor.next ()) {
System.out.println(cursor.getString(l));

// Close the cursor, statement, and connection.
cursor.close();

cstmt.close();

conn.close();

Standard REF CURSOR:

Connection conn = null;
CallableStatement cstmt = null;
ResultSet rs;

cstmt = conn.prepareCall
(" begin open :x for select tblname,tblowner from tables;
end;");
cstmt.registerOutParameter (1, Types.REF CURSOR);
cstmt.execute () ;
rs = cstmt.getObject (1, ResultSet.class);

2-32

Chapter 2
TimesTen Features and Operations in Your Application

while(rs.next ()) {
System.out.println(rs.getString(l));
}

// Close the result set, statement, and connection.
rs.close();

cstmt.close();

conn.close();

Note:

If you are evaluating the callable statement with different parameter values in a
loop, close the cursor each time at the end of the loop. The typical use case is to
prepare the statement, then, in the loop, set parameters, execute the statement,
process the cursor, and close the cursor.

Working with DML Returning (RETURNING INTO Clause)

ORACLE

You can use a RETURNING INTO clause, referred to as DML returning, with an INSERT, UPDATE,
or DELETE statement to return specified items from a row that was affected by the action. This
eliminates the need for a subsequent SELECT statement and separate round trip, in case, for
example, you want to confirm what was affected by the action.

With TimesTen, DML returning is limited to returning items from a single-row operation. The
clause returns the items into a list of output parameters.

TimesTenPreparedStatement, an extension of the standard PreparedStatement interface,
supports DML returning. Use the TimesTenPreparedStatement method
registerReturnParameter () to register the return parameters.

void registerReturnParameter (int paramIndex, int sqlType)

As with the registerOutParameter () method discussed in Working with Output and Input/
Output Parameters, this method has a signature that enables you to optionally specify a
maximum size for CHAR, VARCHAR, NCHAR, NVARCHAR, BINARY, Or VARBINARY data. This avoids
possible inefficiency where TimesTen would otherwise allocate memory to hold the largest
possible value. For CHAR, VARCHAR, NCHAR, and NVARCHAR, the unit of size is number of
characters. For BINARY and VARBINARY, it is bytes.

void registerReturnParameter (int paramIndex, int sqlType, int maxSize)

Use the TimesTenPreparedStatement method getReturnResultSet () to retrieve the return
parameters, returning a ResultSet instance.

Be aware of the following restrictions when using RETURNING INTO in TimesTen JDBC.

* The getReturnResultSet () method must not be invoked more than once. Otherwise, the
behavior is indeterminate.

* ResultSetMetaData is not supported for the result set returned by
getReturnResultSet ().

2-33

Chapter 2
TimesTen Features and Operations in Your Application

» Streaming methods such as getCharacterStream() are not supported for the
result set returned by getReturnResultSet ().

e There is no batch support for DML returning.

Refer to Oracle TimesTen In-Memory Database JDBC Extensions Java API Reference
for additional information about the TimesTen JDBC classes, interfaces, and methods
discussed here.

SQL syntax and restrictions for the RETURNING INTO clause in TimesTen are
documented as part of the INSERT, UPDATE, and DELETE documentation in Oracle
TimesTen In-Memory Database SQL Reference.

Refer to RETURNING INTO Clause in Oracle Database PL/SQL Language Reference
for general information about DML returning.

Tip:

Check for SQL warnings after executing the TimesTen prepared statement.
In the event of a warning, output parameters are undefined. See Error
Handling.

This example shows how to use DML returning with a TimesTenPreparedStatement
instance, returning the name and age for a row that is inserted.

import java.sqgl.ResultSet;

import java.sql.SQLException;

import java.sql.SQLWarning;

import java.sql.Types;

import com.timesten.jdbc.TimesTenPreparedStatement;

Connection conn = null;

// Insert into a table and return results
TimesTenPreparedStatement pstmt =
(TimesTenPreparedStatement)conn.prepareStatement
("insert into tabl values(?,?) returning name, age into ?,°?");

// Populate table
pstmt.setString(l,"John Doe");
pstmt.setInt (2, 65);

/* register returned parameter
* in this case the maximum size of name is 100 chars
*/
pstmt.registerReturnParameter (3, Types.VARCHAR, 100);
pstmt.registerReturnParameter (4, Types.INTEGER);

// process the DML returning statement
int count = pstmt.executeUpdate () ;

/* Check warnings; if there are warnings, values of DML
RETURNING INTO

ORACLE 2-34

Chapter 2
TimesTen Features and Operations in Your Application

parameters are undefined. */
SQLWarning wn;
boolean warningFlag = false;
if ((wn = pstmt.getWarnings()) != null) {
do {
warningFlag = true;
System.out.println (wn);
wn = wn.getNextWarning();
} while(wn != null);

if (!warningFlag) {
if (count>0)

{
ResultSet rset = pstmt.getReturnResultSet(); //rset not null, not

empty
while (rset.next())

{
String name = rset.getString(l);
int age = rset.getlInt(2);
System.out.println("Name " + name + " age " + age);

}

Working with Rowids

Each row in a table has a unique identifier known as its rowid. An application can retrieve the
rowid of a row from the ROWID pseudocolumn.

A rowid value can be represented in either binary or character format, with the binary format
taking 12 bytes and the character format 18 bytes.

TimesTen supports the java.sql.RowId interface and Types.ROWID type.
You can use the following ResultSet methods to retrieve a rowid:
* Rowld getRowId(int columnIndex)

* Rowld getRowId(String columnLabel)

You can use the following PreparedStatement method to set a rowid:

. setRowId (int parameterIndex, Rowld x)

An application can specify literal rowid values in SQL statements, such as in WHERE clauses,
as CHAR constants enclosed in single quotes.

Refer to ROWID Data Type and ROWID Pseudocolumn in Oracle TimesTen In-Memory
Database SQL Reference for additional information about rowids and the ROWID data type,
including usage and lifecycle.

ORACLE 2-35

Chapter 2
TimesTen Features and Operations in Your Application

< Note:

TimesTen does not support the PL/SQL type UROWID.

Large Objects (LOBs)

About LOBs

TimesTen Classic supports LOBs (large objects), specifically CLOBs (character LOBS),
NCLOBs (national character LOBs), and BLOBs (binary LOBS).

This section provides a brief overview of LOBs and discusses their use in JDBC,
covering the following topics:

* About LOBs

 LOB Objects in JDBC

» Differences Between TimesTen LOBs and Oracle Database LOBs
* LOB Factory Methods

* LOB Getter and Setter Methods

e TimesTen LOB Interface Methods

* LOB Prefetching

e Passthrough LOBs

You can also refer to the following.

* LOB Data Types in Oracle TimesTen In-Memory Database SQL Reference

* Oracle Database SecureFiles and Large Objects Developer's Guide for general
information about programming with LOBs (but not specific to TimesTen
functionality)

A LOB is a large binary object (BLOB) or character object (CLOB or NCLOB). In
TimesTen, a BLOB can be up to 16 MB and a CLOB or NCLOB up to 4 MB.

LOBs in TimesTen have essentially the same functionality as in Oracle Database,
except as noted otherwise. (See Differences Between TimesTen LOBs and Oracle
Database LOBs.)

LOBs may be either persistent or temporary. A persistent LOB exists in a LOB column
in the database. A temporary LOB exists only within an application. There are also
circumstances where a temporary LOB is created implicitly by TimesTen. For example,
if a SELECT statement selects a LOB concatenated with an additional string of
characters, TimesTen creates a temporary LOB to contain the concatenated data.

LOB Objects in JDBC

ORACLE

In JDBC, a LOB object—B1ob, Clob, or NClob instance—is implemented using a SQL
LOB locator (BLOB, CLOB, or NCLOB), which means a LOB object contains a logical
pointer to the LOB data rather than the data itself.

2-36

Chapter 2
TimesTen Features and Operations in Your Application

Tip:

« Because LOB objects do not remain valid past the end of the transaction in
TimesTen, it is not feasible to use them with autocommit enabled. You would
receive errors about LOBs being invalidated.

« LOB manipulations through APIs that use LOB locators result in usage of
TimesTen temporary space. Any significant number of such manipulations may
necessitate a size increase for the TimesTen temporary data region. See
TempSize in Oracle TimesTen In-Memory Database Reference.

An application can use the JDBC API to instantiate a temporary LOB explicitly, for use within
the application, then to free the LOB when done with it. Temporary LOBs are stored in the
TimesTen temporary data region.

To update a persistent LOB, your transaction must have an exclusive lock on the row
containing the LOB. You can accomplish this by selecting the LOB with a SELECT ... FOR
UPDATE statement. This results in a writable locator. With a SELECT statement, the locator is
read-only. Read-only and writable locators behave as follows:

e Aread-only locator is read consistent, meaning that throughout its lifetime, it sees only
the contents of the LOB as of the time it was selected. Note that this would include any
uncommitted updates made to the LOB within the same transaction before the LOB was
selected.

e A writable locator is updated with the latest data from the database each time a write is
made through the locator. So each write is made to the most current data of the LOB,
including updates that have been made through other locators.

The following example details behavior for two writable locators for the same LOB.
The LOB column contains "XY".

Select locator 1.1 for update.

Select locator 1.2 for update.

Write "Z" through L1 at offset 1.

Read through locator 1.1. This would return "ZY".

e o 0w b B

Read through locator 1.2. This would return "XY", because L2 remains read-consistent
until it is used for a write.

N

Write "W" through 1.2 at offset 2.

8. Read through locator 1.2. This would return "ZW". Prior to the write in the preceding step,
the locator was updated with the latest data ("ZY").

Differences Between TimesTen LOBs and Oracle Database LOBs

There are significant differences between LOBs in TimesTen and LOBs in Oracle Database.

e In TimesTen, LOB objects do not remain valid past the end of the transaction. All LOB
objects are invalidated after a commit or rollback, whether explicit or implicit. This
includes after any autocommit (making it infeasible to use LOBs with autocommit
enabled), or after any DDL statement.

ORACLE 2-37

Chapter 2
TimesTen Features and Operations in Your Application

TimesTen does not support BFILES, SecureFiles, reads and writes for arrays of
LOBs, or callback functions for LOBs.

TimesTen does not support binding associative arrays of LOBs.
TimesTen does not support batch processing of LOBs.

Relevant to BLOBS, there are differences in the usage of hexadecimal literals in
TimesTen. See the description of HexadecimalLiteral in Constants in Oracle
TimesTen In-Memory Database SQL Reference.

LOB Factory Methods

TimesTen supports the standard Connection methods createBlob (), createClob (),
and createNClob ().

Refer to Oracle TimesTen In-Memory Database JDBC Extensions Java API
Reference.

Tip:

In TimesTen, creation of a LOB object results in creation of a database
transaction if one is not already in progress. You must execute a commit or
rollback to close the transaction.

LOB Getter and Setter Methods

You can access LOBs through getter and setter methods that are defined by the
standard java.sql.ResultSet, PreparedStatement, and CallableStatement
interfaces, just as they are for other data types.

ORACLE

Use the appropriate getxxx() method to retrieve a LOB result or output parameter or
setXXx () method to bind a LOB input parameter:

ResultSet getter methods: There are getBlob () methods, getClob () methods,
and getNClob () methods where you can specify the LOB to retrieve according to
either column name or column index.

You can also use getObject () to retrieve a Blob, Clob, Or NC1lob object.

PreparedStatement setter methods: There is a setBlob () method, setClob ()
method, and setNClob () method where you can input the Blob, Clob, Or NClob
instance and the parameter index to bind an input parameter.

You can also use setObject () to bind a Blob, Clob, or NClob input parameter.

There are also setBlob () methods where instead of a Blob instance, you specify
an InputStream instance, or an InputStream instance and length.

There are setClob () and setNClob () methods where instead of a Clob or NClob
instance, you specify a Reader instance, or a Reader instance and length.

CallableStatement getter methods: There are getBlob () methods, getClob ()
methods, and getNClob () methods where you can retrieve the LOB output
parameter according to either parameter name or parameter index.

You can also use getObject () to retrieve a Blob, Clob, Or NClob output parameter.

2-38

Chapter 2
TimesTen Features and Operations in Your Application

You must also register an output parameter from a CallableStatement object. The
registerOutParameter () method takes the parameter index along with the SQL type:
Types.BLOB, Types.CLOB, Oor Types.NCLOB.

CallableStatement setter methods: These are identical to (inherited from)
PreparedStatement setter methods.

Refer to Oracle TimesTen In-Memory Database JDBC Extensions Java API Reference.

TimesTen LOB Interface Methods

You can cast a Blob instance to com. timesten.jdbc.TimesTenBlob, a Clob instance to
com.timesten. jdbc.TimesTenClob, and an NClob instance to
com.timesten.jdbc.TimesTenNClob.

ORACLE

These interfaces support methods specified by the java.sql.Blob, Clob, and NClob
interfaces.

The following list summarizes Blob features.

The isPassthrough () method, a TimesTen extension, indicates whether the BLOB is a
passthrough LOB from Oracle Database.

Free Blob resources when the application is done with it.

Retrieve the BLOB value as a binary stream. There are methods to retrieve it in whole or
in part.

Retrieve all or part of the BLOB value as a byte array.
Return the number of bytes in the BLOB.

Retrieve a stream to be used to write binary data to the BLOB, beginning at the specified
position. This overwrites existing data.

Specify an array of bytes to write to the BLOB, beginning at the specified position, and
return the number of bytes written. This overwrites existing data. There are methods to
write either all or part of the array.

Truncate the BLOB to the specified length.

The following list summarizes Clob and NClob features.

The isPassthrough () method, a TimesTen extension, indicates whether the CLOB or
NCLOB is a passthrough LOB from Oracle Database.

Free Clob or NClob resources when the application is done with it.
Retrieve the CLOB or NCLOB as an ASCII stream.

Retrieve the CLOB or NCLOB as a java.io.Reader object (or as a stream of characters).
There are methods to retrieve it in whole or in part.

Retrieve a copy of the specified substring in the CLOB or NCLOB, beginning at the
specified position for up to the specified length.

Return the number of characters in the CLOB or NCLOB.

Retrieve a stream to be used to write ASCII characters to the CLOB or NCLOB,
beginning at the specified position. This overwrites existing data.

2-39

Chapter 2
TimesTen Features and Operations in Your Application

» Specify a Java string value to write to the CLOB or NCLOB, beginning at the
specified position. This overwrites existing data. There are methods to write either
all or part of the string value.

e Truncate the CLOB or NCLOB to the specified length.

" Note:

* For methods that write data to a LOB, the size of the LOB does not
change other than in the circumstance where from the specified position
there is less space available in the LOB than there is data to write. In
that case, the LOB size increases enough to accommodate the data.

» If the value specified for the position at which to write to a LOB is greater
than LOB length + 1, the behavior is undefined.

Refer to Oracle TimesTen In-Memory Database JDBC Extensions Java API
Reference.

LOB Prefetching

To reduce round trips to the server in client/server connections, LOB prefetching is
enabled by default when you fetch a LOB from the database. The default prefetch size
is 4000 bytes for BLOBs or 4000 characters for CLOBs or NCLOBs.

You can use the TimesTenConnection property

CONNECTION PROPERTY DEFAULT LOB PREFETCH SIZE to set a different default value
that applies to any statement in the connection. Use a value of -1 to disable LOB
prefetching by default for the connection, O (zero) to enable LOB prefetching for only
metadata by default, or any value greater than 0 to specify the number of bytes for
BLOBs or characters for CLOBs and NCLOBSs to be prefetched by default along with
the LOB locator during fetch operations.

At the statement level, you can use the following TimesTenStatement methods to
manipulate the prefetch size and override the default value from the connection:

* setLobPrefetchSize (int): Set a new LOB prefetch value for the statement.

° int getLobPrefetchSize (): Return the current LOB prefetch value that applies to
the statement (either a value set in the statement itself or the default value from
the connection, as applicable).

Refer to Oracle TimesTen In-Memory Database JDBC Extensions Java API
Reference.

Passthrough LOBs

ORACLE

Passthrough LOBs, which are LOBs in Oracle Database accessed through TimesTen,
are exposed as TimesTen LOBs and are supported by TimesTen in much the same
way that any TimesTen LOB is supported.

Note the following:

2-40

Chapter 2
TimesTen Features and Operations in Your Application

* Asnoted in TimesTen LOB Interface Methods, the TimesTenBlob, TimesTenClob, and
TimesTenNClob interfaces specify the following method to indicate whether the LOB is a
passthrough LOB:

boolean isPassthrough()

» TimesTen LOB size limitations do not apply to storage of LOBs in the Oracle database
through passthrough.

» As with TimesTen local LOBs, a passthrough LOB object does not remain valid past the
end of the transaction.

Refer to Oracle TimesTen In-Memory Database JDBC Extensions Java API Reference.

Using CALL to Execute Procedures and Functions
TimesTen supports each of the following syntax formats from any of its programming

interfaces to call PL/SQL procedures (procname) or PL/SQL functions (funcname) that are
standalone or part of a package, or to call TimesTen built-in procedures (procname).

CALL procname|[(argumentlist)]
CALL funcname|[(argumentlist)] INTO :returnparam

CALL funcname[(argumentlist)] INTO ?

TimesTen JDBC also supports each of the following syntax formats:
{ CALL procname[(argumentlist)] }
{ 2 = [CALL] funcnamel (argumentlist)] }

{ :returnparam = [CALL] funcname| (argumentlist)] }

You can execute procedures and functions through the CallableStatement interface, with a
prepare step first when appropriate (such as when a result set is returned).

The following example calls the TimesTen built-in procedure ttCkpt. (Also see the ttCkpt
example later in this section for a more complete example with JDBC syntax.)

CallableStatement.execute("call ttCkpt")

The following example calls the TimesTen built-in procedure ttDataStoreStatus. A prepare
call is used because this procedure produces a result set. (Also see the ttDataStoreStatus
example later in this section for a more complete example with JDBC syntax.)

CallableStatement cStmt = null;

cStmt = conn.prepareCall ("call ttDataStoreStatus");
cStmt.execute () ;

ORACLE 241

ORACLE

Chapter 2
TimesTen Features and Operations in Your Application
The following examples call a PL/SQL procedure myproc with two parameters.

cStmt.execute ("{ call myproc(:paraml, :param2) }");

cStmt.execute ("{ call myproc(?, ?) }");

The following shows several ways to call a PL/SQL function myfunc.
cStmt.execute ("CALL myfunc() INTO :retparam");
cStmt.execute ("CALL myfunc() INTO ?");

cStmt.execute ("{ :retparam = myfunc() }");

cStmt.execute ("{ ? = myfunc() }");
See CALL in Oracle TimesTen In-Memory Database SQL Reference.

Note:

A user's own procedure takes precedence over a TimesTen built-in
procedure with the same name, but it is best to avoid such naming conflicts.

This example calls the ttCkpt procedure to initiate a fuzzy checkpoint.

Connection conn = null;
CallableStatement cStmt = null;

cStmt = conn.prepareCall ("{ Call ttCkpt }");
cStmt.execute () ;
conn.commit () ; // commit the transaction

Be aware that the ttCkpt built-in procedure requires ADMIN privilege. Refer to ttCkpt in
Oracle TimesTen In-Memory Database Reference.

The following example calls the ttDataStoreStatus procedure and prints out the
returned result set. For built-in procedures that return results, you can use the
getXxX () methods of the ResultSet interface to retrieve the data, as shown.

Contrary to the advice given in Working with TimesTen Result Sets: Hints and
Restrictions, this example uses a getString () call on the ResultSet object to retrieve
the Context field, which is a binary. This is because the output is printed, rather than
used for processing. If you do not want to print the Context value, you can achieve
better performance by using the getBytes () method instead.

ResultSet rs;

CallableStatement cStmt = conn.prepareCall("{ Call
ttDataStoreStatus }");

2-42

Chapter 2
TimesTen Features and Operations in Your Application

if (cStmt.execute() == true) {

rs = cStmt.getResultSet();

System.out.println("Fetching result set...");

while (rs.next()) {
System.out.println("\n Database: " + rs.getString(l));
System.out.println (" PID: " + rs.getInt(2));
System.out.println(" Context: " + rs.getString(3
System.out.println (" ConType: " + rs.getString(4
System.out.println(" memoryID: " + rs.getString(
}

rs.close();

);
)

)
)
5)

):

}

cStmt.close();

Setting a Timeout or Threshold for Executing SQL Statements

TimesTen offers two ways to limit the time for SQL statements to execute, applying to any
execute (), executeBatch (), executeQuery (), executeUpdate (), Of next () call. One way is
to set a timeout and the other way is to set a threshold.

These mechanisms are described in the following sections:

e Setting a Timeout Duration for SQL Statements

e Setting a Threshold Duration for SQL Statements

Setting a Timeout Duration for SQL Statements

TimesTen allows you to specify a SQL timeout, where if the timeout duration is reached, the
statement stops executing and an error is thrown.

You can specify this timeout value for a connection, and therefore any statement on the
connection, by using either the sQLQueryTimeout general connection attribute (in seconds) or
the sQLQueryTimeoutMsec general connection attribute (in milliseconds). The default value of
each is 0, for no timeout. (Also see SQLQueryTimeout and SQLQueryTimeoutMsec in Oracle
TimesTen In-Memory Database Reference.)

Despite the names, these timeout values apply to any executable SQL statement, not just
queries.

For a particular statement, you can override the SQLQueryTimeout Setting by calling the
Statement method setQueryTimeout ().

The query timeout limit has effect only when the SQL statement is actively executing. A
timeout does not occur during the commit or rollback phase of an operation. For those

transactions that update, insert or delete a large number of rows, the commit or rollback
phases may take a long time to complete. During that time the timeout value is ignored.

See Choose SQL and PL/SQL Timeout Values in Oracle TimesTen In-Memory Database
Operations Guide for considerations regarding the SQL query timeout with respect to other
timeout settings.

ORACLE 2-43

Chapter 2
TimesTen Features and Operations in Your Application

< Note:

If both a lock timeout value and a SQL query timeout value are specified, the
lesser of the two values causes a timeout first. Regarding lock timeouts, you
can refer to ttLockWait (built-in procedure) or LockWait (general connection
attribute) in Oracle TimesTen In-Memory Database Reference, or to Check
for Deadlocks and Timeouts in Oracle TimesTen In-Memory Database
Monitoring and Troubleshooting Guide.

Setting a Threshold Duration for SQL Statements

TimesTen allows you to set a SQL threshold time period, in seconds. If the threshold is
reached, a warning is written to the support log but execution continues.

Despite the name, this threshold applies to any JDBC call executing a SQL statement,
not just queries.

By default, the application obtains the threshold value from the QueryThreshold
general connection attribute setting, for which the default is 0 (no warnings). You can
override the threshold for a JDBC Connection object by including the QueryThreshold
attribute in the connection URL for the database. For example, to set QueryThreshold
to a value of 5 seconds for the myDSN database:

jdbc:timesten:direct:dsn=myDSN;QueryThreshold=>5

You can also use the setQueryTimeThreshold () method of a TimesTenStatement
object to set the threshold. This overrides the connection attribute setting and the
Connection object setting.

You can retrieve the current threshold value by using the getQueryTimeThreshold ()
method of the TimesTenStatement object.

Refer to Oracle TimesTen In-Memory Database JDBC Extensions Java API
Reference.

Configuring the Result Set Buffer Size in Client/Server Using JDBC

ORACLE

For data returned from a SELECT statement in client/server, the buffer size for the data
returned to the client is configurable to allow adjustments for better performance. (In
earlier releases, the buffer size could not be changed.)

The buffer size can be set in terms of either rows of data or bytes of data. The lower
limit takes precedence.

For client/server, the TimesTen implementation of the setFetchsSize () and
getFetchSize () methods on Statement and ResultSet objects allow you to set or get
the maximum number of rows of data:

e void setFetchSize (int rows)

o int getFetchSize()

2-44

Chapter 2
TimesTen Features and Operations in Your Application

For portability, this is the preferred way to set the buffer size. The default value is 8192. If you
set this to a large value, you may also need to set the maximum number of bytes, as shown
below, to ensure that will not be a constraint.

In addition, these methods are in TimesTenStatement:

* void setTtNetMsgMaxRows (int rows)

* int getTtNetMsgMaxRows ()

* void setTtNetMsgMaxBytes (int bytes)
e int getTtNetMsgMaxBytes ()

And the set methods are also in TimesTenConnection:

°* void setTtNetMsgMaxRows (int rows)
* void setTtNetMsgMaxBytes (int bytes)

The default number of rows is 8192; the default number of bytes is 2097152, or 2 MB. It is
suggested to use one limit and set the other to a value high enough to ensure that it is not
reached first.

When you use one of the TimesTen setter methods on a connection object, the value will
apply to any future statement objects created on the connection and also to any existing
statement objects on the connection. It is recommended, though, to set them at statement
level (or at connection level only to serve as initial values for statement handles to be
created).

Note:

e These settings correspond to TimesTen connection attributes
TT NetMsgMaxRows and TT NetMsgMaxBytes, which you can set in a TimesTen
connection string or DSN, to serve as initial values for any statements created
on the connection.

e The minimum value of each setting is 1 and at least one row is always returned.
Setting either rows or bytes to a value of 0 results in the default value being
used for that setting. There are no maximum settings other than the maximum
value of the data type (32-bit signed integer).

« If a client version that supports these attributes connects to a server version
that does not, any settings are silently ignored.

Features for Use with Cache

ORACLE

This section discusses features related to the use of cache operations.

e Setting the Oracle Database Password

» Setting Temporary Passthrough Level with the ttOptSetFlag Built-In Procedure
* Determining Passthrough Status

* Managing Cache Groups

2-45

Chapter 2
TimesTen Features and Operations in Your Application

Setting the Oracle Database Password

The OraclePassword attribute maps to the Oracle Database password. You can use
the TimesTenDataSource method setOraclePassword () to set the Oracle Database
password.

See Connecting to the Database for an example.

Setting Temporary Passthrough Level with the ttOptSetFlag Built-In Procedure

TimesTen provides the ttOptSetFlag built-in procedure for setting various flags,
including the PassThrough flag to temporarily set the passthrough level.

You can use ttOptSetFlag to set PassThrough in a JDBC application as in the
following sample statement, which sets the passthrough level to 1. The setting affects
all statements that are prepared until the end of the transaction.

pstmt = conn.prepareStatement ("call ttoptsetflag('PassThrough', 1)");

The example that follows has samples of code that accomplish these steps:

1. Create a prepared statement (a PreparedStatement instance
thePassThroughStatement) that calls ttOptSetFlag using a bind parameter for
passthrough level.

2. Define a method setPassthrough () that takes a specified passthrough setting,
binds it to the prepared statement, then executes the prepared statement to call
ttOptSetFlag to set the passthrough level.

thePassThroughStatement =
theConnection.prepareStatement ("call
ttoptsetflag('PassThrough', ?)");

private void setPassthrough(int level) throws SQLException{
thePassThroughStatement.setInt (1, level);
thePassThroughStatement.execute () ;

}

See ttOptSetFlag and PassThrough in Oracle TimesTen In-Memory Database
Reference. See Setting a Passthrough Level in Oracle TimesTen In-Memory Database
Cache Guide for information about passthrough settings.

Determining Passthrough Status

ORACLE

You can call the TimesTenPreparedStatement method getPassThroughType () toO
determine whether a SQL statement is to be executed in the TimesTen database or
passed through to the Oracle database for execution.

PassThroughType getPassThroughType ()

The return type, TimesTenPreparedStatement.PassThroughType, IS an enumeration
type for values of the TimesTen PassThrough connection attribute.

2-46

Chapter 2
Error Handling

You can make this call after preparing the SQL statement. It is useful with PassThrough
settings of 1 or 2, where the determination of whether a statement is actually passed through
is not made until compilation time.

See Setting a Passthrough Level in Oracle TimesTen In-Memory Database Cache Guide.

Managing Cache Groups

In TimesTen, following the execution of a FLUSH CACHE GROUP, LOAD CACHE GROUP, REFRESH
CACHE GROUP, Or UNLOAD CACHE GROUP statement, the Statement method getUpdateCount ()
returns the number of cache instances that were flushed, loaded, refreshed, or unloaded.

See Determining the Number of Cache Instances Affected by an Operation in Oracle
TimesTen In-Memory Database Cache Guide.

Features for Use with Replication

For TimesTen Classic applications that employ replication, you can improve performance by
using parallel replication, which uses multiple threads acting in parallel to replicate and apply
transactional changes to databases in a replication scheme.

TimesTen supports the following types of parallel replication:

e Automatic parallel replication (ReplicationApplyOrdering=0): Parallel replication over
multiple threads that automatically enforces transactional dependencies and all changes
applied in commit order. This is the default.

* Automatic parallel replication with disabled commit dependencies
(ReplicationApplyOrdering=2): Parallel replication over multiple threads that
automatically enforces transactional dependencies, but does not enforce transactions to
be committed in the same order on the subscriber database as on the master database.
In this mode, you can optionally specify replication tracks.

See Configuring Parallel Replication in Oracle TimesTen In-Memory Database Replication
Guide.

For JDBC applications that use parallel replication and specify replication tracks, you can
specify the track number for transactions on a connection through the following
TimesTenConnection method. (Alternatively, use the general connection attribute
ReplicationTrack or the ALTER SESSION parameter REPLICATION TRACK.)

e void setReplicationTrack(int track)
TimesTenConnection also has the corresponding getter method:
U int getReplicationTrack()

Refer to Oracle TimesTen In-Memory Database JDBC Extensions Java API Reference.

Error Handling

ORACLE

There are methods to check for, identify, and handle errors in a TimesTen Java application.

For a list of the errors that TimesTen returns and what to do if errors are encountered, see
Errors and Warnings in Oracle TimesTen In-Memory Database Error Messages and SNMP
Traps.

This section includes the following topics.

2-47

Chapter 2
Error Handling

e Error and Warning Levels

* Reporting Errors and Warnings

e Catching and Responding to Specific Errors
* Rolling Back Failed Transactions

* Retrying After Transient Errors (JDBC)

Error and Warning Levels

Fatal Errors

When operations are not completely successful, TimesTen can return a fatal error, a
non-fatal error, or a warning.

The sections that follow discuss error or warning situations and how to handle them:

e Fatal Errors
 Non-Fatal Errors
e Warnings

e Abnormal Termination

Fatal errors make the database inaccessible until it can be recovered. When a fatal
error occurs, all database connections are required to disconnect. No further
operations may complete.

Fatal errors are indicated by TimesTen error codes 846 and 994. Error handling for
these errors should be different from standard error handling. In particular, the code
should roll back the current transaction and, to avoid out-of-memory conditions in the
server, disconnect from the database. Shared memory from the old TimesTen instance
is not freed until all connections that were active at the time of the error have
disconnected. Inactive applications still connected to the old TimesTen instance may
have to be manually terminated.

When fatal errors occur, TimesTen performs the full cleanup and recovery procedure:

e Every connection to the database is invalidated, a new memory segment is
allocated and applications are required to disconnect.

e The database is recovered from the checkpoint and transaction log files upon the
first subsequent initial connection.

— The recovered database reflects the state of all durably committed
transactions and possibly some transactions that were committed non-durably.

— No uncommitted or rolled back transactions are reflected.

Non-Fatal Errors

ORACLE

Non-fatal errors include errors such as an INSERT statement that violates unique
constraints. This category also includes some classes of application and process
failures.

TimesTen returns non-fatal errors through the typical error-handling process.
Application should check for errors and appropriately handle them.

2-48

Warnings

Chapter 2
Error Handling

When a database is affected by a non-fatal error, an error may be returned and the
application should take appropriate action.

An application can handle non-fatal errors by modifying its actions or, in some cases, by
rolling back one or more offending transactions, as described in Rolling Back Failed
Transactions.

Also see Reporting Errors and Warnings, which follows shortly.

Note:

If a ResultSet, Statement, PreparedStatement, CallableStatement Or Connection
operation results in a database error, it is a good practice to call the close ()
method for that object.

TimesTen returns a warning when something occurs that is unexpected but not considered
very serious.

Here are some examples of events that cause TimesTen to issue a warning:
* A checkpoint failure

* Use of a deprecated TimesTen feature

e Truncation of some data

e Execution of a recovery process upon connect

* Replication return receipt timeout

You should always have code that checks for warnings, as they can indicate application
problems.

Also see Reporting Errors and Warnings immediately below.

Abnormal Termination

In some cases, such as with a process failure, an error cannot be returned, so TimesTen
automatically rolls back the transactions of the failed process.

Reporting Errors and Warnings

ORACLE

Your application should check for and report all errors and warnings that can be returned on
every call. This saves considerable time and effort during development and debugging.

A SQLException object is generated if there are one or more database access errors and a
SQLWarning object is generated if there are one or more warning messages. A single call may
return multiple errors or warnings or both, so your application should report all errors or
warnings in the returned SQLException Or SQLWarning objects.

Multiple errors or warnings are returned in linked chains of SQLException Or SQLWarning
objects. The examples below demonstrate how you might iterate through the lists of returned
SQLException and SQLWarning objects to report all of the errors and warnings, respectively.

2-49

Chapter 2
Error Handling

The following method prints out the content of all exceptions in the linked
SQLException objects.

static int reportSQLExceptions (SQLException ex)
{
int errCount = 0;
if (ex !'= null) {
errStream.println("\n--- SQLException caught ---");
ex.printStackTrace();

while (ex != null) {
errStream.println("SQL State: " + ex.getSQLState());
errStream.println("Message: " + ex.getMessage());
errStream.println ("Error Code: " + ex.getErrorCode());

errCount ++;
ex = ex.getNextException();
errStream.println();

return errCount;

This next method prints out the content of all warning in the linked sQLwarning objects.

static int reportSQLWarnings (SQLWarning wn)
{

int warnCount = 0;

while (wn !'= null) {
errStream.println ("\n--- SQL Warning ---");
errStream.println ("SQL State: " + wn.getSQLState());
errStream.println("Message: " + wn.getMessage());
errStream.println ("Error Code: " + wn.getErrorCode());

// is this a SQLWarning object or a DataTruncation object?

if (wn instanceof DataTruncation) {
DataTruncation trn = (DataTruncation) wn;
errStream.println ("Truncation error in column: " +

trn.getIndex());

}

warnCount++;

wn = wn.getNextWarning();

errStream.println();

}

return warnCount;

Catching and Responding to Specific Errors

In some situations it may be desirable for your application to respond in a certain way
to a specific SQL state or TimesTen error code. You can use the SQLException method

ORACLE 2-50

Chapter 2
Error Handling

getSQLState () to return the SQL state and the getErrorCode () method to return TimesTen
error codes.

Also refer to the entry for TimesTenVendorCode in Oracle TimesTen In-Memory Database
JDBC Extensions Java API Reference.

The TimesTen Classic s Quick Start ample applications require you to load the schema
before executing the samples. The following catch statement alerts the user that appuser has
not been loaded or has not been refreshed by detecting ODBC error s0002 and TimesTen
error 907:

catch (SQLException ex) {
if (ex.getSQLState().equalsIgnoreCase ("S0002")) {
errStream.println("\nError: The table appuser.customer " +
"does not exist.\n\t Please reinitialize the database.");
} else if (ex.getErrorCode() == 907) {
errStream.println("\nError: Attempting to insert a row " +
"with a duplicate primary key.\n\tPlease reinitialize the database.");

You can use the TimesTenVendorCode interface to detect the errors by their name, rather than
their number.

Consider this example:

ex.getErrorCode () == com.timesten.jdbc.TimesTenVendorCode.TT ERR KEYEXISTS

The following is equivalent:

ex.getErrorCode () == 907

Rolling Back Failed Transactions

In some situations, such as recovering from a deadlock or lock timeout, you should explicitly
roll back the transaction using the Connection method rollback().

try {
if (conn != null && !conn.isClosed()) {
// Rollback any transactions in case of errors
if (retcode != 0) {
try {
System.out.println("\nEncountered error. Rolling back
transaction");
conn.rollback();
} catch (SQLException ex) ({
reportSQLExceptions (ex) ;

}

System.out.println("\nClosing the connection\n");
conn.close();
} catch (SQLException ex) {

ORACLE 2-51

Chapter 2
Error Handling

reportSQLExceptions (ex) ;

}

A transaction rollback consumes resources and the entire transaction is in effect
wasted. To avoid unnecessary rollbacks, design your application to avoid contention
and check the application or input data for potential errors before submitting it.

Note:

If your application terminates, crashes, or disconnects in the middle of an
active transaction, TimesTen automatically rolls back the transaction.

Retrying After Transient Errors (JDBC)

ORACLE

TimesTen automatically resolves most transient errors (which is particularly important
for TimesTen Scaleout), but if your application detects the following SQLSTATE value, it
is suggested to retry the current transaction.

e TT005: Transient transaction failure due to unavailability of resource. Roll back the
transaction and try it again.

Note:

Search the entire error stack for errors returning these error types before
deciding whether it is appropriate to retry.

This is returned by the getSQLState () method of the SQLException class and may be
encountered by method calls from any of the following JDBC types:

e Connection

e Statement

* PreparedStatement
e CallableStatement
* ResultSet

* Connection

e Statement

* PreparedStatement
e CallableStatement

* ResultSet

2-52

Chapter 2
Error Handling

Here is an example:

// Database connection object
Connection dbConn;

// Open the connection to the database

// Disable auto-commit
dbConn.setAutoCommit (false);

// Prepre the SQL statements
PreparedStatement stmtQuery = dbConn.prepare ("SELECT ...");
PreparedStatement stmtUpdate = dbConn.prepare ("UPDATE ...");

// Set max retries for transaction to 5
int retriesLeft = 5;

// Records outcome
boolean success = false;

// Excute transaction with retries until success or retries exhausted
while (retriesLeft > 0)
{

try {

// First execute the query

// Set input values
stmtQuery.setInt (1, ...);
stmtQuery.setString (2, ...);

// Execute and process results
ResultSet rs = stmtQuery.executeQuery();
while (rs.next())
{

int vall = rs.getInt(1l);

String val2 = rs.getString(2);

}

rs.close();

rs = null;

// Now excute the update

// Set input values
stmtUpdate.setInt(1l,...);
stmtUpdate.setString(2,...);

// Execute and check number of rows affected
int updCount = stmtUpdate.executeUpdate();

ORACLE' .53

Chapter 2
JDBC Support for Automatic Client Failover

if (wupdCount < 1)
{

}

// And finally commit
dbConn.commit () ;

// We are done
success = true;
break;

} catch (SQLException sqge) {

if (sge.getSQLState().equals ("TT005")) // grid transient
error

// decrement retry count
retriesLeft--;
// and rollback the transaction ready for retry
try {
dbConn.rollback();
} catch (SQLException sger) {
// This is a fatal error so handle accordingly
}
}
else

{

// handle other kinds of error

}

}
} // end of retry loop

if (! success)

{
// Handle the failure

Note:

The example in Failover Delay and Retry Settings also shows how to retry
for transient errors.

JDBC Support for Automatic Client Failover

There are TimesTen JDBC extensions related to automatic client failover.

» About Automatic Client Failover

e Features and Functionality of JDBC Support for Automatic Client Failover

ORACLE 2-54

Chapter 2
JDBC Support for Automatic Client Failover

» Configuration of Automatic Client Failover

* Synchronous Detection of Automatic Client Failover in JDBC
* Asynchronous Detection of Automatic Client Failover in JDBC
» JDBC Application Action in the Event of Failover

For TimesTen Scaleout, see Client Connection Failover in Oracle TimesTen In-Memory
Database Scaleout User's Guide. For TimesTen Classic, see Using Automatic Client Failover
in Oracle TimesTen In-Memory Database Operations Guide. For related information for
developers, see ODBC Support for Automatic Client Failover in Oracle TimesTen In-Memory
Database C Developer's Guide.

About Automatic Client Failover

ORACLE

Automatic client failover is for use in High Availability scenarios, for either TimesTen Scaleout
or TimesTen Classic. There are two scenarios for TimesTen Classic, one with active standby
pair replication and one referred to as generic automatic client failover.

If there is a failure of the database or database element to which the client is connected, then
failover (connection transfer) to an alternate database or database element occurs:

» For TimesTen Scaleout, failover is to an element from a list of available elements in the
grid.

e For TimesTen Classic with active standby replication, failover is to the new active (original
standby) database.

e For TimesTen Classic using generic automatic client failover, where you can ensure that
the schema and data are consistent on both databases, failover is to a database from a
list that is configured in the client odbc. ini file.

A typical use case for generic automatic failover is a set of databases using read-only
caching, where each database has the same set of cached data. For example, if you
have several read-only cache groups, then you would create the same read-only cache
groups on all TimesTen Classic databases included in the list of failover servers. When
the client connection fails over to an alternate TimesTen database, the cached data is
consistent because TimesTen automatically refreshes the cache data (as needed) from
the Oracle database.

Applications are automatically reconnected to the new data database or database element.
TimesTen provides features that enable applications to be alerted when this happens, so they
can take any appropriate action.

Any of the following error conditions indicates automatic client failover.

e Native error 30105 with SQL state 08006
e Native error 47137

2-55

Chapter 2
JDBC Support for Automatic Client Failover

< Note:

e Automatic client failover applies only to client/server connections. The
functionality described here does not apply to a direct connection.

e Automatic client failover is complementary to Oracle Clusterware in
situations where Oracle Clusterware is used, though the two features are
not dependent on each other. You can also refer to Using Oracle
Clusterware to Manage Active Standby Pairs in Oracle TimesTen In-
Memory Database Replication Guide.

Features and Functionality of JDBC Support for Automatic Client
Failover

There are TimesTen JDBC features related to client failover, including functionality
relating specifically to pooled connections.

» General Client Failover Features
» Client Failover Features for Pooled Connections

Refer to Oracle TimesTen In-Memory Database JDBC Extensions Java API Reference
for additional information about the TimesTen JDBC classes, interfaces, and methods
discussed here.

General Client Failover Features

TimesTen JDBC support for automatic client failover provides two mechanisms for
detecting a failover.

e Synchronous detection, through a SQL exception: After an automatic client
failover, JDBC objects created on the failed connection—such as statements,
prepared statements, callable statements, and result sets—can no longer be used.
A Java SQL exception is thrown if an application attempts to access any such
object. By examining the SQL state and error code of the exception, you can
determine whether the exception is the result of a failover situation.

e Asynchronous detection, through an event listener: An application can register a
user-defined client failover event listener, which is notified of each event that
occurs during the process of a failover.

TimesTen JDBC provides the following features, in package com.timesten.jdbc, to
support automatic client failover.

e (ClientFailoverEvent class

This class is used to represent events that occur during a client failover: begin,
end, abort, or retry.

e (ClientFailoverEventListener interface

An application interested in client failover events must have a class that
implements this interface, which is the mechanism to listen for client failover
events. At runtime, the application must register ClientFailoverEventListener
instances through the TimesTen connection (see immediately below).

ORACLE 2-56

Chapter 2
JDBC Support for Automatic Client Failover

You can use a listener to proactively react to failure detection, such as by refreshing
connection pool statement caches, for example.

 Methods in the TimesTenConnection interface

This interface specifies the methods addConnectionEventListener () and
removeConnectionEventListener () to register or remove, respectively, a client failover
event listener.

* Aconstant, TT ERR FAILOVERINVALIDATION, in the TimesTenVendorCode interface

This enables you to identify an event as a failover event.

Client Failover Features for Pooled Connections

TimesTen recommends that applications using pooled connections
(javax.sgl.PooledConnection) or connection pool data sources
(Javax.sgl.ConnectionPoolDataSource) use the synchronous mechanism noted previously
to handle stale objects on the failed connection.

Java EE application servers manage pooled connections, so applications are not able to
listen for events on pooled connections. And application servers do not implement and
register an instance of ClientFailoverEventListener, because this is a TimesTen
extension.

Configuration of Automatic Client Failover

ORACLE

Refer to Configuring Automatic Client Failover for TimesTen Classic in Oracle TimesTen In-
Memory Database Operations Guide or Client Connection Failover in the Oracle TimesTen
In-Memory Database Scaleout User's Guide.

In TimesTen Classic, failover DSNs must be specifically configured through TTC Server2 and
TTC Servern connection attributes.

Note:

Setting any of TTC Server2, TTC Server DSN2, TTC Servern, Oor TCP Port2 implies
that you intend to use automatic client failover. For the active standby pair scenario,
it also means a new thread is created for your application to support the failover
mechanism.

Be aware of these TimesTen connection attributes:

* TTC NoReconnectOnFailover: If this is set to 1 (enabled), TimesTen is instructed to do all
the usual client failover processing except for the automatic reconnect. (For example,
statement and connection handles are marked as invalid.) This is useful if the application
does its own connection pooling or manages its own reconnection to the database after
failover. The default value is 0 (reconnect). Also see TTC_NoReconnectOnFailover in
Oracle TimesTen In-Memory Database Reference.

* TTC_REDIRECT: If this is set to 0 and the initial connection attempt to the desired database
or database element fails, then an error is returned and there are no further connection
attempts. This does not affect subsequent failovers on that connection. Also see
TTC_REDIRECT in Oracle TimesTen In-Memory Database Reference.

2-57

Chapter 2
JDBC Support for Automatic Client Failover

e TTC Random Selection: For TimesTen Classic using generic automatic client
failover, the default setting of 1 (enabled) specifies that when failover occurs, the
client randomly selects an alternative server from the list provided in TTC_Servern
attribute settings. If the client cannot connect to the selected server, it keeps
redirecting until it successfully connects to one of the listed servers. With a setting
of 0, TimesTen goes through the list of TTC_Servern servers sequentially. Also see
TTC_Random_Selection in Oracle TimesTen In-Memory Database Reference.

Note:

If you set any of these in odbc. ini or the connection string, the settings are
applied to the failover connection. They cannot be set in your application
(including by ALTER SESSION).

Synchronous Detection of Automatic Client Failover in JDBC

If, in a failover situation, an application attempts to use objects created on the failed
connection, then JDBC throws a SQL exception. The vendor-specific exception code
iS set to TimesTenVendorCode.TT ERR FAILOVERINVALIDATION.

Detecting a failover through this mechanism is referred to as synchronous detection.
The following example demonstrates this.

try {

/..

// Execute a query on a previously prepared statement.

ResultSet theResultSet = theStatement.executeQuery("select * from
dual");

/..

} catch (SQLException sqglex) {

sglex.printStackTrace () ;

if (sglex.getErrorCode() ==
TimesTenVendorCode.TT ERR FAILOVERINVALIDATION) {

// Automatic client failover has taken place; discontinue use of
this object.

}
}

Asynchronous Detection of Automatic Client Failover in JDBC

ORACLE

Asynchronous failover detection requires an application to implement a client failover
event listener and register an instance of it on the TimesTen connection.

This section describes the steps involved:

1. Implement a Client Failover Event Listener.
2. Register the Client Failover Listener Instance.

3. Remove the Client Failover Listener Instance.

2-58

Chapter 2
JDBC Support for Automatic Client Failover

Implement a Client Failover Event Listener

TimesTen JDBC provides the com. timesten.jdbc.ClientFailoverEventListener interface
for use in listening for events.

This interface is highlighted by the following method:
* void notify(ClientFailoverEvent event)

To use asynchronous failover detection, you must create a class that implements this
interface, then register an instance of the class at runtime on the TimesTen connection
(discussed shortly).

When a failover event occurs, TimesTen calls the notify () method of the listener instance
you registered, providing a ClientFailoverEvent instance that you can then examine for
information about the event.

The following example shows the basic form of a ClientFailoverEventListener
implementation.

private class MyCFListener implements ClientFailoverEventListener ({
/* Applications can build state system to track states during failover.
You may want to add methods that talks about readiness of this
Connection
for processing.
*/

public void notify(ClientFailoverEvent event) {

/* Process connection failover type */
switch (event.getTheFailoverType()) {
case TT FO_CONNECTION:
/* Process session fail over */
System.out.println("This should be a connection failover type " +
event.getTheFailoverType());
break;

default:
break;
}
/* Process connection failover events */
switch (event.getTheFailoverEvent ()) {
case BEGIN:
System.out.println("This should be a BEGIN event " +
event.getTheFailoverEvent ());
/* Applications cannot use Statement, PreparedStatement,

ResultSet,
etc. created on the failed Connection any longer.
*/
break;
case END:

System.out.println("This should be an END event " +
event.getTheFailoverEvent());

/* Applications may want to re-create Statement and

ORACLE 2-59

Chapter 2
JDBC Support for Automatic Client Failover

PreparedStatement
objects at this point as needed.
*/

break;

case ABORT:
System.out.println("This should be an ABORT event " +
event.getTheFailoverEvent ());
break;

case ERROR:
System.out.println("This should be an ERROR event " +
event.getTheFailoverEvent ());
break;

default:
break;

The event.getTheFailoverType () call returns an instance of the nested class
ClientFailoverEvent.FailoverType, Which is an enumeration type. In TimesTen, the
only supported value is TT_FO CONNECTION, indicating a connection failover.

The event.getTheFailoverEvent () call returns an instance of the nested class
ClientFailoverEvent.FailoverEvent, which is an enumeration type where the value
can be one of the following:

e BEGIN, if the client failover has begun
e END, if the client failover has completed successfully
* ERROR, if the client failover failed but will be retried

e ABORT, if the client failover has aborted

Register the Client Failover Listener Instance

ORACLE

At runtime you must register an instance of your failover event listener class with the
TimesTen connection object, so that TimesTen can call the notify () method of the
listener class as needed for failover events.

TimesTenConnection provides the following method for this.

e void addConnectionEventListener (ClientFailoverEventListener listener)

Create an instance of your listener class, then register it using this method. The
following example establishes the connection and registers the listener. Assume
theDsn is the JDBC URL for a TimesTen client/server database and theCFListener is
an instance of your failover event listener class.

try {
/* Assume this is a client/server conn; register for conn
failover. */
Class.forName ("com.timesten.jdbc.TimesTenClientDriver");
String url = "jdbc:timesten:client:" + theDsn;

2-60

Chapter 2
JDBC Support for Automatic Client Failover

theConnection =
(TimesTenConnection)DriverManager.getConnection (url);
theConnection.addConnectionEventListener (theCFListener);
/* Additional logic goes here; connection failover listener is
called if there is a fail over.
*/
}
catch (ClassNotFoundException cnfex) {
cnfex.printStackTrace () ;

}
catch (SQLException sglex) {
sglex.printStackTrace () ;

}

Remove the Client Failover Listener Instance

The TimesTenConnection interface defines the following method to deregister a failover event
listener.

e void removeConnectionEventListener (ClientFailoverEventListener listener)

Use this method to deregister a listener instance.

JDBC Application Action in the Event of Failover

There are actions for an application to take if there is a failover.

* Application Steps for Failover

* Failover Delay and Retry Settings

Application Steps for Failover

If you receive any of the error conditions noted at the beginning of automatic client failover
discussion in JDBC Support for Automatic Client Failover in response to an operation in your
application, then application failover is in progress. There are actions you can perform to
recover after failover.

1. Roll back all transactions on the connection.

2. Clean up all objects from the previous connection. None of the state or objects
associated with the previous connection are preserved.

3. Assuming TTC NoReconnectOnFailover=0 (the default), sleep briefly, as discussed in the
next section, Failover Delay and Retry Settings. If TTC NoReconnectOnFailover=1, then
you must instead manually reconnect the application to an alternate database or
database element.

4. Recreate and reprepare all objects related to your connection.

5. Restart any in-progress transactions from the beginning.

Failover Delay and Retry Settings

The reconnection to another database or database element during automatic client failover
may take some time. If your application attempts recovery actions before TimesTen has
completed its client failover process, you may receive another failover error condition.

ORACLE 2-61

ORACLE

Chapter 2
JDBC Support for Automatic Client Failover

See JDBC Support for Automatic Client Failover.

Therefore, your application should place all recovery actions within a loop with a short
delay before each subsequent attempt, where the total number of attempts is limited. If
you do not limit the number of attempts, the application may appear to freeze if the
client failover process does not complete successfully. For example, your recovery
loop could use a retry delay of 100 milliseconds with a maximum number of retries
limited to 100 attempts. The ideal values depend on your particular application and
configuration.

This code example, using the synchronous detection method, illustrates how you
might handle the retrying of connection failover errors in a JDBC application. Code not
directly relevant is omitted (...).

// Database connection object
Connection dbConn;

// Open the connection to the database

// Disable auto-commit
dbConn.setAutoCommit (false);

// Prepre the SQL statements
PreparedStatement stmtQuery = dbConn.prepare ("SELECT ...");
PreparedStatement stmtUpdate = dbConn.prepare ("UPDATE ...");

// Set max retries to 100
int retriesLeft = 100;

// and retry delay to 100 ms
int retryDelay = 100;

// Records outcome
boolean success = false;
Boolean needReprepare = false;

// Execute transaction with retries until success or retries exhausted
while (retriesLeft > 0)
{

try {

// Do we need to re-prepare

if (needReprepare)

{
Thread.sleep(retryDelay); // delay before proceeding
stmtQuery = dbConn.prepare ("SELECT ...");
stmtUpdate = dbConn.prepare ("UPDATE ...");
needReprepare = false;

// First execute the query

2-62

Chapter 2

JDBC Support for Automatic Client Failover

// Set input values
stmtQuery.setInt(l, ...);
stmtQuery.setString (2, ...);

// Execute and process results
ResultSet rs = stmtQuery.executeQuery();
while (rs.next())
{

int vall = rs.getInt(1l);

String val2 = rs.getString(2);

}
rs.close();
rs = null;

// Now execute the update

// Set input values
stmtUpdate.setInt(1l,...);
stmtUpdate.setString(2,...);

// Execute and check number of rows affected
int updCount = stmtUpdate.executeUpdate();
if (wupdCount < 1)

{

// And finally commit
dbConn.commit () ;

// We are done
success = true;
break;

} catch (SQLException sqge) {

if ((sge.getErrorCode() == 47137) ||
((sge.getErrorCode() == 30105) &&
(sge.getSQLState () .equals ("08006™))))
// connection failover error
{
// decrement retry count
retriesLeft--;

// rollback the transaction ready for retry

dbConn.rollback();
// and indicate that we need to re-prepare
needReprepare = true;

}

else

{

// handle other kinds of error

ORACLE

2-63

Chapter 2
Client Routing API for TimesTen Scaleout

}

} // end of retry loop if (! success){ // Handle the
failure oo}

Client Routing API for TimesTen Scaleout

This section describes the client routing API for TimesTen Scaleout.

e Functionality of the Client Routing API

e Building a Distribution Key

e Getting the Element Location Given a Set of Key Values
e Connecting to an Element Based on a Distribution Key
e Supported Data Types

e Restrictions

Functionality of the Client Routing API

To increase performance, TimesTen Scaleout enables your client application to route
connections to an element based on the key value for a hash distribution key.

You provide a key value for a distribution key and TimesTen Scaleout returns an array
of element IDs (or the replica set ID) where the database allocated that value. This
enables the client application to connect to the element that stores the row with the
specified key value, avoiding unnecessary communication between the element
storing the row and the one connected to your application.

Building a Distribution Key

ORACLE

The client application must identify and build a distribution key, which is required to
determine the elements (or replica set) that allocates a specific set of key values. The
TimesTenDistributionKey and TimesTenDistributionKeyBuilder interfaces specify
functionality for building a distribution key.

" Note:

The application has to maintain a client connection to the database to build
the distribution key, compute the element IDs or replica set ID, and build a
connection to an element of the database based on either of the three. Refer
to the examples in the next two sections, Getting the Element Location Given
a Set of Key Values and Connecting to an Element Based on a Distribution
Key.

The TimesTenDistributionKeyBuilder interface specifies the following builder
method to support compound keys with different data types.

subkey (Object subkey, java.sql.Types subkeyType)

2-64

Chapter 2
Client Routing API for TimesTen Scaleout

For a compound distribution key, invoke the subkey method once for every column in the
hash distribution key of the table. Invoke each subkey in the same order as the key values
and types of the distribution key columns of the table.

Getting the Element Location Given a Set of Key Values

Once you build a distribution key, use the getElementIDs Or getReplicaSetID method of the
TimesTenDistributionKey interface to get the element IDs or replica set ID that stores the
key values specified in the distribution key.

< Note:

For TimesTen Scaleout, the TimesTenDataSource class implements factory methods
for connection and distribution key.

This example computes and prints the element IDs and replica set ID for a key value in a
single column distribution key.

import java.sqgl.SQLException;
import java.sqgl.Types;

import com.timesten.jdbc.TimesTenDataSource;
import com.timesten.jdbc.TimesTenDistributionKey;
import com.timesten.jdbc.TimesTenDistributionKeyBuilder;
public class ClientRouting {
public static void main(String[] args) {

try {

/* Establish a connection to an element of the database. Maintain

this
* connection for the duration of the application for computing
element
* IDs and creating connections. */
TimesTenDataSource ds = new TimesTenDataSource();
ds.setUrl ("jdbc:timesten:client:databasel");
ds.setUser ("terry");
ds.setPassword ("password") ;
/* Build a distribution key. The distribution key is composed of a
single

* TT INTEGER column. */
TimesTenDistributionKey dk =
ds.createTimesTenDistributionKeyBuilder ()
.subkey (3, Types.INTEGER)
.build();

// Get the element IDs for the distribution key.
short[] elementIDs = dk.getElementIDs();

ORACLE 2-65

Chapter 2
Client Routing API for TimesTen Scaleout

for (short id : elementIDs) ({
System.out.println("Distribution key(3), element ID: " +
id);

// Get the replica set ID for the disitribution key.
System.out.println("Distribution key(3), replica set ID: " +
dk.getReplicaSetID());

} catch (SQLException ex) { - }

This code snippet computes and prints the element IDs and replica set ID for a set of
key values in a distribution key composed of more than one column.

/* Build a distribution key. The distribuion key is composed of two
columns --
* one TT INTEGER and one VARCHAR2. */
dk = ds.createTimesTenDistributionKeyBuilder ()
.subkey (1, Types.INTEGER)
.subkey ("john.doe", Types.VARCHAR)
.build();

// Get the element IDs for the distribution key
elementIDs = dk.getElementIDs () ;
for (short id : elementIDs) {

System.out.println("Distribution key(l, john.doe), element ID: " +
id);
}
// Get the replica set ID for the distribution key.
System.out.println("Distribution key(l, john.doe), replica set ID: " +
dk.getReplicaSetID());

Connecting to an Element Based on a Distribution Key

ORACLE

Your client application may use any custom method to connect to a specific element of
a database in TimesTen Scaleout. However, the features specified in the
TimesTenConnectionBuilder interface enable your application to connect to an
optimal element based on a distribution key, element ID, or replica set ID.

This example builds a distribution key and then builds a connection with it.

import java.sqgl.Connection;
import java.sqgl.SQLException;
import java.sqgl.Statement;
import java.sqgl.Types;

import com.timesten.jdbc.TimesTenDataSource;
import com.timesten.jdbc.TimesTenDistributionKey;

2-66

ORACLE

Chapter 2
Client Routing API for TimesTen Scaleout

import com.timesten.jdbc.TimesTenDistributionKeyBuilder;
public class ClientRouting {
public static void main(String[] args) {
try {

// Create and mantain connection to database.
TimesTenDataSource ds = new TimesTenDataSource();
ds.setUrl ("jdbc:timesten:client:databasel");
ds.setUser ("terry");

ds.setPassword ("password") ;

// Build a distribution key.
TimesTenDistributionKey dk =
ds.createTimesTenDistributionKeyBuilder ()
.subkey(l, Types.INTEGER)
.subkey ("john.doe", Types.VARCHAR)
Jbuild();

// Connect to optimal element based on a distribuion key.
Connection conn;
conn = ds.createTimesTenConnectionBuilder ()

.user ("terry")

.password ("password")

.distributionKey (dk)

Lbuild()
Statement stmt = conn.createStatement();
stmt.execute("... SQL statement here ...");

stmt.close();
conn.close();

} catch (SQLException ex) {

The following code snippet builds a connection based on an element ID.

// Connect to optimal element based on an element ID.
short[] elementIDs = dk.getElementIDs();
conn = ds.createTimesTenConnectionBuilder ()

.user ("terry")

.password ("password")

.elementID(elementIDs[0])

build();
Statement stmt = conn.createStatement();
stmt.execute("... SQL statement here ...");

stmt.close();
conn.close();

2-67

Chapter 2
Client Routing API for TimesTen Scaleout

This code snippet builds a connection based on a replica set ID.

// Connect to optimal element based on a replica set ID.
short repSetID = dk.getReplicaSetID();
conn = ds.createTimesTenConnectionBuilder ()

.user ("terry")

.password ("password")

.replicaSetID (repSetID)

build();
Statement stmt = conn.createStatement();
stmt.execute("... SQL statement here ...");

stmt.close();
conn.close();

Supported Data Types

For best performance, use the recommended object types to avoid type conversion.

Table 2-5 lists the supported data types and acceptable object types.

Table 2-5 Supported Data Types and Acceptable Object Types

SQL type java.sql.Types Recommended Acceptable Object
Object Class Classes

TT TINYINT Types.TINYINT Short Byte, Short

TT SMALLINT Types.SMALLINT Short Byte, Short

TT INTEGER Types.INTEGER Integer Byte, Short
Integer

TT BIGINT Types.BIGINT Long Byte, Short
Integer, Long

CHAR Types.CHAR String String

NCHAR Types.NCHAR String String

VARCHAR2 Types.VARCHAR String String

NVARCHAR Types .NCHAR String String

NUMBER Types.DECIMAL BigDecimal BigDecimal

TYPES.NUMERIC toString () method

will be invoked for
other classes.

Restrictions

There are restrictions for client routing.

The JDBC extensions for client routing in TimesTen Scaleout share the same
restrictions as the ones listed in Client Routing API for TimesTen Scaleout in the
Oracle TimesTen In-Memory Database C Developer's Guide.

ORACLE 2-68

Using JMS/XLA for Event Management

This chapter documents the TimesTen JMS/XLA API, which you can use in TimesTen Classic
to monitor TimesTen for changes to specified tables. IMS/XLA implements Java Message
Service (JMS) interfaces to make the functionality of the TimesTen Transaction Log API
(XLA) available to Java applications.

This chapter includes the following topics:
* JMS/XLA Concepts and Features

* JMS/XLA Usage and Functionality
* JMS/XLA as a Replication Mechanism

JMS/XLA Concepts and Features

This section provides an overview of JIMS/XLA concepts and features.

* JMS/XLA Concepts

* How XLA Reads Records from the Transaction Log
e XLA and Materialized Views

e XLA Bookmarks

* JMS/XLA Configuration File and Topics

* XLA Updates

* XLA Update Acknowledgments

* XLA System Privilege

e XLA Limitations

* JMS/XLA and Oracle GDK Dependency

Also, JMS information and resources are available at this location:
http://www.oracle.com/technetwork/java/jms/index.html

In addition, the standard JMS API documentation is included with the TimesTen installation at
the following location:

installation dir/3rdparty/jmsl.1l/doc/api/index.html

For information about tuning TimesTen JMS/XLA applications for improved performance, see
Tuning JMS/XLA Applications.

JMS/XLA Concepts

ORACLE

You can use the TimesTen JMS/XLA API, supported by TimesTen Classic, to monitor
TimesTen for changes to specified tables in a local database and to receive real-time
notification of these changes. The primary purpose of IMS/XLA is as a high-performance,
asynchronous alternative to triggers.

3-1

http://www.oracle.com/technetwork/java/jms/index.html

Chapter 3
JMS/XLA Concepts and Features

TimesTen JMS/XLA support includes two JMS providers: one based on the Jakarta
Messaging API version 1.1 and another based Java Message Service API version 1.1.
The Jakarta Messaging API version 1.1 is functionally equivalent to the Java Message
Service API version 1.1 except for using the namespace jakarta.jms instead of
javax.jms.

JMS/XLA implements JMS interfaces to make the functionality of the TimesTen
Transaction Log API (XLA) available to Java applications. IMS/XLA API is a wrapper
for XLA, which obtains update records directly from the transaction log buffer or
transaction log files, so the records are available until they are read. XLA also allows
multiple readers to access transaction log updates simultaneously. See XLA and
TimesTen Event Management in Oracle TimesTen In-Memory Database C Developer's
Guide.

JMS/XLA uses the JMS publish-subscribe interface to provide access to XLA updates.
Subscribe to updates by establishing a JMS Session instance that provides a
connection to XLA and then creating a durable subscriber (TopicSubscriber). You can
receive and process messages synchronously through the subscriber, or you can
implement a listener (MessageListener) to process the updates asynchronously.

JMS/XLA is designed for applications that want to monitor a local database. TimesTen
and the application receiving the notifications must reside on the same system.

¢ Note:

In the unlikely event that the TimesTen replication solutions described in
Overview of TimesTen Replication in the Oracle TimesTen In-Memory
Database Replication Guide do not meet your needs, it is possible to use
JMS/XLA to build a custom data replication solution.

How XLA Reads Records from the Transaction Log

ORACLE

As applications modify a database, TimesTen generates transaction log records that
describe the changes made to the data and other events such as transaction commits.

New transaction log records are always written to the end of the transaction log buffer
as they are generated. Transaction log records are periodically flushed in batches from
the log buffer in memory to transaction log files on the file system.

Applications can use XLA to monitor the transaction log for changes to the database.
XLA reads through the transaction log, filters the log records, and delivers XLA
applications with a list of transaction records that contain the changes to the tables
and columns of interest.

XLA sorts the records into discrete transactions. If multiple applications are updating
the database simultaneously, transaction log records from the different applications are
interleaved in the transaction log.

XLA transparently extracts all transaction log records associated with a particular
transaction and delivers them in a contiguous list to the application.

Only the records for committed transactions are returned. They are returned in the
order in which their final commit record appears in the transaction log. XLA filters out
records associated with changes to the database that have not yet committed.

3-2

ORACLE

Chapter 3
JMS/XLA Concepts and Features

If a change is made but then rolled back, XLA does not deliver the records for the rolled back
transaction to the application.

Consider the transaction log illustrated in Figure 3-1 and the example that follows, illustrating
most of these XLA concepts.

Figure 3-1 Records Extracted from the Transaction Log

Transaction Log
Oldest |- | | | |Cr1 | BT4 |C5 |BT2 |AT1 |AT2 |BT3 |AT3 |CT3 | | | | .«| Newest

XLA Application

e e e

In this example, the transaction log contains the following records:

CT1 - Application Cc updates row 1 of table w with value 7.7.
BT1 - Application B updates row 3 of table X with value 2.

CT2 - Application C updates row 9 of table w with value 5.6.
BT2 - Application B updates row 2 of table Y with value "XYZ".
AT1 - Application 2 updates row 1 of table z with value 3.

AT2 - Application A updates row 3 of table z with value 4.

BT3 - Application B commits its transaction.

AT3 - Application 2 rolls back its transaction.

CT3 - Application ¢ commits its transaction.

An XLA application that is set up to detect changes to tables W, v, and Z would see the
following:

BT2 and BT3 - Update row 2 of table Y with value "XYZ" and commit.
CT1 - Update row 1 of table w with value 7.7.
CT2 and CT3 - Update row 9 of table w with value 5.6 and commit.

This example demonstrates the following:

e Transaction records for application B and application ¢ all appear.

* Though the records for application C begin to appear in the transaction log before those
for application B, the commit for application B (BT3) appears in the transaction log before
the commit for application C (CT3). As a result, the records for application B are returned
to the XLA application ahead of those for application C.

e The application B update to table x (BT1) is not presented because XLA is not set up to
detect changes to table X.

* The application 2 updates to table z (AT1 and AT2) are never presented because it did not
commit and was rolled back (273).

3-3

Chapter 3
JMS/XLA Concepts and Features

XLA and Materialized Views

You can use XLA to track changes to both tables and materialized views.

A materialized view provides a single source from which you can track changes to
selected rows and columns in multiple detail tables. Without a materialized view, the
XLA application would have to monitor and filter the update records from all of the
detail tables, including records reflecting updates to rows and columns of no interest to
the application.

In general, there are no operational differences between the XLA mechanisms used to
track changes to a table or a materialized view.

For more information about materialized views, see the following:

« CREATE MATERIALIZED VIEW in Oracle TimesTen In-Memory Database SQL
Reference

* Understanding Materialized Views in Oracle TimesTen In-Memory Database
Operations Guide

XLA Bookmarks

This section describes XLA bookmarks.
How Bookmarks Work
* Replicated Bookmarks

e XLA Bookmarks and Transaction Log Holds

How Bookmarks Work

ORACLE

An XLA bookmark marks the read position of an XLA subscriber application in the
transaction log. Bookmarks facilitate durable subscriptions, enabling an application to
disconnect from a topic and then reconnect to continue receiving updates where it left
off.

When you create a message consumer for XLA, you always use a durable
TopicSubscriber. The subscription identifier you specify when you create the
subscriber is used as the XLA bookmark name. When you use the ttXlaSubscribe
and ttXlaUnsubscribe built-in procedures through JDBC to start and stop the XLA
subscription for a table, you explicitly specify the name of the bookmark to be used.

Bookmarks are reset to the last read position whenever an acknowledgment is
received. For more information about how update messages are acknowledged, see
the XLA Update Acknowledgments.

You can remove a durable subscription by calling unsubscribe () on the JMS Session
object. This deletes the corresponding XLA bookmark and forces a new subscription to
be created when you reconnect. For more information see "Delete Bookmarks".

A bookmark subscription cannot be altered when it is in use. To alter a subscription,
you must close the message consumet, alter the subscription using ttXlaSubscribe
and ttXlaUnsubscribe, and open the message consumer.

3-4

Chapter 3
JMS/XLA Concepts and Features

< Note:

You can also use the ttxlaBookmarkCreate TimesTen built-in procedure to create
bookmarks. See ttXlaBookmarkCreate in Oracle TimesTen In-Memory Database
Reference.

Replicated Bookmarks

ORACLE

If you are using an active standby pair replication scheme, you have the option of using
replicated bookmarks, according to the replicatedBookmark attribute of the <topic> element
in the jmsxla.xml file.

See JMS/XLA Configuration File and Topics.

For a replicated bookmark, operations on the bookmark are replicated to the standby
database as appropriate, assuming there is suitable write privilege for the standby. This
enables more efficient recovery of your bookmark positions if a failover occurs.

When you use replicated bookmarks, steps must be taken in the following order:

1.

Create the active standby pair replication scheme. (This is accomplished by the create
active standby pair operation, or by the ttCWAdmin -create command in a
Clusterware-managed environment.)

Create the bookmarks.
Subscribe the bookmarks.

Start the active standby pair, at which time duplication to the standby occurs and
replication begins. (This is accomplished by the ttRepAdmin -duplicate command, or by
the ttCWAdmin -start command in a Clusterware-managed environment.)

" Note:

e Alternatively, if you use ttXlaBookmarkCreate to create a bookmark, that
function has a parameter for specifying a replicated bookmark.

« If you specify replicated bookmarks in the IMS/XLA configuration file, IMS/XLA
will create and subscribe to the bookmarks when the application is started.
(Also see JIMS/XLA Configuration File and Topics.)

Be aware of the following usage notes:

The position of the bookmark in the standby database is very close to that of the
bookmark in the active database; however, because the replication of acknowledge
operations is asynchronous, you may see a small window of duplicate updates when
there is a failover, depending on how often acknowledge operations are performed.

It is permissible to drop the active standby pair scheme while replicated bookmarks exist.
The bookmarks of course cease to be replicated at that point, but are not deleted. If you
subsequently re-enable the active standby pair scheme, these bookmarks are
automatically added to the scheme.

3-5

Chapter 3
JMS/XLA Concepts and Features

* You cannot delete replicated bookmarks while the replication agent is running.

* You can only read and acknowledge a replicated bookmark in the active database.
Each time you acknowledge a replicated bookmark, the acknowledge operation is
asynchronously replicated to the standby database.

XLA Bookmarks and Transaction Log Holds

You should be aware that when XLA is in use, there is a hold on TimesTen transaction
log files until the XLA bookmark advances.

The hold prevents transaction log files from being purged until XLA can confirm it no
longer needs them. If a bookmark becomes stuck, which can occur if an XLA
application terminates unexpectedly or disconnects without first deleting its bookmark
or disabling change tracking, the log hold persists and there may be an excessive
accumulation of transaction log files. This accumulation may result in file system space
being filled.

See Monitoring Accumulation of Transaction Log Files in Oracle TimesTen In-Memory
Database Operations Guide.

JMS/XLA Configuration File and Topics

ORACLE

To connect to XLA, establish a connection to a JMS Topic object that corresponds to a
particular database. The JMS/XLA configuration file provides the mapping between
topic names and databases.

You can specify a replicated bookmark by setting replicatedBookmark="yes" in the
<topic> element when you specify the topic. The default setting is "no". Also see XLA
Bookmarks.

By default, IMS/XLA looks for a configuration file named jmsxla.xml in the current
working directory. If you want to use another name or location for the file, you must
specify it as part of the environment variable in the InitialContext class and add the
location to the classpath.

The following code specifies the configuration file as part of the environment variable
inthe InitialContext class.

Hashtable env = new Hashtable();

env.put (Context.INITIAL CONTEXT FACTORY,
"com.timesten.dataserver.jmsxla.SimpleInitialContextFactory");

env.put (XlaConstants.CONFIG _FILE NAME, "/newlocation.xml");

InitialContext ic = new InitialContext (env);

The JMS/XLA API uses the class loader to locate the JIMS/XLA configuration file if
XlaConstants.CONFIG FILE NAME is set. In this example, the IMS/XLA API searches
for the newlocation.xml file in the top directory in both the location specified in the
CLASSPATH environment variable and in the JAR files specified in the CLASSPATH
variable.

The JMS/XLA configuration file can also be located in subdirectories, as follows:

env.put (XlaConstants.CONFIG FILE NAME,
"/com/mycompany/myapplication/deepinside.xml");

3-6

Chapter 3
JMS/XLA Concepts and Features

In this case, the IMS/XLA API searches for the deepinside.xnl file in the com/mycompany/
myapplication subdirectory in both the location specified in the CLASSPATH environment
variable and in the JAR files specified in the CLASSPATH variable.

The JMS/XLA API uses the first configuration file that it finds.

A topic definition in the configuration file consists of a name, a connection string, and a
prefetch value that specifies how many updates to retrieve at a time. For example, this
configuration maps the DemoDataStore topic to the TestDB DSN:

<xlaconfig>
<topics>
<topic name="DemoDataStore"
connectionString="DSN=TestDB"
xlaPrefetch="100" />
</topics>
</xlaconfig>

A topic definition can also specify whether a replicated bookmark should be used. The
following repeats the preceding example, but with a replicated bookmark.

<xlaconfig>
<topics>
<topic name="DemoDataStore"
connectionString="DSN=TestDB"
xlaPrefetch="100" replicatedBookmark="yes" />
</topics>
</xlaconfig>

XLA Updates

ORACLE

Applications receive XLA updates as JMS MapMessage oObjects. A MapMessage object contains
a set of typed name and value pairs that correspond to the fields in an XLA update header.

You can access the message fields using the MapMessage getter methods. The
getMapNames () method returns an Enumeration object that contains the names of all of the
fields in the message. You can retrieve individual fields from the message by name. All
reserved field names begin with two underscores, for example TYPE.

All update messages have a _ TYPE field that indicates what type of update the message
contains. The types are specified as integer values. As a convenience, you can use the
constants defined in com.timesten.dataserver.jmsxla.XlaConstants to compare against
the integer types. The supported types are described in Table 3-1.

Table 3-1 XLA Update Types
]

Update type Description

INSERT A row has been added.

UPDATE A row has been modified.

DELETE A row has been removed.

COMMIT ONLY A transaction has been committed.

3-7

Chapter 3
JMS/XLA Concepts and Features

Table 3-1 (Cont.) XLA Update Types

Update type Description

CREATE TABLE A table has been created.

DROP_TABLE A table has been dropped.

CREATE INDEX An index has been created.

DROP INDEX An index has been dropped.

ADD COLUMNS New columns have been added to the table.
DROP_COLUMNS Columns have been removed from the table.
CREATE VIEW A materialized view has been created.
DROP_VIEW A materialized view has been dropped.
CREATE_SEQ A sequence has been created.

DROP_SEQ A sequence has been dropped.

CREATE SYNONYM A synonym has been created.
DROP_SYNONYM A synonym has been dropped.

TRUNCATE All rows in the table have been deleted.

For more information about the contents of an XLA update message, see "JMS/XLA
MapMessage Contents".

XLA Update Acknowledgments

This section discusses acknowledgment of updates in IMS/XLA.
e XLA Acknowledgment Mechanism

e XLA Acknowledgment Modes

» Prefetching Updates

* Acknowledging Updates

XLA Acknowledgment Mechanism

The XLA acknowledgment mechanism is designed to ensure that an application has
not only received a message, but has successfully processed it.

Acknowledging an update permanently resets the application XLA bookmark to the
last record that was read. This prevents previously returned records from being reread,
ensuring that an application receives only new batches of records if the bookmark is
reused when an application reconnects to XLA.

JMS/XLA can automatically acknowledge XLA update messages, or applications can
choose to acknowledge messages explicitly. You specify how updates are to be
acknowledged when you create the Session object.

XLA Acknowledgment Modes

JMS/XLA supports three acknowledgment modes.

ORACLE 3-8

Chapter 3
JMS/XLA Concepts and Features

e AUTO ACKNOWLEDGE: In this mode, updates are automatically acknowledged as you
receive them. Each message is delivered only once. Duplicate messages are not sent, so
messages might be lost if there is an application failure. Messages are always delivered
and acknowledged individually, so IMS/XLA does not prefetch multiple records. The
xlaprefetch attribute in the topic is ignored.

* DUPS_OK ACKNOWLEDGE: In this mode, updates are automatically acknowledged, but
duplicate messages might be delivered when there is an application failure. IMS/XLA
prefetches records according to the xlaprefetch attribute specified for the topic and
sends an acknowledgment when the last record in a prefetched block is read. If the
application fails before reading all of the prefetched records, all of the records in the block
are presented to the application it restarts.

See JMS/XLA Configuration File and Topics for examples setting xlaprefetch.

e CLIENT ACKNOWLEDGE: In this mode, applications are responsible for acknowledging
receipt of update messages by calling acknowledge () on the MapMessage instance.
JMS/XLA prefetches records according to the xlaprefetch attribute specified for the
topic.

The following example sets the acknowledgment mode:

Session session = connection.createSession (false,
Session. CLIENT_ACKNOWLEDGE) ;

Also see Reduce Frequency of Update Acknowledgments.

Prefetching Updates

Prefetching multiple update records at a time is more efficient than obtaining each update
record from XLA individually.

Because updates are not prefetched when you use AUTO ACKNOWLEDGE mode, it can be slower
than the other modes. If possible, you should design your application to tolerate duplicate
updates so you can use DUPS_OK_ACKNOWLEDGE, or explicitly acknowledge updates. Explicitly
acknowledging updates usually yields the best performance, if you can avoid acknowledging
each message individually.

Acknowledging Updates

To explicitly acknowledge an XLA update, call acknowledge () on the update message.

Acknowledging a message implicitly acknowledges all previous messages. Typically, you
receive and process multiple update messages between acknowledgments. If you are using
the CLIENT ACKNOWLEDGE mode and intend to reuse a durable subscription in the future, you
should call acknowledge () to reset the bookmark to the last-read position before exiting.

XLA System Privilege

ORACLE

An XLA user must have the XLA system privilege.

e Any XLA functionality requires the system privilege xLA. This includes connecting to
TimesTen (which also requires the CREATE SESSION privilege) as an XLA reader and
executing the TimesTen XLA built-in procedures ttXlaBookmarkCreate,

3-9

Chapter 3
JMS/XLA Usage and Functionality

ttXlaBookmarkDelete, ttXlaSubscribe, and ttxlaUnsubscribe, all of which are
documented in Built-In Procedures in Oracle TimesTen In-Memory Database
Reference.

* A user with the x1.A privilege has capabilities equivalent to the SELECT ANY TABLE,
SELECT ANY VIEW, and SELECT ANY SEQUENCE system privileges.

XLA Limitations

Be aware of XLA limitations when you use TimesTen JMS/XLA.

* JMS/XLA is available on all platforms supported by TimesTen. However, XLA does
not support data transfer between different platforms.

e JMS/XLA support for LOBs is limited. See Monitoring Tables for Updates.

* JMS/XLA does not support applications linked with a driver manager library or the
client/server library.

* An XLA reader cannot subscribe to a table that uses in-memory column-based
compression.

» For autorefresh cache groups, the change-tracking trigger on Oracle Database
does not have column-level resolution. (To have that would be very expensive.)
Therefore the autorefresh feature updates all the columns in the row, and XLA can
only report that all the columns have changed, even if data did not actually change
in all columns.

JMS/XLA and Oracle GDK Dependency

The JMS/XLA API uses orail8n.jar, part of the Oracle Globalization Development Kit
(GDK) for translating from the database character set specified by the
DatabaseCharacterSet attribute to UTF-16 encoding.

The JMS/XLA API supports a specific version of the GDK with each TimesTen release.
If IMS/XLA finds other versions of the GDK loaded in the JVM, it displays a severe
warning and continues processing. You can find out the GDK version supported by
JMS/XLA by entering the following commands:

$ cd timesten home/install/lib
$ java -cp ./orail8n.jar oracle.il8n.util.GDKOracleMetaData -version

Also see Setting the Classpath for Java Development.

< Note:

The path timesten home/install is a symbolic link to installation dir.

JMS/XLA Usage and Functionality

ORACLE

There are key aspects when using JMS/XLA.

e Connecting to XLA

3-10

Chapter 3
JMS/XLA Usage and Functionality

* Monitoring Tables for Updates
* Receiving and Processing Updates

* Terminating a JMS/XLA Application

Connecting to XLA

To connect to XLA so you can receive updates:

1. Create the appropriate JMS connection factory depending on whether your application
uses the JIMS API version 1.1 or the Jakarta Messaging API version 1.1 using the
property Context.INITIAL CONTEXT FACTORY when creating the initial context.

e For Jakarta Messaging API version 1.1, use the value
com.timesten.dataserver.jakartajmsxla.SimpleInitialContextFactory

* For JMS API version 1.1, use the value
com.timesten.dataserver.jmsxla.SimpleInitialContextFactory

If the property is not specified, then TimesTen JMS/XLA will default to the IMS API
version 1.1 provider unless download-directory/jakarta.jms-api-3.1.0.jar or
download-directory/jakarta.jms-api-3.0.0.jar is present in the CLASSPATH, in which
case, TimesTen JMS/XLA will use the Jakarta Messaging API version 1.1 provider. The
JARS jakarta.jms-api-3.1.0.jar and jakarta.jms-api-3.0.0.jar contains the class
jakarta.jms.TopicConnectionFactory required for the Jakarta Messaging API version
1.1 provider. See Setting the Classpath for Java Development.

2. Use the JMS connection factory to create a connection.
3. Use the connection to establish a session.

4. When you are ready to start processing updates, call start () on the connection to
enable message dispatching.

The following example is from the asyncJMS2 sample program for Jakarta JMS in the
TimesTen Classic Quick Start sample application. See About TimesTen Quick Start and
Sample Applications.

/** JMS connection */
private jakarta.jms.TopicConnection connection;

//jakarta jms
Properties props = new Properties();

props.setProperty (Context.INITIAL CONTEXT FACTORY,
"com.timesten.dataserver.jakartajmsxla.SimpleInitialContextFactory");

// get Connection

Context messaging = new InitialContext (props);

TopicConnectionFactory connectionFactory =
(TopicConnectionFactory)messaging.lookup ("TopicConnectionFactory");

connection = connectionFactory.createTopicConnection();

connection.start();

// get Session
log("create session");

ORACLE 3-11

Chapter 3
JMS/XLA Usage and Functionality

session = connection.createTopicSession(false,
Session.AUTO ACKNOWLEDGE) ;

For JavaX JMS, refer to the asyncJMS sample program instead in the TimesTen
Classic Quick Start.

Monitoring Tables for Updates

ORACLE

Before you can start receiving updates, you must inform XLA which tables you want to
monitor for changes.

To subscribe to changes and turn on XLA publishing for a table, call the
ttXlaSubscribe built-in procedure through JDBC.

When you use ttXlaSubscribe to enable XLA publishing for a table, you must specify
parameters for the name of the table and the name of the bookmark that are used to
track the table:

ttXlaSubscribe (user. table, mybookmark)

For example, call ttXxlaSubscribe by the JDBC CcallableStatement interface:

Connection con;
CallableStatement cStmt;

cStmt = con.prepareCall ("{call ttXlaSubscribe (user.table,
mybookmark) }") ;
cStmt.execute();

Use ttXlaUnsubscribe to unsubscribe from the table during shutdown. For more
information, see Unsubscribe from a Table.

The application can verify table subscriptions by checking the SYS.XLASUBSCRIPTIONS
system table.

For more information about using TimesTen built-in procedures in a Java application,
see Using CALL to Execute Procedures and Functions.

3-12

Chapter 3
JMS/XLA Usage and Functionality

< Note:
LOB support in IMS/XLA is limited, as follows:

e You can subscribe to tables containing LOB columns, but information about the
LOB value itself is unavailable.

e Columns containing LOBs are reported as empty (zero length) or null (if the
value is actually NULL). In this way, you can tell the difference between a null
column and a non-null column.

See the next section, Receiving and Processing Updates, for additional notes.

Receiving and Processing Updates

You can receive XLA updates either synchronously or asynchronously.

To receive and process updates for a topic synchronously, perform the following tasks.

1. Create a durable TopicSubscriber instance to subscribe to a topic.

2. Call receive () Or receiveNoWait () on your subscriber to get the next available update.
3. Process the returned MapMessage instance.

To receive and process updates for a topic asynchronously, perform the following tasks.
Create a MessageListener instance to process the updates.

Create a durable TopicSubscriber instance to subscribe to a topic.

Register the MessageListener with the TopicSubscriber.

P @0 b P

Start the connection.

" Note:

You may miss messages if you do not register the MessageListener before you
start the connection. If the connection is already started, stop the connection,
register the MessageListener, then start the connection.

5. Wait for messages to arrive. You can call the Object method wait () to wait for messages
if your application does not have to do anything else in its main thread.

When an update is published, the MessageListener method onMessage () is called and the
message is passed in as a MapMessage instance.

The application can verify table subscriptions by checking the SYS.XLASUBSCRIPTIONS system
table.

ORACLE 3-13

ORACLE

Chapter 3
JMS/XLA Usage and Functionality

< Note:

LOB support in XLA is limited. You can access LOB fields in update
messages using the MapMessage method getBytes () for BLOB fields or
getString () for CLOB or NCLOB fields; however, these fields contain zero-
length data (or null data if the value is actually NULL).

The following example, from the asyncJMs TimesTen Classic Quick Start sample
application, uses a listener to process updates asynchronously.

MyListener myListener = new MyListener (outStream);

outStream.println("Creating consumer for topic " + topic);

Topic xlaTopic = session.createTopic (topic);

bookmark = "bookmark";

TopicSubscriber subscriber = session.createDurableSubscriber (xlaTopic,
bookmark) ;

// After setMessageListener () has been called, myListener's onMessage
// method is called for each message received.
subscriber.setMessagelListener (myListener) ;

Note that bookmark must already exist. You can use JDBC and the
ttXlaBookmarkCreate built-in procedure to create a bookmark. Also, the
TopicSubscriber must be a durable subscriber. XLA connections are designed to be
durable. XLA bookmarks make it possible to disconnect from a topic and then
reconnect to start receiving updates where you left off. The string you pass in as the
subscription identifier when you create a durable subscriber is used as the XLA
bookmark name.

You can call unsubscribe () on the JMS TopicSession to delete the XLA bookmark
used by the subscriber when the application shuts down. This causes a new bookmark
to be created when the application is restarted.

When you receive an update, you can use the MapMessage getter methods to extract
information from the message and then perform whatever processing your application
requires. The TimesTen xlaConstants class defines constants for the update types
and special message fields for use in processing XLA update messages.

The first step is typically to determine what type of update the message contains. You
can use the MapMessage method getInt () to get the contents of the TYPE field, and
compare the value against the numeric constants defined in the X1aConstants class.

In the next example, from the asyncJMs TimesTen Classic Quick Start sample
application, the method onMessage () extracts the update type from the MapMessage
object and displays the action that the update signifies.

public void onMessage (Message message)

{
MapMessage mapMessage = (MapMessage)message;
String messageType = null;
/* Standard output stream */

3-14

ORACLE

Chapter 3
JMS/XLA Usage and Functionality

private static PrintStream outStream = System.out;

if (message == null)

{
errStream.println("MyListener: update message is null");
return ;

try
{
outStream.println();
outStream.println("onMessage: got a " + mapMessage.getJMSType() + "
message");

// Get the type of event (insert, update, delete, drop table, etc.).
int type = mapMessage.getInt(XlaConstants.TYPE FIELD);
if (type == XlaConstants.INSERT)
{
outStream.println("A row was inserted.");
}
else if (type == XlaConstants.UPDATE)
{
outStream.println("A row was updated.");
}
else if (type == XlaConstants.DELETE)
{
outStream.println("A row was deleted.");
}
else

{

// Messages are also received for DDL events such as CREATE TABLE.
// This program processes INSERT, UPDATE, and DELETE events,

// and ignores the DDL events.

return ;

When you know what type of message you have received, you can process the message
according to the application's needs. To get a list of all of the fields in a message, you can call
the MapMessage method getMapNames () . You can retrieve individual fields from the message
by name.

The following example, from the asyncdMs TimesTen Classic Quick Start sample application,

extracts the column values from insert, update, and delete messages using the column
names.

/* Standard output stream */
private static PrintStream outStream = System.out;

if (type == XlaConstants.INSERT
|| type == XlaConstants.UPDATE

3-15

Chapter 3
JMS/XLA Usage and Functionality

|| type == XlaConstants.DELETE)
{

// Get the column values from the message.

int cust num = mapMessage.getInt("cust num");
String region = mapMessage.getString("region");
String name = mapMessage.getString("name");
String address = mapMessage.getString("address");

outStream.println ("New Column Values:");
outStream.println("cust num=" + cust num);
outStream.println ("region=" + region);
outStream.println ("name=" + name);
outStream.println ("address=" + address);

For detailed information about the contents of XLA update messages, see JMS/XLA
MapMessage Contents. For information about how TimesTen column types map to
JMS data types and the getter methods used to retrieve the column values, see Data
Type Support.

Terminating a JMS/XLA Application

When the application has finished reading from the transaction log, there are steps to
enable the application to gracefully exit.

e Close the Connection
* Delete Bookmarks

e Unsubscribe from a Table

Close the Connection

To close the connection to XLA, call close () on the Connection object.

After a connection has been closed, any attempt to use it, its sessions, or its
subscribers results in an T1legalStateException error. You can continue to use
messages received through the connection, but you cannot call the acknowledge ()
method on the received message after the connection is closed.

Delete Bookmarks

ORACLE

Deleting XLA bookmarks during shutdown is optional. Deleting a bookmark enables
the file system space associated with any unread update records in the transaction log
to be freed.

If you do not delete the bookmark, it can be reused by a durable subscriber. If the
bookmark is available when a durable subscriber reconnects, the subscriber receives
all unacknowledged updates published since the previous connection was terminated.
Keep in mind that when a bookmark exists with no application reading from it, the
transaction log continues to grow and the amount of file system space consumed by
your database increases.

To delete a bookmark, you can simply call unsubscribe () on the JMS Session, which
invokes the ttXlaBookmarkDelete built-in procedure to remove the XLA bookmark.

3-16

Chapter 3
JMS/XLA as a Replication Mechanism

< Note:

You cannot delete replicated bookmarks while the replication agent is running.

Unsubscribe from a Table

To turn off XLA publishing for a table, use the ttXlaUnsubscribe built-in procedure. If you use
ttXlaSubscribe to enable XLA publishing for a table, use ttXlaUnsubscribe to unsubscribe
from the table when shutting down your application.

" Note:

If you want to drop a table, you must unsubscribe from it first.
When you unsubscribe from a table, specify the name of the table and the name of the

bookmark used to track the table:

ttXlaUnsubscribe (user.table, mybookmark)

The following example calls ttxlaUnSubscribe through a CallableStatement object.

Connection con;
CallableStatement cStmt;

cStmt = con.prepareCall ("{call ttXlaUnSubscribe (user.table, mybookmark)}");
cStmt.execute();

See Using CALL to Execute Procedures and Functions.

JMS/XLA as a Replication Mechanism

In the event that TimesTen replication is not sufficient for your needs, you can use JMS/XLA
instead.

e About Using JMS/XLA as a Replication Mechanism
e Applying IMS/XLA Messages to a Target Database

» TargetDataStore Error Recovery

About Using JMS/XLA as a Replication Mechanism

ORACLE

TimesTen replication is sufficient for most customer needs; however, it is also possible to use
JMS/XLA to replicate updates from one database to another.

Implementing your own replication scheme on top of IMS/XLA in this way is fairly
complicated, but can be considered if TimesTen replication is not feasible for some reason.

3-17

Chapter 3
JMS/XLA as a Replication Mechanism

Overview of TimesTen Replication in the Oracle TimesTen In-Memory Database
Replication Guide describes TimesTen replication.

Applying IMS/XLA Messages to a Target Database

ORACLE

The source database generates JMS/XLA messages. To apply the messages to a
target database, you must extract the XLA descriptor from them.

Use the MapMessage interface to extract the update descriptor:

MapMessage message;
/~k
*...other code
*/
try {
byte[]updateMessage=
mapMessage.getBytes (XlaConstants.UPDATE DESCRIPTOR FIELD);

}
catch (JMSException jex) {
/*
*...other code
*/
}

The target database may reside on a different system from the source database. The
update descriptor is returned as a byte array and can be serialized for network
transmission.

You must create a target database object that represents the target database so you
can apply the objects from the source database. You can create a target database
object named myTargetDataStore as an instance of the TargetDataStoreImpl class.
For example:

TargetDataStore myTargetDataStore=
new TargetDataStorelImpl ("DSN=sampledb");

Apply messages to myTargetDataStore by using the TargetDataStore method
apply (). For example:

myTargetDataStore.apply (updateDescriptor) ;

By default, TimesTen checks for conflicts on the target database before applying the
update. If the target database has information that is later than the update,
TargetDataStore throws an exception. If you do not want TimesTen to check for
conflicts, use the TargetDataStore method setUpdateConflictCheckFlag() to
change the behavior.

By default, TimesTen commits the update to the database based on commit flags and
transaction boundaries contained in the update descriptor. If you want the application
to perform manual commits instead, use the setAutoCommitFlag () method to change

3-18

Chapter 3
JMS/XLA as a Replication Mechanism

the autocommit flag. To perform a manual commit on myTargetDataStore, use the following
command:

myTargetDataStore.commit () ;

You can perform a rollback if errors occur during the application of the update. Use the
following command for myTargetDataStore:

myTargetDataStore.rollback();

Close myTargetDataStore by using the following command:

myTargetDataStore.close();
See JMS/XLA Replication API.

TargetDataStore Error Recovery

Invoking TargetDataStore can yield transient and permanent errors.
This section discusses error recovery.

TargetDataStore methods return a nonzero value when transient errors occur. The
application can retry the operation and is responsible for monitoring update descriptors that
must be reapplied. For more information about transient XLA errors, see XLA Error Handling
in Oracle TimesTen In-Memory Database C Developer's Guide.

TargetDataStore methods return a JMSException object for permanent errors. If the
application receives a permanent error, it should verify that the database is valid. If the
database is invalid, the target database object should be closed and a new one should be
created. Other types of permanent errors may require manual intervention.

The following example shows how to recover errors from a TargetDataStore object.

TargetDataStore theTargetDataStore;
byte[] updateDescriptor;
int rc;

// Other code
try {

if ((rc = theTargetDataStore.apply(updateDescriptor)) ==) |
// Rpply successful.
}
else {
// Transient error. Retry later.
}
}
catch (JMSException jex) {

if (theTargetDataStore.isDataStoreValid()) {
// Database valid; permanent error that may need Administrator
intervention.

}

ORACLE 3-19

Chapter 3
JMS/XLA as a Replication Mechanism

else {
try {
theTargetDataStore.close();
}
catch (JMSException closeEx) {
// Close errors are not usual. This may need Administrator
intervention.

}

ORACLE" 3-20

Distributed Transaction Processing: JTA

This chapter describes the implementation of the Java Transaction API (JTA) for TimesTen
Classic.

* Overview of JTA
e JTA Functionality in TimesTen
e Using the JTA API

Overview of JTA

This is a brief overview of XA concepts.
e About TimesTen JTA
e X/Open DTP Model

¢ Two-Phase Commit

About TimesTen JTA

ORACLE

The TimesTen implementation of the JTA interfaces, supported only in TimesTen Classic, is
intended to enable Java applications, application servers, and transaction managers to use
TimesTen resource managers in distributed transaction processing (DTP) environments.

The TimesTen implementation is supported for use with the Oracle WebLogic Server.

Refer to the following locations for additional information.

* General information about JTA:
https://www.oracle.com/java/technologies/jta.html

* Oracle WebLogic information and documentation:
https://www.oracle.com/middleware/technologies/weblogic.html

As TimesTen JTA is built on top of the TimesTen implementation of the X/Open XA standard,
much of the discussion in this chapter is in terms of underlying XA features. You can also
refer to Distributed Transaction Processing: XA in Oracle TimesTen In-Memory Database C
Developer's Guide.

Tip:
e The TimesTen XA implementation does not work with cache. The start of any
XA transaction fails if the cache agent is running.

* You cannot execute an XA transaction if replication is enabled.

* Do not execute DDL statements within an XA transaction.

4-1

https://www.oracle.com/java/technologies/jta.html
https://www.oracle.com/middleware/technologies/weblogic.html

Chapter 4
Overview of JTA

X/Open DTP Model

There are interfaces defined by the X/Open DTP model.

Figure 4-1 illustrates the interfaces defined by the X/Open DTP model.

Figure 4-1 Distributed Transaction Processing Model

Application
Program (AP)

Native interface
(ODBC or JDBQ)

TX or proprietary
transaction interface

Global
transactions

€ > Transaction
” Transaction) Log Buffer

Branches

< >

Resource Managers (RMs) Transaction Manager (TM)

XA or JTA Interface

The TX interface is what applications use to communicate with a transaction manager.
The figure shows an application communicating global transactions to the transaction
manager. In the DTP model, the transaction manager breaks each global transaction
down into multiple branches and distributes them to separate resource managers for
service. It uses the JTA interface to coordinate each transaction branch with the
appropriate resource manager.

In the context of TimesTen JTA, the resource managers can be a collection of
TimesTen databases, or databases in combination with other commercial databases
that support JTA.

Global transaction control provided by the TX and JTA interfaces is distinct from local
transaction control provided by the native JDBC interface. It is generally best to
maintain separate connections for local and global transactions. Applications can
obtain a connection handle to a TimesTen resource manager to initiate both local and
global transactions over the same connection.

Two-Phase Commit

In a JTA implementation, the transaction manager commits the distributed branches of
a global transaction by using a two-phase commit protocol.

1. In phase 1, the transaction manager directs each resource manager to prepare to
commit, which is to verify and guarantee it can commit its respective branch of the

ORACLE 4-2

Chapter 4
JTA Functionality in TimesTen

global transaction. If a resource manager cannot commit its branch, the transaction
manager rolls back the entire transaction in phase 2.

2. In phase 2, the transaction manager either directs each resource manager to commit its
branch or, if a resource manager reported it was unable to commit in phase 1, rolls back
the global transaction.

Note the following optimizations.

» If a global transaction is determined by the transaction manager to have involved only
one branch, it skips phase 1 and commits the transaction in phase 2.

» If a global transaction branch is read-only, where it does not generate any transaction log
records, the transaction manager commits the branch in phase 1 and skips phase 2 for
that branch.

" Note:

The transaction manager considers the global transaction committed if and only if
all branches successfully commit.

JTA Functionality in TimesTen

There are things you should consider when using JTA in TimesTen.

* TimesTen Database Requirements for XA
* Global Transaction Recovery in TimesTen

* XA Error Handling in TimesTen

TimesTen Database Requirements for XA

To guarantee global transaction consistency, TimesTen XA transaction branches must be
durable.

The TimesTen implementation of the xa_prepare (), xa rollback(), and xa_commit ()
functions log their actions to the file system, regardless of the value set in the
DurableCommits general connection attribute or by the ttDurableCommit built-in procedure. If
you must recover from a failure, both the resource manager and the TimesTen transaction
manager have a consistent view of which transaction branches were active in a prepared
state at the time of failure.

Global Transaction Recovery in TimesTen

When a database is loaded from the file system to recover after a failure or unexpected
termination, any global transactions that were prepared but not committed are left pending, or
in doubt. Processing is not enabled until the disposition of all in-doubt transactions has been
resolved.

After connection and recovery are complete, TimesTen checks for in-doubt transactions. If
there are no in-doubt transactions, operations can proceed. If there are in-doubt transactions,
other connections may be created, but virtually all operations are prohibited on those

ORACLE 4.3

Chapter 4
Using the JTA API

connections until the in-doubt transactions are resolved. Any other JDBC calls result in
the following error:

Error 11035 - "In-doubt transactions awaiting resolution in recovery
must be
resolved first"

The list of in-doubt transactions can be retrieved through the XA implementation of
xa_recover (), then dealt with through the XA call xa_commit (), xa_rollback(), or
xa_forget (), as appropriate. After all the in-doubt transactions are cleared, operations
can proceed.

This scheme should be adequate for systems that operate strictly under control of the
transaction manager, since the first thing the transaction manager should do after
connect is to call xa_recover ().

If the transaction manager is unavailable or cannot resolve an in-doubt transaction,
you can use the ttXactAdmin utility -HCommit or -HAbort option to independently
commit or roll back the individual transaction branches. Be aware, however, that these
ttXactAdmin options require ADMIN privilege. See ttXactAdmin in Oracle TimesTen In-
Memory Database Reference.

XA Error Handling in TimesTen

The XA specification has a limited, strictly defined set of errors that can be returned
from XA interface calls. The ODBC sSQLError mechanism returns XA defined errors,
along with any additional information.

The TimesTen XA related errors begin at number 11000. Errors 11002 through 11020
correspond to the errors defined by the XA standard.

See Errors and Warnings in Oracle TimesTen In-Memory Database Error Messages
and SNMP Traps.

Using the JTA AP

The TimesTen implementation of JTA provides an API consistent with that specified in
the JTA specification.

This section covers the following topics for using the JTA API:
* Registering a TimesTen DSN with WebLogic

* Importing Required Packages

e Creating a TimesTen XAConnection Object

* Creating XAResource and Connection Objects

Registering a TimesTen DSN with WebLogic

ORACLE

Regarding how to register a TimesTen DSN with WebLogic, information on configuring
TimesTen for application servers and object-relational mapping frameworks is
available in the TimesTen Classic Quick Start.

See About TimesTen Quick Start and Sample Applications.

4-4

Chapter 4
Using the JTA API

Importing Required Packages

The TimesTen JDBC and XA implementations are available in packages.

import com.timesten.jdbc.*;
import com.timesten.jdbc.xa.*;

Your application should also import these standard packages:

import java.sqgl.*;
import javax.sql.*;
import javax.transaction.xa.*;

Creating a TimesTen XAConnection Object

ORACLE

Connections to XA data sources are established through xaDataSource objects. You can
create an xAConnection object for your database by using the TimesTenXADataSource
instance as a connection factory. TimesTenXADataSource implements the
javax.sqgl.XADataSource interface.

After creating a new TimesTenXADataSource instance, use the setUrl () method to specify a
database.

The URL should look similar to the following.
e For a direct connection: jdbc:timesten:direct:DSNname
* For a client connection: jdbc:timesten:client:DSNname

You can also optionally use the setUser () and setPassword () methods to set the ID and
password for a specific user.

In the following example, the TimesTenXADataSource object is used as a factory to create a
TimesTen XA data source object. Then the URL that identifies the TimesTen DSN (dsn1), the
user name (myName), and the password (password) are set for this TimesTenXADataSource
instance. Then the getXaAConnection () method is used to return a connection to the object,
xaConn.

TimesTenXADataSource xads = new TimesTenXADataSource();

xads.setUrl ("jdbc:timesten:direct:dsnl");
xads.setUser ("myName") ;
xads.setPassword ("password") ;

XAConnection xaConn = null;
try {
xaConn = xads.getXAConnection();
}
catch (SQLException e) {
e.printStackTrace();
return;

4-5

ORACLE

Chapter 4
Using the JTA API

You can create multiple connections to an XA data source object. This example
creates a second connection, xaConn2:

XAConnection xaConn null;
XAConnection xaConn2 = null;

try {
xaConn = xads.getXAConnection();
xaConn2 = xads.getXAConnection();

This next example creates two instances of TimesTenXADataSource for the databases
named dsnl and dsn2. It then creates a connection for dsnl and two connections for
dsn2.

TimesTenXADataSource xads = new TimesTenXADataSource();

xads.setUrl ("jdbc:timesten:direct:dsnl");
xads.setUser ("myName") ;
xads.setPassword ("password") ;

XAConnection xaConnl null;
XAConnection xaConn2 null;
XAConnection xaConn3 = null;

try {

xaConnl = xads.getXAConnection(); // connect to dsnl
}
catch (SQLException e) {

e.printStackTrace();

return;

xads.setUrl ("jdbc:timesten:direct:dsn2");
xads.setUser ("myName") ;
xads.setPassword ("password") ;

try {
xaConn2 = xads.getXAConnection(); // connect to dsn2
xaConn3 = xads.getXAConnection(); // connect to dsn2

}

catch (SQLException e) {
e.printStackTrace();
return;

" Note:

Once an XAConnection is established, autocommit is turned off.

4-6

Creating XAResource and Connection Objects

ORACLE

Chapter 4
Using the JTA API

After using getXAConnection () to obtain an xAConnection object, you can use the
XAConnection method getXAResource () to obtain an XAResource object, then the
XAConnection method getConnection () to obtain a Connection object for the underlying

connection.

//get an XAResource
XAResource xaRes = null;
try {
xaRes = xaConn.getXAResource () ;
}
catch (SQLException e) {
e.printStackTrace();
return;

}

//get an underlying physical Connection
Connection conn = null;
try {
conn = xaConn.getConnection();
}
catch (SQLException e) {
e.printStackTrace();
return;

From this point, you can use the same connection, conn, for both local and global

transactions. Be aware of the following, however.

* You must commit or roll back an active local transaction before starting a global

transaction. Otherwise you get the XAException exception XAER OUTSIDE.

* You must end an active global transaction before initiating a local transaction, otherwise
you get a SQLException, "lllegal combination of local transaction and global (XA)

transaction."

4-7

Java Application Tuning

This chapter provides tips on how to tune a Java application to run optimally on a TimesTen
database.

See TimesTen Database Performance Tuning in Oracle TimesTen In-Memory Database
Operations Guide for more general tuning tips.

The chapter is organized as follows:

e Tuning JDBC Applications
e Tuning JMS/XLA Applications

Tuning JDBC Applications

There are general principles to consider when tuning JDBC applications for TimesTen.
It includes the following topics:

e Use Prepared Statement Pooling

e Use Arrays of Parameters for Batch Execution

* Bulk Fetch Rows of TimesTen Data

e Use the ResultSet Method getString() Sparingly

e Avoid Data Type Conversions

* Close Connections, Statements and Result Sets

e Optimize Queries

< Note:

Also see Working with TimesTen Result Sets: Hints and Restrictions and the notes
in Parameter Binding and Statement Execution.

Use Prepared Statement Pooling

ORACLE

TimesTen supports prepared statement pooling for pooled connections through the TimesTen
ObservableConnectionDs class.

This is the TimesTen implementation of ConnectionPoolDataSource. Note that statement
pooling is transparent to an application. Use of the PreparedStatement object, including
preparing and closing the statement, is no different.

Enable prepared statement pooling and specify the maximum number of statements in the
pool by calling the ObservableConnectionDS method setMaxStatements (). A value of 0, the
default, disables prepared statement pooling. Any integer value greater than 0O enables

5-1

Chapter 5
Tuning JDBC Applications

prepared statement pooling with the value taken as the maximum number of
statements. Once set, this value should not be changed.

Prepared statements or callable statements are pooled at the time of creation if the
pool has not reached its capacity. You can remove a prepared statement or callable
statement from the pool by calling setPoolable (false) on the statement object. After
the statement is closed, it is removed from the pool.

Tip:

With prepared statement pooling, JDBC considers two statements to be
identical if their SQL (including comments) is identical, regardless of other
considerations such as optimizer settings. Do not use prepared statement
pooling in a scenario where different optimizer hints may be applied to
statements that are otherwise identical. In this scenario, a statement
execution may result in the use of an identical statement from the pool with
an unpredictable optimizer setting.

Use Arrays of Parameters for Batch Execution

ORACLE

You can improve performance by using groups, referred to as batches, of statement
executions, calling the addBatch () and executeBatch () methods for Statement or
PreparedStatement objects.

A batch can consist of a set of INSERT, UPDATE, DELETE, Or MERGE Statements.
(TimesTen Scaleout does not support MERGE statements.) Statements that return result
sets, such as SELECT statements, are not allowed in a batch. A SQL statement is
added to a batch by calling addBatch () on the statement object. The set of SQL
statements associated with a batch are executed through the executeBatch () method.

For PreparedStatement objects, the batch consists of repeated executions of a
statement using different input parameter values. For each set of input values, create
the batch by using appropriate setxxx() calls followed by the addBatch () call. The
batch is executed by the executeBatch () method.

The ideal batch size for any of these database operations varies according to details of
the user environment and requires testing and experimentation to determine.

Tip:

In TimesTen Classic, it is important to use a batch size that is an exact
multiple of 256 for inserts, in order to optimize the insert mechanism.

Here is an example of batching statements:

// turn off autocommit
conn.setAutoCommit (false);

Statement stmt = conn.createStatement();
stmt.addBatch ("INSERT INTO employees VALUES (1000, 'Joe Jones')");

5-2

Chapter 5
Tuning JDBC Applications

stmt.addBatch ("INSERT INTO departments VALUES (260, 'Shoe')");
stmt.addBatch ("INSERT INTO emp dept VALUES (1000, 260)");

// submit a batch of update commands for execution
int[] updateCounts = stmt.executeBatch();
conn.commit ();

The following example batches prepared statements:

// turn off autocommit
conn.setAutoCommit (false);
// prepare the statement
PreparedStatement stmt = conn.prepareStatement
("INSERT INTO employees VALUES (?, ?)");

// first set of parameters
stmt.setInt (1, 2000);
stmt.setString (2, "Kelly Kaufmann");
stmt.addBatch();

// second set of parameters
stmt.setInt (1, 3000);
stmt.setString (2, "Bill Barnes");
stmt.addBatch();

// submit the batch for execution. Check update counts
int[] updateCounts = stmt.executeBatch();
conn.commit ();

For either a Statement Or PreparedStatement object, the executeBatch () method returns an
array of update counts (updateCounts[] in the examples above), with one element in the
array for each statement execution. The value of each element can be any of the following:

* A number indicating how many rows in the database were affected by the corresponding
statement execution

* SUCCESS NO INFO, indicating the corresponding statement execution was successful, but
the number of affected rows is unknown

* EXECUTE FAILED, indicating the corresponding statement execution failed

Once there is a statement execution with EXECUTE_FAILED status, no further statement
executions are attempted.

For more information about using the JDBC batch update facility, refer to Javadoc for the
java.sql.Statement interface, particularly information about the executeBatch () method, at
the following location:

https://docs.oracle.com/javase/8/docs/api/java/sql/package-summary.html

ORACLE 5-3

https://docs.oracle.com/javase/8/docs/api/java/sql/package-summary.html

Chapter 5
Tuning JDBC Applications

< Note:

Associative array parameters are not supported with JDBC batch execution.
(See Working with Associative Arrays.)

Bulk Fetch Rows of TimesTen Data

TimesTen provides an extension that enables an application to fetch multiple rows of
data.

For applications that retrieve large amounts of data, fetching multiple rows can
increase performance greatly. However, when using Read Committed isolation level,
locks are held on all rows being retrieved until the application has received all the data,
decreasing concurrency. See Fetching Multiple Rows of Data.

Use the ResultSet Method getString() Sparingly

Because Java strings are immutable, the ResultSet method getString () must
allocate space for a new string in addition to translating the underlying C string to a
Unicode string, making it a costly call.

In addition, you should not call getString () on primitive numeric types, like byte or
int, unless it is absolutely necessary. It is much faster to call getInt () on an integer
column, for example.

Avoid Data Type Conversions

TimesTen instruction paths are so short that even small delays due to data conversion
can cause a relatively large percentage increase in transaction time.

Use the appropriate getxxx() method on a ResultSet object for the data type of the
data in the underlying database. For example, if the data type of the data is DOUBLE, to
avoid data conversion in the JDBC driver you should call getDouble (). Similarly, use
the appropriate setxxX() method on the PreparedStatement object for the input
parameter in an SQL statement. For example, if you are inserting data into a CHAR
column using a PreparedStatement, you should use setString().

Close Connections, Statements and Result Sets

ORACLE

For better performance, always close JDBC objects such as connection, statement,
and result set instances when finished using them.

For example:

Connection conn = null;

Statement stmt = null;

ResultSet rs = null;

try {
// create connections, execute statements, etc.
// Handle any errors

} catch (SQLException ex) {

5-4

Chapter 5
Tuning JMS/XLA Applications

// See Error Handling.
}

finally {
// Close JDBC objects such as connections, statements, result sets,
etc.
if (rs != null) {
try {

rs.close();
}
catch (SQLException finalex) {
// See Error Handling.
}
}
if (stmt !'= null) {
try {
stmt.close();
}
catch (SQLException finalex) {
// See Error Handling.
}
}
// Always, close the connection to TimesTen
if (conn != null) {
try {
conn.close();
}
catch (SQLException finalex) {
// See Error Handling.
}
}

Optimize Queries

TimesTen provides the TimesTenConnection method setTtPrefetchClose () to optimize
guery performance with a true setting.

Refer to Optimizing Query Performance.

Tuning JMS/XLA Applications

There are specific performance tuning tips for applications that use the JIMS/XLA API.
* Considerations in Tuning JMS/XLA Applications

» Configure xlaPrefetch Parameter

* Reduce Frequency of Update Acknowledgments

» Handling High Event Rates

Considerations in Tuning JMS/XLA Applications

ORACLE

JMS/XLA has some overhead that makes it slower than using the C XLA API.

5-5

Chapter 5
Tuning JMS/XLA Applications

In the C API, records are returned to the user in a batch. In the IMS model an object is
instantiated and each record is presented one at a time in a callback to the
MessageListener method onMessage (). High performance applications can use some
tuning to overcome some of this overhead.

Configure xlaPrefetch Parameter

The code underlying the JMS layer that reads the transaction log is more efficient if it
can fetch as many rows as possible before presenting the object/rows to the user. The
amount of prefetching is controlled in the jmsx1a.xml configuration file with the
xlaPrefetch parameter.

Set the prefetch count to a large value like 100 or 1000.

Reduce Frequency of Update Acknowledgments

In IMS/XLA, acknowledging updates moves the bookmark and results in updates to
system tables. You can typically improve application performance by waiting until
several updates have been detected before issuing the acknowledgment. You can
control the acknowledgment frequency in either of the following modes.

See XLA Update Acknowledgments.

* DUPS _OK ACKNOWLEDGE, where JMS/XLA prefetches records according to the
xlaprefetch setting, and an acknowledgment is automatically sent when the last
record in the prefetched block is read.

e CLIENT ACKNOWLEDGE, where you manually call the acknowledge () method on the
MapMessage instance as desired.

The appropriate choice for acknowledgment frequency depends on your application
logic. Acknowledging after every 100 updates, for example, has been used
successfully. Be aware, however, that there is a trade-off. Acknowledgments affect
XLA log holds, and acknowledging too infrequently may result in undesirable log file
accumulation. (Also see XLA Bookmarks and Transaction Log Holds.)

" Note:

In DUPS_OK ACKNOWLEDGE Or CLIENT ACKNOWLEDGE mode, the reader
application must have some tolerance for seeing the same set of records
more than once.

Handling High Event Rates

ORACLE

The synchronous interface is suitable only for applications with low event rates and for
which AUTO ACKNOWLEDGE Of DUPS_OK ACKNOWLEDGE acknowledgment modes are
acceptable.

Applications that require CLIENT ACKNOWLEDGE acknowledgment mode and applications
with high event rates should use the asynchronous interface for receiving updates.
They should acknowledge the messages on the callback thread itself if they are using
CLIENT ACKNOWLEDGE as acknowledgment mode. See Receiving and Processing
Updates.

5-6

JMS/XLA Reference

JMS/XLA

Reference information is provided for the IMS/XLA API, which is supported by TimesTen
Classic.

* JMS/XLA MapMessage Contents
DML Event Data Formats
 DDL Event Data Formats

e Data Type Support

e JMS Interfaces for Event Handling
e JMS/XLA Replication API

* JMS Message Header Fields

MapMessage Contents

A jakarta.jms.MapMessage instance for Jakarta JMS or javax.jms.MapMessage instance for
JavaX JMS contains a set of typed name/value pairs corresponding to the fields in an XLA
update header, which is published as the C structure ttxlaUpdateDesc t.

The fields contained in a MapMessage instance depend on what type of update it is.

XLA Update Types

ORACLE

Each MapMessage instance returned by the IMS/XLA API contains at least one name/value
pair, TYPE (with 2 underscores), that identifies the type of update described in the message.
The types are specified as integer values.

Table 6-1 lists the supported types.

Note:

As a convenience, you can use the constants defined in
com.timesten.dataserver.jakartajmsxla.XLAConstants for Jakata JMS or
com.timesten.dataserver.jmsxla.XlaConstants for JavaX JMS to compare
against the integer types.

Table 6-1 XLA Update Types
]

Type Description
ADD COLUMNS Indicates that columns have been added.
COMMIT FIELD This is the name of the field in a message that contains a commit.

6-1

ORACLE

Type

Chapter 6
JMS/XLA MapMessage Contents

Table 6-1 (Cont.) XLA Update Types
]

Description

COMMIT ONLY

Indicates that a commit has occurred.

CONTEXT FIELD

This is the name of the field in a message that contains the
context value passed to the ttApplicationContext procedure
as a byte array.

CREATE INDEX

Indicates that an index has been created.

CREATE SEQ

Indicates that a sequence has been created.

CREATE SYNONYM

Indicates that a synonym has been created.

CREATE TABLE

Indicates that a table has been created.

CREATE VIEW

Indicates that a view has been created.

DELETE

Indicates that a row has been deleted.

DROP_COLUMNS

Indicates that columns have been dropped.

DROP_INDEX

Indicates that an index has been dropped.

DROP_SEQ

Indicates that a sequence has been dropped.

DROP_SYNONYM

Indicates that a synonym has been dropped.

DROP_TABLE

Indicates that a table has been dropped.

DROP_VIEW

Indicates that a view has been dropped.

FIRST FIELD

This is the name of the field that contains the flag that indicates
the first record in a transaction.

INSERT Indicates that a row has been inserted.

MTYP FIELD This is the name of the field in a message that contains type
information.

MVER FIELD This is the name of the field in a message that contains the

transaction log file number of the XLA record.

NULLS FIELD

This is the name of the field in a message that contains the list of
fields that have null values.

REPL FIELD

This is the name of the field in a message that contains the flag
that indicates that the update was applied by replication.

TBLNAME FIELD

This is the name of the field in a message that contains the table
name.

TBLOWNER FIELD

This is the name of the field in a message that specifies the table
owner.

TRUNCATE Indicates that a table has been truncated.

TYPE FIELD This is the name of the field in a message that specifies the
message type.

UPDATE Indicates that a row has been updated.

UPDATE DESCRIPTOR FIELD

This is the name of the field that returns a ttxlaUpdateDesc t
structure as a byte array.

UPDATED COLUMNS FIELD

This is the name of the field in a message that contains the list of
updated columns.

6-2

XLA Flags

Chapter 6
JMS/XLA MapMessage Contents

For all update types, the MapMessage instance contains name/value pairs that indicate the
following.

Whether this is the first record of a transaction

Whether this is the last record of a transaction

Whether the update was performed by replication

Which table was updated

The owner of the updated table

The name/value pairs that contain these XLA flags are described in Table 6-2. Each name is
preceded by two underscores.

Table 6-2 JMSI/XLA Flags
]

Name Description Corresponding
ttXlaUpdateDesc_t Flag

_ AGING DELETE Indicates that a delete was due to aging. TT AGING

The flag is present only if the XLA update

record is due to an aging delete. The

XlaConstants constant

AGING DELETE FIELD represents this

flag.
__ CASCADING DELETE Indicates that a delete was due to a TT CASCDEL

cascading delete. The flag is present
only if the XLA update record is due to a
cascading delete. The X1aConstants
constant CASCADING DELETE FIELD
represents this flag.

__ COMMIT

Indicates that this is the last record in a
transaction and that a commit was
performed after this operation. This is in
the MapMessage if TT_UPDCOMMIT is on.
The XlaConstants constant

COMMIT FIELD represents this flag.

TT UPDCOMMIT

__FIRST

Indicates that this is the first record in a
new transaction. This is in the
MapMessage if TT _UPDFIRST is on. The
XlaConstants constant FIRST FIELD
represents this flag.

TT UPDFIRST

__REPL

Indicates that this change was applied to
the database through replication. This is
in the MapMessage if TT _UPDREPL is on.
The X1laConstants constant

REPL FIELD represents this flag.

TT UPDREPL

ORACLE

6-3

Chapter 6
DML Event Data Formats

Table 6-2 (Cont.) IMS/XLA Flags

Name Description Corresponding
ttXlaUpdateDesc_t Flag
__UPDCOLS This is only used for UPDATETUP records, TT UPDCOLS

indicating that the XLA update descriptor
contains a list of columns that were
actually modified by the operation. It is
specified as a string that contains a
semicolon-delimited list of column names
and is in the MapMessage only if

TT UPDCOLS is on. The XlaConstants
constant UPDATE COLUMNS FIELD
represents this flag.

" Note:

The XlaConstants interface is in the com. timesten.dataserver.jmsxla
package.

Applications can use the MapMessage method itemExists () to determine whether a
flag is present, and getBoolean () to determine whether a flag is set. As input, specify
the XlaConstants constant that corresponds to the flag, such as
XlaConstants.AGING DELETE FIELD.

Equivalent to using TT UPDCOMMIT in XLA, you can use the following test in JMS/XLA

to see whether this is the last record in a transaction and that a commit was performed
after the operation.

if (MapMessage.getBoolean(XlaConstants.COMMIT FIELD)) { // Field is
set

DML Event Data Formats

Many DML operations generate XLA updates that can be monitored by XLA event
handlers.

This section describes the contents of the MapMessage instances that are generated for
these operations.

ORACLE 6-4

Table Data

Row Data

Chapter 6
DDL Event Data Formats

For INSERT, UPDATE and DELETE operations, the MapMessage instance contains two name/
value pairs, TBLOWNER and _ TBLNAME. These describe the name and owner of the table that
is being updated.

For example, for a table SCOTT.EMPLOYEES, any related MapMessage contains a field
__TBLOWNER with the string value SCOTT and a field TBLNAME with the string value EMPLOYEES.

For INSERT and DELETE operations, a complete image of the inserted or deleted row is
included in the message and all column values are available.

For UPDATE operations, the complete "before" and "after" images of the row are available,
along with a list of column numbers indicating which columns were modified. Access the
column values using the names of the columns. The column names in the "before" image all
begin with a single underscore. For example, columnname contains the new value and
_columnname contains the old value.

If the value of a column is NULL, it is omitted from the column list. The _ NULLS name/value
pair contains a semicolon-delimited list of the columns that contain NULL values.

Context Information

If the ttApplicationContext built-in procedure was used to encode context information in an
XLA record, that information is in the _ CONTEXT name/value pair in the MapMessage instance.
If no context information is provided, the CONTEXT value is not in the MapMessage instance.

DDL Event Data Formats

Many data definition language (DDL) operations generate XLA updates that can be
monitored by XLA event handlers.

This section describes the contents of the MapMessage instances that are generated for these
operations.

CREATE_TABLE

ORACLE

Messages with TYPE=1 (XlaConstants.CREATE TABLE) indicate that a table has been
created.

Table 6-3 shows the name/value pairs that are in a MapMessage instance generated for a
CREATE TABLE operation.

Table 6-3 CREATE_TABLE Data Provided in Update Messages
]

Name Value
OWNER String value of the owner of the created table
NAME String value of the name of the created table

6-5

Chapter 6
DDL Event Data Formats

Table 6-3 (Cont.) CREATE_TABLE Data Provided in Update Messages

|
Name Value

PK_COLUMNS String value containing the names of the columns in the primary
key for this table

If the table has no primary key, the PK_COLUMNS value is not
specified.
Format:

<collname>[;<col2name> [;<col3name>[;...]1]]

COLUMNS String value containing the names of the columns in the table
Format:

<collname>[;<col2name> [;<col3name>[;...]1]]

Note: For each column in the table, additional name/value pairs
that describe the column are in the MapMessage.

_column name TYPE Integer value representing the data type of this column (from
java.sql.Types)

_column name PRECISION Integer value containing the precision of this column (for
NUMERIC or DECIMAL)

_column name SCALE Integer value containing the scale of this column (for NUMERIC
or DECIMAL)

_column name SIZE Integer value indicating the maximum size of this column (for
CHAR, VARCHAR, BINARY, or VARBINARY)

_column name NULLABLE Boolean value indicating whether this column can have a NULL
value

_column name OUTOFLINE Boolean value indicating whether this column is stored in the

inline or out-of-line part of the tuple

_column name INPRIMARYKEY Boolean value indicating whether this column is part of the
primary key of the table

DROP_TABLE

Messages with TYPE=2 (XlaConstants.DROP_TABLE) indicate that a table has been
dropped.

Table 6-4 shows the name/value pairs that are in a MapMessage instance generated for
a DROP_TABLE operation.

Table 6-4 DROP_TABLE Data Provided in Update Messages
|

Name Value
OWNER String value of the owner of the sequence
NAME String value of the name of the dropped sequence

ORACLE 6-6

Chapter 6
DDL Event Data Formats

CREATE_INDEX

Messages with TYPE=3 (XlaConstants.CREATE INDEX) indicate that an index has been
created.

Table 6-5 shows the name/value pairs that are in a MapMessage instance generated for a
CREATE INDEX operation.

Table 6-5 CREATE_INDEX Data Provided in Update Messages
]

Name Value

TBLOWNER String value of the owner of the table on which the index was created

TBLNAME String value of the name of the table on which the index was created

IXNAME String value of the name of the created index

INDEX TYPE String value representing the index type: "P" (primary key), "F" (foreign key),
or "R" (regular)

INDEX METHOD String value representing the index method: "H" (hash), "T" (range), or "B" (bit
map)

UNIQUE Boolean value indicating whether the index is unique

HASH PAGES Integer value representing the number of pages in a hash index (not specified
for range indexes)

COLUMNS String value describing the columns in the index
Format:

<collname>[;<col2name> [;<col3name>[;...]]]

DROP_INDEX

Messages with TYPE=4 (XlaConstants.DROP INDEX) indicate that an index has been
dropped.

Table 6-6 shows the name/value pairs that are in a MapMessage instance generated for a
DROP_INDEX operation.

Table 6-6 DROP_INDEX Data Provided in Update Messages
]

Name Value

OWNER String value of the owner of the table on which the index was dropped
TABLE NAME String value of the name of the table on which the index was dropped
INDEX NAME String value of the name of the dropped index

ORACLE 6-7

ADD_COLUMNS

Messages with TYPE=5 (XlaConstants.ADD COLUMNS) indicate that a table has been

ORACLE

altered by adding new columns.

Chapter 6
DDL Event Data Formats

Table 6-7 shows the name/value pairs that are in a MapMessage instance generated for

an ADD_COLUMNS operation.

Table 6-7 ADD_COLUMNS Data Provided in Update Messages

Name Value
OWNER String value of the owner of the altered table
NAME String value of the name of the altered table
PK_COLUMNS String value containing the names of the columns in the
primary key for this table
If the table has no primary key, the PK_COLUMNS value is
not specified.
Format:
<collname>[;<col2name> [;<col3name>[;...]]]
COLUMNS String value containing the names of the columns added

to the table
Format:

<collname>[;<col2name> [;<col3name>[;...]]]

Note: For each added column, additional name/value
pairs that describe the column are in the MapMessage.

_column name TYPE

Integer value representing the data type of this column
(from java.sqgl.Types)

_column name PRECISION

Integer value containing the precision of this column (for
NUMERIC or DECIMAL)

_column name SCALE

Integer value containing the scale of this column (for
NUMERIC or DECIMAL)

_column name SIZE

Integer value indicating the maximum size of this column
(for CHAR, VARCHAR, BINARY, or VARBINARY)

_column name NULLABLE

Boolean value indicating whether this column can have a
NULL value

_column name OUTOFLINE

Boolean value indicating whether this column is stored in
the inline or out-of-line part of the tuple

_column name INPRIMARYKEY

Boolean value indicating whether this column is part of the
primary key of the table

6-8

Chapter 6
DDL Event Data Formats

DROP_COLUMNS

Messages with TYPE=6 (XlaConstants.DROP COLUMNS) indicate that a table has been
altered by dropping existing columns.

Table 6-8 shows the name/value pairs that are in a MapMessage instance generated for a
DROP_COLUMNS operation.

Table 6-8 DROP_COLUMNS Data Provided in Update Message
]

Name Value

OWNER String value of the owner of the altered table

NAME String value of the name of the altered table

COLUMNS String value containing the names of the columns dropped from
the table
Format:

<collname>[;<col2name> [;<col3name>[;...]1]]

Note: For each dropped column, additional name/value pairs
that describe the column are in the MapMessage.

_column name TYPE Integer value representing the data type of this column (from
java.sql.Types)

_column name PRECISION Integer value containing the precision of this column (for
NUMERIC or DECIMAL)

_column name SCALE Integer value containing the scale of this column (for NUMERIC or
DECIMAL)

_column name SIZE Integer value indicating the maximum size of this column (for
CHAR, VARCHAR, BINARY, or VARBINARY)

_column name NULLABLE Boolean value indicating whether this column can have a NULL
value

_column name OUTOFLINE Boolean value indicating whether this column is stored in the

inline or out-of-line part of the tuple

_column name INPRIMARYKEY Boolean value indicating whether this column is part of the
primary key of the table

CREATE_VIEW

ORACLE

Messages with TYPE=14 (XlaConstants.CREATE VIEW) indicate that a materialized view
has been created.

Table 6-9 shows the name/value pairs that are in a MapMessage instance generated for a
CREATE VIEW operation.

Table 6-9 CREATE_VIEW Data Provided in Update Messages

Name Value

OWNER String value of the owner of the created view

6-9

Chapter 6
DDL Event Data Formats

Table 6-9 (Cont.) CREATE_VIEW Data Provided in Update Messages

Name Value

NAME String value of the name of the created view

DROP_VIEW

Messages with TYPE=15 (XlaConstants.DROP VIEW) indicate that a materialized
view has been dropped.

See Table 6-10 to see the name/value pairs that are in a MapMessage instance
generated for a DROP_VIEW operation.

Table 6-10 DROP_VIEW Data Provided in Update Messages

Name Value
OWNER String value of the owner of the dropped view
NAME String value of the name of the dropped view

CREATE_SEQ

Messages with TYPE=16 (XlaConstants.CREATE SEQ) indicate that a sequence has
been created.

Table 6-11 shows the name/value pairs that are in a MapMessage instance generated
for a CREATE SEQ operation.

Table 6-11 CREATE_SEQ Data Provided in Update Messages
|

Name Value

OWNER String value of the owner of the created sequence

NAME String value of the name of the created sequence

CYCLE Boolean value indicating whether the CYCLE option was specified on the
new sequence

INCREMENT A long value indicating the INCREMENT BY option specified for the new
sequence

MIN VALUE A long value indicating the MINVALUE option specified for the new
sequence

MAX VALUE A long value indicating the MAXVALUE option specified for the new
sequence

ORACLE 6-10

Chapter 6
DDL Event Data Formats

DROP_SEQ

Messages with TYPE=17 (XlaConstants.DROP SEQ) indicate that a sequence has been
dropped.

Table 6-12 shows the name/value pairs that are in a MapMessage instance generated for a
DROP_SEQ operation.

Table 6-12 DROP_SEQ Data Provided in Update Messages
]

Name Value
OWNER String value of the owner of the dropped table
NAME String value of the name of the dropped table

CREATE_SYNONYM

Messages with TYPE=19 (XlaConstants.CREATE SYNONYM) indicate that a synonym has
been created.

Table 6-13 shows the name/value pairs that are in a MapMessage instance generated for a
CREATE SYNONYM operation.

Table 6-13 CREATE_SYNONYM Data Provided in Update Messages
]

Name Value

OWNER String value of the owner of the created synonym

NAME String value of the name of the created synonym

OBJECT OWNER String value of the schema of the object for which you are creating a
synonym

OBJECT NAME String value of the name of the object for which you are creating a synonym

IS _PUBLIC Boolean value indicating whether the synonym is public

IS REPLACE Boolean value indicating whether the synonym was created using CREATE
OR REPLACE

DROP_SYNONYM

ORACLE

Messages with TYPE=20 (XlaConstants.DROP SYNONYM) indicate that a synonym has been
dropped.

Table 6-14 shows the name/value pairs that are in a MapMessage instance generated for a
DROP_SYNONYM operation.

Table 6-14 DROP_SYNONYM Data Provided in Update Messages

|
Name Value

OWNER String value of the owner of the dropped synonym

6-11

Chapter 6
Data Type Support

Table 6-14 (Cont.) DROP_SYNONYM Data Provided in Update Messages
]

Name Value
NAME String value of the name of the dropped synonym
IS PUBLIC Boolean value indicating whether the synonym was public

TRUNCATE

Messages with TYPE=18 (XlaConstants.TRUNCATE) indicate that a table has been
truncated. All rows in the table have been deleted.

Table 6-15 shows the name/value pairs that are in a MapMessage instance generated
for a TRUNCATE operation.

Table 6-15 TRUNCATE Data Provided in Update Messages
|

Name Value
OWNER String value of the owner of the truncated table
NAME String value of the name of the truncated table

Data Type Support

This section covers data type considerations for JIMS/XLA.

Data Type Mapping

There are MapMessage access methods for data types supported by TimesTen.

See Table 6-16. For more information about data types, see Data Types in Oracle
TimesTen In-Memory Database SQL Reference.

Table 6-16 Data Type Mapping

|
TimesTen column type Read with MapMessage method...

CHAR (n) getString()

VARCHAR (n) getString ()

NCHAR (n) getString()

NVARCHAR (n) getString()

NVARCHAR?Z (n) getString()

DOUBLE getString()
Can be converted to BigDecimal or to Double by the
application.

ORACLE 6-12

ORACLE

Chapter 6
Data Type Support

Table 6-16 (Cont.) Data Type Mapping
|

TimesTen column type

Read with MapMessage method...

FLOAT

getString()

Can be converted to BigDecimal or to Double by the
application.

DECIMAL (p, s)

getString()

Can be converted to BigDecimal or to Double by the
application.

NUMERIC (p, s)

getString ()
Can be converted to BigDecimal or to Double by the

application.
INTEGER getInt ()
SMALLINT getShort ()
TINYINT getShort ()
BINARY (n) getBytes ()
VARBINARY (n) getBytes ()
DATE getLong (), getString ()
The getLong () method returns microseconds since epoch
(00:00:00 UTC, January 1, 1970).
Can be converted to Date or Calendar by the application.
TIME getString()
Can be converted to Date or Calendar by the application.
TIMESTAMP getLong (), getString ()
The getLong () method returns microseconds since epoch
(00:00:00 UTC, January 1, 1970). It truncates nanoseconds. Use
getString () if you require nanosecond precision.
Can be converted to Date or Calendar by the application.
TT CHAR getString()
TT VARCHAR getString()
TT NCHAR getString()
TT NVARCHAR getString()
ORA CHAR getString()
ORA_VARCHAR getString()
ORA_NCHAR getString()
ORA_NVARCHAR2 getString()
VARCHAR2 getString ()
TT TINYINT getShort ()
TT SMALLINT getShort ()
TT INTEGER getInt ()
TT BIGINT getLong ()

6-13

Data Types Character Set

ORACLE

Chapter 6
Data Type Support

Table 6-16 (Cont.) Data Type Mapping
|

TimesTen column type

Read with MapMessage method...

BINARY FLOAT getFloat ()

BINARY DOUBLE getDouble ()

REAL getFloat ()

NUMBER getString()
ORA_NUMBER getString()

TT TIME getString()

TT DATE getLong (), getString ()

The getLong () method returns microseconds since epoch
(00:00:00 UTC, January 1, 1970).

TT TIMESTAMP

getLong (), getString()

The getLong () method returns microseconds since epoch
(00:00:00 UTC, January 1, 1970).

ORA_DATE

getLong (), getString ()

The getLong () method returns microseconds since epoch
(00:00:00 UTC, January 1, 1970).

ORA TIMESTAMP

getLong (), getString()

The getLong () method returns microseconds since epoch
(00:00:00 UTC, January 1, 1970). It truncates nanoseconds. Use
getString () if you require nanosecond precision.

TT BINARY

getBytes ()

TT VARBINARY

getBytes ()

ROWID getBytes (), getString ()

BLOB getBytes ()
Note: Information about the LOB value itself is unavailable. LOB
fields contain zero-length data or null data (if the value is actually
NULL).

CLOB, NCLOB getString()

Note: Information about the LOB value itself is unavailable. LOB
fields contain zero-length data or null data (if the value is actually
NULL).

JMS/XLA uses a UTF-16 character set for specific data types.

e TT CHAR
¢ TT VARCHAR

* ORA CHAR

* ORA VARCHARZ

°* TT NCHAR

6-14

Chapter 6
JMS Interfaces for Event Handling

¢ TT NVARCHAR
* ORA_NCHAR

* ORA NVARCHAR2
¢ NCHAR

¢ NVARCHAR

* NVARCHAR2

JMS Interfaces for Event Handling

The standard JMS interfaces are available for IMS/XLA applications. Note that the IMS/XLA
API supports only publish/subscribe messaging.

* Connection

e ConnectionFactory

* ConnectionMetaData

* Destination

* ExceptionListener

* MapMessage

e Message

* MessageConsumer

* Session

e Topic

e TopicConnection

e TopicConnectionFactory
* TopicSession

e TopicSubscriber

See the following APl documentation for these interfaces:

e https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/9.0.0/index.html to review the
jakarta.jms package documentation for the Jakarta Messaging API version 1.1 for
Jakarta JMS. Note TimesTen doesn't utilize the other Jakarta Platform EE 9 APIs.

* https://javaee.github.io/javaee-spec/javadocs/ to review the javax.jms package
documentation for the Java Message Service API version 1.1 for JavaX JMS

JMS/XLA Replication AP

The TimesTen com. timesten.dataserver.jmsxla package includes the TargetDataStore
interface and the TargetDataStoreImpl class, described in this section.

See Oracle TimesTen In-Memory Database JMIS/XLA Java API Reference.

ORACLE' 6-15

https://javaee.github.io/javaee-spec/javadocs/
https://javaee.github.io/javaee-spec/javadocs/

TargetDataStore Interface

Chapter 6
JMS Message Header Fields

This interface is used to apply XLA update records from a source database to a target
database. The source and target database schema must be identical for the affected

tables.

This interface defines the methods shown in Table 6-17.

Table 6-17 TargetDataStore Methods

Method Description

apply () Applies XLA update descriptor to the target database.

close () Closes the connections to the database and releases
the resources.

commit () Performs a manual commit.

getAutoCommitFlag () Returns the value of the autocommit flag.

getConnectString () Returns the database connection string.

getUpdateConflictCheckFlag()

Returns the value of the flag for checking update
conflicts.

isClosed() Checks whether the object is closed.
isDataStoreValid() Checks whether the database is valid.
rollback() Rolls back the last transaction.
setAutoCommitFlag () Sets the flag for autocommit during apply.

setUpdateConflictCheckFlag ()

Sets the flag for checking update conflicts during
apply.

TargetDataStorelmpl Class

This class creates connections and XLA handles for a target database. It implements

the TargetDataStore interface.

JMS Message Header Fields

Description of IMS messages header fields provided by JMS/XLA.

Table 6-18 JMSI/XLA Header Fields
]

Header Contents
JMSMessageId Transaction log file number of the XLA record
JMSType String representation of the TYPE field

ORACLE

6-16

	Contents
	About This Content
	What's New
	New Features in Release 22.1.1.20.0
	New Features in Release 22.1.1.1.0

	1 Java Development Environment
	Installing TimesTen and Supported Java Components
	Setting the Environment for Java Development
	Setting the Classpath for Java Development
	About TimesTen Quick Start and Sample Applications

	2 Working with TimesTen Databases in JDBC
	Prerequisites for Java Development with TimesTen
	Key JDBC Classes and Interfaces
	Package Imports
	Support for Interfaces in the java.sql Package
	Support for Classes in the java.sql Package
	Support Notes for Classes in the java.io Package
	Support for Interfaces and Classes in the javax.sql Package
	TimesTen JDBC Extensions
	Additional TimesTen Classes and Interfaces

	Management of TimesTen Database Connections
	About TimesTen DSNs
	Using Java Wrapper Functionality for Connections
	Creating a Connection URL for the Database and Specifying Connection Attributes
	Connecting to the Database
	Disconnecting from the Database
	Opening and Closing a Direct Connection
	Checking Database Validity

	Database Operations in JDBC
	Executing Basic SQL Statements
	Committing or Rolling Back Changes to the Database
	Setting Autocommit
	Manually Committing or Rolling Back Changes
	Using COMMIT and ROLLBACK SQL Statements

	Managing Multiple Threads
	Java Escape Syntax and SQL Functions

	TimesTen Features and Operations in Your Application
	Using Java Wrapper Functionality for Statements
	Working with TimesTen Result Sets: Hints and Restrictions
	Fetching Multiple Rows of Data
	Optimizing Query Performance
	Parameter Binding and Statement Execution
	Preparing SQL Statements and Setting Input Parameters
	Working with Output and Input/Output Parameters
	Binding Duplicate Parameters in SQL Statements
	Binding Duplicate Parameters in PL/SQL

	Working with Associative Arrays
	Overview of Associative Arrays
	TimesTen Methods for Associative Arrays
	Type Mapping for Associative Arrays
	Binding Associative Arrays

	Working with REF CURSORs
	Working with DML Returning (RETURNING INTO Clause)
	Working with Rowids
	Large Objects (LOBs)
	About LOBs
	LOB Objects in JDBC
	Differences Between TimesTen LOBs and Oracle Database LOBs
	LOB Factory Methods
	LOB Getter and Setter Methods
	TimesTen LOB Interface Methods
	LOB Prefetching
	Passthrough LOBs

	Using CALL to Execute Procedures and Functions
	Setting a Timeout or Threshold for Executing SQL Statements
	Setting a Timeout Duration for SQL Statements
	Setting a Threshold Duration for SQL Statements

	Configuring the Result Set Buffer Size in Client/Server Using JDBC
	Features for Use with Cache
	Setting the Oracle Database Password
	Setting Temporary Passthrough Level with the ttOptSetFlag Built-In Procedure
	Determining Passthrough Status
	Managing Cache Groups

	Features for Use with Replication

	Error Handling
	Error and Warning Levels
	Fatal Errors
	Non-Fatal Errors
	Warnings
	Abnormal Termination

	Reporting Errors and Warnings
	Catching and Responding to Specific Errors
	Rolling Back Failed Transactions
	Retrying After Transient Errors (JDBC)

	JDBC Support for Automatic Client Failover
	About Automatic Client Failover
	Features and Functionality of JDBC Support for Automatic Client Failover
	General Client Failover Features
	Client Failover Features for Pooled Connections

	Configuration of Automatic Client Failover
	Synchronous Detection of Automatic Client Failover in JDBC
	Asynchronous Detection of Automatic Client Failover in JDBC
	Implement a Client Failover Event Listener
	Register the Client Failover Listener Instance
	Remove the Client Failover Listener Instance

	JDBC Application Action in the Event of Failover
	Application Steps for Failover
	Failover Delay and Retry Settings

	Client Routing API for TimesTen Scaleout
	Functionality of the Client Routing API
	Building a Distribution Key
	Getting the Element Location Given a Set of Key Values
	Connecting to an Element Based on a Distribution Key
	Supported Data Types
	Restrictions

	3 Using JMS/XLA for Event Management
	JMS/XLA Concepts and Features
	JMS/XLA Concepts
	How XLA Reads Records from the Transaction Log
	XLA and Materialized Views
	XLA Bookmarks
	How Bookmarks Work
	Replicated Bookmarks
	XLA Bookmarks and Transaction Log Holds

	JMS/XLA Configuration File and Topics
	XLA Updates
	XLA Update Acknowledgments
	XLA Acknowledgment Mechanism
	XLA Acknowledgment Modes
	Prefetching Updates
	Acknowledging Updates

	XLA System Privilege
	XLA Limitations
	JMS/XLA and Oracle GDK Dependency

	JMS/XLA Usage and Functionality
	Connecting to XLA
	Monitoring Tables for Updates
	Receiving and Processing Updates
	Terminating a JMS/XLA Application
	Close the Connection
	Delete Bookmarks
	Unsubscribe from a Table

	JMS/XLA as a Replication Mechanism
	About Using JMS/XLA as a Replication Mechanism
	Applying JMS/XLA Messages to a Target Database
	TargetDataStore Error Recovery

	4 Distributed Transaction Processing: JTA
	Overview of JTA
	About TimesTen JTA
	X/Open DTP Model
	Two-Phase Commit

	JTA Functionality in TimesTen
	TimesTen Database Requirements for XA
	Global Transaction Recovery in TimesTen
	XA Error Handling in TimesTen

	Using the JTA API
	Registering a TimesTen DSN with WebLogic
	Importing Required Packages
	Creating a TimesTen XAConnection Object
	Creating XAResource and Connection Objects

	5 Java Application Tuning
	Tuning JDBC Applications
	Use Prepared Statement Pooling
	Use Arrays of Parameters for Batch Execution
	Bulk Fetch Rows of TimesTen Data
	Use the ResultSet Method getString() Sparingly
	Avoid Data Type Conversions
	Close Connections, Statements and Result Sets
	Optimize Queries

	Tuning JMS/XLA Applications
	Considerations in Tuning JMS/XLA Applications
	Configure xlaPrefetch Parameter
	Reduce Frequency of Update Acknowledgments
	Handling High Event Rates

	6 JMS/XLA Reference
	JMS/XLA MapMessage Contents
	XLA Update Types
	XLA Flags

	DML Event Data Formats
	Table Data
	Row Data
	Context Information

	DDL Event Data Formats
	CREATE_TABLE
	DROP_TABLE
	CREATE_INDEX
	DROP_INDEX
	ADD_COLUMNS
	DROP_COLUMNS
	CREATE_VIEW
	DROP_VIEW
	CREATE_SEQ
	DROP_SEQ
	CREATE_SYNONYM
	DROP_SYNONYM
	TRUNCATE

	Data Type Support
	Data Type Mapping
	Data Types Character Set

	JMS Interfaces for Event Handling
	JMS/XLA Replication API
	TargetDataStore Interface
	TargetDataStoreImpl Class

	JMS Message Header Fields

